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GENERAL PREFACE

Dov Gabbay, Paul Thagard, and John Woods

Whenever science operates at the cutting edge of what is known, it invariably
runs into philosophical issues about the nature of knowledge and reality. Scientific
controversies raise such questions as the relation of theory and experiment, the
nature of explanation, and the extent to which science can approximate to the
truth. Within particular sciences, special concerns arise about what exists and
how it can be known, for example in physics about the nature of space and time,
and in psychology about the nature of consciousness. Hence the philosophy of
science is an essential part of the scientific investigation of the world.

In recent decades, philosophy of science has become an increasingly central
part of philosophy in general. Although there are still philosophers who think
that theories of knowledge and reality can be developed by pure reflection, much
current philosophical work finds it necessary and valuable to take into account
relevant scientific findings. For example, the philosophy of mind is now closely
tied to empirical psychology, and political theory often intersects with economics.
Thus philosophy of science provides a valuable bridge between philosophical and
scientific inquiry.

More and more, the philosophy of science concerns itself not just with general
issues about the nature and validity of science, but especially with particular issues
that arise in specific sciences. Accordingly, we have organized this Handbook into
many volumes reflecting the full range of current research in the philosophy of
science. We invited volume editors who are fully involved in the specific sciences,
and are delighted that they have solicited contributions by scientifically-informed
philosophers and (in a few cases) philosophically-informed scientists. The result
is the most comprehensive review ever provided of the philosophy of science.

Here are the volumes in the Handbook:

Philosophy of Science: Focal Issues, edited by Theo Kuipers.

Philosophy of Physics, edited by Jeremy Butterfield and John Earman.
Philosophy of Biology, edited by Mohan Matthen and Christopher Stephens.
Philosophy of Mathematics, edited by Andrew Irvine.

Philosophy of Logic, edited by Dale Jacquette.

Philosophy of Chemistry and Pharmacology, edited by Andrea Woody and
Robin Hendry.
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Philosophy of Statistics, edited by Prasanta S. Bandyopadhyay and Malcolm
Forster.

Philosophy of Information, edited by Pieter Adriaans and Johan van
Benthem.

Philosophy of Technological Sciences, edited by Anthonie Meijers.
Philosophy of Complex Systems, edited by Cliff Hooker and John Collier.

Philosophy of Earth Systems Science, edited by Bryson Brown and Kent
Peacock.

Philosophy of Psychology and Cognitive Science, edited by Paul Thagard.
Philosophy of Economics, edited by Uskali Maki.
Philosophy of Linguistics, edited by Martin Stokhof and Jeroen Groenendijk.

Philosophy of Anthropology and Sociology, edited by Stephen Turner and
Mark Risjord.

Philosophy of Medicine, edited by Fred Gifford.

Details about the contents and publishing schedule of the volumes can be found
at http://www.johnwoods.ca/HPS/.

As general editors, we are extremely grateful to the volume editors for arranging
such a distinguished array of contributors and for managing their contributions.
Production of these volumes has been a huge enterprise, and our warmest thanks
go to Jane Spurr and Carol Woods for putting them together. Thanks also to
Andy Deelen and Arjen Sevenster at Elsevier for their support and direction.
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INTRODUCTION: INFORMATION IS WHAT
INFORMATION DOES

Pieter Adriaans and Johan van Benthem

1 INTRODUCTION: WHY THIS HANDBOOK?

Information is a high-frequency and low-content phrase that permeates our or-
dinary language without attracting much attention, since its meaning has long
eroded. Even so, is there more to the notion, and in particular, is there philoso-
phy to it? The editors of the series of ‘Handbook of the Philosophy of Science”
thought so, when they invited us to contribute a volume, more years ago than we
care to remember. But right at the start, a distinction must be made concerning
the aim of this text, which comes from the philosophy of language. A Hand-
book for an established field has a descriptive function in terms of ‘what there is’,
serving as a record of insights and issues. But other, activist Handbooks have a
performative use, trying to create a new field by a ‘let it be’. The present volume
is definitely of the second category.

Clearly, one cannot just create an academic discipline by fiat when there is no
material to go on. But as it happens, information is a unifying notion across the
sciences and humanities, with a backbone of serious mathematical theory. More-
over, there is even a whole discipline of ‘informatics’ (‘computer science’, in the
unfortunate terminology used in some countries) which studies the structure of
representation and transformation of information by machines, but gradually also
by humans, and various hybrids of the two. Indeed, universities in several coun-
tries have created schools of Informatics or Information Sciences, highlighting the
central role of information and its associated themes of computation and cognition
in the modern academic landscape.

But this observation again calls for a distinction, this time concerning our pur-
pose. ‘Philosophy of information’ might mean philosophy of the information sci-
ences, just as there is philosophy of the natural sciences, the life sciences, or hu-
manities. Such methodological reflection on specific fields is absolutely necessary
given the explosion of relevant technical research. It will be found in abundance
in the pages of this Handbook, with authors engaging in foundational analysis
of disciplines such as computer science, economics, linguistics, or physics. But
there is also the parallel, and in some ways more ambitious aim of information
as a major category of thought within philosophy itself, which might have the
potential of transforming that whole field. Indeed, major philosophers like Fred

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information

Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay,
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4 Pieter Adriaans and Johan van Benthem

Dretske or John Perry have argued that perennial questions of epistemology and
other core areas of their field can be solved, or at least taken much further, from
an information-oriented stance. Beyond that largely analytical tradition, in recent
years, Luciano Floridi has been arguing forcefully that a well-conceived philosophy
of information might affect the field as a whole, making distinctions like ‘analytical’
vs. ‘continental’ irrelevant.

‘We are sympathetic to both purposes: foundations of the information sciences
and transformation of core philosophy, even though the second seems more pro-
grammatic than the first right now. In what follows we will discuss some more
concrete themes in this Handbook, and then return to these broad purposes.

2 A VERY BRIEF HISTORY OF INFORMATION
Philosophy

The term information is of Latin origin, and authors like Cicero and Augustine
used it in the context of Plato’s theory of ideas (or forms) and its successors. In
particular, Cicero uses ‘in-formare’ to render the Epicurean notion of ‘prolepsis’,
i.e., a representation implanted in the mind [Capurro and Hjgrland, 2003]. In
the Middle Ages, a significant shift occurred. In the 15! century, the French
word ‘information’ emerges in colloquial language with a cluster of meanings: ‘in-
vestigation’, ‘education’, ‘the act of informing or communicating knowledge’ and
‘intelligence’. The technical term ‘information’ then vanishes from philosophical
discourse as though it had lost its appeal. Instead, when the English empiricists
went back to the original Platonic inspiration, they coined the term ‘idea’ (derived
from Platonic ‘eidos’): “whatsoever is the object of understanding when a man
thinks ... whatever is meant by phantasm, notion, species, or whatever it is which
the mind can be employed about when thinking” [Locke, 1961, Essay 1,i,8]. The
philosophical adventures of this notion of ‘idea’ run from Hume, Kant, and the
German idealists up to Husserl and beyond. But like famous Cats through history,
‘information’ has had many more lives than just one — and to these, we now turn.

Coding

Information has long been associated with language and coding. Like theoretical
philosophy, the practical ambition to hide information in messages and to then
decode these messages with, or without a key dates back to Antiquity [Kahn, 1967].
Cicero’s contemporary Julius Caesar used code systems to communicate with his
generals, and so did his Hellenistic and Chinese predecessors — and code breaking
must be equally old. Reflection on this practice soon followed. The efficiency of
assigning shortest codes to most frequent signals has long been known, witness
the 10" century Arabic texts on cyphers and decoding via frequencies mentioned
in Singh [1999]. With the invention of book-printing in the 15" century, type-
setters soon discovered that they needed more es than zs in a font. Characteristic
frequencies of letters in languages were used to decode simple replacement ciphers.
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The 18th century saw the emergence of ‘black-rooms’ in Europe with the task of
encoding and decoding messages for political purposes. With the development of
the first electronic communication media, efficient coding systems became of wider
use. In 1838, Samuel Morse designed his telegraph code on the basis of a statistical
analysis of a Philadelphia newspaper.

Physics

Another step toward the modern concept of information occurred in 19** cen-
tury physics. When explaining macroscopic events in terms of large quantities of
discontinuous microscopic ones, Rudolf Clausius [1850}] introduced the statistical
notion of entropy. Entropy measures the number of different microscopic states a
macroscopic system can be in. The entropy in a container is higher if the particles
are evenly distributed over the space in the container. With this concept, Clau-
sius formulated what we now call the Second Law of Thermodynamics: a closed
system either remains the same or becomes more disordered over time, i.e., its
entropy can only increase. The philosopher Henri Bergson once called this “the
most metaphysical law of nature” [Bergson, 1998]. Clausius’ famous paper ends
with a disturbing observation from an informational point of view: “The energy of
the universe is constant — the entropy of the universe tends toward a maximum.”

Mathematics

In the 20" century, ‘information’ became a subject for mathematical theory, with
the pioneering work of Ronald Fisher on the foundations of statistics [Fisher,
1925]. Indeed all of probability theory might be seen with some justice as a form
of information theory, with objective probability closer to physical perspectives,
and subjective probability closer to information as used by rational human agents.
While this is true, we have decided to concentrate on more specific ‘information
theories’ as such. The pioneering example is the work of Claude Shannon on chan-
nel transmission [Shannon, 1948], which may well be most people’s association
with ‘information theory’. Shannon defined the amount of information in a mes-
sage as the negative base-2 logarithm of the probability of its occurrence from a
given source over a given channel — thus measuring in ‘bits’, which has become a
household term.

Actually, this notion fits with the physics tradition via one transformation. The
total entropy of two independent systems is the sum of their individual entropies,
while the total probability is the product of the individual probabilities. Already
Ludwig Boltzmann proposed to make the entropy of a system proportional to
the logarithm of the number of microstates it can be in. Shannon’s quantitative
approach is a momentous shift away from the common-sense conception of mean-
ingful information, but it has been spectacularly successful, witness its use in many
chapters of this Handbook.
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Computer science

Even so, Shannon’s is not the only quantitative version of information to appear in
the 20" century. In the 1960s, Kolmogorov, Solomonoff and Chaitin [Solomonoff,
1997; Chaitin, 1987; Li and Vitdnyi, 1997] developed a new information measure in
terms of optimal coding by a computational device. The information in a string X
is now an absolute number, viz. the length of the shortest code of a program that
would lead a universal Turing Machine to output string X. It can be shown that
this definition makes sense independently from accidental features of code language
and computing device. Now, highly regular strings will have low complexity, while
highly random strings have high complexity. Thus the information content of a
string ‘reverses’ in an obvious way. Kolmogorov complexity is a major tool in
computer science (the most authoritative source is Li and Vitdnyi [1997]), with
foundational uses in complexity theory and learning theory.

Again, there are strong links here with the earlier traditions. For instance,
strings with low Kolmogorov complexity have low entropy, random strings have
high entropy. As we shall see in several chapters of this Handbook, the kinship be-
tween thermodynamics and mathematical and computational information theories
ensures an almost seamless translation of concepts and applications.!

Logic and linguistics

So far, our historical tour of information has taken us from abstract philosophy
to hardcore quantitative science and computation. But the 20** century also pro-
duced another strand of technical information theories, which will be very much in
evidence in this Handbook. For a start, our human information is most obviously
expressed in natural language, and indeed, analyzing even the simplest episode
of language use quickly reveals a host of subtle informational phenomena. What
is a speaker trying to convey, on the basis of what knowledge about the hearer’s
information? Figuring out this communication-oriented sense of information —
which Shannon acknowledged explicitly as significant, but then ignored — involves
a study of semantic meaning, knowledge, and other notions that form the domain
of linguistics, philosophy, and logic. Modern logical modeling of information dates
back to the 1930s with Alfred Tarski’s fundamental work on the concept of truth
(cf. [Tarski, 1944]). Of course, traditionally, logic already studied informational
processes like inference, which work largely on linguistic code, without an explicit
model of reality attached. Logical accounts of information tend to be qualitative,
in terms of sets and orderings rather than numbers, but they are just as rigor-
ous as quantitative accounts. The chapter by van Benthem & Martinez in this
Handbook is a broad survey of sources and varieties. Finally, logic-based accounts
of information, too, have strong connections with the foundations of mathematics

n aslogan, information theory is the thermodynamics of code strings, while thermodynamics
is the information theory of particles in space. Some authors take this analogy to extremes,
viewing black holes and even the universe as a computational system [Lloyd and Ng, 2004].
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and computer science, and so we have another major kind of ‘information theories’
that goes into the total picture of this Handbook.

Broader uses in society

A history of the emergence of ‘information’ as a staple of public discourse in the
20th century is yet to be written. It appears to be connected with modern in-
telligence services and communication technologies like the telegraph, and later,
the computer. At the end of the 19th century, several countries started system-
atic collection of military information. The US Office of Naval Intelligence was
established in 1882, followed by a Military Information Division — with one clerk
and one officer — in 1885. Its task was to collect “military data on our own and
foreign services which would be available for the use of the War Department and
the Army at large.” A modern use of the term information in this context can be
found in the ‘World Fact Book’, an annual publication of the CIA:

Information is raw data from any source, data that may be fragmentary,
contradictory, unreliable, ambiguous, deceptive, or wrong. Intelligence
is information that has been collected, integrated, evaluated, analyzed,
and interpreted.?

In this compact passage, various broad themes running across this whole Hand-
book occur in a nutshell, viz. ‘information as the act of informing’, ‘information
as the result of the act of informing’, and ‘information as something that is con-
tained in the message used to inform’. In addition to the impact of this military
usage, much broader reflection on information has been generated by recent tech-
nologies like the Internet, again related to issues in this Handbook in interesting
ways. Just as in 17** century physics, what we see is an intriguing parallelism, and
indeed a lively stream of interaction, between scientific, technological and social
developments [Castells, 1996; Kahn, 1967; Capurro and Hjgrland, 2003].

Philosophy once more

While scientific and social developments made information a crucial notion, lit-
tle of this penetrated into modern philosophy. Although Gdédel’s incompleteness
results, the Church-Turing thesis, and Turing’s ideas on machine intelligence gen-
erated much philosophical debate, this did not lead to widespread philosophical
reflection on the notion of ‘information’ itself. To be sure, there were some seri-
ous philosophical responses to Shannon’s theory around 1950, witness Bar-Hillel
and Carnap [1953], which took a closer look at the interplay of what they saw as
equally viable quantitative and logical notions of information, starting off a tra-
dition in ‘confirmation theory’ continued by Jaakko Hintikka, and many others.?

2https://www.cia.gov/library/publications/the-world-factbook/docs/history.html
3Cf. [Hintikka, 1973; Kuipers, 2000]. Our companion publication “Handbook of the General
Philosophy of Science” presents the current state of the art in confirmation theories.
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Solomonoff, who is one of the founding fathers of algorithmic information theory,
and whose work was partly motivated by philosophical questions concerning the
nature of probability and the induction problem, studied with Carnap in the fifties.
Until now this work never percolated to mainstream philosophy. ‘Information’ is
not mentioned, for instance, in the well-known history of logic [Kneale and Kneale,
1962}, nor does it have a lemma in Paul Edwards “Encyclopedia of Philosophy” of
1967. Things started changing around 1980. Fred Dretske gave information theory
its due in epistemology [Dretske, 1981], and the same is true for the work of Jon
Barwise and John Perry in the philosophy of language [Barwise and Perry, 1983).
On the latter view, triggered by ideas from cognitive ‘ecological psychology’, logic
should study the information flow in rich distributed environments with physi-
cal and human components. All these philosophers use the notion of information
to throw new light on classical issues of knowledge, objectivity, representation
and ‘aboutness’, thus facilitating ‘second opinions’ and new solutions. Finally,
we already mentioned Luciano Floridi’s seminal work on a new ‘Philosophy of
Information’ at the start of the 21%* century [Floridi, 2003A; 2003B].

Modern interdisciplinary trends

This historical sketch provides the background for the main themes that the reader
will find in this Handbook. But maybe we should also explain our cast of authors,
which mixes philosophers with practitioners of other disciplines. This combination
is well in line with what has happened over the last two decades in foundational
studies of information, with topics moving in and out of philosophy. Indeed,
Barwise and Perry already started the interdisciplinary ‘Center for the Study of
Language and Information’ (CSLI) at Stanford, a hot-bed of encounters between
philosophers, linguists, computer scientists, mathematicians, and psychologists.
Its current director Keith Devlin is one of our Handbook authors.

At the same time, in Europe, natural language semantics took an informational
turn. Jeroen Groenendijk and Martin Stokhof* introduced information of language
users in defining meanings of key linguistic constructions, including speech acts like
questions. With Peter van Emde Boas, a pioneer in the study of parallels between
natural and programming languages, and Frank Veltman, who had developed an
update semantics for conditional expressions, they redefined meaning as ‘potential
for information update’ based on abstract computation in appropriate state spaces.
Similar ideas underlie the influential discourse representation theory of Irene Heim
and Hans Kamp. Details on this linguistic paradigm shift may be found in the
chapter by Kamp and Stokhof in this volume. By 1986, this led to the foundation
of the ‘Institute for Language, Logic and Information’ in Amsterdam, better known
today as the ILLC, the Institute for Logic, Language, and Computation. Similar
initiatives include the European Association for Logic, Language and Information,
and its annual ESSLLI Summer Schools, as well as its international off-spring in
other continents.

4Editors of the companion volume Handbook of the Philosophy of Language in our series.
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One more major interdisciplinary strand in the 1980s was the rise of epistemic
logic describing agents’ knowledge ‘to the best of their information’. Epistemic
logic was first proposed by Jaakko Hintikka [Hintikka, 1962] as a tool for philoso-
phers, and taken further by David Lewis [Lewis, 1969] and Robert Stalnaker [Stal-
naker, 1984]. Epistemic logic was invented independently by Robert Aumann in
economics in the 1970s, in his eventually Nobel-Prize winning analysis of the foun-
dations of Nash equilibrium through common knowledge of rationality. Since the
1980s, when Joe Halpern and colleagues at IBM San Jose started the still-thriving
TARK conferences on ‘Reasoning about Knowledge and Rattonality’, while them-
selves making major contributions to the study of information and communication,
the field has lived at the interface of computer science, philosophy, and economics.®

In the 1990s, a further notable new force was the rise of ‘Informatics’: a new
academic conglomerate of disciplines sharing a natural interest in information and
computation as themes cutting through old boundaries between humanities, social,
and natural sciences. By now, there are Informatics schools and institutes in
Bloomington, Edinburgh, Philadelphia (IRCS), and Kanazawa (JAIST), to name
a few, and the founding dean of such a School at Indiana University, Mike Dunn,
is one of our Handbook authors.®

‘While all this organizational and social information may grate on ears of tradi-
tional philosophers (how far away can the Mammon be?) — to us, it seems highly
relevant if Philosophy of Information is to have a significant future as a vibrant
endeavour with many sources.

3 INFORMATION THEORIES, THREE MAJOR STRANDS

We have sketched a rich history of information studies ranging through the whole
academic spectrum into society. The reverse side of this wealth is the diversity.
What do all these themes and fields, worth-while as they may be per se, have
in common, except at best a metaphor? This impression of diversity may even
be reinforced when the reader gets to our actual chapters. Before sketching their
content, then, let us first draw a few lines confronting some doubts and worries.

Just a metaphor?

‘Information’ may be a ubiquitous phrase, and even a real phenomenon, and yet
it might be just a metaphor leading to vague philosophy, like ‘system’ or ‘game’
have done in the past. The real situation seems less bleak, however. As with terms
like ‘energy’ or ‘money’, there is indeed a general usage of information where little
can be said beyond generalities. Energy is what drives inanimate processes and

5Epistemic logic as information theory is a new view, proposed in [van Benthem, 2006], and
the chapter by van Benthem and Martinez on ‘Logic and Information’ in this Handbook.

SDunn’s chapter in this Handbook provides much additional detail beyond our historical
sketch, while also mapping out connections to major approaches to information in the foundations
of logic and computer science.
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animate activities, and what allows us to relate the effort involved. Money is
what makes transactions possible without undue real transportation of goods. In
both cases, general usage is backed up by pockets of precise use in expert circles,
grounded in mathematical theory: thermodynamics, or economics. This interplay
causes no real problems: we understand the broad usage, and we specialize and
make it more precise as needed. These lessons transfer to information.” Indeed,
when Keith Devlin says tongue-in-cheek to broad audiences that “information is
the tennis ball of communication”, he actually formulates a very similar role for
information as for money, viz. as the abstract currency that gets transferred when
people say or observe things. And he also gets the idea right that information
usually arises in complex multi-agent settings, where interaction is of the essence.
But on that topic, we will have more to say below.

Go for a larger family of notions?

Can information stand on its own in conceptual analysis? Compare the case
of knowledge. Most standard philosophical analyses, mainstream like Plato’s, or
more avant-garde like Dretske [1981] or Nozick [{1978], make it part of a larger
cluster of notions, involving also truth, belief, information (...), and perhaps
even counterfactuals. We are usually not after single concepts in philosophical
analysis: we are also charting their closest relatives and friends. This is an issue
on which we have not arrived at a final position. Natural candidates for a clan of
related concepts — not identical, but naturally intertwined — in our case would
be: information, probability, complexity, meaning, coding, and computation. Our
Handbook does not really take a stand here. While using information as its running
theme, it does give extensive coverage to many of these related notions.

Three major concepts of information

One might assume a priori that there is just one notion of information. But one
striking feature, even in our brief history, is the existence of respectable, but very
different mathematical views of what makes it tick! We have seen approaches,
roughly, from logic, physics, and computer science. Should we first assure our-
selves that these all amount to the same thing? Perhaps not. The plurality of
mathematical theories of information may reflect a genuine diversity in the con-
cept itself, which needs to be frankly acknowledged.

Compare the case of probability, another crucial foundational notion across
the sciences whose precise nature has been under debate ever since its rise in
the 17" century. Carnap 1950 proposed a famous conceptual dichotomy between
two irreducible, complementary notions: Probability-1 for objective frequency, and
Probability-2 for subjective chance, and this is still widely seen as a major duality

7That ‘money’ leads the way need not be a bad thing, if we recall Karl Marx’ famous saying
that ‘Logic is the Currency of the Mind’. A mere slogan perhaps: but, how rich and suggestive!
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between two different legitimate concepts in both mathematics and philosophy.®
And legitimate stances on this concept do not even stop here. One can think of
Ludwig von Mises’ views on randomness as a Probability-8, explaining statistically
random sequences of outcomes via algorithmic notions of recursive place selection.

Whatever one’s final verdict, it seems uncontroversial that there are three main
stances in the technical literature on information theories, which we dub

Information-A Knowledge, logic, what is conveyed in informative answers
Information-B  Probabilistic, information-theoretic, measured quantitatively

Information-C  Algorithmic, code compression, measured quantitatively

Over-simplifying a bit, A is the world of epistemic logic and linguistic semantics,
B that of Shannon information theory, linked to entropy in physics, and C that of
Kolmogorov complexity, linked to the foundations of computation. We do not feel
that these are opposing camps, but rather natural clusters of themes and research
styles. Thus, we felt that all of these need to be represented in our Handbook,
since only their encounter gives us the proper canvas for philosophical enquiry.

A first comparison

What are the paradigmatic informational scenarios described by these approaches?
We start with a first pass, and draw a few comparisons.

(A) The typical logic-based setting lets an agent acquire new information about
what the real world is like, through acts of observation, linguistic communi-
cation, or deduction. A simple example would be an agent asking a question,
and learning what things are like from an answer. Thus, three features are
crucial: agents which represent and use the information, dynamic events of
information change, and ‘aboutness’: the information is always about some
relevant described situation or world. Here, we measure quality of informa-
tion qualitatively in terms of new things agents can truly say: a quantitative
measure may be handy, but it is not required. Finally, the formal paradigm
for the theory is mathematical or computational logic.

(B) By contrast, the typical Shannon scenario is about a source emitting signals
with certain frequencies, say a ‘language’ viewed as a global text producer,
and the information which a receiver picks up from this is measured in terms of
expected reduction of uncertainty. This is the sense in which seeing a partic-
ular roll of a fair die gives me 3 bits of information. No specific agency seems
involved here, but the scenario does analyze major features of communication
which are absent on the logical approach, such as probability of signals (i.e.,

8Carnap tried a similar move with ‘information’ in the early 1950s, juxtaposing Shannon’s
quantitative notion with his own qualitative logical information spaces. (Cf. [Kohler, 2001].)
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the long-term behaviour of a source, maybe as viewed by the receiver), op-
timal coding, and channel capacity. Finally, mathematical paradigms for the
theory are probability theory and physics.

Clearly, scenarios A and B are not mutually contradictory. They are about dif-
ferent aspects of sometimes even one and the same scenario of information flow,
omitting some and high-lighting others. Still, the two stances meet at various
points. For instance, coding systems relate to the efficiency of natural language
(or lack thereof), signal probability relates to reliability of sources (also relevant to
logicians), and Shannon theorists often use question-answer scenarios to motivate
their notion, in terms of minimal numbers of questions to pin down the truth.

(C) Next, take the basic Kolmogorov scenario. We receive a code string, and
ask for its informational value. The answer is the algorithmic complexity
of the string, defined as the length of the shortest program that computes
it on some fixed universal Turing machine. While this looks like a totally
different setting from the preceding two, there is a direct link to Scenario
B. Working with the enumerable set of all ‘prefix-free programs’, we can
easily find an associated probability distribution.® In this way, the shortest
program for a string becomes an optimal code in Shannon’s sense. Thus the
following ‘traffic’ arises: Information-B starts with the notion of probability
as fundamental and derives an optimal code. Information-C starts with the
notion of shortest code as fundamental and derives an a priori probability
from it. Further details may be found in the chapters of Griinwald & Vitanyi,
Topsge and Harremoés, and Adriaans in this volume.

Stating technical transformations between notions of information is one thing,
understanding their philosophical consequences another. For instance, consider the
following intriguing questions. What is the status of a computational device like a
Turing machine in grasping the available information in Nature [Wolfram, 2002]?
Does algorithmic complexity still apply if we go from computer code to datasets of
observations? Is Nature a computing agent sending us encoded messages? To some
computer scientists [Schmidhuber, 1997], Information-C is indeed the basis for a
general theory of induction that commits us to ‘metaphysical computationalism’.

Relations between Information-C and Information-A are even more delicate.
The latter seems closer to information flow in human settings and purposeful
activities. But here, too, some researchers see algorithmic data compression as a
universal principle governing human-level information flow, leading to what may be
called ‘cognitive computationalism’: the idea that the human brain is a universal
computational device [Pinker, 1997; Chater and Vitényi, 2003; Wolff, 2006]. If an
agent has background knowledge, in the form of optimal descriptions of a set of
objects (e.g., animals), then identifying such an object (e.g., a cow) via a picture
amounts to finding a shortest algorithmic description of the picture conditional on

9By Kraft’s Inequality, for any finite or infinite sequence I3, la,. .. of natural numbers, there
is a prefix code with this sequence as the lengths of its binary words iff 3, 2-in <1,
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that background knowledge. While not uncontroversial, this philosophical view,
too, has interesting consequences, and even some degree of empirical support.'®

This brief discussion may suffice to show that Information-A, Information-B,
and Information-C make sense on their own, while engendering many intriguing
interactions. As editors, we do not have a final view on the relation between these
approaches, and whether a Grand Unification is possible. We do feel that they
need to be compared in an open fashion, questioning even the usual labels ‘qual-
itative’ vs. ‘quantitative’.!! Our own sense, developed partly thanks to insights
from our authors in this Handbook, is that B and C are close, while the relation
to A-approaches is much less settled. Even so, the B scenario clearly shares some
features with A-type views of information update, and thus one might view Shan-
non’s theory as go-between for A and C. But still, we may have to ‘do a Carnap’
in the end, putting the three side-by-side, just as we saw with probability.1?

4 THE CHAPTERS OF THIS HANDBOOK

This is a good point to interrupt the editors’ story, and let another voice speak for
itself, viz. the list of chapters of this Handbook. The idea behind its composition
has been to put two things at the reader’s disposal. One is a Grandstand View
of serious studies of information in the various sciences, and the styles of work as
done by leading practitioners. The other item offered are a number of major leads
toward a philosophy of information, written by distinguished philosophers. The
latter include both senses that we have described earlier: philosophical foundations
of the information sciences, and also informational turns inside philosophy itself.
We give some cameo descriptions, while also briefly ‘presenting’ the authors.
After this editorial Introduction, the Handbook starts with a first Part on Phi-
losophy and Information. The opening chapter by Fred Dretske, a pioneer in
bringing information theory to philosophy, discusses how the notion of informa-
tion plays in epistemology, and merges well with current debates. Next, Hans
Kamp and Martin Stokhof examine the role of information in the philosophy of
language and the theory of meaning, drawing upon their long experience in philo-
sophical logic and formal semantics at the interface of philosophy and linguistics.
Pieter Adriaans, a classical philosopher turned machine learning expert (amongst
other things), continues with major issues in the philosophy of learning, explor-
ing in particular the knowability of the physical universe from a computational
standpoint. Finally, Luciano Floridi, mentioned several times already, maps out

10The most efficient current program recognizing musical styles uses algorithmic information
theory [Cilibrasi and Vitdnyi, 2005]. Adriaans [2008] even proposes an algorithmic esthetics.

11Indeed, all three types can have more qualitative or quantitative versions, witness Carnap’s
Inductive Logic on the A-side, or the basic ‘representation theorems’ of Shannon information
theory on the B-side.

121ndeed, von Mises third probability intuition in terms of randomness and computable ‘place
selection’ does look a bit like an algorithmic Type C approach to information, through its links
with recursion theory in the work of Per Martin-Lof, Michiel van Lambalgen, and others.
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the broader agenda for a philosophy of information as he has been advocating it
over the recent years.

Next comes a foundational part on Major Technical Approaches. Mathemati-
cians Fleming Topsge and Peter Harremoés give a lucid exposition of Shannon’s
quantitative theory of information and its embedding in general mathematics.
Next, Peter Grinwald and Paul Vitanyi, leading theorists in the foundations of
Kolmogorov complexity, statistics, and recently also quantum information, follow
up with a state-of-the-art account of algorithmic complexity theory, including its
connections with probability and Shannon information. Finally, logicians Johan
van Benthem and Maricarmen Martinez, representing the different traditions of
epistemic logic and situation theory, investigate the role of information in logic,
and describe what this discipline has to offer by way of general theory.

Our third part, Major Themes in Using Information, zooms in on some key
themes in the foundations of ‘informatics’. Kevin Kelly, who has been instru-
mental in bringing topology and recursion theory to the philosophy of science,
writes about learning, simplicity, and belief revision, with Occam’s Razor as a
running theme. Logicians Alexandru Baltag, Hans van Ditmarsch, and Lawrence
Moss describe knowledge and information update as studied in recent ‘dynamic
epistemic logics’, showing how informational themes are creating new logics right
now. Hans Rott, one of the architects of belief revision theory, follows up on this
with a formal account of how agents change their beliefs when triggered by new in-
formation, and discusses optimal cognitive architectures for this. Moving to other
information-producing activities, Samson Abramsky, a leader in the current inter-
est in ‘information dynamics’ in computer science, discusses the information flow
in computation, drawing upon recent game-based models of interactive processes,
with surprising connections to quantum information flow in physics. Information
in games and rational agency per se is then discussed in depth by Bernard Wal-
liser, an economist who has published extensively on the conceptual foundations
of game theory.

The final part of the Handbook collects a number of representative case stud-
ies of Information in the Sciences & Humanities. Mike Dunn, logician, philoso-
pher, computer scientist, and prime mover in the formation of Indiana University’s
School of Informatics, surveys the various uses of information in computer science,
from Scott ‘information systems’ to algebraic theories of data structures and infor-
mational actions. Well-known physicists Sander Bais and Farmer then present a
masterful treatment of the notion of information in physics, opening up to connec-
tions with Shannon information and Kolmogorov complexity. Information in the
social sciences is represented by the chapter of Keith Devlin and Duska Rosenberg,
who give an in-depth transaction model for linguistic communication using tools
from situation theory. Next, John McCarthy, one of the founders of AI, surveys
the uses of information in artificial intelligence, stressing the role of representa-
tion, context, and common sense reasoning, and throwing out a list of challenges
to philosophers. The final two chapters move to the natural world of the life sci-
ences. Margaret Boden discusses the role of information in cognitive psychology,
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including recent neuro-science perspectives. And the last chapter in our tour of
Academia is John Collier’s critical study of current uses of information and coding
in biology, whose repercussions are all around us in bio-technology and its hybrids
with computer science.

In addition to the authors, we should also mention the official commentators,
who have played an important role in this Handbook. Each chapter has been
read by its assigned commentator, and their extensive responses and the ensuing
discussions have kept authors alert and fair to what has been achieved in their
fields. The commentators behind this Handbook are as distinguished and diverse
a group as our authors, including prominent philosophers, computer scientists,
linguists, and psychologists, and their names will be found in the separate chapters.

Of course, no system is fool-proof, and as with every Handbook, the editors
might have made some choices of chapters differently, while there are also bound
to be strands in the field that remain under-represented. One can look only so far.
Even so, we feel that the present collection provides ample material for substantial
reflections, and in the rest of this Introduction, we present a. few of our own.

5 INTEGRATIVE THEMES AND NEW QUESTIONS

When collecting the material for this Handbook we have toyed for a moment with
the ambition of providing one unified account of information that would satisfy all
our authors, and even a more general audience. While this has proved somewhat
llusory at our current state of enlightenment, we do feel that we are now in a much
better position to draw some main lines. Here are a few themes that we see running
through many of our chapters, found not by looking top-down at what information
should be, but bottom-up, looking at stable patterns in existing research. We start
by re-analyzing the three streams we identified earlier, ‘unpacking’ these paradigms
into a number of general themes that seem relevant to information generally. In
this manner, we hope to find a unity through themes instead of ‘all-in’ packages.

Logical range and reduction of uncertainty

One simple, yet powerful theme in many of our chapters is this — and it may even
be the common sense view. Information may be encoded in a range of possibilities:
the different ways the real situation might be. For instance, at the start of a card
game, the range consists of the different possible deals of the cards. Numerically,
this view reflects in the standard representation of information in bits being the
(weighted) base-two logarithm of the size of the range. More dynamically, on this
view, new information is that which reduces my current range — that is: more
information leads to a smaller range. This is the standard logical sense of infor-
mation in which a proposition P updates the current set of worlds W to {w in
Ww makes P true}. This notion is relative to a ‘logical space’ describing the
options. It is also relative to agents, since the update happens to what they know
about the world. In our reading, this is the main notion of information used in
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our Handbook chapters by Baltag, van Ditmarsch and Moss, van Benthem and
Martinez, Dretske, Kamp and Stokhof, McCarthy, Rott, and Walliser. It is an
A-type account in our earlier sense, which revolves around agents’ logical spaces
of alternative options, set up for some purpose (information is “for” something),
zooming in on some yet unknown actual situation (the latter is what the informa-
tion is “about”), and new information typically has to do with dynamic events of
observation, communication or inference updating the current state.

Yet there are also links with B and C types of information. If a range of
n messages has maximum Shannon entropy, the optimal code for each message
takes logan bits. And as for update, if I know that John lives in Europe, I need
some 30 bits to identify him, but after new information that he lives in Amsterdam
this effort is reduced to 20 bits. And as to Information-C, the shortest program
p for a string x in the sense of Kolmogorov complexity can also be interpreted as
a measure for the smallest set of 2/P! possible worlds that we need to describe z.
Thus, ‘range’ truly seems an integrating feature across information theories.

Correlation and channel transmission

The next pervasive notion in our Handbook emphasizes another key aspect of
information flow, viz. the correlation between different systems that drives it. One
situation carries information about another if there is a stable correlation between
the two. This is the sense in which dots on a radar screen carry information about
airplanes out there. Note that this information may be there, even when there is
no agent to pick it up.!® In philosophy, this sense of information is central to the
earlier-mentioned work of Dretske and Barwise and Perry, who were inspired by
Shannon’s paradigm, and who stress the essential ‘situatedness’ and ‘aboutness’
of information. Indeed, correlation seems of the essence there, and the view of
information transmitted across less or more reliable channels is dominant in our
chapters by Bais and Farmer, Boden, Collier, Devlin, Dretske, Kelly, Topsge and
Harremoés. One of its key features is that information is crucially about something,
and thus a relation between a receiving situation and a described, or sending
situation. In this scenario, the ‘quality’ of the information depends essentially on
the reliability of the correlation. But it is also possible to find these same concerns
implicit in our more ‘A-type chapters’.

The two themes identified so far play in various fields. For instance, our chapter
on logical theories of information finds range and correlation right inside logic, and
shows how they are highly compatible there, combining into a single mathematical
model. But also, Shannon’s information theory contains aspects of both range
and correlation. It is definitely about reducing ranges of uncertainty — in a
quantitative manner asking for the average reduction of uncertainty, summarizing
many possible update actions. But is also crucially about correlation between

13Thus, unlike in the classic Procol Harum song ‘Homburg’, http://www.lyricsdomain. com/
16/procol_harum/homburg.html, in situation theory, “signposts” do not “cease to sign” when
there are no human beings left on our planet.
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a source and a receiver across a channel. In algorithmic information theory the
notion of correlation seems less pregnant at fist sight, as Kolmogorov complexity
is a priori and universal, being a measure of ‘self information’ of a data set. But
even there, in principle, it is always correlated with an abstract computational
device, its source.'? More technically, correlation between data sets and what
they describe has been studied in terms of ‘conditional Kolmogorov complexity’,
with the reference universal Turing machine providing the ‘channel’ in the above-
discussed correlational sense.

Temporal dynamics and informational events

But there are further general themes in the A, B, and C stances that seem of
general significance for information. In particular, the Shannon scenario and cor-
relation generally, seems to presuppose a temporal dynamics. Information is not
a one-shot relation between single events: it presupposes an objective pattern of
matched events over time, and this frequency information is one essential function
of the probabilities employed.'® This temporal perspective is also in evidence on
the logical side, and it even plays there in two different ways. Locally, the flow
of information is driven by specific informational events that produce it, such as
an observation, or an answer to a question.'® But there is also a global long-term
process of repeated observations, which establishes reliability and information flow
in some higher sense. In computer science terms, the local dynamics calls for an
account of stepwise informational actions, while the global dynamics calls for a
temporal logic, or a statistical dynamical systems model, of long-term program be-
haviour over time. We have nothing to add to the latter feature here, but the local
dynamics bears some separate discussion, since it seems intimately related to our
very understanding of information. We start with the basic information-handling
process, and discuss some generalizations later.

14Again, this at once raises philosophical questions. Kelmogorov complexity claims to be a
priori and objective. But the price is high: the notion is asymptotic and non-computable. Three
key results from Turing govern this setting: (a) Enumerability: there is a countable number of
Turing machines, (b) Universality: there is an unlimited number of universal Turing machines
that can emulate any other Turing machine, (¢c) Undecidability: there is no program that can
predict, for all combinations of input X and Turing machines M, whether M will stop on X. A
universal Turing machine can be defined in less than 100 bits. Given all this, we can select a
small universal Turing machine U on which any digital object O will have a shortest program.
On the C-view, the length of this program will be the ‘objective’ amount of information in O.
This program cannot be found by any effective computational process, because of point (b), but
the work of Solomonoff, Kolmogorov and Levin shows that under certain constraints we may still
use all this as an adequate information measure.

150f course, these probabilities also have a subjective aspect, since they may be seen as de-
scribing agents’ views of the situation.

16Note that performing an experiment is asking a question to Nature, cf. [Hintikka, 1973].
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Information and computation

One can teach a course on information theory without mentioning computers, and
conversely, one can treat computation theory without reference to information. Yet
the interplay of information with computation as a way of producing or extracting
it is subtle and challenging. Here is one issue which plays in several chapters of
this Handbook. Due to the ‘data processing inequality’ (see [Cover and Thomas,
2006]) deterministic computational processes do not create information: though
they may discard it. Thus, the amount of information in a computational system
can never grow on B- or C-type views! Indeed, the only processes in our world that
generate maximal information-rich sets are pure random processes like quantum
random number generators. A string generated by such a device will with high
probability have maximal Kolmogorov complexity. And yet, our world seems a
very information-rich place, and clearly not all information is random. Many
natural processes generate new information by a non-deterministic device under
deterministic constraints. Thus, evolution and growth seem to create complexity
‘for free’, and though we can simulate them on a computer, the merit of these
simulations in terms of the creation or anmnihilation of information is not clear.
The chapters by Abramsky, Bais and Farmer, Topsge and Harremoés, Floridi, and
Adriaans contain a wealth of material shedding light on the general interplay of
information and computation, but key issues like the one mentioned here are far
from settled. It may call for a deeper understanding of connections between B-
and C-type accounts with A-type accounts.

The process stance: information in action

Next, generalizing from computation in a narrower sense to cognitive activities of
agents, let us develop a methodological idea from computer science — and phi-
losophy — in its appropriate generality. In a computational perspective, it makes
little sense to talk about static data structures in isolation from the dynamic pro-
cesses that manipulate them, and the tasks which these are supposed to perform.
The same point was made in philosophy, e.g., by David Lewis, who famously said
that ‘Meaning Is What Meaning Does’. We can only give good representations of
meanings for linguistic expressions when we state at the same time how they are
used in communication, disambiguation, inference, and so on. In a slogan: struc-
ture should always be studied in tandem with a process! The same duality between
structure and process seems valid for information, and indeed, all of our stances,
and al of our chapters, have specific processes in mind. No information without
transformation! The logical A-stance was about information update, the Shannon
B-view stressed transmission events, and the Kolmogorov C—view is all about
computational activities of encoding and decoding. And these process scenarios
are not just ‘background stories’ to an essentially static notion of information, they
are right at the heart of the matter.

But then, which processes would be paradigmatic for the notion of information?
The chapters of this Handbook show a great variety: from questions and answers
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(Kamp and Stokhof), observations (Baltag, van Ditmarsch and Moss), communi-
cation (Devlin and Rozenberg), learning (Adriaans, Kelly), belief revision (Rott}),
computation (Abramsky), and inference (van Benthem and Martinez) to game-
theoretic interaction (Walliser). And this list generates many questions of its own.
What does information de for each process, and can we find one abstract level
of representation for them that stays away from details of implementation? Also,
some of these processes concern single agents, while others are intrinsically multi-
agent ‘social’ events. Is the basic informational process a multi-agent one, with
single-agent activities their ‘one-dimensional projections’?!” We will not attempt
to answer these questions here, but we do think they are central to a philosophy of
information that bases itself on the best available information-theoretic practices.

Information as code and representation

While the preceding tandem view seems to high-light the dynamic processes, it
equally well forces us to think more about the details of representation of informa-
tion. Here is where the linguistic study of natural language has much to offer (see
our chapter by Kamp and Stokhof), in particular in connection with A-type views
of information. In another setting, the chapter by Devlin and Rozenberg high-
lights subtleties of linguistic formulation in informational transactions in social
settings. But other abstraction levels, even when far removed from ‘meaningful
discourse’, carry insights of their own. Recall the mathematical fine-structure of
our C-stance. The Kolmogorov complexity of a data set was the length of the
shortest program that generates this data on a computer.!® Now consider an ap-
parently strange feature here, viz. the definition of randomness. A string X is
random if it cannot be compressed, i.e., no program shorter than the length of
X produces X on our universal Turing machine. Thus, random strings have the
highest amount of information possible: say, a radio transmission that only con-
tains noise! This runs head-long into the idea of information as ‘meaningful’. But
it does reveal an intriguing connection elsewhere, with thermodynamics as in the
chapter of Bais and Farmer. Kolmogorov complexity can be viewed as a theory
of string entropy, with random strings as systems in thermodynamic equilibrium.
This suggest intriguing equivalence relations for translating between complexity
theory and physics, for whose details we refer to Adriaans [2008].1°

17For instance, is ‘learning’ as in formal learning theories just a one-agent projection of a shared
activity of a two-agent system {Learner, Teacher}? Likewise, is a logician’s ‘proof’ as a formal
string of symbols the zero-agent projection of a multi-agent interactive activity of argumentation?

18Here is one more common sense way to understand the different stances here. You are at
an information booth at the airport, trying to book a hotel. The information in statements like
“There is a room free in the Ritz”, is probably best analyzed in A- or B-terms, but when the
official shows you a city map that tells you how to get to the Ritz, something else is going on. The
map contains information which can be measured: a detailed map contains more information
then a sketch. The computer file that the printer uses to produce a detailed map contains more
bits than the file for a large scale one. This is the structure measured by Kolmogorov information.

19Here is a summary. Consider these ‘identities”: (a) Length |z| of 2 string « = the internal
energy U of a system, (b) Kolmogorov Complexity C(z) ~ Entropy § of a system, (c) Ran-
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This concludes our list of general themes, showing how systematic reflection on
the various stances in information theory raises questions of interest to all.

6 CONCLUSION, AND THE PURPOSE OF THIS HANDBOOK
ONCE MORE

The main scientific ingredients

This Handbook presents a panorama of approaches to information, drawing for
its methods on at least three major scientific disciplines: logic, computer science,
and physics. It might be thought that all of these strands have already been
integrated in current broad academic ‘informatics’ environments, but this seems
more of a hope than a reality so far. In particular, while it is true that, over the
20" century, computer science has yielded a host of fundamental insights into the
representation and processing of information,?° its foundations remain an exciting
open field. It may even be true eventually that the complete scientific background
for the foundations of information should include cognitive science, but we have
not chosen this as major focus in our scheme yet — though we do have chapters
by Boden on information in cognitive science, and Collier on biology.

From unification to co-existence

What we have not achieved in this Handbook is a Grand Unification of all major
technical approaches to information. We do not know if one is possible, and we
sometimes even wonder whether it would be desirable. What does happen here is
that different bona fide traditions meet, and what we hope will happen is that they
find a common language, and a research agenda including new shared concerns.
We think this is possible because our analysis in the preceding sections, largely
based on the contents of this Handbook, has not revealed incompatibility, but
rather a complementarity of perspectives.

domness deficiency |z| — C(z) = the Helmholz free energy U — T'S of a system (T = absolute
temperature), (d) Random string &~ system in equilibrium. Here the randomness deficiency of a
string is its length minus its Kolmogorov complexity, just as the free energy of a system is the
internal energy minus its entropy by equal temperature. Free energy is linked with meaningful
information. A system in equilibrium cannot do any work, just as a random string does not con-
tain any meaningful information. Thus the meaningful information in a string may be defined as
follows. The facticity F(z) of a string z is the product of the normalized entropy C(z)/|z| and
the normalized randomness deficiency 1 — (C(z)/|2|). The term is motivated by Heidegger’s no-
tion of ‘die unbegrundbare und unableitbare Faktizitat des Daseins, die Existenz...” [Gadamer,
p. 240]. If p is the shortest program that generates = on U, then p is by definition a random
string. Nothing can be said about it or derived from it other than that U(p) = z. The string p is
completely meaningless outside the context of U. Kolmogorov complexity maps all meaningful
strings on to meaningless random strings.

20 Jyst think of automata theory, complexity theory, process theories, Al the list is impressive,
and it immediately belies the modest ‘handmaiden’ role that some want to relegate the field to.
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Successful merges

Concrete examples of the potential for merging will be clear to any serious reader
of our chapters — if only, because many ingredients of one paradigm make imme-
diate sense in another. For instance, one might, and probably should, introduce
correlationist information channels in a more realistic logical range view, and sev-
eral proposals to this effect were made recently. Or, our chapter on Shannon
theory involves questions and answers at crucial stages, and introducing explicit
dynamic multi-agent perspectives in B- and C-type accounts of information might
be worth-while. This would reflect a recent general move toward studying ‘inter-
action’ as a basic phenomenon in the foundations of logic and computer science.
But many further desiderata emerge from the material collected here. For in-
stance, various chapters make surprising new moves towards physical models of
information, including those by Abramsky and Adriaans. This connection seems
important, and it might lead to possible new academic alignments. Finally, even
the austere code-based view of information really occurs throughout this book,
witness the chapters on natural language, on computation, and on logic. Indeed,
the latter discusses the related ‘scandals’ of computation and deduction: which
reflect long-standing philosophical discussions. How can a code-based process of
valid computational or inferential steps generate information? How can we har-
monize algorithmic and semantic views? The reader will find some answers in the
relevant chapters, including links to the foundations of logic, Hilbert’s proof theory,
and Godel’s completeness theorem — but again, the issue is far from settled.
Indeed, fruitful combinations of the different perspectives in this Handbook
already exist. Useful combinations of logical range spaces and Shannon-style cor-
relation measures co-exist in modern semantics for natural language: cf. [van
Rooij, 2004] on questions and answers, or [Parikh and Ramanujam, 2003] on gen-
eral messaging. Indeed, a recent special issue of the Journal of Logic, Language
and Information [van Benthem and van Rooij, 2003] brought paradigms together
in the following simple manner. Just consider one basic informational scenario like
a question followed by an answer. Now ask a logician, an information theorist, and
an algorithmics expert to analyze the very same scenario. It was highly instructive
to see what features they picked up on as important, but also that, despite their
differences in concerns and methodology, no deep contradictions arose.?!

Creative tensions

Indeed, fostering some residual differences can be creative. Consider the editors
themselves. Their ‘gut views’ on information are different. Adriaans is on the
quantitative side, van Benthem on the qualitative one. At first sight, this seems a
sharp divide. Scientists and engineers love computation, since we can now ‘com-
pute with information’. Philosophers and logicians feel that all the content and

215ee also [Kooi, 2003] for a case study of strategies for question answering combining ideas
from logic, probability theory, and information theory in a practical manner.
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drama of an informational event is ‘flattened’ into a one-dimensional number.
Messages with totally different content can become equivalent in this way.

But this difference in direction can easily become a productive force. Even from
a logical point of view, adding numerical measures seems relevant and natural,
and many hybrids exist of logical and probabilistic systems for various cognitive
tasks. Thus, there are already many areas of fruitful confrontation between logical
and quantitative, often probabilistic methods. Consider evolutionary game theory
or current methodological debates in ethics, where the role of norms and moral
behaviour can be analyzed either in traditional logical terms, based on conscious
reasoning from moral principles,?? or as inevitable statistical equilibrium behaviour
in large-scale long-term populations. Indeed, from a more practical viewpoint,
Adriaans [2007] points out that in most realistic scenarios involving informational
events, logical micro-descriptions are either unavailable, or the cost of computing
them becomes prohibitive. In that case, the statistical approach is the only way we
have of finding essential macro-features of the relevant process. The same might be
true for information on a large scale and in the long run — and here, despite the,
perhaps, one-dimensionality of the numerical bit measure, it has amply shown the
same ‘unreasonable effectiveness’ that mathematics has for Nature in general.?3

Philosophy of information once more: two levels of ambition

Let us now take all this back to the title theme of this Handbook. The same
difference in perspective that we discussed just now may be seen in the different
scenarios discussed throughout this Introduction. And here is one way in which the
editors have come to see it. Information plays at quite different levels in our human
and natural world. One focus for many of the scenarios discussed here are episodes
from our daily cognitive practice: language use, observation, communication, or
other interaction between agents. Logical and linguistic models of information
used by agents in small situations, acting on their private intentions, are meant
for this fine-structure of informational transactions. But around all these private
episodes, there is the global physical universe that we live in. And another highly
significant question is the amount of information that we can hope to extract
from that in our theories. At this level, single agents with their private purposes
are totally irrelevant, and we are interested only in the large-scale structure of
learnability. And the latter question seems to fit much better with the abstraction
level provided by Kolmogorov complexity, where we can think of the universe as
the output of a single Turing machine producing all data that we see.

In line with this distinction, we also see a distinction between philosophical
themes connected to this Handbook. Agent-oriented episodes of meaningful A-
type information flow seem closer to the concerns of epistemology today, and
what people may be said to know about specific issues, perhaps kept from slum-

22Cf, Kant’s Categorical Imperative, or Rawls’ initial scenario in “A Theory of Justice”.
23This discussion of aggregation levels does show the importance of probability to our Hand-
book, and we might give the logic/probability interface even more attention in future editions.
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bering by skeptics. Several chapters of our Handbook show what clarification
arises from making information a major concern here, tying in to fundamental
questions about the nature of knowledge, language, and logic. In contrast to this,
global knowability of the universe in terms of its information content comes closer
to the Grand Questions of the classical philosophical tradition, and asks what we
could achieve in principle through observation and theory formation. Taking the
mathematical perspectives in this Handbook seriously raises fundamental issues
as well, this time, involving the nature and reach of the computationalism implicit
in both B-type and C-type views. Is it more than just a convenient methodol-
ogy? We have briefly discussed some positions in our earlier list of general themes,
from metaphysical computationalism about nature to cognitive computationalism
about human agents, though of course much more could be said.?*

While all this may sound like a new-fangled ‘technological’ view, we see the
roots of computationalism in the history of philosophy, going back at least to
Descartes’ mechanistic analysis of the ‘res extensa’. Indeed, it still shares some
of the weaknesses of that tradition — but there is also one obvious gain: the
precision and clarity provided by the sophisticated mathematical models now at
our disposal. Both strengths and weaknesses of philosophical claims can now
be stated and investigated in ways that were simply unavailable before.?® For
instance, even if the whole universe can be simulated on a simple Turing machine,
given enough time, this does not yet imply a simple model. The ‘Turing Machine of
Nature’ could still be a universal computational device of any finite complexity.26

Now our point with these final thoughts should not be misunderstood. We are
not saying that somewhere above the local level of informational episodes in daily
life, and even beyond the whole history of science, there lies some Platonic reality of
learnability that we can grasp a priori, making detailed studies redundant. What
we do want to say is that the tools in this Handbook allow us to think about both
the ‘small questions’ of philosophy, concerning language use, knowledge, belief,
and reasoning of single agents, and the ‘big questions’, about the intelligibility of
the universe, and what we can hope to achieve by collective enquiry.

24Many pioneers of computer science have implicitly endorsed metaphysical computationalism.
‘The entire universe is being computed on a computer, possibly a cellular automaton’ according to
Konrad Zuse (cf. [Zuse, 1969]). Similar views have been considered by John Archibald Wheeler,
Seth Lloyd, Stephen Wolfram, Nick Bostrum, and many other serious thinkers.

Z5For instance, identifying computability with recursiveness, we can assign an objective, though
inevitably non-computable information measure to all objects/messages in this universe. This is
precise computational metaphysics. Of course, this, too, has its presuppositions, which might be
questioned. How harmless is the choice of a Universal Turing machine, defined up to a ‘constant
factor’? Could even a leeway of 100 bits prevent us from using Kolmogorov complexity for the
analysis of human intelligence? (Our brain has roughly 10'® neurons.)

26Moreover, the point at which Kolmogorov complexity asymptotically approaches the actual
complexity of objects in our world might lie well beyond a horizon that is useful and practical.
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Philosophy of information: some major issues

To summarize, we list the broad research issues emerging in this Handbook that
we see as central for the development of the field:

1. Information per se. What is information? Is there one general notion that
encompasses all others, or do we merely have a family of loosely related
concepts, or perhaps ‘complementary stances’ in practical settings, making
the peaceful co-existence of approaches as described in this editorial the best
that can be achieved?

2. Information and process. What is the relation between information struc-
ture and computation, deduction, observation, learning, game playing, or
evolution? These processes seem to create information for free. How to
understand this? Can we unify the theory of information, computation, dy-
namic logics of epistemic update and belief revision, and the thermodynamics
of non-equilibrium processes?

3. Information and philosophy. The chapters in this Handbook tie the notion
of information to fundamental issues in classical philosophy, ‘analytical’ but
equally well ‘continental’. Can we ‘deconstruct’ classical philosophy with
modern information-theoretic tools, and bridge the culture gap between the
two traditions? The tools of logic and mathematics at least have no bias for
one over the other.?”

Thus, though this Handbook is full of answers to anyone interested in a serious
study of information, we end with open questions, as true philosophers should.
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EPISTEMOLOGY AND INFORMATION

Fred Dretske

Epistemology is the study of knowledge — its nature, sources, limits, and forms.
Since perception is an important source of knowledge, memory a common way of
storing and retrieving knowledge, and reasoning and inference effective methods
for extending knowledge, epistemology embraces many of the topics comprised in
cognitive science. It is, in fact, a philosopher’s way of doing cognitive science.

Information, as commonly understood, as the layperson understands it, is an
epistemologically important commodity. It is important because it is necessary for
knowledge. Without it one remains ignorant. It is the sort of thing we associate
with instruction, news, intelligence, and learning. It is what teachers dispense,
what we (hope to) find in books and documents, what measuring instruments
provide, what airline and train schedules contain, what spies are used to ferret
out, what (in time of war) people are tortured to divulge, and what (we hope) to
get by tuning in to the evening news.

It is this connection between knowledge and information, as both are commonly
understood, that has encouraged philosophers to use mathematically precise cod-
ifications of information to formulate more refined theories of knowledge. If infor-
mation is really what it takes to know, then it seems reasonable to expect that
a more precise account of information will yield a scientifically more creditable
theory of knowledge. Maybe — or so we may hope — communication engineers
can help philosophers with questions raised by Descartes and Kant. That is one
of the motives behind information-based theories of knowledge.

1 NECESSARY CLARIFICATIONS: MEANING, TRUTH, AND
INFORMATION.

As the name suggests, information booths are supposed to dispense information.
The ones in airports and train stations are supposed to provide answers to ques-
tions about when planes and trains arrive and depart. But not just any answers.
True answers. They are not there to entertain patrons with meaningful sentences
on the general topic of trains, planes, and time. Meaning is fine. You can’t have
truth without it. False statements, though, are as meaningful as true statements.
They are not, however, what information booths have the function of providing.
Their purpose is to dispense truths, and that is because information, unlike mean-
ing, has to be true. If nothing you are told about the trains is true, you haven’t
been given information about the trains. At best, you have been given misinforma-
tion, and misinformation is not a kind of information anymore than decoy ducks
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30 Fred Dretske

are a kind of duck. If nothing you are told is true, you may leave an information
booth with a lot of false beliefs, but you won’t leave with knowledge. You won't
leave with knowledge because you haven’t been given what you need to know:
information.

So if in formulating a theory of information we respect ordinary intuitions about
what information is — and why else would one call it a theory of information?
— we must carefully distinguish meaning, something that need not be true, from
information which must be true. There are, to be sure, special uses of the term
“information” — computer science is a case in point — in which truth seems to
be irrelevant. Almost anything that can be put into the memory of a computer,
anything that can be entered into a “data” base, is counted as information. If
it isn’t correct, then it is misinformation or false information. But, according to
this usage, it is still information. Computers, after all, can’t distinguish between
“Paris is the capital of France” and “Paris is the capital of Italy.” Both “facts”, if
fed into a computer, will be stored, retrieved, and used in exactly the same way.
So if true sentences count as information, so should false ones. For computational
purposes they are indistinguishable.

This approach to information — an approach that is, I believe, widespread in
the information sciences — blithely skates over absolutely fundamental distinctions
between truth and falsity, between meaning and information. Perhaps, for some
purposes, these distinctions can be ignored. Perhaps, for some purposes, they
should be ignored. You cannot, however, build a science of knowledge, a cognitive
science, and ignore them. For knowledge is knowledge of the truth. That is why,
no matter how fervently you might believe it, you cannot know that Paris is the
capital of Italy, that pigs can fly or that there is a Santa Claus. You can, to be sure,
put these “facts”, these false sentences, into a computer’s data base (or a person’s
head for that matter), but that doesn’t make them true. It doesn’t make them
information. It just makes them sentences that, given the machine’s limitations (or
the person’s ignorance), the machine (or person) treats as information. But you
can’t make something true by thinking it is true, and you can’t make something
into information by regarding it as information.

So something — e.g., the sentence “Pigs can fly” — can mean pigs can fly
without carrying that information. Indeed, given the fact that pigs can’t fly,
nothing can carry the information that pigs can fly. This is why, as commonly
understood, information is such an important, such a useful, commodity. It gives
you what you need to know — the truth. Meaning doesn’t.

Information (once again, as it is commonly conceived) is something closely re-
lated to what natural signs and indicators provide. We say that the twenty rings
in the tree stump indicate, they signify, that the tree is twenty years old. That is
the information (about the age of the tree) the rings carry. We can come to know
how old the tree is by counting the rings. Likewise, the rising mercury in a glass
tube, a thermometer, indicates that the temperature is rising. That is what the in-
creasing volume of the mercury is a sign of. That is the information the expanding
mercury carries and, hence, what we can come to know by using this instrument.



Epistemology and Information 31

We sometimes use the word “meaning” to express this sentential content (what
we can come to know) but this sense of the word, a sense of the word in which
smoke means (indicates, is a sign of) fire, must be carefully distinguished from a
linguistic sense of meaning in which the word “fire” (not the word “smoke” nor
smoke itself) means fire. In a deservedly famous article, Paul Grice {1957] dubbed
this informational kind of meaning, the kind of meaning in which smoke means
(indicates, is a sign of) fire, natural meaning. With this kind of meaning, natural
meaning, if an event, e, means (indicates, is a sign) that so-and-so exists, then so-
and-so must exist. The red spots on her face can’t mean, not in the natural sense
of meaning, that she has the measles if she doesn’t have the measles. If she doesn’t
have the measles, then perhaps all the spots mean in this natural sense is that she
has been eating too many sweets. This contrasts with a language related (Grice
called it “non-natural) meaning in which something (e.g., the sentence “She has
the measles”) can mean she has the measles even when she doesn’t have them. If
she doesn’t have the measles, the sentence is false but that doesn’t prevent it from
meaning that she has the measles. If ¢ (some event) means, in the natural sense,
that s is F, however, then s has to be F. Natural meaning is what indicators
indicate. It is what natural signs are signs of. Natural meaning is information. t
has to be true.

This isn’t to say that we must know what things indicate, what information they
carry. We may not know. We may have to find this out by patient investigation.
But what we find out by patient investigation — that the tracks in the snow mean
so-and-so or shadows on the film indicate such-and-such — is something that
was true before we found it out. In this (natural) semse of meaning, we discover
what things mean. We don’t, as we do with linguistic or non-natural meaning,
assign, create or invent it. By a collective change of mind we could change what
the words “lightning” and “smoke” mean, but we cannot, by a similar change of
mind, change what smoke and lightning mean (indicate). Maybe God can, but we
can’t. What things mean, what they indicate, what information they provide, is in
this way objective. It is independent of what we think or believe. It is independent
of what we know. We may seek information in order to obtain knowledge, but
the information we seek doesn’t depend for its existence on anyone coming to
know. It is, so to speak, out there in the world awaiting our use (or abuse) of it.
Information is, in this way, different from knowledge. Information doesn’t need
conscious beings to exist, but knowledge does. Without life there is no knowledge
(because there is nobody to know anything), but there is still information. There
still exists that which, if knowers existed, they would need to know.

2 INFORMATION AND COMMUNICATION

If this is, even roughly, the target we are aiming at, the idea of information we
want a theory of, then a theory of information should provide some systematic,
more precise, perhaps more analytical, way of thinking about this epistemologically
important commodity. If possible, we want a framework, a set of principles, that
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will illuminate the nature and structure of information and, at the same time,
reveal the source of its power to confer knowledge on those who possess it.

In Dretske [1981; 1983] I found it useful to use Claude Shannon’s Mathematical
Theory of Communication {1948] for these purposes (see also [Cherry, 1957] for a
useful overview and [Sayre, 1965] for an early effort in this direction). Shannon’s
theory does not deal with the semantic aspects of information. It has nothing
to say about the news, message, or content of a signal, the information (that
the enemy is coming by sea, for instance) expressed in propositional form that
a condition (a lantern in a tower) conveys. It does, however, focus on what is,
for epistemological purposes, the absolutely critical relation between a source of
information (the whereabouts of the enemy) and a signal (a lantern in the tower)
that carries information about that source. Shannon’s theory doesn’t concern
itself with what news, message or information is communicated from s (source) to
r (receiver) or, indeed, whether anything intelligible is communicated at all. As
far as Shannon’s theory is concerned, it could all be gibberish (e.g., “By are they
sea coming.”). What the theory does focus on in its theory of mutual information
(a measure of amount of information at the receiver about a source) is the question
of the amount of statistical dependency existing between events occurring at these
two places. Do events occurring at the receiver alter in any way the probability
of what occurred at the source? Given the totality of things that occur, or that
might occur, at these two places, is there, given what happens at the receiver, a
reduction in (what is suggestively called) the uncertainty of what happened at the
source?

This topic, the communication channel between source and receiver, is a crit-
ically important topic for epistemology because “receiver” and “source” are just
information-theoretic labels for knower and known. Unless a knower (at a receiver)
is connected to the facts {(at a source) in an appropriate way, unless there is a suit-
ably reliable channel of communication between them, the facts cannot be known.
With the possible exception of the mind’s awareness of itself (introspection) —
there is always, even in proprioception, a channel between knower and known, a
set of conditions on which the communication of information — and therefore the
possibility of knowledge — depends. What we can hope to learn from communi-
cation theory is what this channel must look like, what conditions must actually
exist, for the transmission of the information, needed to know

At one level, all this sounds perfectly familiar and commonplace. If someone
cuts the phone lines between you and me, we can no longer communicate. I can
no longer get from you the information I need in order to know when you are
planning to arrive. Even if the phone lines are repaired, a faulty connection can
generate so much “noise” (another important concept in communication theory)
that not enough information gets through to be of much use. I hear you, yes, but
not well enough to understand you. If we don’t find a better, a clearer, channel
over which to communicate, I will never find out, never come to know, when you
plan to arrive.

That, as I say, is a familiar, almost banal, example of the way the communication
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of information is deemed essential for knowledge. What we hope to obtain from
a theory of communication, if we can get it, is a systematic and illuminating
generalization of the intuitions at work in such examples. What we seek, in its
most general possible form, whether the communication occurs by phone, gesture,
speech, writing, smoke signals, or mental telepathy, is what kind of communication
channel must exist between you and me for me to learn what your plans are? Even
more generally, for any A and B, what must the channel, the connection, between
A and B be like for someone at A to learn something about B?

The Mathematical Theory of Communication doesn’t answer this question, but
it does supply a set of ideas, and a mathematical formalism, from which an answer
can be constructed. The theory itself deals in amounts of information, how much
(on average) information is generated at source s and how much (on average)
information there is at receiver r about this source. It does not try to tell us
what information is communicated from s to r or even, if some information is
communicated, how much is enough to know what is happening at s. It might
tell us that there are 8 bits of information generated at s about, say, the location
of a chess piece on a chessboard (the piece is on KB-3) and that there are 7 bits
of information at r about the location of this piece, but it does not tell us what
information this 7 bits is the measure of nor whether 7 bits of information is enough
to know where the chess piece is. About that it is silent.

3 USING COMMUNICATION THEORY

We can, however, piece together the answers to these questions out of the elements
and structure provided by communication theory. To understand the way this
might work consider the following toy example (adapted from [Dretske, 1981})
and the way it is handled by communication theory. There are eight employees
and one of them must perform some unpleasant task. Their employer has left the
job of selecting the unfortunate individual up to the group itself, asking only to
be informed of the outcome once the decision is made. The group devises some
random procedure that it deems fair (drawing straws, flipping a coin), and Herman
is selected. A memo is dispatched to the employer with the sentence, “Herman
was chosen” written on it.

Communication theory identifies the amount of information associated with,
or generated by, the occurrence of an event with the reduction in uncertainty,
the elimination of possibilities, represented by that event. Initially there were
eight eligible candidates for the task. These eight possibilities, all (let us assume)
equally likely, were then reduced to one by the selection of Herman. In a certain
intuitive sense of “uncertainty”, there is no longer any uncertainty about who
will do the job. The choice has been made. When an ensemble of possibilities is
reduced in this way (by the occurrence of one of them), the amount of information
associated with the result is a function of how many possibilities there were (8 in
this case) and their respective probabilities (.125 for each in this case). If all are
equally likely, then the amount of information (measured in bits) generated by the
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occurrence of one of these n possibilities, I, is the logarithm to the base 2 of n
(the power to which 2 must be raised to equal n):

(1) I, =logyn

Since we started with eight possibilities all of which were all equally likely, I is
log, 8 = 3 bits. Had there been 16 instead of 8 employees, Herman’s selection
would have generated 4 bits of information — more information since there is a
reduction of more uncertainty.!

The quantity of interest to epistemology, though, is not the information gen-
erated by an event, but the amount of information transmitted to some potential
knower, in this case the employer, about the occurrence of that event. It doesn't
make much difference how much information an event generates: 1 bit or 100 giga-
bytes. The epistemologically important question is: how much of this information
is transmitted to, and subsequently ends up in the head of, a person at r seeking
to know what happened at s. Think, therefore, about the note with the name
“Herman” on it lying on the employer’s desk. How much information does this
piece of paper carry about what occurred in the other room? Does it carry the
information that Herman was selected? Would the employer, upon reading (and
understanding) the message, know who was selected? The sentence written on the
memo does, of course, mean in that non-natural or linguistic sense described above
that Herman was selected. It certainly would cause the employer to believe that
Herman was selected. But these aren’t the questions being asked. What is being
asked is whether the message indicates, whether it means in the natural sense,
whether it carries the information, that Herman was selected. Would it enable
the employer to know that Herman was selected? Not every sentence written on
a piece of paper carries information corresponding to its (non-natural) meaning.
“Pigs can fly” as it appears on this (or, indeed, any other) page doesn’t carry the
information that pigs can fly. Does the sentence “Herman was selected” on the
employees’ memo carry the information that Herman was selected? If so, why?

Our example involves the use of an information-carrying signal — the memo
to the employer — that has linguistic (non-natural) meaning, but this is quite
irrelevant to the way the situation is analyzed in communication theory. To un-
derstand why, think about an analogous situation in which non-natural (linguistic)
meaning is absent. There are eight mischievous boys and a missing cookie. Who
took it? Inspection reveals cookie crumbs on Junior’s lips. How much information
about the identity of the thief do the crumbs on Junior’s lips carry? For infor-
mational purposes, this question is exactly the same as our question about how

11f the probabilities of selection are not equal (e.g., probability of Herman = 1/6, probability
of Barbara = 1/12, etc.), then I, (average amount of information generated by the selection
of an employee) is a weighted average of the information generated by the selection of each. I
pass over these complications here since they aren’t relevant to the use of communication theory
in epistemology. What is relevant to epistemology is not how much information is generated
by the occurrence of an event, or how much (on average) is generated by the occurrence of an
ensemble of events, but how much of that information is transmitted to a potential knower at
some receiver.
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much information about which employee was selected the memo to the employer
carries. In the case of Junior, the crumbs on his lips do not have linguistic mean-
ing. They have a natural meaning, yes. They mean (indicate) he took the cookie.
But they don’t have the kind of conventional meaning associated with a sentence
like, “Junior took the cookie.”

Communication theory has a formula for computing amounts of transmitted
(it is sometimes called mutual) information. Once again, the theory is concerned
not with the conditional probabilities that exist between particular events at the
source (Herman being selected) and the receiver (Herman’s name appearing on
the memo) but with the average amount of information, a measure of the general
reliability of the communication channel connecting source and receiver. There
are eight different conditions that might exist at s: Barbara is selected, Herman
is selected, etc. There are eight different results at r: a memo with the name
“Herman” on it, a memo with the name “Barbara” on it, and so on. There are,
then, sixty four conditional probabilities between these events: the probability
that Herman was selected given that his name appears on the memo:

Pr[Herman was selected/the name “Herman” appears on the memo];

the probability that Barbara was selected given that the name “Herman” appears
on the memo:

Pr[Barbara was selected/the name “Herman” appears on the memo];

and so on for each of the eight employees and each of the eight possible memos.
The transmitted information, I, is identified with a certain function of these 64
conditional probabilities. One way to express this function is to say that the
amount of information transmitted, I;, is the amount of information generated
at s, I;, minus a quantity called equivocation, E, a measure of the statistical
independence between events occurring at s and 7. 2

(2) I,=I,—E

The mathematical details are not really important. A few examples will illustrate
the main ideas. Suppose the employees and messenger are completely scrupulous.
Memos always indicate exactly who was selected, and memos always arrive on
the employer’s desk exactly as they were sent. Given this kind of reliability, the
conditional probabilities are all either 0 or 1.

Pr[Herman was selected/the name “Herman” appears on the memo] = 1
Pr[Barbara was selected/the name “Herman” appears on the memo] = 0

2Equivocation, E, is the weighted (according to its probability of occurrence) sum of in-
dividual contributions, E(ri), E(rz),... to equivocation of each of the possible events (eight
possible memos) at v : E = pr(r1)E(r1) + pr(r2)E(r2) + ...pr(rs)B(rg) where E(r;) =
—?pr(s;/r;)logy[pr(s;/r;)]. If events at s and r are statistically independent then F is at a
maximum (E = I;) and Iy is zero.
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Pr[Nancy was selected/the name “Herman” appears on the memo] = 0

Pr{Barbara was selected/the name “Barbara” appears on the memo] = 1
Pr[Herman was selected/the name “Barbara” appears on the memo] = 0
Pr[Nancy was selected/the name “Barbara” appears on the memo] = 0

And so on for all employees and possible memos. Given this reliable connection,
this trustworthy communication channel, between what happens among the em-
ployees and what appears on the memo to their employer, the equivocation, E
turns out to be zero.?

I, = I;: the memo on which is written an employee’s name carries 3 bits
of information about who was selected. All of the information generated by an
employee’s selection, 3 bits, reaches its destination.

Suppose, on the other hand, we have a faulty, a broken, channel of communi-
cation. On his way to the employer’s office the messenger loses the memo. He
knows it contained the name of one of the employees, but he doesn’t remember
which one. Too lazy to return for a new message, he selects a name of one of
the employees at random, scribbles it on a sheet of paper, and delivers it. The
name he selects happens, by chance, to be “Herman.” Things turn out as before.
Herman is assigned the job, and no one (but the messenger) is the wiser. In this
case, though, the set of conditional probabilities defining equivocation (and, thus,
amount of transmitted or mutual information) are quite different. Given that the
messenger plucked a name at random, the probabilities look like this:

Pr[Herman was selected/the name “Herman” appears on the memo] = 1/8
Pr[Barbara was selected /the name “Herman” appears on the memo] = 1/8

Pr[Herman was selected/the name “Barbara” appears on the memo] = 1/8
Pr[Barbara was selected/the name “Barbara” appears on the memo] = 1/8

The statistical function defining equivocation (see footnote 2) now yields a max-
imum value of 3 bits. The amount of transmitted information, formula (2), is
therefore zero.

3Either pr(s/r) = 0 or log,[pr(s/r)] = 0 in the individual contributions to equivocation (see
footnote 2). Note: log, 1 =0.
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These two examples represent the extreme cases: maximum communication and
zero communication. One final example of an intermediate case and we will be
ready to explore the possibility of applying these results in an information-theoretic
account of knowledge.

Imagine the employees solicitous about Barbara’s delicate health. They agree
to name Herman on their note if, by chance, Barbara should be the nominee
according to their random selection process. In this case Iy, the amount of infor-
mation generated by Herman’s selection would still be 3 bits: 8 possibilities, all
equally likely, reduced to 1. Given their intention to protect Barbara, though, the
probabilities defining transmitted information change. In particular

Pr[Herman was selected/the name “Herman” appears on the memo] = 1/2
Pr{Barbara was selected/the name “Herman” appears on the memo] = 1/2

The remaining conditional probabilities stay the same. This small change means
that F, the average equivocation on the channel, is no longer 0. It rises to .25.
Hence, according to (2), I; drops from 3 to 2.75. Some information is transmitted,
but not as much as in the first case. Not as much information is transmitted as is
generated by the selection of an employee (3 bits)

This result seems to be in perfect accord with ordinary intuitions about what
it takes to know. For it seems right to say that, in these circumstances, anyone
reading the memo naming Herman as the one selected could not learn, could not
come to know, on the basis of the memo alone, that Herman actually was selected.
Given the circumstances, the person selected might have been Barbara. So it
would seem that communication theory gives us the right answer about when
someone could know. One could know that it was Herman in the first case, when
the message contained 3 bits of information — exactly the amount generated by
Herman’s selection — and one couldn’t know in the second and third case, when
the memo contains 0 bits and 2.75 bits of information, something less than the
amount generated by Herman’s selection. So if information is what it takes to
know, then it seem correct to conclude that in the first case the information that
Herman was selected was transmitted and in the second and third case it was not.
By focusing on the amount of information carried by a signal, communication
theory manages to tell us something about the informational content of the signal
— something about the news or message the signal actually carries — and, hence,
something about what (in propositional form) can be known.

4 THE COMMUNICATION CHANNEL

Let us, however, ask a slightly different question. We keep conditions the same as
in the third example (Herman will be named on the memo if Barbara is selected),
but ask whether communication theory gives the right result if someone else is
selected. Suppose Nancy is selected, and a memo sent bearing her name. Since
the general reliability of the communication channel remains exactly the same, the
amount of transmitted information (a quantity that, by averaging over all possible
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messages, is intended to reflect this general reliability) also stays the same: 2.75
bits. This is, as it were, a 2.75 bit channel, and this measure doesn’t change no
matter which particular message we happen to send over this channel. If we use
this as a measure of how much information is carried by a memo with Nancy’s
name on it, though, we seem to get the wrong result. The message doesn’t carry as
much information, 3 bits, as Nancy’s selection generates. So the message doesn’t
carry the information that Nancy was selected. Yet, a message bearing the name
“Nancy” (or, indeed, a memo bearing the name of any employee except “Herman”)
is a perfectly reliable sign of who was selected. The name “Nancy” indicates, it
means (in the natural sense) that Nancy was selected even though a memo bearing
the name “Herman” doesn’t mean that Herman was selected. The same is true of
the other employees. The only time the memo is equivocal (in the ordinary sense
of “equivocal”) is when it bears the name “Herman.” Then it can’t be trusted.
Then the nominee could be either Herman or Barbara. But as long as the message
doesn’t carry the name “Herman” it is an absolutely reliable indicator of who was
selected. So when it bears the name “Nancy” (“Tom” etc.) why doesn’t the memo,
contrary to communication theory, carry the information that Nancy (Tom, etc.)
was selected? A 2.75 bit channel is a reliable enough channel — at least sometimes,
when the message bears the name “Nancy” or “Tom,” for instance — to carry a
3 bit message.

Philosophical ‘opinions diverge at this point. Some are inclined to say that
Communication Theory’s concentration on averages disqualifies it for rendering
a useful analysis of when a signal carries information in the ordinary sense of
information. For, according to this view, a message to the employer bearing the
name “Nancy” does carry information about who was selected. It enables the
employer to know who was selected even though he might have been misled had
a message arrived bearing a different name. The fact that the average amount of
transmitted information (2.75 bits) is less than the average amount of generated
information (3 bits) doesn’t mean that a particular signal (e.g., a memo with the
name “Nancy” on it) can’t carry all the information needed to know that Nancy
was selected. As long as the signal indicates, as long as it means in the natural
sense, that Nancy was selected, it is a secure enough connection (channel) to the
facts to know that Nancy was selected even if other signals (a memo with the
name “Herman” on it) fail to be equally informative. Communication Theory,
in so far as it concentrates on averages, then, is irrelevant to the ordinary, the
epistemologically important, sense of information. *

Others will disagree. Disagreement arises as a result of different judgments
about what it takes to know and, therefore, about which events can be said to
carry information in the ordinary sense of information. The thought is something

4This is the view I took in Dretske [1981] and why I argued that the statistical functions of
epistemological importance were not those defining average amounts of information (equivoca-
tion, etc.), but the amount of information associated with particular signals. It was not, I argued,
average equivocation that we needed to be concerned with, but the equivocation associated with
particular signals (see [Dretske, 1981, 25-26]).
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like this: a communication channel that is sometimes unreliable is not good enough
to know even when it happens to be right. A channel of the sort described here, a
channel that (unknown to the receiver) sometimes transmits misleading messages,
is a channel that should never be trusted. If it is trusted, the resulting belief, even
it happens to be true, does not possess the “certainty” characteristic of knowledge.
If messages are trusted, if the receiver actually believes that Nancy was selected
on the basis of a message bearing the name “Nancy,” the resulting belief does
not, therefore, add up to knowledge. To think otherwise is like supposing that one
could come to know by taking the word of a chronic liar just because he happened,
on this particular occasion, and quite unintentionally, to be speaking the truth.
Imagine a Q meter designed to measure values of Q. Unknown to its users, it is
perfectly reliable for values below 100, but unpredictably erratic for values above
100. Is such an instrument one that a person, ignorant of the instrument’s eccentric
disposition®, could use to learn values of Q below 100? Would a person who took a
reading of “84” at face value, a person who was caused to believe that Q was 84 by
a reading of “84” on this instrument, know that ) was 847 Does the instrument
deliver information about values of Q below 100 to trusting users? If your answer
to these questions is “No,” you are using something like communication theory
to guide your judgments about what is needed to know and, hence, about when
information is communicated. This instrument doesn’t deliver what it takes to
know (i.e., information in the ordinary sense) because although the particular
reading (“84”) one ends up trusting is within the instrument’s reliable range (the
instrument wouldn'’t read “84” unless @ was 84) you don’t know this. You would
have trusted it even if it had registered “104”. The method being used to “track”
the truth (the value of Q) doesn’t track the truth throughout the range in which
that method is being used.® '
Externalism is the name for an epistemological view that maintains that some
of the conditions required to know that P may be, and often are, completely be-
yond the ken of the knower. You can, in normal illumination, see (hence, know)
what color the walls are even if you don’t know (because you haven't checked)
that the illumination is normal. Contrary to Descartes, in normal circumstances
you can know you are sitting in front of the fireplace even if you don’t know (and
can’t show) the circumstances are normal, even if you don’t know (and can’t show)
you are not dreaming or being deceived by some deceptive demon. According to
externalism, what is important for knowledge is not that you know perceptual

5Tf users were aware of the instrument’s limited reliability, of course, they could compensate by
ignoring readings above 100 and, in effect, make the instrument completely accurate in the ranges
it was used (i.e., trusted). Practically speaking, this represent a change in the communication
channel since certain readings (those above 100) would no longer be regarded as information-
bearing signals.

8This way of putting the point is meant to recall Robert Nozick’s [1981] discussion of similar
issues. If the method being used to “track” (Nozick’s term) the truth is insensitive to ranges
of unreliability, then the method is not such as to satisfy the counterfactual conditions Nozick
uses to define tracking. One would (using that method) have believed P even when P was false.
See, also, Goldman’s [1976] insightful discussion of the importance of distinguishing the ways we
come to know.
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conditions are normal (the way they are when things are the way they appear
to be), but that conditions actually be normal. If they are, if illumination (per-
spective, eyesight, etc.) are as you (in ordinary life) routinely take them to be,
then you can see — and, hence, know — that the walls are blue, that you are
sitting in front of the fireplace, and that you have two hands. You can know these
things even if, for skeptical reasons, you cannot verify (without arguing in a circle)
that circumstances are propitious. Information-theoretic accounts of knowledge
are typically advanced as forms of externalism. The idea is that the information
required to know can be obtained from a signal without having to know that the
signal from which you obtain this information actually carries it. What matters
in finding out that Nancy was selected (or in coming to know any other empirical
matter of fact) is not that equivocation on the channel (connecting knower and
known) be known to be zero. What is crucial is that it actually — whether known
or not — be zero. This dispute about whether a memo bearing the name “Nancy”
carries the information that Nancy was selected is really a dispute among exter-
nalists not about what has to be known about a communication channel for it to
carry information. Externalists will typically agree that nothing has to be known.
It is, instead, a dispute about exactly what (independently of whether or not it
is known) constitutes the communication channel. In calculating equivocation be-
tween source and receiver — and, therefore, the amount of information a signal at
the receiver carries about a source, should we count every signal that would pro-
duce the same resulting belief — the belief (to use our example again) that Nancy
was selected? In this case we don’t count memos carrying the name “Herman”
since although these memos will produce false belief, they will not produce a false
belief about Nancy’s selection. If we do this, we get an equivocation-free channel.
Information transmission is optimal. Or should we count every signal that would
produce a belief about who was selected — whether or not it is Nancy? Then
we count memos carrying the name Herman, and the communication channel, as
so defined, starts to get noisy. The amount of mutual information, a measure of
the amount of information transmitted, about who was selected is no longer equal
to the amount of information generated. Memos — even when they carry the
name “Nancy” — do not carry as much information as is generated the choice of
Nancy because equivocal messages bearing the name “Herman” are used to reckon
the channel’s reliability even when it carries the message “Nancy.” Or — a third
possible option — in reckoning the equivocation on a communication channel,
should we (as skeptics would urge) count any belief that would be produced by
any memo (or, worse, any signal) whatsoever? If we start reckoning equivocation
on communication channels in that way, then, given the mere possibility of mis-
perception, no communication channel is ever entirely free of equivocation. The
required information is never communicated. Nothing is known.

I do not — not here at least — take sides in this dispute. I merely describe a
choice point for those interested in pursuing an information-theoretic epistemol-
ogy. The choice one makes here — a choice about what collection of events and
conditions are to determine the channel of communication between knower and
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known — is an important one. In the end, it determines what conclusions one
will reach about such traditional epistemological problems as skepticism and the
limits of human knowledge. I refer to this as a “choice” point to register my own
belief that communication theory, and the concept of information it yields, does
not solve philosophical problems. It is, at best, a tool one can use to express
solutions — choices — reached by other means.

5 RESIDUAL PROBLEMS AND CHOICES

What follows are three more problems or, as I prefer to put it, three more choices
confronting anyone developing an information-theoretic epistemology that is based,
even if only roughly, on an interpretation of information supplied by communica-
tion theory. I have my own ideas about which choices should be made and T will
so indicate, but I will not here argue for these choices. That would require a depth
of epistemological argument that goes beyond the scope of this paper.

A. Probability

In speaking of mutual information within the framework of communication theory,
we imply that there is a set of conditional probabilities relating events at source
and receiver. If these conditional probabilities are objective, then the resulting
idea of information is objective. If they are subjective, somehow dependent on
what we happen to believe, on our willingness to bet, on our level of confidence,
then the resulting notion of information is subjective. If information is objective,
then to the extent that knowledge depends on information, knowledge will also be
objective. Whether a person who believes that P knows that P will depend on
how, objectively speaking, that person is connected to the world. It will depend
on whether the person’s belief (assuming it is true) has appropriate informational
credentials — whether, that is, it (or the evidence on which it is based) stands in
suitable probabilistic relations to events at the source. That will be an objective
matter, a matter to be decided by objective facts defining information. It will not
depend on the person’s (or anyone else’s) opinion about these facts, their level
of confidence, or their willingness to bet. If, on the other hand, probability is a
reflection of subjective attitudes, if the probability of e (some event at a source)
given 7 (an event at a receiver) depends on the judgments of people assigning the
probability, then knowledge, in so far as it depends on information, will depend on
these judgments. Whether S knows that P will depend on who is saying S knows
that P.

I have said nothing here about the concept of probability that figures so cen-
trally in communication theory. I have said nothing because, as far as I can see,
an information-theoretic epistemology is compatible with different interpretations
of probability.” One can interpret it as degree of rational expectation (subjec-
tive), or (objectively) as limiting frequency or propensity. In developing my own

"But see Loewer [1983] for arguments that there is no extant theory of probability that will
do the job.



42 Fred Dretske

information-based account of knowledge in [Dretske, 1981] I assumed (without
arguing for) an objective interpretation. There are, I think, strong reasons for
preferring this approach, but strictly speaking, this is optional. The probabilities
can be given a subjective interpretation with little or no change in the formal
machinery. What changes (for the worse, I would argue) are the epistemological
consequences.

If probability is understood objectively, an informational account of knowledge
takes on some of the characteristics of a causal theory of knowledge.® According
to a causal theory of knowledge, a belief qualifies as knowledge only if the belief
stands in an appropriate causal relation to the facts. I know Judy left the party
early, for instance, only if her early departure causes me to believe it (either by my
seeing her leave or by someone else — who saw her leave early — telling me she
left). Whether my belief that she left early is caused in the right way is presumably
an objective matter. It doesn’t depend on whether I or anyone else know it was
caused in the right way. For this reason everyone (including me) may be wrong
in thinking that I (who believes Judy left early) know she left early. Or everyone
(including me) may be wrong in thinking I don’t know she left early. Whether
or not I know depends on facts, possibly unknown, about the causal etiology of
my belief. If probability is (like causality) an objective relation between events,
then an information-theoretic account of knowledge has the same result. Whether
or not someone knows is a matter about which everyone (including the knower)
may be ignorant. To know whether S knows something — that Judy left early,
say — requires knowing whether S’s belief that Judy left early meets appropriate
informational (i.e., probabilistic) conditions, and this is a piece of knowledge that
people (including S herself) may well not have.

If, on the other hand, probability is given a subjective interpretation, infor-
mation — and therefore the knowledge that depends on it — takes on a more
relativistic character.

Whether or not S knows now depends on who is attributing the knowledge. It
will depend on (and thus vary with) the attributor of knowledge because, presum-
ably, the person who is attributing the knowledge will be doing the interpreting on
which the probabilities and, therefore, the information and, therefore, the knowl-
edge depends. As a result, it will turn out that you and I can both speak truly
when you assert and I deny that S knows Judy left early. Contextualism (see [Co-
hen, 1986; 1988; 1999; DeRose, 1995; Feldman, 1999; Heller, 1999; Lewis, 1996))
in the theory of knowledge is a view that embraces this result.

B. Necessary Truths

Communication theory defines the amount of transmitted information between
source and receiver in terms of the conditional probabilities between events that
occur, or might have occurred, at these two places. As long as what occurs at
the source generates information — as long, that is, as the condition existing at a
source is a contingent state of affairs (a state of affairs for which there are possible

8Goldman [1967] gives a classic statement of this theory.



Epistemology and Information 43

alternatives) there will always be a set of events (the totality of events that might
have occurred there) over which these probabilities are defined. But if the targeted
condition is one for which there are no possible alternatives, a necessary state of
affairs, no information is generated. Since a necessary state of affairs generates
zero information, every other state (no matter how informationally impoverished
it might be) carries an amount of information (i.e., > 0 bits) needed to know
about its existence. According to communication theory, then, it would seem that
nothing (in the way of information) is needed to know that 3 is the cube root
of 27. Or, to put the same point differently, informationally speaking anything
whatsoever is good enough to know a necessary truth. Bubba’s assurances are
good enough to know that 3 is the cube root of 27 because his assurances carry
all the information generated by that fact. Mathematical knowledge appears to
be cheap indeed. '

One way to deal with this problem is to accept a subjective account of proba-
bility. The village idiot’s assurances that 3 is the cube root of 27 need not carry
the information that 3 is the cube root of 27 if probability is a measure of, say,
one’s willingness to bet or one’s level of confidence. On this interpretation, the
probability that 3 is the cube root of 27, given (only) Bubba’s assurances, may
be anything between 0 and 1. Whether or not I know, on the basis of Bubba’s
assurances, that 3 is the cube root of 27, will then depend on how willing I am to
trust Bubba. That will determine whether Bubba is a suitable informant about
mathematics, a suitable channel for getting information about the cube root of 27.

Another way to deal with this problem is to retain an objective interpretation
of probability but insist that the equivocation on the channel connecting you to
the facts, the channel involving (in this case) Bubba’s pronouncements, is to be
computed by the entire set of things Bubba might say (on all manner of topics),
not just what he happened to say about the cube root of 27. If equivocation (and,
thus, amount of transmitted information) is computed in this way, then whether
or not one receives information about the cube root of 27 from Bubba depends
on how generally reliable Bubba is. Generally speaking, on all kinds of topics, is
Bubba a reliable informant? If not, then whether or not he is telling the truth
about the cube root of 27, whether or not he could be wrong about that, he is not
a purveyor of information. One cannot learn, cannot come to know, that 3 is the
cube root of 27 from him. If Bubba is a generally reliable informant, on the other
hand, then he is someone from whom one can learn mathematics as well as any
other subject about which he is generally reliable.

A third way to deal with the problem, the way I took in Dretske [1981], is to
restrict one’s theory of knowledge to perceptual knowledge or (more generally) to
knowledge of contingent (empirical) fact. Since a contingent fact is a fact for which
there are possible alternatives, a fact that might not have been a fact, a fact that
(because it has a probability less than one) generates information, one will always
have a channel of communication between knower and known that is possibly
equivocal, a channel that might mislead. If a theory of knowledge is a theory
about this limited domain of facts, a theory (merely) of empirical knowledge, then
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communication theory is prepared to say something about an essential ingredient
in such knowledge. It tells you what the channel between source and receiver must
be like for someone at the receiver to learn, come to know, empirical facts about
the source.

C. How Much Information is Enough?

I have been assuming that information is necessary for knowledge. The employer
can’t know who was selected — that it was Herman — unless he receives the re-
quired information. Following a natural line of thought, I have also been assuming
that if information is understood in a communication-theoretic sense, then the
amount of information received about who was selected has to be equal to (or
greater) than the amount of information generated by the selection. So if Her-
man’s selection generates 3 bits of information (there are eight employees, each of
which has an equal chance of being selected), then to know who was selected you
have to receive some communication {e.g., a message with the name “Herman”
on it) that carries at least that much information about who was selected. If it
carries only 2.75 bits of information, as it did in the hypothetical case where em-
ployees were determined to protect (i.e., not name) Barbara, then the message,
although enough (if it carries the name “Herman”) to produce true belief, could
not produce knowledge. In order to know what happened at s you have to receive
as much information — in this case 3 bits — about s as is generated by the event
you believe to have occurred there.

My examples were deliberately chosen to support this judgment. But there
are other examples, or other ways of framing the same example, that suggest
otherwise. So, for instance, suppose the employees’ messages are not so rigidly
determined. Messages bearing the name “Herman” make it 99% probable that
Herman was selected, messages bearing the name “Barbara” make it 98% probable
that Barbara was chosen, and so on (with correspondingly high probabilities) for
the remaining six employees. As long as these probabilities are neither 0 nor 1,
the individual contributions to equivocation (see footnote 2) will be positive. The
equivocation, E, on the channel will, therefore, be greater than 0 and the amount
of transmitted information will be less than the amount of information generated.
Messages about an employee’s selection will never carry as much information as is
generated by that employee’s selection. Full and complete information about who
was selected, the kind of information (I have been arguing) required to know who
was selected, will never be transmitted by these messages. Can this be right? Is
it clear that messages sent on this channel do not carry the requisite information?
Why can’t the employer know Herman was selected if he receives a memo with
the name “Herman” on it? The probability is, after all, .99.

If a probability of .99 is not high enough, we can make the equivocation even
less and the amount of information transmitted even greater by increasing prob-
abilities. We can make the probability that X was selected, given that his or
her name appears on the memo, .999 or .9999. As long as this probability is less
than 1, equivocation is positive and the amount of transmitted information less
than information generated. Should we conclude, though, that however high the



Epistemology and Information 45

probabilities become, as long as £ > 0 and, therefore, I, < I,), not enough infor-
mation is transmitted to yield knowledge? If we say this, doesn’t this make the
informational price of knowledge unacceptably high? Isn’t this an open embrace
of skepticism?

If, on the other hand, we relax standards and say that enough information
about conditions at a source is communicated to know that what condition exists
there even when there is a permissibly small amount of equivocation, what is
permissibly small? If, in order to know that Herman was selected, we don’t need
all the information generated by his selection, how much information is enough?

Non-skeptics are tugged in two directions here. In order to avoid skepticism,
they want conditions for knowledge that can, at least in clear cases of knowledge,
be satisfied. On the other hand, they do not want conditions that are too easily
satisfied else clear and widely shared intuitions about what it takes to know are
viclated. Reasonable beliefs, beliefs that are very probably true, are clearly not
good enough. Most people would say, for instance, that if S is drawing balls at
random from a collection of balls (100, say) only one of which is white, all the rest
being black, you can’t, before you see the color of the ball, know that S selected
a black ball even though you know the probability of its being black is 99%. S
might, for all you know, have picked the white ball. Things like that happen. Not
often, but often enough to discredit a claim that (before you peek) you know it
didn’t happen on this occasion. Examples like this suggest that knowledge requires
eliminating all (reasonable? relevant?) chances of being wrong, and elimination of
these is simply another way of requiring that the amount of information received
about the state known to exist be (at least) as much as the amount of information
generated by that state. .

There are different strategies for dealing with this problem. One can adopt a
relativistic picture of knowledge attributions wherein the amount of information
needed to know depends on contextual factors. In some contexts, reasonably high
probabilities are enough. In other contexts, perhaps they are not enough. How
high the probabilities must be, how much equivocation is tolerated, will depend
on such things as how important it is to be right about what is occurring at the
source (do lives depend on your being right or is it just a matter of getting a
higher score on an inconsequential examination?), how salient the possibilities are
of being wrong, and so on.

A second possible way of dealing with the problem, one that retains an absolute
(i.e., non-relativistic) picture of knowledge, is to adopt a more flexible (I would
say more realistic) way of thinking about the conditional probabilities defining
equivocation and, therefore, amount of transmitted information. Probabilities, in
so far as they are relevant to practical affairs, are always computed against a set of
circumstances that are assumed to be fixed or stable. The conditional probability
of s, an event at a source, given 7, the condition at the receiver is really the
probability of s, given r within a background of stable or fixed circumstances B.
To say that these circumstances are fixed or stable is not to say that they cannot
change. It is only to say that for purposes of reckoning conditional probabilities,
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such changes are set aside as irrelevant. They are ignored. If the batteries in a
measuring instrument are brand new, then even if it is possible, even if there is a
non-zero probability, that new batteries are defective, that possibility is ignored
in calculating the amount of information the instrument is delivering about the
quantity it is being used to measure. The non-zero probability that B fails, that
the batteries are defective, does not contribute to the equivocation of instruments
for which B holds, instruments whose batteries are functioning well. The same is
true of all communication channels. The fact — if it is a fact — that there is a non-
zero probability that there were hallucinatory drugs in my morning coffee, does not
make my current (perfectly veridical) experience of bananas in the local grocery
store equivocal. It doesn’t prevent my perception of bananas from delivering the
information needed to know that they (what I see) are bananas. It doesn’t because
the equivocation of the information delivery system, my perceptual system, is
computed taking as given the de facto condition (no hallucinatory drugs) of the
channel. Possible (non-actual) conditions of this channel are ignored even if there is
a non-zero probability that they actually exist. The communication of information
depends on their being, in fact, a reliable channel between a source and a receiver.
It doesn’t require that this reliability itself be necessary.
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INFORMATION IN NATURAL LANGUAGE

Hans Kamp and Martin Stokhof

1 INTRODUCTION

Natural languages are vehicles of information, arguably the most important, cer-
tainly the most ubiquitous that humans possess. Our everyday interactions with
the world, with each other and with ourselves depend on them. And even where
in the specialised contexts of science we use dedicated formalisms to convey infor-
mation, their use is embedded in natural language.

This omnipresence of natural language is due in large part to its flexibility,
which is almost always a virtue, sometimes a vice. Natural languages are able to
carry information in a wide variety of ways, about a seemingly unlimited range of
topics, which makes them both efficient and versatile, and hence useful in almost
every circumstance. But sometimes, when pinpoint precision is what counts, this
versatility can get in the way, and we make use of formal languages, such as those
of mathematics.

The variety of ways in which the use of natural language involves information,
reveals itself immediately if we look at the various functions that utterances of
natural language expressions may have. First, many of the utterances we produce
serve to directly impart information to our readers or listeners — usually infor-
mation which we take to be new and of interest to them. We describe situations,
stating what we take to be facts (‘Mary is in Paris’), or contemplating what we
regard as possibilities (‘John might be accompanying her’). This declarative use
of language is perhaps the most obvious way in which natural languages are used
to convey information.

But, of course, this doesn’t hold for all utterances. We also ask questions (‘What
time does the meeting start?’), in order to elicit information rather than to impart
it; we give directives (‘Open a window’, ‘Stay away from her’), in order to get the
other to do certain things, or to keep him from doing them; we issue warnings and
threats (‘Look out, a bus!’, ‘If you do that, I'll tell the boss’), we express regret
and joy (‘I apologise for the belated reply, ...’, ‘Congratulations!’), and so on.
But in these cases, too, our utterances carry information, and that they do so is
essential: a question must convey what information is requested; a directive must
specify information about what is to be done, or to be refrained from; a warning or
threat must identify a particular situation or event; and if we don’t convey what
it is that we regret, or what we are happy about, the point of our speech is lost.
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These humdrum observations also illustrate a further point. Not only do natural
language utterances involve information about a variety of types of situations:
factual and possible, past, present and future; they also convey information about
the specific attitudes that natural language users have concerning these situations:
that the speaker takes them to be factual, or merely possible; that they are to be
avoided, or to be realised, by the hearer; that the speaker regards them with
regret, or with joy. Thus the information carrying capacity of a natural language
encompasses not just what its expressions are about, but also the various attitudes
that its users may have towards that.

Another way in which information might be conveyed is more indirect than in
the examples above, where it is coded in the syntactic form or indicated by a
particular expression or turn of phrase. Making use of the context in which an ut-
terance is produced, for example by relying on the presence of certain expectations
on the part of the hearer, we may also indirectly convey information about a cer-
tain situation. For example, when answering a question about the whereabouts of
Jane by means of a disjunction (‘She’s either in Paris, or in London, with Mary’),
we indicate that we do not know exactly where she is. This is information that
is not explicitly stated, but only suggested. However, an addressee who expects
the speaker to be as co-operative as he can will pick up this information without
hesitation.

And it doesn’t stop there. Besides utterances of the above kinds there are those
which serve various social purposes: greeting someone, acknowledging a gesture
or utterance she is making, expressing concern or empathy. Many utterances we
use to such ends — ‘Hi, how are you?’, ‘I am sorry to hear that’, and so on — are
formulaic. They carry information, not in virtue of being about something and ex-
pressing an attitude to that, but by being fixed through special conventions, which
bypass the general mechanisms by which information is associated with linguistic
form. But these utterances do carry information nonetheless, as is indicated by
the fact that the purposes they serve can as a rule also be accomplished by means
of other, non-formulaic utterances.

Yet another way in which information is conveyed by natural language is through
mechanisms that relate a specific utterance to its linguistic context. After all, an
utterance hardly ever occurs on its own, out of the blue; usually it is part of a larger
whole, a text or a conversation, that serves a specific purpose and accordingly may
have a specific form. When it is part of such a larger textual or conversational
complex an individual utterance may contribute to the meaning of that complex
as a whole through mechanisms that relate it to other parts of the complex. The
use of pronouns to refer to an entity mentioned previously in a conversation {A: ‘I
met John the other day.” B: ‘How’s he doing?’) is a simple example; the specific
form of a question — answer dialogue, in which answers more often than not are
fragments of complete sentences, yet do express complete propositions (A: ‘Who’s
chairing the meeting?’ B: ‘Bill.”), provides another.

As they stand, all these observations, with their repeated references to ‘in-
formation’, are, we take it, hardly controversial. But to say precisely what the
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information is of which they speak is not so easy. For one thing, it is not at all
clear that we are dealing with a uniform concept: when trying to explain in what
sense natural languages are information carriers, we may well find that it is nec-
essary to distinguish various ‘kinds’ of information. And should that need arise,
there will be the further task of saying exactly how these different notions are re-
lated to each other and how natural languages are able to handle various notions
of information in such elegant and efficient ways. To outline some aspects of the
current state of thinking about these issues is the goal of the present chapter.

But first we should make clear what the information concept that we talk about
in this chapter is not. We are not concerned with information based on mere like-
lihood, according to which the information carried by a symbol or symbol string
is some inverse function of the probability of its occurrence. Common to such
a concept of information and the one that will be relevant in this chapter is the
conception of individual events that are classified as each being of some particular
event type. In our case the event types are the types of symbols and symbol strings
and the individual events are particular occurrences (‘utterances’) of symbols and
strings of them. The probability-based notion of information presupposes in ad-
dition to such a space of classifiable occurrences a probability distribution over
possible occurrences, which assigns each occurrence of an individual event an a
priori probability in terms of the classification-related properties it has. On the
other hand, what is essential to the concept of information that will be discussed
here is that symbols and symbol complexes have denotations, i.e., that they stand
for, or represent, entities and situations, and that the information they carry is
about those denotations.

On a simple-minded, purely causal conception of how symbols denote the two
conceptions of information would be compatible. On such a view, the occurrence
of symbols (both simple and complex) is prompted by the occurrence of their de-
notations. So the space of symbol occurrences maps onto a corresponding space
of denotations, and the probability of a symbol occurrence is the direct reflection
of the occurrence probability of the denotation that is its cause. In that case the
information represented by the occurrence of a given symbol would be the occur-
rence of its denotation and the quantity of that information could be meaningfully
assessed in terms of the probability that the denotation should have occurred. We
will see, however, that in connection with natural languages such a conception of
denotation is untenable. The simple causal nature of the denotation relation which
it presupposes is belied, both at the level of the simple symbols of the language
(its ‘words’) and at that of its complex symbols (its phrases, sentences, texts and
conversations), by the way in which natural languages actually work.

The first, and most widely acknowledged difficulty with a purely causal concep-
tion of denotation concerns the denotation of complex symbols. The denotations
of phrases and sentences are determined by their syntactic form and by the denota-
tions of the words from which they are made up. In principle the recursive process
by which the denotations of complex symbols are built from the denotations of
their constituents might have a purely causal grounding. But any serious explo-
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ration of the way in which natural language expressions denote soon reveals the
extreme implausibility of this. Complex expressions denote what they do because
of the denotation building rules that are part of the language as a conventional sys-
tem; and speakers can use these expressions to refer to their denotations because
they know those rules and thus know that a given complex phrase or sentence does
have the denotation to which they want to refer. In other words, information as
conveyed by natural language utterances depends on a conceptualisation of what
the information is about that, at least to a large extent, is shared between the
users of the language.!

The existence of a set of conventional rules for building complex expressions
to denote complex entities or situations is something that natural languages share
with the formal languages of logic, mathematics, and computer science. But, as we
will argue in some detail below, there are also important differences between nat-
ural and formal languages. One of these is that in natural languages the principles
which govern the building of expressions to denote complex things or situations
are far more complex than the comparatively straightforward recursive principles
that define formal languages (like those of the predicate calculus or the lambda-
calculus). This greater complexity is connected with the remarkable flexibility
and adaptability of natural languages, which makes it possible to use them for the
purpose of conveying information about a vast and open-ended range of different
subjects.

This is connected with another feature of natural languages, viz., that they
can be used to speak about non-existent objects, unrealised situations. In some
cases expressions and linguistic constructions are even meant to do just that, e.g.,
when we use a counterfactual sentence (‘If I had left home earlier, I wouldn’t have
missed the five o’ clock train’), in other cases the possibility is left open, e.g.,
when we utter a conditional sentence (‘If John comes to the party too, Mary will
be upset’, where the actual appearance of John is neither affirmed nor denied).
And then again we may be convinced that what we say is true, whereas in fact
things are not as we assert them to be. ‘Information’, then, is used here in such
a way that it can also be false (just as it can be misleading, or partial): the
information provided by an utterance, i.e., what anybody who understands its
linguistic meaning might assume to be the case, need not actually hold. By no
means should this be considered as a defect of natural languages. In fact, it is
an unavoidable consequence of the partial and fallible nature of human knowledge
and our ability to imagine what we know or have reason to think is not the case

IMore on this below, in section 3. It should be noted that this observation is not meant
to rule out the possibility of ‘non-conceptual content’: it pertains to the information expressed
by means of utterances of linguistic expressions only and remains neutral with respect to the
question whether objects, events, situations —including linguistic expressions and their use —
may also convey information of a different nature. Also note that we take utterances (i.e., the
production of ‘tokens’) to be primary to expressions {conceived of as ‘types’) when it comes to
what are the entities that carry information. But in as much as there are systematic relations
between the two, we sometimes also talk about expressions in that vain. We assume that no
confusion will arise from this.
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on the one hand, and on the other the fact that natural languages are means of
expressing not only what we think is the case, but also what we suspect may be
the case, what we hope, fear, would wish to be the case, and so on.?

There is an obvious connection between denotation and meaning: the meaning
of a linguistic expression is given by what it denotes, in actual situations or in non-
actual ones. Since the notion of linguistic information we are after is also closely
tied to denotation, there is an intimate connection between linguistic information
and linguistic meaning. The fact that both linguistic meaning and linguistic in-
formation are connected with denotation entails an important moral for either.
Both linguistic meaning and linguistic information are inherently relational con-
cepts, both involve the form-governed relation between linguistic expressions and
their denotations. This is a moral that some would consider too obvious to merit
stating. But the relational nature of meaning is not something that has always
been self-evident to everyone. In fact, the moderately clear picture of the ways in
which the meanings of linguistic expressions are relational that we now possess is
the outcome of a long process of philosophical analysis. Because the two notions
are so closely intertwined the history of the concept of linguistic meaning is at the
same time also the history of linguistic information. Therefore we will devote the
first part of this chapter to tracing what from the perspective of one particular
tradition, viz., that of formal semantics and its immediate predecessors, are seen
as some of the salient stations in the historical development that has led up to
the current state of thinking on these issues. Probably, from other angles different
pictures would emerge, but it is beyond the scope of this chapter to sketch those
as well. So the emphasis is on history as perceived by the discipline, not as it
actually occurred (if there is such a thing). For it is the former, and not the latter,
that best explains its development.

This concise historical overview also shows how the formal semantics tradition
has struggled to come to grips with the variety of ways in which natural language
utterances carry information that we briefly touched upon above. That process is
one of both contraction and expansion, as is so often the case in the development
of a scientific discipline. At one stage there is a focus on one specific aspect of
a phenomenon, which often allows the use of formal tools and leads to precise
accounts. At another stage the resulting notions are extended to deal with other

21t is this very potential of natural languages to be about about non-actual objects and
situations that according to Frege liberates the human mind and sets us apart from other animals.
In his ‘Uber die wissenschaftliche Berechtigung einer Begriffsschrift’ ([Frege, 1882]; the translation
is Bartlett’s [Frege, 1964]) he writes:

Nonetheless, our imagery [. ..] would be limited to that which our hand could form,
our voice intone, if it were not for the grand discovery of the symbol which calls to
our mind that which is absent, out of sight or perhaps even unseeable.

And George Steiner regards the very possibility it gives us to talk about the non-actual as
fundamental for human language [Steiner, 1975, page 215]:

Hypotheticals, ‘imaginaries’, conditionals, the syntax of counterfactuality and con-
tingency may very well be the generative centres of human speech.
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aspects, or complemented by other notions, as the situation may require.

After the historical sketch we turn to an overview of various elements that would
be needed in an adequate theory of natural language information. Such a theory
must do several things. First of all, it should give an account of how expressions
of natural language come to have meaning, and of the ways in which meaning
depends on the context of utterance. This involves, among others things, coming
up with a suitable set of formal concepts that can be used to define adequate
representations of natural language meanings, to model the relevant features of
context and to characterise the way in which these interact. Second, the scope
of an adequate theory should encompass the fact that natural languages are used
in interactive situations: natural languages are used to convey meaning for a
reason, and that reason lies in information exchange, broadly conceived. Thus,
the information conveying capabilities of natural languages are tailored to their
use in a discourse context, be it dialogical, textual, or of some other form. As a
matter of fact, many features of these capabilities depend on structural features
of such discourses, which, hence, need to be modelled. Third, it is the language
users that need to be taken into account: what information the utterance of a
natural language expression conveys, and how it does that, obviously depends also
on the language users involved, both as speakers and as hearers. Modelling them,
then, is yet another essential ingredient of an adequate theory of natural language
information. The overview we will be giving follows the broad outlines of an
approach that has become well-established in empirical work in natural language
semantics over the last couple of decades. But we should emphasise that it is not
this particular approach we want to propagate, but rather the underlying ideas
that together form a theme that allows for many variations: some of these we will
refer to when appropriate.

2 A TALE OF TWO DEVELOPMENTS

As is so often the case, a systematic discipline has a somewhat distorted picture
of its own history, one that usually takes ‘a bird’s eye view’ and focuses on those
aspects that retain a certain present relevance. For us, taking such a bird’s eye
view of what we see as the important stages in philosophical and linguistic think-
ing about the concepts of information and meaning, one development that stands
out is that from ‘thick’ and fairly concrete notions of meaning, closely tied to
(perceptual) experience, judgement and application, to rather ‘thin’ and abstract
conceptions and (ultimately) to a view of natural languages as purely informa-
tion coding and information transferring devices.® This line of development is
complemented, however, by another one that extends the restricted, ‘descriptive’
conception of linguistic meaning that is the outcome of the former, and tries to

3This is not unlike Ggran Sundholm’s [to appear] view on development of logic: from a theory
about judgements and reasoning as psychological acts to (ultimately) formal symbol manipula-
tion. The distinction between ‘thick’ and ‘thin’ concepts is taken from Bernard Williams, who
developed it with regard to ethical concepts.
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enrich it by encompassing a wider variety of aspects and by reinstating connections
with other components of human cognition. The first development is assumed to
have its starting point in traditional philosophical thinking,? it gains momentum
with the development of formal logic at the end of the nineteenth century, comes
to fruition in the 1970s and 1980s, and still remains strong until the present day.
The latter development is partly a reaction to the former and mainly dates from
the last two or three decades, after systematic thinking about linguistic meaning
developed into a distinct discipline.

2.1 Uncovering structure

An, admittedly very rough, sketch of the first line of development distinguishes the
following stages. At the first stage, which is assumed to start in classical philosophy
and to extend right up to the rise of modern philosophy in the sixteenth and
seventeenth century, thinking about the concept of meaning usually is intimately
related with metaphysical and epistemological concerns. The latter obviously take
precedence, and meaning, and language more generally, as such are by and large
not distinct and independent topics of concern. Language and linguistic meaning
are viewed and analysed primarily as means to express judgements, and it is
the origin, content and justification of judgements that most philosophers are
interested in.

For example, Plato’s discussion of the possibility of false statements in the
Sophist is motivated by a metaphysical concern about the possibility of knowledge
and the relation between thought and reality, not by any autonomous interest in
natural language meaning.® Similarly, the main motivation behind the work of
the scholastics on language and logic is metaphysical (and some of it theological).
And the ‘idea theories of meaning’ of the classical empiricism and rationalism of
the sixteenth and seventeenth centuries are mainly motivated by questions and
problems in epistemology.® From a modern, systematic perspective there seems

4In this short sketch we limit ourselves to developments in Western philosophy. That is not
to deny that very interesting theories and views, that are highly relevant from a systematic point
of view, have been developed in other traditions. Especially in India there is a rich tradition of
sophisticated thinking about language, as is witnessed by the great works of Panini and other
Indian grammarians (cf., [Cardona, 1988. 2nd ed 1997]). However, historically these have not
played a major role in shaping present day theories in semantics, and it is for that reason that
we feel it is justified to leave them out.

5Thus the discussion of word and sentence meaning and of truth and falsity, in the Sophist,
261c6-264b3 [Plato, 1921], ends as follows:

Then because speech, we saw, is true and false, and thinking is a dialogue of the
mind with itself, and opinion is that completion of thought, and what we say by
“it seems” is a combination of perception and opinion, it must be that because all
of these are like speech, some thinking and opinion must also be false.

Evidently, the linguistic analysis is subservient to the metaphysical point that Plato wants to
make.

SHence Ian Hacking [1975] called idea theories ‘nobody’s theory of meaning’: since meaning
as such is not a separate concern, nobody had a theory about it, or even felt the need to come
up with one.
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to be no such thing as a separate philosophy of language in this period, nor is
there a distinct and substantial empirical discipline of linguistics that is concerned
with the analysis of natural language meaning for its own sake.” It would take a
century or so for linguistics to really come into its own, with the seminal work of
Humboldt and others, and almost another one for language to become a. separate
and central topic in philosophy.

Nevertheless, a case can be made that this is the stage that most closely re-
sembles a ‘common sense theory of meaning’. From a common sense perspective
it seems plausible that the meaning of a declarative sentence and the judgement
that it serves to express are the same.® No strict separation between ‘propositional
content’ and ‘illocutionary force’ seems to be called for. Also, what the sentence
means, the judgement it expresses, and what in reality justifies that judgement
seem to be not really distinguished: how language relates to reality, the ques-
tion that haunts much of the later philosophical thinking, thus never comes into
proper focus. The way in which we form judgements about reality — be it either in
empiristic fashion, by receiving impressions through the senses and manipulating
them, or more rationalistically, with more of the content being innate to the mind
— is the way in which language ‘hooks up’ with it, except that it needs no hooks,
since the relation is immediate.

The second stage in the development towards a more independent and more
abstract conception of linguistic information is characterised by the rise of ‘mean-
ing proper’ in the wake of the development of modern logic, mainly through the
work of Frege, Russell, and early Wittgenstein. One of the hallmarks of Frege’s
philosophy of logic is his anti-psychologism: in order to give logic its proper due,
he claims, we need to separate it from ‘psychology’, i.e., we need to distinguish
the subject of logic, viz., the systematic explication of the validity of inference,
from the empirical study of actual judgements and actual reasoning. In his logical
theorising Frege developed his position gradually. In the Begriffsschrift [Frege,
1879] he distinguishes between judgement and content, noting that the content of,
e.g., an hypothetical judgement cannot be expressed in terms of the judgement of
the antecedent and that of the consequent, but has to be defined in terms of their
respective contents. However, he does still formulate his logic using a separate
sign, the ‘judgement stroke’, for the judgement as such. Later on, he states that
only the content of a judgement, but not the actual act of judging that content as

“Which is not to say that no work was being done that we could call ‘linguistic’ or ‘semantic’,
for there certainly was. There is a whole tradition of thinking about grammar that goes back
to Hellenistic times, at least, and within logic, there are penetrating analyses of the functions of
expressions in, e.g., the Stoic school and in medieval scholastic thinking. The point is that in
many cases the analyses developed are subservient to different goals, and that both the results and
the ways in which these are argued for, are rather different from how the issues are approached
in modern times. But, of course, that does not mean that no interesting insights were developed
along the way. Cf., {Robins, 1990] for an overview. [Seuren, 1998] is an example of an approach
that is not purely historical, but attempts to connect the development of linguistics with modern
systematic theories.

8Which is not to say that it can not be, and has not been, challenged. Cf., e.g., [Dummett,
2004, page 1] for a dissenting opinion from an anti-realistic point of view.
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true (or false, or plausible, or ...), plays a role in the normative theory of valid
deductive reasoning.® As Frege states in ‘Der Gedanke’, which dates from 1918:
logic is concerned with the ‘laws of truth’, and these laws can be regarded also
as the ‘laws of thought’, but not in the sense of laws covering ‘general features
of thinking as a mental occurrence’.!® His argument, characteristically concise, is
that ‘error and superstition have causes just as much as correct cognition’ and a
study of actual thought would need to treat them on a par with correct judgement
and valid reasoning, which contravenes the true task of logic. Rather than being
a description of how we actually think and reason, logic is a normative theory
that states how we should. Similarly, where in the early Begriffsschrift Frege uses
the term ‘Vorstellungsinhalt’ (lit., ‘content of imagination’} to refer to contents of
judgements, he later acknowledges that this term may lead to confusion since it
is (also) used in a psychological sense, and instead settles on the term ‘Gedanke’
(‘thought’), which is supposed not to carry such connotations.!! No doubt also
inspired by Frege, Wittgenstein claimed in the Tractatus that ‘psychology is no
more closely related to philosophy than any other natural science’, immediately
following up with the claim that epistemology is ‘the philosophy of psychology’.12
Thus the idea that it is possible to treat language and meaning separately from
questions regarding judgement and justification is gaining ground, and with that,
the contours of modern philosophy of language become visible.

The separation from epistemology did not carry with it a similar move away from
metaphysical concerns: the analysis of language and meaning remained strongly
related to ontology. In part this is due to the particular philosophical aims to which
people at the time made the analysis of meaning subservient. Stimulated by the
success of the use of formal languages in the ‘new logic’, the age-old quest for a
philosophically transparent (‘ideal’) language gained new momentum. This time it
would be a strictly formal one, and it would provide philosophers with an analytic
tool that could be used with scientific precision and mathematical rigour. This
‘linguistic turn’ put language centre stage in philosophy, and consequently turned
philosophy of language into a distinct and central discipline.!® This is not the place
to trace what happened to the idea of linguistic analysis as a philosophical tool

9 A point concisely expressed by Wittgenstein in the Tractatus, where, referring to the Begriffs-
schrift he remarks parenthetically in 4.412: ‘(Frege’s “judgement stroke” “” is logically quite
meaningless)’.

10Cf., [Frege, 1918-19]; quotations are taken from the English translation by Peter Geach in
[Frege, 1977].

11Ct., Frege’s comment from 1910 to Jourdain, who had written a summary of the Begriffs-
schrift in a paper on the history of logic: ‘For this word I now simply say ‘Gedanke’. The word
‘Vorstellungsinhalt’ is used now in a psychological, now in a logical sense. Since this creates
obscurities, I think it is best not to use this word at all in logic.’ [Frege, 1879, page 11].

12[Wittgenstein, 1960, 4.1121]. Cf., also Wittgenstein’s attempt to give a extensional analysis
of so-called ‘propositional attitude’ statements in 5.541 ff.

131t is interesting to note that in the history of phenomenology, associated with the work of
Husserl, Heidegger, Ricoeur, Merleau-Ponty and others, a similar development took place, but
without the strict separation from epistemology that is characteristic for analytic philosophy.
Cf., [Dummett, 1996] for more details.
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employed outside the analysis of meaning proper.!* What is relevant here is how
it influenced subsequent theories about natural language information and natural
language meaning. And from that perspective it is important to briefly point out
three general characteristics that have been very influential, viz., ‘universalism’,
‘intensional referentialism’, and ‘compositionality’.

‘Universalism’ refers to the nature of the task that philosophical analysis sets
itself, viz., to give an account of ‘how language operates’ in general, with no ref-
erence to any specific features of any specific language in particular. What is of
interest is not the way a certain language works, but what underlies the possibility
of any language to express meaning. A straightforward feature, perhaps, of any
philosophical analysis worth its salt, but one that will turn out to have repercus-
sions for the form and the application of theories that are subsequently based on
this idea. For in the application to concrete, empirical cases the universalistic and
a prioristic features of these theories do not simply disappear. In many cases they
become consolidated in the use of certain formal tools and in the adherence to
particular basic methodological principles that are applied ‘across the board’ and
that are even taken for granted as defining characteristics of the enterprise.

‘Intensional referentialism’ indicates the central role of the notions of reference
and truth in the analysis of meaning, combined with the use of an intensional
ontology consisting of possible situations and the entities of which such situations
consist. Together these two assumptions, or requirements, tend to favour a fairly
abstract notion of meaning, one that is grounded in the possibility of words having
referential relations to objects, properties and relations in the world, where the
relation of reference is understood as a truly intensional concept, not in any way
restricted to reality as we know it: ‘the world’ can be any one from a set of logically
possible ones.

Meanings of complex expressions, including sentences, are then assumed to
be somehow constructed from these basic referential relations, which means that
compositionality is assigned a key role.!® The result is an approach to meaning
that is detached from actual reality and actual language use, one that works in
a bottom up fashion, constructing complex meanings from basic ones, and that
assigns the basic meanings a fairly independent status: they are ‘self-sufficient’ in

14 There are a large number of studies dealing with this topic; cf., [Biletzki and Matar, 1998;
Soames, 2003}

15Compositionality extends the expressive power of a language — the range of different mean-
ings it is able to express — beyond that of its simplest expressions (its ‘words’). How far it does,
depends on the kind of compositionality that the language allows. It is commonly assumed that
most (and presumably all) human languages display a kind of compositionality that is genuinely
recursive and that permits the construction of infinitely many expressions of unbounded com-
plexity from a finite vocabulary. This sets human languages, as well as many formal languages,
such as that of the predicate calculus, apart from simple signalling systems, in which each of a
certain finite set of signs corresponds to one state of the system’s fixed application domain (like,
say, the set of traffic signs of the traffic code of a given country), and also from language-like
systems with limited forms of compositionality, such as the ‘language’ of the bee-dance or the
languages used by chimpanzees who have acquired the ability to produce the sign for ‘green
banana’ on the basis of having separately learnt the sign for ‘banana’ and that for ‘green’.
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so far as they have determinate and thoroughly non-contextual identity conditions.

The third stage that we need to distinguish in this brief historic sketch is that in
which semantics arises as a separate discipline. This happened in the late 1960s,
early 1970s, when developments in philosophy, logic and linguistics came together
and gave rise to the idea that a formal theory of meaning can be developed and
applied in the description of actual natural languages. This is the time in which
people like Donald Davidson, Richard Montague, David Lewis, Max Cresswell,
and a great many others did their seminal work.!® This time is the heyday of
‘Montague grammar’ (and its various variations and rivals) as a grand unifying
framework, in which the conception of meaning that was developed mainly from a
philosophical perspective at an earlier stage, was formalised using various logical
techniques (borrowed from model theory, modal logic, type theory, tense logic,
etc.), and applied in the description of natural languages. This approach to natural
language semantics, aptly dubbed ‘formal semantics’, proved very successful and
was the dominant one for quite some time, in particular in philosophy, less so in
linguistics at large.l”

One thing that is important from the perspective of this chapter is that through
the extensive use of formal languages as tools for modelling natural language mean-
ing yet another shift in that concept occurs: meanings now are first and foremost
formal constructs, and theories of meaning are primarily differentiated in terms of
the formal machinery one deems necessary for the description of semantic features
of natural languages:*® concerns with epistemology or ontology become less and
less important as semantics becomes more and more autonomous, and the nature
of the concept of meaning reflects this. Montague’s claim, in ‘Universal Grammar’
[Montague, 1970b], that ‘there is in my opinion no important theoretical differ-
ence between natural languages and the formal languages of logicians’ and that
therefore ‘it [is] possible to comprehend the syntax and semantics of both kinds of
languages within a single natural and mathematically precise theory’ testifies to
this shift. The consequences are far-reaching. For one thing, although Montague
seems to think of logic and semantics as some kind of ‘equal partners’, the prac-
tice is less symmetrical: it is formal languages that are used as models for natural
languages, and this implies a sharpened focus on those aspects of meaning that
can indeed be dealt with using existing logical techniques, and a proportionate

16Cf., [Davidson, 1967; Montague, 1973; Lewis, 1970; Cresswell, 1973]. Other seminal work
was done by Barbara Partee [1973}. Though less directed to natural language the work done
by Jaakko Hintikka, David Kaplan and Saul Kripke in that period was also of fundamental
importance.

7In particular within the Chomskyan tradition people tended to reject the use of model-
theoretic techniques, and pursued a different approach, that is more in line with Chomsky’s idea
that linguistics is a branch of cognitive psychology, and, ultimately, of biclogy. Cf., further below.

130ne could say that as a result of this shift semantics deals with an altogether different type
of phenomena. Although this may seem exaggerated — and it probably is — it does point to a
curious and slightly worrisome fact, viz., that there seems to be no theory-independent agreement
about what exactly the domain of semantics consists of. This is reinforced when one takes a closer
look, e.g., at the kind of arguments that formal semanticists and Chomskyan semanticists bring
to bear on their dispute. Cf., [Stokhof, 2002] for some more discussion.
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neglect of those that can’t. The distinction between ‘structural semantics’ and
‘lexical semantics’, arguably one that is not in any sense inherent in meaning itself
but rather an artifact of the kind of instruments one wants to use, is maximally
exploited and the resulting concept of meaning becomes both more formal and
more ‘thin’.

At this third stage the three features identified above are very much present,
although not always explicitly so. Looking at the abundance of descriptions of
various semantic phenomena in a wide variety of languages produced in the 1970s
and 1980s, one might think that ‘universalism’, the idea that a proper semantic
theory deals with natural language semantics as such, isn’t something that peo-
ple subscribed to. And indeed, the very fact that semanticists deal with actual
phenomena, some of which are specific to a particular language, indicates that
their concern is not that of the philosophers at an earlier stage. Nevertheless, the
use of a unified framework has universalistic consequences, whether intended or
not. The point is that the framework itself embodies assumptions about what
meanings are, how they are related to each other, how they are expressed, and so
on. So right in the framework itself there is a conceptual structure, explicated by
means of the formal properties of the concepts and languages that are used, that
shapes a concept of natural language meaning that is independent of any concrete
manifestation in any concrete natural language.'®

The other two features, pertaining to the central role of reference and truth
and the use of an intensional framework, and to compositionality as the basic
principle for dealing with semantic complexity and creativity, are less hidden and
more explicitly adhered to. Despite discussion about the kinds and the number of
intensional concepts that one needs to employ, the common denominator is the use
of a formal framework that models ‘the world’ — i.e., that to which the expressions
of the language bear a referential relation and in terms of which the concept of truth
for the language is defined — in an abstract, and, one might almost be tempted to
say, ‘detached” way. ‘“The world’ is reduced to the bare minimum of components
and structure that is needed to define what kinds of things the referents of various
types of basic expressions are, compositionality being understood to take care of
the rest. It is important to note that it is not actual reference that is defined
or explicated, it is only the formal type of relationship involved that is being
accounted for.

The resulting picture, which for a long time served as the classical model for
semantics of natural language and which we will refer to as such in what follows,
in many ways comes close to that of a natural language as a formal language —
significantly, a formal language without a concrete application. It portrays natural

19This is particularly clear in the work of Donald Davidson, who actually uses the logical
structure of a semantic theory, which according to him takes the shape of a Tarski-style theory
of truth, in a transcendental argument against ‘the very idea of a conceptual scheme’, arguing
that because the semantics of any language can only be described by means of such a theory
and because the very framework of that theory implicates substantial properties of the meanings
expm]essed in the language, all languages are essentially translatable into each other [Davidson,
1974).
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languages as information carrying devices in the fairly abstract sense in which the
same characterisation can be given of many other information carrying systems,
ranging from signalling systems to mathematical notation. But, as was already
indicated in the introductory section, if we look more closely at the various ways
in which natural languages convey information, at what kind of information that
is and what it is about, we encounter a much richer structure, and one that is
tied more closely to the actual world that we live and use our language in than is
accounted for in this approach. Small wonder, then, that after its initial success
and broad acceptance the classical model became gradually discredited. At first
one tried to augment it with additions that put more semantic flesh on its formal
bones; later it was supplanted altogether by approaches in which the flesh is taken
as seriously as the bones.

2.2 Reinstating content

The ‘counter current’ that contributed to a much more balanced picture of the
specific characteristics of how natural languages act as information carrying de-
vices does not represent one, homogeneous conception of meaning, rather it springs
from a number of sources. These do have one thing in common, though, which is
a profound dissatisfaction with the conception of linguistic meaning that informs
the formal semantics of the 1970s. Different people addressed different aspects
of that dissatisfaction; together they effected a shift in the orientation of natural
language semantics that is still taking place today. Again, we should note that this
development primarily is a reaction to a ‘self-styled’ history, which only partly cov-
ers what actually occurred in philosophical thinking about language and meaning.
Obviously, there is the work of a number of authors who already early on explored
different directions that implicitly challenged some of the basic assumptions of the
classical model, e.g., the ‘linguistic phenomenology of J. L. Austin, H. P. Grice’s
work on meaning and intention, and the work on speech acts of John Searle,?°
much of which was inspired by Wittgenstein’s later work.2! But this work only
became influential after formal semantics had gone through an autonomous devel-
opment, and even then it was taken up not in semantics proper, but mainly in a
theory of pragmatics, which was supposed to complement it.

The conception of meaning that people reacted against can be dubbed ‘classical
descriptivism’. Central to this conception is the essentially Fregean principle that
the meaning of an expression determines its reference by providing a specification
of the conditions that something needs to satisfy in order to count as being the
referent. The Fregean concept of ‘Sinn’ is explicated formally by reconstructing
it as a function that takes a possible world (or other such intensional construct)
as its argument and delivers an entity (an individual, set of individuals, or set
of n-tuples of individuals, as the case may be) that acts as the referent in that
world. In line with the above-mentioned distinction between structural and lexical

20Cf., e.g., [Austin, 1962; Grice, 1957; Searle, 1969].
21Primarily his Philosophical Investigations [Wittgenstein, 1958].
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semantics, the actual specification of these functions for concrete expressions was
by and large considered not to belong to the subject matter of semantics. Instead
one focused on the various ways in which these largely unspecified functions can
be combined to form appropriate meanings for larger expressions, in particular
sentences, yet another illustration of the pivotal role of compositionality.

By thus reducing both the ‘world’ (that which natural languages are about) and
the meanings of particular words and phrases to formal structures many questions
were bracketed out that both linguists and philosophers would consider it their
task to answer: questions as to how concrete expressions actually refer to concrete
objects or properties, how such referential relations arise, what role contingent
features of the way the world is have to play in that process, how considerations
regarding the communicative functions of natural language utterances might in-
terfere, how the use of language interacts with other cognitive functions, how
utterances employ features of the linguistic and non-linguistic context in which
they are produced, and a host of others. It is to the neglect of such questions that
people reacted and which motivated them to develop alternative approaches.

Consequently, we can, admittedly somewhat arbitrarily, identify four separate
sources of this counter current, one that is concerned with the role of the world,
another that focuses on the variety of communicative uses, a third that insists on
taking indexicality and the linguistic context seriously, and a fourth that investi-
gates the cognitive status of language and its relations to other cognitive structures
and functions. Of course, these divisions are to some extent artificial, but they
serve to indicate major trends.

The first source of dissatisfaction with classical descriptivism relates to the
minimal role that it assigns to the world and our interactions with it. One central
question here is how linguistic meaning comes about, a question that actually
reinstates the connection with traditional, basic epistemological concerns. And,
as in the tradition, there are two main points of view, an internalistic and an
externalistic one.?? The central claim of semantic externalism is that meaning
derives from the world, at least substantially.?3 It is from our environment and
our interactions with it that natural language expressions get their meanings, and
to a large extent the processes involved are of a causal nature. Hence this view is
often also referred to as a ‘causal theory of reference’.

According to this externalistic view natural language meanings can, to a large
extent at least, be naturalised: the contents of many natural language expressions

22What is called ‘internalism’ and ‘externalism’ here, in the context of semantics, should
not be confused with the ‘internalism — externalism’ debate in the philosophy of mind and in
epistemology, although there are connections, of course. In the philosophy of mind internalism
and externalism are rival views on the nature of mental content, centring around the question
whether mental content can be completely understood in terms of internal mental representations,
and, ultimately, perhaps entirely in terms of brain states..

23This is a crude generalisation, of course. There are many, often subtle variations on this
theme that are lumped together here under the one heading ‘externalism’. Cf., [McGinn, 1989]
for an overview. The locus classicus of semantic externalism is Putnam’s “The meaning of
“meaning” ’ [Putnam, 1975}, which is also one of the classic sources of the theory of direct
reference to which Kripke, Donnellan and others contributed.
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can be identified with real situations, events, objects, properties and relations —
entities belonging to the external world but with which the language user can inter-
act through perception and action. The most explicit realisation of this viewpoint
within formal semantic theorising, and the most systematic formal attempt to re-
store the relationship between meanings and their naturalistic determinants,?*are
situation semantics and its logical-philosophical foundation, situation theory.2%

Taken to its extreme, radical externalism involves naturalising all aspects of
meaning. One reason why someone might think that such a radically external-
istic account of linguistic meaning ought to be possible is that, arguably, all our
concepts are ultimately the product of our interactions with the world in which
we live, and thus are, in some fashion, reflections of the ways in which that world
imposes itself upon us in the course of those interactions. But this consideration
overlooks the fact that even where experience of the world is causally involved in
the construction of the kind of information that linguistic expressions convey, this
information cannot be equated with that experience.?6 There is no a priori reason
to suppose that the world, our experience of it, and how we conceptualise and
express it in natural language have the same fine structure. Rather, there are a
number of good reasons to doubt that this is the case. For one thing, there is the
moulding role that our cognitive system may exert on the form and structure of
the experience. And many of our expressions refer to things in the world that exist
at least partly because of our shared language and the way we use it. In fact, for
all we know, linguistic representation makes its own contributions to the ontology
of natural languages, which includes entities the reality of which is confined to
aspects of the ‘world’ that our language projects, and which have no right of being
in any language-independent sense. So it seems that although experience allows
information — in the sense of enabling it by anchoring the terms of our language
in an external world, thereby creating the possibility of objective reference and
truth — it does not determine it completely: in general, the information that is
conveyed by means of natural language is the product of more factors than ex-
perience alone. And that entails that a complete naturalising of meaning is not
possible.

The next question then is what else might be needed for meaning. Several
answers are possible, one of which is provided by internalism. Like externalism,
internalism aims to enrich the meaning content of expressions. But it does so via a
different route, viz., through an appeal to substantial contents and structures that
are supposed to be resident in the human mind. From the internalistic perspec-
tive the mind contains a rich repertoire of basic contents, in the form of innate
concepts and features and of structural operations, that together allow for the
formation of the huge variety of actual meaning contents that we find expressed in
natural languages. As such, internalism naturally allies with the equally rational-

24 And thereby also traditional connections between philosophy of language, epistemology, and
psychology of a particular bend, viz., naturalistic and empiricist psychology,

25Cf., [Barwise and Perry, 1983; Barwise and Seligman, 1997].

26Cf., also Dretske’s analysis of the concept of information in epistemology, in this volume.
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istic conception of grammar that is so characteristic for the Chomskyan paradigm
in linguistics. Nevertheless, internalism, too, faces some difficult questions, some
of which are conceptual: ‘What explains the origins of all these mind contents?’,
‘How can we account for the application of mental content to reality?’, others
empirical: ‘What is the explanation of semantic variety across languages?’.2”

Also, it-should be noted that externalism (usually) and internalism (by defi-
nition) are individualistic: they take the individual human being as their point
of reference when discussing linguistic and mental content and its relation to the
world. This is in accordance with much of the main stream thinking in philosophy
of language, philosophy of mind, semantics, and linguistics. Again, a reflection of
this is the central role that is played by compositionality. From an individualistic
perspective what is often called the ‘creativity’ of language, viz., the potential
infinity of structures and meanings that together make up a language, poses a
serious problem. How can individuals, being finite creatures with finite memory
and finite computational resources, be considered competent users of their lan-
guage? Compositionality comes to the rescue: it not only characterises languages
conceived as formal objects, but is also posited as an inherent feature of human
linguistic competence.?®

Nevertheless, there remains the interesting question whether the individualism
that characterises both externalism and internalism makes these accounts too re-
strictive. Internalism seems to have a hard time accounting for the availability
and contents of concepts that rely on the existence of social institutions, and faces
serious problems when dealing with phenomena such as distributed information
and reliance on expert knowledge.?? That we could locate the concepts involved in
such phenomena exclusively ‘in the mind’ seems improbable. For the externalistic
perspective individualism becomes problematic when it is robustly physicalistic.
A lot of mental content and linguistic meaning seems to defy a straightforward
reduction to physicalistic causes. Note that the problem here is not one for phys-
icalism as a doctrine concerning the nature of scientific explanation. Whether
or not that is a tenable position does not depend on the possibility of giving a
physicalistic account of all of linguistic meaning, for one could argue that some
such meanings simply have no role to play in an ultimate scientific account of the
world. But from a semantic point of view this is different, since we obviously want
a semantic theory to account for all linguistic meaning, including the meanings of
those parts of the language that certain views on scientific explanation would con-
sider irrelevant to their concerns. This does not rule out externalism per se, but
it does indicate that an externalistic account of natural language meaning needs

27Cf., {Farkas, 2006] for a recent overview of externalistic and internalistic perspectives in the
philosophy of language.

28Cf. [Groenendijk and Stokhof, 2005] for some discussion about how these various elements
are usually linked up, and for some discussion of possible alternative ways of accounting for
competence.

29Which is one of the central points in Putnam’s original 1975 paper (cf., footnote 23). For
attempts to account for such issues in terms of the distinction between ‘broad’, externally deter-
mined content and ‘narrow’, internal and individual content, cf., [Fodor, 1987).
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to take into account that whatever causal relations are involved in producing it,
they are not monostratal and uniform, but rather play at different levels and are
of different types; that they involve radically different kinds of entities, including
various sorts of social entities; and that they work in both directions, from the
world to meaning and vice versa. The structure of meaning is partly due to the
structure of the world, but the structure of our world is also partly a linguistic
one.

Such an approach transcends the structure of radical externalism as we char-
acterised it above. In particular, the causal processes which it would take into
account are not simply just the ones that govern the perceptions of individual
speakers. This applies specifically to those processes that are needed to account
for the meanings of social terms, among them those that pertain to the interac-
tions between verbally communicating speakers of a given language.’® One effect
of the impact of these additional causal relations, which connect the members
of a given (speech} community rather than any one of them to a particular con-
tent, is that these linguistic meanings aren’t the private property of individual
speakers, but rather a shared possession of the language community as a whole.
For such expressions the ultimate linguistic competence rests with the community,
and the competence of any particular member of that community is determined
by the degree to which he partakes in that common good. Such a move away from
mainstream individualism could also account for the real diversity of experience
and the diversity of information, not necessarily parallel to the first, that we find
across individual language users. Viewed from the perspective of a community,
experience is heterogeneous, but connected, and the same holds for information.
It is precisely this diversity that is one of the main reasons why humans use such
complicated, expressive languages as they do. ‘

The last observation is connected with the second source of the counter current
to the classical model, which is a concern for the complexity and the variety of the
communicative uses that are made of natural languages. In the introduction we
hinted at this by giving some simple examples of other uses than the straightfor-
wardly declarative use. Quite in line with its ancestry in logic and philosophical
analysis the classical model focuses on declarative utterances. Actually, just as
the ‘judging’ element from the traditional notion of a judgement was first isolated
and then dropped by Frege, leaving only the contents of judgements as the mate-
rial to which logic was supposed to apply, analogously looking just at declarative
utterances made it easy to first isolate the ‘use’ part of an utterance and then
focus exclusively on the resulting content, turning formal semantics into a theory
of pure contents, radically dissociated from the various ways in which these can
be used. Such a separation between what is often called ‘mood’ (or “illocutionary
force’) and ‘radical’ (i.e., propositional content) goes back to Frege and was taken
up later in various forms by people like Austin, Stenius, and Searle.3! The result-

30This could also be called a form of externalism, viz., ‘social externalism’. Cf., e.g., [Burge,
1990].
31Cf., [Austin, 1962; Stenius, 1967; Searle, 1969].
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ing speech act theory made this distinction into one of its basic principles. Thus a
division of labour arose between formal semantics as an account of propositional
content and speech act theory, or pragmatics in a wider sense, as a theory of the
use that is made of these contents.

However, some have questioned whether this strategy will work. For one thing
the variety of uses we make of natural language expressions does not seem to be
one-to-one related to the mood-radical distinctions we can make within these ex-
pressions, be it on the basis of syntactic form (interrogative, indicative, ...), the
presence of lexical items, or a combination thereof. And then there are aspects of
meaning, i.e., information conveyed through a speaker’s utterance to other inter-
locutors, that are not in any obvious way coded into the expressions uttered, but
that arise from the interplay between the context in which the utterance occurs, the
intentions and expectations of the various speech participants, and other meaning
elements. These ‘implicatures’, as they are called, have been studied extensively;
and they have given rise to serious questions about the tenability of the classical
model. Like in the case of speech acts, the initial approach towards an account of
such indirectly conveyed meaning depended on a division of labour, in this case
between semantics as conceived in the classical model and a pragmatic theory
called the ‘logic of conversation’, developed by H. P. Grice.3? Grice’s central idea.
was that language use is a cooperative task and that therefore language users can
be expected to obey certain rational principles of communication, such as telling
the truth (as they see it), giving sufficient but no superfluous information, and so
on.

One problem with Grice’s original approach concerns one of its starting points:
one of Grice’s main motivations was to show that certain aspects of the mean-
ing of natural language connectives that are not captured by their extensional
two-valued logical counterparts (for example, the order sensitivity of natural lan-
guage conjunction) can be accounted for by an appeal to cooperative principles.
A closer look at the apparent meanings of ‘and’ co-ordinations in English (the
same also applies to other languages) reveals that their meaning depends on fac-
tors that go beyond the mere truth table of classical logical conjunction and are
also different from the conversational principles Grice invokes. In particular, the
order-sensitivity of ‘and’ co-ordinations is largely the effect of the mechanisms of
interclausal temporal anaphora, mechanisms that are operative also where no ‘and’
is in sight, and that any theory of natural language meaning and information will
have to account for in any case.

What goes for ‘and’ goes for most applications to which Gricean conversation
theory has been put: The principles of the theory are important and indispens-
able, but so are other principles, which also transcend the restricted conception
of meaning that is part of the classical model. And again and again it has been
found that deciding which of these principles should be counted as semantic and
which as pragmatic is possible only on theory-internal grounds.?® This has led

32Cf., [Grice, 1975); [Levinson, 1983] is an excellent introduction to this and related subjects.
33Cf., the discussions in [Recanati, 2004; van Rooij, 2004b; Stanley, 2005, and the contributions
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to the view that the demarcation between semantic and extra-semantic (= prag-
matic) aspects of meaning is to a considerable extent arbitrary, and has thereby
undermined another fundamental assumption of the classical model.

What has thus emerged in lieu of the classical model is a far more complex
account in which a great variety of principles and mechanisms collaborate in the
construction of utterance meanings out of the meanings of the words contained
in them. Some have taken the reasoning that has led to this line of development
one step further and argued that even the concept of ‘literal meaning’ that the
classical model, speech act theory and Gricean pragmatics all rely on is a myth.
In a theory of literal and non-literal meaning the words of the language have lit-
eral meanings, which are encoded in the lexicon. These serve as a starting point
for the derivation, via inferential processes that take various pragmatic factors
into account, of other, non-literal meanings, and, on the basis of these, of the
specifications of individual utterance contents. But here too, it is argued, we are
dealing with a distinction — that between the literal meanings of words and their
non-literal meanings — which proves to be slippery and hard to draw except on
theory-internal grounds. One major empirical problem is the existence of (pro-
ductive) polysemy. The assumption of literal meaning forces one to try to account
for the various meanings of, e.g., ‘running’ as it occurs in ‘The tap is running’,
‘John is running’, ‘The program is running’, ‘My nose is running’, etc., by picking
one meaning as the core, or ‘literal’ one and then accounting for the others on
the basis of some contextual derivational process. A more plausible alternative
is to forgo the choice and account for this type of variability by making lexical
meanings themselves contextual and flexible, in effect viewing linguistic meaning
as something that is the result of interaction between a language user and his

environment.34

Emphasis on interaction with the environment, especially the communicative
environment, consisting of other speech participants, conversational goals, infor-
mation about the world (individual and shared), and so on, is characteristic for the
third source of the counter current, the one that focuses on context in this broad
sense. An important shift in the way meaning is viewed that is characteristic
for this development is the result of a turn away from the exclusively descriptive
orientation, with its emphasis on the language — world relation, that is a central
feature of the classical model, to a perspective on language and language use that
analyses them primarily in terms of information and information exchange.®® The
resulting view is one in which the primary focus is on the ‘horizontal’ relation
between language users engaged in an information exchange discourse, with the
‘vertical’ relation of language to world entering only indirectly, and no longer play-
ing the lead role. The information exchanged in a discourse can be quite diverse:
usually, part of it will be information about the world, but at least as important

in [Szabd, 2005].
34Cf., [Bartsch, 1996] for more discussion and a concrete model along these lines.
35Stalnaker’s work on presupposition and assertion is an early representative of this conceptual
turn. Cf., the two seminal papers [Stalnaker, 1974] and [Stalnaker, 1979].
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is information of speech participants about each other, and information about the
discourse itself. When engaging in a conversation, but also when reading a text
or listening to a speech, what the participants know, or think they know, about
each other plays a crucial role in interpretation, and, derivatively, also in produc-
tion. (A speaker will choose the expression she utters so that it will lead, to the
best of her knowledge, her audience to assign to it the interpretation she intends,
given the total package of information, about world, antecedent discourse and her
own state of mind, that she assumes is available to that audience.) Stalnaker’s
notion of ‘common ground’, i.e., the information that the speech participants as-
sume they share, is an important element in this, since it provides them with
common resources for picking out individuals, properties and situations, solving
(co)referential relationships, and so on. But the common ground will normally
also include information of all the different kinds we have mentioned, not just
assumptions that directly concern the topic of conversation.

In addition to what is being said by whom to whom, i.e., content in the nar-
row sense, it is also form that matters for determining what information gets
exchanged. Among the natural language devices that serve this purpose we find:
anaphoric expressions of various kinds, among them pronouns, tenses, and certain
temporal and spatial adverbs, which permit resumption of entities previously in-
troduced into the discourse; presupposition-inducing expressions, that enrich and
structure the common ground; the order in which the events that make up a nar-
rated episode are described, which usually indicates the temporal ordering of those
events; and so on. These and other devices help the hearer to relate the informa-
tion conveyed by an utterance to the information he already has, and thus to
identify exactly what the new information is. As such they are an integral part of
what linguistic meaning is and how linguistic expressions convey information. At
yet another level, not so much concerned with linguistic form or narrow content,
there is information about the aims with which speech participants have entered
the conversation, their rhetorical strategies, and other features of their linguistic
personae. This type of information is crucial for the detection of irony or sar-
casm, the appreciation of a verbal sleight of hand or a clever play on words, and
for the recognition of an implicit reproach or a concealed request. These aspects
of discourse, too, are factors that enter into the way in which natural language
utterances play their information conveying role.

These considerations have given rise to a variety of alternatives to the classical
model. In as much as all these models share the shift from the descriptive to
the information exchange perspective, along with a shift from the sentential to
the discourse level, they can be captured under a common denominator, that
of ‘dynamic theories of meaning’.36 These theories take the development outlined

36Thus the original model of discourse representation theory developed by Kamp in [Kamp,
1981] (cf., also [Kamp and Reyle, 1993]), explicitly aims to combine a declarative and a procedural
view on natural language meaning. Other models of dynamic semantics include Heim’s file
change semantics [Heim, 1983], Veltman’s update semantics [Veltman, 1996], and Groenendijk
and Stokhof’s dynamic semantics [Groenendijk and Stokhof, 1990; Groenendijk and Stokhof,
1991], cf., also [Groenendijk et al., 1996).
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above one step further and change the notion of meaning itself: the descriptive and
referential and hence truth oriented perspective of the classical model is replaced
by a dynamic one that views the meaning of expressions in terms of what is called
their ‘context change potential’, with information being one, central aspect of
the context. This further shifts, or rather blurs the original distinction between
semantics and pragmatics (i.e., the distinction between what is supposed to be a
matter of meaning proper and what belongs to the realm of use}. Accordingly
the focus of research in these theories is no longer on the referential and logical
features of linguistic meaning but on issues involving information structure (topic
— focus, presupposition, anaphoric relations, intonation and prosody) as linguistic
devices that can be used to link a new sentence in a text or a new utterance
in a conversation to what went before, or to prepare the ground for what comes
next. This increasing focus on information exchange and information structure also
weakens the link with ontology that in the classical model was secured through the
central role of reference and truth. In a dynamic perspective truth becomes a mere
limit, concept of the more general notion of acceptance by the speech participants
of information that is being exchanged.3”

Integral to the dynamic view on meaning as context change potential is a re-
newed interest in the cognitive function of meaning. This ties in with the fourth
source of the counter current that we discerned above, viz., a renewed interest in
the cognitive aspects of language and its relations to other cognitive systems. The
development of the classical model in the 1970s brought along a new and some-
what problematic relationship with psychology. On the one hand its proponents,
sometimes explicitly, more often implicitly, took over Frege's anti-psychologism,
that made a principled distinction between logic as a normative science and the
empirical study of actual reasoning, and they applied it to the study of natural
language meaning, separating formal description of semantic structure from the
study of the way in which language is produced and interpreted. But unlike logic,
semantics never really was conceived as a purely formal discipline; after all, its
aim is to describe and explain empirical facts, and it is therefore considered to be
as much a branch of empirical linguistics as phonology or syntax.38

From that perspective the classical model should have been quite compatible
with the Chomskyan approach to grammar. But in fact the relationship turned
out to be more complicated. For one thing, the Chomskyan model involved a
close alliance with rationalistic thought and with the computational approach in
cognitive psychology that developed from the 1960s onwards. But not everybody
felt comfortable with these particular philosophical presuppositions, and many
semanticists working within the classical model preferred to keep their distance.
In turn, many Chomskyans, including Chomsky himself,3® kept formal semantics

37This does not necessarily imply that the concept of truth is a completely epistemic notion.
That depends on how states of complete information relate to states of the world. In fact, in the
theories mentioned in footnote 36 the notion of truth is as objective as it is in formal theories
that implement the classical conception.

38Cf ., [Stokhof, 2002] for some more discussion of this tension.

397Thus early on, replying to a suggestion from Bar-Hillel that formal logic might contribute
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at bay, arguing that the use of the concepts of truth and reference as central tools
in the explication of meaning disqualified the classical model as far too externalistic
to be compatible with the internalistic approach that they favoured. Semantics in
the Chomskyan framework accordingly concentrated primarily on the way in which
conceptual structure is expressed, mainly in lexical semantics.® In this connection
the approach of ‘cognitive semantics’! should be mentioned as well. Though in
many ways adverse to the generative framework as developed by Chomsky in
his later work, it shares with that approach a focus on lexical semantics and an
unwillingness to account for meaning in terms of reference, using the tools of logic
in the way exemplified by the formal implementations of the classical conception,
in particular in model-theoretic semantics. Characteristic for cognitive semantics
is the emphasis on the fluidity of the distinction between semantic knowledge and
encyclopedic knowledge and on the embodied nature of meaning.

With its focus on formal properties of natural language meanings, the classi-
cal model initially succeeded in maintaining something of a ‘splendid isolation’
from empirical work in psychology and biology. But as the counter current grew
stronger, as more aspects of use were taken into account, context became more
and more important, users and their conversational goals and strategies were in-
corporated as significant aspects of the context and as the emphasis accordingly
shifted from formal structure to actual content and its use, these barriers began
to crumble. For many it has become increasingly obvious that one of the tasks of
semantics is a realistic modelling of language users and their interactions, for in the
end natural language meaning can be properly understood only if we understand
how it functions in real information exchanges and other linguistic interactions.

This has brought about a certain rapprochement between semantics and psy-
chology, and to some extent also between formal semanticists and people working
in the Chomskyan tradition. This rapprochement has also been helped by a grow-
ing interest in lexical semantics on the part of formal semanticists, who at long
last have begun to respond to the charge that if all meanings are derived from
lexical meanings, then explaining how they are derived is not good enough if one
has nothing to say about what they are derived from. Nevertheless there remain
substantial differences between the internalistic and the externalistic perspective
(the former being preferred by those who take the Chomskyan approach). But as
the computational model in cognitive psychology began to loose its grip, it became
clear that the study of how language functions as one of the human cognitive fac-
ulties does not necessarily commit one to an internalistic view. There is room for
a variety of perspectives, some working with a model that is individualistic and

to linguistics, Chomsky stated that ‘the relevance of logical syntax and semantics [to the study
of natural language| is very dubious’ [Chomsky, 1955]. And throughout the years Chomsky
expressed similar sentiments on a number of occasions. For example, in [Chomsky, 2005} he
states, in keeping with his internalistic perspective, that ‘even the most elementary concepts
of human language do not relate to mind-independent objects by means of some reference-like
relation between symbols and identifiable physical features of the external world’.

40Cf., [Jackendoff, 1990; Pustejovsky, 1995].

411, [Lakoff, 1987; Talmy, 2000).
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internalistic,*? others favouring a more externalistic set up that emphasises the

role of the linguistic community.*3

The rapid development of new techniques for studying brain processes and the
consequent rise of cognitive neuroscience during the last decade also has greatly
contributed to a renewed interest in the underlying mechanisms of meaning. Lan-
guage being one of the core cognitive functions of humans, it has always been an
important object of study in cognitive psychology, as witnessed by a long tradition
of studies in language acquisition, language pathologies, and language processing.
For a long time such studies were generally based on computational, internalis-
tic models of language, although some more empiristic and community oriented
studies were undertaken as well.4* The prospect of being able to study the brain
almost ‘in vivo’ as it processes language, holds much promise. Particularly en-
ticing is the possibility of experimentally testing different theoretical models that
account for more or less the same linguistic data. The advent of more performance
oriented models, such as dynamic semantics, optimality theory and game theoret-
ical semantics have greatly facilitated this reorientation.*> However, as our earlier
discussions concerning externalism, internalism and individualism illustrate, we
should be careful in our assessment of what exactly can be achieved in this fash-
ion. The idea that research in cognitive neuroscience will be able to arbitrate
between rival semantic frameworks all by itself is certainly not unproblematic: for
one thing, the relationship between neurological correlates of semantic concepts
and these concepts themselves cannot simply be taken for granted, and it seems
that the relation between the two is much more symmetric than a reductionist
approach would predict.*® And the contributions of physical and social reality
need to be taken into account as well.

Finally, it should be noted that the shift towards information exchange and other
aspects of use that is embodied in these new approaches also has spurred a renewed
interest in the biological and cultural origins of language, both phenotypically and
genotypically.#” Using techniques from evolutionary game theory and learning
theory, semanticists have begun to study the way in which expressive systems can
arise within a population of interacting agents, trying to isolate which factors are
responsible for the characteristic features of human languages, notably recursive
structure and semantic compositionality.*®

42(Cf,, the references given above.

43Cf., [Tomasello, 2003].

44Cf., work by Bruner and others [Bruner, 1983; Garton, 1992], and early work in the connec-
tionistic paradigm.

45Cf., footnote 36 for references to work on dynamic semantics in relation to natural language;
cf., [van Eijck and Stokhof, 2006] for a more general overview of various concepts from dynamic
logic. For optimality theoretic semantics, cf., {Hendriks and de Hoop, 2001}, for game theoretical
approaches, cf., [Hintikka, 1983].

46Cf.,, [Baggio et al., to appear] for an in-depth discussion.

47Cf., [Tomasello, 1999), for an early, influential study.

48Cf., [Christiansen and Kirby, 2003] for a collection of papers that gives an overview of current
thinking about language evolution; for recursive structure and compositionality, cf., [Kirby, 2000].
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In conclusion, it seems fair to say that the current state of thinking in philosophy
of language and natural language semantics about meaning is one of diversity.
There seems to be no one, dominant conception of natural language meaning,
and many, sometimes quite divergent approaches to its analysis are being pursued
concurrently. The resulting situation might strike some as somewhat paradoxical:
on the one hand all these abstractions have led to success, yet what it is they
purport to study, viz., natural language meaning, seems to fade from view, at
least as one coherent, unifying concept.®

Indeed, in some cases we appear to be dealing with incompatible underlying
conceptions, as for example in the case of internalism and externalism. But more
often it seems that differences arise because people focus on different aspects, and
that, although it might not always look that way, the results could be unified in
a single, more encompassing theory. The contours of such a theory are begin-
ning to emerge, although no generally accepted format has been established as
vet. It treats natural language meaning as a ‘thick’, i.e., substantial concept that
gets its content and structure from a variety of sources (conversational goals, with
a pivotal role for information exchange, the world, reflexive models of language
users) and that ties in closely with other cognitive functions (perception, the emo-
tional repertoire, everyday skills). Thus it reinstates the close relationship between
meaning, information, judgement and the world that was characteristic for many
of the earlier views on linguistic meaning that predate the classical model. But it
does so based on a firm grasp of the underlying formal structure of the concepts
involved, thus allowing for descriptions that have extended empirical scope and
greater explanatory power.>0

In the following sections we will illustrate a few important aspects of the present
state of thinking about meaning and information in natural language by outlining
in somewhat more detail the main elements of one particular way of describing and
analysing how natural language expressions perform their information conveying
roles. In section 3 we will discuss how the relational nature of linguistic meaning
can be captured by means of representational techniques that are derived from
model theory, allowing us to define the linguistic meaning of an expression in
terms of the information carried by an utterance of it in various circumstances.
The starting point of our exposition will be something akin to the classical model,
which we will then subsequently modify and refine to capture more aspects of
content and context. Next, section 4 will be devoted to an illustration of the
way in which this particular conception can be used to capture how information is

49Which gives rise to difficult methodological questions as to what the nature of the success is:
What is it that current semantics and philosophy of language are successful at? What are the
measures of success here? Are these measures (relatively) theory independent? What do they
apply to? And so on.

50Tt should be noted that there is also a continuing tendency toward the use of notions of
meaning and information that are at a greater distance from what we could call the qualitative,
common sense notion, as witnessed by the rise of purely quantitative, statistical notions of infor-
mation in combination with the use of ‘shallow’, non-rule based techniques in certain approaches
in natural language processing, information retrieval, semantic web, and so on.
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conveyed in larger units of linguistic material, such as texts and conversations. We
will illustrate the way in which anaphoric relations and presuppositions establish
discourse connections that enter into the specification of the informational content
of utterances, and we will show how the model set up in section 3 can be enriched
so that it accounts for this. In section 5 we analyse how the state of the recipient
enters into the picture, again indicating how the model can be adapted to account
for this as well. In section 6 we come back to the question of what is characteristic
of linguistic information. We conclude this chapter with a short overview of current
further work in this area.

3 MODELLING MEANING IN CONTEXT

In the introduction to this chapter we observed that the notion of linguistic in-
formation is inseparable from that of linguistic meaning, that both are relational
and that the richness of linguistic meaning is due in large part to the fact that
the syntax and semantics of human languages involve recursion. In this section
we discuss these issues in more detail.

First a few words on syntax. One of the oldest insights into language is that
sentences have grammatical structure. For instance, the observation that the
typical sentence of a language such as Latin, French, or English, contains a verb
and that this verb has a subject can be found in the earliest grammars; and it
is something that speakers of those languages will accept without demur when
it is pointed out them, and that they might find out without much trouble for
themselves. It is also plain, and no doubt always was, that simple sentences can
be used as building blocks for larger sentences, e.g., as conjuncts, or as relative
clauses, or as subordinate clauses beginning with subordinate conjunctions such
as ‘when’, ‘although’, or ‘because’. Speaking more generally, it was from the
beginning a central aim of the ‘Art of Grammar’ to describe how grammatically
correct sentences can be analysed into their grammatical constituents, as a way of
proving that they are in accordance with what Grammar demands.

Modern generative grammar starts from a superficially different point of view,
according to which sentences and other complex linguistic expressions are built
from basic constituents (the words and morphemes of the language) according
to rules that guarantee their grammaticality (or ‘syntactic well-formedness’, as
terminology has it). And the way in which a grammatical expression is built from
the words and morphemes occurring in it according to the rules of syntax shows its
grammatical structure and is thus, once again, a demonstration of its grammatical
correctness. What makes a generative grammar recursive is that some of its rules
can be used repeatedly in the construction of a single sentence. More explicitly:
the grammar is recursive if it has recursive rules — where a rule R is a recursive
rule of a given grammar G if and only if for any number n there are sentences
generated by G in which R is used at least n times. (In the generative grammars
that have thus far been proposed for natural languages all or nearly all rules are
recursive in this sense.)
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In the end there is not much to choose between the generative and the analytical
approach to grammar. In fact, on the basis of a generative grammar it is generally
possible to construct parsers which compute syntactic analyses for those strings
of words and morphemes that the grammar generates, by tracking how the string
can be built using the grammar’s rules. So, when we proceed, as we do, from the
assumption that grammaticality is defined in terms of generative grammars we do
so without loss of generality.

The first formally explicit accounts of natural language meaning made use of
generative grammars that fit our characterisation of such grammars perfectly in
that they consisted exclusively of generative rules, which serve to build complex
expressions out of simpler ones. The accounts assumed that for each such rule R
that tells us how expressions ey, . . ., e, can be combined into a complex expression
e there is a corresponding semantic rule R’ which states how the denotations
dy,...,dn of €1,...,€e, must be combined to obtain the denotation d of e.% As
a matter of fact, natural languages do not take well to the comparatively rigid
regime that is imposed by generative grammars of this strict and simple generative
form, and more complex rule systems are needed if their syntax is to be captured
in intuitively plausible and theoretically convincing terms. But for our present
purposes the way in which these more complex systems determine the meanings
of complex expressions is the same as it is for the simpler generative grammars
described above and the extra complications can safely be set aside.

‘We will therefore assume that the syntax of natural languages can be given as
consisting of (i} a set of rules, determining how complex expressions can be built
from smaller ones, and (ii) a lexicon, specifying words and morphemes.®?

All grammars make use of grammatical categories. This is true in particular of
generative grammars: like other grammars they classify well-formed expressions
into different categories. These categories are essential to generative grammars in
as much as the rules refer to them. The perhaps best known illustration of this
is the rule S — NP VP, which, in some form or other, is part of most generative
grammars that have been proposed for English. This rule says that an expression
of the category ‘S(entence)’ can be formed by concatenating an expression of the
category ‘N(oun) P(hrase)’ with an expression of the category ‘V'(erb) P(hrase)’.
The members of a grammatical category can be either lexical items or complex
expressions. Lexical categories are those which contain at least some words. (It is
possible for a lexical category to consist of lexical items only, but in general this

51Cf, [Montague, 1970a).

52 Among the building rules for a language like English there are those which state how full
words can be built out of their stems by addition of certain morphemes. For instance, the past
tense form ‘called’ of the verb ‘to call’ is formed by concatenating the stem ‘call’ with the past
tense morpheme ‘—ed’. In what follows we will ignore the distinction between words, stems and
morphemes. For our purposes morphemes and stems can both be thought of as ‘lexical items’,
i.e., as elements of the vocabulary of the language, and full forms like ‘called’ can be thought of
as complex expressions. (The interaction between syntax and morphology is one of the aspects
of natural languages that make it awkward to press natural language grammars into the strict
format of sets of construction rules.)
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won’t be so.) Examples of familiar lexical categories, which will be found in any
grammar for a language such as English, are ‘Noun’, ‘Verb’, ‘Adjective’, ‘Adverb’
and ‘Preposition’. In addition to lexical categories many grammars also postulate
certain non-lexical categories, which contain no lexical items but only complex
expressions.

For the theory of meaning grammatical categories are important in that ex-
pressions of the same category will have denotations of the same logical type. For
instance, the denotations of expressions of category Noun generally are properties
—- or, in another formulation which we will favour in what follows, the extensions
of those properties, i.e., the sets of entities of which a given property is true.>® An-
other example: the denotations of elements of the category S, i.e., of well-formed
sentences, are always propositions — the denotation of a sentence s is the propo-
sition expressed by s — or, in the formulation favoured, the truth values of those
propositions. It should be noted that being of the same category is a sufficient
but not in general a necessary condition for having denotations of the same type.
For instance, the denotations of verb phrases (i.e., members of the category VP)
in many semantic theories are properties (or, alternatively, property extensions)
just like the denotations of nouns.

So much for syntax. The standard method to account in a formally precise way
for denotation and meaning is that of model theory. The method consists in (i)
defining structures — the so-called ‘models’ — in which expressions of the different
grammatical categories can be assigned suitable denotations; (ii) a specification
in each model M of denotations for each of the lexical items of the language or
language fragment L under consideration; and (ii), in order to account for the
denotations of complex expressions, a general definition of how the denotation of
any complex expression is determined by the denotations of its constituents. (Cf.,
the remarks made earlier about the semantics of generative rules.) Together (ii)
and (iii) will assign in each model M a denotation to each well-formed expression.
In particular we obtain a denotation in M for each of the sentences of L (which,
as noted, will, depending on how the theory is set up, either be a proposition or
a truth value (‘true’ in case the sentence is true on the interpretation provided by
M or ‘false’ in case the sentence is false on that interpretation).>*

The model-theoretic concept of meaning is relational in that it connects expres-
sions and models. This can be seen most clearly for the case of sentences, assuming
that their denotations are construed as truth values. On this assumption a given
sentence s is positively related to those models in which its denotation is ‘true’
and negatively to those in which its denotation is ‘false’. For expressions of other
categories the matter is somewhat different insofar as their denotations aren’t sim-
ply truth values. But here too the denotation is the product of the interaction

53Generally’ because, e.g., so-called ‘natural kind terms’ (nouns such as ‘water’ and ‘gold’)
may be taken to denote, not properties, but abstract essences.

541n what follows we will, as indicated above, assume that the denotations of sentences are
truth values and the denotations of nouns and other property expressions extensions; but we will
briefly return to the other option, according to which sentences denote propositions and nouns
properties, in section 3.2, footnote 59.
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between expression and model, and can be seen as the manifestation of the way
in which the two are related. We can isolate the contribution that the expressions
make to these manifestations by associating with each expression e the function
which maps each model M to the denotation of e in M. It has been suggested that
the meaning of an expression can be identified with this function, in particular,
that the meanings of sentences can be regarded as functions from models to truth
values. We will see in sections 3.1 and 3.2, however, that such an identification
isn’t possible in general.

In order that a model-theoretic account for a language L does justice to our
intuitions about what words and complex expressions mean, great care must be
taken with the definition of its models. Of particular importance is that only such
models be admitted in which the denotations of words represent realistic possi-
bilities. To give just one example, assume that our account identifies denotations
of nouns as sets. Let nj,...,n; be nouns. Then as a rule not any combination
S1,...,85k of sets of entities will constitute a conceptually possible combination of
denotations for these words. Suppose for instance that ny is the noun ‘woman’ and
ng the noun ‘man’. Then in any model M the denotations of n; and n, should be
disjoint. This is a rather simple case of a semantic connection between two words
that imposes a restriction on the models that should count as admissible in a sat-
isfactory account of meaning. In general the connections are much more complex
and more difficult to identify. And at the present time semantics is nowhere near
a comprehensive inventory of the constraints that such connections impose.®

The reason why this issue is relevant for the specific concerns of this chapter is
that what information a sentence carries depends on the models it excludes — i.e.,
those models which are incompatible with what the sentence says, and which we
are entitled to ignore when we take the sentence as giving us true information. But
evidently, what the set of those models is, and how large a proportion it represents
of the totality of all admissible models, depends on which models are admissible
to start with.

In view of the importance that the question of constraints on models has for
the central topic of this chapter, it is appropriate to dwell on it a little more. First
something that has been implicit in the assumption that the denotations of nouns
are sets. On that assumption the elements of those sets must be in some way part
of M. The way in which this requirement is met is to assume that each model M
comes with a domain of entities, or ‘individuals’, which includes all denotations of
nouns as subsets. The domain of individuals can be used as a foundation on which
a hierarchy of further domains of other, higher logical types can be built, using
certain elementary set-theoretical operations. Some of these higher type domains
correspond to the logical types that are associated with grammatical categories of
L, with the understanding that the denotations in M of expressions of a category C
will be members of the domain of the logical type associated with C. For example,

551t should be noted that such conceptual restrictions derive from language, and one may well
argue, as Quine has done in his attack on the analytic-synthetic distinction [Quine, 1953b], that
they may not hold as such.
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the denotations of nouns are members of the domain of the logical type associated
with the category Noun. So, if noun denotations are sets of individuals of M, then
this domain must be the power set of the domain of individuals, i.e., the set of all
subsets of that domain.

A model M must thus have at a minimum the structure of a range of domains of
different logical types, held together by the relations which are entailed by the way
in which higher type domains are constructed from the individual domain. But
this is only one, comparatively simple part of the structure that is presupposed by
the constraints that single out the conceptually admissible models. For one thing,
we need more structure within the different domains. This is true in particular
of the domain of individuals itself. We already noted that the denotations of
‘woman’ and ‘man’ should always be disjoint. The same constraint applies to the
nouns ‘wife’ and ‘husband’. But connected with these last two nouns there is a
further constraint. Their denotations are delimited by the restriction that they
can be felicitously applied only to human beings; or — to put this in the current
terminology used by many linguists — both ‘wife’ and ‘husband’ come with what
is called a ‘selection restriction’ to the set of human beings. When we look more
closely at the use of nouns (in English or other languages), we see that pretty much
all of them come with selection restrictions of some kind. Furthermore, the sorts
that form the selection restrictions of the different nouns of the language form a
complex hierarchical structure, with some sorts being proper sub-sorts of others.
A simple example: the noun ‘bachelor’ is, in its most prominent use, restricted to
men of a certain age and social position (excluding for instance those who have
made a formal vow of celibacy). So its selection restriction is a sub-sort of the
selection restriction of ‘husband’ and ‘wife’. A more thorough exploration of this
phenomenon also makes clear that part of what is needed is an articulation of a
sort hierarchy that provides, among other things, the selection restrictions of the
different nouns of the language.

Another source of complexity is that most denotations change over time. In
fact, this is so for two reasons, as can be seen plainly for nouns such as ‘wife’ and
‘husband’. First, the set of human beings changes over time, as new people are
born and other people die. So death affects the denotations of these nouns directly
in that they lose members because these disappear from the scene altogether. But
people also enter and leave the denotations of ‘wife’ and ‘husband’ while alive —
viz., by getting married or divorced.?® To do justice to this temporal dependence of
the denotations of nouns and expressions of other categories, models must include
a time structure. Since this is an aspect of model-theoretic meaning accounts that
is especially important in connection with what will be said below, we do well to
be a little more explicit about it. We keep things as simple as possible, assuming
that each model M includes a time structure (T, <), where T is a set of temporal
instants and <, the ‘earlier-later’ relation, is a linear ordering of 7. Furthermore,
the domain of individuals of M may now vary as a function of time — that is,

56 As the tabloids keep reminding us, weaving your way in and out of these denotations can
become a form of life in its own right.



78 Hans Kamp and Martin Stokhof

as a function of T — and the same goes for the higher type domains that are
constructed from domains of individuals, for the sortal hierarchies that subdivide
these various domains, and for the denotations in M of the words of L. Thus each
expression e of L no longer has a single denotation in M, but a possibly different
denotation for each t € T

These are just some of the complications that model-theoretic accounts of mean-
ing must address. This is not the place to do more than indicate that these issues
need to be dealt with, and give a rough idea of what they are. But one further
remark, of a more general tenor, is in order. Both the structure of sort hierar-
chies and the nature and structure of time are matters of ontology, the science of
‘what there is’>” This endeavour, of determining the kinds of entities that must
be assumed to exist and their logical properties and relations, was for centuries
the exclusive province of philosophy. In more recent times it has become a major
concern in artificial intelligence and cognitive psychology and this is where now
much of the kind of work on ontology is being done that is relevant to the theory
of meaning. That is indicative of an important aspect of the meanings of linguistic
expressions and the information they carry: ontology is not just a part of a theory
of the meanings of words (although, as we have argued, it is an indispensable part
of such a theory too), but rather a general theory of the structure of the world
that presents itself to, and is projected by our cognitive faculties — of the differ-
ent kinds of entities of which that structure is composed and of the principles that
hold this multiplicity of kinds together. Up to a point the languages we speak
presuppose and mimic this structure, it would be there even if we didn't speak
a language, or didn’t speak the particular languages that we do speak. But as
pointed out earlier, languages also contribute to this ontology by projecting cer-
tain kinds of entities and structures on it. Thus, the ‘ontology of language’ is a
complex affair, the result of external, causal influences from reality, the structur-
ing principles underlying general cognitive abilities, such as perception, and the
contributions made by linguistic structure.

Assuming that this assessment of the nature of ontology is correct, the claim
that an account of natural language meaning must include parts of it amounts
to the acknowledgement that the meanings of words (and, by implication, also
those of larger expressions) are not ‘autonomous’, but are also constrained by
general conditions that relate to the ways in which we perceive the world and
structure our expectations about its regularities. A similar conclusion follows for
the information that is carried by linguistic utterances: it too depends on the
structure that cognition imposes on what it receives as input. Note that this
implication is two-sided. On the one hand utterances could be said to succeed in
carrying as much information as they do because their meaning implicitly relies
on, and thus implicitly incorporates, so much of the cognitively based, though not
specifically linguistic structures that our languages presuppose and exploit. On
the other hand, the new information that an utterance conveys is limited by the
fact that one must already be in possession of much of this implicit information

57Quine’s happy phrase, cf., [Quine, 1948}.
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in order to be able to interpret the utterance in the first place.

3.1 Utterance dependence of content

The next aspect we must consider of the way in which the denotations of natural
language expressions are determined is very different from the one we have just
discussed and it requires a shift of perspective, from expressions as such to their
uses on particular occasions — that is, to utterances. For an illustration of the
point at issue consider the following sentences:

1. (a) That is a man.
(b) He is a widower.

First (1a). One of the things one must understand in order to understand an
utterance of (1a) is what is denoted by the word ‘that’. What is its denotation?
Well, that depends on whom the speaker of the utterance intends to denote by
her use of ‘that’. An interpreter will be able to determine what that entity is only
insofar as the speaker provides him with some clue, for instance by pointing at the
individual that she intends as denotation, or by gazing pointedly in its direction.
This is a general property of ‘that’ and other so-called ‘demonstrative’ expressions:
they can be used to denote pretty much anything, and what they denote on a
particular occasion is determined by what the speaker wants them to denote, as
long as she conveys this to her audience by providing the right clues. Much the
same goes for personal pronouns like the ‘he’ occurring in (1b). The denotations
of ‘he’ are more restricted in that they always must be male {and usually human).
But which male is again a matter of the speaker’s current intentions and her ability
to get her intention across. -

Because the denotations of the words ‘that’ and ‘he’ may vary from utterance
to utterance, this is also true for the denotations of the sentences (1a) and (1b)
themselves, since these depend on the denotations of the words they contain. There
is however also another reason why the denotations of (1a) and (1b) vary, and this
is a very general one. Time determines which denotations of the nouns occurring
in (1a) and (1b), ‘man’ and ‘widower’, are to be combined with the denotations
of ‘that’ and ‘he’, respectively. For instance, an utterance of (1b) at time ¢ is a
statement to the effect that the denotation of ‘he’ belongs to the denotation of
‘widower’ at ¢ (rather than to the denotation of ‘widower’ at some other time). It
is clear that this temporal dependence of (1a) and (1b) has to do with their tense,
viz., that it is the present, rather than a past or future tense. For example, had
the tense of (1b) been the simple past, as in (1c) below, then an utterance made at
t would not have expressed that the denotation of ‘he’ belongs to the denotation
of ‘widower’ at ¢, but to its denotation at some time before ¢:

1. (c) He was a widower.

Note well, however, that the utterance time is as indispensable to the interpreta-
tion of (1c) as it is to that of (1b). For although in the case of (1¢) it is not the
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denotation of ‘widower’ at the utterance time ¢ itself that is involved, the denota-
tion times that are relevant are those which stand to ¢ in a certain relation. They
are times that precede ¢, and not ¢ itself or times following it.

The temporal dependence exemplified in (1c), with its one verb in the simple
past, is relatively simple. But a closer look at the full range of tenses, as well as
at other expressions with which the tenses interact reveals a very complex field of
temporal relations in which the events described may be linked to the utterance
time complicated ways.5® Here, however, it is not the complexity of these relations
that matters, but the mere fact that what is needed to determine the denotations
of sentences containing past or future tenses are not just the denotations of words
and morphemes at the utterance time ¢, but also their denotations at other times.
This is important because it entails that the denotations in a model M of sen-
tences uttered at time ¢ will in general require not just the denotations of their
lexical constituents in M at t, but the entire ‘temporal history’ of M, providing
denotations for all instants of its temporal structure.

Echoes of what we have just observed in connection with time can be found in
the realm of modality, that part of the theory of meaning that has to do with the
difference between the actual and the possible, the difference between what is true
and what isn’t but could have been. In fact, in the early days of the model-theoretic
approach to meaning time and modality were treated as two dimensions of a simple
ontological structure. Since then the general perspective has changed. According
to more recent views the differences between time and modality outweigh the
similarities, and most current formal treatments reflect this. But there is one
similarity between the temporal and the modal that is as prominent in recent
treatments as it is in older ones. This similarity can perhaps be brought home
most forcefully by a look at subjunctive conditionals. Consider for instance an
utterance of the conditional in (1d):

1. (d) If he had been a widower, she would have married him.

The sentence in (1d) relates two constituent sentences, the ‘if’-clause and the main
clause, and it is this relation which determines whether the conditional claim as
a whole is to be counted as true. Moreover, whether the conditional is true does
not just depend on what is the case in the world as it is. The conditional implies
that both ‘if’-clause and main clause are false in the actual world. But that is
not enough; what is required in addition concerns other worlds than the actual
one. Roughly, the additional requirement is that in any relevant possible world in
which the ‘if’-clause is true, the main clause should be true as well.

58 Examples of such expressions can be found among adjectives (e.g., ‘former’, ‘repeated’), con-
junctions (e.g., ‘while’, ‘after’, ‘before’) and prepositions (e.g., ‘after’, ‘before’, ‘during’, ‘ago’).
Within the class of temporal adverbials we find representatives of a whole spectrum of distinct
functions, as the following examples illustrate: ‘Monday’, ‘the twentieth of March’, ‘last week’,
‘often’, ‘every other Sunday’, ‘still’, ‘again’, ‘the second time’, ‘for the second time’. The seman-
tics of tenses and other temporal expressions in English and a few other languages is one of the
most assiduously researched areas of the theory of meaning, and much in this area is by now
quite well understood. For a recent study, cf., [Rothstein, 2004].



Information in Natural Language 81

There is a large literature on conditionals (different in spirit from that on tem-
poral reference and tense, but comparable in size). A large part of this literature
is concerned with the difficult question how to define the concept of a ‘relevant’
possible world, as it occurs in the truth requirement we just stated for (1d). But
once again, it is not such details that matter here, but only the general fact that
to determine the denotations of utterances of conditionals (and other sentences
containing modal terms or constructijons) in one world we must have recourse to
denotations in other worlds.

If we want our model-theoretic approach to deal with modality along the same
lines that we have outlined for dealing with tense, then we must extend our mod-
els with yet another layer of complexity. What we need are not simply models
that provide the development of denotations through time, but whole bundles of
such models which cover not only the actual world but also other worlds that are
relevant to modality-involving sentences of L. We will call such bundles ‘inten-
sional models’ and refer to the models considered up to this point as ‘extensional
models’. (In other words, an intensional model is a bundle of extensional models.)
Since intensional models will play an important part in all that follows, it will be
useful to stipulate a specific form for them. The following definition is simple, but
suits our needs.

By an intensional model M for a given language or language fragment L we
understand a pair (W, M), where W is some non-empty set (of ‘possible worlds’)
and M is a function which maps each w € W to an extensional model for L, i.e.,
to a model for L of the kind considered so far. (We write M, (rather than M (w))
for the extensional model that M associates with each w € W)

This definition gives what you might call a ‘bare bones’ characterisation of
intensional models. For many purposes the models it specifies won’t be enough.
For instance, in order that a model yield a satisfactory analysis of various kinds
of conditionals, it must provide, apart from what is specified by our definition,
also certain relations between worlds (which tell us which worlds are relevant to
the denotations of various modal sentences in which other worlds). But as we
have said, the exact analysis of the denotations of particular sentences is not what
concerns us here. And as we will see, for the purposes of this chapter our present
definition gives us just what we want.

There is one aspect of intensional models, however, that does require our atten-
tion. This is the structure of time. So far we assumed that each extensional model
has its own time structure. But what can we say about the time structures of the
different extensional models that make up a single intensional model? Are all these
time structures the same, or may we expect them to vary from one extensional
model to the next?

Behind this question lurks an age-old debate about the nature of time and the
formal properties that follow from it. It is a debate that started out within phi-
losophy, but that spread to several other disciplines once these had taken on their
own topical and methodological identity, most notably to physics and psychology.
The various positions that have been argued in the course of this debate can be
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divided into two main groups. On the one side there have been those who see time
as a given absolute, either along the lines of Newton’s Principia, or, more in the
spirit of psychology or cognitive science, as some sort of Kantian category. On the
other hand time has been seen as an immanent feature of an unfolding world of
successive events, as an abstraction from its flow of events. (Well-known repre-
sentatives of this second view are Leibniz and Russell.) On this view it cannot be
excluded a priori that time structures inherit also some of the contingent proper-
ties of the event flows from which they are derived and thus that they vary from
one world to the next. For proponents of a view of time of the first type it will
go without saying that all extensional models come with the same time structure;
for proponents of a view of the second kind this will not be self-evident, and some
at least will want to deny it.

This is not the place to take sides in this debate. In general we should allow for
intensional models that are consistent with either position, thus including those
in which time structures may vary between their component extensional models.
Variability of time structure within intensional models, however, leads to certain
conceptual and technical complications that it is better to side-step here. We will
therefore, in the interest of presentational perspicuity, restrict our attention to
intensional models that each have a single time structure.

3.2  Content and meaning

In section 3.1 we drew attention to two complications that model-theoretic ac-
counts of meaning must deal with: (i) the dependence of denotations on utterance
features other than the linguistic form of expression uttered, and (ii) the power of
an utterance to make a statement not just about its here-and-now, but also about
what lies beyond — in the past, in the future or even in other possible worlds.
These are by no means the only complications that theories of meaning have to
deal with. But we have singled them out because it is they which affect the general
form of a theory of meaning most deeply and therefore it is they also which have
the greatest impact on answers to the questions that are the principal business of
this chapter.

The main questions that will occupy us in the remainder of the chapter are:
What is the propositional content of an utterance? What, if anything, are the
contents and meanings of sentences? And what is the information carried by
a natural language utterance? We will deal with the first two of these in the
remainder of this section. The last question — which is the central question of
this chapter — will be discussed in section 5.

As a preamble to answering the first question recall that earlier in this section,
when we first spoke of denotations, we mentioned that the denotations of sentences
could be either construed as propositions or as truth values, and that meaning
theories vary on this point. There is a close relation between those two concepts
of sentence denotation, just as there exists a close relationship between properties
and property extensions: a proposition can be either true or false, depending on
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whether the situation to which it is applied is compatible with what the proposition
says or not. It has been argued that these manifestations of the proposition, its
being true in some situations and false in others, are all there is to its identity,
i.e., that a proposition is nothing but the truth values it takes in different possible
situations. On this view a proposition can be identified with the function which
returns for each situation the truth value that it has in that situation. We use this
as our leading idea in formulating our answer to the first question.®®

‘We have seen in section 3.1 that in general it is only utterances of natural
language sentences that can be said to have definite denotations, but not those
sentences by themselves. By the same token it is only to utterances that we
can attribute definite content, and not to sentences per se: it is utterances, not
sentences, that express propositions. So, if we want to stick to the spirit of our
leading idea, it is to utterances, and not to sentences as linguistic expressions, that
we should apply it. That is, utterance content should be defined as ‘propositional
content’ — viz., as the range of truth values that an utterance determines in
different possible situations. Or, stated in terms of intensional models: the content
of an utterance relative to an intensional model M = (W, M) should be defined as
the range of truth values that the utterance determines in the extensional models
M, associated with the different worlds w € W.

At first sight it may look as if defining utterance content along these lines runs
into a snag. Consider once more a sentential utterance u, for instance one of
sentence (le) (which is like (1b), except that it doesn’t have the pronoun ‘he’ so
that the only utterance feature that its interpretation depends on is the utterance
time):

1. (e) Helmut is a widower.

597This is the point to return to the question how one might choose between model-theoretic
accounts which construe sentence and noun denoctations as truth values and sets, respectively,
and those which construe them as propositions and properties. At the level at which the answer
to this question is at all relevant to the issues of this chapter, it is quite simple, and also quite
uninteresting. In model-theoretic accounts which exclusively make use of extensional models
only the former denotations (truth values and sets) are well-defined, so it is only in that way
that sentence and noun denotations can be understood. In accounts that use intensional models,
both construals are possible, but there is little to choose between them. First, everything that
can be done with truth values and sets as denotations can also be done when the denotations of
sentences and nouns are taken to be propositions and properties, since we can always pass from
propositions to the truth values they have in particular worlds or models, and from properties
to their various extensions. Conversely, when propositions are defined, as suggested above, as
functions from possible worlds to truth values, then in an intensional model M it is in principle
possible to recover propositions from the corresponding truth values in the different extensional
models that are part of M (and a similar reconstruction is possible when properties are construed
as functions from worlds to extensions). So in theories that make use of intensional models the
two ways of construing denotations are equivalent so long as the technical machinery is in place
for going from propositions and properties to truth values and sets, and back. In ail model-
theoretic accounts of which we are aware, however, this machinery is available. As noted earlier,
there appears to be a preference for theories in which denotations are construed, like we have
been doing here, as truth values and sets. But as far as we can see, there are no compelling
reasons for this preference.



84 Hans Kamp and Martin Stokhof

According to what we have just suggested, the content of u relative to M should
be identifiable as the function which maps each world w € W to the truth value
of u in the model M,,. But what is this truth value of « in models associated with
worlds in which u has not actually been made? Since the truth value determined
by u depends not only on the sentence uttered, but also on some further properties
of u, notably the utterance time, it cannot, one might think, be taken for granted
that truth evaluation is possible also in relation to other worlds.

Fortunately this worry can easily be put to rest. Intuitively it seems clear that
the world in which the utterance u is made could have been different from what it
is, but that this would not have made any difference to the possibility of enquiring
whether or not it makes the statement that u expresses true. The only difference
might have been that the enquiry might have led to a different outcome. The
intuitive reason why this should be so is that once the utterance time ¢ of our
utterance u has been fixed, as the time at which the utterance act is performed
in its world w, the denotation of w at that time ¢ can be computed just as easily
in models M, that are associated with worlds w’ different from w as it can be in
the model M,, associated with w itself. All we need to assume for this is that ¢
can be identified as a time of those other worlds t00.5°

Now that we have resolved the apparent snag, nothing stands in the way to the
intended characterisation of utterance content:

The propositional content of an utterance u of a sentence s, relative
to an intensional model M = (W, M), made at a time ¢ (of the time
structure of M), is the function which maps each world w € W to the
truth value of s at ¢ in M,,.

We now turn to the second question: What, if anything, is the content or mean-
ing of a sentence? As regards sentence content we can be brief and simply repeat
what we have noted already: given that there can be no definite sentence content
without definite sentence denotations — that is, definite truth values — there
can’t be a definite content for any sentence of which the interpretation depends on
additional features of its utterances. It is still possible, however, to make sense of
the notion of sentence meaning, viz., as that which enables the different possible
utterances of a sentence to express their respective propositional contents. Under-
stood in this way the meaning of a sentence s can be identified with the function
that maps each possible utterance of s to its propositional content. This brings us
to the following formal characterisation:

601t is here that our assumption that all extensional models belonging to a given intensional
model have the same time structure is being used. Without this assumption arguing for the
present conclusion becomes more complicated, since it will involve the question how the possibility
of identifying ¢ in other worlds than w correlates with the relevance of those worlds for determining
the denotation of the utterance in w. Other complications arise when additional utterance
features besides the utterance time play a part in the content of u. All in all there are many
non-trivial details that an elaboration of the argument we have sketched here must deal with.
We refer the reader in particular to the locus classicus for these issues [Kaplan, 1989]. Further
discussion can be found, e.g., in [Almog et al., 1989].
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The meaning of a sentence s relative to an intensional model M is
that function which maps each possible utterance u of s in some world
w from M at some time ¢ of its time structure to the propositional
content of u.

We have already pointed out several reasons why the information state of a
recipient who is in a position to interpret an utterance, and thereby profit from
the information it contains, cannot be a tabula rasa. But there also is a further
reason, which is connected with the fact that natural language utterances show a
strong tendency to build upon those that precede it in discourse. In fact, human
languages are rich in devices that serve this very purpose — devices for linking the
sentences in which they occur to the sentences that precede them in the texts or
dialogues of which they are part. These devices enable the recipient to interpret
the sentences that contain them in the way the speaker intends — viz., as integral
pieces of a larger discourse. But of course this can work only if the recipient
has already interpreted those preceding sentences and has thereby acquired the
information which they carry. In this sense too the information he will get from
the new sentence takes the form of an increment to the information he already
had. In the next section we will have a closer look at this incremental dimension
of interpretation, and of the acquisition of linguistic information that goes with it.

4 MODELLING DISCOURSE CONNECTIONS

Much of what we want to say we say in several sentences. Single sentence ut-
terances suit only the simplest of messages, as soon as the message becomes a
little more complex, a single sentence won’t do. Strictly speaking, of course, con-
veying a complex message in a single sentence isn’t impossible in principle. But
the sentence that one would have to use would be so long and convoluted that
others would have the greatest difficulty in unscrambling the message; and even
the speaker himself would be likely to get tied up in knots and lose track of what
he was saying. This humdrum fact about the use of language points at an aspect
of our language handling capacities which is also quite obvious. Our ability to
parse sentences, i.e., to ascertain their syntactic form, is not commensurate with
our capacity for grasping and retaining content. For whatever reason parsing is,
apparently, something that we humans find hard as soon as we are confronted
with strings that exceed a certain length or structural complexity. Such sentences
should therefore be avoided, and instead the story one has to tell must be broken
up into a sequence of sentences that are each of manageable size.

But breaking up a message into a sequence of sentences each of which covers
some part of it comes at a price. It requires that each sentence can be recognised
as making a particular contribution to the larger content. That is, the recipient
must be able to see how and where the contribution of each new sentence fits
within the part of the message that he has already reconstructed from preceding
sentences. Sometimes it is clear from the nature of the message that is conveyed
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in a sequence of sentences and from the sequential order in which the sentences
are arranged how the contributions of the successive sentences fit together. But
this is by no means always so. In such cases it will be helpful, or even imperative,
that the new sentence contains certain elements that make its connections with
the preceding sentences clear. Given how important it is to get these connections
right, it should not be surprising that natural languages include various types of
such ‘discourse linking’ elements. In fact, there are many such elements and many
of them are in constant use. (We know this to be the case at least for English and
the range of other languages for which the question has been investigated, and we
suspect that it is universal.)

Among the classical examples of sentence constituents which are capable of
linking the sentences in which they occur to the preceding discourse are anaphoric
pronouns. Anaphoric pronouns can have antecedents which occur at some earlier
point in the same sentence, but as often as not their antecedents are not sentence
internal. Often, but not necessarily, they occur in the immediately preceding
sentence. In such cases the link between pronoun and antecedent also establishes
a link between the content of the sentence containing the pronoun and that of the
sentence that the antecedent belongs to. By way of illustration consider (2):

2. All these years Bill has kept in touch with one of the girls from his class in
his final year in high school. He met her again last summer.

Here the pronoun ‘her’ can (in the absence of further context) only be construed as
referring to the ‘one of the girls from his class in his final year in high school’ who
is spoken of in the first sentence. This construal links the content of the second
sentence to that of the first: the woman that, according to the second sentence,
Bill met last summer is the same person as the girl that he has kept up with
since his high school days. And in so linking the new content to the preceding
one it also makes the former dependent on the other. It is a kind of ‘add-on’,
i.e., an additional specification of the relation between Bill and the girl that the
first sentence has already put on the interpretational map. This incrementality of
discourse meaning, with the contributions by later parts building on those of earlier
parts, is an aspect of linguistic meaning that substantially alters and complicates
the picture of sentence meaning and utterance meaning sketched in section 3. Yet,
as a feature of how natural languages work it is pervasive, and it comes in many
different forms, the range of which is being uncovered only gradually.®!

This is not the place to explore this range in depth, and we present just a few
more examples that may give some flavour of what forms discourse linking can
take. In example (3), the subject phrase of the second sentence, ‘the other two’,
establishes a number of connected links with the subject of the first sentence.
Because of the constraints that accompany these links (3) will be acceptable only
if the number of students in the speaker’s logic class was three. As a consequence,

61The systematic study of the effect of pronouns and other expressions with discourse linking
effects is of comparatively recent date. It is one aspect of the approach to the study of meaning
now widely known as ‘dynamic semantics’. Cf., the references above, in footnote 36.
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a recipient of (3), who assumes that the speaker has expressed herself in a way that
is in keeping with what she is trying to convey, will conclude {in case he didn’t
already know that) that there were three students:

3. One of the students in my logic class flunked the final. The other two didn’t
turn up.

The constraints just spoken of are typical of expressions that establish this kind of
‘anaphoric’ discourse links.%? Constraints of this kind, which utterances impose on
the contexts in which they are made, are very common. In many {(and presumably
in all) languages there is a large variety of words and grammatical constructions
which encode such constraints. The cover term that has come to be used for them
is that of ‘(linguistic) presuppositions’, or ‘presuppositional constraints’.%3

Presuppositional constraints do not always affect the content of the utterances
which generate them in the way illustrated by (2) and (3). Two examples where
this is not the case are the presuppositions triggered by the words ‘too’ and ‘again’
in (4a) and (4b), respectively.

4. (a) Yesterday John came too.
(b) Yesterday John came again.
(¢) Yesterday John came.

An utterance of (4a) carries the presupposition that there was somebody else who
came yesterday, and one of (4b) the presupposition that there was an occasion
before yesterday when John came. Here the content that is asserted is in both
cases the same as would have been conveyed by an utterance of (4c). Utterances
of (4a) and (4b) differ from utterances of (4¢c) only with regard to the contexts
in which they ‘sound right’, but not in the content they contribute when they
do. But even so they, too, tend to produce discourse-linking effects. For instance,

62This is true also for the pronoun ‘her’, which requires that its referent be a female person
(if we ignore special uses such as making reference to a ship or to a female animal to which the
speaker feels or wants to imply a person-like relationship). This constraint is confirmed by the
anaphoric link between the occurrence of ‘her’ in the second sentence of example (2) and the
argument of ‘with’ in the first sentence. Had the ‘with’-argument been ‘classmate from his final
year in high school’ instead of ‘one of the girls from his class in Bill’s final year in high school’,
then the interpreter, seeing the ‘with’-argument as the only possible antecedent for ‘her’, would
have concluded that the classmate in question was a girl.

63The current tendency to subsume a large variety of context constraints under the term ‘pre-
supposition’ is justified insofar as there is much that such constraints have in common, both
in the ways in which they limit the contexts in which the expressions that generate them can
be felicitously used and in the way they establish links to utterance contexts and thereby help
to shape the content of connected discourse. But the term has the drawback that it tends to
conceal some real differences which nevertheless exist between the various constraints that are
subsumed under it. For the first clear recognition and articulation of the insight that anaphora
and presupposition are closely related phenomena, and in fact that the terms ‘anaphora’ and ‘pre-
supposition’ can be seen as each addressing one side of what is the same coin, cf., [van der Sandt,
1992]. A somewhat different, though also essentially dynamic perspective on presupposition and
anaphora can be found in [Beaver, 2001].
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the ‘again’ of (4b) draws attention to the fact that the described event — that of
John coming (presumably his coming to an occasion of a certain, repeatable kind)
was a repetition of something that had happened before. Such connections are
often crucial to proper understanding. They belong to a dimension of discourse
interpretation that lies beyond the reach of the notions of meaning and content
outlined here, and which is only slowly becoming accessible to systematic, formally
precise investigation.5¢

Presuppositions are usually described as ‘constraints on the context’. That is a
good way of describing their role and status, but it requires a certain understanding
of the notion of context. As should be clear from our two anaphoric examples (2)
and (3), the contexts that are the targets of anaphoric presuppositions are due to
the preceding discourse. In fact, it is the content of the preceding discourse, as
established by the interpretation that the reader or listener has made of it, that
plays this role, and it is because of this double role — as content of what has been
interpreted already and as context for what is being interpreted currently — that
anaphoric constraints can engage with it in the way they do, relying on it for the
satisfaction of the constraints they express and at the same time augmenting it
(in its role as discourse content) with the content contribution derived from the
current utterance. Thus discourse contexts -— as contexts deriving from a discourse
or discourse segment are usually called — function the way they do because they
are content and context all in one. This unity of content and context is a direct
reflection of the fact that the process of discourse interpretation is incremental,
in that it modifies the discourse content/context step by step, adding each time
the content contributed by the utterance or sentence that it has reached, after
checking that the discourse context meets the current context constraints.

The incremental picture of interpretation throws an important new light on the
nature of utterance content. The notion of content that we arrived at towards the
end of section 3 was that of a set of possible worlds — those in which the current
utterance is true. But for sentences whose interpretation requires linking one or
more constituents to the discourse context this notion is no longer viable. Rather
than determining a set of possible worlds in its own right all that an utterance of
such a sentence can be said to identify by way of content is what it contributes to
the discourse context established by the antecedent part of the discourse to which
it belongs. In abstract terms this contribution can be characterised as a pair
(C, C") of discourse contexts, where C is provided by the antecedent discourse and
C'’ is the discourse context that results from updating C with the contribution
that is made by u, assuming that updating C' with u is possible, i.e., that C is a
discourse context which provides all that is needed for a proper interpretation of
u.

In section 3.2 we have defined the meaning of a sentence S relative to an inten-
sional model M as the function which maps each utterance u of S at a time ¢ of

64The most ambitious current approach to this dimension of discourse interpretation that is
familiar to us is the ‘segmented discourse representation theory’ developed by Asher and others.
Cf., [Asher and Lascarides, 2003].
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M55 to the propositional content of u in M. In analogy to the relational charac-
terisation of utterance content just given, we revise the notion of sentence meaning
as follows. The meaning of a sentence S relative to an intensional model M is
the partial function fg which (i) maps each utterance u of S made in a discourse
context C onto the pair (C,C") in case C' can be updated with the propositional
content of u in M and the result of that update is C’; and (ii) is undefined oth-
erwise. Such functions fg are known as ‘context change potentials’ (‘CCPs’ for
short), or ‘update potentials’.

What CCPs are like depends first and foremost on how we identify discourse
contexts. The first proposal that might come to mind is that discourse contexts can
take over the role of our earlier utterance contents, and thus can be identified with
sets of possible worlds. That is to say, one might think that, although the content
of a sentence utterance can no longer be identified in those terms, it should still be
possible to identify the content of a discourse in this way (and by the same token
the content of any initial segment of it). On this assumption sentence meanings
become functions from sets of possible worlds to such sets.

But this proposal won’t work. It fails as soon as the question what are the
available interpretation options for anaphoric pronouns is taken seriously. What
issued may be involved in settling this issue is illustrated by the following example:

5. (a) One of the ten balls is missing from the bag. It has probably rolled
behind the sofa.

(b) Only nine of the ten balls are in the bag. *It has probably rolled behind
the sofa.

The point of this example is this: The first sentence of (5a) and the first sentence
of (5b) are true in precisely the same circumstances; an utterance of the first is true
in precisely the same worlds as an utterance of the second.®® So if the contents

65In the preceding section we emphasised the dependence of the propositional content of an
utterance u on the time t at which u is uttered. The central topic of the present section is the
dependence of utterance content on the discourse context. But of course, the second dependence
does not abrogate the dependence on utterance time and other features of the utterance context,
such as the identity of the speaker and that of her addressee(s). In other words, in general
we find dependence both on the discourse context and on features of the utterance context.
However, in the remainder of this chapter we will suppress explicit reference to features of
the utterance context, including the utterance time, assuming that these are given with each
individual utterance and could be recovered from these when necessary. So, when from now on
we speak of the content of an utterance u in an intensional model M we mean the content of u
at the time t of M at which u is made.

A few remarks about utterance context and discourse context as parts of a more inclusive
notion of context can be found later in this section.

660r, to put the point more pedantically, suppose that u is an utterance of the first sentence
of (5a) that is made at some time t in some world w of a given intensional model M, that v’ is
an utterance of the first sentence of (5b) that is made at the same time ¢ in some other world w’
and that in all other respects w and w’ are exactly the same (so that in particular they contain
exactly the same situation pertaining to the balls, bag and sofa that the utterances of (5a) in w
and of (5b) in w’ are targeted on. (It is a reasonable assumption that for all or most worlds w
in which there is an utterance of the first sentence of (5a) at ¢t there is such a world w’ with a
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of initial discourse segments are identified with utterance contents old style, then
the discourse context determined by an utterance of the first sentence of (5a)
will be indistinguishable from the discourse context established by an utterance
of the first sentence of (5b). But then it becomes inexplicable why the anaphoric
interpretation of the occurrence of ‘it’ in the second sentence of (5a) is possible
but a similar interpretation of its occurrence in the second sentence of (5b) is not.

Examples like (5) indicate that pronoun interpretation is sensitive not just to
what the described world must be like given what has been said about it — not
just, to put the matter somewhat more abstractly, to what possible worlds are
left as candidates for the described world — but also to certain aspects of how
the discourse has described it. The first sentence of (5a) provides a description
that permits interpreting it as referring to the missing ball) while the description
provided by the first sentence of (5b) does not. A notion of discourse content that
is to provide the basis for an account of these facts of pronoun interpretation must
differentiate between the discourse contexts established by utterances of these two
sentences; and utterance contents old style just don’t do that.67

How can we modify the notion of discourse content so that this difference is
captured? Not much reflection on examples like those in (5) is needed to see
that the decisive difference between (5a) and (5b) is that the first sentence of
(5a) ‘introduces the missing ball into the discourse’, as a kind of discourse entity,
whereas the first sentence of (5b) does not do this. In (5b) the existence of the
missing ball can only be inferred from the (old style) content, and apparently
that is not good enough for the purpose of providing an antecedent for a singular
pronoun. It may not be immediately clear how this idea can be turned into a
formal definition of discourse content. To some extent this is brought out by
the existing dynamic semantics literature, where a non-trivial number of different
definitions can be found. We mention just one of these proposals, which seems to
us a comparatively simple and natural realisation of the basic idea. According to
this proposal each discourse content (relative to an intensional model M) is based
on a certain set X of so-called ‘discourse referents’ and consists of a set I of pairs
{(w, f) where w is a world from M and f is a function from X to parts of w. (The
common domain X of all the functions which occur as second components of pairs
in I is called the referential base of I.) The discourse referents that make up the
referential base X of a discourse content I should be thought of as the entities that
are explicitly introduced by the discourse whose content is 7. (Thus the referential
base of the discourse content I3 determined by an utterance of the first sentence
of (5a) will consist of three discourse referents, one for the missing ball, one for
the set of 10 balls of which the missing ball is a member and one for the bag. The
referential base for the discourse content I» determined by an utterance of the first

corresponding utterance u’ of the first sentence of (5b), and conversely.) Then the set of possible
worlds of M in which u is true will be the same as the set of worlds of in which %’ is true.

57 Alternatively, one might attempt to analyse these examples in terms of descriptions, as
proposed, e.g., by Neale [1990]; but cf, [Peregrin and von Heusinger, 2004] for arguments why
this will not do.
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sentence of (5b) will also contain three discourse referents, one for the set of nine
balls in the bag, and further, as in the case of 11, one for the set of ten balls and
one for the bag. The base of I; contains an element that can serve as antecedent
for it, the base for I does not.)

Discourse contents of this type are usually referred to as ‘information states’.
Information states of this kind are about the simplest and most conservative refine-
ment of our earlier notion of content as a set of possible worlds. They reflect only
one aspect of the form of the discourse, viz., the set of discourse entities it intro-
duces, which the information state captures through its referential base. Notwith-
standing this conservativeness, information states thus defined can account for a
remarkable variety of discourse linking mechanisms, some of which look at first
glance quite different from the constraint on pronominal anaphora illustrated in
(5). This is not to say that all such linking phenomena can be accounted for on the
basis of discourse contents of this particular form. In fact, other, richer notions of
discourse content have been proposed in order to deal with certain phenomena for
which information states of the sort just defined do not seem adequate. At present
the question what notions of discourse content are optimal for dealing with which
aspects of discourse linking is far from settled.

‘We note for good measure that, obviously, the notion of a CCP co-varies with
that of an information state, C’C Ps are always partial functions from information
states to information states. Refinement of the notion of information state is
automatically reflected in a similar refinement of the corresponding notion of a

CCP.

There are two other fairly obvious points, which we record for further reference.
The first is that an information state always determines a content in the sense of
section 3. For an information state I of the kind defined above this content is the
set prop a4 (u) consisting of all worlds w such that for some f: (w, f) € I. In case
the notion of information state is refined (in order to adapt it to the explanation
of more complicated cases of discourse linking), the reduction to propositional
contents may take a different form and be somewhat more involved. However, it
is an essential ingredient to the notion of information state that each information
state determines as propositional content, and thus that such reductions are always
possible.

The second point is that among the sentences of a language such as English
there are many whose content does not depend on the discourse context. Or,
more accurately, there are many sentences such that any utterance of them has
a content that is independent from the discourse context in which it is made.
This is so whenever the sentence is free from anaphoric requirements and other
presuppositional constraints. The content of an utterance of such a sentence s can
still be identified in the manner of section 3 with the set of possible worlds in which
the uttered sentence is true. Or, putting things more formally, given an intensional
model M an utterance u of a sentence s (relative to a time ¢ and a world w from
M) will have propositional content prop ,(u) that is independent of the discourse
content C' in which u is made. In such cases updating C with u will always be
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possible and will lead to a new discourse context C’ of the propositional content
is the intersection of the propositional content of C' with prop,,(«). In particular,
when C is identified with information state I, then the result of the update with
u update is an information state I’ such that prop,,(I') = prop(I) N prop p,(u).
Of course this does not determine I’ completely. In fact it is part of the point of
example (5) that the first sentence of (5a) and the first sentence of (5b) can update
the same information states I, that the resulting updated information states I,
and I, have the same propositional content, but that they nevertheless differ in
such a way that the same second sentence in {5a) and (5b) can serve as an update
of I, but not of I.

The question how much structure must be given to discourse contents so that
they are suitably equipped for accounts of the various forms that discourse linking
can take must be sharply distinguished from another question: should discourse
contents be defined, as we have done so far, as model-theoretic constructs, i.e., as
set-theoretic constructs built out of models and their components)? Or should they
be characterised as semantic representations (‘logical forms’), i.e., as structures
that have their own syntax as well as a semantics determined by their syntactic
structure (in the same sense in which, say, formulae of the predicate calculus have
a semantics fully determined by their syntax)? Questions of the first type arise
irrespective of how the second question is resolved, no less for those who opt for
a representational approach than for those who prefer the ‘non-representational’
mode of analysis we have been following.%®

Reasons for choosing between a representational and a non-representational
approach should be looked for elsewhere. First of all, for the computational lin-
guist, whose task is the design and implementation of algorithms for processing
language on a computer, the representational approach is the only option. Only
finite objects like representations can be computed and manipulated to further
computational ends. The typically infinite structures which non-representational
approaches use to model content and information are, as such, fundamentally non-
computable, and even a computational linguist whose theoretical inclinations lean
towards the non-representational perspective will be obliged to work with syntactic
expressions which provide finitary descriptions of the infinitary objects he favours.

A second observation that might be seen as pointing towards the representa-
tional approach has to do more specifically with the cognitive dimension of lan-
guage. Languages are used by people, whose processing capacities are, just like
those of the computers they manufacture, finite; and when language is used, it is
the finite minds of people which do the processing that is involved in both pro-
duction and interpretation. Cognitive science is still at a stage where the most
fundamental questions about how the mind works are a matter of debate, and this
is true in particular with regard to the question how the mind processes language
and represents the results of this processing. We still aren’t in a position to assert

68This is not to say that the two approaches offer the same ranges of options for dealing with
such questions. The question exactly how the representational and the non-representational
approaches compare on this issue is still largely unanswered.
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with full confidence that there is any sense in which the mind can be said to process
language ‘symbolically’, in the sense of forming and manipulating representations
similar to those assumed in theoretical linguistics. This goes for all levels of lin-
guistic representation, including those of syntax and of semantics. Nevertheless,
many of those concerned with the cognitive dimension of language work on the
assumption that language processing is largely symbolic in a non-question begging
sense, and that this is so in particular for processing at the syntactic and seman-
tic level. When this general assumption is combined with the observations about
discourse interpretation to which this section has been devoted, the inevitable con-
clusion seems to be that interpreting discourse involves representations of discourse
content that can be incremented along the lines our discussion has indicated.®®
Alternatively, one might regard the choice between a non-representational ac-
count that assumes infinite entities as semantic values and a representational one
that offers finite ‘reductions’ of those entities as a false dilemma that in fact is
a mere artifact of the specific model-theoretic assumptions that derive from the
classical model, and ultimately of the classical logical approach to the treatment
of formal languages. After all, there seems to be no principled reason why one
would assume the various ingredients in a non-representational account (such as
domains, sets of worlds, models, and even the language itself) to be infinite. In
effect, it can be argued that the very notion of a language as an infinite object,
which, when combined with semantic compositionality, brings along the concep-
tion of an infinite set of meanings, itself is a theoretical construct, the result of a
set of assumptions we may make in order to facilitate the study of certain linguis-
tic phenomena (such as studying syntactic productivity without worrying about
actual performance limitations, or defining information update as elimination of
possibilities), but that we may also discard again when they get in the way.”™

In section 3 we drew attention to the role of the utterance context in the de-
termination of the utterance content. In the present section we have focused on
the role of the discourse context, and in doing so we have kept the dependence
of content on the utterance context out of sight. This compartmentalisation is
consistent with a practice that up to the present time has been quasi-universal:
dependence on utterance context and dependence on discourse context are hardly
ever discussed in the same breath. But it is a practice which has little to speak
for itself. What we want is an integrated account of information content, which
deals with dependence on utterance context and dependence on discourse context
in tandem. As far as we can see there are no fundamental obstacles that stand in
the way of such an integrated account. But to our knowledge none has yet been
fully worked out.

690mne of the long-term goals of the most representational version of dynamic semantics,
discourse representation theory, is to uncover aspects of the semantic representation of con-
tent derived from linguistic input (i.e., the content that the recipients of linguistic input
in spoken or written form extract from what they hear or read. Cf., [Kamp, 1984-1085;
Kamp, 1990].

"0For an early, philosophical argument along these lines, cf., [Davidson, 1986]; [Groenendijk
and Stokhof, 2005] contains some thoughts in this direction regarding compositionality.
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In an account of this kind utterance context and discourse context could be
treated as completely separate and distinct, much as we have been presenting
them in their respective sections 3 and 4. But from the perspective which provides
the motivation for such an account it is tempting to see utterance context and
discourse context as two components or aspects of a single comprehensive context,
much as the terminology, which describes both as ‘contexts’, suggests. This second
perspective seems especially compelling when we see utterance interpretation as
something that takes place in the mind of the recipient. The recipient has to work
with whatever information is available to him, and that information consists, apart
from the expression uttered, of contextual information of various kinds, including
information about the circumstances of the utterance event and the discourse
context as the recipient has thus far constructed it.

As a matter of fact, the contextual information that the interpreter of an ut-
terance relies on typically includes more than just his discourse context and in-
formation about the utterance context. For instance, world knowledge (including
knowledge about both necessary as well as defeasible regularities that govern the
events of the world in which we live) and the encyclopedic knowledge that com-
petent speakers of a language associate with most of its words are notorious for
being indispensable to interpretation, and thus it is natural to take them to be
part of the context too. Along these lines we are led to a notion of an interpre-
tation context as a complex structure, of which utterance context and discourse
context are just two of the components. One way in which these components
differ from each other is that some of them change in the course of a multisen-
tence discourse while others, such as for instance the world knowledge component,
normally remain fixed. But the dynamics of such integrated contexts will also
involve interactions between different context components, leading for instance to
information being transferred from the utterance context to the discourse context.
Describing this dynamics correctly will be one of the major challenges for such an
integrated context theory.

Let us take stock once more and see what the present section has taught us
about content and information. We found that since discourse interpretation is
incremental in nature, utterance content cannot in general be identified with sets of
possible worlds, but rather has to be accounted for in terms of the updating effects
that utterances produce and the context change potentials of sentences of which
those updates are the manifestations. This led to a pair of two related conceptions
of information, that of an information state as embodying the information content
of a discourse, and that of a context change potential — a partial function from
information states to information states — embodying the contributions that the
utterances of sentences make to the discourses of which they are part.

It should be emphasised, however, that while these new notions cast a signifi-
cantly different light on the nature of linguistic information, they are, just like the
notions presented in section 3 they are meant to supplant, notions of information of
a user-neutral sort, which abstracts away from the needs, interests and antecedent
beliefs and convictions of those to whom information is imparted. They address
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the question what the information that is conveyed by an utterance or discourse
actually means for the one that it is conveyed to only insofar as they identify what
information he could get from the linguistic input if he interprets it in accordance
with the rules of the language, including those rules that govern the incremental
interpretation of multisentence discourse. But they have nothing to say about,
for instance, the different effects that the same linguistic communication will have
on two different recipients, either because of differences in prior information with
which the newly acquired information can be inferentially combined, or because of
differences in their respective needs and interests that the same new information
may address to different extents or in different ways. In the next section we will
have a brief look at some aspects of the cognitive perspective according to which
information should be assessed in terms of what difference it makes to the one who
receives it.

5 MODELLING THE RECIPIENT

Information content as we have explicated it so far is, as we noted at the end of
section 4, independent of who is receiving it. When a speaker A makes a statement,
using some discourse-context-independent sentence s, and B and C are among her
audience, then, given how we have defined the notion, the information content of
her utterance will be the same for B as it is for C. In an important sense this is
right: on a natural understanding of the term ‘information’ B and C have obtained
the same information. But how informative an utterance is, is not determined
solely by the information it conveys, it also depends on what is in and on the
recipient’s mind at the moment he processes what the utterance has to say.

For one thing — this is the simplest but also the most telling distinction that
can be made here — what is communicated to the recipient may be either new
to him or it may be something that he knew already. For example, suppose
that Anna tells Bernhard and Carl over dinner that Dorothea has gone to Paris.
And suppose that this was news to Carl, but not to Bernhard, who had been
informed about Dorothea’s trip the day before. Then there is a sense in which the
information which Anna’s statement imparts to Bernhard is nil, while for Carl it
may be significant news.

But this is not the only way in which one and the same communication may
carry information of different significance to different recipients. It may be that the
information is new to both Carl and Bernhard, but that Carl knew that Dorothea
had applied for a job in Paris and accordingly infers from what Anna says that
she must have been given the job, whereas to Bernhard, who knows nothing about
Anna’s job application, the question what she will be doing in Paris may not even
occur. Or, yet another scenario, suppose that neither Bernhard nor Carl knew
that Dorothea had left for Paris, but that their attitudes towards her are different.
To Bernhard she is just someone he vaguely knows and that he has never paid
much attention to, but to Carl she has been the object of deep and unrequited
love. Again Anna’s words will provide new information to both Bernhard and
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Carl. But in Carl they are likely to trigger heated speculation about what reasons
Dorothea may have had for going where she did, and about what she will be doing
now that she is there. Bernhard, on the other hand, may be expected to file the
new bit of information without giving it a second thought, and perhaps he will
have forgotten it as soon as the dinner party is over.

The obvious fact these examples illustrate is that the significance that a piece
of information has for the one who gets it is a function of his antecedent informa-
tion,”! and often also of his other mental attitudes — his concerns, convictions,
affections, desires, goals and plans. This means that an account of the impact of
information presupposes a systematic way of representing mental states, as com-
posed of attitudes of these different kinds. At present no such theory of mental
structure exists that has found general approval. But even if there were such a
theory, this would not be the place to expound it. So we shall limit ourselves to a
look at the first type of dependence mentioned above, viz., the dependence of the
impact of newly conveyed information on prior information.”?

The information that a person has at a given time must be represented in his
mind in some way. For our present purposes it won’t really matter in what way it is
represented. It may be that the representation of at least some of the information
takes the form of representations with a specific ‘syntactic’ structure — of formulae
or terms from some ‘language of thought’ — but this assumption won't be essential
for most of what we will have to say. What does matter is that the representations
determine content. In view of what we have observed in section 4 this means that
each such representation must determine an information state, where information
states have at least the complexity of sets of world-assignment pairs. (For most
of what we will say, however, it will suffice to assume that such representations
determine propositional content.)

Let us consider, then, a person B who is the recipient of a statement u of some
context independent sentence s. To make sense of u, B will have to process it in
the light of what he knows. As was pointed out in section 3, this requires in the
first place that B recognises the subject matter of u, i.e., the part of the world that
u is about. And recognition means activating those elements of his information
that pertain to this subject matter. It is this part that will be directly relevant
to B’s interpretation of u and that will be augmented with the information which
his interpretation of u will produce.”

Evidently, where there is selection of elements there must be elements to be
selected. So we must assume that B’s information can be subdivided into elements
that pertain to different subject matters. We leave open whether such divisions of a
person’s information into subject-related elements is always possible, and we doubt
that the dividing lines can ever be entirely non-arbitrary and sharp. However, for

71Here and henceforth we use ‘information’ as an epistemically neutral term, covering both
what a speech participant actually knows and what he only thinks he knows.

72Cf., section 7 for some references to work that takes dependencies on other factors, such as
the action goals of speech participants, into account.

73The importance of this selection as part of the process of interpreting utterances has been
underlined in particular in ‘relevance theory’; cf., [Sperber and Wilson, 1995].
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our present purposes a rough idealisation will suffice. Let us assume that these
elements, bits of information, can be identified in the simplest and most abstract
way possible, viz., as sets of possible worlds. Second, let a subject matter SM be
the following equivalence relation between worlds: two worlds w and w’ stand in
the relation if they contain exactly the same facts pertaining to the subject matter,
but otherwise they may be as different as you like.™ Example: Suppose that the
subject matter is what happens in Paris on the first of January 2006. Then w and
w' stand in the corresponding relation if and only if what is the case in Paris in w
coincides exactly with what happens in Paris on that day in w’. Furthermaore, if
SM is a subject matter and C a bit of information (i.e., a set of possible worlds),
then we say that C' has nothing to say about SM if and only if C has a non-empty
intersection with each equivalence class of SM.7 And finally, two distinct subject
matters SM and SM’, are said to be mutually independent if and only if each
equivalence class of SM has a non-empty intersection with each equivalence class
of SM'.76

About the selection of that part Cgps of his information that the recipient B
of an utterance u activates as pertaining to the subject matter of v we make two
assumptions. First, that Csps is about a subject matter SM in the sense that
it is the union of some set of equivalence classes of SM. And second, that B’s
total information can be decomposed into Cgps and some other part Crps (the
‘remainder’ of B’ information) in the sense that C = Csps N Cryz, while at the
same time Cgps has nothing to say about SM.

This puts us in a position to say something about the epistemic effect that u
will have on B. Interpretation of u will lead to an augmentation of Cgs with the
result of that interpretation. We denote this augmentation as Csar ® u. It seems
intuitively clear that the set-theoretic difference:

Csm \ (Csm @ u)

between Cgps and Csps ® u is a measure of the epistemic impact that « has on B.

On the assumption that B can represent thoughts about SM in some repre-
sentation language L, there is also another, inference-related way of assessing the
epistemic impact of u, viz., as the set:

{peL:(Csm®u) Fd&Csum = ¢}

consisting of those representations belonging to L which B is in a position to
deduce after he has obtained the information that is conveyed by u, but would
not have been able to before. It is easily verified that the correlation between

74This means that the subject matter can be identified with a question in the so-called ‘partition
semantics of questions’, with the equivalence classes representing the exhaustive answers; cf.,
[Groenendijk and Stokhof, 1984], [Groenendijk and Stokhof, 1997, section 4].

75In the terminology of the partition semantics of questions: if C is uninformative with regard
to the question, i.e., if it does not exclude any of the possible exhaustive answers to the question.

761n terms of the analogy with questions once more: if no answer to either question implies or
excludes an answer to the other.
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this characterisation of epistemic impact and the set-theoretic one is monotone:
suppose that v and v’ are two utterances such that:

(Csm \ (Csnm ®@u)) € (Csm \ (Csm @)

Then also:

{¢el:(Csm@u) ¢ & Com ¢} S{peL: (Csm @) |5 ¢ & Coum H ¢}

(The converse implication doesn’t hold without further assumptions about the
expressive power of L.)

The information Cgps pertaining to SM can be seen as one component of the
recipient’s total information at the time of interpretation, but it is not the only
one on which interpretation depends. In fact, the most important component,
which plays a central part in every act of utterance interpretation, is his linguistic
knowledge — his knowledge of the grammar of the language and of its lexicon —
and, presumably, of a host of so-called ‘encyclopedic knowledge’.”” Let us represent
this conglomerate of the recipient’s linguistic and extra-linguistic knowledge as
Crk.

The way in which interpretation depends on Crg is of course very different
from the way in which it can depend on Cs,y, and it may seem odd to mention
these two almost in the same breath. But it is important to emphasise this second
dependency as well, for it is the knowledge that goes into Crx which is respon-
sible for the very special character of information in natural language: linguistic
expressions have the capacity to carry the information they do because of this very
large package of knowledge that is shared (with close to total overlap) between the
members of a speech community and thus in particular between any two members
who use their language in an act of communication: the speaker uses her knowl-
edge to encode a thought in words and her interlocutor makes use of the same
knowledge to decode the verbal message to reconstruct the encoded thought. This
is what makes linguistic information into the special thing it is and language into
the uniquely powerful communication tool that it is.

Note that as a rule Cgpr and Crg will be quite different, and in fact can be
assumed to be mutually independent in the sense defined above: any way that the
given subject matter could have been is compatible with any way that the language
could have been. For instance, suppose once more that the subject matter of an
utterance u is the current whereabouts of Dorothea. Presumably that subject

7" Encyclopedic knowledge is knowledge that isn’t purely linguistic, but that nevertheless is
important to interpretation, partly because it includes many of the preconditions of individual
words — you cannot properly understand the meaning of ‘levitate’ without having some knowl-
edge of the ‘common sense physics’ of gravity and its practical effects, or of the financial term
‘futures’ without knowing something about the stock market, or of the noun ‘quark’ without a
substantial portion of knowledge about quantum physics (which is even harder), and so forth —
and partly because it guides us in distinguishing plausible from implausible interpretations, and
thereby helps us to deal with ambiguity and vagueness. To be sure, the boundary between what
is linguistic knowledge sensu strictu and what counts as extra-linguistic, encyclopedic or world
knowledge is itself rather vague.
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matter has nothing to do with the conventions of the language; any possible fact
about, where Dorothea is, has moved from or is going to is compatible with any way
the language of u could have been. Only in the special case when it is language
itself that is the topic of discussion will Cgps and Cp g overlap, or even coincide.

Even in the special case where language itself is the subject matter, but certainly
in all those where Csps and Cp i are independent, the way in which interpretation
depends on Cpx is clearly very different from the way it depends on Cgspy — so
different in fact that casting linguistic knowledge as part of the over-all context
in which utterances are interpreted might seem rather artificial. But linguistic
knowledge clearly is knowledge without which normal interpretation would be
impossible, and, to repeat, for a proper appreciation of what makes linguistic in-
formation special the dependence of interpretation on this part of the interpreter’s
knowledge is crucial: that linguistic expressions have the capacity to carry the
kind of information they do — and thus to carry as much information as they
do — is due to the very large package of linguistic and encyclopedic knowledge
on which the interpreter can and must rely, and which is common (largely, if not
totally) to those who share knowledge of a given language.

This fact about human languages — that linguistic and paralinguistic knowledge
is very extensive and that it is wholly or largely shared by those who can be said
to speak them — is of particular importance for understanding the special nature
of information as linguistically expressed and communicated. Part of the point
here is not specific to natural language: in many contexts the information that is
carried by a code belonging to a coding system of any kind is understood in terms
of the coding and decoding algorithm that makes the system a coding system; and
transmission of information using the system will function only if this algorithm is
known to both sender and receiver. But of course, this is a notion of information
that is derivative insofar as it presupposes some other language or medium in which
information can be represented and with which the coding system is connected via
its coding algorithm. It is a notion which passes, one might say, the question
‘What is information?’ on to that language or medium.

Human languages are special on the one hand because of the sheer quantity of
knowledge that must be shared by those who use them to communicate. It is this
which explains the possibility of packing as much information into an expression
of modest size as we often manage to do and yet getting it across to our audience.
But it isn’t just the quantity of linguistic knowledge which makes the case of
natural language special; it is also its quality. Our knowledge of our language isn’t
just a coding system that enables us to translate into and from it messages that
are given in some other representation system (some ‘language of thought’). It is
in part genuinely semantic knowledge which links the expressions of our language
directly to the world. It is these two properties of linguistic knowledge — that it
is truly semantic and that it is shared between all speakers — which explain why
linguistic expressions can be said to carry information in a non-derivative sense
and at the same time be such remarkably effective information transmitters.
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6 INFORMATION IN NATURAL LANGUAGE

In his chapter in this handbook Dretske reminds us of two distinct pretheoretical
uses of the term ‘information’. When we say that the puff of smoke we see in the
distance means that there is a fire there, or that puffs of smoke normally carry the
information that there is a fire, we use the term in a sense in which information
by definition is true information. But this is not the sense we intend when we
speak of ‘linguistic information’. An utterance of the sentence ‘There is a fire over
there’ can be described as meaning, or as carrying the information, that at the
time of the utterance there is a fire somewhere in the direction that the speaker
indicates. By itself this assessment does not entail that there is indeed a fire, in the
relevant direction and at the relevant time, whenever someone makes a statement
by uttering this sentence. Thus in cases such as this the term ‘information’ is used
in such a way that its factual correctness is not assumed, i.e., in a way that allows
for information that is true, but also for information that is false. It is this second
sense in which we have been using the word ‘information’ throughout the present
chapter. For it is this sense of ‘information’ that reflects the most fundamental
characteristic of natural language meaning, viz., its ability to be about non-existent
objects and non-obtaining situations.

Nevertheless , statements do carry a commitment to truth. It is constitutive of
the practice of making statements that they are intended to convey true informa-
tion, even if on occasion speakers fail to do so by mistake, or abuse the trust of
their audience by lying. One situation in which this commitment to truth makes
itself felt in the context of verbal communication is when the speaker makes state-
ments which contradict the recipient’s beliefs — in other words, statements « such
that the propositional content of Cgp ® w is the ‘contradictory proposition’ (the
empty set of worlds). In such a situation the recipient may react in one of several
different ways. He may conclude that if the speaker felt confident enough to make
her statement, she must be right, and revise his beliefs to fit the opinion she has
expressed. But he may also feel certain enough about his own beliefs to conclude
that the speaker must be wrong; and in that case he may either keep his disbelief
to himself or try to convince the speaker that she is wrong. And of course there are
many shades between these two extremes. The recipient may feel strong enough
about his own views not to accept the speaker’s opinion without further ado, but
not strong enough to dismiss her opinion out of hand. In such cases a discussion
may ensue, perhaps ending in a joint view of whose opinion should be considered
most likely.”®

Even if we ignore the range of possibilities between the extremes of unquestioned
acceptance and unconditional rejection, just the two extremes themselves show
that our earlier binary distinction between old and new information is too simple.
There are three basic relations that the speaker’s statement u can stand in to the
recipient’s assumptions Cgps about the subject matter of % (or what he takes to be

78 Assuming the discourse is a cooperative one. For a different perspective, cf., [Merin, 1999;
van Rooij, 2004a).
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its subject matter): (i) the interpretation he assigns to « may be entailed by Csps
— in this case the information carried by w is old for him; (ii) the interpretation
may contradict Csps; and (iii) it may be that the interpretation neither contradicts
Csas nor is entailed by it. So far we just counted cases (ii) and (iii) both as cases
of new information, but as the remarks above should have made clear, from the
recipient’s point of view they are really very different.

This tripartite distinction is important not only in connection with the content
of the statements speakers make, but also with the anaphoric and other presuppo-
sitions their statements carry. Suppose that A has just made the statement that
‘Dorothea has just gone to Paris again.” This choice of words introduces the pre-
supposition that Dorothea has been to Paris before. What is the interpreter to do
with this presupposition? Again this will depend on how the presupposition is re-
lated to Cspr, and once again we have to distinguish between three possibilities —
(i) Csas entails the presupposition, (ii) the presupposition contradicts it, and (iii)
neither. The first case, (i}, is usually treated as the normal one: the antecedent in-
formation about the subject matter entails the presupposition; that is as it should
be, and the interpreter can, detaching the presupposition, move straightaway to
the non-presuppositional component of his interpretation. Cases of type (ili) are
the ones that we believe presupposition theorists usually think of when they dis-
cuss accommodation. If a presupposition cannot be verified as following from the
‘context’, i.e., from what the interpreter currently knows or assumes, then he will
adjust the context — accommodate it, as the technical vocabulary has it — so
that it does entail the presupposition.”™

And then there still is the second case, in which the presupposition contradicts
Csar. Once again there are several ways in which the interpreter could react: he
could conclude that since the speaker was making a statement with this presup-
position, she must have known the presupposition to be true, and adjust his own
beliefs to fit; or he may conclude that the speaker’s apparent belief in the truth of
the presupposition is wrong; and in that case there are once again several options;
he may try to point her mistake out to her or he may let the matter rest and take
the non-presuppositional content of her statement as if no presupposition had been
attached to it.

"By and large accommodation comes easily. In fact, it is one of the classical observations
of presupposition theory that speakers will often exploit the readiness with which interpreters
accommodate presuppositions by choosing wordings for their statements which trigger presup-
positions of which they do not think that their interlocutors believe them already, but that they
want them to adopt. And usually the ploy works: the interpreter will take the content of the
presupposition on board much as he would have done if it had been asserted. In such cases, where
the interlocutor reacts in accordance with the speaker’s expectations, the effect on his beliefs will
be the same as it would have been if the speaker had made the presupposition info a separate
statement followed by the statement he actually made. The term ‘accommodation’, in the present
technical use of it, can be traced back to [Lewis, 1979]. Some of Lewis’ remarks can be read
as suggesting that accommodation is always possible, but in the meantime we have learnt that
there are presuppositions for which accommodation is subject to certain constraints (although it
appears that the question which accommodation constraints apply to which presuppositions is
still largely unanswered). Cf., [Beaver and Zeevat, 2007].
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We note that these same observations also apply to presuppositions that are
generated in speech acts other than assertions, such as questions or directives.
Such non-assertive speech acts were mentioned in passing in the introduction, but
since then nothing was said about them. This seems a suitable point to return to
them. Our lack of attention to non-assertive speech acts throughout the chapter
should not be construed as showing our lack of awareness of the crucial part they
play in the normal use of language. (In any theory of the semantics and pragmatics
of conversation their analysis is absolutely indispensable.) Rather it is a reflection
of our conviction that in an account of linguistic information there is no need to
make them the topic of a separate discussion. For by and large the information
content of non-assertive utterances is determined according to the same principles
as it is for assertions. The only difference is that non-assertive speech acts put
their information content to different uses than assertions do. For the question
what the information content of an expression is and how it gets transmitted that
difference seems immaterial.

But the situation is different with regard to presuppositions. The presuppo-
sitions connected with non-assertive utterances have the same status as those
connected with assertions. In either case their content must be verifiable in the
context before the utterance can be accepted as a legitimate transmitter of its
message. Omne consequence of this is that presuppositions are more markedly set
aside from the non-presuppositional part of utterance content in the case of non-
assertive speech acts than they are in the case of assertions. It is for this reason
that non-assertive speech acts are particularly useful as presupposition tests: For
instance, a presupposition triggered by a constituent of an interrogative sentence
used in a yes-no question will often manifest itself more clearly as a presuppo-
sition there than it does in relation to an assertion involving the corresponding
indicative sentence. Especially striking are those cases where you, the addressee
of the question, think that the presupposition is false. It won’t feel right to you to
answer the question with either ‘yes’ or ‘no’. For instance, suppose I ask you the
question in (6a) and you know (i) that Fred did come to the session last night, but
(ii) that he wasn’t there either at any of the previous sessions. It wouldn’t seem
right for you in such a case to simply reply with ‘yes’, since that would imply that
for all you know the contribution made by ‘again’ in (6a) — that Fred came to one
or more earlier sessions — is true. Rather, you would feel it incumbent upon you
to point out (in the words of (6b), say) that the presupposition was false, perhaps
adding, after having got this matter out of the way, that as a matter of fact Fred
was present at last night’s session.

6. (a) Was Fred at the reading group again last night?
(b) Well as a matter of fact he had never been there before. But yes, he

was there yesterday.

In the above we have emphasised the importance of true information. The im-
portance, we saw, shows up both in connection with presuppositional and with
non-presuppositional information. Failure of a presupposition puts the whole com-
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munication process in jeopardy, something that can be observed with particular
clarity in the case of non-assertive speech acts. But, as we also noted, truth is just
as important for non-presuppositional content, in particular the content of asser-
tions. (It is part of the conventions associated with speech acts of that kind, we
observed, that the speaker commits herself to their content being true.) None of
this is really surprising. For what people need and want first and foremost is true
information about their world — information that makes it possible for them to
plan their actions, by enabling them to make predictions about the consequences
that the different lines of action open to them might have.

But none of this should blind us to the fact that it is nevertheless linguistic
information as we have defined it — information about how the world might be,
rather than information about how it actually is — that is the central notion
in relation to human language; it is this kind of information that is language’s
principal commodity, not the kind of information that has truth built into it.
One indication of this is that all we have said about the interpreter’s handling of
both non-presuppositional and presuppositional content that is motivated by the
concern for truth is ultimately not about the truth as such but about what the
interpreter thinks is true. It is because the interpreter can represent the world
as being of a certain kind, and thus imagine it to be of that kind, that he is
also capable of thinking that it is of that kind. But in the case of thought, as in
that of language, the commitment to the world actually being of a certain kind
is distinct and detachable from the conception of a world of such a kind as such.
This distinction — between truth and mere possibility, or, if you prefer, between
belief and imagination — is at the core of information both as a cognitive and a
linguistic commodity. ’

The detachability of truth from linguistic information content comes into par-
ticularly clear view when we compare discourse about the real world with fiction.
When we read a novel or listen to a story we assign information content to the
words we hear or see in much the same way as we do when interpreting utter-
ances that we take to be about the real world. By and large the same principles
of interpretation apply, including those which regulate the resolution of anaphora
or the contextual justification of presuppositions. But there is nevertheless one
crucial difference: since the world that the fiction unfolds presents itself as one
that is at the author’s disposition, the interpreter has no basis for objecting to any
bit of non-presuppositional or presuppositional content. For that would require
detection of a conflict with what he knows (or thinks he knows) to be true on
independent grounds, and in this case it is true by definition that there can be no
independent grounds. (At best the interpreter could detect internal inconsisten-
cies in the story or violations of the basic laws and regularities which any world,
real or imagined, should obey.) In fictional discourse we see language at work
as a means for providing pure information content, untrammelled by the concern
that the world described might prove different from the world whose description
is intended.
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7 PROSPECTS AND CHALLENGES

In this chapter the focus has been on the information conveying function of natural
languages. We have seen that the concepts of meaning and information have been
related throughout much of the history of modern linguistics, though not always
to the same extent and in the same sense. We have also described in some detail
what kinds of concepts and ideas are needed to build a descriptively satisfactory
and theoretically sound theory that models the information conveying capabilities
of natural languages. To be sure, such a theory is still ‘in the works’, and no
doubt other concepts and ideas will be needed for it to be developed further, but
the basic contours of what natural language information is and how it is shaped by
syntactic structure, the structure of the utterance context, the discourse context
and the participants’ doxastic states and strategic goals, seem reasonably clear.
In what follows we mention a few current trends, and then end this chapter with
some thoughts on the information exchange function of natural languages.

One aspect that currently gets a lot of attention relates to the strategic goals
that language users have when they enter into a conversation, read a text, or
communicate linguistically in some other form. Simple information exchange as
such is hardly ever the ultimate goal: information is needed for certain purposes,
e.g., in order to decide which action to undertake oneself, or to predict or influence
actions of others, to explore possible courses of events, and so on. Language use
then becomes part of a solution of a decision problem, and understanding the
nature of the problem is essential since it determines what information (in terms
of content and/or amount) is relevant in a given situation.®°

Situations of information exchange become even more complex once one ac-
knowledges that not only providing information, but also withholding informa-
tion, or divulging information selectively (part of the information, to part of the
other participants), may be a crucial element of an overall strategy. This type of
information exchange is often analysed using tools from game theory.8! So-called
‘higher order effects’ of information disclosure are a central topic here: if A tells
B that p, then B potentially learns a lot of other things beside p: that A believes
(knows) that p, that A wants B to believe (know) that p, that C, who happened
to overhear the utterance, now also believes (knows) that p but not as a result of
an intentional action of A, and so on.

A particular aspect of this problem set that has been studied quite extensively
is how language users choose means of expressions, as speakers, and determine
interpretations, as hearers. Given the fact that the relation between expression
and content, form and meaning, is not one—one, but in general many-many, the
problem how to express certain information, and how to decide what content a
certain expression is used to convey, is a substantial one. In order to solve these
problems, language users need general principles that they can use themselves
and that they can assume the other users employ as well. Gricean pragmatics

80Cf., [Ginzburg, 1995; van Rooij, 2003].
81Cf,, [van Benthem, 2006].
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provides a first and partial indication. So-called ‘bi-directional optimality theory’
aims to generalise and systematise these ideas.3? Although it greatly enhances
the explanatory power of the classical Gricean framework, it stays within that
framework in that it relies on an independent characterisation of the space of
possible forms and the space of possible meanings. A framework in which meanings
are not a precondition but a result of linguistic exchanges is provided by so-called
‘signalling games’,3% which in that respect constitute a major step away from the
classical model.

The integration of the various theories and paradigms that are currently being
explored and that we can only mention, is still very much an open matter. No
unified framework exists as vet, and developments are rapid. However, most ap-
proaches somehow build on the general principles that we have outlined in this
chapter, which suggests that the current phase of diversification could be followed
by one in which more comprehensive theories can be developed.

A question that we haven’t addressed so far is to what extent information
conveying is really natural language’s ‘core business’, as many would claim. The
reason we have not gone into that discussion is minimally this, that although not
everyone agrees that information conveying is the function of natural language
‘par excellence’, no-one really wants to deny that it is one of the things natural
languages are used for, and the how and why of that is really what this chapter is
all about. Nevertheless, as a final reminder it may not be superfluous to indicate,
albeit only very briefly, the possible limitations of this view on natural language.

First of all, in as much as the concepts and formal machinery that are put to use
in theories of natural language semantics and pragmatics are taken from logic and
theoretical computer science, where they were developed with the explicit purpose
of providing tools for the description and analysis of processes of information
exchange, it is hardly surprising that the resulting theories make natural language,
too, appear as primarily concerned with that specific goal. Anything that doesn’t
fit simply disappears from sight, by being ‘abstracted away’ from. That by itself
doesn’t mean, of course, that there actually is something that doesn’t fit, or that,
if there is, it is of importance. But the fact remains that the tools used in the
study of natural language are derived from the domain of formal systems and that
whereas the latter are straightforwardly designed with a specific purpose in mind,
the former can hardly be said to answer to such a description. So at least we need
to allow the possibility of a certain one-sidedness, and concomitant distortion.

A second consideration pertains to the status of the use of natural language for
information exchange. Of course nobody would deny that natural languages serve
other purposes as well: we flatter and comfort (each other and ourselves), we sing
songs and write poetry, we congratulate and curse. There is no denying that such
utterances, too, convey information, if only of the ‘higher order’ type mentioned
earlier on, but according to many it would be an unjustified generalisation to state

82Cf., [Dekker and van Rooij, 2000; Blutner et al., 2006]. For a game-theoretical approach to
the issue of ambiguity resolution, cf. [Parikh, 2002].
83CE., [van Rooij, 2004b).
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that their purpose is that of exchanging information. The real issue, they feel,
is how these other uses and the information exchange use are weighed relative
to each other. Is information exchange the core function of language, with other
functions being somehow dependent on it? Or are the various uses we make of
language relatively independent from each other? Or is there some other function
than information exchange that is the primary one? These are difficult questions,
and it would take us too far afield to discuss the various options that have been
proposed and defended in the literature. Some seek the answer in an (often specu-
lative) account of language evolution: did language evolve from the use of signals,
to indicate foods, predators, and such?® Or are its origins rather to be found in a
need for social cohesion, and did it start out as a way of maintaining social bonds
within a group?®® Others address these questions from a more systematic point of
view. As a matter of fact, the history of western thinking about language displays
quite a variety of opinions about what constitutes its inner nature, and the logical
one, with its emphasis on reference, description and information exchange is but
one of them. In modern times, the ‘information oriented’ views of, e.g., Locke
and Leibniz, were balanced by, e.g., those of Rousseau, who saw the essence of
language in the expressions of the passions, and of Herder and Humboldt, who
emphasised its expressive role with regard to the spirit of a culture. In the twen-
tieth century Wittgenstein explored the variety of the uses we make of language
and emphasised their ‘co-originality’, and Austin and Searle further systematised
certain elements of this view. And in other philosophical traditions, too, people
have expressed yet other views on the nature of language, such as the hermeneutic
perspective of Heidegger and Gadamer, the moral-political view of Habermas,0
or the phenomenological one of Merleau-Ponty.3”

‘What these alternative views have in common is that they reject, to some ex-
tent at least, the instrumentalism that seems inherent in the information exchange
perspective. There language essentially is an instrument, a tool that is put to a
use, viz., that of asking for and providing information. Again, the origins of the
concepts and tools of modern semantics and pragmatics are conducive to such a
view: in formal systems the languages and their semantics are defined accord-
ing to predetermined specifications, which makes them instrumental through and
through. In many of the alternative views, the distinction between the instrument
and the use to which it is put is less clear, more difficult to make. One might say
that the opposition really is a matter of whether ‘language has use’ or ‘language
is use’.

These observations, of course, merely scratch the surface of a very complicated,
and still ongoing debate. We draw attention to them merely in order to balance the
perspective, not to throw serious doubts on the view that information exchange is

84Cf., [Pinker and Bloom, 1990].

85Cf., [Dunbar, 1998]. And there are many other views, cf., various contributions in the already
referred to [Christiansen and Kirby, 2003].

86Cf., [Lafont, 1999].

87Cf., [Edie, 1987].
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a vital function of natural languages. The latter point is uncontroversial, as is the
contention that theories exploring this perspective provide a real insight into the
nature of natural languages, and have furthered our understanding of its structure,
its meaning and its use immensely. The point to bear in mind is just that other
perspectives, in their own way, contribute to such an understanding as well.

ACKNOWLEDGEMENTS

We would like to thank the editors for their patient support and Menno Lievers for
his detailed critical comments, which have led to many improvements. Obviously,
only the authors are to be held responsible for the end result.

BIBLIOGRAPHY

[Almog et al., 1989] Joe Almog, John Perry, and Howard K. Wettstein, editors. Themes from
Kaplan. Oxford University Press, 1989.

[Asher and Lascarides, 2003] Nicholas Asher and Alex Lascarides. Logics of Conversation.
Cambridge University Press, Cambridge, 2003.

[Austin, 1962] John Longshaw Austin. How To Do Things With Words. Oxford University
Press, Oxford, 1962.

[Baggio et al., to appear] Giosue Baggio, Michiel van Lambalgen, and Peter Hagoort. Lan-
guage, linguistics and cognition. In Ruth Kempson and Tim Fernando, editors, Handbook of
Philosophy of Linguistics. Elsevier, Amsterdam, to appear.

[Bartsch, 1996] Renate Bartsch. The myth of literal meaning. In Edda Weigand and Franz
Hundschnurscher, editors, Lexical Structures and Language Use, pages 3-16. Niemeyer,
Tiibingen, 1996.

[Barwise and Perry, 1983] Jon Barwise and John Perry. Situations and Attitudes. MIT Press,
Cambridge, Mass., 1983. :

[Barwise and Seligman, 1997] Jon Barwise and Jerry Seligman. Information Flow. The Logic
of Distributed Systems, volume 44 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, 1997.

[Beaver and Zeevat, 2007] David I. Beaver and Henk Zeevat. Accommodation. In Gillian Ram-
chand and Charles Reiss, editors, The Ozford Handbook of Linguistic Interfaces. Oxford
University Press, Oxford, 2007.

[Beaver, 2001] David I. Beaver. Presupposition and Assertion in Dynamic Semantics. CSLI,
Stanford, 2001.

[Biletzki and Matar, 1998] Anat Biletzki and Anat Matar, editors. The Story of Analytic Phi-
losophy: Plots and Heroes. Routledge, London, 1998.

[Blutner et al., 2006] Reinhard Blutner, Helen de Hoop, and Petra Hendriks. Optimal Commu-
nication. CSLI, Stanford, 2006.

[Bruner, 1983] Jeréme Bruner. Child’s Talk. Learning to Use Language. Norton, London, 1983.

[Burge, 1990] Tyler Burge. Wherein is language social? In C. Anthony Anderson and Joseph
Owens, editors, Propositional Attitudes, pages 113-30. CSLI, Stanford, 1990.

[Cardona, 1988. 2nd ed 1997] George Cardona. Panini. His Work and Its Tradition. Motilal
Banarsidass, Delhi, 1988. 2nd ed 1997.

[Chomsky, 1955] Noam Chomsky. Logical syntax and semantics: Their linguistic relevance.
Language, 31(1):36—45, 1955.

[Chomsky, 2005] Noam Chomsky. Three factors in language design. Linguistic Inquiry, 36(1):1-
292, 2005.

[Christiansen and Kirby, 2003] Morton H. Christiansen and Simon Kirby, editors. Language
Ewvolution. Oxford University Press, Oxford, 2003.

[Cresswell, 1973] Max J. Cresswell. Logics and Languages. Methuen, London, 1973.

[Davidson, 1967} Donald Davidson. Truth and meaning. Synthese, 17:304-23, 1967.



108 Hans Kamp and Martin Stokhof

[Davidson, 1974] Donald Davidson. On the very idea of a conceptual scheme. Proceedings and
Adresses of The American Philosophical Association, 47, 1974.

[Davidson, 1984] Donald Davidson. Inguiries into Truth and Interpretation. Oxford University
Press, Oxford, 1984.

[Davidson, 1986] Donald Davidson. A nice derangement of epitaphs. In Ernest LePore, editor,
Truth and Interpretation. Perspectives on the Philosophy of Donald Davidson, pages 433—46.
Blackwell, Oxford, 1986. Reprinted in [Davidson, 2005].

[Davidson, 2005] Donald Davidson. Truth, Language and History. Clarendon Press, Oxford,
2005.

[Dekker and van Rooij, 2000} Paul Dekker and Robert van Rooij. Bi-directional optimality the-
ory: An application of game theory. Journal of Semantics, 17:217-42, 2000.

[Dummett, 1996] Michael Dummett. The Origins of Analytical Philosophy. Duckworth, Lon-
don, 1996.

[Dummett, 2004] Michael Dummett. Truth and the Past. Columbia University Press, 2004.

[Dunbar, 1998] Robin LM. Dunbar. Grooming, Gossip and the Evolution of Language. Harvard
University Press, Cambridge, Mass., 1998.

[Edie, 1987] James M. Edie. Merleau-Ponty’s Philosophy of Language. University Press of
America, Washington, 1987.

[Farkas, 2006] Katalin Farkas. Semantic internalism and externalism. In Ernest LePore and
Barry Smith, editors, The Ozford Handbook of Philosophy of Language. Oxford University
Press, Oxford, 2006.

[Fodor, 1987] Jerry A. Fodor. Psychosemantics: The Problem of Meaning in the Philosophy of
Mind. MIT Press, Cambridge, Mass., 1987.

[Frege, 1879] Gottlob Frege. Begriffsschrift. Fine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Louis Nebert, Halle a.S., 1879. English translation in van
Heijenoort 1970. .

[Frege, 1882] Gottlob Frege. Uber die wissenschaftliche Berechtigung einer Begriffsschrift.
Zeitschrift fir Philosophie und philosophische Kritik, pages 48-56, 1882. English transla-
tion in [E'ege, 1964].

[Frege, 1918-19] Gottlob Frege. Der Gedanke: eine logische Untersuchung. Beitrdge zur Philoso-
phie des deutschen Idealismus, 2:58-77, 1918-19. English translation in [Frege, 1977).

[Frege, 1964] Gottlob Frege. On the scientific justification of a concept-seript. Mind, 73:155-60,
1964. Translated by J.M. Bartlett. ’

[Frege, 1977] Gottlob Frege. Logical Investigations. Blackwell, Oxford, 1977. Translated by
P.T. Geach.

[Garton, 1992] A.F. Garton. Social Interaction and the Development of Language and Cogni-
tion. Erlbaum, Hillsdale, 1992.

[Ginzburg, 1995] Jonathan Ginzburg. Resolving questions, 1 & II. Linguistics and Philosophy,
18(5 & 6):459-527 & 567-609, 1995.

[Grice, 1957] H.P. Grice. Meaning. The Philosophical Review, 66:377-88, 1957.

[Grice, 1975] H.P. Grice. Logic and conversation. In Peter Cole and Jerry Morgan, editors,
Syntaz and Semantics. Volume 3: Speech Acts, pages 41-58. Academic Press, New York,
1975.

[Groenendijk and Stokhof, 1984] Jeroen Groenendijk and Martin Stokhof. On the Seman-
tics of Questions and the Pragmatics of Answers. PhD thesis, Department of Phi-
losophy, Universiteit van Amsterdam, Amsterdam, November 1984. (Available from:
http://dare.uva.nl/en/record/123669).

[Groenendijk and Stokhof, 1990] Jeroen Groenendijk and Martin Stokhof. Dynamic Montague
grammar. In Laszlé Kialman and Lészlé Polos, editors, Papers from The Second Symposium
on Logic and Language, pages 3-48. Akadémiai Kiads, Budapest, 1990.

[Groenendijk and Stokhof, 1991] Jeroen Groenendijk and Martin Stokhof. Dynamic predicate
logic. Linguistics and Philosophy, 14(1):39-100, 1991.

[Groenendijk and Stokhof, 1997) Jeroen Groenendijk and Martin Stokhof. Questions. In Johan
van Benthem and Alice ter Meulen, editors, Handbook of Logic and Linguistics, pages 1055—
1124. Elsevier/MIT Press, Amsterdam/Cambridge Mass., 1997.

[Groenendijk and Stokhof, 2005] Jeroen Groenendijk and Martin Stokhof. Why compositional-
ity? In Greg Carlson and Jeff Pelletier, editors, Reference and Quantification: The Partee
Effect, pages 83-106. CSLI, Stanford, 2005.



Information in Natural Language 109

[Groenendijk et al., 1996] Jeroen Groenendijk, Martin Stokhof, and Frank Veltman. Corefer-
ence and modality. In Shalom Lappin, editor, Handbook of Contemporary Semantic Theory,
pages 179-213. Blackwell, Oxford, 1996.

[Hacking, 1975] Ian Hacking. Why Does Language Matter to Philosophy? Cambridge. Cam-
bridge University Press, 1975.

[Heim, 1983] Irene Heim. File change semantics and the familiarity theory of definiteness. In
Rainer Bauerle, Christoph Schwarze, and Arnim von Stechow, editors, Meaning, Use, and
Interpretation of Language. De Gruyter, Berlin, 1983.

[Hendriks and de Hoop, 2001] Petra Hendriks and Helen de Hoop. Optimality theoretic seman-
tics. Linguistics and Philosophy, 24(1):1-32, 2001.

[Hintikka, 1983] Jaakko Hintikka. The Game of Language. Reidel, Dordrecht, 1983.

[Jackendoff, 1990] Ray Jackendoff. Semantic Structures. MIT Press, Cambridge, Mass., 1990.

[Kamp and Reyle, 1993] Hans Kamp and Uwe Reyle. From Discourse to Logic. Kluwer, Dor-
drecht, 1993.

[Kamp, 1981} Hans Kamp. A theory of truth and semantic representation. In Jeroen Groe-
nendijk, Theo Janssen, and Martin Stokhof, editors, Formal Methods in the Study of Lan-
guage. Mathematical Centre, Amsterdam, 1981.

[Kamp, 1984-1985] Hans Kamp. Context, thought and communication. Proceedings of the
Aristotelian Society, pages 239-61, 1984-1985.

[Kamp, 1990] Hans Kamp. Prolegomena to a structural account of belief and other attitudes.
In C.A. Anderson and J. Owens, editors, Propositional Attitudes: The Role of Content in
Logic, Language, and Mind. CSLI, Stanford, 1990.

[Kaplan, 1989] David Kaplan. Demonstratives. In Joe Almog, John Perry, and Howard K.
Wettstein, editors, Themes from Kaplan, pages 481-563. Oxford University Press, Oxford,
1989.

[Kirby, 2000] Simon Kirby. Syntax without natural selection: How compositionality emerges
from vocabulary in a population of learners. In C. Knight, editor, The Evolutionary Emergence
of Language: Social Function and the Origins of Linguistic Form, pages 303-23. Cambridge
University Press, Cambridge, 2000.

[Lafont, 1999] Christina Lafont. The Linguistic Turn in Hermeneutic Philosophy. MIT Press,
Cambridge, Mass., 1999.

{Lakoff, 1987] George Lakoff. Women, Fire and Dangerous Things. The University of Chicago
Press, Cambridge, 1987.

[Levinson, 1983] Stephen C. Levinson. Pragmatics. Cambridge University Press, Cambridge,
1983.

[Lewis, 1970] David K. Lewis. General semantics. Synthese, 22:18-67, 1970.

[Lewis, 1979] David K. Lewis. Scorekeeping in a language game. Journal of Philosophical Logic,
8:339-59, 1979.

[MeGinn, 1989] Colin McGinn. Mental Content. Blackwell, Oxford, 1989.

[Merin, 1999] Arthur Merin. Information, relevance and social decisionmaking. In Larry Moss,
Jonathan Ginzburg, and Maarten de Rijke, editors, Logic, Language and Computation. Vol. 2.
CSLI, Stanford, 1999.

[Montague, 1970a} Richard Montague. English as a formal language. In Bruno Visentini, editor,
Linguaggi nella Societd e nella Tecnica, pages 189-224. Edizioni di Communita, Milano, 1970.

[Montague, 1970b] Richard Montague. Universal grammar. Theoria, 36:373-98, 1970.

[Montague, 1973] Richard Montague. The proper treatment of quantification in ordinary En-
glish. In Jaakko Hintikka, Julius Moravesik, and Patrick Suppes, editors, Approches to Natural
Language, pages 221-42. Reidel, Dordrecht, 1973.

[Montague, 1974] Richard Montague. Formal Philosophy. Selected papers of Richard Montague.
Edited and with an Introduction by Richmond H. Thomason. Yale University Press, New
Haven and London, 1974.

[Neale, 1990] Stephen Neale. Descriptions. MIT Press, Cambridge, Mass., 1990.

[Parikh, 2002] Prashant Parikh. The Use of Language. CSLI, Stanford, 2002.

[Partee, 1973] Barbara H. Partee. Some transformational extensions of Montague grammar.
Journal of Philosophical Logic, 2:509-34, 1973.

[Peregrin and von Heusinger, 2004] Jaroslav Peregrin and von Heusinger. Dynamic semantics
with choice functions. In Hans Kamp and Barbara H. Partee, editors, Contert Dependence
in the Analysis of Linguistic Meaning, pages 255-74. Elsevier, Amsterdam, 2004.



110 Hans Kamp and Martin Stokhof

[Pinker and Bloom, 1990} Steven Pinker and Paul Bloom. Natural language and natural selec-
tion. Behavioral and Brain Sciences, 13(4):707-84, 1990.

[Plato, 1921] Plato. Sophist. Loeb Classical Library. Harvard University Press, Cambridge,
Mass., 1921. Translated by H.N. Fowler.

[Pustejovsky, 1995] James Pustejovsky. The Generative Lexicon. MIT Press, Cambridge, Mass.,
1995.

[Putnam, 1975] Hilary Putnam. The meaning of ‘meaning’. In Mind, Language, and Reality,
pages 215-71. Cambridge University Press, Cambridge, 1975.

[Quine, 1948] Willard Van Orman Quine. On what there is. Review of Metaphysics, 2:21-38,
1948. Reprinted in [Quine, 1953a).

[Quine, 1953a] Willard Van Orman Quine. From a Logical Point of View. Harper & Row, New
York, 1953.

[Quine, 1953b] Willard Van Orman Quine. Two dogmas of empiricism. In Prom a Logical Point
of View, pages 20-46. Harvard University Press, Cambridge, Mass., 1953.

[Recanati, 2004] Francois Recanati. Literal Meaning. Cambridge University Press, Cambridge,
2004.

[Robins, 1990} R. Robins. A Short History of Linguistics. Longman, London, 3rd edition, 1990.

[Rothstein, 2004] Susan Rothstein. Structuring Events: A Study in the Semantics of Lexical
Aspects, volume 2 of Ezplorations in Semantics. Blackwell, Oxford, 2004.

[Searle, 1969] John R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.

[Seuren, 1998] Pieter A.M. Seuren. Western Linguistics: An Historical Introduction. Blackwell,
1998.

[Soames, 2003] Scott Soames. Philosophical Analysis in the Twentieth Century, Volumes 1 and
2. Princeton University Press, Princeton, 2003.

[Sperber and Wilson, 1995] Dan Sperber and Deirdre Wilson. Relevance: Communication and
Cognition. Blackwell, Oxford, 2nd edition, 1995.

[Stalnaker, 1974] Robert Stalnaker. Pragmatic presuppositions. In M. Munitz and P. Unger,
editors, Semantics and Philosophy. New York University Press, New York, 1974.

[Stalnaker, 1979] Robert Stalnaker. Assertion. In Peter Cole, editor, Syntax and Semantics 9
~ Pragmatics. Academic Press, New York, 1979.

[Stanley, 2005] Jason Stanley. Semantics in context. In Gerhard Preyer and Georg Peter, editors,
Contextualism in Philosophy. Oxford University Press, Oxford, 2005.

[Steiner, 1975] George Steiner. After Babel. Aspects of Language and Translation. Oxford
University Press, Oxford, 1975.

[Stenius, 1967} Eric Stenius. Mood and language-game. Synthese, 17:254-74, 1967.

[Stokhof, 2002} Martin Stokhof. Meaning, interpretation and semantics. In Dave Barker-
Plummer, David Beaver, Johan F.A.K. van Benthem, and Patrick Scotto di Luzio, editors,
Words, Proofs and Diagrams, pages 217-40. CSLI, Stanford, 2002.

[Sundholm, to appear] Goéran Sundholm. A century of judgement and inference: 1837-1936.
In L. Haaparanta, editor, The Development of Logic. Oxford University Press, Oxford, to
appear.

[Szabé, 2005] Zoltin Gendler Szabd, editor. Semantics versus Pragmatics. Oxford University
Press, 2005.

{Talmy, 2000] Leonard Talmy. Towards a Cognitive Semantics. MIT Press, Cambridge, Mass.,
2000.

[Tomasello, 1999] Michael Tomasello. The Cultural Origins of Human Cognition. Harvard
University Press, Cambridge, Mass., 1999.

[Tomasello, 2003] Michael Tomasello. Constructing @ Language: A Usage-Based Theory of
Language Acquisition. Harvard University Press, Cambridge, Mass., 2003.

[van Benthem, 2006] Johan F.A.K. van Benthem. One is a lonely number. In Z. Chatzidakis,
P. Koepke, and W. Pohlers, editors, Logic Colloquium ‘02, volume 27 of Lecture Notes in
Logic. Association for Symbolic Logic, 2006.

[van der Sandt, 1992] Rob van der Sandt. Presupposition projection as anaphora resolution.
Journal of Semantics, 9(4):333-77, 1992.

[van Eijck and Stokhof, 2006} Jan van Eijck and Martin Stokhof. The gamut of dynamic logic.
In Dov Gabbay and John Woods, editors, Handbook of the History of Logic, Volume 6 — Logic
and the Modalities in the Twentieth Century, pages 499-600. Elsevier, Amsterdam, 2006.

[van Heijenoort, 1970] Jean van Heijenoort, editor. Frege and Gédel. Two Fundamental Terts
in Mathematical Logic. Harvard University Press, Cambridge, Mass., 1970.



Information in Natural Language 111

[van Rooij, 2003] Robert van Rooij. Asserting to resolve decision problems. Journal of Prag-
matics, 35, 1161-79 2003.

[van Rooij, 2004a] Robert van Rooij. Cooperative versus argumentative communication. In
Manuel Rebuschi and Tero Tulenheimo, editors, Logique & Théorie des Jeuax, volume 8 of
Philosophia Scientiae. Kimé, Paris, 2004.

[van Rooij, 2004b] Robert van Rooij. Signalling games select Horn strategies. Linguistics and
Philosophy, 27:492~-527, 2004.

[Veltman, 1996] Frank Veltman. Defaults in update semantics. Journal of Philosophical Logic,
25:221--61, 1996.

[Wittgenstein, 1958] Ludwig Wittgenstein. Philosophical Investigations. Blackwell, Oxford, 2nd
edition, 1958.

[Wittgenstein, 1960] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Suhrkamp, Frank-
furt a/M, 1960.



This page intentionally left blank



TRENDS IN THE PHILOSOPHY
OF INFORMATION

Luciano Floridi

1 INTRODUCTION

“T love information upon all subjects that come in my way, and especially upon
those that are most important.” Thus boldly declares Euphranor, one of the
defenders of Christian faith in Berkeley’s Alciphron.! Evidently, information has
been an object of philosophical desire and puzzlement for some time, well before
the computer revolution, Internet or the dot.com pandemonium. Yet what does
Euphranor love, exactly? What is information?

As with many other field-questions {consider for example “what is being?”,
“what is morally good?” or “what is knowledge?”), “what is information?” is to
be taken not as a request for a dictionary definition, but as a means to demarcate
a wide area of research. The latter has recently been defined as the philosophy of
information (Floridi [2002; 2003b]). The task of this chapter is to review some
interesting research trends in the philosophy of information (henceforth also PI).
This will be achieved in three steps. We shall first look at a definition of PI. On this
basis, we shall then consider a series of open problems in PI on which philosophers
are currently working.? The conclusion will then highlight the innovative character
of this new area of research.

2 DEFINING THE PHILOSOPHY OF INFORMATION

The philosophy of information may be defined as the philosophical field concerned
with

a) the critical investigation of the conceptual nature and basic principles of
information, including its dynamics, utilisation and sciences, and

b) the elaboration and application of information-theoretic and computational
methodologies to philosophical problems.3

1 Berkeley (1732}, Dialogue 1, Section 5, Paragraph 6/10.

2For a longer and more detailed discussion see Floridi [2004b).

3The definition is first introduced in Floridi [2002]. The nature and scope of PI are further
discussed in Floridi [2003b] and Floridi et al. [2005]. Floridi [2003c] provides an undergraduate
level introduction to PI.
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The first half of the definition concerns the philosophy of information as a new
field. PI appropriates an explicit, clear and precise interpretation of the classic,
Socratic question “ti esti...?” (“what is...?”), namely “What is the nature of
information?”. This is the clearest hallmark of a new field. PI provides critical
investigations that are not to be confused with a quantitative theory of data com-
munication (information theory). On the whole, we shall see that its task is to
develop an integrated family of theories that analyse, evaluate and explain the var-
ious principles and concepts of information, their dynamics and utilisation, with
special attention to systemic issues arising from different contexts of application
and the interconnections with other key concepts in philosophy, such as knowledge,
truth, meaning and reality.
By “dynamics of information” the definition refers to:

i)  the constitution and modelling of information environments, including their
systemic properties, forms of interaction, internal developments, applications
etc.;

il) information life cycles, i.e. the series of various stages in form and functional
activity through which information can pass, from its initial occurrence to
its final utilisation and possible disappearance;* and

ili) computation, both in the Turing-machine sense of algorithmic processing, and
in the wider sense of information processing. This is a crucial specification.
Although a very old concept, information has finally acquired the nature of
a primary phenomenon only thanks to the sciences and technologies of com-
putation and ICT (Information and Communication Technologies). Compu-
tation has therefore attracted much philosophical attention in recent years.
Nevertheless, PI privileges “information” over “computation” as the pivotal
topic of the new field because it analyses the latter as presupposing the for-
mer. PI treats “computation” as only one (although very important) of the
processes in which information can be involved.

From an environmental perspective, PI is critical and normative about what
may count as information, and how information should be adequately created,
processed, managed and used. Methodological and theoretical choices in ICS (In-
formation and Computer Sciences) are also profoundly influenced by the kind of
PI a researcher adopts more or less consciously. It is therefore essential to stress
that PI critically evaluates, shapes and sharpens the conceptual, methodological
and theoretical basis of ICS, in short that it also provides a philosophy of ICS,
as this has been plain since early work in the area of philosophy of Al [Colburn,
2000].

4A typical life cycle includes the following phases: occurring (discovering, designing, au-
thoring, etc.), processing and managing (collecting, validating, modifying, organising, indexing,
classifying, filtering, updating, sorting, storing, networking, distributing, accessing, retrieving,
transmitting etc.) and using (monitoring, modelling, analysing, explaining, planning, forecasting,
decision-making, instructing, educating, learning, etc.).
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It is worth stressing here that an excessive concern with contemporary issues
may lead one to miss the important fact that it is perfectly legitimate to speak
of a philosophy of information even in authors who lived before the information
revolution, and hence that it will be extremely fruitful to develop a historical ap-
proach and trace PI’s diachronic evolution, as long as the technical and conceptual
frameworks of ICS are not anachronistically applied, but are used to provide the
conceptual method and privileged perspective to evaluate in full reflections that
were developed on the nature, dynamics and utilisation of information before the
digital revolution. This is significantly comparable with the development under-
gone by other philosophical fields like the philosophy of language, the philosophy
of biology, or the philosophy of mathematics.®

The second half of the definition indicates that PI is not only a new field, but
provides an innovative methodology as well. Research into the conceptual nature
of information, its dynamics and utilisation is carried on from the vantage point
represented by the methodologies and theories offered by ICS and ICT [Grim et
al., 1998] and [Greco et al, 2005]. This perspective affects other philosophical
topics as well. Information-theoretic and computational methods, concepts, tools
and techniques have already been developed and applied in many philosophical
areas,

e to extend our understanding of the cognitive and linguistic abilities of hu-
mans and animals and the possibility of artificial forms of intelligence (e.g.
in the philosophy of Al; in information-theoretic semantics; in information-
theoretic epistemology and in dynamic semantics);

e to analyse inferential and computational processes {e.g. in the philosophy of
computing; in the philosophy of computer science; in information-flow logic;
in situation logic; in dynamic logic and in various modal logics);

e to explain the organizational principles of life and agency (e.g. in the phi-
losophy of artificial life; in cybernetics and in the philosophy of automata;
in decision and game theory);

o to devise new approaches to modelling physical and conceptual systems (e.g.
in formal ontology; in the theory of information systems; in the philosophy
of virtual reality);

¢ to formulate the methodology of scientific knowledge (e.g. in model-based
philosophy of science; in computational methodologies in philosophy of sci-
ence);

¢ to investigate ethical problems (in computer and information ethics and in
artificial ethics), aesthetic issues (in digital multimedia/hypermedia theory,

5See [Adams, 2003] for a reconstruction of the informational turn in philosophy and [Young,
2004] for an analysis of Wittgenstein’s philosophy of information.
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in hypertext theory and in literary criticism) and psychological, anthropolog-
ical and social phenomena characterising the information society and human
behaviour in digital environments(cyberphilosophy).

Indeed, the previous examples and the various chapters in this volume show that
PI, as a new field, provides a unified and cohesive, theoretical framework that
allows further specialisation.

3 OPEN PROBLEMS IN THE PHILOSOPHY OF INFORMATION

PI possesses one of the most powerful conceptual vocabularies ever devised in
philosophy. This is because we can rely on informational concepts whenever a
complete understanding of some series of events is unavailable or unnecessary for
providing an explanation. In philosophy, this means that virtually any issue can
be rephrased in informational terms. This semantic power is a great advantage
of PI understood as a methodology (see the second half of the definition). It
shows that we are dealing with an influential paradigm, describable in terms of an
informational philosophy. But it may also be a problem, because a metaphorically
pan-informational approach can lead to a dangerous equivocation, namely thinking
that since any x can be described in (more or less metaphorically) informational
terms, then the nature of any z is genuinely informational. And the equivocation
obscures PI’s specificity as a philosophical field with its own subject. PI runs the
risk of becoming synonymous with philosophy. The best way of avoiding this loss
of identity is to concentrate on the first half of the definition. PI as a philosophical
discipline is defined by what a problem is (or can be reduced to be) about, not by
how the latter is formulated. Although many philosophical issues seem to benefit
greatly from an informational analysis, in PI one presupposes that a problem or an
explanation can be legitimately and genuinely reduced to an informational problem
or explanation. So the criterion to test the soundness of the informational analysis
of z is not to check whether = can be formulated in informational terms but to
ask what would be like for x not to have an informational nature at all. With this
criterion in mind, we shall now review some of the most interesting problems in
PL.

For reasons of space, only some research trends and issues could be included and
even those selected are only briefly outlined and not represented with adequate
depth, sophistication and significance. This is not only because of space, but also
because the interested reader will find a wealth of further material in the other
chapters of this Handbook. The issues included have been privileged because they
represent macroproblems, that is, they are the hardest to tackle but also the ones
that have the greatest influence on clusters of microproblems to which they can be
related as theorems to lemmas. Some microproblems are mentioned whenever they
seem interesting enough, but especially in this case the list is far from exhaustive.
Some problems are new, others are developments of old problems, and in some
cases philosophers have already begun to address them, but the review does not
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concern old trends and problems that have already received their due philosophical
attention. There is also no attempt at keeping a uniform level of scope. Some
problems are very general, others more specific. All of them have been chosen
because they well indicate how vital and useful the new paradigm is in a variety
of philosophical areas. Finally, whenever possible I have indicated which chapters
in the Handbook are relevant to the problem under discussion.

4 THE NATURE OF INFORMATION

This is the hardest and most central question in PI. It has received many answers
in different fields but, unsurprisingly, several surveys do not even converge on a
single, unified definition of information (see for example [Braman, 1989; Losee,
1997; Machlup and Mansfield, 1983; Debons and Cameron, 1975; Larson and
Debons, 1983]). Information is notoriously a polymorphic phenomenon and a
polysemantic concept so, as an explicandum, it can be associated with several
explanations, depending on the level of abstraction adopted and the cluster of
requirements and desiderata orientating a theory. Claude E. Shannon, for one,
was very cautious: “The word ‘information’ has been given different meanings
by various writers in the general field of information theory. It is likely that at
least a number of these will prove sufficiently useful in certain applications to
deserve further study and permanent recognition. It is hardly to be expected that a
single concept of information would satisfactorily account for the numerous possible
applications of this general field. (italics added)” [Shannon, 1993, p. 180]. Thus,
following Shannon, Weaver [1949] supported a tripartite analysis of information in
terms of (1) technical problems concerning the quantification of information and
dealt with by Shannon’s theory; (2) semantic problems relating to meaning and
truth; and (3) what he called “influential” problems concerning the impact and
effectiveness of information on human behaviour, which he thought had to play
an equally important role. And these are only two early examples of the problems
raised by any analysis of information.

Indeed, the plethora of different analyses can be confusing. Complaints about
misunderstandings and misuses of the very idea of information are frequently ex-
pressed, even if to no apparent avail. Sayre [1976], for example, already criticised
the “laxity in use of the term ‘information”” in [Armstrong, 1968] (see now [Arm-
strong, 1993]) and in Dennett [1969] (see now [Dennett, 1986]), despite appreciat-
ing several other aspects of their work. More recently, Harms [1998] pointed out
similar confusions in Chalmers [1996], who “seems to think that the information
theoretic notion of information [see section 3, my addition] is a matter of what
possible states there are, and how they are related or structured |[...] rather than
of how probabilities are distributed among them” (p. 480).

Information remains an elusive concept. This is a scandal not by itself, but
because so much basic theoretical work, both in science and in philosophy, relies on
a clear grasping of the nature of information and of its cognate concepts. We know
that information ought to be quantifiable (at least in terms of partial ordering),
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additive, storable and transmittable. But apart from this, we still do not seem to
have a much clearer idea about its specific nature.

Information is often approached from three perspectives: information as real-
ity (e.g. as patterns of physical signals, which are neither true nor false), also
known as ecological information; information about reality (semantic information,
which is alethically qualifiable and an ingredient in the constitution of knowledge);
and information for reality (instruction, like genetic information, algorithms and
recipes). Many extensionalist approaches to the definition of information as/about
reality provide different starting points. The following list contains only some of
the most philosophically interesting or influential, and I shall say a bit more about
each of them presently. They are not to be taken as necessarily alternative, let
alone incompatible:

1. the communication theory approach (mathematical theory of codification
and communication of data/signals (Shannon and Weaver [1949 rep. 1998];
see also the chapter by Topsge and Harremoés) defines information in terms
of probability space distribution;

2. the algorithmic approach (also known as Kolmogorov complexity, [Li and
Vitanyi, 1997); see also the chapters by Grunwald and Vitdnyi and by Adri-
aans) defines the information content of X as the size in bits of the smallest
computer program for calculating X [Chaitin, 2003];

3. the probabilistic approach [Bar-Hillel and Carnap, 1953; Bar-Hillel, 1964;
Dretske, 1981]; see also the chapter by Dretske), is directly based on (1)
above and defines semantic information in terms of probability space and
the inverse relation between information in p and probability of p;

4. the modal approach defines information in terms of modal space and in/
consistency (the information conveyed by p is the set of possible worlds
excluded by p);

5. the systemic approach (situation logic, [Barwise and Perry, 1983; Israel and
Perry, 1990; Devlin, 1991]) defines information in terms of states space and
consistency (information tracks possible transitions in the states space of a
system);

6. the inferential approach defines information in terms of inferences space {in-
formation depends on valid inference relative to a person’s theory or epis-
temic state);

7. the semantic approach [Floridi, 2004c; 2005b] defines information in terms
of data space (semantic information is well-formed, meaningful and truthful
data).

Each extentionalist approach can be given an intentionalist reading by interpreting
the relevant space as a doxastic (i.e. belief-related) space, in which information is
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seen as a reduction in the degree of uncertainty or level of surprise given a state of
knowledge of the informee (see the chapters by Baltag, Moss and van Ditmarsch
and by Rott).

Communication theory in (1) approaches information as a physical phenomenon,
syntactically. It is not interested in the usefulness, relevance, meaning, interpre-
tation or reference of data, but in the level of detail and frequency in the uninter-
preted data (signals or messages). It provides a successful mathematical theory
because its central question is whether and how much data, not what information
is conveyed.

The algorithmic approach in (2) is equally quantitative and solidly based on
theory of computation. It interprets information and its quantities in terms of the
computational resources needed to specify it.

The remaining approaches all address the question “what is semantic informa-
tion?”. They seek to give an account of information as semantic content, usually
adopting a propositional orientation (they analyse examples like “The earth has
only one moon”). Do (1) or (2) provide the necessary conditions for any theory of
semantic information in (3)-(7)? Are all the remaining semantic approaches mu-
tually compatible? Is there a logical hierarchy? Do any of the previous approaches
provide a clarification of the notion of data as well? Most of the problems in PI
acquire a different meaning depending on how we answer this cluster of questions.
Indeed, positions might be more compatible than they initially appear owing to
different interpretations of the concept(s) of information involved.

Once the concept of information is clarified, each of the previous approaches
needs to address the following question.

5 THE DYNAMICS OF INFORMATION

The question does not concern the nature of management processes (information
seeking, data acquisition and mining, information harvesting and gathering, stor-
age, retrieval, editing, formatting, aggregation, extrapolation, distribution, verifi-
cation, quality control, evaluation, etc.) but, rather, information processes them-
selves, whatever goes on between the input and the output phase. Communication
theory, as the mathematical theory of data transmission, provides the necessary
conditions for any physical communication of information, but is otherwise of only
marginal help. The information flow — understood as the carriage and transmis-
sion of information by some data about a referent, made possible by regularities in
a distributed system — has been at the centre of logical studies for some time [Bar-
wise and Seligman, 1997; van Benthem, 2003], but still needs to be fully explored.
How is it possible for something to carry information about something else? The
problem here is not yet represented by the “aboutness” relation, which needs to
be discussed in terms of meaning, reference and truth. The problem here concerns
the nature of data as vehicles of information. In this version, the problem plays
a central role in semiotics, hermeneutics and situation logic. It is closely related
to the problem of the naturalisation of information. Various other logics, from
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classic first order logic to epistemic, erotetic and dynamic logic, provide useful
approaches with which to analyse the logic of information, but there is still much
work to be done [van Benthem and van Rooy, 2003; Allo, forthcoming; Allo and
Floridi, forthcoming; Floridi, forthcoming).

Information processing, in the general sense of information states transitions,
includes at the moment effective computation (computationalism, [Newell, 1980;
Pylyshyn, 1984; Fodor, 1975; 1987; Dietrick, 1990}), distributed processing (con-
nectionism, [Smolensky, 1988; Churchland and Sejnowski, 1992]), and dynamical-
system processing (dynamism, [van Gelder, 1995; van Gelder and Port, 1995; Elia-
smith, 1996]). The relations between the current paradigms remain to be clarified
(Minsky [1990], for example, argues in favour of a combination of computational-
ism and connectionism in Al, as does Harnad [1990] in cognitive science), as do
the specific advantages and disadvantages of each, and the question as to whether
they provide complete coverage of all possible internalist information processing
methods.

The two previous questions in §§ 4 and 5 and are closely related to a third, more
general problem.

6 THE CHALLENGE OF A UNIFIED THEORY OF INFORMATION

The reductionist approach holds that we can extract what is essential to under-
standing the concept of information and its dynamics from the wide variety of
models, theories and explanations proposed. The non-reductionist argues that we
are probably facing a network of logically interdependent but mutually irreducible
concepts. The plausibility of each approach needs to be investigated in detail.
Both approaches, as well as any other solution in between, are confronted by the
difficulty of clarifying how the various meanings and phenomena of information are
related, and whether some concepts of information are more central or fundamen-
tal than others and should be privileged. Waving a Wittgensteinian suggestion of
family resemblance means only acknowledging the problem, not solving it. The
reader interested in a positive answer the question may wish to read the essays
collected in Hofkirchner [1998]. A defence of a more skeptical view, following
Shannon, can be found in [Floridi, 2003a].

7 THE DATA GROUNDING PROBLEM: HOW DATA ACQUIRE THEIR
MEANING

We have seen that most analyses of the nature of information tend to concentrate
on its semantic features, quite naturally. So it is useful to carry on our review
of problem areas in PI by addressing next the cluster of issues arising in infor-
mational semantics. Their discussion is bound to be deeply influential in several
areas of philosophical research. But first, a warning. It is hard to formulate prob-
lems clearly and in some detail in a completely theory-neutral way. So in what
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follows, the semantic frame will be adopted (see above § 4, (7)), namely the view
that semantic information can be satisfactorily analysed in terms of well-formed,
meaningful and veridical data. This semantic approach is simple and powerful
enough for the task at hand. If the problems selected are sufficiently robust, it
is reasonable to expect that their general nature and significance are not relative
to the theoretical vocabulary in which they are cast but will be exportable across
conceptual platforms.

We have already encountered the issue of the nature of data. Suppose data
are intuitively described as uninterpreted differences (symbols or signals). How do
they become meaningful? This is the data grounding problem.

Searle [1990] refers to a specific version of the data grounding problem as the
problem of intrinsic meaning or “intentionality”. Harnad [1990] defines it as the
symbols grounding problem and unpacks it thus: “How can the semantic inter-
pretation of a formal symbol system be made intrinsic to the system, rather than
just parasitic on the meanings in our heads? How can the meanings of the mean-
ingless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes,
be grounded in anything but other meaningless symbols?” (p. 335).

Arguably, the frame problem (how a situated agent can represent, and interact
with, a changing world satisfactorily) and its sub-problems are a consequence of
the data grounding problem (Harnad [1993], Taddeo and Floridi [2005]). In more
metaphysical terms, this is the problem of the semanticisation of being and it is
further connected with the problem of whether information can be naturalised.

8 THE SEMANTIC PROBLEM: HOW MEANINGFUL DATA ACQUIRE
THEIR TRUTH VALUE

Once grounded, meaningful data can acquire different truth values, the question
is how. The question then gains new dimensions when asked within epistemology
and the philosophy of science. It also interacts with the way in which we approach
both a theory of truth and a theory of meaning, especially a truth-functional one
(see the chapter by Kamp and Stokhof). Are truth and meaning understandable
on the basis of an informational approach, or is it information that needs to be
analysed in terms of non-informational theories of meaning and truth? To call
attention to this important set of issues it is worth asking two more place-holder
questions:

1. can information explain truth?

In this, as in the following question, we are not asking whether a specific
theory could be couched, more or less metaphorically, in some informational
vocabulary. This would be a pointless exercise. What is in question is
not even the mere possibility of an informational approach. Rather, we are
asking



122 Luciano Floridi

(a) could an informational theory explain truth more satisfactorily than
other current approaches? And

{(b) should (1a) be answered in the negative, could an informational ap-
proach at least help to clarify the theoretical constraints to be satisfied
by other approaches?

The second major question mentioned above is:

2. can information explain meaning?

Several informational approaches to semantics have been investigated in episte-
mology ([Dretske, 1981; 1988]), situation semantics ([Seligman and Moss, 1997)),
discourse representation theory ([Kamp, 1984]) and dynamic semantics ([Muskens
et al., 1997]). Is it possible to analyse meaning not truth-functionally but as the
potential to change the informational context? Can semantic phenomena be ex-
plained as aspects of the empirical world? Since the problem is whether meaning
can at least partly be grounded in an objective, mind- and language-independent
notion of information (naturalisation of intentionality), it is strictly connected with
the problem of the naturalisation of information.

9 INFORMATION PROCESSING AND THE STUDY OF COGNITION

Information and its dynamics are central to the foundations of Al and of cogni-
tive science (see the chapters by McCarthy and Boden). Both discipline study
cognitive agents as informational systems that receive, store, retrieve, transform,
generate and transmit information. This is the information processing view. Be-
fore the development of connectionist and dynamic-system models of information
processing and the IT revolution, it was also known as the computational view.
The latter expression was acceptable when a Turing machine [Turing, 1936] and
the machine involved in the Turing test [Turing, 1950] were inevitably the same.
It has recently become misleading, however, because computation, when used as a
technical term (effective computation), refers now to the specific class of algorith-
mic and symbolic processes that can be performed by a Turing machine, that is
recursive functions [Turing, 1936; Minsky, 1967; Floridi, 1999; Boolos et al., 2002].
Not all information processing is computational in this precise sense, and in the
literature one can now find approaches that use the expression more loosely.

The information/computational processing view of cognition, intelligence and
mind provides the oldest and best-known cluster of significant problems in PI.®
Some of their formulations, however, have long been regarded as uninteresting.

$In 1964, introducing his infiuential anthology, Anderson wrote that the field of philosophy
of AT had already produced more than a thousand articles [Anderson, 1964, p. 1}. No wonder
that (sometimes overlapping) editorial projects have flourished. Among the available titles, the
reader may wish to keep in mind [Ringle, 1979] and [Boden, 1990], which provide two further
good collections of essays, and [Haugeland, 1981), which was expressly meant to be a sequel to
[Anderson, 1964] and was further revised in [Haugeland, 1997|.
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Turing [1950] considered “can machines think?” a meaningless way of posing the
otherwise interesting problem of the functional differences between Al and NI
(natural intelligence). Searle [1990] has equally dismissed “is the brain a digital
computer?” as ill-defined. The same holds true of the unqualified question “are
naturally intelligent systems information processing systems?”. Such questions
are vacuous. Informational concepts are so powerful that, given the right level of
abstraction (LoA; [Floridi and Sanders, 2004; Floridi and Sanders, forthcoming)),
anything can be presented as an information system, from a building to a volcano,
from a forest to a dinner, from a brain to a company, and any process can be
simulated informationally — heating, flying and knitting. So pancomputationalist
views have the hard task of providing a credible answer to the question: what
would it mean for a physical system not to be an informational system (that is,
a computational system, if computation is used to mean information processing,
see [Chalmers, 1996] and [Chalmers, online]. The task is hard because pancom-
putationalism does not seem vulnerable to a refutation, in the form of a realistic
token counterexample in a world nomically identical to the one to which pancom-
putationalism is applied.” A good way of posing the problem is not: “is ‘x is y’
adequate?”, but rather “if ‘z is ¥’ at some specified Level of Abstraction z, is z
adequate?”.

10 SCIENCE AND INFORMATION MODELLING

In many contexts (probability or modal states and inferential spaces), we often
adopt a conditional, laboratory view. We analyse what happens in “as being (of
type, or in state) F is correlated to b being (of type, or in state) G, thus car-
rying for the observer the information that b is G”(Barwise and Seligman [1997)
provide a similar analysis based on Dretske [1981]) by assuming that F(a) and
G(b). In other words, we assume a given model. The question asked here is:
how do we build the original model? Many approaches seem to be ontologically
over-committed. Instead of assuming a world of empirical affordances and con-
straints to be designed, they assume a world already well-modelled, ready to be
discovered. The semantic approach to scientific theories [Suppes, 1960; Suppes,
1962; van Fraassen, 1980; Giere, 1988; Suppe, 1989], on the other hand, argues

7Chalmers [online] seems to believe that pancomputationalism is empirically falsifiable, but
what he offers is not (a) a specification of what would count as an instance of z that would show
how 2z is not to be qualified computationally (or information-theoretically, in the language of this
paper) given the nomic characterisation N of the universe, but rather (b) just a re-wording of
the idea that pancomputationalism might be false, i.e. a negation of the nomic characterisation
N of the universe in question: “To be sure, there are some ways that empirical science might
prove it to be false: if it turns out that the fundamental laws of physics are noncomputable and
if this noncomputability reflects itself in cognitive functioning, for instance, or if it turns out that
our cognitive capacities depend essentially on infinite precision in certain analog quantities, or
indeed if it turns out that cognition is mediated by some non-physical substance whose workings
are not computable.” To put it simply, we would like to be told something along the lines that
a white raven would falsify the statement that all ravens are black, but instead we are told that
the absence of blackness or of ravens altogether would, which it does not.
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that “scientific reasoning is to a large extent model-based reasoning. It is models
almost all the way up and models almost all the way down.” [Giere, 1999, p. 56].

Theories do not make contact with phenomena directly, but rather higher mod-
els are brought into contact with other, lower models. These are themselves the-
oretical conceptualisations of empirical systems, which constitute an object being
modelled as an object of scientific research. Giere [1988] takes most scientific
models of interest to be non-linguistic abstract objects. Models, however, are
the medium, not the message. Is information the (possibly non-linguistic) con-
tent of these models? How are informational models (semantically, cognitively
and instrumentally) related to the conceptualisations that constitute their em-
pirical references? What is their semiotic status, e.g. structurally homomorphic
or isomorphic representations or data-driven and data-constrained informational
constructs? What levels of abstraction are involved? Is science a social (multi-
agents), information-designing activity? Is it possible to import, in (the philosophy
of) science, modelling methodologies devised in information system theory? Can
an informational view help to bridge the gap between science and cognition? An-
swers to these questions are closely connected with the discussion of the problem
of an informational theory of truth see above. The reader interested in some spe-
cific applications will find them in the chapters by Devlin and Rosenberg, and by
Collier.

The possibility of a more or less informationally constructionist philosophy of
science leads to our next cluster of problems, concerning the relation between
information and the natural world.

11 THE ONTOLOGICAL STATUS OF INFORMATION

Barwise and Seligman [1997] have remarked that “If the world were a completely
chaotic, unpredictable affair, there would be no information to process. Still; the
place of information in the natural world of biological and physical systems is far
from clear.” (p. xi). This lack of clarity prompts a whole family of probleimns.

It is often argued that there is no information without (data) representation.
Following Landauer and Bennett [1985]; Landauer [1987; 1991; 1996}, this principle
is usually interpreted materialistically, as advocating the impossibility of physi-
cally disembodied information, through the equation “representation = physical
implementation”. The view that there is no information without physical im-
plementation is an inevitable assumption, when working on the physics of com-
putation, since computer science must necessarily take into account the physical
properties and limits of the carriers of information. It is also the ontological
assumption behind the Physical Symbol System Hypothesis in Al and cognitive
science [Newell and Simon, 1976]. However, the fact that information requires a
representation does not entail that the latter ought to be physically implemented.
Arguably, environments in which there are only noetic entities, properties and pro-
cesses (e.g. Berkeley, Spinoza), or in which the material or extended universe has
a noetic or non-extended matrix as its ontological foundation (e.g. Pythagoras,
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Plato, Leibniz, Hegel), seem perfectly capable of upholding the representationalist
principle without also embracing a materialist interpretation (see [Floridi, 2004a]
for a defence of this view). The relata giving rise to information could be monads,
for example. So the problem here becomes: is the informational an independent
ontological category, different from the physical/material and (assuming one could
draw this Cartesian distinction) the mental? Wiener, for example, thought that
“Information is information, not matter or energy. No materialism which does not
admit this can survive at the present day” [Wiener, 1948, p. 132].

If the informational is not an independent ontological category, to which cate-
gory is it reducible? If it is an independent ontological category, how is it related
to the physical/material and the mental? Answers to these questions determine
the orientation a theory takes with respect to the following problem.

12 NATURALISED INFORMATION

The problem is connected with the semanticisation of data. It seems hard to
deny that information is a natural phenomenon, so this is not what one should
be asking here. Even elementary forms of life such as sunflowers survive because
they are capable of some chemical data processing. The problem here is whether
there is information in the world independently of forms of life capable to extract
it and, if so, what kind of information is in question (an informational version of
the teleological argument for the existence of God argues both that information
is a natural phenomenon and that the occurrence of environmental information
requires an intelligent source). If the world is sufficiently information-rich, perhaps
an agent may interact successfully with it by using “environmental information”
directly, without being forced to go through a representation stage in which the
world is first analysed informationally. “Environmental information” still presup-
poses (or perhaps is identical with) some physical support but it does not require
any higher-level cognitive representation or computational processing to be im-
mediately usable. This is argued, for example, by researchers in Al working on
animats (artificial animals, either computer simulated or robotic). Animats are
simple reactive agents, stimulus-driven. They are capable of elementary, “intelli-
gent” behaviour, despite the fact that their design excludes the possibility of in-
ternal representations of the environment and any effective computation (Mandik
[2002] for an overview, the case for non-representational intelligence is famously
made by Brooks [1991]). So, are cognitive processes continuous with processes in
the environment? Is semantic content (at least partly) external (Putnam)? Does
“natural” or “environmental” information pivot on natural signs (Peirce) or nomic
regularities? Consider the typical example provided by the concentric rings visible
in the wood of a cut tree trunk, which may be used to estimate the age of the
plant. The externalist /extensionalist, who favours a positive answer (e.g. Dretske
and Barwise), is faced by the difficulty of explaining what kind of information and
how much of it saturates the world, what kind of access to, or interaction with
“information in the world” an informational agent can enjoy, and how information
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dynamics is possible. The internalist/intentionalist (e.g. Fodor and Searle), who
privileges a negative answer, needs to explain in what specific sense information
depends on intelligence and whether this leads to an anti-realist view.

The location of information is related to the question whether there can be
information without an informee, or whether information, in at least some crucial
sense of the word, is essentially parasitic on the meanings in the mind of the
informee, and the most it can achieve, in terms of ontological independence, is
systematic interpretability. Before the discovery of the Rosetta Stone, was it
legitimate to regard Egyptian hieroglyphics as information, even if their semantics
was beyond the comprehension of any interpreter? Admitting that computers
perform some minimal level of proto-semantic activity works in favour of a “realist”
position about “information in the world”.

Before moving to the next problem, it remains to be clarified whether the previ-
ous two ways of locating information might not be restrictive. Could information
be neither here (intelligence) nor there (natural world)} but on the threshold, as
it were, as a special relation or interface between the world and its intelligent
inhabitants (constructionism)? Or could it even be elsewhere, in a third world,
intellectually accessible by intelligent beings but not ontologically dependent on
them (Platonism)? The reader interested in the physics of information is adviced
to read the chapter by Bais and Farmer.

13 THE IT FROM BIT HYPOTHESIS

Can nature be informationalised? The neologism “informationalised” is ugly but
useful to point out that this is the converse of the previous problem. Here too,
it is important to clarify what the problem is not. We are not asking whether
the metaphorical interpretation of the universe as a computer is more useful than
misleading. We are not even asking whether an informational description of the
universe, as we know it, is possible, at least partly and piecemeal. This is a chal-
lenging task, but formal ontologies already provide a promising answer [Smith,
2004]. We are asking whether the universe in itself could essentially be made of
information, with natural processes, including causation, as special cases of infor-
mation dynamics (e.g. information flow and algorithmic, distributed computation
and forms of emergent computation). Depending on how one approaches the con-
cept of information, it might be necessary to refine the problem in terms of digital
data or other informational notions.

Answers to this problem deeply affect our understanding of the distinction be-
tween virtual and material reality, of the meaning of artificial life in the ALife
sense [Bedau, 2004}, and of the relation between the philosophy of information
and the foundations of physics: if the universe is made of information, is quantum
physics a theory of physical information? Moreover, does this explain some of
its paradoxes? If nature can be informationalised, does this help to explain how
life emerges from matter, and hence how intelligence emerges from life? “Can we
build a gradualist bridge from simple amoeba-like automata to highly purposive
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intentional systems, with identifiable goals, beliefs, etc.?” [Dennett, 1998, p. 262].

14 CONCLUSION

Our brief survey ends here. We have had a quick look to many questions of a
wide variety of nature and scope. This should not be disheartening. On the
contrary, we saw at the beginning of this chapter that Berkeley-Euphranor loved
“information upon all subjects”. It has required several scientific, technological
and social transformations, but philosophers have finally begun to address the new
intellectual challenges arising from the world of information and the information
society. Michael Dummett recently acknowledged that “Evans had the idea that
there is a much cruder and more fundamental concept than that of knowledge
on which philosophers have concentrated so much, namely the concept of infor-
mation. Information is conveyed by perception, and retained by memory, though
also transmitted by means of language. One needs to concentrate on that concept
before one approaches that of knowledge in the proper sense. Information is ac-
quired, for example, without one’s necessarily having a grasp of the proposition
which embodies it; the flow of information operates at a much more basic level
than the acquisition and transmission of knowledge. I think that this conception
deserves to be explored. It’s not one that ever occurred to me before I read Evans,
but it is probably fruitful. That also distinguishes this work very sharply from
traditional epistemology” [Dummett, 1993, p. 186]. Dummett is arguably cor-
rect. PI evolves out of the analytic movement, but does not seem to belong to
it. It attempts to expand the frontier of philosophical research, not by putting
together pre-existing topics, and thus reordering the philosophical scenario, but
by enclosing new areas of philosophical inquiry?which have been struggling to
be recognised and may not yet found room in the traditional philosophical syl-
labus?and by providing innovative methodologies to address traditional problems
from new perspectives. Clearly, PI promises to be one of the most exciting and
fruitful areas of philosophical research of our time. As this volume proves, it is
already affecting the overall way in which new and old philosophical problems
are being addressed, bringing about a substantial innovation of the philosophical
system. This represents the information turn in philosophy.
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LEARNING AND THE COOPERATIVE
COMPUTATIONAL UNIVERSE

Pieter Adriaans

1 INTRODUCTION

In the summer of 1956, a number of scientists gathered at the Dartmouth College
in Hanover, New Hampshire. Their goal was to study human intelligence with the
help of computers. Their central hypothesis was: “that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it.” During that conference, where amongst
others John McCarthy, Claude Shannon and Marvin Minsky were present, the
new discipline of Artificial Intelligence was born. It is striking that ‘learning’ was
considered to be an important aspect of human intelligence from the start. A
better understanding of the phenomenon of learning was high on the agenda of
the emerging young science.

Now, fifty years later, the study of learning is one of the success stories of
Al. There is a multitude of learning techniques for the computer. Data mining
techniques are being used for marketing, stock management, production optimiza-
tion and fraud detection in the commercial domain. Biologically inspired learning
models such as neural networks and genetic algorithms are being used to simulate
human cognition and evolution. In disciplines like computer vision and computa-
tional linguistics, machine learning is in the center of interest {Kearns and Vazirani,
1994; Mitchell, 1997; Adriaans and Zantinge, 1997; Cornuéjols and Miclet, 2003].

But, researchers do not have much reason to sit back and rest, because there
is still a whole list of questions that are begging for answers. One of the biggest
embarrassments is that we still do not know what learning is exactly. The toolbox
of a machine learner looks like a haphazardly collected bunch of screwdrivers,
hammers en chisels of dubious origin. For some jobs they work, but we do not
understand why, for others they do not work and we also do not understand why.
One thing is certain. If we understand learning as data compression then there
will never be a general theory that explains what learning is exactly.

1.1 Philosophy of information

It is clear that with the adventure of artificial intelligence we have hit upon a
problem domain that has much wider repercussions than the creation of intelligent
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computers. Recently a new discipline has emerged: the philosophy of information
[Floridi, 2004].! This discipline reformulates central questions of philosophy from
the perspective of modern insights from computer science. Developments like
these, urge us to formulate the question of the relation between philosophy on one
side and logic, mathematics, theory of information and computation on the other.

First of all philosophy, in my view, is not science. It takes a meta-position
and is always at most a reflection on science and scientific results. It is not the
primary task of the philosopher to formulate and prove theorems. It is his task to
reflect on the consequences of theorems and theories. On the other hand philos-
ophy can not claim to have any form of privileged access to reality. There is no
fixed Archimedean position from which the philosopher can judge the results of
scientific endeavors.? Philosophy and science therefore are doomed to live perma-
nently in each other’s shadow without any possibility of a final reconciliation. Any
scientific result can be made the object of philosophical analysis, but ...only, or
predominantly, in terms of the concepts that the sciences have constructed them-
selves. Philosophy therefore is at its best when it is in dialogue with foundational
programs of science and the humanities. The more it removes itself from these
central issues, the more substance it loses and the more it deteriorates into a (pos-
sibly brilliant) literary exercise at best. In this sense, philosophical reflection may
be seen as an inherent and necessary aspect of scientific heuristics. It provides us
with a rich historical context of 2500 years of reflection on foundational programs
and invites us to investigate the more extreme consequences of our theories and
models.

The study of theory of knowledge, theory of information and computation,
methodology of science, theory of induction and meta-mathematics share a com-
mon history in which related questions have been analyzed in different guises. The
work of Solomonoff and Kolmogorov provides direct answers to questions about
the nature of knowledge and induction proposed by Carnap and the Wiener Kreis
and much earlier Kant and Hume. In this light, one has to interpret the reflections
on theory of information and learning that I present below.

1.2 Philosophy of learning

First, T show that the question of the essence of learning is embedded in funda-
mental epistemological questions. The old philosophical problem of the essence of
knowledge is fundamentally associated with learning. The notion of efficiency of
learning plays an essential role in this context. Our models of learning show us
that tasks, like learning a language, that human beings perform without too much
difficulty, are from a formal point of view extremely complex and next to impossi-
ble. This leaves us with the riddle of human efficiency. I show how the contours of

1See the chapter by Floridi in this book

2Specifically: no privileged direct access to ones own consciousness, no Husserlian epoche, no
historical laws of materialism, no recourse to immediately given sense data, no special rapport
with Being itself, etc.
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an analysis of this mysterious efficiency of human learning takes shape in the light
of recent insights from complexity theory and thermodynamics. Central questions
in this respect are:

QUESTION 1. What is learning?
QUESTION 2. What are data sets from which we can learn?
QUESTION 3. What kind of systems produce those data sets?

The answer to the first question is: learning is algorithmic compression of data
sets. Not all forms of learning are caught by this definition, but a broad class
of philosophically relevant learning phenomena fall under this description.? The
answer to the second question is: data sets that can be compressed by a computer
algorithm without too much effort.? An answer to the third question is - quite nat-
urally - systems with relatively low entropy: i.e. self-organizing systems, systems
that are not in a state of thermal equilibrium and systems that redirect energy
from their environment in order to keep their internal entropy lower than that of
the environment. This kind of self-organization is typical for life and for compu-
tational processes. The picture that emerges is that those systems in nature that
produce data sets from which something can be learned are by necessity systems
with a relatively low entropy. The data sets themselves consequently have low
entropy and are easy to decipher. This seems to be the solution to the problem of
the efficiency of our learning algorithms. A deep analysis of the idea that the uni-
verse can be interpreted as a computational process shows that nature necessarily
acts as a cooperative teacher. This is a philosophical insight that transcends the
local context of Artificial Intelligence. At the same time these insights help us to
develop new algorithms that solve problems from every day life. Learning in the
form of data compression helps us to classify viruses, analyze music [Cilibrasi and
Vitanyi, 2005] and to learn languages [Adriaans, 2001].

1.3 A short historical digression

The notion that knowing something implied knowing its ‘form’ goes back to Plato’s
theory of ideas as forms. Aristotle’s more empirical doctrine of the four causes
(causalis, finalis, formalis and efficiens) also distinguishes the notion of form as
a crucial element of knowledge. The original technical notion of the Latin word
‘in-formare’ (giving form to something, impressing ideas/forms in the mind in the

3Neural networks, genetic algorithms, decision tree induction, clustering, nearest neighbor,
support vector machines, association rules, to name a few. As a counter example: simple rote
learning of a finite set of facts does not necessarily involve compression of data.

4Technically: data sets that can be compressed by means of constructive resource bounded
compression. The ‘without too much effort’ restriction is added because it actually is possible
to construct highly compressible data sets that from the outside look random, e.g. encrypted
data or expansions of very special real numbers like 7 and e. There are no general algorithms
to compress these sets. It is highly unlikely that these data sets occur frequently in nature.
Anyhow, we would not notice them.
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Platonic sense) that is found in the writings of Cicero® and Augustine seems to have
played no role in the emergence of the modern concept of information. The word
‘idea’ seems the true modern heir of the classical term ‘information’ [Capurro, 1978;
Capurro and Hjgrland, 2003].

In the 15th century, the French term ‘information’ finds its way into the collo-
quial vocabulary of European languages with various subtle differences in meaning,
clustering around meanings like ‘investigation’, ‘education’, ‘the act of informing
or communicating knowledge’, ‘intelligence’ etc. After Descartes the technical
term seems to vanish from the philosophical debate. It does not play any specific
role in the work of a broad philosopher like Kant. There is no lemma on informa-
tion in Windelbands famous ‘Lehrbuch der Geschichte der Philosophie’ from 1889
[Windelband, 1921]. Even Edward’s Encyclopedia of Philosophy from 1967 does
not have a separate lemma on information [Edwards, 1967]. The same holds for
the well-known History of Logic written by Kneale and Kneale that first appeared
in 1962 [Kneale and Kneale, 1988]. In short the term ‘information’ seems to have
been absent from the philosophical dialogue for hundreds of years.

In the history of philosophy the phenomenon of learning has long been stud-
ied implicitly, because it is related to knowledge, but since circa 1700 AD the
problem of learning is placed explicitly on the philosophical agenda. A key in-
sight in the study of the history of the concept of information is formulated in
this book by Devlin and Rosenberg in their chapter on information in the social
sciences, where information is described as an abstract notion that is the natural
byproduct resulting from the advent of modern media. When human communica-
tion was transformed from a direct dialogue between individuals to an interaction
that was mediated by technology (telescopes, microscopes, books, newspapers, the
telephone, television, internet etc.) the need to create an abstract umbrella term
to denote the ‘stuff’ that was transmitted from a sender to a receiver of a mes-
sage emerged. In this respect, the emergence of the empirical sciences in the 17th
century is a central period in history of the conceptualization of information.

Descartes (1596~1650) formulated a firm mathematical framework for the de-
scription of the material world, but his dualism prevented him from understanding
the interplay between language and the growth of knowledge. For Descartes, man’s
rationality was equivalent to mastering language and was an innate quality. The
communication between the res extensa and the res cogitans remained a central
problem. Descartes is important because he is the first philosopher who formulated
a theoretical framework in which the mediation between mind and body, between
the knower and the known becomes problematic. With hindsight one could say
that in the work of Descartes the need for an abstract concept of mediation be-
tween knower and the known, i.e. a concept of information, is identified for the first

5Cicero used the word information as a translation of the Epicurean notion of ‘prolepsis’,
i.e. a representation in the mind. A notion that can be compared to the later use of the word
‘idea’ by Descartes and Locke. See ‘On the nature of the Gods”, I, 43. Also Greek terms like
‘hyp?thesis’ and ‘eidos’ were translated with the term ‘information’ by Latin authors [Capurro,
1978].
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time. Descartes’ metaphysics can not describe such a mediation. Because of this
lack, he was incapable of developing an adequate philosophical theory of language
and thus of an adequate conceptualization of the interplay between language and
knowledge.

The next philosopher to take up this challenge was Locke (1632-1704) who
developed a psychological version of Cartesian dualism in the “Essay concerning
human understanding” (1690) [Locke, 1961]. The Cartesian cogito becomes a
epistemological subject that starts as a tabula rasa and is gradually filled up with
‘ideas’ that find their origin in experience. Descartes had formulated the notion of
ideas as innate forms of thought but Locke is quite liberal in his concept of an ‘idea’:
“whatsoever is the object of understanding when a man thinks . .. whatever is meant
by phantasm, notion, species, or whatever it is which the mind can be employed
about when thinking” . (Essay, 1,i,8) This abstract notion of an idea, as a qualitative
building block of knowledge, can be interpreted as a philosophical precursor of the
modern concept of information. Ideas emerge in the mind as a result of sensory
experience, they can be isolated and combined into new knowledge. When we
receive ideas our knowledge grows.

This conceptualization of the growth of knowledge in terms of the combination
of ‘chunks’ of knowledge implied a reformulation of a number of central problems
in philosophy that would dominate the discussion for the next centuries. Central
questions are:

e Can we validate general statements about the properties of a class on the
basis of a finite number of observations of members of that class? Can we
derive the statement “All swans are white” on the basis of “All swans we
have seen so far are white”?

e Can we generalize from the past to the future?

e What part of knowledge is a priori, what part a posteriori?

In An Enguiry Concerning Human Understanding, (par. 4.1.20-27, par. 4.2.28-
33) the philosopher Hume (1711-1776) argued that there is no logical necessity
that the future will resemble the past. The insight that it is impossible to select
the best theory to explain a set of observations with absolute certainty, is known as
the induction problem since Hume [1909, 1914]. It denies science the possibility to
formulate universal laws with absolute certainty. Several philosophers have tried to
deal with this problem. It was the main motivation for the development of Kant’s
transcendental philosophy in the Kritik der reinen Vernuft. Kant’s attempt is
the last major effort to bridge the gap between empirical science and traditional
philosophy striving at the formulation of absolute truths.

The empiricist program was revived by the so-called Vienna circle in the begin-
ning of the 20th century. The ambition was to seek the foundation of science in the
analysis of elementary phenomena that could be observed empirically. Needless
to say that, with this methodology, the induction problem is a major obstacle for
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science. Popper, who occasionally attended meetings of the Vienna circle, formu-
lated a solution in terms of the asymmetry between verification and falsification
[Popper, 1952]. Although this solved part of the problem, the issue of heuristics
remained open (Context of discovery versus context of justification).

One solution to the induction problem is to view scientific knowledge as being
essentially statistical. The concept of probability is far from harmless from a
philosophical point of view [Hajek, 2002]. Carnap [1950] has argued that there
exist two very distinct forms of probability: a priori probability or “Rational
credibility” and empirical probability in the sense of “limiting relative frequency
of occurrence”. Indeed there seems to be a distinct difference between the use
of the notion of probability in observations like: “It is highly probable that an
English sentence contains more es than ¢s” and “It is highly probable that life on
earth originated from outer space”. The first is a statement about the frequency
of letters in English. It can be corroborated by a sequence of experiments. The
second statement seems different. It has prima facie nothing to do with limiting
frequency. It can not be corroborated by experiments. Even if our planet was the
only planet in the universe with life, the statement still could be true. It seems to
express a rational belief that somebody could have after carefully examining the
evidence.

Black [1967] has criticized Carnap: different modes of verification for probability
statements do not imply that there necessarily exist different notions of probabil-
ity. The fact remains that we sometimes make judgements about the probability of
individual isolated structures. This seems to involve a notion of a priori probabil-
ity. If we can assign a priori probabilities to theories and data sets and conditional
probabilities to a data set given a theory, then we can calculate the probability
of a theory given a data set. The formulation of an exact answer to these theo-
retical questions is one of the great achievements of computer science in the 20th
century. Solomonoff defined the idea of algorithmic complexity of a binary object
as the shortest program that computes this object on a universal reference Tur-
ing machine [Solomonoff, 1997].5 He showed that the algorithmic or Kolmogorov
complexity of an object is associated with an a priori probability of this object. It
allows us in theory to assign an a priori probability as well as a complexity to an
individual binary object (universal distribution). These measures exist, but can
not be computed. This is the basis for modern theories about learnability and
studies of methodology of science.

A central concept that ties information theory and learning together is the so-
called Minimum Description Length Principle (MDL) [Rissanen, 1999]. Below I
will give a formal treatment of the principle, but the main idea is that formal
representations of scientific theories can be used to compress data sets with em-
pirical observations. The shortest adequate MDL code explaining a data set will
be the one that minimizes the sum of a description, in bits, of the theory, plus a
description, in bits, of the set of observations given the theory. One could think of
the observations of Tycho Brahe and Kepler’s laws as theory. The laws of Kepler

8The same concept was somewhat later discovered independently by Kolmogorov and Chaitin.
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explain the observations of Tycho Brahe, because these observations can be repre-
sented concisely using these laws. Kepler’s laws are much simpler than the rules of
the cosmology of Ptolemy based on celestial spheres and they also do a good job of
predicting the motions of the planets. One of the main ambitions of this paper is
to study the philosophical implications of this concept. The theory of Kolmogorov
complexity provides us with an excellent framework for a philosophical analysis of
the concepts behind MDL. This is, in my view, the form in which the problem of
induction should be studied in the current context of philosophy of information.

The MDL principle is often described as being equivalent to Ockham’s razor
(entia non sunt multiplicanda preater necessitate, William of Ockham, ca. 1290-
1349). An association that is debatable, since Ockham’s razor is related to a
specific nominalistic critique of Plato’s theory of ideas (as defended by Duns Sco-
tus, 1266-1308) that is quite far removed from the general problem of induction.
In fact, the idea of explaining a certain set of observations in terms of an opti-
mized two-part code (Theory + Data encoded with the theory) could as well be
interpreted as a Platonic ambition, where the Theory is the ideal description of
the data and the Data encoded with the theory is a description of the noise, or
faults, in the data. The underlying problem seems to have a different nature: the
question of the regularity of nature, or in other words the notion of a cooperative
universe.

2 AN UNEASY MARRIAGE BETWEEN LEARNING AND KNOWING:
PARTICIPATION VERSUS CONSTRUCTION

A theory of learning has consequences in at least three areas:
e Theory of knowledge: how do we gather knowledge?
e Cognition: how does our brain work?

o Methodology of science: how do we construct scientific knowledge?

Knowledge and learning have always had a rather uneasy relationship in philos-
ophy. The subject easily could fill a book in itself. A clear picture emerges if we
try to develop a simple logic of learning and knowing. We can adopt two axioms:

1. Priority of knowing: I know everything that I have learned.

2. Priority of learning: I have learned everything that I know.

The first axiom seems obvious. Learning would not really be learning if it did
not lead to knowledge. Yet, this is not unproblematic. Learning has a temporal
aspect. It involves a transformation from not knowing to knowing. If we simply
learn a finite number of facts, this is straight forward. If somebody tells me that
Amsterdam is the capital of the Netherlands and I did not know that, then I
have learned something. Of course, I trust my source of information to speak the
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truth. He must be a trustworthy teacher. Even if that is the case, things get more
complicated if I try to learn an infinite number of facts in a finite time. Since
Hume, philosophers know that this is logically impossible. One can never learn a
general law on the basis of a finite number of observations. Even if I have seen
millions of white swans, this does not allow me to draw the conclusion that the
statement “All swans are white” is true. I only need to observe one black swan
and my general law can be scrapped [Popper, 1952]. The conclusion seems clear.
Logically, it is impossible to learn an infinite set on the basis of a finite number of
observations. To put it in other words: we can learn facts, but we can not learn
general laws. This would mean the end of science. Philosophers that endorse the
first axiom implicitly sweep the problem of learning under the carpet: learning
actually is remembering what you already know (Plato), you can only learn if
knowledge is innate (Descartes, Chomsky), mathematical research is the discovery
of what is already there (Hilbert, G6del). Under axiom 1) scientific knowledge is
only possible if one has what I call a participation theory of truth. The amount
of knowledge of the human subject grows in time, but not by means of learning.
The human mind seems to participate in the realm of truth and this participation
allows us to separate true from untrue insights. It is clear that this theory of
learning is less satisfactory.

So let’s have a look at axiom 2) the priority of learning. From this perspective
we seem to loose our grip on the concept of knowledge. Results that we have
learned are preliminary: they can change, they have a statistical nature. In most
cases, learning leads to a hypothesis that only has a certain degree of plausibility.
It does not seem to be a good idea to accept the derivation “The hypothesis P
is very probable, therefore I know P” as valid. Knowing seems to be an absolute
concept. The situation in which I testify in court that I know that John has killed
Mary is very different from the situation in which I testify that it is very probably
that John is the killer. Nevertheless we are willing to sentence somebody, even if
we are not completely sure that he is guilty. Beyond reasonable doubt is a phrase
that finds its philosophical roots in the work of Hume, who has chosen the second
axiom as his starting point. This position leads to what I call a construction
theory of truth. A supporter of this theory has two options. Either he admits that
knowledge is a statistical phenomenon or he limits himself to knowledge that can
be constructed out of elementary observations. This last option leaves very little
room for science. Yet this position has been defended vigorously in the philosophy
of mathematics by Brouwer and the early Wittgenstein. Traces of the first solution
can be found in the works of Aristotle, Euclid, Locke, Hume and the members of
the Wiener Kreis.

This short analysis shows that one could rewrite the history of philosophy with
learning as a central theme. For a long time such a history would not contain
much more than what I summarized above. Both axioms lead to unfortunate
conclusions. A good choice is not really possible: a real philosophical problem.
In the second half of the 20th century theoretical ideas developed rapidly mainly
as a result of the application of insights from mathematical model theory and
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thermodynamics to an analysis of the phenomenon of learning.

3 THE RIDDLE OF HUMAN EFFICIENCY

The mathematics of learning starts with the conception of learning as a game that
is played between a student and a teacher. The game theoretical model of learning
was first introduced by Gold in Information and Control in 1967. The problem
that Gold studies is learning a language. The form of the game is as follows:

1. There is background knowledge. The teacher and the student agree before-
hand on a(n) (infinite) class of possible languages, one of which is to be
learned.

2. The teacher chooses one language from this class that he is going to teach.

3. A move of the teacher consists of the presentation of an example sentence
from the language he has chosen. The teacher must be faithful. He is obliged
to produce all possible sentences of the language in the limit at least once.

4. A move of the pupil consists of a guess of the language (a hypothesis) that
the teacher has selected.

5. The game continues indefinitely. The pupil learns the language (wins the
game) when he does not need to update his hypothesis anymore.

We can suggest the following practical interpretations of this abstract model:

e Theory of knowledge: the student is any human being, experience is the
teacher, the class of languages is the set of possible theories about the world.

e Cognition: the student is the brain, the teacher is perception, the class of
languages is the number of concepts that the human brain can learn.

e Methodology of science: the student is the scientist, the teacher is nature,
the class of languages is the set of possible laws of nature.

For our purpose, the abstract model is rich enough. The surprise of Gold’s
paper was that he could prove that under these conditions, even if the game could
go on for ever, the student could not learn classes of languages of any interest
with absolute certainty. This holds a fortiori for all natural languages that we
all learn as children without much difficulty. Here we find an interesting problem
that has not been solved adequately until this day and really only has become
more urgent. One could baptize this problem the riddle of human efficiency. All
our formal models of learning tasks indicate that learning, from a formal point of
view, is next to impossible or at least extremely hard. The central issue here is
that learning in Gold’s model is distribution free, i.e. the only constraint is that
every sentence of the language has a positive probability of being produced by the
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teacher. This allows for highly non-standard distributions on which one cannot
expect general learning algorithms to converge.

In the last 40 years, we have seen an overwhelming number of amendments
and adaptations of Gold’s model and theory construction certainly is not finished
(See e.g. [Angluin, 1988]). The research concentrates on a number of issues:
a restriction on the class of languages, using statistical techniques to select the
hypothesis, richer interaction between the student and the teacher and the attitude
of the teacher. In the original model of Gold, the teacher only has to be reliable.
He gives all the examples in a random sequence. It is easy to imagine that the
teacher helps the student a bit, for instance by selecting simple examples first or by
adapting the information content of the examples to the progress of the student.
In this case, we have a cooperative teacher. In its simplest form the cooperative
teacher is nothing but a probability distribution over the set of examples that
gives a higher probability to simpler examples. A student that studies under
the guidance of a cooperative teacher has a much higher chance of selecting the
right hypothesis with the help of statistical reasoning. Here, we distinguish the
contours of an interesting solution to the riddle of human efficiency in learning.
Our efliciency might not be an achievement of human intelligence but more a
reflection of the structure of the world in which we live. Nature is not completely
random, it is organized and works as a cooperative teacher. Before we explore this
concept further, we need to develop a formal framework to study these concepts.

3.1 Learning as data compression

Suppose you switch on your television set and there are three different channels
from which you can choose: random noise, a picture of a forest and a test image.
From a computational point of view, we can analyze these three data sets in the
following way:

1. Random noise: this data set has a high complexity and therefore contains
from a theoretical point of view a lot of information. Because the data
set is the result of a random process it cannot be compressed into a shorter
description. This means that it does not contain any meaningful information.
No part of the data set contains any information about any other part. There
is no self-information. Nothing can be learned from it. These data sets are
typical for systems that are in thermal equilibrium and thus have maximal
entropy.

2. The picture of a forest: this data set has high complexity, but it also
contains structure (the forms of the branches, leaves and trees repeat them-
selves: there is self-information). Therefore the image can be compressed
into a shorter description. We can extract meaningful information from the
picture (e.g. the fact that we can distinguish 10 trees in the picture). We can
learn a lot from this data set. These data set are typical for self-organizing
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systems that extract energy from the environment to create some form of
order, e.g. living things, computational processes.

3. The test image: this data set looks very simple with regular geometrical
shapes. It can easily be compressed and thus contains little information at
all. Nothing much can be learned from it.

From these examples it is clear that we can learn the most interesting things
from data sets that show a mix of structure and random elements. This is exactly
the sort of data that one would expect in a computationally cooperative universe.
Modern learning theory focuses on the analysis of this kind of data sets. The
ambition is to find an optimal short description of the data set in terms of two
new data sets:

e A structural part that described the regularities in the data set.

e An ad hoc part that describes the random elements of the data set.

Such a description is technically adequate if the length of the new description in
terms of two data sets is (much) shorter than that of the original data set. In the
literature this principle is known as the Minimum Description Length principle
[Rissanen, 1999], sometimes interpreted as two part code optimization [Vereshcha-
gin and Vitanyi, 2004]. Suppose that the picture of the forest has a size of 1280
x 800 pixels of 256 colors, than the uncompressed file will have a size of about 31
Mb. This is the number of bytes we need to send via a communication channel if
we want to communicate the contents of the file. As soon as we have an analysis
of the meaningful content of the picture at our disposal we can summarize the
content. In this way we get a sequence of interpretations of the picture in which
more and more of the content is revealed:

Ad Hoc Structural
A forest A general description
of forests
A set of 10 trees A general description of
the structure of a tree
A set of 3 birches, A description of
4 willows and 3 oaks | the specific structure of birches,
willows and oaks
Etc. Etc.

An important part of the research in learning theory concentrates itseif on
the development of algorithms that can separate a data set in an ad hoc and a
structural part. Many scientific problems can be reformulated in terms of a two
part code optimization problem. I give a number of examples:
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Data Set Ad Hoc Structural
Description of our Trajectories and size Kepler’s laws
solar system of the planets
Reuters Database Structure and sequence English grammar
of the individual sentences
A composition by Structure and sequence Specifics of
Bach of themes Bach’s style
Human DNA Structure and sequence A description
of regions that code genes of genes

Finding such a two part code optimization is usually not an easy task. One can
formally prove that there is no universal learning algorithm for such a task. For
some data sets we have good algorithrus, for others not (yet). It is possible with a
learning technique called genetic programming to derive the laws of Kepler from
the observations of Tycho Brahe, but a good algorithm for learning a grammar
on the basis of a corpus is not yet available [Adriaans and van Zaanen, 2004]. In
the following paragraphs we will develop a deeper understanding of learning as
compression.

4 LEARNING, COMPUTATION, INFORMATION AND ENTROPY

In this section we will develop a formal framework that helps us to understand
learning better. The crucial step is the definition of the concept of information
as something that could be objectively quantified. It is immediately clear that
the concepts of information and learning are related. It seems impossible to learn
without gaining information and impossible to gain information without learning.
A discussion of the technical issues concerning the concept of information is not
possible without an understanding of the concept of a Turing machine. In the next
paragraphs we will first describe this basic notion and then turn our attention to
the definition of information.

The Turing machine

In its simplest form, a Turing machine is a device with a read-write head, an infinite
working tape on which symbols can be read and written and a finite deterministic
program for the manipulation of symbols. The only symbols needed are ‘1°, ‘0’ and
‘b’ (blank). The machine starts its calculation by reading input from the tape, and
stops when a certain predefined final state is reached. Not all programs will stop.
In fact, Turing proved that there does not exist a program that decides in all cases
whether a certain machine will stop given a certain input (undecidability). The
combination of machines and programs that stop in finite time is known as the
Halting Set. This set could be seen as a transcendent object in computer science:
we know it exists, but it can not be constructed. There are a number of reasons
why Turing’s device can claim to be associated with a universal scientific language.
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First of all, the set of all possible programs for a Turing machine is the set of all
possible binary strings {0,1}*, which is equivalent to the set of natural numbers.
Secondly, one can define a ‘universal’ Turing machine, that emulates all possible
computations of all possible Turing machines by first reading a definition of a
machine from the tape followed by the definition of the program and the execution
of the program on the emulated machine. This allows us to interpret the Turing
machine as a universal computing device. Thirdly, all the current definitions of the
concept of computation (Lambda calculus, combinatorial logic, recursive functions,
etc.) are known to be Turing equivalent, i.e. can be emulated on a Turing machine.
This fact has lead to the formulation of the so-called Church-Turing thesis, which
states everything computable is computable on a Turing machine. It is hard to
imagine how this claim could ever be verified. In the worst case it is destined to
be an unproven metaphysical claim for ever. The thesis could easily be falsified
by a conception of calculation that can not be emulated on a Turing machine, but
so far, these conceptions of computation escape our imagination.

From a transcendental point of view, the Turing machine encapsulates funda-
mental notions: The local physical storage and processing of a finite set of discrete
symbols as a sequential finite discrete process in time according to a finite set of
(deterministic) rules. The apparent universality of these notions lead to what one
might call the central working hypothesis of modern computer science:

CONJECTURE 4. Any finite discrete system or process can be described in terms
of a program for a Turing machine.

Personally I expect this claim to be disproven (or at least amended) somewhere
in the future, but for the moment it gives the foundation for a methodological
research program that is rich in perspectives and far from exhausted. It defines
a universal scientific methodology. For any system X, we have to ask ourselves
the fundamental question: is X a finite discrete system? If so, we can apply our
methodology and try to construct an adequate program to model it. The decision
to consider a certain phenomenon X (say a financial administration, turbulence
around a sail, human consciousness, the human cell, a black hole or the universe
as a whole) to be a finite discrete system can be controversial from a philosophical
point of view and require a separate philosophical motivation. These questions
are not part of our current analysis. For the moment, my aim is the clarification
of the central concepts and not an analysis of their applicability.

The association with the old philosophical ambition of a mathesis universalis is
immediately clear from the Turing equivalence of recursive functions, which lead
to the following corollary:

COROLLARY 5. Any finite discrete system or process can be described in terms
of operations on natural numbers.”

This analysis of Turing machines does not lead to a theory of information. Itis a

"Wolfram states a related notion that he calls the Principle of Computational Equivalence:
“...whenever one sees behavior that is not obviously simple ...it can be thought of as compu-
tation of equivalent sophistication” [Wolfram, 2001, p. 5].
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theory-neutral conception of manipulation of binary strings. In order to determine
what kind of information, and how much of it, is contained in these strings we need
separate definitions. Even within this context, there are a number of competing
conceptualizations of the notions of information that need to be treated here.

Shannon Information and optimal codes

The idea that the frequency of a letter is associated with the information it contains
(or its value) is well known to any person who solves a crossword puzzle or plays
Scrabble. If one knows that a word contains a ‘z’ this is more informative than
an ‘e’ because there are less words with a ‘z’. This ‘information’ about the ‘2’
implies a bigger reduction of the search space. The crucial insight that has lead
to a mathematical theory of information is formulated by Shannon [Weaver and
Shannon, 1949]. Here the information content of a message is defined in terms of
its probability:

DEFINITION 6. The Shannon information contained in a message « is I(x) =
log1/P(z) = —log P(x),

where I(x) is the number of bits of information contained in = and P(z) is a
probability distribution (0 < P(x) < 1). Note that®: If P(x) = 1 then I(z) = 0.
I{z and y) = I(z) + I(y).

From a philosophical point of view, it is important to note that Shannon infor-
mation says nothing about the meaning of the messages, nor about their epistemo-
logical status. One bit is the maximal amount of information that can be stored in
a binary symbol. A bit can simply be used as a physical unit. Alternative notions
are nat, based on the natural logarithm, and hartley, based on log base 10. One
nat corresponds to about 1.44 bits (1/(In2)), or 0.434 hartleys (1/({n10)). If z is a
message and P(z) = 273, then the amount of information contained in z is three
bits and an optimal code for z would use three bits, say 001. Apart from this, =
could have any meaning, varying from “John has passed his exam” to “Goldbach’s
conjecture is true”. In itself, this is strange. We are inclined to say that if we get
the information that John passed his exam from a reliable source we consequently
know that John passed his exam. A simple bit code like 001 does not convey this
information. Apparently there are meanings of the term ’information’ that are
not fully covered by Shannon’s definitions. Shannon himself, by the way, would
be the first to acknowledge this. Also there is no straightforward translation of
Shannon’s definitions into a theory of knowledge. A valuable attempt to fill this
gap is made by Dretske [Dretske, 1981]. The least one can say is that, on top of
the formal definitions that are offered by Shannon, the information that is received
by an agent is dependent on the context of the dialogue and on the background
knowledge shared by parties involved in the exchange of messages.

A second observation that is philosophically relevant is that Shannon informa-
tion, as such, is independent of the notion of a Turing machine. Shannon defines

8log is used for logz
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information in terms of bits and Turing machines operate on strings of zeros and
ones that could be interpreted as bit strings. In these terms Turing machines could
be seen as information processing devices, but this is only a very weak connection.
Shannon’s notion of information and Turing’s definition of computation seem to
be orthogonal. Shannon uses the notion of a bit to measure amounts of informa-
tion, but his theory does not say anything about the amount of information that
is stored in a string of bits itself.

The concept of Shannon information only makes sense in the context of a set of
potential messages that are sent between a sender and a receiver and a probability
distribution over this set. If we have such a setting, we can design an optimal code
system. Suppose X is a set of messages z;(I = 1,... n) the communication
entropy of X is:®

H(X)=— Y P(z:)log P(x;)

i=1l,n

The Maximal entropy of a set of n messages, if P(x;) = 1/n for each I

Hpoz(X) = —n{l/n) log (1/n) =logn

The Optimal code (that minimizes the expected message length) assigns
—logP(x;) bits to encode message x;. One finds an extensive discussion of these
definitions in the chapter by Harremoés and Topsge. The notion of optimality
of a code system is associated with the idea of compression of a set of messages.
Suppose, for the sake of argument, that we want to develop an optimal code for a
certain book, say Dickens’ “A Tale of Two Cities”, and that we simplify the task
to finding an optimal code for an alphabet of 26 letters.!® We can code each of
the 26 letters with a standard length of 5 bits. A set of messages in which the fre-
quency of each letter would be equal (e.g. 1/26) has maximal entropy. Of course,
such a set would contain only nonsense. It could not be normal English since the
frequency of letters in English varies greatly. Therefore a standard 5 bit code is
redundant and can be optimized. We can assign shorter codes to more frequent
letters. Giving up the fixed code length implies that our code has to be prefir free:
no code can be a prefix of any other code. Standard Huffman code provides an
optimal solution for this problem. Using Huffman code one can compress “A Tale
of Two Cities” 0.81 bit per character comparison with the 5 bit code. We can
ask ourselves if Huffman code is the best solution for compressing a book. In a
sense it is, if one sticks to compression of characters, but there is no reason to do
this. One could try to compress words instead or maybe one could use an analysis
of idiosyncrasies of Dickens’ style. This poses an interesting theoretical problem:
what would be the theoretical shortest code for “A Tale of Two Cities”? In order
to find an answer for this question we have to turn our attention to a different

9This definition is exactly equal to the definition of Gibbs entropy in thermodynamics. See
the chapter by Bais and Farmer in this book.
10This example is discussed extensively by Harremoés and Topsge.
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definition of the concept of information that is intricately related to the notion of
a Turing machine: Algorithmic information.

Algorithmic information

We have seen that with the theory developed by Turing we can define a universal
Turing machine. In fact, there is an infinite number of such universal Turing
machines, so let us select a standard (small) one and call it U. The input of U
consists of two parts: a definition of a special Turing machine T; in prefix code,
followed by the input code, or data D for T;. Observe that, using Huffman code,
we can create a program that reproduces “A Tale of Two Cities” as output on U.
The crucial insight is that it is easy to construct a Turing machine that decodes
Huffman code. Let Drore fruy be the Huffman code for “A Tale of Two Cities”
and let T,y be a Turing machine that decodes Huffman code in the standard
prefix free input format of /. The text of “A Tale of Two Cities” can be coded as

U(Tgug + Drorc,Hur)

When confronted with the input Ty 7 + Drorc,gur our universal machine U will
first read the definition of T, s, reconfigure itself as an interpreter for Huffman
code and then start to interpret Drore, oy s resulting in the text of “A Tale of Two
Cities” as output. The bit string Tr. ¢ + Drorc,ruy can be seen as a program for
the text of “A Tale of Two Cities”. Let |D| be the length in bits of the data set
D and let Dryre, spie e the 5 bit code for “A Tale of Two Cities. We will have:

[Ttrus + Drore,Huf| < |Drorc,ssicl

Given the fact that a Turing machine for interpreting Huffman code is not com-
plicated, the set THus + Drorc,Huy Will be shorter than the original 5 bit code
for “A Tale of Two Cities”. In this way, we have created a computer program
that generates the text of “A Tale of Two Cities” on a universal Turing machine.
The bit code of this program is shorter than the original text. We could go on
and try to find more clever code systems that compress the text even more. Such
a code system, say TodeSystem; could make use of the frequency of words in the
text, knowledge about the grammar of English and idiosyncrasies in the style of
the author. Such a code system would be ‘better’ than the Huffman code if:

|TCodeSystemi + DToTC:iI < |THuf + DToTC,Hufl

where Drore.; 1s the text encoded in the new code.

‘We can now answer the theoretical challenge from the previous paragraph: the
theoretical shortest code for “A Tale of Two Cities” would be the shortest program
that generates this text on U. In order to find this program ideally, what we have
to do is enumerate all possible programs for U, test them, and select the shortest
that generates “A Tale of Two Cities”. Alas this is impossible because of the
uncomputability of the halting set. We know that such a program exists, but it
remains an intensional object.
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This fact gives rise to a different definition of the concept of information [Li
and Vitanyi, 1997]. The descriptive complexity of a string z relative to a Turing
machine T and a binary string y is defined as the shortest program that gives
output z on input y:

Kr(xly) = min{|p| : p € {0,1}*, T(p,y) = z}

One can prove that there is a universal Turing machine U, such that for each
Turing machine T there is a constant ¢r, such that for all r and y, we have
Ky (z|y) < Kp{zly) + cr.t' This definition is invariant up to a constant with
respect to different universal Turing machines. Hence we fix a reference universal
Turing machine U, and drop the subscript U by setting K(z|y) = Ky(zly). We
define:

DEFINITION 7. The Prefix Kolmogorov complexity of a binary string x is K (z) =
K (z|¢). That is the shortest prefix free program that produces z on an empty input
string.

Kolmogorov complexity is a competing notion of information. It allows us to
assign a complexity to individual strings and data sets.

A unified view on Shannon information and Kolmogorov complexity

We are now in a position to evaluate the difference between Shannon information
and Algorithmic information, i.e. Kolmogorov complexity. Suppose we have a
data set encoded in bits, say a five bit code of the text of “A Tale of Two Cities”.
We can analyze this set from two perspectives:

e From a Shannon perspective as a collection of messages. In this we can
construct an optimal code using variation in frequency of the messages. This
leads to a relative compression of the set of messages that can be computed.
More frequent messages get shorter codes and contain less information.'? We
could call this concept of information relative to the probability of a message.

e From a Kolmogorov perspective as a single message. In this case, relative
frequency has no meaning, but there exists an optimal compression of the
message in terms of the shortest program on a Turing machine. The length
of this program is an absolute measure for the amount of information con-
tained in the message. This program is an intensional object and can not
be computed as such. Messages that are highly compressible contain little
information. This could be seen as a concept of information relative to a
Turing machine.

HFor an extensive discussion of these definitions, see the chapter by Griinwald and Vitdnyi in
this book.

12This would work equally well in a case where frequency is an actual count, a probability in
a Platonic world or a Bayesian belief.
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As an example, suppose we have a bit string 01010101010101010101010101. We
can recode this string in Shannon’s sense as ‘01’=1;11111111111111, or we can re-
program it in Kolmogorov’s sense as for x = 1 to 13 write ‘01’. Both struc-
tures are shorter than the original code reflecting the fact that the string shows a
regular pattern. In this case, both the Shannon and the Kolmogorov compression
do their work. In my view, both algorithmic information and Shannon information
are different mathematical guises of one and the same concept of information that
is associated with entropy of data sets.

CLAIM 8. Information is associated with the entropy of data sets. Data sets with
low entropy can be compressed and contain less information than data sets with
maximal entropy, which cannot be compressed and contain exactly themselves as
information. There are various ways to explain these relations mathematically.

Shannon information starts with a segmentation of the set. In the limiting case
where we have very few segments, or only one, Shannon’s theory collapses into
Kolmogorov’s conception of information. Kolmogorov’s conception of information
is more powerful, but the price we have to pay is threefold: it is non-constructive,
therefore it can only be approximated and it is asymptotic.

LEMMA 9. The concepts of Kolmogorov complexity and Shannon information
are equivalent in terms of predicting incompressibility of data sets with mazximal
entropy.

Proof. In Shannon’s conception a set of messages can not be compressed if they
all have equal probability. Suppose we have a sequence of k messages with maximal
entropy based on a code system of 2™ code words of n bits, then this is equivalent to
a random string of I = kn bits and thus it can not be compressed in Kolmogorov’s
sense. Suppose, conversely, that we have a random bit string | = kn bits with [
fixed, then for each segmentation of [ in k messages the entropy is maximal thus
it can not be compressed in -Shannon’s sense. ]

Note that the difference between Shannon information and Kolmogorov infor-
mation can be seen as a difference in granularity. Kolmogorov complexity is coarse
grained giving the whole set of messages a complexity in one shot. Shannon infor-
mation is fine grained, it calculates the information for individual messages first
and then establishes an entropy for the whole set. Given the equivalence of Shan-
non information and Kolmogorov complexity, one would expect that also in the
limiting case of considering a bit string as one unsegmented message it is possible
to assign a probability to it. This is indeed the case. In Shannon’s case we reason
from probabilities to entropies, in the Kolmogorov world we derive probabilities
from entropies. Using results of Solomonoff [1997; 2003] and Levin we can define
an a priori probability of a finite binary string.

DEFINITION 10 (Solomonoff, Levin). The universal a priori probability Py(z)

of a binary string z is
Py(z) = Z yald

U(p)=z
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This is the sum of the probabilities of all the programs that generate x on
a universal Turing machine on an empty input string. Thus strings with a low
Kolmogorov complexity, i.e. the ones that are compressible, get a higher a priori
probability. Associated with a universal a priori probability, we expect to get a
universal distribution. We can define a semi-measure along these lines. A recur-
sively enumerable semi-measure p on N is called universal if it multiplicatively
dominates every other enumerable semi-measure p' i.e. p(z) > cu'(z) for a fixed
positive constant ¢ independent of . Levin proved that such a universal enu-
merable semi-measure exists. Since there might be more, we fix a universal semi-
measure m(x). The semi-measure m(x) converges to 0 slower than any positive
recursive function which converges to 0. Of course, m(x) itself is not recursive.
We now give without proof a theorem that relates all these concepts with each
other:

THEOREM 11 (Levin).

—logm(z) = —log Py(z) + O(1) = K(z) + O(1)

The universal distribution has quite wonderful qualities and its philosophical
relevance has hardly been explored up till now.

4.1 Thermodynamics, Information and Computation

It is clear that the study of information and computation is related to concepts of
thermodynamics on a fundamental level. The first law of thermodynamics states
that energy in a closed system is conserved. The second law states that the entropy
of a closed system can never decrease. After a certain time a closed system will
reach an equilibrium in which the entropy is maximal. Another way of phrasing
the second law is that self-organization is not possible without external energy.

As the entropy of a set of messages grows, so does the set of accessible states
and so does the number of bits that we need to identify those states (according
to Boltzmann the formula entropy was simply S = Inw, where w is the number
of accessible states, this is equal to the maximum entropy in Shannon’s defini-
tion). Consequently in a closed system, when the entropy grows, the amount of
information stored in the system grows. A closed system can increase its internal
information without exchange of heat with the environment.

A thought experiment can help here. Think of a bit string as a gas in a one
dimensional container (say Os are spaces and 1s molecules). If the bits are al-
lowed to move freely through the space, starting from any configuration they will
eventually reach an equilibrium state in which the Kolmogorov complexity of the
accessible states is maximal. These states are exactly the ones in which the bits
contain maximal information (in terms of Kolmogorov complexity). Random bit
strings contain the most information, have the highest entropy and correspond to
a thermal equilibrium.'3

131t is possible to develop a thermodynamics of bit strings along these lines.
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All this is quite counter intuitive. If we dissolve milk in coffee, or we spill sugar
in sand, we feel we lose possibilities. It seems strange to assume that noise on
a channel is actually the richest source of information possible. The reason for
our unease seems to be the fact that high entropy is the normal situation in the
universe. Order (i.e. low entropy) is more interesting since is needs to have a
specific cause. High entropy does not point at specific causal processes of any
interest. Low entropy is a sign that somebody or something redirected energy to
a system. That is the reason why, when we want to detect life in outer space, we
scan the sky for signals with less then maximal entropy. In order to be meaningful
to us, a set of messages has to have some structure and consequently have less than
maximal entropy. This concept of meaningful information in a system is from a
thermodynamical point of view related to the free energy in the system and from
a learning view to two part code optimization.

Thermodynamics therefore has interesting consequences for the physics of com-
puting. A universe in which we can calculate has to obey the following conditions:

e It must be stable enough to store information. Structures should have
a certain stability; identity over a certain period of time should be guaran-
teed. This points to relatively low entropy. In a system that is in a perfect
thermodynamic equilibrium, structures would not be robust enough to store
information at all.

e There must be enough free energy to process information. There must
be reversible processes that facilitate the transition between stable states:
i.e. there must be mechanisms to flip bits. This condition implies more than
minimal entropy. Computation can not exist in systems with extremely low
entropy, e.g. computation at zero degrees Kelvin is not possible.

Computation seems to presuppose some kind of state of intermediate non equi-
librium entropy.!* Luckily, we live in a universe that satisfies these conditions
exactly. This is no surprise, because in a universe that does not offer these pos-
sibilities; intelligent life would not be possible. This is a variant of the anthropic
principle [Hawking, 1988]. The hypothesis of the cooperative universe however
goes deeper because it states that such a universe would be easy to learn. It
is a number of random processes, but these processes are necessarily of limited
complexity.

Out of these observations the following picture emerges: A deterministic com-
puter is simply a Laplacian system that, in itself, cannot add information to the
universe. Its future is completely determined by its initial conditions. Still a deter-
ministic computer can easily use energy to erase information and thereby reduce
the amount of information in the subsystem (say its tape). The total entropy in
the universe will still grow as a result of this action. For a subjective observer,

14This goes against the interpretation of Lloyd and Ng [Lloyd and Ng, 2004] who consider
almost any physical process as a computer, e.g. black holes and pure plasma. In these cases it
is better to speak of computational processes than of computers.
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however, the situation is different. He might not know whether a certain compu-
tation will finish. If he observes that the computational process comes to a halt
this certainly adds to his information, even if he lives in a Laplacian universe.

Suppose, on the other hand, that a statistical observer can only make measure-
ments of a certain granularity. He can, for instance, measure the local density of
bits on the tape with a certain accuracy, but not observe individual bits. In such a
case, the subjective entropy generated by a deterministic computing process can be
much bigger than the entropy of the initial conditions. Suppose that the computer
writes the binary expansion of the number e on the tape. This is a data set with
very low entropy, but, for such a statistical observer, it cannot be distinguished
from random noise (since he cannot identify the individual bits). Here, we seem
to cross the border from theory of computation to thermodynamics. Very much
the same thing happens if we see the generation of a fractal. This is a data set
of very low entropy, but to our subjective eye full of interesting details. A non-
deterministic computer adds information to the universe with each randomized
computing step it takes.

As a last note, observe that thermodynamics only works for systems in a state
of equilibrium. Computing systems tend to specifically stay out of equilibrium so
the applicability of classical thermodynamics for the understanding of computing
processes is limited. At the moment, we are missing a theory that helps us to
understand these matters adequately. The following theoretical observations give
an initial outline of such a theory.

4.2 A universal a priori near optimal Shannon code based on Kol-
mogorov complezity

Levin’s theorem allows us to explore the relation between Shannon information
and Kolmogorov complexity at a more fundamental level. We define the standard
bijection b between the set of binary strings {0, 1}* and the set of natural numbers
N as

b(0,¢€),b(1,0),b(2,1),5(3,00),b(4,01),. ..

Where € denotes the empty word. We can define the function S': {0,1}* — {0,1}*
as:

DEFINITION 12. S(z) = minen{p: b(i,p), U(p,€) = z}

Here U is a universal Turing machine. S associates each binary object  with
the first program that produces z on U with empty input.

COROLLARY 13. S is a universal a priori near optimal code associated with m
for binary strings in Shannon’s sense.

Proof. According to Shannon an optimal code for z given m would be — log m(x)
bits long. According to Levin we have —logm(z) = K(z) + O(1). But then S(x)
is such an optimal Shannon code, because by definition {S(z)| = K(z) since S(x)
is the first, and thus the shortest, program that produces £ on U. The code is
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near optimal, because of the factor O(1) in Levin’s theorem. S(z) will always be
maximally O(1) removed from the factual optimal code. |

The function S is interesting because it brings the concepts of Shannon informa-
tion and Kolmogorov complexity together. On one hand |S(z)| is the Kolmogorov
complexity of z, on the other S(x) is an optimal a priori code for z. Of course,
S can never be computed, but suppose that some Platonic oracle would give us
S. In that case we would have a universal a priori solution to the problem of
induction. S(x) reflects any regularity (e.g. deviation from marximal entropy, i.e.
compressibility) that can be expressed solely in terms of the internal structure x.
Observe that S(x) will itself always be random (and thus incompressible) because
it is the first program that computes z. If S(x) would be compressible, it would
itself have been identified much earlier by S. It is important to note that, although
S can not be constructed, it nevertheless exists. S is the closest we can get to
a universal language of science, given the current state of research in computer
science.

To give some examples. S would make it easy to find binary expansions of
transcendent numbers like 7 and e. There are simple programs for these extensions.
In fact, S would identify almost any discrete object of any mathematical interest
for us. On top of that S would give us an optimal code for the text of “A Tale
of Two Cities” and indeed of any other conceivable poem, novel, piece of music,
movie or any work of art in digital code. The same would hold for any digital
data set that scientific inquiry could produce. S would ‘explain’ the regularities
and idiosyncrasies of these data sets in so far as they can be expressed in terms of
deviation of maximal entropy.

4.8 Intenswe and extensive data sets

A very interesting consequence of having .S would be that we are capable of measur-
ing the scale invariance of complexities and entropies. A little thought experiment
will help. Suppose that we study some segment L of length [, starting at the
p-th bit, of the binary expansion of a transcendental number, say 7. Since we are
studying an expansion of m the Kolmogorov complexity of the sequence is low. In
the sense of lemma 9 we could analyze this as a sequence of [ = kn bits, i.e. k
messages based on a code system of 2" code words of n bits. The total measured
complexity of L using S with granularity n could be defined as:

k-1
K(L)sn = Z S(Z(ixn)+1>T(ixn)+2> - - - T(ixn)+(n—1))
=0
If we plot the size of K(L)g,, in terms of the size of n we will see the following
effect: for small n the function K(L)s, will show a slow decrease that will be
linear in m. This is because of the diminished overhead of S per segment. For

small n all segments will be random for S, because of the transcendentality of
7. At a certain point, ‘close’ to logp + logl/n 4 O(1), the value of K(L)g , will
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log p + log L +O(L)

logp + logl+ O(1)

K@L)

I=n

Size of n ————p

Figure 1. The size of K(L)g,, in relation to the granularity n while sampling a
segment of 7

drop suddenly.!® This is exactly the point where n is big enough so that S starts
to ‘sense’ the compressibility of L. For n = [ the function K(L)s, will land at
the value logp + log! + O(1). What this amounts to is that for certain data sets,
e.g. bit representations of transcendental numbers (but there are many others),
complexity (and consequently entropy) is non-extensive. Another way of putting
this is that the Shannon entropy of the collection of messages diverges from the
Kolmogorov complexity as a measure of entropy for the set as a whole. Local
estimates of the complexity do not tell us anything about global complexity and
consequently complexities of various regions of the data set can not be added to
get a global complexity estimate. The complexity of these data sets is not robust
under statistical operations and under re-scaling of the code system.!® Clearly
for the application of efficient learning algorithms the non-extensive complexity
of such data sets is an insurmountable barrier. No algorithm can compress data
sets that look random from the outside but are in fact highly compressible, e.g.
encrypted data or expansions of very special real numbers like 7 and e.
Uncompressibility and extensiveness are in fact the same notions, as is clear

15The logp gives us an index in L, logl/n code the length of the individual segment and the
O(1) term contains the program for 7. This information is sufficient to describe any substring
in L.

16The custom in thermodynamics to take the averages of values in the sample regions is just
one specific form of recoding.
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from the following analysis. A data set D is extensive if the sum of the complexity
of two arbitrary disjoint subsets A and B equals that complexity of the union of
that set: K(A)+ K(B) = K(AU B) + O(1). This is only the case if D does not
contain any redundancy i.e. if D is random. On the other hand, suppose that D
is very compressible. If we know A already, then B would add no information, i.e.
K(A)+ K(B) = K(A) +log|B|+O(1). In other words B would only add its own
size to our knowledge. This is for instance the case when D contains extremely
simple regular patterns. This suggests the following definitions:

DEFINITION 14. A bit string D is extensive for a sample granularity g if for
each substring A € D such that {A] > g we have K(A4) > |[4| — O(1). A bit string
D is intensive if for each substring A € D such that |A] > ¢ we have K(A4) <
log |A] + log|D} + O(1). Sub-extensive data strings have |A] » K(A) + O(1)
and super-intensive strings have K(A) > log |4| + log|D| + O(1).

Extensive K(A)> |AFO(1)

Subextensive
Superintensive

[——

K(A)

Intensive K(A)y<log|A| + log D| +O(1)

Size of A [ —

Figure 2. The relation between extensive, sub-extensive, super-intensive and in-
tensive strings

Sub-extensive data sets are the ones from which we can learn something. The
borderline between extensive, sub-extensive, super-intensive and intensive data
sets is blurry, but the general idea stands. If we sample an extensive data set
we really get value for money, every bit counts. But there is a price to pay.
The information is completely random. Nothing can be learned from this set.
This corresponds with the picture of random noise at the television set that was
discussed earlier in this chapter. On the other end of the spectrum we find the
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picture of the test image: this data set is almost totally intensive. It is a simple
repeatable pattern for which we need only the information about the number
of repetitions to encode it. Extensiveness corresponds to maximal randomness,
intensiveness to maximal redundancy. Figure t shows that we can make each
string extensive by taking a small granularity. This corresponds to the fact that,
even if a data set is very regular, there is a learning phase in which we have to
analyze the pattern itself. At this time the data set cannot be distinguished from
a random one. A finite program producing an infinite data set has to go through
loops. If we cannot compress the data set on the basis of samples that are in
the order of the complexity of a loop of the program that generates the data we
are in trouble. Because the increase in information after this phase will be only
logarithmic. So if we have not spotted the regularity after, say 10, loops then
we will probably never spot it because the only new information we get from z
repetitions is of size logx. This gives rise to the following claim:

CLAIM 15. From the point of view of intelligent systems of a certain complexity,
nature is by necessity shallow. Intensive data sets can either be learned by an
intelligent system (a resource bounded learning algorithm) that is of the order of
the complexity of the algorithm generating the data set, or not at all.

From completely intensive strings we can learn only their generating program
and their size. One could call this the self information of a data set. The program
generating an intensive string can be seen as its intension.!” Intensive data sets
asymptotically have their size as their most defining characteristic. Extensive
data sets do not have an intension, or to say this in other words: they only
describe themselves. Their extension is their intension. Super-intensive data sets
contain more information, but this might be just noise. They are non random, but
not completely regular either. From a physical point of view they are associated
with systems that are in a non equilibrium state. It is the kind of information
that we find in the picture of the forest on our television screen. The trees are
generated by a program and thus have regular specific features. But the program
is not completely deterministic. Individual trees show random variation. It is
interesting to characterize sciences in terms of the nature of their data sets. Data
sets of mathematicians and physicists are close to intensive. Data sets of the
humanities are super-intensive. The eternal question whether history repeats itself,
can be answered by stating that history is sub-extensive and super-intensive. There
are patterns but they will never repeat themselves exactly. In physics we have
explanation and prediction exactly because the data sets are intensive.

A consequence of this analysis is that the amount of randomness we observe is
dependent on the granularity of our measurements. In one sweeping statement one
might say: randomness has a scale. Suppose we are looking at a movie of a hand
flipping a coin.’® At normal speed we are looking at a random (or at least a very

17Here we have a computational equivalent of Platos notion of an idea. The intension of an
object is the program generating it.
18Suppose also that this hand does not belong to Persi Diaconis, the well known mathemati-
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complex) process. This data set certainly has extensive elements. Note that the
data set itself in this case is not random. It is a movie of coin flipping that contains
a lot of information. We could for instance learn a lot about Newtonian mechanics
if we analyze it at an appropriate scale. Now suppose that we slow the movie
down extremely, say we stretch out one second to a million years. In this case, the
movie will be rather dull on a human scale. It will be close to a intensive process
that contains very little information. On the other hand if we speed the movie
up so that a million years is compressed into one second. Then again the movie
would on a human scale be reduced to a meaningless grey blur that contains no
information. On this scale the data set would again be intensive. The important
thing to notice is that the data set contains the most information if we sample
it at a granularity where the extensiveness is maximal. Both at a larger and at
a smaller granularity we will lose information. In short: even randomness has a
scale. Every form of randomness necessarily can only be observed at a granularity
in which it is in equilibrium. When we see smoke dissolve in the air, then on a
human scale we observe increase of entropy, on a molecular scale the increase does
not exist and on the scale of, say the solar system, the effect is too small to notice.
An optimal analysis of a data set involves finding a granularity that optimizes the
randomness of the data.!®

Researchers in machine learning are familiar with the idea that certain phenom-
ena can only be explained at certain scales. Some structures can only be learned
when the data set is sampled with a certain granularity.?® This can also be ob-
served in the text of “A Tale of Two Cities”. When we only sample individual
bits of this data set no useful information emerges. When we sample letters, we
can make good statistical estimates based on frequency. This is already somewhat
harder for words and next to impossible for sentences, leave alone paragraphs or

cian/magician that has proved that coin flipping is actually a deterministic process. Some of
the material in this paragraph is influenced by the lecture that Professor Diaconis gave on the
occasion of receiving the Van Wijngaarden award at CWI in 2006.

19This insight is related to Jaynes’ maximal entropy principle and the minimal randomness
deficiency principle to be discussed later. There is a further analogy with thermodynarnics, where
we find exactly the same scaling issues. Suppose that we have a number of gas particles in a
isolated container at low entropy. After some time, an equilibrium will be reached. On a micro
scale the entropy can not have increased because the evolution of particles in the container is
determined by simple deterministic Newtonian physics. Macroscopic measurements however will
show an increase in entropy. Just like our example of the binary expansion of 7, the data set
will have low complexity at micro level and appear to be random at lager scales. In a strictly
deterministic universe randomness takes the form of coarse grained undecidability.

20This was one of the more interesting results of the Robosail project, an attempt to use
machine learning techniques to learn to sail automatically that I started in 1998 [van Aartrijk et
al., 2002]. Measurements of almost all relevant human concepts like ‘wave’, ‘gust of wind’, ‘change
of wind direction’ and ‘wind strength’ were dependent on selecting an adequate granularity for
the measurements. What you subjectively experience as a wave is dependent on the size of
your boat. Some of the conceptual distinctions used by sailors depend on sophisticated phase
transitions in chaotic media that were only observable at certain scales. This holds for instance
for the distinction between light air (laminar flow) and breeze (turbulent flow). In the final
systgm we implemented learning agents that were living in a variety of time scales: 10 Hz, 1 Hz,
10~° Hz, etc.
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chapters. There is a certain granularity that reveals the structure of the text
optimally.

A deeper analysis of these kind of phase transitions and their meaning for learn-
ing algorithms is necessary, but it is clear from this short analysis that the analogy
between information and thermodynamics can be carried further than is commonly
accepted.

4.4 Induction and Minimum Description Length

Let us have a closer look at the relation between S and the problem of induction.
In one special guise induction amounts to selecting the most probable hypothesis to
explain a given data set. In terms of Bayesian learning this task can be formulated
as follows [Mitchell, 1997]. The prior probability of a hypothesis h is P(h).
Probability of the data D is P(D). The Posterior probability of the hypothesis
given the data is:

P(h)P(Dlh)

P(D)

THEOREM 16. Suppose that h, D € {0,1}*, i.e. both the data set and the hypoth-
esis range over the full class of finite binary strings. Selecting the Maximum A
Posteriori hypothesis (MAP) to explain D, amounts to selecting the hypothesis
that minimizes the length in bits of

P(h|D) =

S(h) + S(D|h)

Here S(h) is the universal optimal Shannon code for the hypothesis and S(D|h)
is the universal optimal Shannon code for the data set given the hypothesis.

Proof.
hyap = argmaznen P(h|D)
= argmazpecy (P(RYP(D|h))/P(D)
(since D is constant)
= argmazney (P(h)P(D|h))
= argmazye g log P(h) + log P(D|h)
= argminpey — log P(h) — log P(D|h)

(Since h,D € {0,1}* and according to Shannon — log P(h) is the optimal code
for the hypothesis and —log P(D|h) is the optimal code for the data given the
hypothesis.)

= argminpe g S(h) + S(D|h)
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This result is closely related to the so-called:

DEFINITION 17. The Minimum Description Length principle (MDL):
The best theory to explain a set of data is the one which minimizes the sum of

o the length, in bits, of the description of the theory and

e the length, in bits, of the data when encoded with the help of the theory

This principle was first formulated by Rissanen [1999]. Research in this domain is
far from finished and these concepts are still the object of fierce debate [Domingos,
1998; Domingos, 1999]. A common misconception is the idea that the minimum
description length principle can be transformed into a methodology for the con-
struction of a sequence of improving theories by means of an incremental compres-
sion of the data set. Suppose that S;, h;, Sp and h, are arbitrary coding schemes
and hypotheses such that:

[S(h) + S(DIR)| < |Si(hy) + Si(DIhy)| < |Sp(he) + Sp(Dlhg)| < | DI

Although h is the best theory it is not necessarily the case that h; is better
than hy. This could for instance be guaranteed if § = S; = 5, i.e. when the
code is optimal [Adriaans and Vitdnyi, 2005]. Translating these observations to
the domain of methodology of science gives us a number of interesting insights:
Given the fact that entropy in nature tends to increase the regularity of the world
we observe around us is extremely improbable, when we suppose that the world
started from a state of thermal equilibrium. The process of reducing a set of
observations to a general theory explaining these observations can be described as
a process of data-compression. A universal methodology of science would have the
following form:

o Represent your data set D in binary format.
e Select a hypothesis h in binary format such that |S(h) 4+ .S(D|h)| is minimal.

This program fails because of the uncomputability of S but it can serve as a
regulative ideal for the study of methodology of science. In certain cases the
theoretical results allow us to solve real life problems and to develop more efficient
algorithms [Li and Vitényi, 1997]. Note that we have characterized learnable data
sets as non- and sub-extensive, they contain a mix of random and deterministic
elements. MDL aims at finding a compression for such a set that exactly separates
the random (extensive) elements (S(D]h)) from the non-random (intensive) ones
(S(h)). For intensive data sets the two part code will simply consist of a description
of the program generating the data set (S(h)) and the length of the data set
(S(DIRY).

Another way to look at this is from the perspective of the so-called randomness
deficiency {Vereshchagin and Vitényi, 2004):
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v 500 = 10g (7} ) - KD,

Here M is a model of size m and D C M is a data set of size d. The expression
log (Z‘) is the measure of the maximum information in a subset of M of size d.
The expression K(D|M,d) is the actual entropy of the data set D in the model,
i.e. conditional Kolmogorov complexity of D given M and d. If the actual entropy
is much smaller than the maximal entropy of an average set of size d in M then
D still contains a lot of regularity that is not explained by M. In other words M
is not an optimal model. A model would be optimal if the randomness deficiency
is minimal. In such a case D would be a typical element (extensive) of M and M
would explain all that is worth knowing about D, i.e. its intension. The principle of
minimal randomness deficiency is very close to Jaynes’ maximal entropy principle:
in order to explain a set D try to find the set M for which the entropy is maximal
under a set of constraints observed in D.?1

5 THE COOPERATIVE COMPUTATIONAL UNIVERSE

From this discussion it is clear that the philosophy of learning touches on a num-
ber of philosophical issues: To name a few: entropy, information, computation,
objective and subjective probability. In order to study these issues let’s define a
thought experiment. For the sake of argument we will restrict ourselves to the
case in which we observe a string of bits from an unknown source. Even in this
simple setting there are some fundamental philosophical issues to be dealt with.
Suppose that we reserve a room at the University of Amsterdam for the purpose
of this experiment. The room has no windows and the door is closed. In the room
there is a black box. The black box produces a bit every minute. If the bit is ‘1’
the light is switched on, if it is ‘0’ the light is switched off. This bit is published
on a web site. Of course, nobody knows the contents of the black box, but, for the
sake of argument, we choose three possible configurations. The box could contain:

1. A random process that generates bits (e.g. a person flipping a coin, a quan-
tum process or some other ergodic process.).

2. A deterministic computer program generating bits.
3. An infinite database with a list of bits.

These three definitions represent radically different views on the phenomenon of
a source of information. The first is an objective random process associated with
an objective form of probability. It generates an extensive data set. All the
information that is contained in the sequence can be measured in terms of its
fundamental statistical characteristics: mean, variance, autocorrelation function
etc. The second is a deterministic process with a definition of finite length. The

21Gee the paper of Bais and Farmer in this book.
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maximal amount of information in a string produced by the program is limited to
the length of the definition of the program. It is an intensive data set. It could
lead to a sequence of bits with a certain statistical bias (e.g. repeating patterns),
but this is not necessary. Some transcendental numbers have short definitions (e.g.
e and 7) but lead after a bit of twisting to bit patterns that cannot be recognized
as non-random. The third is a deterministic process with a definition of infinite
length. The generating data set itself could be in- or extensive. It potentially
contains an infinite amount of information that can never be learned in a finite
amount of time.

THEOREM 18. The three sources of information, (a random process, a deter-
ministic computer program and an infinite database) cannot be distinguished from
each other by a receiver of the information.

Proof. Each of the three sources can produce a sequence of bits that cannot be
distinguished from a random sequence. 1) The case of the random process is trivial
2) A deterministic program can generate strings that cannot be recognized as non-
random. The non-computability of Kolmogorov complexity tells us that there will
always be compressible strings for which no compression can be computed. 3) An
infinite database can continue a random set of bits or a set of non-random bits
that cannot be recognized as such. ]

The philosophical importance of this result is obvious. We cannot make a
distinction between a source of information that is random and a source of infor-
mation that has high complexity. This makes the traditional controversy between
determinism and indeterminism from the point of view of informatics senseless. It
reveals the famous dictum by Einstein “God does not play dice” as a real meta-
physical position. It is not a question that can be settled by any argument. It
also shows that it is impossible to assign any form of objective probability to a
source of information. In this context one might ask to which extent randomness
is in any sense a scientific concept. We can define randomness of strings in terms
of incompressibility, but we do not need the concept of randomness to study in-
compressibility. The notion of flipping a coin or throwing a dice are real scientific
paradigms in the original Kuhnian sense, but au fond they are deterministic pro-
cesses that in most cases are simply too complex to predict and therefore can act
as place holders for supposedly real random processes. They serve as anecdotic
topoi in the scientific discourse, nothing more. The notions of extensiveness and
incompressibility still have an exact meaning in a deterministic Laplacian universe,
so they seem to be more fundamental than the concept of randomness. Macro-
scopic measurements of microscopic deterministic processes might subjectively be
interpreted as random. Even in a Laplacian universe there are data sets that are
both strictly deterministic and extensive (e.g. the Halting set).

In such a world however there is a form of subjective probability that is relevant.
Suppose that we want to form a hypothesis about the internal structure of the
black box and the black box produces a string that shows some regularity. In that
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case it is extremely unlikely that the source of bits is random. Suppose that our
black box produces a string of n ones 1715...1,. The probability of creating this
string with n flips of a perfect coin is 27". So, intuitively, with each one that
is produced by our black box the hypothesis that it contains a random process
becomes more unlikely in favor of the hypothesis that the bits are produced by
some deterministic process. Yet this argument is flawed because any bit string of
length n produced by flipping a perfect coin has probability 27" and therefore is
extremely unlikely. We have no clear ground to favor any regular string over a
random one as a ground for selecting between hypotheses about the content of the
black box. As we have seen, the theory of Kolmogorov complexity allows us to
define the concept of randomness deficiency of a string. The idea is the following.
A string like, say, 11100101000100 is typical for a random source. Such a string
is produced by a source that is perfectly compatible with the hypothesis that the
source is random. A string like 11111111111111 is atypical for a random source.
When produced by a source it makes the hypothesis that the source is random
unlikely. A high randomness deficiency corroborates the theory that the process
in the black box is non-random.

This analysis suggests that the best thing we can do in science is: observe a set
of phenomena, estimate the randomness deficiency and formulate a theory. Un-
fortunately in the case of the Amsterdam room the situation is more complicated.
This becomes clear if we analyze the following claims.

CLAIM 19. We get exactly one bit of objective information each minute.

It is clear that each bit that is published on the web by the black box contains

real information about the actual binary situation in the room: the light is on or
off.

CLAIM 20. The meaning of the message contained in the bit and the knowledge
generated as a consequence of receiving the message is not dependent on the
content of the black box.

Yet there is a subtle interplay between the growth of our subjective information
and our theories about the nature of the black box.

CLAIM 21. The objective amount of information we get is dependent upon our
interpretation of the nature of the source of information.

The three possible interpretations of the content of the box could be seen as
three different types of senders of messages. I will define three possible receivers
along the same line:

1. A forgetful receiver that determines the statistical characteristics of the se-
quence: mean, variance, autocorrelation function etc. Here our subjective
information grows incrementally at a very slow rate with each objective bit
that is received. This observer corresponds with an interpretation of the
source as a system in equilibrium. The statistical (macroscopic) qualities of
the system are all that we can know about the system.
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2. A machine learning program with bounded computing time and memory,
that tries to reconstruct the finite structure of the black box. Here our
subjective information grows in an irregular but monotone way with each
bit of objective information that is received. This observer corresponds to
an interpretation of the data set as intensive. After some finite point in time
our information will only grow with the factor logr where x is the number
of bits we have seen so far.

3. An infinite database with a list of bits recording every bit that is received.
Here our subjective information grows with exactly 1 bit per bit that is
received, if the data set itself is considered to be extensive.

This example shows that we can not restrict ourselves to a purely subjective inter-
pretation of information when we analyze a source of messages. We need to make
an a priori decision about the nature of our source.

Our analysis shows that nature and science play an asymmetrical game. Non-
random strings are very rare. To make this more specific: in the limit the density
of compressible strings z in the set {0,1}<* for which we have K(x) < |z] is
zero. Data sets that appear to be random may be actually compressible, but the
occurrence of such objects in nature is extremely unlikely. If a data set looks
random, we may with high probability assume that it is random. On the other
hand if a data set from the point of view of an intelligent agent appears to be
regular then it is with extremely high probability not random and can be learned
because of the shallowness claim 15. Therefore a learning system that simply
scans the environment for areas of low entropy and tries to compress the data
sets it finds there will be successful with high probability, if the complexity of
data sets is of the same order of magnitude as the agent. Local low entropy data
sets correspond with energy consuming non-equilibrium systems that with high
probability can be described in terms of computational models. Learning is not
as hopeless as our formal models seem to imply. We are computational processes
of limited complexity analyzing computational processes of limited complexity in
a universe that generates computational processes of limited complexity. In this
sense, we live in a cooperative computational universe. This is as close as we can
get to the solution of certain philosophical problems in terms of information and
computer science.

So why is this the case? Why do we live in a world that is intelligible at all?
This question pervades philosophy from its early conception on (Herakleitos vs
Parmenides). In form of a sweeping statement: prima facie, the God of Leib-
niz might very well have created a universe in which the Minimum Description
Length principle would not hold. There seems to be no theoretical necessity to
favor simplicity. The extreme regularity of the universe could be a ‘local’ condi-
tion accidentally observed by us. In terms of modern information theory: every
infinite random string has an infinite number of regions of extreme regularity. If
we transpose this idea to the analysis of our world we might just accidentally live
in such a regular region in a purely random universe [Li and Vitanyi, 1992]. A
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rather horrifying thought.

On the other hand imagine the following thought experiment: an infinite set
of universal Turing machines working in parallel with input tapes that are cre-
ated by means of some random process (e.g. flipping a coin). The set of input
tapes is infinite so every finite prefix free program will occur an infinite number
of times. Yet the density of ‘shorter’ programs will be exponentially higher than
that of ‘longer’ ones. Some programs will run for ever, others will stop in finite
time. After n time steps a number of ‘simple’ programs will have stopped and
produced a fixed output. This means that the set of outputs we observe in this
thought experiment will have a strong bias for simplicity. In other words even a
universe that consists of purely random computational processes has a strong bias
for simplicity. The distribution of phenomena it produces is cooperative in the
sense that we get examples of the simple structures first. This is the hypothe-
sis of the cooperative universe in another guise: nature produces the information
that we need to interpret her in such a way that hypotheses we form are right with
high probability. In such a universe MDL therefore will be a viable methodological
principle. It coincides with another well known dictum of Einstein: Subtle is the
Lord, but malicious He is not. The exact relation between various computational
models of the universe, cooperative distributions, the universal distribution m and
the problem of induction is, in my view, one of the most important open problems
in the philosophy of information.

These issues (subjective versus objective probability, regularity versus random-
ness, information versus meaning) are far from resolved and should be at the center
of a philosophical research program of a philosophy of information.

6 CONCLUSION

The research on learning and induction that has emerged because of the growing
interest in artificial intelligence is still developing. The results do not only lead to
useful industrial applications, but also influence the way we think about funda-
mental philosophical questions about the origin of human knowledge, the structure
of our brain and methodology of science. A formal analysis of the mathematics of
learning helps us to understand the efficiency of human learning. Human beings
can only learn complex structure like language and the laws of nature if the un-
derlying probabilities are ‘benign’. The hypothesis of the cooperative universe is
an attempt to explain why we live in a world that can be learned efficiently.
Finally, a tongue in cheek observation: Our human brain can contain about
104 bits of information. The total storage capacity of the known universe is
estimated to be about 102 bits [Lloyd and Ng, 2004]. The old philosophical
ambition of understanding the universe as a whole amounts to the wish to find a
compression of the universe of the following nature: a structural description of less
than 10 bits (the laws of nature) and an ad hoc description of more than 1078
bits (the actual structure given the laws of nature) . There is only one conclusion
possible. The universe can only be understood by human beings if it is extremely
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compressible -in other words- if almost nothing of any significance happens.
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THE QUANTITATIVE THEORY OF
INFORMATION

Peter Harremoés and Flemming Topsge

1 BASIC CONCEPTS OF INFORMATION THEORY

Information theory as developed by Shannon and followers is becoming more and
more important for a number of sciences. The concepts appear to be just the
right ones with intuitively appealing operational interpretations. Furthermore,
the information theoretical quantities are connected by powerful identities and
inequalities. In this section we introduce codes, entropy, divergence, redundancy
and mutual information which are considered to be the most important concepts.

1.1 Shannon’s break-through

Shannon’s 1948 paper [Shannon, 1948]: “A mathematical theory of communica-
tion” marks the birth of modern information theory. It immediately caught the
interest of engineers, mathematicians and other scientists. Naturally, one had
speculated before Shannon about the nature of information but mainly at the
qualitative level. Precise and widely applicable notions and tools did not exist
before Shannon.

Shannon focused on engineering-type problems of communication. Because of
the great impact for the economy, this is where the main interest from society lies.
But information theory captures fundamental aspects of many other phenomena
and has implications at the philosophical level regarding our understanding of the
world of which we are part. More applied areas include the interrelated fields
communication theory, coding theory, signal analysis and cryptography.

1.2 Coding

Information is always information about something. The description of information
must be distinguished from this “something”, just as the words used to describe a
dog are different from the dog itself. Description of information in precise technical
terms is important since, in Shannon’s words it will allow “reproducing at one
point either exactly or approzimately a message selected at another point”. The
descriptions in information theory are called codes.
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vowel | code-word code-word
length

a 11 2

e 00 2

i 01 2

) 100 3

u 1010 4

y 1011 4

Table 1. Codebook for vowels in English.

An information source is some device or mechanism which generates elements
from a certain set, the source alphabet A. Table 1 shows a code-book related to a
source which generates a vowel of the English alphabet. The various code-words
may be taken as a way to represent, indeed to code, the vowels. Or we may conceive
the code-book as a strategy for obtaining information about the actual vowel from
a knowledgeable “guru” via a series of yes/no questions. In our example, the
first question will be “is the letter one of @, 0, w or y7” . This corresponds to a
“1” as the first binary digit — or bit as we shall say — in the actual code-word.
Continuing asking questions related to the further bits, we end up by knowing
the actual vowel. The number of bits required in order to identify a vowel is the
code-word length, i.e. the number of bits in the corresponding code-word.

The term “bit” is used in two ways, as a rather loose reference to 0 or 1 (as
above) and then, as a more precisely defined unit of information: A bit is the
mazimal amount of information you can obtain from a yes/no question . To
clarify, consider questions posed as above but with respect to a modified code-
book where 11, the code-word for a, is replaced by 111. If the two first questions
are both answered by “yes”, then, according to the new code-book, you should
ask a new question which you can of course do, but it gives no further information
as you already know that the actual letter must be a. The definition points to
classical logic with its reference to “yes/no” (or “1/0” or “true/false”). In Section
1.3 we shall follow up with a more precise mathematical treatment of the concepts
“amount of tnformation”.

To ensure unambiguous identification, we require that a code is prefiz-free, i.e.
no code-word in the code-book is allowed to be the beginning of another. Denoting
code-word lengths by I, x € A, Kraft’s Inequality

@ > 2<1

€A

must hold — indeed, the binary subintervals of the unit interval that correspond,
via successive bisections, to the various code-words must be pairwise disjoint,
hence have total length at most 1. And, in the other direction, if numbers [, are
given satisfying (1) then there exists a prefix-free code with the prescribed I,’s as
code-word lengths.
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We may express Kraft’s Inequality differently, as the property that any length
function « ~ I, must satisfy the lower bound restriction

(2) I, >—logyp, forallz e A

for some probability distribution P = (pz)zea. Here and below, “log,” denotes
logarithm to the base 2.

The case of equality in (1) corresponds to compact codes, i.e. codes where
no code-word can be added to the code-book without breaking the prefix-free
property.

A guiding principle is to design codes that achieve efficient compression, i.e.
which have as short code-word lengths as possible, understood in some appropriate
way. Design criteria depend on the type of knowledge one has about the source.
If, in the example, we actually know nothing about the source, then “minimax” is
a suitable design criterion (and the code in Table 1 is not optimal as it is easy to
design a code with maximal code-word lengths equal to 3 rather than 4).

Consider another extreme where very detailed knowledge about the source is
available. We have chosen to look at Charles Dickens’ “A Tale of Two Cities”. It
generates individual letters, spaces, punctuation marks etc. To simplify, we ignore
the finer details and only pay attention to the standard letters. We may then
summarize our knowledge about the source by listing the frequencies of letters,
cf. Table 2. It can be proved that the code listed in the table as a Huffman code
is optimal in the sense that it requires the smallest number of bits to encode the
entire novel. This smallest number is 2.444.253 bits or in average 4.19 bits for each
of the 583.426 letters.

We stress that above we have only aimed at efficient coding of single letters. Our
success in compression can then be expressed by the one number 4.19 (bits/letter).
We can also consider the optimal code as a reference code and measure the per-
formance of other codes in relation to it. For instance, for the fized length code
which is also shown in Table 2, there is a redundancy of 0.81 bits/letter, express-
ing that these bits are superfluous when we compare with the optimally achievable
compression.

The situation could also be that originally, before we had detailed knowledge
about the statistics of the letters in the novel, we used the fixed length code and
then the redundancy tells us how much we can save by switching to an optimal
code once we have obtained more detailed knowledge.

If we code the entire novel using the optimal code in Table 2, the coded string
starts off with

10100100111011101001010100000010111100
0100101011001111000101010001110001001

which is decoded as “itwasthebestoftimes” corresponding to the opening words in
Dickens’ novel.

What we have considered above is noiseless coding. If, however, errors can
occur, many new problems turn up. For instance, if the 19th bit (0) and the 52nd
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Letter frequency fixed length | Huffman code ideal
count in % | word length | word length length

a 47064  8.07 | 00000 5 1110 4 3.63
b 8140 1.40 | 00001 5 101111 6 6.16
c 13224  2.27 | 00010 5 01111 5 5.46
d 27485 4.71 | 00011 5 0110 4 4.41
e 72883 12.49 | 00100 5 000 3 3.00
f 13155  2.25 | 00101 5 111100 6 5.47
g 12120 2.08 | 00110 5 111101 6 5.59
h 38360  6.57 | 00111 5 1000 4 3.93
i 39786  6.82 | 01000 5 1010 4 3.87
j 622 0.11 | 01001 5 1111111110 10 9.87
k 4635  0.79 | 01010 5 11111110 8 6.98
1 21523  3.69 | 01011 5 10110 5 4.76
m 14923 2.56 | 01100 5 00111 5 5.29
n 41310  7.08 | 01101 5 1101 4 3.82
o} 45118  7.73 | 01110 5 1100 4 3.69
p 9453  1.62 | 01111 5 101110 6 5.95
q 655  0.11 | 10000 5 1111111100 10 9.80
r 35956  6.16 | 10001 5 0010 4 4.02
s 36772  6.30 | 10010 5 1001 4 3.99
t 52396  8.98 | 10011 5 010 3 3.48
u 16218  2.78 | 10100 5 00110 5 5.17
v 5065  0.87 | 10101 5 1111110 7 6.85
w 13835  2.37 | 10110 5 01110 5 5.40
X 666 0.11 | 10111 5 1111111101 10 9.77
y 11849  2.03 | 11000 5 111110 6 5.62
Z 213 0.04 | 11001 5 1111111111 10 11.42
total = 583.426 100 | mean = 5.00 mean = 4.19 | H = 4.16

Table 2. Statistics of letters in ” A Tale of Two Cities” and two codebooks.
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bit (1) in the above string are transmitted incorrectly, decoding leads to the string
“itwalierfttltotimes” with an irritating period out of synchronization. We realize
the need to develop tools for detection and correction of errors. There is a huge
literature on these aspects. Here we only note that some redundancy is needed to
prevent corruption of the whole message caused by a few accidental errors. Indeed,
if we use the fixed length code of Table 2 instead of the optimal code, we are much
better protected against occasional bit flip errors.

Coding is partly of a combinatorial nature due to the requirement of integers
as code-word lengths. For theoretical discussions it is desirable to take the com-
binatorial dimension out of coding. This can be done by allowing arbitrary real
numbers as code-word lengths. We therefore define an idealized code over the al-
phabet A as a map ¢ ~ [z of A into the positive real numbers such that Kraft’s
Inequality holds, i.e. such that

3 > k<L

TEA

The I,’s are thought of as code-word lengths and the idealization lies in accepting
arbitrary real values for the [.’s. If equality holds in Inequality 3 then the code
is said to be compact. Apparently, there is a one-to-one relationship between
compact codes and probability distributions. It is given by the formulas

(4) Iy = —logz Pz 3 Pz = 27k,

When these formulas hold, we say that the code x is adapted to P or that P
matches k.

We can then consider optimal idealized codes, in analogy with the notion of
ordinary (combinatorial) optimal codes. It turns out that an optimal idealized
code is unique. For the example chosen, the idealized code shown in Table 2 in
two-decimal precision is in fact the optimal one. If we use this code, and accept
the interpretation as lengths of idealized code-words, we should use 2.426.739,10
bits to encode the entire novel. If we allow idealized coding, the performance of
other codes should be measured relative to the optimal idealized code. Hence the
redundancy of the fixed length code in Table 2 should be 0.84 rather than 0.81
bits/letter and the redundancy of the Huffman code is 0.03 bits/letter.

1.3 Entropy

The relative frequencies in Table 2 are formally defining a probability distribution
over the 26-letter alphabet. For many considerations it is not important whether a
distribution describes observed relative frequencies or unobserved random events.
Therefore assume that an alphabet A is given with a known probability distribution
P= (px)zEA-

The compression problem of the previous section gives rise to the definition of
the entropy H (P) of P as:



176 Peter Harremoés and Flemming Topsge

(5) H(P) = ménszlmy

€A
it being understood that the minimum is over all idealized codes x (with the
l.’s denoting the idealized code-word lengths). Thus, entropy is minimal average
code-word length understood in an idealized sense. A key result is the analytical
identification of entropy :

THEOREM 1 (First main theorem of information theory). The entropy of P de-
fined by (5) can be expressed analytically as follows:

(6) H(P)=-) plog;ps.
€A

The relation of entropy to coding was emphasized by introducing the concept
of idealized codes. By Theorem 1, the idealized code adapted to P is the optimal
idealized code of a source governed by P. We will return to the duality expressed
by (4) in Section 3.

The idealization in Theorem 1 is a great convenience and no serious restric-
tion. To emphasize this, let us insist, for a moment, to use codes with integer
lengths. Then we can choose code-lengths I, close to —log, p, and ensure in this
way that H(P) < 3 p,l, < H(P) + 1. Moreover, if we consider a source gener-
ating sequences of letters independently according to the distribution P, then the
minimum average code-word length per letter when we consider longer and longer
sequences of letters converges to H(P).

Often, entropy is measured in natural units (“nats”) rather than in bits. In (6)
then, log, should be replaced by In and exponentiation should be with respect to
e rather than 2. Clearly, H in nats equals H in bits multiplied by In2 ~ 0.6931.

1.4 Divergence and redundancy

Assume that you use an idealized code k with code-word lengths I, ; z € A to
represent data but realize — due to new information obtained or otherwise —
that it is better to change to another idealized code, x with code-word lengths
l.;z € A. Redundancy or divergence, which we denote D(x ||), measures the
gain in bits that can be obtained by changing to the new idealized code. The
idea behind the definition is that the preference for x  reflects the belief that this
idealized code could be optimal, i.e. the distribution matching it, P = (p;)zea,
could be the “true” distribution. This suggests the definition

() D) =Y pele— > pal, .

TEA €A
If @ = (gz)zea denotes the distribution matching « (thus @ is the distribution
which you originally found best represented the data) we can express D(x ||«) in
terms of P and  and write D(P||Q) instead. This is the notation mainly found

in the literature. It is the Kullback-Leibler divergence, or just the divergence, from
P to ). We find that
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(8) D(P|Q) = D(x'||x) = prlogz

reh

The quantity is of great significance for many theoretical studies and for ap-
plications. The interpretation focuses on a situation where you start with partial
knowledge and then, somehow, obtain information which makes you change be-
haviour. The properties of the logarithmic function implies that 0 < D(P||Q) with
equality if and only if P = @. This is the most basic inequality of information
theory.

We find that

(9 D pule = H(P)+ D(P|Q),

i.e. actual average code length is the sum of minimal average code length and
divergence. We refer to (9) as the linking identity.

For several applications it is important that divergence makes sense also for
continuous distributions. Formally this can be achieved via a limiting process
based on the discrete case or one may define divergence directly as an integral.
For the present text we will base the exposition on the discrete case and rely on
an intuitive understanding when we comment on the continuous case.

1.5 Mutual information

It is important that key notions such as entropy can be extended from dealing only
with distributions to incorporate also random elements. The entropy of a random
element is defined as the entropy of the corresponding distribution. If the random
element X is defined on a sample space governed by the probability measure P
and X takes values in A, then, denoting the distribution of X by Py, we define
the entropy of X by H(X) = H(Px), i.e

(10) H(X)= =) Px(z)logy Px(z) = - Y P(X = z)logy P(X = 7).

TEA €A

As H(X) only depends on X through its distribution and as it is the actual
values of X which carry semantic information, one must admit that the extension
only contributes moderately to incorporate semantic aspects.

If several random elements are defined on the same probability space, joint en-
tropy such as H(X,Y) makes good sense. So does conditional entropy, H(X|Y),
defined in the natural way as the average of the entropies of the conditional dis-
tributions (here indicated by X|Y =y or by Px}y):

11) H(X|Y) = ZP Y =y)HX|Y =y) = Py(y)H(Pxy)-
Yy
The conditional entropy H(X|Y')} is also called the equivocation of X givenY. It

represents the uncertainty that remains about X after having obtained information
about Y.
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Information theory operates with a number of intuitive identities and inequal-
ities. Here we mention what is often referred to as Shannon’s Identity, (12), and
Shannon’s Inequality, either (13) or (14) below:

(12) H(X,Y) = HX)+H{Y|X),
(13) H(X)Y) < H(X)+H(Y),
(14) HY|X) < H(Y).

Equality holds in (13) and (14) if and only if X and Y are independent (assuming
that the involved entropies are finite). Regarding (13) and (14), a simple proof
depends on the basic inequality D > 0 in connection with (17) and (18) below.

The availability of notions of entropy for random elements is a great help in
many situations. For instance, one may express development in time through a
series X, X2,--- of random elements which could represent bits, letters, words or
other entities.

Consider two random elements, X and Y with our interest attached to X. To
begin with we have no information about X. Assume now that we can obtain
information, not about X, but about Y. Mutual information, I(X;Y'), measures
the amount of information in bits we can obtain about X by knowing Y. At least
three different ideas for a sensible definition are possible: Firstly, as uncertainty
removed, secondly, as average redundancy and thirdly, admittedly less intuitive,
as divergence related to a change of joint distributions. It is a surprising fact that
all suggested definitions give the same quantity. In more detail:

(15) I(X;Y) = H(X) - HX|Y)
(16) =Y PY =y)D(X|Y =y|IX) = > Py(y)D(Px, | Px)
v

Yy
(17) ZD(nyyHPX ®Py).

In (17), Px ® Py denotes the distribution (z,y) ~ Px(x) - Py (y) corresponding
to independence of X and Y.
Rewriting (15) as

(18) H(X)=H(X|Y)+I(X;Y)
and combining with (15) and (12) we realize that
(19) I(X;Y)=I(Y;X).

This symmetry of mutual information has puzzled many authors as it is not
intuitively obvious that information about X, knowing Y quantitatively amounts
to the same as information about Y, knowing X.

Another significant observation is that we may characterize entropy as self-
information since, for Y = X, (15) shows that

(20) H(X)=I(X;X).
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Previously we emphasized that information is always information about something.
So entropy of a random variable is a measure of information in the seemingly
weak sense that this “something” is nothing but the variable itself. Although this
interpretation is self-referential it has turned out to be very useful.

1.6 Data reduction and side information

If, when studying a certain phenomenon, you obtain extra information, referred to
as side information, this results in a data reduction and you will expect quantities
like entropy and divergence to decrease. Sometimes the extra information can be
interpreted as information about the contezt or about the situation.

Shannon’s Inequality (14) can be viewed as a data reduction inequality. There,
the side information was given by a random element. Another way to model side
information is via a partition of the relevant sample space. Recall that a partition
of a set A is a collection of non-empty, non-overlapping subsets of A with union
A; the subsets are referred to as the classes of the partition.

As an example, consider prediction of the two first letters z1,x2 in an English
text and assume that, at some stage, you obtain information about the first letter,
1. As a model you may use the random element X, X» with X expressing the
side information. Or you may consider modeling based on the partition of the
original set of all 26 x 26 = 676 two-letter words into the 26 classes defined by
fixing the first letter.

Consider distributions over a general alphabet A and let # denote a partition
of A. Denote the classes of 8 by A; (with ¢ ranging over some appropriate index
set) and denote the set of classes by JA. In mathematics this is the quotient space
A/6. If P is a source over A, QP denoctes the derived source over JA given by
OP(A;) = P(A;). By the conditional entropy of P given the side information 0
we understand the quantity

(21) H*(P) = P(A:)H(P|A;)
i
with summation over all indices (which could be taken to be summation over GA).

Similarly, if two sources over A are considered, conditional divergence under the
side information 0 is defined by

(22) D°(P|Q) = > P(A)D(PIAi]|Ql4:) .

Simple algebraic manipulations show that the following data reduction identities
hold:

(23) H(P)= H(3P) + H%(P),
(24) D(P|Q) = D(dP|0Q) + D°(PIQ).
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Immediate corollaries are the data reduction inequalities

(25) H(0P) < H(P),
(26) D(OP|0Q) < D(P|Q),

as well as the nequalities under conditioning

(27) H®(P) < H(P),
(28) D*(P||Q) < D(P||Q).

As a more special corollary of (26) we mention Pinsker’s Inequality
1
(29) D(PQ) 2 3VA(PQ)

where V(P,Q) = >_|p: — ¢.| denotes total variation between P and Q. This
inequality is important as the basic notion of convergence of distributions in an
information theoretical sense, called convergence in information and defined by the
requirement D(P,||P) — 0, is then seen to imply convergence in total variation,
V(Pp, P} — 0 which is an important and well-known concept.

1.7 Mizing

Another important process, which applies to distributions is that of mizing. Intu-
itively one should think that mixing results in more “smeared out” distributions,
hence should result in an increase in entropy. Regarding divergence, the “smear-
ing out” should have a tendency to bring distributions closer together, hence in
diminishing divergence.

To be precise, consider a mixture, say a finite mixture

N
(30) Po=) anP,
n=1

of N distributions over A (thus, the &’s are non-negative and add to 1).

Just as in the case of data reduction, certain natural inequalities suggest them-
selves and these can be derived from simple identities. In fact, from the linking
identity (9), you easily derive the following identities:

N

N N
(31) H (ZanP’n> = ZanH(Pn>+Za'nD(Pn”PO)»
n=1 n=1

N N " N
(32) Y anD(P]lQ) =D (Z anPn“Q> + Y anD(Pal| o).
n=1 n=1 n=1

As corollaries we see that entropy P ~ H(P) is concave and divergence P m
D(P||Q) convex for fixed Q:
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N
(33) (zan ) S auHry,
N

(34) D(Zanpnucz) 2 anD(F]Q).
n=1

The common term which appears in (31) and in (32) is of importance in its own
right, and has particular significance for an even mixture Py = %Pl + %Pz when
it is called Jensen-Shannon divergence. Notation and definition is as follows:

(35) JSD(Py, Ps) = —;-D(P1||Po) + %D(PQHPO).

Jensen-Shannon divergence is a smoothed and symmetrized version of diver-
gence. In fact, it is the square of a metric, which metrizes convergence in total
variation.

1.8 Compression of correlated data

A basic theme has been compression of data. This guided us via coding to key
quantities of information theory. The simplest situation concerns a single source,
but the concepts can be applied also in more complicated cases when several
sources interact and produce correlated data. This already emerged from the
definitions involving conditioning.

As a more concrete type of application we point to compression of data in a
multiple access channel. To simplify, assume that there are only two senders and
one receiver. Sender 1 knows the value of the random variable X and Sender 2 the
value of Y. The random variables may be correlated. The same channel, assumed
noiseless, is available to both senders. There is only one receiver. If there were no
collaboration between the senders, Sender 1 could, optimally compress the data
to the rate R; = H(X) bits and Sender 2 to the rate Ry = H(Y') bits, resulting in
a joint rate of Ry + Re = H(X) + H(Y') bits needed for the receiver to know both
X and Y. This should be compared to the theoretically optimal joint compression
of the joint variable (X,Y"), which is

(36) H(X,Y)=H(X)+HY) - I(X;Y)
—HX)+H(Y | X)=H(X|Y)+H(Y).

In fact, in a remarkable paper [Slepian and Wolf, 1973], Slepian and Wolf showed
that it is possible for Sender 1 to compress to H (X) bits and independently for
Sender 2 to compress to H (Y | X) bits, in such a way that the receiver is able to
recover X and Y. Similarly, Sender 1 can compress to H (X | Y) bits and Sender
2 to H (Y) bits, and the receiver is still able to recover X and Y. As it is possible
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Figure 1. Compression region obtained by Slepian-Wolf coding.

to introduce timesharing between the two protocols described this leads to the
following result: The rates of compression R; and Ry are achievable if and only if

(37) Ri>H(X|Y)
Ry > H(Y | X)
Ri+ R, > H(X,)Y).

For a technically correct result, one has to consider multiple outcomes of X and
Y and also to allow a small probability of error when X and Y are recovered.

Note that the result does not tell which of the two protocols is the best one or
whether it is one of the timesharing protocols.

1.9 Other definitions of basic information theoretical quantities

The key definitions of information theory are those rooted in Shannon’s work.
There are, however, many other ways of defining entropy and related quantities.
Here we shall introduce certain entropy and divergence measures going back to
Rényi [Rényi, 1961]. These measures appear in many studies, c¢f. [Cambell, 1965],
[Csiszar, 1995] and [Arndt, 2001]. Moreover, they have operational definitions
which relate directly to coding and as such may be considered to be members of
the “Shannon family” of information measures.

Previously, much attention was given to the axiomatic approach. In our opinion
this often hides essential aspects. When possible, an approach based on operational
definitions is preferable.

Consider two probability distributions P and @) over the discrete alphabet A
and a parameter « €]0,1[. Let A and « be the compact codes adapted to P and
Q, respectively. If we want to express belief in P as well as in @, a possibility is to
consider the convex mixture K = oA + (1 — a)y. Then & is also an idealized code
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but it is not compact except when A = . However, k — d is a compact code with
d > 0 defined by

(38) d = —log, (Z 2-"@)) .

TEA

The constant d is a measure of discrepancy between P and ). We define the
Rényi divergence of order o between P and Q, denoted Do (P||Q), to be 12=d or,
in terms of P and Q,

(39) Da(PQ) = —— log, (Zpgqi‘“)

a—1
TEA

The chosen normalization ensures that we regain the usual Kullback-Leibler di-
vergence as the limit of D, for ¢ — 1. Formally, (39) makes sense for all real
Q.

One may consider divergence as the most fundamental concept of information
theory. Then mutual information and entropy appear as derived concepts. For
a finite alphabet A, entropy differences may be defined directly from divergence
using the guiding equation

(40) Do(P||U) = Ho(U) — Ha(P),

with U the uniform distribution over A. Then Rényi’s entropy of P of order « is
obtained if one adds the assumption that the entropy of a uniform distribution for
any sensible notion of entropy must be the Hartley entropy, the logarithm of the
size of the alphabet. Doing that, one finds that (40) leads to the quantity

1
(41) Ho(P)=7——logs D 5.
z€A

It is arguably more satisfactory first to define mutual information and then to
define entropy as self-information, cf. (20). If one bases mutual information on
(16) one will end up with the Rényi entropy of order ¢, whereas, if one uses (17)
as the basis for mutual information, one ends up with Rényi entropy, not of order
a though, but of order 2 — a. Thus, leaving the classical Shannon case, it appears
that entropy “splits up” in H, and Ho_,.

In certain parts of non-classical statistical physics the quantity obtained from
(41) by using the approximation Inu = » — 1 has attached much interest, but a
direct operational definition is not yet clear. For more on this form of entropy, ,
the Tsallis entropy see the contribution on physics in this handbook.

The considerations in this section point to some difficulties when leaving purely
classical grounds. A complete clarification must depend on operational definitions
and has to await further progress.
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2 BEYOND YES AND NO

Coding is used for storing, transmission and reconstruction of information. If the
information is carried by a continuous variable, such as a 2-dimensional image or
the result of a measurement of a physical quantity, perfect storage is not possible
in a digital medium. This poses serious technical problems for which there is no
universal solution. These problems are handled in rate-distortion theory. The
interest for this Handbook lies in the fundamental problem of the nature of the
world. Discrete or continuous? Does modeling with continuous quantities make
sense? Though rate-distortion theory does not contribute to answer the philosoph-
ical questions it does give a clue to what is possible if you use modeling by the
continuous.

2.1 Rate distortion theory

Consider a continuous random variable X with values in the source alphabet A
and with distribution Px. In simple examples, A is one of the Euclidean spaces
R™ or a subspace thereof but more complicated settings may arise, for instance in
image analysis. The continuous character means that 3 ., Px(z) <1 (typically,
this sum is 0).

The treatment of problems of coding and reconstruction of continuous data
builds on a natural idea of quantization. Abstractly, this operates with a finite
reconstruction alphabet B, and a quantizer ¢ : A — B which maps a € A into its
reconstruction point b = ¢(a). Considering, for each b € B, the set of a € A with
#{a) = b we realize that this defines a partition of A. For simplicity we shall only
consider the case when B is a subset of A and ¢(b) = b for each b € B. The idea
is illustrated by Figure 2.

A rate-distortion code is an idealized code over B. Associated with a rate-
distortion code we consider the length function, which maps z € A to the length
of the “code-word” associated with ¢(z). The reconstruction points are used to
define the decoding of the code in an obvious manner. If we ignore the requirement
to choose reconstruction points, this construction amounts to the same as a data
reduction, cf. Section 1.6.

In order to study the quality of reconstruction we introduce a distortion function
d defined on A (formally on A x B). This we may also think of as an expression of
the relevance — with a high degree of relevance corresponding to a small distortion.
The quantity of interest is the distortion d{x, &) with & = ¢(z). Maximizing over A
or taking mean values over A with respect to Px we obtain the mazimal distortion
and the mean distortion. In practice, e.g. in image analysis, it is often difficult
to specify sensible distortion functions. Anyhow, the set-up in rate distortion
theory, especially the choice of distortion function, may be seen as one way to
build semantic elements into information theory.

As examples of distortion measures on R we mention squared error distortion
d(z,2) = (z —2)* and Hamming distortion, which is 0 if # = = and 1 other-
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Figure 2. Two quantizers with partitions and reconstruction points shown. It is
far from obvious which of the quantizers is the best one.

wise. Thus Hamming distortion tells whether a reproduction is perfect or not
whereas squared error distortion weighs small geometric errors as being of small
significance. Hamming distortion is the distortion function used in ordinary in-
formation theory and corresponds to the situation where one only distinguishes
between “yes” and “no” or “black” and “white”.

By B (z,¢) we denote the distortion ball around x with radius ¢, i.e. the set of
y such that d(z,y) < e. The following result is analogous to Kraft’s inequality as
expressed by (2):

THEOREM 2. Letl: X — Ry be the length function of a rate distortion code
with mazimal distortion . Then there exists a probability distribution P such that,
forallx € A,

(42) L(z) = —logy (P (B (z,¢))) -

The converse is only partially true, but holds asymptotically if one considers
average length of length functions corresponding to long sequences of inputs. We
see that a small € corresponds to large code lengths. The inequality should be
considered as a distortion version of Kraft’s inequality, and it extends the duality
(4) to cover also rate-distortion.

If a probability distribution on the source alphabet A is given, then the quantizer
induces a probability distribution on the reconstruction alphabet B. The rate of
the quantizer is defined as the entropy of the induced probability distribution, i.e.
as R = H(¢(Px)) (here, ¢(Px) denotes the distribution of ¢). A high rate reflects
a fine resolution. Consider, as above, a fixed continuous random variable with
distribution Pyx. In order to characterize the performance of any quantization
method as described above it is reasonable to use two quantities, the rate R and
the mean distortion D = F (d(X X )) . The set of feasible values of (D, R) forms
the rate-distortion region for the distribution Px. If distortion is small, the rate
must be large. Therefore, not all points in R? are feasible. The borderline between
feasible and infeasible points is called the rate-distortion curve and is most often

expressed as the rate-distortion function, cf. Figure 3. It describes the optimal
trade-off between distortion and rate.
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Figure 3. Rate distortion function for a Gaussain distribution.

In special cases it is possible to calculate the rate distortion function exactly
using Shannon’s celebrated Rate Distortion Theorem. For instance, let X be Gaus-
sian with variance 2. Then the rate-distortion function is given by

2
0 d > o?

In other cases the rate-distortion function can be approximated using numerical
methods. In cases where the rate-distortion function can be determined the results
from the previous sections can be extended to a continuous setting. In practice
it has turned out to be quite difficult to implement these theoretical ideas. The
reason is that practical problems typically involve a high number of variables, and
it is very difficult to specify distortion measures and probability distributions on
these high-dimensional spaces.

Let X be a random variable with probability density f. The differential entropy
of X is given by the formula

(44) h(X) =~ / £ (z)logy f () d.

If we use squared error distortion, the rate-distortion function is given, approxi-
mately, by

(45) R(d) ~ h(X) - %logQ (2me - d)

for small values of d. This also gives an interpretation of the differential entropy
as



The Quantitative Theory of Information 187

(46) h(X)~R(d)+ %logQ (27e-d) .

In fact, the right hand side converges to h(X) for d tending to zero.

2.2  Aspects of quantum information theory

Classical information theory is based on natural concepts and tools from analysis
and probability theory. The first many years one did not take the physical dimen-
sion into consideration. It was believed that the nature of the physical devices
used as carriers of information would not have any impact on the theory itself. In
particular, it was expected that the classical theory would carry over and apply to
quantum systems without essential changes as soon as the appropriate concepts
had been identified. In the 70’ties and 80’ties studies looking into these questions
were initiated and a number of preliminary results established. However, it was
not until the 90’ties that the new quantum information theory really took off and
gained momentum. This was partly due to progress by experimental physicists.

Today, quantum information theory is a thriving field, but still containing con-
troversies and basic open questions. The theory is fundamentally different from
the classical theory. The new aspects are interesting from a mathematical, a phys-
ical as well as a purely philosophical point of view. The theory brings us beyond
the “yes” and “no” tied to the classical theory and bound to the fundamental unit
of a bit.

A guantum experiment provides a connection between the preparation of the sys-
tem and the possible measurements on the system. The focus on measurements
forms an extra layer between the system and the observer which is necessary in
order to enable meaningful statements about the system. The set-up may be con-
ceived as a “black box”, a “coupling” or an “information channel” between the
preparation and the measuring device. Two preparations represent the same state
of the system if the preparations cannot be distinguished by any available mea-
surement. Defined in this way, the set of all states, the state space, depends on the
set of possible measurements. If, therefore, an experiment involves a preparation
and a measurement on an electron and the state found is S, it will be misleading
to say that “the electron is in state S”. Instead, you may say that “our knowledge
about the electron is completely described by the state S”.

Usually, in quantum physics, the state space can be identified with a set of
density matrices (or operators). For the simplest quantum systems, the state
space consists of 2 x 2 density matrices, matrices of the form

1 .
o (375 472).

where the real numbers «, 8 and ~ satisfy the relation

(48) o®+ > ++° <

NP
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(with ¢ the complex imaginary unit)'. Geometrically, this state space is a ball.
States on the boundary of the state space are pure states whereas states in the
interior are mized states. The principle behind mézing is the following: Consider
two possible preparations. Construct a new preparation by flipping a coin and
choose the first preparation if the coin shows “head” and the second preparation
if the coin shows “tail”. In this way, the resulting preparation is constructed by
mixing. A mixed state can always be represented as a mixture of pure states.
In classical physics, the normal situation is that any state is a unique mixture
of pure states. A special feature of quantum physics is that a mixed state can
always be obtained in several ways as a mixture of pure states. This implies
that, if one observes a mixed state, it is theoretically impossible to infer which
preparations were involved in the mixing. This is a fundamental new feature of
quantum information theory.

The fact that the state space has a high degree of symmetry — as was the
case with the ball above — is no coincidence. In general, symmetries in the state
space reflect that physical operations like rotations have to leave the state space
invariant.

A simple system as described by matrices of the form (47) is called a qubit.
Physically, a qubit may be implemented by a particle of spin % with a, 8 and ~
indicating direction of the spin.

The qubit is the unit of quantum information theory. This is a natural choice
of unit as one can device a protocol which, with high fidelity, transforms any
quantum information system into a system involving only qubits. Quite parallel
to the classical theory, main tasks of quantum information theory are then to
represent complicated quantum systems by qubits and to consider representation,
transmission and reconstruction of states.

It is easy to encode a bit into a qubit. By orthogonality of spin up and spin
down, one can perform a measurement which recovers the bit perfectly. In this way
a preparation described by the probability distribution (% + a, % — o) is mapped
into the density matrix

o (4 1)

This shows how bits and, more generally, any classical information system can
be embedded in quantum systems. Thus quantum information theory contains
classical information theory. The two theories are not equivalent as there is no
way in which a qubit can be represented by classical bits.

In order to manipulate quantum information, we need a quantum computer.
Recall that a classical computer is based on gates which operates on one or two
bits. Similar gates can be constructed also for the manipulation of qubits but there
is an important restriction of reversibility on the gates in a quantum computer.

1A description in terms of vectors in Hilbert space is also possible, but the density matrices
express in a better way essential aspects related to mixing and measurements.
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According to this restriction, to each quantum gate, there should correspond a
reverse gate which transforms the output into the input. For instance it is not
possible to transform two qubits into one qubit. Similarly it is not possible to
transform one qubit into two qubits. This is called the No-cloning Principle.
Thus quantum information cannot be created, copied or destroyed. In this sense
quantum information is physical and behaves somewhat like a liquid.

2.8 Entanglement

In order to explain, if only briefly, the important notion of entanglement, consider a
system composed of initially independent subsystems, with an associated observer
who can prepare a quantum state. If the observers are allowed to manipulate
the states by local quantum operations and classical communication, the states of
the total system which are achievable in this way are said to be separable. If the
observers are allowed also to exchange quantum information {(via qubits or other
non-local quantum operations) then the joint system may be described by states
which are not separable. These states are said to be entangled.

The electrons in a Helium atom have total spin 0. This means that if one
of the electrons is measured to have spin up, the other must have spin down (if
measured in the same direction). The two electrons behave like one and such a
pair is called an Finstein-Podolsky-Rosen pair, an EPR-pair for short. This is the
simplest example of an entangled system.

Above, we saw that bits can be encoded into qubits, but qubits cannot be en-
coded into bits with only classical resources available. If entanglement is available
to Alice and Bob in a quantum communication system, this leads to special pos-
sibilities. In this case two bits may be encoded into one qubit. This is called
super-dense coding. The two bits are encoded into two qubits in the sense that
the decoder (Bob) receives two qubits. The new thing is that the first qubit (which
is one of the particles in an EPR-pair) may be received by both Alice and Bob
before Alice knows which bit to send. Although the sharing of an EPR-pair does
not represent classical communication, it is a kind of communication that makes
the measurement apparatus more sensitive and enables measurements which would
not otherwise be possible.

If Alice and Bob share an EPR-pair it is also possible to encode a qubit into
two bits. This process is called quantum teleportation. The reason for this name is
that our entire knowledge about the quantum particle is contained in the density
matrix and at the output we receive a particle with exactly the same density ma-
trix. One may say that the particle was destroyed at the input and reconstructed
at the output, but nothing is lost by the destruction and reconstruction, so many
physicists use the terminology that the particle was teleported from the input to
the output. This leads to the physically and philosophically interesting question:
Can a particle be identified with the knowledge we have about the particle? Math-
ematically this is not of significance because all calculations concern the knowledge
we have about the system as represented by its density matrix.
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3 DUALITY BETWEEN TRUTH AND DESCRIPTION

It is important to distinguish between ontology, how the world is, and epistemology,
observations of the world. Niels Bohr said that physics deals with what can be said
about nature, not how nature is. The positivists take another position: Physics
should uncover objective knowledge about nature. Ontology and epistemology are
usually considered as opposed, but information theory offers a position in between.
Truth and description are different, but there is a duality between the concepts.
To any “true” model there exists an optimal description and, to any description,
there exists a model of the world such that the description is optimal if the model is
“¢true”. Here the word true is in quotation marks because it makes associations to
ontology though objective truth is disputable. Instead of speaking about “truth”
we shall focus on observations — those already made and observations planned
for the future.

3.1 Elements of game theory

As a prelude to the subsections to follow we provide a short introduction to certain
parts of game theory.

In game theory situations are modeled where “players” interact in such a way
that the satisfaction of each player (or group of players) depends on actions, strate-
gies, chosen by all players. Typically, the players are individuals, but animals,
machines or other entities could also be considered. We shall only deal with static
games, games with no succession of strategic choices. The many variants of the
theory operates with different rules regarding the possible actions of the players
and the flow of information among them.

A central theme is the investigation of possibilities for rational behaviour of the
players. Here, the notion of eguilibrium comes in. The idea is that if, somehow,
the players can decide under the rules of the game to choose specific strategies this
is a sign of stability and features associated with such a collective choice can be
expected to be observed. For our treatment of game theory it is immaterial how
the decisions of the players are arrived at.

Assume that there are n players and that the cost or loss for player i is given by
a real-valued loss function (21, -+ ,2,) ~ ci(z1,- -+ ,Zn) where z1,- -+, Z, repre-
sents the strategic choices by the players. The set of strategies x1,- -« ,x, defines
a Nash equilibrium if no player can benefit from a change of strategy provided the
other players stick to their strategies. For example, for Player 1, no strategy x}
different from z; will yield a lower loss, so ¢y (7,2, -+ ,2n) > c1(z1,Z2, - , %)
must hold in a Nash equilibrium. This notion of equilibrium is related to non-
cooperation among the players. It may well be that, for strategies which obey the
criteria of a Nash equilibrium, two or more of the players may jointly benefit from
a change of their strategies whereas no single player cannot benefit from such a
change.
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scissors | paper | stone
scissors 0 -1 1
paper 1 0 -1
stone -1 1 0

Table 3. Loss function in the scissors-paper-stone game

A Nash equilibrium may not exist. However, a general result guarantees that a,
often unique, Nash equilibrium exists if certain convexity assumptions regarding
the loss functions are fulfilled. These conditions normally reflect acceptance of
mized strategies or randomization.

EXAMPLE 3. Consider the two-person scissors-paper-stone game. The loss fune-
tion for, say, Player 1 is shown in Table 3. We assume that ¢co = —c¢;. This is an
instance of a two-person zero-sum game, reflecting that what is good for the one
player is bad — and equally much so — for the other.

Clearly, there is no Nash equilibrium for this game, no set of strategies you can
expect the players to agree on. The game is psychological in nature and does not
encourage rational considerations. However, if the game is repeated many times
and we allow randomization and use averaging to define the new loss functions,
we find that there is a unique choice of strategies which yields a Nash equilibrium,
viz. for both players to choose among the three “pure strategies” with equal
probabilities.

Games such as the psychologically thrilling scissors-paper-stone game are of-
ten best treated by invoking methods of artificial intelligence, learning theory,
non-classical logic and psychology. We note that by allowing randomization, an
initial game of hazard is turned into a conflict situation which encourages rational
behaviour, hence opens up for quantitative statements.

3.2  Games of information

Many problems of information theory involve optimization in a situations that
can be modelled as conflicts. Among the relevant problems we mention predic-
tion, universal coding, source coding, cryptography and, as the key case we shall
consider, the mazimum entropy principle. The relevant games for these prob-
lems are among the simplest of game theory, the two-person zero-sum games, cf.
Example 3 above.

For these games of information one of the players represents “you” as a person
seeking information and the other represents the area you are seeking information
about. We choose to refer to the players as Observer and Nature, respectively. In
any given context you may prefer to switch to other names, say statistician/model,
physicist /system, mother /child, investor /market or what the case may be. Strate-
gies available to Observer are referred to as descriptors and strategies available to
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Nature are called worlds. The set of strategies available to the two players are de-
noted D, respectively W. We refer to W as the set of possible worlds. Our preferred
generic notation for descriptors and worlds are, respectively « and P which, later,
will correspond to, respectively, idealized codes and probability distributions.

Seen from the point of view of Observer, the loss function (P,k) ~~ ¢(P, &)
represents the cost in some suitable sense when the world chosen by Nature is
P and the descriptor chosen by Observer is k. The zero-sum character of the
game dictates that we take —c as the loss function for Nature. Then, the Nash
equilibrium condition for a pair of strategies (P*,s*) amounts to the validity of
the saddle-value inequalities

(50) ¢(P,k*} < ¢(P*,r*) < c(P*,k) forall Pe W,k € D.

The risk associated with Observers choice kK € D is defined as the maximal
possible cost:

(51) r(Q) = max c(P, ),
and the mintmal risk is defined by

(52) Tmin = Eéi% r(Q) .

A descriptor k € D is optimal if 7(Q) = rmin-
Similar quantities for Nature are the gain (more accurately, the guaranteed gain)

(53) h(P)=mine(P;),

and the mazrimal gain

(54) hpmar = max h(P).

The requirement of optimality for Nature therefore amounts to the equality h(P) =
hmar .
Quite generally, the mini-maz inequality

(55) hmaz < Tmin

holds. If there is equality in (55), the common value (assumed finite) is simply
called the value of the game. Existence of the value is a kind of equilibrium:

THEOREM 4. If a game of information has a Nash equilibrium, the value of the
game exists and Observer and Nature both have optimal strategies.

In fact, the existence of a Nash equilibrium is also necessary for the conclusion
of the theorem. The search for a Nash equilibrium is, therefore, quite important.
In some special cases, Nash equilibria are related to robust descriptors by which
we mean descriptors £ € D such that, for some finite constant h, ¢(P, k) = h for
all possible worlds P 2.

2These strategies correspond closely to the ezponential families known from statistics.
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We now introduce an additional assumption of duality by requiring that every
world has a best descriptor. In more detail we require that to any possible world
Py, there exists a descriptor kg, the descriptor adapted to Py, such that

(56) min e(Po, k) = ¢(FPo, Ko) ,

and further, we assume that the minimum is only attained for k = &g (unless
¢(Py, kp) = o). The condition implies that the gain associated with Py is given
by h(Py) = ¢(Py, ko). Also note that the right hand inequality of the saddle value
inequalities (50) is automatic under this condition (with x* the descriptor adapted
to P*). It is easy to establish the following simple, yet powerful result:

THEOREM 5. Assume that P* is a possible world and that the descriptor x*
adapted to P* ts robust. Then the pair (P*,k*) is the unique Nash equiltbrium
pair.

Thus, in the search for Nash equilibrium strategies, one may first investigate if
robust descriptors can be found.

3.8 The mazimum entropy principle

Consider the set D of all idealized codes k = (I;),ca over the discrete alphabet A
and let there be given a set W of distributions over A. Take average code length
as cost function, i.e.

(57) C(P: K’) = Zpa:lz .

xCA

By the linking identity (9), the duality requirements related to (56) are satisfied
and also, we realize that the gain associated with P € W is nothing but the entropy
of P. Therefore, hy.q, is the mazimum entropy value given by

(58) Hmaz = Hmaz(W) = sup H(P)
Pew

and an optimal strategy for Nature is the same as a mazimum entropy distribu-
tion, a distribution P* € W with H(P*) = H,,,,. In this way, game theoretical
cousiderations have led to a derivation of the mazrimum entropy principle — which
encourages the choice of a maximum entropy distribution as the preferred distri-
bution to work with.

EXAMPLE 6. Assume that the alphabet A is finite with n elements and let W be
the set of all distributions over A. Clearly, the constant descriptor k = (logan)zea
is robust and hence, by Theorem 5 this descriptor is optimal for Observer and
the associated distribution, i.e. the uniform distribution, is the maximum entropy
distribution.

EXAMPLE 7. Let A = {0,1,2,---}, let A > 0 and consider the set W of all
distributions with mean value A. Let £ = (l5)n>0 be an idealized code. Clearly, if
& is of the form
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(59) kpn=a+fn

then (P, k) = a+ B for all P € W, hence & is robust. The constant o can be
determined from (3) and by a proper choice of £ one finds that the associated
distribution is one of the possible worlds. This then, again by Theorem 5, must be
the maximum entropy distribution. Going through the calculations one finds that
for this example, the maximum entropy distribution is the geometric distribution
with mean value A, i.e. the distribution P* = (p};).>0 given by

1
A+1°
The length function for the optimal descriptor is given by

A+1
A

and the maximum entropy value is

(60) p;, =pq"withp=1-q=

(61) I =logy(A+1) +nlog,

A+1
A

(62) Hpmaz = loga(A+ 1)+ Alog,

The overall philosophy of information theoretical inference can be illuminated
by the above example. To do so, consider a dialogue between the statistician (S)
and the information theorist (IT):

S: Can you help me to identify the distribution behind some interesting data I am
studying?

IT: OK, let me try. What do you know?

S: All observed values are non-negative integers.

IT: What else?

S: Well, I have reasons to believe that the mean value is 2.3.

IT: What more?

S: Nothing more.

IT: Are you sure?

S: I am!

IT: This then indicates the geometric distribution.

S: What! You are pulling my leg! This is a very special distribution and there are
many, many other distributions which are consistent with my observations.

IT: Of course. But I am serious. In fact, any other distribution would mean that
you would have known something more.

S: Hmmm. So the geometric distribution is the true distribution.

IT: I did not say that. The true distribution we cannot know about.

S: But what then did you say — or mean to say?

IT: Well, in more detail, certainty comes from observation. Based on your infor-
mation, the best descriptor for you, until further observations are made, is the one
adapted to the geometric distribution. In case you use any other descriptor there
is a risk of a higher cost.
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S: This takes the focus away from the phenomenon I am studying. Instead, you
make statements about my behaviour.

IT: Quite right. “Truth” and “reality” are human imaginations. All you can do is
to make careful observations and reflect on what you see as best you can.

S: Hmmmm. You are moving the focus. Instead of all your philosophical talk I
would like to think more pragmatically that the geometric distribution is indeed
the true one. Then the variance should be about 7.6. I will go and check that.
IT: Good idea.

S: But what now if my data indicate a different variance?

IT: Well, then you will know something more, will you not? And I will change
my opinion and point you to a better descriptor and tell you about the associated
distribution in case you care to know.

S: But this could go on and on with revisions of opinion ever so often.’

IT: Yes, but perhaps you should also consider what you are willing to know. Pos-
sibly I should direct you to a friend of mine, expert in complexity theory.

S: Good heavens no. Another expert! You have confused me sufficiently. But
thanks for your time, anyhow. Goodbyel!

There are interesting models which cannot be handled by Theorem 5. For
some of these, a Nash equilibrium is unattainable though the value of the game
exists. For these games Observer, typically, has a unique optimal strategy, say the
idealized code k*. Further, the world associated with x*, P*, is an attractor for
Nature in the sense that any attempt to define a maximum entropy distribution
must converge to P*. One will expect that H (P*) = Hp.. but an interesting
phenomenon of collapse of entropy with H (P*) < Hy,,x may occur.

Models with collapse of entropy appear at a first glance to be undesirable. But
this is not the case.

Firstly, for such models Nature may well have chosen the strategy P* (even
though a better match to the choice £* by Observer is possible). Since why should
Nature be influenced by actions available for the Observer, a mere human? Thus,
the circumstances do not encourage a change of strategies and may therefore be
conceived as stable. A second reason why such models are interesting is that they
allow approximations to the attractor at a much higher entropy level than the
level of the attractor itself. This is a sign of flexibility. Thus, we do not only have
stability as in more classical models but also a desirable flexibility. An instance
of this has been suggested in the modeling of natural languages at the lowest
semantic level, that of words, cf. [Harremoés and Topsge, 2001; Harremoés and
Topsge, 2006).

We may summarize by saying that Nature and Observer have different roles
and -the game is not so much a conflict between the two players understood in
the usual common sense but rather a conflict governed by duality considerations
between Observer and Observers own thoughts about Nature.
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3.4 Unwversal coding

Consider again the problem of coding the letters of the English alphabet. If the
source is Dickens “A Tale of Two Cities” and if we consider idealized coding, we
know how to proceed, viz. to adapt the idealized code to the known data as shown
in Table 2. But if we want to design an idealized code so as to deal with other
sources, perhaps corresponding to other types of texts, it is not so clear what to
do. We shall now show how the game theoretical approach can also be used to
attack this problem.

Let Py,---, Py be the distributions related to the possible sources. If we take
{Pi, -+, Pn} asthe set of possible worlds for Nature, we have a situation of hazard
similar to the scissors-paper-stone game, Example 3. We therefore randomize and
take instead the set of all distributions o = (an)n<n over {Pi,---, Py} as the
set W of possible worlds. As the set D of descriptors, we here find it convenient,
instead of idealized codes, to consider the corresponding set of distributions. Thus,
D is the set of all distributions QQ over the alphabet. Finally, as cost function we
take ¢ defined by

(63) c(o,k) = > axD(PllQ).

n<N

This time, the duality requirements related to (56) are satisfied due to the iden-
tity (32) which also identifies h(a) with a certain mutual information. Of special
interest for this game is the identification of 7, as the mini-mazr redundancy

(64) Tmin = glelg glsag/c D(P.||1@).

The identification of Nash equilibrium strategies can sometimes be based on
Theorem 5 but more often one has to use a more refined approach based on (50).

3.5 Other games of information

The game theoretical approach applies in a number of other situations. Of partic-
ular interest perhaps are games where, apart from a descriptor as considered up to
now, a prior world is also known to Observer. The goal then is to find a suitable
posterior world and in so doing one defines an appropriate measure of the gain
associated with updating of the prior. For these games it is thus more appropriate
to work with an objective function given as a gain rather than a cost. The games
indicated adopt a Bayesian view, well known from statistics.

3.6 Mazimum entropy in physics

The word entropy in information theory comes from physics. It was introduced
by Clausius in thermodynamics. In thermodynamics the definition is purely oper-
ational:
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_dQ
)

It is a macroscopic quantity you can measure, which is conserved during reversible
processes, but increases during irreversible processes in isolated systems. If the
entropy has reached its maximum, no more irreversible processes can take place.
Often one says that “entropy increases to its maximum” but the process may be
extremely slow so that the validity of this statement is of limited interest. Classical
equilibrium thermodynamics is only able to describe reversible processes in detail,
and irreversible processes are considered as a kind of black boxes. This presents
a paradox because reversible processes have speed zero and hence the entropy
is constant. In practice equilibrium thermodynamics is a good approximation
to many real world processes. Equilibrium thermodynamics can be extended to
processes near equilibrium, which solves some of the subtleties but not all.

(65) dS

EXAMPLE 8. An ideal gas is enclosed in a cylinder at an absolute temperature
T'. The volume of the the cylinder is increased to j times the original volume using
a piston, and the temperature is kept fixed. In order to measure the change in
entropy, the piston should be moved very slowly. If the system had been isolated
this would result in a decrease in temperature. Therefore you have to slowly add
heat. This will result in a entropy increase proportional to In j.

Bolzmann and Gibbs invented statistical mechanics. In statistical mechanics
one works with two levels of description. The macroscopic level corresponding to
thermodynamics and the microscopic level corresponding to Newtonian (or quan-
tum) mechanics. For instance absolute temperature (a macroscopic quantity) is
identified with average kinetic energy. The main task then is to deduce macro-
scopic properties from microscopic ones or the other way round. This works quite
well but also introduces new complications. Typically, the macroscopic quanti-
ties are identified as average values of microscopic ones. Thus thermodynamic
variables that were previously considered as deterministic quantities have to be
replaced by random variables. The huge number of molecules (typically of the or-
der 102%) implies that the average is close to the mean value with high probability.
Boltzmann observed that

(66) S ~ In (IV)

where S denotes the entropy of a macro state and N denotes the number of micro
states that give exactly that macro state. Thus the maximum entropy distribution
corresponds to the macrostate with the highest number of microstates. Normally
one assigns equal probability to all micro states. Then the maximum entropy
distribution corresponds to the most probable macro state.

EXAMPLE 9. Consider Example 8 again. In the j-fold expansion, each of the
n molecules is now allowed in % times as many states as before. Therefore the
difference in entropy is proportional to

(67) Inj” =nlnj.
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EXAMPLE 10. Assume that we know the temperature of a gas, hence the mean
kinetic energy. The energy of a molecule is 1/2 m ||v||> where |v]| is the length of
the 3-dimensional velocity vector v. The maximum entropy distribution on velocity
vectors with given mean length is a 3-dimensional Gaussian distribution. Then
the probability distribution of the length ||v|| is given by the Maxwell distribution
with density

3/2 ,
(68) 2B p2p-s7,
w

Often it is convenient to work with (Helmholtz) free energy A instead of entropy.
One can prove that

(69) A— Aeq = kT - D(P||Pey),

where P is the actual state and P, is the corresponding equilibrium state. Hence
the amount of information we know about the actual state being different from
the equilibrium state can be extracted as energy. The absolute temperature tells
how much energy can be extracted if we have one bit of information.

Jaynes introduced the maximum entropy principle as a general principle [Jaynes,
1957]. Previously, the physicists tried to explain why entropy is increasing. Jaynes
turned the arguments upside down. Maximum entropy is a fundamental principle,
so if we know nothing else, we better describe a system as being in the maximum
entropy state. If we do not describe the system as being in its maximum entropy
state this would correspond to knowing something more, cf. Section 3.3. Then,
the system will be governed by the maximum entropy distribution among all
distributions that also satisfy these extra conditions. In a closed thermodynamical
system we only know the initial distribution. If the system undergoes a time
evolution then our knowledge about the present state will decrease. Thus, the
number of restrictions on the distribution will decrease and the set of feasible
distributions will increase, resulting in an increase of the entropy.

3.7 Gibbs conditioning principle

Apart from the considerations of Section 3.3, there are some theorems, which
support Jaynes’ maximum entropy principle. Assume that we have a system which
can be in one of k states. As a prior distribution on the k states we use the uniform
distribution. Let X be a random variable with values in the set. Somehow we
get the information that the mean value of X is A which is different from the
mean value when the uniform distribution is used. We are interested in a new
distribution that takes the new information into account. Let C' denote the set of
feasible distributions, i.e. distributions for which the mean value of X is A. Jaynes
suggests to use the maximum entropy distribution as the new distribution.

One can also argue as follows. How can we actually know the mean value of
X? Somehow we must have measured the average value of X. Consider a number
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Number Prior Simulations Max. ent.
of eyes | probability | 1 | 10 | 100 | 1000 | distribution
1 0.167 0 0 12 102 0.103
2 0.167 0l 2 14 125 0.123
3 0.167 0 2 11 147 0.146
4 0.167 11 3 15 172 0.174
5 0.167 0] 0 21 205 0.207
6 0.167 0] 3 27 249 0.247

Table 4. Simulation of 1, 10, 100 and 1000 outcomes of a die under the condition
that the average number of eyes is exactly 4.

of independent identically distributed variables X1, X4, ..., X,,. Consider the set of
events such that

Xi+Xo+ ..+ X, _

(70) -

A

Now consider the distribution of X; given that (70) holds. If n is large, then the
distribution is close to the maximum entropy distribution. This result is called
the conditional limit theorem, Gibbs conditioning principle or the conditional law
of large numbers.

EXAMPLE 11. The mean number of eyes on a regular die is 3.5. Take a large
number of dice and throw them. Assume that the average number of eyes in the
sample is 4 and not 3.5 as expected. If one counts the number of ones, twos, etc.
then with high probability the relative frequency of the different outcomes will
be close to the maximum entropy distribution among all distributions on the set
{1,2,3,4,5,6} for which the mean value is 4 (see Table 4).

EXAMPLE 12. Assume that all velocity vectors of n molecules are equally prob-
able. Let v; denote the velocity of molecule ¢. Then the mean kinetic energy is
proportional to

(1) =S ol

We can measure the mean kinetic energy as the absolute temperature. Assume that
we have measured the temperature. If n is huge as in macroscopic thermodynamic
systems then the probability distribution of ||v1}| is approximately the Maxwell
distribution.

Example 11 can be used to analyze to which extent our assumptions are valid.
The first condition is that the uniform distribution is used as prior distribution.
Hence we cannot use the maximum entropy principle to argue in favor of the
uniform distribution. Some symmetry considerations are needed in order to single
out the uniform distribution at first hand. Next, according to our prior distribution
it is highly unlikely to observe that the empirical average is 4. From a classical
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statistical point of view one should use the high value of the average to reject
the uniform distribution, but if the uniform distribution is rejected as being false
then we will not be able to calculate the a posteriori distribution. Hence if the
conditional limit theorem is used as an argument in favor of the maximum entropy
principle then we are forced to use a Bayesian interpretation of the prior probability
distribution. Many physicists find this problematic. Thermodynamic entropy
increases, they argue, independently of how we assign prior distributions of the
system.

In order to single out the physical problems from the statistical ones, the concept
of sufficiency is useful. Consider an ideal gas in an isolated container of a spe-
cific volume. At equilibrium the gas can be described by the number of molecules
and the temperature. Using the maximum entropy formalism we can calculate
for instance the velocity distribution and all other quantities and distributions of
interest. We say that the number of molecules and the temperature are sufficient.
Then one may ask: “why are number and temperature sufficient?” If the container
has an isolating division we have to know the number of molecules and the tem-
perature on each side of the division, and four numbers will be sufficient in this
case. Only the experienced physicists should be able to tell which statistics are
sufficient for the specific setup. Thus, we can formulate the following result:

The maximum entropy principle may be used as a general formalism, but it tells
little or nothing about which statistics are sufficient.

The conditional limit theorem can also be formulated for a prior distribution
different from the uniform distribution. Consider a distribution P and a (math-
ematically well behaved) set C' of probability distributions. Then the probability
of observing the empirical distribution in C satisfies

(72) P™(C) < 27mP@IP)

where @ is the information projection of P into C, i.e. the distribution @ in C
that minimizes the divergence D (Q||P). Furthermore there is a high probability
that the empirical distribution is close to @ given that it belongs to C. If P is the
uniform distribution then the information projection equals the maximum entropy
distribution.

3.8 Applications in statistics

Statistical analysis is based on data generated by random phenomena. Actual data
are used to make inference about the statistical nature of the phenomena studied.
In this section we assume that X, Xs,--- , X,, are independent random variables,
distributed according to a common, unknown lew (probability distribution) Q.
Assume that @ is discrete with point probabilities q1,¢2, - , ¢m. If the ob-
served frequencies in a sample w of size n are ny,ns, -+ ,N;y, then the empiri-
cal distribution of size n, Emp, (w), is the distribution with point probabilities
2L ... Bm. The likelihood ratio, a quantity of central importance in statis-
tics, is the ratio between the probability of the actually observed data, measured
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with respect to Emp,(w), respectively the theoretical distribution ). For the
log-likelihood ratio we find the expression

(B - () (B

ni na Nm
41" 92" Gm

(73) In

which we easily recognize as n times the information divergence D(Emp, (w)] Q).
This simple observation is indicative of the relevance for statistics of information
theory, especially regarding the concept of information divergence.

Let us have a closer look at . Typically, the statistician considers two hypothesis,
denoted Hg and H,, and called, respectively, the null hypothesis and the alternative
hypothesis. In classical statistics these hypothesis are treated quite differently.
According to Karl Popper, one can never verify a hypothesis. Only falsification
is possible. Therefore, if we want to give statistical evidence for an alternative
hypothesis — typically that something “special” is going on, the coin is irregular,
the drug has an effect or what the case may be — one should try to falsify a
suitably chosen null hypothesis, typically expressing that everything is “normal” .

Consider a test of the alternative hypothesis H; against the null hypothesis
Hy. In order to decide between Hy and Hj, the statistician chooses a partition
of the simplex of all probability distributions over the possible outcomes into two
classes, Ap and A1, called acceptance regions. 1f the observed empirical distribution
Emp,,(w) belongs to Ay, one accepts Hy (or rather, one does not reject it) whereas,
if Emp,(w) € Ay, one rejects Ho (and, for the time being, accepts Hi).

The acceptance regions generate in a natural way a decomposition of the n-
fold sample space of possible sequences w = (x1,z3,- - ,Z,) of observed values of
X1,X2, -+ ,Xn. The sets in this decomposition we denote by A} and AT. For
example, A} consists of all w = (z1,29,: -+ ,z,) for which Emp,(w) € Ag.

A type-I error occurs when you accept H; though Hy is true (everything is
“normal” } and a type-II error occurs when you accept Hy though H; is true
{something “special” is happening).

In case Hy and H; are both simple, i.e. oftheform Hy : @ = Phand H, : @ = P,
with Py and P, fixed, known distributions, we can use the product distributions
FF and P} to calculate the error probabilities, i.e. the probabilities of a type-l,
respectively a type-II error. With natural notation for these error probabilities,
we find the expressions

(74) Pr(Ai|Ho) = Fg'(A7), Pr(Ao|Hh) = PT'(47).

The quantity Pr(A;|Hp) is called the significance level of the test and 1 —
Pr(Ag|Hy) the power of the test.

Under the simplifying assumptions we have made, the Neyman-Pearson Lemma
often leads to useful tests. To formulate this result, consider, for any £ > 0, the
test defined by the region

(75) A1 ={P|D(P|P) < D(P|P) +t}
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as acceptance region of Hy. Then this test is a best test in the sense that any other
test at the same (or lower) significance level has power at most that of this special
test.

Hypothesis testing is used to gradually increase ones knowledge about some
stochastic phenomenon of interest. One starts with a null hypothesis everyone
can accept. Then, as one gains experience through observation, one reconsiders
the hypothesis and formulates an alternative hypothesis. If, some day, the null
hypothesis is falsified, you take the alternative hypothesis as your new null hy-
pothesis. The process is repeated until you find that you have extracted as much
information about the nature of the phenomenon as possible, given the available
time and resources.

Note the significance of quantitative information theory as a guide in the subtle
process of selection and falsification of hypothesis until you end up with a hy-
pothesis you are either satisfied with as final expression of your knowledge about
the phenomenon or else you do not see how to falsify this hypothesis, given the
available resources.

‘We now turn to more subtle applications of information divergence. We consider
fixed hypothesis Ho : Q@ = Py and H; : Q = P, (with D(Pp||P1) < 0o) and a series
A,, of acceptance regions for Hy. The index n indicates that testing is based on a
sample of size n. Then, for mathematically well behaved regions,

(76) Pr(An|H:) < exp(—nD(Qn|P1))

where @), is the information projection of P, on A,. This upper bound on the
type-I1 error probability is asymptotically optimal for a fixed significance level.
Indeed, if all tests are at the same significance level, then

1
(77) lim —=Pr(A,|Hy) = D(Po||P.)
=00 n )

as illustrated in Figure 4.

Note that this limit relation gives an interesting interpretation of information
divergence in statistical terms. The result was found by Chernoff [1952], but is
normally called Stein’s Lemma. In 1947 Wald [1947] proved a similar but somewhat
weaker result. This was the first time information divergence appeared, which was
one year before Shannon published his basic paper and five years before Kullback
and Leibler defined information divergence as an independent quantity.

Among other applications of information theoretical thinking to statistics, we
point to the Minimum Description Length principle (MDL), due to J. J. Rissanen
[1978], which is a variant of the principle that among different possible descriptions
one shall choose the shortest one. Thus the parameters in a statistical model
shall be chosen such that coding according to the resulting distribution gives the
shortest total length of the coded message. So far all agree. The new idea is to
incorporate not only the data but also the description of the statistical model.
In general, a model with three parameters will give a better description than a
model with only two parameters. On the other hand the three-parameter model
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Figure 4. Decreasing sequence of acceptance regions in the probability simplex.

is more complicated, so there is a trade-off between complexity of the model and
the coding of the data according to the model.

A simple and well-known example is the description of a single real parameter.
How many digits shall be given? A rule of thumb states that the uncertainty shall
be at the last digit. The Minimum Description Length principle tries to justify or
to modify such rules.

We refer to [Csiszar and Shields, 2004] for a review of the relations to statistics
and further references. The most thorough treatment of the Minimum Description
Length principle in statistics can be found in [Griinwald, 2007].

3.9 Law of Large Numbers and Central Limit Theorems

Inequality (76) states that the probability of observing an empirical distribution
far from the theoretical distribution is small. As a consequence we immediately
get a Law of Large Numbers:

THEOREM 13. Let P be a probobility distribution. Let A be a convez set of
probability distributions not containing P. Then the probability that the empirical
distribution belongs to A converges to zero when the number of observations tends
to infinity.

We can also formulate this result for random variables.

THEOREM 14. Let X1, Xs,... be a sequence of independent and identically dis-
tributed random variables. Assume that X; has mean value u. Then if n is chosen
sujfficiently large,

X1 4 Xo+ ... + Xn,
n

(78)
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is close to p with high probability.

Inequality (76) gives more. The probability of getting a deviation from the
mean decreases exponentially. Therefore the sum of the probabilities of deviations
is finite. This has important applications. Let A be a set of probability measures
such that D (Q||.P) > 1/2 for all @ ¢ A. Then the probability that the empirical
distribution belongs to A is upper bounded by 1/2™. The probability that at least
one of the empirical distributions belong to A for n > N is upper bounded by

1 1 1 1 11
(79) 2_N+W+W+m =§N(1+§+Z+'--)

1

If N is large then this is small. The law of large numbers states that there is a high
probability that Empy (w) € A, but we even have that there is a high probability
that Emp, (w) € A for all n > N. Thus most sequences will never leave A again.
This is formulated as the strong law of large numbers:

THEOREM 15. Let P be a probability distribution. Then the empirical distribu-
tion converges to P with probability one.

For random variables the theorem states that:
THEOREM 16. Let X, Xs,... be a sequence of independent and identically dis-
tributed random variables. Assume that X; has mean value u. Then

X1+ Xo+...+X,
n

(80)

converges to p with probability one.

Xi+Xo+.. . +Xp - . . 01 .
: \t)\l/'e have seen that = is close to p with high probability. Equiva-
ently,

(K -—p+Xe—p)+..+(Xn—p)

(81)

is close to zero. If we divide with a number smaller than n we get a quantity not
as close to zero. In order to keep the variance fixed we divide by n/2 instead. Put

(Xi—w+ (X -+ .+ (Xn — )
nl/2 ’

Thus E (S,) =0 and Var (S,) = Var (X1). Let P, be the distribution of S,. Let
® denote the distribution of a centered Gaussian random variable. The differential
entropy of P, satisfies

(83) h(Fn) =h(®)— D (Fn[|®).

(82) Sp =

Thus we see that the differential entropy of P, is less than or equal to the dif-
ferential entropy of the Gaussian distribution. The Central Limit Theorem in its
standard formulation states that P, converges to a Gaussian distribution.
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| Alice |—| Encoding |- Channel |—{ Decoding |-+ Bob |

Noise

Figure 5. Shannon’s model of a noisy channel.

THEOREM 17. If there exists n such that h (P,) < 0o then h(P,) increases and
converges to its mazimum, which equals h (®). Equivalently, D (P, ||®) decreases
to zero.

In this formulation the Central Limit Theorem corresponds to the second law of
thermodynamics, which states that the entropy of a physical system increases and
converges to its maximum. Here the variance turns out to be sufficient. We see that
addition of random variables gives a “dynamics” which supports the maximum
entropy principle in that it explains a mechanism behind entropy increase. It
turns out that all the major theorems of probability theory can be formulated as
maximum entropy results or minimum information divergence results.

4 IS CAPACITY ONLY USEFUL FOR ENGINEERS?

4.1 Channel coding

We consider a situation where Alice sends information to Bob over a noisy in-
formation channel. Alice attempts to encode the information in such a way that
it is tolerant to noise, yet at the same time enabling Bob to recover the original
message.

A simple error-correcting protocol is to send the same message several times.
If the message is sent three times and a single error has occurred, then two of the
received messages are still identical and Bob concludes that these must be identical
to the original message. Another simple protocol is possible when feedback is
allowed. Alice sends the message. Bob sends the received message back again.
If Alice receives what she sent, she can be quite certain that Bob received the
original message without error, and she can send a new message. If she receives a
different message from the one sent, she sends the original message again. These
protocols are simple but they are not always efficient. More complicated codes are
possible.

EXAMPLE 18. In this example a message consis