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GENERAL PREFACE 

Dov Gabbay, Paul Thagard, and John Woods 

Whenever science operates at the cutting edge of what is known, it invariably 
runs into philosophical issues about the nature of knowledge and reality. Scientific 
controversies raise such questions as the relation of theory and experiment, the 
nature of explanation, and the extent to which science can approximate to the 
truth. Within particular sciences, special concerns arise about what exists and 
how it can be known, for example in physics about the nature of space and time, 
and in psychology about the nature of consciousness. Hence the philosophy of 
science is an essential part of the scientific investigation of the world. 

In recent decades, philosophy of science has become an increasingly central 
part of philosophy in general. Although there are still philosophers who think 
that theories of knowledge and reality can be developed by pure reflection, much 
current philosophical work finds it necessary and valuable to take into account 
relevant scientific findings. For example, the philosophy of mind is now closely 
tied to empirical psychology, and political theory often intersects with economics. 
Thus philosophy of science provides a valuable bridge between philosophical and 
scientific inquiry. 

More and more, the philosophy of science concerns itself not just with general 
issues about the nature and validity of science, but especially with particular issues 
that arise in specific sciences. Accordingly, we have organized this Handbook into 
many volumes reflecting the full range of current research in the philosophy of 
science. We invited volume editors who are fully involved in the specific sciences, 
and are delighted that they have solicited contributions by scientifically-informed 
philosophers and (in a few cases) philosophically-informed scientists. The result 
is the most comprehensive review ever provided of the philosophy of science. 

Here are the volumes in the Handbook: 

Philosophy of Science: Focal Issues, edited by Theo Kuipers. 

Philosophy of Physics, edited by Jeremy Butterfield and John Earman. 

Philosophy of Biology, edited by Mohan Matthen and Christopher Stephens. 

Philosophy of Mathematics, edited by Andrew Irvine. 

Philosophy of Logic, edited by Dale Jacquette. 

Philosophy of Chemistry and Pharmacology, edited by Andrea Woody and 
Robin Hendry. 
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Philosophy of Statistics, edited by Prasanta S. Bandyopadhyay and Malcolm 
Forster. 

Philosophy of Information, edited by Pieter Adriaans and Johan van 
Benthem. 

Philosophy of Technological Sciences, edited by Anthonie Meijers. 

Philosophy of Complex Systems, edited by Cliff Hooker and John Collier. 

Philosophy of Earth Systems Science, edited by Bryson Brown and Kent 
Peacock. 

Philosophy of Psychology and Cognitive Science, edited by Paul Thagard. 

Philosophy of Economics, edited by Uskali Maki. 

Philosophy of Linguistics, edited by Martin Stokhof and Jeroen Groenendijk. 

Philosophy of Anthropology and Sociology, edited by Stephen Turner and 
Mark Rsjord. 

Philosophy of Medicine, edited by Fred Gifford. 

Details about the contents and publishing schedule of the volumes can be found 
at  http://www.johnwoods.ca/HPS/. 

As general editors, we are extremely grateful to the volume editors for arranging 
such a distinguished array of contributors and for managing their contributions. 
Production of these volumes has been a huge enterprise, and our warmest thanks 
go to Jane Spurr and Carol Woods for putting them together. Thanks also to 
Andy Deelen and Arjen Sevenster at Elsevier for their support and direction. 
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INTRODUCTION: INFORMATION IS WHAT 
INFORMATION DOES 

Pieter Adriaans and Johan van Benthem 

1 INTRODUCTION: WHY THIS HANDBOOK? 

Information is a high-frequency and low-content phrase that permeates our or- 
dinary language without attracting much attention, since its meaning has long 
eroded. Even so, is there more to the notion, and in particular, is there philoso- 
phy to it? The editors of the series of 'Handbook of the Philosophy of Science" 
thought so, when they invited us to contribute a volume, more years ago than we 
care t o  remember. But right at the start, a distinction must be made concerning 
the aim of this text, which comes from the philosophy of language. A Hand- 
book for an established field has a descriptive function in terms of 'what there is', 
serving as a record of insights and issues. But other, activist Handbooks have a 
performative use, trying to create a new field by a 'let it be'. The present volume 
is definitely of the second category. 

Clearly, one cannot just create an academic discipline by fiat when there is no 
material to go on. But as it happens, information is a unifying notion across the 
sciences and humanities, with a backbone of serious mathematical theory. More- 
over, there is even a whole discipline of 'informatics' ('computer science', in the 
unfortunate terminology used in some countries) which studies the structure of 
representation and transformation of information by machines, but gradually also 
by humans, and various hybrids of the two. Indeed, universities in several coun- 
tries have created schools of Informatics or Information Sciences, highlighting the 
central role of information and its associated themes of computation and cognition 
in the modern academic landscape. 

But this observation again calls for a distinction, this time concerning our pur- 
pose. 'Philosophy of information' might mean philosophy of the information sci- 
ences, just as there is philosophy of the natural sciences, the life sciences, or hu- 
manities. Such methodological reflection on specific fields is absolutely necessary 
given the explosion of relevant technical research. It  will be found in abundance 
in the pages of this Handbook, with authors engaging in foundational analysis 
of disciplines such as computer science, economics, linguistics, or physics. But 
there is also the parallel, and in some ways more ambitious aim of information 
as a major category of thought within philosophy itself, which might have the 
potential of transforming that whole field. Indeed, major philosophers like Fred 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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Dretske or John Perry have argued that perennial questions of epistemology and 
other core areas of their field can be solved, or at least taken much further, from 
an information-oriented stance. Beyond that largely analytical tradition, in recent 
years, Luciano Floridi has been arguing forcefully that a well-conceived philosophy 
of information might affect the field as a whole, making distinctions like 'analytical' 
vs. 'continental' irrelevant. 

We are sympathetic to both purposes: foundations of the information sciences 
and transformation of core philosophy, even though the second seems more pro- 
grammatic than the first right now. In what follows we will discuss some more 
concrete themes in this Handbook, and then return to these broad purposes. 

2 A VERY BRIEF HISTORY OF INFORMATION 

Philosophy 

The term information is of Latin origin, and authors like Cicero and Augustine 
used it in the context of Plato's theory of ideas (or forms) and its successors. In 
particular, Cicero uses 'in-formare' to render the Epicurean notion of 'prolepsis', 
i.e., a representation implanted in the mind [Capurro and Hjgrland, 20031. In 
the Middle Ages, a significant shift occurred. In the 1 5 ~ ~  century, the French 
word 'information' emerges in colloquial language with a cluster of meanings: 'in- 
vestigation', 'education', 'the act of informing or communicating knowledge' and 
'intelligence'. The technical term 'information' then vanishes from philosophical 
discourse as though it had lost its appeal. Instead, when the English empiricists 
went back to the original Platonic inspiration, they coined the term 'idea' (derived 
from Platonic 'eidos'): "whatsoever is the object of understanding when a man 
thinks . . . whatever is meant by phantasm, notion, species, or whatever it is which 
the mind can be employed about when thinking" [Locke, 1961, Essay I,i,8]. The 
philosophical adventures of this notion of 'idea' run from Hume, Kant, and the 
German idealists up to Husserl and beyond. But like famous Cats through history, 
'information' has had many more lives than just one - and to these, we now turn. 

Coding 

Information has long been associated with language and coding. Like theoretical 
philosophy, the practical ambition to hide information in messages and to then 
decode these messages with, or without a key dates back to Antiquity [Kahn, 19671. 
Cicero's contemporary Julius Caesar used code systems to communicate with his 
generals, and so did his Hellenistic and Chinese predecessors - and code breaking 
must be equally old. Reflection on this practice soon followed. The efficiency of 
assigning shortest codes to most frequent signals has long been known, witness 
the loth century Arabic texts on cyphers and decoding via frequencies mentioned 
in Singh [1999]. With the invention of book-printing in the 15th century, type- 
setters soon discovered that they needed more es than zs in a font. Characteristic 
frequencies of letters in languages were used to decode simple replacement ciphers. 
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The 18th century saw the emergence of 'black-rooms' in Europe with the task of 
encoding and decoding messages for political purposes. With the development of 
the first electronic communication media, efficient coding systems became of wider 
use. In 1838, Samuel Morse designed his telegraph code on the basis of a statistical 
analysis of a Philadelphia newspaper. 

Physics 

Another step toward the modern concept of information occurred in lgth cen- 
tury physics. When explaining macroscopic events in terms of large quantities of 
discontinuous microscopic ones, Rudolf Clausius [I8501 introduced the statistical 
notion of entropy. Entropy measures the number of different microscopic states a 
macroscopic system can be in. The entropy in a container is higher if the particles 
are evenly distributed over the space in the container. With this concept, Clau- 
sius formulated what we now call the Second Law of Thermodynamics: a closed 
system either remains the same or becomes more disordered over time, i.e., its 
entropy can only increase. The philosopher Henri Bergson once called this "the 
most metaphysical law of nature" [Bergson, 19981. Clausius' famous paper ends 
with a disturbing observation from an informational point of view: "The energy of 
the universe is constant - the entropy of the universe tends toward a maximum." 

Mathematics 

In the 2oth century, 'information' became a subject for mathematical theory, with 
the pioneering work of Ronald Fisher on the foundations of statistics [Fisher, 
19251. Indeed all of probability theory might be seen with some justice as a form 
of information theory, with objective probability closer to physical perspectives, 
and subjective probability closer to  information as used by rational human agents. 
While this is true, we have decided to concentrate on more specific 'information 
theories' as such. The pioneering example is the work of Claude Shannon on chan- 
nel transmission [Shannon, 19481, which may well be most people's association 
with 'information theory'. Shannon defined the amount of information in a mes- 
sage as the negative base-:! logarithm of the probability of its occurrence from a 
given source over a given channel - thus measuring in 'bits', which has become a 
household term. 

Actually, this notion fits with the physics tradition via one transformation. The 
total entropy of two independent systems is the sum of their individual entropies, 
while the total probability is the product of the individual probabilities. Already 
Ludwig Boltzmann proposed to make the entropy of a system proportional to 
the logarithm of the number of microstates it can be in. Shannon's quantitative 
approach is a momentous shift away from the common-sense conception of mean- 
ingful information, but it has been spectacularly successful, witness its use in many 
chapters of this Handbook. 
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Computer science 

Even so, Shannon's is not the only quantitative version of information to appear in 
the 2oth century. In the 1960s, Kolmogorov, Solomonoff and Chaitin [Solomonoff, 
1997; Chaitin, 1987; Li and Vithnyi, 19971 developed a new information measure in 
terms of optimal coding by a computational device. The information in a string X 
is now an absolute number, viz. the length of the shortest code of a program that 
would lead a universal Turing Machine to output string X. It can be shown that 
this definition makes sense independently from accidental features of code language 
and computing device. Now, highly regular strings will have low complexity, while 
highly random strings have high complexity. Thus the information content of a 
string 'reverses' in an obvious way. Kolmogorov complexity is a major tool in 
computer science (the most authoritative source is Li and Vit6nyi [1997]), with 
foundational uses in complexity theory and learning theory. 

Again, there are strong links here with the earlier traditions. For instance, 
strings with low Kolmogorov complexity have low entropy, random strings have 
high entropy. As we shall see in several chapters of this Handbook, the kinship be- 
tween thermodynamics and mathematical and computational information theories 
ensures an almost seamless translation of concepts and applications.' 

Logic and linguistics 

So far, our historical tour of information has taken us from abstract philosophy 
to hardcore quantitative science and computation. But the 2oth century also pro- 
duced another strand of technical information theories, which will be very much in 
evidence in this Handbook. For a start, our human information is most obviously 
expressed in natural language, and indeed, analyzing even the simplest episode 
of language use quickly reveals a host of subtle informational phenomena. What 
is a speaker trying to convey, on the basis of what knowledge about the hearer's 
information? Figuring out this communication-oriented sense of information - 
which Shannon acknowledged explicitly as significant, but then ignored - involves 
a study of semantic meaning, knowledge, and other notions that form the domain 
of linguistics, philosophy, and logic. Modern logical modeling of information dates 
back to the 1930s with Alfred Tarski's fundamental work on the concept of truth 
(cf. [Tarski, 19441). Of course, traditionally, logic already studied informational 
processes like inference, which work largely on linguistic code, without an explicit 
model of reality attached. Logical accounts of information tend to be qualitative, 
in terms of sets and orderings rather than numbers, but they are just as rigor- 
ous as quantitative accounts. The chapter by van Benthem & Martinez in this 
Handbook is a broad survey of sources and varieties. Finally, logic-based accounts 
of information, too, have strong connections with the foundations of mathematics 

'1n a slogan, information theory is the thermodynamics of code strings, while thermodynamics 
is the information theory of particles in space. Some authors take this analogy t o  extremes, 
viewing black holes and even the universe as a computational system [Lloyd and Ng, 20041. 
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and computer science, and so we have another major kind of 'information theories' 
that goes into the total picture of this Handbook. 

Broader uses in society 

A history of the emergence of 'information' as a staple of public discourse in the 
20th century is yet to be written. It appears to be connected with modern in- 
telligence services and communication technologies like the telegraph, and later, 
the computer. At the end of the 19th century, several countries started system- 
atic collection of military information. The US Office of Naval Intelligence was 
established in 1882, followed by a Military Information Division - with one clerk 
and one officer - in 1885. Its task was to collect "military data on our own and 
foreign services which would be available for the use of the War Department and 
the Army at large." A modern use of the term information in this context can be 
found in the 'World Fact Book', an annual publication of the CIA: 

Information is  raw data from any source, data that may be fragmentary, 
contradictory, unreliable, ambiguous, deceptive, or wrong. Intelligence 
is information that has been collected, integrated, evaluated, analyzed, 
and interpreted.2 

In this compact passage, various broad themes running across this whole Hand- 
book occur in a nutshell, viz. 'information as the act of informing', 'information 
as the result of the act of informing', and 'information as something that is con- 
tained in the message used to inform'. In addition to the impact of this military 
usage, much broader reflection on information has been generated by recent tech- 
nologies like the Internet, again related to issues in this Handbook in interesting 
ways. Just as in century physics, what we see is an intriguing parallelism, and 
indeed a lively stream of interaction, between scientific, technological and social 
developments [Castells, 1996; Kahn, 1967; Capurro and Hjorland, 20031. 

Philosophy once more 

While scientific and social developments made information a crucial notion, lit- 
tle of this penetrated into modern philosophy. Although Godel's incompleteness 
results, the Church-Turing thesis, and Turing's ideas on machine intelligence gen- 
erated much philosophical debate, this did not lead to widespread philosophical 
reflection on the notion of 'information' itself. To be sure, there were some seri- 
ous philosophical responses to Shannon's theory around 1950, witness Bar-Hillel 
and Carnap [1953], which took a closer look at the interplay of what they saw as 
equally viable quantitative and logical notions of information, starting off a tra- 
dition in 'confirmation theory' continued by Jaakko Hintikka, and many others3 

'https: //www. cia. gov/library/publications/the-world-f actbook/docs/history. html 
3Cf. [Hintikka, 1973; Kuipers, 20001. Our companion publication "Handbook of the General 

Philosophy of Science" presents the  current state of the art  in confirmation theories. 
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Solomonoff, who is one of the founding fathers of algorithmic information theory, 
and whose work was partly motivated by philosophical questions concerning the 
nature of probability and the induction problem, studied with Carnap in the fifties. 
Until now this work never percolated to mainstream philosophy. 'Information' is 
not mentioned, for instance, in the well-known history of logic [Kneale and Kneale, 
19621, nor does it have a lemma in Paul Edwards "Encyclopedia of Philosophy" of 
1967. Things started changing around 1980. Fred Dretske gave information theory 
its due in epistemology [Dretske, 19811, and the same is true for the work of Jon 
Barwise and John Perry in the philosophy of language [Barwise and Perry, 19831. 
On the latter view, triggered by ideas from cognitive 'ecological psychology', logic 
should study the information flow in rich distributed environments with physi- 
cal and human components. All these philosophers use the notion of information 
to throw new light on classical issues of knowledge, objectivity, representation 
and 'aboutness', thus facilitating 'second opinions' and new solutions. Finally, 
we already mentioned Luciano Floridi's seminal work on a new 'Philosophy of 
Information' at  the start of the 21St century [Floridi, 2003A; 2003Bl. 

Modern interdisciplinarg trends 

This historical sketch provides the background for the main themes that the reader 
will find in this Handbook. But maybe we should also explain our cast of authors, 
which mixes philosophers with practitioners of other disciplines. This combination 
is well in line with what has happened over the last two decades in foundational 
studies of information, with topics moving in and out of philosophy. Indeed, 
Barwise and Perry already started the interdisciplinary 'Center for the Study of 
Language and Information' (CSLI) at  Stanford, a hot-bed of encounters between 
philosophers, linguists, computer scientists, mathematicians, and psychologists. 
Its current director Keith Devlin is one of our Handbook authors. 

At the same time, in Europe, natural language semantics took an informational 
turn. Jeroen Groenendijk and Martin Stokhof4 introduced information of language 
users in defining meanings of key linguistic constructions, including speech acts like 
questions. With Peter van Emde Boas, a pioneer in the study of parallels between 
natural and programming languages, and Frank Veltman, who had developed an 
update semantics for conditional expressions, they redefined meaning as 'potential 
for information update' based on abstract computation in appropriate state spaces. 
Similar ideas underlie the influential discourse representation theory of Irene Heim 
and Hans Kamp. Details on this linguistic paradigm shift may be found in the 
chapter by Kamp and Stokhof in this volume. By 1986, this led to the foundation 
of the 'Institute for Language, Logic and Information' in Amsterdam, better known 
today as the ILLC, the Institute for Logic, Language, and Computation. Similar 
initiatives include the European Association for Logic, Language and Information, 
and its annual ESSLLI Summer Schools, as well as its international off-spring in 
other continents. 

4Editors of the companion volume Handbook of the Philosophy of Language in our series. 
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One more major interdisciplinary strand in the 1980s was the rise of epistemic 
logic describing agents' knowledge 'to the best of their information'. Epistemic 
logic was first proposed by Jaakko Hintikka [Hintikka, 19621 as a tool for philoso- 
phers, and taken further by David Lewis [Lewis, 19691 and Robert Stalnaker [Stal- 
naker, 19841. Epistemic logic was invented independently by Robert Aumann in 
economics in the 1970s, in his eventually Nobel-Prize winning analysis of the foun- 
dations of Nash equilibrium through common knowledge of rationality. Since the 
1980s, when Joe Halpern and colleagues at IBM San Jose started the still-thriving 
TARK conferences on 'Reasoning about Knowledge and Rationality: while them- 
selves making major contributions to the study of information and communication, 
the field has lived at the interface of computer science, philosophy, and  economic^.^ 

In the 1990s, a further notable new force was the rise of 'Informatics': a new 
academic conglomerate of disciplines sharing a natural interest in information and 
computation as themes cutting through old boundaries between humanities, social, 
and natural sciences. By now, there are Informatics schools and institutes in 
Bloomington, Edinburgh, Philadelphia (IRCS), and Kanazawa (JAIST), to name 
a few, and the founding dean of such a School at Indiana University, Mike Dunn, 
is one of our Handbook  author^.^ 

While all this organizational and social information may grate on ears of tradi- 
tional philosophers (how far away can the Mammon be?) - to us, it seems highly 
relevant if Philosophy of Information is to have a significant future as a vibrant 
endeavour with many sources. 

3 INFORMATION THEORIES, THREE MAJOR STRANDS 

We have sketched a rich history of information studies ranging through the whole 
academic spectrum into society. The reverse side of this wealth is the diversity. 
What do all these themes and fields, worth-while as they may be per se, have 
in common, except a t  best a metaphor? This impression of diversity may even 
be reinforced when the reader gets to our actual chapters. Before sketching their 
content, then, let us first draw a few lines confronting some doubts and worries. 

Just a metaphor? 

'Information' may be a ubiquitous phrase, and even a real phenomenon, and yet 
it might be just a metaphor leading to vague philosophy, like 'system' or 'game' 
have done in the past. The real situation seems less bleak, however. As with terms 
like 'energy' or 'money', there is indeed a general usage of information where little 
can be said beyond generalities. Energy is what drives inanimate processes and 

5Epistemic logic as information theory is a new view, proposed in [van Benthem, 20061, and 
the chapter by van Benthem and Martinez on 'Logic and Information' in this Handbook. 

6Dunn's chapter in this Handbook provides much additional detail beyond our historical 
sketch, while also mapping out connections to  major approaches t o  information in the foundations 
of logic and computer science. 
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animate activities, and what allows us to relate the effort involved. Money is 
what makes transactions possible without undue real transportation of goods. In 
both cases, general usage is backed up by pockets of precise use in expert circles, 
grounded in mathematical theory: thermodynamics, or economics. This interplay 
causes no real problems: we understand the broad usage, and we specialize and 
make it more precise as needed. These lessons transfer to inf~rmat ion .~  Indeed, 
when Keith Devlin says tongue-in-cheek to broad audiences that "information is 
the tennis ball of communication", he actually formulates a very similar role for 
information as for money, viz. as the abstract currency that gets transferred when 
people say or observe things. And he also gets the idea right that information 
usually arises in complex multi-agent settings, where interaction is of the essence. 
But on that topic, we will have more to say below. 

Go for a larger family of notions? 

Can information stand on its own in conceptual analysis? Compare the case 
of knowledge. Most standard philosophical analyses, mainstream like Plato's, or 
more avant-garde like Dretske [I9811 or Nozick [1978], make it part of a larger 
cluster of notions, involving also truth, belief, information (. . .), and perhaps 
even counterfactuals. We are usually not after single concepts in philosophical 
analysis: we are also charting their closest relatives and friends. This is an issue 
on which we have not arrived at  a final position. Natural candidates for a clan of 
related concepts - not identical, but naturally intertwined - in our case would 
be: information, probability, complexity, meaning, coding, and computation. Our 
Handbook does not really take a stand here. While using information as its running 
theme, it does give extensive coverage to many of these related notions. 

Three major concepts of information 

One might assume a priori that there is just one notion of information. But one 
striking feature, even in our brief history, is the existence of respectable, but very 
different mathematical views of what makes it tick! We have seen approaches, 
roughly, from logic, physics, and computer science. Should we first assure our- 
selves that these all amount to the same thing? Perhaps not. The plurality of 
mathematical theories of information may reflect a genuine diversity in the con- 
cept itself, which needs to be frankly acknowledged. 

Compare the case of probability, another crucial foundational notion across 
the sciences whose precise nature has been under debate ever since its rise in 
the 17th century. Carnap 1950 proposed a famous conceptual dichotomy between 
two irreducible, complementary notions: Probability-1 for objective frequency, and 
Probability-2 for subjective chance, and this is still widely seen a s  a major duality 

7That 'money' leads the way need not be a bad thing, if we recall Karl Marx' famous saying 
that 'Logic is the Currency of the Mind'. A mere slogan perhaps: but, how rich and suggestive! 
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between two different legitimate concepts in both mathematics and philosophy.8 
And legitimate stances on this concept do not even stop here. One can think of 
Ludwig von Mises' views on randomness as a Probability-3, explaining statistically 
random sequences of outcomes via algorithmic notions of recursive place selection. 

Whatever one's final verdict, it seems uncontroversial that there are three main 
stances in the technical literature on information theories, which we dub 

Information-A Knowledge, logic, what is conveyed in informative answers 

Information-B Probabilistic, information-theoretic, measured quantitatively 

Information-C Algorithmic, code compression, measured quantitatively 

Over-simplifying a bit, A is the world of epistemic logic and linguistic semantics, 
B that of Shannon information theory, linked to entropy in physics, and C that of 
Kolmogorov complexity, linked to the foundations of computation. We do not feel 
that these are opposing camps, but rather natural clusters of themes and research 
styles. Thus, we felt that all of these need to be represented in our Handbook, 
since only their encounter gives us the proper canvas for philosophical enquiry. 

A first comparison 

What are the paradigmatic informational scenarios described by these approaches? 
We start with a first pass, and draw a few comparisons. 

( A )  The typical logic-based setting lets an agent acquire new information about 
what the real world is like, through acts of observation, linguistic communi- 
cation, or deduction. A simple example would be an agent asking a question, 
and learning what things are like from an answer. Thus, three features are 
crucial: agents which represent and use the information, dynamic events of 
information change, and 'aboutness': the information is always about some 
relevant described situation or world. Here, we measure quality of informa- 
tion qualitatively in terms of new things agents can truly say: a quantitative 
measure may be handy, but it is not required. Finally, the formal paradigm 
for the theory is mathematical or computational logic. 

(B) By contrast, the typical Shannon scenario is about a source emitting signals 
with certain frequencies, say a 'language' viewed as a global text producer, 
and the information which a receiver picks up from this is measured in terms of 
expected reduction of uncertainty. This is the sense in which seeing a partic- 
ular roll of a fair die gives me 3 bits of information. No specific agency seems 
involved here, but the scenario does analyze major features of communication 
which are absent on the logical approach, such as probability of signals (i.e., 

scarnap tried a similar move with 'information' in the early 1950s, juxtaposing Shannon's 
quantitative notion with his own qualitative logical information spaces. (Cf. [Kohler, 20011.) 



Ch01-N51726.fm Page 12 Thursday, August 28,2008 1 5 2  PM @ I* 

Pieter Adriaans and Johan van Benthem 

the long-term behaviour of a source, maybe as viewed by the receiver), op- 
timal coding, and channel capacity. Finally, mathematical paradigms for the 
theory are probability theory and physics. 

Clearly, scenarios A and B are not mutually contradictory. They are about dif- 
ferent aspects of sometimes even one and the same scenario of information flow, 
omitting some and high-lighting others. Still, the two stances meet at  various 
points. For instance, coding systems relate to the efficiency of natural language 
(or lack thereof), signal probability relates to reliability of sources (also relevant to 
logicians), and Shannon theorists often use question-answer scenarios to motivate 
their notion, in terms of minimal numbers of questions to pin down the truth. 

(C) Next, take the basic Kolmogorov scenario. We receive a code string, and 
ask for its informational value. The answer is the algorithmic complexity 
of the string, defined as the length of the shortest program that computes 
it on some fixed universal Turing machine. While this looks like a totally 
different setting from the preceding two, there is a direct link to Scenario 
B. Working with the enumerable set of all 'prefix-free programs', we can 
easily find an associated probability distr ib~tion.~ In this way, the shortest 
program for a string becomes an optimal code in Shannon's sense. Thus the 
following 'traffic' arises: Information-B starts with the notion of probability 
as fundamental and derives an optimal code. Information-C starts with the 
notion of shortest code as fundamental and derives an a priori probability 
from it. Further details may be found in the chapters of Griinwald & VitSnyi, 
Topsae and Harremoes, and Adriaans in this volume. 

Stating technical transformations between notions of information is one thing, 
understanding their philosophical consequences another. For instance, consider the 
following intriguing questions. What is the status of a computational device like a 
Turing machine in grasping the available information in Nature [Wolfram, 2002]? 
Does algorithmic complexity still apply if we go from computer code to datasets of 
observations? Is Nature a computing agent sending us encoded messages? To some 
computer scientists [Schmidhuber, 19971, Information-C is indeed the basis for a 
general theory of induction that commits us to 'metaphysical computationalism'. 

Relations between Information-C and Information-A are even more delicate. 
The latter seems closer to information flow in human settings and purposeful 
activities. But here, too, some researchers see algorithmic data compression as a 
universal principle governing human-level information flow, leading to what may be 
called 'cognitive computationalism': the idea that the human brain is a universal 
computational device [Pinker, 1997; Chater and Vitgnyi, 2003; Wolff, 20061. If an 
agent has background knowledge, in the form of optimal descriptions of a set of 
objects (e.g., animals), then identifying such an object (e.g., a cow) via a picture 
amounts to finding a shortest algorithmic description of the picture conditional on 

9By Kraft's Inequality, for any finite or infinite sequence 1 1 , l z , .  . . of natural numbers, there 
is a prefix code with this sequence as the lengths of its binary words iff C,  2-in 5 1. 
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that background knowledge. While not uncontroversial, this philosophical view, 
too, has interesting consequences, and even some degree of empirical support.10 

This brief discussion may suffice to show that Information-A, Information-B, 
and Information-C make sense on their own, while engendering many intriguing 
interactions. As editors, we do not have a final view on the relation between these 
approaches, and whether a Grand Unification is possible. We do feel that they 
need to be compared in an open fashion, questioning even the usual labels 'qual- 
itative' vs. 'quantitative'.11 Our own sense, developed partly thanks to  insights 
from our authors in this Handbook, is that B and C are close, while the relation 
to  A-approaches is much less settled. Even so, the B scenario clearly shares some 
features with A-type views of information update, and thus one might view Shan- 
non's theory as go-between for A and C. But still, we may have to 'do a Carnap' 
in the end, putting the three side-by-side, just as we saw with probability.12 

4 THE CHAPTERS OF THIS HANDBOOK 

This is a good point to interrupt the editors' story, and let another voice speak for 
itself, viz. the list of chapters of this Handbook. The idea behind its composition 
has been to put two things at the reader's disposal. One is a Grandstand View 
of serious studies of information in the various sciences, and the styles of work as 
done by leading practitioners. The other item offered are a number of major leads 
toward a philosophy of information, written by distinguished philosophers. The 
latter include both senses that we have described earlier: philosophical foundations 
of the information sciences, and also informational turns inside philosophy itself. 
We give some cameo descriptions, while also briefly 'presenting' the authors. 

After this editorial Introduction, the Handbook starts with a first Part on Phi- 
losophy and Information. The opening chapter by Fred Dretske, a pioneer in 
bringing information theory to philosophy, discusses how the notion of informa- 
tion plays in epistemology, and merges well with current debates. Next, Hans 
Kamp and Martin Stokhof examine the role of information in the philosophy of 
language and the theory of meaning, drawing upon their long experience in philo- 
sophical logic and formal semantics at the interface of philosophy and linguistics. 
Pieter Adriaans, a classical philosopher turned machine learning expert (amongst 
other things), continues with major issues in the philosophy of learning, explor- 
ing in particular the knowability of the physical universe from a computational 
standpoint. Finally, Luciano Floridi, mentioned several times already, maps out 

' O ~ h e  most efficient current program recognizing musical styles uses algorithmic information 
theory [Cilibrasi and Vitanyi, 20051. Adriaans [2008] even proposes an algorithmic esthetics. 

"Indeed, all three types can have more qualitative or quantitative versions, witness Carnap's 
Inductive Logic on the A-side, or the basic 'representation theorems' of Shannon information 
theory on the B-side. 

121ndeed, von Mises third probability intuition in terms of randomness and computable 'place 
selection' does look a bit like an algorithmic Type C approach to  information, through its links 
with recursion theory in the work of Per Martin-Lof, Michiel van Lambalgen, and others. 
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the broader agenda for a philosophy of information as he has been advocating it 
over the recent years. 

Next comes a foundational part on Major Technical Approaches. Mathemati- 
cians Fleming Topsme and Peter Harremoes give a lucid exposition of Shannon's 
quantitative theory of information and its embedding in general mathematics. 
Next, Peter Griinwald and Paul Vitanyi, leading theorists in the foundations of 
Kolmogorov complexity, statistics, and recently also quantum information, follow 
up with a state-of-the-art account of algorithmic complexity theory, including its 
connections with probability and Shannon information. Finally, logicians Johan 
van Benthem and Maricarmen Martinez, representing the different traditions of 
epistemic logic and situation theory, investigate the role of information in logic, 
and describe what this discipline has to offer by way of general theory. 

Our third part, Major Themes i n  Using Information, zooms in on some key 
themes in the foundations of 'informatics'. Kevin Kelly, who has been instru- 
mental in bringing topology and recursion theory to the philosophy of science, 
writes about learning, simplicity, and belief revision, with Occam's Razor as a 
running theme. Logicians Alexandru Baltag, Hans van Ditmarsch, and Lawrence 
Moss describe knowledge and information update as studied in recent 'dynamic 
epistemic logics', showing how informational themes are creating new logics right 
now. Hans Rott, one of the architects of belief revision theory, follows up on this 
with a formal account of how agents change their beliefs when triggered by new in- 
formation, and discusses optimal cognitive architectures for this. Moving to other 
information-producing activities, Samson Abramsky, a leader in the current inter- 
est in 'information dynamics' in computer science, discusses the information flow 
in computation, drawing upon recent game-based models of interactive processes, 
with surprising connections to quantum information flow in physics. Information 
in games and rational agency per se is then discussed in depth by Bernard Wal- 
liser, an economist who has published extensively on the conceptual foundations 
of game theory. 

The final part of the Handbook collects a number of representative case stud- 
ies of Information in the Sciences €4 Humanities. Mike Dunn, logician, philoso- 
pher, computer scientist, and prime mover in the formation of Indiana University's 
School of Informatics, surveys the various uses of information in computer science, 
from Scott 'information systems' to algebraic theories of data structures and infor- 
mational actions. Well-known physicists Sander Bais and Farmer then present a 
masterful treatment of the notion of information in physics, opening up to connec- 
tions with Shannon information and Kolmogorov complexity. Information in the 
social sciences is represented by the chapter of Keith Devlin and Duska Rosenberg, 
who give an in-depth transaction model for linguistic communication using tools 
from situation theory. Next, John McCarthy, one of the founders of AI, surveys 
the uses of information in artificial intelligence, stressing the role of representa- 
tion, context, and common sense reasoning, and throwing out a list of challenges 
to philosophers. The final two chapters move to the natural world of the life sci- 
ences. Margaret Boden discusses the role of information in cognitive psychology, 
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including recent neuro-science perspectives. And the last chapter in our tour of 
Academia is John Collier's critical study of current uses of information and coding 
in biology, whose repercussions are all around us in bio-technology and its hybrids 
with computer science. 

In addition to  the authors, we should also mention the official commentators, 
who have played an important role in this Handbook. Each chapter has been 
read by its assigned commentator, and their extensive responses and the ensuing 
discussions have kept authors alert and fair to what has been achieved in their 
fields. The commentators behind this Handbook are as distinguished and diverse 
a group as our authors, including prominent philosophers, computer scientists, 
linguists, and psychologists, and their names will be found in the separate chapters. 

Of course, no system is fool-proof, and as with every Handbook, the editors 
might have made some choices of chapters differently, while there are also bound 
to be strands in the field that remain under-represented. One can look only so far. 
Even so, we feel that the present collection provides ample material for substantial 
reflections, and in the rest of this Introduction, we present a few of our own. 

5 INTEGRATIVE THEMES AND NEW QUESTIONS 

When collecting the material for this Handbook we have toyed for a moment with 
the ambition of providing one unified account of information that would satisfy all 
our authors, and even a more general audience. While this has proved somewhat 
illusory at our current state of enlightenment, we do feel that we are now in a much 
better position to draw some main lines. Here are a few themes that we see running 
through many of our chapters, found not by looking top-down at what information 
should be, but bottom-up, looking at stable patterns in existing research. We start 
by re-analyzing the three streams we identified earlier, 'unpacking' these paradigms 
into a number of general themes that seem relevant to information generally. In 
this manner, we hope to find a unity through themes instead of 'all-in' packages. 

Logical range and reduction of uncertainty 

One simple, yet powerful theme in many of our chapters is this - and it may even 
be the common sense view. Information may be encoded in a range of possibilities: 
the different ways the real situation might be. For instance, at the start of a card 
game, the range consists of the different possible deals of the cards. Numerically, 
this view reflects in the standard representation of information in bits being the 
(weighted) base-two logarithm of the size of the range. More dynamically, on this 
view, new information is that which reduces my current range - that is: more 
information leads to a smaller range. This is the standard logical sense of infor- 
mation in which a proposition P updates the current set of worlds W to {w in 
Wlw makes P true). This notion is relative to a 'logical space' describing the 
options. It is also relative to agents, since the update happens to what they know 
about the world. In our reading, this is the main notion of information used in 
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our Handbook chapters by Baltag, van Ditmarsch and Moss, van Benthem and 
Martinez, Dretske, Kamp and Stokhof, McCarthy, Rott, and Walliser. It is an 
A-type account in our earlier sense, which revolves around agents' logical spaces 
of alternative options, set up for some purpose (information is "or" something), 
zooming in on some yet unknown actual situation (the latter is what the informa- 
tion is "about7'), and new information typically has to do with dynamic events of 
observation, communication or inference updating the current state. 

Yet there are also links with B and C types of information. If a range of 
n messages has maximum Shannon entropy, the optimal code for each message 
takes logan bits. And as for update, if I know that John lives in Europe, I need 
some 30 bits to identify him, but after new information that he lives in Amsterdam 
this effort is reduced to 20 bits. And as to Information-C, the shortest program 
p for a string x in the sense of Kolmogorov complexity can also be interpreted as 
a measure for the smallest set of 217'1 possible worlds that we need to describe x. 
Thus, 'range' truly seems an integrating feature across information theories. 

Correlation and channel transmission 

The next pervasive notion in our Handbook emphasizes another key aspect of 
information flow, viz. the correlation between different systems that drives it. One 
situation carries information about another if there is a stable correlation between 
the two. This is the sense in which dots on a radar screen carry information about 
airplanes out there. Note that this information may be there, even when there is 
no agent to pick it up.13 In philosophy, this sense of information is central to the 
earlier-mentioned work of Dretske and Barwise and Perry, who were inspired by 
Shannon's paradigm, and who stress the essential 'situatedness' and 'aboutness' 
of information. Indeed, correlation seems of the essence there, and the view of 
information transmitted across less or more reliable channels is dominant in our 
chapters by Bais and Farmer, Boden, Collier, Devlin, Dretske, Kelly, Topspre and 
Harremoes. One of its key features is that information is crucially about something, 
and thus a relation between a receiving situation and a described, or sending 
situation. In this scenario, the 'quality' of the information depends essentially on 
the reliability of the correlation. But it is also possible to find these same concerns 
implicit in our more 'A-type chapters'. 

The two themes identified so far play in various fields. For instance, our chapter 
on logical theories of information finds range and correlation right inside logic, and 
shows how they are highly compatible there, combining into a single mathematical 
model. But also, Shannon's information theory contains aspects of both range 
and correlation. It is definitely about reducing ranges of uncertainty - in a 
quantitative manner asking for the average reduction of uncertainty, summarizing 
many possible update actions. But is also crucially about correlation between 

1 3 ~ h u s ,  unlike in the classic Procol Harum song 'Homburg', http: //www . lyricsdomain. corn/ 
16/procol4arum/homburg.html, in situation theory, "signposts" do not "cease t o  sign" when 
there are no human beings left on our planet. 
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a source and a receiver across a channel. In algorithmic information theory the 
notion of correlation seems less pregnant at fist sight, as Kolmogorov complexity 
is a priori and universal, being a measure of 'self information' of a data set. But 
even there, in principle, it is always correlated with an abstract computational 
device, its source.14 More technically, correlation between data sets and what 
they describe has been studied in terms of 'conditional Kolmogorov complexity', 
with the reference universal Turing machine providing the 'channel' in the above- 
discussed correlational sense. 

Temporal dynamics and infomnational events 

But there are further general themes in the A, B, and C stances that seem of 
general significance for information. In particular, the Shannon scenario and cor- 
relation generally, seems to presuppose a temporal dynamics. Information is not 
a one-shot relation between single events: it presupposes an objective pattern of 
matched events over time, and this frequency information is one essential function 
of the probabilities employed.15 This temporal perspective is also in evidence on 
the logical side, and it even plays there in two different ways. Locally, the flow 
of information is driven by specific informational events that produce it, such as 
an observation, or an answer to a question.16 But there is also a global long-term 
process of repeated observations, which establishes reliability and information flow 
in some higher sense. In computer science terms, the local dynamics calls for an 
account of stepwise informational actions, while the global dynamics calls for a 
temporal logic, or a statistical dynamical systems model, of long-term program be- 
haviour over time. We have nothing to  add to the latter feature here, but the local 
dynamics bears some separate discussion, since it seems intimately related to our 
very understanding of information. We start with the basic information-handling 
process, and discuss some generalizations later. 

'*Again, this at  once raises philosophical questions. Kolmogorov complexity claims to  be a 
priori and objective. But the price is high: the notion is asymptotic and non-computable. Three 
key results from Turing govern this setting: (a) Enumerability: there is a countable number of 
Turing machines, (b) Universality: there is an unlimited number of universal Turing machines 
that can emulate any other Turing machine, (c) Undecidability: there is no program that can 
predict, for all combinations of input X and Turing machines M, whether M will stop on X. A 
universal Turing machine can be defined in less than 100 bits. Given all this, we can select a 
small universal Turing machine U on which any digital object 0 will have a shortest program. 
On the C-view, the length of this program will be the Lobjective' amount of information in 0. 
This program cannot be found by any effective computational process, because of point (b), but 
the work of Solomonoff, Kolmogorov and Levin shows that under certain constraints we may still 
use all this as an adequate information measure. 

150f course, these probabilities also have a subjective aspect, since they may be seen as de- 
scribing agents' views of the situation. 

16Note that performing an experiment is asking a question to  Nature, cf. [Hintikka, 19731. 
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Information and computation 

One can teach a course on information theory without mentioning computers, and 
conversely, one can treat computation theory without reference to information. Yet 
the interplay of information with computation as a way of producing or extracting 
it is subtle and challenging. Here is one issue which plays in several chapters of 
this Handbook. Due to the 'data processing inequality' (see [Cover and Thomas, 
20061) deterministic computational processes do not create information: though 
they may discard it. Thus, the amount of information in a computational system 
can never grow on B- or C-type views! Indeed, the only processes in our world that 
generate maximal information-rich sets are pure random processes like quantum 
random number generators. A string generated by such a device will with high 
probability have maximal Kolmogorov complexity. And yet, our world seems a 
very information-rich place, and clearly not all information is random. Many 
natural processes generate new information by a non-deterministic device under 
deterministic constraints. Thus, evolution and growth seem to create complexity 
'for free', and though we can simulate them on a computer, the merit of these 
simulations in terms of the creation or annihilation of information is not clear. 
The chapters by Abramsky, Bais and Farmer, Topsge and Harremoes, Floridi, and 
Adriaans contain a wealth of material shedding light on the general interplay of 
information and computation, but key issues like the one mentioned here are far 
from settled. It may call for a deeper understanding of connections between B- 
and C-type accounts with A-type accounts. 

The process stance: information in action 

Next, generalizing from computation in a narrower sense to cognitive activities of 
agents, let us develop a methodological idea from computer science - and phi- 
losophy - in its appropriate generality. In a computational perspective, it makes 
little sense to talk about static data structures in isolation from the dynamic pro- 
cesses that manipulate them, and the tasks which these are supposed to perform. 
The same point was made in philosophy, e.g., by David Lewis, who famously said 
that 'Meaning Is What Meaning Does'. We can only give good representations of 
meanings for linguistic expressions when we state at  the same time how they are 
used in communication, disambiguation, inference, and so on. In a slogan: strmc- 
ture should always be studied in tandem with a process! The same duality between 
structure and process seems valid for information, and indeed, all of our stances, 
and a1 of our chapters, have specific processes in mind. No information wzthout 
transformation! The logical A-stance was about information update, the Shannon 
B-view stressed transmission events, and the Kolmogorov C-view is all about 
computational activities of encoding and decoding. And these process scenarios 
are not just Lbackground stories' to an essentially static notion of information, they 
are right at  the heart of the matter. 

But then, which processes would be paradigmatic for the notion of information? 
The chapters of this Handbook show a great variety: from questions and answers 
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(Kamp and Stokhof), observations (Baltag, van Ditmarsch and Moss), communi- 
cation (Devlin and Rozenberg), learning (Adriaans, Kelly), belief revision (Rott), 
computation (Abramsky), and inference (van Benthem and Martinez) to game- 
theoretic interaction (Walliser). And this list generates many questions of its own. 
What does information do for each process, and can we find one abstract level 
of representation for them that stays away from details of implementation? Also, 
some of these processes concern single agents, while others are intrinsically multi- 
agent 'social' events. Is the basic informational process a multi-agent one, with 
single-agent activities their 'one-dimensional projections'?17 We will not attempt 
to answer these questions here, but we do think they are central to a philosophy of 
information that bases itself on the best available information-theoretic practices. 

Information as code and representation 

While the preceding tandem view seems to high-light the dynamic processes, it 
equally well forces us to think more about the details of representation of informa- 
tion. Here is where the linguistic study of natural language has much to offer (see 
our chapter by Kamp and Stokhof), in particular in connection with A-type views 
of information. In another setting, the chapter by Devlin and Rozenberg high- 
lights subtleties of linguistic formulation in informational transactions in social 
settings. But other abstraction levels, even when far removed from 'meaningful 
discourse', carry insights of their own. Recall the mathematical fine-structure of 
our C-stance. The Kolmogorov complexity of a data set was the length of the 
shortest program that generates this data on a computer.18 Now consider an ap- 
parently strange feature here, viz. the definition of randomness. A string X is 
random if it cannot be compressed, i.e., no program shorter than the length of 
X produces X on our universal Turing machine. Thus, random strings have the 
highest amount of information possible: say, a radio transmission that only con- 
tains noise! This runs head-long into the idea of information as 'meaningful'. But 
it does reveal an intriguing connection elsewhere, with thermodynamics as in the 
chapter of Bais and Farmer. Kolmogorov complexity can be viewed as a theory 
of string entropy, with random strings as systems in thermodynamic equilibrium. 
This suggest intriguing equivalence relations for translating between complexity 
theory and physics, for whose details we refer to Adriaans [2008] .~~  

17For instance, is 'learning' as in formal learning theories just a one-agent projection of a shared 
activity of a two-agent system {Learner, Teacher)? Likewise, is a logician's 'proof' as a formal 
string of symbols the zero-agent projection of a multi-agent interactive activity of argumentation? 

18Here is one more common sense way to  understand the different stances here. You are a t  
an information booth a t  the airport, trying to  book a hotel. The information in statements like 
"There is a room free in the Ritz", is probably best analyzed in A- or B-terms, but when the 
official shows you a city map that tells you how to  get t o  the Ktz, something else is going on. The 
map contains information which can be measured: a detailed map contains more information 
then a sketch. The computer file that the printer uses t o  produce a detailed map contains more 
bits than the file for a large scale one. This is the structure measured by Kolmogorov information. 

lgHere is a summary. Consider these 'identities': (a) Length 1x1 of a string x -- the internal 
energy U of a system, (b) Kolmogorov Complexity C ( x )  x Entropy S of a system, (c) Ran- 
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This concludes our list of general themes, showing how systematic reflection on 
the various stances in information theory raises questions of interest to all. 

6 CONCLUSION, AND THE PURPOSE OF THIS HANDBOOK 
ONCE MORE 

The main scient2fic ingredients 

This Handbook presents a panorama of approaches to information, drawing for 
its methods on at  least three major scientific disciplines: logic, computer science, 
and physics. It might be thought that all of these strands have already been 
integrated in current broad academic 'informatics' environments, but this seems 
more of a hope than a reality so far. In particular, while it is true that, over the 
2oth century, computer science has yielded a host of fundamental insights into the 
representation and processing of i n f o r m a t i ~ n , ~ ~  its foundations remain an exciting 
open field. It may even be true eventually that the complete scientific background 
for the foundations of information should include cognitive science, but we have 
not chosen this as major focus in our scheme yet - though we do have chapters 
by Boden on information in cognitive science, and Collier on biology. 

From unzfication to co-existence 

What we have not achieved in this Handbook is a Grand Unification of all major 
technical approaches to information. We do not know if one is possible, and we 
sometimes even wonder whether it would be desirable. What does happen here is 
that different bona fide traditions meet, and what we hope will happen is that they 
find a common language, and a research agenda including new shared concerns. 
We think this is possible because our analysis in the preceding sections, largely 
based on the contents of this Handbook, has not revealed incompatibility, but 
rather a complementarity of perspectives. 

domness deficiency 1x1 - G(x) -- the Helmholz free energy U - TS of a system (T = absolute 
temperature), (d) Random string -- system in equilibrium. Here the randomness deficiency of a 
string is its length minus its Kolmogorov complexity, just as the free energy of a system is the 
internal energy minus its entropy by equal temperature. Free energy is linked with meaningful 
information. A system in equilibrium cannot do any work, just as a random string does not con- 
tain any meaningful information. Thus the meaningful information in a string may be defined as 
follows. The facticity F(x) of a string x is the product of the normalized entropy C(x)/lxl and 
the normalized randomness deficiency 1 - (C(x)/lxl). The term is motivated by Heidegger's no- 
tion of 'die unbegrundbare und unableitbare Faktizitat des Daseins, die Existenz.. . " [Gadamer, 
p. 2401. If p is the shortest program that generates x on U, then p is by definition a random 
string. Nothing can be said about it or derived from it other than that U(p) = x. The string p is 
completely meaningless outside the context of U. Kolmogorov complexity maps all meaningful 
strings on to  meaningless random strings. 

20Just think of automata theory, complexity theory, process theories, AI: the list is impressive, 
and it immediately belies the modest 'handmaiden' role that some want to  relegate the field to. 
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Successful merges 

Concrete examples of the potential for merging will be clear to any serious reader 
of our chapters - if only, because many ingredients of one paradigm make imme- 
diate sense in another. For instance, one might, and probably should, introduce 
correlationist information channels in a more realistic logical range view, and sev- 
eral proposals to this effect were made recently. Or, our chapter on Shannon 
theory involves questions and answers at crucial stages, and introducing explicit 
dynamic multi-agent perspectives in B- and C-type accounts of information might 
be worth-while. This would reflect a recent general move toward studying 'inter- 
action' as a basic phenomenon in the foundations of logic and computer science. 
But many further desiderata emerge from the material collected here. For in- 
stance, various chapters make surprising new moves towards physical models of 
information, including those by Abramsky and Adriaans. This connection seems 
important, and it might lead to possible new academic alignments. Finally, even 
the austere code-based view of information really occurs throughout this book, 
witness the chapters on natural language, on computation, and on logic. Indeed, 
the latter discusses the related 'scandals' of computation and deduction: which 
reflect long-standing philosophical discussions. How can a code-based process of 
valid computational or inferential steps generate information? How can we har- 
monize algorithmic and semantic views? The reader will find some answers in the 
relevant chapters, including links to the foundations of logic, Hilbert's proof theory, 
and Godel's completeness theorem - but again, the issue is far from settled. 

Indeed, fruitful combinations of the different perspectives in this Handbook 
already exist. Useful combinations of logical range spaces and Shannon-style cor- 
relation measures co-exist in modern semantics for natural language: cf. [van 
Rooij, 20041 on questions and answers, or [Parikh and Ramanujam, 20031 on gen- 
eral messaging. Indeed, a recent special issue of the Journal of Logic, Language 
and Information [van Benthem and van Rooij, 20031 brought paradigms together 
in the following simple manner. Just consider one basic informational scenario like 
a question followed by an answer. Now ask a logician, an information theorist, and 
an algorithmics expert to analyze the very same scenario. It was highly instructive 
to  see what features they picked up on as important, but also that, despite their 
differences in concerns and methodology, no deep contradictions arose.21 

Creative tensions 

Indeed, fostering some residual differences can be creative. Consider the editors 
themselves. Their 'gut views' on information are different. Adriaans is on the 
quantitative side, van Benthem on the qualitative one. At first sight, this seems a 
sharp divide. Scientists and engineers love computation, since we can now 'com- 
pute with information'. Philosophers and logicians feel that all the content and 

21See also [Kooi, 20031 for a case study of strategies for question answering combining ideas 
from logic, probability theory, and information theory in a practical manner. 
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drama of an informational event is 'flattened' into a one-dimensional number. 
Messages with totally different content can become equivalent in this way. 

But this difference in direction can easily become a productive force. Even from 
a logical point of view, adding numerical measures seems relevant and natural, 
and many hybrids exist of logical and probabilistic systems for various cognitive 
tasks. Thus, there are already many areas of fruitful confrontation between logical 
and quantitative, often probabilistic methods. Consider evolutionary game theory 
or current methodological debates in ethics, where the role of norms and moral 
behaviour can be analyzed either in traditional logical terms, based on conscious 
reasoning from moral principles,22 or as inevitable statistical equilibrium behaviour 
in large-scale long-term populations. Indeed, from a more practical viewpoint, 
Adriaans [2007] points out that in most realistic scenarios involving informational 
events, logical micro-descriptions are either unavailable, or the cost of computing 
them becomes prohibitive. In that case, the statistical approach is the only way we 
have of finding essential macro-features of the relevant process. The same might be 
true for information on a large scale and in the long run - and here, despite the, 
perhaps, one-dimensionality of the numerical bit measure, it has amply shown the 
same 'unreasonable effectiveness' that mathematics has for Nature in general.23 

Philosophy of information once more: two levels of ambition 

Let us now take all this back to the title theme of this Handbook. The same 
difference in perspective that we discussed just now may be seen in the different 
scenarios discussed throughout this Introduction. And here is one way in which the 
editors have come to see it. Information plays at quite different levels in our human 
and natural world. One focus for many of the scenarios discussed here are episodes 
from our daily cognitive practice: language use, observation, communication, or 
other interaction between agents. Logical and linguistic models of information 
used by agents in small situations, acting on their private intentions, are meant 
for this fine-structure of informational transactions. But around all these private 
episodes, there is the global physical universe that we live in. And another highly 
significant question is the amount of information that we can hope to extract 
from that in our theories. At this level, single agents with their private purposes 
are totally irrelevant, and we are interested only in the large-scale structure of 
learnability. And the latter question seems to fit much better with the abstraction 
level provided by Kolmogorov complexity, where we can think of the universe as 
the output of a single Turing machine producing all data that we see. 

In line with this distinction, we also see a distinction between philosophical 
themes connected to this Handbook. Agent-oriented episodes of meaningful A- 
type information flow seem closer to the concerns of epistemology today, and 
what people may be said to know about specific issues, perhaps kept from slum- 

22Cf. Kant's Categorical Imperative, or Rawls' initial scenario in "A Theory of Justice". 
23This discussion of aggregation levels does show the importance of probability to  our Hand- 

book, and we might give the logic/probability interface even more attention in future editions. 
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bering by skeptics. Several chapters of our Handbook show what clarification 
arises from making information a major concern here, tying in to fundamental 
questions about the nature of knowledge, language, and logic. In contrast to this, 
global knowability of the universe in terms of its information content comes closer 
to the Grand Questions of the classical philosophical tradition, and asks what we 
could achieve in principle through observation and theory formation. Taking the 
mathematical perspectives in this Handbook seriously raises fundamental issues 
as well, this time, involving the nature and reach of the computationalism implicit 
in both B-type and C-type views. Is it more than just a convenient methodol- 
ogy? We have briefly discussed some positions in our earlier list of general themes, 
from metaphysical computationalism about nature to  cognitive computationalism 
about human agents, though of course much more could be said.24 

While all this may sound like a new-fangled 'technological' view, we see the 
roots of computationalism in the history of philosophy, going back at least to 
Descartes' mechanistic analysis of the 'res extensa'. Indeed, it still shares some 
of the weaknesses of that tradition - but there is also one obvious gain: the 
precision and clarity provided by the sophisticated mathematical models now at 
our disposal. Both strengths and weaknesses of philosophical claims can now 
be stated and investigated in ways that were simply unavailable before.25 For 
instance, even if the whole universe can be simulated on a simple Turing machine, 
given enough time, this does not yet imply a simple model. The 'Turing Machine of 
Nature' could still be a universal computational device of any finite complexity.26 

Now our point with these final thoughts should not be misunderstood. We are 
not saying that somewhere above the local level of informational episodes in daily 
life, and even beyond the whole history of science, there lies some Platonic reality of 
learnability that we can grasp a priori, making detailed studies redundant. What 
we do want to say is that the tools in this Handbook allow us to think about both 
the 'small questions' of philosophy, concerning language use, knowledge, belief, 
and reasoning of single agents, and the 'big questions', about the intelligibility of 
the universe, and what we can hope to achieve by collective enquiry. 

24Many pioneers of computer science have implicitly endorsed metaphysical computationalism. 
'The entire universe is being computed on a computer, possibly a cellular automaton' according to  
Konrad Zuse (cf. [Zuse, 19691). Similar views have been considered by John Archibald Wheeler, 
Seth Lloyd, Stephen Wolfram, Nick Bostrum, and many other serious thinkers. 

2 5 ~ o r  instance, identifying computability with recursiveness, we can assign an objective, though 
inevitably non-computable information measure to  all objects/messages in this universe. This is 
precise computational metaphysics. Of course, this, too, has its presuppositions, which might be 
questioned. How harmless is the choice of a Universal Turing machine, defined up to a 'constant 
factor'? Could even a leeway of 100 bits prevent us from using Kolmogorov complexity for the 
analysis of human intelligence? (Our brain has roughly 1015 neurons.) 

26Moreover, the point a t  which Kolmogorov complexity asymptotically approaches the actual 
complexity of objects in our world might lie well beyond a horizon that is useful and practical. 
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Philosophy of information: some major issues 

To summarize, we list the broad research issues emerging in this Handbook that 
we see as central for the development of the field: 

1. Information per se. What is information? Is there one general notion that 
encompasses all others, or do we merely have a family of loosely related 
concepts, or perhaps 'complementary stances' in practical settings, making 
the peaceful co-existence of approaches as described in this editorial the best 
that can be achieved? 

2. Information and process. What is the relation between information struc- 
ture and computation, deduction, observation, learning, game playing, or 
evolution? These processes seem to create information for free. How to 
understand this? Can we unify the theory of information, computation, dy- 
namic logics of epistemic update and belief revision, and the thermodynamics 
of non-equilibrium processes? 

3. Information and philosophy. The chapters in this Handbook tie the notion 
of information to fundamental issues in classical philosophy, 'analytical' but 
equally well 'continental'. Can we 'deconstruct' classical philosophy with 
modern information-theoretic tools, and bridge the culture gap between the 
two traditions? The tools of logic and mathematics at least have no bias for 
one over the other.27 

Thus, though this Handbook is full of answers to anyone interested in a serious 
study of information, we end with open questions, as true philosophers should. 
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EPISTEMOLOGY AND INFORMATION 

Fred Dretske 

Epistemology is the study of knowledge - its nature, sources, limits, and forms. 
Since perception is an important source of knowledge, memory a common way of 
storing and retrieving knowledge, and reasoning and inference effective methods 
for extending knowledge, epistemology embraces many of the topics comprised in 
cognitive science. It  is, in fact, a philosopher's way of doing cognitive science. 

Information, as commonly understood, as the layperson understands it, is an 
epistemologically important commodity. It  is important because it is necessary for 
knowledge. Without it one remains ignorant. It  is the sort of thing we associate 
with instruction, news, intelligence, and learning. It  is what teachers dispense, 
what we (hope to) find in books and documents, what measuring instruments 
provide, what airline and train schedules contain, what spies are used to ferret 
out, what (in time of war) people are tortured to divulge, and what (we hope) to 
get by tuning in to the evening news. 

I t  is this connection between knowledge and information, as both are commonly 
understood, that has encouraged philosophers to use mathematically precise cod- 
ifications of information to formulate more refined theories of knowledge. If infor- 
mation is really what it takes to know, then it seems reasonable to expect that 
a more precise account of information will yield a scientifically more creditable 
theory of knowledge. Maybe - or so we may hope - communication engineers 
can help philosophers with questions raised by Descartes and Kant. That is one 
of the motives behind information-based theories of knowledge. 

1 NECESSARY CLARIFICATIONS: MEANING, TRUTH, AND 
INFORMATION. 

As the name suggests, information booths are supposed to dispense information. 
The ones in airports and train stations are supposed to provide answers to ques- 
tions about when planes and trains arrive and depart. But not just any answers. 
True answers. They are not there to entertain patrons with meaningful sentences 
on the general topic of trains, planes, and time. Meaning is fine. You can't have 
truth without it. False statements, though, are as meaningful as true statements. 
They are not, however, what information booths have the function of providing. 
Their purpose is to dispense truths, and that is because information, unlike mean- 
ing, has to be true. If nothing you are told about the trains is true, you haven't 
been given information about the trains. At best, you have been given misinforma- 
tion, and misinformation is not a kind of information anymore than decoy ducks 
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are a kind of duck. If nothing you are told is true, you may leave an information 
booth with a lot of false beliefs, but you won't leave with knowledge. You won't 
leave with knowledge because you haven't been given what you need to know: 
information. 

So if in formulating a theory of information we respect ordinary intuitions about 
what information is - and why else would one call it a theory of information? 
- we must carefully distinguish meaning, something that need not be true, from 
information which must be true. There are, to be sure, special uses of the term 
"information" - computer science is a case in point - in which truth seems to 
be irrelevant. Almost anything that can be put into the memory of a computer, 
anything that can be entered into a "data" base, is counted as information. If 
it isn't correct, then it is misinformation or false information. But, according to 
this usage, it  is still information. Computers, after all, can't distinguish between 
"Paris is the capital of France" and "Paris is the capital of Italy." Both "facts", if 
fed into a computer, will be stored, retrieved, and used in exactly the same way. 
So if true sentences count as information, so should false ones. For computational 
purposes they are indistinguishable. 

This approach to information - an approach that is, I believe, widespread in 
the information sciences - blithely skates over absolutely fundamental distinctions 
between truth and falsity, between meaning and information. Perhaps, for some 
purposes, these distinctions can be ignored. Perhaps, for some purposes, they 
should be ignored. You cannot, however, build a science of knowledge, a cognitive 
science, and ignore them. For knowledge is knowledge of the truth. That is why, 
no matter how fervently you might believe it, you cannot know that Paris is the 
capital of Italy, that pigs can fly or that there is a Santa Claus. You can, to be sure, 
put these "facts", these false sentences, into a computer's data base (or a person's 
head for that matter), but that doesn't make them true. It doesn't make them 
information. It just makes them sentences that, given the machine's limitations (or 
the person's ignorance), the machine (or person) treats as information. But you 
can't make something true by thinking it is true, and you can't make something 
into information by regarding it as information. 

So something - e.g., the sentence "Pigs can fly" - can mean pigs can fly 
without carrying that information. Indeed, given the fact that pigs can't fly, 
nothing can carry the information that pigs can fly. This is why, as commonly 
understood, information is such an important, such a useful, commodity. It gives 
you what you need to know - the truth. Meaning doesn't. 

Information (once again, as it is commonly conceived) is something closely re- 
lated to what natural signs and indicators provide. We say that the twenty rings 
in the tree stump indicate, they signify, that the tree is twenty years old. That is 
the information (about the age of the tree) the rings carry. We can come to know 
how old the tree is by counting the rings. Likewise, the rising mercury in a glass 
tube, a thermometer, indicates that the temperature is rising. That is what the in- 
creasing volume of the mercury is a sign of. That is the information the expanding 
mercury carries and, hence, what we can come to know by using this instrument. 



Ch02-N5 1726.fm Page 3 1 Satarday, August 23,2008 2:04 PM @ I* 

Epistemology and Information 31 

We sometimes use the word "meaning" to express this sentential content (what 
we can come to know) but this sense of the word, a sense of the word in which 
smoke means (indicates, is a sign of) fire, must be carefully distinguished from a 
linguistic sense of meaning in which the word "fire" (not the word "smoke" nor 
smoke itself) means fire. In a deservedly famous article, Paul Grice [I9571 dubbed 
this informational kind of meaning, the kind of meaning in which smoke means 
(indicates, is a sign of) fire, natural meaning. With this kind of meaning, natural 
meaning, if an event, e, means (indicates, is a sign) that so-and-so exists, then so- 
and-so must exist. The red spots on her face can't mean, not in the natural sense 
of meaning, that she has the measles if she doesn't have the measles. If she doesn't 
have the measles, then perhaps all the spots mean in this natural sense is that she 
has been eating too many sweets. This contrasts with a language related (Grice 
called it "non-natural) meaning in which something (e.g., the sentence "She has 
the measles") can mean she has the measles even when she doesn't have them. If 
she doesn't have the measles, the sentence is false but that doesn't prevent it from 
meaning that she has the measles. If e (some event) means, in the natural sense, 
that s is F, however, then s has to be F. Natural meaning is what indicators 
indicate. It  is what natural signs are signs of. Natural meaning is information. It 
has to be true. 

This isn't to  say that we must know what things indicate, what information they 
carry. We may not know. We may have to find this out by patient investigation. 
But what we find out by patient investigation - that the tracks in the snow mean 
so-and-so or shadows on the film indicate such-and-such - is something that 
was true before we found it out. In this (natural) sense of meaning, we discover 
what things mean. We don't, as we do with linguistic or non-natural meaning, 
assign, create or invent it. By a collective change of mind we could change what 
the words "lightning" and "smoke" mean, but we cannot, by a similar change of 
mind, change what smoke and lightning mean (indicate). Maybe God can, but we 
can't. What things mean, what they indicate, what information they provide, is in 
this way objective. It  is independent of what we think or believe. It  is independent 
of what we know. We may seek information in order to obtain knowledge, but 
the information we seek doesn't depend for its existence on anyone coming to 
know. It  is, so to speak, out there in the world awaiting our use (or abuse) of it. 
Information is, in this way, different from knowledge. Information doesn't need 
conscious beings to exist, but knowledge does. Without life there is no knowledge 
(because there is nobody to know anything), but there is still information. There 
still exists that which, if knowers existed, they would need to know. 

2 INFORMATION AND COMMUNICATION 

If this is, even roughly, the target we are aiming at,  the idea of information we 
want a theory of, then a theory of information should provide some systematic, 
more precise, perhaps more analytical, way of thinking about this epistemologically 
important commodity. If possible, we want a framework, a set of principles, that 
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will illuminate the nature and structure of information and, at the same time, 
reveal the source of its power to  confer knowledge on those who possess it. 

In Dretske [1981; 19831 I found it useful to use Claude Shannon's Mathematical 
Theory of Communication [I9481 for these purposes (see also [Cherry, 19571 for a 
useful overview and [Sayre, 19651 for an early effort in this direction). Shannon's 
theory does not deal with the semantic aspects of information. It has nothing 
to say about the news, message, or content of a signal, the information (that 
the enemy is coming by sea, for instance) expressed in propositional form that 
a condition (a lantern in a tower) conveys. It does, however, focus on what is, 
for epistemological purposes, the absolutely critical relation between a source of 
information (the whereabouts of the enemy) and a signal (a lantern in the tower) 
that carries information about that source. Shannon's theory doesn't concern 
itself with what news, message or information is communicated from s (source) to 
r (receiver) or, indeed, whether anything intelligible is communicated at all. As 
far as Shannon's theory is concerned, it could all be gibberish (e.g., "By are they 
sea coming."). What the theory does focus on in its theory of mutual information 
(a measure of amount of information at the receiver about a source) is the question 
of the amount of statistical dependency existing between events occurring at these 
two places. Do events occurring at the receiver alter in any way the probability 
of what occurred at the source? Given the totality of things that occur, or that 
might occur, at these two places, is there, given what happens at the receiver, a 
reduction in (what is suggestively called) the uncertainty of what happened at the 
source? 

This topic, the communication channel between source and receiver, is a crit- 
ically important topic for epistemology because "receiver" and "source" are just 
information-theoretic labels for knower and known. Unless a knower (at a receiver) 
is connected to the facts (at a source) in an appropriate way, unless there is a suit- 
ably reliable channel of communication between them, the facts cannot be known. 
With the possible exception of the mind's awareness of itself (introspection) - 
there is always, even in proprioception, a channel between knower and known, a 
set of conditions on which the communication of information - and therefore the 
possibility of knowledge - depends. What we can hope to learn from communi- 
cation theory is what this channel must look like, what conditions must actually 
exist, for the transmission of the information, needed to know 

At one level, all this sounds perfectly familiar and commonplace. If someone 
cuts the phone lines between you and me, we can no longer communicate. I can 
no longer get from you the information I need in order to know when you are 
planning to arrive. Even if the phone lines are repaired, a faulty connection can 
generate so much "noise" (another important concept in communication theory) 
that not enough information gets through to be of much use. I hear you, yes, but 
not well enough to understand you. If we don't find a better, a clearer, channel 
over which to communicate, I will never find out, never come to  know, when you 
plan to arrive. 

That, as I say, is a familiar, almost banal, example of the way the communication 
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of information is deemed essential for knowledge. What we hope to obtain from 
a theory of communication, if we can get it, is a systematic and illuminating 
generalization of the intuitions at  work in such examples. What we seek, in its 
most general possible form, whether the communication occurs by phone, gesture, 
speech, writing, smoke signals, or mental telepathy, is what kind of communication 
channel must exist between you and me for me to learn what your plans are? Even 
more generally, for any A and B ,  what must the channel, the connection, between 
A and B be like for someone at A to learn something about B? 

The Mathematical Theory of Communication doesn't answer this question, but 
it does supply a set of ideas, and a mathematical formalism, from which an answer 
can be constructed. The theory itself deals in amounts of information, how much 
(on average) information is generated at  source s and how much (on average) 
information there is at  receiver r about this source. It does not try to tell us 
what information is communicated from s to  r or even, if some information is 
communicated, how much is enough to know what is happening at  s. It  might 
tell us that there are 8 bits of information generated at s about, say, the location 
of a chess piece on a chessboard (the piece is on KB-3) and that there are 7 bits 
of information at  r about the location of this piece, but it does not tell us what 
information this 7 bits is the measure of nor whether 7 bits of information is enough 
to know where the chess piece is. About that it is silent. 

3 USING COMMUNICATION THEORY 

We can, however, piece together the answers to these questions out of the elements 
and structure provided by communication theory. To understand the way this 
might work consider the following toy example (adapted from [Dretske, 19811) 
and the way it is handled by communication theory. There are eight employees 
and one of them must perform some unpleasant task. Their employer has left the 
job of selecting the unfortunate individual up to the group itself, asking only to 
be informed of the outcome once the decision is made. The group devises some 
random procedure that it deems fair (drawing straws, flipping a coin), and Herman 
is selected. A memo is dispatched to the employer with the sentence, "Herman 
was chosen" written on it. 

Communication theory identifies the amount of information associated with, 
or generated by, the occurrence of an event with the reduction in uncertainty, 
the elimination of possibilities, represented by that event. Initially there were 
eight eligible candidates for the task. These eight possibilities, all (let us assume) 
equally likely, were then reduced to one by the selection of Herman. In a certain 
intuitive sense of "uncertainty", there is no longer any uncertainty about who 
will do the job. The choice has been made. When an ensemble of possibilities is 
reduced in this way (by the occurrence of one of them), the amount of information 
associated with the result is a function of how many possibilities there were (8 in 
this case) and their respective probabilities (.I25 for each in this case). If all are 
equally likely, then the amount of information (measured in bits) generated by the 
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occurrence of one of these n possibilities, Ig, is the logarithm to the base 2 of n 
(the power to which 2 must be raised to equal n): 

Since we started with eight possibilities all of which were all equally likely, I, is 
log2 8 = 3 bits. Had there been 16 instead of 8 employees, Herman's selection 
would have generated 4 bits of information - more information since there is a 
reduction of more uncertainty. l 

The quantity of interest to epistemology, though, is not the information gen- 
erated by an event, but the amount of information transmitted to  some potential 
knower, in this case the employer, about the occurrence of that event. It doesn't 
make much difference how much information an event generates: 1 bit or 100 giga- 
bytes. The epistemologically important question is: how much of this information 
is transmitted to, and subsequently ends up in the head of, a person at r seeking 
to know what happened at s. Think, therefore, about the note with the name 
"Herman" on it lying on the employer's desk. How much information does this 
piece of paper carry about what occurred in the other room? Does it carry the 
information that Herman was selected? Would the employer, upon reading (and 
understanding) the message, know who was selected? The sentence written on the 
memo does, of course, mean in that non-natural or linguistic sense described above 
that Herman was selected. It  certainly would cause the employer to believe that 
Herman was selected. But these aren't the questions being asked. What is being 
asked is whether the message indicates, whether it means in the natural sense, 
whether it carries the information, that Herman was selected. Would it enable 
the employer to  know that Herman was selected? Not every sentence written on 
a piece of paper carries information corresponding to its (non-natural) meaning. 
"Pigs can fly" as it appears on this (or, indeed, any other) page doesn't carry the 
information that pigs can fly. Does the sentence "Herman was selected" on the 
employees' memo carry the information that Herman was selected? If so, why? 

Our example involves the use of an information-carrying signal - the memo 
to the employer - that has linguistic (non-natural) meaning, but this is quite 
irrelevant to the way the situation is analyzed in communication theory. To un- 
derstand why, think about an analogous situation in which non-natural (linguistic) 
meaning is absent. There are eight mischievous boys and a missing cookie. Who 
took it? Inspection reveals cookie crumbs on Junior's lips. How much information 
about the identity of the thief do the crumbs on Junior's lips carry? For infor- 
mational purposes, this question is exactly the same as our question about how 

'If the probabilities of selection are not equal (e.g., probability of Herman = 1/6, probability 
of Barbara = 1/12, etc.), then Ig (average amount of information generated by the selection 
of an employee) is a weighted average of the information generated by the selection of each. I 
pass over these complications here since they aren't relevant t o  the use of communication theory 
in epistemology. What is relevant to  epistemology is not how much information is generated 
by the occurrence of an event, or how much (on average) is generated by the occurrence of an 
ensemble of events, but how much of that information is transmitted to  a potential knower at 
some receiver. 
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much information about which employee was selected the memo to the employer 
carries. In the case of Junior, the crumbs on his lips do not have linguistic mean- 
ing. They have a natural meaning, yes. They mean (indicate) he took the cookie. 
But they don't have the kind of conventional meaning associated with a sentence 
like, "Junior took the cookie." 

Communication theory has a formula for computing amounts of transmitted 
(it is sometimes called mutual) information. Once again, the theory is concerned 
not with the conditional probabilities that exist between particular events at the 
source (Herman being selected) and the receiver (Herman's name appearing on 
the memo) but with the average amount of information, a measure of the general 
reliability of the communication channel connecting source and receiver. There 
are eight different conditions that might exist at  s: Barbara is selected, Herman 
is selected, etc. There are eight different results at r: a memo with the name 
"Herman" on it, a memo with the name "Barbara" on it, and so on. There are, 
then, sixty four conditional probabilities between these events: the probability 
that Herman was selected given that his name appears on the memo: 

Pr[Herman was selectedlthe name "Herman" appears on the memo]; 

the probability that Barbara was selected given that the name "Herman" appears 
on the memo: 

Pr[Barbara was selectedlthe name "Herman" appears on the memo]; 

and so on for each of the eight employees and each of the eight possible memos. 
The transmitted information, I t ,  is identified with a certain function of these 64 
conditional probabilities. One way to express this function is to say that the 
amount of information transmitted, I t ,  is the amount of information generated 
at s, I,, minus a quantity called equivocation, E, a measure of the statistical 
independence between events occurring at  s and r. 

The mathematical details are not really important. A few examples will illustrate 
the main ideas. Suppose the employees and messenger are completely scrupulous. 
Memos always indicate exactly who was selected, and memos always arrive on 
the employer's desk exactly as they were sent. Given this kind of reliability, the 
conditional probabilities are all either 0 or 1. 

Pr[Herman was selectedlthe name "Herman" appears on the memo] = 1 
Pr[Barbara was selectedlthe name "Herman" appears on the memo] = 0 

'Equivocation, E ,  is the weighted (according t o  its probability o f  occurrence) sum o f  in- 
dividual contributions, E ( r l ) ,  E ( r z ) ,  . . . to  equivocation o f  each o f  the possible events (eight 
possible memos) at r : E = p r ( r l ) E ( r ~ )  + pr(rz)E(rz) + . . .pr(rs)E(rs)  where E(r i )  = 
-?pr(si/ri) log2[pr(si/ri)].  I f  events at s and r are statistically independent then E is at a 
maximum ( E  = 19) and It is zero. 
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Pr[Nancy was selectedlthe name "Herman" appears on the memo] = 0 

Pr[Barbara was selectedlthe name "Barbara" appears on the memo] = 1 
Pr[Herman was selectedlthe name "Barbara" appears on the memo] = 0 
Pr[Nancy was selectedlthe name "Barbara" appears on the memo] = 0 

And so on for all employees and possible memos. Given this reliable connection, 
this trustworthy communication channel, between what happens among the em- 
ployees and what appears on the memo to their employer, the equivocation, E 
turns out to be zero.3 

It = Ig: the memo on which is written an employee's name carries 3 bits 
of information about who was selected. All of the information generated by an 
employee's selection, 3 bits, reaches its destination. 

Suppose, on the other hand, we have a faulty, a broken, channel of communi- 
cation. On his way to the employer's office the messenger loses the memo. He 
knows it contained the name of one of the employees, but he doesn't remember 
which one. Too lazy to return for a new message, he selects a name of one of 
the employees at random, scribbles it on a sheet of paper, and delivers it. The 
name he selects happens, by chance, to be "Herman." Things turn out as before. 
Herman is assigned the job, and no one (but the messenger) is the wiser. In this 
case, though, the set of conditional probabilities defining equivocation (and, thus, 
amount of transmitted or mutual information) are quite different. Given that the 
messenger plucked a name at random, the probabilities look like this: 

Pr[Herman was selectedlthe name "Herman" appears on the memo] = 118 
Pr[Barbara was selected/the name "Herman" appears on the memo] = 118 

Pr[Herman was selectedlthe name "Barbara" appears on the memo] = 118 
Pr[Barbara was selectedlthe name "Barbara" appears on the memo] = 118 

The statistical function defining equivocation (see footnote 2) now yields a max- 
imum value of 3 bits. The amount of transmitted information, formula (2), is 
therefore zero. 

3Either pr(s/r) = 0 or log2[pr(s/r)] = 0 in the individual contributions t o  equivocation (see 
footnote 2). Note: log, 1 = 0. 
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These two examples represent the extreme cases: maximum communication and 
zero communication. One final example of an intermediate case and we will be 
ready to explore the possibility of applying these results in an information-theoretic 
account of knowledge. 

Imagine the employees solicitous about Barbara's delicate health. They agree 
to name Herman on their note if, by chance, Barbara should be the nominee 
according to their random selection process. In this case I,, the amount of infor- 
mation generated by Herman's selection would still be 3 bits: 8 possibilities, all 
equally likely, reduced to 1. Given their intention to protect Barbara, though, the 
probabilities defining transmitted information change. In particular 

Pr[Herman was selectedlthe name "Herman7' appears on the memo] = 112 
Pr[Barbara was selectedlthe name "Herman" appears on the memo] = 112 

The remaining conditional probabilities stay the same. This small change means 
that E, the average equivocation on the channel, is no longer 0. I t  rises to .25. 
Hence, according to (2)' It drops from 3 to  2.75. Some information is transmitted, 
but not as much as in the first case. Not as much information is transmitted as is 
generated by the selection of an employee (3 bits) 

This result seems to be in perfect accord with ordinary intuitions about what 
it takes to know. For it seems right to say that, in these circumstances, anyone 
reading the memo naming Herman as the one selected could not learn, could not 
come to know, on the basis of the memo alone, that Herman actually was selected. 
Given the circumstances, the person selected might have been Barbara. So it 
would seem that communication theory gives us the right answer about when 
someone could know. One could know that it was Herman in the first case, when 
the message contained 3 bits of information - exactly the amount generated by 
Herman's selection - and one couldn't know in the second and third case, when 
the memo contains 0 bits and 2.75 bits of information, something less than the 
amount generated by Herman's selection. So if information is what it takes to 
know, then it seem correct to conclude that in the first case the information that 
Herman was selected was transmitted and in the second and third case it was not. 
By focusing on the amount of information carried by a signal, communication 
theory manages to tell us something about the informational content of the signal 
- something about the news or message the signal actually carries - and, hence, 
something about what (in propositional form) can be known. 

4 THE COMMUNICATION CHANNEL 

Let us, however, ask a slightly different question. We keep conditions the same as 
in the third example (Herman will be named on the memo if Barbara is selected), 
but ask whether communication theory gives the right result if someone else is 
selected. Suppose Nancy is selected, and a memo sent bearing her name. Since 
the general reliability of the communication channel remains exactly the same, the 
amount of transmitted information (a quantity that, by averaging over all possible 
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messages, is intended to reflect this general reliability) also stays the same: 2.75 
bits. This is, as it were, a 2.75 bit channel, and this measure doesn't change no 
matter which particular message we happen to send over this channel. If we use 
this as a measure of how much information is carried by a memo with Nancy's 
name on it, though, we seem to get the wrong result. The message doesn't carry as 
much information, 3 bits, as Nancy's selection generates. So the message doesn't 
carry the information that Nancy was selected. Yet, a message bearing the name 
"Nancy" (or, indeed, a memo bearing the name of any employee except "Herman") 
is a perfectly reliable sign of who was selected. The name "Nancy" indicates, it 
means (in the natural sense) that Nancy was selected even though a memo bearing 
the name "Herman" doesn't mean that Herman was selected. The same is true of 
the other employees. The only time the memo is equivocal (in the ordinary sense 
of "equivocal") is when it bears the name "Herman." Then it can't be trusted. 
Then the nominee could be either Herman or Barbara. But as long as the message 
doesn't carry the name "Herman" it is an absolutely reliable indicator of who was 
selected. So when it bears the name "Nancy" ("Tom" etc.) why doesn't the memo, 
contrary to  communication theory, carry the information that Nancy (Tom, etc.) 
was selected? A 2.75 bit channel is a reliable enough channel - at least sometimes, 
when the message bears the name "Nancy" or "Tom," for instance - to carry a 
3 bit message. 

Philosophical opinions diverge at this point. Some are inclined to say that 
Communication Theory's concentration on averages disqualifies it for rendering 
a useful analysis of when a signal carries information in the ordinary sense of 
information. For, according to this view, a message to the employer bearing the 
name "Nancy" does carry information about who was selected. It enables the 
employer to know who was selected even though he might have been misled had 
a message arrived bearing a different name. The fact that the average amount of 
transmitted information (2.75 bits) is less than the average amount of generated 
information (3 bits) doesn't mean that a particular signal (e.g., a memo with the 
name "Nancy" on it) can't carry all the information needed to know that Nancy 
was selected. As long as the signal indicates, as long as it means in the natural 
sense, that Nancy was selected, it is a secure enough connection (channel) to the 
facts to know that Nancy was selected even if other signals (a memo with the 
name "Herman" on it) fail to be equally informative. Communication Theory, 
in so far as it concentrates on averages, then, is irrelevant to the ordinary, the 
epistemologically important, sense of information. 

Others will disagree. Disagreement arises as a result of different judgments 
about what it  takes to know and, therefore, about which events can be said to 
carry information in the ordinary sense of information. The thought is something 

4 ~ h i s  is the view I took in Dretske [1981] and why I argued that the statistical functions of 
epistemological importance were not those defining average amounts of information (equivoca- 
tion, etc.), but the amount of information associated with particular signals. It was not, I argued, 
average equivocation that we needed to  be concerned with, but the equivocation associated with 
particular signals (see [Dretske, 1981, 25-26]). 
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'If users were aware of the instrument's limited reliability, of course, they could compensate by 
ignoring readings above 100 and, in effect, make the instrument completely accurate in the ranges 
it was used (i.e., trusted). Practically speaking, this represent a change in the communication 
channel since certain readings (those above 100) would no longer be regarded as information- 
bearing signals. 

go his way of putting the point is meant to  recall Robert Nozick's [I9811 discussion of similar 
issues. If the method being used t o  "track" (Nozick's term) the truth is insensitive to  ranges 
of unreliability, then the method is not such as to  satisfy the counterfactual conditions Nozick 
uses to  define tracking. One would (using that method) have believed P even when P was false. 
See, also, Goldman's [I9761 insightful discussion of the importance of distinguishing the ways we 
come to  know. 
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like this: a communication channel that is sometimes unreliable is not good enough 
to know even when it happens to be right. A channel of the sort described here, a 
channel that (unknown to  the receiver) sometimes transmits misleading messages, 
is a channel that should never be trusted. If it is trusted, the resulting belief, even 
it happens to be true, does not possess the "certainty" characteristic of knowledge. 
If messages are trusted, if the receiver actually believes that Nancy was selected 
on the basis of a message bearing the name "Nancy," the resulting belief does 
not, therefore, add up to knowledge. To think otherwise is like supposing that one 
could come to know by taking the word of a chronic liar just because he happened, 
on this particular occasion, and quite unintentionally, to be speaking the truth. 

Imagine a Q meter designed to measure values of Q. Unknown to its users, it is 
perfectly reliable for values below 100, but unpredictably erratic for values above 
100. Is such an instrument one that a person, ignorant of the instrument's eccentric 
disposition5, could use to learn values of Q below loo? Would a person who took a 
reading of "84" at face value, a person who was caused to believe that Q was 84 by 
a reading of "84" on this instrument, know that Q was 84? Does the instrument 
deliver information about values of Q below 100 to trusting users? If your answer 
to these questions is "No," you are using something like communication theory 
to guide your judgments about what is needed to know and, hence, about when 
information is communicated. This instrument doesn't deliver what it takes to 
know (i.e., information in the ordinary sense) because although the particular 
reading ("84") one ends up trusting is within the instrument's reliable range (the 
instrument wouldn't read "84" unless Q was 84) you don't know this. You would 
have trusted it even if it had registered "104". The method being used to "track" 
the truth (the value of Q) doesn't track the truth throughout the range in which 
that method is being used.6 

Externalism is the name for an epistemological view that maintains that some 
of the conditions required to know that P may be, and often are, completely be- 
yond the ken of the knower. You can, in normal illumination, see (hence, know) 
what color the walls are even if you don't know (because you haven't checked) 
that the illumination is normal. Contrary to Descartes, in normal circumstances 
you can know you are sitting in front of the fireplace even if you don't know (and 
can't show) the circumstances are normal, even if you don't know (and can't show) 
you are not dreaming or being deceived by some deceptive demon. According to 
externalism, what is important for knowledge is not that you know perceptual 
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conditions are normal (the way they are when things are the way they appear 
to  be), but that conditions actually be normal. If they are, if illumination (per- 
spective, eyesight, etc.) are as you (in ordinary life) routinely take them to be, 
then you can see - and, hence, know - that the walls are blue, that you are 
sitting in front of the fireplace, and that you have two hands. You can know these 
things even if, for skeptical reasons, you cannot verify (without arguing in a circle) 
that circumstances are propitious. Information-theoretic accounts of knowledge 
are typically advanced as forms of externalism. The idea is that the information 
required to know can be obtained from a signal without having to know that the 
signal from which you obtain this information actually carries it. What matters 
in finding out that Nancy was selected (or in coming to know any other empirical 
matter of fact) is not that equivocation on the channel (connecting knower and 
known) be known to be zero. What is crucial is that it actually - whether known 
or not - be zero. This dispute about whether a memo bearing the name "Nancy" 
carries the information that Nancy was selected is really a dispute among exter- 
nalists not about what has to be known about a communication channel for it to 
carry information. Externalists will typically agree that nothing has to be known. 
It is, instead, a dispute about exactly what (independently of whether or not it 
is known) constitutes the communication channel. In calculating equivocation be- 
tween source and receiver - and, therefore, the amount of information a signal at 
the receiver carries about a source, should we count every signal that would pro- 
duce the same resulting belief - the belief (to use. our example again) that Nancy 
was selected? In this case we don't count memos carrying the name "Herman" 
since although these memos will produce false belief, they will not produce a false 
belief about Nancy's selection. If we do this, we get an equivocation-free channel. 
Information transmission is optimal. Or should we count every signal that would 
produce a belief about who was selected - whether or not it is Nancy? Then 
we count memos carrying the name Herman, and the communication channel, as 
so defined, starts to get noisy. The amount of mutual information, a measure of 
the amount of information transmitted, about who was selected is no longer equal 
to the amount of information generated. Memos - even when they carry the 
name "Nancy" - do not carry as much information as is generated the choice of 
Nancy because equivocal messages bearing the name "Herman" are used to reckon 
the channel's reliability even when it carries the message "Nancy." Or - a third 
possible option - in reckoning the equivocation on a communication channel, 
should we (as skeptics would urge) count any belief that would be produced by 
any memo (or, worse, any signal) whatsoever? If we start reckoning equivocation 
on communication channels in that way, then, given the mere possibility of mis- 
perception, no communication channel is ever entirely free of equivocation. The 
required information is never communicated. Nothing is known. 

I do not - not here at least - take sides in this dispute. I merely describe a 
choice point for those interested in pursuing an information-theoretic epistemol- 
ogy. The choice one makes here - a choice about what colle~tion of events and 
conditions are to determine the channel of communication between knower and 
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known - is an important one. In the end, it determines what conclusions one 
will reach about such traditional epistemological problems as skepticism and the 
limits of human knowledge. I refer to this as a "choice" point to register my own 
belief that communication theory, and the concept of information it yields, does 
not solve philosophical problems. I t  is, at  best, a tool one can use to express 
solutions - choices - reached by other means. 

5 RESIDUAL PROBLEMS AND CHOICES 

What follows are three more problems or, as I prefer to put it, three more choices 
confronting anyone developing an information-theoretic epistemology that is based, 
even if only roughly, on an interpretation of information supplied by communica- 
tion theory. I have my own ideas about which choices should be made and I will 
so indicate, but I will not here argue for these choices. That would require a depth 
of epistemological argument that goes beyond the scope of this paper. 

A. Probability 
In speaking of mutual information within the framework of communication theory, 
we imply that there is a set of conditional probabilities relating events at source 
and receiver. If these conditional probabilities are objective, then the resulting 
idea of information is objective. If they are subjective, somehow dependent on 
what we happen to believe, on our willingness to bet, on our level of confidence, 
then the resulting notion of information is subjective. If information is objective, 
then to the extent that knowledge depends on information, knowledge will also be 
objective. Whether a person who believes that P knows that P will depend on 
how, objectively speaking, that person is connected to the world. It will depend 
on whether the person's belief (assuming it is true) has appropriate informational 
credentials - whether, that is, it (or the evidence on which it is based) stands in 
suitable probabilistic relations to events at  the source. That will be an objective 
matter, a matter to be decided by objective facts defining information. It will not 
depend on the person's (or anyone else's) opinion about these facts, their level 
of confidence, or their willingness to bet. If, on the other hand, probability is a 
reflection of subjective attitudes, if the probability of e (some event at  a source) 
given r (an event at a receiver) depends on the judgments of people assigning the 
probability, then knowledge, in so far as it depends on information, will depend on 
these judgments. Whether S knows that P will depend on who is saying S knows 
that P. 

I have said nothing here about the concept of probability that figures so cen- 
trally in communication theory. I have said nothing because, as far as I can see, 
an information-theoretic epistemology is compatible with different interpretations 
of ~ r o b a b i l i t ~ . ~  One can interpret it as degree of rational expectation (subjec- 
tive), or (objectively) as limiting frequency or propensity. In developing my own 

7 B ~ t  see Loewer [I9831 for arguments that there is no extant theory of probability that will 
do  the job. 
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information-based account of knowledge in [Dretske, 19811 I assumed (without 
arguing for) an objective interpretation. There are, I think, strong reasons for 
preferring this approach, but strictly speaking, this is optional. The probabilities 
can be given a subjective interpretation with little or no change in the formal 
machinery. What changes (for the worse, I would argue) are the epistemological 
consequences. 

If probability is understood objectively, an informational account of knowledge 
takes on some of the characteristics of a causal theory of knowledge.8 According 
to a causal theory of knowledge, a belief qualifies as knowledge only if the belief 
stands in an appropriate causal relation to the facts. I know Judy left the party 
early, for instance, only if her early departure causes me to believe it (either by my 
seeing her leave or by someone else - who saw her leave early - telling me she 
left). Whether my belief that she left early is caused in the right way is presumably 
an objective matter. It  doesn't depend on whether I or anyone else know it was 
caused in the right way. For this reason everyone (including me) may be wrong 
in thinking that I (who believes Judy left early) know she left early. Or everyone 
(including me) may be wrong in thinking I don't know she left early. Whether 
or not I know depends on facts, possibly unknown, about the causal etiology of 
my belief. If probability is (like causality) an objective relation between events, 
then an information-theoretic account of knowledge has the same result. Whether 
or not someone knows is a matter about which everyone (including the knower) 
may be ignorant. To know whether S knows something - that Judy left early, 
say - requires knowing whether S's belief that Judy left early meets appropriate 
informational (i.e., probabilistic) conditions, and this is a piece of knowledge that 
people (including S herself) may well not have. 

If, on the other hand, probability is given a subjective interpretation, infor- 
mation - and therefore the knowledge that depends on it - takes on a more 
relativistic character. 

Whether or not S knows now depends on who is attributing the knowledge. It 
will depend on (and thus vary with) the attributor of knowledge because, presum- 
ably, the person who is attributing the knowledge will be doing the interpreting on 
which the probabilities and, therefore, the information and, therefore, the knowl- 
edge depends. As a result, it will turn out that you and I can both speak truly 
when you assert and I deny that S knows Judy left early. Contextualism (see [Co- 
hen, 1986; 1988; 1999; DeRose, 1995; Feldman, 1999; Heller, 1999; Lewis, 19961) 
in the theory of knowledge is a view that embraces this result. 

B. Necessary Truths 
Communication theory defines the amount of transmitted information between 
source and receiver in terms of the conditional probabilities between events that 
occur, or might have occurred, at these two places. As long as what occurs at 
the source generates information - as long, that is, as the condition existing at a 
source is a contingent state of affairs (a state of affairs for which there are possible 

8Goldman [I9671 gives a classic statement of this theory. 
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alternatives) there will always be a set of events (the totality of events that might 
have occurred there) over which these probabilities are defined. But if the targeted 
condition is one for which there are no possible alternatives, a necessary state of 
affairs, no information is generated. Since a necessary state of affairs generates 
zero information, every other state (no matter how informationally impoverished 
it might be) carries an amount of information (i.e., 2 0 bits) needed to know 
about its existence. According to communication theory, then, it would seem that 
nothing (in the way of information) is needed to know that 3 is the cube root 
of 27. Or, to put the same point differently, informationally speaking anything 
whatsoever is good enough to know a necessary truth. Bubba's assurances are 
good enough to know that 3 is the cube root of 27 because his assurances carry 
all the information generated by that fact. Mathematical knowledge appears to 
be cheap indeed. 

One way to deal with this problem is to accept a subjective account of proba- 
bility. The village idiot's assurances that 3 is the cube root of 27 need not carry 
the information that 3 is the cube root of 27 if probability is a measure of, say, 
one's willingness to bet or one's level of confidence. On this interpretation, the 
probability that 3 is the cube root of 27, given (only) Bubba's assurances, may 
be anything between 0 and 1. Whether or not I know, on the basis of Bubba's 
assurances, that 3 is the cube root of 27, will then depend on how willing I am to 
trust Bubba. That will determine whether Bubba is a suitable informant about 
mathematics, a suitable channel for getting information about the cube root of 27. 

Another way to deal with this problem is to retain an objective interpretation 
of probability but insist that the equivocation on the channel connecting you to 
the facts, the channel involving (in this case) Bubba's pronouncements, is to be 
computed by the entire set of things Bubba might say (on all manner of topics), 
not just what he happened to say about the cube root of 27. If equivocation (and, 
thus, amount of transmitted information) is computed in this way, then whether 
or not one receives information about the cube root of 27 from Bubba depends 
on how generally reliable Bubba is. Generally speaking, on all kinds of topics, is 
Bubba a reliable informant? If not, then whether or not he is telling the truth 
about the cube root of 27, whether or not he could be wrong about that, he is not 
a purveyor of information. One cannot learn, cannot come to know, that 3 is the 
cube root of 27 from him. If Bubba is a generally reliable informant, on the other 
hand, then he is someone from whom one can learn mathematics as well as any 
other subject about which he is generally reliable. 

A third way to deal with the problem, the way I took in Dretske [1981], is to 
restrict one's theory of knowledge to perceptual knowledge or (more generally) to 
knowledge of contingent (empirical) fact. Since a contingent fact is a fact for which 
there are possible alternatives, a fact that might not have been a fact, a fact that 
(because it has a probability less than one) generates information, one will always 
have a channel of communication between knower and known that is possibly 
equivocal, a channel that might mislead. If a theory of knowledge is a theory 
about this limited domain of facts, a theory (merely) of empirical knowledge, then 
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communication theory is prepared to say something about an essential ingredient 
in such knowledge. It tells you what the channel between source and receiver must 
be like for someone at the receiver to learn, come to know, empirical facts about 
the source. 

C. How Much Information is Enough? 
I have been assuming that information is necessary for knowledge. The employer 
can't know who was selected - that it  was Herman - unless he receives the re- 
quired information. Following a natural line of thought, I have also been assuming 
that if information is understood in a communication-theoretic sense, then the 
amount of information received about who was selected has to  be equal to (or 
greater) than the amount of information generated by the selection. So if Her- 
man's selection generates 3 bits of information (there are eight employees, each of 
which has an equal chance of being selected), then to know who was selected you 
have to  receive some communication (e.g., a message with the name "Herman" 
on it) that carries at least that much information about who was selected. If it 
carries only 2.75 bits of information, as it did in the hypothetical case where em- 
ployees were determined to protect (i.e., not name) Barbara, then the message, 
although enough (if it carries the name "Herman") to produce true belief, could 
not produce knowledge. In order to know what happened at s you have to receive 
as much information - in this case 3 bits - about s as is generated by the event 
you believe to have occurred there. 

My examples were deliberately chosen to support this judgment. But there 
are other examples, or other ways of framing the same example, that suggest 
otherwise. So, for instance, suppose the employees' messages are not so rigidly 
determined. Messages bearing the name "Herman" make it 99% probable that 
Herman was selected, messages bearing the name "Barbara" make it 98% probable 
that Barbara was chosen, and so on (with correspondingly high probabilities) for 
the remaining six employees. As long as these probabilities are neither 0 nor 1, 
the individual contributions to  equivocation (see footnote 2) will be positive. The 
equivocation, E, on the channel will, therefore, be greater than 0 and the amount 
of transmitted information will be less than the amount of information generated. 
Messages about an employee's selection will never carry as much information as is 
generated by that employee's selection. Full and complete information about who 
was selected, the kind of information (I have been arguing) required to know who 
was selected, will never be transmitted by these messages. Can this be right? Is 
it clear that messages sent on this channel do not carry the requisite information? 
Why can't the employer know Herman was selected if he receives a memo with 
the name "Herman" on it? The probability is, after all, .99. 

If a probability of .99 is not high enough, we can make the equivocation even 
less and the amount of information transmitted even greater by increasing prob- 
abilities. We can make the probability that X was selected, given that his or 
her name appears on the memo, .999 or .9999. As long as this probability is less 
than 1, equivocation is positive and the amount of transmitted information less 
than information generated. Should we conclude, though, that however high the 
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probabilities become, as long as E > 0 and, therefore, It < I,), not enough infor- 
mation is transmitted to yield knowledge? If we say this, doesn't this make the 
informational price of knowledge unacceptably high? Isn't this an open embrace 
of skepticism? 

If, on the other hand, we relax standards and say that enough information 
about conditions at a source is communicated to know that what condition exists 
there even when there is a permissibly small amount of equivocation, what is 
permissibly small? If, in order to know that Herman was selected, we don't need 
all the information generated by his selection, how much information is enough? 

Non-skeptics are tugged in two directions here. In order to avoid skepticism, 
they want conditions for knowledge that can, at  least in clear cases of knowledge, 
be satisfied. On the other hand, they do not want conditions that are too easily 
satisfied else clear and widely shared intuitions about what it takes to  know are 
violated. Reasonable beliefs, beliefs that are very probably true, are clearly not 
good enough. Most people would say, for instance, that if S is drawing balls at  
random from a collection of balls (100, say) only one of which is white, all the rest 
being black, you can't, before you see the color of the ball, know that S selected 
a black ball even though you know the probability of its being black is 99%. S 
might, for all you know, have picked the white ball. Things like that happen. Not 
often, but often enough to discredit a claim that (before you peek) you know it 
didn't happen on this occasion. Examples like this suggest that knowledge requires 
eliminating all (reasonable? relevant?) chances of being wrong, and elimination of 
these is simply another way of requiring that the amount of information received 
about the state known to exist be (at least) as much as the amount of information 
generated by that state. 

There are different strategies for dealing with this problem. One can adopt a 
relativistic picture of knowledge attributions wherein the amount of information 
needed to know depends on contextual factors. In some contexts, reasonably high 
probabilities are enough. In other contexts, perhaps they are not enough. How 
high the probabilities must be, how much equivocation is tolerated, will depend 
on such things as how important it is to be right about what is occurring at  the 
source (do lives depend on your being right or is it just a matter of getting a 
higher score on an inconsequential examination?), how salient the possibilities are 
of being wrong, and so on. 

A second possible way of dealing with the problem, one that retains an absolute 
(i.e., non-relativistic) picture of knowledge, is to adopt a more flexible (I would 
say more realistic) way of thinking about the conditional probabilities defining 
equivocation and, therefore, amount of transmitted information. Probabilities, in 
so far as they are relevant to practical affairs, are always computed against a set of 
circumstances that are assumed to be fixed or stable. The conditional probability 
of s, an event at  a source, given r, the condition at  the receiver is really the 
probability of s, given r within a background of stable or fixed circumstances B. 
To say that these circumstances are fixed or stable is not to say that they cannot 
change. It  is only to say that for purposes of reckoning conditional probabilities, 
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such changes are set aside as irrelevant. They are ignored. If the batteries in a 
measuring instrument are brand new, then even if it is possible, even if there is a 
non-zero probability, that new batteries are defective, that possibility is ignored 
in calculating the amount of information the instrument is delivering about the 
quantity it is being used to measure. The non-zero probability that B fails, that 
the batteries are defective, does not contribute to the equivocation of instruments 
for which B holds, instruments whose batteries are functioning well. The same is 
true of all communication channels. The fact - if it is a fact - that there is a non- 
zero probability that there were hallucinatory drugs in my morning coffee, does not 
make my current (perfectly veridical) experience of bananas in the local grocery 
store equivocal. It  doesn't prevent my perception of bananas from delivering the 
information needed to  know that they (what I see) are bananas. It doesn't because 
the equivocation of the information delivery system, my perceptual system, is 
computed taking as given the de facto condition (no hallucinatory drugs) of the 
channel. Possible (non-actual) conditions of this channel are ignored even if there is 
a non-zero probability that they actually exist. The communication of information 
depends on their being, in fact, a reliable channel between a source and a receiver. 
It doesn't require that this reliability itself be necessary. 
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INFORMATION IN NATURAL LANGUAGE 

Hans Kamp and Martin Stokhof 

1 INTRODUCTION 

Natural languages are vehicles of information, arguably the most important, cer- 
tainly the most ubiquitous that humans possess. Our everyday interactions with 
the world, with each other and with ourselves depend on them. And even where 
in the specialised contexts of science we use dedicated formalisms to convey infor- 
mation, their use is embedded in natural language. 

This omnipresence of natural language is due in large part to its flexibility, 
which is almost always a virtue, sometimes a vice. Natural languages are able to 
carry information in a wide variety of ways, about a seemingly unlimited range of 
topics, which makes them both efficient and versatile, and hence useful in almost 
every circumstance. But sometimes, when pinpoint precision is what counts, this 
versatility can get in the way, and we make use of formal languages, such as those 
of mathematics. 

The variety of ways in which the use of natural language involves information, 
reveals itself immediately if we look at the various functions that utterances of 
natural language expressions may have. First, many of the utterances we produce 
serve to directly impart information to our readers or listeners - usually infor- 
mation which we take to be new and of interest to them. We describe situations, 
stating what we take to be facts ('Mary is in Paris'), or contemplating what we 
regard as possibilities ('John might be accompanying her'). This declarative use 
of language is perhaps the most obvious way in which natural languages are used 
to convey information. 

But, of course, this doesn't hold for all utterances. We also ask questions ('What 
time does the meeting start?'), in order to elicit information rather than to impart 
it; we give directives ('Open a window', 'Stay away from her'), in order to get the 
other to do certain things, or t o  keep him from doing them; we issue warnings and 
threats ('Look out, a bus!', 'If you do that, I'll tell the boss'), we express regret 
and joy ('I apologise for the belated reply, . . . ', 'Congratulations!'), and so on. 
But in these cases, too, our utterances carry information, and that they do so is 
essential: a question must convey what information is requested; a directive must 
specify information about what is to be done, or to be refrained from; a warning or 
threat must identify a particular situation or event; and if we don't convey what 
it is that we regret, or what we are happy about, the point of our speech is lost. 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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These humdrum observations also illustrate a further point. Not only do natural 
language utterances involve information about a variety of types of situations: 
factual and possible, past, present and future; they also convey information about 
the specific attitudes that natural language users have concerning these situations: 
that the speaker takes them to be factual, or merely possible; that they are to  be 
avoided, or to  be realised, by the hearer; that the speaker regards them with 
regret, or with joy. Thus the information carrying capacity of a natural language 
encompasses not just what its expressions are about, but also the various attitudes 
that its users may have towards that. 

Another way in which information might be conveyed is more indirect than in 
the examples above, where it is coded in the syntactic form or indicated by a 
particular expression or turn of phrase. Making use of the context in which an ut- 
terance is produced, for example by relying on the presence of certain expectations 
on the part of the hearer, we may also indirectly convey information about a cer- 
tain situation. For example, when answering a question about the whereabouts of 
Jane by means of a disjunction ('She's either in Paris, or in London, with Mary'), 
we indicate that we do not know exactly where she is. This is information that 
is not explicitly stated, but only suggested. However, an addressee who expects 
the speaker to be as co-operative as he can will pick up this information without 
hesitation. 

And it doesn't stop there. Besides utterances of the above kinds there are those 
which serve various social purposes: greeting someone, acknowledging a gesture 
or utterance she is making, expressing concern or empathy. Many utterances we 
use to such ends - 'Hi, how are you?', 'I am sorry to hear that', and so on - are 
formulaic. They carry information, not in virtue of being about something and ex- 
pressing an attitude to that, but by being fixed through special conventions, which 
bypass the general mechanisms by which information is associated with linguistic 
form. But these utterances do carry information nonetheless, as is indicated by 
the fact that the purposes they serve can as a rule also be accomplished by means 
of other, non-formulaic utterances. 

Yet another way in which information is conveyed by natural language is through 
mechanisms that relate a specific utterance to its linguistic context. After all, an 
utterance hardly ever occurs on its own, out of the blue; usually it is part of a larger 
whole, a text or a conversation, that serves a specific purpose and accordingly may 
have a specific form. When it is part of such a larger textual or conversational 
complex an individual utterance may contribute to the meaning of that complex 
as a whole through mechanisms that relate it to other parts of the complex. The 
use of pronouns to refer to an entity mentioned previously in a conversation (A: 'I 
met John the other day.' B: 'How's he doing?') is a simple example; the specific 
form of a question - answer dialogue, in which answers more often than not are 
fragments of complete sentences, yet do express complete propositions (A:  'Who's 
chairing the meeting?' B: 'Bill.'), provides another. 

As they stand, all these observations, with their repeated references to 'in- 
formation', are, we take it, hardly controversial. But to say precisely what the 
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information is of which they speak is not so easy. For one thing, it is not at all 
clear that we are dealing with a uniform concept: when trying to explain in what 
sense natural languages are information carriers, we may well find that it is nec- 
essary to distinguish various 'kinds' of information. And should that need arise, 
there will be the further task of saying exactly how these different notions are re- 
lated to each other and how natural languages are able to handle various notions 
of information in such elegant and efficient ways. To outline some aspects of the 
current state of thinking about these issues is the goal of the present chapter. 

But first we should make clear what the information concept that we talk about 
in this chapter is not. We are not concerned with information based on mere like- 
lihood, according to which the information carried by a symbol or symbol string 
is some inverse function of the probability of its occurrence. Common to such 
a concept of information and the one that will be relevant in this chapter is the 
conception of individual events that are classified as each being of some particular 
event type. In our case the event types are the types of symbols and symbol strings 
and the individual events are particular occurrences ('utterances') of symbols and 
strings of them. The probability-based notion of information presupposes in ad- 
dition to such a space of classifiable occurrences a probability distribution over 
possible occurrences, which assigns each occurrence of an individual event an a 
priori probability in terms of the classification-related properties it has. On the 
other hand, what is essential to the concept of information that will be discussed 
here is that symbols and symbol complexes have denotations, i.e., that they stand 
for, or represent, entities and situations, and that the information they carry is 
about those denotations. 

On a simple-minded, purely causal conception of how symbols denote the two 
conceptions of information would be compatible. On such a view, the occurrence 
of symbols (both simple and complex) is prompted by the occurrence of their de- 
notations. So the space of symbol occurrences maps onto a corresponding space 
of denotations, and the probability of a symbol occurrence is the direct reflection 
of the occurrence probability of the denotation that is its cause. In that case the 
information represented by the occurrence of a given symbol would be the occur- 
rence of its denotation and the quantity of that information could be meaningfully 
assessed in terms of the probability that the denotation should have occurred. We 
will see, however, that in connection with natural languages such a conception of 
denotation is untenable. The simple causal nature of the denotation relation which 
it presupposes is belied, both at the level of the simple symbols of the language 
(its 'words') and at  that of its complex symbols (its phrases, sentences, texts and 
conversations), by the way in which natural languages actually work. 

The first, and most widely acknowledged difficulty with a purely causal concep- 
tion of denotation concerns the denotation of complex symbols. The denotations 
of phrases and sentences are determined by their syntactic form and by the denota- 
tions of the words from which they are made up. In principle the recursive process 
by which the denotations of complex symbols are built from the denotations of 
their constituents might have a purely causal grounding. But any serious explo- 
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ration of the way in which natural language expressions denote soon reveals the 
extreme implausibility of this. Complex expressions denote what they do because 
of the denotation building rules that are part of the language as a conventional sys- 
tem; and speakers can use these expressions to refer to their denotations because 
they know those rules and thus know that a given complex phrase or sentence does 
have the denotation to which they want to refer. In other words, information as 
conveyed by natural language utterances depends on a conceptualisation of what 
the information is about that, at least to a large extent, is shared between the 
users of the language.' 

The existence of a set of conventional rules for building complex expressions 
to denote complex entities or situations is something that natural languages share 
with the formal languages of logic, mathematics, and computer science. But, as we 
will argue in some detail below, there are also important differences between nat- 
ural and formal languages. One of these is that in natural languages the principles 
which govern the building of expressions to denote complex things or situations 
are far more complex than the comparatively straightforward recursive principles 
that define formal languages (like those of the predicate calculus or the lambda- 
calculus). This greater complexity is connected with the remarkable flexibility 
and adaptability of natural languages, which makes it possible to use them for the 
purpose of conveying information about a vast and open-ended range of different 
subjects. 

This is connected with another feature of natural languages, viz., that they 
can be used to speak about non-existent objects, unrealised situations. In some 
cases expressions and linguistic constructions are even meant to do just that, e.g., 
when we use a counterfactual sentence ('If I had left home earlier, I wouldn't have 
missed the five o' clock train'), in other cases the possibility is left open, e.g., 
when we utter a conditional sentence ('If John comes to the party too, Mary will 
be upset', where the actual appearance of John is neither affirmed nor denied). 
And then again we may be convinced that what we say is true, whereas in fact 
things are not as we assert them to be. 'Information', then, is used here in such 
a way that it can also be false (just a s  it can be misleading, or partial): the 
information provided by an utterance, i.e., what anybody who understands its 
linguistic meaning might assume to be the case, need not actually hold. By no 
means should this be considered as a defect of natural languages. In fact, it is 
an unavoidable consequence of the partial and fallible nature of human knowledge 
and our ability to imagine what we know or have reason to think is not the case 

'More on this below, in section 3. It  should be noted that this observation is not meant 
t o  rule out the possibility of 'non-conceptual content': it pertains t o  the information expressed 
by means of utterances of linguistic expressions only and remains neutral with respect to  the 
question whether objects, events, situations -including linguistic expressions and their use - 
may also convey information of a different nature. Also note that we take utterances (i.e., the 
production of 'tokens') t o  be primary to  expressions (conceived of as 'types') when it comes to  
what are the  entities that carry information. But in as much as there are systematic relations 
between the two, we sometimes also talk about expressions in that vain. We assume that no 
confusion will arise from this. 
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on the one hand, and on the other the fact that natural languages are means of 
expressing not only what we think is the case, but also what we suspect may be 
the case, what we hope, fear, would wish to be the case, and so on.' 

There is an obvious connection between denotation and meaning: the meaning 
of a linguistic expression is given by what it denotes, in actual situations or in non- 
actual ones. Since the notion of linguistic information we are after is also closely 
tied to denotation, there is an intimate connection between linguistic information 
and linguistic meaning. The fact that both linguistic meaning and linguistic in- 
formation are connected with denotation entails an important moral for either. 
Both linguistic meaning and linguistic information are inherently relational con- 
cepts, both involve the form-governed relation between linguistic expressions and 
their denotations. This is a moral that some would consider too obvious to merit 
stating. But the relational nature of meaning is not something that has always 
been self-evident to everyone. In fact, the moderately clear picture of the ways in 
which the meanings of linguistic expressions are relational that we now possess is 
the outcome of a long process of philosophical analysis. Because the two notions 
are so closely intertwined the history of the concept of linguistic meaning is at the 
same time also the history of linguistic information. Therefore we will devote the 
first part of this chapter to tracing what from the perspective of one particular 
tradition, viz., that of formal semantics and its immediate predecessors, are seen 
as some of the salient stations in the historical development that has led up to 
the current state of thinking on these issues. Probably, from other angles different 
pictures would emerge, but it is beyond the scope of this chapter to sketch those 
as well. So the emphasis is on history as perceived by the discipline, not as it 
actually occurred (if there is such a thing). For it is the former, and not the latter, 
that best explains its development. 

This concise historical overview also shows how the formal semantics tradition 
has struggled to come to grips with the variety of ways in which natural language 
utterances carry information that we briefly touched upon above. That process is 
one of both contraction and expansion, as is so often the case in the development 
of a scientific discipline. At one stage there is a focus on one specific aspect of 
a phenomenon, which often allows the use of formal tools and leads to precise 
accounts. At another stage the resulting notions are extended to deal with other 

'It is this very potential of natural languages to  be about about non-actual objects and 
situations that according to  Fl-ege liberates the human mind and sets us apart from other animals. 
In his 'Uber die wissenschaftliche Berechtigung einer Begriffsschrift' ([Frege, 18821; the translation 
is Bartlett's [Frege, 19641) he writes: 

Nonetheless, our imagery [. . . ]  would be limited to  that which our hand could form, 
our voice intone, if it were not for the grand discovery of the symbol which calls to 
our mind that which is absent, out of sight or perhaps even unseeable. 

And George Steiner regards the very possibility it gives us to  talk about the non-actual as 
fundamental for human language [Steiner, 1975, page 2151: 

Hypotheticals, 'imaginaries', conditionals, the syntax of counterfactuality and con- 
tingency may very well be the generative centres of human speech. 
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aspects, or complemented by other notions, as the situation may require. 
After the historical sketch we turn to an overview of various elements that would 

be needed in an adequate theory of natural language information. Such a theory 
must do several things. First of all, it should give an account of how expressions 
of natural language come to have meaning, and of the ways in which meaning 
depends on the context of utterance. This involves, among others things, coming 
up with a suitable set of formal concepts that can be used to define adequate 
representations of natural language meanings, to model the relevant features of 
context and to characterise the way in which these interact. Second, the scope 
of an adequate theory should encompass the fact that natural languages are used 
in interactive situations: natural languages are used to convey meaning for a 
reason, and that reason lies in information exchange, broadly conceived. Thus, 
the information conveying capabilities of natural languages are tailored to their 
use in a discourse context, be it dialogical, textual, or of some other form. As a 
matter of fact, many features of these capabilities depend on structural features 
of such discourses, which, hence, need to be modelled. Third, it is the language 
users that need to be taken into account: what information the utterance of a 
natural language expression conveys, and how it does that, obviously depends also 
on the language users involved, both as speakers and as hearers. Modelling them, 
then, is yet another essential ingredient of an adequate theory of natural language 
information. The overview we will be giving follows the broad outlines of an 
approach that has become well-established in empirical work in natural language 
semantics over the last couple of decades. But we should emphasise that it is not 
this particular approach we want to propagate, but rather the underlying ideas 
that together form a theme that allows for many variations: some of these we will 
refer to when appropriate. 

2 A TALE OF TWO DEVELOPMENTS 

As is so often the case, a systematic discipline has a somewhat distorted picture 
of its own history, one that usually takes 'a bird's eye view' and focuses on those 
aspects that retain a certain present relevance. For us, taking such a bird's eye 
view of what we see as the important stages in philosophical and linguistic think- 
ing about the concepts of information and meaning, one development that stands 
out is that from 'thick' and fairly concrete notions of meaning, closely tied to 
(perceptual) experience, judgement and application, to rather 'thin' and abstract 
conceptions and (ultimately) to a view of natural languages as purely informa- 
tion coding and information transferring  device^.^ This line of development is 
complemented, however, by another one that extends the restricted, 'descriptive' 
conception of linguistic meaning that is the outcome of the former, and tries to 

3 ~ h i s  is not unlike G ~ r a n  Sundholm's [to appear] view on development of logic: from a theory 
about judgements and reasoning as psychological acts to  (ultimately) formal symbol manipula- 
tion. T h e  distinction between 'thick' and 'thin' concepts is taken from Bernard Williams, who 
developed it  with regard t o  ethical concepts. 
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enrich it by encompassing a wider variety of aspects and by reinstating connections 
with other components of human cognition. The first development is assumed to 
have its starting point in traditional philosophical thinking,* it gains momentum 
with the development of formal logic at  the end of the nineteenth century, comes 
to fruition in the 1970s and 1980s, and still remains strong until the present day. 
The latter development is partly a reaction to the former and mainly dates from 
the last two or three decades, after systematic thinking about linguistic meaning 
developed into a distinct discipline. 

2. I Uncovering structure 

An, admittedly very rough, sketch of the first line of development distinguishes the 
following stages. At the first stage, which is assumed to start in classical philosophy 
and to extend right up to the rise of modern philosophy in the sixteenth and 
seventeenth century, thinking about the concept of meaning usually is intimately 
related with metaphysical and epistemological concerns. The latter obviously take 
precedence, and meaning, and language more generally, as such are by and large 
not distinct and independent topics of concern. Language and linguistic meaning 
are viewed and analysed primarily as means to express judgements, and it is 
the origin, content and justification of judgements that most philosophers are 
interested in. 

For example, Plato's discussion of the possibility of false statements in the 
Sophist is motivated by a metaphysical concern about the possibility of knowledge 
and the relation between thought and reality, not by any autonomous interest in 
natural language meaning5 Similarly, the main motivation behind the work of 
the scholastics on language and logic is metaphysical (and some of it theological). 
And the 'idea theories of meaning' of the classical empiricism and rationalism of 
the sixteenth and seventeenth centuries are mainly motivated by questions and 
problems in e p i s t e m ~ l o g ~ . ~  From a modern, systematic perspective there seems 

4 ~ n  this short sketch we limit ourselves to  developments in Western philosophy. That is not 
to  deny that very interesting theories and views, that are highly relevant from a systematic point 
of view, have been developed in other traditions. Especially in India there is a rich tradition of 
sophisticated thinking about language, as is witnessed by the great works of Panini and other 
Indian grammarians (cf., [Cardona, 1988. 2nd ed 19971). However, historically these have not 
played a major role in shaping present day theories in semantics, and it is for that reason that 
we feel it is justified t o  leave them out. 

5Thus the discussion of word and sentence meaning and of truth and falsity, in the Sophist, 
261~6-264b3 [Plato, 19211, ends as follows: 

Then because speech, we saw, is true and false, and thinking is a dialogue of the 
mind with itself, and opinion is that completion of thought, and what we say by 
"it seems" is a combination of perception and opinion, it must be that because all 
of these are like speech, some thinking and opinion must also be false. 

Evidently, the linguistic analysis is subservient to  the metaphysical point that Plato wants to  
make. 

6 ~ e n c e  Ian Hacking [1975] called idea theories 'nobody's theory of meaning': since meaning 
as such is not a separate concern, nobody had a theory about it, or even felt the need to  come 
up with one. 
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to  be no such thing as a separate philosophy of language in this period, nor is 
there a distinct and substantial empirical discipline of linguistics that is concerned 
with the analysis of natural language meaning for its own sake.? It would take a 
century or so for linguistics to really come into its own, with the seminal work of 
Humboldt and others, and almost another one for language to become a separate 
and central topic in philosophy. 

Nevertheless, a case can be made that this is the stage that most closely re- 
sembles a 'common sense theory of meaning'. From a common sense perspective 
it seems plausible that the meaning of a declarative sentence and the judgement 
that it serves to  express are the same.8 No strict separation between 'propositional 
content' and 'illocutionary force' seems to be called for. Also, what the sentence 
means, the judgement it expresses, and what in reality justifies that judgement 
seem to  be not really distinguished: how language relates to reality, the ques- 
tion that haunts much of the later philosophical thinking, thus never comes into 
proper focus. The way in which we form judgements about reality - be it either in 
empiristic fashion, by receiving impressions through the senses and manipulating 
them, or more rationalistically, with more of the content being innate to the mind 
- is the way in which language 'hooks up' with it, except that it needs no hooks, 
since the relation is immediate. 

The second stage in the development towards a more independent and more 
abstract conception of linguistic information is characterised by the rise of 'mean- 
ing proper' in the wake of the development of modern logic, mainly through the 
work of Frege, Russell, and early Wittgenstein. One of the hallmarks of Frege's 
philosophy of logic is his anti-psychologism: in order to give logic its proper due, 
he claims, we need to separate it from 'psychology', i.e., we need to distinguish 
the subject of logic, viz., the systematic explication of the validity of inference, 
from the empirical study of actual judgements and actual reasoning. In his logical 
theorising Frege developed his position gradually. In the Begriffsschrift [Frege, 
18791 he distinguishes between judgement and content, noting that the content of, 
e.g., an hypothetical judgement cannot be expressed in terms of the judgement of 
the antecedent and that of the consequent, but has to be defined in terms of their 
respective contents. However, he does still formulate his logic using a separate 
sign, the 'judgement stroke', for the judgement as such. Later on, he states that 
only the content of a judgement, but not the actual act of judging that content as 

7Which is not to  say that no work was being done that we could call 'linguistic' or 'semantic', 
for there certainly was. There is a whole tradition of thinking about grammar that goes back 
to  Hellenistic times, a t  least, and within logic, there are penetrating analyses of the functions of 
expressions in, e.g., the  Stoic school and in medieval scholastic thinking. The point is that in 
many cases the analyses developed are subservient to different goals, and that both the results and 
the  ways in which these are argued for, are rather different from how the issues are approached 
in modern times. But, of course, that does not mean that no interesting insights were developed 
along the way. Cf., [Robins, 19901 for an overview. [Seuren, 19981 is an example of an approach 
that is not purely historical, but attempts to  connect the development of linguistics with modern 
systematic theories. 

8Which is not t o  say that  it can not be, and has not been, challenged. Cf., e.g., [Dummett, 
2004, page 11 for a dissenting opinion from an anti-realistic point of view. 
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9A point concisely expressed by Wittgenstein in the Tractatus, where, referring t o  the Begriffs- 
schrift he remarks parenthetically in 4.412: '(Frege's "judgement stroke" "I-" is logically quite 
meaningless)'. 

1°Cf., [FYege, 1918-191; quotations are taken from the English translation by Peter Geach in 
[Frege, 19771. 

"Cf., Frege's comment from 1910 to  Jourdain, who had written a summary of the Begriffs- 
schr-ift in a paper on the history of logic: 'For this word I now simply say 'Gedanke'. The word 
'Vorstellungsinhalt' is used now in a psychological, now in a logical sense. Since this creates 
obscurities, I think it is best not t o  use this word a t  all in logic.' [Frege, 1879, page 111. 

12[Wittgenstein, 1960, 4.1121]. Cf., also Wittgenstein's attempt to  give a extensional analysis 
of so-called 'propositional attitude' statements in 5.541 ff. 

131t is interesting to  note that in the  history of phenomenology, associated with the work of 
Husserl, Heidegger, Ricoeur, Merleau-Ponty and others, a similar development took place, but 
without the strict separation from epistemology that is characteristic for analytic philosophy. 
Cf., [Dummett, 19961 for more details. 
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true (or false, or plausible, or . . .), plays a role in the normative theory of valid 
deductive reasoning.g As Frege states in 'Der Gedanke', which dates from 1918: 
logic is concerned with the 'laws of truth', and these laws can be regarded also 
as the 'laws of thought', but not in the sense of laws covering 'general features 
of thinking as a mental o c c ~ r r e n c e ' . ~ ~  His argument, characteristically concise, is 
that 'error and superstition have causes just as much as correct cognition' and a 
study of actual thought would need to treat them on a par with correct judgement 
and valid reasoning, which contravenes the true task of logic. Rather than being 
a description of how we actually think and reason, logic is a normative theory 
that states how we should. Similarly, where in the early Begriffsschrift Frege uses 
the term 'Vorstellungsinhalt' (lit., 'content of imagination') to  refer to contents of 
judgements, he later acknowledges that this term may lead to confusion since it 
is (also) used in a psychological sense, and instead settles on the term 'Gedanke' 
('thought'), which is supposed not to carry such connotations.ll No doubt also 
inspired by Frege, Wittgenstein claimed in the Tractatus that 'psychology is no 
more closely related to philosophy than any other natural science', immediately 
following up with the claim that epistemology is 'the philosophy of psychology'.12 
Thus the idea that it is possible to treat language and meaning separately from 
questions regarding judgement and justification is gaining ground, and with that, 
the contours of modern philosophy of language become visible. 

The separation from epistemology did not carry with it a similar move away from 
metaphysical concerns: the analysis of language and meaning remained strongly 
related to ontology. In part this is due to the particular philosophical aims to which 
people at the time made the analysis of meaning subservient. Stimulated by the 
success of the use of formal languages in the 'new logic', the age-old quest for a 
philosophically transparent ('ideal') language gained new momentum. This time it 
would be a strictly formal one, and it would provide philosophers with an analytic 
tool that could be used with scientific precision and mathematical rigour. This 
'linguistic turn' put language centre stage in philosophy, and consequently turned 
philosophy of language into a distinct and central discipline.13 This is not the place 
to trace what happened to the idea of linguistic analysis as a philosophical tool 
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employed outside the analysis of meaning proper.14 What is relevant here is how 
it influenced subsequent theories about natural language information and natural 
language meaning. And from that perspective it is important to briefly point out 
three general characteristics that have been very influential, viz., 'universalism', 
'intensional referentialism', and 'compositionality'. 

'Universalism' refers to the nature of the task that philosophical analysis sets 
itself, viz., to  give an account of 'how language operates' in general, with no ref- 
erence to any specific features of any specific language in particular. What is of 
interest is not the way a certain language works, but what underlies the possibility 
of any language to express meaning. A straightforward feature, perhaps, of any 
philosophical analysis worth its salt, but one that will turn out to have repercus- 
sions for the form and the application of theories that are subsequently based on 
this idea. For in the application to concrete, empirical cases the universalistic and 
a prioristic features of these theories do not simply disappear. In many cases they 
become consolidated in the use of certain formal tools and in the adherence to 
particular basic methodological principles that are applied 'across the board' and 
that are even taken for granted as defining characteristics of the enterprise. 

'Intensional referentialism' indicates the central role of the notions of reference 
and truth in the analysis of meaning, combined with the use of an intensional 
ontology consisting of possible situations and the entities of which such situations 
consist. Together these two assumptions, or requirements, tend to favour a fairly 
abstract notion of meaning, one that is grounded in the possibility of words having 
referential relations to objects, properties and relations in the world, where the 
relation of reference is understood as a truly intensional concept, not in any way 
restricted to reality as we know it: 'the world' can be any one from a set of logically 
possible ones. 

Meanings of complex expressions, including sentences, are then assumed to  
be somehow constructed from these basic referential relations, which means that 
compositionality is assigned a key role.15 The result is an approach to meaning 
that is detached from actual reality and actual language use, one that works in 
a bottom up fashion, constructing complex meanings from basic ones, and that 
assigns the basic meanings a fairly independent status: they are 'self-sufficient' in 

1 4 ~ h e r e  are a large number of studies dealing with this topic; cf., [Biletzki and Matar, 1998; 
Soames, 20031. 

15Compositionality extends the expressive power of a language - the range of different mean- 
ings it is able to  express - beyond that of its simplest expressions (its 'words'). How far it does, 
depends on the  kind of compositionality that the language allows. It is commonly assumed that 
most (and presumably all) human languages display a kind of compositionality that is genuinely 
recursive and that permits the  construction of infinitely many expressions of unbounded com- 
plexity from a finite vocabulary. This sets human languages, as well as many formal languages, 
such as that of the predicate calculus, apart from simple signalling systems, in which each of a 
certain finite set of signs corresponds to  one state of the system's fixed application domain (like, 
say, the set of traffic signs of the traffic code of a given country), and also from language-like 
systems with limited forms of compositionality, such as the 'language' of the bee-dance or the 
languages used by chimpanzees who have acquired the  ability t o  produce the sign for 'green 
banana' on the  basis of having separately learnt the sign for 'banana' and that for 'green'. 
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so far as they have determinate and thoroughly non-contextual identity conditions. 
The third stage that we need to distinguish in this brief historic sketch is that in 

which semantics arises as a separate discipline. This happened in the late 1960s, 
early 1970s, when developments in philosophy, logic and linguistics came together 
and gave rise to the idea that a formal theory of meaning can be developed and 
applied in the description of actual natural languages. This is the time in which 
people like Donald Davidson, Richard Montague, David Lewis, Max Cresswell, 
and a great many others did their seminal work.16 This time is the heyday of 
'Montague grammar' (and its various variations and rivals) as a grand unifying 
framework, in which the conception of meaning that was developed mainly from a 
philosophical perspective a t  an earlier stage, was formalised using various logical 
techniques (borrowed from model theory, modal logic, type theory, tense logic, 
etc.), and applied in the description of natural languages. This approach to natural 
language semantics, aptly dubbed 'formal semantics', proved very successful and 
was the dominant one for quite some time, in particular in philosophy, less so in 
linguistics at large.17 

One thing that is important from the perspective of this chapter is that through 
the extensive use of formal languages as tools for modelling natural language mean- 
ing yet another shift in that concept occurs: meanings now are first and foremost 
formal constructs, and theories of meaning are primarily differentiated in terms of 
the formal machinery one deems necessary for the description of semantic features 
of natural languages:18 concerns with epistemology or ontology become less and 
less important as semantics becomes more and more autonomous, and the nature 
of the concept of meaning reflects this. Montague's claim, in 'Universal Grammar' 
[Montague, 1970b], that 'there is in my opinion no important theoretical differ- 
ence between natural languages and the formal languages of logicians' and that 
therefore 'it [is] possible to comprehend the syntax and semantics of both kinds of 
languages within a single natural and mathematically precise theory' testifies to 
this shift. The consequences are far-reaching. For one thing, although Montague 
seems to think of logic and semantics as some kind of 'equal partners', the prac- 
tice is less symmetrical: it is formal languages that are used as models for natural 
languages, and this implies a sharpened focus on those aspects of meaning that 
can indeed be dealt with using existing logical techniques, and a proportionate 

16Cf., [Davidson, 1967; Montague, 1973; Lewis, 1970; Cresswell, 19731. Other seminal work 
was done by Barbara Partee [1973]. Though less directed to natural language the work done 
by Jaakko Hintikka, David Kaplan and Saul Kripke in that period was also of fundamental 
importance. 

" ~ n  particular within the Chomskyan tradition people tended t o  reject the use of model- 
theoretic techniques, and pursued a different approach, that is more in line with Chomsky's idea 
that linguistics is a branch of cognitive psychology, and, ultimately, of biology. Cf., further below. 

''One could say that as a result of this shift semantics deals with an altogether different type 
of phenomena. Although this may seem exaggerated - and it probably is - it does point t o  a 
curious and slightly worrisome fact, viz., that there seems to  be no theory-independent agreement 
about what exactly the domain of semantics consists of. This is reinforced when one takes a closer 
look, e.g., a t  the kind of arguments that formal semanticists and Chomskyan semanticists bring 
to  bear on their dispute. Cf., [Stokhof, 20021 for some more discussion. 
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neglect of those that can't. The distinction between 'structural semantics' and 
'lexical semantics', arguably one that is not in any sense inherent in meaning itself 
but rather an artifact of the kind of instruments one wants to use, is maximally 
exploited and the resulting concept of meaning becomes both more formal and 
more 'thin'. 

At this third stage the three features identified above are very much present, 
although not always explicitly so. Looking at the abundance of descriptions of 
various semantic phenomena in a wide variety of languages produced in the 1970s 
and 1980s, one might think that 'universalism', the idea that a proper semantic 
theory deals with natural language semantics as such, isn't something that peo- 
ple subscribed to. And indeed, the very fact that semanticists deal with actual 
phenomena, some of which are specific to a particular language, indicates that 
their concern is not that of the philosophers at an earlier stage. Nevertheless, the 
use of a unified framework has universalistic consequences, whether intended or 
not. The point is that the framework itself embodies assumptions about what 
meanings are, how they are related to each other, how they are expressed, and so 
on. So right in the framework itself there is a conceptual structure, explicated by 
means of the formal properties of the concepts and languages that are used, that 
shapes a concept of natural language meaning that is independent of any concrete 
manifestation in any concrete natural language.lg 

The other two features, pertaining to the central role of reference and truth 
and the use of an intensional framework, and to compositionality as the basic 
principle for dealing with semantic complexity and creativity, are less hidden and 
more explicitly adhered to. Despite discussion about the kinds and the number of 
intensional concepts that one needs to employ, the common denominator is the use 
of a formal framework that models 'the world' - i.e., that to which the expressions 
of the language bear a referential relation and in terms of which the concept of truth 
for the language is defined - in an abstract, and, one might almost be tempted to 
say, 'detached' way. 'The world' is reduced to the bare minimum of components 
and structure that is needed to define what kinds of things the referents of various 
types of basic expressions are, compositionality being understood to take care of 
the rest. It is important to note that it is not actual reference that is defined 
or explicated, it is only the formal type of relationship involved that is being 
accounted for. 

The resulting picture, which for a long time served as the classical model for 
semantics of natural language and which we will refer to  as such in what follows, 
in many ways comes close to that of a natural language as a formal language - 
significantly, a formal language without a concrete application. It portrays natural 

I g ~ h i s  is particularly clear in the work of Donald Davidson, who actually uses the logical 
structure of a semantic theory, which according to  him takes the shape of a Tarski-style theory 
of truth, in a transcendental argument against 'the very idea of a conceptual scheme', arguing 
that because the semantics of any language can only be described by means of such a theory 
and because the  very framework of that theory implicates substantial properties of the meanings 
expressed in the language, all languages are essentially translatable into each other [Davidson, 
19741. 
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languages as information carrying devices in the fairly abstract sense in which the 
same characterisation can be given of many other information carrying systems, 
ranging from signalling systems to mathematical notation. But, as was already 
indicated in the introductory section, if we look more closely at the various ways 
in which natural languages convey information, at what kind of information that 
is and what it is about, we encounter a much richer structure, and one that is 
tied more closely to the actual world that we live and use our language in than is 
accounted for in this approach. Small wonder, then, that after its initial success 
and broad acceptance the classical model became gradually discredited. At first 
one tried to augment it with additions that put more semantic flesh on its formal 
bones; later it was supplanted altogether by approaches in which the flesh is taken 
as seriously as the bones. 

2.2 Reinstating content 

The 'counter current' that contributed to a much more balanced picture of the 
specific characteristics of how natural languages act as information carrying de- 
vices does not represent one, homogeneous conception of meaning, rather it springs 
from a number of sources. These do have one thing in common, though, which is 
a profound dissatisfaction with the conception of linguistic meaning that informs 
the formal semantics of the 1970s. Different people addressed different aspects 
of that dissatisfaction; together they effected a shift in the orientation of natural 
language semantics that is still taking place today. Again, we should note that this 
development primarily is a reaction to a 'self-styled' history, which only partly cov- 
ers what actually occurred in philosophical thinking about language and meaning. 
Obviously, there is the work of a number of authors who already early on explored 
different directions that implicitly challenged some of the basic assumptions of the 
classical model, e.g., the 'linguistic phenomenology of J. L. Austin, H. P. Grice's 
work on meaning and intention, and the work on speech acts of John Searle," 
much of which was inspired by Wittgenstein's later work.21 But this work only 
became influential after formal semantics had gone through an autonomous devel- 
opment, and even then it was taken up not in semantics proper, but mainly in a 
theory of pragmatics, which was supposed to complement it. 

The conception of meaning that people reacted against can be dubbed 'classical 
descriptivism'. Central to this conception is the essentially Fregean principle that 
the meaning of an expression determines its reference by providing a specification 
of the conditions that something needs to satisfy in order to count as being the 
referent. The Fregean concept of 'Sinn' is explicated formally by reconstructing 
it as a function that takes a possible world (or other such intensional construct) 
as its argument and delivers an entity (an individual, set of individuals, or set 
of n-tuples of individuals, as the case may be) that acts as the referent in that 
world. In line with the above-mentioned distinction between structural and lexical 

20Cf., e.g., [Austin, 1962; Grice, 1957; Searle, 19691. 
21Primarily his Philosophical Investigations [Wittgenstein, 19581. 
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semantics, the actual specification of these functions for concrete expressions was 
by and large considered not to belong to  the subject matter of semantics. Instead 
one focused on the various ways in which these largely unspecified functions can 
be combined to form appropriate meanings for larger expressions, in particular 
sentences, yet another illustration of the pivotal role of compositionality. 

By thus reducing both the 'world' (that which natural languages are about) and 
the meanings of particular words and phrases to formal structures many questions 
were bracketed out that both linguists and philosophers would consider it their 
task to answer: questions as to how concrete expressions actually refer to concrete 
objects or properties, how such referential relations arise, what role contingent 
features of the way the world is have to play in that process, how considerations 
regarding the communicative functions of natural language utterances might in- 
terfere, how the use of language interacts with other cognitive functions, how 
utterances employ features of the linguistic and non-linguistic context in which 
they are produced, and a host of others. It is to the neglect of such questions that 
people reacted and which motivated them to develop alternative approaches. 

Consequently, we can, admittedly somewhat arbitrarily, identify four separate 
sources of this counter current, one that is concerned with the role of the world, 
another that focuses on the variety of communicative uses, a third that insists on 
taking indexicality and the linguistic context seriously, and a fourth that investi- 
gates the cognitive status of language and its relations to other cognitive structures 
and functions. Of course, these divisions are to some extent artificial, but they 
serve to indicate major trends. 

The first source of dissatisfaction with classical descriptivism relates to the 
minimal role that it assigns to the world and our interactions with it. One central 
question here is how linguistic meaning comes about, a question that actually 
reinstates the connection with traditional, basic epistemological concerns. And, 
as in the tradition, there are two main points of view, an internalistic and an 
externalistic one.22 The central claim of semantic externalism is that meaning 
derives from the world, at least substantially.23 It is from our environment and 
our interactions with it that natural language expressions get their meanings, and 
to a large extent the processes involved are of a causal nature. Hence this view is 
often also referred to as a 'causal theory of reference'. 

According to this externalistic view natural language meanings can, to a large 
extent at least, be naturalised: the contents of many natural language expressions 

2 2 ~ h a t  is called 'internalism' and 'externalism' here, in the context of semantics, should 
not be confused with the 'internalism - externalism' debate in the philosophy of mind and in 
epistemology, although there are connections, of course. In the  philosophy of mind internalism 
and externalism are rival views on the nature of mental content, centring around the question 
whether mental content can be completely understood in terms of internal mental representations, 
and, ultimately, perhaps entirely in terms of brain states.. 

2 3 ~ h i s  is a crude generalisation, of course. There are many, often subtle variations on this 
theme that  are lumped together here under the one heading 'externalism'. Cf., [ ~ c G i n n ,  19891 
for an overview. The locus classicus of semantic externalism is Putnam's 'The meaning of 
"meaning" ' [Putnam, 19751, which is also one of the classic sources of the theory of direct 
reference t o  which Kripke, Donnellan and others contributed. 
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can be identified with real situations, events, objects, properties and relations - 
entities belonging to the external world but with which the language user can inter- 
act through perception and action. The most explicit realisation of this viewpoint 
within formal semantic theorising, and the most systematic formal attempt to re- 
store the relationship between meanings and their naturalistic determinant~,~~are 
situation semantics and its logical-philosophical foundation, situation theory.25 

Taken to its extreme, radical externalism involves naturalising all aspects of 
meaning. One reason why someone might think that such a radically external- 
istic account of linguistic meaning ought to be possible is that, arguably, all our 
concepts are ultimately the product of our interactions with the world in which 
we live, and thus are, in some fashion, reflections of the ways in which that world 
imposes itself upon us in the course of those interactions. But this consideration 
overlooks the fact that even where experience of the world is causally involved in 
the construction of the kind of information that linguistic expressions convey, this 
information cannot be equated with that experience.26 There is no a priori reason 
to suppose that the world, our experience of it, and how we conceptualise and 
express it in natural language have the same fine structure. Rather, there are a 
number of good reasons to doubt that this is the case. For one thing, there is the 
moulding role that our cognitive system may exert on the form and structure of 
the experience. And many of our expressions refer to things in the world that exist 
at least partly because of our shared language and the way we use it. In fact, for 
all we know, linguistic representation makes its own contributions to the ontology 
of natural languages, which includes entities the reality of which is confined to 
aspects of the 'world' that our language projects, and which have no right of being 
in any language-independent sense. So it seems that although experience allows 
information - in the sense of enabling it by anchoring the terms of our language 
in an external world, thereby creating the possibility of objective reference and 
truth - it does not determine it completely: in general, the information that is 
conveyed by means of natural language is the product of more factors than ex- 
perience alone. And that entails that a complete naturalising of meaning is not 
possible. 

The next question then is what else might be needed for meaning. Several 
answers are possible, one of which is provided by internalism. Like externalism, 
internalism aims to enrich the meaning content of expressions. But it does so via a 
different route, viz., through an appeal to substantial contents and structures that 
are supposed to be resident in the human mind. From the internalistic perspec- 
tive the mind contains a rich repertoire of basic contents, in the form of innate 
concepts and features and of structural operations, that together allow for the 
formation of the huge variety of actual meaning contents that we find expressed in 
natural languages. As such, internalism naturally allies with the equally rational- 

24And thereby also traditional connections between philosophy of language, epistemology, and 
psychology of a particular bend, viz., naturalistic and empiricist psychology, 

25Cf., [Banvise and Perry, 1983; Barwise and Seligman, 19971. 
26Cf., also Dretske's analysis of the concept of information in epistemology, in this volume. 
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istic conception of grammar that is so characteristic for the Chomskyan paradigm 
in linguistics. Nevertheless, internalism, too, faces some difficult questions, some 
of which are conceptual: 'What explains the origins of all these mind contents?', 
'How can we account for the application of mental content to reality?', others 
empirical: 'What is the explanation of semantic variety across languages?'.27 

Also, it should be noted that externalism (usually) and internalism (by defi- 
nition) are individualistic: they take the individual human being as their point 
of reference when discussing linguistic and mental content and its relation to the 
world. This is in accordance with much of the main stream thinking in philosophy 
of language, philosophy of mind, semantics, and linguistics. Again, a reflection of 
this is the central role that is played by compositionality. From an individualistic 
perspective what is often called the 'creativity' of language, viz., the potential 
infinity of structures and meanings that together make up a language, poses a 
serious problem. How can individuals, being finite creatures with finite memory 
and finite computational resources, be considered competent users of their lan- 
guage? Compositionality comes to the rescue: it not only characterises languages 
conceived as formal objects, but is also posited as an inherent feature of human 
linguistic ~ornpe tence .~~  

Nevertheless, there remains the interesting question whether the individualism 
that characterises both externalism and internalism makes these accounts too re- 
strictive. Internalism seems to have a hard time accounting for the availability 
and contents of concepts that rely on the existence of social institutions, and faces 
serious problems when dealing with phenomena such as distributed information 
and reliance on expert knowledge.29 That we could locate the concepts involved in 
such phenomena exclusively 'in the mind' seems improbable. For the externalistic 
perspective individualism becomes problematic when it is robustly physicalistic. 
A lot of mental content and linguistic meaning seems to defy a straightforward 
reduction to physicalistic causes. Note that the problem here is not one for phys- 
icalism as a doctrine concerning the nature of scientific explanation. Whether 
or not that is a tenable position does not depend on the possibility of giving a 
physicalistic account of all of linguistic meaning, for one could argue that some 
such meanings simply have no role to play in an ultimate scientific account of the 
world. But from a semantic point of view this is different, since we obviously want 
a semantic theory to account for all linguistic meaning, including the meanings of 
those parts of the language that certain views on scientific explanation would con- 
sider irrelevant to their concerns. This does not rule out externalism per se, but 
it does indicate that an externalistic account of natural language meaning needs 

27Cf., [Farkas, 20061 for a recent overview of externalistic and internalistic perspectives in the 
philosophy of language. 

28Cf. [Groenendijk and Stokhof, 20051 for some discussion about how these various elements 
are usually linked up, and for some discussion of possible alternative ways of accounting for 
competence. 

29Which is one of the central points in Putnam's original 1975 paper (cf., footnote 23). For 
attempts t o  account for such issues in terms of the distinction between 'broad', externally deter- 
mined content and 'narrow', internal and individual content, cf., [Fodor, 19871. 
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to take into account that whatever causal relations are involved in producing it, 
they are not monostratal and uniform, but rather play at different levels and are 
of different types; that they involve radically different kinds of entities, including 
various sorts of social entities; and that they work in both directions, from the 
world to meaning and vice versa. The structure of meaning is partly due to the 
structure of the world, but the structure of our world is also partly a linguistic 
one. 

Such an approach transcends the structure of radical externalism as we char- 
acterised it above. In particular, the causal processes which it would take into 
account are not simply just the ones that govern the perceptions of individual 
speakers. This applies specifically to those processes that are needed to account 
for the meanings of social terms, among them those that pertain to the interac- 
tions between verbally communicating speakers of a given language.30 One effect 
of the impact of these additional causal relations, which connect the members 
of a given (speech) community rather than any one of them to a particular con- 
tent, is that these linguistic meanings aren't the private property of individual 
speakers, but rather a shared possession of the language community as a whole. 
For such expressions the ultimate linguistic competence rests with the community, 
and the competence of any particular member of that community is determined 
by the degree to which he partakes in that common good. Such a move away from 
mainstream individualism could also account for the real diversity of experience 
and the diversity of information, not necessarily parallel to the first, that we find 
across individual language users. Viewed from the perspective of a community, 
experience is heterogeneous, but connected, and the same holds for information. 
It is precisely this diversity that is one of the main reasons why humans use such 
complicated, expressive languages as they do. 

The last observation is connected with the second source of the counter current 
to the classical model, which is a concern for the complexity and the variety of the 
communicative uses that are made of natural languages. In the introduction we 
hinted at this by giving some simple examples of other uses than the straightfor- 
wardly declarative use. Quite in line with its ancestry in logic and philosophical 
analysis the classical model focuses on declarative utterances. Actually, just as 
the 'judging' element from the traditional notion of a judgement was first isolated 
and then dropped by Frege, leaving only the contents of judgements as the mate- 
rial to which logic was supposed to apply, analogously looking just at declarative 
utterances made it easy to first isolate the 'use' part of an utterance and then 
focus exclusively on the resulting content, turning formal semantics into a theory 
of pure contents, radically dissociated from the various ways in which these can 
be used. Such a separation between what is often called 'mood' (or 'illocutionary 
force') and 'radical' (i.e., propositional content) goes back to Frege and was taken 
up later in various forms by people like Austin, Stenius, and Searle.31 The result- 

30This could also be called a form of externalism, viz., 'social externalism'. Cf., e.g., [ ~ u r ~ e ,  
19901. 

31Cf., [Austin, 1962; Stenius, 1967; Searle, 19691. 
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ing speech act theory made this distinction into one of its basic principles. Thus a 
division of labour arose between formal semantics as an account of propositional 
content and speech act theory, or pragmatics in a wider sense, as a theory of the 
use that is made of these contents. 

However, some have questioned whether this strategy will work. For one thing 
the variety of uses we make of natural language expressions does not seem to be 
one-to-one related to the mood-radical distinctions we can make within these ex- 
pressions, be it on the basis of syntactic form (interrogative, indicative, . . . ), the 
presence of lexical items, or a combination thereof. And then there are aspects of 
meaning, i.e., information conveyed through a speaker's utterance to other inter- 
locutors, that are not in any obvious way coded into the expressions uttered, but 
that arise from the interplay between the context in which the utterance occurs, the 
intentions and expectations of the various speech participants, and other meaning 
elements. These 'implicatures', as they are called, have been studied extensively; 
and they have given rise to serious questions about the tenability of the classical 
model. Like in the case of speech acts, the initial approach towards an account of 
such indirectly conveyed meaning depended on a division of labour, in this case 
between semantics as conceived in the classical model and a pragmatic theory 
called the 'logic of conversation', developed by H. P. G r i ~ e . ~ '  Grice's central idea 
was that language use is a cooperative task and that therefore language users can 
be expected to obey certain rational principles of communication, such as telling 
the truth (as they see it), giving sufficient but no superfluous information, and so 
on. 

One problem with Grice's original approach concerns one of its starting points: 
one of Grice's main motivations was to show that certain aspects of the mean- 
ing of natural language connectives that are not captured by their extensional 
two-valued logical counterparts (for example, the order sensitivity of natural lan- 
guage conjunction) can be accounted for by an appeal to cooperative principles. 
A closer look at the apparent meanings of 'and' co-ordinations in English (the 
same also applies to other languages) reveals that their meaning depends on fac- 
tors that go beyond the mere truth table of classical logical conjunction and are 
also different from the conversational principles Grice invokes. In particular, the 
order-sensitivity of 'and' co-ordinations is largely the effect of the mechanisms of 
interclausal temporal anaphora, mechanisms that are operative also where no 'and' 
is in sight, and that any theory of natural language meaning and information will 
have to account for in any case. 

What goes for 'and' goes for most applications to which Gricean conversation 
theory has been put: The principles of the theory are important and indispens- 
able, but so are other principles, which also transcend the restricted conception 
of meaning that is part of the classical model. And again and again it has been 
found that deciding which of these principles should be counted as semantic and 
which as pragmatic is possible only on theory-internal grounds.33 This has led 

32Cf., [Grice, 19751; [Levinson, 19831 is an excellent introduction to  this and related subjects. 
33Cf., the  discussions in [Recanati, 2004; van Rooij, 2004b; Stanley, 20051, and the contributions 
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to the view that the demarcation between semantic and extra-semantic (= prag- 
matic) aspects of meaning is to a considerable extent arbitrary, and has thereby 
undermined another fundamental assumption of the classical model. 

What has thus emerged in lieu of the classical model is a far more complex 
account in which a great variety of principles and mechanisms collaborate in the 
construction of utterance meanings out of the meanings of the words contained 
in them. Some have taken the reasoning that has led to this line of development 
one step further and argued that even the concept of 'literal meaning7 that the 
classical model, speech act theory and Gricean pragmatics all rely on is a myth. 
In a theory of literal and non-literal meaning the words of the language have lit- 
eral meanings, which are encoded in the lexicon. These serve as a starting point 
for the derivation, via inferential processes that take various pragmatic factors 
into account, of other, non-literal meanings, and, on the basis of these, of the 
specifications of individual utterance contents. But here too, it is argued, we are 
dealing with a distinction - that between the literal meanings of words and their 
non-literal meanings - which proves to be slippery and hard to draw except on 
theory-internal grounds. One major empirical problem is the existence of (pro- 
ductive) polysemy. The assumption of literal meaning forces one to try to account 
for the various meanings of, e.g., 'running' as it occurs in 'The tap is running', 
'John is running', 'The program is running7, 'My nose is running', etc., by picking 
one meaning as the core, or 'literal' one and then accounting for the others on 
the basis of some contextual derivational process. A more plausible alternative 
is to forgo the choice and account for this type of variability by making lexical 
meanings themselves contextual and flexible, in effect viewing linguistic meaning 
as something that is the result of interaction between a language user and his 
environment .34 

Emphasis on interaction with the environment, especially the communicative 
environment, consisting of other speech participants, conversational goals, infor- 
mation about the world (individual and shared), and so on, is characteristic for the 
third source of the counter current, the one that focuses on context in this broad 
sense. An important shift in the way meaning is viewed that is characteristic 
for this development is the result of a turn away from the exclusively descriptive 
orientation, with its emphasis on the language - world relation, that is a central 
feature of the classical model, to a perspective on language and language use that 
analyses them primarily in terms of information and information exchange.35 The 
resulting view is one in which the primary focus is on the 'horizontal' relation 
between language users engaged in an information exchange discourse, with the 
'vertical7 relation of language to world entering only indirectly, and no longer play- 
ing the lead role. The information exchanged in a discourse can be quite diverse: 
usually, part of it will be information about the world, but at  least as important 

in [Szabo, 20051. 
34Cf., [Bartsch, 19961 for more discussion and a concrete model along these lines. 
35Stalnaker's work on presupposition and assertion is an early representative of this conceptual 

turn. Cf., the two seminal papers [Stalnaker, 19741 and [Stalnaker, 19791. 
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is information of speech participants about each other, and information about the 
discourse itself. When engaging in a conversation, but also when reading a text 
or listening to a speech, what the participants know, or think they know, about 
each other plays a crucial role in interpretation, and, derivatively, also in produc- 
tion. (A speaker will choose the expression she utters so that it will lead, to the 
best of her knowledge, her audience to  assign to it the interpretation she intends, 
given the total package of information, about world, antecedent discourse and her 
own state of mind, that she assumes is available to that audience.) Stalnaker's 
notion of 'common ground', i.e., the information that the speech participants as- 
sume they share, is an important element in this, since it provides them with 
common resources for picking out individuals, properties and situations, solving 
(co)referential relationships, and so on. But the common ground will normally 
also include information of all the different kinds we have mentioned, not just 
assumptions that directly concern the topic of conversation. 

In addition to what is being said by whom to whom, i.e., content in the nar- 
row sense, it is also form that matters for determining what information gets 
exchanged. Among the natural language devices that serve this purpose we find: 
anaphoric expressions of various kinds, among them pronouns, tenses, and certain 
temporal and spatial adverbs, which permit resumption of entities previously in- 
troduced into the discourse; presupposition-inducing expressions, that enrich and 
structure the common ground; the order in which the events that make up a nar- 
rated episode are described, which usually indicates the temporal ordering of those 
events; and so on. These and other devices help the hearer to relate the informa- 
tion conveyed by an utterance to the information he already has, and thus to 
identify exactly what the new information is. As such they are an integral part of 
what linguistic meaning is and how linguistic expressions convey information. At  
yet another level, not so much concerned with linguistic form or narrow content, 
there is information about the aims with which speech participants have entered 
the conversation, their rhetorical strategies, and other features of their linguistic 
personae. This type of information is crucial for the detection of irony or sar- 
casm, the appreciation of a verbal sleight of hand or a clever play on words, and 
for the recognition of an implicit reproach or a concealed request. These aspects 
of discourse, too, are factors that enter into the way in which natural language 
utterances play their information conveying role. 

These considerations have given rise to  a variety of alternatives to the classical 
model. In as much as all these models share the shift from the descriptive to 
the information exchange perspective, along with a shift from the sentential to 
the discourse level, they can be captured under a common denominator, that 
of 'dynamic theories of meaning'.36 These theories take the development outlined 

3 6 ~ h ~ s  the original model of discourse representation theory developed by Kamp in [Kamp, 
1981] (cf., also  am^ and Reyle, 1993]), explicitly aims to  combine a declarative and a procedural 
view on natural language meaning. Other models of dynamic semantics include Heim's file 
change semantics [Heim, 19831, Veltman's update semantics [Veltman, 19961, and Groenendijk 
and Stokhof's dynamic semantics [Groenendijk and Stokhof, 1990; Groenendijk and Stokhof, 
19911, cf., also [Groenendijk e t  al., 19961. 
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38Cf., [Stokhof, 20021 for some more discussion of this tension. 
3 9 T h ~ s  early on, replying to a suggestion from Bar-Hillel that formal logic might contribute 
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above one step further and change the notion of meaning itself: the descriptive and 
referential and hence truth oriented perspective of the classical model is replaced 
by a dynamic one that views the meaning of expressions in terms of what is called 
their 'context change potential', with information being one, central aspect of 
the context. This further shifts, or rather blurs the original distinction between 
semantics and pragmatics (i.e., the distinction between what is supposed to be a 
matter of meaning proper and what belongs to the realm of use). Accordingly 
the focus of research in these theories is no longer on the referential and logical 
features of linguistic meaning but on issues involving information structure (topic 
- focus, presupposition, anaphoric relations, intonation and prosody) as linguistic 
devices that can be used to link a new sentence in a text or a new utterance 
in a conversation to what went before, or t o  prepare the ground for what comes 
next. This increasing focus on information exchange and information structure also 
weakens the link with ontology that in the classical model was secured through the 
central role of reference and truth. In a dynamic perspective truth becomes a mere 
limit concept of the more general notion of acceptance by the speech participants 
of information that is being exchanged.37 

Integral to the dynamic view on meaning as context change potential is a re- 
newed interest in the cognitive function of meaning. This ties in with the fourth 
source of the counter current that we discerned above, viz., a renewed interest in 
the cognitive aspects of language and its relations to other cognitive systems. The 
development of the classical model in the 1970s brought along a new and some- 
what problematic relationship with psychology. On the one hand its proponents, 
sometimes explicitly, more often implicitly, took over Frege's anti-psychologism, 
that made a principled distinction between logic as a normative science and the 
empirical study of actual reasoning, and they applied it to the study of natural 
language meaning, separating formal description of semantic structure from the 
study of the way in which language is produced and interpreted. But unlike logic, 
semantics never really was conceived as a purely formal discipline; after all, its 
aim is t o  describe and explain empirical facts, and it is therefore considered to be 
as much a branch of empirical linguistics as phonology or syntax3* 

From that perspective the classical model should have been quite compatible 
with the Chomskyan approach to grammar. But in fact the relationship turned 
out to be more complicated. For one thing, the Chomskyan model involved a 
close alliance with rationalistic thought and with the computational approach in 
cognitive psychology that developed from the 1960s onwards. But not everybody 
felt comfortable with these particular philosophical presuppositions, and many 
semanticists working within the classical model preferred to keep their distance. 
In turn, many Chomskyans, including Chomsky himself,3g kept formal semantics 
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at bay, arguing that the use of the concepts of truth and reference as central tools 
in the explication of meaning disqualified the classical model as far too externalistic 
to  be compatible with the internalistic approach that they favoured. Semantics in 
the Chomskyan framework accordingly concentrated primarily on the way in which 
conceptual structure is expressed, mainly in lexical semantics.40 In this connection 
the approach of 'cognitive  semantic^'^^ should be mentioned as well. Though in 
many ways adverse to the generative framework as developed by Chomsky in 
his later work, it shares with that approach a focus on lexical semantics and an 
unwillingness to account for meaning in terms of reference, using the tools of logic 
in the way exemplified by the formal implementations of the classical conception, 
in particular in model-theoretic semantics. Characteristic for cognitive semantics 
is the emphasis on the fluidity of the distinction between semantic knowledge and 
encyclopedic knowledge and on the embodied nature of meaning. 

With its focus on formal properties of natural language meanings, the classi- 
cal model initially succeeded in maintaining something of a 'splendid isolation' 
from empirical work in psychology and biology. But as the counter current grew 
stronger, as more aspects of use were taken into account, context became more 
and more important, users and their conversational goals and strategies were in- 
corporated as significant aspects of the context and as the emphasis accordingly 
shifted from formal structure to actual content and its use, these barriers began 
to crumble. For many it has become increasingly obvious that one of the tasks of 
semantics is a realistic modelling of language users and their interactions, for in the 
end natural language meaning can be properly understood only if we understand 
how it functions in real information exchanges and other linguistic interactions. 

This has brought about a certain rapprochement between semantics and psy- 
chology, and to some extent also between formal semanticists and people working 
in the Chomskyan tradition. This rapprochement has also been helped by a grow- 
ing interest in lexical semantics on the part of formal semanticists, who at long 
last have begun to respond to the charge that if all meanings are derived from 
lexical meanings, then explaining how they are derived is not good enough if one 
has nothing to say about what they are derived from. Nevertheless there remain 
substantial differences between the internalistic and the externalistic perspective 
(the former being preferred by those who take the Chomskyan approach). But as 
the computational model in cognitive psychology began to  loose its grip, it became 
clear that the study of how language functions as one of the human cognitive fac- 
ulties does not necessarily commit one to an internalistic view. There is room for 
a variety of perspectives, some working with a model that is individualistic and 

t o  linguistics, Chomsky stated that 'the relevance of logical syntax and semantics [to the  study 
of natural language] is very dubious' [Chomsky, 19551. And throughout the years Chomsky 
expressed similar sentiments on a number of occasions. For example, in [Chomsky, 20051 he 
states, in keeping with his internalistic perspective, that 'even the most elementary concepts 
of human language do not relate to  mind-independent objects by means of some reference-like 
relation between symbols and identifiable physical features of the external world'. 

40Cf., [~ackendoff, 1990; Pustejovsky, 19951. 
41Cf., [Lakoff, 1987; Talmy, 20001. 
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4 2 ~ f . ,  the references given above. 
43Cf., [Tomasello, 20031. 
44Cf., work by Bruner and others [Bruner, 1983; Garton, 19921, and early work in the connec- 

tionistic paradigm. 
45Cf., footnote 36 for references t o  work on dynamic semantics in relation to  natural language; 

cf., [van Eijck and Stokhof, 20061 for a more general overview of various concepts from dynamic 
logic. For optimality theoretic semantics, cf., [Hendriks and de Hoop, 20011, for game theoretical 
approaches, cf., [Hintikka, 19831. 

4 6 ~ f . ,  [Baggio et al., to  appear] for an in-depth discussion. 
47Cf., [Tomasello, 19991, for an early, influential study. 
48Cf., [Christiansen and Kirby, 20031 for a collection of papers that gives an overview of current 

thinking about language evolution; for recursive structure and compositionality, cf., [Kirby, 20001. 
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in ternal i~t ic ,~~ others favouring a more externalistic set up that emphasises the 
role of the linguistic community.43 

The rapid development of new techniques for studying brain processes and the 
consequent rise of cognitive neuroscience during the last decade also has greatly 
contributed to a renewed interest in the underlying mechanisms of meaning. Lan- 
guage being one of the core cognitive functions of humans, it has always been an 
important object of study in cognitive psychology, as witnessed by a long tradition 
of studies in language acquisition, language pathologies, and language processing. 
For a long time such studies were generally based on computational, internalis- 
tic models of language, although some more empiristic and community oriented 
studies were undertaken as The prospect of being able to study the brain 
almost 'in vivo' as it processes language, holds much promise. Particularly en- 
ticing is the possibility of experimentally testing different theoretical models that 
account for more or less the same linguistic data. The advent of more performance 
oriented models, such as dynamic semantics, optimality theory and game theoret- 
ical semantics have greatly facilitated this r e~r i en ta t ion .~~  However, as our earlier 
discussions concerning externalism, internalism and individualism illustrate, we 
should be careful in our assessment of what exactly can be achieved in this fash- 
ion. The idea that research in cognitive neuroscience will be able to arbitrate 
between rival semantic frameworks all by itself is certainly not unproblematic: for 
one thing, the relationship between neurological correlates of semantic concepts 
and these concepts themselves cannot simply be taken for granted, and it seems 
that the relation between the two is much more symmetric than a reductionist 
approach would predict.46 And the contributions of physical and social reality 
need to  be taken into account as well. 

Finally, it should be noted that the shift towards information exchange and other 
aspects of use that is embodied in these new approaches also has spurred a renewed 
interest in the biological and cultural origins of language, both phenotypically and 
genotypically.47 Using techniques from evolutionary game theory and learning 
theory, semanticists have begun to study the way in which expressive systems can 
arise within a population of interacting agents, trying to isolate which factors are 
responsible for the characteristic features of human languages, notably recursive 
structure and semantic compositionality.48 
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In conclusion, it seems fair to  say that the current state of thinking in philosophy 
of language and natural language semantics about meaning is one of diversity. 
There seems to be no one, dominant conception of natural language meaning, 
and many, sometimes quite divergent approaches to its analysis are being pursued 
concurrently. The resulting situation might strike some as somewhat paradoxical: 
on the one hand all these abstractions have led to success, yet what it  is they 
purport to study, viz., natural language meaning, seems to fade from view, at 
least as one coherent, unifying concept.49 

Indeed, in some cases we appear to be dealing with incompatible underlying 
conceptions, as for example in the case of internalism and externalism. But more 
often it seems that differences arise because people focus on different aspects, and 
that, although it might not always look that way, the results could be unified in 
a single, more encompassing theory. The contours of such a theory are begin- 
ning to emerge, although no generally accepted format has been established as 
yet. It  treats natural language meaning as a 'thick', i.e., substantial concept that 
gets its content and structure from a variety of sources (conversational goals, with 
a pivotal role for information exchange, the world, reflexive models of language 
users) and that ties in closely with other cognitive functions (perception, the emo- 
tional repertoire, everyday skills). Thus it reinstates the close relationship between 
meaning, information, judgement and the world that was characteristic for many 
of the earlier views on linguistic meaning that predate the classical model. But it 
does so based on a firm grasp of the underlying formal structure of the concepts 
involved, thus allowing for descriptions that have extended empirical scope and 
greater explanatory power.50 

In the following sections we will illustrate a few important aspects of the present 
state of thinking about meaning and information in natural language by outlining 
in somewhat more detail the main elements of one particular way of describing and 
analysing how natural language expressions perform their information conveying 
roles. In section 3 we will discuss how the relational nature of linguistic meaning 
can be captured by means of representational techniques that are derived from 
model theory, allowing us to define the linguistic meaning of an expression in 
terms of the information carried by an utterance of it in various circumstances. 
The starting point of our exposition will be something akin to the classical model, 
which we will then subsequently modify and refine to capture more aspects of 
content and context. Next, section 4 will be devoted to an illustration of the 
way in which this particular conception can be used to capture how information is 

4 9 ~ h i ~ h  gives rise to  difficult methodological questions as t o  what the nature of the  success is: 
What is it that current semantics and philosophy of language are successful at? What are the 
measures of success here? Are these measures (relatively) theory independent? What  do they 
apply to? And so on. 

501t should be noted that there is also a continuing tendency toward the use of notions of 
meaning and information that are a t  a greater distance from what we could call the  qualitative, 
common sense notion, as witnessed by the rise of purely quantitative, statistical notions of infor- 
mation in combination with the use of 'shallow', non-rule based techniques in certain approaches 
in natural language processing, information retrieval, semantic web, and so on. 
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conveyed in larger units of linguistic material, such as texts and conversations. We 
will illustrate the way in which anaphoric relations and presuppositions establish 
discourse connections that enter into the specification of the informational content 
of utterances, and we will show how the model set up in section 3 can be enriched 
so that it accounts for this. In section 5 we analyse how the state of the recipient 
enters into the picture, again indicating how the model can be adapted to  account 
for this as well. In section 6 we come back to the question of what is characteristic 
of linguistic information. We conclude this chapter with a short overview of current 
further work in this area. 

3 MODELLING MEANING IN CONTEXT 

In the introduction to this chapter we observed that the notion of linguistic in- 
formation is inseparable from that of linguistic meaning, that both are relational 
and that the richness of linguistic meaning is due in large part to the fact that 
the syntax and semantics of human languages involve recursion. In this section 
we discuss these issues in more detail. 

First a few words on syntax. One of the oldest insights into language is that 
sentences have grammatical structure. For instance, the observation that the 
typical sentence of a language such as Latin, French, or English, contains a verb 
and that this verb has a subject can be found in the earliest grammars; and it 
is something that speakers of those languages will accept without demur when 
it is pointed out them, and that they might find out without much trouble for 
themselves. It is also plain, and no doubt always was, that simple sentences can 
be used as building blocks for larger sentences, e.g., as conjuncts, or as relative 
clauses, or as subordinate clauses beginning with subordinate conjunctions such 
as 'when', 'although', or 'because'. Speaking more generally, it was from the 
beginning a central aim of the 'Art of Grammar' to describe how grammatically 
correct sentences can be analysed into their grammatical constituents, as a way of 
proving that they are in accordance with what Grammar demands. 

Modern generative grammar starts from a superficially different point of view, 
according to which sentences and other complex linguistic expressions are built 
from basic constituents (the words and morphemes of the language) according 
to rules that guarantee their grammaticality (or 'syntactic well-formedness', as 
terminology has it). And the way in which a grammatical expression is built from 
the words and morphemes occurring in it according to the rules of syntax shows its 
grammatical structure and is thus, once again, a demonstration of its grammatical 
correctness. What makes a generative grammar recursive is that some of its rules 
can be used repeatedly in the construction of a single sentence. More explicitly: 
the grammar is recursive if it has recursive rules - where a rule R is a recursive 
rule of a given grammar G if and only if for any number n there are sentences 
generated by G in which R is used at least n times. (In the generative grammars 
that have thus far been proposed for natural languages all or nearly all rules are 
recursive in this sense.) 
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In the end there is not much to  choose between the generative and the analytical 
approach to grammar. In fact, on the basis of a generative grammar it is generally 
possible to construct parsers which compute syntactic analyses for those strings 
of words and morphemes that the grammar generates, by tracking how the string 
can be built using the grammar's rules. So, when we proceed, as we do, from the 
assumption that grammaticality is defined in terms of generative grammars we do 
so without loss of generality. 

The first formally explicit accounts of natural language meaning made use of 
generative grammars that fit our characterisation of such grammars perfectly in 
that they consisted exclusively of generative rules, which serve to  build complex 
expressions out of simpler ones. The accounts assumed that for each such rule R 
that tells us how expressions e l , .  . . , en can be combined into a complex expression 
e there is a corresponding semantic rule R' which states how the denotations 
dl , .  . . , d, of e l , .  . . ,en must be combined to obtain the denotation d of e.51 As 
a matter of fact, natural languages do not take well to the comparatively rigid 
regime that is imposed by generative grammars of this strict and simple generative 
form, and more complex rule systems are needed if their syntax is to be captured 
in intuitively plausible and theoretically convincing terms. But for our present 
purposes the way in which these more complex systems determine the meanings 
of complex expressions is the same as it is for the simpler generative grammars 
described above and the extra complications can safely be set aside. 

We will therefore assume that the syntax of natural languages can be given as 
consisting of (i) a set of rules, determining how complex expressions can be built 
from smaller ones, and (ii) a lexicon, specifying words and morphemes.52 

All grammars make use of grammatical categories. This is true in particular of 
generative grammars: like other grammars they classify well-formed expressions 
into different categories. These categories are essential to generative grammars in 
as much as the rules refer to them. The perhaps best known illustration of this 
is the rule S -, NP VP, which, in some form or other, is part of most generative 
grammars that have been proposed for English. This rule says that an expression 
of the category 'S(entence)' can be formed by concatenating an expression of the 
category 'N(oun) P(hrase)' with an expression of the category 'V(erb) P(hrase)'. 
The members of a grammatical category can be either lexical items or complex 
expressions. Lexical categories are those which contain at least some words. (It is 
possible for a lexical category to consist of lexical items only, but in general this 

51Cf, [Montague, 1970al. 
52Among the building rules for a language like English there are those which state how full 

words can be built out of their stems by addition of certain morphemes. For instance, the past 
tense form 'called' of the verb 'to call' is formed by concatenating the stem 'call' with the past 
tense morpheme '-ed'. In what follows we will ignore the distinction between words, stems and 
morphemes. For our purposes morphemes and stems can both be thought of as 'lexical items', 
i.e., as  elements of the vocabulary of the language, and full forms like 'called' can be thought of 
as complex expressions. (The interaction between syntax and morphology is one of the aspects 
of natural languages that make it awkward t o  press natural language grammars into the strict 
format of sets of construction rules.) 
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won't be so.) Examples of familiar lexical categories, which will be found in any 
grammar for a language such as English, are 'Noun', 'Verb', 'Adjective', 'Adverb' 
and 'Preposition'. In addition to lexical categories many grammars also postulate 
certain non-lexical categories, which contain no lexical items but only complex 
expressions. 

For the theory of meaning grammatical categories are important in that ex- 
pressions of the same category will have denotations of the same logical type. For 
instance, the denotations of expressions of category Noun generally are properties 
- or, in another formulation which we will favour in what follows, the extensions 
of those properties, i.e., the sets of entities of which a given property is true.53 An- 
other example: the denotations of elements of the category S, i.e., of well-formed 
sentences, are always propositions - the denotation of a sentence s is the propo- 
sition expressed by s - or, in the formulation favoured, the truth values of those 
propositions. It  should be noted that being of the same category is a sufficient 
but not in general a necessary condition for having denotations of the same type. 
For instance, the denotations of verb phrases (i.e., members of the category VP) 
in many semantic theories are properties (or, alternatively, property extensions) 
just like the denotations of nouns. 

So much for syntax. The standard method to account in a formally precise way 
for denotation and meaning is that of model theory. The method consists in (i) 
defining structures - the so-called 'models' - in which expressions of the different 
grammatical categories can be assigned suitable denotations; (ii) a specification 
in each model M of denotations for each of the lexical items of the language or 
language fragment L under consideration; and (ii), in order to account for the 
denotations of complex expressions, a general definition of how the denotation of 
any complex expression is determined by the denotations of its constituents. (Cf., 
the remarks made earlier about the semantics of generative rules.) Together (ii) 
and (iii) will assign in each model M a denotation to each well-formed expression. 
In particular we obtain a denotation in M for each of the sentences of L (which, 
as noted, will, depending on how the theory is set up, either be a proposition or 
a truth value ('true' in case the sentence is true on the interpretation provided by 
M or 'false' in case the sentence is false on that interpretation).54 

The model-theoretic concept of meaning is relational in that it connects expres- 
sions and models. This can be seen most clearly for the case of sentences, assuming 
that their denotations are construed as truth values. On this assumption a given 
sentence s is positively related to those models in which its denotation is 'true' 
and negatively to those in which its denotation is 'false'. For expressions of other 
categories the matter is somewhat different insofar as their denotations aren't sim- 
ply truth values. But here too the denotation is the product of the interaction 

53'Generally' because, e.g., so-called 'natural kind terms' (nouns such as 'water' and 'gold') 
may be taken to  denote, not properties, but abstract essences. 

5 4 ~ n  what follows we will, as indicated above, assume that the denotations of sentences are 
truth values and the denotations of nouns and other property expressions extensions; but we will 
briefly return t o  the  other option, according to  which sentences denote propositions and nouns 
properties, in section 3.2, footnote 59. 
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between expression and model, and can be seen as the manifestation of the way 
in which the two are related. We can isolate the contribution that the expressions 
make to these manifestations by associating with each expression e the function 
which maps each model M to the denotation of e in M. It has been suggested that 
the meaning of an expression can be identified with this function, in particular, 
that the meanings of sentences can be regarded as functions from models to truth 
values. We will see in sections 3.1 and 3.2, however, that such an identification 
isn't possible in general. 

In order that a model-theoretic account for a language L does justice to our 
intuitions about what words and complex expressions mean, great care must be 
taken with the definition of its models. Of particular importance is that only such 
models be admitted in which the denotations of words represent realistic possi- 
bilities. To give just one example, assume that our account identifies denotations 
of nouns as sets. Let nl, . . . , n k  be nouns. Then as a rule not any combination 
S1,. . . , Sk of sets of entities will constitute a conceptually possible combination of 
denotations for these words. Suppose for instance that nl is the noun 'woman' and 
n z  the noun 'man'. Then in any model M the denotations of nl and n z  should be 
disjoint. This is a rather simple case of a semantic connection between two words 
that imposes a restriction on the models that should count a s  admissible in a sat- 
isfactory account of meaning. In general the connections are much more complex 
and more difficult to identify. And at the present time semantics is nowhere near 
a comprehensive inventory of the constraints that such connections impose.55 

The reason why this issue is relevant for the specific concerns of this chapter is 
that what information a sentence carries depends on the models it excludes - i.e., 
those models which are incompatible with what the sentence says, and which we 
are entitled to  ignore when we take the sentence as giving us true information. But 
evidently, what the set of those models is, and how large a proportion it represents 
of the totality of all admissible models, depends on which models are admissible 
to start with. 

In view of the importance that the question of constraints on models has for 
the central topic of this chapter, it is appropriate to dwell on it a little more. First 
something that has been implicit in the assumption that the denotations of nouns 
are sets. On that assumption the elements of those sets must be in some way part 
of M. The way in which this requirement is met is to assume that each model M 
comes with a domain of entities, or 'individuals', which includes all denotations of 
nouns a s  subsets. The domain of individuals can be used as a foundation on which 
a hierarchy of further domains of other, higher logical types can be built, using 
certain elementary set-theoretical operations. Some of these higher type domains 
correspond to the logical types that are associated with grammatical categories of 
L, with the understanding that the denotations in M of expressions of a category C 
will be members of the domain of the logical type associated with C. For example, 

551t should be noted that such conceptual restrictions derive from language, and one may well 
argue, as Quine has done in his attack on the  analytic-synthetic distinction [Quine, 1953b], that 
they may not hold as such. 
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the denotations of nouns are members of the domain of the logical type associated 
with the category Noun. So, if noun denotations are sets of individuals of M, then 
this domain must be the power set of the domain of individuals, i.e., the set of all 
subsets of that domain. 

A model M must thus have at a minimum the structure of a range of domains of 
different logical types, held together by the relations which are entailed by the way 
in which higher type domains are constructed from the individual domain. But 
this is only one, comparatively simple part of the structure that is presupposed by 
the constraints that single out the conceptually admissible models. For one thing, 
we need more structure within the different domains. This is true in particular 
of the domain of individuals itself. We already noted that the denotations of 
'woman' and 'man' should always be disjoint. The same constraint applies to the 
nouns 'wife' and 'husband'. But connected with these last two nouns there is a 
further constraint. Their denotations are delimited by the restriction that they 
can be felicitously applied only to human beings; or - to put this in the current 
terminology used by many linguists - both 'wife' and 'husband' come with what 
is called a 'selection restriction' to the set of human beings. When we look more 
closely at the use of nouns (in English or other languages), we see that pretty much 
all of them come with selection restrictions of some kind. Furthermore, the sorts 
that form the selection restrictions of the different nouns of the language form a 
complex hierarchical structure, with some sorts being proper sub-sorts of others. 
A simple example: the noun 'bachelor' is, in its most prominent use, restricted to 
men of a certain age and social position (excluding for instance those who have 
made a formal vow of celibacy). So its selection restriction is a sub-sort of the 
selection restriction of 'husband' and 'wife'. A more thorough exploration of this 
phenomenon also makes clear that part of what is needed is an articulation of a 
sort hierarchy that provides, among other things, the selection restrictions of the 
different nouns of the language. 

Another source of complexity is that most denotations change over time. In 
fact, this is so for two reasons, as can be seen plainly for nouns such as 'wife' and 
'husband'. First, the set of human beings changes over time, as new people are 
born and other people die. So death affects the denotations of these nouns directly 
in that they lose members because these disappear from the scene altogether. But 
people also enter and leave the denotations of 'wife' and 'husband' while alive - 
viz., by getting married or divorced.56 To do justice to this temporal dependence of 
the denotations of nouns and expressions of other categories, models must include 
a time structure. Since this is an aspect of model-theoretic meaning accounts that 
is especially important in connection with what will be said below, we do well to 
be a little more explicit about it. We keep things as simple as possible, assuming 
that each model M includes a time structure (T, <), where T is a set of temporal 
instants and <, the 'earlier-later' relation, is a linear ordering of T. Furthermore, 
the domain of individuals of M may now vary as a function of time - that is, 

56As the tabloids keep reminding us, weaving your way in and out of these denotations can 
become a form of life in its own right. 
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as a function of T - and the same goes for the higher type domains that are 
constructed from domains of individuals, for the sortal hierarchies that subdivide 
these various domains, and for the denotations in M of the words of L. Thus each 
expression e of L no longer has a single denotation in M, but a possibly different 
denotation for each t E T. 

These are just some of the complications that model-theoretic accounts of mean- 
ing must address. This is not the place to do more than indicate that these issues 
need to be dealt with, and give a rough idea of what they are. But one further 
remark, of a more general tenor, is in order. Both the structure of sort hierar- 
chies and the nature and structure of time are matters of ontology, the science of 
'what there id5' This endeavour, of determining the kinds of entities that must 
be assumed to  exist and their logical properties and relations, was for centuries 
the exclusive province of philosophy. In more recent times it has become a major 
concern in artificial intelligence and cognitive psychology and this is where now 
much of the kind of work on ontology is being done that is relevant to the theory 
of meaning. That is indicative of an important aspect of the meanings of linguistic 
expressions and the information they carry: ontology is not just a part of a theory 
of the meanings of words (although, as we have argued, it is an indispensable part 
of such a theory too), but rather a general theory of the structure of the world 
that presents itself to, and is projected by our cognitive faculties - of the differ- 
ent kinds of entities of which that structure is composed and of the principles that 
hold this multiplicity of kinds together. Up to a point the languages we speak 
presuppose and mimic this structure, it would be there even if we didn't speak 
a language, or didn't speak the particular languages that we do speak. But as 
pointed out earlier, languages also contribute to this ontology by projecting cer- 
tain kinds of entities and structures on it. Thus, the 'ontology of language' is a 
complex affair, the result of external, causal influences from reality, the structur- 
ing principles underlying general cognitive abilities, such as perception, and the 
contributions made by linguistic structure. 

Assuming that this assessment of the nature of ontology is correct, the claim 
that an account of natural language meaning must include parts of it amounts 
to the acknowledgement that the meanings of words (and, by implication, also 
those of larger expressions) are not 'autonomous', but are also constrained by 
general conditions that relate to the ways in which we perceive the world and 
structure our expectations about its regularities. A similar conclusion follows for 
the information that is carried by linguistic utterances: it too depends on the 
structure that cognition imposes on what it receives as input. Note that this 
implication is two-sided. On the one hand utterances could be said to succeed in 
carrying as much information as they do because their meaning implicitly relies 
on, and thus implicitly incorporates, so much of the cognitively based, though not 
specifically linguistic structures that our languages presuppose and exploit. On 
the other hand, the new information that an utterance conveys is limited by the 
fact that one must already be in possession of much of this implicit information 

57Quine's happy phrase, cf., [Quine, 19481. 
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in order to be able to  interpret the utterance in the first place. 

3.1 Utterance dependence of content 

The next aspect we must consider of the way in which the denotations of natural 
language expressions are determined is very different from the one we have just 
discussed and it requires a shift of perspective, from expressions as such to their 
uses on particular occasions - that is, to utterances. For an illustration of the 
point at issue consider the following sentences: 

1. (a) That is a man. 

(b) He is a widower. 

First ( la) .  One of the things one must understand in order to understand an 
utterance of ( la)  is what is denoted by the word 'that'. What is its denotation? 
Well, that depends on whom the speaker of the utterance intends to denote by 
her use of 'that'. An interpreter will be able to determine what that entity is only 
insofar as the speaker provides him with some clue, for instance by pointing at the 
individual that she intends as denotation, or by gazing pointedly in its direction. 
This is a general property of 'that' and other so-called 'demonstrative' expressions: 
they can be used to denote pretty much anything, and what they denote on a 
particular occasion is determined by what the speaker wants them to denote, as 
long as she conveys this to her audience by providing the right clues. Much the 
same goes for personal pronouns like the 'he' occurring in (lb). The denotations 
of 'he' are more restricted in that they always must be male (and usually human). 
But which male is again a matter of the speaker's current intentions and her ability 
to get her intention across. 

Because the denotations of the words 'that' and 'he' may vary from utterance 
to utterance, this is also true for the denotations of the sentences ( la)  and ( lb)  
themselves, since these depend on the denotations of the words they contain. There 
is however also another reason why the denotations of (la) and (lb) vary, and this 
is a very general one. Time determines which denotations of the nouns occurring 
in ( la)  and ( lb) ,  'man' and 'widower', are to be combined with the denotations 
of 'that' and 'he', respectively. For instance, an utterance of ( lb)  at time t is a 
statement to the effect that the denotation of 'he' belongs to the denotation of 
'widower' at t (rather than to the denotation of 'widower' at some other time). It  
is clear that this temporal dependence of (la) and ( lb)  has to do with their tense, 
viz., that it is the present, rather than a past or future tense. For example, had 
the tense of ( lb) been the simple past, as in (lc) below, then an utterance made at 
t would not have expressed that the denotation of 'he' belongs to the denotation 
of 'widower' at t, but to its denotation at some time before t :  

1. (c) He was a widower. 

Note well, however, that the utterance time is as indispensable to the interpreta- 
tion of (lc) as it is to that of (lb). For although in the case of (lc) it is not the 
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denotation of 'widower' a t  the utterance time t itself that is involved, the denota- 
tion times that are relevant are those which stand to t in a certain relation. They 
are times that precede t ,  and not t itself or times following it. 

The temporal dependence exemplified in (lc), with its one verb in the simple 
past, is relatively simple. But a closer look at the full range of tenses, as well as 
at other expressions with which the tenses interact reveals a very complex field of 
temporal relations in which the events described may be linked to the utterance 
time complicated ways.58 Here, however, it is not the complexity of these relations 
that matters, but the mere fact that what is needed to determine the denotations 
of sentences containing past or future tenses are not just the denotations of words 
and morphemes a t  the utterance time t,  but also their denotations at other times. 
This is important because it entails that the denotations in a model M of sen- 
tences uttered a t  time t will in general require not just the denotations of their 
lexical constituents in M at t ,  but the entire 'temporal history' of M ,  providing 
denotations for all instants of its temporal structure. 

Echoes of what we have just observed in connection with time can be found in 
the realm of modality, that part of the theory of meaning that has to do with the 
difference between the actual and the possible, the difference between what is true 
and what isn't but could have been. In fact, in the early days of the model-theoretic 
approach to meaning time and modality were treated as two dimensions of a simple 
ontological structure. Since then the general perspective has changed. According 
to more recent views the differences between time and modality outweigh the 
similarities, and most current formal treatments reflect this. But there is one 
similarity between the temporal and the modal that is as prominent in recent 
treatments as it  is in older ones. This similarity can perhaps be brought home 
most forcefully by a look at subjunctive conditionals. Consider for instance an 
utterance of the conditional in (Id): 

1. (d) If he had been a widower, she would have married him. 

The sentence in (Id) relates two constituent sentences, the 'if7-clause and the main 
clause, and it is this relation which determines whether the conditional claim as 
a whole is to be counted as true. Moreover, whether the conditional is true does 
not just depend on what is the case in the world as it is. The conditional implies 
that both 'if'-clause and main clause are false in the actual world. But that is 
not enough; what is required in addition concerns other worlds than the actual 
one. Roughly, the additional requirement is that in any relevant possible world in 
which the 'if7-clause is true, the main clause should be true as well. 

58Examples of such expressions can be found among adjectives (e.g., 'former', 'repeated'), con- 
junctions (e.g., 'while', 'after', 'before') and prepositions (e.g., 'after', 'before', 'during', 'ago'). 
Within the class of temporal adverbials we find representatives of a whole spectrum of distinct 
functions, as the  following examples illustrate: 'Monday', 'the twentieth of March', 'last week', 
'often', 'every other Sunday', 'still', 'again', 'the second time', 'for the second time'. The seman- 
tics of tenses and other temporal expressions in English and a few other languages is one of the 
most assiduously researched areas of the theory of meaning, and much in this area is by now 
quite well understood. For a recent study, cf., [Rothstein, 20041. 
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There is a large literature on conditionals (different in spirit from that on tem- 
poral reference and tense, but comparable in size). A large part of this literature 
is concerned with the difficult question how to define the concept of a 'relevant' 
possible world, as it occurs in the truth requirement we just stated for (Id). But 
once again, it is not such details that matter here, but only the general fact that 
to determine the denotations of utterances of conditionals (and other sentences 
containing modal terms or constructions) in one world we must have recourse to 
denotations in other worlds. 

If we want our model-theoretic approach to deal with modality along the same 
lines that we have outlined for dealing with tense, then we must extend our mod- 
els with yet another layer of complexity. What we need are not simply models 
that provide the development of denotations through time, but whole bundles of 
such models which cover not only the actual world but also other worlds that are 
relevant to modality-involving sentences of L. We will call such bundles 'inten- 
sional models' and refer to  the models considered up to this point as 'extensional 
models'. (In other words, an intensional model is a bundle of extensional models.) 
Since intensional models will play an important part in all that follows, it will be 
useful to stipulate a specific form for them. The following definition is simple, but 
suits our needs. 

By an intensional model M for a given language or language fragment L we 
understand a pair (W, M) ,  where W is some non-empty set (of 'possible worlds') 
and M is a function which maps each w E W to an extensional model for L, i.e., 
to a model for L of the kind considered so far. (We write M, (rather than M ( w ) )  
for the extensional model that M associates with each w E W.) 

This definition gives what you might call a 'bare bones' characterisation of 
intensional models. For many purposes the models it specifies won't be enough. 
For instance, in order that a model yield a satisfactory analysis of various kinds 
of conditionals, it must provide, apart from what is specified by our definition, 
also certain relations between worl'ds (which tell us which worlds are relevant to 
the denotations of various modal sentences in which other worlds). But as we 
have said, the exact analysis of the denotations of particular sentences is not what 
concerns us here. And as we will see, for the purposes of this chapter our present 
definition gives us just what we want. 

There is one aspect of intensional models, however, that does require our atten- 
tion. This is the structure of time. So far we assumed that each extensional model 
has its own time structure. But what can we say about the time structures of the 
different extensional models that make up a single intensional model? Are all these 
time structures the same, or may we expect them to vary from one extensional 
model to the next? 

Behind this question lurks an age-old debate about the nature of time and the 
formal properties that follow from it. It is a debate that started out within phi- 
losophy, but that spread to several other disciplines once these had taken on their 
own topical and methodological identity, most notably to physics and psychology. 
The various positions that have been argued in the course of this debate can be 
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divided into two main groups. On the one side there have been those who see time 
as a given absolute, either along the lines of Newton's Princzpia, or, more in the 
spirit of psychology or cognitive science, as some sort of Kantian category. On the 
other hand time has been seen as an immanent feature of an unfolding world of 
successive events, as an abstraction from its flow of events. (Well-known repre- 
sentatives of this second view are Leibniz and Russell.) On this view it cannot be 
excluded a priori that time structures inherit also some of the contingent proper- 
ties of the event flows from which they are derived and thus that they vary from 
one world to  the next. For proponents of a view of time of the first type it will 
go without saying that all extensional models come with the same time structure; 
for proponents of a view of the second kind this will not be self-evident, and some 
at least will want to deny it. 

This is not the place to take sides in this debate. In general we should allow for 
intensional models that are consistent with either position, thus including those 
in which time structures may vary between their component extensional models. 
Variability of time structure within intensional models, however, leads to certain 
conceptual and technical complications that it is better to side-step here. We will 
therefore, in the interest of presentational perspicuity, restrict our attention to 
intensional models that each have a single time structure. 

3.2 Content and meaning 

In section 3.1 we drew attention to two complications that model-theoretic ac- 
counts of meaning must deal with: (i) the dependence of denotations on utterance 
features other than the linguistic form of expression uttered, and (ii) the power of 
an utterance to make a statement not just about its here-and-now, but also about 
what lies beyond - in the past, in the future or even in other possible worlds. 
These are by no means the only complications that theories of meaning have to 
deal with. But we have singled them out because it is they which affect the general 
form of a theory of meaning most deeply and therefore it is they also which have 
the greatest impact on answers to the questions that are the principal business of 
this chapter. 

The main questions that will occupy us in the remainder of the chapter are: 
What is the propositional content of an utterance? What, if anything, are the 
contents and meanings of sentences? And what is the information carried by 
a natural language utterance? We will deal with the first two of these in the 
remainder of this section. The last question - which is the central question of 
this chapter - will be discussed in section 5. 

As a preamble to answering the first question recall that earlier in this section, 
when we first spoke of denotations, we mentioned that the denotations of sentences 
could be either construed as propositions or as truth values, and that meaning 
theories vary on this point. There is a close relation between those two concepts 
of sentence denotation, just as there exists a close relationship between properties 
and property extensions: a proposition can be either true or false, depending on 
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whether the situation to which it is applied is compatible with what the proposition 
says or not. It has been argued that these manifestations of the proposition, its 
being true in some situations and false in others, are all there is to its identity, 
i.e., that a proposition is nothing but the truth values it takes in different possible 
situations. On this view a proposition can be identified with the function which 
returns for each situation the truth value that it has in that situation. We use this 
as our leading idea in formulating our answer to the first question.5g 

We have seen in section 3.1 that in general it is only utterances of natural 
language sentences that can be said to have definite denotations, but not those 
sentences by themselves. By the same token it is only to utterances that we 
can attribute definite content, and not to sentences per se: it is utterances, not 
sentences, that express propositions. So, if we want to stick to the spirit of our 
leading idea, it is to utterances, and not to sentences as linguistic expressions, that 
we should apply it. That is, utterance content should be defined as 'propositional 
content' - vie., as the range of truth values that an utterance determines in 
different possible situations. Or, stated in terms of intensional models: the content 
of an utterance relative to an intensional model M = (W, M) should be defined as 
the range of truth values that the utterance determines in the extensional models 
M,,, associated with the different worlds w E W. 

At first sight it may look as if defining utterance content along these lines runs 
into a snag. Consider once more a sentential utterance U ,  for instance one of 
sentence (le) (which is like ( lb) ,  except that it doesn't have the pronoun 'he' so 
that the only utterance feature that its interpretation depends on is the utterance 
time): 

1. (e) Helmut is a widower 

5 g ~ h i s  is the point t o  return t o  the  question how one might choose between model-theoretic 
accounts which construe sentence and noun denotations as truth values and sets, respectively, 
and those which construe them as  propositions and properties. At the level a t  which the answer 
t o  this question is at all relevant to  the issues of this chapter, it is quite simple, and also quite 
uninteresting. In model-theoretic accounts which exclusively make use of extensional models 
only the former denotations (truth values and sets) are well-defined, so it is only in that way 
that sentence and noun denotations can be understood. In accounts that use intensional models, 
both construals are possible, but there is little to  choose between them. First, everything that 
can be done with truth values and sets as denotations can also be done when the denotations of 
sentences and nouns are taken to  be propositions and properties, since we can always pass from 
propositions t o  the truth values they have in particular worlds or models, and from properties 
t o  their various extensions. Conversely, when propositions are defined, as suggested above, as 
functions from possible worlds t o  truth values, then in an intensional model M it is in principle 
possible t o  recover propositions from the corresponding truth values in the different extensional 
models that are part of M (and a similar reconstruction is possible when properties are construed 
as functions from worlds to  extensions). So in theories that make use of intensional models the 
two ways of construing denotations are equivalent so long as the technical machinery is in place 
for going from propositions and properties t o  truth values and sets, and back. In all model- 
theoretic accounts of which we are aware, however, this machinery is available. As noted earlier, 
there appears to  be a preference for theories in which denotations are construed, like we have 
been doing here, as truth values and sets. But as far as we can see, there are no compelling 
reasons for this preference. 
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According to what we have just suggested, the content of u relative to M should 
be identifiable as the function which maps each world w E W to the truth value 
of u in the model M,. But what is this truth value of u in models associated with 
worlds in which u has not actually been made? Since the truth value determined 
by u depends not only on the sentence uttered, but also on some further properties 
of u, notably the utterance time, it cannot, one might think, be taken for granted 
that truth evaluation is possible also in relation to other worlds. 

Fortunately this worry can easily be put to rest. Intuitively it seems clear that 
the world in which the utterance u is made could have been different from what it 
is, but that this would not have made any difference to the possibility of enquiring 
whether or not it  makes the statement that u expresses true. The only difference 
might have been that the enquiry might have led to  a different outcome. The 
intuitive reason why this should be so is that once the utterance time t of our 
utterance u has been fixed, as the time at which the utterance act is performed 
in its world w, the denotation of u at that time t can be computed just as easily 
in models M,. that are associated with worlds w' different from w as it can be in 
the model M, associated with w itself. All we need to assume for this is that t 
can be identified as a time of those other worlds too.60 

Now that we have resolved the apparent snag, nothing stands in the way to the 
intended characterisation of utterance content: 

The propositional content of an utterance u of a sentence s, relative 
to  an intensional model M = (W, M),  made at a time t (of the time 
structure of M), is the function which maps each world w E W to the 
truth value of s at t in M,. 

We now turn to the second question: What, if anything, is the content or mean- 
ing of a sentence? As regards sentence content we can be brief and simply repeat 
what we have noted already: given that there can be no definite sentence content 
without definite sentence denotations - that is, definite truth values - there 
can't be a definite content for any sentence of which the interpretation depends on 
additional features of its utterances. It is still possible, however, to make sense of 
the notion of sentence meaning, viz., as that which enables the different possible 
utterances of a sentence to express their respective propositional contents. Under- 
stood in this way the meaning of a sentence s can be identified with the function 
that maps each possible utterance of s to its propositional content. This brings us 
to the following formal characterisation: 

601t is here that our assumption that all extensional models belonging to  a given intensional 
model have the same time structure is being used. Without this assumption arguing for the 
present conclusion becomes more complicated, since it will involve the question how the possibility 
of identifying t in other worlds than w correlates with the relevance of those worlds for determining 
the  denotation of the utterance in w. Other complications arise when additional utterance 
features besides the  utterance time play a part in the content of u. All in all there are many 
non-trivial details that an elaboration of the  argument we have sketched here must deal with. 
We refer the reader in particular to  the locus classicus for these issues [Kaplan, 19891. Further 
discussion can be found, e.g., in [Almog et  al., 19891. 
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The meaning of a sentence s relative to an intensional model M is 
that function which maps each possible utterance u of s in some world 
w from M at some time t of its time structure to the propositional 
content of u. 

We have already pointed out several reasons why the information state of a 
recipient who is in a position to interpret an utterance, and thereby profit from 
the information it contains, cannot be a tabula rasa. But there also is a further 
reason, which is connected with the fact that natural language utterances show a 
strong tendency to build upon those that precede it in discourse. In fact, human 
languages are rich in devices that serve this very purpose - devices for linking the 
sentences in which they occur to the sentences that precede them in the texts or 
dialogues of which they are part. These devices enable the recipient to interpret 
the sentences that contain them in the way the speaker intends - viz., as integral 
pieces of a larger discourse. But of course this can work only if the recipient 
has already interpreted those preceding sentences and has thereby acquired the 
information which they carry. In this sense too the information he will get from 
the new sentence takes the form of an increment to the information he already 
had. In the next section we will have a closer look at this incremental dimension 
of interpretation, and of the acquisition of linguistic information that goes with it. 

4 MODELLING DISCOURSE CONNECTIONS 

Much of what we want to say we say in several sentences. Single sentence ut- 
terances suit only the simplest of messages, as soon as the message becomes a 
little more complex, a single sentence won't do. Strictly speaking, of course, con- 
veying a complex message in a single sentence isn't impossible in principle. But 
the sentence that one would have to use would be so long and convoluted that 
others would have the greatest difficulty in unscrambling the message; and even 
the speaker himself would be likely to get tied up in knots and lose track of what 
he was saying. This humdrum fact about the use of language points at  an aspect 
of our language handling capacities which is also quite obvious. Our ability to 
parse sentences, i.e., to ascertain their syntactic form, is not commensurate with 
our capacity for grasping and retaining content. For whatever reason parsing is, 
apparently, something that we humans find hard as soon as we are confronted 
with strings that exceed a certain length or structural complexity. Such sentences 
should therefore be avoided, and instead the story one has to tell must be broken 
up into a sequence of sentences that are each of manageable size. 

But breaking up a message into a sequence of sentences each of which covers 
some part of it comes at  a price. It requires that each sentence can be recognised 
as making a particular contribution to the larger content. That is, the recipient 
must be able to  see how and where the contribution of each new sentence fits 
within the part of the message that he has already reconstructed from preceding 
sentences. Sometimes it is clear from the nature of the message that is conveyed 
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in a sequence of sentences and from the sequential order in which the sentences 
are arranged how the contributions of the successive sentences fit together. But 
this is by no means always so. In such cases it will be helpful, or even imperative, 
that the new sentence contains certain elements that make its connections with 
the preceding sentences clear. Given how important it is to  get these connections 
right, it should not be surprising that natural languages include various types of 
such 'discourse linking' elements. In fact, there are many such elements and many 
of them are in constant use. (We know this to be the case at least for English and 
the range of other languages for which the question has been investigated, and we 
suspect that it is universal.) 

Among the classical examples of sentence constituents which are capable of 
linking the sentences in which they occur to the preceding discourse are anaphoric 
pronouns. Anaphoric pronouns can have antecedents which occur at some earlier 
point in the same sentence, but as often as not their antecedents are not sentence 
internal. Often, but not necessarily, they occur in the immediately preceding 
sentence. In such cases the link between pronoun and antecedent also establishes 
a link between the content of the sentence containing the pronoun and that of the 
sentence that the antecedent belongs to. By way of illustration consider (2): 

2. All these years Bill has kept in touch with one of the girls from his class in 
his final year in high school. He met her again last summer. 

Here the pronoun 'her' can (in the absence of further context) only be construed as 
referring to the 'one of the girls from his class in his final year in high school' who 
is spoken of in the first sentence. This construal links the content of the second 
sentence to that of the first: the woman that, according to  the second sentence, 
Bill met last summer is the same person as the girl that he has kept up with 
since his high school days. And in so linking the new content to the preceding 
one it also makes the former dependent on the other. It  is a kind of 'add-on', 
i.e., an additional specification of the relation between Bill and the girl that the 
first sentence has already put on the interpretational map. This incrementality of 
discourse meaning, with the contributions by later parts building on those of earlier 
parts, is an aspect of linguistic meaning that substantially alters and complicates 
the picture of sentence meaning and utterance meaning sketched in section 3. Yet, 
as a feature of how natural languages work it is pervasive, and it comes in many 
different forms, the range of which is being uncovered only gradually.61 

This is not the place to explore this range in depth, and we present just a few 
more examples that may give some flavour of what forms discourse linking can 
take. In example (3), the subject phrase of the second sentence, 'the other two7, 
establishes a number of connected links with the subject of the first sentence. 
Because of the constraints that accompany these links (3) will be acceptable only 
if the number of students in the speaker's logic class was three. As a consequence, 
- 

61The systematic study of the effect of pronouns and other expressions with discourse linking 
effects is of comparatively recent date. I t  is one aspect of the approach t o  the  study of meaning 
now widely known a s  'dynamic semantics'. Cf., the references above, in footnote 36. 



Ch03-N51726.fm Page 87 Saturday, August 23,2008 1254 PM e I* 

Information in Natural Language 87 

a recipient of (3), who assumes that the speaker has expressed herself in a way that 
is in keeping with what she is trying to convey, will conclude (in case he didn't 
already know that) that there were three students: 

3. One of the students in my logic class flunked the final. The other two didn't 
turn up. 

The constraints just spoken of are typical of expressions that establish this kind of 
'anaphoric' discourse links.62 Constraints of this kind, which utterances impose on 
the contexts in which they are made, are very common. In many (and presumably 
in all) languages there is a large variety of words and grammatical constructions 
which encode such constraints. The cover term that has come to be used for them 
is that of '(linguistic) presuppositions', or 'presuppositional  constraint^'.^^ 

Presuppositional constraints do not always affect the content of the utterances 
which generate them in the way illustrated by (2) and (3). Two examples where 
this is not the case are the presuppositions triggered by the words 'too' and 'again' 
in (4a) and (4b), respectively. 

4. (a) Yesterday John came too. 

(b) Yesterday John came again. 

(c) Yesterday John came. 

An utterance of (4a) carries the presupposition that there was somebody else who 
came yesterday, and one of (4b) the presupposition that there was an occasion 
before yesterday when John came. Here the content that is asserted is in both 
cases the same as would have been conveyed by an utterance of (4c). Utterances 
of (4a) and (4b) differ from utterances of (4c) only with regard to the contexts 
in which they 'sound right', but not in the content they contribute when they 
do. But even so they, too, tend to  produce discourse-linking effects. For instance, 

6 2 ~ h i s  is true also for the pronoun 'her', which requires that its referent be a female person 
(if we ignore special uses such a s  making reference t o  a ship or t o  a female animal to  which the 
speaker feels or wants t o  imply a person-like relationship). This constraint is confirmed by the 
anaphoric link between the occurrence of 'her' in the second sentence of example (2) and the 
argument of 'with' in the first sentence. Had the 'with1-argument been 'classmate from his final 
year in high school' instead of 'one of the girls from his class in Bill's final year in high school', 
then the interpreter, seeing the 'with'-argument as the only possible antecedent for 'her', would 
have concluded that the classmate in question was a girl. 

6 3 ~ h e  current tendency to  subsume a large variety of context constraints under the term 'pre- 
supposition' is justified insofar as there is much that such constraints have in common, both 
in the ways in which they limit the contexts in which the expressions that generate them can 
be felicitously used and in the way they establish links to utterance contexts and thereby help 
to  shape the content of connected discourse. But the term has the drawback that it tends to  
conceal some real differences which nevertheless exist between the various constraints that are 
subsumed under it. For the first clear recognition and articulation of the insight that anaphora 
and presupposition are closely related phenomena, and in fact that the terms 'anaphora' and 'pre- 
supposition' can be seen as each addressing one side of what is the same coin, cf., [van der Sandt, 
19921. A somewhat different, though also essentially dynamic perspective on presupposition and 
anaphora can be found in [Beaver, 20011. 
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the 'again' of (4b) draws attention to the fact that the described event - that of 
John coming (presumably his coming to an occasion of a certain, repeatable kind) 
was a repetition of something that had happened before. Such connections are 
often crucial to proper understanding. They belong to a dimension of discourse 
interpretation that lies beyond the reach of the notions of meaning and content 
outlined here, and which is only slowly becoming accessible to systematic, formally 
precise investigation.64 

Presuppositions are usually described as 'constraints on the context'. That is a 
good way of describing their role and status, but it requires a certain understanding 
of the notion of context. As should be clear from our two anaphoric examples (2) 
and (3), the contexts that are the targets of anaphoric presuppositions are due to 
the preceding discourse. In fact, it is the content of the preceding discourse, as 
established by the interpretation that the reader or listener has made of it, that 
plays this role, and it is because of this double role - as content of what has been 
interpreted already and as context for what is being interpreted currently - that 
anaphoric constraints can engage with it in the way they do, relying on it for the 
satisfaction of the constraints they express and at the same time augmenting it 
(in its role as discourse content) with the content contribution derived from the 
current utterance. Thus discourse contexts - as contexts deriving from a discourse 
or discourse segment are usually called - function the way they do because they 
are content and context all in one. This unity of content and context is a direct 
reflection of the fact that the process of discourse interpretation is incremental, 
in that it modifies the discourse content/context step by step, adding each time 
the content contributed by the utterance or sentence that it has reached, after 
checking that the discourse context meets the current context constraints. 

The incremental picture of interpretation throws an important new light on the 
nature of utterance content. The notion of content that we arrived a t  towards the 
end of section 3 was that of a set of possible worlds - those in which the current 
utterance is true. But for sentences whose interpretation requires linking one or 
more constituents to the discourse context this notion is no longer viable. Rather 
than determining a set of possible worlds in its own right all that an utterance of 
such a sentence can be said to identify by way of content is what it contributes to 
the discourse context established by the antecedent part of the discourse to which 
it belongs. In abstract terms this contribution can be characterised as a pair 
(C, C') of discourse contexts, where C is provided by the antecedent discourse and 
C' is the discourse context that results from updating C with the contribution 
that is made by u, assuming that updating C with u is possible, i.e., that C is a 
discourse context which provides all that is needed for a proper interpretation of 
U .  

In section 3.2 we have defined the meaning of a sentence S relative to an inten- 
sional model M as the function which maps each utterance u of S at a time t of 
- - - - 

6 4 ~ h e  most ambitious current approach t o  this dimension of discourse interpretation that is 
familiar t o  us is the 'segmented discourse representation theory' developed by Asher and others. 
Cf., [Asher and Lascarides, 20031. 
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M65 to the propositional content of u in M. In analogy to the relational charac- 
terisation of utterance content just given, we revise the notion of sentence meaning 
as follows. The meaning of a sentence S relative to an intensional model M is 
the partial function fs which (i) maps each utterance u of S made in a discourse 
context C onto the pair (C, C') in case C can be updated with the propositional 
content of u in M and the result of that update is C'; and (ii) is undefined oth- 
erwise. Such functions fs are known as 'context change potentials' ('CCPs' for 
short), or 'update potentials'. 

What CCPs are like depends first and foremost on how we identify discourse 
contexts. The first proposal that might come to mind is that discourse contexts can 
take over the role of our earlier utterance contents, and thus can be identified with 
sets of possible worlds. That is to say, one might think that, although the content 
of a sentence utterance can no longer be identified in those terms, it should still be 
possible to identify the content of a discourse in this way (and by the same token 
the content of any initial segment of it). On this assumption sentence meanings 
become functions from sets of possible worlds to such sets. 

But this proposal won't work. It fails as soon as the question what are the 
available interpretation options for anaphoric pronouns is taken seriously. What 
issued may be involved in settling this issue is illustrated by the following example: 

5. (a) One of the ten balls is missing from the bag. It  has probably rolled 
behind the sofa. 

(b) Only nine of the ten balls are in the bag. *It has probably rolled behind 
the sofa. 

The point of this example is this: The first sentence of (5a) and the first sentence 
of (5b) are true in precisely the same circumstances; an utterance of the first is true 
in precisely the same worlds as an utterance of the second.66 So if the contents 

6 5 ~ n  the preceding section we emphasised the dependence of the propositional content of an 
utterance u on the time t a t  which u is uttered. The central topic of the present section is the 
dependence of utterance content on the discourse context. But of course, the second dependence 
does not abrogate the dependence on utterance time and other features of the utterance context, 
such a s  the identity of the speaker and that of her addressee(s). In other words, in general 
we find dependence both on the discourse context and on features of the utterance context. 
However, in the remainder of this chapter we will suppress explicit reference to features of 
the utterance context, including the utterance time, assuming that these are given with each 
individual utterance and could be recovered from these when necessary. So, when from now on 
we speak of the content of an utterance u in an intensional model M we mean the content of u 
at the time t of M a t  which u is made. 

A few remarks about utterance context and discourse context as parts of a more inclusive 
notion of context can be found later in this section. 

660r ,  to  put the point more pedantically, suppose that u is an utterance of the first sentence 
of (5a) that is made at some time t in some world w of a given intensional model M, that u' is 
an utterance of the first sentence of (5b) that is made at the same time t in some other world w' 
and that in all other respects w and w' are exactly the same (so that in particular they contain 
exactly the  same situation pertaining t o  the balls, bag and sofa that the utterances of (5a) in w 
and of (5b) in w' are targeted on. (It is a reasonable assumption that for all or most worlds w 
in which there is an utterance of the first sentence of (5a) a t  t there is such a world w' with a 
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of initial discourse segments are identified with utterance contents old style, then 
the discourse context determined by an utterance of the first sentence of (5a) 
will be indistinguishable from the discourse context established by an utterance 
of the first sentence of (5b). But then it becomes inexplicable why the anaphoric 
interpretation of the occurrence of 'it' in the second sentence of (5a) is possible 
but a similar interpretation of its occurrence in the second sentence of (5b) is not. 

Examples like (5) indicate that pronoun interpretation is sensitive not just to 
what the described world must be like given what has been said about it - not 
just, to put the matter somewhat more abstractly, to  what possible worlds are 
left as candidates for the described world - but also to certain aspects of how 
the discourse has described it. The first sentence of (5a) provides a description 
that permits interpreting it as referring to the missing ball, while the description 
provided by the first sentence of (5b) does not. A notion of discourse content that 
is to provide the basis for an account of these facts of pronoun interpretation must 
differentiate between the discourse contexts established by utterances of these two 
sentences; and utterance contents old style just don't do that.67 

How can we modify the notion of discourse content so that this difference is 
captured? Not much reflection on examples like those in (5) is needed to see 
that the decisive difference between (5a) and (5b) is that the first sentence of 
(5a) 'introduces the missing ball into the discourse', as a kind of discourse entity, 
whereas the first sentence of (5b) does not do this. In (5b) the existence of the 
missing ball can only be inferred from the (old style) content, and apparently 
that is not good enough for the purpose of providing an antecedent for a singular 
pronoun. It may not be immediately clear how this idea can be turned into a 
formal definition of discourse content. To some extent this is brought out by 
the existing dynamic semantics literature, where a non-trivial number of different 
definitions can be found. We mention just one of these proposals, which seems to 
us a comparatively simple and natural realisation of the basic idea. According to 
this proposal each discourse content (relative to an intensional model M) is based 
on a certain set X of so-called 'discourse referents' and consists of a set I of pairs 
(w, f )  where w is a world from M and f is a function from X to parts of w. (The 
common domain X of all the functions which occur as second components of pairs 
in I is called the referential base of I.) The discourse referents that make up the 
referential base X of a discourse content I should be thought of as the entities that 
are explicitly introduced by the discourse whose content is I. (Thus the referential 
base of the discourse content I I  determined by an utterance of the first sentence 
of (5a) will consist of three discourse referents, one for the missing ball, one for 
the set of 10 balls of which the missing ball is a member and one for the bag. The 
referential base for the discourse content I2 determined by an utterance of the first 

corresponding utterance u' of the first sentence of (5b), and conversely.) Then the set of possible 
worlds of M in which u is true will be  the same as the set of worlds of in which U' is true. 

67Alternatively, one might attempt to  analyse these examples in terms of descriptions, as 
proposed, e.g., by Neale [1990]; but cf, [Peregrin and von Heusinger, 20041 for arguments why 
this will not do. 
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sentence of (5b) will also contain three discourse referents, one for the set of nine 
balls in the bag, and further, as in the case of 11, one for the set of ten balls and 
one for the bag. The base of Il contains an element that can serve as antecedent 
for it, the base for I2 does not.) 

Discourse contents of this type are usually referred to as 'information states'. 
Information states of this kind are about the simplest and most conservative refine- 
ment of our earlier notion of content as a set of possible worlds. They reflect only 
one aspect of the form of the discourse, viz., the set of discourse entities it intro- 
duces, which the information state captures through its referential base. Notwith- 
standing this conservativeness, information states thus defined can account for a 
remarkable variety of discourse linking mechanisms, some of which look at first 
glance quite different from the constraint on pronominal anaphora illustrated in 
(5). This is not to say that all such linking phenomena can be accounted for on the 
basis of discourse contents of this particular form. In fact, other, richer notions of 
discourse content have been proposed in order to deal with certain phenomena for 
which information states of the sort just defined do not seem adequate. At present 
the question what notions of discourse content are optimal for dealing with which 
aspects of discourse linking is far from settled. 

We note for good measure that, obviously, the notion of a CCP co-varies with 
that of an information state, CCPs are always partial functions from information 
states to information states. Refinement of the notion of information state is 
automatically reflected in a similar refinement of the corresponding notion of a 
CCP. 

There are two other fairly obvious points, which we record for further reference. 
The first is that an information state always determines a content in the sense of 
section 3. For an information state I of the kind defined above this content is the 
set  prop^ (u) consisting of all worlds w such that for some f:  (w, f )  E I. In case 
the notion of information state is refined (in order to adapt it to the explanation 
of more complicated cases of discourse linking), the reduction to propositional 
contents may take a different form and be somewhat more involved. However, it 
is an essential ingredient to the notion of information state that each information 
state determines as propositional content, and thus that such reductions are always 
possible. 

The second point is that among the sentences of a language such as English 
there are many whose content does not depend on the discourse context. Or, 
more accurately, there are many sentences such that any utterance of them has 
a content that is independent from the discourse context in which it is made. 
This is so whenever the sentence is free from anaphoric requirements and other 
presuppositional constraints. The content of an utterance of such a sentence s can 
still be identified in the manner of section 3 with the set of possible worlds in which 
the uttered sentence is true. Or, putting things more formally, given an intensional 
model M an utterance u of a sentence s (relative to a time t and a world w from 
M )  will have propositional content propm (u) that is independent of the discourse 
content C in which u is made. In such cases updating C with u will always be 
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possible and will lead to  a new discourse context C' of the propositional content 
is the intersection of the propositional content of C with propM(u). In particular, 
when C is identified with information state I ,  then the result of the update with 
u update is an information state I' such that prop,+, ( I 1 )  = prop,+, (I)  n  prop^ (u). 
Of course this does not determine I' completely. In fact it is part of the point of 
example (5) that the first sentence of (5a) and the first sentence of (5b) can update 
the same information states I ,  that the resulting updated information states I, 
and Ib have the same propositional content, but that they nevertheless differ in 
such a way that the same second sentence in (5a) and (5b) can serve as an update 
of I, but not of Ib. 

The question how much structure must be given to discourse contents so that 
they are suitably equipped for accounts of the various forms that discourse linking 
can take must be sharply distinguished from another question: should discourse 
contents be defined, as we have done so far, as model-theoretic constructs, i.e., as 
set-theoretic constructs built out of models and their components)? Or should they 
be characterised as semantic representations ('logical forms'), i.e., as structures 
that have their own syntax as well as a semantics determined by their syntactic 
structure (in the same sense in which, say, formulae of the predicate calculus have 
a semantics fully determined by their syntax)? Questions of the first type arise 
irrespective of how the second question is resolved, no less for those who opt for 
a representational approach than for those who prefer the 'non-representational' 
mode of analysis we have been 

Reasons for choosing between a representational and a non-representational 
approach should be looked for elsewhere. First of all, for the computational lin- 
guist, whose task is the design and implementation of algorithms for processing 
language on a computer, the representational approach is the only option. Only 
finite objects like representations can be computed and manipulated to further 
computational ends. The typically infinite structures which non-representational 
approaches use to model content and information are, as such, fundamentally non- 
computable, and even a computational linguist whose theoretical inclinations lean 
towards the non-representational perspective will be obliged to work with syntactic 
expressions which provide finitary descriptions of the infinitary objects he favours. 

A second observation that might be seen as pointing towards the representa- 
tional approach has to do more specifically with the cognitive dimension of lan- 
guage. Languages are used by people, whose processing capacities are, just like 
those of the computers they manufacture, finite; and when language is used, it is 
the finite minds of people which do the processing that is involved in both pro- 
duction and interpretation. Cognitive science is still at a stage where the most 
fundamental questions about how the mind works are a matter of debate, and this 
is true in particular with regard to the question how the mind processes language 
and represents the results of this processing. We still aren't in a position to assert 

6 8 ~ h i s  is not to  say that the two approaches offer the same ranges o f  options for dealing with 
such questions. T h e  question exactly how the representational and the non-representational 
approaches compare on this issue is still largely unanswered. 
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with full confidence that there is any sense in which the mind can be said to process 
language 'symbolically', in the sense of forming and manipulating representations 
similar to those assumed in theoretical linguistics. This goes for all levels of lin- 
guistic representation, including those of syntax and of semantics. Nevertheless, 
many of those concerned with the cognitive dimension of language work on the 
assumption that language processing is largely symbolic in a non-question begging 
sense, and that this is so in particular for processing at the syntactic and seman- 
tic level. When this general assumption is combined with the observations about 
discourse interpretation to which this section has been devoted, the inevitable con- 
clusion seems to be that interpreting discourse involves representations of discourse 
content that can be incremented along the lines our discussion has i n d i ~ a t e d . ~ ~  

Alternatively, one might regard the choice between a non-representational ac- 
count that assumes infinite entities as semantic values and a representational one 
that offers finite 'reductions' of those entities as a false dilemma that in fact is 
a mere artifact of the specific model-theoretic assumptions that derive from the 
classical model, and ultimately of the classical logical approach to the treatment 
of formal languages. After all, there seems to be no principled reason why one 
would assume the various ingredients in a non-representational account (such as 
domains, sets of worlds, models, and even the language itself) to be infinite. In 
effect, it can be argued that the very notion of a language as an infinite object, 
which, when combined with semantic compositionality, brings along the concep- 
tion of an infinite set of meanings, itself is a theoretical construct, the result of a 
set of assumptions we may make in order to facilitate the study of certain linguis- 
tic phenomena (such as studying syntactic productivity without worrying about 
actual performance limitations, or defining information update as elimination of 
possibilities), but that we may also discard again when they get in the way.'' 

In section 3 we drew attention to  the role of the utterance context in the de- 
termination of the utterance content. In the present section we have focused on 
the role of the discourse context, and in doing so we have kept the dependence 
of content on the utterance context out of sight. This compartmentalisation is 
consistent with a practice that up to the present time has been quasi-universal: 
dependence on utterance context and dependence on discourse context are hardly 
ever discussed in the same breath. But it is a practice which has little to speak 
for itself. What we want is an integrated account of information content, which 
deals with dependence on utterance context and dependence on discourse context 
in tandem. As far as we can see there are no fundamental obstacles that stand in 
the way of such an integrated account. But to our knowledge none has yet been 
fully worked out. 

690ne of the  long-term goals of the most representational version of dynamic semantics, 
discourse representation theory, is to  uncover aspects of the  semantic representation of con- 
tent derived from linguistic input (i.e., the  content that the recipients of linguistic input 
in spoken or written form extract from what they hear or read. Cf., [Kamp, 1984-1985; 
Kamp, 19901. 

7 0 ~ o r  an early, philosophical argument along these lines, cf., [Davidson, 19861; [Groenendijk 
and Stokhof, 20051 contains some thoughts in this direction regarding compositionality. 
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In an account of this kind utterance context and discourse context could be 
treated as completely separate and distinct, much as we have been presenting 
them in their respective sections 3 and 4. But from the perspective which provides 
the motivation for such an account it is tempting to see utterance context and 
discourse context as two components or aspects of a single comprehensive context, 
much as the terminology, which describes both as 'contexts', suggests. This second 
perspective seems especially compelling when we see utterance interpretation as 
something that takes place in the mind of the recipient. The recipient has to work 
with whatever information is available to him, and that information consists, apart 
from the expression uttered, of contextual information of various kinds, including 
information about the circumstances of the utterance event and the discourse 
context as the recipient has thus far constructed it. 

As a matter of fact, the contextual information that the interpreter of an ut- 
terance relies on typically includes more than just his discourse context and in- 
formation about the utterance context. For instance, world knowledge (including 
knowledge about both necessary as well as defeasible regularities that govern the 
events of the world in which we live) and the encyclopedic knowledge that com- 
petent speakers of a language associate with most of its words are notorious for 
being indispensable to interpretation, and thus it is natural to take them to be 
part of the context too. Along these lines we are led to a notion of an interpre- 
tation context as a complex structure, of which utterance context and discourse 
context are just two of the components. One way in which these components 
differ from each other is that some of them change in the course of a multisen- 
tence discourse while others, such as for instance the world knowledge component, 
normally remain fixed. But the dynamics of such integrated contexts will also 
involve interactions between different context components, leading for instance to 
information being transferred from the utterance context to the discourse context. 
Describing this dynamics correctly will be one of the major challenges for such an 
integrated context theory. 

Let us take stock once more and see what the present section has taught us 
about content and information. We found that since discourse interpretation is 
incremental in nature, utterance content cannot in general be identified with sets of 
possible worlds, but rather has to be accounted for in terms of the updating effects 
that utterances produce and the context change potentials of sentences of which 
those updates are the manifestations. This led to a pair of two related conceptions 
of information, that of an information state as embodying the information content 
of a discourse, and that of a context change potential - a partial function from 
information states to information states - embodying the contributions that the 
utterances of sentences make to the discourses of which they are part. 

It  should be emphasised, however, that while these new notions cast a signifi- 
cantly different light on the nature of linguistic information, they are, just like the 
notions presented in section 3 they are meant to supplant, notions of information of 
a user-neutral sort, which abstracts away from the needs, interests and antecedent 
beliefs and convictions of those to whom information is imparted. They address 
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the question what the information that is conveyed by an utterance or discourse 
actually means for the one that it is conveyed to only insofar as they identify what 
information he could get from the linguistic input if he interprets it in accordance 
with the rules of the language, including those rules that govern the incremental 
interpretation of multisentence discourse. But they have nothing to say about, 
for instance, the different effects that the same linguistic communication will have 
on two different recipients, either because of differences in prior information with 
which the newly acquired information can be inferentially combined, or because of 
differences in their respective needs and interests that the same new information 
may address to different extents or in different ways. In the next section we will 
have a brief look at some aspects of the cognitive perspective according to which 
information should be assessed in terms of what difference it makes to the one who 
receives it. 

5 MODELLING THE RECIPIENT 

Information content as we have explicated it so far is, as we noted at the end of 
section 4, independent of who is receiving it. When a speaker A makes a statement, 
using some discourse-context-independent sentence s, and B and C are among her 
audience, then, given how we have defined the notion, the information content of 
her utterance will be the same for B as it is for C. In an important sense this is 
right: on a natural understanding of the term 'information' B and C have obtained 
the same information. But how informative an utterance is, is not determined 
solely by the information it conveys, it also depends on what is in and on the 
recipient's mind at the moment he processes what the utterance has to say. 

For one thing - this is the simplest but also the most telling distinction that 
can be made here - what is communicated to the recipient may be either new 
to him or it may be something that he knew already. For example, suppose 
that Anna tells Bernhard and Carl over dinner that Dorothea has gone to Paris. 
And suppose that this was news to Carl, but not to  Bernhard, who had been 
informed about Dorothea's trip the day before. Then there is a sense in which the 
information which Anna's statement imparts to Bernhard is nil, while for Carl it 
may be significant news. 

But this is not the only way in which one and the same communication may 
carry information of different significance to different recipients. It may be that the 
information is new to both Carl and Bernhard, but that Carl knew that Dorothea 
had applied for a job in Paris and accordingly infers from what Anna says that 
she must have been given the job, whereas to Bernhard, who knows nothing about 
Anna's job application, the question what she will be doing in Paris may not even 
occur. Or, yet another scenario, suppose that neither Bernhard nor Carl knew 
that Dorothea had left for Paris, but that their attitudes towards her are different. 
To Bernhard she is just someone he vaguely knows and that he has never paid 
much attention to, but to Carl she has been the object of deep and unrequited 
love. Again Anna's words will provide new information to both Bernhard and 
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Carl. But in Carl they are likely to trigger heated speculation about what reasons 
Dorothea may have had for going where she did, and about what she will be doing 
now that she is there. Bernhard, on the other hand, may be expected to  file the 
new bit of information without giving it  a second thought, and perhaps he will 
have forgotten it as soon as the dinner party is over. 

The obvious fact these examples illustrate is that the significance that a piece 
of information has for the one who gets it is a function of his antecedent informa- 
t i ~ n , ~ '  and often also of his other mental attitudes - his concerns, convictions, 
affections, desires, goals and plans. This means that an account of the impact of 
information presupposes a systematic way of representing mental states, as com- 
posed of attitudes of these different kinds. At present no such theory of mental 
structure exists that has found general approval. But even if there were such a 
theory, this would not be the place to expound it. So we shall limit ourselves to a 
look at the first type of dependence mentioned above, viz., the dependence of the 
impact of newly conveyed information on prior i n f ~ r m a t i o n . ~ ~  

The information that a person has at a given time must be represented in his 
mind in some way. For our present purposes it  won't really matter in what way it is 
represented. It  may be that the representation of at least some of the information 
takes the form of representations with a specific 'syntactic' structure - of formulae 
or terms from some 'language of thought' - but this assumption won't be essential 
for most of what we will have to say. What does matter is that the representations 
determine content. In view of what we have observed in section 4 this means that 
each such representation must determine an information state, where information 
states have at least the complexity of sets of world-assignment pairs. (For most 
of what we will say, however, it will suffice to assume that such representations 
determine propositional content.) 

Let us consider, then, a person B who is the recipient of a statement u of some 
context independent sentence s. To make sense of u, B will have to process it in 
the light of what he knows. As was pointed out in section 3, this requires in the 
first place that B recognises the subject matter of U, i.e., the part of the world that 
u is about. And recognition means activating those elements of his information 
that pertain to  this subject matter. It is this part that will be directly relevant 
to B's interpretation of u and that will be augmented with the information which 
his interpretation of u will produce.73 

Evidently, where there is selection of elements there must be elements to be 
selected. So we must assume that B's information can be subdivided into elements 
that pertain to different subject matters. We leave open whether such divisions of a 
person's information into subject-related elements is always possible, and we doubt 
that the dividing lines can ever be entirely non-arbitrary and sharp. However, for 

7 1 ~ e r e  and henceforth we use 'information' as an epistemically neutral term, covering both 
what a speech participant actually knows and what he only thinks he knows. 

72Cf., section 7 for some references t o  work that takes dependencies on other factors, such as 
the action goals of speech participants, into account. 

7 3 ~ h e  importance of this selection as part of the process of interpreting utterances has been 
underlined in particular in 'relevance theory'; cf., [Sperber and Wilson, 19951. 
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751n the terminology of the partition semantics of questions: if C is uninformative with regard 
t o  the question, i.e., if i t  does not exclude any of the possible exhaustive answers t o  the question. 

761n terms of the analogy with questions once more: if no answer to  either question implies or 
excludes an answer to  the other. 
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our present purposes a rough idealisation will suffice. Let us assume that these 
elements, bits of information, can be identified in the simplest and most abstract 
way possible, viz., as sets of possible worlds. Second, let a subject matter SM be 
the following equivalence relation between worlds: two worlds w and w' stand in 
the relation if they contain exactly the same facts pertaining to the subject matter, 
but otherwise they may be as different as you like.74 Example: Suppose that the 
subject matter is what happens in Paris on the first of January 2006. Then ,w and 
w' stand in the corresponding relation if and only if what is the case in Paris in w 
coincides exactly with what happens in Paris on that day in w'. Furthermore, if 
SM is a subject matter and C a bit of information (i.e., a set of possible worlds), 
then we say that C has nothing to say about SM if and only if C has a non-empty 
intersection with each equivalence class of SM.75 And finally, two distinct subject 
matters SM and SM', are said to be mutually independent if and only if each 
equivalence class of SM has a non-empty intersection with each equivalence class 
of SM'.76 

About the selection of that part CSM of his information that the recipient B 
of an utterance u activates as pertaining to the subject matter of u we make two 
assumptions. First, that CSM is about a subject matter SM in the sense that 
it is the union of some set of equivalence classes of SM. And second, that B's 
total information can be decomposed into CSM and some other part CRM (the 
'remainder' of B '  information) in the sense that C = CSM n CRM, while at the 
same time CRM has nothing to say about SM. 

This puts us in a position to say something about the epistemic effect that u 
will have on B. Interpretation of u will lead to an augmentation of CSM with the 
result of that interpretation. We denote this augmentation as CsM @ U. It seems 
intuitively clear that the set-theoretic difference: 

between CSM and CSM @ u is a measure of the epistemic impact that u has on B. 
On the assumption that B can represent thoughts about SM in some repre- 

sentation language L, there is also another, inference-related way of assessing the 
epistemic impact of u, viz., as the set: 

consisting of those representations belonging to L which B is in a position to 
deduce after he has obtained the information that is conveyed by u, but would 
not have been able to before. It  is easily verified that the correlation between 
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this characterisation of epistemic impact and the set-theoretic one is monotone: 
suppose that u and u' are two utterances such that: 

Then also: 

(The converse implication doesn't hold without further assumptions about the 
expressive power of L.) 

The information CSM pertaining to SM can be seen as one component of the 
recipient's total information at the time of interpretation, but it is not the only 
one on which interpretation depends. In fact, the most important component, 
which plays a central part in every act of utterance interpretation, is his linguistic 
knowledge - his knowledge of the grammar of the language and of its lexicon - 
and, presumably, of a host of so-called 'encyclopedic kn~wledge ' .~~  Let us represent 
this conglomerate of the recipient's linguistic and extra-linguistic knowledge as 
CLK. 

The way in which interpretation depends on CLK is of course very different 
from the way in which it can depend on CSM, and it  may seem odd to mention 
these two almost in the same breath. But it is important to emphasise this second 
dependency as well, for it is the knowledge that goes into CLK which is respon- 
sible for the very special character of information in natural language: linguistic 
expressions have the capacity to carry the information they do because of this very 
large package of knowledge that is shared (with close to total overlap) between the 
members of a speech community and thus in particular between any two members 
who use their language in an act of communication: the speaker uses her knowl- 
edge to encode a thought in words and her interlocutor makes use of the same 
knowledge to decode the verbal message to reconstruct the encoded thought. This 
is what makes linguistic information into the special thing it is and language into 
the uniquely powerful communication tool that it is. 

Note that as a rule CSM and C L ~  will be quite different, and in fact can be 
assumed to be mutually independent in the sense defined above: any way that the 
given subject matter could have been is compatible with any way that the language 
could have been. For instance, suppose once more that the subject matter of an 
utterance u is the current whereabouts of Dorothea. Presumably that subject 

77~ncyclopedic knowledge is knowledge that isn't purely linguistic, but that nevertheless is 
important to  interpretation, partly because it includes many of the preconditions of individual 
words - you cannot properly understand the meaning of 'levitate' without having some knowl- 
edge of the 'common sense physics' of gravity and its practical effects, or of the financial term 
'futures' without knowing something about the  stock market, or of the noun 'quark' without a 
substantial portion of knowledge about quantum physics (which is even harder), and so forth - 
and partly because it guides us in distinguishing plausible from implausible interpretations, and 
thereby helps us t o  deal with ambiguity and vagueness. To be sure, the boundary between what 
is linguistic knowledge sensu strictu and what counts a s  extra-linguistic, encyclopedic or world 
knowledge is itself rather vague. 
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matter has nothing to do with the conventions of the language; any possible fact 
about where Dorothea is, has moved from or is going to is compatible with any way 
the language of u could have been. Only in the special case when it is language 
itself that is the topic of discussion will CSM and CLK overlap, or even coincide. 

Even in the special case where language itself is the subject matter, but certainly 
in all those where CSM and CLK are independent, the way in which interpretation 
depends on CLK is clearly very different from the way it depends on CSM - so 
different in fact that casting linguistic knowledge as part of the over-all context 
in which utterances are interpreted might seem rather artificial. But linguistic 
knowledge clearly is knowledge without which normal interpretation would be 
impossible, and, t o  repeat, for a proper appreciation of what makes linguistic in- 
formation special the dependence of interpretation on this part of the interpreter's 
knowledge is crucial: that linguistic expressions have the capacity to carry the 
kind of information they do - and thus to carry as much information as they 
do - is due to the very large package of linguistic and encyclopedic knowledge 
on which the interpreter can and must rely, and which is common (largely, if not 
totally) to those who share knowledge of a given language. 

This fact about human languages - that linguistic and paralinguistic knowledge 
is very extensive and that it is wholly or largely shared by those who can be said 
to speak them - is of particular importance for understanding the special nature 
of information as linguistically expressed and communicated. Part of the point 
here is not specific to natural language: in many contexts the information that is 
carried by a code belonging to a coding system of any kind is understood in terms 
of the coding and decoding algorithm that makes the system a coding system; and 
transmission of information using the system will function only if this algorithm is 
known to both sender and receiver. But of course, this is a notion of information 
that is derivative insofar as it presupposes some other language or medium in which 
information can be represented and with which the coding system is connected via 
its coding algorithm. It is a notion which passes, one might say, the question 
'What is information?' on to that language or medium. 

Human languages are special on the one hand because of the sheer quantity of 
knowledge that must be shared by those who use them to communicate. It is this 
which explains the possibility of packing as much information into an expression 
of modest size as we often manage to do and yet getting it across to our audience. 
But it isn't just the quantity of linguistic knowledge which makes the case of 
natural language special; it is also its quality. Our knowledge of our language isn't 
just a coding system that enables us to translate into and from it messages that 
are given in some other representation system (some 'language of thought'). It is 
in part genuinely semantic knowledge which links the expressions of our language 
directly to the world. It is these two properties of linguistic knowledge - that it 
is truly semantic and that it is shared between all speakers - which explain why 
linguistic expressions can be said to carry information in a non-derivative sense 
and at the same time be such remarkably effective information transmitters. 
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6 INFORMATION IN NATURAL LANGUAGE 

In his chapter in this handbook Dretske reminds us of two distinct pretheoretical 
uses of the term 'information'. When we say that the puff of smoke we see in the 
distance means that there is a fire there, or that puffs of smoke normally carry the 
information that there is a fire, we use the term in a sense in which information 
by definition is true information. But this is not the sense we intend when we 
speak of 'linguistic information1. An utterance of the sentence 'There is a fire over 
there' can be described as meaning, or as carrying the information, that at the 
time of the utterance there is a fire somewhere in the direction that the speaker 
indicates. By itself this assessment does not entail that there is indeed a fire, in the 
relevant direction and at the relevant time, whenever someone makes a statement 
by uttering this sentence. Thus in cases such as this the term 'information' is used 
in such a way that its factual correctness is not assumed, i.e., in a way that allows 
for information that is true, but also for information that is false. It is this second 
sense in which we have been using the word 'information' throughout the present 
chapter. For it is this sense of 'information' that reflects the most fundamental 
characteristic of natural language meaning, viz., its ability to be about non-existent 
objects and non-obtaining situations. 

Nevertheless , statements do carry a commitment to truth. It  is constitutive of 
the practice of making statements that they are intended to convey true informa- 
tion, even if on occasion speakers fail to do so by mistake, or abuse the trust of 
their audience by lying. One situation in which this commitment to truth makes 
itself felt in the context of verbal communication is when the speaker makes state- 
ments which contradict the recipient's beliefs - in other words, statements u such 
that the propositional content of CSM @ u is the 'contradictory proposition' (the 
empty set of worlds). In such a situation the recipient may react in one of several 
different ways. He may conclude that if the speaker felt confident enough to make 
her statement, she must be right, and revise his beliefs to fit the opinion she has 
expressed. But he may also feel certain enough about his own beliefs to conclude 
that the speaker must be wrong; and in that case he may either keep his disbelief 
to himself or try to convince the speaker that she is wrong. And of course there are 
many shades between these two extremes. The recipient may feel strong enough 
about his own views not to accept the speaker's opinion without further ado, but 
not strong enough to dismiss her opinion out of hand. In such cases a discussion 
may ensue, perhaps ending in a joint view of whose opinion should be considered 
most likely." 

Even if we ignore the range of possibilities between the extremes of unquestioned 
acceptance and unconditional rejection, just the two extremes themselves show 
that our earlier binary distinction between old and new information is too simple. 
There are three basic relations that the speaker's statement u can stand in to the 
recipient's assumptions CSM about the subject matter of u (or what he takes to be 

78Assurning the discourse is a cooperative one. For a different perspective, cf., [Merin, 1999; 
van Rooij, 2004al. 
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its subject matter): (i) the interpretation he assigns to u may be entailed by C S ~  
- in this case the information carried by u is old for him; (ii) the interpretation 
may contradict CSM; and (iii) it  may be that the interpretation neither contradicts 
CSM nor is entailed by it. So far we just counted cases (ii) and (iii) both as cases 
of new information, but as the remarks above should have made clear, from the 
recipient's point of view they are really very different. 

This tripartite distinction is important not only in connection with the content 
of the statements speakers make, but also with the anaphoric and other presuppo- 
sitions their statements carry. Suppose that A has just made the statement that 
'Dorothea has just gone to Paris again.' This choice of words introduces the pre- 
supposition that Dorothea has been to Paris before. What is the interpreter to do 
with this presupposition? Again this will depend on how the presupposition is re- 
lated to CSM, and once again we have to distinguish between three possibilities - 
(i) CSM entails the presupposition, (ii) the presupposition contradicts it, and (iii) 
neither. The first case, (i), is usually treated as the normal one: the antecedent in- 
formation about the subject matter entails the presupposition; that is as it should 
be, and the interpreter can, detaching the presupposition, move straightaway to 
the non-presuppositional component of his interpretation. Cases of type (iii) are 
the ones that we believe presupposition theorists usually think of when they dis- 
cuss accommodation. If a presupposition cannot be verified as following from the 
'context', i.e., from what the interpreter currently knows or assumes, then he will 
adjust the context - accommodate it, as the technical vocabulary has it - so 
that it does entail the presupposition.79 

And then there still is the second case, in which the presupposition contradicts 
CSM. Once again there are several ways in which the interpreter could react: he 
could conclude that since the speaker was making a statement with this presup- 
position, she must have known the presupposition to be true, and adjust his own 
beliefs to fit; or he may conclude that the speaker's apparent belief in the truth of 
the presupposition is wrong; and in that case there are once again several options; 
he may try to point her mistake out to her or he may let the matter rest and take 
the non-presuppositional content of her statement as if no presupposition had been 
attached to it. 

7 9 ~ y  and large accommodation comes easily. In fact, it is one of the classical observations 
of presupposition theory that speakers will often exploit the readiness with which interpreters 
accommodate presuppositions by choosing wordings for their statements which trigger presup- 
positions of which they do not think that their interlocutors believe them already, but that they 
want them to adopt. And usually the ploy works: the interpreter will take the content of the 
presupposition on board much as he would have done if it had been asserted. In such cases, where 
the interlocutor reacts in accordance with the speaker's expectations, the effect on his beliefs will 
be the same as it would have been if the speaker had made the presupposition into a separate 
statement followed by the statement he actually made. The term 'accommodation', in the present 
technical use of it, can be traced back to  [Lewis, 19791. Some of Lewis' remarks can be read 
as suggesting that accommodation is always possible, but in the meantime we have learnt that 
there are presuppositions for which accommodation is subject to  certain constraints (although it 
appears that the question which accommodation constraints apply to  which presuppositions is 
still largely unanswered). Cf., [Beaver and Zeevat, 20071. 
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We note that these same observations also apply to presuppositions that are 
generated in speech acts other than assertions, such as questions or directives. 
Such non-assertive speech acts were mentioned in passing in the introduction, but 
since then nothing was said about them. This seems a suitable point to return to 
them. Our lack of attention to  non-assertive speech acts throughout the chapter 
should not be construed as showing our lack of awareness of the crucial part they 
play in the normal use of language. (In any theory of the semantics and pragmatics 
of conversation their analysis is absolutely indispensable.) Rather it is a reflection 
of our conviction that in an account of linguistic information there is no need to 
make them the topic of a separate discussion. For by and large the information 
content of non-assertive utterances is determined according to the same principles 
as it is for assertions. The only difference is that non-assertive speech acts put 
their information content to different uses than assertions do. For the question 
what the information content of an expression is and how it gets transmitted that 
difference seems immaterial. 

But the situation is different with regard to presuppositions. The presuppo- 
sitions connected with non-assertive utterances have the same status as those 
connected with assertions. In either case their content must be verifiable in the 
context before the utterance can be accepted as a legitimate transmitter of its 
message. One consequence of this is that presuppositions are more markedly set 
aside from the non-presuppositional part of utterance content in the case of non- 
assertive speech acts than they are in the case of assertions. It is for this reason 
that non-assertive speech acts are particularly useful as presupposition tests: For 
instance, a presupposition triggered by a constituent of an interrogative sentence 
used in a yes-no question will often manifest itself more clearly as a presuppo- 
sition there than it does in relation to an assertion involving the corresponding 
indicative sentence. Especially striking are those cases where you, the addressee 
of the question, think that the presupposition is false. It  won't feel right to you to 
answer the question with either 'yes' or 'no'. For instance, suppose I ask you the 
question in (6a) and you know (i) that Fred did come to the session last night, but 
(ii) that he wasn't there either at any of the previous sessions. It wouldn't seem 
right for you in such a case to  simply reply with 'yes', since that would imply that 
for all you know the contribution made by 'again' in (6a) - that Fred came to one 
or more earlier sessions - is true. Rather, you would feel it incumbent upon you 
to point out (in the words of (6b), say) that the presupposition was false, perhaps 
adding, after having got this matter out of the way, that as a matter of fact Red 
was present at last night's session. 

6. (a) Was Fred at the reading group again last night? 

(b) Well as a matter of fact he had never been there before. But yes, he 
was there yesterday. 

In the above we have emphasised the importance of true information. The im- 
portance, we saw, shows up both in connection with presuppositional and with 
non-presuppositional information. Failure of a presupposition puts the whole com- 
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munication process in jeopardy, something that can be observed with particular 
clarity in the case of non-assertive speech acts. But, as we also noted, truth is just 
as important for non-presuppositional content, in particular the content of asser- 
tions. (It is part of the conventions associated with speech acts of that kind, we 
observed, that the speaker commits herself to their content being true.) None of 
this is really surprising. For what people need and want first and foremost is true 
information about their world - information that makes it possible for them to 
plan their actions, by enabling them to make predictions about the consequences 
that the different lines of action open to them might have. 

But none of this should blind us to the fact that it is nevertheless linguistic 
information as we have defined it - information about how the world might be, 
rather than information about how it actually is - that is the central notion 
in relation to  human language; it  is this kind of information that is language's 
principal commodity, not the kind of information that has truth built into it. 
One indication of this is that all we have said about the interpreter's handling of 
both non-presuppositional and presuppositional content that is motivated by the 
concern for truth is ultimately not about the truth as such but about what the 
interpreter thinks is true. It is because the interpreter can represent the world 
as being of a certain kind, and thus imagine it to be of that kind, that he is 
also capable of thinking that it is of that kind. But in the case of thought, as in 
that of language, the commitment to the world actually being of a certain kind 
is distinct and detachable from the conception of a world of such a kind as such. 
This distinction - between truth and mere possibility, or, if you prefer, between 
belief and imagination - is at the core of information both as a cognitive and a 
linguistic commodity. 

The detachability of truth from linguistic information content comes into par- 
ticularly clear view when we compare discourse about the real world with fiction. 
When we read a novel or listen to a story we assign information content to the 
words we hear or see in much the same way as we do when interpreting utter- 
ances that we take to be about the real world. By and large the same principles 
of interpretation apply, including those which regulate the resolution of anaphora 
or the contextual justification of presuppositions. But there is nevertheless one 
crucial difference: since the world that the fiction unfolds presents itself as one 
that is at the author's disposition, the interpreter has no basis for objecting to any 
bit of non-presuppositional or presuppositional content. For that would require 
detection of a conflict with what he knows (or thinks he knows) to be true on 
independent grounds, and in this case it is true by definition that there can be no 
independent grounds. (At best the interpreter could detect internal inconsisten- 
cies in the story or violations of the basic laws and regularities which any world, 
real or imagined, should obey.) In fictional discourse we see language at work 
as a means for providing pure information content, untrammelled by the concern 
that the world described might prove different from the world whose description 
is intended. 
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7 PROSPECTS AND CHALLENGES 

In this chapter the focus has been on the information conveying function of natural 
languages. We have seen that the concepts of meaning and information have been 
related throughout much of the history of modern linguistics, though not always 
to the same extent and in the same sense. We have also described in some detail 
what kinds of concepts and ideas are needed to  build a descriptively satisfactory 
and theoretically sound theory that models the information conveying capabilities 
of natural languages. To be sure, such a theory is still 'in the works', and no 
doubt other concepts and ideas will be needed for it to be developed further, but 
the basic contours of what natural language information is and how it is shaped by 
syntactic structure, the structure of the utterance context, the discourse context 
and the participants' doxastic states and strategic goals, seem reasonably clear. 
In what follows we mention a few current trends, and then end this chapter with 
some thoughts on the information exchange function of natural languages. 

One aspect that currently gets a lot of attention relates to the strategic goals 
that language users have when they enter into a conversation, read a text, or 
communicate linguistically in some other form. Simple information exchange as 
such is hardly ever the ultimate goal: information is needed for certain purposes, 
e.g., in order to decide which action to undertake oneself, or to predict or influence 
actions of others, to explore possible courses of events, and so on. Language use 
then becomes part of a solution of a decision problem, and understanding the 
nature of the problem is essential since it determines what information (in terms 
of content and/or amount) is relevant in a given situation.80 

Situations of information exchange become even more complex once one ac- 
knowledges that not only providing information, but also withholding informa- 
tion, or divulging information selectively (part of the information, to part of the 
other participants), may be a crucial element of an overall strategy. This type of 
information exchange is often analysed using tools from game theory.81 So-called 
'higher order effects' of information disclosure are a central topic here: if A tells 
B that p, then B potentially learns a lot of other things beside p: that A believes 
(knows) that p, that A wants B to believe (know) that p, that C, who happened 
to overhear the utterance, now also believes (knows) that p but not as a result of 
an intentional action of A, and so on. 

A particular aspect of this problem set that has been studied quite extensively 
is how language users choose means of expressions, as speakers, and determine 
interpretations, as hearers. Given the fact that the relation between expression 
and content, form and meaning, is not one-one, but in general many-many, the 
problem how to  express certain information, and how to  decide what content a 
certain expression is used to convey, is a substantial one. In order to solve these 
problems, language users need general principles that they can use themselves 
and that they can assume the other users employ as well. Gricean pragmatics 

"Cf., [Ginzburg, 1995; van Rooij, 20031. 
81Cf., [van Benthem, 20061. 
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provides a first and partial indication. So-called 'bi-directional optimality theory' 
aims to generalise and systematise these ideas.82 Although it greatly enhances 
the explanatory power of the classical Gricean framework, it stays within that 
framework in that it relies on an independent characterisation of the space of 
possible forms and the space of possible meanings. A framework in which meanings 
are not a precondition but a result of linguistic exchanges is provided by so-called 
'signalling games',83 which in that respect constitute a major step away from the 
classical model. 

The integration of the various theories and paradigms that are currently being 
explored and that we can only mention, is still very much an open matter. No 
unified framework exists as yet, and developments are rapid. However, most ap- 
proaches somehow build on the general principles that we have outlined in this 
chapter, which suggests that the current phase of diversification could be followed 
by one in which more comprehensive theories can be developed. 

A question that we haven't addressed so far is to what extent information 
conveying is really natural language's 'core business', as many would claim. The 
reason we have not gone into that discussion is minimally this, that although not 
everyone agrees that information conveying is the function of natural language 
'par excellence', no-one really wants to deny that it is one of the things natural 
languages are used for, and the how and why of that is really what this chapter is 
all about. Nevertheless, as a final reminder it may not be superfluous to indicate, 
albeit only very briefly, the possible limitations of this view on natural language. 

First of all, in as much as the concepts and formal machinery that are put to use 
in theories of natural language semantics and pragmatics are taken from logic and 
theoretical computer science, where they were developed with the explicit purpose 
of providing tools for the description and analysis of processes of information 
exchange, i t  is hardly surprising that the resulting theories make natural language, 
too, appear as primarily concerned with that specific goal. Anything that doesn't 
fit simply disappears from sight, by being 'abstracted away' from. That by itself 
doesn't mean, of course, that there actually is something that doesn't fit, or that, 
if there is, it is of importance. But the fact remains that the tools used in the 
study of natural language are derived from the domain of formal systems and that 
whereas the latter are straightforwardly designed with a specific purpose in mind, 
the former can hardly be said to answer to such a description. So at  least we need 
to allow the possibility of a certain one-sidedness, and concomitant distortion. 

A second consideration pertains to the status of the use of natural language for 
information exchange. Of course nobody would deny that natural languages serve 
other purposes as well: we flatter and comfort (each other and ourselves), we sing 
songs and write poetry, we congratulate and curse. There is no denying that such 
utterances, too, convey information, if only of the 'higher order' type mentioned 
earlier on, but according to many it would be an unjustified generalisation to state 

82Cf., [Dekker and van Rooij, 2000; Blutner et al., 20061. For a game-theoretical approach to  
the issue of ambiguity resolution, cf. [Parikh, 20021. 

83Cf., [van Rooij, 2004bl. 
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that their purpose is that of exchanging information. The real issue, they feel, 
is how these other uses and the information exchange use are weighed relative 
to  each other. Is information exchange the core function of language, with other 
functions being somehow dependent on it? Or are the various uses we make of 
language relatively independent from each other? Or is there some other function 
than information exchange that is the primary one? These are difficult questions, 
and it would take us too far afield to  discuss the various options that have been 
proposed and defended in the literature. Some seek the answer in an (often specu- 
lative) account of language evolution: did language evolve from the use of signals, 
to  indicate foods, predators, and Or are its origins rather to be found in a 
need for social cohesion, and did it start out as a way of maintaining social bonds 
within a group?85 Others address these questions from a more systematic point of 
view. As a matter of fact, the history of western thinking about language displays 
quite a variety of opinions about what constitutes its inner nature, and the logical 
one, with its emphasis on reference, description and information exchange is but 
one of them. In modern times, the 'information oriented' views of, e.g., Locke 
and Leibniz, were balanced by, e.g., those of Rousseau, who saw the essence of 
language in the expressions of the passions, and of Herder and Humboldt, who 
emphasised its expressive role with regard to the spirit of a culture. In the twen- 
tieth century Wittgenstein explored the variety of the uses we make of language 
and emphasised their 'co-originality', and Austin and Searle further systematised 
certain elements of this view. And in other philosophical traditions, too, people 
have expressed yet other views on the nature of language, such as the hermeneutic 
perspective of Heidegger and Gadamer, the moral-political view of Habermasls6 
or the phenomenological one of M e r l e a u - P ~ n t ~ . ~ ~  

What these alternative views have in common is that they reject, to some ex- 
tent at least, the instrumentalism that seems inherent in the information exchange 
perspective. There language essentially is an instrument, a tool that is put to a 
use, viz., that of asking for and providing information. Again, the origins of the 
concepts and tools of modern semantics and pragmatics are conducive to such a 
view: in formal systems the languages and their semantics are defined accord- 
ing to predetermined specifications, which makes them instrumental through and 
through. In many of the alternative views, the distinction between the instrument 
and the use to which it is put is less clear, more difficult to make. One might say 
that the opposition really is a matter of whether 'language has use' or 'language 
is use'. 

These observations, of course, merely scratch the surface of a very complicated, 
and stillongoing debate. We draw attention to them merely in order to  balance the 
perspective, not to throw serious doubts on the view that information exchange is 

R4Cf., [pinker and Bloom, 19901. 
85Cf., [Dunbar, 19981. And there are many other views, cf., various contributions in the already 

referred to (Christiansen and Kirby, 20031. 
86Cf., [Lafont, 19991. 
87Cf., [Edie, 19871. 
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a vital function of natural languages. The latter point is uncontroversial, as is the 
contention that theories exploring this perspective provide a real insight into the 
nature of natural languages, and have furthered our understanding of its structure, 
its meaning and its use immensely. The point to bear in mind is just that other 
perspectives, in their own way, contribute to such an understanding as well. 
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TRENDS IN THE PHILOSOPHY 
OF INFORMATION 

Luciano Floridi 

1 INTRODUCTION 

"I love information upon all subjects that come in my way, and especially upon 
those that are most important." Thus boldly declares Euphranor, one of the 
defenders of Christian faith in Berkeley's Alciphron.' Evidently, information has 
been an object of philosophical desire and puzzlement for some time, well before 
the computer revolution, Internet or the dot.com pandemonium. Yet what does 
Euphranor love, exactly? What is information? 

As with many other field-questions (consider for example "what is being?", 
"what is morally good?" or "what is knowledge?"), "what is information?" is to 
be taken not as a request for a dictionary definition, but as a means to demarcate 
a wide area of research. The latter has recently been defined as the philosophy of 
information (Floridi [2002; 2003bl). The task of this chapter is to review some 
interesting research trends in the philosophy of information (henceforth also PI). 
This will be achieved in three steps. We shall first look at a definition of PI. On this 
basis, we shall then consider a series of open problems in PI on which philosophers 
are currently ~ o r k i n g . ~  The conclusion will then highlight the innovative character 
of this new area of research. 

2 DEFINING THE PHILOSOPKY OF INFORMATION 

The philosophy of information may be defined as the philosophical field concerned 
with 

a) the critical investigation of the conceptual nature and basic principles of 
information, including its dynamics, utilisation and sciences, and 

b) the elaboration and application of information-theoretic and computational 
methodologies to philosophical problems.3 

'Berkeley [1732], Dialogue 1, Section 5, Paragraph 6/10. 
 o or a longer and more detailed discussion see Floridi [2004b]. 
3The definition is first introduced in Floridi [2002]. The nature and scope of PI are further 

discussed in Floridi [2003b] and Floridi et al. [2005]. Floridi [2003c] provides an undergraduate 
level introduction t o  PI. 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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The first half of the definition concerns the philosophy of information as a new 
field. PI appropriates an explicit, clear and precise interpretation of the classic, 
Socratic question "ti esti.. . ?" ("what is.. . ?"), namely "What is the nature of 
information?". This is the clearest hallmark of a new field. PI provides critical 
investigations that are not to be confused with a quantitative theory of data com- 
munication (information theory). On the whole, we shall see that its task is to 
develop an integrated family of theories that analyse, evaluate and explain the var- 
ious principles and concepts of information, their dynamics and utilisation, with 
special attention to  systemic issues arising from different contexts of application 
and the interconnections with other key concepts in philosophy, such as knowledge, 
truth, meaning and reality. 

By "dynamics of information" the definition refers to: 

i) the constitution and modelling of information environments, including their 
systemic properties, forms of interaction, internal developments, applications 
etc.; 

ii) information life cycles, i.e. the series of various stages in form and functional 
activity through which information can pass, from its initial occurrence to 
its final utilisation and possible disappearance;4 and 

iii) computation, both in the Turing-machine sense of algorithmic processing, and 
in the wider sense of information processing. This is a crucial specification. 
Although a very old concept, information has finally acquired the nature of 
a primary phenomenon only thanks to the sciences and technologies of com- 
putation and ICT (Information and Communication Technologies). Compu- 
tation has therefore attracted much philosophical attention in recent years. 
Nevertheless, PI privileges "information" over "computation" as the pivotal 
topic of the new field because it analyses the latter as presupposing the for- 
mer. PI treats "computation" as only one (although very important) of the 
processes in which information can be involved. 

From an environmental perspective, PI  is critical and normative about what 
may count as information, and how information should be adequately created, 
processed, managed and used. Methodological and theoretical choices in ICS (In- 
formation and Computer Sciences) are also profoundly influenced by the kind of 
PI a researcher adopts more or less consciously. It  is therefore essential to stress 
that PI critically evaluates, shapes and sharpens the conceptual, methodological 
and theoretical basis of ICS, in short that it also provides a philosophy of ICS, 
as this has been plain since early work in the area of philosophy of A1 [Colburn, 
20001. 

4~ typical life cycle includes the following phases: occurring (discovering, designing, au- 
thoring, etc.), processing and managing (collecting, validating, modifying, organising, indexing, 
classifying, filtering, updating, sorting, storing, networking, distributing, accessing, retrieving, 
transmitting etc.) and using (monitoring, modelling, analysing, explaining, planning, forecasting, 
decision-making, instructing, educating, learning, etc.). 
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It is worth stressing here that an excessive concern with contemporary issues 
may lead one to miss the important fact that it is perfectly legitimate to speak 
of a philosophy of information even in authors who lived before the information 
revolution, and hence that it will be extremely fruitful to develop a historical ap- 
proach and trace PI'S diachronic evolution, as long as the technical and conceptual 
frameworks of ICS are not anachronistically applied, but are used to provide the 
conceptual method and privileged perspective to evaluate in full reflections that 
were developed on the nature, dynamics and utilisation of information before the 
digital revolution. This is significantly comparable with the development under- 
gone by other philosophical fields like the philosophy of language, the philosophy 
of biology, or the philosophy of mat he ma tic^.^ 

The second half of the definition indicates that PI  is not only a new field, but 
provides an innovative methodology as well. Research into the conceptual nature 
of information, its dynamics and utilisation is carried on from the vantage point 
represented by the methodologies and theories offered by ICS and ICT [Grim et 
al., 19981 and [Greco et al., 20051. This perspective affects other philosophical 
topics as well. Information-theoretic and computational methods, concepts, tools 
and techniques have already been developed and applied in many philosophical 
areas, 

to extend our understanding of the cognitive and linguistic abilities of hu- 
mans and animals and the possibility of artificial forms of intelligence (e.g. 
in the philosophy of AI; in information-theoretic semantics; in information- 
theoretic epistemology and in dynamic semantics); 

to analyse inferential and computational processes (e.g. in the philosophy of 
computing; in the philosophy of computer science; in information-flow logic; 
in situation logic; in dynamic logic and in various modal logics); 

to explain the organizational principles of life and agency (e.g. in the phi- 
losophy of artificial life; in cybernetics and in the philosophy of automata; 
in decision and game theory); 

to devise new approaches to modelling physical and conceptual systems (e.g. 
in formal ontology; in the theory of information systems; in the philosophy 
of virtual reality); 

to formulate the methodology of scientific knowledge (e.g. in model-based 
philosophy of science; in computational methodologies in philosophy of sci- 
ence); 

to investigate ethical problems (in computer and information ethics and in 
artificial ethics), aesthetic issues (in digital multimedia/hypermedia theory, 

5See [Adams, 20031 for a reconstruction of the informational turn in philosophy and [Young, 
20041 for an analysis of Wittgenstein's philosophy of information. 
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in hypertext theory and in literary criticism) and psychological, anthropolog- 
ical and social phenomena characterising the information society and human 
behaviour in digital environments(cyberphi1osophy). 

Indeed, the previous examples and the various chapters in this volume show that 
PI, as a new field, provides a unified and cohesive, theoretical framework that 
allows further specialisation. 

3 OPEN PROBLEMS IN THE PHILOSOPHY OF INFORMATION 

PI  possesses one of the most powerful conceptual vocabularies ever devised in 
philosophy. This is because we can rely on informational concepts whenever a 
complete understanding of some series of events is unavailable or unnecessary for 
providing an explanation. In philosophy, this means that virtually any issue can 
be rephrased in informational terms. This semantic power is a great advantage 
of PI understood as a methodology (see the second half of the definition). It 
shows that we are dealing with an influential paradigm, describable in terms of an 
informational philosophy. But it may also be a problem, because a metaphorically 
pan-informational approach can lead to a dangerous equivocation, namely thinking 
that since any x can be described in (more or less metaphorically) informational 
terms, then the nature of any x is genuinely informational. And the equivocation 
obscures PI'S specificity as a philosophical field with its own subject. PI runs the 
risk of becoming synonymous with philosophy. The best way of avoiding this loss 
of identity is to concentrate on the first half of the definition. PI as a philosophical 
discipline is defined by what a problem is (or can be reduced to be) about, not by 
how the latter is formulated. Although many philosophical issues seem to benefit 
greatly from an informational analysis, in PI one presupposes that a problem or an 
explanation can be legitimately and genuinely reduced to an informational problem 
or explanation. So the criterion to test the soundness of the informational analysis 
of x is not to check whether x can be formulated in informational terms but to 
ask what would be like for x not to have an informational nature at all. With this 
criterion in mind, we shall now review some of the most interesting problems in 
PI. 

For reasons of space, only some research trends and issues could be included and 
even those selected are only briefly outlined and not represented with adequate 
depth, sophistication and significance. This is not only because of space, but also 
because the interested reader will find a wealth of further material in the other 
chapters of this Handbook. The issues included have been privileged because they 
represent macroproblems, that is, they are the hardest to tackle but also the ones 
that have the greatest influence on clusters of microproblems to which they can be 
related as theorems to lemmas. Some microproblems are mentioned whenever they 
seem interesting enough, but especially in this case the list is far from exhaustive. 
Some problems are new, others are developments of old problems, and in some 
cases philosophers have already begun to  address them, but the review does not 
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concern old trends and problems that have already received their due philosophical 
attention. There is also no attempt a t  keeping a uniform level of scope. Some 
problems are very general, others more specific. All of them have been chosen 
because they well indicate how vital and useful the new paradigm is in a variety 
of philosophical areas. Finally, whenever possible I have indicated which chapters 
in the Handbook are relevant to the problem under discussion. 

4 THE NATURE OF INFORMATION 

This is the hardest and most central question in PI. It has received many answers 
in different fields but, unsurprisingly, several surveys do not even converge on a 
single, unified definition of information (see for example [Braman, 1989; Losee, 
1997; Machlup and Mansfield, 1983; Debons and Cameron, 1975; Larson and 
Debons, 19831). Information is notoriously a polymorphic phenomenon and a 
polysemantic concept so, as an explicandum, it can be associated with several 
explanations, depending on the level of abstraction adopted and the cluster of 
requirements and desiderata orientating a theory. Claude E. Shannon, for one, 
was very cautious: "The word 'information' has been given different meanings 
by various writers in the general field of information theory. It is likely that at 
least a number of these will prove sufficiently useful in certain applications to 
deserve further study and permanent recognition. It is  hardly to be expected that a 
single concept of information would satisfactorily account for the numerous possible 
applications of this general field. (italics added)" [Shannon, 1993, p. 1801. Thus, 
following Shannon, Weaver [I9491 supported a tripartite analysis of information in 
terms of (1) technical problems concerning the quantification of information and 
dealt with by Shannon's theory; (2) semantic problems relating to meaning and 
truth; and (3) what he called "influential" problems concerning the impact and 
effectiveness of information on human behaviour, which he thought had to play 
an equally important role. And these are only two early examples of the problems 
raised by any analysis of information. 

Indeed, the plethora of different analyses can be confusing. Complaints about 
misunderstandings and misuses of the very idea of information are frequently ex- 
pressed, even if to no apparent avail. Sayre [1976], for example, already criticised 
the "laxity in use of the term 'information"' in [Armstrong, 19681 (see now [Arm- 
strong, 19931) and in Dennett [I9691 (see now [Dennett, 1986]), despite appreciat- 
ing several other aspects of their work. More recently, Harms [I9981 pointed out 
similar confusions in Chalmers [1996], who "seems to think that the information 
theoretic notion of information [see section 3, my addition] is a matter of what 
possible states there are, and how they are related or structured [. . . ]  rather than 
of how probabilities are distributed among them" (p. 480). 

Information remains an elusive concept. This is a scandal not by itself, but 
because so much basic theoretical work, both in science and in philosophy, relies on 
a clear grasping of the nature of information and of its cognate concepts. We know 
that information ought to be quantifiable (at least in terms of partial ordering), 
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additive, storable and transmittable. But apart from this, we still do not seem to 
have a much clearer idea about its specific nature. 

Information is often approached from three perspectives: information as real- 
ity (e.g. as patterns of physical signals, which are neither true nor false), also 
known as ecological information; information about reality (semantic information, 
which is alethically qualifiable and an ingredient in the constitution of knowledge); 
and information for reality (instruction, like genetic information, algorithms and 
recipes). Many extensionalist approaches to  the definition of information as/about 
reality provide different starting points. The following list contains only some of 
the most philosophically interesting or influential, and I shall say a bit more about 
each of them presently. They are not to be taken as necessarily alternative, let 
alone incompatible: 

1. the communication theory approach (mathematical theory of codification 
and communication of datalsignals (Shannon and Weaver [I949 rep. 19981; 
see also the chapter by Topsae and Harremoes) defines information in terms 
of probability space distribution; 

2. the algorithmic approach (also known as Kolmogorov complexity, [Li and 
Vitinyi, 19971; see also the chapters by Grunwald and Vitinyi and by Adri- 
aans) defines the information content of X as the size in bits of the smallest 
computer program for calculating X [Chaitin, 20031; 

3. the probabilistic approach [Bar-Hillel and Carnap, 1953; Bar-Hillel, 1964; 
Dretske, 19811; see also the chapter by Dretske), is directly based on (1) 
above and defines semantic information in terms of probability space and 
the inverse relation between information in p and probability of p; 

4. the modal approach defines information in terms of modal space and in/ 
consistency (the information conveyed by p is the set of possible worlds 
excluded by p); 

5. the systemic approach (situation logic, [Barwise and Perry, 1983; Israel and 
Perry, 1990; Devlin, 19911) defines information in terms of states space and 
consistency (information tracks possible transitions in the states space of a 
system); 

6. the inferential approach defines information in terms of inferences space (in- 
formation depends on valid inference relative to a person's theory or epis- 
temic state); 

7. the semantic approach [Floridi, 2004c; 2005bl defines information in terms 
of data space (semantic information is well-formed, meaningful and truthful 
data). 

Each extentionalist approach can be given an intentionalist reading by interpreting 
the relevant space as a doxastic (i.e. belief-related) space, in which information is 
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seen as a reduction in the degree of uncertainty or level of surprise given a state of 
knowledge of the informee (see the chapters by Baltag, Moss and van Ditmarsch 
and by Rott). 

Communication theory in (1) approaches information as a physical phenomenon, 
syntactically. It  is not interested in the usefulness, relevance, meaning, interpre- 
tation or reference of data, but in the level of detail and frequency in the uninter- 
preted data (signals or messages). It provides a successful mathematical theory 
because its central question is whether and how much data, not what information 
is conveyed. 

The algorithmic approach in (2) is equally quantitative and solidly based on 
theory of computation. It interprets information and its quantities in terms of the 
computational resources needed to specify it. 

The remaining approaches all address the question "what is semantic informa- 
tion?". They seek to give an account of information as semantic content, usually 
adopting a propositional orientation (they analyse examples like "The earth has 
only one moon"). Do (1) or (2) provide the necessary conditions for any theory of 
semantic information in (3)-(7)? Are all the remaining semantic approaches mu- 
tually compatible? Is there a logical hierarchy? Do any of the previous approaches 
provide a clarification of the notion of data as well? Most of the problems in PI 
acquire a different meaning depending on how we answer this cluster of questions. 
Indeed, positions might be more compatible than they initially appear owing to 
different interpretations of the concept(s) of information involved. 

Once the concept of information is clarified, each of the previous approaches 
needs to address the following question. 

5 THE DYNAMICS OF INFORMATION 

The question does not concern the nature of management processes (information 
seeking, data acquisition and mining, information harvesting and gathering, stor- 
age, retrieval, editing, formatting, aggregation, extrapolation, distribution, verifi- 
cation, quality control, evaluation, etc.) but, rather, information processes them- 
selves, whatever goes on between the input and the output phase. Communication 
theory, as the mathematical theory of data transmission, provides the necessary 
conditions for any physical communication of information, but is otherwise of only 
marginal help. The information flow - understood as the carriage and transmis- 
sion of information by some data about a referent, made possible by regularities in 
a distributed system - has been at the centre of logical studies for some time [Bar- 
wise and Seligman, 1997; van Benthem, 20031, but still needs to be fully explored. 
How is it possible for something to carry information about something else? The 
problem here is not yet represented by the "aboutness" relation, which needs to 
be discussed in terms of meaning, reference and truth. The problem here concerns 
the nature of data as vehicles of information. In this version, the problem plays 
a central role in semiotics, hermeneutics and situation logic. It is closely related 
to the problem of the naturalisation of information. Various other logics, from 
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classic first order logic to epistemic, erotetic and dynamic logic, provide useful 
approaches with which to analyse the logic of information, but there is still much 
work to  be done [van Benthem and van Rooy, 2003; Allo, forthcoming; Allo and 
Floridi, forthcoming; Floridi, forthcoming]. 

Information processing, in the general sense of information states transitions, 
includes at the moment effective computation (computationalism, [Newell, 1980; 
Pylyshyn, 1984; Fodor, 1975; 1987; Dietrich, 1990]), distributed processing (con- 
nectionism, [Smolensky, 1988; Churchland and Sejnowski, 1992]), and dynamical- 
system processing (dynamism, [van Gelder, 1995; van Gelder and Port, 1995; Elia- 
smith, 19961). The relations between the current paradigms remain to be clarified 
(Minsky [1990], for example, argues in favour of a combination of computational- 
ism and connectionism in AI, as does Harnad [1990] in cognitive science), as do 
the specific advantages and disadvantages of each, and the question as to whether 
they provide complete coverage of all possible internulist information processing 
methods. 

The two previous questions in $5 4 and 5 and are closely related to a third, more 
general problem. 

6 THE CHALLENGE OF A UNIFIED THEORY OF INFORMATION 

The reductionist approach holds that we can extract what is essential to under- 
standing the concept of information and its dynamics from the wide variety of 
models, theories and explanations proposed. The non-reductionist argues that we 
are probably facing a network of logically interdependent but mutually irreducible 
concepts. The plausibility of each approach needs to be investigated in detail. 
Both approaches, as well as any other solution in between, are confronted by the 
difficulty of clarifying how the various meanings and phenomena of information are 
related, and whether some concepts of information are more central or fundamen- 
tal than others and should be privileged. Waving a Wittgensteinian suggestion of 
family resemblance means only acknowledging the problem, not solving it. The 
reader interested in a positive answer the question may wish to read the essays 
collected in Hofkirchner [1998]. A defence of a more skeptical view, following 
Shannon, can be found in [Floridi, 2003al. 

7 THE DATA GROUNDING PROBLEM: HOW DATA ACQUIRE THEIR 
MEANING 

We have seen that most analyses of the nature of information tend to concentrate 
on its semantic features, quite naturally. So it is useful to carry on our review 
of problem areas in PI by addressing next the cluster of issues arising in infor- 
mational semantics. Their discussion is bound to be deeply influential in several 
areas of philosophical research. But first, a warning. It is hard to formulate prob- 
lems clearly and in some detail in a completely theory-neutral way. So in what 
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follows, the semantic frame will be adopted (see above 5 4, (7)), namely the view 
that semantic information can be satisfactorily analysed in terms of well-formed, 
meaningful and veridical data. This semantic approach is simple and powerful 
enough for the task at  hand. If the problems selected are sufficiently robust, it 
is reasonable to expect that their general nature and significance are not relative 
to the theoretical vocabulary in which they are cast but will be exportable across 
conceptual platforms. 

We have already encountered the issue of the nature of data. Suppose data 
are intuitively described as uninterpreted differences (symbols or signals). How do 
they become meaningful? This is the data grounding problem. 

Searle [I9901 refers to a specific version of the data grounding problem as the 
problem of intrinsic meaning or "intentionality". Harnad [I9901 defines it as the 
symbols grounding problem and unpacks it thus: "How can the semantic inter- 
pretation of a formal symbol system be made intrinsic to the system, rather than 
just parasitic on the meanings in our heads? How can the meanings of the mean- 
ingless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, 
be grounded in anything but other meaningless symbols?" (p. 335). 

Arguably, the frame problem (how a situated agent can represent, and interact 
with, a changing world satisfactorily) and its sub-problems are a consequence of 
the data grounding problem (Harnad [1993], Taddeo and Floridi [2005]). In more 
metaphysical terms, this is the problem of the semanticisation of being and it is 
further connected with the problem of whether information can be naturalised. 

8 THE SEMANTIC PROBLEM: HOW MEANINGFUL DATA ACQUIRE 
THEIR TRUTH VALUE 

Once grounded, meaningful data can acquire different truth values, the question 
is how. The question then gains new dimensions when asked within epistemology 
and the philosophy of science. It  also interacts with the way in which we approach 
both a theory of truth and a theory of meaning, especially a truth-functional one 
(see the chapter by Kamp and Stokhof). Are truth and meaning understandable 
on the basis of an informational approach, or is it information that needs to be 
analysed in terms of non-informational theories of meaning and truth? To call 
attention to this important set of issues it is worth asking two more place-holder 
questions: 

1. can information explain truth? 

In this, as in the following question, we are not asking whether a specific 
theory could be couched, more or less metaphorically, in some informational 
vocabulary. This would be a pointless exercise. What is in question is 
not even the mere possibility of an informational approach. Rather, we are 
asking 
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(a) could an informational theory explain truth more satisfactorily than 
other current approaches? And 

(b) should ( la)  be answered in the negative, could an informational ap- 
proach at least help to clarify the theoretical constraints to be satisfied 
by other approaches? 

The second major question mentioned above is: 

2. can information explain meaning? 

Several informational approaches to semantics have been investigated in episte- 
mology ([Dretske, 1981; 1988]), situation semantics ([Seligman and Moss, 1997]), 
discourse representation theory ([Kamp, 19841) and dynamic semantics ([Muskens 
et al., 19971). Is it possible to analyse meaning not truth-functionally but as the 
potential to change the informational context? Can semantic phenomena be ex- 
plained as aspects of the empirical world? Since the problem is whether meaning 
can at least partly be grounded in an objective, mind- and language-independent 
notion of information (naturalisation of intentionality), it is strictly connected with 
the problem of the naturalisation of information. 

9 INFORMATION PROCESSING AND THE STUDY OF COGNITION 

Information and its dynamics are central to the foundations of A1 and of cogni- 
tive science (see the chapters by McCarthy and Boden). Both discipline study 
cognitive agents as informational systems that receive, store, retrieve, transform, 
generate and transmit information. This is the information processing view. Be- 
fore the development of connectionist and dynamic-system models of information 
processing and the IT revolution, it was also known as the computational view. 
The latter expression was acceptable when a Turing machine [Turing, 19361 and 
the machine involved in the Turing test [Turing, 19501 were inevitably the same. 
It has recently become misleading, however, because computation, when used as a 
technical term (effective computation), refers now to the specific class of algorith- 
mic and symbolic processes that can be performed by a Turing machine, that is 
recursive functions [Turing, 1936; Minsky, 1967; Floridi, 1999; Boolos et al., 20021. 
Not all information processing is computational in this precise sense, and in'the 
literature one can now find approaches that use the expression more loosely. 

The information/computational processing view of cognition, intelligence and 
mind provides the oldest and best-known cluster of significant problems in PI.6 
Some of their formulations, however, have long been regarded as uninteresting. 

6 ~ n  1964, introducing his influential anthology, Anderson wrote that the field of philosophy 
of A1 had already produced more than a thousand articles [Anderson, 1964, p. I]. No wonder 
that  (sometimes overlapping) editorial projects have flourished. Among the available titles, the 
reader may wish to  keep in mind [Ringle, 19791 and [Boden, 19901, which provide two further 
good collections of essays, and [Haugeland, 19811, which was expressly meant to  be a sequel to  
[Anderson, 19641 and was further revised in [Haugeland, 19971. 
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Turing [I9501 considered "can machines think?" a meaningless way of posing the 
otherwise interesting problem of the functional differences between A1 and NI 
(natural intelligence). Searle [1990] has equally dismissed "is the brain a digital 
computer?" as ill-defined. The same holds true of the unqualified question "are 
naturally intelligent systems information processing systems?". Such questions 
are vacuous. Informational concepts are so powerful that, given the right level of 
abstraction (LoA; [Floridi and Sanders, 2004; Floridi and Sanders, forthcoming]), 
anything can be presented as an information system, from a building to a volcano, 
from a forest to a dinner, from a brain to  a company, and any process can be 
simulated informationally - heating, flying and knitting. So pancomputationalist 
views have the hard task of providing a credible answer to the question: what 
would it mean for a physical system not to be an informational system (that is, 
a computational system, if computation is used to mean information processing, 
see [Chalmers, 19961 and [Chalmers, online]. The task is hard because pancom- 
putationalism does not seem vulnerable to a refutation, in the form of a realistic 
token counterexample in a world nomically identical to the one to which pancom- 
putationalism is applied.7 A good way of posing the problem is not: "is 'x is y' 
adequate?", but rather "if 'x is y' at  some specified Level of Abstraction z, is z 
adequate?". 

10 SCIENCE AND INFORMATION MODELLING 

In many contexts (probability or modal states and inferential spaces), we often 
adopt a conditional, laboratory view. We analyse what happens in "as being (of 
type, or in state) F is correlated to b being (of type, or in state) G, thus car- 
rying for the observer the information that b is Gn(Barwise and Seligman [I9971 
provide a similar analysis based on Dretske [1981]) by assuming that F(a)  and 
G(b). In other words, we assume a given model. The question asked here is: 
how do we build the original model? Many approaches seem to be ontologically 
over-committed. Instead of assuming a world of empirical affordances and con- 
straints to be designed, they assume a world already well-modelled, ready to be 
discovered. The semantic approach to scientific theories [Suppes, 1960; Suppes, 
1962; van Fraassen, 1980; Giere, 1988; Suppe, 19891, on the other hand, argues 

7Chalmers [online] seems to  believe that pancomputationalism is empirically falsifiable, but 
what he offers is not (a) a specification of what would count as an instance of x that would show 
how x is not t o  be qualified computationally (or information-theoretically, in the language of this 
paper) given the nomic characterisation N of the universe, but rather (b) just a re-wording of 
the idea that pancomputationalism might be false, i.e. a negation of the nomic characterisation 
N of the universe in question: "To be sure, there are some ways that empirical science might 
prove it t o  be false: if it turns out that the fundamental laws of physics are noncomputable and 
if this noncomputability reflects itself in cognitive functioning, for instance, or if it turns out that 
our cognitive capacities depend essentially on infinite precision in certain analog quantities, or 
indeed if i t  turns out that cognition is mediated by some non-physical substance whose workings 
are not computable." To put it simply, we would like t o  be told something along the lines that 
a white raven would falsify the statement that all ravens are black, but instead we are told that 
the absence of blackness or of ravens altogether would, which it does not. 
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that "scientific reasoning is to a large extent model-based reasoning. It is models 
almost all the way up and models almost all the way down." [Giere, 1999, p. 561. 

Theories do not make contact with phenomena directly, but rather higher mod- 
els are brought into contact with other, lower models. These are themselves the- 
oretical conceptualisations of empirical systems, which constitute an object being 
modelled as an object of scientific research. Giere [I9881 takes most scientific 
models of interest to be non-linguistic abstract objects. Models, however, are 
the medium, not the message. Is information the (possibly non-linguistic) con- 
tent of these models? How are informational models (semantically, cognitively 
and instrumentally) related to the conceptualisations that constitute their em- 
pirical references? What is their semiotic status, e.g. structurally homomorphic 
or isomorphic representations or data-driven and data-constrained informational 
constructs? What levels of abstraction are involved? Is science a social (multi- 
agents), information-designing activity? Is it possible to import, in (the philosophy 
of) science, modelling methodologies devised in information system theory? Can 
an informational view help to bridge the gap between science and cognition? An- 
swers to these questions are closely connected with the discussion of the problem 
of an informational theory of truth see above. The reader interested in some spe- 
cific applications will find them in the chapters by Devlin and Rosenberg, and by 
Collier. 

The possibility of a more or less informationally constructionist philosophy of 
science leads to our next cluster of problems, concerning the relation between 
information and the natural world. 

11 THE ONTOLOGICAL STATUS OF INFORMATION 

Barwise and Seligman [I9971 have remarked that "If the world were a completely 
chaotic, unpredictable &air, there would be no information to process. Still, the 
place of information in the natural world of biological and physical systems is far 
from clear." (p. xi). This lack of clarity prompts a whole family of problems. 

It is often argued that there is no information without (data) representation. 
Following Landauer and Bennett [1985]; Landauer [1987; 1991; 19961, this principle 
is usually interpreted materialistically, as advocating the impossibility of physi- 
cally disembodied information, through the equation "representation = physical 
implementation". The view that there is no information without physical im- 
plementation is an inevitable assumption, when working on the physics of com- 
putation, since computer science must necessarily take into account the physical 
properties and limits of the carriers of information. It is also the ontological 
assumption behind the Physical Symbol System Hypothesis in A1 and cognitive 
science [Newell and Simon, 19761. However, the fact that information requires a 
representation does not entail that the latter ought to be physically implemented. 
Arguably, environments in which there are only noetic entities, properties and pro- 
cesses (e.g. Berkeley, Spinoza), or in which the material or extended universe has 
a noetic or non-extended matrix as its ontological foundation (e.g. Pythagoras, 
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Plato, Leibniz, Hegel), seem perfectly capable of upholding the representationalist 
principle without also embracing a materialist interpretation (see [Floridi, 2004al 
for a defence of this view). The relata giving rise to information could be monads, 
for example. So the problem here becomes: is the informational an independent 
ontological category, different from the physical/material and (assuming one could 
draw this Cartesian distinction) the mental? Wiener, for example, thought that 
"Information is information, not matter or energy. No materialism which does not 
admit this can survive at the present day" [Wiener, 1948, p. 1321. 

If the informational is not an independent ontological category, to which cate- 
gory is it reducible? If it is an independent ontological category, how is it related 
to the physical/material and the mental? Answers to these questions determine 
the orientation a theory takes with respect to the following problem. 

12 NATURALISED INFORMATION 

The problem is connected with the semanticisation of data. It seems hard to 
deny that information is a natural phenomenon, so this is not what one should 
be asking here. Even elementary forms of life such as sunflowers survive because 
they are capable of some chemical data processing. The problem here is whether 
there is information in the world independently of forms of life capable to  extract 
it and, if so, what kind of information is in question (an informational version of 
the teleological argument for the existence of God argues both that information 
is a natural phenomenon and that the occurrence of environmental information 
requires an intelligent source). If the world is sufficiently information-rich, perhaps 
an agent may interact successfully with it by using "environmental information" 
directly, without being forced to go through a representation stage in which the 
world is first analysed informationally. "Environmental information" still presup- 
poses (or perhaps is identical with) some physical support but it does not require 
any higher-level cognitive representation or computational processing to be im- 
mediately usable. This is argued, for example, by researchers in A1 working on 
animats (artificial animals, either computer simulated or robotic). Animats are 
simple reactive agents, stimulus-driven. They are capable of elementary, "intelli- 
gent" behaviour, despite the fact that their design excludes the possibility of in- 
ternal representations of the environment and any effective computation (Mandik 
[2002] for an overview, the case for non-representational intelligence is famously 
made by Brooks [1991]). So, are cognitive processes continuous with processes in 
the environment? Is semantic content (at least partly) external (Putnam)? Does 
"natural" or "environmental" information pivot on natural signs (Peirce) or nomic 
regularities? Consider the typical example provided by the concentric rings visible 
in the wood of a cut tree trunk, which may be used to estimate the age of the 
plant. The externalist/extensionalist, who favours a positive answer (e.g. Dretske 
and Barwise), is faced by the difficulty of explaining what kind of information and 
how much of it saturates the world, what kind of access to, or interaction with 
"information in the world" an informational agent can enjoy, and how information 
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dynamics is possible. The internalist/intentionalist (e.g. Fodor and Searle), who 
privileges a negative answer, needs to  explain in what specific sense information 
depends on intelligence and whether this leads to an anti-realist view. 

The location of information is related to the question whether there can be 
information without an informee, or whether information, in at least some crucial 
sense of the word, is essentially parasitic on the meanings in the mind of the 
informee, and the most it can achieve, in terms of ontological independence, is 
systematic interpretability. Before the discovery of the Rosetta Stone, was it 
legitimate to regard Egyptian hieroglyphics as information, even if their semantics 
was beyond the comprehension of any interpreter? Admitting that computers 
perform some minimal level of proto-semantic activity works in favour of a "realist" 
position about "information in the world". 

Before moving to the next problem, it remains to be clarified whether the previ- 
ous two ways of locating information might not be restrictive. Could information 
be neither here (intelligence) nor there (natural world) but on the threshold, as 
it were, as a special relation or interface between the world and its intelligent 
inhabitants (constructionism)? Or could it even be elsewhere, in a third world, 
intellectually accessible by intelligent beings but not ontologically dependent on 
them (Platonism)? The reader interested in the physics of information is adviced 
to read the chapter by Bais and Farmer. 

13 THE IT FROM BIT HYPOTHESIS 

Can nature be informationalised? The neologism "informationalised" is ugly but 
useful to point out that this is the converse of the previous problem. Here too, 
it is important to clarify what the problem is not. We are not asking whether 
the metaphorical interpretation of the universe as a computer is more useful than 
misleading. We are not even asking whether an informational description of the 
universe, as we know it, is possible, at least partly and piecemeal. This is a chal- 
lenging task, but formal ontologies already provide a promising answer [Smith, 
20041. We are asking whether the universe in itself could essentially be made of 
information, with natural processes, including causation, as special cases of infor- 
mation dynamics (e.g. information flow and algorithmic, distributed computation 
and forms of emergent computation). Depending on how one approaches the con- 
cept of information, it might be necessary to refine the problem in terms of digital 
data or other informational notions. 

Answers to this problem deeply affect our understanding of the distinction be- 
tween virtual and material reality, of the meaning of artificial life in the ALife 
sense [Bedau, 20041, and of the relation between the philosophy of information 
and the foundations of physics: if the universe is made of information, is quantum 
physics a theory of physical information? Moreover, does this explain some of 
its paradoxes? If nature can be informationalised, does this help to explain how 
life emerges from matter, and hence how intelligence emerges from life? "Can we 
build a gradualist bridge from simple amoeba-like automata to highly purposive 
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intentional systems, with identifiable goals, beliefs, etc.?" [Dennett, 1998, p. 2621. 

14 CONCLUSION 

Our brief survey ends here. We have had a quick look to many questions of a 
wide variety of nature and scope. This should not be disheartening. On the 
contrary, we saw at  the beginning of this chapter that Berkeley-Euphranor loved 
"information upon all subjects". It has required several scientific, technological 
and social transformations, but philosophers have finally begun to address the new 
intellectual challenges arising from the world of information and the information 
society. Michael Dummett recently acknowledged that "Evans had the idea that 
there is a much cruder and more fundamental concept than that of knowledge 
on which philosophers have concentrated so much, namely the concept of infor- 
mation. Information is conveyed by perception, and retained by memory, though 
also transmitted by means of language. One needs to concentrate on that concept 
before one approaches that of knowledge in the proper sense. Information is ac- 
quired, for example, without one's necessarily having a grasp of the proposition 
which embodies it; the flow of information operates at a much more basic level 
than the acquisition and transmission of knowledge. I think that this conception 
deserves to be explored. It's not one that ever occurred to me before I read Evans, 
but it is probably fruitful. That also distinguishes this work very sharply from 
traditional epistemology" [Dummett, 1993, p. 1861. Dummett is arguably cor- 
rect. PI  evolves out of the analytic movement, but does not seem 'to belong to 
it. It attempts to expand the frontier of philosophical research, not by putting 
together pre-existing topics, and thus reordering the philosophical scenario, but 
by enclosing new areas of philosophical inquiry?which have been struggling to 
be recognised and may not yet found room in the traditional philosophical syl- 
labus?and by providing innovative methodologies to address traditional problems 
from new perspectives. Clearly, PI  promises to  be one of the most exciting and 
fruitful areas of philosophical research of our time. As this volume proves, it is 
already affecting the overall way in which new and old philosophical problems 
are being addressed, bringing about a substantial innovation of the philosophical 
system. This represents the information turn in philosophy. 
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LEARNING AND THE COOPERATIVE 
COMPUTATIONAL UNIVERSE 

Pieter Adriaans 

1 INTRODUCTION 

In the summer of 1956, a number of scientists gathered at  the Dartmouth College 
in Hanover, New Hampshire. Their goal was to study human intelligence with the 
help of computers. Their central hypothesis was: "that every aspect of learning 
or any other feature of intelligence can in principle be so precisely described that 
a machine can be made to simulate it." During that conference, where amongst 
others John McCarthy, Claude Shannon and Marvin Minsky were present, the 
new discipline of Artificial Intelligence was born. It  is striking that 'learning' was 
considered to be an important aspect of human intelligence from the start. A 
better understanding of the phenomenon of learning was high on the agenda of 
the emerging young science. 

Now, fifty years later, the study of learning is one of the success stories of 
AI. There is a multitude of learning techniques for the computer. Data mining 
techniques are being used for marketing, stock management, production optimiza- 
tion and fraud detection in the commercial domain. Biologically inspired learning 
models such as neural networks and genetic algorithms are being used to simulate 
human cognition and evolution. In disciplines like computer vision and computa- 
tional linguistics, machine learning is in the center of interest [Kearns and Vazirani, 
1994; Mitchell, 1997; Adriaans and Zantinge, 1997; Cornu6jols and Miclet, 20031. 

But, researchers do not have much reason to sit back and rest, because there 
is still a whole list of questions that are begging for answers. One of the biggest 
embarrassments is that we still do not know what learning is exactly. The toolbox 
of a machine learner looks like a haphazardly collected bunch of screwdrivers, 
hammers en chisels of dubious origin. For some jobs they work, but we do not 
understand why, for others they do not work and we also do not understand why. 
One thing is certain. If we understand learning as data compression then there 
will never be a general theory that explains what learning is exactly. 

1.1 Philosophy of information 

I t  is clear that with the adventure of artificial intelligence we have hit upon a 
problem domain that has much wider repercussions than the creation of intelligent 

Handbook of the  Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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computers. Recently a new discipline has emerged: the philosophy of information 
[Floridi, 20041 .' This discipline reformulates central questions of philosophy from 
the perspective of modern insights from computer science. Developments like 
these, urge us to formulate the question of the relation between philosophy on one 
side and logic, mathematics, theory of information and computation on the other. 

First of all philosophy, in my view, is not science. It  takes a meta-position 
and is always at most a refEection o n  science and scientific results. It is not the 
primary task of the philosopher to formulate and prove theorems. It is his task to 
reflect on the consequences of theorems and theories. On the other hand philos- 
ophy can not  claim t o  have any  form of privileged access t o  reality. There is no 
fixed Archimedean position from which the philosopher can judge the results of 
scientific endeavors2 Philosophy and science therefore are doomed to live perma- 
nently in each other's shadow without any possibility of a final reconciliation. Any 
scientific result can be made the object of philosophical analysis, but . . .only, or 
predominantly, in terms of the concepts that the sciences have constructed them- 
selves. Philosophy therefore is at its best when it is in dialogue with foundational 
programs of science and the humanities. The more it removes itself from these 
central issues, the more substance it loses and the more it deteriorates into a (pos- 
sibly brilliant) literary exercise at best. In this sense, philosophical reflection may 
be seen as an inherent and necessary aspect of scientific heuristics. It provides us 
with a rich historical context of 2500 years of reflection on foundational programs 
and invites us to investigate the more extreme consequences of our theories and 
models. 

The study of theory of knowledge, theory of information and computation, 
methodology of science, theory of induction and meta-mathematics share a com- 
mon history in which related questions have been analyzed in different guises. The 
work of Solomonoff and Kolmogorov provides direct answers to questions about 
the nature of knowledge and induction proposed by Carnap and the Wiener Kreis 
and much earlier Kant and Hume. In this light, one has to interpret the reflections 
on theory of information and learning that I present below. 

1.2 Philosophy of learning 

First, I show that the question of the essence of learning is embedded in funda- 
mental epistemological questions. The old philosophical problem of the essence of 
knowledge is fundamentally associated with learning. The notion of efficiency of 
learning plays an essential role in this context. Our models of learning show us 
that tasks, like learning a language, that human beings perform without too much 
difficulty, are from a formal point of view extremely complex and next to impossi- 
ble. This leaves us with the riddle of human efficiency. I show how the contours of 

'See the chapter by Floridi in this book 
2Specifically: no privileged direct access t o  ones own consciousness, no Husserlian epoche, no 

historical laws of materialism, no recourse to  immediately given sense data, no special rapport 
with Being itself, etc. 



Ch05-N5 1726.fm Page 135 Monday, September 1,2008 10:54 AM @ I* 

3 ~ e u r a l  networks, genetic algorithms, decision tree induction, clustering, nearest neighbor, 
support vector machines, association rules, to  name a few. As a counter example: simple rote 
learning of a finite set of facts does not necessarily involve compression of data. 

4~echnically: data sets that can be compressed by means of constructive resource bounded 
compression. The 'without too much effort' restriction is added because it actually is possible 
to  construct highly compressible data sets that from the outside look random, e.g. encrypted 
data  or expansions of very special real numbers like .rr and e. There are no general algorithms 
t o  compress these sets. It is highly unlikely that these data sets occur frequently in nature. 
Anyhow, we would not notice them. 
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an analysis of this mysterious efficiency of human learning takes shape in the light 
of recent insights from complexity theory and thermodynamics. Central questions 
in this respect are: 

QUESTION 1. What is learning? 

QUESTION 2. What are data sets from which we can learn? 

QUESTION 3. What kind of systems produce those data sets? 

The answer to the first question is: learning is algorithmic compression of data 
sets. Not all forms of learning are caught by this definition, but a broad class 
of philosophically relevant learning phenomena fall under this d e ~ c r i ~ t i o n . ~  The 
answer to the second question is: data sets that can be compressed by a computer 
algorithm without too much e f f ~ r t . ~  An answer to the third question is - quite nat- 
urally - systems with relatively low entropy: i.e. self-organizing systems, systems 
that are not in a state of thermal equilibrium and systems that redirect energy 
from their environment in order to keep their internal entropy lower than that of 
the environment. This kind of self-organization is typical for life and for compu- 
tational processes. The picture that emerges is that those systems in nature that 
produce data sets from which something can be learned are by necessity systems 
with a relatively low entropy. The data sets themselves consequently have low 
entropy and are easy to decipher. This seems to be the solution to the problem of 
the efficiency of our learning algorithms. A deep analysis of the idea that the uni- 
verse can be interpreted as a computational process shows that nature necessarily 
acts as a cooperative teacher. This is a philosophical insight that transcends the 
local context of Artificial Intelligence. At the same time these insights help us to 
develop new algorithms that solve problems from every day life. Learning in the 
form of data compression helps us to classify viruses, analyze music [Cilibrasi and 
Vitanyi, 20051 and to learn languages [Adriaans, 20011. 

1.3 A short historical digression 

The notion that knowing something implied knowing its 'form' goes back to Plato's 
theory of ideas as forms. Aristotle's more empirical doctrine of the four causes 
(causalis, finalis, formalis and efficiens) also distinguishes the notion of form as 
a crucial element of knowledge. The original technical notion of the Latin word 
'in-formare' (giving form to something, impressing ideaslforms in the mind in the 
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Platonic sense) that is found in the writings of Cicero5 and Augustine seems to have 
played no role in the emergence of the modern concept of information. The word 
'idea' seems the true modern heir of the classical term 'information' [Capurro, 1978; 
Capurro and Hjerrland, 20031. 

In the 15th century, the French term 'information' finds its way into the collo- 
quial vocabulary of European languages with various subtle differences in meaning, 
clustering around meanings like 'investigation', 'education', 'the act of informing 
or communicating knowledge', 'intelligence' etc. After Descartes the technical 
term seems to vanish from the philosophical debate. It does not play any specific 
role in the work of a broad philosopher like Kant. There is no lemma on informa- 
tion in Windelbands famous 'Lehrbuch der Geschichte der Philosophie' from 1889 
[Windelband, 19211. Even Edward's Encyclopedia of Philosophy from 1967 does 
not have a separate lemma on information [Edwards, 19671. The same holds for 
the well-known History of Logic written by Kneale and Kneale that first appeared 
in 1962 [Kneale and Kneale, 19881. In short the term 'information' seems to have 
been absent from the philosophical dialogue for hundreds of years. 

In the history of philosophy the phenomenon of learning has long been stud- 
ied implicitly, because it is related to knowledge, but since circa 1700 AD the 
problem of learning is placed explicitly on the philosophical agenda. A key in- 
sight in the study of the history of the concept of information is formulated in 
this book by Devlin and Rosenberg in their chapter on information in the social 
sciences, where information is described as an abstract notion that is the natural 
byproduct resulting from the advent of modern media. When human communica- 
tion was transformed from a direct dialogue between individuals to an interaction 
that was mediated by technology (telescopes, microscopes, books, newspapers, the 
telephone, television, internet etc.) the need to create an abstract umbrella term 
to  denote the 'stuff' that was transmitted from a sender to a receiver of a mes- 
sage emerged. In this respect, the emergence of the empirical sciences in the 17th 
century is a central period in history of the conceptualization of information. 

Descartes (1596-1650) formulated a firm mathematical framework for the de- 
scription of the material world, but his dualism prevented him from understanding 
the interplay between language and the growth of knowledge. For Descartes, man's 
rationality was equivalent to mastering language and was an innate quality. The 
communication between the res extensa and the res cogitans remained a central 
problem. Descartes is important because he is the first philosopher who formulated 
a theoretical framework in which the mediation between mind and body, between 
the knower and the known becomes problematic. With hindsight one could say 
that in the work of Descartes the need for an abstract concept of mediation be- 
tween knower and the known, i.e. a concept of information, is identified for the first 

5Cicero used the  word information as a translation of the Epicurean notion of 'prolepsis', 
i.e. a representation in the mind. A notion that can be compared to  the later use of the word 
'idea' by Descartes and Locke. See 'On the nature of the Gods". I, 43. Also Greek terms like . . 
'hypothesis' and 'eidos' were translated with the term 'information' by Latin authors [Capurro, 
19781. 
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time. Descartes' metaphysics can not describe such a mediation. Because of this 
lack, he was incapable of developing an adequate philosophical theory of language 
and thus of an adequate conceptualization of the interplay between language and 
knowledge. 

The next philosopher to take up this challenge was Locke (1632-1704) who 
developed a psychological version of Cartesian dualism in the "Essay concerning 
human understanding" (1690) [Locke, 19611. The Cartesian cogito becomes a 
epistemological subject that starts as a tabula rasa and is gradually filled up with 
'ideas' that find their origin in experience. Descartes had formulated the notion of 
ideas as innate forms of thought but Locke is quite liberal in his concept of an 'idea': 
"whatsoever is  the object of understanding when a man  thinks . . . whatever is  meant 
by phantasm, notion, species, or whatever i t  is  which the mind can be employed 
about when thinking". (Essay, I,i,8) This abstract notion of an idea, as a qualitative 
building block of knowledge, can be interpreted as a philosophical precursor of the 
modern concept of information. Ideas emerge in the mind as a result of sensory 
experience, they can be isolated and combined into new knowledge. When we 
receive ideas our knowledge grows. 

This conceptualization of the growth of knowledge in terms of the combination 
of 'chunks' of knowledge implied a reformulation of a number of central problems 
in philosophy that would dominate the discussion for the next centuries. Central 
questions are: 

Can we validate general statements about the properties of a class on the 
basis of a finite number of observations of members of that class? Can we 
derive the statement "All swans are white" on the basis of "All swans we 
have seen so far are white"? 

Can we generalize from the past to the future? 

What part of knowledge is a priori, what part a posteriori? 

In A n  Enquiry Concerning Human Understanding, (par. 4.1.20-27, par. 4.2.28- 
33) the philosopher Hume (1711-1776) argued that there is no logical necessity 
that the future will resemble the past. The insight that it is impossible to select 
the best theory to explain a set of observations with absolute certainty, is known as 
the induction problem since Hume [1909, 19141. It denies science the possibility to 
formulate universal laws with absolute certainty. Several philosophers have tried to 
deal with this problem. It was the main motivation for the development of Kant's 
transcendental philosophy in the Kritik der reinen Vernuft. Kant's attempt is 
the last major effort to bridge the gap between empirical science and traditional 
philosophy striving at  the formulation of absolute truths. 

The empiricist program was revived by the so-called Vienna circle in the begin- 
ning of the 20th century. The ambition was to seek the foundation of science in the 
analysis of elementary phenomena that could be observed empirically. Needless 
to say that, with this methodology, the induction problem is a major obstacle for 
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science. Popper, who occasionally attended meetings of the Vienna circle, formu- 
lated a solution in terms of the asymmetry between verification and falsification 
[Popper, 19521. Although this solved part of the problem, the issue of heuristics 
remained open (Context of discovery versus context of justification). 

One solution to the induction problem is to view scientific knowledge as being 
essentially statistical. The concept of probability is far from harmless from a 
philosophical point of view [Hhjek, 20021. Carnap [1950] has argued that there 
exist two very distinct forms of probability: a priori probability or "Rational 
credibility7' and empirical probability in the sense of "limiting relative frequency 
of occurrence". Indeed there seems to be a distinct difference between the use 
of the notion of probability in observations like: "It is highly probable that an 
English sentence contains more es than qs" and "It is highly probable that life on 
earth originated from outer space". The first is a statement about the frequency 
of letters in English. It can be corroborated by a sequence of experiments. The 
second statement seems different. It  has prima facie nothing to do with limiting 
frequency. It  can not be corroborated by experiments. Even if our planet was the 
only planet in the universe with life, the statement still could be true. It seems to 
express a rational belief that somebody could have after carefully examining the 
evidence. 

Black 119671 has criticized Carnap: different modes of verification for probability 
statements do not imply that there necessarily exist different notions of probabil- 
ity. The fact remains that we sometimes make judgements about the probability of 
individual isolated structures. This seems to involve a notion of a priori probabil- 
ity. If we can assign a priori probabilities to theories and data sets and conditional 
probabilities to  a data set given a theory, then we can calculate the probability 
of a theory given a data set. The formulation of an exact answer to these theo- 
retical questions is one of the great achievements of computer science in the 20th 
century. Solomonoff defined the idea of algorithmic complexity of a binary object 
as the shortest program that computes this object on a universal reference Tur- 
ing machine [Solomonoff, 19971.~ He showed that the algorithmic or Kolmogorov 
complexity of an object is associated with an a priori probability of this object. It 
allows us in theory to assign an a priori probability as well as a complexity to an 
individual binary object (universal distribution). These measures exist, but can 
not be computed. This is the basis for modern theories about learnability and 
studies of methodology of science. 

A central concept that ties information theory and learning together is the so- 
called Minimum Description Length Principle (MDL) [Rissanen, 19991. Below I 
will give a formal treatment of the principle, but the main idea is that formal 
representations of scientific theories can be used to compress data sets with em- 
pirical observations. The shortest adequate MDL code explaining a data set will 
be the one that minimizes the sum of a description, in bits, of the theory, plus a 
description, in bits, of the set of observations given the theory. One could think of 
the observations of Tycho Brahe and Kepler's laws as theory. The laws of Kepler 

 he same concept was somewhat later discovered independently by Kolmogorov and Chaitin. 
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explain the observations of Tycho Brahe, because these observations can be repre- 
sented concisely using these laws. Kepler's laws are much simpler than the rules of 
the cosmology of Ptolemy based on celestial spheres and they also do a good job of 
predicting the motions of the planets. One of the main ambitions of this paper is 
to study the philosophical implications of this concept. The theory of Kolmogorov 
complexity provides us with an excellent framework for a philosophical analysis of 
the concepts behind MDL. This is, in my view, the form in which the problem of 
induction should be studied in the current context of philosophy of information. 

The MDL principle is often described a s  being equivalent to Ockham's razor 
(entia non sunt multiplicanda preater necessitate, William of Ockham, ca. 1290- 
1349). An association that is debatable, since Ockham's razor is related to a 
specific nominalistic critique of Plato's theory of ideas (as defended by Duns Sco- 
tus, 1266-1308) that is quite far removed from the general problem of induction. 
In fact, the idea of explaining a certain set of observations in terms of an opti- 
mized two-part code (Theory + Data encoded with the theory) could as well be 
interpreted as a Platonic ambition, where the Theory is the ideal description of 
the data and the Data encoded with the theory is a description of the noise, or 
faults, in the data. The underlying problem seems to have a different nature: the 
question of the regularity of nature, or in other words the notion of a cooperative 
universe. 

2 AN UNEASY MARRIAGE BETWEEN LEARNING AND KNOWING: 
PARTICIPATION VERSUS CONSTRUCTION 

A theory of learning has consequences in at least three areas: 

Theory of knowledge: how do we gather knowledge? 

Cognition: how does our brain work? 

Methodology of science: how do we construct scientific knowledge? 

Knowledge and learning have always had a rather uneasy relationship in philos- 
ophy. The subject easily could fill a book in itself. A clear picture emerges if we 
try to develop a simple logic of learning and knowing. We can adopt two axioms: 

1. Priority of knowing: I know everything that I have learned. 

2. Priority of learning: I have learned everything that I know. 

The first axiom seems obvious. Learning would not really be learning if it did 
not lead to knowledge. Yet, this is not unproblematic. Learning has a temporal 
aspect. It involves a transformation from not knowing to knowing. If we simply 
learn a finite number of facts, this is straight forward. If somebody tells me that 
Amsterdam is the capital of the Netherlands and I did not know that, then I 
have learned something. Of course, I trust my source of information to speak the 
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truth. He must be a trustworthy teacher. Even if that is the case, things get more 
complicated if I try to learn an infinite number of facts in a finite time. Since 
Hume, philosophers know that this is logically impossible. One can never learn a 
general law on the basis of a finite number of observations. Even if I have seen 
millions of white swans, this does not allow me to draw the conclusion that the 
statement "All swans are white" is true. I only need to  observe one black swan 
and my general law can be scrapped [Popper, 19521. The conclusion seems clear. 
Logically, it is impossible to learn an infinite set on the basis of a finite number of 
observations. To put it in other words: we can learn facts, but we can not learn 
general laws. This would mean the end of science. Philosophers that endorse the 
first axiom implicitly sweep the problem of learning under the carpet: learning 
actually is remembering what you already know (Plato), you can only learn if 
knowledge is innate (Descartes, Chomsky), mathematical research is the discovery 
of what is already there (Hilbert, Godel). Under axiom 1) scientific knowledge is 
only possible if one has what I call a participation theory of truth. The amount 
of knowledge of the human subject grows in time, but not by means of learning. 
The human mind seems to participate in the realm of truth and this participation 
allows us to separate true from untrue insights. It is clear that this theory of 
learning is less satisfactory. 

So let's have a look at axiom 2) the priority of learning. From this perspective 
we seem to loose our grip on the concept of knowledge. Results that we have 
learned are preliminary: they can change, they have a statistical nature. In most 
cases, learning leads to a hypothesis that only has a certain degree of plausibility. 
It does not seem to  be a good idea to  accept the derivation "The hypothesis P 
is very probable, therefore I know P" as valid. Knowing seems to be an absolute 
concept. The situation in which I testify in court that I know that John has killed 
Mary is very different from the situation in which I testify that it is very probably 
that John is the killer. Nevertheless we are willing to sentence somebody, even if 
we are not completely sure that he is guilty. Beyond reasonable doubt is a phrase 
that finds its philosophical roots in the work of Hume, who has chosen the second 
axiom as his starting point. This position leads to  what I call a construction 
theory of truth. A supporter of this theory has two options. Either he admits that 
knowledge is a statistical phenomenon or he limits himself to knowledge that can 
be constructed out of elementary observations. This last option leaves very little 
room for science. Yet this position has been defended vigorously in the philosophy 
of mathematics by Brouwer and the early Wittgenstein. Traces of the first solution 
can be found in the works of Aristotle, Euclid, Locke, Hume and the members of 
the Wiener Kreis. 

This short analysis shows that one could rewrite the history of philosophy with 
learning as a central theme. For a long time such a history would not contain 
much more than what I summarized above. Both axioms lead to  unfortunate 
conclusions. A good choice is not really possible: a real philosophical problem. 
In the second half of the 20th century theoretical ideas developed rapidly mainly 
as a result of the application of insights from mathematical model theory and 
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thermodynamics to an analysis of the phenomenon of learning. 

3 THE FUDDLE OF HUMAN EFFICIENCY 

The mathematics of learning starts with the conception of learning as a game that 
is played between a student and a teacher. The game theoretical model of learning 
was first introduced by Gold in Information and Control in 1967. The problem 
that Gold studies is learning a language. The form of the game is as follows: 

1. There is background knowledge. The teacher and the student agree before- 
hand on a(n) (infinite) class of possible languages, one of which is to be 
learned. 

2. The teacher chooses one language from this class that he is going to teach. 

3. A move of the teacher consists of the presentation of an example sentence 
from the language he has chosen. The teacher must be faithful. He is obliged 
to produce all possible sentences of the language in the limit at least once. 

4. A move of the pupil consists of a guess of the language (a hypothesis) that 
the teacher has selected. 

5. The game continues indefinitely. The pupil learns the language (wins the 
game) when he does not need to update his hypothesis anymore. 

We can suggest the following practical interpretations of this abstract model: 

Theory of knowledge: the student is any human being, experience is the 
teacher, the class of languages is the set of possible theories about the world. 

Cognition: the student is the brain, the teacher is perception, the class of 
languages is the number of concepts that the human brain can learn. 

Methodology of science: the student is the scientist, the teacher is nature, 
the class of languages is the set of possible laws of nature. 

For our purpose, the abstract model is rich enough. The surprise of Gold's 
paper was that he could prove that under these conditions, even if the game could 
go on for ever, the student could not learn classes of languages of any interest 
with absolute certainty. This holds a fortiori for all natural languages that we 
all learn as children without much difficulty. Here we find an interesting problem 
that has not been solved adequately until this day and really only has become 
more urgent. One could baptize this problem the riddle of human efficiency. All 
our formal models of learning tasks indicate that learning, from a formal point of 
view, is next to impossible or at least extremely hard. The central issue here is 
that learning in Gold's model is distribution free, i.e. the only constraint is that 
every sentence of the language has a positive probability of being produced by the 
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teacher. This allows for highly non-standard distributions on which one cannot 
expect general learning algorithms to converge. 

In the last 40 years, we have seen an overwhelming number of amendments 
and adaptations of Gold's model and theory construction certainly is not finished 
(See e.g. [Angluin, 19881). The research concentrates on a number of issues: 
a restriction on the class of languages, using statistical techniques to select the 
hypothesis, richer interaction between the student and the teacher and the attitude 
of the teacher. In the original model of Gold, the teacher only has to be reliable. 
He gives all the examples in a random sequence. It is easy to imagine that the 
teacher helps the student a bit, for instance by selecting simple examples first or by 
adapting the information content of the examples to the progress of the student. 
In this case, we have a cooperative teacher. In its simplest form the cooperative 
teacher is nothing but a probability distribution over the set of examples that 
gives a higher probability to simpler examples. A student that studies under 
the guidance of a cooperative teacher has a much higher chance of selecting the 
right hypothesis with the help of statistical reasoning. Here, we distinguish the 
contours of an interesting solution to the riddle of human efficiency in learning. 
Our efficiency might not be an achievement of human intelligence but more a 
reflection of the structure of the world in which we live. Nature is not completely 
random, it is organized and works as a cooperative teacher. Before we explore this 
concept further, we need to develop a formal framework to  study these concepts. 

3.1 Learning as data compression 

Suppose you switch on your television set and there are three different channels 
from which you can choose: random noise, a picture of a forest and a test image. 
F'rom a computational point of view, we can analyze these three data sets in the 
following way: 

1. Random noise: this data set has a high complexity and therefore contains 
from a theoretical point of view a lot of information. Because the data 
set is the result of a random process it cannot be compressed into a shorter 
description. This means that it does not contain any meaningful information. 
No part of the data set contains any information about any other part. There 
is no self-information. Nothing can be learned from it. These data sets are 
typical for systems that are in thermal equilibrium and thus have maximal 
entropy. 

2. The picture of a forest: this data set has high complexity, but it also 
contains structure (the forms of the branches, leaves and trees repeat them- 
selves: there is self-information). Therefore the image can be compressed 
into a shorter description. We can extract meaningful information from the 
picture (e.g. the fact that we can distinguish 10 trees in the picture). We can 
learn a lot from this data set. These data set are typical for self-organizing 
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systems that extract energy from the environment to create some form of 
order, e.g. living things, computational processes. 

3. The test image: this data set looks very simple with regular geometrical 
shapes. It can easily be compressed and thus contains little information a t  
all. Nothing much can be learned from it. 

From these examples it is clear that we can learn the most interesting things 
from data sets that show a mix of structure and random elements. This is exactly 
the sort of data that one would expect in a computationally cooperative universe. 
Modern learning theory focuses on the analysis of this kind of data sets. The 
ambition is to find an optimal short description of the data set in terms of two 
new data sets: 

A structural part that described the regularities in the data set. 

An ad hoc part that describes the random elements of the data set. 

Such a description is technically adequate if the length of the new description in 
terms of two data sets is (much) shorter than that of the original data set. In the 
literature this principle is known as the Minimum Description Length principle 
[Rissanen, 19991, sometimes interpreted as two part code optimization [Vereshcha- 
gin and Vitbnyi, 20041. Suppose that the picture of the forest has a size of 1280 
x 800 pixels of 256 colors, than the uncompressed file will have a size of about 31 
Mb. This is the number of bytes we need to send via a communication channel if 
we want to communicate the contents of the file. As soon as we have an analysis 
of the meaningful content of the picture at our disposal we can summarize the 
content. In this way we get a sequence of interpretations of the picture in which 
more and more of the content is revealed: 

An important part of the research in learning theory concentrates itself on 
the development of algorithms that can separate a data set in an ad hoc and a 
structural part. Many scientific problems can be reformulated in terms of a two 
part code optimization problem. I give a number of examples: 

Ad Hoc 
A forest 

A set of 10 trees 

A set of 3 birches, 
4 willows and 3 oaks 

Etc. 

Structural 
A general description 

of forests 
A general description of 
the structure of a tree 

A description of 
the specific structure of birches, 

willows and oaks 
Etc. 
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Finding such a two part code optimization is usually not an easy task. One can 
formally prove that there is no universal learning algorithm for such a task. For 
some data sets we have good algorithms, for others not (yet). It  is possible with a 
learning technique called genetic programming to derive the laws of Kepler from 
the observations of Tycho Brahe, but a good algorithm for learning a grammar 
on the basis of a corpus is not yet available [Adriaans and van Zaanen, 20041. In 
the following paragraphs we will develop a deeper understanding of learning as 
compression. 

D a t a  Set  
Description of our 

solar system 
Reuters Database 

A composition by 
Bach 

Human DNA 

4 LEARNING, COMPUTATION, INFORMATION AND ENTROPY 

In this section we will develop a formal framework that helps us to understand 
learning better. The crucial step is the definition of the concept of information 
as something that could be objectively quantified. It is immediately clear that 
the concepts of information and learning are related. It seems' impossible to learn 
without gaining information and impossible to gain information without learning. 
A discussion of the technical issues concerning the concept of information is not 
possible without an understanding of the concept of a Turing machine. In the next 
paragraphs we will first describe this basic notion and then turn our attention to 
the definition of information. 

Ad Hoc 
Trajectories and size 

of the planets 
Structure and sequence 

of the individual sentences 
Structure and sequence 

of themes 
Structure and sequence 

of regions that code genes 

The Turing machine 

Structura l  
Kepler's laws 

English grammar 

Specifics of 
Bach's style 

A description 
of genes 

In its simplest form, a Turing machine is a device with a read-write head, an infinite 
working tape on which symbols can be read and written and a finite deterministic 
program for the manipulation of symbols. The only symbols needed are 'l', '0' and 
'b' (blank). The machine starts its calculation by reading input from the tape, and 
stops when a certain predefined final state is reached. Not all programs will stop. 
In fact, Turing proved that there does not exist a program that decides in all cases 
whether a certain machine will stop given a certain input (undecidability). The 
combination of machines and programs that stop in finite time is known as the 
Halting Set. This set could be seen as a transcendent object in computer science: 
we know it exists, but it can not be constructed. There are a number of reasons 
why Turing's device can claim to be associated with a universal scientific language. 
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First of all, the set of all possible programs for a Turing machine is the set of all 
possible binary strings (0, I)*, which is equivalent to the set of natural numbers. 
Secondly, one can define a 'universal' Turing machine, that emulates all possible 
computations of all possible Turing machines by first reading a definition of a 
machine from the tape followed by the definition of the program and the execution 
of the program on the emulated machine. This allows us to interpret the Turing 
machine as a universal computing device. Thirdly, all the current definitions of the 
concept of computation (Lambda calculus, combinatorial logic, recursive functions, 
etc.) are known to be Turing equivalent, i.e. can be emulated on a Turing machine. 
This fact has lead to the formulation of the so-called Church-Turing thesis, which 
states everything computable is computable on a Turing machine. It is hard to 
imagine how this claim could ever be verified. In the worst case it is destined to 
be an unproven metaphysical claim for ever. The thesis could easily be falsified 
by a conception of calculation that can not be emulated on a Turing machine, but 
so far, these conceptions of computation escape our imagination. 

From a transcendental point of view, the Turing machine encapsulates funda- 
mental notions: The local physical storage and processing of a finite set of discrete 
symbols as a sequential finite discrete process in time according to a finite set of 
(deterministic) rules. The apparent universality of these notions lead to what one 
might call the central working hypothesis of modern computer science: 

CONJECTURE 4. Any finite discrete system or process can be described in terms 
of a program for a Turing machine. 

Personally I expect this claim to be disproven (or at least amended) somewhere 
in the future, but for the moment it gives the foundation for a methodological 
research program that is rich in perspectives and far from exhausted. It defines 
a universal scientific methodology. For any system X ,  we have to ask ourselves 
the fundamental question: is X a finite discrete system? If so, we can apply our 
methodology and try to construct an adequate program to model it. The decision 
to consider a certain phenomenon X (say a financial administration, turbulence 
around a sail, human consciousness, the human cell, a black hole or the universe 
as a whole) to be a finite discrete system can be controversial from a philosophical 
point of view and require a separate philosophical motivation. These questions 
are not part of our current analysis. For the moment, my aim is the clarification 
of the central concepts and not an analysis of their applicability. 

The association with the old philosophical ambition of a mathesis universalis is 
immediately clear from the Turing equivalence of recursive functions, which lead 
to the following corollary: 

COROLLARY 5. A n y  f in i te  discrete system o r  process can be described i n  terms 
of operat ions o n  natura l   number^.^ 

This analysis of Turing machines does not lead to a theory of information. It is a 

7Wolfram states a related notion that he calls the Principle of Computational Equivalence: 
". . .whenever one sees behavior that is not obviously simple . . . it can be thought of as compu- 
tation of equivalent sophistication" [Wolfram, 2001, p. 5). 
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theory-neutral conception of manipulation of binary strings. In order to determine 
what kind of information, and how much of it, is contained in these strings we need 
separate definitions. Even within this context, there are a number of competing 
conceptualizations of the notions of information that need to be treated here. 

Shannon Information and optimal codes 

The idea that the frequency of a letter is associated with the information it contains 
(or its value) is well known to any person who solves a crossword puzzle or plays 
Scrabble. If one knows that a word contains a 'z' this is more informative than 
an 'el because there are less words with a '2'. This 'information' about the 'z' 
implies a bigger reduction of the search space. The crucial insight that has lead 
to a mathematical theory of information is formulated by Shannon [Weaver and 
Shannon, 19491. Here the information content of a message is defined in terms of 
its probability: 

DEFINITION 6. The Shannon information contained in a message x is I(x)  = 
log l /P (x )  = - log P(x),  

where I (x)  is the number of bits of information contained in x and P(x)  is a 
probability distribution (0 5 P(x) 5 1). Note that8: If P(x) = 1 then I (x)  = 0. 
I (x  and y) = I (x)  + I(y). 

From a philosophical point of view, it is important to note that Shannon infor- 
mation says nothing about the meaning of the messages, nor about their epistemo- 
logical status. One bit is the maximal amount of information that can be stored in 
a binary symbol. A bit can simply be used as a physical unit. Alternative notions 
are nat, based on the natural logarithm, and hartley, based on log base 10. One 
nat corresponds to about 1.44 bits (l/(ln2)), or 0.434 hartleys (l/(ln10)). If x is a 
message and P(x)  = T3, then the amount of information contained in x is three 
bits and an optimal code for x would use three bits, say 001. Apart from this, x 
could have any meaning, varying from "John has passed his exam" to "Goldbach's 
conjecture is true". In itself, this is strange. We are inclined to say that if we get 
the information that John passed his exam from a reliable source we consequently 
know that John passed his exam. A simple bit code like 001 does not convey this 
information. Apparently there are meanings of the term 'information' that are 
not fully covered by Shannon's definitions. Shannon himself, by the way, would 
be the first to acknowledge this. Also there is no straightforward translation of 
Shannon's definitions into a theory of knowledge. A valuable attempt to fill this 
gap is made by Dretske [Dretske, 19811. The least one can say is that, on top of 
the formal definitions that are offered by Shannon, the information that is received 
by an agent is dependent on the context of the dialogue and on the background 
knowledge shared by parties involved in the exchange of messages. 

A second observation that is philosophically relevant is that Shannon informa- 
tion, as such, is independent of the notion of a Turing machine. Shannon defines 

810g is used for log2 
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information in terms of bits and Turing machines operate on strings of zeros and 
ones that could be interpreted as bit strings. In these terms Turing machines could 
be seen as information processing devices, but this is only a very weak connection. 
Shannon's notion of information and Turing's definition of computation seem to 
be orthogonal. Shannon uses the notion of a bit to measure amounts of informa- 
tion, but his theory does not say anything about the amount of information that 
is stored in a string of bits itself. 

The concept of Shannon information only makes sense in the context of a set of 
potential messages that are sent between a sender and a receiver and a probability 
distribution over this set. If we have such a setting, we can design an optimal code 
system. Suppose X is a set of messages xi(I  = 1 , .  . . n) the communication 
entropy of X is:' 

H ( X )  = - P(xi) log P(xi) 
i=l,n 

The Maximal entropy of a set of n messages, if P(xi) = l l n  for each I: 

HmaZ(X) = -n(l/n) log ( l l n )  = logn 

The Optimal code (that minimizes the expected message length) assigns 
-logP(xi) bits to encode message xi. One finds an extensive discussion of these 
definitions in the chapter by Harremoes and Topsoe. The notion of optimality 
of a code system is associated with the idea of compression of a set of messages. 
Suppose, for the sake of argument, that we want to develop an optimal code for a 
certain book, say Dickens' "A Tale of Two Cities", and that we simplify the task 
to finding an optimal code for an alphabet of 26 letters.'' We can code each of 
the 26 letters with a standard length of 5 bits. A set of messages in which the he- 
quency of each letter would be equal (e.g. 1/26) has maximal entropy. Of course, 
such a set would contain only nonsense. It could not be normal English since the 
frequency of letters in English varies greatly. Therefore a standard 5 bit code is 
redundant and can be optimized. We can assign shorter codes to more frequent 
letters. Giving up the fixed code length implies that our code has to be prefix free: 
no code can be a prefix of any other code. Standard Huffman code provides an 
optimal solution for this problem. Using Huffman code one can compress "A Tale 
of Two Cities" 0.81 bit per character comparison with the 5 bit code. We can 
ask ourselves if Huffman code is the best solution for compressing a book. In a 
sense it is, if one sticks to compression of characters, but there is no reason to do 
this. One could try to compress words instead or maybe one could use an analysis 
of idiosyncrasies of Dickens' style. This poses an interesting theoretical problem: 
what would be the theoretical shortest code for "A Tale of Two Cities"? In order 
to find an answer for this question we have to turn our attention to a different 

g ~ h i s  definition is exactly equal to  the definition of Gibbs entropy in thermodynamics. See 
the chapter by Bais and Farmer in this book. 

1°This example is discussed extensively by Harremoes and Tops0e. 
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definition of the concept of information that is intricately related to the notion of 
a Turing machine: Algorithmic information. 

Algorithmic information 

We have seen that with the theory developed by Turing we can define a universal 
Turing machine. In fact, there is an infinite number of such universal Turing 
machines, so let us select a standard (small) one and call it U .  The input of U 
consists of two parts: a definition of a special Turing machine Ti in prefix code, 
followed by the input code, or data D for Ti. Observe that, using Huffman code, 
we can create a program that reproduces "A Tale of Two Cities" as output on U. 
The crucial insight is that it is easy to construct a Turing machine that decodes 
Huffman code. Let D T ~ T C , H ~ ~  be the Huffman code for "A Tale of Two Cities" 
and let THuf be a Turing machine that decodes Huffman code in the standard 
prefix free input format of U .  The text of "A Tale of Two Cities" can be coded as 

When confronted with the input THu + DToTC,Hu our universal machine U will 
first read the definition of T H U f ,  reconfigure itself as an interpreter for Huffman 
code and then start to interpret D T ~ T ~ , H ~ ~  resulting in the text of "A Tale of Two 
Cities" as output. The bit string THuf  + DToTC,Huf can be seen as a program for 
the text of "A Tale of Two Cities". Let ID1 be the length in bits of the data set 
D and let D T ~ T C , S ~ ~ ~  be the 5 bit code for "A Tale of Two Cities. We will have: 

Given the fact that a Turing machine for interpreting Huffman code is not com- 
plicated, the set THuf  + DToTC,Huf will be shorter than the original 5 bit code 
for "A Tale of Two Cities". In this way, we have created a computer program 
that generates the text of "A Tale of Two Cities" on a universal Turing machine. 
The bit code of this program is shorter than the original text. We could go on 
and try to find more clever code systems that compress the text even more. Such 
a code system, say Tcodesysterni could make use of the frequency of words in the 
text, knowledge about the grammar of English and idiosyncrasies in the style of 
the author. Such a code system would be 'better' than the Huffman code if: 

where D T ~ T ~ : ~  is the text encoded in the new code. 
We can now answer the theoretical challenge from the previous paragraph: the 

theoretical shortest code for "A Tale of Two Cities" would be the shortest program 
that generates this text on U .  In order to find this program ideally, what we have 
to  do is enumerate all possible programs for U, test them, and select the shortest 
that generates "A Tale of Two Cities". Alas this is impossible because of the 
uncomputability of the halting set. We know that such a program exists, but it 
remains an intensional object. 
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This fact gives rise to  a different definition of the concept of information [Li 
and Vithnyi, 19971. The descriptive complexity of a string x relative to a Turing 
machine T and a binary string y is defined as the shortest program that gives 
output x on input y: 

One can prove that there is a universal Turing machine U ,  such that for each 
Turing machine T there is a constant CT, such that for all x and y, we have 
KU(xly) 5 KT(xIy) + CT." This definition is invariant up to a constant with 
respect to different universal Turing machines. Hence we fix a reference universal 
Turing machine U ,  and drop the subscript U by setting K(x1y) = Ku(xl y). We 
define: 

DEFINITION 7. The Prefix Kolmogorov complexity of a binary string x is K(x) = 
K(xl6). That is the shortest prefix free program that produces x on an empty input 
string. 

Kolmogorov complexity is a competing notion of information. It allows us to 
assign a complexity to individual strings and data sets. 

A unified view on Shannon information and Kolmogorov complexity 

We are now in a position to evaluate the difference between Shannon information 
and Algorithmic information, i.e. Kolmogorov complexity. Suppose we have a 
data set encoded in bits, say a five bit code of the text of "A Tale of Two Cities". 
We can analyze this set from two perspectives: 

From a Shannon perspective as a collection of messages. In this we can 
construct an optimal code using variation in frequency of the messages. This 
leads to a relative compression of the set of messages that can be computed. 
More frequent messages get shorter codes and contain less information.12 We 
could call this concept of information relative to the probability of a message. 

From a Kolmogorov perspective as a single message. In this case, relative 
frequency has no meaning, but there exists an optimal compression of the 
message in terms of the shortest program on a Turing machine. The length 
of this program is an absolute measure for the amount of information con- 
tained in the message. This program is an intensional object and can not 
be computed as such. Messages that are highly compressible contain little 
information. This could be seen as a concept of information relative to a 
Turing machine. 

"For an extensive discussion of these definitions, see the chapter by Griinwald and VitBnyi in 
this book. 

12This would work equally well in a case where frequency is an actual count, a probability in 
a Platonic world or a Bayesian belief. 
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As an example, suppose we have a bit string 01010101010101010101010101. We 
can recode this string in Shannon's sense as '01'=1;11111111111111, or we can re- 
program it in Kolmogorov's sense as f o r  x = 1 to 13 w r i t e  '01'. Both struc- 
tures are shorter than the original code reflecting the fact that the string shows a 
regular pattern. In this case, both the Shannon and the Kolmogorov compression 
do their work. In my view, both algorithmic information and Shannon information 
are different mathematical guises of one and the same concept of information that 
is associated with entropy of data sets. 

CLAIM 8. Information is associated with the entropy of data sets. Data sets with 
low entropy can be compressed and contain less information than data sets with 
maximal entropy, which cannot be compressed and contain exactly themselves as 
information. There are various ways to  explain these relations mathematically. 

Shannon information starts with a segmentation of the set. In the limiting case 
where we have very few segments, or only one, Shannon's theory collapses into 
Kolmogorov's conception of information. Kolmogorov's conception of information 
is more powerful, but the price we have to pay is threefold: it is non-constructive, 
therefore it  can only be approximated and it is asymptotic. 

LEMMA 9. The  concepts of Kolmogorov complexity and Shannon information 
are equivalent in terms  of predicting incompressibility of data sets with maximal 
entropy. 

Proof. In Shannon's conception a set of messages can not be compressed if they 
all have equal probability. Suppose we have a sequence of k messages with maximal 
entropy based on a code system of 2n code words of n bits, then this is equivalent to 
a random string of 1 = k n  bits and thus it can not be compressed in Kolmogorov's 
sense. Suppose, conversely, that we have a random bit string 1 = k n  bits with 1 
fixed, then for each segmentation of 1 in k messages the entropy is maximal thus 
it can not be compressed in Shannon's sense. W 

Note that the difference between Shannon information and Kolmogorov infor- 
mation can be seen as a difference in granularity. Kolmogorov complexity is coarse 
grained giving the whole set of messages a complexity in one shot. Shannon infor- 
mation is fine grained, it calculates the information for individual messages first 
and then establishes an entropy for the whole set. Given the equivalence of Shan- 
non information and Kolmogorov complexity, one would expect that also in the 
limiting case of considering a bit string as one unsegmented message it is possible 
to assign a probability to it. This is indeed the case. In Shannon's case we reason 
from probabilities to entropies, in the Kolmogorov world we derive probabilities 
from entropies. Using results of Solomonoff [1997; 20031 and Levin we can define 
an a priori probability of a finite binary string. 

DEFINITION 10 (Solomonoff, Levin). The universal a priori probability Pv (x) 
of a binary string x is 

Pu(x) = C 2-IPI 
U(p)=x 
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This is the sum of the probabilities of all the programs that generate x on 
a universal Turing machine on an empty input string. Thus strings with a low 
Kolmogorov complexity, i.e. the ones that are compressible, get a higher a priori 
probability. Associated with a universal a priori probability, we expect to get a 
universal distribution. We can define a semi-measure along these lines. A recur- 
sively enumerable semi-measure p on N is called universal if it multiplicatively 
dominates every other enumerable semi-measure p' i.e. p(x) > cpf(x) for a fixed 
positive constant c independent of x. Levin proved that such a universal enu- 
merable semi-measure exists. Since there might be more, we fix a universal semi- 
measure m(x). The semi-measure m(x) converges to 0 slower than any positive 
recursive function which converges to 0. Of course, m(x) itself is not recursive. 
We now give without proof a theorem that relates all these concepts with each 
other: 

THEOREM 11 (Levin). 

-log m(x) = - log Pu(x) + O(1) = K(x) + O(1) 

The universal distribution has quite wonderful qualities and its philosophical 
relevance has hardly been explored up till now. 

4.1 Thermodynamics, Information and Computation 

It is clear that the study of information and computation is related to concepts of 
thermodynamics on a fundamental level. The first law of thermodynamics states 
that energy in a closed system is conserved. The second law states that the entropy 
of a closed system can never decrease. After a certain time a closed system will 
reach an equilibrium in which the entropy is maximal. Another way of phrasing 
the second law is that self-organization is not possible without external energy. 

As the entropy of a set of messages grows, so does the set of accessible states 
and so does the number of bits that we need to identify those states (according 
to Boltzmann the formula entropy was simply S = In w, where w is the number 
of accessible states, this is equal to  the maximum entropy in Shannon's defini- 
tion). Consequently in a closed system, when the entropy grows, the amount of 
information stored in the system grows. A closed system can increase its internal 
information without exchange of heat with the environment. 

A thought experiment can help here. Think of a bit string as a gas in a one 
dimensional container (say 0s are spaces and Is molecules). If the bits are al- 
lowed to move freely through the space, starting from any configuration they will 
eventually reach an equilibrium state in which the Kolmogorov complexity of the 
accessible states is maximal. These states are exactly the ones in which the bits 
contain maximal information (in terms of Kolmogorov complexity). Random bit 
strings contain the most information, have the highest entropy and correspond to 
a thermal equilibrium.13 

I 3 I t  is possible t o  develop a thermodynamics of  bit strings along these lines. 
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All this is quite counter intuitive. If we dissolve milk in coffee, or we spill sugar 
in sand, we feel we lose possibilities. It seems strange to assume that noise on 
a channel is actually the richest source of information possible. The reason for 
our unease seems to be the fact that high entropy is the normal situation in the 
universe. Order (i.e. low entropy) is more interesting since is needs to have a 
specific cause. High entropy does not point at specific causal processes of any 
interest. Low entropy is a sign that somebody or something redirected energy to 
a system. That is the reason why, when we want to  detect life in outer space, we 
scan the sky for signals with less then maximal entropy. In order to be meaningful 
to us, a set of messages has to have some structure and consequently have less than 
maximal entropy. This concept of meaningful information in a system is from a 
thermodynamical point of view related to the free energy in the system and from 
a learning view to two part code optimization. 

Thermodynamics therefore has interesting consequences for the physics of com- 
puting. A universe in which we can calculate has to obey the following conditions: 

It must be stable enough to s tore  information. Structures should have 
a certain stability; identity over a certain period of time should be guaran- 
teed. This points to relatively low entropy. In a system that is in a perfect 
thermodynamic equilibrium, structures would not be robust enough to store 
information at all. 

There must be enough free energy to process information. There must 
be reversible processes that facilitate the transition between stable states: 
i.e. there must be mechanisms to flip bits. This condition implies more than 
minimal entropy. Computation can not exist in systems with extremely low 
entropy, e.g. computation at zero degrees Kelvin is not possible. 

Computation seems to presuppose some kind of state of intermediate non equi- 
librium entropy.14 Luckily, we live in a universe that satisfies these conditions 
exactly. This is no surprise, because in a universe that does not offer these pos- 
sibilities; intelligent life would not be possible. This is a variant of the anthropic 
principle [Hawking, 19881. The hypothesis of the cooperative universe however 
goes deeper because it states that such a universe would be easy to learn. It 
is a number of random processes, but these processes are necessarily of limited 
complexity. 

Out of these observations the following picture emerges: A deterministic com- 
puter is simply a Laplacian system that, in itself, cannot add information to the 
universe. Its future is completely determined by its initial conditions. Still a deter- 
ministic computer can easily use energy to erase information and thereby reduce 
the amount of information in the subsystem (say its tape). The total entropy in 
the universe will still grow as a result of this action. For a subjective observer, 

14This goes against the interpretation of Lloyd and Ng [Lloyd and Ng, 20041 who consider 
almost any physical process as a computer, e.g. black holes and pure plasma. In these cases it 
is better to  speak of computational processes than of computers. 
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however, the situation is different. He might not know whether a certain compu- 
tation will finish. If he observes that the computational process comes to a halt 
this certainly adds to his information, even if he lives in a Laplacian universe. 

Suppose, on the other hand, that a statistical observer can only make measure- 
ments of a certain granularity. He can, for instance, measure the local density of 
bits on the tape with a certain accuracy, but not observe individual bits. In such a 
case, the subjective entropy generated by a deterministic computing process can be 
much bigger than the entropy of the initial conditions. Suppose that the computer 
writes the binary expansion of the number e on the tape. This is a data set with 
very low entropy, but, for such a statistical observer, it cannot be distinguished 
from random noise (since he cannot identify the individual bits). Here, we seem 
to cross the border from theory of computation to thermodynamics. Very much 
the same thing happens if we see the generation of a fractal. This is a data set 
of very low entropy, but to our subjective eye full of interesting details. A non- 
deterministic computer adds information to the universe with each randomized 
computing step it takes. 

As a last note, observe that thermodynamics only works for systems in a state 
of equilibrium. Computing systems tend to specifically stay out of equilibrium so 
the applicability of classical thermodynamics for the understanding of computing 
processes is limited. At the moment, we are missing a theory that helps us to 
understand these matters adequately. The following theoretical observations give 
an initial outline of such a theory. 

4.2 A universal a priori near optimal Shannon code based o n  Kol- 
mogorov complexity 

Levin's theorem allows us to explore the relation between Shannon information 
and Kolmogorov complexity at a more fundamental level. We define the standard 
bijection b between the set of binary strings (0, I)* and the set of natural numbers 
N as 

b(0 ,~) ,  b(l,O), b(2, I), b(3,00), b(4, O l ) ,  . . - 
Where E denotes the empty word. We can define the function S : {0,1)* -+ (0, I)* 
as: 

DEFINITION 12. S(x) = m i n i e ~  {p : b(i, p), U(p, E )  = x) 

Here U is a universal Turing machine. S associates each binary object x with 
the first program that produces x on U with empty input. 

COROLLARY 13. S is a universal a priori near optimal code associated with m 
for binary strings in Shannon's sense. 

Proof. According to Shannon an optimal code for x given m would be - log m(x) 
bits long. According to Levin we have - logm(x) = K(x) + O(1). But then S(x) 
is such an optimal Shannon code, because by definition IS(x)l = K(x) since S(x) 
is the first, and thus the shortest, program that produces x on U .  The code is 
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near optimal, because of the factor O(1) in Levin's theorem. S(x) will always be 
maximally O(1) removed from the factual optimal code. H 

The function S is interesting because it brings the concepts of Shannon informa- 
tion and Kolmogorov complexity together. On one hand IS(x)l is the Kolmogorov 
complexity of x, on the other S(x) is an optimal a priori code for x. Of course, 
S can never be computed, but suppose that some Platonic oracle would give us 
S. In that case we would have a universal a priori solution to  the problem of 
induction. S(x) reflects any regularity (e.g. deviation from maximal entropy, 2.e. 
compressibility) that can be expressed solely in terms of the internal structure x. 
Observe that S(x) will itself always be random (and thus incompressible) because 
it  is the first program that computes x. If S(x) would be compressible, it would 
itself have been identified much earlier by S .  It is important to note that, although 
S can not be constructed, it nevertheless exists. S is the closest we can get to 
a universal language of science, given the current state of research in computer 
science. 

To give some examples. S would make it easy to find binary expansions of 
transcendent numbers like a and e.  There are simple programs for these extensions. 
In fact, S would identify almost any discrete object of any mathematical interest 
for us. On top of that S would give us an optimal code for the text of "A Tale 
of Two Cities" and indeed of any other conceivable poem, novel, piece of music, 
movie or any work of art in digital code. The same would hold for any digital 
data set that scientific inquiry could produce. S would 'explain7 the regularities 
and idiosyncrasies of these data sets in so far as they can be expressed in terms of 
deviation of maximal entropy. 

4.3 Intensive and extensive data sets 

A very interesting consequence of having S would be that we are capable of measur- 
ing the scale invariance of complexities and entropies. A little thought experiment 
will help. Suppose that we study some segment L of length 1, starting at the 
p t h  bit, of the binary expansion of a transcendental number, say a. Since we are 
studying an expansion of a the Kolmogorov complexity of the sequence is low. In 
the sense of lemma 9 we could analyze this as a sequence of 1 = kn bits, i.e. k 
messages based on a code system of 2" code words of n bits. The total measured 
complexity of L using S with granularity n could be defined as: 

If we plot the size of K(L)s,n in terms of the size of n we will see the following 
effect: for small n the function K(L)s,n will show a slow decrease that will be 
linear in n. This is because of the diminished overhead of S per segment. For 
small n all segments will be random for S, because of the transcendentality of 
a. At a certain point, 'close7 to logp + logl/n + 0(1),  the value of K(L)s,n will 
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Size of 11 - 
Figure 1. The size of K(L)s, ,  in relation to the granularity n while sampling a 
segment of .rr 

drop suddenly.15 This is exactly the point where n is big enough so that S starts 
to 'sense' the compressibility of L. For n = 1 the function K(L)s,, will land at  
the value log p + log 1 + O(1). What this amounts to is that for certain data sets, 
e.g. bit representations of transcendental numbers (but there are many others), 
complexity (and consequently entropy) is non-extensive. Another way of putting 
this is that the Shannon entropy of the collection of messages diverges from the 
Kolmogorov complexity as a measure of entropy for the set as a whole. Local 
estimates of the complexity do not tell us anything about global complexity and 
consequently complexities of various regions of the data set can not be added to 
get a global complexity estimate. The complexity of these data sets is not robust 
under statistical operations and under re-scaling of the code system.16 Clearly 
for the application of efficient learning algorithms the non-extensive complexity 
of such data sets is an insurmountable barrier. No algorithm can compress data 
sets that look random from the outside but are in fact highly compressible, e.g. 
encrypted data or expansions of very special real numbers like .rr and e. 

Uncompressibility and extensiveness are in fact the same notions, as is clear 

15The logp gives us an index in L, loglln code the length of the individual segment and the 
O(1) term contains the program for a. This information is sufficient to  describe any substring 
in L. 

16The custom in thermodynamics to  take the averages of values in the sample regions is just 
one specific form of recoding. 
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from the following analysis. A data set D  is extensive if the sum of the complexity 
of two arbitrary disjoint subsets A  and B equals that complexity of the union of 
that set: K ( A )  + K ( B )  = K ( A  U B )  + O(1). This is only the case if D does not 
contain any redundancy i.e. if D  is random. On the other hand, suppose that D  
is very compressible. If we know A  already, then B would add no information, i.e. 
K  ( A )  + K  ( B )  = K  ( A )  + log I BI + O(1). In other words B  would only add its own 
size to our knowledge. This is for instance the case when D contains extremely 
simple regular patterns. This suggests the following definitions: 

DEFINITION 14. A bit string D  is extensive for a sample granularity g if for 
each substring A  E D  such that IAl > g we have K ( A )  > IAl - O(1). A bit string 
D is intensive if for each substring A  E D such that IAl 2 g we have K ( A )  < 
log IAI + log ID1 + O(1). Sub-extensive data strings have IAl >> K ( A )  + O(1) 
and super-intensive strings have K ( A )  >> log IAl + log ID1 + O(1). 

EsTensive K ( h p  !A[-O(1) 

Iriterlsiue K(A)-:log + log ID1 +0(1) 

Size of h ----+ 

Figure 2. The relation between extensive, sub-extensive, super-intensive and in- 
tensive strings 

Sub-extensive data sets are the ones from which we can learn something. The 
borderline between extensive, sub-extensive, super-intensive and intensive data 
sets is blurry, but the general idea stands. If we sample an extensive data set 
we really get value for money, every bit counts. But there is a price to pay. 
The information is completely random. Nothing can be learned from this set. 
This corresponds with the picture of random noise at the television set that was 
discussed earlier in this chapter. On the other end of the spectrum we find the 
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picture of the test image: this data set is almost totally intensive. It is a simple 
repeatable pattern for which we need only the information about the number 
of repetitions to encode it. Extensiveness corresponds to maximal randomness, 
intensiveness to maximal redundancy. Figure 1 shows that we can make each 
string extensive by taking a small granularity. This corresponds to the fact that, 
even if a data set is very regular, there is a learning phase in which we have to 
analyze the pattern itself. At this time the data set cannot be distinguished from 
a random one. A finite program producing an infinite data set has to go through 
loops. If we cannot compress the data set on the basis of samples that are in 
the order of the complexity of a loop of the program that generates the data we 
are in trouble. Because the increase in information after this phase will be only 
logarithmic. So if we have not spotted the regularity after, say 10, loops then 
we will probably never spot it because the only new information we get from x 
repetitions is of size logx. This gives rise to  the following claim: 

CLAIM 15. From the point of view of intelligent systems of a certain complexity, 
nature is by necessity shallow. Intensive data sets can either be learned by an 
intelligent system (a resource bounded learning algorithm) that is of the order of 
the complexity of the algorithm generating the data set, or not at all. 

From completely intensive strings we can learn only their generating program 
and their size. One could call this the self information of a data set. The program 
generating an intensive string can be seen as its intension.'' Intensive data sets 
asymptotically have their size as their most defining characteristic. Extensive 
data sets do not have an intension, or to say this in other words: they only 
describe themselves. Their extension is their intension. Super-intensive data sets 
contain more information, but this might be just noise. They are non random, but 
not completely regular either. From a physical point of view they are associated 
with systems that are in a non equilibrium state. It is the kind of information 
that we find in the picture of the forest on our television screen. The trees are 
generated by a program and thus have regular specific features. But the program 
is not completely deterministic. Individual trees show random variation. It is 
interesting to characterize sciences in terms of the nature of their data sets. Data 
sets of mathematicians and physicists are close to intensive. Data sets of the 
humanities are super-intensive. The eternal question whether history repeats itself, 
can be answered by stating that history is sub-extensive and super-intensive. There 
are patterns but they will never repeat themselves exactly. In physics we have 
explanation and prediction exactly because the data sets are intensive. 

A consequence of this analysis is that the amount of randomness we observe is 
dependent on the granularity of our measurements. In one sweeping statement one 
might say: randomness has a scale. Suppose we are looking at a movie of a hand 
flipping a coin.'' At normal speed we are looking at a random (or at least a very 

 e ere we have a computational equivalent of Platos notion of an idea. The intension of an 
object is the program generating it. 

"Suppose also that this hand does not belong to  Persi Diaconis, the well known mathemati- 
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complex) process. This data set certainly has extensive elements. Note that the 
data set itself in this case is not random. It is a movie of coin flipping that contains 
a lot of information. We could for instance learn a lot about Newtonian mechanics 
if we analyze it at an appropriate scale. Now suppose that we slow the movie 
down extremely, say we stretch out one second to a million years. In this case, the 
movie will be rather dull on a human scale. It  will be close to a intensive process 
that contains very little information. On the other hand if we speed the movie 
up so that a million years is compressed into one second. Then again the movie 
would on a human scale be reduced to a meaningless grey blur that contains no 
information. On this scale the data set would again be intensive. The important 
thing to notice is that the data set contains the most information if we sample 
it at a granularity where the extensiveness is maximal. Both a t  a larger and at 
a smaller granularity we will lose information. In short: even randomness has a 
scale. Every form of randomness necessarily can only be observed at a granularity 
in which it is in equilibrium. When we see smoke dissolve in the air, then on a 
human scale we observe increase of entropy, on a molecular scale the increase does 
not exist and on the scale of, say the solar system, the effect is too small to notice. 
An optimal analysis of a data set involves finding a granularity that optimizes the 
randomness of the data.lQ 

Researchers in machine learning are familiar with the idea that certain phenom- 
ena can only be explained at certain scales. Some structures can only be learned 
when the data set is sampled with a certain granularity.20 This can also be ob- 
served in the text of "A Tale of Two Cities". When we only sample individual 
bits of this data set no useful information emerges. When we sample letters, we 
can make good statistical estimates based on frequency. This is already somewhat 
harder for words and next to  impossible for sentences, leave alone paragraphs or 

cianlmagician that has proved that coin flipping is actually a deterministic process. Some of 
the  material in this paragraph is influenced by the lecture that Professor Diaconis gave on the 
occasion of receiving the Van Wijngaarden award a t  CWI in 2006. 

I g ~ h i s  insight is related to  Jaynes' maximal entropy principle and the  minimal randomness 
deficiency principle t o  be discussed later. There is a further analogy with thermodynamics, where 
we find exactly the same scaling issues. Suppose that we have a number of gas particles in a 
isolated container a t  low entropy. After some time, an equilibrium will be reached. On a micro 
scale the entropy can not have increased because the evolution of particles in the container is 
determined by simple deterministic Newtonian physics. Macroscopic measurements however will 
show an increase in entropy. Just like our example of the binary expansion of T ,  the data  set 
will have low complexity a t  micro level and appear to  be random at  lager scales. In a strictly 
deterministic universe randomness takes the form of coarse grained undecidability. 

2 0 ~ h i s  was one of the more interesting results of the Robosail project, an attempt to  use 
machine learning techniques t o  learn to  sail automatically that I started in 1998 [van Aartrijk et 
al., 20021. Measurements of almost all relevant human concepts like 'wave', 'gust of wind', 'change 
of wind direction' and 'wind strength' were dependent on selecting an adequate granularity for 
the measurements. What you subjectively experience as a wave is dependent on the size of 
your boat. Some of the conceptual distinctions used by sailors depend on sophisticated phase 
transitions in chaotic media that were only observable a t  certain scales. This holds for instance 
for the distinction between light air (laminar flow) and breeze (turbulent flow). In the final 
system we implemented learning agents that were living in a variety of time scales: 10 Hz, 1 Hz, 

Hz, etc. 
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chapters. There is a certain granularity that reveals the structure of the text 
optimally. 

A deeper analysis of these kind of phase transitions and their meaning for learn- 
ing algorithms is necessary, but it is clear from this short analysis that the analogy 
between information and thermodynamics can be carried further than is commonly 
accepted. 

4.4 Induction and Minimum Description Length 

Let us have a closer look at the relation between S and the problem of induction. 
In one special guise induction amounts to  selecting the most probable hypothesis to 
explain a given data set. In terms of Bayesian learning this task can be formulated 
as follows [Mitchell, 19971. The prior probability of a hypothesis h is P(h).  
Probability of the data D is P(D).  The Posterior probability of the hypothesis 
given the data is: 

THEOREM 16. Suppose that h, D E (0, I)*, i.e. both the data set and the hypoth- 
esis range over the full class of finite binary strings. Selecting the Maximum A 
Posteriori hypothesis (MAP) to explain D, amounts to selecting the hypothesis 
that minimizes the length in bits of 

Here S(h) is the universal optimal Shannon code for the hypothesis and S(D1h) 
is the universal optimal Shannon code for the data set given the hypothesis. 

Proof. 
hMAP -- argmaxhcH P(hlD) 

(since D is constant) 

= argmaxh~H (P(h)P(Dlh)) 

= argrnaxh~H log P(h)  + log P(D1h) 

= argminhcH - log P(h)  - log P(D1h) 

(Since h, D E { O , l ) *  and according to Shannon - log P(h)  is the optimal code 
for the hypothesis and - log P(Dl h) is the optimal code for the data given the 
hypothesis.) 

= argminhcHS(h) + S(D1h) 
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This result is closely related to  the so-called: 

DEFINITION 17. T h e  Minimum Description Length principle (MDL): 
The best theory to explain a set of data is the one which minimizes the sum of 

the length, in bits, of the description of the theory and 

the length, in bits, of the data when encoded with the help of the theory 

This principle was first formulated by Rissanen [1999]. Research in this domain is 
far from finished and these concepts are still the object of fierce debate [Domingos, 
1998; Domingos, 19991. A common misconception is the idea that the minimum 
description length principle can be transformed into a methodology for the con- 
struction of a sequence of improving theories by means of an incremental compres- 
sion of the data set. Suppose that Si, hj, Sp  and h, are arbitrary coding schemes 
and hypotheses such that: 

Although h is the best theory it is not necessarily the case that hi is better 
than h,. This could for instance be guaranteed if S = Si = S,, i.e. when the 
code is optimal [Adriaans and Vitinyi, 20051. Translating these observations to  
the domain of methodology of science gives us a number of interesting insights: 
Given the fact that entropy in nature tends to increase the regularity of the world 
we observe around us is extremely improbable, when we suppose that the world 
started from a state of thermal equilibrium. The process of reducing a set of 
observations to a general theory explaining these observations can be described as 
a process of data-compression. A universal methodology of science would have the 
following form: 

Represent your data set D in binary format. 

Select a hypothesis h in binary format such that IS(h) + S(D1h)l is minimal. 

This program fails because of the uncomputability of S but it can serve as a 
regulative ideal for the study of methodology of science. In certain cases the 
theoretical results allow us to solve real life problems and to develop more efficient 
algorithms [Li and Vitinyi, 19971. Note that we have characterized learnable data 
sets as non- and sub-extensive, they contain a mix of random and deterministic 
elements. MDL aims at finding a compression for such a set that exactly separates 
the random (extensive) elements (S(D1h)) from the non-random (intensive) ones 
(S(h)). For intensive data sets the two part code will simply consist of a description 
of the program generating the data set (S(h)) and the length of the data set 
(S(Dlh)). 

Another way to look a t  this is from the perspective of the so-called randomness 
deficient y [Vere~hcha~in and Vitinyi, 20041 : 
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(1) b(DI M, d )  = log (7) - K(DIM, d ) ,  

Here M is a model of size m and D c M is a data set of size d.  The expression 
log (T) is the measure of the maximum information in a subset of M of size d. 
The expression K(DIM, d )  is the actual entropy of the data set D in the model, 
i.e. conditional Kolmogorov complexity of D given M and d .  If the actual entropy 
is much smaller than the maximal entropy of an average set of size d in M then 
D still contains a lot of regularity that is not explained by M.  In other words M 
is not an optimal model. A model would be optimal if the randomness deficiency 
is minimal. In such a case D would be a typical element (extensive) of M and M 
would explain all that is worth knowing about D, i.e. its intension. The principle of 
minimal randomness deficiency is very close to Jaynes' maximal entropy principle: 
in order to explain a set D try to find the set M for which the entropy is maximal 
under a set of constraints observed in D.21 

5 THE COOPERATIVE COMPUTATIONAL UNIVERSE 

From this discussion it is clear that the philosophy of learning touches on a num- 
ber of philosophical issues: To name a few: entropy, information, computation, 
objective and subjective probability. In order to study these issues let's define a 
thought experiment. For the sake of argument we will restrict ourselves to the 
case in which we observe a string of bits from an unknown source. Even in this 
simple setting there are some fundamental philosophical issues to be dealt with. 

Suppose that we reserve a room at the University of Amsterdam for the purpose 
of this experiment. The room has no windows and the door is closed. In the room 
there is a black box. The black box produces a bit every minute. If the bit is '1' 
the light is switched on, if it is '0' the light is switched off. This bit is published 
on a web site. Of course, nobody knows the contents of the black box, but, for the 
sake of argument, we choose three possible configurations. The box could contain: 

1. A random process that generates bits (e.g. a person flipping a coin, a quan- 
tum process or some other ergodic process.). 

2. A deterministic computer program generating bits. 

3. An infinite database with a list of bits. 

These three definitions represent radically different views on the phenomenon of 
a source of information. The first is an objective random process associated with 
an objective form of probability. It generates an extensive data set. All the 
information that is contained in the sequence can be measured in terms of its 
fundamental statistical characteristics: mean, variance, autocorrelation function 
etc. The second is a deterministic process with a definition of finite length. The 

21See the paper of Bais and Farmer in this book. 
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maximal amount of information in a string produced by the program is limited to 
the length of the definition of the program. It is an intensive data set. It could 
lead to a sequence of bits with a certain statistical bias (e.g. repeating patterns), 
but this is not necessary. Some transcendental numbers have short definitions (e.g. 
e and n) but lead after a bit of twisting to bit patterns that cannot be recognized 
as non-random. The third is a deterministic process with a definition of infinite 
length. The generating data set itself could be in- or extensive. It potentially 
contains an infinite amount of information that can never be learned in a finite 
amount of time. 

THEOREM 18. The  three sources of information, (a random process, a deter- 
ministic computer program and a n  infinite database) cannot be distinguished from 
each other by a receiver of the information. 

Proof. Each of the three sources can produce a sequence of bits that cannot be 
distinguished from a random sequence. 1) The case of the random process is trivial 
2) A deterministic program can generate strings that cannot be recognized as non- 
random. The non-computability of Kolmogorov complexity tells us that there will 
always be compressible strings for which no compression can be computed. 3) An 
infinite database can continue a random set of bits or a set of non-random bits 
that cannot be recognized as such. 

The philosophical importance of this result is obvious. We cannot make a 
distinction between a source of information that is random and a source of infor- 
mation that has high complexity. This makes the traditional controversy between 
determinism and indeterminism from the point of view of informatics senseless. It 
reveals the famous dictum by Einstein "God does not play dice" as a real meta- 
physical position. It is not a question that can be settled by any argument. It 
also shows that it is impossible to assign any form of objective probability to a 
source of information. In this context one might ask to which extent randomness 
is in any sense a scientific concept. We can define randomness of strings in terms 
of incompressibility, but we do not need the concept of randomness to study in- 
compressibility. The notion of flipping a coin or throwing a dice are real scientific 
paradigms in the original Kuhnian sense, but au fond they are deterministic pro- 
cesses that in most cases are simply too complex to predict and therefore can act 
as place holders for supposedly real random processes. They serve as anecdotic 
topoi in the scientific discourse, nothing more. The notions of extensiveness and 
incompressibility still have an exact meaning in a deterministic Laplacian universe, 
so they seem to be more fundamental than the concept of randomness. Macro- 
scopic measurements of microscopic deterministic processes might subjectively be 
interpreted as random. Even in a Laplacian universe there are data sets that are 
both strictly deterministic and extensive (e.g. the Halting set). 

In such a world however there is a form of subjective probability that is relevant. 
Suppose that we want to form a hypothesis about the internal structure of the 
black box and the black box produces a string that shows some regularity. In that 
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case it is extremely unlikely that the source of bits is random. Suppose that our 
black box produces a string of n ones Ill2.. .In. The probability of creating this 
string with n flips of a perfect coin is 2-n.  So, intuitively, with each one that 
is produced by our black box the hypothesis that it contains a random process 
becomes more unlikely in favor of the hypothesis that the bits are produced by 
some deterministic process. Yet this argument is flawed because any  bit string of 
length n produced by flipping a perfect coin has probability 2-n and therefore is 
extremely unlikely. We have no clear ground to favor any regular string over a 
random one as a ground for selecting between hypotheses about the content of the 
black box. As we have seen, the theory of Kolmogorov complexity allows us to 
define the concept of randomness deficiency of a string. The idea is the following. 
A string like, say, 11100101000100 is typical for a random source. Such a string 
is produced by a source that is perfectly compatible with the hypothesis that the 
source is random. A string like 11111111111111 is atypical for a random source. 
When produced by a source it makes the hypothesis that the source is random 
unlikely. A high randomness deficiency corroborates the theory that the process 
in the black box is non-random. 

This analysis suggests that the best thing we can do in science is: observe a set 
of phenomena, estimate the randomness deficiency and formulate a theory. Un- 
fortunately in the case of the Amsterdam room the situation is more complicated. 
This becomes clear if we analyze the following claims. 

CLAIM 19. We get exactly one bit of objective information each minute. 

It is clear that each bit that is published on the web by the black box contains 
real information about the actual binary situation in the room: the light is on or 
off. 

CLAIM 20. The meaning of the message contained in the bit and the knowledge 
generated as a consequence of receiving the message is not dependent on the 
content of the black box. 

Yet there is a subtle interplay between the growth of our subjective information 
and our theories about the nature of the black box. 

CLAIM 21. The objective amount of information we get is dependent upon our 
interpretation of the nature of the source of information. 

The three possible interpretations of the content of the box could be seen as 
three different types of senders of messages. I will define three possible receivers 
along the same line: 

1. A forgetful receiver that determines the statistical characteristics of the se- 
quence: mean, variance, autocorrelation function etc. Here our subjective 
information grows incrementally at a very slow rate with each objective bit 
that is received. This observer corresponds with an interpretation of the 
source as a system in equilibrium. The statistical (macroscopic) qualities of 
the system are all that we can know about the system. 
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2. A machine learning program with bounded computing time and memory, 
that tries to  reconstruct the finite structure of the black box. Here our 
subjective information grows in an irregular but monotone way with each 
bit of objective information that is received. This observer corresponds to 
an interpretation of the data set as intensive. After some finite point in time 
our information will only grow with the factor logx where x is the number 
of bits we have seen so far. 

3. An infinite database with a list of bits recording every bit that is received. 
Here our subjective information grows with exactly 1 bit per bit that is 
received, if the data set itself is considered to be extensive. 

This example shows that we can not restrict ourselves to a purely subjective inter- 
pretation of information when we analyze a source of messages. We need to make 
an a priori decision about the nature of our source. 

Our analysis shows that nature and science play an asymmetrical game. Non- 
random strings are very rare. To make this more specific: in the limit the density 
of compressible strings x in the set (0, l)sk for which we have K(x) < 1x1 is 
zero. Data sets that appear to be random may be actually compressible, but the 
occurrence of such objects in nature is extremely unlikely. If a data set looks 
random, we may with high probability assume that it is random. On the other 
hand if a data set from the point of view of an intelligent agent appears to be 
regular then it  is with extremely high probability not random and can be learned 
because of the shallowness claim 15. Therefore a learning system that simply 
scans the environment for areas of low entropy and tries to compress the data 
sets it  finds there will be successful with high probability, if the complexity of 
data sets is of the same order of magnitude as the agent. Local low entropy data 
sets correspond with energy consuming non-equilibrium systems that with high 
probability can be described in terms of computational models. Learning is not 
as hopeless as our formal models seem to imply. We are computational processes 
of limited complexity analyzing computational processes of limited complexity in 
a universe that generates computational processes of limited complexity. In this 
sense, we live in a cooperative computational universe. This is as close as we can 
get to the solution of certain philosophical problems in terms of information and 
computer science. 

So why is this the case? Why do we live in a world that is intelligible at all? 
This question pervades philosophy from its early conception on (Herakleitos vs 
Parmenides). In form of a sweeping statement: prima facie, the God of Leib- 
niz might very well have created a universe in which the Minimum Description 
Length principle would not hold. There seems to be no theoretical necessity to 
favor simplicity. The extreme regularity of the universe could be a 'local' condi- 
tion accidentally observed by us. In terms of modern information theory: every 
infinite random string has an infinite number of regions of extreme regularity. If 
we transpose this idea to the analysis of our world we might just accidentally live 
in such a regular region in a purely random universe [Li and Vitgnyi, 19921. A 
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rather horrifying thought. 
On the other hand imagine the following thought experiment: an infinite set 

of universal Turing machines working in parallel with input tapes that are cre- 
ated by means of some random process (e.g. flipping a coin). The set of input 
tapes is infinite so every finite prefix free program will occur an infinite number 
of times. Yet the density of 'shorter' programs will be exponentially higher than 
that of 'longer' ones. Some programs will run for ever, others will stop in finite 
time. After n time steps a number of 'simple' programs will have stopped and 
produced a fixed output. This means that the set of outputs we observe in this 
thought experiment will have a strong bias for simplicity. In other words even a 
universe that consists of purely random computational processes has a strong bias 
for simplicity. The distribution of phenomena it produces is cooperative in the 
sense that we get examples of the simple structures first. This is the hypothe- 
sis of the cooperative universe in another guise: nature produces the information 
that we need to interpret her in such a way that hypotheses we form are right with 
high probability. In such a universe MDL therefore will be a viable methodological 
principle. It coincides with another well known dictum of Einstein: Subtle is the 
Lord, but malicious He is not. The exact relation between various computational 
models of the universe, cooperative distributions, the universal distribution m and 
the problem of induction is, in my view, one of the most important open problems 
in the philosophy of information. 

These issues (subjective versus objective probability, regularity versus random- 
ness, information versus meaning) are far from resolved and should be at the center 
of a philosophical research program of a philosophy of information. 

6 CONCLUSION 

The research on learning and induction that has emerged because of the growing 
interest in artificial intelligence is still developing. The results do not only lead to 
useful industrial applications, but also influence the way we think about funda- 
mental philosophical questions about the origin of human knowledge, the structure 
of our brain and methodology of science. A formal analysis of the mathematics of 
learning helps us to understand the efficiency of human learning. Human beings 
can only learn complex structure like language and the laws of nature if the un- 
derlying probabilities are 'benign'. The hypothesis of the cooperative universe is 
an attempt to explain why we live in a world that can be learned efficiently. 

Finally, a tongue in cheek observation: Our human brain can contain about 
1014 bits of information. The total storage capacity of the known universe is 
estimated to be about log2 bits [Lloyd and Ng, 20041. The old philosophical 
ambition of understanding the universe as a whole amounts to the wish to find a 
compression of the universe of the following nature: a structural description of less 
than 1014 bits (the laws of nature) and an ad hoc description of more than 
bits (the actual structure given the laws of nature) . There is only one conclusion 
possible. The universe can only be understood by human beings if it is extremely 
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compressible -in other words- if almost nothing of any significance happens. 
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1 BASIC CONCEPTS OF INFORMATION THEORY 

Information theory as developed by Shannon and followers is becoming more and 
more important for a number of sciences. The concepts appear to be just the 
right ones with intuitively appealing operational interpretations. Furthermore, 
the information theoretical quantities are connected by powerful identities and 
inequalities. In this section we introduce codes, entropy, divergence, redundancy 
and mutual information which are considered to be the most important concepts. 

1 1 Shannon's break-through 

Shannon's 1948 paper [Shannon, 19481: "A mathematical theory of communica- 
tion" marks the birth of modern information theory. I t  immediately caught the 
interest of engineers, mathematicians and other scientists. Naturally, one had 
speculated before Shannon about the nature of information but mainly at  the 
qualitative level. Precise and widely applicable notions and tools did not exist 
before Shannon. 

Shannon focused on engineering-type problems of communication. Because of 
the great impact for the economy, this is where the main interest from society lies. 
But information theory captures fundamental aspects of many other phenomena 
and has implications at the philosophical level regarding our understanding of the 
world of which we are part. More applied areas include the interrelated fields 
communication theory, coding theory, signal analysis and cryptography. 

1.2 Coding 

Information is always information about something. The description of information 
must be distinguished from this "something", just as the words used to describe a 
dog are different from the dog itself. Description of information in precise technical 
terms is important since, in Shannon's words it will allow "reproducing at  one 
point either exactly o r  approximately a message selected at  another point7'. The 
descriptions in information theory are called codes. 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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Table 1. Codebook for vowels in English. 

vowel 

a 
e 
i 
0 

u 
y 

An information source is some device or mechanism which generates elements 
from a certain set, the source alphabet A. Table 1 shows a code-book related to a 
source which generates a vowel of the English alphabet. The various code-words 
may be taken as a way to represent, indeed to code, the vowels. Or we may conceive 
the code-book as a strategy for obtaining information about the actual vowel from 
a knowledgeable "guru" via a series of yes/no questions. In our example, the 
first question will be "is the letter one of a, o, u or y?" . This corresponds to  a 
"1" as the first binay digit - or bit as we shall say - in the actual code-word. 
Continuing asking questions related to the further bits, we end up by knowing 
the actual vowel. The number of bits required in order to identify a vowel is the 
code-word length, i.e. the number of bits in the corresponding code-word. 

The term "bit" is used in two ways, as a rather loose reference to 0 or 1 (as 
above) and then, as a more precisely defined unit of information: A bit is the 
maximal amount of information you can obtain from a yes/no question . To 
clarify, consider questions posed as above but with respect to a modified code- 
book where 11, the code-word for a ,  is replaced by 111. If the two first questions 
are both answered by "yes", then, according to the new code-book, you should 
ask a new question which you can of course do, but it gives no further information 
as you already know that the actual letter must be a.  The definition points to 
classical logic with its reference to "yes/non (or "l/O" or "true/false"). In Section 
1.3 we shall follow up with a more precise mathematical treatment of the concepts 
"amount of information". 

To ensure unambiguous identification, we require that a code is prefix-free, i.e. 
no code-word in the code-book is allowed to be the beginning of another. Denoting 
code-word lengths by I,, x E A, Kraft's Inequality 

code-word code-word 
length 

11 2 
00 2 
01 2 
100 3 
1010 4 
1011 4 

must hold - indeed, the binary subintervals of the unit interval that correspond, 
via successive bisections, to the various code-words must be pairwise disjoint, 
hence have total length at most 1. And, in the other direction, if numbers 1, are 
given satisfying (1) then there exists a prefix-free code with the prescribed 1,'s as 
code-word lengths. 
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We may express Kraft's Inequality differently, as the property that any length 
function x n 1, must satisfy the lower bound restriction 

(2) 1, 2 - log, p, for all x E A 

for some probability distribution P = (px)xE~. Here and below, ''log2" denotes 
logarithm to the base 2. 

The case of equality in (1) corresponds to compact codes, i.e. codes where 
no code-word can be added to the code-book without breaking the prefix-free 
property. 

A guiding principle is to design codes that achieve efficient compression, i.e. 
which have as short code-word lengths as possible, understood in some appropriate 
way. Design criteria depend on the type of knowledge one has about the source. 
If, in the example, we actually know nothing about the source, then "minimax" is 
a suitable design criterion (and the code in Table 1 is not optimal as it is easy to 
design a code with maximal code-word lengths equal to 3 rather than 4). 

Consider another extreme where very detailed knowledge about the source is 
available. We have chosen to look at  Charles Dickens' "A Tale of Two Cities". It 
generates individual letters, spaces, punctuation marks etc. To simplify, we ignore 
the finer details and only pay attention to the standard letters. We may then 
summarize our knowledge about the source by listing the frequencies of letters, 
cf. Table 2. I t  can be proved that the code listed in the table as a Huffman code 
is optimal in the sense that it requires the smallest number of bits to encode the 
entire novel. This smallest number is 2.444.253 bits or in average 4.19 bits for each 
of the 583.426 letters. 

We stress that above we have only aimed at efficient coding of single letters. Our 
success in compression can then be expressed by the one number 4.19 (bitsjletter). 
We can also consider the optimal code as a reference code and measure the per- 
formance of other codes in relation to it. For instance, for the fixed length code 
which is also shown in Table 2, there is a redundancy of 0.81 bitsjletter, express- 
ing that these bits are superfluous when we compare with the optimally achievable 
compression. 

The situation could also be that originally, before we had detailed knowledge 
about the statistics of the letters in the novel, we used the fixed length code and 
then the redundancy tells us how much we can save by switching to an optimal 
code once we have obtained more detailed knowledge. 

If we code the entire novel using the optimal code in Table 2, the coded string 
starts off with 

which is decoded as "itwasthebestoftimes" corresponding to the opening words in 
Dickens' novel. 

What we have considered above is noiseless coding. If, however, errors can 
occur, many new problems turn up. For instance, if the 19th bit (0) and the 52nd 



Ch06-N51726.fm Page 174 Saturday, August 23,2008 2:46 PM @ I* 
- 

Peter Harremoes and Flemming Tops0e 

Table 2. Statistics of letters in "A Tale of Two Cities" and two codebooks. 

Letter 

a 
b 
c 
d 
e 
f 
g 
h 
1 

j 
k 
1 

m 
n 
o 
P 
q 
r 
s 
t 
u 
v 
w 
x 

Y 
z 

total = 

frequency 
count in % 

47064 8.07 
8140 1.40 

13224 2.27 
27485 4.71 
72883 12.49 
13155 2.25 
12120 2.08 
38360 6.57 
39786 6.82 

622 0.11 
4635 0.79 

21523 3.69 
14923 2.56 
41310 7.08 
45118 7.73 
9453 1.62 

655 0.11 
35956 6.16 
36772 6.30 
52396 8.98 
16218 2.78 
5065 0.87 

13835 2.37 
666 0.11 

11849 2.03 
213 0.04 

583.426 100 

fixed length 
word length 
00000 5 
00001 5 
00010 5 
00011 5 
00100 5 
00101 5 
00110 5 
00111 5 
01000 5 
o1001 5 
01010 5 
01011 5 
01100 5 
01101 5 
01110 5 
01111 5 
10000 5 
10001 5 
10010 5 
10011 5 
10100 5 
10101 5 
10110 5 
10111 5 
11000 5 
11001 5 
mean = 5.00 

Huffman code 
word length 
1110 4 
101111 6 
01111 5 
0110 4 
000 3 
111100 6 
111101 6 
1000 4 
1010 4 
1111111110 10 
11111110 8 
10110 5 
00111 5 
1101 4 
1100 4 
101110 6 
1111111100 10 
0010 4 
1001 4 
010 3 
00110 5 
1111110 7 
01110 5 
1111111101 10 
111110 6 
1111111111 10 

mean = 4.19 

ideal 
length 

3.63 
6.16 
5.46 
4.41 
3.00 
5.47 
5.59 
3.93 
3.87 
9.87 
6.98 
4.76 
5.29 
3.82 
3.69 
5.95 
9.80 
4.02 
3.99 
3.48 
5.17 
6.85 
5.40 
9.77 
5.62 

11.42 
H = 4.16 
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bit (1) in the above string are transmitted incorrectly, decoding leads to the string 
"itwalierfttltotimes" with an irritating period out of synchronization. We realize 
the need to develop tools for detection and correction of errors. There is a huge 
literature on these aspects. Here we only note that some redundancy is needed to 
prevent corruption of the whole message caused by a few accidental errors. Indeed, 
if we use the fixed length code of Table 2 instead of the optimal code, we are much 
better protected against occasional bit flip errors. 

Coding is partly of a combinatorial nature due to the requirement of integers 
as code-word lengths. For theoretical discussions it is desirable to take the com- 
binatorial dimension out of coding. This can be done by allowing arbitrary real 
numbers as code-word lengths. We therefore define an idealized code over the al- 
phabet A as a map x n l, of A into the positive real numbers such that Kraft's 
Inequality holds, i.e. such that 

The 1,'s are thought of as code-word lengths and the idealization lies in accepting 
arbitrary real values for the 1,'s. If equality holds in Inequality 3 then the code 
is said to be compact. Apparently, there is a one-to-one relationship between 
compact codes and probability distributions. It is given by the formulas 

When these formulas hold, we say that the code K is adapted to P or that P 
matches K .  

We can then consider optimal idealized codes, in analogy with the notion of 
ordinary (combinatorial) optimal codes. It turns out that an optimal idealized 
code is unique. For the example chosen, the idealized code shown in Table 2 in 
two-decimal precision is in fact the optimal one. If we use this code, and accept 
the interpretation as lengths of idealized code-words, we should use 2.426.739,lO 
bits to encode the entire novel. If we allow idealized coding, the performance of 
other codes should be measured relative to the optimal idealized code. Hence the 
redundancy of the fixed length code in Table 2 should be 0.84 rather than 0.81 
bitslletter and the redundancy of the Huffman code is 0.03 bitslletter. 

1.3 Entropy 

The relative frequencies in Table 2 are formally defining a probability distribution 
over the 26-letter alphabet. For many considerations it is not important whether a 
distribution describes observed relative frequencies or unobserved random events. 
Therefore assume that an alphabet A is given with a known probability distribution 
P = ( P ~ ) ~ E A .  

The compression problem of the previous section gives rise to the definition of 
the entropy H ( P )  of P as: 
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it being understood that the minimum is over all idealized codes K (with the 
1,'s denoting the idealized code-word lengths). Thus, entropy is minimal average 
code-word length understood in an idealized sense. A key result is the analytical 
identification of entropy : 

THEOREM 1 (First main theorem of information theory). The entropy of P de- 
fined by (5) can be expressed analytically as follows: 

The relation of entropy to coding was emphasized by introducing the concept 
of idealized codes. By Theorem 1, the idealized code adapted to P is the optimal 
idealized code of a source governed by P. We will return to the duality expressed 
by (4) in Section 3. 

The idealization in Theorem 1 is a great convenience and no serious restric- 
tion. To emphasize this, let us insist, for a moment, to use codes with integer 
lengths. Then we can choose code-lengths 1, close to - log, p, and ensure in this 
way that H(P) 5 x p x l z  < H ( P )  + 1. Moreover, if we consider a source gener- 
ating sequences of letters independently according to the distribution PI then the 
minimum average code-word length per letter when we consider longer and longer 
sequences of letters converges to H(P) .  

Often, entropy is measured in natural units ("nats") rather than in bits. In (6) 
then, log2 should be replaced by In and exponentiation should be with respect to 
e rather than 2. Clearly, H in nats equals H in bits multiplied by In 2 zz 0.6931. 

1.4 Divergence and redundancy 

Assume that you use an idealized code K with code-word lengths I, ; x E A to 
represent data but realize - due to new information obtained or otherwise - 
that it is better to change to another idealized code, r;' with code-word lengths 
1: ; 2 E A. Redundancy or divergence, which we denote D(K' I~K), measures the 
gain in bits that can be obtained by changing to the new idealized code. The 
idea behind the definition is that the preference for n' reflects the belief that this 
idealized code could be optimal, i.e. the distribution matching it, P = 
could be the "true" distribution. This suggests the definition 

If Q = ( Q ~ ) , ~ A  denotes the distribution matching K (thus Q is the distribution 
which you originally found best represented the data) we can express D ( K ' ~ ~ K )  in 
terms of P and Q and write D(PIIQ) instead. This is the notation mainly found 
in the literature. I t  is the Kullback-Leibler divergence, or just the divergence, from 
P to  Q. We find that 
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The quantity is of great significance for many theoretical studies and for ap- 
plications. The interpretation focuses on a situation where you start with partial 
knowledge and then, somehow, obtain information which makes you change be- 
haviour. The properties of the logarithmic function implies that 0 < D(PIlQ) with 
equality if and only if P = Q. This is the most basic inequality of information 
theory. 

We find that 

i.e. actual average code length is the sum of minimal average code length and 
divergence. We refer to (9) as the linking identity. 

For several applications it is important that divergence makes sense also for 
continuous distributions. Formally this can be achieved via a limiting process 
based on the discrete case or one may define divergence directly as an integral. 
For the present text we will base the exposition on the discrete case and rely on 
an intuitive understanding when we comment on the continuous case. 

1.5 Mutual information 

It is important that key notions such as entropy can be extended from dealing only 
with distributions to incorporate also random elements. The entropy of a random 
element is defined as the entropy of the corresponding distribution. If the random 
element X is defined on a sample space governed by the probability measure P 
and X takes values in A, then, denoting the distribution of X by Px, we define 
the entropy of X by H(X)  = H(Px) ,  i.e. 

(10) H(X)  = - Px (x) log, Px (x) = - P(X = x) log, P(X = x) . 
z €A zEA 

As H(X)  only depends on X through its distribution and as it is the actual 
values of X which carry semantic information, one must admit that the extension 
only contributes moderately to incorporate semantic aspects. 

If several random elements are defined on the same probability space, joint en-  
tropy such as H(X,  Y) makes good sense. So does conditional entropy, H(XIY), 
defined in the natural way as the average of the entropies of the conditional dis- 
tributions (here indicated by XIY = y or by Pxly): 

The conditional entropy H(X1Y) is also called the equivocation of X given Y. It 
represents the uncertainty that remains about X after having obtained information 
about Y. 



Ch06-N51726.fm Page 178 Saturday, August 23,2008 2:46 PM @ I* 

178 Peter Harremob and Flemming Topsee 

Information theory operates with a number of intuitive identities and inequal- 
ities. Here we mention what is often referred to as Shannon's Identity, (12), and 
Shannon's Inequality, either (13) or (14) below: 

Equality holds in (13) and (14) if and only if X and Y are independent (assuming 
that the involved entropies are finite). Regarding (13) and (14), a simple proof 
depends on the basic inequality D > 0 in connection with (17) and (18) below. 

The availability of notions of entropy for random elements is a great help in 
many situations. For instance, one may express development in time through a 
series XI ,  X2, - . . of random elements which could represent bits, letters, words or 
other entities. 

Consider two random elements, X and Y with our interest attached to X .  To 
begin with we have no information about X. Assume now that we can obtain 
information, not about X, but about Y. Mutual information, I ( X ;  Y), measures 
the amount of information in bits we can obtain about X by knowing Y. At least 
three different ideas for a sensible definition are possible: Firstly, as uncertainty 
removed, secondly, as average redundancy and thirdly, admittedly less intuitive, 
as divergence related to a change of joint distributions. It  is a surprising fact that 
all suggested definitions give the same quantity. In more detail: 

In (17), Px @ Py denotes the distribution (x, y) n Px(x) . Py (y) corresponding 
to independence of X and Y. 

Rewriting (15) as 

and combining with (15) and (12) we realize that 

This symmetry of mutual information has puzzled many authors as it is not 
intuitively obvious that information about X,  knowing Y quantitatively amounts 
to the same as information about Y, knowing X. 

Another significant observation is that we may characterize entropy as self- 
information since, for Y = X ,  (15) shows that 
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Previously we emphasized that information is always information about something. 
So entropy of a random variable is a measure of information in the seemingly 
weak sense that this "something" is nothing but the variable itself. Although this 
interpretation is self-referential it has turned out to be very useful. 

1.6 Data reduction and side information 

If, when studying a certain phenomenon, you obtain extra information, referred to 
as side information,  this results in a data reduction and you will expect quantities 
like entropy and divergence to decrease. Sometimes the extra information can be 
interpreted as information about the context or about the situation. 

Shannon's Inequality (14) can be viewed as a data reduction inequality. There, 
the side information was given by a random element. Another way to model side 
information is via a partition of the relevant sample space. Recall that a partition 
of a set A is a collection of non-empty, non-overlapping subsets of A with union 
A; the subsets are referred to as the classes of the partition. 

As an example, consider prediction of the two first letters XI, xn in an English 
text and assume that, at some stage, you obtain information about the first letter, 
XI .  As a model you may use the random element XI, X2 with X1 expressing the 
side information. Or you may consider modeling based on the partition of the 
original set of all 26 x 26 = 676 two-letter words into the 26 classes defined by 
fixing the first letter. 

Consider distributions over a general alphabet A and let 6 denote a partition 
of A. Denote the classes of 6 by Ai (with i ranging over some appropriate index 
set) and denote the set of classes by d h .  In mathematics this is the quotient space 
h l 6 .  If P is a source over A, dP denotes the derived source over dA given by 
dP(Ai)  = P(Ai) .  By the conditional entropy of P given the side information 6 
we understand the quantity 

with summation over all indices (which could be taken to be summation over dA). 
Similarly, if two sources over A are considered, conditional divergence under the 
side information 6 is defined by 

Simple algebraic manipulations show that the following data reduction identities 
hold: 
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Immediate corollaries are the data reduction inequalities 

as well as the inequalities under conditioning 

As a more special corollary of (26) we mention Pinsker's Inequality 

where V(P, Q) = lp, - q,l denotes total variation between P and Q. This 
inequality is important as the basic notion of convergence of distributions in an 
information theoretical sense, called convergence in information and defined by the 
requirement D(PnIIP) -+ 0, is then seen to imply convergence in total variation, 
V(Pn, P )  -+ 0 which is an important and well-known concept. 

1 7 Mixing 

Another important process, which applies to distributions is that of mixing. Intu- 
itively one should think that mixing results in more "smeared out" distributions, 
hence should result in an increase in entropy. Regarding divergence, the "smear- 
ing out" should have a tendency to bring distributions closer together, hence in 
diminishing divergence. 

To be precise, consider a mixture, say a finite mixture 

of N distributions over A (thus, the a 's  are non-negative and add to 1). 
Just as in the case of data reduction, certain natural inequalities suggest them- 

selves and these can be derived from simple identities. In fact, from the linking 
identity (9), you easily derive the following identities: 

As corollaries we see that entropy P n H ( P )  is concave and divergence P n 
D(PIIQ) convex for fixed Q: 
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The common term which appears in (31) and in (32) is of importance in its own 
right, and has particular significance for an even mixture Po = +p1 + ;p2 when 
it is called Jensen-Shannon divergence. Notation and definition is as follows: 

Jensen-Shannon divergence is a smoothed and symmetrized version of diver- 
gence. In fact, it is the square of a metric, which metrizes convergence in total 
variation. 

1.8 Compression of correlated data 

A basic theme has been compression of data. This guided us via coding to key 
quantities of information theory. The simplest situation concerns a single source, 
but the concepts can be applied also in more complicated cases when several 
sources interact and produce correlated data. This already emerged from the 
definitions involving conditioning. 

As a more concrete type of application we point to compression of data in a 
multiple access channel. To simplify, assume that there are only two senders and 
one receiver. Sender 1 knows the value of the random variable X  and Sender 2  the 
value of Y .  The random variables may be correlated. The same channel, assumed 
noiseless, is available to both senders. There is only one receiver. If there were no 
collaboration between the senders, Sender 1 could, optimally compress the data 
to the rate R1 = H ( X )  bits and Sender 2 to the rate R2 = H ( Y )  bits, resulting in 
a joint rate of R1 + R2 = H ( X )  + H ( Y )  bits needed for the receiver to know both 
X  and Y .  This should be compared to the theoretically optimal joint compression 
of the joint variable ( X ,  Y )  , which is 

In fact, in a remarkable paper [Slepian and Wolf, 19731, Slepian and Wolf showed 
that it is possible for Sender 1 to compress to H  ( X )  bits and independently for 
Sender 2 to compress to H  (Y I X )  bits, in such a way that the receiver is able to  
recover X  and Y. Similarly, Sender 1 can compress to H  ( X  I Y )  bits and Sender 
2 to H  ( Y )  bits, and the receiver is still able to recover X  and Y. As it is possible 
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\ i Slepim-Wolf coding 

Figure 1. Compression region obtained by Slepian-Wolf coding. 

to introduce timesharing between the two protocols described this leads to the 
following result: The rates of compression R1 and R2 are achievable if and only if 

For a technically correct result, one has to consider multiple outcomes of X and 
Y and also to allow a small probability of error when X and Y are recovered. 

Note that the result does not tell which of the two protocols is the best one or 
whether it is one of the timesharing protocols. 

1.9 Other definitions of basic information theoretical quantities 

The key definitions of information theory are those rooted in Shannon's work. 
There are, however, many other ways of defining entropy and related quantities. 
Here we shall introduce certain entropy and divergence measures going back to 
Rknyi [RCnyi, 19611. These measures appear in many studies, cf. [Cambell, 19651, 
[CsiszBr, 19951 and [Arndt, 20011. Moreover, they have operational definitions 
which relate directly to coding and as such may be considered to be members of 
the "Shannon family'' of information measures. 

Previously, much attention was given to the axiomatic approach. In our opinion 
this often hides essential aspects. When possible, an approach based on operational 
definitions is preferable. 

Consider two probability distributions P and Q over the discrete alphabet A 
and a parameter CY €]O,l[. Let X and y be the compact codes adapted to P and 
Q, respectively. If we want to express belief in P as well as in Q, a possibility is to 
consider the convex mixture r; = aX + (1 - o)y. Then f i  is also an idealized code 
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but it is not compact except when X = y. However, K - d is a compact code with 
d 2 0 defined by 

The constant d is a measure of discrepancy between P and Q. We define the 
Re'nyi divergence of order a between P and Q, denoted D,(PIIQ), to be &d or, 
in terms of P and Q, 

The chosen normalization ensures that we regain the usual Kullback-Leibler di- 
vergence as the limit of D, for a -, 1. Formally, (39) makes sense for all real 
a .  

One may consider divergence as the most fundamental concept of information 
theory. Then mutual information and entropy appear as derived concepts. For 
a finite alphabet A, entropy differences may be defined directly from divergence 
using the guiding equation 

with U the uniform distribution over A. Then Re'nyi7s entropy of P of order a is 
obtained if one adds the assumption that the entropy of a uniform distribution for 
any sensible notion of entropy must be the Hartley entropy, the logarithm of the 
size of the alphabet. Doing that, one finds that (40) leads to the quantity 

It is arguably more satisfactory first to define mutual information and then to 
define entropy as self-information, cf. (20). If one bases mutual information on 
(16) one will end up with the R6nyi entropy of order a, whereas, if one uses (17) 
as the basis for mutual information, one ends up with R6nyi entropy, not of order 
a though, but of order 2 -a .  Thus, leaving the classical Shannon case, it appears 
that entropy "splits up" in H, and H2-,. 

In certain parts of non-classical statistical physics the quantity obtained from 
(41) by using the approximation lnu z u - 1 has attached much interest, but a 
direct operational definition is not yet clear. For more on this form of entropy, , 
the Tsallis entropy see the contribution on physics in this handbook. 

The considerations in this section point to some difficulties when leaving purely 
classical grounds. A complete clarification must depend on operational definitions 
and has to await further progress. 
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2 BEYOND YES AND NO 

Coding is used for storing, transmission and reconstruction of information. If the 
information is carried by a continuous variable, such as a 2-dimensional image or 
the result of a measurement of a physical quantity, perfect storage is not possible 
in a digital medium. This poses serious technical problems for which there is no 
universal solution. These problems are handled in rate-distortion theory. The 
interest for this Handbook lies in the fundamental problem of the nature of the 
world. Discrete or continuous? Does modeling with continuous quantities make 
sense? Though rate-distortion theory does not contribute to answer the philosoph- 
ical questions it does give a clue to what i s  possible if you use modeling by the 
continuous. 

2.1 Rate distortion theory 

Consider a continuous random variable X with values in the source alphabet A 
and with distribution Px. In simple examples, A is one of the Euclidean spaces 
Rn or a subspace thereof but more complicated settings may arise, for instance in 
image analysis. The continuous character means that C,,,, Px(x) < 1 (typically, 
this sum is 0). 

The treatment of problems of coding and reconstruction of continuous data 
builds on a natural idea of quantization. Abstractly, this operates with a finite 
reconstruction alphabet B, and a quantizer 4 : A -+ B which maps a E h into its 
reconstruction point b = q5(a). Considering, for each b E B, the set of a E A with 
+(a) = b we realize that this defines a partition of A. For simplicity we shall only 
consider the case when B is a subset of h and $(b) = b for each b E B. The idea 
is illustrated by Figure 2. 

A rate-distortion code is an idealized code over B. Associated with a rate- 
distortion code we consider the length function, which maps x E A to the length 
of the "code-word" associated with q!~(x). The reconstruction points are used to 
define the decoding of the code in an obvious manner. If we ignore the requirement 
to choose reconstruction points, this construction amounts to the same as a data 
reduction, cf. Section 1.6. 

In order to study the quality of reconstruction we introduce a distortion function 
d defined on A (formally on A x B). This we may also think of as an expression of 
the relevance -with a high degree of relevance corresponding to  a small distortion. 
The quantity of interest is the distortion d ( x ,  2 )  with i = q5(x). Maximizing over A 
or taking mean values over A with respect to Px we obtain the maximal distortion 
and the mean distortion. In practice, e.g. in image analysis, it is often difficult 
to specify sensible distortion functions. Anyhow, the set-up in rate distortion 
theory, especially the choice of distortion function, may be seen as one way to 
build semantic elements into information theory. 

As examples of distortion measures on R we mention squared error distortion 
d (x, ?) = (x - k12 and Hamming distortion, which is 0 if 2 = x and 1 other- 
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Figure 2. Two quantizers with partitions and reconstruction points shown. It is 
far from obvious which of the quantizers is the best one. 

wise. Thus Hamming distortion tells whether a reproduction is perfect or not 
whereas squared error distortion weighs small geometric errors as being of small 
significance. Hamming distortion is the distortion function used in ordinary in- 
formation theory and corresponds to the situation where one only distinguishes 
between "yes" and "no" or "black" and "white". 

By B (x, E) we denote the distortion ball around x with radius E, i.e. the set of 
y such that d ( x ,  y) 5 E.  The following result is analogous to Kraft's inequality as 
expressed by (2) : 

THEOREM 2. Let 1 : X -+ R+ be the length function of a rate distortion code 
with maximal distortion E.  Then  there exists a probability distribution P such that, 
for all x E A, 

The converse is only partially true, but holds asymptotically if one considers 
average length of length functions corresponding to long sequences of inputs. We 
see that a small E corresponds to large code lengths. The inequality should be 
considered as a distortion version of Kraft's inequality, and it extends the duality 
(4) to cover also rate-distortion. 

If a probability distribution on the source alphabet h is given, then the quantizer 
induces a probability distribution on the reconstruction alphabet B. The rate of 
the quantizer is defined as the entropy of the induced probability distribution, i.e. 
as R = H(4(Px)) (here, 4(Px) denotes the distribution of 4). A high rate reflects 
a fine resolution. Consider, as above, a fixed continuous random variable with 
distribution Px. In order to characterize the performance of any quantization 
method as described above it is reasonable to use two quantities, the rate R and 

the mean distortion D = E d ( X ,  X) . The set of feasible values of (D, R) forms ( 7 
the rate-distortion region for the distribution Px. If distortion is small, the rate 
must be large. Therefore, not all points in R2 are feasible. The borderline between 
feasible and infeasible points is called the rate-distortion curve and is most often 
expressed as the rate-distortion function, cf. Figure 3. It describes the optimal 
trade-off between distortion and rate. 
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Figure 3. Rate distortion function for a Gaussain distribution. 

In special cases it is possible to calculate the rate distortion function exactly 
using Shannon's celebrated Rate Distortion Theorem. For instance, let X be Gaus- 
sian with variance u2. Then the rate-distortion function is given by 

In other cases the rate-distortion function can be approximated using numerical 
methods. In cases where the rate-distortion function can be determined the results 
from the previous sections can be extended to a continuous setting. In practice 
it has turned out to be quite difficult to implement these theoretical ideas. The 
reason is that practical problems typically involve a high number of variables, and 
it is very difficult to specify distortion measures and probability distributions on 
these high-dimensional spaces. 

Let X be a random variable with probability density f .  The dzfierential entropy 
of X is given by the formula 

If we use squared error distortion, the rate-distortion function is given, approxi- 
mately, by 

1 
(45) R (d) FS h (X) - 5 log2 (2ne . d )  

for small values of d. This also gives an interpretation of the differential entropy 
as 
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In fact, the right hand side converges to h ( X )  for d tending to zero. 

2.2 Aspects of quantum information theory 

Classical information theory is based on natural concepts and tools from analysis 
and probability theory. The first many years one did not take the physical dimen- 
sion into consideration. It was believed that the nature of the physical devices 
used as carriers of information would not have any impact on the theory itself. In 
particular, it was expected that the classical theory would carry over and apply to 
quantum systems without essential changes as soon as the appropriate concepts 
had been identified. In the 70'ties and 80'ties studies looking into these questions 
were initiated and a number of preliminary results established. However, it was 
not until the 9O'ties that the new quantum information theory really took off and 
gained momentum. This was partly due to progress by experimental physicists. 

Today, quantum information theory is a thriving field, but still containing con- 
troversies and basic open questions. The theory is fundamentally different from 
the classical theory. The new aspects are interesting from a mathematical, a phys- 
ical as well as a purely philosophical point of view. The theory brings us beyond 
the "yes" and "no" tied to the classical theory and bound to the fundamental unit 
of a bit. 

A quantum experiment provides a connection between the preparation of the sys- 
tem and the possible measurements on the system. The focus on measurements 
forms an extra layer between the system and the observer which is necessary in 
order to enable meaningful statements about the system. The set-up may be con- 
ceived as a "black box", a "coupling" or an "information channel" between the 
preparation and the measuring device. Two preparations represent the same state 
of the system if the preparations cannot be distinguished by any available mea- 
surement. Defined in this way, the set of all states, the state space, depends on the 
set of possible measurements. If, therefore, an experiment involves a preparation 
and a measurement on an electron and the state found is S, it will be misleading 
to say that "the electron is in state S". Instead, you may say that "our knowledge 
about the electron is completely described by the state S". 

Usually, in quantum physics, the state space can be identified with a set of 
density matrices (or operators). For the simplest quantum systems, the state 
space consists of 2 x 2 density matrices, matrices of the form 

where the real numbers a,  p and y satisfy the relation 
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(with i the complex imaginary unit)'. Geometrically, this state space is a ball. 
States on the boundary of the state space are pure states whereas states in the 
interior are mixed states. The principle behind mixing is the following: Consider 
two possible preparations. Construct a new preparation by flipping a coin and 
choose the first preparation if the coin shows "head" and the second preparation 
if the coin shows "tail". In this way, the resulting preparation is constructed by 
mixing. A mixed state can always be represented as a mixture of pure states. 
In classical physics, the normal situation is that any state is a unique mixture 
of pure states. A special feature of quantum physics is that a mixed state can 
always be obtained in several ways as a mixture of pure states. This implies 
that, if one observes a mixed state, it is theoretically impossible to infer which 
preparations were involved in the mixing. This is a fundamental new feature of 
quantum information theory. 

The fact that the state space has a high degree of symmetry - as was the 
case with the ball above - is no coincidence. In general, symmetries in the state 
space reflect that physical operations like rotations have to leave the state space 
invariant. 

A simple system as described by matrices of the form (47) is called a qubit. 
Physically, a qubit may be implemented by a particle of spin with a ,  P and y 
indicating direction of the spin. 

The qubit is the unit of quantum information theory. This is a natural choice 
of unit as one can device a protocol which, with high fidelity, transforms any 
quantum information system into a system involving only qubits. Quite parallel 
to the classical theory, main tasks of quantum information theory are then to 
represent complicated quantum systems by qubits and to  consider representation, 
transmission and reconstruction of states. 

It  is easy to encode a bit into a qubit. By orthogonality of spin up and spin 
down, one can perform a measurement which recovers the bit perfectly. In this way 
a preparation described by the probability distribution ($  + a, - a )  is mapped 
into the density matrix 

This shows how bits and, more generally, any classical information system can 
be embedded in quantum systems. Thus quantum information theory contains 
classical information theory. The two theories are not equivalent as there is no 
way in which a qubit can be represented by classical bits. 

In order to manipulate quantum information, we need a quantum computer. 
Recall that a classical computer is based on gates which operates on one or two 
bits. Similar gates can be constructed also for the manipulation of qubits but there 
is an important restriction of reversibility on the gates in a quantum computer. 

'A description in terms of vectors in Hilbert space is also possible, but the  density matrices 
express in a better way essential aspects related to  mixing and measurements. 
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According to this restriction, to each quantum gate, there should correspond a 
reverse gate which transforms the output into the input. For instance it is not 
possible to transform two qubits into one qubit. Similarly it is not possible to 
transform one qubit into two qubits. This is called the No-cloning Principle. 
Thus quantum information cannot be created, copied or destroyed. In this sense 
quantum information is physical and behaves somewhat like a liquid. 

2.3 Entanglement 

In order to explain, if only briefly, the important notion of entanglement, consider a 
system composed of initially independent subsystems, with an associated observer 
who can prepare a quantum state. If the observers are allowed to manipulate 
the states by local quantum operations and classical communication, the states of 
the total system which are achievable in this way are said to be separable. If the 
observers are allowed also to exchange quantum information (via qubits or other 
non-local quantum operations) then the joint system may be described by states 
which are not separable. These states are said to be entangled. 

The electrons in a Helium atom have total spin 0. This means that if one 
of the electrons is measured to have spin up, the other must have spin down (if 
measured in the same direction). The two electrons behave like one and such a 
pair is called an Einstein-Podolsky-Rosen pair, an EPR-pair for short. This is the 
simplest example of an entangled system. 

Above, we saw that bits can be encoded into qubits, but qubits cannot be en- 
coded into bits with only classical resources available. If entanglement is available 
to Alice and Bob in a quantum communication system, this leads to  special pos- 
sibilities. In this case two bits may be encoded into one qubit. This is called 
super-dense coding. The two bits are encoded into two qubits in the sense that 
the decoder (Bob) receives two qubits. The new thing is that the first qubit (which 
is one of the particles in an EPR-pair) may be received by both Alice and Bob 
before Alice knows which bit to send. Although the sharing of an EPR-pair does 
not represent classical communication, it is a kind of communication that makes 
the measurement apparatus more sensitive and enables measurements which would 
not otherwise be possible. 

If Alice and Bob share an EPR-pair it is also possible to encode a qubit into 
two bits. This process is called quantum teleportation. The reason for this name is 
that our entire knowledge about the quantum particle is contained in the density 
matrix and at the output we receive a particle with exactly the same density ma- 
trix. One may say that the particle was destroyed at the input and reconstructed 
at the output, but nothing is lost by the destruction and reconstruction, so many 
physicists use the terminology that the particle was teleported from the input to 
the output. This leads to the physically and philosophically interesting question: 
Can a particle be identified with the knowledge we have about the particle? Math- 
ematically this is not of significance because all calculations concern the knowledge 
we have about the system as represented by its density matrix. 
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3 DUALITY BETWEEN TRUTH AND DESCRIPTION 

It is important to distinguish between ontology, how the world is, and epistemology, 
observations of the world. Niels Bohr said that physics deals with what can be said 
about nature, not how nature is. The positivists take another position: Physics 
should uncover objective knowledge about nature. Ontology and epistemology are 
usually considered as opposed, but information theory offers a position in between. 
Truth and description are different, but there is a duality between the concepts. 
To any "true" model there exists an optimal description and, to any description, 
there exists a model of the world such that the description is optimal if the model is 
"true". Here the word true is in quotation marks because it makes associations to 
ontology though objective truth is disputable. Instead of speaking about "truth" 
we shall focus on observations - those already made and observations planned 
for the future. 

3. I Elements of game theory 

As a prelude to the subsections to follow we provide a short introduction to certain 
parts of game theory. 

In game theory situations are modeled where "players" interact in such a way 
that the satisfaction of each player (or group of players) depends on actions, strate- 
gies, chosen by all players. Typically, the players are individuals, but animals, 
machines or other entities could also be considered. We shall only deal with static 
games, games with no succession of strategic choices. The many variants of the 
theory operates with different rules regarding the possible actions of the players 
and the flow of information among them. 

A central theme is the investigation of possibilities for rational behaviour of the 
players. Here, the notion of equilibrium comes in. The idea is that if, somehow, 
the players can decide under the rules of the game to choose specific strategies this 
is a sign of stability and features associated with such a collective choice can be 
expected to be observed. For our treatment of game theory it is immaterial how 
the decisions of the players are arrived at. 

Assume that there are n players and that the cost or loss for player i is given by 
a real-valued loss function (XI, . . . , x,) n ci(x1, - . . , xn) where X I ,  . . . , x, repre- 
sents the strategic choices by the players. The set of strategies XI, . . . , x, defines 
a Nash equilibrium if no player can benefit from a change of strategy provided the 
other players stick to their strategies. For example, for Player 1, no strategy x; 
different from xl  will yield a lower loss, so cl (x;, 22, . . . , x,) 2 cl(x1,22, . . . , x,) 
must hold in a Nash equilibrium. This notion of equilibrium is related to non- 
cooperation among the players. It may well be that, for strategies which obey the 
criteria of a Nash equilibrium, two or more of the players may jointly benefit from 
a change of their strategies whereas no single player cannot benefit from such a 
change. 



Ch06-N51726.fm Page 191 Saturday, August 23,2008 2:46 PM @ I* 

The Quantitative Theory of Information 

scissors 

stone -1 1 0 

Table 3. Loss function in the scissors-paper-stone game 

A Nash equilibrium may not exist. However, a general result guarantees that a, 
often unique, Nash equilibrium exists if certain convexity assumptions regarding 
the loss functions are fulfilled. These conditions normally reflect acceptance of 
mixed strategies or randomization. 

EXAMPLE 3. Consider the two-person scissors-paper-stone game. The loss func- 
tion for, say, Player 1 is shown in Table 3. We assume that c2 = -cl. This is an 
instance of a two-person zero-sum game, reflecting that what is good for the one 
player is bad - and equally much so - for the other. 

Clearly, there is no Nash equilibrium for this game, no set of strategies you can 
expect the players to agree on. The game is psychological in nature and does not 
encourage rational considerations. However, if the game is repeated many times 
and we allow randomization and use averaging to define the new loss functions, 
we find that there is a unique choice of strategies which yields a Nash equilibrium, 
viz. for both players to choose among the three "pure strategies" with equal 
probabilities. 

Games such as the psychologically thrilling scissors-paper-stone game are of- 
ten best treated by invoking methods of artificial intelligence, learning theory, 
non-classical logic and psychology. We note that by allowing randomization, an 
initial game of hazard is turned into a conflict situation which encourages rational 
behaviour, hence opens up for quantitative statements. 

3.2 Games of information 

Many problems of information theory involve optimization in a situations that 
can be modelled as conflicts. Among the relevant problems we mention predic- 
tion, universal coding, source coding, cryptography and, as the key case we shall 
consider, the maximum entropy principle. The relevant games for these prob- 
lems are among the simplest of game theory, the two-person zero-sum games, cf. 
Example 3 above. 

For these games of information one of the players represents "you" as a person 
seeking information and the other represents the area you are seeking information 
about. We choose to  refer to the players as Observer and Nature, respectively. In 
any given context you may prefer to switch to other names, say statistician/model, 
physicist/system, motherlchild, investor/market or what the case may be. Strate- 
gies available to Observer are referred to as descriptors and strategies available to 
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Nature are called worlds. The set of strategies available to the two players are de- 
noted V, respectively W. We refer to W as the set of possible worlds. Our preferred 
generic notation for descriptors and worlds are, respectively K and P which, later, 
will correspond to, respectively, idealized codes and probability distributions. 

Seen from the point of view of Observer, the loss function (P, K) n c(P, n) 
represents the cost in some suitable sense when the world chosen by Nature is 
P and the descriptor chosen by Observer is n. The zero-sum character of the 
game dictates that we take -c as the loss function for Nature. Then, the Nash 
equilibrium condition for a pair of strategies (P*, K*) amounts to the validity of 
the saddle-value inequalities 

(50) c(P, K*) 5 c(P*, K*) 5 c(P*, K) for all P E W , n E V . 

The risk associated with Observers choice K E V is defined as the maximal 
possible cost: 

and the minimal risk is defined by 

(52) rmin = min r (Q) . 
KEV 

A descriptor n E V is optimal if r(Q) = rmi,. 

Similar quantities for Nature are the gain (more accurately, the guaranteed gain) 

(53) h(P)  = min c(P, n) , 
K E V  

and the maximal gain 

(54) h,,, = max h(P)  . 
P E W  

The requirement of optimality for Nature therefore amounts to the equality h(P) = 

hmaz. 
Quite generally, the mini-max inequality 

holds. If there is equality in (55), the common value (assumed finite) is simply 
called the value of the game. Existence of the value is a kind of equilibrium: 

THEOREM 4. If a game of information has a Nash equilibrium, the value of the 
game exists and Observer and Nature both have optimal strategies. 

In fact, the existence of a Nash equilibrium is also necessary for the conclusion 
of the theorem. The search for a Nash equilibrium is, therefore, quite important. 
In some special cases, Nash equilibria are related to  robust descriptors by which 
we mean descriptors n E V such that, for some finite constant h, c(P, K) = h for 
all possible worlds P 2 .  

2 ~ h e s e  strategies correspond closely to the exponential families known from statistics. 
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We now introduce an additional assumption of duality by requiring that every 
world has a best descriptor. In more detail we require that to any possible world 
Po, there exists a descriptor KO, the descriptor adapted to Po, such that 

(56) min  PO, K) = c(Po, KO) , 
nEV 

and further, we assume that the minimum is only attained for K = KO (unless 
c(Po, K ~ )  = m). The condition implies that the gain associated with Po is given 
by h(Po) = c(Po, KO). Also note that the right hand inequality of the saddle value 
inequalities (50) is automatic under this condition (with K* the descriptor adapted 
to P*).  It  is easy to  establish the following simple, yet powerful result: 

THEOREM 5. Assume that P* is a possible world and that the descriptor K* 

adapted to P* is robust. Then the pair (P*,  K*) is the unique Nash equilibrium 
pair. 

Thus, in the search for Nash equilibrium strategies, one may first investigate if 
robust descriptors can be found. 

3.3 The maximum entropy principle 

Consider the set 23 of all idealized codes K = (l,),EA over the discrete alphabet A 
and let there be given a set W of distributions over A. Take average code length 
as cost function, i.e. 

By the linking identity (9), the duality requirements related to (56) are satisfied 
and also, we realize that the gain associated with P E W is nothing but the entropy 
of P .  Therefore, h,,, is the maxzmum entropy value given by 

(58) Hma, = Hma,(W) = sup H ( P )  
PEW 

and an optimal strategy for Nature is the same as a maximum entropy distribu- 
tion, a distribution P* E W with H(P*)  = H,,,. In this way, game theoretical 
considerations have led to a derivation of the maximum entropy principle - which 
encourages the choice of a maximum entropy distribution as the preferred distri- 
bution to work with. 

EXAMPLE 6. Assume that the alphabet A is finite with n elements and let W be 
the set of all distributions over A. Clearly, the constant descriptor K = ( l ~ g ~ n ) , ~ ~  
is robust and hence, by Theorem 5 this descriptor is optimal for Observer and 
the associated distribution, i.e. the uniform distribution, is the maximum entropy 
distribution. 

EXAMPLE 7. Let A = {0,1,2, . . . ) ,  let X > 0 and consider the set W of all 
distributions with mean value A. Let K = be an idealized code. Clearly, if 
K is of the form 
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then (P, K) = cr + ,BX for all P E W, hence K is robust. The constant a can be 
determined from (3) and by a proper choice of ,B one finds that the associated 
distribution is one of the possible worlds. This then, again by Theorem 5, must be 
the maximum entropy distribution. Going through the calculations one finds that 
for this example, the maximum entropy distribution is the geometric distribution 
with mean value A, i.e. the distribution P* = given by 

The length function for the optimal descriptor is given by 

A S 1  
(61) 1, = log,(X + 1) + n log, - 

X 

and the maximum entropy value is 

X f l  
(62) Hmaz = 10g2(X + 1) + X log, - X .  

The overall philosophy of information theoretical inference can be illuminated 
by the above example. To do so, consider a dialogue between the statistician (S) 
and the information theorist (IT): 

S: Can you help me to identify the distribution behind some interesting data I am 
studying? 
IT: OK, let me try. What do you know? 
S: All observed values are non-negative integers. 
IT: What else? 
S: Well, I have reasons to believe that the mean value is 2.3. 
IT: What more? 
S: Nothing more. 
IT: Are you sure? 
S: I am! 
IT: This then indicates the geometric distribution. 
S: What! You are pulling my leg! This is a very special distribution and there are 
many, many other distributions which are consistent with my observations. 
IT: Of course. But I am serious. In fact, any other distribution would mean that 
you would have known something more. 
S: Hmmm. So the geometric distribution is the true distribution. 
IT: I did not say that. The true distribution we cannot know about. 
S: But what then did you say - or mean to say? 
IT: Well, in more detail, certainty comes from observation. Based on your infor- 
mation, the best descriptor for you, until further observations are made, is the one 
adapted to the geometric distribution. In case you use any other descriptor there 
is a risk of a higher cost. 
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S: This takes the focus away from the phenomenon I am studying. Instead, you 
make statements about my behaviour. 
IT: Quite right. "Truth" and "reality" are human imaginations. All you can do is 
to make careful observations and reflect on what you see as best you can. 
S: Hmmmm. You are moving the focus. Instead of all your philosophical talk I 
would like to think more pragmatically that the geometric distribution is indeed 
the true one. Then the variance should be about 7.6. I will go and check that. 
IT: Good idea. 
S: But what now if my data indicate a different variance? 
IT: Well, then you will know something more, will you not? And I will change 
my opinion and point you to a better descriptor and tell you about the associated 
distribution in case you care to know. 
S: But this could go on and on with revisions of opinion ever so often. 
IT: Yes, but perhaps you should also consider what you are willing to know. Pos- 
sibly I should direct you to a friend of mine, expert in complexity theory. 
S: Good heavens no. Another expert! You have confused me sufficiently. But 
thanks for your time, anyhow. Goodbye! 

There are interesting models which cannot be handled by Theorem 5. For 
some of these, a Nash equilibrium is unattainable though the value of the game 
exists. For these games Observer, typically, has a unique optimal strategy, say the 
idealized code K*. Further, the world associated with K*, P*, is an attractor for 
Nature in the sense that any attempt to define a maximum entropy distribution 
must converge to P*. One will expect that H (P*) = H,,, but an interesting 
phenomenon of collapse of entropy with H (P*) < H,,, may occur. 

Models with collapse of entropy appear at  a first glance to be undesirable. But 
this is not the case. 

Firstly, for such models Nature may well have chosen the strategy P* (even 
though a better match to the choice K* by Observer is possible). Since why should 
Nature be influenced by actions available for the Observer, a mere human? Thus, 
the circumstances do not encourage a change of strategies and may therefore be 
conceived as stable. A second reason why such models are interesting is that they 
allow approximations to the attractor at a much higher entropy level than the 
level of the attractor itself. This is a sign of flexibility. Thus, we do not only have 
stability as in more classical models but also a desirable flexibility. An instance 
of this has been suggested in the modeling of natural languages at the lowest 
semantic level, that of words, cf. [Harremoes and Tops~e,  2001; Harremoes and 
Topsme, 20061. 

We may summarize by saying that Nature and Observer have different roles 
a n d t h e  game is not so much a conflict between the two players understood in 
the usual common sense but rather a conflict governed by duality considerations 
between Observer and Observers own thoughts about Nature. 
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3.4 Universal coding 

Consider again the problem of coding the letters of the English alphabet. If the 
source is Dickens "A Tale of Two Cities" and if we consider idealized coding, we 
know how to proceed, viz. to adapt the idealized code to the known data as shown 
in Table 2. But if we want to design an idealized code so as to deal with other 
sources, perhaps corresponding to other types of texts, it is not so clear what to  
do. We shall now show how the game theoretical approach can also be used to 
attack this problem. 

Let PI, . . . , PN be the distributions related to the possible sources. If we take 
{PI,.  . . , PN) as the set of possible worlds for Nature, we have a situation of hazard 
similar to  the scissors-paper-stone game, Example 3. We therefore randomize and 
take instead the set of all distributions a = over {PI, ... , PN) as the 
set W of possible worlds. As the set D of descriptors, we here find it convenient, 
instead of idealized codes, to consider the corresponding set of distributions. Thus, 
2) is the set of all distributions Q over the alphabet. Finally, as cost function we 
take c defined by 

This time, the duality requirements related to (56) are satisfied due to the iden- 
tity (32) which also identifies h(a)  with a certain mutual information. Of special 
interest for this game is the identification of r,in as the mini-max redundancy 

(64) rmin = min max D(Pn (IQ) . 
Q E V n I N  

The identification of Nash equilibrium strategies can sometimes be based on 
Theorem 5 but more often one has to use a more refined approach based on (50). 

3.5 Other games of information 

The game theoretical approach applies in a number of other situations. Of partic- 
ular interest perhaps are games where, apart from a descriptor as considered up to 
now, a prior world is also known to Observer. The goal then is to find a suitable 
posterior world and in so doing one defines an appropriate measure of the gain 
associated with updating of the prior. For these games it is thus more appropriate 
to work with an objective function given as a gain rather than a cost. The games 
indicated adopt a Bayesian view, well known from statistics. 

3.6 Maximum entropy in physics 

The word entropy in information theory comes from physics. It was introduced 
by Clausius in thermodynamics. In thermodynamics the definition is purely oper- 
ational: 
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It is a macroscopic quantity you can measure, which is conserved during reversible 
processes, but increases during irreversible processes in isolated systems. If the 
entropy has reached its maximum, no more irreversible processes can take place. 
Often one says that "entropy increases to its maximum" but the process may be 
extremely slow so that the validity of this statement is of limited interest. Classical 
equilibrium thermodynamics is only able to describe reversible processes in detail, 
and irreversible processes are considered as a kind of black boxes. This presents 
a paradox because reversible processes have speed zero and hence the entropy 
is constant. In practice equilibrium thermodynamics is a good approximation 
to many real world processes. Equilibrium thermodynamics can be extended to 
processes near equilibrium, which solves some of the subtleties but not all. 

EXAMPLE 8. An ideal gas is enclosed in a cylinder at an absolute temperature 
T. The volume of the the cylinder is increased to j times the original volume using 
a piston, and the temperature is kept fixed. In order to measure the change in 
entropy, the piston should be moved very slowly. If the system had been isolated 
this would result in a decrease in temperature. Therefore you have to slowly add 
heat. This will result in a entropy increase proportional to In j. 

Bolzmann and Gibbs invented statistical mechanics. In statistical mechanics 
one works with two levels of description. The macroscopic level corresponding to 
thermodynamics and the microscopic level corresponding to Newtonian (or quan- 
tum) mechanics. For instance absolute temperature (a macroscopic quantity) is 
identified with average kinetic energy. The main task then is to deduce macro- 
scopic properties from microscopic ones or the other way round. This works quite 
well but also introduces new complications. Typically, the macroscopic quanti- 
ties are identified as average values of microscopic ones. Thus thermodynamic 
variables that were previously considered as deterministic quantities have to be 
replaced by random variables. The huge number of molecules (typically of the or- 
der implies that the average is close to the mean value with high probability. 
Boltzmann observed that 

(66) S -- ln (N) 

where S denotes the entropy of a macro state and N denotes the number of micro 
states that give exactly that macro state. Thus the maximum entropy distribution 
corresponds to the macrostate with the highest number of microstates. Normally 
one assigns equal probability to all micro states. Then the maximum entropy 
distribution corresponds to the most probable macro state. 

EXAMPLE 9. Consider Example 8 again. In the j-fold expansion, each of the 
n molecules is now allowed in k times as many states as before. Therefore the 
difference in entropy is proportional to 
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EXAMPLE 10. Assume that we know the temperature of a gas, hence the mean 
kinetic energy. The energy of a molecule is 112 rn llv112 where llull is the length of 
the 3-dimensional velocity vector v. The maximum entropy distribution on velocity 
vectors with given mean length is a 3-dimensional Gaussian distribution. Then 
the probability distribution of the length llull is given by the Maxwell distribution 
with density 

Often it is convenient to work with (Helmholtz) free energy A instead of entropy. 
One can prove that 

where P is the actual state and P,, is the corresponding equilibrium state. Hence 
the amount of information we know about the actual state being different from 
the equilibrium state can be extracted as energy. The absolute temperature tells 
how much energy can be extracted if we have one bit of information. 

Jaynes introduced the maximum entropy principle as a general principle [Jaynes, 
19571. Previously, the physicists tried to explain why entropy is increasing. Jaynes 
turned the arguments upside down. Maximum entropy is a fundamental principle, 
so if we know nothing else, we better describe a system as being in the maximum 
entropy state. If we do not describe the system as being in its maximum entropy 
state this would correspond to  knowing something more, cf. Section 3.3. Then, 
the system will be governed by the maximum entropy distribution among all 
distributions that also satisfy these extra conditions. In a closed thermodynamical 
system we only know the initial distribution. If the system undergoes a time 
evolution then our knowledge about the present state will decrease. Thus, the 
number of restrictions on the distribution will decrease and the set of feasible 
distributions will increase, resulting in an increase of the entropy. 

3.7 Gibbs conditioning principle 

Apart from the considerations of Section 3.3, there are some theorems, which 
support Jaynes' maximum entropy principle. Assume that we have a system which 
can be in one of k states. As a prior distribution on the k states we use the uniform 
distribution. Let X be a random variable with values in the set. Somehow we 
get the information that the mean value of X is X which is different from the 
mean value when the uniform distribution is used. We are interested in a new 
distribution that takes the new information into account. Let C denote the set of 
feasible distributions, i.e. distributions for which the mean value of X is A. Jaynes 
suggests to use the maximum entropy distribution as the new distribution. 

One can also argue as follows. How can we actually know the mean value of 
X? Somehow we must have measured the average value of X. Consider a number 
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Table 4. Simulation of 1, 10, 100 and 1000 outcomes of a die under the condition 
that the average number of eyes is exactly 4. 

Number  
of eyes 

1 
2 
3 
4 
5 
6 

of independent identically distributed variables XI, X2, ..., Xn.  Consider the set of 
events such that 

Now consider the distribution of XI given that (70) holds. If n is large, then the 
distribution is close to the maximum entropy distribution. This result is called 
the conditional limit theorem, Gibbs conditioning principle or the conditional law 
of large numbers. 

Prior  
probability 

0.167 
0.167 
0.167 
0.167 
0.167 
0.167 

EXAMPLE 11. The mean number of eyes on a regular die is 3.5. Take a large 
number of dice and throw them. Assume that the average number of eyes in the 
sample is 4 and not 3.5 as expected. If one counts the number of ones, twos, etc. 
then with high probability the relative frequency of the different outcomes will 
be close to the maximum entropy distribution among all distributions on the set 
{1,2,3,4,5,6) for which the mean value is 4 (see Table 4). 

EXAMPLE 12. Assume that all velocity vectors of n molecules are equally prob- 
able. Let vi denote the velocity of molecule i. Then the mean kinetic energy is 
proportional to 

We can measure the mean kinetic energy as the absolute temperature. Assume that 
we have measured the temperature. If n is huge as in macroscopic thermodynamic 
systems then the probability distribution of llvlll is approximately the Maxwell 
distribution. 

Max. ent .  
distribution 

0.103 
0.123 
0.146 
0.174 
0.207 
0.247 

Simulations 

Example 11 can be used to analyze to which extent our assumptions are valid. 
The first condition is that the uniform distribution is used as prior distribution. 
Hence we cannot use the maximum entropy principle to argue in favor of the 
uniform distribution. Some symmetry considerations are needed in order to single 
out the uniform distribution at first hand. Next, according to our prior distribution 
it is highly unlikely to observe that the empirical average is 4. From a classical 

1 
0 
0 
0 
1 
0 
0 

10 
0 
2 
2 
3 
0 
3 

100 
12 
14 
11 
15 
21 
27 

1000 
102 
125 
147 
172 
205 
249 
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statistical point of view one should use the high value of the average to reject 
the uniform distribution, but if the uniform distribution is rejected as being false 
then we will not be able to calculate the a posteriori distribution. Hence if the 
conditional limit theorem is used as an argument in favor of the maximum entropy 
principle then we are forced to use a Bayesian interpretation of the prior probability 
distribution. Many physicists find this problematic. Thermodynamic entropy 
increases, they argue, independently of how we assign prior distributions of the 
system. 

In order to single out the physical problems from the statistical ones, the concept 
of sufficiency is useful. Consider an ideal gas in an isolated container of a spe- 
cific volume. At equilibrium the gas can be described by the number of molecules 
and the temperature. Using the maximum entropy formalism we can calculate 
for instance the velocity distribution and all other quantities and distributions of 
interest. We say that the number of molecules and the temperature are sufficient. 
Then one may ask: "why are number and temperature sufficient?" If the container 
has an isolating division we have to know the number of molecules and the tem- 
perature on each side of the division, and four numbers will be sufficient in this 
case. Only the experienced physicists should be able to tell which statistics are 
sufficient for the specific setup. Thus, we can formulate the following result: 

The maximum entropy principle may be used as a general formalism, but it tells 
little or nothing about which statistics are sufficient. 

The conditional limit theorem can also be formulated for a prior distribution 
different from the uniform distribution. Consider a distribution P and a (math- 
ematically well behaved) set C of probability distributions. Then the probability 
of observing the empirical distribution in C satisfies 

(72) Pn (C)  5 2-nD(QIIP) 

where Q is the information projection of P into C, i.e. the distribution Q in C 
that minimizes the divergence D (QII P) . Furthermore there is a high probability 
that the empirical distribution is close to Q given that it belongs to C. If P is the 
uniform distribution then the information projection equals the maximum entropy 
distribution. 

3.8 Applications in statistics 

Statistical analysis is based on data generated by random phenomena. Actual data 
are used to make inference about the statistical nature of the phenomena studied. 
In this section we assume that X1, X2, - . - , Xn are independent random variables, 
distributed according to a common, unknown law (probability distribution) Q. 

Assume that Q is discrete with point probabilities ql,q2,.. .  ,q,. If the ob- 
served frequencies in a sample w of size n are n l ,  722, . . . , n,, then the empiri- 
cal distribution of size n, Emp, (w)  , is the distribution with point probabilities 

%, . . . , F. The likelihood ratio, a quantity of central importance in statis- n 1 

tics, is the ratio between the probability of the actually observed data, measured 
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with respect to Empn(w), respectively the theoretical distribution Q. For the 
log-likelihood ratio we find the expression 

which we easily recognize as n times the information divergence D(Emp,(w)llQ). 
This simple observation is indicative of the relevance for statistics of information 
theory, especially regarding the concept of information divergence. 

Let us have a closer look at . Typically, the statistician considers two hypothesis, 
denoted Ho and HI,  and called, respectively, the null hypothesis and the alternative 
hypothesis. In classical statistics these hypothesis are treated quite differently. 
According to Karl Popper, one can never verify a hypothesis. Only falsification 
is possible. Therefore, if we want to give statistical evidence for an alternative 
hypothesis - typically that something "special" is going on, the coin is irregular, 
the drug has an effect or what the case may be - one should try to falsify a 
suitably chosen null hypothesis, typically expressing that everything is "normal" . 

Consider a test of the alternative hypothesis H1 against the null hypothesis 
Ho. In order to decide between Ho and H1, the statistician chooses a partition 
of the simplex of all probability distributions over the possible outcomes into two 
classes, A. and A1, called acceptance regions. If the observed empirical distribution 
Empn(w) belongs to Ao, one accepts Ho (or rather, one does not reject it) whereas, 
if Emp,(w) E A1, one rejects Ho (and, for the time being, accepts HI). 

The acceptance regions generate in a natural way a decomposition of the n- 
fold sample space of possible sequences w = (XI, x2, . . . , x,) of observed values of 
X1, X 2 , .  . - , Xn The sets in this decomposition we denote by A; and A;. For 
example, A! consists of all w = (XI ,  22,. . . , x,) for which Emp,(w) E Ao. 

A type-I error occurs when you accept H1 though Ho is true (everything is 
"normal" ) and a type-I1 error occurs when you accept Ho though HI is true 
(something "special" is happening). 

In case Ho and H1 are both simple, i.e. of the form Ho : Q = Po and H1 : Q = PI 
with Po and Pl fixed, known distributions, we can use the product distributions 
P,R and Pr to calculate the error probabilities, i.e. the probabilities of a type-I, 
respectively a type-I1 error. With natural notation for these error probabilities, 
we find the expressions 

(74) Pr(A1 I Ho) = P," (A;) , Pr(A0 1 HI)  = P;" (A:) . 

The quantity Pr(AIIHo) is called the significance level of the test and 1 - 
Pr(AolH1) the power of the test. 

Under the simplifying assumptions we have made, the Neyman-Pearson Lemma 
often leads to useful tests. To formulate this result, consider, for any t 2 0, the 
test defined by the region 
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as acceptance region of HI.  Then this test is a best test in the sense that any other 
test at the same (or lower) significance level has power a t  most that of this special 
test. 

Hypothesis testing is used to gradually increase ones knowledge about some 
stochastic phenomenon of interest. One starts with a null hypothesis everyone 
can accept. Then, as one gains experience through observation, one reconsiders 
the hypothesis and formulates an alternative hypothesis. If, some day, the null 
hypothesis is falsified, you take the alternative hypothesis as your new null hy- 
pothesis. The process is repeated until you find that you have extracted as much 
information about the nature of the phenomenon as possible, given the available 
time and resources. 

Note the significance of quantitative information theory as a guide in the subtle 
process of selection and falsification of hypothesis until you end up with a hy- 
pothesis you are either satisfied with as final expression of your knowledge about 
the phenomenon or else you do not see how to falsify this hypothesis, given the 
available resources. 

We now turn to more subtle applications of information divergence. We consider 
fixed hypothesis Ho : Q = Po and H1 : Q = Pl (with D(PollPl) < co) and a series 
A, of acceptance regions for Ho. The index n indicates that testing is based on a 
sample of size n. Then, for mathematically well behaved regions, 

where Q, is the information projection of PI on A,. This upper bound on the 
type-I1 error probability is asymptotically optimal for a fixed significance level. 
Indeed, if all tests are at the same significance level, then 

1 
(77) lim --Pr(AnIHl) = D(PollPl) 

n-ca n 

as illustrated in Figure 4. 
Note that this limit relation gives an interesting interpretation of information 

divergence in statistical terms. The result was found by Chernoff [1952], but is 
normally called Stein's Lemma. In 1947 Wald [1947] proved a similar but somewhat 
weaker result. This was the first time information divergence appeared, which was 
one year before Shannon published his basic paper and five years before Kullback 
and Leibler defined information divergence as an independent quantity. 

Among other applications of information theoretical thinking to statistics, we 
point to the Minimum Description Length principle ( M D L ) ,  due to J. J. Rissanen 
[1978], which is a variant of the principle that among different possible descriptions 
one shall choose the shortest one. Thus the parameters in a statistical model 
shall be chosen such that coding according to the resulting distribution gives the 
shortest total length of the coded message. So far all agree. The new idea is to 
incorporate not only the data but also the description of the statistical model. 
In general, a model with three parameters will give a better description than a 
model with only two parameters. On the other hand the three-parameter model 
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Figure 4. Decreasing sequence of acceptance regions in the probability simplex. 

is more complicated, so there is a trade-off between complexity of the model and 
the coding of the data according to the model. 

A simple and well-known example is the description of a single real parameter. 
How many digits shall be given? A rule of thumb states that the uncertainty shall 
be at the last digit. The Minimum Description Length principle tries to justify or 
to modify such rules. 

We refer to [Csiszk and Shields, 20041 for a review of the relations to statistics 
and further references. The most thorough treatment of the Minimum Description 
Length principle in statistics can be found in [Griinwald, 20071. 

3.9 Law of Large Numbers and Central Limit Theorems 

Inequality (76) states that the probability of observing an empirical distribution 
far from the theoretical distribution is small. As a consequence we immediately 
get a Law of Large Numbers: 

THEOREM 13. Let P be a probability distribution. Let A be a convex set of 
probability distributions not  containing P. T h e n  the probability that the empirical 
distribution belongs t o  A converges t o  zero when the number of observations tends 
to  infinity. 

We can also formulate this result for random variables. 

THEOREM 14. Let XI, Xz, ... be a sequence of independent and identically dis- 
tributed random variables. Assume that Xi has mean  value p. Then  if n i s  chosen 
sufficiently large, 
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is close to  p with high probability. 
Inequality (76) gives more. The probability of getting a deviation from the 

mean decreases exponentially. Therefore the sum of the probabilities of deviations 
is finite. This has important applications. Let A be a set of probability measures 
such that D (QIIP) 2 112 for a11 Q $ A. Then the probability that the empirical 
distribution belongs to  A is upper bounded by 112". The probability that at least 
one of the empirical distributions belong to A for n 2 N is upper bounded by 

If N is large then this is small. The law of large numbers states that there is a high 
probability that E m p N  ( w )  E A, but we even have that there is a high probability 
that E m p ,  ( w )  E A for all n > N. Thus most sequences will never leave A again. 
This is formulated as the strong law of large numbers: 

THEOREM 15. Let P be a probability distribution. Then  the empirical distribu- 
t ion  converges t o  P with probability one. 

For random variables the theorem states that: 

THEOREM 16. Let X I ,  X 2 ,  ... be a sequence of independent and identically dis- 
tributed random variables. Assume that Xi has mean  value p. Then  

converges t o  p with probability one. 

We have seen that Xznf...f X m  is close to p with high probability. Equiva- 
lently, 

is close to zero. If we divide with a number smaller than n we get a quantity not 
as close to zero. In order to keep the variance fixed we divide by n1/2 instead. Put 

Thus E (S,) = 0 and V a r  (S,) = V a r  ( X I ) .  Let P, be the distribution of S,. Let 
denote the distribution of a centered Gaussian random variable. The differential 

entropy of P, satisfies 

Thus we see that the differential entropy of P, is less than or equal to the dif- 
ferential entropy of the Gaussian distribution. The Central Limit Theorem in its 
standard formulation states that P, converges to a Gaussian distribution. 
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T 

Figure 5. Shannon's model of a noisy channel. 

THEOREM 17. If there exists n such that h (P,) < co then h (P,) increases and 
converges to its maximum, which equals h (a). Equivalently, D (P,II@) decreases 
to zero. 

In this formulation the Central Limit Theorem corresponds to the second law of 
thermodynamics, which states that the entropy of a physical system increases and 
converges to its maximum. Here the variance turns out to be sufficient. We see that 
addition of random variables gives a "dynamics" which supports the maximum 
entropy principle in that it explains a mechanism behind entropy increase. It 
turns out that all the major theorems of probability theory can be formulated as 
maximum entropy results or minimum information divergence results. 

4 IS CAPACITY ONLY USEFUL FOR ENGINEERS? 

4.1 Channel coding 

We consider a situation where Alice sends information to Bob over a noisy in- 
formation channel. Alice attempts to encode the information in such a way that 
it is tolerant to  noise, yet at the same time enabling Bob to recover the original 
message. 

A simple error-correcting protocol is to send the same message several times. 
If the message is sent three times and a single error has occurred, then two of the 
received messages are still identical and Bob concludes that these must be identical 
to the original message. Another simple protocol is possible when feedback is 
allowed. Alice sends the message. Bob sends the received message back again. 
If Alice receives what she sent, she can be quite certain that Bob received the 
original message without error, and she can send a new message. If she receives a 
different message from the one sent, she sends the original message again. These 
protocols are simple but they are not always efficient. More complicated codes are 
possible. 

EXAMPLE 18. In this example a message consisting of three bits is encoded into 
seven bits. Let XI ,  Xz and X3 be the three bits. We shall use the convention that 
1 + 1 = 0. Put 
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Figure 6. The code in Example 18 is constructed such that the sum of bits inside 
any circle is zero. The right diagram corresponds to the codeword 101. 

See Figure 6. Now transmit the code-word X1X2X3X12X23X13X123. If the re- 
ceived code-word YlY2Y3Y12Y23Y13Y123 is identical with X1X2X3X12X23X13X123, 
then the received code-word satisfies the following parity check equations 

If a single bit has been corrupted then one or more of the parity check equations 
will not hold. It is then easy to identify the corrupted bit and recover the original 
message. Indeed, as the reader will realize, this can be done by considering the 
faulty equations and the domains they represent. 

4.2 Capacity 

Let X E A denote the input to an information channel and Y E I5 the output. 
Then, if X can be (almost perfectly) reconstructed from the output Y, H (X I Y) 
is small and then by (15), 

(86) H (X) % I (X; Y) . 

Hence, if Alice wants to send a lot of information through the information channel 
she wants I (X;Y)  to be big. Alice can choose which input symbols to send 
frequently and which to send less frequently. As Alice controls the distribution of 
the input letters, we define the capacity C of the information channel to be the 
maximum of the mutual information I (X; Y) over all distributions on the input 
letters. 
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Consider the binary symmetric channel where A = B = {0,1) and where Q(Y = 
1 I X = 0) = Q(Y = 0 I X = 1) = E E [O; 1/21 is called the transmission 
error. Here, the uniform input  distribution P*(O) = P * ( l )  = 4 is optimal and the 
capacity is 

As is natural, capacity is the largest, 1 bit, if E = 0 and the smallest, 0 bits, if 
E =  l. 

2 
We note that determination of the capacity of a channel can be viewed as a 

game. In fact, the game is identical - but with different interpretations and 
emphasis - to the game related to universal coding, cf. Section 3.4. 

Before Shannon most people believed that a lot of redundancy or feedback is 
needed in order to ensure a high probability of correct transmission. Shannon 
showed that this is not the case. 

THEOREM 19 (Second main theorem of information theory). If X i s  a n  infor- 
mation source and H ( X )  < C then the source can be transmitted almost perfectly 
if the channel i s  used many  t imes and complicated coding schemes are allowed. 

Shannon also showed that feedback does not increase capacity. In order to 
prove the theorem Shannon introduced the concept of random coding where code- 
words are assigned to messages at  random. A code-book containing all these 
code-words is enormous, and Alice has to provide Bob with the code-book before 
the transmission starts. A lot of bits are thus used just to transmit the code-book, 
but Alice only needs to transmit the code-book once. Therefore, even if a large 
code-book is used and this code-book saves just one bit compared to a simpler 
code-book then, if sufficiently many transmissions are performed, the saved bits 
will exceed the number of extra bits in the big code-book. Since Shannon published 
the second main theorem of information theory it has been a challenge to construct 
codes which are both simple and efficient. 

I t  turns out that the repetition code is inefficient except if the capacity is very 
small. It also turns out that feedback does not increase capacity. One may ask 
why these codes are so widely used when they, according to the first main theorem 
of information theory, are inefficient. Actually, Shannon-type coding does not 
seem to be used among humans or animals. Instead much more primitive codes 
are used. There are, apparently, several reasons for this. 

The first is that efficient coding is complicated. Thus efficient coding schemes 
will only evolve if there is a high selective pressure on efficient communication. 
Often there is a high selective pressure on getting the message across, but if the 
transmission cost is low there is no reason to develop sophisticated coding schemes. 
It is known that the simple coding schemes are efficient in a very noisy environment, 
so if there is uncertainty about the actual noise level it may be better to be on the 
safe side and transmit "too much". 

The human language is highly structured. In logic, semantics and linguistics 
one studies the relation between the more formal structures inside the language 
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and the world outside the language. Many grammatical structures work to some 
extent as a kind of error correction in the language (but may have other functions 
as well). But we know that it is very hard to learn a language with a complicated 
grammar. If the language used some of the coding techniques used by engineers, 
a lot of new "grammatical rules" had to be introduced. In a sentence like "The 
man has a box" the word "man" can be replaced with "woman", "boy", "girl", 
"friend" etc. and the word "box" can, independently, be replaced by "ball", "pen", 
"stick" etc. Each of the sentences would make sense and correspond to  a scenario 
which is true or false, possible or impossible, probable or improbable. In our 
simple example the sentence may be compressed to  "man box" and we can still 
replace the words and recover the original structure. If the sentence was coded 
using Shannon coding there would not be the same possibility of restructuring the 
sentence, because error correcting codes introduce dependencies which were not 
there before. In this sense: 

Data compression emphasize structure, and channel coding smudges structure. 

4.3 Transmission of quantum information 

The key to the success of Shannon's theory lies to a great extent in the quantita- 
tive results regarding possibilities for faithful transmission of classical information. 
When we turn to  the similar problems regarding transmission of quantum infor- 
mation, new phenomena occur. Technically, it is even difficult to get started on 
the investigations as it is not clear what the proper notion of a channel should be 
in the quantum setting. This concerns questions about the type of input and out- 
put allowed (classical and/or quantum), the necessary attention to the handling 
of sequential input (where entanglement has to be taken into consideration) and 
finally, it concerns questions about feedback. 

Considering the various options, one is lead to more than twenty different types 
of quantum channels, and even for the simplest of these, basic properties are not 
yet fully developed3. The many possibilities indicate that quantum information 
theory is not just a simple extension of the classical theory. For instance, when 
sender and receiver in a quantum communication share an EPR-pair, then, though 
this in itself cannot be used for transfer of information, it can facilitate such 
transfer and raise the capacity of the communication system. Thinking about it, 
such new possibilities raise qualitative philosophical questions about the nature 
of information. New emerging ideas, which are only partly developed today, may 
well change our understanding of the very concept of information in radical ways. 

5 MULTI-USER COMMUNICATION 

In the kind of problems we have discussed information is something Alice sends to 
Bob. Thus there have only been one sender and one receiver. In many situations 

3This concerns, in particular, the so-called additivity conjecture related to properties of one 
o f  the notions of quantum capacity. 
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Figure 7. Capacity region of multiple access channel. 

there are more senders and receivers at the same time. A television signal is sent 
from an antenna to a large number of receivers. This is a so-called broadcast 
system. In a multiple access system there are many senders and only one receiver. 
An example of a multiple access system is a class room where the teacher wants 
some information from the pupils. If all pupils speak at  the same time the teacher 
will just receive a lot of noise. Timesharing, a common solution to this problem, 
dictates that one pupil speaks at  a time. An important example of a multi-user 
system is the internet where the servers send signals to each other. Timesharing 
for the whole internet is possible but very inefficient. The main problem of multi- 
user information theory is to find more efficient protocols than timesharing, and to 
determine theoretical bounds on the efficiency of the protocols. A special example 
of a multiuser system is a cryptographic system where Alice sends a message to 
Bob, but a second potential receiver is Eve who wiretaps the system or tries to 
disturb the message. 

The engineers have developed many sensible protocols, but there are only few 
theoretical results, so, in general, it is not known if the protocols are optimal. Here 
we shall describe some well understood problems and indicate the more general 
ones. We shall see the kind of results one may dream of for more complicated 
systems. 

5.1 The  multzple access channel 

Consider a noisy multiple access channel with two senders. The senders send 
variables X and Y and the receiver receives a variable 2. The channel is given in 
the sense that we know the distribution of Z given the input (X, Y) . Consider a 
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specific input distribution on (X,Y) . We are interested in which pairs (R1, R2) 
have the property that Sender 1 can send at rate R1 and Sender 2 can send at 
rate R2. Assume that Sender 1 and the receiver knows Y. Then Sender 1 can send 
information at a rate 

which gives the rate pair ( I  (X; Z 1 Y) ,0) . If X is known to Sender 2 and to the 
receiver then Sender 2 can send information at a rate 

which gives the rate pair (0, I (Y; Z I X))  . By timesharing, the senders can send 
at rates which are combinations of (I (X; Z I Y) , 0) and (0, I (Y; Z 1 X)). But one 
can achieve a better performance. If the two senders both know X and Y they 
can send at rate 

It turns our that the three conditions (88), (89) and (90) are necessary and suffi- 
cient for the rate pair to be achievable. 

Therefore, correlated variables can be sent over a multiple access channel if and 
only if the compression region and the capacity region intersect. In order to achieve 
a rate pair in this intersection, the source coding should be adapted to the channel 
and the channel coding should be adapted to the correlations in the source. Thus 
source and channel coding cannot be separated in multi user information theory. 

5.2 Network coding 

We shall start with an example. Consider a network with two senders A1 and 
A2 and two receivers B1 and B2 and intermediate nodes C and D as illustrated 
in Figure 9. Assume that A1 want to send one bit of information to B2 and A2 
wants to send one bit of information to B1. Assume that each edge has capacity 
one bit. If A1 sends her bit along the path A1CDB2 then it is not possible at the 
same time for A:! to send her bit along the path A2CDB1. The solution is that 
Al sends her bit to B1 and C, and A2 sends her bit to B2 and C. Then C should 
send the sum of the received bits to D, which should send the received bit to B1 
and B2. Now, B1 will be able to reconstruct the bit sent from A2 from the two 
received bits and, similarly, B2 will be able to reconstruct the message sent from 
A1. This is the simplest example of network coding, and was given in [Ahlswede et 
al., 20001. 

Since 2000 many remarkable results in network coding have been obtained. 
The theory works well as long as the noise is by deletions, i.e. a symbol can 
disappear during transmission, but it  cannot be altered. A simple protocol is 
obtained when each node transmits a random mixture of the received signals. The 
original message is reconstructed by comparing the received mixed noisy signals. 
If transmission of a message from one node to another is possible by any protocol, 
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Figure 8. Intersection of capacity and compression region. 

Figure 9. Network where network coding makes it possible for A1 to send one bit 
to  Bz and for A2 to  send one bit to B1 though each of the edges only has capacity 
one bit. 
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/Eve1 
Figure 10. Channel with an eavesdropper. 

then it is also possible with this simple random protocol, if the transmission is 
repeated sufficiently many times. These new results should both have practical 
and philosophical implications. 

A review of the subject and further references can be found in [Yeung et al., 
20051. 

5.3 Broadcast problems 

In a broadcast system there is one sender and a number of receivers. The broadcast 
problem is to determine the capacity region, assuming the distributions of the 
received signals given the sent signal are known. There would be a tremendous 
number of applications of such a result, and therefore it is considered as one of the 
major open problems in information theory. 

A special kind of broadcast system is an identification system. An example is 
call-outs in an airport. There is a special message for a single passenger. The 
speaker can address the message to all passengers, but this is clearly inefficient 
because most passengers are not interested. Therefore the speaker starts saying 
"A message for Mr. Bob Johnson ..." After hearing this introduction all passengers 
except Bob Johnson can choose not to listen to the last part. The speaker may 
even choose to say "Mr. Bob Johnson, please, go to the information desk". If 
there is a lot of noise the speaker may choose to repeat the sentence or introduce 
error-correction by some other method. This is called an identification problem, 
because the main problem is to identify who should receive the message. One may 
argue that this is not transmission of information. First of all there is no message 
in the ordinary sense. Secondly it is hard to call the passenger Mrs. Alice Brown 
a receiver. After hearing the word "Mr." she knows that there is no reason to the 
listen to the rest. The situation is sometimes termed information transfer rather 
than information transmission. 

5.4 Cryptography 

Consider a crypto-system where Alice wants to send a message to Bob but at the 
same time she wants to prevent an eavesdropper Eve from picking up the message. 
This can sometimes be done if Alice and Bob shares a secret code-word, 2, called 
the key.  Using the key 2, Alice encrypts the plain text X into a cipher text Y. 

For this to work consider the following three conditions: 
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1. X is independent of 2, 

2. Y is determined by X and 2, 

3. X is determined by Y and 2 .  

The first condition is that the key is chosen independently of the message Alice 
wants to communicate to Bob. The second condition is the possibility of encryption 
and the third condition is the possibility of decryption. 

A crypto-system is said to be unconditionally secure if X is independent of Y, 
i.e. knowledge of the cipher-text gives no information about the plain-text. 

EXAMPLE 20 (The one-time pad). Consider a plain-text X I X  2...X, of bits. Alice 
and Bob share a secret key ZIZ 2...Z, consisting of bits generated in such a way 
that the bits are independent and each of them with a uniform distribution. Alice 
constructs a cipher-text Y1Y2 ... Y, by adding the key, i.e. by putting % = X j  + Zj.  
Here she uses the convention that 1 + 1 = 0. Bob decrypts the received cipher-text 
by subtracting the key. Here he uses the convention that 0 - 1 = 1. Thus Bob 
recovers the plain-text. Remark that with the conventions used adding a key or 
subtracting the key gives the same result. The method is called the one-time pad 
because each bit in the key is used only once during the encryption procedure. 

The one-time pad requires very long keys. If a file of size 1 Gb has to be 
encrypted the key has to be 1 Gb as well. One may ask if a key can be used in a 
more efficient way such that shorter keys can be used. 

Various inequalities can be derived from these conditions. The most important 
is the following result: 

THEOREM 21. For a n  unconditionally secure crypto system, H ( X )  < H (2) 
where X denotes the plain text and Z the key. 

If H (X)  is identified with the length of the (compressed) plain text and H ( 2 )  
is identified with the length of the (compressed) key, we see that the key must be 
at  least as long as the plain-text if we want unconditional security. In everyday life 
much shorter keys and passwords are used. The theorem shows that they cannot 
be unconditionally secure. If Eve had a sufficiently strong and fast computer she 
would in principle be able to recover most of the plain-text from the cipher-text. 
This was exactly what happened to the ciphers used during the second world war. 
When modern ciphers using short keys are said to be (conditionally) secure there 
is always a condition/assumption that the eavesdropper has limited computational 
power. 

One of the most important problems in implementing cryptographic systems is 
key distribution as it involves both technical and social problems. 

Both Alice and Bob have to know the key, but it shall be secret to Eve. Hence 
we have to introduce a secret channel used to send the key to Bob. This may for 
instance be a courier. Then Theorem 21 states that the amount of secret informa- 
tion that Alice can send to Bob is bounded by the capacity of the secret channel. 
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Figure 11. A crypto system with a public and a secret channel. 

This kind of thinking may be extended to scenarios where the information chan- 
nels are noisy and Eve is only able to wiretap part of the communication between 
Alice and Bob. We are interested in how many secret bits Alice is able to transmit 
to Bob and we can define the least upper bound as the secrecy capacity of the 
system. Even in systems involving only three users there are open mathematical 
problems. 

6 CONCLUSIONS 

The quantitative theory of information as developed by Shannon and his succes- 
sors, provides powerful tools that allow modeling of a wide range of phenomena 
where information in one sense or another plays the central role. Modeling is 
rooted in interpretations, which captures basic philosophical aspects of informa- 
tion. This is especially apparent in the duality between truth and description, 
which we have put much emphasis on. 

Duality allows you to switch back and forth between modeling based on distribu- 
tions and modeling based on codes. Though formally a one-to-one correspondence, 
the importance lies in the asymmetries, and the different points of view attached 
to the two possibilities. This interplay is important technically as well as for a 
proper understanding. 

A technical development of information theory is under way, which will put 
concepts related to uncertainty, information and knowledge on a more firm theo- 
retical footing and, apart from the philosophical impact, this is believed to result 
in a change of paradigm and a better understanding of certain parts of science, 
especially probability theory and statistics. 
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THE STORIES OF LOGIC AND 
INFORMATION 

Johan van Benthem and Maricarmen Martinez 

1 INTRODUCTION AND SUMMARY 

Information is a notion of wide use and great intuitive appeal, and hence, not 
surprisingly, different formal paradigms claim part of it, from Shannon channel 
theory to Kolmogorov complexity. Information is also a widely used term in logic, 
but a similar diversity repeats itself: there are several competing logical accounts 
of this notion, ranging kom semantic to syntactic. In this chapter, we will discuss 
three major logical accounts of information. 

Information as range 

The first notion is semantic, associated with sets of possible worlds, taken in a 
relaxed light sense, and we call it information as range. The greater one's range of 
options for what the real world is like, the less information one has. This setting 
reflects common sense ideas about information and uncertainty, but it  also brings 
a more technical agenda of what information is good for - and we will develop 
some epistemic logic showing this. In particular, ranges of options change as 
agents make observations, or engage in communication. This process of 'update' 
high-lights a key feature of information in logic, and also in general: information 
is always to be understood in connection with some dynamic process using and 
transforming it. We will look at epistemic dynamic logics for this purpose, which 
form a natural calculus of changes in information ranges triggered by events of 
observation or communication. 

Information as correlation 

The second major logical strand in information high-lights another semantic fea- 
ture, viz. that information tends to be about something that is relevant to us, 
and hence it crucially involves connections between different situations: my own, 
and others. This notion of information as correlation has been developed in sit- 
uation theory, starting from a naturalist theory of meaning for agents living in 
information-rich physical environments, and moving to a more abstract view of 
components of a distributed system whose parts show dependencies. The cor- 
relation paradigm brings with it a further agenda of the structure of situations 
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- non-well-founded or 'circular' - ways of classifying them, constraints on their 
joint behaviour, and channels which allow for information flow. As for dynamic 
processes accessing this correlational structure, one can again think of observa- 
tion or measurement or discourse, even though these have not been modeled in 
traditional situation theory per se. 

Information as code 

Finally, there is a third major logical sense of information, oriented toward syntax, 
inference, and computation. This may be the primary sense for students learning 
logic and being told that valid conclusions 'add no information' to the premises. 
Thinking of information as encoded in sentences at some abstraction level, we come 
to the idea of information as code. In this concrete combinatorial setting, the major 
dynamic processing paradigm is 'inference' in some general sense, and the relevant 
logical sub-discipline is no longer model theory, but proof theory and theories of 
computation. Again dynamic processes are of the essence here, as both deduction 
and computation are stepwise activities of 'elucidation' which manipulate syntactic 
representations. 

In all, then, we will see several static representations of information in logic, and 
several dynamic processes transforming them. In addition, further basic features 
come up in the relevant logical systems - in particular, the notions of 'aboutness': 
information is about something, and 'agency': information is for someone. As to 
the latter, logic has a rich account of attitudes and activities of agents, including 
their knowledge, beliefs, and activities of learning and revision over time. In an 
unpretentious diagram, a total view might be pictured as follows: 

about 

information state 1 action information state 2 

for 1 1 for 

Go-existence versus unification 

This picture suggests that information as range and information as correlation 
are compatible semantic notions, and we show later how they can be merged, 
in the spirit of modern logics of dependence and interaction. Likewise, the co- 
existence of semantic and syntactic perspectives invites comparison. Semantic 
and syntactic perspectives have always co-existed in logic, and their interplay 
in capturing the same set of valid consequences is a t  the heart of the celebrated 
completeness theorems. We will show how this harmony also suggests links between 
more proof-theoretic information as code and semantic views of information and 
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the processes transforming it, especially when we bring in the agents involved in 
these activities. Even so, this chapter provides no full-fledged grand unification 
of all bona fide logical notions of information. We even doubt whether one such 
unified notion is desirable, if it exists at all. 

Beyond our horizon 

Much more could be said about logic and information, and we briefly list a 
few other topics at the end, including the increasing role of non-linguistic visual 
(graphic) information carriers in logic, as well as the border-line between logic and 
quantitative approaches such as probability theory, which is spawning new hybrids 
today. But the above is our main agenda, and we refer to the literature for further 
historical and systematic background. 

After this toplevel sketch, let's plunge into concrete logical matters. 

2 INFORMATION IN LOGIC 

Just a shaky metaphor? 

Information has a somewhat precarious status in logic. One uses it colloquially to 
explain to beginning students what logic is all about, and a favourite metaphor is 
then that deduction is useful for the purpose of 'extracting information' from the 
data at our disposal. Say, you know that A V B and you learn that T A .  Then 
logic tells you that you now know B ,  since the following inference schema is valid: 

By the way, this classic is also the schema behind Sudokus and other logic puzzles 
sweeping the planet - so the reality of these phenomena of learning through logic 
is well-attested. But what one metaphor gives, another one takes. Further on in 
the course, we cheerfully tell students that the hall-mark of logical validity is its 
'analyticity' in the sense of the classical philosophical tradition. And that says 
that the conclusions 'do not add information' to what was already there in the 
premises.1 Indeed, there are many different views of information in logic, but 
strikingly, all of them are implicit. The field has official definitions for its concepts 
of proof, computation, truth, or definability, but not of information! Indeed, 
many logicians will feel that this is significant. We do not need this notion in the 
mechanics or even the foundations of the formal theory - or, as Laplace once 
said to NapolQon, who inquired into the absence of God in his Micanique Cileste: 
"Sire, je n'avais pas besoin de cette hypothkse" . 

 his is close to validity in traditional logic, revived in the 'information-theoretic' account of 
Corcoran [1998]. Saguillo [I9961 discusses three views of consequence with their historical and 
philosophical background, casting the  information-based one as a Third Way in addition to  the 
received proof-theoretic and semantic views of validity. 
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Information, inference, and computation 

Still, more can be said. There are several areas in modern logic where notions 
of information emerge naturally. We have already noticed the connection be- 
tween information and inference, i.e., the proof-theoretic stance toward validity. 
Information states are then stages in a dynamic process of deduction, and the 
corresponding informational moves are proof steps, or more general computation 
steps. For a concrete illustration, think of successive stages in the solution of a 
3 x 3 'Sudokoid': 

Intuitively, each successive diagram displays a bit more information about the 
eventual solution. Thus, on this view, information is brought to  light in logical de- 
duction or computation, and inferences are actions transforming the current state, 
i.e., the current representation structure appropriate to the topic of investigation. 
In the sequel, to coin a neutral phrase, we will sometimes refer to  this dynamic 
process as elucidation. 

Information range and update 

To find further logical notions of information beyond inference, however, consider 
just the simplest realistic scenario. Premises do not drop out of the sky! In a caf6, 
your friend has ordered Applejack, while you asked for a Brandy. A new waiter 
comes back from the kitchen with two glasses. What we see around us every day is 
that the new waiter asks who has the Applejack (say), puts it down, and then puts 
the other glass without asking. This scenario shows two informational processes 
intertwined. The final inference by the waiter produces information in the earlier 
sense, but so did your answer to his question, which was crucial to the whole 
information flow, be it in another sense. Your response did not involve deductive 
steps on your or his part, but rather changes in the waiter's information through 
observation, giving him new facts. 

How should we model this second kind of information flow? Before learning 
the premises of the earlier inference, your information state contains 4 options. 
Receiving the first premise A V B cuts this down to 3, and receiving the second 
premise 7 A  cuts down to just one option: 1 A  & B is the actual situation. The 
rest seems indeed a matter of deductive inference, since a further update, say with 
the remaining fact B, would not change the final state any more: 
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Again there is a process of information flow, this time through update. The re- 
sulting process is related to the semantic view of validity, which says that the 
conclusion must be true in all models for the premises. We do not know what 
the real situation is, but we have some information about it, encoded in a current 
mnge of models. And the relevant informational actions this time are updates: 
each subsequent assertion that we learn decreases that range, to a first approxi- 
mation. This notion of information is found in epistemic logic and related semantic 
paradigms which we will discuss below in Sections 3 and 4. 

Incidentally, note that in this second informational perspective, we are also ex- 
tending the descriptive scope of logic. As the Restaurant example shows, inference 
is now just one of several information-producing processes entangled in even the 
simplest scenarios of information flow, and it seems tedious, and untrue to cog- 
nitive reality, to insist that 'logic' would just be about the inferential part, and 
not the rest. Indeed, there is even more to the scenario, as questions and answers 
involve processes of communication, another natural domain for logic. 

Information and correlation 

But there are still further perspectives in our panorama! The research program 
which put information on the map perhaps most forcefully as a major theme for 
logical study per se was Situation Theory, the topic of Section 5 below. Here, flow 
of information is not seen primarily as driven by events of observation or com- 
munication between agents. It rather rests on the fact that we often learn about 
some situation that is not directly accessible to us, via information at our disposal 
which is about that situation. Making sense of this aboutness calls attention to the 
'constraints' in our environment, which correlate behaviour of spatio-temporally 
different situations. These constraints provide information channels between sit- 
uations, and we can avail ourselves of these to draw conclusions about what we 
may not be able to observe directly. 

Again, this correlational view may be tied in with notions of inference - once 
we are willing to step away from the usual varieties. E.g., one recurrent 'syllogism' 
in the ancient Indian logic tradition runs roughly as follows [Staal, 19881. I am 
standing at the foot of a mountain, and cannot inspect directly what is going 
on there. But I can make observations in my current situation. Then, a useful 
inference might work as follows: 

"I see smoke right here. Seeing smoke here indicates fire on the moun- 
tain. So, there is a fire on the mountain t ~ ~ . " ~  

2This version is simplified: Indian syllogisms also had other interesting features. 
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Compare this with the Aristotelean syllogism, which is about one fixed situation. 
The main new idea will be clear: logical inference can also cross between situations. 
Given suitable information channels between situations, observations about one 
may give reliable information concerning another. Indeed, the Indian example is 
almost the running example in Barwise & Seligman [I9971 on seeing a flash-light 
on the mountain by some observer safely in the valley.3 

Incidentally, on the Indian view, reflected in parts of Western logic, inference is 
a sort of last resort, when other informational processes have failed. If I can see 
for myself what is happening in the room, that suffices. If I can ask some reliable 
person who knows, then that suffices as well. But if no direct or indirect observa- 
tion is possible, we must resort to reasoning. Again, we see the entanglement of 
different informational processes mentioned earlier. 

Information and interaction 

In this context of informational activities, it  is worth noting that logic also has 
pragmatic perspectives beyond syntactic and semantic ones. Lorenzen [I9551 fa- 
mously explained a valid consequence as a dialogical claim in an argumentation 
game, whose proponent has a winning strategy against any opponent granting the 
premises. This is the world of Plato's "Dialogues" and public debate in the Greek 
polis, rather than the abstract proofs of Euclid's "Elements". On this pragmatic 
view we are after strategies which agents can use to win debating game or perform 
other interactive tasks. Going back in history, this stance also fits early views in 
Western and Chinese traditions on the role of inference in explanation to others, 
and the law of non-contradiction as the engine of debate [Liu & Zhang, 20071. 
This view is also in line with the earlier-mentioned scenario with questions and 
answers, which typically involved more than one agent. Thus, logic can also cast 
information as what flows in communication, and more generally, as the lubricant 
of intelligent interaction. We refer to the chapters by Devlin & Rosenberg and 
by Walliser in this Handbook for more on this take, which fits well with current 
views of logic as a theory of interaction, with game theory as a natural ally. As 
with the earlier proof-theoretic and semantic views, we find information arising in 
a process, not as an absolute commodity by itself. 

The goal of this chapter 

The major purpose of this chapter is to bring out information as a theme running 
all through logic, even when it is usually left implicit. The resulting take on logic 
today and some of its major features is shown in the following sections. This 
might seem mainly a matter of presentation and re-telling existing stories. But 
there are genuine conceptual problems to be addressed as well. The many notions 
of information in logic pose a problem because they are so different - and yet 

30ther  trts Indian examples include observing a coiled object in a dark room: using logic, 
rather than touch, t o  find out if it is a piece of rope or a cobra. 
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they each clearly make some valid point. Thus the second purpose of this chapter 
is to provide a more unified perspective, pointing out some new connections, and 
raising some further questions. These issues have not been much addressed in the 
philosophy of logic, where the agenda still seems largely concerned with somewhat 
fossilized questions from the past. 

To see that there is a potential for, if not unification, at least successful inte- 
gration, we note that the above logical information theories have clear similarities. 
In particular, all involve an interplay between statics and dynamics. There are 
structures representing the information, but these only make sense as vehicles for 
various processes of information flow. Yet epistemic logic, situation theory, proof 
theory, and dialogue systems all approach this information dynamics from different 
stances. We think this diversity may be a blessing rather than a curse. We will 
elaborate on the stances, and discuss links between communication and correla- 
tion, or between observation and deduction. But we do not (yet) have one unified 
notion of information coming out of all this - and thus logic shows the same 
diversity one finds with the notion of information in general in this Handbook. 
Indeed, we will also high-light some connections to adjoining fields. 

Finally, related issues to those discussed here occur elsewhere in this Handbook. 
The reader will find analogies in the chapters by Baltag, van Ditmarsch & Moss 
on epistemic dynamics, Rott on belief revision, Kamp & Stokhof on linguistic 
communication, and Abramsky on the information flow in computation. 

3 INFORMATION AS RANGE: STATE SPACES, EPISTEMIC, 
AND DOXASTIC LOGIC 

In this section, we develop the notion of information as range. In our view, current 
epistemic logic - broadly understood - is the 'information theory' that goes 
with this. We show how this brings along an agenda of further themes showing 
how this information functions, how it can be computed with, and what basic 
methodological issues arise. The headings in our text identify what these are. 

3.1 Information, state spaces, and sentences 

Successive assertions inform us about a situation which the current discourse is 
about. Here is the natural semantic picture. It takes an 'inverse view' where extra 
information does not add things: it rather shrinks something, viz. the current 
range of options for what the real situation might be. We saw this with the earlier 
update pictures for the inference AVB, -A/yB, where the initial state of ignorance 
had 4 possible options, of which 3 remained after the input A V B, and only 1 after 
the further input of the premise 1A. The inverse relationship is as follows, with 
T for sets of formulas, and MOD(T)  for the class of models making all of T true: 

T c T' iff MOD(T)  2 M O D ( T f )  
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Using sets of models as information ranges is like the 'state spaces' used in Bar- 
Hillel & Carnap [I9531 for describing the information associated with an assertion. 
But it would be silly to award a patent for this view to specific individuals. As we 
have said before, it seems close to the common sense through history. 

Semantic sets of models are rather rough information states. A more finely- 
grained syntactic alternative would use languages describing properties of situa- 
tions or worlds. Assembling assertions over time creates an ever-growing 'book' 
of sentences, the total current information - perhaps including inferential con- 
nections between sentences, and rankings as to relevance or plausibility. This 
syntactic view of the information at our disposal is natural, too, and it may be 
the most attractive from a computational point of view. Against this background, 
information as range provides only rough counterparts to  information as sets of 
sentences, since MOD(T) = MOD(T1) for logically equivalent sets of assertions 
T, T', even when these are vastly different syntactically. To most logicians, this 
is a virtue, as they find 'details of syntax' irrelevant to  content (as long as they 
are, one hopes, not reading love letters). Nevertheless, one can seek finer interme- 
diate representations, and Carnap himself used syntactic 'state descriptions' for 
computations in his inductive logic. Lewis [I9701 and Moore [I9891 have lively 
discussions, going back to Russell, of how these issues play in logical semantics - 
but they have really exercised about every major philosophical logician, including 
Hintikka, Kripke, and Stalnaker. Indeed, much of the discussion of 'propositions' 
and 'meanings' in the philosophical literature (cf. the chapter by Kamp & Stokhof 
in this Handbook) might be seen as the search for a level of information in between 
mere sets of models and every last detail of syntax. 

3.2 Knowledge and epistemic logic 

We now discuss a setting which combines the semantic and syntactic perspec- 
tives. The best-known paradigm incorporating information as semantic range is 
epistemic logic, a subject proposed in Hintikka 1962, and developed by many au- 
thors since, across different disciplines such as philosophy, computer science, and 
economics. Its main ideas are easy to describe: models of the system describe 
information ranges for agents, while the matching language describes a notion of 
knowledge that can be paraphrased as "to the best of the agent's information". 
Here is how this works in more formal detail. 

Language and models 

The syntax has proposition letters p, q,  . . ., Boolean operators 1, V, and modal 
operators Ki4. The latter say that agent i knows that 4, while the dual (i)4 = 
1Ki-4 says that i considers 4 possible. The following semantics provides a precise 
underpinning for this intuitive reading. Models M for the language are triples 
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where W is a set of worlds, the ~i are binary accessibility relations between 
worlds, and V is a propositional valuation recording in which world which atomic 
propositions are true. The worlds ('states', 'situations', . . . ) in the set W represent 
the options for how the actual situation might be, while the relations Ni encode 
the uncertainty, or alternatively, the current information of the agents: 

x --i y says that, a t  world x,  
i considers y an option for being the actual world. 

These accessibility relations may be different for different agents, who evidently 
need not all have the same information. One often takes the ~i t o  be equivalence 
relations, but this is not crucial to epistemic 10gic.~ Working with equivalence re- 
lations does validate some much-debated epistemic features of agents like 'positive' 
and 'negative introspection' concerning one's own knowledge. Now, the semantic 
truth condition for the knowledge operator makes the most evident stipulation in 
this setting, using a universal quantifier over the current information: 

Agents know what is true throughout their current range of uncertainty: 
M , s k K i 4  iff f o r a 1 l t w i t h s . v i t : M , t k 4 .  

The dual (i)4 = 1Ki+ is then the existential quantifier 'in some currently acces- 
sible world', stating that agent i holds it possible that 4 is the case. 

We follow the usual 'knowledge' terminology for the operator Ki4 of epistemic 
logic in much of what follows. Even so, as we have already said above, the more 
neutral and less ambitious term 

'to the best of i's information' for K i4  

states much better what the universal quantification over the current information 
range really achieves, and how epistemic logic can then serve as an information the- 
ory. We will briefly address this point of intended meaning again when discussing 
connections with formal epistemology. 

Digression: alternative semantics for knowledge 

Possible worlds models have been under constant attack from critiw5 While some 
criticism seems merely a misguided response to the unfortunate 'worlds' metaphor 
for the situations represented in our models, there are respectable alternative tra- 
ditions. Indeed, the earliest semantics for modal logic in the 1930s used topological 
models, reading Ki4  as '4 is true throughout some open neighbourhood of the cur- 
rent point'. This stipulation represents another broad geometrical intuition about 
the structure of knowledge as range, generalizing the above graph-based models 
with accessibility arrows to include topological structures like the real numbers, 
or Euclidean space. Topological semantics for knowledge is undergoing a modest 

4Hintikka himself favoured mere reflexive transitive orderings. 
5This may explain why the paradigm is so vibrant and vigorous today. 
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renaissance these days [van Benthem & Sarenac, 2005; van Benthem & Bezhan- 
ishvili, 20071, and generalized versions blossom in 'neighbourhood semantics' (cf. 
[Chellas, 1980; Arlo-Costa & Pacuit, 2005]).~ 

Factual and higher-order information 

The epistemic language can formulate non-trivial scenarios. Consider a model 
for two agents Q, A (say, 'questioner' and 'answerer') with one world where the 
atomic fact P holds, and another where it fails. We assume that the real world 
(there always is one!) is the one indicated by the black dot - though this is of 
course an outsider's annotation, rather than the agents' own information. Labeled 
lines linking worlds indicate uncertainties. In particular, Q does not know which 
world is the actual one, while A is better informed: if the actual world has P then 
she knows that is the case, and if it does not, then she knows that, too: 

This diagram also encodes 'higher' information that agents have about their own 
and each others' information. For instance, in a precise sense to be defined below, 
Q knows that she does not know if P while A does. Hence, it would be a good 
idea for Q to ask a question to A, and find out. But before getting to that in 
Section 4 below, let us take stock of the model M, representing the current state 
of the informational process. In formulas of the epistemic language, here are a few 
things which are true in the world to the left: 

P,  KA P, 7KQ P, KQIKQP, KQ ( i K Q  P A iKQ-P)  ( Q knows that she 
does not know if P),  KQ(KAP V KA-P) ( Q  knows that A knows 
whet her P) 

Thus, this language of information can express complicated epistemic patterns. 
In particular, the preceding iterations of knowledge about oneself and others 

reveal something essential about the notion of information as used by humans. 
'Higher-order information' about (lack of) information of ourselves and others is 
just as important as ground-level factual information! By providing such itera- 
tions, our static language encodes crucial patterns of information in interaction. 
E.g., to see that mere knowledge about others' ignorance can be helpful, consider 
the following model, with the actual world at the black dot: 

6Moss, Parikh & Steinsvold [2007] develop another type of epistemic logic based on topology. 
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Given the uncertainty pattern, neither agent 1 nor 2 knows the real situation. But 
if 2 were to say she does not know, this is informative to 1, as it rules out the 
bottom-most world. Hence, 1 learns the real situation, and can inform 2.? 

There is more to be said in logic about the information dynamics in these 
examples; and we shall do so in Section 3 below. For the moment, we just note that 
the above formal definitions alone do not really show the merits of a framework. 
Only a practical art of modeling can do that. And indeed, in the hands of skilled 
practitioners, epistemic logic is an information theory which handles much more 
complex scenarios than the baby examples here. Cf. [Fagin et al., 1995; van der 
Hoek and Meijer, 1995; van Ditmarsch et al., 20071. 

Model-theoretic digression: information and invariance 

In addition to  its uses as a practical modeling device, epistemic logic raises general 
model-theoretic issues of expressive power. As in other formalisms, the crucial issue 
here is the harmony between expressive power and matching semantic invariances 
between models. The latter style of thinking raises the conceptual issue of 

When are two given information models the same? 

We cannot just take things at face value, and assume that geometrically different 
diagrams automatically model different information. To see this, consider the 
following variant M I  of the epistemic model in the above scenario, with the actual 
world again indicated in bold-face: 

'In fact, in this setting, if both agents say simultaneously that they don't know, an epistemic 
model containing just the actual situation is reached at once. 
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Now, let agent 2 announce the true fact that she does not know 7 P .  The updated 
model will lose the lower-left world to become M 2 :  

But clearly, Mz is essentially the same as the following one-world model M a :  

as can be seen by identifying both worlds in M 3  with the single one in M s .  Indeed, 
understanding what makes different diagrams carry 'the same' information is a 
good test of our understanding of the notion of information itself. 

The standard semantic answer of epistemic logic is clear [van Benthem, 1996; 
van Benthem and Blackburn, 20061. Two information models (M, s) and (N, t )  
satisfy the same epistemic formulass iff there exists a bisimulation between M  and 
N connecting world s to world t .  We will not pursue the issue whether this is 
the only possible account of 'same information structure', but on our view, a true 
understanding of information should definitely come with a 'criterion of identity' 
allowing us to recognize the same information under different representations. 

Having said this, we return to more standard and better-known issues. 

Epistemic logic as information theory: two functions 

Any logical system has at least two major functions. First, its language can state 
properties of situations, and hence it has descriptive and communicative uses, just 
like a natural language. And once we have stated such properties, we can check 
computationally whether they hold in specific models, or we can compute concrete 
updates of the current model. 

But there is also a second use for a logic, as a description of valid inference, 
supplying in our current case a 'calculus of information'. This second function 
comes ideally in the form of complete syntactic calculi describing all valid principles 
of inference with knowledge, such as multi-agent 'K' or 'S5' or other well-known 
axiomatic systems. E.g., here is the complete set of principles for 55, on top of 
any complete classical propositional logic: 

Kj (6  -+ $) -+ (Kj& -+ Kj$) Knowledge Distribution 
Kjd-+ 4 Veridicality 
Kj$ -' KjKj4 Positive Introspection 
i K j 4  + Kj7Kjd Negative Introspection 

The complete logic with all the above principles is decidable, be it computationally 
more complex than its propositional base. It is 'Pspace-complete', rather than 
'NP-complete7, giving it the same complexity as many games [Papadimitriou, 
19941 - again an indication of its interactive character. These laws of inference 
can be applied in every concrete scenario, just like the principles of probability 

8 ~ n  an infinitary version of the epistemic language whose technical details are irrelevant here. 
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theory. This axiomatic system describes both the agents' own reasoning, and 
our external reasoning as theorists about them - though the distinction has been 
played up in the recent literature. We will ignore that issue here, but we do briefly 
discuss a few of these axioms below, since they are not just rock-bottom truths: 
they reflect a particular view of powers of epistemic agents. 

Altogether then, epistemic logic can be used to describe both information up- 
date and inference, making it serve the broader purposes of logic as a theory of 
different kinds of information advocated in Section 2. 

3.3 Other attitudes: doxastic and conditional logic 

In the above, we have noted a separation between information per se coming from 
some source, and agents' attitudes and responses to it. Indeed, there are many 
attitudes that agents can have toward propositions beyond knowledge. Our natural 
language has a fine-grained repertoire, from knowing propositions to believing, or 
even just 'entertaining' them. Moreover, we can also doubt propositions, maybe 
on the basis of new information - and more generally, change our allegiance from 
one epistemic attitude to another. Some of these ubiquitous attitudes toward 
information have received formal treatment in logic. 

Basic doxastic logic 

In particular, 'doxastic logics' analyze assertions Bicp standing for 'agent i believes 
that  cp'. The semantics for the belief operator used in this chapter seems folklore. 
It adds a new idea to the mere ranges for agents in our epistemic models so far. 
We now assume further semantic structure, in the form of a plausibility ordering 
of worlds as seen from some vantage point: 

Si,, xy in world s, agent i considers y at least as plausible as x. 

Thus, while the earlier ranges of alternatives corresponded to the strict informa- 
tion that agents have, these same ranges ordered by plausibility give much finer 
gradations. In particular, we can now define belief semantically as less demanding 
than knowledge, in the sense of ' t ruth in the most  plausible options': 

M ,  s k Bi4 iff M, t k 4 for all t maximal in the ordering x Si,, y. 

Here is an elementary example. Consider a model M with two worlds that 
are mutually epistemically accessible, but the one with 1P is considered more 
plausible than the other with P (which happens to be the actual world): 

In this model, at the actual world where P holds, the agent does not know if P ,  
but she does (mistakenly!) believe that IP .  It is crucial to any realistic account 
of informational agents that our beliefs can be false.g 

g ~ h e r e  are some technical complications in making this semantics work in infinite models. 
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As with epistemic logic, there are complete doxastic logics, and a further theory 
around them [Fagin et al., 19951. In general the resulting logics also analyze the 
interplay between knowledge and belief, with knowledge implying belief, and more 
controversially, taking a stance on such issues as whether one knows one's beliefs, 
and so on. While inter-relations between attitudes toward information are an 
important topic in logic, we omit it  here as tangential to our main concerns. 

Digression: information or 'attitude'? 

We can think of these epistemic-doxastic information models with two relations 
~ i ,  Sj in two ways. The orderings Si,, may just encode an agent's private response 
to  the strict information received, making the belief subjective. But we can also 
view them more objectively as encoding intrinsic gradations of plausibility in the 
incoming information - with beliefs the mere registering of this by sensitive logical 
observers. Both interpretations occur in the literature, like with probability - and 
both have their uses. 

Conditional doxastic logic 

In doxastic logic as used in dynamic informational processes, one soon finds that 
mere beliefs are not sufficient for explaining agents' behaviour over time. We 
want to  know what they would do in certain scenarios where they receive new 
information. This requires conditional belief: 

M ,  s k ~ 6 4  iff M, t k 4  for all worlds t which are 
maximal for x <i,, y in the set {u I M, u k 111). 

Conditional beliefs ~ 6 4  are like logical conditionals in general, expressing what 
might happen under different circumstances from where we are now. Thus they 
pre-encode beliefs in 4  we would have if we were to learn new things 111. The analogy 
is so close that conditional belief on reflexive transitive plausibility models satisfies 
exactly the principles of the minimal conditional logic [Burgess, 1981; Veltman, 
19851. We will sharpen things up when discussing the more detailed mechanics of 
belief revision in Section 4. 

3.4 Agents: powers, attitudes, and collective information 

Epistemic logic highlights three aspects of our schematic diagram of information 
flow in Section 1. It is about information states (the above semantic models) 
and information dynamics - but crucially, always as performed by information- 
handling agents. We have already seen several aspects of this agent-orientation. 
Information is relative to  agents, and they can have a spectrum of different atti- 
tudes toward it: knowledge, belief, and others. In addition, agents can also have 
very different abilities -with some choice-points high-lighted in the axioms of epis- 
temic logic. For instance, the Distribution Axiom Kj(4 -+ 111) -, (Kj4  -+ Kj+) 
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says that knowledge is closed under known implications, giving agents unlimited 
powers of stepwise inference from what they already know. Likewise, the Intro- 
spection Axioms give them unlimited powers of self-reflection on what they know 
or do not know. These abilities of 'omniscience' and 'introspection' have been 
questioned in much of the philosophical and computational literature - though 
no alternative consensus model of 'bounded rationality' has emerged so far. Still, 
epistemic systems today provide for agent variation. Now this raises an issue, and 
perhaps also a fact of life. 

Agent relativity and agent diversity 

Agent-relativity seems to dilute the absoluteness of a bona fide information theory. 
But it may be a genuine insight. Our account of 'knowledge' as 'to the best of an 
agent's information' really shows that there is an unavoidable interplay between 
two notions which needs to be made explicit: (a) the information in a situation 
per se, and (b) the powers of the agents having access to it. Put as a general 
principle, to see what information is  available, one must take the informational 
nature of the agents into account. 

Existing epistemic logics differ on what they ascribe to agents [van Benthem 
and Liu, 2004; Liu, 20061 in terms of deductive powers, introspective abilities, 
observational powers, and memory capacity. Such assignments are reflected in 
correspondences between such powers of agents and axioms of the logic. Exam- 
ples are the much-discussed link between the 'KK principle' K 4  -+ K K 4  and 
transitivity of accessibility, or between commutation laws for communication (cf. 
Section 5) and memory assumptions of perfect recall. These correspondences pro- 
vide a refined logical view of what information can flow in a given setting, given 
the nature of a source and that of the recipient. 

Group lcnowledge and social structure 

Our final observation about agent orientation in epistemic logic is its social char- 
acter. This showed in the interactive nature of knowledge about others, but it goes 
much further than this. Agents also form groups, as in the above question-answer 
scenario, where communication involves a group consisting of the participants, 
which can have knowledge of its own. In particular, epistemic logic also has no- 
tions of group knowledge which are sui generis, with pride of place going to 

CG4 ('4 is common knowledge in group G ' ) ,  

which is read in the above information models as follows: 

M, s 'F CG4 iff for all worlds t reachable from s by 
some finite sequence of -i steps (i E G) : M, t k 4. 

In the logic, the additional axioms for CG bring out the 'reflexive' fixed-point 
character which common knowledge has intuitively: 
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C G ~  * 4 & E G C G ~  Equilibrium Axiom 
( 4  & CG(4 -f EG4)) -) CG4 Induction Axiomlo 

Another natural form of group knowledge is 'distributed knowledge' referring to 
what a group might come to know if it pooled the information available to indi- 
vidual members (cf. [Fagin et al., 1995; van Benthem, 2006bl). The same social 
group notions occur in the literature for belief. 

3.5 Connections with other fields 

Philosophy 

Epistemic-doxastic logic is a somewhat austere account of qualitative information. 
But ever since its birth, it has triggered discussions in philosophical epistemology. 
It was soon found that the universal quantifier in information as range provides a 
rather poor analysis of knowledge in the philosopher's demanding sense, where the 
quest for a satisfactory definition of knowing that P involves finding the right sort 
of 'robustness' in addition to the obvious features of truth of P and belief in P .  
Plato famously proposed 'justified true belief', but sophisticated new definitions 
have kept appearing until today, such as Dretske's 'true belief grounded in correct 
information', or Nozick's 'true belief with counterfactual tracking: if P had been 
false, we would have believed that 1P ' .  Even though epistemic logic has never 
offered a definition of knowledge of comparable sophistication, the very mismatch 
with the richer philosophical tradition has been much more exciting than many 
happy marriages, leading to  clarification and fruitful debate. For instance, the 
distribution axiom K ( 4  -+ ~) -+ (K4  -, K$) has sparked debates about Logical 
Omniscience, and the axiom K 4  -, K K 4  about Positive Introspection. We refer 
the reader to [Hendricks, 2006; Williamson, 2000; van Benthem, 2006a; Baltag 
et al., 20071 for a wide array of interface topics, such as definitions of knowl- 
edge, skeptical arguments (see also Dretske's chapter in this Handbook), different 
sources of information (language, senses, etc.), omniscience, bounded rationality, 
and reflection.'' 

Computer science, and economics 

But maybe the philosophers set their standards of knowledge too high. Who 
searches for the Perfect Knight might never get married. For many practical pur- 
poses, the picture of knowledge as range seems quite sufficient. Think of scenarios 
like this. The cards have been dealt. I know there are 52 of them, and I know 
their colours. The possible worlds are just the possible deals. Of course, I could be 
wrong about this,12 but this worry seems morbid, and not useful in understand- 
ing normal information flow. What is true is that less well-founded attitudes will 

' O ~ e r e  Ecq5 says that everyone in the group G knows that 4. 
llMany of these issues are high-lighted by persistent puzzles in the epistemological literature, 

such as infelicitous Moore sentences, the Fitch Paradox, or the Ramsey Test. 
12Perhaps someone replaced the King of Hearts by Bill Clinton's visiting card. 



Ch07-N5 1726.fm Page 233 Monday, September 1,2008 6:28 AM e I* 

The Stories of Logic and Information 233 

come in as well. I may only have ephemeral beliefs about who holds which card, 
or about how the other agents will play. And indeed, we are sensitive to such 
distinctions. 'Knowledge' may then be a context-dependent term for 'the strictest 
attitude in the current setting'. 

Notions of knowledge based on epistemic logic have penetrated other areas, no- 
tably computer science, witness the interdisciplinary TARK conferences since the 
early 1980s [Fagin et al., 19951, with their current companion event LOFT. Origi- 
nally, knowledge was ascribed here metaphorically to processors in distributed sys- 
tems, with accessibility arising as these can only distinguish global system states 
through their own local state. But in modern intelligent agent-based computing 
systems, the difference with humans seems slight. Also, and even somewhat ear- 
lier, epistemic logic entered economic game theory in the 1970s through the work 
of Aumann (cf. [Osborne and Rubinstein, 1994; de Bruin, 2004]), as a way of 
stating what players know about each other, in an account of the reasoning about 
rationality underpinning notions like Backward Induction and Nash Equilibrium. 
Cf. [van der Hoek and Pauly, 20061 for further details, as well as the chapter by 
Walliser in this Handbook. 

In applications such a s  these, knowledge often occurs intermingled with moves 
or actions. Players reason using their knowledge of what certain moves will bring 
about, and also, after observing a move by other players, they readjust their current 
information. This natural combination will be the topic of the next section. 

4 INFORMATION FLOW AND DYNAMIC LOGIC 

Communication and information flow 

We start by summarizing a point which pervaded much of the preceding section. 
As in other information theories, such as Shannon's quantitative account of chan- 
nel transmission (cf. the chapters by Harremoes and Topsoe and by Grunwald 
and Vitanyi in this Handbook), information really comes into its own only in a 
dynamic setting of communication and information %ow. As a simplest case of 
this phenomenon in epistemic logic, consider the following conversational scenario: 

(a) Q asks A the question "P?", 

(b) A gives the true answer "Yes" 

Then the situation depicted in the model M changes, since information will now 
come to flow. If the episode is one of simple cooperative Gricean communication, 
the question (a) itself conveys the information that Q does not know the answer, 
but also, that she thinks A might know. In general, this iteration can be highly 
informative and useful to the answerer. Next, the answering event (b) conveys 
that A knows that P, and its public announcement in the group {Q, A )  makes 
sure that Q now also knows that P, that both agents know this about each other, 
and so on to every depth of iteration. In terms of the philosophical classic Lewis 
[1969], after the episode, the agents have achieved common knowledge of P .  
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Structure and process 

Summing up, our earlier point returns. It is hard to think of information in 
isolation from the processes which create, modify, and convey it. This combination 
of structure and process is quite natural in many disciplines. In computer science, 
one designs data structures in tandem with the processes that manipulate them, 
and the tasks which the latter should perform. And the same point is familiar 
from philosophy, as in David Lewis' famous dictum that 'Meaning Is what Meaning 
Does'. We can only give good representations of meanings for linguistic expressions 
when we state how they are going to be used: in communication, disambiguation, 
inference, and so on. In a slogan: 

Structure should always come in tandem wi th  a process! 

So, which dynamic processes drive the notion of information? Many candidates 
vie for this honour in the chapters of this Handbook, including computation, in- 
ference, update, revision, correction, question answering, communication, games, 
and learning. Some items in this list are activities of single agents, while others 
are intrinsically interactive 'social' phenomena - with interesting connections be- 
tween the two. We will not investigate all these links in detail, or even the issue 
whether one notion of information serves them a11.13 Instead, we will highlight one 
instance of this Dynamic Turn, in terms of informational processes for epistemic- 
doxastic logic. The chapters by Baltag, van Ditmarsch and Moss and by Rott in 
this Handbook provide much further elaboration. 

Information update and model change 

One of the simplest events providing new information is a public announcement 
!P of some fact P. One can think of this as a statement coming from some 
authoritative source - or more generally, as a totally reliable observation based 
on one's senses. If I see that the Ace of Spades is played on the table, I now 
come to know that no one of us holds it any more.14 These events of new hard 
information in the earlier sense change what I know. 

Formally, this happens by their triggering changes in the current epistemic 
model. In particular, public announcements ! P  work as described in Section 1 
above. They eliminate all worlds incompatible with P, thereby zooming in on the 
actual situation. Thus the current model ( M ,  s) with actual world s changes into 
its sub-model (M IP, s) whose domain is the new restricted set { t  E M IM, t k P). 
In a picture, one goes 

13Cf. the general Editorial t o  this Handbook for further thoughts on this issue. 
140f course, we can be  mistaken about what we hear or see, but much worse than that would 

be  to  let overly morbid worries block the  progress of logic. 
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Dynamic logic of public announcement 

Crucially, truth values of epistemic formulas may change in such an update step: 
typically, agents who did not know that P now do after the announcement. One 
can keep track of this epistemic dynamics in public announcement logic PAL, 
extending the epistemic language with action expressions in a two-level syntax: 

Formulas P :  P ( 7 4 ( d V ? l r l K i 4 1 C ~ 4 1 [ A ] 4  
Action expressions A: ! P 

The semantic clause for the dynamic action modality is as follows: 

M , s k [ ! P ] 4  iff i f M , s k P , t h e n M I P , s k d  

As all this is less known than standard epistemic logic, we state the principles of 
the complete calculus of information flow under public announcement. It has the 
usual laws of epistemic logic over one's chosen base models (as discussed earlier) 
plus, crucially, the following reduction axioms: 

(a) [!PI9 H P + q  for atomic facts q 
(b)  [!PI+ - P -+ 7[!P]4 
(c) [!Pl(4 A 1CI) - [!PI4 A [!PI$ 
(d) [!P]Kid ++ P + K i ( P - [ ! P I & )  

Taken together, these principles allow for compositional analysis of what agents 
know after new hard information has come in. In particular, the equivalence (d) 
is a dynamic 'recursion equation' relating knowledge before and after the event 
!P. This is the earlier idea of pre-encoding. There is already sufficient information 
about the effects of events ! P  in the current state through the relativized knowledge 
of the form K i ( P  -+. In order to find similar recursion equations for other infor- 
mational events, and other attitudes of agents such as belief, similar expressive 
demands will have to be met by the static language.15 

Agent powers again 

Logical axioms high-light basic issues in concentrated form. The dynamic knowl- 
edge axiom [!PI Ki4 H ( P  + Ki ( P  -+ [! P]d)) also involves an interchange between 
the dynamic operator [!PI and the epistemic Ki. This commutativity is not obvi- 
ous, witness its possible failures in general logics of knowledge and action [Moore, 

15As an extended modal logic, PAL still has a bisimulation-based model theory, and it raises 
many new issues of expressive power and computational complexity (cf. [van Benthem, 2006bl). 
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19851. I know now that after drinking I am boring. But the tragedy of my life is 
that, after drinking, I do not know that I am boring ... The reason is that drink- 
ing, unlike mere observation, impairs my epistemic abilities. Knowledge action 
interchanges presuppose abilities of agents such as Perfect Recall [Halpern and 
Vardi, 1989; van Benthem, 20011. Again we see that studying information flow 
immediately raises issues of agent ability. 

General observation and event update 

Public announcement or observation is just one process which produces informa- 
tion. More complex changes occur in the current epistemic model for a group of 
agents when parlour games are played, or emails are sent with 'hidden buttons' 
like bcc. The relevant changes high-light another power of agents which admits of 
variation. This time, the issue is not inferential zeal, introspection, or memory, 
but agents' potentially limited and diverse powers of observation. Say, I see you 
draw a card from the stack, but unlike you, without seeing exactly which one. 
So, how to model this varying observational access? The answer is a non-trivial 
generalization of public update: 

In general dynamic-epistemic logics [Baltag et al., 1998; Gerbrandy, 1999; van 
Benthem et al., 2006; van Ditmarsch et al., 20071, so-called event models A de- 
scribe complex scenarios where not all agents have the same observational access 
to what is happening. This leads to  a mechanism of product update, turning the 
current epistemic model M into a model M x A which can even be larger than M 
itself, recording information of different agents about base facts and what others 
know. Product update redefines the universe of relevant possible worlds, and also 
the epistemic accessibility relations between them. Conversations, games, internet 
transactions, and other real activities are like this. For this natural continuation 
of our present analysis, we refer to the chapter by Baltag, van Ditmarsch and Moss 
in this Handbook.16 

Hard and soft information 

But there is more to information flow than hard information, whether observed 
totally or partially, and the resulting knowledge. As we saw in Section 3, further 
fine-structure may be present on epistemic models through plausibility orderings. 
These can be viewed as representing agents' attitudes, or as the result of receiving 
what might be called soft information. This plausibility ordering is reflected in 
the informational attitude of belief, absolute or conditional, telling us - roughly 
- what agents would believe when confronted with new hard information. And 
in the end, it is the total interplay of all these attitudes which would describe 

16Systems with similar aims, but with richer languages allowing for process description in the 
long run over time, are epistemic-temporal logics, developed by Gupta and Thomason, Belnap, 
Perlof and Ming Xu, Fagin, Halpern, Moses and Vardi, Parikh and Ramanujam, and many other 
authors. Van Benthem and Pacuit [2006] and van Benthem, Gerbrandy and Pacuit [2007] give 
some upto-date surveys and comparisons. 
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our stances toward information, and the way they are affected by new incoming 
information. Thus, we get a mixture of information per se, and the ways in which 
agents take it - and this logical entanglement is such it is hard to say where one 
notion ends and the other begins." 

Changing beliefs 

Now we are ready for the next obvious step. The dynamic process perspective 
on information change explained here also applies to the doxastic attitude of our 
beliefs, and how to revise these on the basis of incoming information [Gkdenfors, 
19871. This involves changes, not in the range of available worlds or in their epis- 
temic accessibility patterns, but rather in the earlier plausibility orderings x Si,, y 
among worlds. 

How this works precisely, depends on the incoming signal. When we receive 
hard information !P,  update will proceed by world elimination as before. We then 
get new beliefs related to our earlier conditional beliefs, and the counterpart to the 
above reduction axiom (d) is the following recursion equation saying which new 
beliefs - and indeed, conditional beliefs - are acquired [van Benthem, 2007al: 

(e) [!P]Biq5 H P+BF[!P]q5 

(f) [!P]B~#J ++ P-+BPI\[!~I'~ [.PI+ 

But often, we just get soft information signals of the sort mentioned before. These 
increase our 'preference' for P-worlds, but without telling us to abandon the others. 
A typical 'belief revision policy' in this spirit is lexicographic upgrade $ P [Rott, 
20061 which replaces the current ordering relation 5 between worlds by this: 

all P-worlds become better than all TP-worlds, 
and within those two zones, the old ordering remains. 

Belief changes under such policies can again be axiomatized completely (cf. again 
[van Benthem, 2007al). Just for illustration, here is the recursion equation for 
conditional beliefs following the $ P revision policy. It looks somewhat forbidding 
- but perhaps necessarily so: after all, we are now describing a more complex 
informational process than mere epistemic update: 

Still richer dynamic doxastic logics use the above event models as triggers for belief 
revision, with 'signal events' ordered by plausibility [Baltag and Smets, 20061. This 
relocates revision policies in the structure of the incoming signal, while sticking 
to one product update rule for the new plausibility ordering. We refer to the 

170ther views distinguish between a base level of pure information processing and a higher 
level of beliefs on the basis of this information, where belief changes occur in a sort of 'reflective 
dynamics'. Cf. the chapter by Rott in this Handbook. 

lsHere the existential epistemic modality 0 in the consequent says that the assertion is true 
'in some world of the current range'. 
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chapters by Baltag, van Ditmarsch and Moss and by Rott in this Handbook for 
further policies, and deeper discussion of the issues raised by all this.lg 

Informo.tion-processing agents: the general setting 

The over-all view of information dynamics which emerges from our discussion of 
information update and belief revision in Sections 3, 4 is quite elaborate. Agents 
have powers of inference, observation, introspection, and self-correction, maybe not 
all to the same degree - and moreover, they exercise these powers interactively, in 
groups of agents, leading to  behavioral equilibria that naturally invite study per se. 
This picture is in line with broader current trends. These include 'logical dynamics' 
[van Benthem, 19961, 'information dynamics' in computer science (cf. Abramsky's 
chapter in this Handbook) and 'interactive epistemology' in philosophy and game 
theory (cf. the chapter by Walliser). There are also connections with mathematical 
learning theory ([Kelly, 19961, and also his chapter in this Handbook). 

Here we note once more that our logical systems have the following features 
as 'information theories'. They are dynamic, treating informational actions and 
events on a par with static information structures. They are also social, in that 
basic scenarios have more than one agent together. 20 Thus interaction between 
agents, and even irreducible group action and group knowledge, become crucial to 
a logical understanding of information flow. 

5 INFORMATION AS CORRELATION: THE WORLD OF 
SITUATION THEORY 

We now turn to the only program in modern logic that treats information as its 
central notion, shaking up the usual agenda of research. It originated in the 1980s 
[Barwise and Perry, 19831 as a foundational framework for 'situation semantics', 
but in its underlying situation theory, the program has come to study the notion 
of information from a much more general point of view (cf. also [Devlin, 1991; 
Allo, 20071, and the chapter by Devlin and Rosenberg in this Handbook). 

According to situation semantics, meaning arises from the interaction of organ- 
isms and their information-rich environment. As a formal tool originally devised 
for modeling this view of meaning and associated phenomena, situation theory 
goes beyond possible-worlds models by providing richer structure. Among other 
things, this yields a natural treatment of 'the problem of grain': different false 
claims about the world are represented by different mathematical objects. In ad- 
dition, the theory provides an account of important context effects that are part 
of everyday inference and natural language. 

The central role of the notion of information in situation theory, and the way 
it was formalized, reflects several influences. For example, like the Gibsonian view 

l g ~ h e r e  are also strong analogies between processes of plausibility re-ordering and recent dy- 
namic logics of preference change [van Benthem and Liu, 20071. 

20Even observation is really a matter between 'me' and 'my source'. 
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of reality and its role in visual perception [Gibson, 19791, in situation theory ev- 
erything is part of as a structured reality which is full of 'uniformities7. Organisms 
are 'attuned' to those regularities, and that allows them to survive. Information is 
a pervasive aspect of reality, prior to cognitive action. Other important influences 
came from philosophy. For example, Putnam's Twin Earth thought experiment 
[Putnam, 19811 has convinced many that meaning cannot be just in the mind, 
and hence external reality must play a crucial role. But it is Dretske's theory 
of information flow [Dretske, 19811 that conspicuously provided key ideas about 
the basic informational notion to  study. Dretske builds on Shannon's theory of 
information transmission, but his account is qualitative and his focus is squarely 
on semantic content, not on the amount of information transmitted. It uses the 
following variant of the usual notion of confirmation: 

Information Content To an agent with prior knowledge k, signal I- 

carries the information that s is F iff Pr  ( s  is F I r and k) = 1, but 
P r ( s  is F I k) < 1. 

Dretske then defines knowledge as belief caused by information flow. One reason 
why the definition includes the strict equality Pr(s  is F 1 r and k) = lI2l is the 
following intuitively appealing consequence: 

Xerox Principle If A carries the information that B and B carries the 
information that C, then A carries the information that C. 

Situation theory adopts the same guiding idea - though dropping the probabilities 
- and it encompasses not only natural but also conventional signals and others. 

Furthermore, in situation theory we distinguish between having and carrying 
information. This distinction is reflected in the study of two kinds of reports in 
natural language. Epistemic attitude reports state the information an agent has: 

1. Elwood knows that Santa Cruz is east of Berkeley 

2. Elwood sees that Gretchen is limping. 

In contrast to this, information reports tell what is shown or indicated by an event 
or the state of an object ('the signal'): 

3. The x-ray's being of pattern 4 shows that Gretchen has a broken leg. 

4. The array of pixels on the screen being of its specific pattern carried the 
information that the Forty-niners had won the championship. 

In ( 3 )  the x-ray having its specific pattern is the indicating fact; the x-ray itself 
is the carrier of the information. 

Treatments of information as correlation as mentioned in Section 1 focus on 
information reports, in which one state of affairs carries information about another; 

21This stipulation has been the  target of some criticisms, which we disregard here. 
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the way one thing indicates how another thing is; the way the x-ray turned out 
carries information about Gretchen's leg. More generally, one situation carries 
information about another situation connected to it in some way, by some channel 
of information, in virtue of a regularity or constraint: perhaps a natural law, 
a convention, or something else. By contrast, epistemic attitude reports about 
having information are closer to the epistemic logic range view discussed before. 

We now come to the basic apparatus, which we describe in enough detail to 
contrast it with the preceding sections. Still, the thrust will differ somewhat. 
Epistemic logic in its static and dynamic versions has a well-developed model 
theory and proof calculus, but it provides little information at a practical level 
about what might be called the 'art of modeling'. Situation theory does a kind of 
converse. It offers a rich apparatus for modeling challenging phenomena - but so 
far, it has (with a few exceptions to  be noted below) not yet generated canonical 
calculi of reasoning with the same sweep and wide application as epistemic logic. 

5.1 Basic concepts of situation theory 

Situation theory starts from a concrete reality, with concrete parts but no concrete 
alternatives. This reality can be thought about, perceived, studied and analyzed 
in a variety of different ways, from different perspectives, for different purposes. 
But ultimately everything that exists, everything that happens, everything that is 
true, has its status because of the nature of this reality. The parts of reality are 
what we call situations. Situation theory is committed to there being situations, 
but not to  there being a largest total situation of which the rest are parts. 

States of aflairs 

When we think or talk about reality, we need some way of analyzing it. This we 
call a system of classification and individuation. It consists of situations, relations, 
locations and individuals. The commonplace that different schemes can be used 
to study the same reality is one to which situation theory subscribes. But this 
does not make situations structure-less, with properties projected onto them by 
language or thought. Rather, situations are rich in structure, and support a variety 
of schemes, suited (or unsuited) to various needs. 

Each relation R comes with a set of argument roles. For example, the relation 
of eating comes with the roles of eater, eaten, and the location of eating. Objects 
of appropriate sorts play these roles. A relation, together with objects assigned 
to  its roles, gives rise to an issue, namely, whether or not the objects stand in the 
relation. There are two possibilities, and each of these we call a state of affairs. 
For example, if eating is the relation, Bush is the eater, a certain quantity of 
succotash is the eaten, and the White House at a certain time is the location (call 
it  Zoc), then there are the following two states of affairs: 

((  Eats; loc, Bush, the succotash; I)) , 
(( Eats; loc, Bush, the succotash; 0)) 
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The issue is whether Bush eats the succotash at the location; the possible answers 
are 'yes' (1) and 'no' (0). The first state of affairs resolves the issue positively, 
the second, negatively. We say the first has a positive and the second a negative 
polarity. Each of these two is the dual of the other. 

Although we don't assume that the argument roles of a relation have a natural 
order, we often use the order suggested by English to identify argument roles, 
without explicitly mentioning the roles themselves, as we did above. 

Facts and the partiality of situations 

Situations determine whether a given state of affairs or its dual is a fact. In a 
familiar notation, 

s I= a means that s makes a factual, or s supports a 

and 

I= a means that a i s  factual ( i.e., some real situation supports it) 

Given a state of affairs a ,  these are uncontroversial theses about the k relation: 

1. Some situation will make a or its dual factual, 

2. No situation will make both a and its dual factual, 

3. Some situations will leave the relevant issue unresolved, making neither a 
nor its dual factual. 

In contrast, the following is a controversial thesis about this important relation: 

4. Some situation resolves all issues (i.e., there is a largest total situation). 

The third thesis says that situations are partial. Hence, there are two ways a 
situation s can fail to make a given state of affairs a factual. Namely, s may make 
the dual of a factual, or s may fail to resolve the a-issue one way or the other. 

Parameters, anchors, and infons 

For theoretical purposes, it is useful, though not strictly necessary, to extend our 
ontology with parameters. Parameters are constructs resembling the well-known 
operator of A-abstraction in the A-calculus [Barendregt, 19841. We start by adding 
some infinite set of parameters a l ,  az,. . . for individuals, r l ,  r2, for relations, etc. 
With these, we can now work with an abstract form of states of affairs, that we 
call infons. Infons are just like states of affairs, but some roles may be filled 
with parameters instead of concrete objects. The term 'infon' was coined by 
Keith Devlin (cf. [Devlin, 19911) to suggest that parametric states of affairs are 
theoretical entities that serve as the basic units of information. One can also think 
of infons as corresponding to properties. For example, the infon 
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a = ((kisses, a l ,  a2; 1)) 

captures the property shared by all situations where someone is kissing someone. 
The step from states of affairs to infons is a sort of abstraction. To get from the 

infons back to states of affairs, we need anchors. An anchor is a partial function 
from the domain of parameters to appropriate objects. We will always assume 
here that f gives a value to all parameters involved. Where f is an anchor and 
((. . . a,.  . .)) is an infon, (( ... a , .  . .))[f] = ((. . . , f [a], . . .)). For instance, with u 
as above, we have a[al -, Anne, a 2  -, Bill] = ((kisses, Anne, Bill; 1)). 

Notice that states of affairs are special infons: those whose set of parameters 
is empty. We can extend the earlier support relation i= to infons, by saying that 
an anchor f satisfies an infon a relative to a situation s if s b a[f].  An anchor 
f satisfies an infon i simpliciter if b a[f],  i.e., if there is a situation s such that 
s i= a[f].  Finally, we say that s b a (s supports a) if there is some anchor f such 
that s t= a[f] .  For example, if s is a situation where Anne is kissing Bill, then 

s i= ((kisses, Anne, an; 1)) 

because s I= ((kisses, Anne,a2; l ) ) [ a l  -+ Bill], so 

s i= ((kisses, Anne, Bill; 1 )). 

Compound infons 

Infons so far are abstractions of single states of affairs. But there are natural ways 
to construct others. A guiding principle here is the Principle of Persistence: all 
information supported by a situation sl must be supported by any other situation 
s 2  that extends s1.22 TWO important constructs that comply with persistence are 
the meet of a set of infons and the existentialization of an infon with respect to 
a parameter. Where @ is a set of infons, we can form the infon A@ such that an 
anchor f satisfies A@ relative to situation s if and only if s k u[f] for all a in Q. 
As for existentials, given an infon a and a parameter x ,  we can construct the infon 
3 x a  such that an anchor f satisfies 3 x a  relative to situation s if and only if for 
some object a, we have that fZl, satisfies a relative to  s. 

Of course, once we have constructs like these, we would like to have an algebra 
and logic of infons. We will not go in details here (see [Devlin, 1991; Moss and 
Seligman, 1997]), but just point out that the usual logical intuitions cannot be 
taken for granted here, due to the fact that information is fine-grained: logically 
equivalent compound infons may still be different pieces of information. 

22This is like in intuitionistic logic, and partial logics: cf. the corresponding chapters in the 
Handbook of Philosophical Logic: [van Dalen, 2002; Blamey, 20021. 
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Situation types 

Once we have infons, we can abstract over situation parameters,23 and thus obtain 
a rich collection of abstract situation types, of the form 

where s is a situation parameter and a the conditioning infon of the type, cond(T). 
This infon may be a state of affairs, in which case we call T a nonpararnetric type. 
If T is a parametric type, we refer to it just as a type, and sometimes write T(p) 
to stress that its conditioning infon cr uses parameters p .  If f is an anchor with 
domain p ,  T[f] denotes the type determined by the state of affairs a[f].  We will 
overload the notation k and use s k T to mean that situation s is of type T. Notice 
that this happens precisely when there is an anchor such that s k o[ f .  

Constraints 

Now we are ready to  introduce the notions which are at the heart of the situa- 
tion theoretic account of information. The crucial idea is that reality is full of 
regularities, lawlike constraints between types of situations, and it is the existence 
of those regularities that makes it possible for one situation to carry information 
about another. Constraints correspond to natural phenomena such as natural laws 
of physics, social conventions like those in language and traffic signs, and many 
other kinds of dependence. Formally, a constraint is an infon 

((Involves, T[p], TI; 1)). 

This infon is factual if the following existence condition is satisfied: 

for every anchor f with domain p ,  whenever s is a situation of type 
T[f], then there is a situation s1 of type T1[f]. 

If smoke is the type of situations where there is smoke and fire the type of those 
where something is burning, then ((Involves, smoke, fire;l)) is factual. 

Simple constraints do not make the kind of connection explicit that exists be- 
tween the constituents of the two types involved. For that, we need relative con- 
straints, infons of the form 

Such a relative constraint is factual if for every anchor f with domain p U q, if 
s, s" are two situations of types T[f] and T1'[f], respectively, then there is also a 
situation st of type T1[f].24 

2 3 ~ h e r e  is a collection of that kind of parameters, too. 
241ntuitively, T involves T' relative to  T" if for any pair of situations of the first and third 

types, there is a situation of the second type. 
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5.2 Information flow 

Next we come to the fundamental issue of how one situation can carry information 
about another, which may be far away in time or space? We present two ways of 
formalizing this claim. The first is given here, in terms of the above ontology. The 
second requires the theory of classifications and channels [Barwise and Seligman, 
19971, and we leave it for the next subsection. 

Propositions 

In situation theory, the bearers of truth are propositions, nonlinguistic abstract 
objects that have absolute truth values. There are two kinds of these. Russellian 
propositions are characterized just by a type T ,  and they are true if there exists 
a situation of type T. Austinian propositions are claims of the form s + T, thus 
involving a type and a situation.25 This distinction was high-lighted by Barwise 
and Etchemendy (cf. [Barwise and Etchemendy, 1987]), where it plays a key role 
in the treatment of semantic paradoxes. 

Propositions are not infons. Infons characterize situations; propositions are 
truth bearers. We assume that for each situation type and each situation there 
is an Austinian proposition true just in case the situation is of that type. For 
Russellian propositions, we shall assume that for each type, there is a proposition 
true just in case some situation is of that type. This last strong assumption can 
lead to paradox [Barwise and Etchemendy, 19871, but it will not affect us here. 

Information 

Now, while propositions are the bearers of truth, it is particular situations that 
act as carriers of information. More precisely, it is the fact that some proposition 
s b T is true, plus the existence of factual constraints relating T with other types, 
that allows for s to carry information about other parts of reality. The basic kind 
of informational statement for this reads: 

the fact that s 1 T carries the information that Prop. 

Depending on whether the proposition Prop is Russellian or Austinian, this tells 
us whether the information carried by s is 'signal-bound' or 'incremental' [Israel 
and Perry, 19901. In the Russellian case, 

s k T carries the signal-bound information that there is some situation 
of type T' if there is an anchor f and a factual constraint ((Involves, 
Tl ,T2;l))  such that Tl[f] = T  and Tz[f] =TI.  

If s is a situation where there is an x-ray on the desk of a vet, we may say that 

The x-ray's being cp-ish indicates that there is a dog, of whom this is 
an x-ray, and that dog has a broken leg. 

251f we adopted the controversial fourth thesis above that there is a total situation, then Rus- 
sellian propositions could be taken as Austinian propositions determined by that total situation. 
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This is a case of signal-bound information, since the information carried is about 
the signal itself (the x-ray). We can represent this regularity scenario as follows. 
First, the relevant factual constraint is C = ((Involves,Tl,T2; I)), where 

Tl = [sls k ((X-ray, x ,  t : 1)) A ((Has-pattern-4, x,  t ;  I))] 
T2 = [sls I= ((Is-X-ray-of, x ,  y, t;  1)) A ((Has-broken-leg, y,  t ;  1))] 

The indicating situation s will support the infon 

((X-ray, a ,  t'; I)) A ((Has-pattern-$, a, t'; 1)) 

where a is the particular x-ray on the desk and t' is the time. This infon is an 
instantiation of cond(Tl) via the anchor f (x)  = a,  f ( t )  = t', so s is of type Tl[f]. 
The signal-bound information carried by s is the proposition that there is some 
situation of type T2[f], that is, one that supports the infon 

((Is-X-ray-of, a, y,  t'; 1)) A ((Has-broken-leg, y,  t'; I)) 

This says there is a dog with a leg depicted by a at t' and that leg is broken at t'. 
But to guide a vet's action appropriately, it is not enough for her to be ac- 

quainted with the fact that the x-ray's is cp-ish and to be aware of the relevant 
constraint. She must also know that the information the x-ray carries is about 
Gretchen - i.e., the incremental information the x-ray carries, given the additional 
fact that it was taken of the specific dog Gretchen. We say that 

the fact that s k T carries the incremental information that s' b T' 
(relative to T") if there is an anchor f and a factual relative constraint 
((InvolvesR,Tl,T2,T3; 1)) with Tl[f] = T, T2[f] = TI, and T3[f] = T".' 

Notice that the informational content in this case is the Austinian proposition 
that s' k T'. Incremental information therefore, is information about a concrete 
situation s' via the indicating fact s k T,  in virtue of how s is connected to s'. 

Our example turns on the relative constraint that, if an x-ray is of this type, and 
it is of a dog, then that dog had a broken leg at the time the x-ray was taken. That 
the x-ray was of Gretchen is the connecting fact, and the incremental information 
content is the proposition that Gretchen has a broken leg. The latter is about 
Gretchen, but not about the x-ray. The relevant factual relative constraint is: 

with indicating type TI as before, and indicated and connecting types T2 and T3: 

As before, we assume that the indicating situation s supports the state of affairs 

a = ((X-ray, a, t'; I)) A ((Has-pattern-4; a ,  t'; 1)) 
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Further, we assume that the connecting state of affairs a' is factual - where b 
stands for Gretchen, a' is ((Is X-ray-of, a, b, t'; 1)). 

Any anchor f of the right kind here, with a = cond(Tl)[f] and a' = cond(T2), 
must be defined on the parameter y of the connecting type: in particular, it must 
anchor y to Gretchen. For any such anchor f ,  the proposition carried incremen- 
tally by the fact s k TI (relative to a') states that there is a situation s" with 
s" k ((Has-broken-leg, b,tl; 1)). This is a proposition about Gretchen, not at all 
about the x-ray. And it is, after all, our real dog Gretchen that we are concerned 
about. 

Agents using information 

Typically, information is used by agents to guide their actions, and thus, it is 
relative to the manner in which an agent is adapted to the world. This means 
the information an agent can get out of a situation depends on the constraints 
to which it is attuned. With the x-ray, what information is available to the vet 
depends on the regularities about x-rays to which she is attuned. We will now 
proceed to make this next set of notions more precise. 

5.3 Information flow and distributed systems 

So far, we have shown how the machinery of situation theory models the fact that 
one situation can carry information about another. Examples of this flow abound 
beyond those already discussed. The manner in which the diaphragm of a micro- 
phone is vibrating carries information about what the announcer is saying. The 
modulation of the electromagnetic signal arriving at some antenna carries infor- 
mation about the way that diaphragm is vibrating. And finally, the modulation of 
the electromagnetic signal arriving at the antenna carries information about what 
the announcer is saying, for instance, "Hillary Clinton is irritated". 

Situation theory provides tools for answering the question: how does the mod- 
ulation of the electromagnetic signal at the antenna carry information about the 
words that the announcer spoke? The theory relies on a number of fundamental 
principles about the nature of information as it flows across distributed systems, 
that is, systems that can be analyzed in sub-parts: 

1. The availability of information depends on the existence of regularities 
between connected parts of a distributed system. 

2. These regularities are relative to how the system is analyzed into parts. 

3. Flow of information crucially involves types and their concrete instances. It 
is in virtue of constraints (relations on types) that concrete situations, being 
of certain types, can act as carriers of (concrete or general) information. 

We will now present a second, more mathematical way of formalizing the idea 
of one situation carrying information about another. This is done via the theory of 
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classifications and channels [Barwise and Seligman, 19971. This paradigm, based 
on category theory, is an elegant formal distillation of the ideas presented so far. 

5.4 Classifications and channel theory 

The notions of information flow presented in the previous section involve facts of 
the form s + T, where s is a situation and T a type. These facts are about how 
situations are classified. The notion of classification, independently discovered 
around 1990 as 'Chu Spaces' [Gupta, 19941 and 'Formal Contexts' [Ganter and 
Wille, 19971, is the basic notion on which the theory of classifications and channels 
is built. Classifications are triples, often depicted as follows: 

Here O A  is a set of tokens (for example, situations), CA is a set of types (con- 
ceived of as anything that can classify tokens), and k is a relation between tokens 
and types. If s is a token and T a type, then s k A  T reads as ' s  is of type T'.  

The natural 'part-of' relationships that exist between parts of a system are 
called infomorphisms. An infomorphism f : A --t C between two classifications is 
a pair (f A ,  f ") of functions 

such that for all tokens b E Rc and all types T E CA 

f V  ( c )  F A  T if and only if c kc f A (T) (*) 

Infomorphisms are of independent interest as an abstract invariance behind 
translation between theories, and that of general category-theoretic adjunctions. 
But here we look at their concrete uses as an intuitive model for information flow. 
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A concrete scenario 

The Smoke-on-the-Mountain scenario of Indian logic, mentioned in Section 2, in- 
volves a t  least two classifications A and C .  Tokens of A, C ~ A  might be situations 
where somebody is facing a mountain, while the relevant types CA might include 
SEESSMOKE, LOOKINGUP, LOOKINGDOWN, BLIND etc. On the other hand, the 
classification C might correspond to the overall setting including the observer and 
the mountain. Its tokens are situations extending those of QA, and types in Cc 
might include OBSERVERSEESSMOKE, THEREISAFIREONTOP, etc. The map fV 
maps each large situation to the sub-situation capturing just the point of view 
of the observer. The map f A  sends SMOKEOBSERVED to OBSERVERSEESSMOKE, 
LOOKINGDOWN to OBSERVERLOOKINGDOWN, etc. Thus type T of A is mapped 
to a type of C intended to mean that 'the observing situation' is of type T. Con- 
dition (*) ensures that things work out just this way. 

As before, it is the existence of constraints, in the form of regularities between 
types that makes information flow within a distributed system. In this more 
general abstract setting, a constraint C1 I- C:! of classification A consists of two 
sets of types such that for all a in QA, if a FA AC1, then a k A  VC2. If A were the 
classification of observers facing a mountain, SEESSMOKE, BLIND t- 0 would be a 
constraint of A, saying that no blind observer sees smoke on top of the mountain. 

Channels and information flow 

Let us now add to our observer and his mountain a third classification B for what 
is happening at the mountain top. Its tokens are situations located on mountain 
tops, and its types include THEREISFIRE, THEREISFOG, etc. 'B is also a 'part' of 
the big component C - say, via the infomorphism g depicted here: 

A collection of infomorphisms sharing codomain C is called a channel with core 
C. Tokens of the core are called connections, because they connect subparts into 
a whole. Tokens a from QA and b from RB are connected in channel C if there is 
a token c E R c  such that fV ( c )  = a and gV(c) = b. In the example, an observing 
situation and a mountain top are connected if they belong to the same overall 
situation. We can now formulate a notion of (incremental!) information flow: 

a kA T carries the information that b k B  T' (relative to C )  if a,  b are 
connected in C and f A (T )  t- gA(T') is a constraint of C. 
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This notion of information flow is relative to a channel - and hence, to an analysis 
of a whole distributed system into its parts. Again we see that 'carrying informa- 
tion' is not an absolute property: the mere fact that a token or situation is of a 
certain type does not completely determine what information it carries.26 

Here is our observer-mountain example in these terms. Let s E A be a situation 
of type SEESSMOKE: the observer in it sees smoke on top of the mountain. Let 
s' E B be the topof-the mountain observed from the base of the mountain. Our 
choice of C makes s and s' be linked by some connection in C .  In addition, 

Since OBSERVERSEESSMOKE I- THEREISAFIREONTOP is a constraint of C ,  s 
being of type SEESSMOKE carries the information that s' is of type THEREISFIRE. 

Xerox Principle revisited 

The current information flow complies with Dretske's Xerox Principle, in the sense 
that we can compose channels. If we have two channels with cores C1 and C2, 
as those shown in the lower part of this diagram: 

then we can always complete the diagram by taking the classification C to be 
the one whose tokens are ordered pairs of tokens of C1 and C2 and whose types 
belong to the disjoint union of those of C1 and C2. Here the type component of 
infomorphisms i l  and i2 is the identity, and tokens go via left and right projections. 
Within this setting, if a kA T carries the information that b kB T' (relative to 
C1) and b kB T' carries the information that d I=D T" (relative to Cz) ,  then 
a kA T carries the information that d kD TI' relative to the channel with core C 
and infomorphisms il f : A -, C and i2g : D 7- C .  

2 6 ~ h i s  feature links up with general context dependency in logic (cf. Section 6). 
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Digression: model-theoretic relations between situations 

So far, we just assumed that a given distributed system has dependencies. But 
why does one situation correlate with another? Sometimes, this is a mere accident, 
just as funds in the stock market may have fluke correlations. But often, there are 
more intimate links. A watch keeps time because its stepwise operation mirrors the 
unfolding of time. Infomorphism is one elegant mathematical notion supporting 
such harmony. Following Barwise and Seligman [1997], van Benthem [2000] has 
studied them model-theoretically, determining the precise first-order properties 
of channel-theoretic structures which they preserve. But other model-theoretic 
relations between situations make sense, too, such as model extension to larger 
situations. For a study of model-crossing notions of inference and logics of model 
change, cf. [van Benthem, 2007bl. Following earlier work by Lindstrom, Barwise 
and van Benthem [I9991 study general 'information links', and entailment along 
model-crossing relations. 

Local constraints and reasoning 

As we have seen, an agent's ability to  get information from one part of a system 
based on what it can observe at another, depends on what constraints she is 
attuned to. Now, most regularities to which agents are attuned hold only within 
some regions of reality. If a massive object is released in the air, it will fall, given 
that we are on Earth, not in a satellite. The notion of local constraint captures 
this idea. A local constraint of classification A has the form r FA C (on S), where 
S is a collection of tokens from A, while r, C are two sets of types from A, and 
for all a E S, if a FA A r ,  then a kA VC. 

A this point, it becomes natural to  consider explicit constraint-based reasoning. 
Now in general, modeling agents that can reason about their world would require 
a good account of 'inferential information', which is not an easy notion to capture 
in a satisfactory manner (cf. Sections 7, 8 below). For instance, Barwise and 
Seligman [I9971 propose the following, following Dretske: 

Inferential information: To an agent with prior knowledge k ,  r k F car- 
ries the information that s != G if and only if the agent can legitimately 
infer that s F G from r k F and k ,  but not from k alone. 

But what does 'legitimately infer' mean in this setting? So far this question has 
not been satisfactorily answered. However, the notion of a local constraint has 
suggested some first approaches, which we survey here, following Martinez [2004]. 
For a start, our setting validates local versions of basic inference rules, such as 

Weakening 
El FA x 2  (on S )  

El ,  rl FA C2, r2 (on S )  

Adding to the rule of Weakening all obvious identity axioms plus a strong form of 
the classical Cut rule, one can prove an abstract completeness theorem: If we fix 



Ch07-N5 1726.fm Page 251 Monday, September 1,2008 6:28 AM e I* 

The Stories of Logic and Information 251 

S and a collection of constraints on S, then the collection of theorems is precisely 
the theory (i. e., the set of all the constraints) of some classification. 

But simple 'localization' of the usual rules does not allow for inferences where 
knowledge about one part of the system drives inferences about another. To 
achieve that, we need rules for shifting classifications (changing from FA to I-*) 
and conditions (from S to  another S'). Martinez [2004] has rules for this, including: 

S- Weakening 

E l  FA E2 (on S) whenever S' G S. 
XI, I'I FA CZ, r2 (on S') 

Enlargement 
C1, T t-A C2 (on Nec(T, S))  

El ,  T FA C2 (on S )  

where Nec is a function mapping each pair (type T,  set of tokens S )  to a subset 
of S that includes all tokens of type T in S. Natural modifications of other rules 
from Barwise and Seligman [I9971 would also yield principles such as 

f- Intro : 
I' I-A C (on S) 

f [rl F c  f 1x1 (on ( f  ")-l[SI) 

where f [r] is the set of types obtained by applying f A  to all types in r .  
It is still an open question if calculi based on these rules are enough to formalize 

the notion of 'legitimate inference' in this setting in a fully satisfactory manner. 

5.5 Harnessing information 

How agents use the information available to them is crucial in cognitive modeling. 
An agent's ability to make inferences is just one aspect here. A more fundamental 
(and general) reason why agents are able to use information is structural: the 
architecture of the agent is geared towards doing so [Israel and Perry, 19911. This 
turn fits well with the general Tandem View in this chapter, found also in other 
approaches, that notions of information must eventually be understood in terms 
of the dynamic processes which that information is used for. Now to specifics! 

Clearly, for information to be of use to some agent, or to enable a device to do 
what it is supposed to, it is not enough that the states of the agent or device carry 
the information. The agent or device must in some sense have the information. 
We conceive of an agent having information as meaning that the architecture of 
the agent 'harnesses' the information to trigger action that advances the agent's 
goals. This architecture can be due to  Nature or to a designer, and the goal can 
be a natural goal of the agent, or a goal for which the designer creates the agent. 

For simplicity, assume an agent with one available action A and one goal G. 
Relative to these, circumstances can be divided into a range of possibilities, P and 
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7 P ,  those in which the action achieves the goal, and those in which it does not.27 
The circumstances in P are the success conditions of A relative to G. The idea 
of harnessing information is now simple: some state of the agent that carries the 
information that P should trigger the action A.28 An old-fashioned mousetrap 
provides a simple example of these ideas: 

Cheese is placed on a small lever. The trap is placed somewhere, behind the 
refrigerator say, where the only likely cause of the lever moving is the presence of 
a mouse directly in front of it. The trap has one action: a wire-blade is released. 
The goal is killing a mouse; this will occur when there is a mouse in the path of 
the blade. The trap is constructed so that a mouse causing the lever to move will 
be in the path of the blade, and the movement of the lever will release the blade. 

What we want then is an account of having information as being in a state that 
plays two roles (Israel and Perry 1991). First, the agent's being in the state carries 
certain information relative to a constraint. Second, an agent's being in that state 
has an effect, i.e., i t  triggers an action relative to some other constraint, that is 
appropriate given the information. In that case, the agent not only carries but has 
the information. More elaborate formalizations of the relevant events occurring in 
such scenarios might involve a mixture of ideas from situation theory and dynamic 
logic - witness the brief discussion in Section 6.5 below. 

5.6 Some further developments 

Circularity and set theory 

Situation theory has been applied to  information flow involving self-reference. 
Natural language as a medium for communication sometimes involves utterances 
about the very same situation in which they are made. Now, in set-theoretic 
approaches to situation theory, situations are usually modeled as sets of tuples 
(standing for the infons supported by the situation), but self-referring situations 
cannot be naturally modeled as sets in the standard Zermelo universe. This is 
because the Axiom of Foundation bans the existence of chains of sets of the form 
u E ul E . . . E u. Thus, a theory of sets without Foundation would fit situation 
theory better. Indeed, the study of circularity and its applications has been an 
important contribution of situation theory. 

Technically, most of this work has taken place in AFA set theory, which consists 
of ZFC with the Foundation Axiom replaced by this Antifoundation Axiom (cf. 
[Forti and Honsell, 1983; Aczel, 1988, Barwise and Moss, 19961): 

2 7 ~ h i s  is, by the way, the  standard story from Decision Theory, except that we are ignoring 
risk or uncertainty with respect to  the state of the reality. 

2 8 ~ e r e  is a more general way of thinking about this. Any event will carry all sorts of in- 
formation, relative t o  different constraints and connecting facts. I t  is the range of possibilities 
determined by the  goals and actions that determines the information that is relevant. This again 
links information as range - now basically as having information about success conditions - 
and information as correlation - carrying information about the world external to  the agents. 
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Given any graph (W, R) whose childless nodes are labeled with urele- 
ments, there is a unique way to label the other nodes with sets such 
that, if d(v) is the label of v, then d(v) = {d(u) I vRu) (i. e., d(v) is 
the set of labels of v's children). 

A graph with its childless nodes labeled by urelements represents a set, and each 
set can be represented as a labeled graph. In fact, the same set may be represented 
by different, but bisimilar labeled graphs.2g E.g., there is a unique set with the 
self-referential or circular specification R = {Q), and it can be represented by the 
following two graphs (among many other bisimilar ones): 

Bisimilarity enters the picture here, because in the AFA universe, equality of 
elements is not enough as a criterion for deciding whether two sets are equal. 

Circularity, modal logic, and co-algebra 

The preceding facts lead to interesting connections with modal logic and the use 
of recent co-algebraic methods.30 Given a monotone operator F on sets, an F- 
coalgebra is just a mapping f : X + F(X) .  As a simple but important example, 
when we take F ( X )  = P ( X ) ,  an F-coalgebra turns out to be just a modal rela- 
tional Kripke frame. Main themes in this new direction are the duality between 
algebras, inductive definitions and smallest fixed points on the one hand, and coal- 
gebras, coinductive definitions and largest fixed points on the other hand [Jacobs 
and Rutten, 19971. For the modal logic connection, see [Venema, 20061. Barwise 
and Moss [I9961 is a pioneering study of the general theory, starting from work by 
Aczel, with a mixture of AFA set theory and early co-algebra, and Baltag [I9991 
is a further study of AFA-~lasses .~~ 

Summary and further applications 

Situation theory is a logical account of information in distributed systems (includ- 
ing reality itself as parsed by agents) which model information as correlation. It 
brings along its own agenda of technical issues, which include formal theories of 
circularity in modeling and the associated reasoning apparatus, and a general ac- 
count of relations between situations and of the channels along which information 

29We already encountered bisimulation in a different guise in Section 3, as a measure of identity 
for information structure in epistemic logic. 

30Cf. [SanGiorgi, 20071 for an excellent history of the history of the notion of bisimulation 
since the 1970s, through modal logic, theories of computation, and set theory. 

3 1 ~ h i s  last issue has been important beyond purely technical reasons. Although the initial 
intuition sees situations a s  'small', situation theory also deals with large set-theoretic objects. 
For instance, the treatment of paradoxes via Austinian propositions allows for models of reality 
resolving all possible issues, which are proper classes [Barwise and Etchemendy, 19871. 
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can flow. For further applications, we refer to the more linguistic/social-science 
chapter by Devlin and Rozenberg in this Handbook, as well as more computational 
studies such as Akman and Tin [I9971 and Martinez [2004]. Finally, [Devlin, 19911 
is a good introduction to the general ideas and state of the art in the early 1990s. 

6 MERGING RANGE AND CONSTRAINT VIEWS 

Sections 3 and 5 have told two separate logical semantic stories of information, 
once as range and once as correlation. In this section, we compare the two, and 
propose some merges, in line with parts of the computational literature. While we 
cannot do justice to all aspects of this comparison here, we do show that the two 
styles of thinking are very congenial. 

Many readers might rather have expected a polemical shoot-out here. It  is often 
thought that epistemic logic and situation theory are hostile paradigms, witness 
discussions between, e.g., Perry and Stalnaker in the 1980s. For instance, much 
has been made of the partiality of situations versus the 'totality' of possible worlds. 
But in practice, many of these differences are minor. In many models of epistemic 
logic, possible worlds are small and partial. In the card examples in Section 
2, 'worlds' are just possible hands, and hence 'no big deal'. Conversely, some 
entities cited as 'situations' can be pretty complex, such as countries, or world- 
wars. Also, situation theory has been cast as 'realist' and non-modal, in that only 
chunks of the real world are needed in its semantics. But this difference, too, 
evaporates, once one tries to give a situation-theoretic account of belief and being 
wrong (cf. [Kratzer, 20061). Significantly, Barwise 1997 eventually introduces some 
sort of possible worlds and modal languages into situation theory. Indeed, the 
more striking historical development has been the steady discovery of significant 
analogies between situation theory and modal logic. This has happened to such 
an extent that, in the definitive mathematical framework of Barwise and Moss 
[1996], modal logic has become the vehicle for developing a bisimulation-based 
situation theory! Indeed, the two paradigms seem compatible and congenial both 
technically and conceptually - and they share a common cause. 

This section emphasizes three themes, following van Benthem 2005B: 

(a) modal and first-order logics of dependence as an account of constraints, 

(b) merges between constraint-based models and dynamic epistemic logic, 

(c) the addition of events to create dynamic versions of situation theory. 

This topic is more a digression in this chapter, but it serves two purposes. First, 
since both aspects of information are relevant in practice, we need to understand 
how epistemic logic and situation theory can live together in modeling actual 
phenomena. Moreover, juxtaposing these systems raises some interesting new 
questions, and allows us to see where both lie in the larger picture of logic today. 
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6.1 Correlation through gaps in state spaces 

In a world of one-shot events, no significant information can flow. Genuine con- 
straints only arise in situations with different 'states' that can be correlated. To 
make this more precise, consider two situations s l ,  s2, where s l  can have some 
proposition letter p either true or false, and s 2  'a proposition letter q. There are 
four possible configurations: 

With all these present, one situation does not carry information about another, as 
p and q do not correlate in any way. A significant constraint on the total system 
arises only when we leave out some possible configurations. For instance, let the 
system have just the following two states: 

Now, the truth value of p in s l  will determine that of q in s2, and vice versa. In a 
formula with some obvious notation, we have the truth of the following constraint: 

But even a less constrained system with three instead of just two global configu- 
rations still allows for significant information flow: 

Presence of p in sl still conveys the information that q in s2, but absence of p does 
not convey information about s2.Again in a formula, we have the implication: 

Contraposing the implication, absence of q in s2 tells us about absence of p in s l ,  
but presence of q has no immediate informative value about s l .  

Thus, correlation between different situations amounts to restrictions on the 
total state space of possible simultaneous behaviors. The more 'gaps' in that state 
space, the more information there is in the system, ready to be used in principle 
by potential observers.32 

32Recall that in epistemic logic, gaps in the set of worlds encode common knowledge. 
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The bare bones of this setting are brought out by constraint models 

M = (Sit, State, C ,  Pred) 

with a set Sit of situations, a set State of possible valuations, a predicate Pred 
recording which atomic predicates hold where, and crucially, a 'constraint relation' 
C stating which assignments of states to situations are possible in the system.33 

6.2 Modal logics of constraints and correlation 

Constraint models suggest a logic - in the simplest case, a modal one. To see this, 
take a language with names x for situations (a tuple x names a tuple of situations), 
and atomic assertions P x  for properties of or relations between situations. We take 
Boolean operations, plus a universal modality U4 ('4 is true everywhere'): 

The semantic interpretation has obvious clauses for the following notion: 

M, s t= 4 q5 is true in global state s of model M 

In particular, Px holds at s if the tuple of local states assigned by s to the tuple x 
satisfies the predicate denoted by P. This language defines basic constraints across 
situations such as U(Px -, Qy). The resulting logic is classical propositional logic 
plus the modal logic S5 for the universal modality U. 

But we can go one step further. Intuitively, a situation z which satisfies p 
'settles' the truth of p, plus all repercussions this has for other situations in the 
system. Accordingly, define the following new relation between global states: 

s w Z  t iff s (x)= t(x). 

This generalizes to a relation --a: for sets or tuples of situations x by requiring 
equality of s and t for all coordinates in x. Thus, there are modalities 0x4 for 
each such tuple, which say intuitively that the situations in x settle the truth of 
4 in the current system: 

M ,  s i= 0x4 iff M, t != q5 for each global state t -a: s. 

This language can express more subtle properties of information. 

33We are not claiming any originality for this set-up. Constraint models are also much like 
'context models' or 'local semantics' in the style of Ghidini and Giunchiglia [2001], and they also 
resemble the local state models of 'interpreted systems' in the style of Fagin et al. [I9951 - be 
it with a non-epistemic interpretation, for now. 
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Digression 

One vivid metaphor here views situations themselves as agents. Operators O,, Ox 
then express what single situations or groups know by inspecting their own local 
properties. This epistemic interpretation of constraint models is strengthened by 
one more analogy. The tuple modalities Oz involve an intersection of accessibility 
relations 0, for single situations x. This is like 'distributed knowledge' for groups 
in epistemic logic, describing what whole sets of agents may be said to 'know 
implicitly'.34 

As to valid laws, constraint models satisfy persistence axioms for atomic facts: 

More generally, the extended modal constraint language has a decidable com- 
plete logic with modal S5 for each tuple modality, plus all axioms of the forms 
U4 + 0x4, and 024 -+ Oy4 whenever y C x. 

6.3 Digression: constraint logic and logic of d e p e n d e n ~ e ~ ~  

A natural alternative to our story of situations and constraints involves another 
major notion in current logical theory, viz. dependence. Dependence fits well with 
information as correlation, and as we shall see, also with information as range. To 
bring this out, we can stay close to standard first-order logic. 

For a start, think of the earlier situations as variables x, y, ... which store 
values. A global state s is then a variable assignment in the usual sense: a 
function assigning an object to each variable. Now first-order logic has no genuine 
dependencies between variables. In any assignment s ,  we can shift the value of x 
to some object d to obtain a new assignment s[x := dl, where all other variables 
have retained their s-value. This is the reason why first-order logic typically has 
validities like the following commutation of quantifiers: 

The order of assigning values to the variables x and y is completely independent. 
But in many natural forms of reasoning, e.g., in probability theory, variables x, y 
can be dependent, in the sense that changes of value for one must co-occur with 
changes of value for the other. Such cases of genuine dependence can be modeled 
in a first-order setting [van Benthem, 1996, Chapters 9, 101. A general assignment 
model is a pair (M, V) of a first-order model M with domain D and interpretation 

34Similar points have been made by Baltag and Smets [2007] in their dynamic logic analysis 
of information structure and measurement-driven information flow in quantum mechanics. 

35These implications do not hold for all formulas. E.g., O,Px --+ O,O,Px is invalid, since 
accessible global states for x may change after a shift in the y coordinate. 

36This section may be skipped without loss of continuity, but the main ideas are really simple, 
and they connect the preceding analysis with the heartland of logic. 
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function I, and V a non-empty set of assignments on M, i.e., a subset of the total 
space DvAR. The first-order language is now interpreted as usual, but using triples 
M, V, s with s E V - with the following clause for quantifiers: 

M , V , s  k 3x4 iff for some t E V :  s =, t and M , V , t  k 4. 
Here =, relates assignments identical up to x-values. 

The analogy with the earlier constraint language will be clear. Moreover, in this 
broader semantic setting, we get new dependence operators, such as polyadic quan- 
tifiers 3x  binding tuples of variables x: 

M , V , s  k 3x4  iff for some t E V :  s =% t and M , V , t  k 437 

In first-order logic, 3xy 4 is just short-hand for 3x3314 or 3 ~ 3 x 4  in any order. 
But in general assignment models, these expressions are no longer equivalent, as 
not all 'intermediate assignments' for x- or y-shifts need be present - and both 
fail to capture 3xy. as defined here.38 

The complete logic of general assignment models is a decidable subsystem of 
standard predicate logic. It  contains those valid first-order laws which hold even 
when variables may be correlated [NQmeti, 1995; van Benthem, 1996; 2005al. Be- 
yond this decidable core logic, further axioms express special features of constraint 
models. E.g., the commutativity law 3 x 3 ~ 4  + 3y3x4 says that the following Di- 
amond Property should hold: 

If s --, t u, then there is another available assignment v 
with s v --, U .  

Imposing such special conditions makes models much like full function spaces, and 
the complete first-order logic (of independence) becomes undecidable. 

Van Benthem [2005] shows how the above modal constraint logic can be faith- 
fully embedded into the first-order logic of dependent variables, and also vice versa. 
Thus, constraints and dependence are the same topic in two different guises! De- 
pendence of various kinds is a major theme in foundations of first-order logic these 
days [Abramsky, 2006; Vaananen, 20071. We have shown this is also a move toward 
a logic of information and constraints in the situation-theoretic sense. 

6.4 Combining epistemic logic and constraint logic 

Intuitively, information as correlation and information as range seem different 
notions. The difference is one of agency. A blinking dot on my radar screen 
carries information about some airplane approaching. But it does so whether or 
not I observe it. I may Lhave' the information about the airplane, when I am in a 
situation at the screen, but unless I know that there is a blinking dot, it will not 

37Here, =, is identity between assignments up t o  values for all variables in z .  
381n these models, one can also interpret single or polyadic substitution operators in their own 

right: M,V,  s k [ y / z ] $ J  iff s[x := s(y) ]  E V & M , V ,  s[x := s(y) ]  != 4. 
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do me much good. That knowledge arises from an additional event, my observing 
the screen. If I make that observation S, and I know the right constraint S + A, 
I will indeed also know that there is an airplane A. 

Though distinct, the two phenomena obviously form a natural and compatible 
pair. To bring them together technically in a simple setting, we can use a combined 
modal logic of constraints and knowledge, first static and eventually also dynamic. 
We give one system, just to show how easy this is, viz. a combined epistemic 
constraint language with syntax 

Epistemic constraint models are then bi-modal structures of the form 

M = (Sit, State, C ,  Pred, -J~) 

where global states have the earlier component-wise relations modeling constraints, 
while there are additional abstract epistemic accessibility relations -i for each 
agent i. Specifics of the latter depend on how the relevant scenario specifies agents' 
access to the situational s t r~cture .~ '  We now have a simple language combining 
correlation and range talk. E.g., suppose that our model M satisfies the constraint 
sl : p -+ sz : q. Then the agent knows this, as the implication is true in all worlds 
in M. Now suppose the agent knows that sl : p. In that case, the agent also 
knows that sz: q, by the Distribution law of epistemic logic: 

The converse requires more thought. The point is not that the agent already knows 
that sl : p, but that, if she were to learn this fact, she would also know that sz : q. 
In our earlier dynamic-epistemic terms, this would read as follows: 

This formula is equivalent to the truth of the constraint - by the axioms for 
dynamic-epistemic logic (cf. Section 4). Next, what do agents know about the 
informational content of specific situations x? If 0 x 4  holds at some world s, 
must the agent know this fact: 0,4 -+ KO,4? Not so: 0,4 can be true at some 
worlds, and false at epistemically accessible ones. What a situation x 'knows' 
in the earlier impersonal sense of correlation need not be known to an external 
agent, unless this agent makes an observation about x. Thus, a combined modal- 
epistemic logic brings out the interaction between our two senses of information. 

Digression: interpreted systems and a uniform vector view 

In the paradigm of 'interpreted systems' [Fagin, et al., 19951, epistemic worlds are 
vectors of 'local states' for individual agents, and epistemic accessibility between 

3 g ~ h e  general logic of epistemic constraint models is a mere fusion of that for constraint models 
and a poly-S5 epistemic logic of knowledge. In the case of one single agent, the earlier universal 
modality U then serves as an epistemic K. 
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worlds s, t for agent i is just component-wise equality (s); = (t)i. This structured 
view of possible worlds, extends to -i for groups of agents i ,  just as we did in 
constraint models with the move from to --z. On such a view, epistemic 
accessibility for agents and constraint accessibility for situations as part of the 
relevant physical world become formally analogous. Accordingly, we can then also 
use one uniform vector format for our combined models. Consider once again 
essentially the earlier example 

Let some agent i have an accessibility structure indicated by the black dotted line: 

We can bring this into vector format by casting the agent itself as a further com- 
ponent, which can be in one of two states, as in the following picture: 

The component-wise accessibility is the same as in the preceding picture.40 

To summarize, information as correlation and information as  range cc-exist 
happily inside one formal modeling, and that even in more than one way. 

6.5 Explicit dynamics: events, information change, and correlation 

But the compatibility extends to the dynamics of both. Dynamic epistemic logic 
made informational events a key feature. Likewise, situation theory involved event 
scenarios for making use of ('harnessing') information, such as The Mousetrap in 
Section 5 .  Indeed, the constraint models of this section have a dynamic aspect 
in the first place. Constraints relate different situations, and the most useful 
correlations (think of the ground station and the mountain top) involve events 
over time, leading to different global states of some evolving system. 

It seems of interest to bring out this temporal dynamics explicitly in some 
logic. Many situation-theoretic scenarios may be viewed as specifying automata 
consisting of many parts which can undergo correlated changes, through actions or 
events e. The Mousetrap and other running examples are of this kind: a complex 
system with a finite number of components cycles through a finite number of 
possible states, according to some fixed scenario. This style of analysis may be 
represented in combined dynamic constraint models 

401nterpreted systems also involve stepwise action by agents, but more on this below. 
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M = (Sit, State, C ,  Pred, Event) 

where events e are binary transition relations between global states. For instance, 
we may have had absence of a fire and a smoke signal, and then a combustion event 
takes place, changing the global state in our Mountain Top setting to (smoke, fire). 
The matching language simply combines the earlier modal constraint operators 
with dynamic event modalities: 

Here, we interpret the dynamic modality in the usual modal style: 

M,sk[e ]$ i f f  fora l l twi th  sR, t :  M , t k q 5  

This language describes constraints on the current state, but its event modalities 
also record what happens as the system moves in the space of all its possible 
developments.41 These merged logics seem easy to use and perspicuous.42 

More sophisticated scenarios combining epistemic information, correlations, and 
informational events are discussed in Baltag and Smets I20071 on the structure of 
quantum information states and measurement actions. Its state spaces seem quite 
close to  the view presented in this section, but now in Hilbert spaces. 

If we want to describe longer-term system properties describing fixed and per- 
haps even shifting correlations over time, an earlier richer option is available. 
Epistemic temporal languages for multi-component systems in the sense of [Fagin 
et al., 19951, or [Parikh and Ramanujam, 20031 describe the long-term behaviour 
of processes and agents over time, and they include intertwined accounts of exter- 
nal events and internal message passing.43 Van Benthem et al. [2007] discuss how 
to  explicitly model the implicit dynamics in the core situation-theoretic scenarios 
for 'harnessing information' in dynamic and temporal logics. 

6.6 Conclusion: semantic co-existence 

Information as range gave rise to both static and dynamic epistemic logics. Like- 
wise, information as correlation leads to static and dynamic constraint logics. The 
two can be merged in a modal setting, implementing the schema in Section 1, 
where systems change over time, adapting their connections to agents who are in- 
formed about them, and to the reality they are about. Thus information as range 

41A more realistic language would have local events at  specific locations, making global events 
tuples of simultaneous local ones. This would be a form of Lconcurrent' dynamic logic. 
42A connection with DEL. Suppose a system has 2 states, and we do not know if it is in P or 7 P .  

Now we perform an observation, and learn that the state is P. This is not an internal 'system 
event', as it affects an outside agent's view of the system. In Section 4, public observations 
!P  changed epistemic models M t o  sub-models MIP with domain pM. Both internal events 
and external observations can be implemented in dynamic constraint models by making agents 
components of the global state as before. The agent is trying to  find out the current state s, but 
the language can also express that s may change to  t after system-internal events e.  

43This also seems the proper setting for a logical account of the crucial issue of how our 
information and the beliefs based on it 'track' the world over time (cf. [Roush, 20061). 
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and as correlation are intimately related. The two agendas merge naturally into 
one logical semantic view of information structure and dynamics. 

7 INFORMATION AS CODE: SYNTAX, PROOF AND COMPUTATION 

7 Information as code and elucidation 

Our analysis so far has been largely semantical in orientation, and it seems suc- 
cessful in fitting logical notions of information into one perspective. But as noted 
at the start of this chapter, logic has another broad take on information structure 
and its processing, viz. inference on formulas. The relevant focus is then syntax 
and proof theory rather than model theory. This is a vast area, and we only discuss 
a few basic issues here, fleshing out a few relevant features of what might be called 
information as code - with a matching dynamics of elucidation. 

For a start, the precise notion of 'information' behind the many calculi of infer- 
ence in modern logic - and an optimal level of abstraction for it -, seems even less 
established than in logical semantics. Inference by its nature is more tied to details 
of syntactic representation, either on formulas per se, or some abstraction thereof. 
This allows for more variation in what counts as information states than our earlier 
semantic models. In line with this, there is a great variety of logical systems for 
deduction and proof, with very different formats. Standard mathematical Proof 
Theory [Troelstra and Schwichtenberg, 1996; Feferman, 2000; Tennant, 19781 uses 
natural deduction and associated calculi of type theory. Other well-established 
formats that have been linked with modeling information flow are logic program- 
ming and resolution theorem proving (cf. [Kowalski, 1979; Doets, 1994]), and 
more general unification-based inferential mechanisms (cf. [Rounds, 19971). Less 
syntax-laden mathematical formats employ Category Theory [Lambek and Scott, 
19941. 

Proof theory is a rich field, and a whole chapter parallel to the present one might 
be written in its terms. Moreover, it has its own natural levels of abstraction for 
dealing with information in type theory or category theory, making room for a 
variety of logics: classical, intuitionistic, or sub-structural [Prawitz, 1965; Belnap, 
1982; Restall, 20001. We will not go into this here. Instead, we discuss a few 
general issues linking up with our earlier sections. We refer to the chapter by 
Abramsky in this Handbook for a state-of-the-art account of proof structure as it 
relates to the information flow in computation, another key process of elucidation. 

7.2 How can inference be informative? 

Let us start off with a somewhat surprising question, t o  which no definitive answer 
appears to be known. Simply put, our earlier semantic theories of information have 
the following problem. Semantic approaches do not account for the informative 
nature of inference! Depending on where one puts the blame, this problem may 
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be formulated in various terms. Jaakko Hintikka has called it 'the scandal of de- 
duction'. This is a real problem when we look at logical practice. For, deduction 
is clearly informative. Natural tasks show a clear interplay of update through 
observation, or recollection, or whatever source, with more combinatorial inferen- 
tial steps. When solving a puzzle, we do not just update information spaces, we 
also make appropriate deductions which highlight some important aspect of the 
solution, or at least, the road toward it. 

Example: update and/or inference 

In practice, reasoning often trumps update. Here is a simple toy example. You 
are throwing a party subject to the following constraints: (a) John comes if Mary 
or Ann does, (b) Ann comes if Mary does not, (c) If Ann comes, John does not. 
Is this a feasible event? In principle, one can update as in Section 2 here, starting 
with 8 possible sets of invitees, and then ruling out 3 by (a), 2 more by (b), and 
finally, using (c) to cut down to the only solution remaining. But in reality, you 
would probably do something more like this (with logicians' annotation): 

By (c), if Ann comes, John does not. But by (a), if Ann comes, John 
does: a contradiction, so Ann does not come. Therefore, by (b), Mary 
comes. Then by (a) once more, John comes. Indeed, {John, Mary) 
satisfies all requirements. 

There is a clear sense in which these successive inferential steps add relevant in- 
formation. Indeed, cognitive science tells us (Knauff 2007) how in cognitive tasks, 
the brain continually mixes model inspection and inferential steps. But there is a 
difficulty in saying just how the latter process can be informative. An inference 
step does not shrink the current information range, and it does not add to cor- 
relational constraints. It rather adds information in a more combinatorial sense, 
which may depend on the agent's coded representations and even purposes. Other 
versions of this problem are known in the philosophy of science. E.g., much has 
been written about the way deductive consequences of a physical theory, such as 
Einstein's deduction for the perihelion perturbation of Mercury from the General 
Theory of Relativity [Fitelson, 20061, can uncover startling new information which 
a scientific community did not have before. 

Information in computation 

This problem is not unique to logic: witness several chapters of this Handbook. 
Inference is much like computation, and one issue running through the chapter 
by Abramsky in this Handbook is how computation can provide information, and 
how abstract, often category-theoretic semantics can provide a handle on this. In 
a more standard mathematical framework, the chapter by Adriaans analyzes in- 
formation growth through computation in terms of numerical measures such as 
Kolmogorov complexity. There, too, inference or computation can increase infor- 
mation, but only by a little, since a shortest description of the theorem generator 
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plus the allotted running length suffices. Thus, the divide between semantical and 
code-based approaches to information occurs outside of logic, too. In what follows 
we discuss a few strands at the syntax/semantics interface. 

7.3 Logical syntax as information structure 

In response to  the challenge of information flow through deduction, various answers 
have been given. For instance, Hintikka [I9731 proposed a way inside predicate 
logic for distinguishing levels of information in the syntactic analysis of a formula. 
First-order formulas 4 describe the existence of objects with certain properties 
while excluding others, and these enumerations of object types can be unpacked 
level by level until the full quantifier nesting depth of 4. Inferences that stay 
close to the original syntax contain only 'surface information', those requiring full 
processing into normal form carry 'depth information' - notions which have been 
elaborated in some numerical detail.44 45 All this is clever, and it suggests that 
logical syntax might have natural information content where syntactic manipu- 
lation can increase information. But it is also very system-dependent. So far, 
no coherent and generally useful notion of syntax-based information has evolved - 
partly because we have no general theory of syntax, abstracting away from details, 
which would provide the vehicle for this. Fkankly, we do not know how to remedy 
this. What we will do instead, in Section 8 below, is look at some ways in which 
semantic and syntactic accounts of information can be merged. 

7.4 Proofs and information dynamics 

By far the most sophisticated paradigm bringing out information flow in inference 
and computation, as we have noted already, is logical Proof Theory. Proof systems 
are a form of 'discourse syntax7, generating ordered tree structures of sentences 
with their inferential links indicated, and hence they are a natural candidate for 
representing information structure at a syntactic level. 

Natural deduction and type theory 

In particular, the widely used method of natural deduction is an elegant calculus 
putting together, linking, and re-packaging pieces of evidence with their dependen- 
cies. A paradigmatic illustration are its proof rules for the basic logical operation 
of conditional assertion: 

44Similar distinctions have even been used for defining the classical philosophical 'ana- 
lytic/synthetic' distinction as a matter of first-order logic. 

45Hintikka's specific numerical proposals have been criticized ever since they appeared. 
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The view of mathematical proof calculi as general systems of combining evidence 
for claims has been put forward forcefully since the 1970s by authors such as 
Dummett, Martin-Lof, and Prawitz (cf. [Sundholm, 19861). Moreover, there are 
natural notions of proof equivalence backing this up, for instance, through the valid 
identities of the lambda calculus and related abstract category-theoretic notions of 
equivalence (cf. [Lambek and Scott, 19941). The resulting normal forms provide an 
attractive abstract level of information structure beyond brute details of syntax, 
and in the setting of linear logic, Girard [1987; 19891 has emphasized how proof 
normalization steps may be seen as communication moves, and hence as a form 
of information flow. We will not elaborate natural deduction, type theory, or 
category-theoretic proof paradigms in this chapter, but we refer to the chapter by 
Abramsky in this Handbook for an approach very much in the same spirit. 

Proof construction as evidence dynamics 

Inference steps construct proofs, and hence they transform information at a syn- 
tactic level in a process of elucidation. This dynamics seems in line with the 
constructivist, or intuitionist slant of many proof theories [Dummett, 1977; Troel- 
stra and van Dalen, 19881, where one thinks of proof as performed by human agents 
creating objects and moving through successive information stages in the course of 
a mathematical enquiry. And even more dynamically, calculi of constructive proof 
can also be interpreted as models for multi-agent interaction. For instance, in the 
earlier-mentioned dialogue games of Lorenzen [1955], proof rules are game moves, 
and proofs are winning strategies for players. Viewed that way, proofs suddenly 
seem close to the dynamics we have placed at centre stage in this chapter. In 
this spirit, current 'logic of proofs' (starting from Artemov [1994]) is developing 
a general take on evidence combination, and one can view the 'labeled deductive 
systems' of Gabbay [I9961 a s  a program with similar ambitions. We will briefly 
return to both in Section 8. 

Even so, claims about the philosophical relevance of proof theory have a problem 
of 'transfer'. Mathematical proof is a very special way of establishing knowledge 
- and proofs, however elegant, hardly seem a paradigm for all the different sorts 
of evidence that humans manipulate, or the different ways in which they do so. 
Clearly, we are not just playing what Hintikka 1973 called 'indoor games' of proof 
or argumentation. Impeccable evidence also comes from our senses, our memory, 
from being told, and so on. And these other sources were described rather well 
in our earlier semantic accounts of information, without any obvious recasting 



Ch07-N5 1726.fm Page 266 Monday, September 1,2008 6:28 AM e I* 

266 Johan van Benthem and Maricarmen Martinez 

as proof or computation. Therefore, a more promising line seems to be how to 
merge proof-theoretic and model-theoretic views of information into one story 
about rational agents capable of obtaining and integrating both. 

Digression: logic programs 

As we said before, there are other proof formats which can represent informa- 
tion flow in inference: cf. the extensive discussion in [Allo, 20071. In particular, 
Jago [2006] shows how logic programming, too, provides attractive models for 
inferential information flow. Here information states are sets of propositional lit- 
erals ( ~ ) p ,  and information generating events are applications of Horn-clause rules 
p l&.  . . &p, -+ q, which let these states grow step by step. This dynamics can be 
made explicit by taking proof rules themselves as action expressions, and describ- 
ing inference steps with modal operators (rzlle)4.46 

In Section 8 we will discuss how proof-theoretic or other syntactic formats for 
information link up with our earlier semantic views. That there can be a signifi- 
cant connection seems clear from Godel's completeness theorem which started off 
modern logic by showing how, in major systems like first-order logic, a formula 4 
is true in all semantic models if and only if 4 has a syntactic proof. 

7.5 Agent orientation once more! 

Proof theory is often considered the most upper-class part of logic, dealing with 
crystalline mathematical structures where all traces of real human reasoning have 
been removed. But a return to the real world occurs as soon as we ask what good 
the information does which is created and transformed by inference. Syntax is 
clearly a representation of information as used by some agent, including possible 
idiosyncracies of formulation, and useful only given particular powers for perform- 
ing elucidation on her data. What is informative for me in this manner need not be 
informative for you. Thus, deduction seems informative only for people engaged in 
certain tasks, and we are back with the central role of agency which also emerged 
in the earlier sections on agents construed semantically. This agent-orientation 
seems the right setting for understanding how an inference can inform us, and 
sometimes even surprise us, contradicting previous beliefs. 

8 SEMANTICS, SYNTAX AND PROOF: MERGING PERSPECTIVES 

Even though syntactic and semantic views of information seem far apart in spirit, 
the recent literature has seen a number of attempts toward combining them. While 
there is no consensus on how to do this, or what can be achieved, we group a few 
approaches in this section, to introduce the reader to at least some challenges. 

46Like  r re [2006], Jago also views Fregean Morning Star / Evening Star-type puzzles involving 
substituting identicals in intensional contexts as further sources of non-omniscience and true 
inferential information. 
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8.1 Two-level syntax-semantics formats 

One kind of proposal, in various guises, combines semantic and syntactic views. 
Suppose that information states of agents really have two d i~eren t  levels: (a) the 
current range of models or possible worlds, and (b) some current set of sentences 
true in these models which the agent has available right now. Like the worlds 
in epistemic logic, and the situations of situation theory, the syntax domain, too, 
may be structured - say by an ordering of formulas as to relative importance in 
our current set of beliefs, or our current 'theory' [Ryan, 1991; Gkdenfors, 19871. 
Then we can think of informational processes as operating on two levels: 

updatesYnt 
syntactic statel , syntactic statez 

semantic statel ,semantic statea 
updateSem 

Range-changing updates modify the lower level, while inference modifies the upper 
syntax component of the current state, and hence the information 'immediately 
present' to the agent. This process can be described in the same sort of dynamic 
logic format used for epistemic logic in Section 3. Examples of this sort of approach 
include [Dung, 19951 on dynamic logic of argumentation, [Wassermann, 20011 on 
belief revision over syntactic knowledge bases, [Gabbay et al., 20011 on dynamic 
logic of grammars, and the earlier-mentioned [Jago, 2006].47 Two- and many-level 
views also occur at the interface of logic and cognitive science [Castelfranchi and 
Lorini, 20071 in realistic modeling of the many cognitive processes involved when 
humans process information. 

8.2 Merging calculi of proofs and evidence 

There are several ways of merging epistemic and proof-theoretic paradigms. Sec- 
tion 7 mentioned current attempts at broadening standard proof-theoretic accounts 
of internal elucidation with external observation of new information. We first dis- 
cuss one strand in the recent literature which stays close to proof theory. 

Range and evidence: a case of V versus 3 

For a start, as we have said earlier, proof-theoretic and semantic perspectives on 
information are not in conflict: they complement each other. But how? Let us 
first high-light a prima facie logical difference. As we saw in Section 2, epistemic 
logic of information as range revolves around a universal quantifier: Kiq5 says that 

47Also relevant are current syntax-flavoured 'neighbourhood models' for epistemic notions, 
such as the treatment of beliefs over time in [Arlo-Costa and Parikh, 20051. 
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4 is true in all situations agent i considers as candidates for the real s. 

But there is also an existential quantifier, occurring in the famous traditional 
account of knowledge that 4 as 'justified true belief. The first phrase '?ustifiedn 
in this definition says intuitively that 

there exists a justification for the formula 4. 

In this sense, knowledge consists in having evidence for a proposition: sometimes, 
on an exceptionally clear Cartesian day, even a mathematical proof. But as we saw, 
the two views co-exist in logic! Completeness theorems establish an equivalence 
between validity (an V-type notion) and provability (an ]-type notion). 

Combined calculi 

To have both views together then, van Benthem [I9931 proposed merging epistemic 
logic with a 'calculus of evidence'. Candidates range from intuitionistic logic with 
binary type-theoretic assertions of the form 

x is a proof for 4. 

to the much more general 'labeled deductive systems' of Gabbay 1996, which were 
designed as a general calculus of statements x : 4, where the label x can stand for 
a proof, an observation, or indeed any kind of evidence from any source, possibly 
even with further information attached about reliability, probability, and so on, of 
the support that x offers to 4. 

Even closer to the epistemic logics of Sections 2, 3, the 'logic of proofs' of 
Artemov [1994; 20051 is a modal language enriched with proof- or evidence-labeled 
assertions [x]4 then, e.g., the ubiquitous (though philosophically controversial; 
[Egr6, 20041) epistemic Distribution Axiom Ki(4 + $) - (Ki4 -+ Ki$) becomes 
the more informative statement that 

where # is some natural sum operation on proofs, or pieces of evidence generally. 
Incidentally, van Benthem [2006a] shows how this also works for contextualist 
views of information - as discussed in the chapter by Dretske in this Handbook. 
In that case the crucial law is 

where # is now an operation of 'context merge' reminiscent of situation theory. 
This is all fine, but it has to  be admitted that one coherent philosophical inter- 
pretation of these combined systems still remains to be found.48 

4sFor a merge of logic of proofs with dynamic epistemic logic, cf. [Renne, 20071. Also relevant 
is [Artemov, 20071 on connections with general epistemology. 
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8.3 Merging proof and observation: two-level dynamic logics 

But integrating inferential information flow with observational update can also be 
done in formats that stay close to the dynamic logic of our Section 4. Here is a 
toy illustration from van Benthem [2007c], joining two simple components. 

Consider the earlier logic programs for a propositional language with sets of 
literals that can be modified by inferential steps. Let observations be incoming 
hard information, as in the logic PAL of public announcements. We need to hook 
up the syntactic information states with semantic ones. Here is one way of doing 
this. A semantic model M has valuations V accepting or rejecting each proposition 
letter, i.e., complete worlds for our simple language. Next, M specifies a family 
of inference rules R whose corresponding conditionals are valid in the given set of 
valuations. Finally, it has partial sets of literals Xwhich do not yet decide every 
proposition letter. Each such set X stands in an obvious 'compatibility relation' 
with all total valuations V containing it. More precisely then, we can say that 

information states are pairs (V, X )  with X a set of literals true in V. 

One can think of these as an agent's current semantic range about the empirical 
facts in the actual world plus its current inferential approximation to the worlds 
in that range. A matching logical language will access both components. Here a 
knowledge operator Kcp will operate on V components only, referring to the whole 
semantic range as before. Next, one could access the X component by an operator 
Iy saying that the agent 'realizes that cp' if the literal cp is actually present in X. 
In this setting, there are then several natural kinds of informative action: 

Internal inference steps do not change the V component of the current state, 
but take some rule and add literals to the current X component (if the premises 
are there). For external observation we take PAL-style public announcements !P, 
removing all states (V, X)  where V fails to satisfy P .  But the interesting point of 
the combination is that there may be other 'intermediate' actions with something 
of both. In particular, think of the act of seeing in some conscious sense. We can 
model this with a third kind of update action on our hybrid information states. 
Explicit observations +q of literals q operate like announcements !q, but then also 
place q directly into all X components of pairs (V, X) in the remaining model. 
Putting all this into a logical system with both static and dynamic modalities, 
we can make combined assertions which describe the fine-structure of all these 
informational processes, both inferential and observational, within one setting.49 

8.4 Abstract viewpoints: toward a deeper unification? 

The preceding two approaches shows that evidence based 3-type and range-based 
'v-type accounts of information can live together. But this compatibility does 

4 9 ~ a g o  [2007] presents an alternative take on this, however, enriching the set of possible worlds 
with worlds carrying 'non-standard valuations' which are eliminated successively from the set 
of candidates through inferential steps. This seems a full-fledged alternative to  the above pair- 
approach, based on ideas from relevant and paraconsistent logic (cf. [Priest, 19971). 
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not answer the more ambitious question if there is some deeper identity between 
evidence combination in an epistemic sense and that of syntax with proof theory. 
Stated as an observation about information and computation in general, proof 
theory and dynamic logics often address very similar issues and provide attractive 
solutions, whether in process theory or information dynamics, but the precise 
analogy between these two broad styles of thinking remains a bit of a mystery. 

Abstract information theories: relevant and categorial logics 

Indeed, there are several abstract perspectives merging the two perspectives. One 
is that of Scott Information Systems, discussed by Michael Dunn in this Hand- 
book. Another line are logics in the tradition of categorial and relevant logic, 
which have often been given an informational interpretation. One example is the 
'Gaggle Theory' of Dunn 1991, inspired by the algebraic semantics for relevant 
logic, which provides an abstract framework that can be specialized to  combina- 
tory logic, lambda calculus and proof theory, but on the other hand to relational 
algebra and dynamic logic, i.e., the modal approach to informational events. Van 
Benthem [1991] arrives at a similar duality starting from categorial grammars for 
natural language, which sit at the interface of parsing-as-deduction and dynamic 
semantics. Indeed, he points out how the basic laws of the categorial 'Lambek 
Calculus' for product and its associated directed implications have both dynamic 
and informational interpretations: 

A . B * C  iff B + A - - C  
A . B + C  iff A + C c B  

Here, the product can be read dynamically as composition of binary relations 
modeling transitions of some process, and the implications as the corresponding 
right- and left-inverses. But these laws can be read equally well as describing a 
universe of information pieces which can be merged by the product operation. E.g., 
we can read A -+ B as the directed implication denoting {X I V y  E A : y . x E B), 
with B c A read in the obvious corresponding left-adjoining manner. On both 
interpretations, the principles of the Lambek Calculus hold (cf. [van Benthem, 
19911 for further theory). Beyond that, however, the usual structural rules of 
classical inference turn out to fail,50 and thus, there is a strong connection between 
substructural logics and what might be called abstract information theory [Mares, 
1996; 2003; Restall, 20001. This dynamic/informational interpretation also makes 
sense for Gabbay's earlier-mentioned paradigm of 'labeled deductive systems'.51 

501n particular, the rules of Contraction and Permutation would express highly questionable 
assumptions about procedural or informational resources, which have no appeal in general. 

51Van Benthem [I9981 points out how semantic and proof-theoretic strands come together in 
labeled deductive systems. He unifies both in terms of a ternary calculus of abstract combination, 
with the following two rules: (a) x : A, y : A -+ B, R z ,  x y  F z : B, where Rz, x y  is some ternary 
condition relating z ,  x, y. Here the atom Rz ,  x y  can be read as ' z  is the sum of the information 
pieces x ,  y', ' z  results from composing transitions x ,  y', ' z  results from applying function x to  
argument y', etc. Principle (a) is then the abstract analogue of the earlier Modus Ponens in 
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Sequoiah-Grayson [2007] is a spirited modern defense of the Lambek calculus as 
a minimal core system of information structure and information flow. While this 
is appealing, it has to be said that the above axioms merely encode the minimal 
properties of mathematical adjunctions, and these are so ubiquitous that they can 
hardly be seen as a substantial theory of in f~ r rna t ion .~~  

Remark: Situation Theory after all 

Interestingly, authors in the relevant logic tradition also tend to see their systems as 
a direct continuation of the abstract analysis of information flow in situation theory 
- a link which we do not pursue here [Mares, 2003; Restall, 20001. The doctoral 
thesis [Allo, 20071 is an illuminating discussion of logical models underpinning the 
'philosophy of information' set forth in the chapter by Floridi in this Handbook, 
joining up epistemic logic with sub-structural logics [Restall, 20001, and Batens' 
'adaptive logic' program (cf. [Primero, 20071). 

But we are far from having exhausted all existing abstract information theories. 
Other abstract models for unification are found in the work on logical omni- 

science in Parikh [1987; 19951, and most recently Parikh [2007]. These papers 
propose an abstraction level that tries again to explain how deduction can be in- 
formative. 53 Other relevant work is found in the Czech Tradition, of which we 
mention [Tichy, 2004; Materna, 2004; Duzi et al., 20051. But we conclude with a 
few strands from the grand tradition of foundational research. 

8.5 Coda: intuitionistic logic and modal information models 

Let us step back for a moment from latter-day abstractions. Maybe the oldest 
and still quite attractive joint proof-theoretic and semantic view of information 
occurs in intuitionistic logic [Dummett, 1977 ; Troelstra and van Dalen, 1988; 
cf. Section 71. Unlike epistemic logic, it is a calculus of 'implicit knowledge' [van 
Benthem, 19931, where the very meanings of the standard logical constants are tied 
up with being 'known' or 'provable'. Intuitionistic logic found its original proof- 
theoretic explanation in natural deduction style through the so-called Brouwer- 
Heyting-Kolmogorov interpretation. But it also has modal-style semantic models 
due to  Tarski, Beth, and Kripke, where 'worlds' are information stages in some 
ongoing enquiry. This long-standing harmony suggests that in logical systems like 
this, inferential and semantic information are very close. This strong connection 
comes out even very forcefully in the 'full completeness' theorems of Abramsky 

natural logic. Here is the principle for the dual rule of Conditionalization: (b) T :  X, x: A, Rz, xy F 
z : B implies T : X F y : A --t B. So far, this is still an abstract format, however, without a 
corresponding intuitive unification. 

5 2 J ~ s t  to  mention some quite different sources, the same laws arise in matrix algebra, theories 
of vector spaces in mathematical morphology, and 'spatial implications' in logics of security. 

53Parikh [2007] also has an extremely interesting account of knowledge as that which is revealed 
in observable Nash equilibria of a new kind of evaluation games for testing assertions. 
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and Jagadeesan [1994], which do not just link provability to validity, but specific 
proofs to concrete objects in (category-theoretic) semantics. 

From intuitionistic to modal logics of information 

Intuitionistic logic has a very specific view on valid inference, far beyond what 
one would want to endorse in a general information theory. Thus, attempts have 
been made at abstracting a more general view of information, though retaining 
its attractive features. Van Benthem 1996B proposes a 'modal theory of informa- 
tion' over models of abstract information stages ordered by inclusion (cf. also the 
'data semantics' of Veltman 1984, Landman 1986), and there are related recent 
approaches to abstract information modeling in Sequoiah-Grayson 2006. These 
modal views seem related to the earlier-mentioned categorial and relevant ap- 
proaches, but much remains to be clarified. 

Digression: information that and information how 

Merging semantic and proof-theoretic perspectives is of interest in other ways, too. 
Proof theory has a clear algorithmic aspect, which we have ignored here (but cf. 
the chapters by Abramsky, Adriaans, and Grunwald and Vitanyi in this Hand- 
book on various algorithmic aspects of information). Indeed, ever since Euclid's 
"Elements", constructive proofs are both ways of seeing that a conclusion is true 
and methods for constructing the relevant objects. In type-theoretic calculi, proofs 
are definable function terms in some mathematical universe through the Curry- 
Howard isomorphism. This duality ties in with the famous distinction between 
knowledge that and knowledge how [Gochet, 20061 in philosophy and computer 
science. The latter is about procedures and general cognitive skills. This also 
makes sense for information. As pointed out in Israel and Perry 1991, this notion 
is not just about what things are like, but also how to get thing things done. 

8.6 Conclusion 

Despite the abundance of ideas recorded in Sections 7 and 8, there is no consensus 
on the integration of inferential and semantic views of information structure and 
information dynamics. Indeed, the chapter by Samson Abramsky in this Handbook 
highlights the contrast even more, distinguishing logic as describing informational 
dynamics (the main thrust of our semantic approaches) from logic as embodying 
dynamics, the more proof-theoretical view that logical denotations are themselves 
informational processes. In such a light, our earlier Tandem View of representation 
and process would reflect two fundamental faces of logic itself. However this may 
be, given the history of logic, semantic and inferential views of information may be 
irreducibly complementary stances, and it may be precisely their interplay which 
is needed to grasp the notion of information in its entirety. 
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9 CONCLUSION: LOGIC AS INFORMATION THEORY 

This chapter has painted logic as a theory of information, with an actual or po- 
tential impact on many disciplines. This is not at all the standard outside view or 
self-image of the field, but it does seem a legitimate perspective. We have woven a 
story which puts many logical notions and results into one new line, but one rather 
different from a standard textbook presentation. Here are our major conclusions, 
or rather: our main claims, in doing so. 

First, to get the real picture of logical information, one needs to address the 
statics and dynamics in parallel, with intertwined accounts of information struc- 
ture and the dynamic processes which manipulate the latter. Next, there are many 
such dynamic processes, which need not all reduce to one primitive: be it inference 
or update, and hence logical views of information come in complementary kinds. 
More specifically, we have re-interpreted epistemic logic as an information theory 
of range, knowledge, and observation-based update. Like classical information the- 
ories, this is not just a model of information, but also a calculus for computing 
information flow, witness the concrete procedures for model update, and the ax- 
iomatic dynamic-epistemic laws governing this. We also emphasized the essential 
role of agents, and the ways in which agents take infomnation: alone, but much 
more importantly, in interaction with others. Information is studied best in a 
setting of many agents, communication, and perhaps even interactive games. 

Next, we have high-lighted another major perspective on information, viz. its 
'aboutness', and the matching situation-theoretic account of correlations and de- 
pendence between different parts of distributed systems. This provides a much 
richer view of how agents can actually access information, and why it is there for 
them to pick up and communicate in the first place. We have shown that, despite 
some common misconceptions, this situation-theoretic perspective is not in con- 
flict with the epistemic one, but rather forms its natural complement - and we 
have provided a number of merged systems doing justice to all aspects so far. 

Finally, logic offers another major view of infomnation as code through its proof 
systems and other syntactic calculi which elucidate implicitly available semantic 
information by computing on suitable data structures. Our view is that this is 
another informational stance in its own right, close to the worlds of algorithmics 
and computation. We have surveyed some ways in which the syntactic stance and 
its natural processes can live in harmony with the semantic ones. 

Re-interpreting logical systems in this way raises further questions. What does 
the usual logical agenda mean in this light? Does it provide a calculus for in- 
formation comparable to that of the powerful Shannon-style or Kolmogorov-style 
information theories in this Handbook? Most standard results in logic are con- 
cerned with (a) expressive power and definability, (b) axiomatic completeness for 
proof systems, or (c) computational complelcity of tasks like model checking or 
proof search. We are not claiming that all of these are equally important as gen- 
eral concerns about 'information', but we do think that our re-interpretation might 
shed some fresh light on what we are doing in our standard grooves. 
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Finally, there is the issue of Grand Unification. Can all stances toward informa- 
tion be unified in one framework? We do not think so. Some abstract unification of 
all logical information theories may always exist, ascending far enough into math- 
ematical Heaven. But what is the distance to Earth, i.e., our cognitive practices? 
Indeed, we doubt if a Grand Unification is necessary. Having several complemen- 
tary stances in a field is fruitful in itself. Just compare the interplay of semantic 
and algorithmic views of information running throughout this Handbook. What 
is good enough, instead of unification, both in practice and in theory, is a rigorous 
way of analyzing differences and possible merges between stances. And that the 
latter is feasible should be clear from our text. 

10 FURTHER TOPICS AND BROADER OUTREACH 

Our presentation has focused on a few major senses of information in logic, and 
some systems showing how they work. This is by no means an exhaustive survey 
of all topics and issues, and several alternative chapters could have been written 
mapping out the territory differently. Just think of analogies and differences with 
Probability Theory, logic's neighbour, but also its closest rival in the analysis of 
information. Of the omissions that weigh most on our conscience, besides logic 
and probability (cf. [Loewe et al., 20071 for some recent interfaces), we mention a 
few, with some highly unsystematic references: 

Information content and the methodology of science (cf. [Kuipers, 20001) 

Visual and other information carriers beyond language [Allwein and Barwise, 
1996; Kerdiles, 2001, Aiello et al., 20071 

Information and context [Buvac and McCarthy, 20041 

Information, interaction, and games [Sevenster, 20061 

We console ourselves with the thought that many of these themes are found in other 
guises in other chapters of this Handbook, in particular, the ones on language, 
philosophy, economic game theory, computation, and cognition. 
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ALGORITHMIC INFORMATION THEORY 

Peter D. Grunwald and Paul M. B. VitAnyi 

1 INTRODUCTION 

How should we measure the amount of information about a phenomenon that 
is given to us by an observation concerning the phenomenon? Both 'classical' 
(Shannon) information theory (see the chapter by [Harremoes and Topsere, 20081) 
and algorithmic information theory start with the idea that this amount can be 
measured by the m i n i m u m  number of bits needed t o  describe the observation. But 
whereas Shannon's theory considers description methods that are optimal relative 
to some given probability distribution, Kolmogorov's algorithmic theory takes a 
different, nonprobabilistic approach: any computer program that first computes 
(prints) the string representing the observation, and then terminates, is viewed 
as a valid description. The amount of information in the string is then defined 
as the size (measured in bits) of the shortest computer program that outputs the 
string and then terminates. A similar definition can be given for infinite strings, 
but in this case the program produces element after element forever. Thus, a long 
sequence of 1's such as 

10000 times 

contains little information because a program of size about log 10000 bits outputs 
it: 

f o r  i := 1 t o  10000; p r i n t  1. 

Likewise, the transcendental number .rr = 3.1415 ..., an infinite sequence of seem- 
ingly 'random' decimal digits, contains but a few bits of information (There is a 
short program that produces the consecutive digits of -/r forever). 

Such a definition would appear to make the amount of information in a string (or 
other object) depend on the particular programming language used. Fortunately, 
it can be shown that all reasonable choices of programming languages lead to 
quantification of the amount of 'absolute' information in individual objects that 
is invariant up to an additive constant. We call this quantity the 'Kolmogorov 
complexity' of the object. While regular strings have small Kolmogorov complex- 
ity, random strings have Kolmogorov complexity about equal to their own length. 
Measuring complexity and information in terms of program size has turned out 
to be a very powerful idea with applications in areas such as theoretical computer 
science, logic, probability theory, statistics and physics. 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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This  Chap te r  Kolmogorov complexity was introduced independently and with 
different motivations by R.J. Solomonoff (born 1926), A.N. Kolmogorov (1903- 
1987) and G. Chaitin (born 1943) in 1960/1964, 1965 and 1966 respectively 
[Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 19661. During the last forty years, 
the subject has developed into a major and mature area of research. Here, we 
give a brief overview of the subject geared towards an audience specifically inter- 
ested in the philosophy of information. With the exception of the recent work 
on the Kolmogorov structure function and parts of the discussion on philosoph- 
ical implications, all material we discuss here can also be found in the standard 
textbook [ ~ i  and VitGnyi, 19971. The chapter is structured as follows: we start 
with an introductory section in which we define Kolmogorov complexity and list 
its most important properties. We do this in a much simplified (yet formally cor- 
rect) manner, avoiding both technicalities and all questions of motivation (why 
this definition and not another one?). This is followed by Section 3 which provides 
an informal overview of the more technical topics discussed later in this chapter, 
in Sections 4- 6. The final Section 7, which discusses the theory's philosophical 
implications, as well as Section 6.3, which discusses the connection to inductive in- 
ference, are less technical again, and should perhaps be glossed over before delving 
into the technicalities of Sections 4- 6. 

2 KOLMOGOROV COMPLEXITY: ESSENTIALS 

The aim of this section is to introduce our main notion in the fastest and sim- 
plest possible manner, avoiding, to the extent that this is possible, all technical 
and motivational issues. Section 2.1 provides a simple definition of Kolmogorov 
complexity. We list some of its key properties in Section 2.2. Knowledge of these 
key properties is an essential prerequisite for understanding the advanced topics 
treated in later sections. 

2.1 Definition 

The Kolmogorov complexity K will be defined as a function from finite binary 
strings of arbitrary length to the natural numbers W. Thus, K : (0, I)* -, N is 
a function defined on 'objects' represented by binary stsings. Later the definition 
will be extended to  other types of objects such as numbers (Example 3), sets, 
functions and probability distributions (Example 7). 

As a first approximation, K(x) may be thought of as the length of the shortest 
computer program that prints x and then halts. This computer program may be 
written in Fortran, Java, LISP or any other universal programming language. By 
this we mean a general-purpose programming language in which a universal Turing 
Machine can be implemented. Most languages encountered in practice have this 
property. For concreteness, let us fix some universal language (say, LISP) and de- 
fine Kolmogorov complexity with respect to it. The invariance theorem discussed 
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below implies that it  does not really matter which one we pick. Computer pro- 
grams often make use of data. Such data are sometimes listed inside the program. 
An example is the bitstring "0 101 10. . . " in the program 

In other cases, such data are given as additional input to the program. To prepare 
for later extensions such as conditional Kolmogorov complexity, we should allow 
for this possibility as well. We thus extend our initial definition of Kolmogorov 
complexity by considering computer programs with a very simple input-output 
interface: programs are provided a stream of bits, which, while running, they can 
read one bit at a time. There are no end-markers in the bit stream, so that, if a 
program p halts on input y and outputs x7  then it will also halt on any input yz, 
where z is a continuation of y, and still output x. We write p(y) = x if, on input 
y, p prints x and then halts. We define the Kolmogorov complexity relative to a 
given language as the length of the shortest program p plus input y, such that, 
when given input y, p computes (outputs) x and then halts. Thus: 

(3) K(x) := min l(p) + l(y), 
Y>P:P(Y)=X 

where l(p) denotes the length of input p, and l(y) denotes the length of program y, 
both expressed in bits. To make this definition formally entirely correct, we need 
to assume that the program p runs on a computer with unlimited memory, and 
that the language in use has access to all this memory. Thus, while the definition 
(3) can be made formally correct, it does obscure some technical details which 
need not concern us now. We return to these in Section 4. 

2.2 Key Properties of Kolmogorov Complexity 

To gain further intuition about K(x),  we now list five of its key properties. Three 
of these concern the size of K(x) for commonly encountered types of strings. 
The fourth is the invariance theorem, and the fifth is the fact that K(x)  is uncom- 
putable in general. Henceforth, we use x to denote finite bitstrings. We abbreviate 
l(x), the length of a given bitstring x, to  n. We use boldface x to denote an infinite 
binary string. In that case, x[l:,] is used to denote the initial n-bit segment of x. 

l(a). Very Simple Objects: K(x) = O(1og n). K(x) must be small for 'sim- 
ple' or 'regular7 objects x. For example, there exists a fixed-size program that, 
when input n, outputs the first n bits of T and then halts. As is easy to see 
(Section 4.2), specification of n takes O(1ogn) bits. Thus, when x consists of the 
first n bits of r, its complexity is O(1ogn). Similarly, we have K(x) = O(1ogn) 
if x represents the first n bits of a sequence like (1) consisting of only Is. We 
also have K(x) = O(1ogn) for the first n bits of e, written in binary; or even for 
the first n bits of a sequence whose i-th bit is the i-th bit of e2.3 if the i - 1-st 
bit was a one, and the i-th bit of l/ .rr  if the i - 1-st bit was a zero. For certain 
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'special' lengths n, we may have K(x) even substantially smaller than O(1ogn). 
For example, suppose n = 2m for some m E N. Then we can describe n by first 
describing m and then describing a program implementing the function f (z) = 2'. 
The description of m takes O(1ogm) bits, the description of the program takes a 
constant number of bits not depending on n. Therefore, for such values of n, we 
get K (x) = O(1og m) = O(1og log n). 

l(b). Completely Random Objects: K(x) = n + O(1ogn). A code or de- 
scription method is a binary relation between source words - strings to be encoded 
- and code words - encoded versions of these strings. Without loss of generality, 
we can take the set of code words to be finite binary strings [Cover and Thomas, 
19911. In this chapter we only consider uniquely decodable codes where the relation 
is one-to-one or one-to-many, indicating that given an encoding E(x) of string x, 
we can always reconstruct the original x. The Kolmogorov complexity of x can be 
viewed as the code length of x that results from using the Ko~mogorou code E*(x): 
this is the code that encodes x by the shortest program that prints x and halts. 

The following crucial insight will be applied to the Kolmogorov code, but it is 
important to realize that in fact it holds for every uniquely decodable code. For 
any uniquely decodable code, there are no more than 2" strings x which can be 
described by m bits. The reason is quite simply that there are no more than 2" 
binary strings of length m. Thus, the number of strings that can be described by 
less than m bits can be at most 2"-' + 2m-2 + . . . + 1 < 2m. In particular, this 
holds for the code E* whose length function is K(x). Thus, the fraction of strings 
x of length n with K(x) < n - k is less than 2-k: the overwhelming majority 
of sequences cannot be compressed by more than a constant. Specifically, if x is 
determined by n independent tosses of a fair coin, then all sequences of length n 
have the same probability 2-n, so that with probability at least 1 - 2-k, 

On the other hand, for arbitrary x, there exists a program 'pr in t  x ;  halt'. This 
program seems to have length n + O(1) where O(1) is a small constant, account- 
ing for the 'print' and 'halt' symbols. We have to be careful though: computer 
programs are usually represented as a sequence of bytes. Then in the program 
above x cannot be an arbitrary sequence of bytes, because we somehow have to 
mark the end of x. Although we represent both the program and the string x as 
bits rather than bytes, the same problem remains. To avoid it, we have to encode 
x in a prefix-free manner (Section 4.2) which takes n + O(1ogn) bits, rather than 
n + O(1). Therefore, for all x of length n, K(x) < n + O(1ogn). Except for a 
fraction of 2-" of these, K(x) > n - c so that for the overwhelming majority of x, 

Similarly, if x is determined by independent tosses of a fair coin, then (4) holds 
with overwhelming probability. Thus, while for very regular strings, the Kol- 
mogorov complexity is small (sublinear in the length of the string), most strings 



Ch08-N51726.fin Page 285 Satarday, August 25,2007 4:03 PM @ ~* 
Algorithmic Information Theory 285 

have Kolmogorov complexity about equal to their own length. Such strings are 
called (Kolmogorov) random: they do not exhibit any discernible pattern. A more 
precise definition follows in Example 4. 

l(c). Stochastic Objects: K(x) = an+o(n).  Suppose x = ~ 1 x 2 . .  . where the 
individual xi are realizations of some random variable Xi, distributed according 
to some distribution P. For example, we may have that all outcomes XI ,  X2,. . . 
are independently identically distributed (i.i.d.) with for all i, P(Xi = 1) = p for 
some p E [O, 11. In that case, as will be seen in Section 5.3, Theorem 10, 

where log is logarithm to the base 2, and H(p) = -plogp - (1 - p) log(1 - p) is 
the binary entropy, defined in Section 5.1. For now the important thing to note 
is that 0 < H(p) I 1, with H(p) achieving its maximum 1 for p = 112. Thus, 
if data are generated by independent tosses of a fair coin, (5) is consistent with 
(4). If data are generated by a biased coin, then the Kolmogorov complexity will 
still increase linearly in n,  but with a factor less than 1 in front: the data can 
be compressed by a linear amount. This still holds if the data are distributed 
according to  some P under which the different outcomes are dependent, as long as 
this P is 'n~nde~enerate'. ' An example is a k-th order Markov chain, where the 
probability of the i-th bit being a 1 depends on the value of the previous k bits, 
but nothing else. If none of the 2k probabilities needed to specify such a chain are 
either 0 or 1, then the chain will be 'nondegenerate' in our sense, implying that, 
with P-probability 1, K(xl , . .  . , x,) grows linearly in n. 

2. Invariance It would seem that K(x) depends strongly on what program- 
ming language we used in our definition of K. However, it turns out that, for 
any two universal languages L1 and L2,.letting K1 and Kg denote the respective 
complexities, for all x of each length, 

where C is a constant that depends on L1 and Lg but not on x or its length. Since 
we allow any universal language in the definition of K, K(x) is oniy defined up 
to an additive constant. This means that the theory is inherently asymptotic: it 
can make meaningful statements pertaining to  strings of increasing length, such 
as K(xil:,]) = f (n) + O(1) in the three examples l(a), l(b) and l(c) above. A 
statement such as K(a)  = b is not very meaningful. 

It is actually very easy to show (6). It is known from the theory of computation 
that for any two universal languages L1 and L2, there exists a compiler, written 
in L1, translating programs written in L2 into equivalent programs written in L1. 
Thus, let L1 and L2 be two universal languages, and let A be a program in L1 

'This means that  there exists an E > 0 such that,  for all n > 0, all xn E (0, lIn, for a  E (0, I), 
P ( x n + l  = a ) x l ,  ..., x n ) > e .  
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implementing a compiler translating from L2 to L1. For concreteness, assume L1 
is LISP and L2 is Java. Let (p, y) be the shortest combination of Java program 
plus input that prints a given string x. Then the LISP program A, when given 
input p followed by y, will also print x and halt.2 It follows that KLISP(x) 5 
I(A) + l(p) + l(y) 5 KJava(x) + 0(1) ,  where O(1) is the size of A. By symmetry, we 
also obtain the opposite inequality. Repeating the argument for general universal 
L1 and L2, (6) follows. 

3. Uncomputability Unfortunately K(x) is not a recursive function: the Kol- 
mogorov complexity is not computable in general. This means that there exists no 
computer program that, when input an arbitrary string, outputs the Kolmogorov 
complexity of that string and then halts. We prove this fact in Section 4, Ex- 
ample 3. Kolmogorov complexity can be computably approximated (technically 
speaking, it is upper semicomputable [Li and Vitfinyi, 1997]), but not in a prac- 
tically useful way: while the approximating algorithm with input x successively 
outputs better and better approximations t l  > t2 > t3 2 . . . to K(x) ,  it is (a) 
excessively slow, and (b), it is in general impossible to determine whether the cur- 
rent approximation ti is already a good one or not. In the words of [Barron and 
Cover, 19911, (eventually) "You know, but you do not know you know". 

Do these properties make the theory irrelevant for practical applications? Cer- 
tainly not. The reason is that it is possible to approximate Kolmogorov complexity 
after all, in the following, weaker sense: we take some existing data compression 
program C (for example, gzip) that allows every string x to be encoded and de- 
coded computably and even efficiently. We then approximate K(x)  as the number 
of bits it  takes to encode x using compressor C. For many compressors, one can 
show that for "most" strings x in the set of all strings of interest, C(s)  = K(x).  
Both universal coding [Cover and Thomas, 19911 and the Minimum Description 
Length (MDL) Principle (Section 6.3) are, to  some extent, based on such ideas. 
Universal coding forms the basis of most practical lossless data compression al- 
gorithms, and MDL is a practically successful method for statistical inference. 
There is an even closer connection to the normalized compression distance method, 
a practical tool for data similarity analysis that can explicitly be understood as 
an approximation of an "ideal" but uncomputable method based on Kolmogorov 
complexity [Cilibrasi and Vitfinyi, 20051. 

3 OVERVIEW AND SUMMARY 

Now that we introduced our main concept, we are ready to give a summary of the 
remainder of the chapter. 

Section 4: Kolmogorov Complexity - Details We motivate our definition 
of Kolmogorov complexity in terms of the theory of computation: the Church- 

2 ~ o  formalize this argument we need t o  setup the compiler in a way such that p and y can be 
fed t o  the compiler without any symbols in between, but this can be done; see Example 2. 
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Turing thesis implies that our choice of description method, based on uni- 
versal computers, is essentially the only reasonable one. We then introduce 
some basic coding theoretic concepts, most notably the so-called prefix-free 
codes that form the basis for our version of Kolmogorov complexity. Based 
on these notions, we give a precise definition of Kolmogorov complexity and 
we fill in some details that were left open in the introduction. 

Section 5: Shannon vs. Kolmogorov Here we outline the similarities and dif- 
ferences in aim and scope of Shannon's and Kolmogorov's information the- 
ories. Section 5.1 reviews the entropy, the central concept in Shannon's 
theory. Although their primary aim is quite different, and they are functions 
defined on different spaces, there is a close relation between entropy and 
Kolmogorov complexity (Section 5.3): if data are distributed according to 
some computable distribution then, roughly, entropy i s  expected Kolmogorov 
complexity. 

Entropy and Kolmogorov complexity are concerned with information in a 
single object: a random variable (Shannon) or an individual sequence (Kol- 
mogorov). Both theories provide a (distinct) notion of mutual information 
that measures the information that one object gives about another object. 
We introduce and compare the two notions in Section 5.4. 

Entropy, Kolmogorov complexity and mutual information are concerned with loss- 
less description or compression: messages must be described in such a way that 
from the description, the original message can be completely reconstructed. Ex- 
tending the theories to  lossy description or compression enables the formalization 
of more sophisticated concepts, such as 'meaningful information' and 'useful in- 
formation'. 

Section 6: Meaningful Information, St ructure  Function and  Learning 
The idea of the Kolmogorov Structure Function is to encode objects (strings) 
in two parts: a structural and a random part. Intuitively, the 'meaning' of 
the string resides in the structural part and the size of the structural part 
quantifies the 'meaningful' information in the message. The structural part 
defines a 'model' for the string. Kolmogorov's structure function approach 
shows that the meaningful information is summarized by the simplest model 
such that the corresponding two-part description is not larger than the Kol- 
mogorov complexity of the original string. Kolmogorov's structure func- 
tion is closely related to J. Rissanen's m i n i m u m  description length principle, 
which we briefly discuss. This is a practical theory of learning from data 
that can be viewed as a mathematical formalization of Occam's Razor. 

Section 7: Philosophical Implications Kolmogorov complexity has implica- 
tions for the foundations of several fields, including the foundations of math- 
ematics. The consequences are particularly profound for the foundations of 
probability and statistics. For example, it allows us to discern between dif- 
ferent forms  of randomness, which is impossible using standard probability 
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theory. It  provides a precise prescription for and justification of the use of 
Occam's Razor in statistics, and leads to the distinction between epistemo- 
logical and metaphysical forms of Occam's Razor. We discuss these and other 
implications for the philosophy of information in Section 7, which may be 
read without deep knowledge of the technicalities described in Sections 4-6. 

4 KOLMOGOROV COMPLEXITY: DETAILS 

In Section 2 we introduced Kolmogorov complexity and its main features without 
paying much attention to either (a) underlying motivation (why is Kolmogorov 
complexity a useful measure of information?) or (b) technical details. In this 
section, we first provide a detailed such motivation (Section 4.1). We then (Sec- 
tion 4.2) provide the technical background knowledge needed for a proper under- 
standing of the concept. Based on this background knowledge, in Section 4.3 we 
provide a definition of Kolmogorov complexity directly in terms of Turing ma- 
chines, equivalent to, but at the same time more complicated and insightful than 
the definition we gave in Section 2.1. With the help of this new definition, we then 
fill in the gaps left open in Section 2. 

4.1 Motivation 

Suppose we want to  describe a given object by a finite binary string. We do not 
care whether the object has many descriptions; however, each description should 
describe but one object. F'rom among all descriptions of an object we can take 
the length of the shortest description as a measure of the object's complexity. It 
is natural to call an object "simple" if it has at least one short description, and to 
call it "complex" if all of its descriptions are long. But now we are in danger of 
falling into the trap so eloquently described in the Richard-Berry paradox, where 
we define a natural number as "the least natural number that cannot be described 
in less than twenty words." If this number does exist, we have just described 
it in thirteen words, contradicting its definitional statement. If such a number 
does not exist, then all natural numbers can be described in fewer than twenty 
words. We need to look very carefully at what kind of descriptions (codes) D 
we may allow. If D is known to both a sender and receiver, then a message x 
can be transmitted from sender to receiver by transmitting the description y with 
D(y) = x. We may define the descriptional complexity of x under specification 
method D as the length of the shortest y such that D(y) = x. Obviously, this 
descriptional complexity of x depends crucially on D: the syntactic framework of 
the description language determines the succinctness of description. Yet in order 
to objectively compare descriptional complexities of objects, to be able to say "x 
is more complex than z," the descriptional complexity of x should depend on x 
alone. This complexity can be viewed as related to a universal description method 
that is a priori assumed by all senders and receivers. This complexity is optimal 
if no other description method assigns a lower complexity to  any object. 
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We are not really interested in optimality with respect to all description meth- 
ods. For specifications to be useful at all it is necessary that the mapping from y 
to D(y) can be executed in an effective manner. That is, it can at least in principle 
be performed by humans or machines. This notion has been formalized as that of 
"partial recursive functions", also known simply as computable functions. Accord- 
ing to generally accepted mathematical viewpoints - the so-called 'Church-Turing 
thesis' - it coincides with the intuitive notion of effective computation [Li and 
Vithnyi, 19971. 

The set of partial recursive functions contains an optimal function that min- 
imizes description length of every other such function. We denote this function 
by Do. Namely, for any other recursive function D, for all objects x, there is a 
description y of x under Do that is shorter than any description z of x under D. 
(That is, shorter up to an additive constant that is independent of x.) Complexity 
with respect to Do minorizes the complexities with respect to  all partial recursive 
functions (this is just the invariance result (6) again). 

We identify the length of the description of x with respect to  a fixed specifi- 
cation function Do with the "algorithmic (descriptional) complexity" of x. The 
optimality of Do in the sense above means that the complexity of an object x is 
invariant (up to an additive constant independent of x) under transition from one 
optimal specification function to another. Its complexity is an objective attribute 
of the described object alone: it is an intrinsic property of that object, and it 
does not depend on the description formalism. This complexity can be viewed as 
"absolute information content" : the amount of information that needs to be trans- 
mitted between all senders and receivers when they communicate the message in 
absence of any other a priori knowledge that restricts the domain of the message. 
This motivates the program for a general theory of algorithmic complexity and 
information. The four major innovations are as follows: 

1. In restricting ourselves to formally effective descriptions, our definition covers 
every form of description that is intuitively acceptable as being effective 
according to general viewpoints in mathematics and logic. 

2. The restriction to effective descriptions entails that there is a universal de- 
scription method that minorizes the description length or complexity with 
respect to  any other effective description method. Significantly, this implies 
Item 3. 

3. The description length or complexity of an object is an intrinsic attribute of 
the object independent of the particular description method or formalizations 
thereof. 

4. The disturbing Richard-Berry paradox above does not disappear, but resur- 
faces in the form of an alternative approach to proving Godel's famous result 
that not every true mathematical statement is provable in mathematics (Ex- 
ample 4 below). 
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4.2 Coding Preliminaries 

Strings a n d  Natura l  Numbers  Let X be some finite or countable set. We 
use the notation X* to denote the set of finite strings or sequences over X. For 
example, 

(0'1)' = {€,0,1,00,01,10,11,000 ,... ), 
with E denoting the empty word " with no letters. We identify the natural numbers 
W and (0, I}* according to the correspondence 

The length l(x) of x is the number of bits in the binary string x. For example, 
l(010) = 3 and E(E) = 0. If x is interpreted as an integer, we get l(x) = Llog(x+ 1)J 
and, for x 2 2, 

Here, as in the sequel, [xl is the smallest integer larger than or equal to x, 1x1 is 
the largest integer smaller than or equal to x and log denotes logarithm to base 
two. We shall typically be concerned with encoding finite-length binary strings 
by other finite-length binary strings. The emphasis is on binary strings only for 
convenience; observations in any alphabet can be so encoded in a way that is 
'theory neutral'. 

Codes  We repeatedly consider the following scenario: a sender (say, A) wants to 
communicate or transmit some information to a receiver (say, B). The information 
to  be transmitted is an element from some set X. It will be communicated by 
sending a binary string, called the message. When B receives the message, he 
can decode it again and (hopefully) reconstruct the element of X that was sent. 
To achieve this, A and B need to agree on a code or description method before 
communicating. Intuitively, this is a binary relation between source words and 
associated code words. The relation is fully characterized by the decoding function. 
Such a decoding function D can be any function D : (0, I}* 4 X. The domain of 
D is the set of code words and the range of D is the set of source words. D(y) = x 
is interpreted as "y is a code word for the source word x". The set of all code 
words for source word x is the set D-'(x) = {y : D(y) = x). Hence, E = DP1 can 
be called the encoding substitution (E is not necessarily a function). With each 
code D we can associate a length function LD : X -+ N such that, for each source 
word x, LD(x) is the length of the shortest encoding of x: 

LD(x) = min{l(~) : D(Y) = x}. 

We denote by x* the shortest y such that D(y) = x; if there is more than one such 
y, then x* is defined to be the first such y in lexicographical order. 

In coding theory attention is often restricted to the case where the source word 
set is finite, say X = {1,2,. . . , N). If there is a constant lo such that l(y) = lo 
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for all code words y (equivalently, L(x) = lo for all source words x), then we 
call D a fixed-length code. It is easy to  see that lo 2 log N. For instance, in 
teletype transmissions the source has an alphabet of N = 32 letters, consisting 
of the 26 letters in the Latin alphabet plus 6 special characters. Hence, we need 
lo = 5 binary digits per source letter. In electronic computers we often use the 
fixed-length ASCII code with 10 = 8. 

Prefix-free code In general we cannot uniquely recover x and y from E(xy). 
Let E be the identity mapping. Then we have E(OO)E(OO) = 0000 = E(O)E(000). 
We now introduce prefx-free codes, which do not suffer from this defect. A binary 
string x is a proper prejix of a binary string y if we can write y = xz for z # E .  

A set {x, y, . . .) {0,1)* is prefi-free if for any pair of distinct elements in the 
set neither is a proper prefix of the other. A function D : {0,1)* -+ M defines a 
prefix-free code3 if its domain is prefix-free. In order to decode a code sequence of 
a prefix-free code, we simply start a t  the beginning and decode one code word at  
a time. When we come to the end of a code word, we know it is the end, since no 
code word is the prefix of any other code word in a prefix-free code. Clearly, prefix- 
free codes are uniquely decodable: we can always unambiguously reconstruct an 
outcome from its encoding. Prefix codes are not the only codes with this property; 
there are uniquely decodable codes which are not prefix-free. In the next section, 
we will define Kolmogorov complexity in terms of prefix-free codes. One may 
wonder why we did not opt for general uniquely decodable codes. There is a good 
reason for this: It turns out that every uniquely decodable code can be replaced 
by a prefix-free code without changing the set of code-word lengths. This follows 
from a sophisticated version of the Kraft inequality [Cover and Thomas,, 1991, 
Kraft-McMillan inequality, Theorem 5.5.11; the basic Kraft inequality is found 
in [Harremoes and Topsme, 20081, Equation 1 .l. In Shannon's and Kolmogorov's 
theories, we are only interested in code word lengths of uniquely decodable codes 
rather than actual encodings. The Kraft-McMillan inequality shows that without 
loss of generality, we may restrict the set of codes we work with to prefix-free 
codes, which are much easier t o  handle. 

Codes for the integers; Pairing Functions Suppose we encode each binary 
string x = 51x2 . . . x, as 

f = 11 1 0x1x2.. .xn. 
n times 

The resulting code is prefix-free because we can determine where the code word 
% ends by reading it from left to right without backing up. Note 1(?) = 2n + 1; 
thus, we have encoded strings in (0, I)* in. a prefix-free manner at the price of 
doubling their length. We can get a much more efficient code by applying the 

3The standard terminology [Cover and Thomas, 1991) for such codes is 'prefix codes'. Fol- 
lowing [Harremob and Tops~e ,  20081, we use the more informative 'prefix-free codes'. 
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construction above to the length l(x) of x rather than x itself: define x' = I(z)x, 
where l(x) is interpreted as a binary string according to the correspondence (7). 
Then the code that maps x to x' is a prefix-free code satisfying, for all x E {0, I)*, 
l(xl) = n + 2 logn + 1 (here we ignore the 'rounding error' in (8)). We call 
this code the standard prefix-free code for the natural numbers and use LN(x) 
as notation for the codelength of x under this code: Lw(x) = 1(x1). When x 
is interpreted as a number (using the correspondence (7) and (8)), we see that 
LN(x) = logs + 210gl0gx + 1. 

We are often interested in representing a pair of natural numbers (or binary 
strings) as a single natural number (binary string). To this end, we define the 
standard 1-1 pairing function (., -) : M x M --+ M as (x, y) = x'y (in this definition 
x and y are interpreted as strings). 

4.3 Formal Definition of Kolmogorov Complexity 

In this subsection we provide a formal definition of Kolmogorov complexity in 
terms of Turing machines. This will allow us to  fill in some details left open in 
Section 2. Let TI, T2,. . . be a standard enumeration of all Turing machines [Li and 
VitBnyi, 19971. The functions implemented by Ti are called the partial recursive 
or computable functions. For technical reasons, mainly because it simplifies the 
connection to Shannon's information theory, we are interested in the so-called 
prefix complexity, which is associated with Turing machines for which the set of 
programs (inputs) resulting in a halting computation is prefix-free4. We can realize 
this by equipping the Turing machine with a one-way input tape, a separate work 
tape, and a one-way output tape. Such Turing machines are called prefix machines 
since the halting programs for any one of them form a prefix-free set. 

We first define KTi (x), the prefix Kolmogorov complexity of x relative to a given 
prefix machine Ti, where Ti is the i-th prefix machine in a standard enumeration 
of them. KT,(%) is defined as the length of the shortest input sequence y such that 
Ti(y) = x; that is, the i-th Turing machine, when run with input y, produces x on 
its output tape and then halts. If no such input sequence exists, Kr,(x) remains 
undefined. Of course, this preliminary definition is still highly sensitive to the 
particular prefix machine Ti that we use. But now the 'universal prefix machine7 
comes to our rescue. Just as there exists universal ordinary Turing machines, there 
also exist universal prefix machines. These have the remarkable property that they 
can simulate every other prefix machine. More specifically, there exists a prefix 
machine U such that, with as input the concatenation i'y (where i' is the standard 
encoding of integer i ,  Section 4.2), U outputs Ti(y) and then halts. If U gets any 
other input then it does not halt. 

DEFINITION 1. Let U be our reference prefix machine, i.e. for all i E N, y E 

(0, I)*, U((i, y)) = U(i1y) = Ti(y). The prefia: Kolmogorov complexity of x is 

4 ~ h e r e  exists a version of Kolmogorov complexity corresponding to  programs that are not 
necessarily prefix-free, but we will not go into it here. 
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defined as K(x) := Kv(x), or equivalently: 

K(x) = min{ l (z ) :U(z )=x ,z~{O,1 )* )=  
z 

(9) = min{l(il) + l(y) : T,(y) = s, y E {O,l)*,i E N). 
2 ,Y 

We can alternatively think of z as a program that prints x and then halts, or 
as z = i'y where y is a program such that, when Ti is input program y, it prints 
x and then halts. 

Thus, by definition K(x)  = l(x*), where x* is the lexicographically first shortest 
self-delimiting (prefix-free) program for x with respect to the reference prefix ma- 
chine. Consider the mapping E* defined by E* (x) = x*. This may be viewed as the 
encoding function of a prefix-free code (decoding function) D* with D*(x*) = x. 
By its definition, D* is a very parsimonious code. 

EXAMPLE 2. In Section 2, we defined K(x) as the shortest program for x in 
some standard programming language such as LISP or Java. We now show that 
this definition is equivalent to the prefix Turing machine Definition 1. Let L1 be 
a universal language; for concreteness, say it is LISP. Denote the corresponding 
Kolmogorov complexity defined as in (3) by KLISP. For the universal prefix ma- 
chine U of Definition 1, there exists a program p in LISP that simulates it [Li and 
VitLnyi, 19971. By this we mean that, for all z E (0, I)*, either p(z) = U ( z )  or 
neither p nor U ever halt on input z. Run with this program, our LISP computer 
computes the same function as U on its input, so that 

On the other hand, LISP, when equipped with the simple input/output interface 
described in Section 2, is a language such that for all programs p, the set of inputs 
y for which p(y) is well-defined forms a 'prefix-free set. Also, as is easy to check, 
the set of syntactically correct LISP programs is prefix-free. Therefore, the set of 
strings py where p is a syntactically correct LISP program and y is an input on 
which p halts, is prefix-free. Thus we can construct a prefix Turing machine with 
some index io such that Ti, (py) = p(y) for all y E (0, I)*. Therefore, the universal 
machine U satisfies for all y E (0, I)*, U(ibpy) = T,,(py) = p(y), so that 

We are therefore justified in calling K=ISP(X) a version of (prefix) Kolmogorov 
complexity. The same holds for any other universal language, as long as its set of 
syntactically correct programs is prefix-free. This is the case for every program- 
ming language we know of. 

EXAMPLE 3. [K(x) as an integer function; uncomputability] The corre- 
spondence between binary strings and integers established in (7) shows that Kol- 
mogorov complexity may equivalently be thought of as a function K : N -+ N 
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where N are the nonnegative integers. This interpretation is useful to  prove that 
Kolmogorov complexity is uncomputable. 

Indeed, let us assume by means of contradiction that K is computable. Then 
the function $(m) := minZEN{x : K(x)  2 m) must be computable as well (note 
that x is interpreted as an integer in the definition of $). The definition of $ 
immediately implies K($(m)) 2 m. On the other hand, since $ is computable, 
there exists a computer program of some fixed size c such that, on input m, the 
program outputs $(m) and halts. Therefore, since K($(m)) is the length of the 
shortest program plus input that prints $(m), we must have that K($(m)) < 
LN(m) + c 5 2 log m + c. Thus, we have m < 2 log m + c which must be false from 
some m onwards: contradiction. 

EXAMPLE 4. [GSdel's incompleteness theorem and randomness] We say 
that a formal system (definitions, axioms, rules of inference) is consistent if no 
statement which can be expressed in the system can be proved to be both true 
and false in the system. A formal system is sound if only true statements can be 
proved to be true in the system. (Hence, a sound formal system is consistent.) 

Let x be a finite binary string of length n. We write 'x is c-random' if K(x) > 
n - c. That is, the shortest binary description of x has length not much smaller 
than x. We recall from Section 2.2 that the fraction of sequences that can be 
compressed by more than c bits is bounded by 2-C. This shows that there are 
sequences which are c-random for every c > 1 and justifies the terminology: the 
smaller c, the more random x. 

Now fix any sound formal system F that is powerful enough to express the 
statement 'x is c-random'. Suppose F can be described in f bits. By this we 
mean that there is a fixed-size program of length f such that, when input the 
number i ,  outputs a list of all valid proofs in F of length (number of symbols) i. 
We claim that, for all but finitely many random strings x and c > 1, the sentence 
'x is c-random' is not provable in F. Suppose the contrary. Then given F, we 
can start to  exhaustively search for a proof that some string of length n >> f is 
random, and print it when we find such a string x. This procedure to print x of 
length n uses only logn + f + O(1) bits of data, which is much less than n. But x 
is random by the proof and the fact that F is sound. Hence F is not consistent, 
which is a contradiction. 

Pushing the idea of Example 4 much further, [Chaitin, 19871 proved a particu- 
larly strong variation of Godel's theorem, using Kolmogorov complexity but in a 
more sophisticated way, based on the number R defined below. Roughly, it says 
the following: there exists an exponential Diophantine equation, 

for some finite m, such that the following holds: let F be a formal theory of 
arithmetic. Then for all F that are sound and consistent, there is only a finite 
number of values of n for which the theory determines whether (10) has finitely 
or infinitely many solutions (xl, .  . . , x,) (n is to be considered a parameter rather 
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than a variable). For all other, infinite number of values for n, the statement '(10) 
has a finite number of solutions' is logically independent of F. 

Chaitin's Number of Wisdom R An axiom system that can be effectively 
described by a finite string has limited information content - this was the basis 
for our proof of Godel7s theorem above. On the other hand, there exist quite 
short strings which are mathematically well-defined but uncomputable, which have 
an astounding amount of information in them about the truth of mathematical 
statements. Following [Chaitin, 19751, we define the halting probability R as the 
real number defined by 

the sum taken over all inputs p for which the reference machine U halts. We call 0 
the halting probability because it  is the probability that U halts if its program is 
provided by a sequence of fair coin flips. It turns out that S1 represents the halting 
problem very compactly. The following theorem is proved in [Li and Vitgnyi, 
19971: 

THEOREM 5. Let y be a binary string of length at most n. There exists an algo- 
rithm A which, given the first n bits of R, decides whether the universal machine 
U halts on input y; i.e. A outputs 1 i f  U halts on y; A outputs 0 if U does not 
halt on y; and A is guaranteed to run in  finite time. 

The halting problem is a prime example of a problem that is undecidable [Li 
and VitAnyi, 19971, from which it follows that R must be uncomputable. 

Knowing the first 10000 bits of S1 enables us to solve the halting of all pro- 
grams of less than 10000 bits. This includes programs looking for counterexamples 
to Goldbach's Conjecture, Ftiemann's Hypothesis, and most other conjectures in 
mathematics which can be refuted by a single finite counterexample. Moreover, for 
all axiomatic mathematical theories which can be expressed compactly enough to 
be conceivably interesting to human beings, say in less than 10000 bits, ~ ~ l , l o o o o l  
can be used to decide for every statement in the theory whether it is true, false, 
or independent. Thus, R is truly the number of Wisdom, and 'can be known of, 
but not known, through human reason' [C.H. Bennett and M. Gardner, Scientific 
American, 241:11(1979), 20-341. 

4.4 Condit ional  Kolmogorov complexity 

In order to  fully develop the theory, we also need a notion of conditional Kol- 
mogorov complexity. Intuitively, the conditional Kolmogorov complexity K(xly) 
of x given y can be interpreted as the shortest program p such that, when y is 
given to the program p as input 'for free', the program prints x and then halts. 
Based on conditional Kolmogorov complexity, we can then further define Kol- 
mogorov complexities of more complicated objects such as functions and so on 
(Example 7). 
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The idea of providing p with an input y is realized by putting (y,p) rather 
than just p on the input tape of a universal conditional prefix machine U. This 
is a prefix machine U such that for all y, i ,  q, U((y, (i,q))) = Ti((y, q)), whereas 
for any input not of this form, U does not halt. Here TI, T2,. . . is some effective 
enumeration of prefix machines. It is easy to show that such a universal conditional 
prefix machine U exists [Li and VitSnyi, 19971. We now fix a reference conditional 
universal prefix machine U and define K (xly) as follows: 

DEFINITION 6. [Conditional and Joint Kolmogorov Complexity] The 
conditional prefix Kolmogorov complexity of x given y (for free) is 

(13) = min{l(il) + 1(q) : Ti(ylq) = x,q E { O , l ) * , i  E N). 
97% 

We define the unconditional complexity K(x) as K(x) = K(x1e). We define the 
joint complexity K(x, y) as K(x, y) = K((x,  y)). 

Note that we just redefined K(x) so that the unconditional Kolmogorov com- 
plexity is exactly equal to the conditional Kolmogorov complexity with empty 
input. This does not contradict our earlier definition: having chosen some refer- 
ence conditional prefix machine U, we can always find an effective enumeration 
Ti, Ti and a corresponding unconditional universal prefix machine U' such that for 
all p, U((e,p)) = U1(p). Then we automatically have, for all x, KUl(x) = Ku(xl€). 

EXAMPLE 7. [K for general objects: functions, distributions, sets, ...I 
We have defined the Kolmogorov complexity K of binary strings and natural 
numbers, which we identified with each other. It is straightforward to extend the 
definition to objects such as real-valued functions, probability distributions and 
sets. We briefly indicate how to do this. Intuitively, the Kolmogorov complexity 
of a function f : N + W is the length of the shortest prefix-free program that 
computes (outputs) f (x) to precision l/q on input x'q' for q E {1,2,. . .). In terms 
of conditional universal prefix machines: 

The Kolmogorov complexity of a function f : N x N -, W is defined analogously, 
with (x, (q,p)) replaced by (x, (y, (q,p))), and f (x) replaced by f (x, y); similarly 
for functions f : Nk x N + W for general k E N. As a special case of (14), the 
Kolmogorov complexity of a probability distribution P is the shortest program 
that outputs P(x)  to precision q on input (x,q). We will encounter K ( P )  in 
Section 5. 

The Kolmogorov complexity of sets can be defined in various manners [GScs, 
Tromp, and VitSnyi, 20011. In this chapter we only consider finite sets S consisting 
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of finite strings. One reasonable method of defining their complexity K(S) is as 
the length of the shortest program that sequentially outputs the elements of S 
(in an arbitrary order) and then halts. Let S = {XI,. . . ,x,), and assume that 
XI ,  22,. . . , x, reflects the lexicographical order of the elements of S. In terms of 
conditional prefix machines, K ( S )  is the length of the shortest binary program p 
such that U((e,p)) = Z, where 

This definition of K(S)  will be used in Section 6. There we also need the notion 
of the Kolmogorov complexity of a string x given that x E S, denoted as K(x1S). 
This is defined as the length of the shortest binary program p from which the 
(conditional universal) U computes x from input S given literally, in the form of 
(15). 

This concludes our treatment of the basic concepts of Kolmogorov complexity 
theory. In the next section we compare these to the basic concepts of Shannon's 
information theory. 

5 SHANNON AND KOLMOGOROV 

In this section we compare Kolmogorov complexity to Shannon's [I9481 informa- 
tion theory, more commonly simply known as 'information theory'. Shannon's 
theory predates Kolmogorov's by about 25 years. Both theories measure the 
amount of information in an object as the length of a description of the object. 
In the Shannon approach, however, the method of encoding objects is based on 
the presupposition that the objects to be encoded are outcomes of a known ran- 
dom source-it is only the characteristics of that random source that determine 
the encoding, not the characteristics of the objects that are its outcomes. In the 
Kolmogorov complexity approach we consider the individual objects themselves, 
in isolation so-to-speak, and the encoding of an object is a computer program that 
generates it. In the Shannon approach we are interested in the minimum expected 
number of bits to transmit a message from a random source of known character- 
istics through an error-free channel. In Kolmogorov complexity we are interested 
in the minimum number of bits from which a particular message can effectively be 
reconstructed. A little reflection reveals that this is a great difference: for every 
source emitting but two messages the Shannon information is at most 1 bit, but 
we can choose both messages concerned of arbitrarily high Kolmogorov complex- 
ity. Shannon stresses in his founding article that his notion is only concerned with 
communication, while Kolmogorov stresses in his founding article that his notion 
aims at supplementing the gap left by Shannon theory concerning the information 
in individual objects. To be sure, both notions are natural: Shannon ignores the 
object itself but considers only the characteristics of the random source of which 
the object is one of the possible outcomes, while Kolmogorov considers only the 
object itself to determine the number of bits in the ultimate compressed version 
irrespective of the manner in which the object arose. 
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These differences notwithstanding, there exist very strong connections between 
both theories. In this section we given an overview of these. In Section 5.1 we recall 
the relation between probability distributions and codes, and we review Shannon's 
fundamental notion, the entropy. We then (Section 5.2) indicate how Kolmogorov 
complexity resolves a lacuna in the Shannon theory, namely its inability to deal 
with information in individual objects. In Section 5.3 we make precise and explain 
the important relation 

Entropy z expected Kolmogorov complexity. 

Section 5.4 deals with Shannon and algorithmic mutual information, the second 
fundamental concept in both theories. 

5.1 Probabilities, Codelengths, Entropy 

We now briefly recall the two fundamental relations between probability distri- 
butions and codelength functions, and indicate their connection to  the entropy, 
the fundamental concept in Shannon's theory. These relations are essential for 
understanding the connection between Kolmogorov's and Shannon's theory. For 
(much) more details, we refer to  [~arremoes and Topseie, 20081's chapter in this 
handbook, and, in a Kolmogorov complexity context, to [Griinwald and VitGnyi, 
20031. We use the following notation: let P be a probability distribution defined 
on a finite or countable set X. In the remainder of the chapter, we denote by X 
the random variable that takes values in X; thus P ( X  = x) = P({x)) is the prob- 
ability that the event {x) obtains. We write P(x) as an abbreviation of P ( X  = x), 
and we write Ep[f (X)] to denote the expectation of a functiod f : X -+ R, so that 
E P [ ~  ( 4 1  = C Z G X  P(")f (")- 

The Two Relations between probabilities and code lengths 

1. For every distribution P defined on a finite or countable set X,  there exists 
a code with lengths L p ( x ) ,  satisfying, for all x E X, Lp(x) = [-log P(x)l .  
This is the so-called Shannon-Fano code corresponding to P. The result fol- 
lows directly from the Kraft inequality [ H a r r e m ~ s  and Topsme, 2008, Section 
1.21. 

2. If X is distributed according to P, then the Shannon-Fano code correspond- 
ing to P is (essentially) the optimal code to use in an expected sense. 

Of course, we may choose to encode outcomes of X using a code correspond- 
ing to a distribution Q, with lengths [- log Q(x)l , whereas the outcomes are 
actually distributed according to P # Q. But, as expressed in the noise- 
less coding theorem or, more abstractly, in [Harremoes and Topsae, 2008, 
Section 1.31 as the First main theorem of information theory, such a code 
cannot be significantly better, and may in fact be much worse than the code 
with lengths [- log P(X)1: the noiseless coding theorem says that 
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min 
C: C is a prefix-free code 

Ep[Lc(X)] I Ep[- 1% P(X)I + 1, 

so that it follows in particular that the expected length of the Shannon-Fano 
code satisfies 

EP[- log P(X) l  L Ep[-logP(X)]+l 5 min 
C: C is a prefix-free code 

EP[Lc(X)]+~. 

and is thus always within just bit of the code that is optimal in expectation. 

In his 1948 paper, Shannon proposed a measure of information in a distribution, 
which he called the 'entropy', a concept discussed at length in the chapter by [Har- 
remoes and Topsoe, 20081 in this handbook. It is equal to the quantity appearing 
on the left and on the right in (16): 

DEFINITION 8. [Entropy] Let X be a finite or countable set, let X be a random 
variable taking values in X with distribution P .  Then the (Shannon-) entropy of 
random variable X is given by 

(17) H(P)  = - P(x) log P(x), 
%EX 

Entropy is defined here as a functional mapping a distribution on X to real num- 
bers. In practice, we often deal with a pair of random variables (X, Y) defined 
on a joint space X x y. Then P is the joint distribution of (X,Y), and Px is 
its corresponding marginal distribution on X, Px(x) = C,  P(x,  y). In that case, 
rather than writing H(Px) it is customary to write H(X);  we shall follow this 
convention below. 

Entropy can be interpreted in a number of ways. The noiseless coding theorem 
(16) gives a precise coding-theoretic interpretation: it shows that the entropy of 
P is essentially equal to the average code length when encoding an outcome of 
P ,  if outcomes are encoded using the optimal code (the code that minimizes this 
average code length). 

5.2 A Lacuna in Shannon's Theory 

EXAMPLE 9. Assuming that x is emitted by a random source X with probability 
P(x),  we can transmit x using the Shannon-Fano code. This uses (up to rounding) 
- log P(x)  bits. By Shannon's noiseless coding theorem this is optimal on average, 
the average taken over the probability distribution of outcomes from the source. 
Thus, if x = 00.. . 0  (n zeros), and the random source emits n-bit messages with 
equal probability 1/2n each, then we require n bits to transmit x (the same as 
transmitting x literally). However, we can transmit x in about logn bits if we 
ignore probabilities and just describe x individually. Thus, the optimality with 
respect to the average may be very sub-optimal in individual cases. 
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In Shannon's theory 'information' is fully determined by the probability distri- 
bution on the set of possible messages, and unrelated to the meaning, structure or 
content of individual messages. In many cases this is problematic, since the distri- 
bution generating outcomes may be unknown to the observer or (worse), may not 
exist a t  all5. For example, can we answer a question like "what is the information 
in this book" by viewing it as an element of a set of possible books with a prob- 
ability distribution on it? This seems unlikely. Kolmogorov complexity provides 
a measure of information that, unlike Shannon's, does not rely on (often unten- 
able) probabilistic assumptions, and that takes into account the phenomenon that 
'regular' strings are compressible. Thus, it measures the information content of 
an individual finite object. The fact that such a measure exists is surprising, and 
indeed, it comes at a price: unlike Shannon's, Kolmogorov's measure is asyrnp- 
totic in nature, and not computable in general. Still, the resulting theory is closely 
related to Shannon's, as we now discuss. 

5.3 Entropy and Expected Kolmogorov Complexity 

We call a distribution P computable if it can be computed by a finite-size pro- 
gram, i.e. if it has finite Kolmogorov complexity K ( P )  (Example 7). The set of 
computable distributions is very large: it contains, for example, all Markov chains 
of each order with rational-valued parameters. In the following discussion we shall 
restrict ourselves to computable distributions; extensions to the uncomputable 
case are discussed by [Griinwald and VitAnyi, 20031. 

If X is distributed according to some distribution P, then the optimal (in the 
average sense) code to use is the Shannon-Fano code. But now suppose it is only 
known that P E P, where P is a large set of computable distributions, perhaps 
even the set of all computable distributions. Now it is not clear what code is 
optimal. We may try the Shannon-Fano code for a particular P E P,  but such 
a code will typically lead to very large expected code lengths if X turns out to 
be distributed according to some Q E P ,  Q # P .  We may ask whether there 
exists another code that is 'almost' as good as the Shannon-Fano code for P ,  no 
matter what P E P actually generates the sequence? We now show that (perhaps 
surprisingly) the answer is yes. 

Let X be a random variable taking on values in the set {0,1)* of binary strings 
of arbitrary length, and let P be the distribution of X. K(x) is fixed for each 
x and gives the shortest code word length (but only up to a fixed constant). It 
is independent of the probability distribution P .  Nevertheless, if we weigh each 
individual code word length for x with its probability P(x), then the resulting 
P-expected code word length CZ P(x)K(x) almost achieves the minimal average 
code word length H ( P )  = - C,  P(x)  log P(x). This is expressed in the following 
theorem (taken from [Li and VitAnyi, 19971): 

5Even if we adopt a Bayesian (subjective) interpretation of probability, this problem remains 
[Grunwald, 20071. 
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THEOREM 10. Let P be a computable probability distribution on (0, I)*. Then 

The theorem becomes interesting if we consider sequences of P that assign mass 
to binary strings of increasing length. For example, let P, be the distribution on 
{0,1}" that corresponds to n independent tosses of a coin with bias q, where 
q is computable (e.g., a rational number). We have K(P,) = O(1og n),  since 
we can compute P, with a program of constant size and input n,q with length 
l(n') + l(qf) = O(1og n). On the other hand, H(P,) = nH(Pl) increases linearly 
in n (see, e.g., the chapter by [Harremoes and Topsme, 20081 in this handbook; see 
also paragraph l(c) in Section 2.2 of this chapter). So for large n, the optimal 
code for P, requires on average nH(P1) bits, and the Kolmogorov code E' requires 
only O(1og n) bits extra. Dividing by n,  we see that the additional number of bits 
needed per outcome using the Kolmogorov code goes to 0. Thus, remarkably, 
whereas the entropy is the expected codelength according to P under the optimal 
code for P (a code that will be wildly different for different P) ,  there exists a 
single code (the Kolmogorov code), which is asymptotically almost optimal for all 
computable P. 

5.4 Mutual Infomation 

Apart from entropy, the mutual information is perhaps the most important concept 
in Shannon's theory. Similarly, apart from Kolmogorov complexity itself, the algo- 
rithmic mutual information is one of the most important concepts in Kolmogorov's 
theory. In this section we review Shannon's notion, we introduce Kolmogorov's 
notion, and then we provide an analogue of Theorem 10 which says that essentially, 
Shannon mutual information is averaged algorithmic mutual information. 

Shannon Mutual Information How much information can a random variable 
X convey about a random varia.ble Y? This is determined by the (Shannon) 
mutual information between X and Y. Formally, it is defined as 

(18) I (X;Y)  := H(X)  - H(X1Y) 
= H(X) + H (Y) - H(X, Y) 

where H(X1Y) is the conditional entropy of X given Y, and H(X,Y)  is the joint 
entropy of X and Y; the definition of H(X,Y),  H(X1Y) as well as an alternative 
but equivalent definition if I (X;  Y), can be found in [Harremoes and Topsme, 20081. 
The equality between the first and second line follows by straightforward rewriting. 
The mutual information can be thought of as the expected (average) reduction in 
the number of bits needed to encode X ,  when an outcome of Y is given for free. In 
accord with intuition, it is easy to show that I (X;  Y) > 0, with equality if and only 
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if X and Y are independent, i.e. X provides no information about Y. Moreover, 
and less intuitively, a straightforward calculation shows that this information is 
symmetric: I ( X ;  Y) = I (Y;  X). 

Algorithmic Mutual Information In order to define algorithmic mutual in- 
formation, it will be convenient to introduce some new notation: We will denote 

by 2 an inequality to within an additive constant. More precisely, let f ,  g be func- 

tions from { O , l ) *  to R. Then by ' f (x) 2 g(x)' we mean that there exists a c such 

that for all x E {O,l)*, f (x) < g(x) + c. We write 'f (x) 5 g(x)' if g(x) 2 f (x). 

We denote by the situation when both 2 and hold. 
Since K(x,  y) = K(xry) (Section 4.4), trivially, the symmetry property holds: 

K(x, y) A K(y,x). An interesting property is the "Additivity of Complexity" 
property 

where x* is the first (in standard enumeration order) shortest prefix program that 
generates x and then halts. (19) is the Kolmogorov complexity equivalent of the 
entropy equality H(X,Y)  = H ( X )  + H(Y1X) (see Section 1.5 in the chapter by 
[Harremoes and Topsere, 20081). That this latter equality holds is true by simply 
rewriting both sides of the equation according to the definitions of averages of joint 
and marginal probabilities. In fact, potential individual differences are averaged 
out. But in the Kolmogorov complexity case we do nothing like that: it is quite 
remarkable that additivity of complexity also holds for individual objects. The 
result (19) is due to [GLcs, 19741, can be found a s  Theorem 3.9.1 in [Li and 
VitLnyi, 19971 and has a difficult proof. It is perhaps instructive to point out that 
the version with just x and y in the conditionals doesn't hold with f, but holds 
up to additive logarithmic terms that cannot be eliminated. 

To define the algorithmic mutual information between two individual objects x 
and y with no probabilities involved, it is instructive to first recall the probabilistic 
notion (18). The algorithmic definition is, in fact, entirely analogous, with H 
replaced by K and random variables replaced by individual sequences or their 
generating programs: The information in y about x is defined as 

(20) I (y  : x) = K(x) - K(x  I y*) K(x) + K(y) - K(x, y), 

where the second equality is a consequence of (19) and states that this informa- 
tion is symmetric, I (x  : y) f I (y  : x), and therefore we can talk about mutual 
~nformation.~ 

Theorem 10 showed that the entropy of distribution P is approximately equal to 
the expected (under P )  Kolmogorov complexity. Theorem 11 gives the analogous 
result for the mutual information. 

6 ~ h e  notation of the algorithmic (individual) notion I ( x  : y) distinguishes it from the proba- 
bilistic (average) notion I ( X ;  Y). We deviate slightly from [Li and Vitbnyi, 19971 where I ( y  : x) 
is defined as K(x)  - K ( x  I y). 



Ch08-N51726.fin Page 303 Satarday, August 25,2007 4:03 PM @ ~* 
Algorithmic Information Theory 303 

THEOREM 11. Let P be a computable probability distribution on { O , l ) *  x (0, I}*. 
Then 

(21) I ( X ;  Y) - K ( P )  2 x p ( x ,  y)I(x : y) < I ( X ;  Y) + 2K(P).  
x Y 

Thus, analogously to Theorem 10, we see that the expectation of the algorith- 
mic mutual information I (x  : y) is close to the probabilistic mutual information 
I (X;  Y). 

Theorems 10 and 11 do not stand on their own: it turns out that just about 
every concept in Shannon's theory has an analogue in Kolmogorov's theory, and 
in all such cases, these concepts can be related by theorems saying that if data are 
generated probabilistically, then the Shannon concept is close to the expectation 
of the corresponding Kolmogorov concept. Examples are the probabilistic vs. 
the algorithmic sufficient statistics, and the probabilistic rate-distortion function 
[Cover and Thomas, 1991] vs. the algorithmic Kolmogorov structure function. 
The algorithmic sufficient statistic and structure function are discussed in the 
next section. For a comparison to their counterparts in Shannon's theory, we refer 
to [Griinwald and VitAnyi, 20041. 

6 MEANINGFUL INFORMATION 

The information contained in an individual finite object (like a finite binary string) 
is measured by its Kolmogorov complexity-the length of the shortest binary pro- 
gram that computes the object. Such a shortest program contains no redundancy: 
every bit is information; but is it meaningful information? If we flip a fair coin to 
obtain a finite binary string, then with overwhelming probability that string con- 
stitutes its own shortest program. However, also with overwhelming probability 
all the bits in the string are meaningless information, random noise. On the other 
hand, let an object x be a sequence of observations of heavenly bodies. Then x 
can be described by the binary string pd, where p is the description of the laws 
of gravity and the observational parameter setting, while d accounts for the mea- 
surement errors: we can divide the information in x into meaningful information p 
and accidental information d. The main task for statistical inference and learning 
theory is to distill the meaningful information present in the data. The question 
arises whether it is possible to separate meaningful information from accidental 
information, and if so, how. The essence of the solution to this problem is revealed 
as follows. As shown by [Vere~hcha~in and Vitbnyi, 20041, for all x E (0, I)*, we 
have 

where the minimum is taken over p E {0,1}* and i E {1,2, . . .). 
To get some intuition why (22) holds, note that the original definition (1) ex- 

presses that K(x) is the sum of the description length L N ( ~ )  of some Turing ma- 
chine i when encoded using the standard code for the integers, plus the length of 
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a program such that Ti(p) = x. (22) expresses that the first term in this sum may 
be replaced by K(i),  i.e. the shortest effective description of i. It is clear that 
(22) is never larger than (9) plus some constant (the size of a computer program 
implementing the standard encoding/decoding of integers). The reason why (22) 
is also never smaller than (9) minus some constant is that there exists a Turing 
machine Tk such that, for all i ,p, Tk(i*p) = Ti(p), where i* is the shortest program 
that prints i and then halts, i.e. for all i ,p, U((k,i*p)) = Ti(p) where U is the 
reference machine used in Definition 1. Thus, K(x) is bounded by the constant 
length 1 (k') describing k,  plus 1 (i*) = K(i) ,  plus l(p). 

The expression (22) shows that we can think of Kolmogorov complexity as the 
length of a two-part code. This way, K(x) is viewed as the shortest length of a 
two-part code for x, one part describing a Turing machine T,  or model, for the 
regular aspects of x, and the second part describing the irregular aspects of x 
in the form of a program p to be interpreted by T. The regular, or "valuable," 
information in x is constituted by the bits in the "model" while the random or 
"useless" information of x constitutes the remainder. This leaves open the crucial 
question: How to choose T and p that together describe x? In general, many 
combinations of T and p are possible, but we want to find a T that describes 
the meaningful aspects of x. Below we show that this can be achieved using the 
Algorithmic Minimum Suflcient Statistic. This theory, built on top of Kolmogorov 
complexity so to speak, has its roots in two talks by Kolmogorov [1974a; 1974bl. 
Based on Kolmogorov's remarks, the theory has been further developed by several 
authors, culminating in [Vereshchagin and Vitinyi, 20041, some of the key ideas 
of which we outline below. 

Data and Model We restrict attention to  the following setting: we observe data 
x in the form of a finite binary string of some length n. As models for the data, 
we consider finite sets S that contain x. In statistics and machine learning, the 
use of finite sets is nonstandard: one usually models the data using probability 
distributions or functions. However, the restriction of sets is just a matter of 
convenience: the theory we are about to present generalizes straightforwardly to 
the case where the models are arbitrary computable probability density functions 
and, in fact, other model classes such as computable functions [Vereshchagin and 
Vitinyi, 20041; see also Section 6.3. 

The intuition behind the idea of a set as a model is the following: informally, 
'S is a good model for x' or equivalently, S captures all structure in x, if, in a 
sense to  be made precise further below, it summarizes all simple properties of x. 
In Section 6.1 below, we work towards the definition of the algorithmic minimal 
sufficient statistic (AMSS) via the fundamental notions of 'typicality' of data and 
'optimality' of a set. Section 6.2 investigates the AMSS further in terms of the 
important Kolmogorov Structure Function. In Section 6.3, we relate the AMSS to 
the more well-known Minimum Description Length Principle. 
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6.1 Algorithmic Suficient Statistic 

We are now about to formulate the central notions 'x is typical for S7 and 'S is 
optimal for x'. Both are necessary, but not sufficient requirements for S to precisely 
capture the 'meaningful information7 in x. After having introduced optimal sets, 
we investigate what further requirements we need. The development will make 
heavy use of the Kolmogorov complexity of sets, and conditioned on sets. These 
notions, written as K(S)  and K(xIS), were defined in Example 7. 

Typical Elements  

Consider a string x of length n and prefix complexity K(x) = k. We look for 
the structure or regularity in x that is to  be summarized with a set S of which 
x is a random or typical member: given S containing x, the element x cannot 
be described significantly shorter than by its maximal length index in S ,  that is, 
K(x  I S )  > log IS1 + O(1). Formally, 

DEFINITION 12. Let ,R > 0 be an agreed-upon, fixed, constant. A finite binary 
string x is a typical or random element of a set S of finite binary strings, if x E S 
and 

We will not indicate the dependence on ,R explicitly, but the constants in all our 
inequalities (O(1)) will be allowed to be functions of this P. 

This definition requires a finite S.  Note that the notion of typicality is not 
absolute but depends on fixing the constant implicit in the 0-notation. 

EXAMPLE 13. Consider the set S of binary strings of length n whose every odd 
position is 0. Let x be an element of this set in which the subsequence of bits in 
even positions is an incompressible string. Then x is a typical element of S. But 
x is also a typical element of the set {x). 

Note that, if x is not a typical element of S ,  then S is certainly not a 'good 
model7 for x in the intuitive sense described above: S does not capture all regularity 
in x. However, the example above (S = {x)) shows that even if x is typical for S, 
S may still not capture 'all meaningful information in x'. 

EXAMPLE 14. If y is not a typical element of S, this means that it has some 
simple special property that singles it out from the vast majority of elements in 
S. This can actually be proven formally [Vit6nyi, 20051. Here we merely give 
an example. Let S be as in Example 13. Let y be an element of S in which 
the subsequence of bits in even positions contains two times as many Is than 
0s. Then y is not a typical element of S: the overwhelming majority of elements 
of S have about equally many 0s as Is in even positions (this follows by simple 
combinatorics). As shown in [vitAnyi, 20051, this implies that K(y1S) << I log SI, 
so that y is not typical. 
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Optimal Sets 

Let x be a binary data string of length n. For every finite set S 3 x, we have 
K(x)  I K(S)  + log IS/ + 0(1),  since we can describe x by giving S and the index 
of x in a standard enumeration of S. Clearly this can be implemented by a Turing 
machine computing the finite set S and a program p giving the index of x in S. 
The size of a set containing x measures intuitively the number of properties of x 
that are represented: The largest set is {O,l)" and represents only one property 
of x, namely, being of length n. It clearly "underfits" as explanation or model 
for x. The smallest set containing x is the singleton set {x) and represents all 
conceivable properties of x. It clearly "overfits" as explanation or model for x. 

There are two natural measures of suitability of such a set as a model for x. We 
might prefer either (a) the simplest set, or (b) the smallest set, as corresponding 
t o  the most likely structure 'explaining' x. Both the largest set (0, 1)" [having 
low complexity of about K(n)] and the singleton set {x) [having high complexity 
of about K(x)], while certainly statistics for x, would indeed be considered poor 
explanations. We would like to balance simplicity of model vs. size of model. Both 
measures relate to the optimality of a two-stage description of x using a finite set 
S that contains it. Elaborating on the two-part code described above, 

where the first inequality follows because there exists a program p producing x that 
first computes S and then computes x based on S; if p is not the shortest program 
generating x, then the inequality is strict. The second substitution of K(x  I S )  by 
log IS1+0(1) uses the fact that x is an element of S.  The closer the right-hand side 
of (24) gets to the left-hand side, the better the two-stage description of x is. This 
implies a trade-off between meaningful model information, K(S),  and meaningless 
"noise" log ISI. A set S (containing x) for which (24) holds with equality, 

is called optimal. The first line of (24) implies that if a set S is optimal for x, then 
x must be a typical element of S. However, the converse does not hold: a data 
string x can be typical for a set S without that set S being optimal for x. 

EXAMPLE 15. It can be shown that the set S of Example 13 is also optimal, and 
so is {x). Sets for which x is typical form a much wider class than optimal sets 
for x: the set {x, y) is still typical for x but with most y it will be too complex 
to be optimal for x. A less artificial example can be found in [Vere~hcha~in and 
Vitinyi, 20041. 

While 'optimality' is a refinement of 'typicality', the fact that {x) is still an 
optimal set for x shows that it is still not sufficient by itself to capture the notion 
of 'meaningful information'. In order to discuss the necessary refinement, we first 
need to connect optimal sets to  the notion of a 'sufficient statistic', which, as its 
name suggests, has its roots in the statistical literature. 
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Algorithmic Suficient Statistic 

A statistic of the data x = x1 . . . x, is a function f(x) .  Essentially, every func- 
tion will do. For example, fl (x) = n,  fi(x) = Cy=l xi7 f3(x) = n - f2(x), and 
f4(x) = f2(x)/n, are statistics. A "sufficient" statistic of the data contains all 
information in the data about the model. In introducing the notion of sufficiency 
in classical statistics, Fisher [I9221 stated: "The statistic chosen should summarize 
the whole of the relevant information supplied by the sample. This may be called 
the Criterion of Sufficiency . . . In the case of the normal distributions it is evident 
that the second moment is a sufficient statistic for estimating the standard devi- 
ation." For example, in the Bernoulli model (repeated coin flips with outcomes 0 
and 1 according to fixed bias), the statistic f4 is sufficient. It  gives the mean of 
the outcomes and estimates the bias of the Bernoulli process, which is the only 
relevant model information. For the classic (probabilistic) theory see, for example, 
[Cover and Thomas, 19911. [GBcs, Tromp, and Vitanyi, 20011 develop an algorith- 
mic theory of sufficient statistics (relating individual data to individual model) 
and establish its relation to the probabilistic version; this work is extended by 
[Griinwald and VitBnyi, 20041. The algorithmic basics are as follows: Intuitively, 
a model expresses the essence of the data if the two-part code describing the data 
consisting of the model and the data-to-model code is as concise as the best one- 
part description. In other words, we call a shortest program for an optimal set 
with respect to x an algorithmic suficient statistic for x. 

EXAMPLE 16. (Sufficient Statistic) Let us look at a coin toss example. Let k 
be a number in the range O,1,. . . , n of complexity logn+0(1) given n and let x be 
a string of length n having k 1s of complexity K(x I n, k) 2 log (i) given n, k. This 
x can be viewed as a typical result of tossing a coin with a bias about p = kin. 
A two-part description of x is given by first specifying the number k of 1s in x, 
followed by the index j 5 log IS1 of x in the set S of strings of length n with k 1s. 
This set is optimal, since, to  within 0(1),  K(x)  = K(x, (n, k)) = K(n,  k) + K(x  I 
n, k) = K(S)+log IS[. The shortest program for S ,  which amounts to an encoding 
of n and then k given n, is an algorithmic sufficient statistic for x. 

The optimal set that admits the shortest possible program (or rather that short- 
est program) is called algorithmic minimal sufficient statistic of x. In general there 
can be more than one such set and corresponding program: 

DEFINITION 17 (Algorithmic minimal sufficient statistic). An algorithmic sufi- 
cient statistic of x is a shortest program for a set S containing x that is optimal, i.e. 
it satisfies (25). An algorithmic sufficient statistic with optimal set S is minimal 
if there exists no optimal set S' with K(Sr)  < K(S).  

The algorithmic minimal sufficient statistic (AMSS) divides the information in 
x in a relevant structure expressed by the set S,  and the remaining randomness 
with respect to that structure, expressed by x's index in S of log IS1 bits. The 
shortest program for S is itself alone an algorithmic definition of structure, without 
a probabilistic interpretation. 
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EXAMPLE 18. (Example 13, Cont.) The shortest program for the set S of 
Example 13 is a minimum sufficient statistic for the string x mentioned in that 
example. The program generating the set {x), while still an algorithmic sufficient 
statistic, is not a minimal sufficient statistic. 

EXAMPLE 19. (Example 16, Cont.) The S of Example 16 encodes the number 
of I s  in x. The shortest program for S is an algorithmic minimal sufficient statistic 
for most x of length n with k 1's' since only a fraction of at most 2-m x's of length 
n with k Is  can have K(x) < log IS1 - m (Section 4). But of course there exist x's 
with k ones which have much more regularity. An example is the string starting 
with k 1's followed by n - k 0's. For such strings, S is not optimal anymore, nor 
is S an algorithmic sufficient statistic. 

To analyze the minimal sufficient statistic further, it is useful to  place a con- 
straint on the maximum complexity of set K(S) ,  say K(S)  < a ,  and to investigate 
what happens if we vary a. The result is the Kolmogorov Structure Function, which 
we now discuss. 

6.2 The KoEmogorov Structure Function 

The Kolmogorov structure function [Kolmogorov, 1974a; 197413; Vereshchagin and 
Vitziyni, 20041 h, of given data x is defined by 

(26) h,(a) = min{log IS1 : S 3 x, K (S) < a), 
S 

where S 3 x is a contemplated model for x, and a is a non-negative integer 
value bounding the complexity of the contemplated S's. Clearly, the Kolmogorov 
structure function is nonincreasing and reaches log l{x)l = 0 for a = K(x) + cl 
where cl is the number of bits required to change x into {x). For every S 3 x we 
have (24), and hence K(x) 5 a + h,(a) + O(1); that is, the function h,(a) never 
decreases more than a fixed independent constant below the diagonal sufficiency 
line L defined by L(a) + a = K(x),  which is a lower bound on h,(a) and is 
approached to within a constant distance by the graph of h, for certain a 's  (e.g., 
for a = K(x) + cl). For these a's we thus have a + h,(a) = K(x) + O(1); a 
model corresponding to such an a (witness for h,(a)) is a sufficient statistic, and 
it is minimal for the least such a [Cover and Thomas, 1991; GBcs, Tromp, and 
Vitzinyi, 20011. This is depicted in Figure 1. Note once again that the structure 
function is defined relative to given data (a single sequence x); different sequences 
result in different structure functions. Yet, all these different functions share some 
properties: for all x, the function h,(a) will lie above the diagonal sufficiency line 
for all a 5 a,. Here a, is the complexity K(S) of the AMSS for x. For a 2 a,, the 
function h,(a) remains within a constant of the diagonal. For stochastic strings 
generated by a simple computable distribution (finite K(P) ) ,  the sufficiency line 
will typically be first hit for a close to  0, since the AMSS will grow as O(1ogn). 
For example, if x is generated by independent fair coin flips, then, with probability 
1, one AMSS will be S = (0, lIn with complexity K(S) = K(n) = O(1ogn). One 
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minimal sufficient statistic f K(x) 4 
a -  

Figure 1. Structure functions h,(~),  ,& (a) ,  Ax (a) ,  and minimal sufficient statistic. 

may suspect that all intuitively 'random' sequences have a small sufficient statistic 
of order O(1og n) or smaller. Surprisingly, this turns out not to be the case, as we 
show in Example 21. 

EXAMPLE 20. (Lossy Compression) The Kolmogorov structure function h,(a) 
is relevant to lossy compression (used, e.g., to compress images). Assume we need 
to compress x to a bits where o << K(x). Of course this implies some loss of 
information present in x. One way to select redundant information to discard is 
as follows: let So be the set generated by the Algorithmic Minimum Sufficient 
Statistic S,* (S,* is a shortest program that prints So and halts). Assume that 
l(S,*) = K(S0) 5 a .  Since So is an optimal set, it is also a typical set, so that 
K(xlS0) = log IS01 We compress x by So*, taking a bits. To reconstruct an x' close 
to x, a decompressor can first reconstruct the set So, and then select an element x' 
of So uniformly at random. This ensures that with very high probability x' is itself 
also a typical element of So, so it has the same properties that x has. Therefore, 
x' should serve the purpose of the message x as well as does x itself. However, if 
1(S,*) > a, then it is not possible to compress all meaningful information of x into 
a bits. We may instead encode, among all sets S with K(S) < a, the one with 
the smallest log ISI, achieving hx(a). But inevitably, this set will not capture all 
the structural properties of x. 

Let us look at an example. To transmit a picture of "rain" through a channel 
with limited capacity a, one can transmit the indication that this is a picture of 
the rain and the particular drops may be chosen by the receiver at random. In this 
interpretation, the complexity constraint a determines how "random" or "typical" 
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minimal sufficient statistic x t - a K(x)=K(~) 4 

minimal sufficient statistic y 4 - - - - - - - - - - - - - - - - - -  

Figure 2. Data string x is "positive random" or "stochastic" and data string y is 
just "negative random" or "non-stochastic". 

x will be with respect to the chosen set S -and hence how "indistinguishable" 
from the original x the randomly reconstructed x' can be expected to be. 

We end this section with an example of a strange consequence of Kolmogorov's 
theory: 

EXAMPLE 21. "Positive" and "Negative" Individual Randomness: [GBcs, 
'Ikomp, and VitBnyi, 20011 showed the existence of strings for which essentially 
the singleton set consisting of the string itself is a minimal sufficient statistic (Sec- 
tion 6.1). While a sufficient statistic of an object yields a two-part code that is 
as short as the shortest one part code, restricting the complexity of the allowed 
statistic may yield two-part codes that are considerably longer than the best one- 
part code (so that the statistic is insufficient). In fact, for every object there is 
a complexity bound below which this happens; this is just the point where the 
Kolmogorov structure function hits the diagonal. If that bound is small (logarith- 
mic) we call the object "stochastic" since it has a simple satisfactory explanation 
(sufficient statistic). Thus, Kolmogorov [1974a] makes the important distinction 
of an object being random in the "negative" sense by having this bound high (it 
has high complexity and is not a typical element of a low-complexity model), and 
an object being random in the "positive, probabilistic" sense by both having this 
bound small and itself having complexity considerably exceeding this bound (like a 
string x of length n with K(x)  2 n, being typical for the set (0, lln, or the uniform 
probability distribution over that set, while this set or probability distribution has 
complexity K(n)  + O(1) = O(1og n)). We depict the distinction in Figure 2. 
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6.3 The Minimum Description Length Principle 

Learning The main goal of statistics and machine learning is to learn from data. 
One common way of interpreting 'learning' is as a search for the structural, regular 
properties of the data - all the patterns that occur in it. On a very abstract level, 
this is just what is achieved by the AMSS, which can thus be related to learning, 
or, more generally, inductive inference. There is however another, much more 
well-known method for learning based on data compression. This is the Minimum 
Description Length (MDL) Principle, mostly developed by J. Rissanen [1978; 19891 
- see [Grunwald, 20071 for a recent introduction; see also [Wallace, 20051 for the 
related MML Principle. Rissanen took Kolmogorov complexity as an informal 
starting point, but was not aware of the AMSS when he developed the first, and, 
with hindsight, somewhat crude version of MDL [Rissanen, 19781, which roughly 
says that the best theory to explain given data x is the one that minimizes the 
sum of 

1. The length, in bits, of the description of the theory, plus 

2. The length, in bits, of the description of the data x when the data is described 
with the help of the theory. 

Thus, data is encoded by first encoding a theory (constituting the 'structural' 
part of the data) and then encoding the data using the properties of the data that 
are prescribed by the theory. Picking the theory minimizing the total description 
length leads to an automatic trade-off between complexity of the chosen theory 
and its goodness of fit on the data. This provides a principle of inductive infer- 
ence that may be viewed as a mathematical formalization of 'Occam's Razor'. It  
automatically protects against overfitting, a central concern of statistics: when 
allowing models of arbitrary complexity, we are always in danger that we model 
random fluctuations rather than the trend in the data [Griinwald, 20071. 

The MDL Principle has been designed so as to be practically useful. This 
means that the codes used to describe a 'theory' are not based on Kolmogorov 
complexity. However, there exists an 'ideal' version of MDL [Li and VitAnyi, 1997; 
Barron and Cover, 1991] which does rely on Kolmogorov complexity. Within our 
framework (binary data, models as sets), it becomes [~ereshcha~in  and VitBnyi, 
2004; VitAnyi, 20051: pick a set S 3 x minimizing the two-part codelength 

(27) K (5') - log 1 SI . 

In other words: any "optimal set" (as defined in Section 6.1) is regarded as a 
good explanation of the theory. It follows that every set S that is an AMSS 
also minimizes the two-part codelength to within O(1). However, as we already 
indicated, there exist optimal sets S (that, because of their optimality, may be 
selected by MDL), that are not minimal sufficient statistics. As explained by 
[Vitbnyi, 2005], these do not capture the idea of 'summarizing all structure in x'. 
Thus, the AMSS may be considered a refinement of the idealized MDL approach. 
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Practical MDL The practical MDL approach uses probability distributions 
rather than sets as models. Typically, one restricts to distributions in some model 
class such as the set of all Markov chain distributions of each order, or the set of 
all polynomials f of each degree, where f expresses that Y = f (X) + 2, and Z 
is some normally distributed noise variable (this makes f a 'probabilistic' hypoth- 
esis). These model classes are still 'large' in that they cannot be described by a 
finite number of parameters; but they are simple enough so that admit efficiently 
computable versions of MDL - unlike the ideal version above which, because it 
involves Kolmogorov complexity, is uncomputable. The Kolmogorov complexity, 
set-based theory has to be adjusted at various places to deal with such practical 
models, one reason being that they have uncountably many elements. MDL has 
been successful in practical statistical and machine learning problems where over- 
fitting is a real concern [Grunwald, 20071. Technically, MDL algorithms are very 
similar to the popular Bayesian methods, but the underlying philosophy is very 
different: MDL is based on finding structure in individual data sequences; dis- 
tributions (models) are viewed as representation languages for expressing useful 
properties of the data; they are neither viewed as objectively existing but unob- 
servable objects according to which data are 'generated'; nor are they viewed as 
representing subjective degrees of belief, as in a mainstream Bayesian interpreta- 
tion. 

In recent years, ever more sophisticated refinements of the original MDL have 
developed [Rissanen, 1996; Rissanen and Tabus, 2005; Grunwald, 20071. For exam- 
ple, in modern MDL approaches, one uses universal codes which may be two-part, 
but in practice are often one-part codes. 

7 PHILOSOPHICAL IMPLICATIONS AND CONCLUSION 

We have given an overview of algorithmic information theory, focusing on some of 
its most important aspects: Kolmogorov complexity, algorithmic mutual informa- 
tion, their relations to entropy and Shannon mutual information, the Algorithmic 
Minimal Sufficient Statistic and the Kolmogorov Structure Function, and their 
relation to 'meaningful information'. Throughout the chapter we emphasized in- 
sights that, in our view, are 'philosophical' in nature. It is now time to harvest and 
make the philosophical connections explicit. Below we first discuss some implica- 
tions of algorithmic information theory on the philosophy of (general) mathemat- 
ics, probability theory and statistics. We then end the chapter by discussing the 
philosophical implications for 'information' itself. As we shall see, it turns out that 
nearly all of these philosophical implications are somehow related to randomness. 

Philosophy of Mathematics: Randomness in Mathematics In and after 
Example 4 we indicated that the ideas behind Kolmogorov complexity are inti- 
mately related to Godel7s incompleteness theorem. The finite Kolmogorov com- 
plexity of any effective axiom system implied the existence of bizarre equations 
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like (lo), whose full solution is, in a sense, random: no effective axiom system 
can fully determine the solutions of this single equation. In this context, Chaitin 
writes: "This is a region in which mathematical truth has no discernible structure 
or pattern and appears to be completely random [...I Quantum physics has shown 
that there is randomness in nature. I believe that we have demonstrated [...I that 
randomness is already present in pure Mathematics. This does not mean that the 
universe and Mathematics are completely lawless, it means that laws of a different 
kind apply: statistical laws. [...] Perhaps number theory should be pursued more 
openly in the spirit of an experimental science!". 

Philosophy of Probability: Individual Randomness The statement 'x is a 
random sequence' is essentially meaningless in classical probability theory, which 
can only make statements that hold for ensembles, such as 'relative frequencies 
converge to probabilities with high probability, or with probability 1'. But in reality 
we only observe one sequence. What then does the statement 'this sequence is 
a typical outcome of distribution P' or, equivalently, is 'random with respect to  
P' tell us about the sequence? We might think that it means that the sequence 
satisfies all properties that hold with P-probability 1. But this will not work: if 
we identify a 'property' with the set of sequences satisfying it, then it is easy to  
see that the intersection of all sets corresponding to properties that hold 'with 
probability 1' is empty. The Martin-Lof theory of randomness [Li and VitBnyi, 
19971 essentially resolves this issue. Martin-Lof's notion of randomness turns out 
to be, roughly, equivalent with Kolmogorov randomness: a sequence x is random 
if K(x) = l(x), i.e. it cannot be effectively compressed. This theory allows us 
to  speak of the randomness of single, individual sequences, which is inherently 
impossible for probabilistic theories. Yet, as shown by Martin-Lof, his notion of 
randomness is entirely consistent with probabilistic ideas. It opens up a whole 
new area, which is illustrated by Example 21, in which we made distinctions 
between different types of random sequences ('positive' and 'negative') that cannot 
be expressed in, let alone understood from, a traditional probabilistic perspective. 

Philosophy of Statistics/Inductive Inference: Epistemological Occam's 
Razor There exist two close connections between algorithmic information theory 
and inductive inference: one via the algorithmic sufficient statistic and the MDL 
Principle; the other via Solomonoff's induction theory, which there was no space to  
discuss here [Li and VitBnyi, 19971. The former deals with finding structure in data; 
the latter is concerned with sequential prediction. Both of these theories implicitly 
employ a form of Occam's Razor: when two hypotheses fit the data equally well, 
they prefer the simplest one (with the shortest description). Both the MDL and 
the Solomonoff approach are theoretically quite well-behaved: there exist several 
convergence theorems for both approaches. Let us give an example of such a 
theorem for the MDL framework: [ ~ a r r o n  and Cover, 19911 and [Barron, 19851 
show that, if data are distributed according to some distribution in a contemplated 
model class (set of candidate distributions) M, then two-part MDL will eventually 
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find this distribution; it will even do so based on a reasonably small sample. This 
holds both for practical versions of MDL (with restricted model classes) as well as 
for versions based on Kolmogorov complexity, where M consists of the huge class 
of all distributions which can be arbitrarily well approximated by finite computer 
programs. Such theorems provide a justification for MDL. Looking at the proofs, 
one finds that the preference for simple models is crucial: the convergence occurs 
precisely because complexity of each probabilistic hypotheses P is measured by its 
codelength L(P),  under some prefix-code that allows one to encode all P under 
consideration. If a complexity measure L f ( P )  is used that does not correspond to 
any prefix code, then, as is easy to show, in some situations one will not converge 
at all, and, no matter how many data are observed, will keep selecting overly 
complex, suboptimal hypotheses for the data. In fact, even if the world is such 
that data are generated by a very complex (high K ( P ) )  distribution, it is wise 
to prefer simple models at small sample sizes [Grunwald, 2007]! This provides a 
justification for the use of MDL's version of Occam's razor in inductive inference. 
It should be stressed that this is an epistemological rather than a (meta-) physical 
form of Occam's Razor: it is used as an effective strategy, which is something very 
different from a belief that 'the true state of the world is likely to have a short 
description'. This issue, as well as the related question to what extent Occam's 
Razor can be made representation-independent, is discussed in great detail in 
[Grunwald, 20071. 

A further difference between statistical inference based on algorithmic informa- 
tion theory and almost all other approaches to statistics and learning is that the 
algorithmic approach focuses on individual data sequences: there is no need for 
the (often untenable) assumption of classical statistics that there is some distribu- 
tion P according to which the data are distributed. In the Bayesian approach to 
statistics, probability is often interpreted subjectively, as a degree of belief. Still, 
in many Bayesian approaches there is an underlying assumption that there exists 
'states of the world7 which are viewed as  probability distributions. Again, such 
assumptions need not be made in the present theories; neither in the form which 
explicitly uses Kolmogorov complexity, nor in the restricted practical form. In 
both cases, the goal is to find regular patterns in the data, no more. All this is 
discussed in detail in [Grunwald, 20071. 

Philosophy of Information On the first page of the chapter on Shannon infor- 
mation theory in this handbook [Harremoes and Topsae, 20081, we read "informa- 
tion is always information about something." This is certainly the case for Shannon 
information theory, where a string x is always used to communicate some state of 
the world, or of those aspects of the world that we care about. But if we identify 
'amount of information in x' with K(x),  then it is not so clear anymore what this 
'information' is about. K(x),  the algorithmic information in x looks at the infor- 
mation in x itself, independently of anything outside. For example, if x consists 
of the first billion bits of the binary expansion of T ,  then its information content 
is the size of the smallest program which prints these bits. This sequence does not 
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describe any state of the world that is to be communicated. Therefore, one may 
argue that it is meaningless to say that 'x carries information', let alone to measure 
its amount. At a workshop where many of the contributors to this handbook were 
present, there was a long discussion about this question, with several participants 
insisting that "algorithmic information misses "aboutness" (sic), and is therefore 
not really information". In the end the question whether algorithmic information 
should really count as "information" is, of course, a matter of definition. Neverthe- 
less, we would like to argue that there exist situations where intuitively, the word 
"information" seems exactly the right word to describe what is being measured, 
while nevertheless, "aboutness" is missing. For example, K(y1x) is supposed to 
describe the amount of "information" in y that is not already present in x. Now 
suppose y is equal to 3x, expressed in binary, and x is a random string of length 
n, so that K(x) x K(y) x n. Then K(y1x) = O(1) is much smaller than K(x) 
or K(y). The way an algorithmic information theorist would phrase this is "x 
provides nearly all the information needed to generate y." To us, this seems an 
eminently reasonable use of the word information. Still, this "information" does 
not refer to any outside state of the world.' 

Let us assume then that the terminology "algorithmic information theory" is 
justified. What lessons can we draw from the theory for the philosophy of infor- 
mation? 

First, we should emphasize that the amount of 'absolute, inherent' information 
in a sequence is only well-defined asymptotically and is in general uncomputable. 
Thus, an objective measure of information without 'aboutness' is possible, but at 
an (unavoidable) price. If we want a nonasymptotic and efficiently computable 
measure, we are forced to use a restricted class of description methods. Such re- 
strictions naturally lead one to universal coding and practical MDL. The resulting 
notion of information is always defined relative to a class of description methods 
and can make no claims to objectivity or absoluteness. Interestingly though, un- 
like Shannon's notion, it is still meaningful for individual sequences, independently 
of any outside probabilistic assumptions: this is an aspect of the general theory 
that can be retained in the restricted forms [Griinwald, 20071. 

Second, the algorithmic theory allows us to formalize the notion of 'meaningful 
information' in a distinctly novel manner. It leads to a separation of the mean- 
ingful information from the noise in a sequence, once again without making any 
probabilistic assumptions. Since learning can be seen as an attempt to find the 
meaningful information in data, this connects the theory to inductive inference. 

Third, the theory re-emphasizes the connection between measuring amounts of 
information and data compression, which was also the basis of Shannon's theory. 
In fact, algorithmic information has close connections to Shannon information 
after all, and if the data x are generated by some probabilistic process P, so that 
the information in x is actually really 'about' something, then the algorithmic 

?We may of course say that x carries information "about" y. The point, however, is that y is 
not a state of any imagined external world, so here "about" does not refer to  anything external. 
Thus, one cannot say that x contains information about some external state of the world. 



Ch08-N51726.fin Page 316 Satarday, August 25,2007 4:03 PM @ ~* 
316 Peter D. Grunwald and Paul M. B. Vitanyi 

information in x behaves very similarly to the Shannon entropy of P, as explained 
in Section 5.3. 

Further Reading Kolmogorov complexity has many applications which we 
could not discuss here. It has implications for aspects of physics such as the 
second law of thermodynamics; it provides a novel mathematical proof technique 
called the incompressibility method, and so on. These and many other topics in 
Kolmogorov complexity are thoroughly discussed and explained in the standard 
reference [Li and VitLnyi, 19971. Additional (and more recent) material on the rela- 
tion to Shannon's theory can be found in Grunwald and VitLnyi [2003; 20041. Ad- 
ditional material on the structure function is in [Vereshchagin and Vithyi, 2004; 
Vitiinyi, 20051; and additional material on MDL can be found in [Griinwald, 20071. 
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OCKHAM'S RAZOR, TRUTH, 
AND INFORMATION 

Kevin T. Kelly 

1 INTRODUCTION 

Suppose that several or even infinitely many theories are compatible with the infor- 
mation available. How ought one to choose among them, if at all? The traditional 
and intuitive answer is to choose the "simplest" and to cite Ockham's razor by 
way of justification. Simplicity, in turn, has something to do with minimization 
of entities, description length, causes, free parameters, independent principlies, or 
ad hoc hypotheses, or maximization of unity, uniformity, symmetry, testability, or 
explanatory power. 

Insofar as Ockham's razor is widely regarded as a rule of scientific inference, 
it should help one to select the true theory from among the alternatives. The 
trouble is that it is far from clear how a fixed bias toward simplicity could do so 
[Morrison, 20001. One wishes that simplicity could somehow indicate or inform 
one of the true theory, the way a compass needle indicates or informs one about 
direction. But since Ockham's razor always points toward simplicity, it is more 
like a compass needle that is frozen into a fixed position, which cannot be said 
to to indicate anything. Nor does it suffice to respond that a prior bias toward 
simplicity can be corrected, eventually, to allow for convergence to the truth, for 
alternative biases are also correctable in the  limit. 

This paper reviews some standard accounts of Ockham's razor and concludes 
that not one of them explains successfully how Ockham's razor helps one find 
the true theory any better than alternative empirical methods. Thereafter, a new 
explanation is presented, according to which Ockham's razor does not indicate 
or inform one of the truth like a compass but, nonetheless, keeps one on the 
straightest possible route to the true theory, which is the best that any inductive 
strategy could possibly guarantee. Indeed, no non-Ockham strategy can be said 
to guarantee so straight a path. Hence, a truth-seeker always has a good reason 
to stick with Ockham's razor even though simplicity does not indicate or inform 
one of the truth in the short run. 

2 STANDARD ACCOUNTS 

The point of the following review of standard explanations of Ockham's razor is just 
to underscore the fact that they do not connect simplicity with selecting the true 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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theory. For the most part, the authors of the accounts fairly and explicitly specify 
motives other than finding the true theory - e.g., coherence, data-compression, 
or accurate estimation. But the official admonitions are all too easily forgotten in 
favor of a vague and hopeful impression that simplicity is a magical oracle that 
somehow extends or amplifies the information provided by the data. None of the 
following accounts warrants such a conclusion, even though several of them invoke 
the term "information" in one way or another. 

2.1 Simple Virtues 

Simple theories have attractive aesthetic and methodological virtues. Aesthet- 
ically, they are more unified, uniform and symmetrical and are less ad hoc or 
messy. Methodologically, they are more severely testable [Popper, 1968; Glymour, 
1981; Friedman, 1983; Mayo, 19961, explain better [Kitcher, 19811, predict better 
[Forster and Sober, 19941, and provide a compact summary of the data [Li and 
Vitanyi, 1997; Rissanen, 19831.l However, if the truth happens not to be simple, 
then the truth does not possess the consequent virtues, either. To infer that the 
truth is simple because simple worlds and the theories that describe them have 
desirable properties is just wishful thinking, unless some further argument is given 
that connects these other properties with finding the true theory [van Fraassen, 
19811. 

2.2 Bayesian Prior Probabilities 

According to  Bayesian methodology, one should update one's degree of belief P(T) 
in theory T in light of evidence e according to the rule: 

Subjective Bayesians countenance any value whatever for the prior probability 
p ( T ) ,  so it is permissible t o  start with a prior probability distribution biased 
toward simple theories [Jeffreys, 19851. But the mere adoption of such a bias 
hardly explains how finding the truth is facilitated better by that bias than by any 
other. 

A more subtle Bayesian argument seems to avoid the preceding circle. Suppose 
that S is a simple theory that explains observation e, so that p(e1S) x 1 and that 
C = 30C(0) is a competing theory that is deemed more complex due to its free 
parameter 6, which can be tuned to a small range of "miraculous" values over 
which p(elC(0)) x 1. Strive, this time, to avoid any prior bias for or against 
simplicity. Ignorance between S and C implies that p(S) FZ p(C). Hence, by the 

'Risanen is admirably explicit that finding short explanations is an end-in-itself, rather than 
a means for finding the true theory. 
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standard, Bayesian calculation: 

Further ignorance about the true value of 0 given that C is true implies that 
p(C(0)IC) is flattish. Since p(elC(6)) is high only over a very small range of 
possible values of 0 and p(C(Q)IC) is flattish, the integral assumes a value near zero. 
So the posterior probability of the simple theory S is sharply greater than that of 
C [Rosenkrantz, 19831. It seems, therefore, that simplicity is "truth conducive", 
starting from complete ignorance. 

The magic evaporates when the focus shifts from theories to ways in which the 
alternative theories can be true. The S world carries prior probability 1/2, whereas 
the prior probability of the range of worlds C(6) in which 6 is tuned to explain 
e is vanishingly small. That sharp, prior bias in favor of the S world is merely 
passed along through the Bayesian computation, accounting entirely for the sharp 
"confirmation" of S over C. More generally, Bayesian "ignorance" with respect 
to one partition of possibilities implies a strong prejudice with respect to  another 
- e.g., "ignorance" between blue and non-blue together with ignorance between 
non-blue hues implies a strong bias against yellow - and that is all that is going 
on here. The point is not that science should be entirely free from biases. It is, 
rather, that direct appeal to one's bias hardly explains how that bias is better for 
finding the truth than alternative biases might be - every bias flatters itself. 

2.3 Objective Prior Probabilities 

One way to  avoid the subjectivity of the preceding arguments is to select some 
particular prior probability distribution as special and to show that Ockham's 
razor follows. For example, R. Carnap [I9501 viewed confirmation as a generalized 
notion of logical consequence in which p(T1e) supposedly represents the degree to 
which premise e partially entails conclusion T .  This putative degree of entailment 
is understood in terms of the total weight of possibilities satisfying T&e divided 
by the total weight of possibilities satisfying e. "Weight" is explicated in terms 
of probability, so there is the usual, Bayesian question of which prior probability 
measure to impose. Carnap imposed prior probabilities favoring uniform sequences 
of observable outcomes, with higher degrees of confirmation for predictions that 
resemble the past as a not-so-surprising result. 

The trouble with Carnap's logical defense of Ockham's razor is that its prior bias 
toward uniformity is not preserved under linguistic translation and, hence, cannot 
be logical. On Carnap's proposal, a long run of green observations strongly con- 
firms a t  stage n that the next observation will be green, rather than blue, because 
an invariantly green world is more uniform. N. Goodman [I9551 responded that 
one can translate greenlblue into gruelbleen, where grue means "green through 
n and blue thereafter" and bleen means "blue through n and green thereafter". 
A sequence of observations is uniform with respect to greenlblue if and only if 
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it is non-uniform with respect to gruelbleen, so uniformity and, hence, confirma- 
tion, is not preserved under translation. Against the objection that greenlblue are 
"natural" predicates whereas grue/bleen involve a "magic time n", the predicates 
greenlblue equally involve a magic time n in the gruelbleen language, so the situ- 
ation is logically symmetrical. Therefore, Ockham's razor must be sought outside 
of logic. 

Goodman, himself, proposed to rule out "grue-like" predicates by appealing 
to success in past inductions, which is a matter of history, rather than of logic. 
However, is hard to see how that can help if the "magic" time n still lies in the 
future, since then grue and green would have yielded identical success rates. A 
currently popular approach, called algorithmic information the0 y [Li and Vitanyi, 
19971, seeks uniformity not in pure logic, but in the presumably objective nature of 
computation. The algorithmic complexity of a string corresponds (roughly) to the 
length of the shortest computer program (in some fixed computer language) that 
generates the string. The intuitive idea is that a simple string has structure that a 
short program can exploit to reproduce it, whereas a complex or "random" string 
does not. This gives rise to the notion that good explanations are short theories 
that compress the data and that Ockham's razor is a matter of minimizing the sum 
of the lengths of the theory and of the compressed data. The proposal that one 
should infer the best explanation in this sense is called the m i n i m u m  description 
length principle or MDL for short [Rissanen, 19831. Algorithmic information theo- 
rists have developed the notion of a universal prior probability over bit strings with 
the property that more compressible strings tend to have higher prior probability. 
It can be shown that under certain conditions the MDL approach approximates 
Bayesian updating with the universal prior probability [Vitanyi and Li, 20001. 

Algorithmic complexity may help to  explicate some slippery but important 
methodological concepts, such as interest, beauty, or emergence [Adriaans, 20071. 
The focus here, however, is on the putative connection, if any, between data- 
compression and finding the true theory. Some proponents of the approach (e.g., 
Rissanen, himself) deny that there is one and urge data-compression as an alter- 
native aim. One reason for doubt is that program length depends heavily upon the 
particular programming language assumed in the definition of program length. In 
algorithmic complexity theory, a computer language is identified with a universal 
machine,  which simulates an arbitrary program p, step by step, to produce the 
output of p. Suppose that, in a "natural" programming language L, the shortest 
program p that generates a random-looking string a is almost as long as a itself. 
But now one can specify a new programming language L' whose universal machine 
I' is just like the universal machine I for L except that, when presented with a 
very short program p', I' simulates I on the long program p, generating a. In 
other words, the complexity of p can be "buried" inside of I' so that it does not 
show up in the L' program p' that generates a. This arbitrariness makes it hard 
to take program length seriously as an indicator of how simple the world really is 
unless a theory of "natural" programming languages is provided - but the the- 
ory of algorithmic complexity is stated in terms of an arbitrary, Turing-equivalent 
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programming language.2 
Quite aside from the relativity of program length to one's choice of computer 

language, there is a further question about the process by which observations are 
encoded or transduced into the bit-strings presupposed by algorithmic complexity 
theory. One transducer could encode green wavelengths as 0 and blue wavelengths 
as 1, whereas another, grue-like transducer could reverse these assignments at 
some random-looking times. Algorithmic complexity judges the same world to  be 
either extremely complex or extremely simple depending upon which transducer 
is employed, but no bias that depends upon mere conventions about how the data 
are passed along to the scientist could plausibly be an indicator of truths lying 
behind the data-reporting process. 

Finally, and most importantly, insofar as there is any theoretical connection 
between simplicity and truth in the MDL story, it amounts to the selection of a 
universal (i.e., simplicity-biased) prior probability measure, which adds nothing to 
the standard, circular, Bayesian account already discussed (cf. [Mitchell, 19971). 
Therefore, it is important not to be confused by talk of bits and nats into believing 
that simplicity somehow provides information about the true theory. 

2.4 Over-fitting and Empirical Estimation 

Classical statisticians have an alternative account of the connection between sim- 
plicity and truth based on the concept of "over-fitting" (cf. [Wasserman, 20031). 
Since this explanation does not invoke prior probabilities at all, it is free from the 
shadow of circularity characteristic of Bayesian explanations. However, the under- 
lying aim is not to choose the true theory, but to find a false theory that yields 
accurate empirical estimates at small sample sizes. One might expect that no 
theory predicts more accurately than the true theory, but that is emphatically not 
how "accuracy" is understood in the over-fitting literature. Hence, the over-fitting 
explanation of Ockham's razor avoids circular appeal to a prior simplicity bias 
only by adopting a skeptical or instrumentalistic stance toward theories [Forster 
and Sober, 19941. 

To see how false theories can predict more "accurately" than true ones, imagine 
a marksman firing a rifle at a target from a tripod that can be locked in both 
the vertical and the horizontal dimensions. When both locks are off, the best 
marksman produces a cloud of shots centered on the bull's eye. Suppose that the 

2Algorithmic complexity theorists respond t o  the preceding concern as follows. The first 
universal machine I has a programpp that simulates universal machine I t .  Let p' be the shortest 
program producing some string a according to  1'. Then the result p of chaining together the 
programs pl, and p' generates a in L. Chaining p l ,  onto p' adds only constant length to  p', 
so there exists a constant Ic that bounds the difference in length of the shortest program in L 
from the length the shortest program in L' that generates an arbitrary string a. But that is 
scant comfort when one applies Ockham's razor in a particular instance, for it is still the case 
that an arbitrarily complex theory in the first universal machine could be the simplest possible 
theory for the second. The constants connecting systems can be arbitrarily large, so no matter 
how many reversals of simplicity ranking one wishes to  effect, one could fish for an alternative 
universal machine that effects them. 
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inaccuracy of a marksman is measured in terms of the expected distance from the 
bull7s eye of a single shot. Call this the marksman's "risk" (of missing the bull's 
eye). A good marksman's risk is due entirely to  the spread or variance of his shots 
around the bull7s eye. Now consider a lazy marksman, who locks the tripod in both 
dimensions, so every shot hits at the same point at a distance b from the bull's 
eye. The lazy marksman has no variance, but has bias b, because his average shot 
hits at distance b from the bull7s eye. There is a critical bias b > 0 below which 
the lazy marksman is more "accurate" than the good marksman as measured by 
risk. Think of the bull's eye as the true value of an empirical parameter and of a 
shot as an empirical estimate of the parameter based on a random sample. Free 
aim corresponds to  an empirical estimate using a complex theory. The locked 
tripod corresponds to a fixed empirical estimate based on a simple theory with no 
free parameters. The bias of the simple theory implies its falsehood (it rules out 
the true sampling distribution). So even if the true theory is very complex and 
is known in advance, risk minimization argues for using a false, over-simplified 
theory for estimation purposes. Hence, over-fitting hardly explains how Ockham's 
razor helps one find the true theory. That conclusion may sound odd in light of 
popular glosses of over-fitting such as the following: 

It is overwhelmingly probable that any curve that fits the data perfectly 
is false. Of course, this negative remark does not provide a recipe 
for disentangling signal from noise. We know that any curve with 
perfect fit is probably false, but this does not tell us which curve we 
should regard as true. What we would like is a method for separating 
the trends in the data from the random deviations from those trends 
generated by error. A solution to the curve fitting problem will provide 
a method of this sort [Forster and Sober, 19941. 

One might naturally conclude that the trend in the data is the true signal and that 
the aim is to strike the true balance between signal and noise, which only the true 
theory can do. However, as the authors of the passage later explain with care, 
over-fitting and under-fitting are defined in terms of estimation risk at a given 
sample size, rather than in terms of the true curve: "under-fitting" occurs when 
sub-optimal risk is due to bias and "over-fitting" occurs when sub-optimal risk 
is due to variance. Thus, as discussed above, if the sample size is small and the 
truth is not as simple as possible, risk minimization recommends selection of an 
over-simplified theory that falsely explains true signal as noise. 

In the scientific case, one does not know the true sampling distribution a priori, 
so one does not know the bias and, hence, the risk, of using a given theory for 
estimation purposes. One can estimate the risk from the sample by calculating 
the average squared distance of data points from predictions by the theory. But 
the estimated risk of a complex theory is biased toward optimism because risk 
is estimated as fit to  the data and a sufficiently complex theory can fit the data 
exactly, even if the true risk of estimation is considerable due to noise. To assuage 
this systematic estimation bias, the risk estimate must incorporate a tax on free 
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parameters. Then one can choose, for estimation purposes, a theory whose cor- 
rected estimated risk is minimal. This is the basic logic between such standard, 
classical estimation procedures as Akaike's information criterion (AIC)) (1973), 
cross-validation, and Mallow's statistic (cf. [Wasserman, 20031). 

Structural risk minimization (SRM) is an interesting generalization and exten- 
sion of the over-fitting perspective [Vapnik, 19981. In the SRM approach, one does 
not merely construct an (approximately) unbiased estimate of risk; one solves for 
objective, worst-case bounds on the chance that estimated risk differs by a given 
amount from actual risk. A crucial term in these bounds is called the Vapnik 
Chervonenkis dimension or VC dimension for short. The VC dimension is a mea- 
sure of the range of possible samples the theory in question has the "capacity" to 
accommodate, which suggests a connection to simplicity and Ockham's razor. As 
in the over-fitting account, one can seek the "sweet spot" between simplicity (low 
VC-dimension) and fit (estimated risk) that minimizes the worst-case bound on 
the error of the risk estimate. Then one can choose the parameter setting that 
minimizes estimated risk within that theory. 

Again, the aim is not to  find the true theory. And yet, the SRM approach 
can explain other approaches (e.g., MDL and Bayesianism) as respectable ways 
to control worst-case estimation risk, eliminating the circular appeals to prior 
simplicity biases [Vapnik, 19981. The moral is skeptical. If risk minimization is 
the last word on Ockham's razor, then the apparent rhetorical force of simplicity is 
founded upon a fundamental confusion between theories as true propositions and 
theories as useful instruments for controlling variability in empirical estimates. 

It is tempting, a t  this point, to ask whether theoretical truth really matters - 
accurate predictions should suffice for all practical purposes. That is true so far 
a s  passive prediction is concerned. But beliefs are for guiding action and actions 
can alter the world so that the sampling distribution we drew our conclusions 
from is altered as well - perhaps dramatically. Negligible relativistic effects are 
amplified explosively when a sufficient quantity of uranium ore is processed. A 
crusade to eliminate ash trays breaks the previously observed, strong correlation 
between ash trays and cancer, undermining the original motivation for the pol- 
icy. Theories that guide action are supposed to provide accurate counterfactual 
estimates about what would happen if the world (and, hence, the sampling distri- 
bution) were altered in various ways [Spirtes et al., 20001. An accurate estimate of 
the true sampling distribution is not enough in such cases, because distributions 
corresponding to complex theories can be arbitrarily similar to distributions corre- 
sponding to simple theories, that have very different counterfactual import. This 
point will be sharpened below, when the details of the contemporary literature on 
causal discovery are discussed. 

Finally, it is clear that the over-fitting story depends, essentially, upon noise in 
the data and, hence, in the shots at the truth taken by the estimator, since non- 
noisy estimates involve no variance and, hence, no bias-variance balance. However, 
Ockham's razor seems no less compelling in deterministic settings. One would 
prefer that the connection between simplicity and theoretical truth not depend 
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2.5 Convergence 

Kevin T. Kelly 

The preceding explanations promise something in the short run, but theoretical 
truth cannot be guaranteed in the short run, even with high chance, because com- 
plex effects in nature may be two small or subtle to notice right away. Bayesians 
address this difficulty by circular appeal to the very bias to be explained. Risk 
minimization responds by shifting the focus from theoretical truth to predictive 
risk. A third option is to relax the demand for immediate success. Arbitrarily 
small, complex effects requiring free parameters to explain them can be detected 
eventually, as more data are collected, as more regions of the universe are ex- 
plored, and as observational technology improves, so if it is assumed in advance 
(as in polynomial curve fitting) that there are at most finitely many such effects 
to be found, then at some point all the effects are noticed and Ockham's razor 
converges to the true theory. For example, it can be shown that, in a wide range 
of cases, Bayesian updating armed with a simplicity-biased prior probability does 
converge to the true theory in the limit. However, if indication or pointing to 
the true theory is too stringent to be feasible, mere convergence to the true the- 
ory is too weak to single out Ockham's razor as the best truth-finding policy in 
the short run. Convergence requires merely that a prior simplicity bias "wash 
out", eventually, in complex worlds. But the question is not how to overcome a 
prior simplicity bias; it is, rather, how such a bias helps one find the truth better 
than alternative biases. Convergence, alone, cannot answer that question, since 
if a method converges to the truth, so does every finite variant of that method 
[Salmon, 19671. Hence, mere convergence says nothing about how the interests of 
truth-finding are particularly furthered by choosing the simplest theory now. But 
that is what the puzzle of simplicity is about. 

3 DIAGNOSIS 

To recapitulate, the two standard notions of finding truth are (1) indication or 
informing of the truth in the short run and (2) convergence in the long run. The 
former aim is too strong to support an a priori explanation of Ockham's razor, 
since an arbitrarily complex world can appear arbitrarily simple in the short run, 
before the various dimensions of complexity have been detected. The latter aim is 
too weak to support an a priori explanation of Ockham's razor, since a prior bias 
toward complexity can also be washed out by further information. Therefore, if the 
apparent connection between simplicity and theoretical truth has an explanation, 
it should be sought somewhere between these two extremes: Ockham's razor should 
somehow help one converge to the true theory better or more efficiently than 
alternative strategies. Just such an account will now be presented. The basic idea 
is that a bias toward simplicity neither points a t  the truth nor merely converges 
to it, but converges to it in the most efficient or direct manner possible, where 
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efficiency is measured in terms of errors, reversals of opinion, and the time delay 
to such reversals3 

4 TRAVELER'S AID 

To state the simplicity puzzle in its most basic terms, how could fixed, one-size- 
fits-all advice be guaranteed to help one find something that might be anywhere 
- in a sense stronger than merely guaranteeing that one will find it by exhaustive 
search? It happens every day. Suppose that a city dweller is lost in a small town 
on a long automobile journey. He asks a local resident for directions. The resident 
directs him to the freeway entrance ramp. The traveler follows the advice and 
travels as directly as possible to the freeway, which is by far the most direct route 
home - in spite of a few, unavoidable curves around major geographical features. 

Now suppose that the traveler stubbornly ignores the resident's advice. Indeed, 
suppose that, in so doing, the traveler follows a road on the true compass heading 
to his destination, whereas getting on the freeway requires a short jog in the 
opposite direction. The chosen route narrows and begins to meander through the 
mountains. The traveler finally concedes that it wasn't a good idea and retraces 
his route back to the resident. He then follows the resident's directions to the 
freeway and proceeds home via the best possible route. The traveler's reward 
for ignoring the resident's advice is a humiliating U-turn right back to where 
he started, followed by all the unavoidable twists and turns encountered on the 
freeway over the mountains. Had he heeded the advice, he would have encountered 
only the unavoidable curves along the freeway. So he should have heeded it. 

In connection with the simplicity puzzle, this unremarkable tale has some re- 
markable features. 

1. The resident's advice is the best possible advice in the sense that it puts one 
on the most direct route to the goal, for violating it incurs at least one extra, 
initial U-turn, regardless of one's destination. 

2. The advice is the best possible even if it aims the traveler in the wrong 
direction initially. 

3. The resident can give precisely the same, fixed advice to every stranger who 
asks, even though she does not know where they are headed - no Ouija 
board or other occult channel of information is required. 

3 ~ h e  basic idea of counting mind-changes is originally due to  H. Putnam (1965). It has been 
studied extensively in the computational learning literature - for a review cf. [Jain et al., 19991. 
But in that  literature, the focus is on categorizing the complexities of problems rather than 
on singling out Ockham's razor a s  an optimal strategy. I viewed the matter the same way in 
[Kelly, 19961. Schulte [1999a; 1999b] derives short-run constraints on strategies from retraction 
minimization. Kelly [2002] extends the idea, based on a variant of the ordinal mind-change 
account due to  [Freivalds and Smith, 19931, but that approach does not apply to  cases like curve 
fitting, in which theory complexity is unbounded. Subsequent steps toward the present approach 
may be found in [Kelly, 2004; 20061 and in [Kelly and Glymour, 20041. 
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So directions to the nearest freeway entrance ramp satisfy all the apparently arcane 
and paradoxical demands that a successful explanation of Ockham's razor must 
satisfy. It  remains to explain what the freeway to the truth is and how Ockham's 
razor keeps one on it. 

5 SOME EXAMPLES 

For some guidance in the general developments that follow, consider some familiar 
examples. 

Polynomial structures. Let S be a finite set of natural numbers and suppose 
that the truth is some unknown polynomial law: 

y = f ( x )  = aixi, 
i E S  

where for each i E S ,  ai # 0. Say that S is the structure of the law, as it 
determines the form of the law as it would be written in a textbook. Suppose that 
the problem is to  infer the true structure S of the law. It is implausible to suppose 
that for a given value of the independent variable x one could observe the exact 
value of the dependent variable y, so suppose that for each queried value of x at 
stage k of inquiry, the scientist receives an arbitrarily small, open interval around 
the corresponding value of y and that repeated queries of x result in an infinite 
sequence of open intervals converging to {y). 

It is impossible to be sure that one has selected S correctly by any finite time, 
since there may be some i E S such that a1 is set to a very small value in f ,  
making it appear that the monomial aixi is missing from f .  Ockham's razor urges 
the conclusion that i $ S until the corresponding monomial is noticed in the data. 

There is a connection between the complexity of the true polynomial structure 
and what scientists and engineers call effects. Suppose that SO = {0), so for 
some ai > 0, fo(x) = ai. Let experience eo present a finite sequence of interval 
observations of the sort just described for fo.  Then there is a bit of wiggle room 
in each such interval, so that for some suitably small a1 > 0, the curve f i (x )  = 
alx  + a0 of form S1 = {0,1) is compatible with eo. Eventually, some open interval 
around y = a0 is presented that excludes fo.  Call such information a first-order 
eJ3Pect. If el extends that information and presents an arbitrary, finite number of 
shrinking, open intervals around f l  then, again, there exists suitably small a2 > 0 
such that f2(x) = a2x2+alx+ao of form Sz = {0,1,2) passes through each of the 
intervals presented in el.  Eventually, the intervals tighten so that no linear curve 
passes between them. Call such information a second-order effect, and so forth. 
The number of effects presented by a world corresponds to the cardinality of S ,  so 
there is a correspondence between empirical effects and empirical complexity. A 
general account of empirical effects is provided in Section 16 below. 
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Linear dependence. Suppose that the truth is a multivariate linear law 

where for each i E S ,  a$ # 0. Again, the problem is to infer the structure S of f .  
Let the data be presented as in the preceding example. As before, it seems that 
complexity corresponds with the cardinality of S which is connected, in turn, to 
the number of effects presented by nature i f f  is true. 

Conservation laws. Consider an idealized version of explaining reactions with 
conservation laws, as in the theory of elementary particles [Schulte, 2001; Valdez- 
Perez, 19961. Suppose that there are n observable types of particles, and it is 
assumed that they interact so as to conserve n distinct quantities. In other words, 
each particle of type pi carries a specific amount of each of the conserved quantities 
and for each of the conserved quantities, the total amount of that quantity going 
into an arbitrary reaction must be the total amount that emerges. Usually, one 
thinks of a reaction in terms of inputs and outputs; e.g., 

One can represent the inputs by a vector in which entry i is the number of input 
particles of type pi in r ,  and similarly for the output: 

a = (3,2,1); 

b = (2,1,2); 

r = (a -+ b). 

A quantity q (e.g., mass or spin) is an assignment of real numbers to particle types, 
as in q = (1,0, I) ,  which says that particles al ,  a3 both carry a unit of q and a2 
carries none. Quantity q is conserved in r just in case the total q in is the total q 
out. That condition is just: 

or, in vector notation, 
q - a = q . b ,  

which is equivalent to: 
q - (a - b) = 0. 

Since reaction r enters the condition for conservation solely as the vector difference 
a - b,  there is no harm, so far as conservation is concerned, in identifying reaction 
r with the difference vector: 
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Then the condition for r conserving q can be rewritten succinctly as: 

which is the familiar condition for geometrical orthogonality of q with r. Thus, 
the reactions that preserve quantity q are precisely the integer-valued vectors 
orthogonal to q. In this example, r does conserve q, for: 

But so do reactions u = (1,0, -1) and v = (0,1,O), which are linearly independent. 
Since the subspace of vectors orthogonal to q is two-dimensional, every reaction 
that conserves q is a linear combination of u and v (e.g., r = u + v). If the only 
conserved quantity were q, then it would be strange to observe only scalar multiples 
of r. In that case, one would expect that the possible reactions are constrained by 
some other conserved quantity linearly independent of q ,  say q' = (0,1,1). Now the 
possible reactions lie along the intersection of the planes respectively orthogonal 
to q and q', which are precisely the scalar multiples of r. Notice that any two 
linearly independent quantities orthogonal to r would suffice - the quantities, 
themselves, are not uniquely determined. 

Now suppose that the problem is to determine how many quantities are con- 
served, assuming that some conservation theory is true and that every possible 
reaction is observed, eventually. Let an "effect" be the observation of a reaction 
linearly independent of the reactions seen so far. As in the preceding applications, 
effects may appear at any time but cannot be taken back after they occur and the 
correct answer is uniquely determined by the (finite) number of effects that occur. 

In this example, favoring the answer that corresponds to the fewest effects corre- 
sponds to positing the greatest possible number of conserved quantities, which cor- 
responds to physical practice (cf. [Ford, 19631). In this case, simplicity intuitions 
are consonant with testability and explanation, but run counter to minimization 
of free parameters (posited conserved quantities). 

Discovering causal structure. If one does not have access to experimental 
data, due to cost, feasibility, or ethical considerations, one must base one's policy 
recommendations on purely observational data. In spite of the usual advice that 
correlation does not imply causation, sometimes it does. The following setup is 
based upon [Spirtes et al., 20001. Let V be a finite set of empirical variables. A 
causal structure associates with each unordered pair of variables {X, Y) one of the 
following statements: 

interpreted, respectively, as X is a direct cause of Y, Y is a direct cause of X ,  
and XI  Y have no direct causal connection. The first two cases are direct causal 
connections and the fourth case denies such a connection. A causal structure can, 
therefore, be presented as a directed, acyclic graph (DAG) in which variables are 
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vertices and arrows are direct causal connections. The notation X - Y means that 
there is a direct connection in either direction between X and Y without specifying 
which. A partially oriented graph with such ambiguous edges is understood, for 
present purposes, to represent the disjunction of the structures that result from 
specifying them in each possible way. 

At the core of the approach is a rule for associating causal structures with 
probability distributions. Let p be a joint probability distribution on variables V. 
If S is a subset of V, let ( X  LIY)IS abbreviate that X is statistically independent 
of Y conditional on S in p. A sequence of variables is a path if each successive pair 
is immediately causally connected. A collision on a path is a variable with arrows 
coming in from adjacent variables on the path (e.g., variable Y in path X -+ Y c 
2 ) .  A path is activated by variable set S just in case the only variables in S that 
occur on the path are collisions and every collision on the path has a descendent in 
S .  Then the key assumption relating probabilities to causal structures is simply: 

(X  I1 Y)lS if and only if no path between X and Y is activated by S. 

Let T, denote the set of all causal structures satisfying this relation to probability 
measure p. 

To see why it is intuitive to associate T, with p, suppose that X -+ Y -t Z and 
that none of these variables are in conditioning set S. Then knowing something 
about Z tells one something about X and knowing something about the value 
of X tells one something about Z.  But the ultimate cause X yields no further 
information about Z when the intermediate cause Y is known (unless there is 
some other activated path between X and Y). On the other hand, suppose that 
the path is X + Y c Z with collision Y. If there is no further path connecting 
X with Z,  knowing about X says nothing about Z (X  and Z are independent 
causes of Y), but since X and Z may cooperate or compete in a systematic way 
to produce Y, knowing the value of Y together with the value of X yields some 
information about the corresponding setting of 2. The dependency among causes 
given the state of the common effect turns out to be an important clue to causal 
orientation. 

It follows from the preceding assumption that there is a direct connection X - Y 
just in case X and Y are dependent conditional on each set of variables not includ- 
ing X,  Y. There is a collision (X  -+ Y + Z) if (X  -Y - Z) holds (by the preceding 
rule) and (X - Z) does not hold (by the preceding rule) and, furthermore, X, Z 
are dependent given every set of variables including Y but not X, Z [Spirtes et 
al., 2000, theorem 3.41. Further causal orientations may be entailed in light of 
background assumptions. The preceding rules (actually, more computationally 
efficient heuristic versions thereof) have been implemented in "data-mining" soft- 
ware packages that search for causal structures governing large sets of observational 
variables. The key points to remember are that (1) a direct causal connection is 
implied by the appearance of some set of statistical dependencies and (2) edge 
orientations depend both on the appearance of some statistical dependencies and 
on the non-appearance in the future of further statistical dependencies. 
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The above considerations are taken to be general. However, much of the litera- 
ture on causal discovery focuses on two special cases. In the discrete multinomial 
case, say that G E D, if and only if G E T, and p is a discrete, joint distribution 
over a finite range of possible values for each variable in G. In the linear Gaussian 
case, say that G E L, if and only if G E Tp and p is generated from G as follows: 
each variable in G is assumed to be a linear function of its parents, together with 
an extra, normally distributed, unobserved variable called an error term and the 
error terms are assumed to be uncorrelated. For brevity, say that G is standard 
for p if and only if G E D, or G E L,. The following discussion is restricted to 
the standard cases because that is where matters are best understood at present. 

In practice, not all variables are measured, but assume, optimistically, that all 
causally relevant variables are measured. Even then, in the standard cases, the 
DAGs in T, cannot possibly be distinguished from one another from samples drawn 
from p, so one may as well require only convergence to T, in each p compatible 
with background  assumption^.^ 

Statistical dependencies among variables must be inferred from finite samples, 
which can result in spurious causal conclusions because finite samples cannot re- 
liably distinguish statistical independence from weak statistical dependence. Ide- 
alizing, as in the preceding examples, suppose that one receives the outputs of a 
data-processing laboratory that merely informs one of the dependencies5 that have 
been verified so far (at the current, growing sample size) by a standard statistical 
dependency test, where the null hypothesis is independence.6 Think of an effect 
as data verifying that a partial correlation is non-zero. Absence of an effect is 
compatible with noticing it later (the correlation could be arbitrarily small). If it 
is required only that one infer the true indistinguishability class T(p) for arbitrary 
p representable by a DAG, then effects determine the right answer. 

What does Ockham say? In the light of the preceding examples, something 
like: assume no more dependencies than one has seen so far, unless background 
knowledge and other dependencies entail them. It follows, straightforwardly, that 
direct causal connections add complexity, and that seems intuitively right. Causal 
orientation of causal connections is more interesting. It may seem that causal 
orientation does affect complexity, because, with binary variables, a common effect 
depends in some manner that must be specified upon four states of the joint causes 
whereas a common cause affects each effect with just two states. Usually, free 

41t is known that in the linear, non-Gaussian case, causal structure can be recovered uniquely 
if there are no unobserved variables [Shimizu et al., 20061. The same may be true in the non-linear 
Gaussian case. 

5 ~ n  the standard cases, it is known that all of the over-identifying constraints follow from 
conditional independence constraints [Richardson and Spirtes, 20021. That is known t o  be false in 
the linear, non-Gaussian case [Shimizu et al., 20061, so in that case simplicity must be relativized 
t o  a wider range of potential effects. Indeed, in the linear, non-Gaussian case, the  set of possible 
empirical effects is so rich that there are no proper inclusion relations among the sets of effects 
corresponding t o  alternative causal models, so the simplicity ranking is flat. 

'Also, the significance level is tuned down a t  a sufficiently slow rate to  ensure that the test 
converges in probability to  the right answer. At the end of the paper, some of the issues that 
arise in a serious application to  statistical model selection are raised. 
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parameters contribute to complexity, as in the curve-fitting example above. But 
given the overall assumptions of causal discovery, a result due to Chickering [2003] 
implies that these extra parameters do not correspond to potential empirical effects 
and, hence, do not really contribute to empirical complexity. In other words, given 
that no further edges are coming, one can afford to wait for data that decide all 
the discernable facts about orientation [Schulte, 20071. Standard MDL procedures 
that tax free parameters can favor non-collisions over collisions before the data 
resolve the issue, risking extra surprises.' 

For example, when there are three variables X, Y, Z and (X - Y - Z) is known, 
then, excluding unobserved causes, there are two equivalence classes of graphs, the 
collision orientation ( X  --+ Y +- Z) in one class C and all the other orientations 
in the complementary class 4'. Looking at the total set of implied dependencies 
for C,CJ, it turns out that the only differences are that C entails -((X LI Z)IY) 
but not -(X LI Z), whereas 1 C  entails -(X LI 2) but not l ( ( X  LI Z)IY), so there 
is no inclusion relationship between the dependencies characterizing C and the 
dependencies characterizing 4'. Therefore, both hypotheses are among the sim- 
plest compatible with the data, so Ockham's razor does not choose among them. 
Moreover, given that the truth is (X-Y -Z), nature must present either 1 (XI IZ)  
or -((X LI Z)IY) eventually (given that the causal truth can be represented by 
some graph over the observable variables) so it seems that science can and should 
wait for nature to resolve the matter instead of racing ahead - and that is just 
how Ockham's razor is interpreted in the following discussion. Regardless of which 
effect nature elects to present, it remains possible, thereafter, to  present the other 
effect as well, in which case each variable is connected immediately to every other 
and one can infer nothing about causal directionality. This situation involves more 
effects than either of the two preceding cases, but another direct causal connection 
is also added, reflecting the increase in complexity. 

The preceding evolution can result in spectacular reversals of causal conclu- 
sions as experience increases, not just in terms of truth, but in terms of practical 
consequences as well. Suppose that it is known that ( X  -, Y - 2) and none 
of these variables has yet exhibited any dependence with W. Then discovery of 
-((X LI Z) IY), background knowledge, and Ockham's razor unambiguously imply 
(X -+ Y +- Z), a golden invitation to exploit Z to control Y. Indeed, the connec- 
tions may be obvious and strong, inviting one to invest serious resources to exploit 
2. But the conclusion rests entirely on Ockham's razor, for the further discovery 
of l ( X  El Z) is incompatible with ( X  -+ Y +- Z) and the new Ockham answer is 
(X  -+ Y - Z) with edge ( X  - Z) added. Further discovery that l ( ( Z  II W)IX, Y) 
and that l ( ( Y  LI W)IZ) results in the conclusion Y -+ Z +- W, reversing the origi- 

'A similar issue arises in the inference of regular sets from positive examples. The most 
liberal automaton is a one-state universal acceptor with a loop for each input character. But 
assuming that the  language is learned from positive examples only, that is the most complex 
hypothesis in terms of empirical effects. In typical scientific applications, such a s  curve fitting, 
extra parameters imply extra effects. But not always, and then it is the effects, rather than the  
parameters, that determine retraction efficiency. 
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nal conclusion that Y can be controlled by Z.8 The orientation of the direct causal 
connection Y - Z can be flipped n times in sequence by assuming causes Xo, . . . Xn 
of Y in the role of X and potential collisions Wo, . . . , Wn in the role of W. There 
is no way that a convergent strategy can avoid such discrete flips of Y - Z; they 
are an ineluctable feature of the problem of determining the efficacy of Z on Y 
from non-experimental data, no matter how strong the estimate of the strength of 
the cause Y + Z is prior to the reversal. Indeed, standard causal discovery algo- 
rithms exhibit the diachronic retractions just discussed in computer simulations. 
The practical consequences of getting the edge orientation wrong are momentous, 
for if Z does not cause Y, the policy of manipulating Z to achieve results for Y 
will have no benefits at all to justify its cost. Indeed, in the case just described, 
sample size imposes no non-trivial bound on arbitrarily large mis-estimates of the 
effectiveness of Y in controlling Z (cf. [Robins et al., 2003; Zhang and Spirtes, 
20031). Therefore a skeptical stance toward causal inference is tempting: 

We could try to learn the correct causal graph from data but this is 
dangerous. In fact it is impossible with two variables. With more 
than two variables there are methods that can find the causal graph 
under certain assumptions but they are large sample methods and, 
furthermore, there is no way to ever know if the sample size you have 
is large enough to make the methods reliable [~asserman,  '2003, p. 
2751. 

This skepticism is one more symptom of the unrealizable demand that simplicity 
should reliably point toward or inform one of the true theoretical structure, a 
popular - if infeasible - view both in statistics and philosophy [Goldman, 1986; 
Mayo, 1996; Dretske, 19811. The approach developed below is quite different: 
insofar as finding the truth makes reversals of opinion unavoidable, they are not 
only justified but laudable - whereas, insofar as they are avoidable, they should 
be avoided. So the best possible strategies are those that converge to the truth 
with as few course-reversals as possible. That is what standard causal inference 
algorithms tend to do, and it is the best they could possibly do in the standard 
cases. 

To summarize, an adequate explanation of Ockham's razor should isolate what 
is common to the simplicity intuitions in examples like the preceding ones and 
should also explain how favoring the simplest theory compatible with experience 
helps one find the truth more directly or efficiently than competing strategies when 
infallibility or even probable infallibility is hopeless. Such an explanation, along 
the lines of the freeway metaphor, will now be presented. First, simplicity and 
efficient convergence to the truth must be defined with mathematical rigor and 
then a proper proof must be provided that Ockham's razor is the most efficient 
possible strategy for converging to the truth. 

81 am indebted to  Richard Scheines for suggesting this example. 
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6 INFERENCE OF THEORETICAL STRUCTURE 

In light of the preceding examples, say that an empirical effect is experience that 
(1) may take arbitrarily long to  appear due to its subtlety or difficulty to produce 
and that (2) never disappears once it has been seen. Furthermore, (3) at most 
finitely many effects appear for eternity and (4) the correct theoretical structure 
is uniquely determined by the (finite) set of effects one encounters for eternity. In 
light of (4), one may as well understand the problem of finding the true theory as 
a matter of inferring which finite set of effects (corresponding to some structure 
or other) one will encounter for eternity. 

Accordingly, let E be a countable set of potential effects satisfying (1-4) which, 
for the time being, will not be analyzed further (a deeper analysis, explaining what 
effects are, is provided below). Let R denote the set of all finite subsets of E. It 
may happen that one knows a priori that some theoretical structures are impos- 
sible (e.g., not every finite set of statistical dependencies corresponds to a causal 
graph). Let r C R be the set of possible sets of effects compatible with background 
knowledge. An empirical world w is an infinite sequence of mutually disjoint, finite 
subsets of E that converges to 0, where the finite set w(i) corresponds to the set 
of as-yet unobserved effects encountered for the first time at stage i of inquiry. Let 
W denote the set of all such worlds. If no new effects are encountered at i, then 
w(i) is empty. Let wlk = (wo, . . . , w ~ - ~ ) ,  the finite initial segment of w of length 
k. The finite set of all effects presented by w (or by finite sequence e = wlk) is 
given by: 

00 k-1 

S w = U w ( i ) ;  S,= U w ( i ) .  
i=O i=O 

For each w E W define the modulus of w to be the first moment from which no 
more new effects appear: 

p(w) = the least k such that Sw = SwIk.  

The background restriction ?? C R on sets of effects can be viewed as a material 
restriction on empirical worlds as follows: 

Recall that each theoretical structure T corresponds uniquely to some finite set 
S of effects. Let theoretical structure Ts corresponding to finite set S C E be 
identified with the set of all worlds in which Ts is correct - namely, the set of all 
worlds that present exactly S: 

Ts = {WE W :  Sw = S). 

The set: 
nr = { T ~  : s E r) 
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partitions W into mutually exclusive and exhaustive alternative propositions called 
potential answers and will be referred to as the question posed by the problem of 
inferring theoretical structures. Then Tsw is the unique answer in JIr that contains 
(is true of) w. Finally, the theoretical structure inference problem with possible 
structures I? is represented by the ordered pair: 

where Ilr is the empirical question and K r  is the empirical background presuppo- 
sition. 

Every concept and proposition that follows is relative to I? so, to eliminate some 
symbolic clutter, think of I? as a "global variable" held fixed in the background, 
to be referred to as clarity demands. 

7 EMPIRICAL STRATEGIES AND CONVERGENT SOLUTIONS 

What makes science unavoidably fallible is that one does not get to see the entire 
empirical world w all a t  once; rather, one sees incrementally longer, finite, initial 
segments of w as time passes. The set of all possible finite sequences the scientist 
might see as time passes is given by: 

Fr = { w l i :  w E Kr and i E N). 

When e is a finite, initial segment of e' (i.e., there exists i such that e = e'li), say 
that e 5 e'. When e is a sub-sequence but not necessarily an initial segment of e', 
then abuse notation by writing e C e'. Let e * e' denote sequence concatenation, 
where it is always understood that e is finite and that e' may 'be finite or infinite. 
Finally (in the proofs in the Appendix), if x is some generic set-theoretic object, 
let xW denote the infinite sequence in which only x occurs. 

An empirical strategy M for problem Pr is a mapping of type: 

In other words, M maps each finite sequence e E Fr either to an answer Ts E II or 
to '?', indicating refusal to choose an answer. Then in world w E Kr ,  M produces 
the unending sequence of outputs: 

where the square brackets are a reminder that M does not get to see w "all at 
once". 

After seeing finite input sequence e, background presupposition Kr entails that 
one must live in a world w E Kr that extends e, so let: 

91n a more realistic setup, M could output disjunctions of answers in IIr or degrees of belief 
distributed over IIr. The ideas that follow extend to both situations. 
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denote the set of all such extensions. Then one may resrict IIr to the answers 
compatible with e as follows: 

Say that M solves Pr in the limit given e if and only if for each w E Krle, 

lim M (w ti) = Tsw , 
i--roo 

in which case, say that M is a convergent solution to Pr given e. A convergent 
solution to Pr is just a convergent solution given the empty sequence (). 

One obvious, convergent solution to Pn (i.e., no finite set of effects is ruled out 
a priori) is just: 

M(e) = Ts,, 

for if w E K r ,  new effects stop appearing, eventually - say by stage n - so for 
all m > n, M(w1m) = TSw,, = Tw. But there are infinitely many alternative, 
convergent solutions a s  well - each finite variant of the obvious, convergent solu- 
tion is a convergent solution - and it is not trivial to say how and in what sense 
the obvious strategy helps one to  find the truth better than these do. That is the 
question answered by the following argument. 

8 EMPIRICAL COMPLEXITY DEFINED IN TERMS OF EFFECTS 

If r = R, as in the polynomial structure problem, then an obvious definition of 
the empirical complexity of world w given e is 

the number of new effects presented by w after the end of e (cf. [Kelly, 20071). 
When r c R, as in the causal inference problem (some finite sets of partial cor- 
relations correspond to no causal graph), a slightly more general approach is re- 
quired.1° The basic idea is that effects, relative to a problem, correspond to 
successive opportunities for nature to force the scientist to switch from one answer 
to another. Restrict r to those sets of effects compatible with e: 

This set includes all the possible theoretical structures that might serve as potential 
interpretations of what has been presented by e. Say that a path in r le  is a finite, 
non-repetitive, ascending sequence of elements of rle. If S, St E rle, let .rre(S, Sf)  
denote the set of all paths in .rre that start with S and terminate with St .  Then 
re(*, St)  denotes all paths in r le  that terminate with S' and re(S, *) denotes all 

~ O E . ~ . ,  suppose that r = (0, {a, b ) ) .  Then seeing a implies that one will see b, so a and b are 
not independent effects. They are more like correlated aspects of one effect, so they should not 
be counted separately. 
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paths in r l e  that start with S .  So re(*,  S )  represents all the possible paths nature 
might have taken to S from some arbitrary starting point in rle. Then for e E Fr, 
w E Krle, and P K r ,  define empirical complexity as follows: 

Then since (S) E .ire(*, S )  if S E r l e  and lengths are discrete, it is immediate 
that: 

PROPOSITION 1 (Empirical complexity is non-negative). If w E Krle, P E lIle, 
then c(w, e), c(P, e )  assume values in the natural numbers. 

Hence, answers with complexity zero are simplest. Define: 

(rle),i, = {S E I'le : for all S' E rle,S1 @ S), 

and say that S is minimally compatible with e if and only if S E (Fle),i,. 

PROPOSITION 2 (Characterization of zero complexity). Let w E Krle and e E 
Fr and Ts E IIr le. Then: 

I .  c(w, e) = 0 if and only if Sw E (I'le)min; 

2. c(Ts, e) = 0 if and only if S E (rle)min. 

Maximum simplicity is minimum complexity. Borrowing a standard re-scaling 
trick from information theory, one can convert complexity degrees to simplicity 
degrees in the unit interval as follows: 

s(P,  e) = exp(-c(P, e)). 

Unconditional complexity and simplicity are definable as: 

9 OCKHAM7S RAZOR 

The Oclcham answer given e, if it exists, is the unique answer T E nr le such that 
c(T, e) is minimal over all alternative theories T' E lIrle. In light of Proposition 
1, the Ockham answer is the unique answer in T E lIrle such that c(T,e) = 0. 
Empirical strategy M satzjies Oclcham's razor (or is Ockham, for short) at e iff 

M(e) is Ockham given e or M(e) = '?'.ll 

"If M is allowed t o  output disjunctions of answers in IIr, then Ockham's razor requires that 
U{TS : S E (rlelmin) E M ( e ) .  
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Furthermore, M is Ockham from e onward iff M is Ockham at  each e' extending 
e; and M is Ockham if M is Ockham at each e E Fr. 

When S is in r l e  and S is a subset of each R E r le ,  say that S is the minimum 
in r (e .  The Ockham answer, if it exists, can be characterized both in terms of 
uniquely minimal compatibility and in terms of being minimum. 

PROPOSITION 3 (Ockham answer characterization). Let e E Fr and Ts IIrle. 
Then the following statements are equivalent: 

1. Ts is  Ockham given e; 

2. (rle)min = {S); 

3. S is the minimum i n  r le .  

10 STALWARTNESS AND EVENTUAL INORMATIVENESS 

Ockham's razor does not constrain suspension of judgment in any way, but it 
would be odd to adopt the Ockham answer T at e and then to  drop T later, even 
though T is still the Ockham answer - further effect-free experience would only 
seem to "confirm" the truth of T.  Accordingly, let e E Fr and let e * S denote the 
extended, finite input sequence along which finite S E is reported right after 
the end of e. Say that strategy M is stalwart at e * S if and only if for each answer 
T E lJr, if M ( e )  = T and M ( e  * S) # T then T is not the Ockham answer at e * S 
(i.e., an answer is dropped only if it  is not the Ockham answer when it is dropped). 
As with the Ockham property, itself, one may speak of M being stalwart from e 
onward or as just being stalwart, which means that M is stalwart at each e. 

Similarly, it would be too skeptical never to conclude that no more effects are 
forthcoming, no matter how much effect-free experience has been collected. Ac- 
cordingly, say that a strategy is eventually informative from e onward if there is no 
world w E Krle on which M converges to '?'. Then M is eventually informative 
if M is eventually informative from the empty input sequence onward. 

Finally, a normal Ockham strategy from e onward is an eventually informative, 
stalwart, Ockham strategy from e onward and a normal Ockham strategy is nor- 
mally Ockham from the empty sequence onward. The normal Ockham strategies 
are intuitively quite plausible. Such a strategy M may wait for a while but even- 
tually chooses the Ockham answer and retains it until it is no longer Ockham. 
Furthermore, after each new effect is encountered, there is some finite amount of 
effect-free experience that lulls M to plump for the simplest theory once again. 
That is pretty much what people and animals do, and also describes, approxi- 
mately, the behavior of a simplicity-biased Bayesian agent who selects only the 
theory whose posterior probability is above some high threshold. But plausibility 
and rhetoric are not the points at issue - finding the true theory is - so it is more 
pertinent to observe that normally Ockham strategies are, at least, guaranteed to 
converge to the truth. 
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PROPOSITION 4 (Normal Ockham Convergence). If M is normally Oclcham for 
Pr from e onward, then M is a solution to Pr from e onward. 

Furthermore, eventual informativeness is a necessary condition for being a so- 
lution, for a strategy that is not eventually informative evidently fails to converge 
to any theory in some world w: 

PROPOSITION 5 (Convergence implies eventual informativeness). If M solves 
Pr from e onward, then M is eventually informative from e onward. 

So there is always a motive to be eventually informative, if one wishes to find 
the truth a t  all. The same is not clear, yet, for Ockham's razor and stalwartness, 
since there are infinitely many eventually informative, non-Ockham solutions. For 
example, an alternative solution favors some set S of size fifty until the anticipated 
fifty effects fail to appear for ten thousand stages, after which it concedes defeat 
and reverts back to Ockham's razor. So it remains to determine how, if at all, 
Ockham strategies are better at finding the true theory than these variants are. 

11 EPISTEMIC COSTS OF CONVERGENCE 

As in the parable of the traveler, the aim is to show that normal Ockham strategies 
are the properly most eficient strategies for finding the truth, where efficiency is 
a matter of minimizing epistemic costs en route to convergence to the truth. 

(1) Since the aim is to find the truth, an evident cost of inquiry is the number 
of times one selects a false answer prior to convergence. 

(2) Nobody likes it when science changes its tune, but the intrinsic fallibility 
of theory choice makes some reversals of course unavoidable. Therefore, the best 
one can demand of an optimally truth-conducive strategy for theory choice is that 
it not reverse course more than necessary. A method retracts its previous answer 
whenever its current answer fails to entail its previous answer.12 In the narrow 
context of methods that produce answers in II U {'?') (where '?' is interpreted 
as the most uninformative answer W), strategy M retracts at e * S if and only if 
M ( e )  # '?' and M (e * S )  # M (e) .  

Retractions have been studied as an objective feature of the complexity of prob- 
lems, both computational and empirical. H. Putnam [I9651 noticed that the con- 
cept of computability can be extended by allowing Turing machines to "take back" 
their answers some fixed number of times and called properties having such gen- 
eralized decision procedures n-trial predicates. In a similar spirit, computational 
learning theorists speak of mind-changes and have studied bounds on the number 
of mind-changes required to find the truth in various empirical questions [Jain et 

121n belief revision theory, a belief change that adds content is an expansion, a belief change 
that  removes content is a contraction and a belief change that does any of the above is a revision 
[Gkrdenfors, 19881. In that terminology, a retraction is any revision in which content is lost and, 
hence, may be expressed a s  a non-trivial contraction followed by an expansion. In spite of this 
connection, belief revision theorists have not begun t o  examine the  normative consequences of 
minimizing contractions (or of finding the truth). 
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al., 19991. The body of results obtained makes it clear that mind-changes are an 
invariant feature both of empirical and of purely formal inquiry. The idea here is 
to shift the focus from problems back to methods. 

(3) A third cost of inquiry is elapsed time to each retraction. Theories are used 
to derive conclusions that tend to accumulate through time. When the theory 
is retracted, all of these subsidiary conclusions are called into question with it. 
The accompanying angst is not merely practical but cognitive and theoretical, 
and it  should be minimized by getting retractions over with as soon as possible. 
Also, aside from such subsidiary conclusions, there is a tragic aspect of unwittingly 
"living a lie" when one is destined to retract in the future, even if the retracted 
theory happens to be true. The insouciance is all the worse if one is destined to 
retract many times. It would be better to relieve the hubris as soon as possible.13 

Taken together, errors, retractions, and retraction times paint a fairly represen- 
tative picture of what might be termed the quality or directness of a strategy's 
connection with or route to  the truth. If e is an input stream, let the cumulative 
cost or loss of strategy M on e E Kr be given by the pair X(M, w) = (b, r ) ,  where 
b is the total number of false answers produced by M along e and r is the sequence 
of times at which the successive retractions performed by M along e occur. The 
length of r (which is finite for convergent strategies) is, then, the total number of 
retractions performed. 

It would be a shame if Ockham's razor were to rest upon some idiosyncratic, 
subjective weighting of errors, retractions, and retraction times but, happily, the 
proposed argument for Ockham's razor rests only on comparisons that agree in all 
dimensions (i.e. on Pareto comparisons). First, consider retractions and retraction 
times. If a, T are finite, ascending sequences of natural numbers, define:14 

a 5 T iff there exists a subsequence y of T such that 

for each i 5 length(a), a( i)  < y ( 2 ) .  

For example, (1,3,7) 5 (2,3,4,8) in virtue of sub-sequence (2,3,8). Then if (b, a )  
and (c, r )  are both cumulative costs, define: 

( b ,  a )  5 ( c  T) iff b 5 c and a 5 r ;  

(b, a )  r (c, r )  iff (b, a )  < (c, r )  and (c, T) 5 (b, a ) ;  

(b, a)  < (c, 7) iff (b, a )  l (c, 7) and (c, r )  (b, a).  

12 WORST-CASE COST BOUNDS 

Non-Ockham strategies do not necessarily incur greater costs prior to convergence: 
nature could be so kind as to present the extra effects posited by a non-Ockham 
strategy immediately, in which case it would beat all Ockham competitors in 

13Elimination of hubris as soon as possible is a Platonic theme, arising, for example, in the 
Meno. 

14Context will distinguish whether < denotes this relation or the  initial segment relation. 
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the race to the truth. The same point is familiar in the theory of computational 
complexity: if an inefficient algorithm is optimized for speed on a single input, even 
the best algorithms will fail to dominate it in terms of computational resources 
expended before the answer is found. For that reason, algorithmic efficiency is 
ordinarily understood to be a matter of optimizing worst-case cost [Garey and 
Johnson, 19791. Adoption of a similar approach to empirical strategies and to 
Ockham's razor requires some careful attention to worst-case bounds on total 
costs of inquiry. Let w denote the first infinite ordinal number. A potential cost 
bound is a pair (b, a ) ,  where b 5 w and a is a finite or infinite, non-descending 
sequence of entries 1 w in which no finite entry occurs more than once. If (b, a )  
is a cost vector and (c, r )  is a cost bound, then (b, a) 5 ( c , ~ )  can be defined just 
as for cost vectors, themselves. Cost bounds (c, r ) ,  (d, y) may now be compared 
as follows: 

(c, 7) I (d, y) iff for each cost vector (b, a ) ,  if (b, a )  5 (c, T )  then (b, a )  I (d, 7); 

(c, 7) = (d, 7) iff (c, 7) 5 (d, 7) and (d, 7) 5 (c, 7); 

(c7 7) < (d, 7) iff (c, 7) 1 (dl 7 )  and (d ,  7) $ (c, 7). 

Thus, for example, (4, (2)) < (w, (2, w)) < (w, (0,1,2,.  . .)) = (w, (w, w, w, . . .)). 
Now, each set C of cost vectors has a unique (up to equivalence) least upper 
bound sup(C) among the potential upper bounds [Kelly, 20071. Suppose that 
finite input sequence e has already been seen. Then one knows that possibilities 
incompatible with e cannot happen, so define the worst-case cost of M at e as: 

Xe(M) = sup X(M, w). 
w E K r l e  

13 RELATIVE EFFICIENCY 

The final hurdle in arguing for the efficiency of Ockham7s razor is the triviality of 
worst-case cost bounds: for each e and for each convergent solution M to  Pn, the 
worst-case cost bound achieved by M at e is just: 

For let m be an arbitrary, natural number and let {ao, . . .a,, . . .) be an arbitrary 
enumeration of the set E of possible effects. Nature can present Q) until, on pain of 
not converging to the truth, M produces answer T0 at least m times consecutively. 
Then Nature can present {ao) followed by repetitions of 0 until, on pain of not 
converging to the truth, M produces T{,,} at least m times, consecutively, etc. 
Hence, normal Ockham strategies are not distinguished from alternative, conver- 
gent solutions in terms of worst-case efficiency. 

Again, a similar difficulty is familiar in the assessment of computer algorithms: 
typically, the number of steps required by an algorithm is not finitely bounded 
across all possible inputs since larger inputs require more steps of computation. 
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The problem disappears if worst-case bounds are taken over problem instances 
(inputs) of a given size, rather than over all possible problem instances, for there 
are at most finitely many such inputs, so the worst-case performance of an algo- 
rithm over inputs of a given size is guaranteed to exist [Garey and Johnson, 19791. 
Then one compares the worst-case cost bounds over each instance size as instance 
size increases. In Pn,  every problem instance (input stream) is of infinite length, 
so length is no longer a useful notion of instance size. But empirical complex- 
i ty  c(w, e), defined above, is such a notion. Furthermore, each normal Ockham 
strategy is a convergent solution that retracts at most n times over instances of 
empirical complexity n, so non-trivial cost bounds are achievable. Accordingly, 
define the nth empirical complexity class Ce(n) of worlds in Krle  as: 

Ce(n) = {W E Krle  : c(w, e) = n). 

Then one may define the worst-case cost of strategy M given e over Ce(n) as 
follows: 

Xe(M,n) = sup X(M,w). 
w€C,(n)  

Now it is possible to  compare strategies in terms of their worst-case costs over 
problem instances of various sizes. 

M 5, M' iff (Vn) Xe(M, n) 5 Xe(M1, n); 

M < , M 1  iff M < , M 1 a n d ~ ' $ , M ;  

M 4, Mi iff (Vn) if Ce(n) # 0 then X,(M, n) < Xe(Mi, n). 

When M 5, M', say that M is as efficient as M' given e. If M <, Mi  say that 
M is (weakly) more e f ic ient  than Mi given e. Finally, when M 4, Mi, say that 
M is strongly more efficient than Mi. 

The concept "more efficient than" is a hybrid, lying between dominance (do- 
ing as well in each world and better in some world) and worst-case (minimax) 
reasoning (doing better in the worst case overall). The hybrid character of "more 
efficient than" is just what is required to expose the superiority of normal Ockham 
strategies: dominance is too strict because non-Ockham strategies can get lucky 
and the worst-case overall is too loose because even normal Ockham strategies 
guarantee no nontrivial, worst-case bound. 

14 OPTIMALITY 

Suppose that a scientist facing problem Pr has been using strategy M for a while 
and that the final datum in finite input sequence e = (x l , .  . . , xn) has just been 
presented. Let the data e- observed just prior to the end of e be defined by: 
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At e ,  past actions along e- directed by the scientist's strategy M can no longer be 
"taken back" a t  e. Hence, an alternative strategy M' cannot possibly be adopted 
and implemented at e unless its outputs agree with those of M all along e- ,  in 
which case write M =re- M'. Define: 

M is optimal at e iff M is a solution at e and for each strategy M f  x,- M 
that is a solution at e, M 5, M'. 

It is not enough for strategy M to be optimal at e. If the user of M is not to have 
reason to dispense with M later, it had best be the case that M is always optimal: 

M is always optimal iff for each e E Fr, M is optimal at e. 

When e is empty, say simply that M is optimal. 

15 UNIQUE OPTIMALITY OF NORMAL OCKHAM STRATEGIES 

Here is the promised, non-circular argument, based entirely on truth-finding ef- 
ficiency, for always following Ockham's razor. The results are relative to a fixed 
problem 7+. 

THEOREM 6 (Optimality). If M is a normal Ockham strategy, then M is  always 
an optimal solution. 

But that is not enough. One trouble with much of the standard literature on 
Ockham's razor is that it  shows only that Ockham's razor is sufficient for, say, 
convergence to the truth, but what is required is an argument that Ockham's 
razor is necessary for optimal truth-conduciveness. Here is such an argument: 

THEOREM 7 (Unique optimality). Let e E Fr. If M' is a convergent solution 
that violates Ockham's razor for the first time at e,  then every strategy M x,- M' 
that is always normally Ockham is a more efficient solution than M' at e; 

The proof (cf. the Appendix) is closely analogous to the parable of the traveler 
discussed above, with extra cases added to allow for the possibility of branching 
freeway ramps. The two theorems jointly imply the following corollary, which 
summarizes the proposed argument for Ockham's razor. 

COROLLARY 8 (Ockham efficiency characterization). The following statements 
are equivalent: 

1. M is always a normal, Ockham strategy; 

2. M is always an optimal solution; 

3. no solution M f  is ever a more efficient solution than M .  

In other words, the normally Ockham methods are coextensive with the always 
efficient strategies and with the strategies such that no alternative strategy is ever 
more efficient .15 

151t is a further question whether it is always better t o  follow Ockham's razor even after 
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16 A GENERAL DEFINITION OF EMPIRICAL COMPLEXITY 

In the preceding development, empirical effects were stipulated, by appeal to in- 
tuition, for each of the examples considered and the effects appealed to were quite 
different from case to case. Empirical effects will now be defined in a general way 
that explains the apparently ad hoc choices in the examples.16 The idea is to  
locate effects and, hence, empirical complexity, in the power of nature to force an 
arbitrary, convergent method to change its answer to the problem to be solved. 
Thus, empirical complexity is a structural, semantic feature of the problem to be 
solved, rather than a matter of syntactic or computational brevity. As such, it is 
invariant under grue-like translations. 

An empirical problem is a pair P = (K,II) where K is now an arbitrary set 
of infinite sequences of inputs drawn from some arbitrary set I and II is an ar- 
bitrary partition of K. The elements of I are just inputs (e.g., boolean bits in a 
binary coding scheme for meter readings or what-not). Answers are just arbitrary, 
mutually exclusive and exhaustive propositions over K. This is a very general con- 
ception of empirical problems. An empirical strategy takes finite, initial segments 
of elements of K as inputs and outputs potential answers in II U {'?') in response. 
Convergence and many other concepts like M[w], Fle, Kle extend to this more 
general setting in an obvious way. It remains to  reconstruct I? and the concepts 
that presuppose it. 

Let some problem P = (K, 11) be understood to be fixed in the background. An 
answer pattern is a finite sequence of elements of II without immediate repetitions 
(non-immediate repetitions are allowed). Pattern s is forcible by nature given e 
of length k if and only if for each convergent solution M,  there exists w E Kle 
such that from stage k onward, M produces a sequence of answers of which s is 
a sub-sequence. In other words, no convergent solution can avoid producing the 
successive conclusions in s in the worst case, given e. Let A, denote the set of 
all patterns forcible by nature given e. Restrict attention to problems P such 
that: 

AXIOM 9 (Forcible path convergence). for each w E K ,  limi_tm Awl, exists, in 
the sense that the sequence {Awli : i 1 0) stabilizes to a fixed set eventually. 

Define: 

A, = lim A,,,; 
i-+m 

r l e  = {A, : w E Kle); 

violating it. The answer is negative: let r = {{a), {b), {b,c)), let M ( ( 0 ) )  = M1((0) )  = T{b1, 
and let M ( ( 0 , a ) )  = '?' whereas M1((O, 0 ) )  = T{b). Then M  uses one extra retraction in reaching 
theory T{b,=) after seeing e = ( @ , P I ) ,  so Xe(M, 2) i? Xe(M1, 2). 

There is still something t o  say in favor of Ockham, however. Method M  is strongly Ockham 
a t  e if M  never favors an answer Ts such that some alternative S 1  compatible with e has a 
longer path through rle. Then one can argue, along the same lines, that a t  each strong Ockham 
violation and a t  each violation of stalwartness by M ,  some alternative, convergent M' is more 
efficient. 

16Preliminary versions of the following ideas can be found in [Kelly, 20071. 



Ch09-N51726.fin Page 348 Tuesday, August 26,2008 4:49 PM @ ~M+ 

348 Kevin T. Kelly 

Elements of r l e  serve the same purpose as before - they are the possible, perma- 
nent stopping places for nature given e because each element A, of r is converged 
to in world w and world w is compatible with e. Call the elements of I? empirical 
problem states. Define epistemic accessibility among states in the following way: 

X 5 Y if and only if for each e E F such that A, = X, there exists e' E F 
such that e1 2 e and A,, = Y. 

Let r,(X, Y) denote the set of all <-paths between two states in I' with respect 
to order 1. Finally, define c(w, e) and c(P, e) in terms of these paths, as before, 
with A, in place of S,. Let the new, more general concepts so defined be marked 
with a prime, as in cl(w, e), to distinguish them from the notions defined in terms 
of stipulated effects.17 

The general concept of empirical complexity just defined agrees with the effect- 
based definition. 

PROPOSITION 10 (Recovery). Let (I", 5') be constructed from problem (Kr, IIr) 
in the manner just described. Then for each e E F, the mapping 4(Sw) = A, is 
well-defined and witnesses: 

(rle, C_) is order-isomorphic to (rile, 5'). 
Thus, for each w E K: 

cl(w,e) = c(w, e); 
c ( P e )  = c(P,e). 

Something far more interesting is also true. Let (K,II) be any one of the 
examples considered above (e.g., the conservation law problem) prior to  being 
represented in the form (Kr,  IIr). The problem (K, II) does not wear its empirical 
effects "on its sleeve" - the reactions may be presented in some obscure or even 
grue-like code that is highly misleading. But it is still the case that applying the 
preceding construction directly to (K,II) results in (I?', 5') order-isomorphic to 
(I?, c) and, hence, to the same empirical complexity concept c(w, e). Depending 
on the structure of the problem P, empirical complexity reflects extra parameters, 
extra conserved quantities, extra causes, etc., regardless of how gerrymandered the 
data-gathering process happens to be.18 Therefore, the set I? assumed in each case 
reflects more than mere notation, convention, or whim - it is an intrinsic, struc- 
tural feature of the original problem that survives every sort of re-description that 
preserves the meanings of the background presupposition K and of the question II. 

1 7 ~ h e  structure (r'le, 5') can be viewed as a model of an epistemic logic, in which elements 
of r'le are worlds and increasing information e "chops down" the set of worlds, in accordance 
with what is known as dynamic epistemic logic [van Benthem, 20061. What is new is a moti- 
vated constraint on accessibility and the idea that empirical complexity is a matter of maximum 
accessibility path length into a world. 

lsContrast this result with the preceding discussion of algorithmic complexity, which is relative 
both to  the choice of a computer language and t o  the encoding of observations. 
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17 A WORD ON STOCHASTIC APPLICATIONS 

In real curve-fitting and causal discovery problems, the data are not merely inex- 
act, but random. The above treatment of these problems in terms of collapsing 
open intervals around the true observations is intended only as an indication of 
how a fully statistical story might go (think of the intervals as idealizations of 
high probability quantiles). This section sketches some promising pieces of a fully 
statistical version of the theory. 

A world is an objective probability distribution of interest (e.g., the distribution 
induced by a polynomial curve with normally distributed measurement error). A 
question is a partition of worlds. A method maps samples of arbitrary size to  
answers to the question. A method is consistent just in case the probability that the 
method produces the true answer converges to unity as sample size increases. The 
retraction in chance of answer T by method M at sample size n + 1 in distribution 
p is definable as the drop in chance that M outputs T from sample size n to sample 
size n + 1: 

pn(M = T) - p n f l ( ~  = T). 

The total retractions in chance in p are the sums of the retractions in chance for 
all T E ll, and for all sample sizes n. 

A sequence of answers is forcible in chance if and only if nature can force an 
arbitrary, consistent method to produce the first answer in the sequence with arbi- 
trarily high chance followed by the second answer in the sequence with arbitrarily 
high chance, etc. For a simplistic illustration of how this works (a similar argument 
applies in causal discovery), let K consist of independent, bivariate normal means 
of fixed, known variance and let the possible answers correspond to the number of 
non-zero components of the true mean vector p = ( p ~ ,  py),  SO answer Ti is the 
set of all p E K such that exactly i components of p are non-zero. Let M be a 
consistent method. Let po E To and let E > 0 be as small as desired. Since M is 
consistent, there is a sample size no such that 

Since the chance of a fixed measurable event is continuous in p, there exists pl E Tl 
such that 

p y ( M = T o ) > l - ~ .  

Since M is consistent, there exists sample size nl > no such that 

Again, by continuity, there exists p2 E T2 such that: 

pYO(M = To) > 1 - E ;  

p;'(M=Tl) > 1-6.  
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Again, by consistency, there exists nz > n l  such that: 

Hence, the sequence of answers (To,Tl,T,) is forcible by nature in chance. The 
only premise required for this forcing argument is convergence to the truth, so a 
Bayesian's degree of belief in each successive answer can also be forced arbitrarily 
high. A Bayesian's retraction in chance of T at n + 1 in p can be measured in 
terms of the drop in his expected degree of belief in T at sample size n + 1 in p.19 

Simplicity can be defined in terms of statistically forcible sequences of answers, 
just as in the deterministic case. It remains to recover a suitable analogue of 
Corollary 8 in the setting just described. 

18 OCKHAM, FALLIBILITY, AND "INFORMATION" 

Like it or not, we do infer theoretical forms, they are subject to the problem of 
induction, and we may have to take them back. Indeed, there is no bound on the 
number of times science might have to change its tune as new layers of complexity 
are successively revealed in nature. Ockham's razor merely keeps science on the 
straightest path to the truth, crooked as it may be. For millennia, fallibility has 
been thought to undermine the justification of science, resulting in the usual, 
circular, metaphysical, or skeptically evasive justifications of Ockham's razor. The 
proposed account reverses the traditional reasoning - Ockham's razor is justified 
not because it points straight at the truth, but because its path to the truth, 
albeit crooked, is uniquely straightest. The Ockham path is straightest because its 
unavoidable kinks are due to the intrinsic fallibility of theory choice. Therefore, the 
ineluctable fallibility of theory choice justifies, rather than undermines, Ockham's 
razor. That is why the proposed account is not circular, metaphysical, or evasive 
of the connection between method and true theoretical structure. 

Ockham's razor is, nonetheless, so firmly anchored in our animal spirits that it 
feels as if, somehow, simplicity informs us about the true theory in a way that the 
data alone do not, just as a compass needle augments the information provided 
by one's native sense of direction. Then there must be some benevolent cosmic 
cause behind the correlation of simplicity and truth - a mysterious, undetected 
agency that operates across evolutionary time and across domains from subatomic 
particles to cell metabolism to social policy - the irony of defending Ockham's 
razor with such hidden, metaphysical fancies notwithstanding [Koons, 20001. 

Therein lies a concern about the association of information-theoretic terminol- 
ogy with Ockham's razor, as in the MDL approache. When information theory is 
applied to a telephone line, as originally intended, it really has something to do 
with informative signals from a source. If one wishes to minimize expected mes- 
sage length to maximize the line's capacity, it makes sense to adopt shorter codes 

lgBayesians are suboptimal: moving from ignorance (.5/.5) t o  knowledge (.99/.01) implies a 
retraction of nearly one half that could have been avoided by modeling ignorance a s  (0/0), as 
Schafer [I9761 proposed. 
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for more frequently sent words. But applications of information theory to theory 
choice are not about sending information over a line. They are a formal recipe 
either for constructing short codes for plausible explanations or (contrariwise) for 
assigning high plausibility to short explanations. Either way, the ultimate con- 
nection between simplicity and truth is stipulated rather than explanatory. But 
since the stipulated connection is formulated in the language of "information", it 
is all too readily confused, in the popular mind, with a deep theoretical revelation 
that simplicity does provide a magical communication channel to the truth that 
amplifies the only real information available - the data. Better not to mention 
"information" at all than to kindle that perennial wish. 
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APPENDIX 

A PROOFS AND LEMMAS 

Proof of Proposition 1. Immediate. w 

Proof of Proposition 2. For ( I ) ,  suppose that w E Kr  and that c(w, e) = 
0. Then each p E re(*, S,) has unit length and terminates with S,, so since 
S, E rle, re(*,  S,) = {(S,)). Hence, S, E (rle),i,. Conversely, suppose that 
Sw E (rle),in. Then for each R E rle, R < Sw. So re(*, S,) = {(S,)), so 
C(W, e) = 0. 

For (2), suppose that Ts E n r l e  and that c(Ts, e) = 0. Then there exists w E Ts 
such that c(w, e) = 0. So by (I), S = S, E (I'le),in. Conversely, suppose that 
S E (rle),i,. Let w = e * ( S  \ Se) * gW. Then w E Ts and S, = S E (I'le)min. SO 
by part (I),  c(w, e) = 0. So c(Ts, e) = 0. W 

Proof of Proposition 3. The equivalence (1) ++ (2) is by part 2 of Proposition 
2. Equivalence (2) u (3) is an elementary property of C over a collection of finite 
sets. ¤ 

Proof of Proposition 4. Suppose that w E Krle. Let k 2 p(w) so that 
S, = Swlk Then (I'l(wlk)),i, = {S,), so by Proposition 3, Tsw is Ockham given 
e. Since M is eventually informative from e onward, M produces some answer 
from ITr after e in w. Since M is Ockham from e onward, the answer M chooses 
is Ts,. Since M is stalwart from e onward, M never drops Tsw thereafter. So 
limi,, M(wli) = Tsw . ¤ 

Proof of Proposition 5. Immediate. H 

Proof of Theorem 6. Let M be a strategy that is always normally Ockham. 
Hence, M is a solution, by Proposition 4. Let e E Fr have length k. Let M' be an 
arbitrary solution given e such that MI x,- M. Let d denote the maximum, over 
all w E Ce(0), of the number of errors committed by both M and M' along e- 
and let the retraction times for M, M' along e- be ( r l , .  . . , r,). Consider the case 
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in which M retracts at e. Since M is always stalwart and Ockham, it follows that 
Ts = M(e-) is Ockham at e- but not at e, so by Proposition 3, (rle-)min = {S) 
and (rle)min # {S). So by Lemma 19, S 6 (rle)min. 

Suppose that w E Ce(0). By parts (1) and (2) of Lemma 12, M never retracts or 
commits an error from stage k + 1 onward in w. Hence: 

Since M retracts at e, there exists S E E such that 

Since e E Fr, Lemma 16 implies that there exists w' E Ce(0) such that S,J # S. 
Since M'(e-) = Ts and M' is a solution, it follows that M' retracts after e- along 
w'. So since M' commits at least d errors in some world in Co(e) (they do not 
have to be committed in w' to affect the worst-case lower bound): 

Now suppose that w E Ce(n + 1). By part 1 of Lemma 12, M retracts at most 
n + 1 times in w from lc + 1 onward, so allowing for the extra retraction at k: 

Suppose that there exists w E C,(n + 1). By Lemma 11, there exists path 
(So,. . . , Sntl) and w' E Ce(n) such that (1) So E (l?le),i, and (2) Swt = Sw 
and for each i < n + 1, M' produces Tsi at least b times in immediate succes- 
sion in w' after the end of e. It  was shown above that S 6 (l?le),i,. So, since 
So E (l?le),in, it follows that So # S.  So M' retracts from Ts to Ts, no sooner 
than stage k. By incrementing b,  w can be chosen so that the retractions of M' 
between answers Ts,, . . . , Ts,+, along w' occur arbitrarily late and M' produces 
arbitrarily many errors along w', so: 

For the case in which M does not retract at e, simply erase the k's from the bounds 
in the preceding argument. 

Proof of Theorem 7. Let e E be of length k. Let M' be given and let M xe M' 
be a strategy that is normally Ockham from e' onward. Hence, M is a solution 
given e', by Proposition 4. Let b 2 0. Let d denote the maximum, over w E Ce(0) 
of the number of errors committed by both M and M' along e- and let the re- 
traction times for M, M' along e- be (rl,  . . . , rm) .  
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Suppose that solution M' violates Ockham's razor at e E Fr of length k but not 
at any proper, initial segment of e. So Ts = M1(e) is not Ockham at e. By 
Proposition 3, (rle),in # {S). Thus, there exists S' # S such that Sf E (rle),in. 
Let w E Ce(0). Since M is Ockham from e onward, if M(e) = Tsj then Ts1 is 
Ockham at e so, by Proposition 3, (I'le),in = {Sf) and, hence, w E Ts! so M 
commits no error at e in w. So by Lemma 12: 

Let w E Ts1. Then w E Co(e), since Sf E (I'le),in. Since M' is a solution, M' 
converges to Tsf in w, so M' retracts Ts properly later than stage k in w. Since 
M' commits at least d errors in some world in Co(e) (they do not have to be 
committed in w' to affect the worst-case lower bound): 

X ~ ( M ' ,  0) > (d, (TI, . . . , rm, k)) 2 Ae(M70). 

Suppose that there exists w E Ce(n + 1). As in the proof of Proposition 6, 

Next, suppose that M' violates stalwartness at e of length k. Then Ts = M'(e-) = 
M(e-) is Ockham at el so by Proposition 3, (rle),in = {S). Since M is stalwart 
from e onward, M(e) = Ts, so M does not retract at e. Let w E Ce(0). Then, 
by Proposition 2, Sw E (rle),i,, so Sw = S. So M commits no error at e. So by 
Lemma 12: 

Ae(M, n + 1) I (w, (TI,. . . , rm, w, . . . , w))). - 
nC1 

By Lemma 16, there exists w E Ce(0). Since M' retracts at e: 

Suppose that there exists w E Ce(n+ 1). By Lemma 11, there exists ur' E Ce(n+ 1) 
such that Sw, = Sw and in w', M' produces n + 2 distinct blocks of answers in 
Krle after the end of el each block having length at least b. So in w', M' retracts 
at e and at the end of each block prior to the terminal block. By incrementing 
b, w can be chosen so that the retractions occur arbitrarily late and there are 
arbitrarily many errors, so including the assumed retraction at k, 

Xe(Mr, n + 1) 2 (w, (rl,  . . . , rm, k, w, . . . , w)) > Ae(Ml n + 1). - 
n+ 1 
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Proof of Corollary 8. The equivalence (1) =+ (2) is by Proposition 4 and The- 
orem 6 .  Equivalence (2) + (3) is immediate from the definitions. (3) + (1) is by 
Proposition 5 and Theorem 7. 

Proof of Proposition 10. When the problem is (Kr, ITr), the following relations 
hold: 

i. S, = S,, if and only if A, = A,!; 
ii. S, S,) if and only if A, 5 A,#. 

For (i), suppose that S, = S,). Suppose that s = (Tsl,. . . , Tsk) E A,. So 
S1,. . . , S k  are distinct elements of r and for each m, nature can force the suc- 
cessive, distinct answers Ts,, . . . , Tsk from an arbitrary, convergent method M 
starting from wlm. Hence, S,? = S, C S1 c . . . c Sk. So for each m, nature can 
force S1 C . . . C S k  from M starting with w'lm, so s E A,). Thus, A, C A,, . For 
the converse inclusion, reverse the roles of w and w'. For the converse implication, 
suppose that A, = A,,. Suppose that s = (Ts,, . . . , Tsk) E A,. Then for each 
m, nature can force M to produce s wtarting from wlm. Since M is a convergent 
solution, there exists m' 2 n such that M(wlml) = Tsw. Nature can still force M 
to produce Tsw * s starting from wlm'. Hence, (a) for each s E A,, for each m, 
Ts, * s is forcible by nature starting from wlm. By a similar argument, (a) also 
holds as well for w'. Call that statement (a'). Since for each m, nature can force 
(Ts,) given wlm, (Ts,) E A,. Suppose, for reductio, that S, # S,J. Then by 
(a'), (Ts,, , Ts, ) E A,! and by (a), (Tsw, Ts,, , Tsw ) E A, and, hence, is forcible. 
So S, C S,I C S,, so S, = S,I. Contradiction. 

For (ii), suppose that S, 2 S,,. Suppose that s E A,. Then for each m, sequence 
s = (Tsl, . . . , Ts,) is forcible starting with w'lm Let A, = A,. Recall from case 
(i) that (Tsw) E A,, so Tsw is forcible starting with e and, hence, S, S,. Since 
S, S,,, choose e' > e such that S,J = S,!. Since forcibility in Pr depends only 
on presentation of effects, A,! = A,#. Hence, A, 5 A,,. Conversely, suppose that 
S, S,!, so let effect a E S, \S,,. Choose e such that S, = S,, since S, is finite. 
Since forcibility in Pr depends only on presentation of effects, A, = A,. Recall 
from part (i) that ( T s ~ , )  E A,/. But a E S, \ Set = S,,,, so Nature cannot force 
(Ts,,) at arbitrary e' 2 e such that A,, = A,). Hence, A, $ A,, , completing 
the proof of (ii). 

Let e E F. The mapping 4 : r l e  -+ r'le defined by: 

is well-defined, by property (i). To see that 4 is onto, let A, E r'le. Then 
w E Krle, so S, E rle, so 4(Sw) = A,. To see that 4 is injective, let S, # 
S,). Without loss of generality, let a E S, \ S,]. Then (Ts,) E A, \ A,/, so 
4(Sw) = A, # A,, = 4(Sw/). Finally, 4 is order-preserving by (ii), so 4 is the 
required order-isomorphism. It follows immediately that c(w, e) = cl(w, e) and 
c(P, e) = ct(P, e). 
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LEMMA 11 (Lower cost bound for arbitrary solutions). If M is a convergent 
solution given e E Fr and w E Ce(n), and b > 0, then there exists w' E Ce(n) and 
there exists path (So,. . . , Sn) E ne(*, S,)) such that 

3. M produces Ts, at least b times in immediate succession after the end of e 
(if n = 0) or  after the end of ei-1 (if n > 0) in w'; 

Proof. Let e E Fr and w E Ce(n). Then there exists a path p = (So,. . . , Sn) E 
re(*, S,) of length n + 1 whose length is maximal among paths in re(*, S,). 
Property (1) follows from Lemma 13. Let w' = (en * gm). For property (2), 
note that by part 2 of Lemma 14, Sen = S,. By construction, S,! = Sen. Since 
p = (So,. . . , Sn) E re(*,  S,), Sn = S,. So S, = S,I. Property (3) is part 3 of 
Lemma 14. w 
LEMMA 12 (Upper cost bound for normal Ockham strategies). Suppose that e E 
Fr and e E Krle and M is normally Ockham from e onward, where length(e) = k. 
Then for each n 2 0: 

1 .  if c(w, e) 5 n, then M retracts at  most n times in w from stage k + l  onward. 

2. if c(w, e) = 0, then M commits no error in w from stage k onward. 

Proof. For statement (I), suppose that M retracts > n times along w E Krle from 
stage k + 1 onward, say at  stages jo + 1 < . . . < j, + 1, where k 5 jo. Let index 
i range between 0 and n. Then there exists (So,. . . , Sn) such that M(wlji) = Tsi 
and M(w1 ji + 1) # Ts,. Since M is a normal Ockham method, Proposition 3 
implies that 

i. (rl(w1ji)))min = {Si}; 
ii. (rI(wI(ji + 1)))min # {Si}. 

Also, by part 1 of Lemma 20, there exists j > such that (I'l (w 1 j)),;, = {S,). 
Then, by (i) and Lemma 18, So c . . . Sn c S,. So by (ii) and Lemma 
19, S o  c . . . c Sn c S,, so p = (So,. . . , S,, S,) E re(*, S,). Observe that 
length(p) = n + 2. So c(w, e) > n. 
For statement (2), suppose that c(w,e) = 0. Then by part 1 of Proposition 
2, S, E (rle),i,. Let k' L k. By part 2 of Lemma 20, S, E ( r l ( ~ l k ' ) ) ~ ~ ~ .  
So by Proposition 3 and the fact that M is Ockham from wlk onward, either 
M(w1k) = Ts, or M(w1k) = '?', neither of which is an error. W 

LEMMA 13 (Minimal beginning of maximal path). Suppose e E Fr and S E r l e  
and p E re(*,  S) has maximal length in re(*,  S) .  Then p(0) E (I'je),in. 

Proof. Suppose that p(0) $! (rle),i,. Since p E re(*, S), p(0) E rle, so there exists 
S' c p(0) such that S' E rle. Then Sf * p E re(*, S) ,  so p does not have maximal 
length in re (* , S) . 
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LEMMA 14 (Optimal strategy for nature). If M is a convergent solution given 
e E Fr and if w E Ce(n), and p = (So,. . . ,S,) E re(*,Sw) and b > 0, then 
there exists sequence (eo, . . . ,en)  of elements of Frle such that for each i such that 
0 5 i 5 n and for each j such that 0 5 j < n: 

3. M produces Tsi at least b times in immediate succession in ei after the end 
of e (if n = 0) or after the end of ei-1 along w (if n > 0); 

Proof by induction on length(p). Base case: p = (). Then the lemma is trivially 
true, because () 6 IIe(*, S,). Induction: let p = (So, . . . , S,) E II,(*, S,). Let 
e-1 = e and let SP1 = Se. Let R, = Sn \Sen-, . Let en be the least initial segment 
of wn = (en-1 * R, * am) extending en-1 * R, by which M selects theory Ts, at 
least b times without interruption after the end of en-1. There exists such an en, 
since M is a convergent solution and Sw, = S, E rle, so w, E Krle. Properties 
(1-3) are immediate by construction and by the induction hypothesis. For property 
(4), observe that (en *OW) = (en-l * R, *OW) = w,. By the induction hypothesis, 
S,, = Sen = Sen-, U R, = SnP1 U (Sn \ SnP1) = S,. So since (So,. . . , Sn) is 
maximal in G(*, S,) = re (*, S,), w, E Kr n Ce(n). H 

LEMMA 15 (Non-triviality). Let e E Fr Then (I'(e)min # 8. 
Proof. Since e E Fr, there exists w E Kr le such that e < w. Hence, S, E rle. 
Since each member of r l e  is finite and r / e  # 0, let Sf E I'le be C-minimal in r le ,  
SO S' E (rle),i,. H 

LEMMA 16 (Simple alternative world). Suppose that e E Fr and (rle),in # {S) 
Then there exists w E Ce(0) such that Sw # S. 

Proof. Since (rle),in # {S), Lemma 15 implies that there exists S' E (I')e),i, 
such that S' # S .  Let w = (e*(S'\Se)*OW). By construction, S, = S' E (I'le)min 
and w E Krle, so w E C,(O), by Proposition 2. 

LEMMA 17 (Simple world existence). Let e E Fr .  Then there exists w E Krle 
such that c(w, e) = 0. 

Proof. Let S E (rle)min, by Lemma 15. Let w' = (e * ( S  \ Se) * am). Then 
S, = S E (I'le),i,. So by Proposition 2, c(wl, e) = 0. 

LEMMA 18 (Monotonicity). Suppose that el e' E F r .  Then: 

if e < e' and (rle),i, = {S) and (rle')min = {S'), then S E S'. 
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Proof. Since S' E Fie' and e < el, S' E r ( e .  Since (l?le)min = {S), S is minimal 
in I'le by Proposition 3, so S C St.  W 

LEMMA 19 (Down and out). Suppose that e, e', e" E Fr. Then: 

if e < e' 5 e" and (rle)min = {S) and (I'le')min # {S), then S $ rle". 

Proof. Suppose that e,e',el' E Fr and e < e' 5 e" and (l?le)min = {S) and 
S E I'le". It suffices to show that (rle'),in = {S). Since S E I'le" and e < e', 
S E rle'. Suppose S' E l?lel. Then S' E r le ,  since e < el. Since (l?le)min = {S), 
Proposition 3 yields that S C S'. So S' S, so S E (rle'),in. Now, suppose that 
R E (rlel),in. Then R E r l e ,  since e < e', so by Lemma 3, S 5 R. But since 
R E (rlel),in, S $ R. So S = R. So (I'le')min = {S). 

LEMMA 20 (Stable arrival). Suppose that w E Kr. Then 

2. if Sw E (I'l(~li)),~, and i 5 i', then S, E ( r l  ( w l ~ ' ) ) ~ ~ ~  

Proof. For (I), let k > p(w). Then Sw = Swlk, so Sw E I'l(wlk) and for each 
R E rl(wlk), Sw = Swlk C R, so Sw E (r/(wlk)),i, = {S,). For (2), suppose that 
i 5 i' and S, E (rl(wli)),i,. Note that Sw E rl(wlil). Suppose that there exists 
R E r(wlit)  such that R c S,. Then R E r (wli) ,  so Sw $ ( I ' ( ~ 1 i ) ) ~ ~ , ,  which is a 
contradiction. So Sw E (I?(wli')),i,. ¤ 
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EPISTEMIC LOGIC AND 
INFORMATION UPDATE 

Alexandru Baltag, Hans P. van Ditmarsch, and Lawrence S. Moss 

1 PROLOGUE 

Epistemic logic investigates what agents know or believe about certain factual 
descriptions of the world, and about each other. It builds on a model of what in- 
formation is (statically) available in a given system, and isolates general principles 
concerning knowledge and belief. The information in a system may well change as 
a result of various changes: events from the outside, observations by the agents, 
communication between the agents, etc. This requires information updates. These 
have been investigated in computer science via interpreted systems; in philosophy 
and in artificial intelligence their study leads to the area of belief revision. A more 
recent development is called dynamic epistemic logic. Dynamic epistemic logic is 
an extension of epistemic logic with dynamic modal operators for belief change 
(i.e., information update). It is the focus of our contribution, but its relation to 
other ways to model dynamics will also be discussed in some detail. 

Si tuating t h e  chapter  This chapter works under the assumption that knowl- 
edge is a variety of true justifiable belief. The suggestion that knowledge is  nothing 
but true justified belief is very old in philosophy, going back to Plato if not further. 
The picture is that we are faced with alternative "worlds", including perhaps our 
own world but in addition other worlds. To know something is to observe that it 
is true of the worlds considered possible. Reasoners adjust their stock of possible 
worlds to  respond to changes internal or external to  them, to their reasoning or 
to facts coming from outside them. 

The identity of knowledge with true justified (or justifiable) belief has been 
known to be problematic in light of the Gettier examples (see also our discussion 
in Section 3.3). Being very short again, the point is that this simple picture ignores 
the reasons that one would change the collection of possibilities considered, and 
in particular it has nothing to say about an agent who made a good change for 
bad reasons and thereby ends up "knowing" something in a counter-intuitive way. 

However, the work presented in this chapter is in no way dependent on this 
mistaken identity: while all the forms of knowledge presented here are forms of 
true justified belief, the converse does not necessarily hold. On the contrary, in 
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all the logics in this chapter that are expressive enough to include both knowledge 
and belief operators, the above-mentioned identity is provably wrong. 

We have already mentioned that we are interested in the broader concept of 
justifiable belief. This is broader in the sense that we consider an even more ideal 
agent, someone who reasons perfectly and effortlessly. (Technically, this means 
that we are going to  ignore the fact that the agents we want to model are not 
logically omniscient. So justifiable belief can be regarded as a modeling of logically 
omniscient agents immune from Gettier-type problems.) 

In addition, justifiable belief for us diverges from knowledge in the sense that 
it need not imply truth. As with Gettier examples, if one accepts and uses misin- 
formation, then whatever conclusions are drawn are in some sense "justified." We 
postpone a fuller discussion of this point until later, but we wanted to alert the 
reader who expects us to write justifiable true belief for what we study. 

Since the topic of the chapter is "epistemic logic", and since we were quick to 
point out that it is mistaken to identify knowledge with (true) justifiable belief, 
the reader may well wonder: why are they writing about it? 

We claim that the study of justifiable belief is in itself illuminating with respect 
to the nature of knowledge, even if it fails as a satisfactory proposal for knowl- 
edge. This is the main reason why people have worked in the area. The main 
contributions are technical tools that allow one to make reliable predictions about 
complicated epistemic scenarios, stories about groups of agents which deal with 
who knows what about whom, etc. We shall go into more detail on what this 
means in Section 2 just below, and then in Section 5 we shall see how it works in 
detail. 

Getting back to our study overall, one could think of it as a.first approximation 
to the more difficult studies that would be desirable in a formal epistemology. It 
is like the study of motion on a frictionless plane: it is much easier to study the 
frictionless case than that of real motion on a real surface, but at the same time 
the easier work is extremely useful in many situations. We also point out that our 
subject has two other things going for it. First, it is a completely formalized subject 
with precise definitions, examples, and results. We know that not all readers will 
take this to be a virtue, and we have tried hard to  introduce the subject in a 
way that will be friendly to  those for whom logic is a foreign language. But we 
take the formalized nature of the subject to be an attraction, and so we aim to 
convey its nice results. Second, in recent years the subject has concentrated on two 
phenomena that are clearly of interest to the project of epistemology and which 
for the most part are peripheral in older treatments of epistemic logic. These are 
the social and dynamic sides of knowledge. The modeling that we present puts 
these aspects in the center. 

At the time of this writing, it seems fair to say that the subject matter of the 
first part of our chapter, modeling based on justifiable belief, is fairly advanced. 
There are some open issues to be sure, and also outstanding technical questions. 
Many of the people involved in the area have gone on to adjacent areas where the 
insights and technical machinery may be put to use. Two of these are combinations 
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of logic and game theory and belief revision theory. We are not going to discuss 
logic and game theory in this chapter, but the last section of our chapter does 
present proposals on the extension of dynamic epistemic logic to the area of belief 
revision. 

In addition, as the subject moves closer to belief revision, it is able to question 
the notion of justifiable belief, to develop a more general notion of conditional 
belief, and also to meaningfully distinguish between various types of "knowledge" 
and characterize them in terms of conditional belief. These and similar formal 
notions should appeal to the epistemologist as well. 

Overview Our overarching goal is that this chapter make the case for its subject 
to  the uninitiated. We begin work in Section 2 with discussion of a series of 
epistemic scenarios. These discussions illustrate the subject of the chapter by 
example, rather than by a direct discussion. They also are a form of "on-the- 
job-training" in the kinds of logical languages and representations that will be 
found later. This leads to a collection of issue areas for the subject that we 
present briefly in Section 3. Following that, we have some background in logic 
in Section 4. Even there, we are not only offering a catalog of a million logical 
systems: we attempt to say why the philosophically-minded reader might come to 
care about technical results on those systems. Dynamic epistemic logic (DEL, for 
short) is our next topic. This is the part of the chapter with the most sustained 
technical discussion. After this, we end the chapter with our look a t  belief revision 
theory. The proposals there are foreshadowed in Section 2, and a reader mainly 
interested in belief revision probably could read only Sections 2 and 7. It goes 
without saying that such readers should also read Hans Rott's Chapter 4c.on the 
subject in this handbook. This is also true for readers whose main interest is in 
epistemology. 

All readers would do well to consult Johan van Benthem and Maricarmen Mar- 
tinez' Chapter 3b in order to situate our work even more broadly in studies of 
information modeling, especially the contrast and blending of the correlational 
and proof theoretic stances on the topic. In their terminology, however, the work 
in this chapter is squarely in the "information as range" paradigm. 

The material in this chapter alternates between its main thrust, an examination 
of the philosophical and conceptual sides of the subject, and the technical aspects. 
We have chosen to emphasize the philosophical material because it is the subject 
of this handbook; also, there already are several introductions to the technical 
material. Historical pointers are mainly to be found at the ends of the sections. 

2 INTRODUCTION: LOGICAL LANGUAGES AND REPRESENTATIONS 

As with many works in the area, we begin with an epistemic scenario. The one 
here is probably the simplest possible such scenario, an agent ignorant of which of 
two exclusive alternatives holds. 
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A person named Amina enters a room and is then shown a closed box on a 
table. She has been told that box contains a coin, and that the coin lies flat in 
the box. What she does not know is whether the coin lies heads up or tails up. 

Our tasks as modelers are (1) to provide an adequate representation of this 
scenario; (2) to use the representation as part of a formal account of "knowledge" 
and related terms; (3) to see where the representation and formal account run into 
problems; (4) to then "scale up" all of the previous points by considering more 
complicated scenarios, models, and accounts, with the same goals in (1)-(3). 

The most natural representation is simply as a set of two alternatives. In 
victures, we have 

The two circles are intended as abstract representations of the two states of the 
coin. There is no significance to the symbols H (for heads) and T (for tails, but 
please do not confuse it with truth). There is also no significance to the fact that 
the representation has heads on the left and tails on the right. There is a very 
real significance to the fact that each circle has exactly one symbol. There is some 
significance to the absolutely symmetric treatment of the two alternatives. Perhaps 
the most important aspect of the representation is that it leaves out everything 
to do with Amina's state of mind: why she thinks that heads and tails are the 
only ones possible, her prior experience with similar situations, her emotions, etc. 
For the most part, the formal work of this chapter will not help with proposals 
on any of these important matters precisely because the representations abstract 
from them. 

We regard the symbols H and T as atomic propositions (We also call them 
atomic sentences, using the two terms interchangeably.) It is problematic at this 
point to speak of these as true or false in our scenario: since the story was silent 
on the matter of whether the coin was, in fact, lying heads up or tails up, it is 
debatable whether there is a "fact of the matter" here or not. No matter how 
one feels on where there is, in fact, a fact or not, it is less controversial to hold 
that either the coin lies heads up or tails up, and not both. (Recall that this is 
part of what Amina has been told at the outset.) It is natural to use standard 
propositional logic, and to therefore write H - 1 T .  (We may read this as "heads 
holds just in case tails fails".) We would like this sentence H - 1 T  to come out 
true on our representation, and so clearly we need a semantics for sentences of this 
type. 

Even before that, we need a formal language. We take propositional logic built 
over the atomic propositions H and T. So we have examples such as the one we 
just saw, H and T, and also YTH, H -+ (H + T), H V T, etc. The language is 
built by recursion in the way all formal languages are. We'll use letters like cp for 
propositions of this and other languages. 

In order to give the semantics, it will be very useful to change the representation 
a little. We had used H and T inside the circles, but this will get in the way; also, 
as we shall see many times in this chapter, the states in our representations are 
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not individuated by the atomic facts that they come with. So let us change our 
representation to 

with the additional information that H holds at s and not at t ,  and T holds at t and 
not at s. We take this extra piece of information to be part of our representation. 
So we have a set {s, t )  of two (abstract) states and some extra information about 
them. The set {s,t) has four subsets: 0, {s), {t), and {s,t) itself. We also have 
the usual set theoretic operations of the union of two subsets (x U y), intersection 
(xny), and relative complement (T). To spell out the details of relative complement 
in this example: $ = {x, y), (s) = {t), (t) = {s), and (s, = 0. 

Now it makes sense to  formally interpret our language, assigning a set of states 
[cp] to  a sentence cp as follows: 

The reader will know that we could have given only a few of these, leaving the rest 
to  re-appear as derived properties rather than the official definition. The choice is 
immaterial. What counts is that we have a precise definition, and we can verify 
important properties such as [H ct TT] = {s ,  t).  The reason is that 

We'll use S to refer to our set of states, both in this discussion and in later ones. 
And we shall say that cp is valid in a model if its semantic interpretation [cp] is 
the full set S of states, not merely a proper subset. 

We have reliable and consistent intuitions concerning knowledge. Surely one 
feels that upon walking into the room, Amina does not know whether the coin 
lies heads or tails up: she was informed that there is a coin in the box, but so 
without further information to the contrary, she should not know which alternative 
holds. We expand our language by adding a knowledge operator K as a sentence- 
forming operation, making sentences from sentences the way -, does. We thus have 
sentences like KH, K l K T ,  etc. The semantics is then given by 

Notice that this modeling makes knowledge an "all-or-nothing" affair. One can 
check that [KH] = 0, matching the intuitions that Amina does not know that the 
coin lies heads up. But also [KTH] = 0. In contrast, K(H V 7H) is valid on this 
semantics: its interpretation is the entire state set. 
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"Knowing that" a n d  "knowing whether" Up until now, all of our modeling 
of knowledge is a t  the level of knowing that a given proposition, say cp, is true or 
false. We have no way of saying knowing whether cp holds or not. The easiest 
way to do this in our setting is to identify knowing whether cp with the disjunction 
knowing that cp or knowing that ~cp. It will turn out that in this example and all 
of our other ones, this "or" is automatically an exclusive disjunction. That is, our 
modeling will arrange that no agents know both a sentence and its negation. 

I te ra ted  knowledge One should note that our formal semantics gives a deter- 
minate truth value to  sentences with iterated knowledge assertions. For example, 
KTKH comes out true. (The reason: we saw above that [KH] = 0. Therefore 
[TKH] = {s,t), and so also [KTKH] = {s,t).) Translating this back to our 
original scenario, this means that we are predicting that Amina knows that she 
doesn't know that the coin lies heads up. For a real person, this introspectivity 
is clearly false in general: though sometimes people can and do introspect about 
their knowledge, it seems that only a tiny amount of what we talk about people 
knowing is even susceptible to introspection. However, given our take on knowl- 
edge as justifiable belief (and with justifications modeled as surveys of all relevant 
possibilities), it fits. The upshot is that in the case of iterated knowledge asser- 
tions, the kind of modeling that we are doing gives predictions which are at odds 
with what real people do (though they are the acid test) but seem to work for 
ideal agents. 

Note, however, that justifiable knowledge is a kind of potential knowledge: we 
would not feel that a reasoner who exhibited it was making a mistake. We would 
be more likely to commend them. Thus, the modeling that uses it is of value in 
adversarial situations of the kind found in game theory. When you reason about 
your opponent in a game (or war), you should not assume him to be stupid, but 
on the contrary: the safe option is to assume that he already knows everything 
that he could possibly know; i.e, to model him as a logically omniscient, fully 
introspective ideal agent. This is because you want to make sure your strategy 
works no matter how smart or how resourceful your opponent happens to be. (On 
the contrary, when reasoning about your own, or your allies', knowledge, it is safer 
not to  idealize it, but to  take into account possible failures of introspection.) 

2.1 Learning 

Suppose next that Amina opens the box and sees that the coin lies heads up. It 
is natural to  assume that after she looks, she knows that the coin lies heads up. 
Furthermore, and in support of this, consider the model 

along with the information that s is a state where H is true. This model reflects the 
intuition that she considers only one state to be possible. Recall from Section 1 that 
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our work here is mainly about knowledge as justifiable belief. It takes knowledge 
to result from a survey of the possible. The model above reflects this choice: it 
is a survey of the justifiable possible. (But a one-point model is so simple that it 
reflects other intuitions as well.) 

What interests us most is that we have a change of model. In this case, the 
change was to throw away one state. Taking seriously the idea of change leads to 
dynamics, a key point of our study. Sometimes people with a little exposure to 
logic, or even a great deal of it, feel that logic is the study of eternal certainties. 
This is not the case at all. In the kinds of settings we are interested in here, we 
move from single models to  sequences of them, or structures of some other kind. 
The particular kind of structure used would reflect intuitions about time, causality 
and the like. These matters are largely orthogonal to the epistemic modeling. But 
the important point for us now is that we can LLadd a dimension" to our models 
to reflect epistemic actions. 

We would like to indicate the whole story as 

We think of this as the two representations from before (along with the information 
that the picture suppresses, that s is a state where the coin lies heads up, and t 
the same for tails) connected by the dotted arrow. Amina discards the state t 
because it does not reflect what she learned. But s persists, and the dotted arrow 
indicates this. As it happens, it will again be confusing to use the same letter s for 
both the "before" and "after" states. This is not strictly needed here, but later in 
the paper it will be needed. So we would prefer to illustrate the story as 

Again, we would supplement the picture with a description of which states have 
which coin faces showing: H is true at s and u, while T is true at t .  Note that 
we can no longer use the "all-or-nothing" notion of knowledge from the previous 
section: in the original state s, Amina knows the state cannot be u (since she 
knows that she doesn't yet know the face of the coin); while in the new state u, 
Amina knows the state is neither s or t anymore. In other words, Amina cannot 
distinguish between the initial states s and t,  but can distinguish between them 
and the new state U. We illustrate this by using lines to represent the agent's 
indifserence between two (indistinguishable) possibilities: 
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The way to read an assertion like "there is a line between s and t" is as follows: 
Amina is indifferent between the world being as described in s and being described 
as in t. The agent is unable to tell apart these two descriptions: for all she knows, 
either of them can be a correct description of the real world. So in s, Amina thinks 
that the world might be t, or again it might be s itself. (This is not shown in the 
picture, but it is tacitly assumed.) In u, Amina thinks that u itself is the only 
possible state, and so she knows there that the coin lies heads up. 

But what are these "states"? Since we have been using the word "state" 
quite a bit, a word is in order on this usage. Our states are the same as possible 
worlds in explanations of modality. That is, one should regard them as theoretical 
primitives that have an overall use in the modeling. They are abstract objects 
that we as outsiders use to discuss the examples and to  further build a theory. 
Using them does not involve a commitment to their ontological or psychological 
reality. There is also a tradition of possible worlds as (maximal consistent) sets 
of propositions, and we also think of Carnap's state descriptions. But we do not 
follow either of these in our modeling, preferring to keep states as the primitive. 
It  would be possible to change what we do to render states as maximal consistent 
sets, however, if one took the underlying language to be the full modal language 
which we are describing, not simply propositional logic. For our states are not 
individuated by the propositional facts holding in them: as we shall see shortly in 
(6) below, to separate states one needs the information contained in the arrows. 

Knowledge The heart of the matter is the proposal for the semantics of knowl- 
edge. Building on our explanation of what the worlds and the. lines represent, the 
idea is that Amina "knows" (in our sense) cp in a world x just in case the following 
holds: cp is true in all worlds that she cannot tell apart from x. In symbols, the 
semantics is given by: 

[Kcpl = {s : whenever Amina is indifferent between s and t ,  t E [cp]) 

(1) 
In other words: we relativize the previous "all-or-nothing" definition to the set of 
worlds that are indistinguishable from the real one. Using this modified definition, 
we can see that, in the initial state s of the above model, Amina doesn't know the 
face of the coin is H. while in the new state u she knows the face is H. 

Comparison with probabilistic conditioning It will be useful at this point 
to note a similarity between the kind of updating that models Amina's learning 
in this very simple setting and what happens all the time in probability. Suppose 
that we have a probability space. This is a set S of simple events, together with 
a probability p : S --+ [ O ,  11 with the property that CsESps  = 1. The probability 
space as a whole is S = (S,p); that is, the set S together with the function p. 

The subsets of S are called events. Every event X gets a probability p(X), 
defined by p(X) = CsEXpS.  We should think of S as the states of some back- 
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ground system S. An event X is then like a property of the system, and p x  
as the probability that a randomly observation of S will have the property X. 
Not only this, but every event X whose probability is nonzero gives a probability 
space on its own. This time, the space is X ,  and the probability plX is given by 
(plX)(s) = p(s)/p(X). This formula reflects the re-normalization of the probabil- 
ity p. We'll call this new space SIX = (X,pIX). It  is a subspace of the original 
S called S conditioned on X. The idea is that if we again start with a system 
S whose set of states is modeled by the probability space S ,  and if we obtain 
additional information to the effect that the background system definitely has the 
property X ,  then we should revise our modeling, and instead take use SIX: 

learning that X 
(S, P) - (X,plX) . 

The sentences in our formal language are notations for extensional properties (sub- 
sets) of the overall state space. Adding new information, say by a direct observa- 
tion, corresponds to moving to a subspace, to changing the representation. 

2.2 Another agent enters 

Let us go back to our first scenario, where Amina walks into the room in ignorance 
of whether the coin lies heads or tails up. (We therefore set aside Section 2.1 right 
above.) Being alone in a room with a closed box is not much fun. Sometime later, 
her friend Bao walks over. The door is open, and someone tells Bao the state of 
the coin and does it in a way that makes it clear to Amina that Bao now knows 
it. At the same time, Bao is in the dark about Amina's knowledge. 

The natural representation here uses four states. 

Note that now we have labeled the indifference lines with the names of the agents. 
In this case, we have four worlds called u, v, w, and x. The atomic information is 
also shown, and we have made the picture more compact by eliminating redundant 
information. (So we intend u to be a world where H is true and T is false, even 
though the second statement is not explicit.) 

As before, the way to read an assertion like "there is a line labeled b between u 
to vl' is as follows: Bao is indifferent in u between the world being as described in 
u and being described as in v. So in v, Amina thinks that the world might be w, 
or again it might be v itself. In u, Amina thinks that u itself is the only possible 
state, and so she knows there that the coin lies heads up. 

The world u is the real world, and so once we have a formal semantics, we check 
our intuitions against the formal semantics at u. 

We begin, as we did in Section 2, with the propositional language built from 
symbols H and T. In our current model, we have semantics for them: 
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We clearly need now two knowledge operators, one for a (Amina) and one for b. 
We shall use K, and K b  for those, and we define by taking for each agent the 
appropriate indifference lines in the definition (1): 

[Kacp] = {s : whenever Amina is indifferent between s and t, t E [y]} 
[Kbcpj = {s : whenever Bao is indifferent between s and t ,  t E [[cp]) 

(3) 
We can check whether our formal semantics matches our intuitions about our 
model. The way we do this is by translating a sentence A of English into a 
sentence cp in our formal language, and evaluating the semantics. We want t o  be 
sure that x E [cp], where x is the "real" or "actual" world in the model at hand. 

Here are some examples: 

English 
the coin shows heads 
a knows the coin shows heads 
a knows whether the coin shows heads 
b knows that the coin shows heads 

I whether the coin shows heads 

Formal rendering 
H 
K, H 

b knows whether the coin shows heads 
a knows that b knows 

In our model, u is the "real world". In all of the examples above, the intuitions 
match the formal work. 

Semantics 

{u, u} 
8 - 

KaH V K a l H  
Kh H 

But does there have to be a real world? Our representation in (2) and our 
semantics in (3) did not use a designated real world. So mention of a real world 
could be dropped. However, doing so would mean that we have less of a way 
to check our intuitions against the formalism (since our intuitions would be less 
sharp). But one who doesn't like the idea of a "real world" would then look at 
all the worlds in a representation, take intuitive stories for them, and then check 
intuitions in all cases. 

8 
{u, vt 

KbH V K b ~ H  
Ka(KbH V KblH) 

Announcements We have already begun to discuss dynamics in connection 
with these simple scenarios. Here are ways to continue this one. Suppose that 
Amina and Bao go up and open the box. We again would like to say that the 
resulting model has a single world, and in that world both agents consider that 
world to be the only possible one. In a word (picture), we expect 

. . >  

{u, 0, W, 2) 

{'k v, W, x) 

However, this is not quite what we get by the world-elimination definition which 
we have already seen. What we rather get is 
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(We have dropped the worlds w and x from the picture in (2), and all the lines 
pertaining to them.) 

So we have a question at this point: can we say that the two models, (4) and 
(5) are equivalent, and can we do so in a principled way? We return to this point 
at the end of Section 4.4. 

As an alternative, suppose someone outside simply shouts out "The coin lies 
Heads up." Again, on the modeling so far, we have the same state at the end. We 
thus conclude our representations cannot distinguish sources of information. 

2.3 Another agent enters, take 11 

At this point, we want an alternative to the story in Section 2.2. Amina is again 
in the room in ignorance of the state of the coin. Bao walks over, but this time, 
the door is shut. Outside the door, some trusted third party says to him, "I'll tell 
you that the coin lies heads up." Then Bao walks in. 

We naturally have some intuitions about what is going on. Bao should know 
that the coin lies heads up, and he should also know that Amina doesn't know 
whether the coin lies heads up or tails up. What about Amina? What should she 
think about Bao's knowledge? We don't know enough about her to say for sure, 
but to be definite, let us assume that she (falsely) believes that Bao is as ignorant 
as she. Moreover, let us assume that Bao believes this about Amina. 

Belief Since we have mentioned belief, a comment is in order. We continue to 
deal with "knowledge" as justifiable belief. This is the only notion at play at the 
moment. We have used belief in the previous paragraph only to emphasize that 
the proposition believed is actually false. 

At this point, we return to our scenario and to a model of these intuitions. The 
model we have in mind is 

We shall shortly go into details about why this model works. Before that, a com- 
ment: If one tries to come up with a model by hand which reflects correctly the 
intuitions that we spelled out above, he or she will see that it is not a straightfor- 
ward task. It is hard to  argue that something is not easy to do, so we encourage 
readers to try it. This will also provide experience in the important task of exam- 
ining putative models with the eye towards seeing whether they match intuitions 
or not. 

This model generalizes the two-directional lines that we saw above to one- 
directional arrows. The way to read an assertion like "there is an arrow labeled a 
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from u to v" is as follows: if the situation were modeled by u, then Amina would 
be justified in considering v a possibility. 

In our example, u is the "real world". In that world, Bao countenances no 
others. Amina, on the other hand, thinks that the world is either v or w. (But she 
does not think that the world u itself is even possible. This reflects the intuition 
that Amina doesn't think it possible that Bao knows the state of the coin.) The 
worlds she thinks are possible are ones pretty much like the two we saw earlier for 
her alone, except that we have chosen to put in arrows for the two agents. 

Note that u and v in (6) have the same atomic information. However, they are 
very different because what counts is not just the information "inside" but also 
the arrows. Now given our explanation of what the epistemic arrows are intended 
to mean, we can see that there is some circularity here. This is not a pernicious 
circularity, and the use of the logical language makes this evident. Once we take 
the representation as merely a site for the evaluation of the logical language, the 
problematic features of the models lose their force. We turn to that evaluation 
now. 

Building on our explanation of what the worlds now represent, we say that a 
believes cp in a world x just in case the following holds: cp is true in all worlds that 
she would think are possible, if x were the actual world. Formally: 

[B,cp] = {s : whenever s % t, t E [cp]) 
[Bbcp] = {s:whenevers4t , tE[cp])  (7) 

We again check that our semantics and model are sensible, going via examples. 

In our model, u is the "real world". In all of the examples above, the intuitions 
match the formal work. 

English 
the coin shows heads 
a knows (believes) the coin shows heads 
a believes the coin shows tails 
b believes the coin shows heads 
b believes that a doesn't know (believe) it's heads 
b believes that a believes that 
b doesn't know (believe) it's heads 

Knowledge and Belief What does Amina actually know in the scenario above? 
She believes that Bao doesn't know the face of the coin, but this belief is not 
true. Is Amina aware of the possibility that her belief is false? Let us assume 
so: in other words, although she believes that Bao does not know the face, she 
at least countenances the possibility that he does. Note that the states u,v and 
w are indistinguishable for her: she "sees" the same things, and has the same 
information and the same beliefs in all these states. But then these states also are 
indistinguishable for her from a fourth possibility, namely the one in which Bob 

Formal rendering 
H 
Ba H 
BaT 
BbH 
BblBaH 
BbBa-BbH 

Semantics 

{u, v> 
8 
0 
{u> 
{u, v, W) 

{u, v, W} 
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knows the face but the coin shows tails. All the information that Amina has is 
consistent with this fourth possibility, so she cannot exclude it either. 

To distinguish between belief and (truthful) knowledge, we supplement what 
we so far have, in a few ways. First, we need to add to the state space a fourth 
state, representing the fourth possibility just mentioned. Second, we consider two 
models on the same state set. The one on the left below is intended to model 
knowledge, while the one on the right is intended for belief: 

The real world is u. On the side of knowledge, Amina is indifferent between all the 
states. The difference between the belief model and the one in (6) is that we have 
added a fourth state, x. This state is inaccessible from u in the belief model, and so 
it will turn out to be irrelevant from the point of view of the agent's beliefs in the 
actual world; however, x will be crucial in dealing with knowledge and conditional 
belief in the real world. (Concerning knowledge, leaving x off would mean that 
Amina in the real world knows there is no world in which Bao knows that the 
coin is tails up. This would give her knowledge beyond what is justified by our 
story.) Recall that the lines (as on the left) are the same as two-way arrows. So 
we can see that all of the arrows in the right diagram (for belief) are also present 
in the left diagram (for knowledge). This is good: it means that everything the 
agents know in a model will also be believed by them. To make this precise, we of 
course need a formal semantics. Let us agree to write % for the knowledge arrows 
(indifference lines), and .% for the belief ones. In fact, it is natural to consider 
loops as being implicitly present in the knowledge model, so we put s % t iff either 
s = t or there is an indifference line between them. The relevant definitions (stated 
only for Amina) will then be 

[Kacp] = { s  : whenever s % t ,  t E [cpl) 
[Bacp] = { s  : whenever s .% t ,  t E [ c p ] )  (9) 

On this semantics, then, Amina will believe that Bao does not know the state of 
the coin, but also, she does not know this. 

Observe now that the two models for this situation are not independent: the 
belief model contains all the information about the knowledge model. Indeed, we 
can recover the knowledge model from the belief model by closing the belief arrows 
under reflexivity, symmetry and transitivity. Visually, this amounts to replacing 
in the model on the right all the one-way arrows by lines, adding loops everywhere 
and adding lines between any two states that are connected by a chain of lines. A 
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simpler alternative procedure is to  connect any two states by lines if and only if 
the same states are reachable from both via (one-step) belief arrows. This gives 
us the knowledge model on the left. 

We know that there are issues involved in the translation that we are ignoring. 
One point worth mentioning is that translating beliefs regarding conditionals is 
problematic (and this is why none of the sentences in the table are conditionals). 
The reason is that the formal language suggests the material conditional, and 
so the mismatches between any natural language conditional and the material 
conditional are highlighted by the process we are suggesting. 

2.4 Conditional beliefs 

Consider again the belief-knowledge model (8). Where this model goes wrong is 
in dealing with conditional assertions that are counterfactual with respect to the 
agents' beliefs. Consider the following statements: 

1. If Bao knows the state of the coin, then the coin lies either heads up or tails 
UP. 

2. If Bao knows the state of the coin, then the coin lies heads up. 

3. If Bao knows the state of the coin, then Amina does, too. 

We are interested in whether Amina believes any of these statements. As such, 
these are conditional belief assertions. Intuitively, she should believe the first 
statement, but not the second and third. Yet, they are all true on the definition 
of belief in (9), if we interpret conditional beliefs as beliefs in the conditional and 
we interpret the conditionals as material conditionals. 

In fact, the problem is not simply the use of the material conditional: no other 
"belief-free" notion of conditional would do either! As argued in e.g. Leitgeb 
[2007], it is not possible to separate a conditional belief into a doxastic part (the 
"belief') and a belief-free part (the "conditional" that forms the content of the 
"belief'). Ggrdenfors' 1mPossibi~ity Theorem1 can be understood as showing that, 
under reasonable assumptions, conditional beliefs are not equivalent to beliefs i n  
conditionals, for any belief-free notion of conditional. As a consequence, we have 
to treat conditional belief as one indivisible operator Bzcp instead of a composed 
expression B,(a + P ) . ~  But the above models are not adequate to give a semantics 
to this operator. On a technical level, the problem is that to  make the sentence 
Amina believes that Bao doesn't know come out true we need a belief model (such 
as the one above (8)) in which u and x are not to be accessible for Amina from u; 
but at the same time, for evaluating hypothetical statements like the conditionals 
above, we need to use a different belief model, one in which u and x become 
accessible from u. 

'See Section 7 and Hans Rott's Chapter 4c in this handbook for. 
21n Chapter 3b, this expression would be written B,(cpla). 
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There are several ways of getting an appropriate model, but all of them involve 
going beyond simple belief models. We are going to present one common modeling, 
essentially derived from work of Lewis, Grove, and others. We supplement our 
model with a Grove system of spheres, exactly as discussed and pictured in Section 
2.3 of Chapter 4c. We need one for each agent at each state. We'll only spell out 
what Amina's system looks like at u. It would have v and w in the center, since 
she is most committed to them. In the next ring, we put u and (crucially) x. As 
with all such systems of spheres, the definition gives us notions of which worlds 
are at least as plausible as others, and strictly more plausible as others. According 
to the above system of spheres, states v and w are equally plausible for Amina, 
and they are strictly more plausible than the other two states u ,  x, which are also 
themselves equally plausible. 

If we draw arrows from any given state to all the states that are at least as 
plausible as it, we obtain the following diagrammatic representation: 

This is a plausibility model: it doesn't directly capture knowledge or beliefs, but 
only doxastic plausibility. However, this plausibility model contains all the infor- 
mation about the belief and knowledge models. Indeed, we can recover the belief 
model by looking at the most plausible states (for each agent); i.e., the states which 
can be reached via some (one-step) plausibility arrow from any other state that 
is reachable from them (via a one-step arrow). To obtain the belief model in (8), 
we keep for each agent only the arrows pointing to that agent's most plausible 
states. We can then recover the knowledge model from the belief model as in the 
previous section. Or we can directly obtain the knowledge model in (8) from the 
above plausibility model, by simply replacing all the arrows by lines (and deleting 
the loops). 

We now rework the definition of conditional belief. Actually, we keep track of 
the antecedent of the conditional in a special way, and write B ~ x  to symbolize 
Amina believes that were a to be true, x would have been true as well. The formal 
definition is: 

[ B ~ x ]  = { s  : t E [x], for all t E [a] such that s R t 
and such that there is no u E [a], such that s % u (11) 
and u is strictly more plausible than t for Amina) 

(And similarly for B ~ x ,  of course.) 
The idea is that in evaluating a conditional whose antecedent a contradicts the 

current beliefs, one has to discard the most plausible worlds, and instead to "fall 
back" to the worlds that are most plausible given a. 
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Let us see how this works in our example. For Amina, x is at least as plausible 
as the real world u. So she should use this world in evaluating conditionals, along 
with others. This easily shows why sentences 2 and 3 in the beginning of this 
subsection come out false. 

Incidentally, one desirable property of this kind of modeling is that an agent's 
knowledge (as opposed to belief) should not be overridden, even in hypothetical 
contexts. (This will not be suitable to modeling conditionals which are counterfac- 
tual with respect to knowledge.) To arrange this, we should require that the union 
of all spheres for a given agent in a given state coincides with the --equivalence 
class of the agent there. 

Modern epistemic logic started to flourish after modal logic (with its roots 
in Aristotle) was formalized and given a possible world semantics. It is hard to 
track down the exact origins of this semantics, but it is widely known as Kripke 
semantics, after Kripke, who devoted a number of early papers to the semantics 
of modal logic [Kripke, 19591. A contemporary and thorough reference for modal 
logic is the monograph [Blackburn et al., 2001]. 

Observations on how epistemic states change as a result of new information 
have been around since the Hintikka founded the field of epistemic logic in his 
1962 book Knowledge and Belief [Hintikka, 19621 (republished in 2005 by College 
Publications, London). Hintikka is broadly acknowledged as the father of modern 
epistemic logic, and his book is cited as the principal historical reference. Hintikka 
himself thinks that von Wright [1951] deserves these credits. 

From the late 1970s, epistemic logic became subject of study or applied in the 
areas of artificial intelligence (as in R.C. Moore's early work [1977] on reasoning 
about actions and knowledge), philosophy (as in Hintikka's [1986]), and game 
theory (e.g. Aumann [1976]). In the 1980s, computer scientists became interested 
in epistemic logic. In fact, the field matured a lot by a large stream of publications 
by Fagin, Halpern, Moses and Vardi. Their important textbook Reasoning about 
Knowledge [Fagin et al., 19951 which appeared in 1995, contains the contents of 
many papers co-authored by (subsets of) them over a period of more than ten 
years. Another important textbook in both 'pure' and 'applied' epistemic logic is 
Meyer and van der Hoek [1995]. These both should be consulted in connection 
with Sections 1-4 of this chapter. The work from Section 5 onward (on dynamic 
epistemic logic and its extensions) is mainly newer than those books. A brief, 
but very good, introduction to the history, the philosophical importance and some 
of the technical aspects of epistemic logic is the chapter "Epistemic Logic", by 
Gochet and Gribomont, in the Handbook of History of Logic [2006]. It also gives 
a very brief look at some of the older work in dynamic epistemic logic. 

At the same time as computer scientists became interested in the topic, linguistic 
semanticists were also discovering many of the basic issues, such as effects of 
public announcements and the problem of belief revision. Of special mention 
here is the long work of Robert Stalnaker, whose longstanding involvements with 
knowledge and belief revision theory include publications such as [Stalnaker, 1968; 
Stalnaker, 1996; Stalnaker, 20061. 
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3 FURTHER ISSUES AND AREAS IN EPISTEMIC LOGIC 

At this point, we have said a little about the subject matter of the chapter. Before 
we go further, we mention a few issues, problems, puzzles, and discussion topics 
in the area. We especially comment on how they relate to the examples in the 
previous sections. 

3.1 The Muddy children 

Perhaps the most common of epistemic puzzles is one known in various guises and 
under names like the muddy children, the wise men or the unfaithful spouses [Gamow 
and Stern, 1958; Moses et al., 19861. Here is one version of it. A number of chil- 
dren have been playing outside. After some time, some of them might have mud 
on their foreheads; however, they don't discuss this with one another. But along 
comes one of their fathers, and says: 

"At least one of you has mud on his/her forehead. Do you know if you are 
muddy?" 

Let n be the number of who have muddy foreheads. If n = 1, the one muddy 
one sees the clean heads of the others and deduce that she herself is muddy. 

Otherwise, all reply (in unison) "No, I don't know." At this point, the father 
again asks the same question. If n = 2, the two muddy ones would know see each 
other and know that n > 1, simply because the other did not answer Yes the first 
time. So they would know on the second questioning. 

The story continues in this way. The mathematical upshot is that if there are 
n muddy children to start, then after the father asks his question n times, the 
muddy ones will know their status; and before the nth time, nobody will know it. 
The essential feature for us of the story is that it illustrates that statements about 
ignorance can lead to knowledge. 

Comparing to the content of this chapter, it is not hard to draw the representa- 
tions for this problem and for variations, and to watch the process of announcement 
(as we have seen it  in Section 2.2). Indeed, we have found these to  be excellent 
sources of exercises in modal logic. We shall see the formal logical systems related 
scenarios like this. 

Incidentally, we saw above that statements can change an agent's knowledge. 
It is even possible to find a setting where an agent can believe something at the 
outset, then someone else's statement causes them to lose this belief, and then a 
third statement to regain it. We present an example in Section 6.1. 

3.2 Logical omniscience 

Logical omniscience is the phenomenon whereby an agent's beliefs or knowledge 
are modeled in such a way that they are closed under logical deduction. So the 
agent knows (or believes) all the consequences of their knowledge, and in particular 
knows infinitely many sentences, theorems whose length or complexity are absurdly 
great, etc. Logical omniscience is thus a complaint against all of the kinds of 
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models we are considering in this chapter. To avoid the complaint, one must 
adopt much more fine-grained models. A number of different such models have 
been proposed: a logic of awareness ([Levesque, 19841, further extended by Fagin 
and Halpern), multi-valued epistemic logic (A. Wisniewski [1998]), doxastic linear 
logic (D7Agostino, Gabbay and Russo [1997]), resource-bounded belief revision (R. 
Wassermann [1999; 20001) etc. A solution using a new type of dynamic-epistemic 
logic was proposed by Ho Ngoc Duc [2001]. 

3.3 The Gettier challenge 

Gettier [1963] pointed out examples that effectively jettisoned the justified true 
belief analysis of knowledge. The ensuing discussions are central to modern epis- 
temology. For an overview of the area, see, e.g., Steup [Spring 20061. 

Perhaps the easiest related example in epistemic logic is the following. Consider 
a muddy children scenario with two children, say A and B. A is muddy and B 
clean. A parent announces that at least one is muddy, asks if the two know their 
state. Usually, A would announce affirmatively and B negatively, but this time 
let A lie and say that she does not; B of course truthfully replies that he doesn't 
know. Then on second round, both announce that they do know. The point is, 
that B's announcement is truthful: taking knowledge to be justifiable true belief, 
he will have some knowledge of his state after hearing A once, no matter what she 
says. B's announcement is also justified, being based on A's first declaration. At 
that point, B has a justified true belief that he knows his state. But we would 
not judge B to actually know whether he is dirty or not. This would mean either 
knowing that he is dirty, or knowing that he is clean: he thinks he knows the 
former and denies he knows the latter. 

3.4 Other notions of knowledge 

The Gettier examples have been used, among other things, to deny the validity 
of the Negative Introspection axiom for knowledge: in the example in Section 3.3, 
B thinks that he knows his state, but intuitively speaking we can't agree that he 
actually knows it. So agents may not know something, while believing that they 
know it. 

Various authors proposed dropping the characteristic S5 axiom (Negative Intro- 
spection), and sticking with the system S4 instead. For instance, the S4 principles 
were as far as Hintikka [1962] was willing to go. This may also be appropriate in an 
intuitionistic context, and also fit well with a topological interpretation of knowl- 
edge. For other work on appropriate axioms, see Lenzen [1978; 20031. 

The defeasibility analysis of knowledge We only look here at one of the 
alternative proposals for a knowledge concept, that fits well with our discussion of 
conditional beliefs in Section 2.4. This is the "defeasibility strategy7', followed by 
many of those who attempted to respond to Gettier's challenge, see e.g Lehrer and 
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Paxson [1968], Swain [1974], Stalnaker [1996; 20061. To quote Stalnaker [2006], 
"the idea was that the fourth condition (to be added to justified true belief) should 
be a requirement that there would be no 'defeater' - no true proposition that, if 
the knower learned that it was true, would lead her to  give up the belief, or to be 
no longer justified in holding it". One way to do this is to add to the semantics 
of belief a theory of belief revision, and then define knowledge as belief that is 
stable under any potential revision by a true piece of information. But as we shall 
see, conditional beliefs and plausibility models, introduced in Section 2.4, give us 
a semantics for belief revision. So it is not surprising that defeasible knowledge 
was formalized using a logic of conditional beliefs, as in [Board, 20041 and [Baltag 
and Smets, 2006~1, or a logic of conditionals [Stalnaker, 19961. 

Knowledge a n d  "safe belief" However, the notion of knowledge defined on 
plausibility models in Section 2.4 is stronger than the one of (true, justifiable) 
defeasible belief. As we shall see, it corresponds to a belief that is "absolutely 
unrevisable": it cannot even be defeated by revising with false information. Since 
we followed the common usage in Computer Science and called "knowledge" this 
strong, absolute notion, we shall follow Baltag and Smets [2006b; 2006~1 and call 
safe belief the weaker notion resulting from the defeasibility analysis. In [Stalnaker, 
1996; Baltag and Smets, 2006b; Baltag and Smets, 2006~1, this concept is applied 
to  reasoning about solution concepts in Game Theory. 

3.5 Moore sentences 

By a Moore sentence we mean one of the form 'p is true and I don't believe that7, 
or 'p is true and I don't know that'. Moore's "paradox" is that such a sentence 
may well happen to be true, but it can never be truthfully asserted: a person 
uttering this sentence cannot believe it. As this example crops up in very different 
settings, and as it is so crucial for a proper understanding of dynamic epistemics, 
we discuss its origin in some detail, as a proper historical primer to the subject 
area. In this discussion, Bcp means "I believe cp " and Kcp means "I know cp " .  

Moore writes that if I assert a proposition cp, I express or imply that I think 
or know cp, in other words I express B p  or K p .  But cp cannot be said to mean 
B p  [Moore, 1912, p.77] as this would cause, by substitution, an infinite sequence 
BBp,  BBBp,  ad infinitum. "But thus to believe that somebody believes, that 
somebody believes, that somebody believes . . . quite indefinitely, without ever 
coming to anything which is what is believed, is to believe nothing at all" [Moore, 
1912, p.77]. Moore does not state in [Moore, 19121 (to our knowledge) that cpAlBp 
cannot be believed. In Moore's "A reply to my critics", a chapter in the 'Library of 
Living Philosophers' volume dedicated to him, he writes " 'I went to the pictures 
last Tuesday, but I don't believe that I did' is a perfectly absurd thing to  say, 
although what is asserted is something which is perfectly possibly logically" [Moore, 
1942, p.543]. The absurdity follows from the implicature 'asserting p implies Bp '  
pointed out in [Moore, 19121. In other words, B(p A 1Bp) is 'absurd' for the 



Ch10-N5 1726.fin Page 380 Tuesday, August 26,2008 11: 11 AM @ ~M+ 

380 Alexandru Baltag, Hans P. van Ditmarsch, and Lawrence S. Moss 

example of factual information p. As far as we know, this is the first full-blown 
occurrence of a Moore-sentence. Then in [Moore, 1944, p.204] Moore writes " 'I 
believe he has gone out, but he has not' is absurd. This, though absurd, is not 
self-contradictory; for it may quite well be true." 

Hintikka [1962] mentions the so-called 'Moore7-problem about the inadequacy 
of information updates with such sentences. This leads us to an interesting further 
development of this notion, due to Gerbrandy [1999], van Benthem [2004] and oth- 
ers. This development, addressed in our contribution, firstly puts Moore-sentences 
in a multi-agent perspective of announcements of the form 'I say to you that: p 
is true and that you don't believe that', and, secondly, puts Moore-sentences in 
a dynamic perspective of announcements that cannot be believed after being an- 
nounced. This analysis goes beyond Moore and makes essential use of the tools 
of dynamic epistemic logic. The dynamic point of view asks how an agent can 
possibly come to believe (or know) that a Moore sentence cp is true. The only way 
to  achieve this seems to be by learning cp, or by learning some other sentence that 
implies cp. But one can easily see that, when cp is a Moore sentence, the action of 
learning it changes its truth value: the sentence becomes false after being learned, 
though it may have been true before the learning! The same applies to  any sen- 
tence that implies cp. In terms of [Gerbrandy, 19991, an update with a Moore 
sentence can never be "successful": indeed, in Section 5.2, a successful formula 
is defined as one that is always true after being announced. Observe that Moore 
sentences have the opposite property: they are "strongly un-successful", in the 
sense that they are always false after being announced. As a consequence, they 
are known to  be un-successful: once their truth is announced, their negation is 
known to  be true. Van Benthem [2004] calls such sentences self-refuting. 

There is nothing inherently paradoxical about these properties of Moore sen- 
tences: the "world" that a Moore sentence is talking about is not simply the world 
of facts, but a "world" that comprises the agent's own beliefs and knowledge. In 
this sense, the world is  always changed by our changes of belief. Far from being 
paradoxical, these phenomena can in fact be formalized within a consistent logic, 
using e.g. the logic of public announcements in Section 5.1: using the notation 
introduced there, !cp is the action of learning (or being announced) cp. If cp is a 
Moore sentence of the form p A l K p ,  it is easy to check the validity of the dy- 
namic logic formulas [!cp]-cp and [!cp]Klcp. The first says that Moore sentences are 
strongly un-successful; the second says that Moore sentences are self-refuting. As 
argued in [van Benthem, 20041, self-refuting sentences are essentially un-learnable. 
This explains why a Moore sentence can never be known or believed: because it 
can never be learned. 

A similar analysis applies to the doxastic versions p A 7Bp of Moore sentences. 
But, in the case of belief, this phenomenon has even more far-reaching conse- 
quences: as pointed out by van Ditmarsch [2005] and others, the un-successfulness 
of Moore sentences shows that the standard AGM postulates for belief revision 
(in particular, the "Success" postulate) cannot accommodate higher-order beliefs. 
This observation leads to the distinction, made in the dynamic-epistemic litera- 
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ture [van Benthem, 2006; Baltag and Smets, 2006a; Baltag and Smets, 2007b], 
between "static" and "dynamic" belief revision. As shown in Section 7.2, in the 
presence of higher-order beliefs the AGM postulates (even in their multi-agent 
and "knowledge-friendly" versions) apply only to static belief revision. 

3.6 The Knower  paradox 

Related to the phenomenon of Moore-sentences is what comes under the name of 
'paradox of the knower', also known as Fitch's paradox [Brogaard and Salerno, 
20041. The general verification thesis states that everything that is true can be 
known to an agent; formally, if we introduce a modal possibility Ocp to  express the 
fact that something can be achieved (by an agent), this says that the implication 
cp --+ VKcp is true (in our world), for all formulas cp. The following argument, 
due to Fitch, appears to provide a refutation of verificationism on purely logical 
grounds. Take a true Moore sentence cp, having the form 1I, A lK$ .  By the 
"verificationist" implication above, OKcp must be true. But then Kcp must be 
true at some possible world (or some possible future "stage", achievable by the 
agent). But, as we have already seen in the previous subsection, this is impossible 
for Moore sentences: K($ A 7K$) is inconsistent, according to the usual laws of 
epistemic logic. The only possible way out is to conclude that there are no true 
Moore sentences; in other words, the implication $ -+ K+ holds for all formulas. 
This simply trivializes the verificationist principle, by collapsing the distinction 
between truth and knowledge: all truths are already known! 

Numerous solutions for this paradox have been proposed; see [Wansing, 2002; 
Tennant , 20021, for example. In particular, Tennant [2002] argues persuasively 
that the verificationist principle should be weakened, by restricting its intended 
applications only to those sentences cp for which Kcp is consistent. In other words: 
if cp is true and if it is logically consistent to know cp, then cp can be known. This 
excludes the principle's application to Moore sentences of the usual type. 

An interesting take on this matter is proposed by van Benthem in [2004]: one 
can interpret the modal possibility operator Ocp above in a dynamic sense, namely 
as the 'ability' to achieve cp by performing some learning action, e.g. an announce- 
ment in the technical sense of Section 5, to follow. In other words, 'cp is knowable' 
is identified with 'a true announcement can be made after which the agent knows 
9.' In this interpretation, the above-mentioned verificationist thesis reads "what 
is  true may come to be known (after some learning)", while its Tennant version 
restricts this to sentences cp such that Kcp is consistent. The Moore-sentences 
are obviously unknowable (by the agent to whose knowledge they refer). But van 
Benthem [2004] shows that this interpretation is also incompatible with Tennant's 
weakened verificationist principle: in other words, there are sentences cp such that 
Kcp is consistent but still, cp + OKcp does not hold. A counterexample is the 
formula p A 7Kq. The dynamic epistemic logic of the 'ability' modality 0 is 
completely axiomatized and thoroughly studied in [Balbiani et al., 20071. 
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3.7 The Hangman paradox 

The Hangman paradox, also known as the Surprise Examination paradox, has a 
relatively short history of about sixty years. Apparently the Swedish mathemati- 
cian Lennart Ekbom heard a message on the radio during the second world war 
announcing a civil defense exercise, which was to take place in the next week. 
It was also announced that this exercise would be a surprise. Then he noticed 
that there was something paradoxical about this announcement. [Kvanvig, 1998; 
Sorensen, 1988, pp.253]. The paradox was first published by OIConner in 1948. 

Consider the following case. The military commander of a certain 
camp announces on a Saturday evening that during the following week 
there will be a "Class A blackout". The date and time of the exercise 
are not prescribed because a "Class A blackout" is defined in the an- 
nouncement as an exercise which the participants cannot know is going 
to  take place prior to 6.00 p.m. on the evening in which it  occurs. It 
is easy to see that it follows that the exercise cannot take place at all. 
It  cannot take place on Saturday because if it has not occurred on the 
first six days of the week it must occur on the last. And the fact that 
the participants can know this violates the condition which defines it. 
Similarly, because it cannot take place on Saturday, it cannot take 
place on Friday either, because when Saturday is eliminated Friday is 
the last available day and is, therefore, invalidated for the same reason 
as Saturday. And by similar arguments, Thursday, Wednesday, etc., 
back to Sunday are eliminated in turn, so that the exercise cannot take 
place at all. [OIConnor, 19481 

Many authors proposed various solutions to this paradox. Williamson [2000] ana- 
lyzes it as an epistemic variety of the Sorites paradox. The first analysis that uses 
dynamic epistemic logic was presented in [Gerbrandy, 19991, and found its final 
form in [van Ditmarsch and Kooi, 20061 and [Gerbrandy, 20071. According to Ger- 
brandy, the commander's statement is ambiguous between two possible readings 
of what "Class A means: the first reads "You will not know (before 6:00 on the 
evening of the blackout) when the blackout will take place, given (the information 
you have in) the situation as it is at the present moment', while the second reads 
"You will not know (before 6:00 of that evening) when it will take place, even after 
you hear my announcement." Gerbrandy chooses the first reading, and shows that 
in fact there is no paradox in this interpretation, but only a Moore-type sentence: 
in this reading, the property of being "Class A" cannot remain true after the an- 
nouncement. Unlike the previous puzzles however, there is also a more complex 
temporal aspect that needs to be modeled by sequences of such announcements. 
As for the second reading, Gerbrandy considers it to be genuinely paradoxical, 
similar to more standard self-referential statements, such as the Liar Paradox. 
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3.8 Common lcnowledge 

One of the important concepts involved in the study of social knowledge is that 
of common knowledge. The idea is that common knowledge of a fact by a group 
of people is more than just the individual knowledge of the group members. This 
would be called mutual knowledge. Common knowledge is something more - what, 
exactly, is an issue, as is how to model it in the kinds of models we are dealing 
with. 

Countries differ as to which side of the road one drives a car; the matter is one 
of social and legal convention. As it happens, at the time of this writing all three 
co-authors are living in countries in which people drive on the left. Suppose that 
in one of those, the government decides to change the driving side. But suppose 
that the change is made in a quiet way, so that only one person in the country, 
say Silvanos, finds out about it. After this, what should Silvanos do? From the 
point of view of safety, it is clear that he should not obey the law: since others 
will be disobeying it, he puts his life at  risk. Suppose further that the next day 
the government decides to make an announcement to the press that the law was 
changed. What should happen now? The streets are more dangerous and more 
unsure this day, because many people will still not know about the change. Even 
the ones that have heard about it will be hesitant to change, since they do not know 
whether the other drivers know or not. Eventually, after further announcements, 
we reach a state where: 

The law says drive on the right and everyone knows (12). (12) 

Note that (12) is a circular statement. The key point is not that everyone know 
what the law says, but that they in addition know this very fact, the content of 
the sentence you are reading. 

This is an intuitive conception of common knowledge. Obviously it builds on the 
notion of knowledge, and since there are differing accounts of knowledge there will 
be alternative presentations of common knowledge. When we turn to the logical 
formalism that we'll use in the rest of this chapter, the alternative presentations 
mostly collapse. The key here is to unwind a sentence like (12) into an infinite list: 

00: The law says drive on the right. 

a1 : a o ,  and everyone knows a o .  

an: a], and everyone knows al. 

Each of these sentences uses knowledge rather than common knowledge. Each also 
implies its predecessors. Taking the infinite conjunction 

we arrive at a different proposal for common knowledge. As it happens, given the 
kind of modeling that we are doing in this chapter, the jked point account in (12) 
and the infinite iteration account in (13) agree. 
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History An early paper on common knowledge is Friedell [1969]. This paper 
contains many insights, both mathematical and social. In view of this, it is even 
more noteworthy that the paper is not common knowledge for people in the field. 
Probably the first commonly-read source in the area is David Lewis' 'Convention' 
[Lewis, 19691. Heal's 1978 paper [Heal, 19781 came a decade later and is still a 
good source of examples. In the area of game theory, Aumann's [1976] gives one 
of the first formalizations of common knowledge. McCarthy formalizes common 
knowledge in a rather off-hand way when solving a well-known epistemic riddle, the 
Sum and Product-riddle [McCarthy, 1990] (although at the time it was unknown 
to him that this riddle originated with the Dutch topologist Freudenthal [1969]) 
as an abstract means towards solving the Sum and Product-riddle. McCarthy's 
work dates from the seventies but was only published later in a collection of his 
work that appeared in 1990. 

Concerning the formalizations, here is how matters stand in two textbooks 
on epistemic logic: Fagin et al. [1995] defines common knowledge by transitive 
closure, whereas Meyer and van der Hoek [1995] define it by reflexive transitive 
closure. There is a resurgence of interest in variants of the notion, e.g., Artemov's 
evidence-based common knowledge, also known as justified common knowledge 
[Artemov, 20041. Another interesting variant is relativized (or conditional) com- 
mon  knowledge, which came to play an important role in some recent developments 
of dynamic epistemic logic [van Benthem et al., 2006b; Kooi, 20071. 

4 EPISTEMIC LOGIC: WHAT AND WHY? 

We have introduced logical systems along with our representations in Section 2. 
We have presented a set of logical languages and some semantics for them. One of 
the first things one wants to do with a language and a semantics is to propose one 
or another notion of valid sentences; informally, these are the sentences true in 
all intended models. In all the settings of this paper, this information on validity 
includes the even more useful information of which sentences semantically imply 
which others. Then one wants to present a proof system for the valid sentences. 
There are several reasons why one would want an axiomatic system in the first 
place. One might wish to  compare alternative presentations of the same system. 
One might also want to "boil a system down" to its essentials, and this, too, is 
accomplished by the study of axiomatic systems. Finally, one might study a system 
in order to see whether it  would be feasible (or even possible) for a computer to 
use the system. We are not going to pursue this last point in our chapter, but we 
instead emphasize the "boiling down" aspect of logical completeness results. 

4.1 Logic for ignorance of two alternatives 

We return to our earliest scenario of Section 2, one person in a room with a 
concealed coin. We have a language including a knowledge operator K and a 
semantics for it using just one model. We write cp to  say that cp is true in that 
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all sentential validities 
H * 1T exclusivity 
i K H , i K T  basic ignorance axioms 
K 7 p  + 1 K p  consistency of knowledge 
K ( p  -+ ?I) -+ (Kcp -+ K+) distribution 
K P + P  veracity 
K p  -t K K p  positive introspection 
i K p  4 K i K p  negative introspection 
F'rom p  and cp + $, infer $ modus ponens 
From p, infer K p  necessitation 

Figure 1. A logical system for valid sentences concerning two exclusive alternatives 
and a very simple semantics of K.  The axioms are on top, the rules of inference 
below. 

model. The object of our logical system is to give an alternative characterization 
of the true sentences. 

Figure 1 contains our logical system truth. This paper is not the place to learn 
about logical systems in a detailed and deep way, but in the interests of keeping 
the interest of philosophers who may not know or remember the basics of logic, 
we do hope to provide a refresher course. 

We say that cp is provable in our system if there is a sequence of sentences each 
of which is either an axiom or follows from previous sentences in the sequence by 
using one of the two rules of inference, and which ends in p. In this case, one 
would often write t- p, but to keep things simple in this chapter we are not going 
to use this notation. 

Here is a simple deduction in the logic, showing that K l K l T  is derivable. 

1. H*lT  7. -KH 
2. ( H  * -IT) -+ (1T -+ H )  8. 1KH + ( ( K l T  4 KH) + 1 K l T )  
3. l T + H  9. ( K i T  -+ KH) -+ -K-T 
4. K(1T -+ H )  10. 1 K l T  
5. K ( i T  -+ H )  -+ ( K i T  -+ KH) 11. l K i T  + K l K i T  
6.  K-T+ KH 12. K-KTT 

Line 1 is our exclusivity axiom and line 7 the basic ignorance axiom. A distribution 
axiom is found in line 5, and negative introspection in 11. This deduction uses 
propositional tautologies in lines 2 and 8, modus ponens in 3, 6, 9, 10, and 12, and 
necessitation in 4. 

We mentioned before that there are several different reasons why one would 
construct a logical system to go along with a particular semantics. The first, 
perhaps, is that by formulating sound principles, one uncovers (or highlights) 
hidden assumptions. In this case, we can see exactly what the assumptions are in 
this example: they are the principles in the figure. The interesting point is that 
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these assumptions are all there is:  if one reasons with the system as above, then 
they will obtain all the truths. 

PROPOSITION 1. The logical system above is sound and complete: F cp iff cp is  
true in the model. 

The point of this completeness theorem is that we have isolated all the assump 
tions in the scenario. 

One remark which is of only minor significance in this discussion is that the 
veracity axioms Kcp --+ cp may be dropped from the system. That is, all instances 
of them are provable anyway from the other axioms. The reason for including 
them is that they will be needed in all of the future systems. 

Recall that the system here is based on our discussion at the beginning of 
Section 2. We then went on in Section 2.1 to the situation after Amina looks. 
It is not hard to re-work the logical system from Figure 1 to  handle this second 
situation. We need only discard the basic ignorance axioms -KH and -KT, and 
instead take KH so that we also get H. In particular, all of the sound principles 
that we noted for the earlier situation continue to be sound in the new one. 

4.2 Logic can change the world 

There is another intuition about knowledge pertinent to the simple scenario that 
we have been dealing with. It  is that what Amina knows about a coin in a closed 
box is the same as what she would know zf the box were flipped over. In this section, 
we show what this means. 

We consider the same language as before, except we add an operator j%p to 
indicate the flipping the box over. For the semantics, let us begin with two models 
on the same state set. 

1. M, a model with two states s and t ,  with the information that H is true at 
s and false at t ,  and T is true at t and false at s. 

2. N, a model with two states s and t ,  with the information that H is true at 
t and false at s, and T is true at s and false at t .  

Then we define M, u p and N, u cp in tandem, the main points being that 

Finally, we say that cp is valid if it holds at both states in both models. (This 
turns out to be the same as cp holding in any one state in either model.) 

We present a logical system for validity in Figure 2. Perhaps the first exercise 
on it would be to prove the other flipping property: flipT ++ H. We did not include 
in the figure the general principles of knowledge that we have already seen, but 
we intend them as part of the system. (These are the consistency, distribution, 
veracity, and introspection axioms; and the necessitation rule.) Note that the 
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flipH * T flipping 
cP flipflip9 involution 
flip l c p  ct ~fEip cp determinacy 
flip (cp -+ +) -+ (flip cp -+ flip +) normality 
K Y  * flip K P  invariance 
From cp, infer flip cp necessitation 

Figure 2. The logical system for knowledge and flipping. We also need everything 
from Figure 1, except the basic ignorance axioms (these are derivable). 

invariance axiom Kcp * fEipKcp is exactly the opening of our discussion. We 
refrain from presenting the completeness proof for this system, but it does hold. 
One thing to note is that the invariance axiom of this system makes the earlier 
ignorance axioms -KH and 7 K T  unnecessary: they are derivable in this system. 

4.3 Modal logics of single-agent knowledge or  belief 

At this point, we review the general topic of logics of knowledge. The basic 
language begins with a set P of atomic propositions. From these sets, a language 
C is built from the atomic propositions using the connectives of classical logic and 
also the knowledge operator K .  We get a language which is basically the same as 
what we saw in Section 2, except that our set of atomic propositions is taken to 
be arbitrary, not just {H, T). 

Semantics We interpret this language on relational models. These are tuples 
M = (S ,  R, V) consisting of a domain S of states (or 'worlds'), an accessibility 
relation R S x S,  and a valuation (function) V : P -+ P(S) .  We usually write 
Vp instead of V(p). We also write s -+ t instead of R(s, t).  We call these semantic 
objects relational models, but they are more often called Kripke models. We call a 
tuple of the form (M, s), where M is a model and s is a state in it, is an epistemic 
state. 

We then define the interpretation of each sentence cp on an epistemic state 
(suppressing the name of the underlying model): 

u ~ n  = - vp 
U-PI = ucpn 
IIcp A +I = ucpn n u+n 
[Kcp] = {s : whenever s -+ t ,  t E [[cp]) 

It is more common to find this kind of definition "re-packaged" to give the inter- 
pretation of a sentence at a given point. This rephrasing would be presented as 
follows: 
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S ~ P  iff s E Vp 
skicp iff spcp 
s k c p A $  iff s k c p a n d s k $  
s Kcp iff for all t E S : s -t t implies t k cp 

The two formulations are completely equivalent. At the same time, using one 
notation over another might lead to  different insights or problems. 

Further semantic definitions A sentence cp is valid on a model M ,  notation 
M cp, if and only if for all states s in the domain of M: s k cp. A formula cp is 
valid, notation cp, if and only if for all models M (of the class of models for the 
given parameters of A and P): M + cp. That is, cp holds on all epistemic states. 

Logic and variations on it The logical system for validity is a sub-system of 
one which we already have seen. Look back at Figure 1, and take only the propo- 
sitional tautologies, modus ponens, the distribution axiom, and the necessitation 
rule. This logical system is called K. Every book on modal logic will prove its 
completeness: a sentence is valid in the semantics just in case it can be proved 
from the axioms using the rules. 

What's the point? For the modeling of knowledge, all we have so far is a spare 
definition and logic: An agent lives in a world and can see others. What it knows 
in a given world is just what is true in the worlds it sees. This seems a far cry from 
a full-bodied analysis of knowledge. The logical completeness result underscores 
the point. Any agent who "knew" things in the manner of this semantics would 
exemplify properties indicated by the logic. In particular, it would act as if the 
distribution axiom and necessitation rule held. The former, turned around a bit, 
says that the agent would be a perfect reasoner: if it knows cp and also knows 
cp -t 4, then it automatically and effortlessly knows $. Necessitation says that 
it also knows all the general features of this logic. Thus, the agent is logically 
omniscient. And one would be hard-pressed to maintain that such an agent "knew" 
in the first place. For it is even possible that in some situations (models) the agent 
would "know" things which are false: this might well happen if the agent lived in 
a world which was not among those it considered possible. 

This leads to our next point. If one wants to model agents with certain 
epistemically-desirable properties (see below for these), one can impose math- 
ematical conditions on the accessibility relation of models under consideration. 
Then one changes the definition of valid from true in all epistemic states to true 
in all epistemic states meeting such-and-such a condition. 

To see how this works, we need a definition. A frame is the same kind of 
structure a s  what we are calling a model, but it lacks the valuation of atomic 
sentences. So it is just a pair F = (S, R), with R a relation on S. (In other terms, 
a frame is a graph.) Given a sentence cp in our logic, we say that F k cp if for all 
valuations V : P + P(S) ,  every s E S satisfies cp in the model (S, R, V). 
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Ax formal statement property of R interpretation 
K K ( v  -+ $) -+ (KY + K$) (none) closed under modus ponens 
T K P - + P  reflexive veracity 
D K p - - + ~ K y p  serial consistency 
4 Kp-, K K p  transitive positive introspection 
5 ~ K p - - t  K i K p  Euclidean negative introspection 

Figure 3. Axiom schemes of modal logic with their relational correspondents and 
epistemic interpretations. 

Figure 3 presents well-known correspondences between conditions on a frame 
and properties of the logic. One example: a frame F satisfies each instance of D 
(say) iff F meets the condition listed that every point in it has a successor. is 
related by R to some point or other. Reflexivity means that every point is related 
to itself. Transitivity means that if x is related to y, and y to z, then x is related 
to z. The Euclidean condition mentioned in connection with the 5 axioms is 

(Vx) (Vy)(Vz)((xRy /\ XRZ) --+ yRz). 

There is a further aspect of the correspondence. If one wants to study the 
sentences which are valid on, say, transitive models, then one need only add the 
corresponding axiom (in this case K p  -+ K K p )  to the basic logic that we men- 
tioned above. On a conceptual level, we prefer to turn things around. If one wants 
to model agents which are positively introspective in the sense that if the know 
something, then they know that they know it, then one way is to assume, or argue, 
that they work with transitive models. The same goes for the other properties, 
and for combinations of them. 

There are many modal systems indeed, but we wish to mention only a few here. 
We already have mentioned K. If we add the axioms called T and 4, we get a 
system called S4. It is complete for models which are reflexive and transitive, and 
intuitively it models agents who only know true things and which are positively 
introspective. If one adds the negative introspection axioms 5, one gets a system 
called S5. The easiest way to guarantee the S5 properties is to work with relations 
which are reflexive, symmetric, and transitive (equivalence relations), for these are 
also Euclidean. 

Turning from knowledge to belief, the T axiom is highly undesirable. So logics 
appropriate for belief will not have T.  But they often have D, the seriality axioms. 
These may be interpreted as saying that if an agent believes p, then it does not 
at the same time believe 19. Probably the most common logic of belief is KD45, 
obtained by adding to  K the other axioms in its name. KD45 is complete with 
respect to models which have the properties listed above. When studying belief, 
one usually changes the name of the modality from K to B, for obvious reasons. 
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We wish to emphasize that all of the intuitive properties of knowledge and 
belief discussed in this section, and indeed in this chapter as a whole, are highly 
contestable. Using logic does not commit one to any of those properties. But logic 
can help to clarify the commitments in a given form of modeling. For example, any 
modeling of knowledge using relational semantics will always suffer from problems 
having to  do with logical omniscience, as we have seen. 

4.4 Multi-agent episternic logic 

The formal move from the basic modal logic of the last section to its multi-agent 
generalization is very easy. One begins with a set A of agents in addition to the 
set of atomic propositions. Then the syntax adds operators K,, and we read Kay 
as "a knows cp." The semantics then moves from the models of the last section to 
what we shall call epistemic models. These are tuples (S, R, V) as before, except 
now R is an accessibility (function) R : A -+ P(S x S). That is, it is a family of 
accessibility relations, one for each agent. We usually write R, instead of R(a). 
Further, we write s t instead of (s, t )  E R,. 

EXAMPLE 2. We are going to present an example which hints at the applicability 
of our subject to the modeling of games. 

Consider three players Amina, Bao, and Chandra (a, b,  c). They sit in front of 
a deck consisting of exactly three cards, called clubs, hearts, and spades. Each is 
dealt a card, they look, and nobody sees anyone else's card. We want to reason 
about knowledge in this situation. It makes sense to take as atoms the nine 
elements below 

{Clubs,, Clubsb, . . . , Spadesb, Spades,). 

The natural model for our situation has six states. It  is shown in a slightly 
re-packaged form in Figure 4. We call the model Hexa. The states are named 
according to who has what. For example, is the state where Amina has 
clubs, Bao hearts, and Chandra spades. The lines between the states have labels, 
and these indicate the accessibility relations. So Bao, for example, cannot tell the 
difference between V i 4  andhiv:  if the real deal were one of those, he would think 
that it could be that same deal, or the other one (but no others). 

We mentioned that the picture of Hexa differs slightly in its form from what 
the official definition calls for. That version is mathematically more elegant but 
does not immediately lend itself to  a picture. It  would have, for example, 

We can then evaluate sentences in English by translating into the formal language 
and using the semantics. Here are some examples. 
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Figure 4. The model Hexa, with the accessibility relations pictured as edges be- 
tween the states. For example, Amina cannot distinguish 404 from 160 as she 
holds clubs in both deals. But Bao cannot distinguish 504 from 404 as he holds 
hearts in both. 

Amina knows she has the heart card. We translate to K,Hearts,. The semantics 
in Hexa is [K,Hearts,] = { ~ * b ,  VI*). (In more detail: in each of the two worlds 

and Oh*, every world that Amina thinks is possible belongs to V(Hearts,). 
And if s is one of the four other worlds, there is some world accessible from s for 
Amina which does not belong to  V(Hearts,). For example, in s = +v+, the world 
s itself is accessible for Amina, and she does not have hearts there.) That is, our 
sentence is true exactly at 404 and 404 .  Note that this is precisely the set of 
worlds where Amina indeed has hearts. So the sentence Amina has hearts if and 
only if she knows she has hearts comes out true at all states. 

If Bao has spades, Chandra has clubs. This is Spadesb -- Clubs,. The semantics 
is 

{404 ,044 ,04+ ,  4 + ~ , 4 0 4 ) .  

If Amina has hearts, then she knows that if Bao has spades, Chandra has clubs. 
The translation is 

Hearts, + Ka(Spadesb -t Clubs,). 

This true at all states. 
Bao considers it possible that Amina has spades but actually Amina has clubs. 

We translate "consider it possible that cp" by "does not know that cp is false." So 
our sentence here is 7KblSpades ,  A Clubs,. Usually one prefers to avoid negation 
by introducing an abbreviation. So if we say that ~ b c p  abbreviates 7Kb~cp,  then 
we may read this as Bao considers cp possible and translate our sentence as above. 
Its semantics is {+vr}. 

The last sentence shows the duality between "consider possible" and "know". 
This phenomenon of dual definitions is something we shall see later as well. 

Logic We define validity exactly as in the last section, but using the generalized 
language and semantics. Given a language and a semantics, one task for logic is 
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to determine the set of sentences which are valid. In particular, we might ask for 
a nice logical system for the valid sentences, since this may well give insight into 
the underlying assumptions in the model. Now in what we have been discussing 
in this section, we might seek at least three logical systems: 

1. A system for validity on the model Hexa. 

2. A system for validity on all models whatsoever. 

3. A system for validity on all models that are "basically similar" to Hexa. 

For the first question, we modify the system of Figure 1 for ignorance of two 
alternatives. The axioms that actually pertain to H and T must be replaced, of 
course. Instead of exclusivity, we take an axiom that says, informally, that for 
exactly one of the six states s of Hexa, all atoms true in s hold, and all not true 
in s do not hold. We also add an axiom saying that If Amina has clubs, then 
she knows it, and similarly for the other players and cards, and also that Amina 
does not know which card any other player holds. All of the rest of the axioms are 
valid in this model, as are the rules. Each statement of the old system would be 
replaced by three, one for each player. So one of the introspection axioms would 
be Kbcp -+ KbKbcp. In particular, the introspectivity and necessitation principles 
are valid. 

In passing, we note that this logical system has no interaction properties between 
the knowledge of different agents. That is, none of the axioms mix K, and Kb 
for different a and b. Mathematically, this means that the generalization of single- 
agent knowledge to the multi-agent case will be almost trivial. But there are 
two caveats: first, the phenomenon of common knowledge does involve discussions 
of different agents' knowledge, and so it turns out to be harder to study. And 
second, it really is possible to have situations where interaction properties make 
sense. For example, suppose one wants to model situations where everything Bao 
knows Chandra also knows. In the semantics, one would want R, c Rb. And then 
in the logic one could add Kbcp -+ K,cp. 

For the second question above, the fact that we are dealing with a larger class 
of models means that fewer logical principles are sound. The only sound principles 
would be the propositional tautologies and the distribution axioms, and the rules 
of modus ponens and necessitation. 

The last question is obviously not precise. The point of raising it is that one can 
make precise the sense in which games are, or are not, similar by using the logical 
principles that hold. For example, one often simplifies matters by assuming that 
adversaries are perfect reasoners, and in this setting it is natural to assume the 
introspectivity principles in the modeling. That is, one works only with models 
where those principles turn out to  be sound. The easiest way to arrange this is to 
look at the chart in Figure 3. If each accessibility relation 4 is reflexive, tran- 
sitive, and euclidean, then the model will satisfy both introspectivity assertions. 
(This holds no matter what the valuation V happens to do.) It turns out that a re- 
lation with these properties is automatically symmetric and hence an equivalence 
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relation. Moreover, an equivalence relation on a set is equivalently formulated as 
a partition of the set. So one often finds the tacit assumption in much of the game 
theory/economics literature that the models used are partition models consisting 
of a set S and a partition of S for each player. 

Identity conditions on models We first looked at  announcements in Sec- 
tion 2.2. In discussing (4) and (5), we noted the need for principled identity 
conditions on relational models. Fortunately, the general study of relational mod- 
els and their logical systems gives us a usable condition, called bisimulation. This 
condition is coarser than isomorphism, does what we want (in particular, it tells 
us that (4) and (5) ought to be identified), and has an intuitive resonance as well. 
For the formal definition and much more, see any text on modal logic, for example 
Blackburn et al. [2001]. 

4.5 Common knowledge 

We have discussed the idea of common knowledge in Section 3.8. We turn now 
to its formalization on top of what we saw in Section 4.4 above. We present a 
generalization of our previous concept, however. For each group B C A, we want 
notions of group knowledge for the set B and common knowledge for the set B. 
This last notion has the same intuitive basis as common knowledge itself. For 
example, it is common knowledge among Englishmen that one drives on the left, 
but this common knowledge does not hold for the entire world. 

For the syntax of group knowledge, we add operators EB to  the language of 
multi-agent epistemic logic. The semantics is given by 

This means that we (straightforwardly) translate EBcp as Everyone in group B 
knows cp. In the case of finitely many agents (the assumption in practically all 
papers on the topic), EBcp may be regarded as an abbreviation. 

EXAMPLE 3. We return to the model Hexa from Section 4.4 (see Figure 4). We 
have 

104 E{,,b)l(Spadesa A Clubsb A Hearts,). 

That is, both Amina and Bao know that the deal of cards is not 410. However, 
despite this, each does not know that the other knows this fact. 

We next turn to common knowledge. The syntax adds operators C ~ c p  to the 
language, exactly as with group knowledge. The semantics is more problematic, 
and indeed there are differing proposals in the literature. We follow the most 
common treatment. One essentially takes the unwinding of the fixed point that 
we saw in (13) in Section 3.8 as the definition, and then the fixed point property 
becomes a semantic consequence later on. 
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For the semantics, for each group B we pool all the accessibility relations for 
the members of B together, and then take the reflexive-transitive closure: 

(see below for an explanation). Then we interpret via 

s CBcp iff for all t E S : RG(s, t) implies t cp 

Alternatively said, CBcp is true in s if cp is true in any state s, that can be 
reached by a (finite) path of zero or more states s l ,  . . . , s, such that, for not neces- 
sarily different agents a, b, c E B: Ra(sl, s2), Rb(sz, s3), and. .  ., and R,(S,-~, s,). 
A path of zero states is just a single state alone. Hence if CBcp is true at s, then 
automatically cp is true at s as well. 

As an example of both the formal and informal concepts, we consider an n- 
person muddy children scenario (see Section 3.1), before any announcement that 
at least one agent is muddy. It is easy to describe the model: it  has 2n states 
with the rest of the structure determined in the obvious way. Then it is common 
knowledge at all states that no agents know their own state. More interesting is 
the comment that in this model, if s is a state and every agent knows cp at s,  then 
cp is already common knowledge at all states. 

The logic of common knowledge adds two principles to the basic multi-agent 
epistemic logic. Those are the Mia: Aziom: 

(so-called because it deals with the interactions of the the two operators of this 
section) and the induction rule: 

from x - + $  and x --+ Kax for all a E B, infer x-+ CB$. 

Using this logic, one can prove the important properties of common knowledge. 
For example, it is idempotent: 

The interesting direction here says that if cp is common knowledge in a group, then 
the fact of its being common knowledge is itself common knowledge in the group. 

4.6 Belief-knowledge logic 

Intuitively, belief and knowledge are related but different. However, we have 
heretofore conflated the two notions. We present here the simplest possible system 
which can sensibly separate the two by incorporating both at the same time with 
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different semantics. It and the logical axioms are taken from Meyer and van der 
Hoek [1995]. 

We fix sets A of agents and P of atoms. To separate the two notions, we need 
a language with different operators K and B.  

A knowledge-belief model (KB-model) is a Kripke model of the form (S, RE, 
R!, V ) a E ~ ,  where S is set of states, Rf and RE are binary accessibility relations 
in P ( S  x S) ,  and V is a function from P to P(S).  We write s k t instead of 
(s, t) E RE,  and s % t instead of (s, t) E RE. As the letters K and B indicate, the 
first relation k is meant to capture the knowledge of agent a, while the second 

captures the agent's beliefs. 
A KB model is required to satisfy the following conditions: R is an equivalence 

relation; % is serial; if s R t and s -% w, then t % w; and finally, % is included 
in % . So the modeling reflects the following intuitions: the truthfulness and 
introspection of knowledge, full belief introspection (agents know their own beliefs), 
beliefs are consistent, and knowledge implies belief. It is not necessary to assume 
that % is transitive and Euclidean, since these properties immediately follow from 
the above conditions. So we also have for free that belief is introspective, in the 
usual sense. 

Notice also that, as observed on the example in Section 2.3, the knowledge 
relation k is recoverable from the belief relation % , via the following rule: 

s k t  iff (Vw)(s%wifft%w).  (14) 

To see this, first assume that s PL t. Then also t k s. From this and one of the 
conditions in a KB model, we get the right-hand side of (14). And if the right- 
hand side holds, we show that s k t .  First, by seriality, there must be some w so 
that s % w. For this w we also have t % w. And then using the fact that % is an 
equivalence relation including 4 , we see that s k t. 

So, in fact, one could present KB-models simply as belief models (S, % , V), 
where % is transitive, serial and Euclidean, and one can take the knowledge 
relation as a defined notion, given by the rule (14) above. We interpret the logical 
system in KB-models via 

I[K,cp] = {s E S : t E ([cp], for all t such that s R t )  

IIBacp] = {s E S : t E [cp], for all t such that s + t }  (15) 

EXAMPLE 4. The easiest example is a two-state model for ignorance of two 
alternatives, say heads and tails, together with a belief in one of them, say heads. 
Formally, we have one agent, so we drop her from the notation. There are two 
states s and t,  for H and T. The relation -+ is H -+ H and T -+ H. The relation 
-- therefore relates all four pairs of states. Then at both states BH A 7KH. In 
particular, the agent believes heads at the tails state t. Hence we have our first 
example of a false belief. But agents in KB-models are not so gullible that they 
believe absolutely anything: 7B(H A T), for example. And indeed, the seriality 
requirement prohibits an agent from believing a logical inconsistency. 
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The logic is then axiomatized by the S5 system for knowledge, the KD45 system 
for belief, and two connection properties: First, Bacp -+ KaBa(p. So an agent may 
introspect on her own beliefs. (It also follows in this logic that lB,y  -+ Ka~Ba(p. )  
We should mention that introspection about beliefs is less controversial than intro- 
spection about knowledge. If we take knowledge to be a relation between an agent 
and an external reality, then it is as problematic to account for an agent's knowl- 
edge of their own knowledge as it is to account for any other type of knowledge. 
But to  the extent that belief is an "internal" relation, it seems easier to say that 
fully-aware agents should have access to  their own beliefs. 

The second logical axiom connecting knowledge and belief is K a y  --+ Baq. This 
reiterates an early point: we are thinking of knowledge as  a strengthening of belief. 
It is sound due to the requirement that % be included in k . 

Variations There are some variations on the soundness and completeness result 
which we have just seen. Suppose one takes an arbitrary relation %, then defines 
L from it using (14), and then interprets our language on the resulting structures 
by (15). Then R, is automatically an equivalence relation, and so the S5 axioms 
for knowledge will be sound. Further, the two connection axioms automatically 
hold, as does negative introspection. Continuing, we can add impose conditions on 
-% (such as seriality, transitivity, the Euclidean property, or subsets of these), and 
then study validity on that class. In the logic, one would take the corresponding 
axioms, as we have listed them in Figure 3. In all of the cases, we have completeness 
results. 

4.7 Conditional doxastic logic 

We now re-work the logical system of Section 4.6, so that it can handle conditionals 
in the way that we did in Section 2.4. The logical system is based on Board [2004], 
and Baltag and Smets [2006a; 2006b; 2006~1. Following the latter, we'll call it 
conditional doxastic logic (CDL).  

Its syntax adds to propositional logic statements of the form Bzy ,  where a is 
an agent and cy and p are again sentences in the logical system. This should be 
read as "If a were presented with evidence of the assumption a in some world, 
then she should believe cp describes the world (as it was before the presentation)." 

The simplest semantics for this logic uses plausibility models. These are also 
special cases of the belief revision structures used in Board [2004]. (We shall see 
the general notion at the end of this section.) Plausibility frames are Kripke 
structures of the form (S, <a)aEA, consisting of a set S endowed with a family 
of locally pre-wellordered relations s,, one for each agent a. When S is finite, a 
locally pre-wellordered relation on S is just one that is reflexive, transitive and 
weakly connected both forwards and backwards3, i.e. s 5, t and s 5, w implies 
that either t 5, w or w 5, t ,  and also t 5, s and w 5, t implies that either t 5, w 
or w 5, t. Equivalently, we have a Grove system of spheres, just as in Section 

3 ~ h i s  last property is also known as n o  branching t o  the left or t o  the right. 
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2.3, consisting of a number of (disjoint) "smallest spheres" (listing the worlds "in 
the center"), then surrounding them the next smallest spheres (containing worlds 
a little less plausible than these central ones), then the next ones, having worlds 
a little less plausible than these, etc. To match the notion of local pre-wellorder 
above (again, in the finite case), we need to assume that every world belongs to 
some sphere, and that if two spheres intersect or are both included in a larger 
sphere, then one is included in the other. 

As for Kripke models in general, a plausibility model is a tuple M = (S, 5,  V), 
where (S, 5 )  is a plausibility frame and V is a valuation on it. A doxastic state is 
a tuple of the form (M, s), where M is a plausibility model and s E M. 

REMARK 5. For readers of van Benthem and Martinez' Chapter 3b, we mention 
that our orderings go the other way from theirs: for them, "more plausible" is 
"upward" in the ordering, and for us it is "in the center" or "lower down". 

As in the example in Section 2.3, we define a knowledge (indifference) relation 
by putting 

s R t iff either s <, t or t 5, s. 

Plausibility models for only one agent have been used as models for AGM be- 
lief revision in [Gardenfors, 1988; Segerberg, 1998; Spohn, 19881. The additional 
indifference relations turn out to be useful in modeling, as we indicate shortly. 

Similarly, we define a belief relation by putting: 

s a t  iff s R t a n d ( V u ) ( s ~ u + t 5 , u )  . 

It is easy to see that R and 3 satisfy all the postulates of a KB model. More 
generally, we obtain a conditional belief relation by putting, for any set X 5 S of 
states: 

s a A t  iff s % t , t ~ X ,  a n d ( ~ u ) ( ~ R u & u ~ X + t ~ , u )  

In other words, s t if a considers t to be possible in s, if t E X ,  and if t 
is among the most plausible worlds for a with these two conditions. So here we 
see the basic idea: reasoning about a's hypothetical beliefs assuming cr involves 
looking at the relation where X = [a]. 

Observe that the belief relation is the same as the conditional belief relation 
"A, where S is the set of all states. As a passing note, for each X S we can use 
the relations " 4  to make a structure which is almost a KB-model in the sense of 
Section 4.6. Take S for the set of worlds, " A  for the belief relation for each agent 
a, take the knowledge relation R for a as above, and use the same valuation as in 
S.  The only property of KB-models lacking is that the belief relations might fail to 
be serial: a state s has no "6 -successors if X is disjoint from the R -equivalence 
class of s. This makes sense: seriality corresponds to consistency of belief; but X 
being disjoint from the R -equivalence of s corresponds to conditionalizing on a 
condition X that is known (with absolute certainty) to be false: the resulting set 
of conditional beliefs should be inconsistent, since it contradicts (and a t  the same 
time it preserves) the agent's knowledge. 
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For the semantics, we say 

[Bzcp] = {s E S : t E [cp], for all t such that s a A  t, where X = [a]} 

(16) 
In other words, to evaluate a doxastic conditional, a looks at which of her possible 
worlds are the most plausible given the antecedent a, and then evaluates the con- 
clusion on all of those worlds. If they all satisfy the conclusion cp of the conditional, 
then a believes cp conditional on a .  It is important that the evaluation take place 
in the original model. 

EXAMPLE 6. The model S from Section 2.4 had four worlds u, v, w, x. Amina's 
plausibility relation 5, is essentially the ordered partition: {v, w) < {u, x). Bao's 
plausibility relation is the reflexive closure of the relation {(v, w), (w, v)). We are 
interested in sentences Bzp,  where a = KbH V K b ~ H .  Let X = [a] = {u, x}. 
Then "A relates all four worlds to u and x. Our semantics in (16) is equivalent 
to what we used in (11). Note as well that the right-hand model in (8) shows "IS 
and *A. 

Knowledge in plausibility models There are two equivalent ways to define 
knowledge in plausibility models. One can use the definition (15) applied directly 
to the R relations introduced above, saying that 

s Kay iff s % t implies t cp. 

Alternatively, one can use the following observation to get an intuitively appealing 
reformulation. 

PROPOSITION 7. Let S be a plausibility model and s E S. The following are 
equivalent: 

1. s Kay.  

2. s B,"PI, where I is a contradiction such as p A ~ p .  

3. s + B,"cp. 

4. s I= Bzcp, for every sentence a .  

Here is the reasoning: If (1) holds, then s has no "A -successors at all, where 
X = [~cpn. This means that the next two assertions hold vacuously. Also, notice 
that, for every set X ,  s * t implies s%  t. Hence, if (1) holds then, for any 
sentence a ,  cp is true at all * -successors of s, where X = [a]. Therefore (4) 
holds a s  well. Conversely, (4) clearly implies (3); also, if either of (2) or (3) hold, 
then the semantics tells us that s has no "4 -successors, so every t R s must satisfy 
p; i.e., (1) must hold. 

A proposal going back to Stalnaker [1968] defines "necessityn4 in terms of con- 
ditionals, via the clause (3) above. This contains an idea concerning our notion of 

4This is denoted in [Stalnaker, 19681 by 09. Note that  it corresponds in our notation to  Kq, 
and should not be confused with our notation for "safe belief' Oq in the next subsection. 
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Syntax 'P ::= P I - V I ~  A + I B 3  

Definition Kacp := B,"Pcp (knowledge) 

Main Axioms B,"a hypothetical acceptance 
K ~ C P  --+ CP veracity 
Kaq + B,"cp persistence of knowledge 

+ Ka B ~ P  positive belief introspection 
-B,"cp -+ Ka7B,"cp negative belief introspection 
lB,"-cp -, (B,""v6 t, B:(p -+ 0)) minimality of revision 

Figure 5. Syntax and axioms for conditional doxastic logic. We also assume Modus 
Ponens, as well as Necessitation and the (K) axiom for B,". 

"knowledge": what it means to  know cp (in this strong sense) is that one would 
still believe cp even when hypothetically assuming 79. 

Finally, (4) can be related to the "defeasibility analysis" discussed in Section 
3.4. Indeed, what is says is that our notion of knowledge satisfies a strongerversion 
of this analysis than the original one: our knowledge is the same as "absolutely 
unrevisable" belief. One "knows" cp (in this absolute sense) if giving up one's 
belief in cp would never be justified, under any conditions (even when receiving 
false information). 

The logic We list a complete axiomatization in Figure 5. Note that in the 
syntax, we take conditional belief as the only basic operator, and define knowledge 
via (3). Verifying the soundness of most of the axioms is easy, and we discuss only 
the principle of minimality of revision. Let X = [a]. Let Y = [a /\ cp], SO 

Y C X. Suppose that s + -B,"lcp. So there is some t so that s "A t and t cp. 
This means that, for all w, we have s * w iff s w. We first show that if 
s + Bz(cp -+ 6), then s + B,""v6. To see this, let w be such that s "4 w. Then 
s w, and since w + cp, we have w 0. For the second half, one checks directly 
that B,""q0 implies s + B,"(cp -+ 0). 

Incidentally, the axioms of the logic have interpretations in terms of belief re- 
vision, as we shall see. In particular, the last axiom ("minimality of revision") 
corresponds to the conjunction of the AGM principles of Subexpansion and Su- 
perexpansion (principles (7) and (8) in Section 7). 

Adding common knowledge and belief It is also possible to expand the 
language with operators Cbg and Cks ,  reflecting conditional versions of common 
belief and knowledge in a group B.  For the proof systems and more on these 
systems, cf. Board [2004], and Baltag and Smets [2006a; 2006b; 2006~1. Board's 
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paper also contains interesting variations on the semantics, and additional axioms. 
Baltag and Smets offer a generalization of the notion of a plausibility model to that 
of a conditional doxastic model. Both authors considers applications to modeling 
in games. 

Belief revision structures The plausibility models that we have been con- 
cerned with in this section may be generalized in a number of ways. First of all, 
the pre-wellorders for each agent might be world-dependent. This would be impor- 
tant to  model agents with incorrect beliefs about their own beliefs, for example. 

In this way, we arrive at what Board 120041 calls belief revision structures. For 
more on this logic, including completeness results, see Board [2004]. 

4.8 The logic of knowledge and safe belief 

As we saw, Stalnaker7s defeasibility analysis of knowledge asks a weaker require- 
ment than the one satisfied by our notion of "absolutely unrevisable knowledge": 
namely, it states that cp is known (in the weak, defeasible sense) if there exists no 
true piece of information X such that the agent would no longer be justified to 
believe cp after learning X. Following Baltag and Smets [2006b; 2006c], we call 
safe belief this weak notion of defeasible "knowledge", and we use the notation 
Oacp to express the fact that a safely believes 9. We can immediately formalize 
this notion in terms of conditional belief arrows: 

s + O,cp iff for all t E S, and all s E X C S : s "4 t implies t cp. 

To our knowledge, the first formalization of safe belief (under the name of "knowl- 
edge") was due to Stalnaker [1996], and used the above clause as a definition. 
Observe that it uses quantification over propositions (sets of states). It was 
only recently observed, in [Baltag and Smets, 2006b; Baltag and Smets, 2006c; 
Stalnaker, 20061, that this second-order definition is equivalent to a simpler one, 
which takes safe belief as the Kripke modality associated to the relation "at most 
as plausible as": 

[O,cp] = {s E S : t E [cp], for all t 5, s )  

This last condition was adopted by Baltag and Smets [2007b] as the definition of 
safe belief. The same notion was earlier defined, in this last form, by van Benthem 
and Liu [2004], under the name of "preference modality". 

EXAMPLE 8. The situation described in Section 2.4 provides us with examples 
of safe and unsafe beliefs. In the model 10, Amina believes (though she doesn't 
know) that Bao doesn't know that the face of the coin is tails. If the real state is 
w, then this belief is true, and moreover it is safe: this is easy to see, since it is true 
at both v and w, which are the only two states that are at least as plausible for 
Amina as w. This gives us an example of a safe belief which is not knowledge. If 
instead the real state is u, then the above belief is still true (though is not known). 
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But it is not safe anymore: formally, this is because at state x (which for Amina 
is a t  least as plausible as u), Bao does know the face is tails. To witness this 
unsafety, consider the sentence a := BbH V BbT, saying that Bao knows the face 
of the coin. At the real world u, the sentence a! is true; but, at the same world u, 
Amina does not believe that, if a were true then Bao wouldn't know that the face 
was tails: u + a A 7B,0-BbT. This shows that Amina's belief, though true, can 
be defeated at state u by learning the true sentence a. 

Stalnaker [2006] observes that belief can be defined in t e r n s  of safe belief, via 
the logical equivalence: Bap  +-+ iOa41acp, and that the complete logic of the 
safe belief modality 0, is the modal logic S4.3.5 Baltag and Smets [2006b; 2006~1 
observe that by combining safe belief n a p  with the "absolute" notion of knowledge 
Kap  introduced in the previous section, one can define conditional belief via the 
equivalence6 : 

The logic of knowledge and safe belief is then axiomatized by the S5 system 
for knowledge, the S4 system for safe belief, and two connection properties: First, 
Kay  -+ n a p .  This reiterates the earlier observation: knowledge (in our absolute 
sense) is a strengthening of safe belief. The second axiom says that the plausibility 
relation 5, is connected within each R -equivalence class: 

Belief and conditional belief are derived notions in this logic, defined via the above 
logical equivalences. 

4.9 Propositional Dynamic Logic 

This section of our chapter mainly consists of brief presentations of logical systems 
which are intended to model notions of importance for epistemic or doxastic logic. 
The current subsection is an exception: propositional dynamic logic (PDL)  is 
a system whose original motivations and main uses come from a different area, 
semantic studies of programming languages. We are not concerned with this here, 
and we are presenting PDL in a minimum of detail, so that the reader who has 
not seen it will be able to see what it is, and how it is used in systems which we 
shall see later in the chapter. 

The syntax of PDL begins with atomic sentences p, q, . . ., (also called atomic 
propositions), and also atomic programs a ,  b, . . . (sometimes called actions). From 
these atomic sentences and programs, we build a language with two types of syn- 
tactic objects, called sentences and programs. The syntax is set out in Figure 6. 

5S4.3 is the logic of reflexive transitive frames with no branching t o  the right. 
6Van Benthem and Liu [2004] use another logical equivalence t o  similarly define conditional 

belief. 
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Sentences cp pi ~ c p  cp A 11, [nlcp 
Syntax P r o g r a m s a  a / ? c p I  a ; o  I a U u I a *  

Semantics Main  Clauses I[[a]cp] = {s : if s[n]t, then t E I[cp]) 
PcpD = {(s, s) : s E Ucpl) 
un; all = urn ; Ual 
[a u a] = [.rm u [a] 

I[a*l = corn)* 

Figure 6. The language of Propositional Dynamic Logic (PDL) 

The sentence-building operations include those of standard logical systems. In 
addition, if cp is a sentence and n a program, then [n]cp is again a sentence. The 
intended meaning is "no matter how we run n, after we do so, cp holds." This 
formulation hints that programs are going to be non-deterministic, and so one of 
the syntactic formation rules does allow us to take the union (or non-deterministic 
choice) of a and a to form n U a .  The other formation rules include composition 
(;), testing whether a sentence is true or not (?cp), and iteration (a*). 

The basic idea in the semantics is that we have state set S to  start, and pro- 
grams are interpreted in the most extensional way possible, as relations over S. 
So we are identifying the program with its input-output behavior; since we are 
thinking of non-deterministic programs, this behavior is a relation rather than a 
function. Atomic programs are interpreted as relations which are given as part 
of a model, and the rest of the programs and sentences are interpreted by a si- 
multaneous inductive definition given in Figure 6. With this interpretation, each 
program n turns into a sentence-forming operation [a]; these then behave exactly 
as in standard relational modal systems. The clause for program composition 
uses composition of relations, and the one for iteration uses the reflexive-transitive 
closure operation. 

P D L  turns out to  be decidable and to have a nice axiom system. The system 
resembles modal logic, and indeed one takes the basic axioms and rules for the 
operators [TI given by programs. The other main axioms and rules are 

(Test) [?PI$ (cp -+ 11,) 
(Composition) [a; a lp  +-+ [a] [u]cp 
(Choice) u ~ I v  * ([a19 A [ a b )  
(Mix) [ ~ * b  + P A [7d[n*l~ 

One also has an Induction Rule: 

From x --, 11, and 11, + [ n ] ~ ,  infer x -+ [a*]$. 

The treatment of iteration is related to what we saw for common knowledge in 
Section 4.5; there is a common set of mathematical principles at work. For more 
on PDL, see, e.g., Harel, Kozen, and Tiuryn [2000]. 
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P D L  and  epistemic updates One important observation that links P D L  with 
epistemic logic is that the changes in agents' accessibility relations as a result of 
an epistemic action of some sort or other are often given as relation-changing 
programs. We want to spell this out in detail, because it will be important in 
Section 7.2. 

The semantics of a P D L  sentence cp in a given model M may be taken to be a 
subset up] 2 M, namely the set of worlds making cp true. Similarly, the semantics 
of a P D L  program .rr may be taken to be a relation [T] on M.  Now given a 
P D L  program ~ ( r )  with a relation variable r ,  we can interpret .rr(r) by a function 
[ ~ ( r ) ]  from relations on M to relations on M (a relation transformer): for each 
R M x M ,  we use R for the semantics of r and the rest of the semantics as 
above. 

We shall see a simple example of this shortly, in Example 10 of Section 5.1. 

5 DYNAMIC EPISTEMIC LOGIC 

We now move on to a different form of dynamics related to the topic of our 
chapter. Starting from the perspective of epistemic logic, knowledge and belief 
change can also be modeled by expanding the logic with dynamic modal operators 
to express such changes. The result is known as Dynamic Epistemic Logic(s), or 
DEL for short. The first and the simplest form of dynamics is that associated 
with public announcements. It is simple from the perspective of change, but not 
particularly simple seen as an extension of epistemic logic. Public announcement 
logic is discussed in Section 5.1, and some related technical results of philosophical 
interest are presented in Section 5.2. Next, we move on to various forms of private 
announcements and to the associated dynamic logics, presented in Section 5.3. 
Even more complex types of dynamics, induced by various types of epistemic 
actions, are treated in Section 5.4. Finally, in Section 5.5 we briefly introduce 
logical languages and axioms for epistemic actions. 

5.1 Public announcements 

We first saw public announcements in Section 2.1. The example there was very 
simple indeed, and so to illustrate the phenomenon further, it will be useful to 
have a more complicated scenario. This discussion in this section is based on 
Example 2 in Section 4.4. Assume for the moment that the card deal is described 
by &94: Amina holds clubs, Bao hearts, and Chandra spades. Amina now says 
('announces') that she does not have the hearts card. Therefore she makes public 
to all three players that all deals where Hearts, is true can be eliminated from 
consideration: everybody knows that everybody else eliminates those deals, etc. 
They can therefore be publicly eliminated. This results in a restriction of the model 
Heza as depicted in Figure 7. 

At this point, we only consider announcements like this in states where the 
announcement is true. We view the public announcement "I do not have hearts" as 
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C V ~ -  a -+*Q *- a -**v 

/ A: "I do not have hearts." 

\ / 

Figure 7. In the epistemic state (Hexa, 104) Amina announces that she does not 
have hearts. 

an 'epistemic program'. We interpret it as an state transformer just as flipping the 
box was so interpreted in Section 4.2. This program is interpreted as an 'epistemic 
state transformer' of the original epistemic state, exactly as we saw in Section 4.9 
for PDL. We want [!cp]+ to mean that after (every) truthful announcement of cp, 
the sentence + holds. Continuing to borrow terminology from dynamic logic, state 
transformers come with preconditions. In this case, we want the precondition to 
be   hearts,, so that we set aside the matter of false announcements. 

The effect of such a public announcement of cp is the restriction of the epistemic 
state to all worlds where cp holds. So, 'announce cp' can indeed be seen as an 
epistemic state transformer, with a corresponding dynamic modal operator [!cp]. 

We appear to be moving away slightly from the standard paradigm of modal 
logic. So far, the accessibility relations were between states in a given model 
underlying an epistemic state. But all of a sudden, we are confronted with an ac- 
cessibility relation between epistemic states as well. "I do not have hearts" induces 
a(n) (epistemic) state transition such that the pair of epistemic states in Figure 
7 is in that relation. The epistemic states take the role of the points or worlds 
in a seemingly underspecified domain of 'all possible epistemic states'. By lifting 
accessibility between points in the original epistemic state to accessibility between 
epistemic states, we can get the dynamic and epistemic accessibility relations 'on 
the same level' again, and see this as an 'ordinary structure' on which to interpret 
a perfectly ordinary multimodal logic. (There is also a clear relation here with 
interpreted systems, which will be discussed in Subsection 6.3, later.) A crucial 
point is that this 'higher-order structure' is induced by the initial epistemic state 
and the actions that can be executed there, and not the other way round. So it is 
standard modal logic after all. 

Amina's announcement "I do not have hearts" is a simple epistemic action in 
various respects. It is public. A 'private' event would be when she learns that 
Bao has hearts without Bao or Chandra noticing anything. This requires a more 
complex action description. It is truthful. She could also have said "I do not 
have clubs." She would then be lying, but, e.g., may have reason to expect that 
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Bao and Chandra believe her. This would also require a more complex action 
description. It  is deterministic. In other words, it is a state transformer. A 
non-deterministic action would be that Amina whispers into Bao's ear a card she 
does not hold, on Bao's request for that information. This action would have 
two different executions: "I do not have hearts", and "I do not have spades." 
Such more complex actions can be modeled in the action model logic presented in 
Section 5.4. 

Language and  semantics Add an inductive clause [!p]ll, to the definition of 
the language. For the semantics, add the clause: 

M,sk[!cp]+ iff M , s ~ c p i m p l i e s M l c p , s ~ l l ,  

where Mlp = (St, R', V') is defined as 

S' {S E S I M,s  + cp) 
Rk - {(s, t) E S' x S' : (s , t )  E R,) 
v; = {s E S : s E V,) 

In other words: the model Mlp  is the model M restricted to all the states where 
cp holds, including access between states (a submodel restriction in the standard 
meaning of that term). It  might be useful to look back at Section 2.1 for a 
discussion of the parallel case of probabilistic conditioning. 

The language described above is called the language of public announcement, 
or public announcement logic (PAL). 

EXAMPLE 9. After Amina's announcement that she does not have hearts, Chan- 
dra knows that Amina has clubs (see Figure 7). We can verify this with a semantic 
computation as follows: In order to check that Hexa, 104 + [!lHearts,]K, Clubs,, 
we have to show that Hexa, *o4 +  hearts, implies HexallHearts,, +v4 + 
Kc Clubs,. The antecedent of this conditional being true, it remains to show that 
Hexa l~  Hearts,, & ~ 4  k Kc Clubs,. The state Hexa l~  Hearts,, is shown in Fig- 
ure 7. Clearly, at the world +ua in it, Kc Clubs,. 

EXAMPLE 10. We mentioned at the end of Section 4.9 that program terms in 
P D L  with variables may be used to  specify the actions of epistemic actions. Here 
is how this works for public announcement of a sentence p. For each agent a,  the 
program ~ ( r )  we want is ?p; r; ?p. As previously explained, this defines a relation 
transformer [ ~ ( r ) ]  on the underlying model. Then if R, is agent a's accessibility 
relation before the announcement, [r(r)](R,) is her accessibility relation after- 
wards. In more detail, 
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T h e  dual  opera tors  (!cp) Most people prefer to consider the dual (!p) of [!cp]. 
That is, we take (!cp)$ to an abbreviation for l [ !  cp] l$ .  This is equivalent to saying 
that M,  s k (!(P)+ if and only if M,  s cp and Mlq, s k $. 

The point is that statements of the form [!PI+ are conditionals and therefore 
are taken to be true when their antecedents are false; the duals are conjunctions. 
To see the difference, (!Heartsa) Kc Clubs, is false at  (Hexa, 404). 

Announcement a n d  knowledge In general, [!cp]Ka$ is not equivalent to Ka [!cp]$. 
The easiest way to see this in our running example is to note that 

Hexa, 6v+ Kc[!~Heartsa] Clubs,. 

The correct equivalence in general requires that we make the truth of [!cp]Ka$ 
conditional on the truth of the announcement. So we get the following: 

[!PI Ka$ is equivalent to cp --+ Ka [!PI+. 

Announcement a n d  common knowledge Incidentally, the principle describ- 
ing the interaction between common knowledge and announcement is rather in- 
volved. It turns out to be an inference rule rather than an axiom scheme. (One 
may compare it to the Induction Rule of PDL which we saw in Section 4.9; the 
rule here generalizes that one.) We therefore turn next to the proof system for 
validity in this logic. 

A logical sys tem See Figure 8 for a a proof system for this logic, essentially 
taken from [Baltag et al., 19981. It has precursors (namely completeness results 
for the logic with announcements but zoithout common knowledge) in [Plaza, 19891 
and [Gerbrandy and Groeneveld, 19971; technically, this works out easier because 
the rules of the logic allow one to rewrite all sentences in a way that eliminates 
announcements altogether, and in this situation we may appeal t o  the known 
completeness result for epistemic logic. Thus the main point in the axiomatic work 
of [Baltag et al., 19981 was the formulation of the Announcement Rule relating 
announcements and common knowledge, and the resulting completeness theorem. 

Announcements are functional If an announcement can be executed, there 
is only one way to do it. So the partial functionality axiom in Figure 8 is sound. 
It is also convenient to write this as 

This is a simple consequence of the functionality of the state transition semantics 
for announcement. One might also say (from a programming perspective) that 
announcements are deterministic. 
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[!VIP ++ (CP -+ P) atomic permanence 
[ ! I  ( + 7 )  partial functionality 
[!cp]Ka$ +-+ (p -+ K,[!p]$) announcement-knowledge 

From x -+ [!p]+ and x A cp -+ Kax for all a E B, infer x -+ [!cp]C~$ 
(the Announcement Rule) 

Figure 8. The main points of the logic of public announcements. We have omitted 
the usual modal apparatus for modalities [!p]. 

Sequence of announcements A sequence of two announcements can always 
be replaced by a single, more complex announcement. Instead of first saying '9' 
and then saying '$' you may as well have said for the first time 'cp, and after saying 
that +'. This is expressed in 

This is useful when analyzing announcements that are made with specific inten- 
tions; or, more generally, conversational implicatures & la Grice. Intentions can 
be postconditions ?I, that should hold after the announcement. So the (truthful) 
announcement of p with the intention of achieving + corresponds to the announce- 
ment (!cp)+. 

If a sentence is common knowledge to all agents, there is no point in 
announcing it It will not change anyone's knowledge state: 

Here A is our set of all agents. 

What can be achieved by public announcements? An interesting ques- 
tion, related to van Benthem's I20041 discussion of Fitch7s paradox presented in 
Section 3.6, is to characterize the sentences that can come to be true through some 
(sequence of) public announcement(s), at a given state (in a given model). One 
answer is offered by the "ability7' modality Vy, informally introduced in Section 
3.6. Now we can formally define the semantics of Vp, by saying it is true at a state 
iff there exists some epistemic sentence + such that (!+)cp is true at that state. So 
the "ability" modality can be obtained by quantifying over public announcements 
(for all epistemic sentences). The above observation on the fact that a sequence of 
public announcements can be simulated by a single announcement shows that we 
do not have to iterate the defining clause of Vp: it already captures what can be 
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achieved by any iteration. It  also means that this modality satisfies the axioms of 
the system S4. Balbiani et a1 [2007] call Ocp the "arbitrary announcement" modal- 
ity, and give a complete axiomatization of the logic of arbitrary announcements, 
as well as studying its expressivity. 

Alternative semantics There are some alternative semantics for public an- 
nouncements. Gerbrandy [1999; 20071 and Kooi [2007] propose a different se- 
mantics for announcements in a setting possibly more suitable for 'belief'. The 
execution of such announcements is not conditional to the truth of the announced 
formula. 

Yet another semantics has recently been proposed by Steiner [2006], to solve the 
problem of inconsistent beliefs that may be induced by public announcements. The 
semantics presented in this section has the disadvantage that updates induced by 
announcements do not necessarily preserve the seriality property (axiom D above): 
agents who have wrong (but consistent) beliefs may acquire inconsistent beliefs 
after a truthful public announcement. Steiner's alternative semantics solves this 
by proposing a modified semantics in which the new information is rejected if not 
consistent with prior beliefs. Yet another possible solution would be to incorporate 
some mechanism for belief revision, along the lines we discuss in Section 7. 

Relativized common knowledge Recent developments in the area use a dif- 
ferent modal notion, 'relativized common knowledge', of which standard common 
knowledge can be seen as a special case [van Benthem et  al., 2006b; Kooi, 20071. 
Here is the idea. Add to the syntax an operation CB(cp, $). The semantics is 

w + CB(cp, $) iff every path from w using UaEB 4 
consisting entirely of worlds where cp holds 
ends in a world where $I holds 

This results in more a expressive logic. At the same time, the relation between 
announcements and relativized common knowledge turns into an axiom: 

van Benthem, van Eijck and Kooi [2006b] contains the completeness proofs for 
this logic and others, and also various expressivity results. 

Iteration The language of PDL has an iteration operator on actions, but this 
has not been reflected in any of our example scenarios. However, there are scenarios 
and protocols whose natural description uses action iteration. One example is the 
general form of the Muddy Children-type scenario, as we described it in Section 3.1. 
We discuss this in connection with the sentences in Figure 9. These are based on 
sentences in Gerbrandy and Groeneveld [1997]. In them, d, is an atomic sentence 
asserting that child a is dirty, and similarly for the other children. Informally, the 
sentence VISION says that every child a can see and therefore knows the status of 
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VISION AaEA Abfa((db -+ Kadb) A ( ~ d b  -t Kaldb)) 
AT LEAST ONE V a E A  da 

BACKGROUND C A ( v ~ s ~ o ~  A AT LEAST ONE) 
NOBODY KNOWS AaEA(lKada A l K a l d a )  
SOMEBODY KNOWS 1NOBODY KNOWS 

Figure 9. Abbreviations in the discussion of the Muddy Children scenario, follow- 
ing [Gerbrandy and Groeneveld, 19971. 

all other children. Note that VISION is a (finite) sentence since the set A of agents 
(the children here) is finite. BACKGROUND says that it is common knowledge that 
VISION and AT LEAST ONE hold. The intuition is that this is the background that 
the children have after the adult's announcement that at least one of them is dirty. 

The sentence BACKGROUND is much weaker than what one would usually take to 
be the formalization of the overall background assumptions in the Muddy Children 
scenario. However, it is enough for the following result. Let 

c p ~  BACKGROUND -+ (NOBODY KNOWS*)SOMEBODY KNOWS. (18) 

Note the * in (18). The formal semantics would make this equivalent to the 
infinitary sentence 

Either way, c p ~  says that given the background assumption, some finite number 
of public announcements of everyone's ignorance will eventually result in the op- 
posite: someone knowing their status. 

PROPOSITION 11. For each finite set A of children, I= c p ~ .  

For a proof, see Miller and Moss [2005]. The point of Proposition 11 is that 
the statements c p ~  are natural logical validities. So it makes sense to ask for a 
logical system in which such validities coincide with the provable sentences. The 
basic logic of announcements and common knowledge is known to be decidable, 
and indeed we have seen the axiomatization in Figure 8. However, it was shown 
in [Miller and Moss, 20051 that adding the iterated announcement construct that 
gives us the (NOBODY KNOWS*) operation results in logical systems whose satisfi- 
able sentences are not decidable. The upshot is that (unfortunately) there is no 
hope of a finitely axiomatized logical system for the validities in a language which 
includes sentences like (18). 

Notes The logic of multi-agent epistemic logic with public announcements and 
without common knowledge has been formulated and axiomatized by Plaza [1989]. 
For the somewhat more general case of introspective agents, this was done by 
Gerbrandy and Groeneveld [1997]; they were not aware of Plaza's work at the 
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time. In [Plaza, 19891, public announcement is seen as a binary operation +, 
such that cp + $ is equivalent to (!cp)$. The logic of public announcements with 
common knowledge was axiomatized by Baltag, Moss, and Solecki [1998], see also 
[Baltag et al., 1999; Baltag, 2002; Baltag and Moss, 20041, in a more general setting 
that will be discussed in Section 5.4: the completeness of their proof system is a 
special case of the completeness of their more general logic of action models. A 
concise introduction into public announcement logic (and also some of the more 
complex logics presented later) is found in [van Ditmarsch et al., 20051. A textbook 
presentation of the logic is [van Ditmarsch et al., 20071. This also contains a more 
succinct completeness proof than found in the original references. Results on 
complexity of the logic are presented by Lutz in [2006]. 

There are a fair number of precursors of these results. One prior line of research 
is in dynamic modal approaches to semantics, not necessarily also epistemic: 'up- 
date semantics'. Another prior line of research is in meta-level descriptions of epis- 
temic change, not necessarily on the object level as in dynamic modal approaches. 
This relates to the temporal epistemics and interpreted systems approach for which 
we therefore refer to the summary discussion in the previous section. 

The 'dynamic semantics' or 'update semantics' was followed in van Emde Boas, 
Groenendijk, and Stokhof [1984], Landman [1986], Groeneveld [1995], and Velt- 
man [1996]. However, there are important philosophical and technical differences 
between dynamic semantics and dynamic epistemic logic as we present it here. 
The main one is that update semantics interprets meaning (in natural language) 
as a relation between states, and so it departs from standard accounts. Never- 
theless, the "dynamic" feature is common to both. Work taking propositional 
dynamic logic (PDL) in the direction of natural language semantics and related 
areas was initiated by van Benthem [1989] and followed up in de Rijke [1994] and 
Jaspars [1994]. As background literature to various dynamic features introduced 
in the 1980s and 1990s we recommend van Benthem [1989; 1996; 19941. More 
motivated by runs in interpreted systems is van Linder, van der Hoek, and Meyer 
[1995]. All these approaches use dynamic modal operators for information change, 
but (1) typically not (except [van Linder et al., 19951) in a multi-modal language 
that also has epistemic operators, (2) typically not for more than one agent, and 
(3) not necessarily such that the effects of announcements or updates are defined 
given the update formula and the current information state: the PDL-related and 
interpreted system related approaches presuppose a transition relation between 
information states, such as for atomic actions in PDL. We outline, somewhat ar- 
bitrarily, some features of these approaches. Groeneveld's approach [Groeneveld, 
19951 is typical for dynamic semantics in that is has formulas [!cp],$ to express 
that after an update of agent a's information with cp, $ is true. His work was 
later merged with that of Gerbrandy, resulting in the seminal [Gerbrandy and 
Groeneveld, 19971. Gerbrandy's semantics of public announcements is given in 
[Gerbrandy, 19991, in terms of the universe VAFA of non-wellfounded sets: this is 
a kind of "universal Kripke model"; i.e., a class in which every Kripke model can 
be embedded in a unique manner (up to bisimilarity; see the end of Section 4.4). 
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In this way, one can avoid changing the initial model (by eliminating states and 
arrows) after a public announcement: instead, one just moves to another state in 
the same huge, all-encompassing Kripke super-model VAFA. It was later observed 
in [Moss, 19991 that one can do with ordinary models. 

De Rijke [1994] defines theory change operators [fcp] and [*p] with a dynamic 
interpretation that link an enriched dynamic modal language to AGM-type the- 
ory revision [Alchourrdn et al., 19851 (see also Section 7 addressing dynamic epis- 
temics for belief revision). In functionality, it is not dissimilar to Jaspars' [1994] 
cp-addition (i.e., expansion) operators [!cp], and cp-retraction (i.e., contraction) op- 
erators [ !~ ]d ,  called updates and downdates by Jaspars. Van Linder, van der Hoek, 
and Meyer [1995] use a setting that combines dynamic effects with knowledge and 
belief, but to interpret various action operators they assume an explicit transition 
relation as part of the Kripke structure interpreting such descriptions. 

As somewhat parallel developments to [Gerbrandy, 19991, we also mention Lo- 
muscio and Ryan [1999]. They do not define dynamic modal operators in the 
language, but they define epistemic state transformers that clearly correspond to 
the interpretation of such operators: M * cp is the result of refining epistemic 
model M with a formula cp, etc. Their semantics for updates is only an approx- 
imation of public announcement logic, as the operation is only defined for finite 
(approximations of) models. 

5.2 Sentences true after being announced 

Moore  sentences, revisited Recall that Moore sentences are strongly unsuc- 
cessful: they are always false after being announced. In terms of our public an- 
nouncement logic, we can define strongly unsuccessful formulas cp as the ones such 
that the formula [!cp]-cp is valid. An interesting open problem is to  give a syntactic 
characterization of strongly unsuccessful. sentences. 

Successful formulas A more interesting and natural question is to characterize 
syntactically the successful formulas: those cp such that [!cp]cp is valid. That is, 
whenever cp holds and is announced, then cp holds after the announcement. In 
our setting, it is easy to see that a successful formula has also the property that 
[!(p]CAcp is valid. 

For example, the atomic sentences p are successful, as are their boolean combina- 
tions and also the sentences Kp. Logically inconsistent formulas are also trivially 
successful: they can never be truthfully announced, so after their truthful an- 
nouncement everything is true (including themselves). Public knowledge formulas 
are also successful: [!C~cp]C~cp is valid. This follows from bisimulation invariance 
under point-generated submodel constructions. On the negative side, even when 
both cp and li, are successful, 7 c p  may be unsuccessful (for cp = l p  V Kp), cp A $I 
may be unsuccessful (for cp = p and $I = l K p ) ,  and as well [!cp]$I and cp --+ + may 
be unsuccessful. 
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In its general form, the question of syntactically characterizing successful sen- 
tences remains open. But we present now two results on this problem. 

Preserved formulas One successful fragment form the preserved formulas (in- 
troduced for the language without announcements by van Benthem in [2002]) that 
are inductively defined as 

c p : : = p I i p I  c p ~ $ I c p ~ $  IKacp I CBPI [!icpl$ 

(where B C A). From cp -+ [!$]cp for arbitrary $, follows cp -+ [!cp]cp which is equiv- 
alent to [!cp]cp; therefore preserved formulas are successful formulas. The inductive 
case [!-cp]$ in the 'preserved formulas' may possibly puzzle the reader. Its proof 
[van Ditmarsch and Kooi, 20061 is quite elementary (and proceeds by induction 
on formula structure) and shows that the puzzling negation in the announcement 
clause is directly related to the truth of the announcement as a condition: 

Let M, s k [!7cp]$, and M' M such that s E M'. Assume M', s k lcp. Then 
M, s k l c p  by contraposition of the inductive hypothesis for cp. From that and 
M, s k [!icp]$ follows M l-y, s k $. From the inductive hypothesis for $ follows 
M'llcp, s $. Therefore M', s k [!~cp]$ by definition. 

Universal formulas A different guess would be that cp is successful iff cp is 
equivalent to a sentence in the universal fragment of modal logic, the fragment 
built from atomic sentences and their negations using K ,  A, and V. However, 
this is not to be. We discuss work on single agent models whose accessibility 
relation is an equivalence relation in this discussion. It remains open to weaken 
this assumption and obtain similar results. 

Suppose that cp and $ are non-modal sentences (that is, boolean combinations 
of atomic sentences). Suppose that $ -t cp. Consider cp v K$. (Again, K is the 
dual of K, the "possibility" operator.) This is clearly not in general equivalent to 
a sentence in our fragment. Yet we claim that 

I= [!(cp v I2-$)l(cp v ~ $ 1 .  

To see this, fix a state model M and some state s in it. If s E [yl in M,  then since 
cp is non-modal, s "survives the announcement" and satisfies cp V K$ in the new 
model. On the other hand, suppose that s E [K$] in M. Let s --+ t with t E [$I 
in M. Then again, t survives and satisfies $ and even cp V K$. Hence, s satisfies 
cp V K$ in the new model. 

This example is due to Lei Qian. He also found a hypothesis under which the 
"first guess" above indeed holds. Here is his result. Let To be the set of non-modal 
sentences. Let 

TI = To U {Kcp : cp E TO) u {Rcp : cp E To). 

Finally, let Tz be the closure of TI under A and V. 

THEOREM 12 (Qian [2002]). Let cp E Tz have the property that k [!cp]cp. Then 
there is some $ i n  the universal fragment of modal logic such that cp o ?(I. 



Ch10-N51726.fin Page 413 Tuesday, August 26,2008 11:l l  AM @ ~M+ 

Epistemic Logic and Information Update 

5.3 Varieties of privacy 

As a warm up before meeting the general notion of "epistemic actions" in the next 
section, we present here two generalizations of public announcements: the first, 
called fully private announcements, is essentially due (modulo minor differences7) 
to Gerbrandy [1997; 19991, while the second, which we call fair-game announce- 
ments, is due to van Ditmarsch [2000; 20021. Both can be regarded as forms of 
private announcements: some information is broadcast to an agent, or a group of 
agents, while being withheld from the outsiders. But there are important differ- 
ences: a fully private announcement is so secret that the outsiders do not even 
suspect it is happening; while a fair-game announcement is known by outsiders to 
be possible, among other possible announcements. 

Fully Private Announcements to Subgroups For each subgroup B of agents, 
! B c p  is the action of secretely broadcasting cp to all the agents in the group B, in a 
way that is completely oblivious to all outsiders a @ B: they do not even suspect 
the announcement is taking place. An example of fully private announcement was 
encountered in Section 2.3: Bao is informed that the coin lies Heads up, but in 
such a way that Amina does not suspect that this is happening. The announce- 
ment is truthful (as in the previous section) but completely private: after that, 
Amina still believes that Bao doesn't know the state of the coin. 

Assuming that before Bao entered, it was common knowledge that nobody knew 
that state of the coin, the belieflknowledge model before the announcement is a 
multi-agent version of the model 

The situation after the fully private announcement (by which Bao is secretely 
informed that the coin lies Heads up) is given by the model (6) from Section 2.3. 
To recall, this was: 

We can see that unlike the case of public announcements, the number of states 
increases after a fully private announcement. In fact, one can think of the model 
in the above picture as being obtained by putting together the initial model (19) 
and the model obtained from it by doing a public announcement, with the outsider 

7 ~ s  for public announcements, Gerbrandy's private announcements are not necessarily truth- 
ful. We present here a slightly modified version, that assumes truthfulness, in order to  be able 
t o  subsume public announcements (as presented in Section 5.1) as a special case. 
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(Amina) having doxastic arrows between the two submodels. In other words, the 
state transformer for a fully private announcement combines features of the original 
model with the one given by the state transformer for a public announcement. 

Language and semantics Add an inductive clause to the definition of 
the language. For the semantics, add the clause: 

M, s [!B'P]$ iff M ,  s cp implies M!~cp,  s $ 

where M!Bcp = (S' U S, R', V') is defined as 

The language described above is called the logic of fully private announcements to 
subgroups. The axioms and rules are just as in the logic of public announcements, 
with a few changes. We must of course consider the relativized operators [!BPI 
instead of their simpler counterparts [!PI. The most substantive change which we 
need to make in Figure 8 concerns the Action-Knowledge Axiom. It splits into 
two axioms, noted below: 

[!B(P]K,$J ++ (cp -+ K,[!~cpl$J) for a E B 
[!B(P]KcL'$ ((CP Ka'$) for a # B 

The last equivalence says: assuming that cp is true, then after a private announce- 
ment of cp to the members of B ,  an outsider knows $ just in case she knew $ 
before the announcement. 

Fair-game Announcements In a fair-game announcement, some information 
is privately learned by an agent or a group of agents, but the outsiders are aware 
of this possibility: it is publicly known that the announcement is one of a given 
list of possible alternatives, although only the insiders will known which one. 

We illustrate fair-game announcements with two examples. Let us reconsider 
the epistemic state (Hexa, &u+) wherein Amina holds clubs, Bao holds hearts, and 
Chandra holds spades. It is shown in Figure 4. Consider the following scenario: 

Amina shows (only) Bao her clubs card. Chandra cannot see the face 
of the shown card, but notices that a card is being shown. 

It is assumed that it is publicly known what the players can and cannot see or 
hear. Call the action we are discussing showclubs. The epistemic state transition 
induced by this action is depicted in Figure 10. Unlike after public announce- 
ments, in the showclubs action we cannot eliminate any state. Instead, all blinks 
between states have now been severed: whatever was the actual deal of cards, 
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A shows clubs to B 

\ 

Figure 10. On the left, the Kripke model for three players each holding one card. 
On the right, the effect of Amina showing her clubs card to Bao. 

Bao now knows that card deal and cannot imagine any alternatives. We hope to 
demonstrate the intuitive acceptability of the resulting epistemic state. After the 
action showclubs, Amina considers it possible that Chandra considers it possible 
that Amina has clubs. That much is obvious, as Amina has clubs anyway. But 
Amina also considers it possible that Chandra considers it possible that Amina 
has hearts, because Amina considers it possible that Chandra has spades, and so 
does not know whether Amina has shown clubs or hearts. It is even the case that 
Amina considers it possible that Chandra considers it possible that Amina has 
spades, because Amina considers it possible that Chandra does not have spades 
but hearts, in which case Chandra would not have known whether Amina has 
shown clubs or spades. And in all those cases where Amina shows her card, Bao 
obviously would have learned the deal of cards. Note that, even though for Chan- 
dra there are only two possible actions-showing clubs or showing hearts-none 
of the three possible actions can be eliminated from public consideration. 

But it can become even more complex. Imagine the following action, rather 
similar to the showclubs action: 

Amina whispers into Bao's ear that she does not have the spades card, 
given a (public) request from Bao to whisper into his ear one of the 
cards that she does not have. 

This is the action whispernospades. Given that Amina has clubs, she could have 
whispered "no hearts'' or "no spades". And whatever the actual card deal was, 
she could always have chosen between two such options. We obtain a model that 
reflects all possible choices, and therefore consists of 6 x 2 = 12 different states. 
It  is depicted in Figure 11 (wherein we assume transitivity of the accessibility 
relation for c) .  There is a method of calculating complex representations like 
this one, and we shall discuss this particular model in Example 17 in the next 
section. But for now, the reader may look at the model itself to ascertain that the 
desirable postconditions of the action whispernospades indeed hold. For example, 
given that Bao holds hearts, Bao will now have learned from Amina what Amina's 
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Figure 11. After Amina whispered into Bao's ear that she does not have the 
spades card, given a (public) request from Bao to whisper into his ear one of the 
cards that she does not have. Assume transitivity of the accessibility relation for 
Chandra. 

card is, and thus the entire deal of cards. So there should be no alternatives for 
Bao in the actual state (the underlined state &Oh 'at the back' of the f i g u r e  
for convenience, different states for the same card deal have been given the same 
name). But Chandra does not know that Bao knows the card deal, as Chandra 
considers it possible that Amina actually whispered "no hearts" instead. That 
would have been something that Bao already knew, as he holds hearts himself-so 
from that action he would not have learned very much. Except that Chandra could 
then have imagined him to know the card deal . . . Note that in Figure 11, there is 
also another state named *Oh, 'in the middle', so to speak, that is accessible for 
Chandra from the state 'at the back', and that witnesses that Bao doesn't 
know that Amina has clubs. 

Notes The logic of fully private announcements has been first formulated and 
axiomatized by Gerbrandy [Gerbrandy and Groeneveld, 1997; Gerbrandy, 19991, 
in a slightly different version: as for public announcements, Gerbrandy's private 
announcements are not necessarily truthful. Also, Gerbrandy's semantics of fully 
private announcements, as the one of public announcements, is given in terms 
of non-wellfounded sets, rather than Kripke models. The version presented here 
(which assumes truthfulness and uses Kripke semantics) was formulated in Baltag 
and Moss [2004], as a special case of a "logic of epistemic programs". Gerbrandy 
[1999] considers more general actions: fully private announcements are only a 
special case of his operation of (private) updating with an  epistemic program. 

The logic of fair-game announcements is a special case of the work by van 
Ditmarsch [2000; 20021 and by Baltag, Moss, and Solecki [1998; 20041; the latter 
call it "the logic of common knowledge of alternatives". 
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5.4 Epistemic actions and the product update 

As we saw in the previous section, some epistemic actions are more complex than 
public announcements, where the effect of the action is always a restriction on the 
epistemic model. As in the previous examples, the model may grow in complex 
and surprising ways, depending on the specific epistemic features of the action. 
Instead of computing by hand the appropriate state transformer for each action, 
it would be useful to have a general setting, in which one could input the specific 
features of any desired action and compute the corresponding state transformer in 
an automatic way. 

Action models We present a formal way to model such actions, and a large 
class of similar events, via the use of 'action models', originating in [Baltag et al., 
19981. The basic idea is that the agents' uncertainty about actions can profitably 
be modeled by putting them in relation to other possible actions, in a way similar 
to how the agents' uncertainty about states was captured in a Kripke model by 
relating them to other possible states. When Amina shows her clubs card to Bao, 
this is indistinguishable for Chandra from Amina showing her hearts card to Bao- 
if she were to have that card. And, as Amina considers it possible that Chandra 
holds hearts instead of spades, Amina also considers it possible that Chandra 
interprets her card showing action as yet a third option, namely showing spades. 
These three different card showing actions are therefore, from a public perspective, 
all indistinguishable for Chandra, but, again from a public perspective, all different 
for Amina and Bao. 

We can therefore visualize the 'epistemic action' of Amina showing clubs to 
Bao as some kind of Kripke structure, namely with a domain of three 'action 
points' standing for 'showing clubs', 'showing hearts', and 'showing spades', and 
accessibility relations for the three players corresponding to the observations above. 
We now have what is called an action model. What else do we need? To relate 
such 'action models' to the preconditions for their execution, we associate to each 
action point in such a model a formula in a logical language: the precondition of 
that action point. 

To execute an epistemic action, we compute what is known as the restricted 
modal product of the current epistemic state and the epistemic action. The re- 
sult is 'the next epistemic state'. It  is a product because the domain of the next 
epistemic state is a subset of the cartesian product of the domain of the current 
epistemic state and the domain of the action model. It is restricted because we 
restrict that full product to those (state, action) pairs such that the precondition 
for the action of the pair is satisfied in the state of the pair. Two states in the new 
epistemic state are indistinguishable (accessible), if and only if the states in the 
previous epistemic state from which they evolved were already indistinguishable 
(accessible), and if the two different actions executed there were also indistinguish- 
able. For example, Chandra cannot distinguish the result of Amina showing clubs 
in state +OI from Amina showing hearts in state V+I, because in the first place 
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she could not distinguish those two card deals, and in the second place she cannot 
distinguish Amina showing clubs from Amina showing hearts. 

REMARK 13. This is perhaps a good point to  make a comment on the terminol- 
ogy. What we are calling "action models" involve "actions" in an abstract sense, 
and so some of the important features of real actions are missing. For example, 
there is no notion of agency here: events like public announcement are modeled 
without reference to any agent(s) whatsoever as their source. Further, they may 
well be complex (many-step) actions, and for this reason they are also called pro- 
grams in work such as [Baltag and Moss, 20041. So other authors have called our 
"action models" event models. We maintain the older terminology mainly because 
this is how it has appeared in the literature. 

We now formally define action models and their execution, for any given logical 
language. We leave for later the problem of finding a good such language for 
describing epistemic actions and their effects. As usual, we assume background 
parameters in the form of a set of agents A and a set of propositional variables P. 

DEFINITION 14 (Action model). Let L: be a logical language. An action model 
over C is a structure U = (S, R, pre) such that S is a domain of action points, such 
that for each a E A, R, is an accessibility relation on S, and such that pre : S -+ C 
is a precondition function that assigns a precondition pre(a) E L to each a E S. 
An epistemic action is a pointed action model (U, a ) ,  with a E S. 

EXAMPLE 15. The public announcement of cp is modeled by a singleton action 
model, consisting of only one action point, accessible to all agents, and having cp 
as its precondition. We call this action model Pub cp, and denote by !cp the (action 
corresponding to the) unique point of this model. A more concrete example is the 
action !-Hearts, in Section 5.1 in which Amina publicly announces that she does 
not have the hearts card: the action model is Pub~Hearts, .  

A fully private announcement of cp to a subgroup B is modeled by a two-point 
action model, one point having precondition cp (corresponding to the private an- 
nouncement) and the other point having precondition T := p V l p  (corresponding 
to the case in which no announcement is made): 

We call this action model Pri~cp.  Again, the action point on the left represents 
the fully private announcement of cp. This action will be denoted by ! ~ p .  The 
action point on the right has as precondition some tautology TI and represents 
the alternative action in which no  announcement is made: essentially nothing is 
happening. This action will be denoted by T. 

A more concrete example of a fully private announcement model is the action 
considered in Section 2.3, in which Bao was secretely informed that the coin lay 
heads up, without Amina suspecting this to  be happening. This corresponds to 
the right-hand point in the action model Pr& H: 
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Fair-game announcements with n commonly-known alternatives can be modeled 
using an action model with n points, having the corresponding announcements as 
preconditions. For the "insiders", the accessibility relation is the identity relation, 
while the accessibility for the "outsiders" is the universal relation (linking every 
two points). 

As a concrete example of fair-game announcement, the action model U for the 
showclubs action in the previous section has three action points a, P, and y, with 
preconditions pre(a) = Spades,, pre(P) = Hearts,, and pre(y) = Clubs,. The 
epistemic structure of this model is: 

The pointed action model of interest is (U, y). In it, the action y which really 
happened is one where Amina and Bao come to share the knowledge that she has 
clubs: no other options are available to the two of them. Chandra, on the other 
hand, is in the dark about which of three announcements is taking place, but she 
does know the three possible messages: Clubs,, Spades,, Hearts,. 

Similarly, the action model U' for the action whispernospades in the previous 
section has the same structure as the model U above, except that we take: pre(a) = 

--~Clubs,, pre(P) =  hearts,, pre(y) = ~Spades,. The pointed action model of 
interest is (U', y). 

DEFINITION 16 (Execution, Product Update). Consider an epistemic state (M, s )  
with M = (S ,  R, V) and an epistemic action (U, a )  with U = (S, R,  pre). The result 
of executing (U, a )  in (M, s) is only defined when M, s pre(a). In this case, it is 
the epistemic state ( (M @ U), (s, a ) )  where ( M  @ U) = (S', R', V') is a restricted 
modal product of M and U defined by 

S' = {(s, a )  I s E S , a  E S, and M, s pre(a)) 
Rb((s, a ) ,  (t, PI) iff Ra(s,t) and Ra(a, b) 

E % iff s E Vp 

This restricted product construction has become known in the DEL literature 
as "Product Update". Here, we simply call it action execution. The intuition 
is that indistinguishable actions performed on indistinguishable input-states yield 
indistinguishable output-states: if when the real state is s, agent a thinks it is 
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possible that the state might be st, and if when action a is happening, agent a 
thinks it is possible that action a' might be happening, then after this, when the 
real state is (s, a ) ,  agent a thinks it is possible that the state might be (s', a'). 

EXAMPLE 17. At this point we can go back and justify all our previous state 
transformers in a uniform manner. The model in Figure 7 can be obtained by 
calculating Hexa @!lHearts,, where Hexa is the model shown in Figure 4, and the 
action model Pub-Hearts, was described above. The model (6) from Section 2.3 
can be computed by calculating the restricted modal product of the model (19) 
from Section 5.3 and the action model PubbH above. The pointed model shown in 
Figure 10 is obtained by calculating 

where U is from (21) above. 
Finally, we justify the pointed model in in Figure 11, by calculating 

(Hexa U', (*vhl T)), 

where the action model U' is as above. Let us look at this last calculation in more 
detail: the restricted product itself contains the twelve pairs 

(CVI, P), (*or, 71, ( a w l  P), (*rv, 71, (v*h, a ) ,  (v*47 
( v h i ,  a ) ,  (oh+, r ) ,  ( h ~ ,  a ) ,  ( h * ~ ,  PIl  (+v*, a ) ,  (+'*l P) 

The valuation only looks at  the first components. For example ( ~ h + , a )  
Hearts, A Spadesb A Clubs,. The epistemic relations are determined in the usual 
way of products. For example, R;((hv&, p) ,  (Vh*, a ) )  because Chandra cannot 
tell the difference between +v+ and 064 in Hexa, and she also cannot tell the 
difference between P and a in U. 

5.5 Logics for epistemic actions 

There is only one more step to make: to give a logical language with an inductive 
construct for action models. The task of finding a natural general syntax for 
epistemic actions is not an easy problem. A number of different such languages 
have been proposed, see e.g., [Gerbrandy, 1999; Baltag, 2002; Baltag and Moss, 
2004; van Benthem et al., 2006b; van Ditmarsch, 2000; van Ditmarsch, 2002; van 
Ditmarsch et al., 20031. We follow [Baltag and Moss, 20041, presenting here only 
one type of syntax, based on the notion of signature. 

DEFINITION 18 (Signature). An action signature is a finite Kripke frame C, 
together with a list ( ~ 1 , .  . . , n,) enumerating some of the elements of C without 
repetitions. The elements of C are called action types. 

EXAMPLE 19. The public announcement signature Pub is a singleton frame, con- 
sisting of an action type !, accessible to all agents, and the list (!). 
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The signature PriB of fully private announcements to a subgroup B is a two- 
point Kripke frame, consisting of an action type (corresponding to fully private 
announcements) and an action type 7 (for the case in which no announcement is 
made). The list is (!B), and the structure is given by: 

The signature of fair-game ann,ouncements (to a given group of insiders, and with 
common knowledge of a given finite set of alternatives) can be similarly formalized. 
For instance, the signature Showa,b for the logic of the actions showclubs and 
whispernospades (with a,  b as insiders and c as outsider) is a frame with three 
action types listed as (a, p, p) .  The structure is: 

DEFINITION 20 (Language). For a given action signature C with a listing of 
some of its action types (al,. . . , an ) ,  the language Cc of the logic of C-actions is 
the union of the formulas cp and the epistemic actions8 Q defined by 

where p E P, a E A, B C A, a E C, and a y l  . . . cp, above is an expression 
consisting of an action type a followed by a string of n formulas, where n is taken 
from the listing in C. 

The expressions of the form acp' are called basic epistemic actions. In addition, 
we have included in the language Lc an operation of non-deterministic choice 
on the actions, mainly to show the reader familiar with dynamic logic, process 
algebra, and the like that it is possible to add such operations. One can also add 
sequential composition, iteration (Kleene star *), etc. 

DEFINITION 21 (Action model induced by a signature). Given an action signa- 
ture C with its list ( a l , .  . . ,a,) of action types, and given a list cp' = (cpl, . . . ,cpn) 
of n formulas in Cc, the action model C@ is obtained by endowing the Kripke 
frame C with the following precondition map: if o = ai is in the given list Eu', we 
take pre(ai) := cpi; while, if a is not in the given list (al ,  . . . , an) ,  pre(a) is taken 

are using the letter a here for both action points in an action model and also for "epistemic 
actions" as syntactic expressions in our language. This ambiguity should not cause problems, 
but we wish to  alert the  careful reader of it. 
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to be some tautology p V ~ p .  When seen as an action point in the action model 
CG, the type a E C is denoted by a$. Since the frame is the same as C, having 
the relation 09% a'@ in the action model C@ is the same as having the relation 
a%-,' in the frame C. 

EXAMPLE 22. The action model Pub cp from the previous section is induced 
by the signature Pri  above, in the obvious way. The action model PriBcp from 
the previous section is induced by the signature Pri above. The action model 
U for the showclubs action in the previous section is induced by the signature 
Showa,b, since it coincides with the model Showa,bSpadesa ClubsaHeartsa. (This is 
an action signature followed by three propositions.) The model U' for the whis- 
pernospades action is induced by the same signature, since it can be written as 
S ~ O W , , ~ ~  ClubsalHeartsa~Spadesa. 

DEFINITION 23 (Semantics). 

M, s k [ad$ iff M, s /= pre(aG) implies ( M  8 Ccp'), (s, acp') k + 
M,sk[a ' JPlcp  iff M,sl=[alcpandM,si=[Plcp 

Note that the preconditions in an action model are arbitrary sentences in the 
language, since we want to talk about announcements concerning announcements 
and similar things. In fact, to avoid vicious circles, the definition of the semantics 
of Cc and the definition of action execution (as in the previous section) for action 
model over Cc should be taken to form one single definition (by simultaneous 
double induction) of both concepts. As usual, (a)cp is defined by duality as l[a]-xp. 

It is easy to see that the logic of public announcements (PAL) from Section 5.1, 
the logic of fully private announcements and the logic of fair-game announcements 
are examples of signature-based logics. The only syntactic difference is the pres- 
ence of modalities [rep]$ in the signature-based language for the signature Pri; 
but it is easy to see that [T(P]$ is logically equivalent to $, and so this language 
reduces to the logic of fully private announcements. 

The logical system for this language is a generalization of what we have seen 
for the public announcement logic earlier. A statement of it may be found in 
Baltag and Moss [2004], and the completeness in the final version of Baltag, Moss, 
and Solecki [1998]. For each of the operators of basic epistemic logic, one has 
a Reduction Axiom which allows one to push the dynamic (action) modalities 
past that operators, given a certain context. But the main difficulty comes in 
the combination of the action modality with common knowledge statements. An 
alternative system which uses the relativized common knowledge operators may 
be found in van Benthem, van Eijck and Kooi [2006b]. Since we are not going to 
need any of these systems or any of their interesting fragments, we leave matters 
at that. The only exception is the generalization of the Announcement-Knowledge 
Axiom, which we deem worth explaining in some detail. 
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T h e  Action-Knowledge Axiom The Reduction Axiom for the K operator 
will be a generalization of of the Announcement-Knowledge Axiom, which we call 
the Action-Knowledge Axiom: for every basic action a ,  we have 

To state it in a more transparent form, we need the notion of appearance of an 
action to an agent: for each basic action a of our language and for each agent a, 
the appearance of a to a is the action 

a, := U a', 
a* a' 

where U is the non-deterministic choice of a (finite) set of actions. The action 
a, describes the way action a appears to agent a: when a is happening, agent a 
thinks that (one of the deterministic actions subsumed by) a, is happening. With 
this notation, the Action-Knowledge Axiom says that, for every basic action a, we 
have: 

[a]Kaip ++ ( ~ r e ( a )  -+ Ka[aa]ip). 

In other words: knowledge commutes with action modalities, modulo the satisfac- 
tion of the action's precondition and modulo the replacement of the real action 
with its appearance. One can regard this as a fundamental law governing the 
dynamics of knowledge, a law that may be used to compute or predict future 
knowledge states from past ones, given the actions that appear to happen in the 
meantime. The law embodies one of the important insights that dynamic-epistemic 
logic brings to the philosophical understanding of information change. 

Notes The action model framework has been developed by Baltag, Solecki, and 
Moss, and has appeared in various forms [1998; 1999; 2002; 20041. The signature- 
based languages are introduced in Baltag and Moss [2004]. A final publication on 
the completeness and expressivity results is still in preparation. A different but 
also rather expressive way to model epistemic actions was suggested by Gerbrandy 
in [1999]; this generalizes the results by Gerbrandy and Groeneveld in [1997]. Ger- 
brandy's action language can be seen as defined by relational composition, inter- 
preted on non-wellfounded set theoretical structures corresponding to bisimilarity 
classes of pointed Kripke models. Van Ditmarsch explored another relational ac- 
tion language-but based on standard Kripke semantics-[van Ditmarsch, 2000; 
van Ditmarsch, 20021 and was influenced by both Gerbrandy and Baltag et al. His 
semantics is restricted to 55  model transformations. Van Ditmarsch et al. later 
proposed concurrent epistemic actions in [van Ditmarsch et al., 20031. How the 
expressivity of these different action logics compares is unclear. Recent develop- 
ments include a proposal by Economou in [2005]. Algebraic axiomatzzations of a 
logic of epistemic actions may be found in [Baltag et al., 20051 and [Baltag et al., 
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2007, to appear], while a coalgebraic approach is in [Cirstea and Sadrzadeh, 20071. 
A logic that extends the logic of epistemic actions by allowing for factual change 
and by closing epistemic modalities under regular operations is axiomatized in [van 
Benthem et al., 2006bl. A probabilistic version of the action model framework is 
presented by van Benthem, Gerbrandy and Kooi in [2006a]. For a more extensive 
and up-to-date presentation of dynamic epistemic logic (apart from the present 
contribution), see the textbook 'Dynamic Epistemic Logic' by van Ditmarsch, van 
der Hoek, and Kooi [2007]. 

6 TEMPORAL REASONING AND DYNAMIC EPISTEMIC LOGIC 

It is very natural in a conversation about knowledge to  refer to the past knowledge 
of oneself or others: I didn't know that, but now I do. We have already mentioned 
briefly the "Mr. Sum and Mr. Product" puzzle, illustrating that agents' comments 
on the past ignorance and knowledge of others can lead to further knowledge. In 
addition, all treatments of the Hangman paradox mentioned in Section 3.7 must 
also revolve around the issue of temporal reasoning concerning the future. 

We begin with a scenario in which agent's knowledge and ignorance reverses 
itself more than once. We present an example, due to  Sack [2007], because the 
natural summation of it involves statements about past knowledge. 

Our three players Amina, Bao, and Chandra are joined by a fourth, Diego. 
They have a deck with two indistinguishable 4 cards, one 0 and one /. The 
cards are dealt, and in the obvious notation, the deal is ( 4 , 4 , O ,  4). We assume 
that the following are common knowledge: the distribution of cards in the deck, 
the fact that each player knows which card was dealt to them, and that they do 
not initially know any other player's card. Then the following conversation takes 
place: 

i. Amina: "I do not have 0." 

ii. Diego: "I do not have 4." 

iii. Chandra: "Before (i), I knew cp: Bao doesn't know Amina's card. After (i), 
I did not know cp. And then after (ii), I again knew cp." 

All three statements are intuitively correct. After Amina's statement, Chandra 
considers it possible that the world is w = ( a , / ,  O , 4 ) .  In w after the announce- 
ment, Bao does know that Amina holds 4 ,  so cp is false. But Amina no longer 
reckons this world w to  be possible after Diego's announcement. Indeed, she only 
considers possible v = ( 4 , 4 , 0 , / ) .  And in v after both announcements, Bao 
thinks that ( / , 4 , 4 , O )  is possible. Hence cp holds, and Chandra knows that it 
does. 

Our first order of business is to  extend the kind of modeling we have been doing 
to be able to say the sentence in (iii), and also to prove it in a logical system. 
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6.1 Adding a 'yesterday7 operator t o  the logic of public announce- 
ments  

To get started, we present here the simplest temporal extension of the simplest 
dynamic epistemic logic, the logic of public announcements from Section 5.1. We 
think of a multi-agent epistemic model Mo subject to a sequence of public an- 
nouncements of sentence cpl, 9 2 ,  . . ., p n  These determine models Mi: Mo is 
given, and for i < n, Mi+l is given by taking submodels via Mi+l = Milcpi+l We 
add a single operation Y to the language, with the intended semantics that Yy 
means that cp was true before the last announcement. Formally, we would set 

Mi,w + Y p  iff Mi-l,w kcp (23) 

There are two problems here, one minor and one more significant. The slight 
problem: what to do about sentence Ycp in the original model Mo? The choice is 
not critical, and to keep our operators 0-like, we'll say that all sentences Ycp are 
automatically true in Mo, w. 

The larger problem has to do with the semantics of public announcement sen- 
tences [!$]x. We know how to deal with announcements of one of the cp sentences 
with which we started, since these figure into the definition of the models Mi. But 
for announcements of other sentences, those models are of no help. One solution 
is to think in terms of histories 

Again, we require that the models and sentences be related by Mi+l = Milyi+i. 
We recast (23) as a relation involving a history H as in (24) and a world W'E M,: 

H, w Ycp iff i = n,  or w E Mn-1 implies (Mo,cpl,. . . , Mn-I), w cp 
H,w+[!$]x iff H , w k $ i m ~ l i e s ( M ~ , ~ l ,  . . . , M n , $ , M n I $ ) , w k ~  

So the effect of public announcements is to extend histories. 
We turn to the logical principles that are reflected in the semantics. The decision 

to have Y be 0-like means that the distribution axiom and the rule of necessitation 
formulated with Y are going to  be sound for the logic. Here are the additional 
logical principles that are sound for this semantics (true in all worlds in all models 
in all histories): 

( P  -+ YP) A (TP --+ YIP) atomic permanence 
7 Y I  --t (Ylcp 1 Y v )  determinacy 
( Y I  + K,YI)  A ( T Y I  + K U 7 Y I )  initial time 
(P + $) * [!ply$ action-yesterday 
YKuv + KUYp memory 

These are due to Yap [2006] and Sack [2007]. In these, p must be atomic. And I is 
a contradiction, so Y I  is only true at the runs of length 1. Most of the axioms are 
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similar to what we have seen in other systems, except that one must be careful to 
consider those runs of length 1. The initial time axiom implies that it is common 
knowledge whether the current history is of length 1 or not The memory axiom is 
named for obvious reasons. Notice that the converse is false. 

Sack's dissertation [Sack, 20071 also contains the completeness proof for this 
logic, with common knowledge operators added. In fact, his work also includes 
operators for the complete past (not just the one step 'yesterday'), the future, 
and also arbitrary epistemic actions formulated in the same language. This means 
that one can model private announcements concerning the past knowledge of other 
agents, to name just one example. His language also contains nominals to allow 
reference to particular states (we do not discuss these here) and also allows agents 
to, in effect, know what epistemic action they think just took place. 

Returning to the flip-flop of knowledge In the previous section we presented 
a scenario that involved statements of previous knowledge and ignorance. Here is 
how this is formalized. Let cp be l (KbSpadesa V Kb Diamonds, V K b  Clubs,). Then 
a formalized statement of the entire conversation would be 

All of the background information about the scenario and the initial deal can be 
written as a sentence 1C, in the language, assuming that we have common knowledge 
operators. Then the fact that we have a completeness result means that 7C) k (P 

in the proof system. The logic is moreover decidable. As a result, it would be 
possible to have a computer program find a formal proof for us. 

6.2 The future 
Adding temporal operators for the future is more challenging, both conceptually 
and technically. To see this, let us return to the modeling of private announcements 
which we developed in Example 15 in Section 5.4. The way we modeled things, 
private announcements to groups seem to come from nowhere, or from outside the 
system as a whole. Let us enrich this notion just a bit, to see a simple setting in 
which temporal reasoning might be profitably modeled. 

Consider a setting where each individual agent a might send a message m to 
some set B of agents, with the following extra assumptions: (0) m is a sentence in 
whatever language we are describing; (1) the names of the recipient agents B are 
written into m; (2) sending m takes arbitrarily long, but eventually each agent in 
B will receive m; (3) all agents in B receive m at the same time; (4) the sending 
and receipt of messages is completely private; (5) a t  each moment, at most one 
message is sent or received; (6) messages are delivered in the order sent. We make 
these assumptions only to clarify our discussion, not because they are the most 
realistic or useful. 

One might like to have temporal operators in the language so that agents can 
"say" sentences like at some future point, all agents i n  B will receive the message 
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I just sent, resulting in the common knowledge for this group of cp, or I sent ml 
and then mz to b, and the message I received just now from b shows me  that i t  
was sent between the time b received ml  and the time he received mz. 

At the time of this writing, there are no formalized systems which include knowl- 
edge and temporal operators, epistemic actions as we have been presenting them in 
this chapter, and also have temporally extended events such as the asynchronous 
message passing we have just mentioned. There is a separate tradition from the 
computer science literature which incorporates temporally extended events, knowl- 
edge, and temporal assertions along different lines than this chapter. We are going 
to  present the ideas behind one of those approaches, that of interpreted systems. 

Before that, we want to mention a different approach, the history-based seman- 
tics of messages due to Parikh and Ramanujam [2003]. This work has a different 
flavor than interpreted systems. (But the two are equivalent in the sense the se- 
mantic objects in them may be translated back and forth preserving truth in the 
most natural formal language used to talk about them. See Pacuit [to appear] 
for this comparison.) The only reason we present the interpreted systems work 
instead is that it has a larger literature. 

6.3 Interpreted systems and temporal epistemic logic 

A general framework involving information change as a feature of interpreted sys- 
tems was developed by Halpern and collaborators in the 1990s [Fagin et al., 19951. 
There are a few basic notions. 

We start with a collection of agents or processors, each of which has a local 
state (such as 'holding clubs' for agent Amina), a global state is a list of all the 
local states of the agents involved in the system, plus a state of the environment. 
The last represents actions, observations, and communications, possibly outside 
the sphere of influence of the agents. An example global state is (F;v+,~J) wherein 
Amina has local state i ,  i.e., she holds clubs, Bao local state 0 ,  and Chandra local 
state 6 ,  and where 'nothing happened so far in the environment,' represented by 
a value 0. It is assumed that agents know their local state but cannot distinguish 
global states from one another when those states have the same local state. This 
induces an equivalence relation among global states which will play the role of 
an accessibility relation. Another crucial concept in interpreted systems is that 
of a ran: a run is a (typically infinite) sequence of global states. For example, 
when Amina says that she does not have hearts, this corresponds to a transition 
from global state (+V6,0) to global state ( i06 ,  nohearts). Atomic propositions 
may also be introduced to describe facts. For example, not surprisingly, one may 
require an atom Hearts, to be false in both global state (+01,8) and in global 
state ( ~ v I ,  nohearts). 

Formally, a global state g E G is a tuple consisting of local states g, for each 
agent and a state g, of the environment. A run r E R is a sequence of global 
states. The m-th global state occurring in a run r is referred to as r(m), and the 
local state for agent a in a global state ~ ( m )  is written as r,(m). An interpreted 
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( * w ,  UO) (440,  uv) 

] Heartsl I   heart st 

($04, YQ) (+w, nv) 

Figure 12. Amina holds clubs, hearts is on top of spades on the two-card stack on 
the table, and Amina does not know (in the underlined, actual global state) if it 
is. The two visualized runs reveal which card is on top. 

system Z is a pair (6,  R) consisting of a set of global states G and a set of runs R 
relating those states. 

A point (r, m) is a pair consisting of a run and a point in time m-this is 
the proper abstract domain object when defining epistemic models for interpreted 
systems. In an interpreted system, agents cannot distinguish global states from 
one another iff they have the same local state in both, which induces the relation 
shown below: 

(r, m) R (r', m') iff r (m) L rl(m') iff r, (m) = r: (m') 

(For an indistinguishability relation that is an equivalence, we usually write N 
instead of R.) With the obvious valuation for local and environmental state values, 
that defines an epistemic model. For convenience we keep writing Z for that. 
Given a choice of a real (or actual) point (r', m'), we thus get an epistemic state 
(Z, (r', m')). Epistemic and temporal (next) operators have the interpretation 

2,(r,m)l==Xcp iff Z , ( r , m + l ) + c p  
2, (r ,m) K,cp iff for all (r', m') : (r, m) % (r', m') implies Z, (r', m') + cp 

It will be clear that subject to  some proper translation (see e.g. [Lomuscio, 
19991) interpreted systems correspond to some subclass of the S5 models: all 
relations are equivalence relations, but the interaction between agents is even more 
than that. The relation between Kripke models and interpreted systems is not 
entirely trivial, partly because worlds or states in Kripke models are abstract 
entities that may represent the same set of local states. The main difference 
between the treatment of dynamics in interpreted systems and that in dynamic 
epistemics is that in the former this is encoded in the state of the environment, 
whereas in the latter it emerges from the relation of a state (i.e., an abstract state 
in a Kripke model) to  other states. 

Example For a simple example, consider the case of our three players a s  usual. 
Suppose that Amina holds clubs, and the hearts card is on top of the spades card 
(both facedown) on the table. She may now be informed about the card on top 
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of the stack. This is represented by the interpreted system depicted in Figure 12. 
It consists of four global states. The card Amina holds represents her local state. 
The other cards are (in this case, unlike in the three-agent card deal) part of the 
environment. The state of the environment is represented by which of the two cards 
is on top, and by an 'observation' state variable obs that can have three values uv, 
yv, and nu,  corresponding to the state before the announcement which card is on 
top, the state resulting from the announcement that hearts is on top, and the other 
state resulting from the announcement that it is at the bottom. The valuation 
V is now such that V(C1ub~a) = (($04, UV), ($40, UP), ($04, YO), ($40, nu)), 
and V(Heartst) = (($04, UV), ($06, YO)). The system consists of two runs, one 
from ($04, UV) to ($04, yv) (optionally extended with an infinite number of 
idle transitions), and the other run from ( $ ~ v , u u )  to ($40, nu). One can now 
compute that in the actual state ( 4 0 4 , ~ ~ )  it  is true that 7KaHeartst, but in 
state (+v,, YO) she has learned that hearts is on top: Ka-Heartst is now true. 
For another example: in the actual state XK,Heartst. How the treatment of 
announcements in interpreted systems relates to public announcement logic will 
be made precise at the end of the following section. 

Interpreted systems have been highly successful as an abstract architecture for 
multi-agent systems, where agents are either human operators or computer pro- 
cessors, and where the assumption that an agent 'knows its own state' is a realistic 
simplification. For that reason they can be said to model interaction between ideal 
agents. This assumption is also implicitly applied when modeling perfectly ratio- 
nal agents as in game theory and economics. Also, given that all the dynamics is 
explicitly specified in the runs through the system, it combines well with temporal 
epistemic logics wherein dynamics is implicitly specified by referring to an underly- 
ing structure wherein such a change makes information sense. Temporal epistemic 
logics have been fairly successful. Their computational properties are well-known 
and proof tools have been developed. See, for example, [van der Meyden, 1998; 
Dixon et al., 1998; Halpern et al., 20041. The work of Fagin et al. [1995] also gen- 
erated lots of complexity results on knowledge and time, we also mention the work 
of van der Meyden in this respect, e.g. [van der Meyden, 1994; van der Meyden, 
19981. 

There are two rather pointed formal differences between the temporal epistemic 
approach and the dynamic epistemic approach. 

Closed versus open systems First, the temporal epistemic description takes 
as models systems together with their whole (deterministic) history and future 
development, in the shape of 'runs'. As such, it can be easily applied to 'closed' 
systems, in which all the possible developments are fixed in advance, where there 
are no accidents, surprises or new interactions with the outside world, and thus the 
future is fully determined. Moreover, in practice the approach is more applicable 
to closed systems having a small number of possible moves: that's the only ones for 
which it is feasible to work explicitly with the transition graph of the full history. 

The dynamic epistemic approach is better suited to 'open' systems. This is for 
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example the case with epistemic protocols which can be modified or adapted at any 
future time according to new needs, or which can interact with an unpredictable 
environment. But it  is also applicable to closed systems in which the number of 
possible different changes is large or indefinite. 

There are two analogies here. The first is with open-versus-closed-system para- 
digms in programming. People in concurrency are usually interested in open sys- 
tems. The program might be run in many different contexts, in the presence of 
many other programs, etc. More recently (in the context of mobile computation), 
people have looked at approaches that allow programs to be changed at any time 
inside the same logical frame. The temporal logic approach is not fit for this, 
since it assumes the full current program to be fixed and given as 'the background 
model'. That is why people in this area have used totally different kinds of for- 
malisms, mainly process algebraic, such as the T-calculus. In contrast to that, 
dynamic epistemic logics are interesting in that, although based on a modal logic, 
which is not an algebraic kind of formalism, they are able to express changes in 
an open system through the semantic trick of changing the models themselves, via 
'epistemic updates'. 

The second analogy is with game theory. The temporal approach is like the 
description of a game through explicitly giving its full extensive form: the graph 
of all possible plays. For instance, chess (in this approach) is defined as the set of 
all possible chess plays. But there is another way to describe a game: by giving 
only the 'rules of the game' (which type of actions are allowed in which type 
of situations), together maybe with an 'initial state7 (or set of states) and some 
'winning rules7. This is a much more economical and way to describe a game, and 
it is more common as well. Of course, once this description is given, one could 
draw the game in extensive form as the set of all plays, if one is given enough 
computational power.. . If we neglect the aspects of the game that deal with who 
wins (and what), the dynamic epistemic approach can naturally describe epistemic 
games in precisely this way: one gives an epistemic Kripke model of 'initial states7 
and also an epistemic Kripke model or other semantically precise description of 
possible 'epistemic actions7, including preconditions that tell us on which type of 
states a given action may be applied. Then one can play the game by repeatedly 
updating the state model with the action model. A 'full play' or 'run' of the game 
is obtained when we reach a state (at the end of many updates) on which no action 
(in our given action model) can be applied. 

Information change description The second difference between the inter- 
preted systems and the dynamic epistemics approach simply concerns the ability 
to model and classify various 'types' or 'patterns' of information change, or in- 
formation exchange, such as public announcements, private announcements, game 
announcements etc. The dynamic epistemic approach obviously has this in-built 
ability, while the temporal approach doesn't have it, at least not in a direct, usable 
manner. There is nothing like an "announcement". All of the structure is encoded 
in the set of runs that serves as a model. Even the semantics of knowledge uses 
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this set of runs, and so if one wants to use this as a model of real knowledge, 
it  means that the agents must have implicit access to the overall model. To put 
it differently, in the temporal approach, one can only say what is true 'before' 
and 'after' a given action, and thus only implicitly get some information about 
the type of the action itself, through its input-output behavior. Moreover, this 
information is not enough to isolate the type of the action, since it only gives 
us the local input-output behavior of a given action; and different actions may 
behave identically in one local context, but differ in general. For instance in the 
two players and two cards case, in an epistemic state in which the fact that the 
card deal is i ~ 4  is common knowledge, a public announcement of that fact will 
have the same input-output description as a 'skip' action corresponding to 'noth- 
ing happens'. But in the epistemic state where the cards were dealt but not seen, 
or the subsequent one where all players only know their own card, this fact was 
not common knowledge and its public announcement will in that case induce an 
informative (i.e. non-skip) transition. For the same reason, actions like private 
announcements, announcements with suspicion, etc., are harder to model in the 
interpreted systems approach. 

A number of people are investigating the relation between dynamic epistemic 
logic and either interpreted systems or history-based models. One should see, for 
example, van Benthem and Pacuit [2006] for hints in this direction and also for 
related work on temporal epistemic reasoning. 

7 BELIEF CHANGE AND DYNAMIC EPISTEMIC LOGIC 

Our final section is concerned with the interaction of DEL with the topic of belief 
revision. The material of this section is very new and still in a state of flux, so our 
discussion here cannot claim in any way to represent the definitive word on the 
matter. 

Here is our plan for the section: First, we briefly present the classical A G M  the- 
ory of belief revision. We then briefly mention some dynamic (but non-epistemic) 
versions of AGM. Finally, we present some of the recent work that incorporates 
belief revision into the DEL framework, in an attempt to overcome the above- 
mentioned classical problems: the work of van Benthem on the dynamic logic of 
belief upgrades, the action plausibility models of Aucher and van Ditmarsch, and 
the action-priority update of Baltag and Smets. As before, we follow a "logical" 
rather than a historical order, leaving the history for the Notes at the end of the 
section. 

Classical A G M  theory A belief set (or theory) is a set K of sentences in some 
language. We at first take the language to be propositional logic, but we are keen 
to extend this to various modal languages, where the modalities are either one of 
the knowledge or belief modalities which we have already seen, or an operation 
coming from the field of Belief Revision itself. 
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The notion of a belief set is intended to model the set of sentences believed 
by some agent. So to incorporate the reasoning of the agent, one usually works 
on top of some logical system or other and then requires belief sets to be closed 
under deduction in the system; they need not be consistent, however. They cer- 
tainly need not be complete either: we might have cp gf K and 7 c p  $ K as well. 
The A G M  theory of belief revision deals with changes to  an agent's belief set 
when presented with a new sentence cp. The main point is that cp might conflict 
with what the agent believes, and so the theory is exactly about this issue. The 
theory is named for its founding paper, the celebrated Alchourrbn, Gardenfors, 
and Makinson [1985]. Overview publications include Gardenfors [1988] and most 
notably for us, Chapter 4c by Hans Rott. 

The A G M  theory employs three basic operations and presents postulates con- 
cerning them. Since belief sets are sets, the overall theory is second-order. More- 
over, it is an interesting issue to  then construct and study semantic models of the 
AGM postulates, or of related ones. 

The first operation is called expansion. Intuitively, this is what happens when 
the agent takes K as a given and simply adds cp as a new belief. We write K + cp 
for the result. The postulates for expansion as follows: 

(1) Closure K + cp is a belief set. 
(2) Success cpEK+cp 
(3) Inclusion K G K + c p  
(4) Vacuity I f c p ~ K , t h e n K = K + c p .  
(5) Monotonicity If J 2 K ,  then J + cp C K + cp. 
(6) Minimality K + cp is the minimal set with (1) - (5). 

It  is easy to check that these postulates exactly capture the operation of taking 
the consequences of K U {cp) in the underlying logical system. 

More interesting are the other two operations, contraction and revision. In- 
tuitively, the contraction of K by cp models the result of the agent's giving up 
the belief in cp and doing this without giving up too much. The revision of K 
by cp models the agent's minimally changing her beliefs to  incorporate cp. There 
are postulates for both operations, and we are only going to spell out those for 
revision. The reason is that on top of the postulates for expansion, those of revi- 
sion determine the contraction operation (and vice-versa). We write the revision 
operation as K * cp. The postulates are: 

(1) Closure 
(2) Success 
(3) Inclusion 
(4) Preservation 
(5) Vacuity 
(6) Extensionality 
(7) Subexpansion 
(8) Super expansion 

K * cp is a belief set. 
cp E K*cp 
K*cpGK+cp 
If-cpgf K , t h e n K + c p C  K*cp. 
K * cp is inconsistent iff ~ c p  is provable. 
If cp and ?I, are equivalent, then K * cp = K * $ 
K*(cpA$) C (K*cp)+$ 
Ifl$gf K * p , t h e n  K*(cpA$) > (K*cp)+$. 
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The result of a contraction operation K - cp satisfying some postulates which we 
did not list turns out to be the same as K n ( K  * lcp); this is called the Harper 
identity. And given a contraction operation satisfying the postulates, one can 
define revision by the Levi identity K * cp = (K - 1 9 )  fcp; this operation will then 
satisfy the eight postulates above. 

One important issue in the area is the relation between belief revision and the 
older topic of conditional logics which began with Lewis' book [1969]. To see what 
this is about, assume that we are working over a logical system with a symbol 3 

that we want to use in the modeling of some natural language conditional, say the 
subjunctive one. Then a belief set K might well contain sentences cp + 1C, and 
lcp. So in this context, we would like or even expect to have $ E K * cp. In other 
words, we ask about the condition 

c p + $ c K  iff $ ~ K * c p .  

This is called the Ramsey test. A key result in the subject is Gardenfors' Impossi- 
bility Theorem: there is no operation of revision on belief sets which both satisfies 
the postulates of * and also the Ramsey test. (The result itself depends on some 
non-triviality condition which we ignore here.) 

Although the literature on belief revision may be read as a discussion of changes 
in belief, it may also be read as an extended discussion about the correspondence 
between various axiom systems and types of semantic structures. These include 
structures akin to what we have seen. In particular, the sphere systems of Grove 
(based on earlier work of Lewis) come from belief revision theory. 

7.1 Dynamic versions of revision theory 

Moving now to a more semantical setting, we show how some of the operations 
which we have already seen can be interpreted as belief change operators. We then 
present some dynamic versions of AGM: the Katsuno-Mendelzon theory KM 
of belief update, de Rijke's dynamic modal logic DML and Segerberg's dynamic 
doxastic logic DDL. These are all dynamic in some sense, but some of them are not 
"epistemic" in that knowledge is not modeled via the Kripke (relational) semantics, 
or any other semantics for that matter. We mention some of the difficulties and 
problems encountered by classical belief revision theory. 

Examples of belief change via dynamic epistemic logic Consider express- 
ing and changing uncertainty about the truth of a single fact p, and assume an 
information state where the agent (whose beliefs are interpreted by the unlabeled 
accessibility relation depicted) may be uncertain about p and where p is actually 
false (indicated by 'designating' the actual state by underlining it). Figure 13 lists 
all conceivable sorts of belief change. 

In the top structure, uncertainty about the fact p (i.e., absence of belief in p and 
absence of belief in i p )  is changed into belief in ~ p .  On the left, 7Bp  is true, and 
on the right B l p .  In the second from above, belief in p is weakened to uncertainty 
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Remowing access and/or worlds: for belief expansion 

CQ-1 @-P 

Adding access and/or worlds: for belief contraction 

Changing access or domain: for belief revision 

Changing valuations: for update instead of revision 

Figure 13. Possible changes of belief mirrored in Kripke structure transitions 

about p, and in the third from above we change from Bp to B7p. Note that also 
in this semantic setting of Kripke-structure transformation, belief revision can 
again be seen as a contraction followed by an expansion, so we may in principle 
consider semantic alternatives for the Levi-identity. The last information state 
transition in Figure 13 depicts factual change. The state with changed valuation 
has suggestively been renamed from 1 to  00, although formally, of course, it is only 
the valuation of a named state that changes. The Lassignment' or substitution 
p := I indicates that the valuation of atom p is revised into the valuation of the 
assigned formula. As this is I, the new valuation of p (seen as a subset of the 
domain) is now the empty set of states. 

Updates and the KM theory A topic in traditional belief revision comes 
under the name of 'update'. An update-unfortunately a clash cannot be avoided 
with the more general meaning of that term in dynamic epistemic logic, where 
it incorporates belief revision as well-is a factual change, as opposed to a belief 
change in the three previously distinguished notions. The latter merely express a 
different agent stance towards a non-changing world, but in an 'update' the world 
itself changes. The standard reference for updates in belief revision is Katsuno 
and Mendelzon [1991]. Recent investigations on updates (factual change) in a 
dynamic epistemic setting are [van der Meyden, 1998; van Benthem, 1996; Kooi, 
20071. These ideas also deserve to be properly applied to the belief revision arena. 
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We mention one of the motivating examples, mainly to contrast with the A G M  
postulates. It is taken directly from [Katsuno and Mendelzon, 19911. 

Consider a belief set with two atomic propositions, b  and m, standing for "there 
is a book on the floor" and "there is a magazine on the floor". Suppose that 

where the arrow denotes the deductive closure in propositional logic. This models 
a situation in which an agent believes that exactly one item is on the floor, but 
does not have a specific belief of which it is. Suppose we wish to change the world 
by instructing a robot (as they have it) to put the book on the floor. So we wish to 
consider K * b  or K+b. Now K+b =T { b A l m ) .  As for K * b, since l b  $ K ,  we see 
from the Inclusion and (especially the) Preservation postulates that K * b  = K + b 
anyways. In particular, -m E K * b. This seems like an unintuitive result: given 
that we want to model a change in the world resulting from putting the book on 
the floor, why should we believe afterwards that the magazine is not on the floor? 
The KM theory addresses this by proposing AGM-like postulates on the matter 
of update, the phenomenon illustrated in this example. 

Belief change with dynamic non-epistemic logic The three 'theory change 
operators' @, 8, and @ can be reinterpreted as dynamic modal operators. A 
straightforward way to model these operators would be a logic in which [@cp]$ 
expresses that after revision with cp, (the agent believes) $. This approach was 
suggested by van Benthem in [199419 and further developed by de Rijke in [1994]. 
They propose a semantical counterpart of a total order on theories, in the form 
of 'updating' and 'downdating' relations between states or worlds, standing for 
theories, and interpret the modal operator as a transition in such a structure 
according to these relations. 'Updating' models expansion: it relates the current 
state to states that result from expansion. 'Downdating' models contraction. It 
relates states that result from contraction to the current state. Revision is indeed 
downdating followed by updating. In this overview we focus on approaches that 
extend epistemic logics, therefore we do not give more details on this non-epistemic 
approach. 

Dynamic Doxastic Logic (DDL) In the approach by Segerberg and collab- 
orators [Lindstrom and Rabinowicz, 1999a; Segerberg, 199913; Segerberg, 1999a; 
Lindstrom and Rabinowicz, 1999b], beliefs are represented explicitly. We now 
identify a theory K with the believed formulas (or some subset of the believed 
formulas) in an epistemic state: 

91t is only one of many topics covered in that publication, namely Section 6, pages 714-715, 
'Cognitive procedures over information patterns'. Note this work is similar to  a 1991 technical 
report. 
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As in [de Rijke, 19941 , DDL expresses belief change with dynamic modal operators 
[ecp], [gcp], and [ ~ c p ] .  In a typical revision where we have that ~ c p  € K ,  cp E KOcp, 
and -cp @ K O cp, we now get 

For contraction, we want that in case M, s k Bcp, after contraction cp is no longer 
believed, i.e., M, s [~cp]lBcp. Similarly, for expansion we aim to achieve M, s 

[@cplBcp. 
This approach is known as dynamic doxastic logic or DDL. Similar to [de Rijke, 

19941 it presumes a transition relation between states representing theories, but 
this is now differently realized, namely using what is known as a Segerberg-style 
semantics wherein factual and epistemic information- called the world compo- 
nent and doxastic component -are strictly separated. A dynamic operator is 
interpreted as a transition along the lines of minimal theory change set out by 
this given structure, with the additional restriction that the transitions describe 
epistemic (doxastic) change only, and not factual change. This restriction is en- 
forced by not allowing the 'world component' to  change in the transition relation 
but only the doxastic component [Lindstrom and Rabinowicz, 1999a, p.18]. 

There are now two options: either we restrict ourselves to beliefs in objective 
(boolean, non-epistemic) formulas, and we get what is known as basic DDL, as 
in [Lindstrom and Rabinowicz, 1999a; Segerberg, 1999bI. Or we allow higher- 
order beliefs, as in the dynamic epistemics described in previous sections of our 
chapter. We thus get 'full' or 'unlimited' DDL, also discussed in [Lindstrom and 
Rabinowicz, 1999aI but mainly in [Lindstrom and Rabinowicz, 1999bI. 

Incidentally, the semantic models of DDL are rather different from those in 
this chapter, at least on the surface. They are more similar to neighborhood 
models, or topological models for modal logics. These are too different from what 
we have seen to allow us to present them in this chapter. Getting back to DDL 
and the systems we have presented, we know of no publications offering detailed 
comparisons; surely this is because the work of this section is so new. For this, 
and for discussion of recent work on DDL, see Leitgeb and Segerberg [2007]. 

Problems of the classical theory Classical belief revision, and its dynamic 
versions presented in the previous section, encounter a number of problems: the 
difficulties in extending them to iterated belief revision; the multiplicity of belief 
revision policies; difficulties in dealing with multi-agent beliefs and even more 
with higher-order beliefs, that is beliefs about other beliefs. We refer for details to 
Chapter 4c on the subject in this handbook. We are mainly interested in higher- 
order beliefs and iteration. Our discussion amounts to a suggestion that the work 
of this chapter can be useful in dealing with these matters. 
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If one drops the restriction to belief in objective formulas and allows higher- 
order beliefs, then the standard AGM postulates lead to paradoxes. In particular, 
the Success postulate for revision is problematic for sentences that involve doxastic 
modalities: we have already noted in Section 5.2 that Moore sentences p A 7K,p 
are not successful. Similar examples apply to formalisms which have the syntactic 
means to specify semantic properties of evident interest. We now continue with 
the in-depth treatment of recent dynamic epistemic approaches to belief revision. 
The hallmark of the approach is that the transition that interprets the dynamic 
operators is constructed (as a state transformer) from the (specific action of an- 
nouncing the) revision formula, instead of assuming as given such a transition 
relation. 

7.2 The dynamic logic of belief change 

This section is mainly based on the work of J. van Benthem [2006; 20041 on the dy- 
namic logic of belief change and "preference upgrade" (with some additional input 
from Baltag and Smets [2006a]). Essentially, this work uses the DEL paradigm 
to  develop a logic for belief change that completely solves the problems posed to 
belief revision by multi-agent beliefs and higher-order beliefs, iterated revision, 
as well as partially addressing the problem of the multiplicity of belief revision 
policies. 

Static versus dynamic belief revision The first fundamental distinction un- 
derlying this work is the one between static and dynamic belief revision: the first 
has to  do with conditional beliefs, while the second has to do with the beliefs 
acquired after a belief-changing action. The distinction is only significant when 
dealing with higher-order beliefs: in the case of factual beliefs, the two types of 
revision coincide. Static belief revision captures the agent's changing beliefs about 
an unchanging world. But, if we take the "world" as incorporating all the agents' 
higher-order beliefs, then the world is i n  fact always changed by our changes of 
belief (as shown above, using examples involving Moore sentences). As a conse- 
quence, the best way to understand static belief revision with a proposition P 
is as expressing the agent's revised beliefs, after learning P ,  about what was the 
case, before the learning. In contrast, dynamic belief revision captures the agent's 
revised beliefs about the world as it i s  after revision. 

Static revision as conditional belief Classical AGM theory deals with chang- 
ing beliefs about an unchanging reality. In our terminology, it is static belief 
revision. In a modal logic setting, it is natural to  formalize static revision as hypo- 
thetical belief change, using conditional belief operatorslo B:cp, as in Section 4.7: 

1°1t may seem that the  failure of Ramsey's test for AGM revision would conflict with a 
conditional belief interpretation of AGM. But this is not the case. In the conditional belief 
setting, Gardenfors' impossibility result simply shows that "a conditional belief" is not the same 
as "a belief in a conditional"; more precisely, there doesn't exists any non-epistemic, non-doxastic 
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if K is agent a's current belief set at state s and *, is her belief revision opera- 
tor, then writing s + Bz?(, is just a way of saying that ?(, € K * ,cp. Based on 
the above discussion, we can thus read a doxastic conditional Bz11, as follows: i f  
learning cp, agent a would come to  believe that ?(, was the case (before the learn- 
ing). The semantics is given by plausibility models (or systems of Grove spheres, 
see Section 2.4), as in Section 4.7, with a conditional belief Bz?(, defined via the 
the most plausible states (satisfying cp) and being epistemically indistinguishable 
from the current state. If we translate the A G M  postulates into the language of 
conditional beliefs, while taking into account the concept of "(fully introspective) 
knowledge" and the limitations that it poses to belief revision, we obtain the ax- 
ioms of conditional doxastic logic C D L  from Section 4.7." In particular, observe 
that the AGM Success postulate is  valid for static belief revision, even if we allow 
doxastic modalities (and thus higher-order beliefs) in our language: it is always 
true (even for Moore sentences cp) that, after learning that cp is the case, agents 
come to believe that cp was the case (before the learning). 

In contrast, a statement [!cp]B,11, involving a dynamic modality says that after 
learning cp, agent a would come to believe that 11, is  the case (in the world after the 
learning). Due to Moore-type sentences, dynamic belief revision will not satisfy 
the A G M  postulates (and in particular, the Success postulate will fail). 

Triggers of information change As van Benthem [2006] observes, in order 
to understand and formalize dynamic belief revision, it is essential to take into 
account the actual "learning event" that "triggered" the belief change. For exam- 
ple, our beliefs about the current situation after hearing a public announcement 
are different from our beliefs after receiving a fully private announcement. In the 
public case, we may come to believe that the content of the announcement is now 
common knowledge (or at least common belief); in the private case, we may come 
to believe the opposite: that the content of the announcement forms now our secret 
knowledge. In contrast, our beliefs about the triggering action are irrelevant as far 
our static revision is concerned: our conditional beliefs about the current situation 
given some hypothetical information do not depend on the way this information 
might be acquired. This explains a fact observed in [van Benthem, 20061, namely 
that by and large, the standard literature on belief revision (or belief update) 
does not mention in any way the explicit triggers (the actual doxastic events) that 
cause the belief changes (dealing instead only with types of abstract operations on 
beliefs, such as update, revision and contraction etc). The reason for this lies in 
the static character of A G M  revision, as well as its restriction (shared with the 
KM updates and basic DDL) to one-agent, first-level, factual beliefs. 

This is where the DEL paradigm can help: as already seen in this chapter, DEL 
explicitly analyzes the triggers for information change, from simple announcements 
of facts to individual agents to complex information-carrying events, involving 
many agents and their different perspectives on the learning event. 

notion of conditional that would validate this equivalence. For more on this, cf. Leitgeb [2007]. 
 h he translation is carried out in detail in [Baltag and Smets, 2006al. 
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Revision as relation change If we model static beliefs (including conditional 
beliefs) using plausibility relations, then dynamic belief revision corresponds to  
relation change: the model is modified by changing the plausibility arrows. Dif- 
ferent types of dynamic belief revision (induced by different triggering events) will 
correspond to different such changes. In other words, we can model the triggers of 
belief revision as relation transformers, similarly to the way we previously modeled 
knowledge updates as epistemic state transformers. 

H a r d  versus soft information The second fundamental distinction made in 
[van Benthem, 20061 is between learning 'hard facts' and acquiring 'soft informa- 
tion'. Unlike in the classical belief-revision setting, in an epistemic-logic setting 
we need to distinguish between the announcements that lead to knowledge (in the 
absolute, un-revisable sense) of some hard fact and the ones that only affect our 
beliefs. The first type is exemplified by the "truthful public announcement" ac- 
tions ! P, that we have already seen. The second type will correspond to "soft" 
informational actions, of the kind that is more standard in belief revision. One 
can also have more complex mixtures of hard and soft information, giving rise to 
more complex belief-revision policies. 

Defining, classifying, and  axiomatizing belief-revision policies We men- 
tioned PDL in Section 4.9, and one reason for doing so is the work here. The 
natural language to define relation changes is the set of programs of PDL: one 
can then redefine the plausibility relations R, (corresponding to the "at least as 
plausible as" relations 5, in Section 4.7), via a clause of the form 

where n(R,) is any P D L  program built using tests ?cp, the universal relation T, 
the old plausibility relations R, and regular operations on relations: union U, com- 
position ; and iteration *. In other words, one can use a relation transformer n(r)  
as in Section 4.9, and redefine the plausibility relations via R, := [n(r)J(R,). In 
their analysis of revision policies, van Benthem and Liu [2004] propose as a natural 
class of relation transformers the ones that are definable in P D L  without iteration, 
showing that these are particularly well-behaved. In particular, one can read off 
the relational definition a set of reduction laws for each such relation transformer, 
automatically providing a complete axiomatization of the corresponding dynamic 
logic. It is important to note that the reduction laws that are immediately ob- 
tainable through this method are for the safe belief l2 and knowledge modalities, 
not for conditional belief. But one can derive reduction laws for conditional be- 
lief in many instances, using the observation made in Section 4.8 concerning the 
definability of conditional belief in terms of knowledge and safe belief. 

1 2 ~ h i s  is called the "preference modality" by van Benthem and Liu [2004]. 
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Examples of definable revision policies and their reduction laws We give 
here only three examples of multi-agent belief-revision policies: truthful public 
announcements of hard facts, lexicographic upgrades and conservative upgrades. 
They were all introduced by van Benthem in [2006] as dynamic multi-agent versions 
of revision operators previously considered by Rott [2004] and other authors. In 
each case, we give here only one example of a reduction law, namely the analogue 
for belief of the DEL Action-Knowledge Axiom which we mentioned in Section 5.5. 

1. Belief change under hard information Truthful public announcements !cp 
of hard facts can be considered as a (limit-)case of belief revision policy. Instead 
of defining it by world elimination a s  before, we can equivalently define it using 
the relation transformer 

n(r) = ?cp;r;?p. 

So the new accessibility relations are Ra := [r(r)](R,), where R, are the old 
relations. (See Example 10 in Section 5.1.) The corresponding Reduction Axiom 
for belief is 

[ !~ ]Ba0  * ((P + B:[!V]~) 

which generalizes the Announcement-Knowledge Axiom from Section 5.1 to the 
case of beliefs. There also exists a more general reduction law for conditional belief. 

2. Public Announcements of Soft Facts: The "Lexicographic Upgrade" 
To allow for soft belief revision, an operation fi cp was introduced in [van Benthem, 
20061, essentially adapting to public announcements the 'lexicographic' policy for 
belief revision described in [Veltman, 19961 and [Rott, 20041. This operation, 
called lexicographic upgrade consists of changing the current plausibility order on 
any given state model as follows: all cp-worlds become more plausible than all 
79-worlds, and within the two zones, the old ordering remains. Following what 
we did at the end of Section 4.9 and in Example 10 in Section 5.1, we are using 
the PDL relation transformer 

where T is the universal relation. As before, the accessibility relations Ra change 
to  [r(r)](R,). The important new step in verifying that this does what we want 
is 

[?p; T ;  ?-p] = {(w, w) : w E [p]); {(u, v) : U, 2, E W ) ;  { ( w ,  W) : W E 1[7~]1)  
= { ( u , ~ )  : u E up] and v E ~"PJ). 

The corresponding Reduction Axiom for belief is 

where again K is the "epistemic possibility" operator (the 0-like dual of the K 
operator). As in the case of hard announcements, there also exists a more general 
reduction law for conditional belief. 
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3. Public Announcements of Soft Facts: The Conservative Upgrade. 
The operation cp of conservative upgrade, as defined in [van Benthem, 20061, 
changes any model as follows: the best cp-worlds come on  top (i.e., the most plau- 
sible cp-states become the most plausible overall), and apart from that, the old 
order remains. The reduction law for belief is the same as in the previous case. 
The difference can be only be seen by looking at the reduction law for conditional 
belief. See [van Benthem, 20061 for details. 

7.3 Logics f o r  doxastic actions: the action-priority update 

The work of Aucher [2005a; 2005b], Baltag and Smets [2006b; 2006c; 2007b], and 
van Ditmarsch and Labuschagne [2003; 2005; 20071 can be considered as an at- 
tempt to  extend to dynamic belief revision the unified DEL setting based on action 
models. We focus on the approach by Baltag and Smets and specifically on their 
'action-priority update'. This gives currently the most convincing picture given 
the relational approach. It also goes some way towards addressing the problem 
of the multiplicity of belief revision policies: as we will see below, the action- 
priority update unifies and subsumes many different policies and types of revision, 
which come to be seen as the result of applying the same update operation to 
different triggers given by specific learning events. Indeed, in this interpretation, 
the triggering events for belief revision are doxastic actions, modeled using action 
plausibility models, in a similar way to the way epistemic actions were modeled us- 
ing epistemic action models. The actions' "preconditions" encode the information 
carried by each action. The plausibility relations between actions are meant to 
represent the agent's (conditional) beliefs about the learning event at  the moment  
of i ts  happening. 

We assume here the setting of plausibility models and the conditional doxastic 
logic C D L  from Section 4.7. The following definitions give the natural plausibility 
analogue of the action models from Section 5.4, by incorporating the main intuition 
underlying the AGM belief revision: that new information has priority over old 
beliefs . 
DEFINITION 24 (Action plausibility model). (Aucher) Let L be a logical lan- 
guage which extends the language of CDL. An action plausibility model over C is 
a structure U = (S, 5, pre) such that (S, 5) is a plausibility frame and pre : S -+ ,C 
is a precondition function that assigns a precondition pre(a) E L to each a E S. 
As in Section 5.4, the elements of S are called action points, and for each a E A, 
5, is a plausibility relation on S. For a , P  E S, we read a 5, P as follows: agent 
a considers action a as being at least as plausible as action P. A doxastic action 
is a pointed action plausibility model (U, a ) ,  with a E S. 

EXAMPLE 25. The truthful public announcement of a hard fact cp is modeled by a 
singleton action model consisting of an action point a, with identity as the plausi- 
bility relation for every agent, and with precondition pre(a) = 9. As in Section 5.4, 
we call this action model Pub cp, and denote by ! cp the action corresponding to 
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the point a.13 
Fully private announcements and fair-game announcements can be similarly 

modeled, essentially by reading the arrows in their epistemic action models from 
Section 5.4 as plausibility arrows. 

Announcements of Soft Information. We can simulate public announcements 
of soft facts, as described in the previous section, using action plausibility models. 
For instance, the lexicographic upgrade fr cp has the following action model: 

with pre(a) = cp and pre(,B) = ~ c p .  The action point on the left corresponds 
to the case that the announcement happens true; the action point on the right 
corresponds to the case that the announcement is false. 

The conservative upgrade f cp can be similarly encoded, using a more compli- 
cated action model. 

Successful Lying. The action of an agent b's "lying in a publically successful 
manner" by can be modeled as follows: given a sentence cp, the model consists of 
two action points a and ,B, the first being the action in which agent b publicly lies 
that (he knows that) cp (while in fact he doesn't know it), and the second being 
the action in which b makes a truthful public announcement that (he knows that) 
cp. The preconditions are pre(a) = l K b p  and pre(,B) = Kbcp. Agent b's plausibility 
relation is simply the identity: she knows whether she's lying or not. The relation 
for any hearer c # b should make it more plausible to him that b is telling the truth 
rather than lying: a <, ,B. This reflects the fact that we are modeling "typically 
successful lying": by default, in such an action, the hearer trusts the speaker, so 
he is inclined to believe the lie. 

We call this model Lieb cp, and also denote the action corresponding to the point 
a by Lieb cp, and the action corresponding to the point P by Trueb cp. 

DEFINITION 26 (Execution, Action-Priority Update). Given a doxastic state 
(M, s) with M = (S, <, V), and a doxastic action ( U ,  a )  with U = (S, <, pre), the 
result of executing (U, a )  in (M, s )  is only defined when M ,  s + pre(a). In this 
case, it is the doxastic state (M 8 5  U), ( s ,  a ) )  where M @I< U = (S t ,  s', V'} is a 
restricted anti-lexicographic product of the structures M and U ,  defined by 

S ' {(s ,a)  I s E S,a E S, and M , s  pre(a)) 
( s ) ( t )  iff a < , P a n d s ~ t ; o r e l s e  a % , p a n d ~ < ~ t  

E vd iff s E V, 

13Technically, we should distinguish between this plausibility model and the corresponding 
action model in Section 5.4, but we choose t o  use the same notation, relying on the context for 
deciding when to  interpret it as a plausibility model. The same applies to  all the other plausibility 
action models in this section having the  same notation as an epistemic model. 
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where R is the epistemic indifference (uncertainty) relation14 on states, and E, 
is the equi-plausibility relation on actions (defined by a ga ,B iff both a 5, and 
P i a  a ) .  

This is a generalization of one of the belief-revision policies encountered in the 
literature (essentially incorporating the so-called "maximal-Spohn revision" into 
plausibility action models), as well as being a natural plausibility analogue of the 
product update from Section 5.4. The new order is simply the anti-lexicographic 
order on (epistemically indistinguishable) pairs. The name comes from [Baltag and 
Smets, 2006b; Baltag and Smets, 2006c; Baltag and Smets, 2007bl. Van Benthem 
calls it "Action Priority Update": indeed, this construction gives priority to the 
action plausibility relation. This is not an arbitrary choice, but is motivated by a 
specific interpretation of action models as encoding belief changes. In other words, 
the (strict) order on actions encodes changes of order on states. The definition 
of execution is a consequence of this interpretation: it just says that a strict 
plausibility order a <, P on actions corresponds indeed to a change of ordering on 
states, (from whatever the ordering was) between the original (indistinguishable) 
input-states s k t ,  to the order ( s ,  a )  <, ( t ,  0 )  between output-states; while equally 
plausible actions a ra  P will leave the initial ordering unchanged: ( s ,  a )  5, ( t ,  P) 
iff s t. Giving priority to action plausibility does not in any way mean that the 
agent's belief in actions is stronger than her belief in states; it just captures the 
fact that, at the time of updating with a given action, the belief about the action 
is what is actual, it is the current belief about what is going on, while the beliefs 
about the input-states are i n  the past.15 

In a nutshell: the doxastic action is the one that changes the initial doxastic 
state, and not vice-versa. The belief update induced by a given action is nothing 
but an update with the (presently) believed action. If the believed action a requires 
the agent to revise some past beliefs, then so be it: this is the whole point of 
believing a, namely to use it to revise or update one's past beliefs. For example, 
in a successful lying, the action plausibility relation makes the hearer believe that 
the speaker is telling the truth; so she'll accept this message (unless contradicted 
by her knowledge), and change her past beliefs appropriately: this is what makes 
the lying successful. 

EXAMPLE 27. Consider the situation in Section 2.3, in which B m  was told the 
face of the coin, without Amina suspecting this. Assume moreover the coin lies 
heads up. This was represented in Section 2.4 by the plausibility model (10): 

14Recall that,  in a plausibility model, the epistemic uncertainty relation is defined by: s% t iff 
either s 5, t or t <, s. 

1 5 0 f  course, at a later moment, the above-mentioned belief about action (now belonging to  
the past) might be itself revised. But this is another, future update. 
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where the real state is the upper-left one. 
Next, suppose Bao tells Amina: "I know the face of the coin". Let us first 

assume this is an evidently truthful statement, coming with a warranty of veracity 
of some sort or other. Then Amina takes Bao's statement as an announcement 
of a hard fact. So this action is represented by Pub (KbH V KbT), with the one- 
point action model described above (for truthful public announcements of hard 
information); the action point will be called a. Execute now this doxastic action 
on the doxastic state given by (upper-left point in) the model (10) above. We 
identify the old states u and x with the pairs (u, a )  and (x, a) ,  respectively, and 
then we picture the result as 

which fits our intuition about the agent's beliefs: it is now common knowledge 
that Bao knows the face of the coin. 

What if Bao's announcement was not evidently truthful? Amina may still 
believe it, but she doesn't know that it is true. We model using an announcement 
of a soft fact rather than a hard one, corresponding to the lexicographic upgrade 
.fr (KbH V KbT). Using the two-point action plausibility model for lexicographic 
update which we saw above, and computing the execution of this doxastic action 
on the original doxastic state given by model (10) above, we obtain: 

Here and just below, we are identifying the old states with certain pairs to simplify 
the representation. 

What if, instead of making a truthful announcement, Bao chooses to lie? For 
instance (in the initial situation, after he was secretely told that the coin lies heads 
up), suppose he tells Amina: "I know the coin is lying tails up". This is a lie. 
Let us assume it is a successful one, so that Amina trusts Bao completely and 
therefore believes he is telling the truth. We can represent this action using, as 
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described above, the two-point action model Lieb (KbH) for successful lying. If we 
now we execute this doxastic action on the original doxastic state from the model 
(10) above, we obtain 

in which the upper left-hand state is the real one. Again, this fits our doxastic 
intuitions: Amina is deceived and believes the upper right-hand state to be the real 
one. However, this false belief is revisable: a new public announcement Pub KbH 
(in effect, saying that Bao has lied and that in fact he knows the coin lies heads 
up) would correct Amina's wrong belief, making her know that the real state is 
the left-hand one. 

Action-Priority Update Generalizes Product Update Recall the defini- 
tion of the epistemic indistinguishability relation k in a plausibility model: s k t 
iff either s 5, t or t La s. It follows that Action Priority Update implies the 
Product Update rule from Section 5.4: 

( s ,a )  k (t,P) iff s k t  and a&/?. 

The logic of doxastic actions As in Section 5.5, we can consider a signature- 
based language, where a doxastic signature is a finite (fixed) plausibility frame X, 
together with an ordered list without repetitions (a l , .  . . , un) of some of the ele- 
ments of X. As in Section 5.5, each signature.induces a syntactic action model, 
and it gives rise to a dynamic-doxastic logic L(X). The language is obtained 
by augmenting either the language of conditional doxastic logic CDL from Sec- 
tion 4.7, or the language of the logic of knowledge and safe belief from Sec- 
tion 4.8, with dynamic modalities for (signature-based) doxastic actions. The 
semantics can be given in a similar way to the one in Section 5.5. We skip 
here the details, referring to [Baltag and Smets, 2006b; Baltag and Smets, 2006c; 
Baltag and Smets, 2007bl. Just as in DEL, and similarly to the approach in the 
previous subsection, one can automatically read off a set of Reduction Axioms for 
knowledge and safe belief, thus obtaining a complete proof system. But Baltag 
and Smets also derive in [Baltag and Smets, 2006~1 general (though very complex) 
Reduction laws for conditional belief. 

The Action-Safe-Belief Axiom As for DEL, we only present here the most 
important reduction axiom, namely the appropriate generalization of the Action- 
Knowledge Axiom to  the logic of doxastic actions. In fact, there are two such laws: 
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one for knowledge, the other for safe belief. But the reduction law for knowledge 
is essentially the same as the Action-Knowledge Axiom in Section 5.5. So we only 
state here an "Action-Safe-Belief Axiom", saying that, for every basic action a, 
we have: 

where <, is the strict plausibility order on (syntactic) actions (in the action model 
induced by the signature) and similarly ga is the equi-plausibility relation on (syn- 
tactic) actions. 

This axiom could be thought of as the "fundamental law of dynamic belief 
revision": it allows us to compute or predict safe beliefs after a learning event 
in terms of knowledge and safe beliefs before the event. In plain words, it says 
that: a sentence cp will be safely believed after a doxastic event iff, whenever the 
action can take place, it  is known that cp will become true after all more plausible 
events and at the same time it is safely believed that cp will become true after all 
equi-plausible events. 

Unifying Diverse Belief-Revision Policies As seen in the examples above, 
the Action-Priority Update can simulate the various belief revision policies con- 
sidered in the previous section. More generally, the power of the action model 
approach is reflected in the fact that many different revision policies can be re- 
covered, in a uniform manner, as instances of the same type of update operation. 
In this sense, the DEL approach can be seen as a change 'of perspective: the 
multiplicity of possible revision policies considered in the Belief Revision litera- 
ture is replaced by the multiplicity of possible action models; the differences are 
now viewed as differences in input, rather than having different '~rograms" for 
revision. For a computer scientist, this resembles currying in the lambda-calculus: 
if every "operation" is encoded as an input-term, then one operation (functional 
application) can simulate all operations.16 In a sense, this is nothing but the 
idea of Turing's universal machine, from the theory of computation. Note that, 
by incorporating the Product Update from Section 5.4, the Action-Priority Up- 
date gains all its dynamic features and its advantages: in addition to simulating 
a range of individual belief-revision policies, it can deal with an even wider range 
of complex types of multi-agent learning and communication actions. It may thus 
be realistic to expect that, within its own natural limits, Action Priority Update 
could play the role of a "universal qualitative machine" for dynamic interactive 
belief-revision. The problem of finding these natural limits remains open. 

''Note that,  a s  in untyped lambda-calculus, the input-term encoding the operation (i.e, the 
action model) and the static input-term t o  be operated upon (the state mode) are essentially 
of the same type: epistemic plausibility models for the same language (and for the same set of 
agents). 
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Notes The action plausibility models were first introduced by Aucher [2005a; 
2005b], as an adaptation of the DEL framework of Baltag, Solecki and Moss to 
the case of dynamic belief revision. Aucher used an equivalent definition, inspired 
from the work of Spohn [1988], describing plausibility models in terms of ordinal 
plausibility functions, interpreted as "degrees of belief'. This lead Aucher, and 
then van Ditmarsch and Labuschagne [van Ditmarsch and Labuschagne, 2003; 
van Ditmarsch, 2005; van Ditmarsch and Labuschagne, 20071, to propose and 
study various types of product update, of a different, more "quantitative" flavor 
than the Action-Priority update presented above; these proposals are based on 
using various binary operations on ordinals to compute the degree of belief of an 
updated state in terms of the corresponding degrees of belief of the input-state 
and of the action. None of these specific proposals seem to correspond to the 
Action-Priority update (although it is easy to see that this type of update can 
be computed via a special ordinal function, so in a sense it is subsumed by the 
general "quantitative" approach). Aucher introduced a doxastic logic, with op- 
erators B2cp for each ordinal degree of belief n, and completely axiomatized the 
dynamic logic corresponding to his proposal of product update. This work was 
generalized by van Ditmarsch [2005], who also gave a good presentation of the 
various proposals in the literature, as well as of the various problems encountered. 
A recent breakthrough in the field was the work of van Benthem [2006] on the 
relational approach to belief "upgrades", partially based on previous work by van 
Benthem and Liu [2004] on preference upgrades. At the same time, Baltag and 
Smets [2006a; 2006b; 2006c; 2007bl developed their own relational approach to 
dynamic belief revision, introducing the Action-Priority Update and the Action- 
Safe-Belief Axiom. Both van Benthem, and Baltag and Smets, used a qualitative 
logical language (either based on conditional belief operators, or on knowledge 
and safe belief operators) rather than one based on degrees of belief. Baltag and 
Sadrzadeh [2006] gave an algebraic axiomatization of a type of dynamic belief re- 
vision. In more recent work (still to appear), Baltag and Smets [2007a] develop 
a probabilistic version of dynamic belief revision, based on combining their pre- 
vious work on safe belief and the Action-Priority update with the work of van 
Fraasen [1995], Boutilier [1995] and Parikh [2005] on using Popper's counterfac- 
tual probability functions to deal with belief revision. 

8 CONCLUSION 

As we end this chapter, we step back to  try to understand what makes this par- 
ticular subject of epistemic logic and information update what it is. We especially 
want to compare what is going on here to what is discussed in other chapters, 
especially Chapters 4c and 3b. 

In a sense, our treatment of epistemic phenomena is ultra-semantic. Beginning 
in Section 2, we depicted representations and treated them as abstract semantic 
objects. Even before this, we stated openly that our modeling was slanted towards 
justifiable belief. This stance implicitly allowed us to ignore reasons to believe and 
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instead focus on models of the phenomena of interest. All throughout our section 
on examples, we emphasized that one must test models and semantic definitions 
against intuitions, that the proof of the pudding is in the eating. Indeed, our sub- 
ject is not a single pudding at all but rather a whole buffet of delectable semantic 
desserts. We also made it clear that the chefs used an artificial sweetener, rela- 
tional models, and so those allergic to  logical omniscience might prefer the fresh 
fruit. But except for this, the models work extremely well: the predictions of the 
logical languages match the intuitions. And one can use the formal tools as a real 
aid in building representations. 

At the same time, our work is unexpectedly syntactic. We saw a series of logical 
languages crafted to exploit the key semantic features of the models. Whenever 
one hears about "encoding" in this subject, it is this: the semantic objects quickly 
become the sites for semantic evaluation in languages which are richer than one 
might have at first expected. The easiest example is the relational (Kripke) se- 
mantics itself. Having a set of Carnapian state descriptions living alone is at this 
time fairly mundane. Even adding one or more accessibility relation and calling 
things "possible worlds" does not go far in relating the worlds to one another. But 
once one has languages with modal operators, statements evaluated at one world 
in general must refer to  other worlds. Thus the worlds really are related: since 
the logical language has iterated modal sentences, what is true here is in general 
influenced by what is true far away. 

The models in this chapter also incorporate dynamics, social features such as 
common knowledge, and conditional operators. In each case, the languages are 
taken to be immediately higher-order: we have knowledge about knowledge, belief 
about beliefs, announcements about announcements, etc. What makes the subject 
work is that the formal semantics of the languages refer to the structure of the 
models, and at the same time the intuitive concepts of interest correspond most 
closely to statements in the formal languages. One aspect of our work which 
might be unexpected is the emphasis on particular logical systems for specialized 
phenomena. We presented a logic of public announcements in Section 5, but this is 
just the tip of the iceberg. One can formulate specialized logics for other epistemic 
actions. The point again is that we have semantic objects corresponding to these 
actions (this seems to be an innovation coming from this subject) and then the 
resulting logical systems take on an interest of their own, qua syntactic systems. 
And on the opposite pole from the specialized logics are the very general ones 
which incorporate arbitrary actions in some sense: these logical languages are 
unexpectedly syntactic in the sense that their very formulation is trickier than 
usual, as is their semantics. But the arrows inside of relational models are the 
same kind of thing as the arrows between the models, and this is why dynamic 
epistemic logic works. 

One should compare the situation with the belief revision literature surveyed 
in Chapter 4c. The AGM postulates deal with several operations, most notably 
revision. These came first, and then later people were concerned with concrete 
models of them, with representations of theory-change operations, and the like. 
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There is much less of an emphasis on matching the predictions of models to in- 
tuitions, mainly because the intuitions are often not as clear, and also because 
notions like a theory change operation are more abstract than a completely private 
announcement in our sense. It also took longer for the matter of iterated revision 
to become central. So the subject developed in a different way from ours. At the 
same time, there are interesting similarities: as Table 1 in Chapter 4c shows, the 
history of work in belief revision might be organized according to the particular 
kinds of prior and posterior belief states discussed. In our subject, the parallel 
is the extension of the ideas from "hard" semantic updates to "soft" ones (in the 
terminology of Chapter 3b). Belief revision theory is a much more active field than 
dynamic epistemic logic, and so one would expect to see a further push towards 
varied semantic models. But overall, these parallels could be taken to indicate 
hidden traces of functionalism in what we are doing, though clearly the emphasis 
on models and languages here is the most prominent difference. 

All of this could be said about other closely related topics, especially work on 
history-based epistemic systems, interpreted systems, and related models which 
we surveyed in our temporal reasoning Section 6. 

Another difference between the main thrust of belief revision work and recent 
trends in epistemic logic is the "social" aspect of the latter area. This is not true 
of the earliest work in the subject, partly because philosophers have tended to look 
only at public information. But as one can see from our chapter, the subject is 
now about public and private types of information change: how they compare and 
contrast, and how they are integrated in larger theories. This is clearly of interest 
in mathematical areas of the social sciences, but we feel it is also of interest to 
philosophy. To be a person is to relate to others, and so to understand knowledge 
we should pay special attention to multi-agent phenomena. 

What connects the ultra-semantic and unexpectedly syntactic are the results on 
the logical systems themselves. Details of representations often conceal significant 
conceptual decisions, and results on logical languages and systems can help in the 
evaluation of different representations. By formulating sound principles, one un- 
covers (or highlights) hidden assumptions. The matching completeness theorems 
indicate the right kind of "harmony" (see Chapter 3b). Even more indicative is the 
fact that those logical systems typically have axiomatic presentations that make 
intuitive sense. There is no mathematical reason why the axioms behind logical 
systems should in any way be "nice." Frequently they are not. But we would 
like to regard the happy coincidences of axioms and intuitions in our subject as 
signposts which indicate that we are on the right track and point the way ahead. 
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INFORMATION STRUCTURES IN 
BELIEF REVISION 

Hans Rott 

1 INTRODUCTION 

Belief revision theories address the problem of rationally integrating new pieces of 
information into an agent's belief state. Belief states themselves are represented 
by certain kinds of information structures. The most closely studied, and arguably 
the most interesting type of belief revision is the one in which the new information 
is inconsistent with the agent's current beliefs. The main question of the present 
chapter is: What kinds of information structures have figured prominently in belief 
revision theories as they have been developed over the past 30 years? 

My focus will be on the philosophy behind 'classical belief revision' of the AGM 
paradigm (so-called after its founders Alchourr6n, Gkdenfors and Makinson and 
their [1985] paper) and its generalizations to iterations of belief change in the 1990s 
and to operations of belief fusion or merging in the present century. 

I am going to presuppose that information comes in symbolic form and will be 
silent about non-codified information formats such as signals, symptoms, pictures, 
etc. I shall say very little about approaches that make essential use of numeri- 
cal, quantitative information. This of course is not to  suggest that probabilistic 
approaches, evidence theory (Shafer [1976]) or ranking functions (Spohn [1988], 
Goldszmidt and Pearl [1992]) are not interesting and useful, but qualitative ap- 
proaches have formed a research program in belief change that merits a chapter 
of its own. 

The present chapter should be read in conjunction with the contribution by 
Baltag, van Ditmarsch and Moss [2008]. In several respects, their approach is 
wider than the one presented here. However, the particular emphasis of belief 
revision theory as understood in this chapter is on the case where new information 
conflicts logically with the information previously accepted (in the terminology to 
be introduced later: with the old 'data base'). It can thus be seen as providing a 
module that can be combined with the framework of Baltag et al. The following 
presentation, however, remains in the style of the more traditional, classical work 
in the area.' 

'For important attempts to  transfer carefully belief revision theories into the  framework of 
modal logic, see Fuhrmann [1991], Cantwell [1997], Lindstrom and Rabinowicz [1999], Segerberg 
[2001] and van Benthem [2007]. For an enlightening discussion of the merits of the somewhat 
non-standard attitude towards logic in the AGM program, see Makinson [2003]. 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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The plan of this chapter is as follows. Section 2 contains some preliminary 
remarks on information and truth, and on belief change as embedded in a func- 
tionalist philosophy of mind. Section 3 presents the problem of belief change as 
being a compound of processes of reflection and processes of revision. Depending 
on which of these processes are given center stage, we can distinguish foundational- 
ist and coherentist approaches to  belief change (in roughly the sense that is known 
from contemporary epistemology). Section 4 gives three simple examples of such 
approaches. There are approaches that look coherentist but can be reconstructed 
as generated through hidden foundationalist recipes. Reconstructions of such a 
flavour are fairly typical of belief revision theories. Section 5 traces the idea that 
the static picture of belief as being represented by an information structure may 
encode much of the dynamics of belief. I shall interpret the history of belief revi- 
sion theory of the last three decades as a story of finding an appropriate notion of 
a belief state, and its interpretation as providing a framework for analyzing both 
static and dynamic aspects of belief. 

2 PRELIMINARY REMARKS ON INFORMATION, TRUTH AND MIND 

2.1 Remarks on information and truth 

There are countless explications of the term 'information.' I would like to propose 
the following informal and very general definition: 

Information is some structure realized in the physical world that is 
suitable to be interpreted or exploited by some receiver in a reasonable 
way. 

According to  this definition, the pages of a book and the platters of a hard disk, 
the trunk of a tree and the DNA strands in the cell of an animal, the remains of 
a burnt house and the sounds of a recited poem all carry information that can be 
interpreted or exploited by a suitable 'receiver'. By interpretation or exploitation, 
I mean some kind of causal interaction between two entities, the input and the 
receiver. The receiver need not be human or living. Usually there is a certain 
asymmetry between input and receiver, but this is not necessary. In DNA replica- 
tion, reading molecules and read molecules are quite similar, and we shall see that 
current belief revision research has inputs and receiving states of the same format. 
Interpretation in this sense is extremely wide (too wide perhaps), it  may possibly, 
but need not necessarily make use of cognitive or linguistic means. A reasonable 
way is one that 'makes sense' of the information structure, and leads to successful 
behaviour or action of the receiver. 

Often information, or rather pieces of information, are taken to  represent states 
of affairs or objects. Some kinds of information (signals) are invariably truthful 
(or veridical), but they may still be deceptive in the sense that they give rise to an 
inadequate interpretation, e.g., to false conclusions or unsuccessful behaviour. If 
there is no natural or necessary link between a piece of information and what it is 
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supposed to represent, i.e., if it is symbolic and has a conventional meaning, then 
the information carrier may itself be called false (or misinformation or misrep- 
resentation). However, it may be difficult to say whether the 'falsity' of the link 
between information and what it  represents is due to the carrier of information 
itself or the receiver interpreting this unit of information. 

What is information as it figures in theories of belief revision? Information is 
something that may enter some belief state and change or transform it into another 
belief state. Belief revision theories usually do not care about the truth of beliefs, 
nor do they address the question of the beliefs' justification or reliability.2 For this 
reason, terms and phrases like 'knowledge base', 'knowledge representation' and 
'knowledge in flux', though widely used, are often misnomers. 

The idea, also emphasized in dynamic semantics or update semantiq3 is to 
characterize (the content of) a piece of information by the transformations of the 
receivers' internal states that it has the potential of bringing about. This may 
best be represented as a function turning prior states into posterior states: 

prior-state H posterior-state 

In the sense just introduced, such a transformation captures the interpretation or 
exploitation of a piece of information. The posterior state plays the role of the 
receiver, and as we shall see, the reasonableness of the interpretation is captured 
by a list of constraints. It is not required that the input be true. 

Information in belief revision theories typically is 

syntactic in the sense that it is representable by sentences of some ap- 
propriate systematic language, and that it can combined in the typical 
way sentences can, 

semantic in the sense that 

- it is not sensitive to  transformations into logical equivalents,4 and 

- as long as the new information is consistent with the current belief 
state, it simply rules out possibilities.5 

2.2 ' Some clues from the philosophy of mind 

The main interest of belief revision theory lies in information for receivers with a 
mind, i.e.,  human^.^ This suggests to have a look at the philosophy of mind, a 
philosophical sub-discipline concerned with the relation between body and mind 
(for the following, cf. Kim [2006, chapters 2-61). How can it be that a person, that 

'But see Kelly, Schulte and Hendricks [1997] and Kelly [1999]. 
3See Stalnaker [1984], Gkdenfors [1988, chapter 61, Groenendijk and Stokhof [1991], and 

Veltman [1996] 
*Compare, e.g., axioms (AGM6) and (DP6) below. 
5Compare, e.g., axioms (AGM3), (AGMI), (DP3) and (DP4) below. 
6 0 r  information for computing machinery, but we will see that this difference is not important 

for our purposes. 
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is first of all a biological organism, exhibits thoughts, desires, feelings, etc? How 
can these mental states, states that seem to be perfectly accessible to  the persons 
that are in them but not to any third persons, be the objects of scientific studies? 
Let us call the mental life of a person his or her psychology. 

According to behaviourism, the leading school in the study of mind until the 
middle of the 20th century, a person's psychology can be identified with (charac- 
terized by, reduced to) the function 

input H output 

where inputs and outputs, physical stimuli and behavioural responses, are ob- 
servable entities. Behaviourism turned out to be too simplistic. An alternative 
approach to  objectify the human mind was provided by the physicalist or mate- 
rialist identity theory of mind, according to which a person's psychology can be 
identified with (characterized by, reduced to) its physical or material state. But 
this idea would rule out that beings with a different physiology like non-human 
animals or Martians or machines can have psychological states like humans, some- 
thing one would at least want to  leave conceptual room for. 

So a third paradigm, functionalism, appeared on the scene which in a way com- 
bined the best of the previous approaches. Functionalism is behaviorism plus inter- 
nal states, or - approaching it from the other side - functionalism is materialism 
plus multiple r ea l i~ab i l i t~ .~  Alan Turing [1950] and Hilary Putnam [1960; 19671 
promoted the idea that human thinking could be likened to the calculations that 
go on in a computer (a Turing machine). The computer metaphor became popular 
which says that mind is to brain as software is to hardware. A piece of software is 
a program that can be described abstractly by a (finite) set of transitions of the 
following type: 

(prior-state, input) - (posterior-state, output) 

Here the prior and posterior states are internal states or psychological states of 
the person or the computer. The set of all such transitions was called a 'machine 
table' by the early functionalists, and it fully specifies a person's psychology or a 
computer program. 

2.3 Functionalism as applied t o  belief revision 

Belief is an internal affair. Any possible announcement of one's beliefsor any other 
action produced by a belief may be disregarded for the purposes of this paper. 
Thus, we do not need to deal with any manifest output.8 This suggests that for 

7The thesis of multiple realizability says that a mental state can be 'realized' or 'implemented' 
by different physical states. Beings with different physical constitutions can thus be  in the same 
mental state. 

8Alternatively, one could say that belief revision's outputs are the belief states themselves. I 
shall avoid this terminological move. 
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belief revision, the functionalist format can be reduced to a simpler mapping of 
the following format: 

(prior-state, input) - posterior-state 

The input  to a belief state is a piece of information. Belief states in turn are 
the results of an - often long - history of information processing episodes. It is 
plausible to require that the representation of the prior state and the representation 
of the posterior state should be of the same f ~ r m a t . ~  

The format of the input varies in theories of belief revision. The literature has 
studied pieces of input of the following kinds: 

propositions 

propositions coming with a specification of their relative position in a 
(total) pre-order 

ranked propositions (i.e., propositions coming with numerical ranks) 

ordered pairs of propositions (indicating their comparative retractability) 

propositions with a specification of their source 

full preferential structures 

Beliefs are usually taken to be represented by propositions - either linguis- 
tically, as sentences or sentence-meanings, or abstractly, as sets of possibilities. 
I shall, somewhat sloppily, not distinguish between these two variants and will 
identify a sentence, i.e., an expression of a given language, with what is said by 
such a sentence. By a belief set we shall understand a set of beliefs that is closed 
under logical consequences (obtained by a background operation C n ) .  A belief 
set is what logicians are used to calling 'theory'. 

A belief state determines the set of beliefs held by the agent, but may (and 
usually does) encode much more information than that. Individual beliefs are 
derivative of belief states. For instance, a belief state may be represented with the 
help of Grovean systems of spheres (Grove [1988], cf. Figure 1). 

A sys tem of spheres is a set of nested sets of possible worlds, or more precisely, a 
set of nested sets of models of the language. The smallest set in the center (labelled 
by '1') is the set of possible worlds which the agent believes to contain the actual 
world, i.e., the worlds that are possible according to the agent's beliefs. If she 
receives evidence that the actual world is not contained in this smallest set, she 
falls back on the next larger set of possible worlds. Thus the first shell1' around 
the center (labelled by '2') contains the worlds considered second most plausible 
by the reasoner. And again, should it turn out that the actual world is not to be 

gThis requirement was called the Principle of categorial matching in Gardenfors and Rott 
[1995]. 

1°A shell is the  difference set between two neighbouring spheres. Spheres are nested, shells 
are disjoint. The shells are numbered, but the  numbers are not supposed t o  have any meaning 
beyond the indication of the ordering of spheres. 
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7 

Fig. 1. A Grovean system of spheres 

found in this set (the union of the sets labelled '1' and '2') either, the reasoner is 
prepared to  fall back on her next larger set of possible worlds (the union of the 
sets labelled 'l', '2' and '3'). And so on. A system of spheres is equivalent to a 
total pre-ordering of possible worlds, using the definition that w 5 w' (read 'w is 
at most as far-fetched as w") if and only if w is contained in every sphere in which 
w' is contained. 

A system of spheres at the same time determines a pre-ordering of propositions, 
often called entrenchment ordering. If the set of models of A covers each sphere 
that is covered by the set of models of B,  the proposition A is at least as entrenched 
in the agent's belief state as the proposition B (in symbols, B < A).  Conversely, 
an entrenchment pre-ordering 5 generates a system of spheres $ if we collect in $ 
the sets of models of {B : A < B}, for all A. These two ways of linking sphere 
systems with entrenchments fit together and represent, in a natural sense, the same 
belief state. Belief states in these two senses may be regarded as non-propositional 
information structures. 

The beliefs of the agent can be retrieved from her belief state. If a belief 
state is represented by a system of spheres $ (or the corresponding total pre- 
ordering 3 )  of possible worlds, the beliefs Be1 ($5) (or respectively, Be1 (A)) are 
those propositions that are true in each of the possible worlds contained in the 
innermost sphere (or respectively, in each of the possible worlds that are minimal 
under A). If a belief state of an agent is represented by an entrenchment ordering 
I: over the propositions of a language, her beliefs Be1 ( I )  are those propositions 
that are non-minimal under this ordering. 



Page 463 Thursday, August 28,2008 11:04 AM 

Information Structures in Belief Revision 463 

2.4 Filling in the parameters 

We can now give a first overview of some of the more important stages in the 
development of belief revision theory. We just need to fill in the parameters into 
the scheme just specified in various ways (see Table 1). 

Table 1. Filling in the parameters for a functionalist account of belief change 

A GM [l 97818 

Grove [l 9881, 
Katsuno- 

Mendelzon 
11 9911 

Veltman 11 9761, 
Kratzer [l 9811, 
Nebel [I 9891, 

Hansson 
[1989; 19991 

Spohn [19881' 
Goldszmidt- 

Pearl 
[1 9921 

Darwiche-Pearl 
[1 994; 19971 

Cantwell [1997], 
Fermi-Rott 

120041 
Nay ak 9941f17 

merging - 
fusion 

An important turning point of the development of belief revision theory was 
the recognition in the 1990s that a belief state must not be identified with a 
(logically closed) set of beliefs. The study of the problem of iterated belief revision 

input 

proposition 

proposition 

proposition 

proposition plus 
plausibility 

index 

proposition 
(often plus 
plausibility 

index) 

pair of 
sentences 

preference 
structure 

prior belief state 

set of beliefs 
(logically closed; 
plus preference 

structure on beliefs 
or sets of beliefs) 

preference structure 
on possible worlds 

set of beliefs 
(syntactically 

structured, i.e. not 
logically closed) 

ranking function (a 
kind of preference 

structure) 

general format, with 
beliefs derivative 

preference structure 

preference structure 

posterior belief 
state 

set of beliefs 
(logically closed) 

set of possible 
worlds 

set of beliefs 
(logically closed?) 

ranking function 

general format, 
with beliefs 
derivative 

preference 
structure 

preference 
structure 
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made it clear that AGM7s belief set had to be replaced by a belief state with a 
selection functions or a preferential structure in order to encode a full belief state. 
Alternatively, Darwiche and Pearl [1994; 19971 suggested that it is best to take 
'belief state7 as a primitive concept. More on this in section 6 below. After the turn 
of the millennium, much research has focussed on the problem of fusing or merging 
belief states. The old idea that a belief state (perhaps carrying information about 
the learning history of the agent) gets revised by a single piece of information is 
no longer valid as a description of the standard problem. The question addressed 
in fusion or merging is how to merge two or more rather general information 
structures into a single one. 

3 BELIEF CHANGE = REVISION + REFLECTION 

How do belief states change? I suggest to  decompose the process of belief change 
into two different processes. There are then two fundamentally different perspec- 
tives, depending on which of the two processes is being highlighted (see Fig. 2). 

revise 
belief belief 

b 
state 1 state 2 

reflect 1 1 reflect 

data data 
b 

base 1 base 2 
revise 

Fig. 2. Reflection and revision 

The process of revision is that of changing the current data base or belief state 
in response to the receiving of some new piece of information. Models of belief 
change emphasizing the process of revision while employing rather a plain method 
of transforming data bases into belief states take the horizontal perspective. 

The process of reflection is that of finding an equilibrium state by processing, 
or drawing inferences from, the currently available information. Models of belief 
change emphasizing the process of reflection while employing a rather straightfor- 
ward method of revision take the vertical per~pective.~' 

We shall consider three approaches. 

Foundationalism in vertical perspective 

fo he pair 'reflection' and 'revision' also plays an important role in Harman's seminal book 
Change in  View [1986, Chapter 11, but Harman's usage of the terms is different from ours. 
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Foundationalism in horizontal perspective 

Coherentism in horizontal perspective 

Foundationalism assumes that there is a distinguished class of basic beliefs which 
are somehow given (by perception or by intuition, in any case independently from 
any other beliefs) and from which all other beliefs can be derived with the help 
of some inference operation.12 Coherentism, on the other hand denies that the 
foundationalists' distinction between basic and derived beliefs has any clear signif- 
icance. For the coherentist there is no set of propositions that enjoy the privilege 
of serving as a foundation for the other beliefs. Coherentists are not interested in 
the origin of belief states. The reflection component does not even appear in the 
picture, the aim of reaching (or rather remaining in) an equilibrium state is part 
and parcel of the revision process. 

3.1 Foundationalism 

Assume that inputs have come in repeatedly. A data base is the result of collecting 
the inputs and putting them together. It is important that data bases in our sense 
need not obey coherence constraints of a logical or any other nature. A data base 
will be considered as a rough and ready collection of pieces of information. It is 
the basic information structure figuring in belief revision, directly interpreting or 
exploiting, as it were, the structure of the inputs. 

For instance, data bases can be 

sets of propositions 

totally pre-ordered sets of propositio~~s 

ranked sets of propositions 

The difference between totally pre-ordered and ranked sets is that the latter, but 
not the former, have numbers attached to the propositions signifying their degree 
of belief. These numbers represent distances, and it makes sense to perform arith- 
metical operations on them. We assume that a data base may grow or shrink in 
response to incoming input, through insertions or deletions at certain positions in 
the pre-ordered or ranked structure. 

The process of reflection is that of finding an equilibrium state on the basis of a 
given data base. The data base is processed and thereby transformed into a belief 
state in equilibrium. Reflection is static in the sense that no new input is being 
dealt with. It can be thought of as an act of information processing. Reflection 
may distinguished from the equally static process of drawing inferences which does 
not yield a belief state, but only a belief set, i.e., a well-balanced set of propositions 
that can be inferred from, or are supported by, the agent's data base.13 We can 

lZNote that nothing in this formulation of the foundationalist idea presumes that the elements 
of the data base are immune to  revision! 

131t is plausible to  assume two mappings here, one taking data  bases to  belief states, and 
another one taking belief states to  belief sets. Neither of these mappings is injective. The latter 
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thus distinguish two kinds of static operations on data bases, with information 
processing being more complex than the drawing inferences. The latter achieves 
less than the former unless a belief state is identified with a belief set (theory) 
to begin with. In any case a belief state uniquely determines a belief set, but in 
general a single belief set can be determined by many different belief states. 

The process of revision is a response to incoming input.14 Obviously, the nature 
of a change operation depends on the nature of the entities on which the change 
operation operates. Revision may consist in a relatively trivial change operation on 
the data base level, or alternatively, in a relatively sophisticated change operation 
on the belief state level. On the base level, the changes need not be sophisticated 
since data bases are not required to  be coherent (Fig. 3). 

trivial change operation 
on the base 

+ A  or - A  

Fig. 3. Changes on the data base level 

A change operating on the level of data bases may be thought of as inducing, 
if combined with an inference operation, a change operation on the level of belief 
states. The latter changes are then only derivative. The change operation on the 
data base level typically applies simple and straightforward, unrestrained inser- 
tions or deletions of a proposition from a set of propositions. If that set is ordered, 
addition of a piece of information15 on top of the ordered list may be suitable, or 
the new information may come labelled with some 'rank' or 'reference sentence' 
specifying its new position in the existing ranking. Free and simple insertions will 
usually cause a violation of deductive closure and will sometimes cause a violation 
of consistency of the information the agent has been provided with. This calls 
for a sophisticated reflection operation that restores consistency and ultimately 
produces logical closure. Fig. 4 illustrates the foundationalist idea of the vertical 
perspective. 

3.2 Coherentism 

Alternatively, one can think the of the revision process as operating directly on 
the belief state level. Then the lower level of the data bases is not in the pic- 
ture any more, all deliberation that takes place is part and parcel of the change 

mapping has been called retrieval above. 
14Here I am using the term 'revision' in the wider sense of 'change', covering both revisions 

(in the  narrower sense) and contractions of belief states. 'Revision' and 'contraction' have been 
used as technical terms since AGM. I trust that no confusion arises from my double use of the 
term 'revision'. 

150r of a 'phantom belief', see footnote 22 below. 
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derived change operation 
on states 

belief belief 
b 

state 1 state 2 

sophisticated 1 1 sophisticated 
processing processing 

with inference with inference 
operation operation 

trivial change operation 
on the base 

+ A  or - A  

Fig. 4. Foundationalism as taking the vertical perspective 

from one equilibrium state to  another. Incoming information means a distur- 
bance of an existing equilibrium, and processing information means equilibrating 
belief states. This idea necessarily emphasizes the revision process, it takes the 
horizontal perspective. Since no separate reflection process is there to eliminate 
inconsistencies or incoherencies, the change process itself has to be sophisticated 
(Fig. 5). It is important to note that the input alone does not bring about the 
transition from one belief state to another. In order to resolve contradictions, or 
to avoid unwanted implications, it is necessary to make choices which beliefs to 
remove. For non-trivial revision operations, the agent will therefore need some 
selection structure (for instance, a preference relation) to guide these choices, and 
also some rule of application specifying how exactly to apply the selection struc- 
ture when accommodating the input.16 This is what makes the change operation 
sophisticated. 

sophisticated change 
operation on the state 

belief belief 

state 1 - state 2 
* A  or - A  

Fig. 5. Changes on the belief state level - 
Coherentism as taking the horizontal perspective 

1 6 ~ o r  instance, the belief set revised by A can be identified with the set of all sentences that 
are true in the least far-fetched worlds that satisfy A, or with the set of sentences B for which 
A+ B is more entrenched than 1 A .  I cannot deal with concrete rules of application in this paper 
and have t o  refer the reader to  Gardenfors and Rott [I9951 and Hansson [1999]. 
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Coherentism may be hidden foundationalism. In fact, researchers in belief 
change have often aimed at bringing in the data base level again and provided 
representation results of the following sort. Given a revision operation on the be- 
lief state level, are there data bases, a revision operation on the data base level 
and a reflection operation such that the revision operation on the belief state level 
is induced by the latter three items? We will give a few examples indicating that 
the answer is positive in some interesting cases. 

'Processing information' or, equivalently, 'processing inputs' may thus mean 
two different kinds of things. Either the agent adds the new piece of information 
to the current data base (i.e., to some existing totally pre-ordered set of propo- 
sitions) and subsequently draws inferences from the revised data base. Or the 
agent accommodates her belief state to the input, without recourse to any basic 
beliefs. l7 

4 INFERENCE OPERATIONS FOR SIMPLE CHANGE OPERATIONS: 
THREE EXAMPLES 

Let us now have a look at the vertical perspective. Which methods of reflection 
are suitable for which methods of change? Here a method is called 'suitable' if it 
results in a reasonable change operation at the belief state level. 

4.1 Example 1: Flat data bases 

First, let the data base be a plain set r of propositions. The most straightforward 
method of drawing inferences from such a data base is to take the logical closure 
Cn (I?) of I?, where the logic Cn used is some broadly classical or Tarskian logic.18 

The use of some such standard logic, however, will frequently create problems of 
interaction with simple change operations if the latter are applied to  data bases. If 
a new proposition is simply added to I?, this may easily generate an inconsistency 
that cannot be processed by the logic Cn. This is the consistency problem for 
belief revisions. If a previously accepted proposition is simply eliminated from r, 
this may fail to efficiently remove I'. The reason is that applying logical closure 
to  the remaining propositions may easily restore the eliminated belief. This is the 
closure problem for belief contractions. 

While it is not clear how any remotely standard logic can solve the consistency 
problem for belief revision, a paraconsistent logic might help.lg Belief change 
theorists, however, have usually preferred to take another route and insisted on 
consistence (for revisions) and effective removal (for contractions) already on the 

1 7 ~ o r  more on the perspectives described in this section, as well as a number of concrete 
suggestions to  flesh them out, see Rott [2001]. 

18A Tarskian logic is required t o  be reflexive, monotonic, idempotent, and t o  satisfy the de- 
duction theorem. 

lgFor parxonsistent logic in general compare Priest, Routley and Norman [1989], and for its 
application t o  belief change, see Tanaka [2005]. 
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data base level. Many authors have argued that it is better to install change op- 
erations that are not as simple-minded as set-theoretic additions and subtractions 
from I? (this idea has been championed by Sven Ove Hanssson, see in particular 
Hansson [1999]). Instead of adding or subtracting just a single item, additional 
items have to  be removed from the data base in order to avoid lapsing into in- 
consistency or to avoid that the sentence to be eliminated can be rederived from 
the remaining elements of the data base. A choice mechanism is necessary for 
determining which additional items to remove. This approach combines a foun- 
dationalist outlook with an emphasis on the revision process rather than on the 
reflection process. It changes from the vertical to the horizontal perspective (Fig. 
6). 

derived change operation 
on states 

belief belief 
b 

state 1 state 2 

Fig. 6. Foundationalism combined with the horizontal perspective 

A A 

4.2 Example 2: Up-sets in prioritized data bases 

simple closure 
under logical 
consequence 

For the second and third examples, we look at two methods of drawing inferences 
from a totally pre-ordered data base (I', <), also written as 

simple closure 
under logical 
consequence 

Here the r i l s  are non-empty subsets of a finite set I? of propositions such that 
I' = rl U . . . U We call < a priority relation and (I?, <) a prioritized data 
base. Intuitively, the elements in I'i are less certain than the elements in r j  if 

sophisticated change 
data operation on the base - 

< >-< data , 
base 1 base 2 

* A  or - A  

i < j. The most interesting case is the one in which I' is inconsistent. 
What inferences can one draw from (I', +)? A simple way of exploiting the 

pre-ordering is to take the consequences under a Tarskian Cn of Ti  U . . . U I?,, 

201 assume finiteness for simplicity. If the r i ' s  were allowed to  be empty, then we would in 
effect use ordinal numbers for the description of a data  base expressing quantitative differences 
in degrees of belief. In other words, we would have a ranked data base in the sense of Spohn 
[1988] and Goldszmidt and Pearl [1992]. 
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where i > 1 is minimal such that ri U . . . U r, is consistent. That is, the belief 
set supported by a prioritized data base (I?, 4)  is everything that follows from its 
maximally consistent upper part. Clearly, the data base r is not in general included 
in this belief set. In fact, the method in a way loses more than is intuitively needed. 
Sentences with low ranks are apt to be suppressed even though they do not in any 
way contribute to, or are not in any way relevant for, a contradiction within I?. 

This method of drawing inferences allows us to construct a full belief state 
(rather than a mere belief set) out of the data base (I?, <). Let us use both the 
system of spheres and the entrenchment representation. A Grovean system $ of 
spheres of possible worlds can be generated by collecting in $ all the sets of models 
of ri LJ . . . U I?,-1 U I?,, for i = 1 , .  . . , n.21 Alternatively, we can generate a total 
entrenchment pre-ordering of the propositions of the language by defining A 5 B 
if and only if for all i = 1, .  . . , n,  whenever A follows logically from ri U . . . U I',, 
so does B. Given the translations between systems of spheres and entrenchment 
pre-orderings (see section 2.3), the two ways of constructing belief states from 
a pre-ordered data base are equivalent. Both the system of spheres $ and the 
ordering 5 thus constructed correspond in a natural way to the prioritized belief 
base (I?, 4). 

4.3 Example 3: Maximal-consistent sets in prioritized data bases 

A more powerful method of drawing inferences from a prioritized data base ( r ,  4)  

can be obtained by constructing all maximal consistent subsets X of I?, where 
maximization is subject to consistency from the top to the bottom. The method 
is specified as follows: First take a maximally consistent subset of r,; then add 
in a maximally consistent way elements of and keep this extended set; 
then add in a maximally consistent way elements of I?,-z, and keep the newly 
extended set; and so on, until you reach r l .  Call the whole set obtained by this 
procedure X. Of course, there are many such X's, since in general there are 
multiple maximally consistent extending subsets on each level i from n to 1. In 
the face of the multiplicity of the X's, there are two inference strategies. A bold 
method of drawing inferences is to pick one such X and close it under the standard 
logic Cn . Alternatively, a cautious method of drawing inferences takes all those 
X's, closes each of them under the standard logic Cn and forms the intersection 
of the resulting theories. There are thus two different notions of what one can 
infer from the prioritized data base, i.e., two different ways of defining the belief 
set supported by (I?, 4). 

Notice that even the cautious method is much bolder than the method of section 
4.2. Still this boldness does not generate a consistency problem by interaction with 
simple change operations. One may simply add any item to a prioritized data base, 
at any level one likes, and still be sure that the inferences drawn from the enlarged 
data base remain consistent. The ordering of the data base induces as it were 

21Equivalently, we can generate a total pre-ordering of possible worlds by defining w 5 w' if 
and only if for all i, w satisfies ri U . .  . U r, whenever w' does. 
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some sort of paraconsistent logic. But notice that r is not in general included in 
the belief set supported by ( r ,  <).22 

Does this more sophisticated method of drawing inferences allow us to construct 
a full belief state? It can be shown that there is a corresponding entrenchment 
relation which refines the entrenchment relation defined at the end of section 4.2. 
But this relation is not total, so that the graphic systems of spheres representation 
cannot be used (cf. Rott [2000]). 

Let us sum up this section. We started by remarking that it does not make sense 
to combine simple methods of revision (just adding a piece of information to the 
existing beliefs) with a simple methods of inference (as represented by standard 
monotonic logics). Simple revision methods will soon generate inconsistencies, 
and simple inference operations will turn inconsistencies into 'epistemic hell7, due 
to the classical rule of ex  falso quodlibet. Standard logics can only be employed 
for foundationalist ideas in the horizontal perspective as represented by Fig. 6. 
The processing mechanisms of both sections 4.2 and 4.3, on the other hand, do 
not create problems of consistency or closure when combined with simple change 
operations. They are suitable for implementing foundationalist ideas in the vertical 
perspective as indicated in Fig. 4. 

5 REPRESENTING COHERENTIST BELIEF CHANGE BY OPERATIONS 
ON PRIORITIZED DATA BASES 

We return to the idea that some coherentist approaches may be interpreted as 
forms of hidden foundationalism. More precisely, sophisticated change operations 
on the belief state level may be representable as resulting from simple operations 
on the base level combined with a sophisticated inference operation. In the fol- 
lowing we present two applications of the method of turning prioritized data bases 
into Grovean systems of spheres that was sketched in section 4.2. Changes on the 
belief state level will be represented by changes of systems of spheres, and we shall 
specify syntactic operations on prioritized belief bases that correspond, through 
the inference operation mentioned, to these changes. In this way a coherentist 
approach instantiating the scheme of Fig. 5 is matched by an approach exempli- 
fying Fig. 4. We will use a slightly different format of belief bases now, in which 
the conjunctions Gi = /\ ri replace the finite sets ri above. The material of this 
section is put into a much wider perspective in Rott [to appear]. 

For the rest of this section, let the agent's prior belief state be represented by 
a system of spheres of possible worlds as depicted in Fig. 1, and let GI 4 G2 4 
. . . 4 G, a prioritized data base that generates this system of spheres as described 
in section 4.2. Intuitively, these are two representations of the same belief state. 
We suppose that -A is believed in this state, and that the input is A. 

 he closure problem after simple eliminations of an element A of the data base can be 
avoided, if this belief is eliminated by adding the 'phantom belief' -A at the top of the  data 
base. As a phantom belief, -.A is counted for the consistency check from the top to  the bottom, 
but it is not used in the closure Cn (X). See Rott [2001, Chapter 51. 
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5.1 Moderate revision 

The idea of moderate revision (Nayak [1994], Rott [2003]), also known as lexico- 
graphic revision, is as indicated in Figure 7. 

Fig. 7. Revision by input A 

This is a semantic operation on systems of spheres of possible worlds. It can 
be shown that the corresponding syntactic operation on the prioritized belief base 
turns it into 

Thus the coherentist moderate method of changing belief states turns out to be 
a hidden form of foundationalism. It is induced by a simple method of changing 
data bases that generate the relevant system of spheres. 

5.2 Revision by comparison 

Let < be the entrenchment relation generated from the agent's system of spheres 
as in section 2.3. Suppose that B is believed in this state, and that the input is A 
with the proviso that A should be accepted as firmly as the reference sentence B. 
Alternatively, the input may be thought of as coming in the form B 5 A. Then 
the idea of revision by , also known as raising (Cantwell [1997]), is given by the 
operation on the system of spheres indicated in Figure 8.23 

Again there is a syntactic operation on the prioritized belief base G1 4 . . . 4 Gn 
that corresponds precisely to  this semantic operation on systems of spheres. The 
base gets changed into 

2 3 ~ h e  representation of the  idea in terms of changes of entrenchments is rather complicated, 
see Ferm6 and Rott [2004]. 
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Fig. 8. Revision by A, accepting A at least as strongly as B 

where i is chosen such that B follows logically from Gi A . . . A G,, but not from 
Gi+l A . . .  A G ~ .  

The binary operation of revision by comparison has features of unary revision 
functions with respect to the input sentence A, and at the same time features of 
unary belief contraction functions with respect to the reference sentence B. The 
prioritized base representation makes it very transparent why the belief B is lost 
if the negation of A is at least as entrenched as B. 

6 A VERY BRIEF HISTORY OF BELIEF REVISION 

Information as structure is a static phenomenon, but information as being in- 
terpreted transfers an agent's belief state and is in this sense dynamic. We may 
suspect that the static picture determines the dynamic one. Do structural features 
fully determine the evolution of belief states through time? A look at the history 
of belief change research will help us answer this problem. 

From now on, let @ denote a belief state. The only condition we place on this 
concept is that it is possible to retrieve the beliefs of an agent from @. Let us 
write Bel(@) for belief set supported by 

Let * A denote the revised belief state, if @ is the prior belief state and A is 
the input (piece of new information). 

6.1 The 1980s: AGM's classical model 

The original models of Alchourr6n, Gardenfors and Makinson 119851 were some- 
what ambiguous about the notion of an epistemic state. Officially, an agent's 
belief state was represented by a belief set @ = Bel(@), that is, by the agent's set 

24~sua l ly ,  we suppose that Bel(@) is closed under some broadly classical logic. 
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of beliefs phrased in sentences of some regimented language. Belief sets were as- 
sumed to be closed under the (broadly classical) logic governing this language. As 
discussed in section 3, however, the agent has to make use of a selection structure 
or preference structure in order to revise her belief set in a reasonable way. Given 
such a structure associated with a belief set @, AGM's method (algorithm, recipe, 
. . . ) indeed uniquely determines the new beliefs. The resulting belief change func- 
tion * specifies, for a given belief set @, the posterior belief state @ * A for any 
potential input sentence A. It satisfies the following (by now classic) set of AGM 
postulates:25 

(AGMl) @ * A is logically closed. 

(AGM2) @ * A implies A 

(AGM3) @ * A is a subset of Cn ( a  U {A)) 

(AGM4) If A is consistent with @, then is a subset of @ * A 

(AGM5) If A is consistent, then @ * A is consistent 

(AGMG) If A is equivalent with B,  then @ * A = @ * B 

(AGM7) @ * (A A B) is a subset of Cn ((a * A) U {B)) 

(AGM8) If B is consistent with @ * A, then @ * A is a subset of @ * (A A B) 

(AGMl) and (AGM) state that the posterior belief set is closed and consistent 
if possible. (AGM5) requires that the input be accepted, and (AGMG) says that 
it is the content of the input that matters, not its syntactic surface structure. 
The expansion postulates (AGM3) and (AGM4) jointly say that in the case where 
the input A is consistent with the prior belief set @, the revised set includes @ 
and does not include more than the logical consequences of A taken together with 
@. The conjunction postulates (AGM7) and (AGM8) compare the revision by a 
conjunction A A B with the revision by the conjunct A. They state that if B is 
consistent with @ * A, then @ * (A A B) includes cP * A and is included by the set 
of logical consequences of B taken together with cP * A. 

One problem with the original AGM approach is that it did not provide for 
revisions of selection structures in response to  new information. For this reason, 
iterated revisions of belief states were largely impossible, and belief revision theory 
was not fully dynamic.26 

Another problem is that AGM left it open where the selection structures are 
supposed to come from. They were just assumed to be somewhere in the back- 
ground, waiting to be exploited in belief change processes. In my view, it is hard 
to imagine an objective measure with which to gauge changes of beliefs. It is much 

25Given here in a slightly adapted form, weakening (AGM4) and (AGM8) in order t o  make 
them 'purer'. 

26A slight adaptation of the AGM definitions, however, allows the same selection structure to  
be used in the context of arbitrary belief sets. For various ways of implementing this idea, see 
Alchourr6n and Makinson [1985], Areces and Becher [2001] and Rott [2003]. 
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more plausible to  assume that the structure guiding the change of an agent's be- 
liefs is part his or her own mental state, and indeed I suggest that it is part of 
the agent's belief state. As such, it will itself be subject to changes in response 
to new information. This more dynamic way of thinking about the evolution of 
belief states came to dominate belief revision theory during the 1990s. 

6.2 The 1990s: Iteration 

Two main ways of extending the AGM framework have been suggested so as to 
make belief states rich enough to support iterated changes in response to sequences 
of new information. In both models, change functions do not operate on the agent's 
beliefs, but directly on his or her belief states. Arbitrary iterations of belief changes 
can be modelled, and a fully developed dynamics becomes feasible. 

First, many researchers have suggested to identify belief states with selection 
or preference structures, of the kind that have proven suitable for one-shot AGM 
belief change. While such a structure is sufficient to uniquely determine the set of 
current beliefs as well as the AGM revisions of this belief set, it is not sufficient to 
determine its own revision. A method or rule how to change the selection structure 
if a new piece of information comes in has to be specified. Three of the most simple 
and plausible ideas are surveyed under the names 'radical', 'conservative' and 
'moderate' revision in Rott [2003]. For instance, the moderate method introduced 
in section 5.1 can be fully characterized by adding a single axiom to the AGM 
postulates that takes care of iterations of belief set revi~ion:~' 

(Mod) Be1 (@ * A * B) = 
Be1 (@ * (A A B)) if B is consistent with A 
Be1 (@ * B) otherwise. 

Now it looks as if the statics fully encodes the dynamics of belief. Each belief 
state contains all information for all its future revisions. But this is not quite true: 
In order to perform a change of belief, one needs to specify a certain method, a 
'rule of application', like, e.g., the rule for moderate revision. 

Let us now turn to the second way of extending the AGM models. In the 
important paper of Darwiche and Pearl [1997], a belief state is introduced as a 
primitive notion. A belief state is not identical with a (logically closed) belief 
set, but the latter is assumed to be retrievable from the belief state with the help 
of the Be1 function. The notation of the postulates then needs to be adapted 
accordingly. Here is the set proposed by Darwiche and Pearl:28 

(DP1) Be1 (@ * A) is logically closed. 

(DP2) Be1 (@ * A) implies A 

(DP3) Be1 (@ * A) is a subset of C n  (Be1 (a) U { A ) )  

27Compare Nayak [1994] and Nayak, Pagnucco and Peppas [2003]. 
28(DP4) and (DP8) are given in a slightly modified form, in order to  facilitate the comparison 

with my presentation of AGM. Cf. footnote 25 above. 
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(DP4) If A is consistent with Be1 (@), then Be1 (a) is a subset of Be1 (@ * A) 

(DP5) If A is consistent, then Be1 (@ * A) is consistent 

(DP6) If A is equivalent with B, then Be1 (@ * A) = Be1 (@ * B )  

(DP7) Be1 (Q, * (A A B)) is a subset of Cn (Be1 (Q, * A) U {B)) 

(DP8) If B is consistent with Be1 (@*A), then Be1 (@ *A) is a subset of Be1 (@ * 
(A A B)) 

The only difference with standard AGM belief revision postulates resides in 
Darwiche-Pearl's sixth condition. It is much weaker than AGM's sixth postulate 
which must in the new notation be written as follows:2g 

(AGM6') If Be1 (@I)  = Be1 (Q2) and A is equivalent with B, then Be1 (@I * A) = 
Be1 (@2 * B )  

Darwiche and Pearl [1997] added four postulates for the iterated revision of 
belief states. 

(DP9) If A is implied by B, then Be1 ((a * A) * B) = Be1 (@ * B) 

(DP10) If A is inconsistent with B, then Be1 ((@ * A) * B) = Be1 (@ * B) 

(DP11) If A is implied by Be1 (@ * B),  then it is implied by Be1 ((@ * A) * B) 

(DP12) If A is consistent with Be1 (@ * B), then it is consistent with Be1 ((@ * A) * B) 

These postulates have a very convincing semantic motivation. When revising 
by A, the agent is required not to mess up the ordering of worlds within the A-area 
(DP9), nor within the 1A-area (DPlO), and not to let any 1A-worlds 'overtake' 
A-worlds (DP11 and DP12). But like the AGM postulates, the DP postulates do 
not determine a unique posterior belief state resulting from the change. The result 
of a revision is doubly relative now. Only given a doxastic preference structure 
and given a specific rule of application (like, e.g., that of moderate revision or 
revision by comparison), is the posterior belief state determinately fixed. While 
for belief set revision in the 1980s, AGM's way of using preference structures was 
essentially without rivals, many different rules of application have been proposed 
for belief state revision since the 1990s. The Darwiche-Pearl postulates give the 
reasoner ample leeway, but there are methods of iterated belief change that do not 
satisfy them. While moderate revision satisfies them, revision by comparison does 
not (cf. sections 5.1 and 5.2). 

Iterated revision by means of Spohn's [1988] conditionalization also satisfies 
the Darwiche-Pearl postulates. Hild and Spohn [2008] show how to strengthen 
corresponding postulates for iterated belief contraction in order to ensure that a 
contraction function satisfying the strengthened postulates can be generated by 

2gIt is the fourth postulate in Darwiche and Pearl's original numbering, see Darwiche-Pearl 
[1997], p. 7. 
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an underlying ranking function and Spohn's method of conditionali~ation.~~ 
We said above that it is plausible to regard preference structures as parts of 

the agent's belief state. But where do rules of application come from? Preferences 
are non-propositional, but they may still be taken to represent something in the 
agent's mind, something that might be called the modal or nomological structure 
of the world. Rules of application, on the other hand, are not 'declarative' in any 
sense. They constitute 'procedural' information about how to apply preference 
structures in the process of rebuilding one's belief state. Should rules of application 
be thought of as belonging to the agent's belief state, too? Are they subject to 
changes in response to new evidence? These questions have remained unanswered 
so far. 

6.3 The 2000s: Merging 

From the end of the 1990s on, research on belief change has become more and more 
focused on the merging of belief states. In traditional theories of belief change, the 
input was usually treated as a single piece of information. In belief merging, the 
'input' is one or more data bases or belief states of other agents. Earlier there had 
been a clear asymmetry between the input on the one hand, and the data base 
or the belief state on the other hand. The former was called 'new information', 
the latter was some representation of the result of the previous information that 
an agent had received and/or processed.31 In belief merging, no such asymmetry 
is assumed, although it may of course be stipulated as a special constraint on a 
problem of merging. Belief revision in the customary style may thus be viewed as 
a special case of belief merging. With the turn to belief merging, the area of belief 
revision has left the restrictions of the single agent environment and moved into a 
genuine multi-agent setting. Now multiple belief states can be dealt with. 

Today this new field is extremely active, and it would be presumptuous to try to 
survey here the diversity of paths followed in belief merging. I rather try to convey 
the flavour of any such undertaking by presenting the axiomatic characterization 
of the account of Konieczny and Pino-PCrez's [1998]. Their terminology is different 
from the one used so far, and we will now reproduce the terminology of the much 
refined paper Konieczny and Pino-PBrez [2002]. By a belief base, Konieczny and 
Pino-PCrez mean just a single proposition A representing (the conjunction of) 
a person's beliefs. By a belief set, they denote a multiset A = [A1,. . . ,An] of 
propositions, where Ai is the belief base of the ith person. A(A) denotes the belief 
base that results from merging the elements of A. Here are the postulates for 
merging suggested by Konieczny and Pino-PQrez: 

(KP1) A(A) is a consistent proposition 

(KP2) If the belief sets A1,. . . ,An in A are jointly consistent, then A(A) = 

A l A  ... AA, 

30Spohn conditionalization achieves a contraction by A by setting the rank of - A  t o  zero. 
31Perhaps together with whatever constitutes the agent's a priori beliefs. 
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(KP3) If Al is element-wise equivalent with A2, then A(Al) is equivalent with 

A(A2) 

(KP4) If A1 is inconsistent with A2, then A([Al] U [Az]) Y A1 

(KP5) A(A1) A A(&) implies A(Al U A2) 

(KP6) If A(A1) is consistent with A(A2), then A(AlUA2) implies A(Al)/\A(A2) 

Here U denotes multiset union. For the motivation and semantics of these 
postulates, we have to refer the reader to Konieczny and Pino-P6rez's original 
papers. 

Given the fact that (essential aspects of) belief states can be identified with 
preference structures that are suitable for the resolution of potential conflicts be- 
tween different units of information, it is not surprising that many tasks involved 
in belief merging present themselves as problems of amalgamating or aggregating 
preference relations. These are very general problems that can be considered in 
abstraction from the specific problems pertaining to information processing. The 
information structures used for belief merging are not fundamentally different from 
the ones used for the single-agent setting. It is only the rules of application that 
become more complex, corresponding to  the increased complexity of the problems 
that are to be solved. 

The variety of operations similar to merging includes the fusion, combination, 
integration, arbitration of beliefs, as well as judgement aggregation. Natural 
links are established with social choice theory, game theory, negotiation theory, 
etc. Among the many relevant papers are Baral, Kraus, Minker and Subrahma- 
nian [1992], Revesz [1993], Nayak [1994], Liberatore and Scherf [1998], Benferhat, 
Dubois, Prade and Williams [1999], Meyer [2000], List and Pettit [2002], Andreka, 
Ryan and Schobbens [2002] and Liau [2005]. 

7 CONCLUSION 

M'e have seen different kinds of information structures at work in belief revision. 
There is propositional information: beliefs and inputs. There is non-propositional 
information that still seems, in some sense, to represent something: the preference 
orderings that we have identified with belief states. And there is non-propositional, 
non-representing, purely procedural information: rules of application specifying 
how to use the preference orderings in the process of belief revision. 

We have further seen different models of changes of such information structures, 
models that are supposed to characterize rational changes. In the classical models 
of the 1980s, beliefs were determined by preferences and rules of application for the 
use of these preferences. In the 1990s, preferences themselves were determined by 
prior preferences and rules of application for the change of these preferences. The 
question concerning the choice or change of these rules of application, however, 
has remained unanswered. Ultimately, this brings us to the question whether we 
believers are free to use information as we like. Do we possess 'informational 
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freedom' in this sense? Or is, in the picture afforded by the literature on belief 
revision, everything about the development of our beliefs determined? 

The philosopher Galen Strawson [1986; 19941 has put forward an argument to 
the effect that there can be no free, responsible action. Strawson's argument, 
which has gained some notoriety, goes as follows. Any free action of an agent 
a, that is, according to Strawson, any action for which a is responsible or any 
action performed by a for a reason, is a consequence of (among other things) 
'the way a is, mentally speaking' or her 'mental nature' or 'character.' Thus 
agent a is responsible for her action only if she is responsible for her character. 
She is responsible for the latter only if she has intentionally chosen it. She can 
intentionally choose her character only if she is equipped with 'principles of choice, 
"Pl" - preferences, values, pro-attitudes, ideals - in the light of which [she] 
chooses how to be.' ([1994], p. 6) Thus agent a is responsible for her character 
only if she is responsible for her principles of choice PI .  She is responsible for 
the latter only if she has intentionally chosen them, which in turn is possible only 
if she is equipped with second-order principles of choice P2 for the choice of her 
first-order principles of choice PI. And so on, ad infiniturn. Strawson concludes: 
'True self-determination is impossible because it requires the actual completion of 
an infinite series of choices of principles of choice.' ([1994], p. 7) Therefore, there 
can be neither true freedom nor true responsibility. 

What is striking about this argument from our point of view is that the initial 
steps of Strawson's a priori argument appear to describe quite exactly what has in 
fact happened in the historical development of belief revision theory. The agent's 
changes of beliefs are rational if and only if they are determined by higher-order 
information structures (preferences and rules of application). Such structures are 
naturally viewed as parts of the agent's mind. It turned out that what helps to  
solve the problem of rational belief change at one level is itself subject to revision. 
On the next level, the changes of the preference-orderings are themselves rational 
if and only if they are determined by some principled method of preference change. 
But such methods are themselves rational only to the extent they are determined 
in a principled way. And one is tempted to go on and reiterate the same argument 
on each new level. But so far no mechanisms for the rational choice of rules 
how to revise doxastic preferences have been proposed. And assuming that we 
had such choice mechanisms, how would they be rationally selected? What is 
the right interpretation of higher-order preferences? Should we reckon to  find, at 
some higher level, deep a priori principles decreeing what is ultimately rational? 
Or should we assume that the agent enjoys an unrestricted personal freedom of 
choice at a certain point in the hierarchy of preferences and rules of application? 
Or are we to expect that at some level, the agent turns out to be just a slave 
of the mental nature or character that she happens to possess, so that questions 
of rationality fade away into plain matters of fact? These are not questions that 
haunt computer scientists and information technologists in their daily work, but 
they seem to be important and hard to dismiss from a philosophical point of view. 
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INFORMATION, PROCESSES AND GAMES 

Samson Abramsky 

1 PRELUDE: SOME BASIC PUZZLES 

Before attempting a conventional introduction to this article, we shall formulate 
some basic puzzles which may serve as motivation for, and an indication of, some 
of the themes we shall address. 

1 .  Does Information Increase in Computation? 

Let us begin with a simple-minded question: 

I Why do we compute? 1 
The natural answer is: to gain information (which we did not previously have)! 
But how is this possible?1 

Problem 1: Isn't the output implied by the input? 

Problem 2: Doesn't this contradict the second law of thermodynamics? 

A logical form of Problem 1 This problem lies adjacent to another one at the 
roots of logic. If we extract logical consequences of axioms, then surely the answer 
was already there implicitly in the axioms; what has been added by the deriva- 
tion? Since computation can itself, via the Curry-Howard isomorphism [Curry 
and Feys, 1958; Howard, 1980; Girard et al., 19891, be modelled as performing Cut 
elimination on proofs, or normalization of terms, the same question can be asked 
of computation. A normal form which is presented as the result of a computation 
is logically equal to the term we started with: 

so what has been added by computing it? 

'Indeed, I was once challenged on this point by an eminent physicist (now knighted), who 
demanded to  know how I could speak of information increasing in computation when Shannon 
Information theory tells us that it cannot! My failure to  answer this point very convincingly at 
the time led me t o  continue to  ponder the issue, and eventually gave rise to  this discussion. 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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The same issue can be formulated in terms of the logic programming paradigm, 
or of querying a relational database [Ceri et al., 1990]: in both cases, the result of 
the query is a logical consequence of the data- or knowledge-base. 

The challenge here is to build a useful theory which provides convincing and 
helpful answers to these questions. We simply make some preliminary observa- 
tions. Note that normal forms are in general unmanagably big [Vorobyov, 19971. 
Useful output has two aspects: 

Making information explicit-i.e, extracting the normal form. 

Data reduction-getting rid of a lot of the information in the input. 

(Note that it is deletion of  data which creates thermodynamic cost in computation 
[Landauer, 19611). Thus we can say that much (or all?) of the actual usefulness 
of computation lies in getting rid of the hay-stack, leaving only the needle. 

Problem 2: Discussion While information is presumably conserved in the 
total system, there can be information flow between, and information increase 
in, subsystems. ( A  body can gain heat from its environment). More precisely, 
while the entropy of an isolated (total) system cannot decrease, a sub-system can 
decrease its entropy by consuming energy from its environment. 

Thus if we wish to  speak of information flow and increase, this must be done 
relative to subsystems. Indeed, the fundamental objects of study should be open 
systems, whose behaviour must be understood in relation to an external environ- 
ment. Subsystems which can observe incoming information from their environ- 
ment, and act to send information to their environment, have the capabilities of 
agents. 

Observer-dependence of information increase Yorick Wilks (personal com- 
munication) has suggested the following additional twist. Consider an equation 
such as 

3 x 5 = 15. 

The forward direction 3 x 5 -, 15 is obviously a natural direction of computation, 
where we perform a multiplication. But the reverse direction 15 + 3 x 5 is also 
of interest - finding the prime factors of a number! So the direction of possible 
information increase must be understood as relative to  the observer or user of the 
~ o m ~ u t a t i o n . ~  

Moral: Agents and their interactions are intrinsic to the study of information 
flow and increase in computation. The classical theories of information do not 
refEect this adequately. 

2Formally, this can be understood in terms of different choices of normal forms. For a general 
perspective on rewriting as a computational paradigm, see [Baader and Nipkow, 1999; Terese, 
20031. 



Ch12-N5 1726.fm Page 485 Monday, September 1,2008 7:21 AM @ I* 

Information, Processes and Games 

1.2 What Function Does the Internet Compute? 

Our second puzzle reflects the changing conception of computation which has been 
developing within Computer Science over the past three decades. The traditional 
conception of computation is that we compute an output as a function of an 
input, by an algorithmic process. This is the basic setting for the entire field 
of algorithms and complexity, for example. So what we are computing is clear 
- it is a f ~ n c t i o n . ~  But the reality of modern computing: distributed, global, 
mobile, interactive, multi-media, embedded, autonomous, virtual, pervasive, . . . 
- forces us to confront the limitations of this viewpoint. 

Traditionally, the dynamics of computing systems - their unfolding behaviour 
in space and time - has been a mere means to the end of computing the function 
which specifies the algorithmic problem which the system is solving.5 In much of 
contemporary computing, the situation is reversed: the purpose of the computing 
system is to exhibit certain behaviour. The implementation of this required be- 
haviour will seek to  reduce various aspects of the specification to the solution of 
standard algorithmic problems. 

I What does the Internet compute? I 
Surely not a mathematical function . . . 

Moral: We need a theory of the dynamics of informatic processes, of interaction, 
and information flow, as a basis for answering such fundamental questions as : 

What is computed? 

What is a process? 

What are the analogues to Turing-completeness and universality when we 
are concerned with processes and their behaviours, rather than the functions 
which they compute? 

2 INTRODUCTION: MATTER AND METHOD 

Philosophers of science are concerned with explaining various aspects of science, 
and often, moreover, with viewing science as a kind of gold-mine of philosophi- 
cal opportunity. The direction in both cases is philosophy from science. For a 

3We may, if we are willing to  countenance non-deterministic or probabilistic computation, be 
willing to  stretch this functional paradigm to  accomodate relations or stochastic relations of some 
kind. These are minor variations, compared to  the shift to  a fully-fledged dynamical perspective. 

4See e.g. [Milner, 2006a; Milner, 2006bl. 
5~nsofar as the dynamics has been of interest, it has been in quantitative terms, counting 

the resources which the  algorithmic process consumes - leading of course t o  the notions of 
algorithmic complexity. Is it too fanciful to  speculate that the  lack of an adequate structural 
theory of processes may have been an impediment to  fundamental progress in complexity theory? 
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theoretical or mathematical scientist, the primary inclination is often to see con- 
ceptual analysis as a preliminary to a more technical investigation, which may 
lead to  a new theoretical development. In short: science fmm philosophy. This 
article is written mainly in the latter spirit, from the stand-point of Theoretical 
Computer Science, or perhaps more broadly "Theoretical Informatics": a - still 
largely putative - general science of information. That being said, we hope that 
our conceptual discussions may also provide some useful grist to the philosopher's 
mill. 

2.1 Towards Information Dynamics 

The best-known existing mathematical theories of information are (largely) static 
in nature. That is, they do not explicitly describe informatic processes and infor- 
mation flow, but rather certain invariants of these processes and flows. There is 
by now ample experience from Computer Science which indicates that it is fruitful, 
and eventually necessary, to develop fully-fledged dynamical theories. We shall try 
to map some steps in this direction. 

We begin by reviewing some of the theories developed in Computer Science 
which form the background for our discussion. Then we consider another im- 
portant issue in theories of information: the distinction between qualitative and 
quantitative theories, and how they can be reconciled - or, more positively, com- 
bined. Our discussion here will still be a t  the level of static theories. We then go 
on to  consider dynamic theories proper. 

This article is well outside the author's usual remit as a researcher. While 
it  is clearly not a contribution to  philosophy, it cannot be said to be the usual 
kind of conceptually-oriented overview of a scientific field which one might find 
in such a Handbook (and of which there are some fine examples in the present 
volume) either; not least for the reason that the scientific field we are attempting 
to overview does not exist yet, in a fully realized form at any rate. Rather, the 
main purpose of this article is to play some small part in helping this field to come 
into being. 

What, then, is this nascent field? We would like to use the term Information 
Dynamics, which was proposed some time ago by Robin Milner, to suggest how the 
area of Theoretical Computer Science usually known as 'LSemantics'' might eman- 
cipate itself from its traditional focus on interpreting the syntax of pre-existing 
programming languages, and become a more autonomous study of the fundamen- 
tal structures of in for ma tic^.^ The development of such a field would transform 
our scientific vision of Information, and give us a whole new set of tools for think- 
ing about it. Hence its relevance for any attempt to develop a Philosophy of 
Information. 

Rather than a developed field of Information Dynamics, with some consensus 
as to what its fundamental notions and methods are, what we have a t  present 

6Robin Milner has also written several articles in the same general spirit as this one, notably 
[Milner, 19961. 
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are some partial exemplzfications; some theories which have been shown to  work 
well over certain ranges of applications, and which exhibit both conceptual and 
mathematical depth. Our approach to conveying the current state of the art, and 
indicating the major objectives visible from where we stand now, is necessarily 
largely based on describing (some of) these current theories. The obvious danger 
with this approach is that this article will appear to be a disjointed series of de- 
scriptions of various formalisms. We have probably not succeeded in avoiding this 
completely-despite the author's best efforts. But we regard the expository aspect 
of this article as important in itself. The theories we shall expound deserve to be 
known in wider circles than they presently are. And our discussions of Domain 
Theory, Game semantics and Geometry of Interaction delve more into conceptual 
issues, while minimizing the level of technical detail, than other accounts of which 
we are aware. 

2.2 Some Themes 

To assist the reader in keeping their bearings, we mention some of the main themes 
which will thread through our discussion: 

Information Increase in Computation We compute in order to gain informa- 
tion: but how is this possible, logically or thermodynamically? How can it 
be reconciled with the point of view of Information Theory? How does infor- 
mation increase appear in the various extant theories? This will be an im- 
portant explicit theme in our discussion of background theories in Section 3, 
and particularly in Section 4. Obtaining a good account in the context of 
dynamic theories, as exemplified by those presented in Sections 5 and 6, is 
a key desideratum for future work. 

Unifying Quantitative and Qualitative Theories of Information We 
mainly discuss this explicitly in Section 4, where we describe some striking 
recent progress which has been achieved by Keye Martin and Bob Coecke, in 
the setting of current static theories of information (Scott Domain Theory 
and Shannon Information Theory). A similar development in the setting of 
the dynamic theories described in Sections 5 and 6 is a major objective for 
future research. 

Information Dynamics: Logic and Geometry We introduce Game Seman- 
tics and Geometry of Interaction in Sections 5 and 6 as substantial partial 
exemplications of Information Dynamics. They have strong connections to 
both Logic and Geometry, and form a promising new bridge between these 
two fields. While we shall not be able to do full justice to these topics, we 
hope at least to raise the reader's awareness of these developments, and to 
provide pointers into the literature. 

The Power of Copying, and Logical Emergence This is mainly developed 
in Section 6, in the context of Geometry of Interaction-type models. The 
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theme here is to look at how logically complex behaviour can emerge from 
very simple "copy-cat processes", showing the power of interaction. The 
links between the interactive and geometric points of view become very clear 
at this basic level. 

One theme which we have, regretfully, omitted is that of the emerging connections 
with Physics, in particular with Quantum Information and Computation. 
Here there is already much to say (see e.g. [Abramsky and Coecke, 2002; Abramsky 
and Coecke, 2004; Abramsky and Coecke, 20051). We have not included this 
material simply for lack of the appropriate physical resources of space, time and 
energy. 

3 SOME BACKGROUND THEORIES 

Following our previous discussion, we can classify theories of information along 
two axes: as static or dynamic, and as qualitative or quantitative. We list some 
examples in the following table. 

It may seem strange to list Dynamic Logic as a static theory - and indeed, not 
everyone would agree with this classification! We regard it as static because it 
considers input-output relations only, and not the structure of the processes which 
realize these relations. The distinction we have in mind will become clearer when 
we go on to discuss Process Algebra. 

Qualitative 

Quantitative 

Shannon Information theory is discussed in detail in another Chapter of this 
Handbook. In this Section, we shall give brief overviews of the other three theories 
listed above, which have all been developed within Computer Science-Domain 
Theory and Dynamic Logic originating in the 1970s, and Process Algebra in the 
1980s. 

Static Dynamic 
Domain Theory, Process Algebra 
Dynamic Logic 
Shannon Information theory 

It may be useful to give a timeline for some of the seminal publications: 
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The work on Game Semantics and Geometry of Interaction to be covered in Sec- 
tions 5 and 6 comes from the 1990's. As always, a full intellectual history is 
complex, and we shall not attempt this here. 

We shall devote rather more space to Domain Theory than to  the other two 
theories, for the following reasons: 

1948 

1963 

1969 

1976 

1980 

Domain Theory is more intrinsically and explicitly a theory of information 
than Dynamic Logic or Process Algebra, and will figure significantly in our 
subsequent discussions. 

Claude Shannon A Mathematical Theory of Information Theory 
Communication 

Saul Kripke Semantical Considerations on Kripke Structures 
Modal Logic 

Dana Scott Outline of a Mathematical Domain Theory 
Theory of Computation 

Tony Hoare A n  Axiomatic Basis for Com- Hoare Logic 
puter Programming 

Vaughan Pratt Semantical Considerations on Dynamic Logic 
Floyd-Hoare Logic 

Johan van Benthem Modal Correspondence The- Bisimulation 
"ry 

Robin Milner A Calculus of Communicat- Process Algebra 
ing Systems 

The other theories will receive some coverage elsewhere in this Handbook, 
notably in the Chapter by Baltag and Moss. 

3.1 Domain Theory 

Domain Theory was introduced by Dana Scott c. 1970 [Scott, 19701 as a mathemat- 
ical foundation for the denotational semantics of programming languages which 
had been pioneered by Christopher Strachey. A domain is a partially ordered 
structure (D, C). The best intuitive reading of elements of D is as information 
states. We pass immediately to some illustrative examples. 

Examples of Domains 

Flat Domains Given a set X ,  we can form a domain XI by adjoining an element 
I $ X, and defining an order by 

Frequently used examples : NI, B l ,  0 = I*. Here N = {0,1,2,. . .), the set of 
natural numbers; B = {tt,fF), the set of booleans; and 1 = {*I, an (arbitrary) 
one-element set. 
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We can use such flat domains to model computations in terms of very simple 
processes of information increase. Thus a (possibly non-terminating) natural num- 
ber computation can be modelled in NI in the following sense. Initially, no output 
has been produced. This "zero information state" is represented by the bottom 
element I. If the computation terminates, a natural number n is produced. Thus 
we obtain the "process" 

I n. 

The case where no output is ever produced is captured by the "stationary process" 
I, which we can view more "dynamically" as 

Streams Now consider the scenario where we have an unbounded or potentially 
infinite tape (much as for the output tape of a Turing machine), on successive 
squares of which symbols from some finite alphabet C can be printed. This com- 
putational scenario is naturally modelled by the domain Cw, the set of finite and 
infinite sequences of elements of C. This is ordered by prefix: x C y if x = y, or x 
is finite, and for some (finite or infinite) sequence z, xz = y. Example: 

where OW is the infinite sequence of 0's. 
This example shows the ability of domain theory to model infinite computations 

as limits of processes of information increase, where at each stage in the process 
the information state is finite. 

It  is important to distinguish a finite stream in this domain from a finite list 
as a standard programming data structure, e.g. in LISP. A finite list in standard 
usage is a complete, informationally perfect object, just like a natural number in 
our previous example. A finite stream, by contrast, has a "sting in the tail"; a 
potentially infinite computation to determine what the remaining elements to be 
printed on the output tape will be. Thus a finite stream in the above domain is 
an informationally incomplete object, which can be extended to a more defined 
stream, which it then approximates. 

The Interval Domain Now suppose our computational scenario is that we are 
computing a real number in the unit interval [0, 11. Clearly we can only compute to 
finite precision in finite time (and with finite resources), so we are forced to consider 
a scenario of approximation. The appropriate domain here is II[O, 11, consisting of 
all closed non-empty intervals [a, b] where 0 5 a 5 b 5 1. We read an interval 
[a, b] as expressing our current state of information about the real r E [O,l] we 
are computing, namely that a 5 r 5 b. The ordering is by reverse inclusion of 
intervals, or equivalently by 

[a, b] c [c, dl * a 5 c A d b. 
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This corresponds to refinement of our information state to a more accurate deter- 
mination of the location of the ideal element r .  Note that the case [r, r] is allowed, 
for any r E [0, 11. In fact, this embeds the unit interval into the interval domain 
as the set of maximal elements of I[[O, 11. Note that for any real number r E [0, 11, 
there is a process of information increase 

where a,+l = a, and bn+l = (a,  + bn)/2 if r is in the left half-interval of [a,, b,], 
and a,+l = (a, + bn)/2 and bn+l = b, if r is in the right half-interval. Clearly 
r is the supremum of the a, and the infimum of the b,. Thus every real can be 
computed as the limit of a process of information increase where at each finite 
stage of the process the interval has rational end-points, and hence is a finitely 
representable information state.7 

Par t ia l  Functions A somewhat more abstract example is provided by the set 
Pfn(X, Y) of partial functions from X to Y, ordered by inclusion. To see how 
this can be used in computational modelling, consider the recursive definition of 
the factorial function: 

fact(n) = if n = 0 then  1 else n x fact(n - 1). 

We can understand this recursive definition as specifying a process of information 
increase over the domain Pfn(W, N). Initially, we are at the zero information state 
(least element of the domain) 0; we know nothing about which ordered pairs are 
in the graph of the function being defined recursively. Inspection of the base case 
of the recursion (where n = 0) allows us to deduce that the pair (0 , l )  is in the 
graph of the function. Once we know this, we can infer that in the case n = 1, 

Thus the process of information increase proceeds as follows: 

We can see inductively that the n'th term in this sequence will give the values 
of factorial on the arguments from 0 to n - 1; and the least upper bound of this 
increasing sequence, given simply by its union, will be the factorial function. 

'we are glossing over some technical subtleties here. The interval domain is a basic example 
of a continuous domain-the only one we shall encounter in this brief sketch of domain theory. 
This means that "finiteness" does not have the same "absolute" status in this case that it does in 
our other examples.(Formally, intervals with rational end-points are not compact.) Nevertheless, 
these finitely representable intervals do play a natural role in the effective presentation of the 
domain, and the example is an important one for conveying the basic intuitions of Domain 
Theory. See [Abramsky and Jung, 1994; Gierz et al., 20031 for extensive coverage of continuous 
domains. 
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Technical Issues 

These examples serve to motivate a number of additional axioms for domains. 
There is in fact no unique axiom system for domains. We shall mention the most 
fundamental forms of such axioms. 

Completeness As we have seen, an essential point of Domain Theory is to  
allow the description of infinite computations or computational objects as limits 
of processes of information increase. A corresponding property of completeness 
of domains is required, to ensure that a well-defined unique limit exists for every 
such process. Such limits are expressed as least upper bounds in order-theoretic 
terms. The idea is that for a process 

the limit should contain all the information produced at any stage of the process; 
and only the information produced by some stage of the process. The first point 
implies that the limit should be an upper bound; the second, that it should be the 
least upper bound. 

Which class of increasing sets should be regarded as processes of information 
increase? The most basic class, which has figured in all our examples to date, is 
that of increasing sequences, or "w-chains" in the usual technical parlance. The 
axiom requiring completeness for all such chains, which picks out the class of "w- 
complete partial orders", or w-cpos for short, is often used in Domain Theory. We 
shall henceforth assume that all domains we consider are w-cpos. Sometimes com- 
pleteness for a larger class of sets, the directed sets, is used. This reflects technical 
issues akin to the distinction in Topology between sequential completeness and 
completeness for nets or ultrafilters, and we shall not pursue this here. 

Least Elements All our examples have had a least element: I for flat domains, 
the empty stream for Coo, the unit interval [O,1] for II[O, 11, and the empty set for 
Pfn(X, Y). This provides a zero information point, and hence a canonical starting 
point for processes of information increase. Mathematically, least elements are 
essential for the least fixed point theorem which we shall encounter shortly. There 
are schemes for Domain Theory in which domains (or "pre-domains") are not 
required to have least elements in general, but they always enter the theory at 
crucial points, sometimes through a general operation of adjoining a least element 
to a predomain to  form a domain ("lifting"). 

Approximation The intuition developed through our examples for how general 
elements of the domain can be approximated by others, which may in particular 
be of finite character, is captured formally by requiring domains to be algebraic or 
continuous. We shall not develop these notions here, but will simply note for our 
examples: 
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For flat domains such as NI, we can regard all elements as of finite character. 

Every stream in Cm can be realized as the least upper bound of an increasing 
sequence of finite streams. 

Every real in [ O , l ] ,  and more generally every interval in I[O, 11, can be realized 
as the least upper bound of an increasing sequence of intervals with rational 
end-points. 

Every partial function in Pfn(X, Y), and in particular every total function 
from X to Y, where X and Y are countable, can be realized as the least 
upper bound of an increasing sequence of finite partial functions. (The case 
where X is uncountable is a typical example where we would naturally resort 
to general directed sets rather than sequences.) 

Conceptual Issues 

W h y  Par t ia l  Orders? Having developed some examples and intuitions, we now 
re-examine the basic concept of domains as partial orders (D, E). If we think of 
the elements of D as information states, the way we articulate this structure is 
qualitative in character. That is, we don't ask how much information a given state 
contains, but rather a relational question: does one state convey more information 
than another? We read d 5 e as "e conveys at least as much information as d". If 
we consider the partial order axioms with this reading: 

Reflexivity x g x  
Transitivity x C y  A y C z  3 x L . z  
Anti-Symmetry x g y  A y E x  x =  y. 

then Reflexivity is clear; and Transitivity also very natural. Anti-Symmetry can be 
seen as embodying an important Principle of Extensionality: if two states convey 
the same information, they are regarded as equal. 

States  of W h a t ?  We have been using the term "information state" to convey 
the intuition for what the elements of a domain represent. In fact, there is a 
certain creative ambiguity lurking here, between two interpretations of what these 
are states of:  

We may think of states of a computational system in itself, characterized 
in terms of the information they contain, as an "intrinsic" or "objective" 
property of the system, independently of any observer. 

We may implicitly introduce an observer of the system, and understand the 
information content of a system in terms of the observer's state of information 
about it. 
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In the first reading, we think of the partial elements of the domain in an ontological 
way, as necessary extensions to our universe of discourse to  represent the range of 
possible outputs of computational systems which may run for ever, and may fail to 
terminate or to produce information beyond some finite stage of the computation. 
In the second reading, we are thinking epistemologically: what information can 
the observer gain about the computation. 

In fact, both readings are useful-and are widely used. It is very common to slip 
without explicit mention from one to the other-nor, for the technical purposes 
of the theory, does this seem to do any harm. Mathematically, this distinction 
can be related to the duality between points and properties, in the sense of Stone- 
type dualities: the duality between the points of a topological space, and its basic 
"observable propertiesn-the open sets [Johnstone, 19821. The particular feature 
of domains which allows this creative ambiguity between points and properties 
to be used so freely without incurring any significant conceptual confusions or 
overheads is that basic points and basic properties (or observations) are essentially 
the same things. We explain this in terms of an example. Consider a finite steam 
s in Em. On the one hand, this can be viewed as a point, i.e. as an element of the 
domain - which may be produced by some system which computes the elements 
of s in finite time, and then continues to run forever without producing any more 
output. On the other hand, we may view this finite stream s as a property: the 
property satisfied by any system with output stream t such that s E t .  It is a 
finitely observable property, since we can tell whether a system satisfies it after 
only a finite time spent observing the system. Whether we take Em as the space 
of points X generated as limits of increasing sequences of finite streams, or a s  the 
"logic" (or open-set lattice) L of properties generated by the basic observations 
given by finite streams, we get the same thing: the topology of X will be L, and 
the space of points generated (as completely prime filters) over L will be X. This is 
Stone duality. An extensive development of Stone duality for Domain Theory has 
been given in [Abramsky, 19911; see also [Abramsky and Jung, 1994; Zhang, 1991; 
Bonsangue and Kok, 19991. 

In fact, we would argue that it is hard to avoid the epistemic stance entirely. 
For example, the plausibility of something as basic as the Anti-Symmetry axiom is 
much greater if we think in terms of an observer. Much of the conceptual power of 
Domain Theory comes from the idea that it articulates how we can approximate 
infinite ideal objects by processes which use only finite resources at each finite 
stage. 

Static or Dynamic? Another subtle underlying issue which is not usually made 
explicit is that Domain Theory is a static theory resting on dynamic intuitions. 
Indeed, we have motivated the theory in terms of certain processes of information 
increase. Processes happen in time; thus time is present implicitly in Domain 
Theory. This underlying temporality can be developed more explicitly within the 
Domain Theoretic framework: 

One can add axioms to the basic ones for domains to pick out those domains 
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which are concrete [Kahn and Plotkin, 19781, in the sense that we can un- 
derstand information increase in terms of a temporal flow of events. Now 
the ordering is not simply one of information content, but involves an idea 
of causality, so that some events must temporally precede others. This leads 
to  notions of event structures [Nielsen et al., 19811, which have been applied 
to the study of concurrent processes. Very similar structures have shown 
up recently in Theoretical Physics, in the Causal Sets approach to quantum 
gravity [Sorkin, online]. 

In some remarkable recent work, Domain Theoretic tools are used to char- 
acterize globally hyperbolic space-time manifolds in terms of their causal 
ordering [Martin and Panangaden, 20061. 

However, it should be said that most of the applications of Domain Theory in 
denotational semantics are carried out at a much higher level of abstraction, where 
temporality appears only in the most residual form. This arises from the fact that 
computations or programs are modelled in the Domain-Theoretic denotational 
framework essentially as functions from inputs to outputs. 

Continuous Functions 

We now consider the appropriate notion of function between domains. Let D, 
E be w-complete partial orders. A function f : D -+ E is monotonic if, for all 
x , y  E D :  

X C Y  ===+ f ( x ) L f ( y ) .  

It is continuous if it is monotonic, and for all w-chains ( x , ) , ~ ~  in D: 

Examples We consider a number of examples of functions f : Cm -+ BI, where 
c = (0, l) .  

1. f ( x )  = tt if x contains a 1, f ( x )  = I otherwise. 

2. f ( x )  = tt if x contains a 1, f (Om) = ff, f ( x )  = I otherwise. 

3. f ( x )  = tt if x contains a 1, f ( x )  = fF otherwise. 

Of these: (1) is continuous, ( 2 )  is monotonic but not continuous, and (3) is not 
monotonic. 

As these examples indicate, the conceptual basis for monotonicity is that the 
information in Domain Theory is positive; negative information is not regarded 
as stable observable information. That is, if we are at some information state s, 
then for all we know, s may still increase to t ,  where s 5 t .  This means that if we 
decide to produce information f ( s )  at  s ,  then we must produce all this information, 
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and possibly more, at t ,  yielding f ( s )  5 f ( t ) .  Thus we can only make decisions 
at a given information state which are stable under every possible information 
increase from that state. This idea is very much akin to  the use of partial orders 
in Kripke semantics for Intuitionistic Logic, in particular in connection with the 
interpretation of negation in that semantics. The continuity condition, on the 
other hand, reflects the fact that a computational process will only have access 
to a finite amount of information at each finite stage of the computation. If we 
are provided with an infinite input, then any information we produce as output at 
any finite stage can only depend on some finite observation we have made of the 
input. This is reflected in one of the inequations corresponding to continuity: 

which says that the information produced a t  the limit of an infinite process of 
information increase is no more than what can be obtained as the limit of the 
information produced at the finite stages of the process. Note that the "other 
half" of continuity 

U f(xn) E f ( U  xn) 
n E w  n E w  

follows from monotonicity. 
Note by the way how this discussion is permeated with the epistemic stance. 

Continuous functions produce points as outputs on the basis of obseruations they 
make of their inputs. Thus the duality between these two points of view plays a 
basic r6le in our very understanding of continuous functions.' This can be (and 
often is) glossed over in Domain Theory, by virtue of the coincidence of finite 
points and finite properties which we have already discussed. 

The Fixpoint Theorem 

We now consider a simple but powerful and very widely applicable theorem, which 
is one of the main pillars of Domain Theory, since by virtue of this result it provides 
a general setting in which recursive definitions can be unders t~od .~  

THEOREM 1 (The Fixpoint Theorem). Let D be an w-cpo with a least element, 
and f : D -+ D a continuous function. Then f has a least fixed point Ifp( f ) .  
Moreover, Ifp(f) is  defined explicitly by: 

nEw 

8Mathematically, this duality appears in the guise of the compact-open topology for function 
spaces. We can think of open sets in functions spaces as observations which can be made on 
functions viewed as black boxes. Dually t o  the point of view of the function, which observes an 
input and produces an output, a function environment must produce an input (a point, or in 
more general topological situations, a compact set), and observe the corresponding output. 

9A fixed point of a function f : X ---, X is an element x E X such that f (x) = x. "Fixpoint" 
is (standard) jargon for fixed point. For some historical information on this theorem and its 
variations, see [Lassez et al., 19821. 
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We give the proof, since it is elementary, and exhibits very nicely how the basic 
axiomatic structure of Domains is used. 

Proof. Note that f n ( l )  is defined inductively by: 

We show firstly that this sequence is indeed an w-chain . More precisely, we show 
for all k E N that f k ( l )  L f k + l ( l ) .  For k = 0, this is just 1 ) f (1) .  For 
the inductive case, assume that fk((l ) fk+ ' ( l ) .  Then by monotonicity of f ,  
f(fk((l) ) f ( fk f l ( l ) ) ,  i .e.  f k f l ( l )  C fkf2(1) ,  as required. 

Next we show that (1) does yield a fixpoint. This is a simple calculation using 
the continuity of f :  

The last step uses the (easily verified) fact that removing the first element of an 
w-chain does not change its least upper bound. 

Finally, suppose that a is a fixpoint of f .  Then we show by induction that, 
for all k, f k ( l )  a .  The basis is just l a. For the inductive step, assume 
f k ( l )  !& a. Then by monotonicity of f ,  

Thus a is an upper bound of (fn ( 1 )  I n E w), and hence UnEw f n ( 1 )  !& a. W 

Factorial revisited We now reconstrue the definition of the factorial function 
we considered previously, as a function on domains: 

F : Pfn(N, N) -+ Pfn(W, M), 

defined by 
F(f ) (n)  = if n = 0 then 1 else n x f ( n  - 1). 

We can check that F is continuous. Hence we can apply the fixpoint theorem to 
F ,  and conclude that it has a least fixpoint Ifp(f), defined explicitly by (1). Now 
we can make the (explicit, non-circular) definition: 

fact = Ifp(F). 

One can check that this definition yields exactly the expected definition of factorial. 
In fact, the increasing sequence constructed in forming the least fixpoint according 
to (1) is exactly the one we described concretely in our previous discussion of the 
factorial. 

Thus in particular the processes of information increase we have been emphasiz- 
ing are involved directly in the construction underpinning the Fixpoint Theorem. 
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Further Developments i n  Domain Theory 

This is of course just the beginning of an extensive subject. We mention a few 
principal further features of Domain Theory: 

Function Spaces A key point of the theory is that, given domains D and E, the 
set of continuous functions from D to E, written as [D - El, will again be 
a domain, with the following pointwise ordering: 

Moreover, operations such as function application and currying or lambda- 
abstraction are continuous. This means that we can form models of typed 
A-calculi and higher-order computation within Domain Theory, which is of 
central importance for the denotational semantics of programming languages. 
Of course, such domains of higher-order functions are very "abstractn- 
they are in fact the prime examples of domains which are not concrete in 
the sense of [Kahn and Plotkin, 19781-and notions of temporality are left 
quite far behind. (There have attempts to capture more of these notions by 
varying the definition of the order on function spaces, but these have not 
been completely successful-and in some cases, provably cannot be). 

Recursive Types Remarkably, the idea of the Fixpoint Theorem, and its use to 
give meaning to recursive definitions of elements of domains, can be lifted 
to the level of domains themselves, to give meaning to recursive definitions 
of types. This even extends to the free use of function spaces in recursive 
definitions of domains, leading to the construction of domains D whose con- 
tinuous function spaces [D - D] are isomorphic to D or to a subspace of 
D. This allows models of the type-free Xcalculus, and of various strongly 
impredicative type theories, to be given within Domain Theory. 

Powerdomains There are also a number of powerdomain constructions P(D) ,  
which build a domain of subsets of D. This allows various forms of non- 
deterministic and concurrent computation to be described. There is also a 
probabilistic powerdomain construction, which provides semantics for prob- 
abilistic computation. 

Some suggestions for further reading on Domain Theory The text [Davey 
and Priestley, 20021 gives a fairly gentle introduction to partial orders and lattices, 
with some material on domains. The Handbook article [Abramsky and Jung, 19941 
is a comprehensive technical survey of domain theory. The monograph [Gierz et 
al., 20031 focusses on the connections to topology and lattice theory. Gordon 
Plotkin's classic lecture notes [Plotkin, online] are available on-line. The texts 
[ ~ i n s k e l ,  1993; Amadio and Curien, 19981 show how domain theory is used in the 
semantics of programming languages. 
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3.2 Dynamic Logic 

Dynamic Logic originates at the confluence of two sources: modal logic and its 
Kripke semantics [Kripke, 1963; Blackburn et al., 20011; and Hoare logic of pro- 
grams [Hoare, 19691. 

Modal Logic Modal Logic adds to a standard background logic (say classical 
propositional calculus) the propositional operators and 0, expressing ideas of 
"necessity" and "possibility". This was transformed from a philosophical curiosity 
to  a vibrant and highly applicable branch of mathematical logic by the introduction 
of Kripke semantics [Kripke, 19631. This is based on Kripke structures (W, R, V), 
where W is a set of worlds, R C W x W is an "accessibility relation", and V : 
P + P(W)  is a valuation which for each propositional atom in IP' assigns the set 
of worlds in which it is true. This valuation is then extended to one on formulas, 
with the key clauses: 

The importance of the Kripke semantics is that it gives modal logic a clear math- 
ematical purpose: it is a logical language for talking about such structures, which 
strikes a good balance between expressive power and tractability. Computer Sci- 
ence provides a wealth of situations where such structures arise naturally, and 
where there is a clear need for the verification of their logical properties. The 
dominant interpretation of Kripke structures in Computer Science replaces meta- 
physical talk of "possible worlds" by the more prosaic terminology of states. Here 
we think of states of a system, which are generally characterized by the informa- 
tion we have about them. In a Kripke structure, the direct information we have 
about a state is which atomic propositions are true in that state. However, while 
we seem again to be speaking about information states, as in our discussion of Do- 
main Theory, there is an important difference. In Domain Theory, (as in Kripke 
semantics for Intuitionistic Logic), information is in general partial, but also per- 
sistent. Information can only increase along a computation. We may never reach 
total information, but we will never lose what we had-just as we can never (in 
current Physics) change the past. (Indeed, the two are intimately related. In the 
implicit temporality of Domain Theory, the current information state summarizes 
all the information produced in the computation up till now; whatever happens in 
the future cannot change that). By contrast, Kripke structures for modal logics 
correspond to a less stable world. We may have perfect knowledge of the current 
state, but the dynamics of the system, as described by the accessibility relation, 
allow in general for arbitrary state change. A basic Computer Science model for 
this scenario is provided by taking the states to be memory states of a computer. 
At some instant of time we may have a complete snap-shot of the memory. But 
our repertoire of actions allow us to  assign an arbitrary new value into any memory 
cell, so we can go from any given state to any other (possibly by a sequence of 
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basic actions). In particular, the key feature of computer memory, the fact that 
we can destructively over-write the previous contents of a memory cell, (a feature 
which is not, apparently, available for our own memories!), ensures that the past 
is not in general carried forward. 

Hoare  Logic Hoare Logic [Hoare, 1969; de Bakker, 19801 provides a composi- 
tional proof theory for reasoning about imperative programs. It is a two-sorted 
system. We have a syntax for programs P ,  and one for formulas 4, which are 
generally taken to  be formulas of predicate calculus. Such formulas can be used 
to express properties of program states (i.e. memory state snap-shots as in our 
previous discussion, or more formally assignments of values to the variables ap- 
pearing in the program), by a variable p u n  by which the individual variables 
used in formulas are identified with the program variables. The basic assertions of 
the system are taken to be Hoare triples 4{P)$. Such a triple is said to be valid 
if, in any initial state satisfying the formula 4 (the precondition), execution of the 
program P will, if it terminates, result in a final state satisfying the formula $ 
(the post-condition). 

The variable p u n  is put to use in the axiom for assignment statements: 

4[e/xI{x := e l 4  

which says that 6 is true after executing the assignment statement x := e if 4 with 
e substituted for x was true before. 

The key rules of the system allow for compositional derivation of assertions 
about complex programs from assertions about their immediate sub-programs. 

6{P)$ ${QlQ 4 A B{P)$ 4 A -B{Q)$ 4 A B{P)4 
4{P; Q)6' 4{if B then  P else Q)$ 4{while B d o  P)4 A 1 B  

Here P; Q is the sequential composition which firstly performs P ,  then Q; if B t h e n  
P else Q is the conditional which evaluates B in the current state; if it is t r u e  
then P is performed, while if it is false, Q is performed. Finally, while B d o  P 
evaluates B; if it is t rue ,  then P is performed, after which the whole statement is 
repeated; while if it is false, the statement terminates immediately. 

Dynamic Logic Dynamic Logic [Pratt, 19761 arises by combining salient fea- 
tures of these two systems. Note that we are reasoning about programs in terms 
of the input-output relations on states which they define. If the program is deter- 
ministic, this relation will actually be a partial function, but there is no need to 
insist on this. We can thus view each program P as defining a relation R 5 S x S, 
where S is the set of states. Thus for each individual program, we obtain a Kripke 
structure (S, R, V), where V is the valuation which assigns truth conditions on 
states for some repertoire of state predicates. The key point of contact between 
the two systems is that validity of the Hoare triple ${P)$ corresponds exactly to 
the validity of the modal formula 
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in the Kripke structure (S, R, V), where by validity we mean that 

for every s E S.  
As a first extension, we can consider multiple programs, each defining an acces- 

sibility relation R. To keep track of which program we are talking about at any 
given point, we replace by [R], so that the formula corresponding to the Hoare 
triple now reads as 

4 - PI$. 
Just as [R] replaces 0, so (R) replaces 0. Thinking of R as the input-output 
relation defined by a program, we can read [R]4 as holding in all states (worlds) 
s such that any output state obtained by executing R starting in s will satisfy 4. 
Similarly, (R) will be true in any state s such that there is some output state than 
can be obtained by running R starting in s which satisfies 4. 

This is just multi-modal logic, with mutiple accessibility relations, each with its 
own modalities. Note that it is now completely meaningful to consider modal for- 
mulas which make assertions about programs which go well beyond Hoare triples, 
e.g. 

[Rl -+ (S) lR14. 
However, at this point we lack the compositional analysis of programs offered by 
Hoare Logic. 

The final step to (propositional) Dynamic Logic comes by considering a two- 
sorted system with a mutually recursive syntax. We have a set P of propositional 
atoms as before, and also a set Rel of basic relations. The syntax of formulas is 
given by 

4 ::= P E P 1  -4 I4 A ll) I [Rl4 
while the syntax of relations R is given by 

R ::= T E Rel 1 R ; S  I R u S  I R* 1 4? 

We have not included the modal operator (R) as primitive syntax, since we can 
define 

(R)4 - l[R]+. 
In this syntax, any program is allowed to appear as a modal operator on formu- 

las, while in addition to the usual regular operations of relational algebra (compo- 
sition, union, and reflexive transitive closure), any formula is allowed to appeared 
as a program test (we may call this the formula pun). In general, this is too 
strong, and only a restricted class of tests should be allowed. Tests are interpreted 
as sub-identity relations-so 4? is the set of all (s, s) such that 4 is true in s. 

Note that the usual imperative program constructs can be recovered from these 
relational constructs. Sequential composition is provided directly, while 

if b then R else S = b; R U ~ b ;  S while b do R = (b; R)*; l b .  
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The Hoare Logic axioms can now be derived from the following modal axioms: 

and the rule 
4 + [Rl4 
4 -, [R*l4' 

Discussion 

While Hoare Logic is specifically tailored to the needs of conventional impera- 
tive programming languages, Dynamic Logic is much more generic in style; and 
indeed, it  has been applied in a range of contexts, including Natural Language 
and Quantum Logic. In the Chapter in this Handbook by Baltag and Moss, a 
version of Dynamic Logic is described in which the states are information states 
of agents, and the actions are epistemic actions by these agents, such as public 
announcements. 

As a general formalism, though, Dynamic Logic offers only a limited analysis of 
information dynamics. Indeed, despite its name, it is not really very dynamic, as it 
is limited to  speaking of the input-output behaviour of relations. This is confirmed 
by the simple translation it admits into first-order logic (augmented with fixpoints 
to account for the reflexive transitive closure operation on relations). We briefly 
sketch this. To each relation term R, we associate a formula BR(x, y) in two free 
variables, and to each modal formula 4 we associate a formula A+(x) in one free 
variable. The main clauses in the definition of BR are as follows: 

The clauses for modal formulas are standard. The one for the modality is: 

Suggestion for further reading The book [Harel et al., 20001 is a compre- 
hensive technical reference, while [van Benthem, 1988] is a wide-ranging study. 
Applications to Natural Language appear in [Groenendijk and Stockhof, 1991; 
van Eijck and Stokhof, 20061, and to Quantum Logic in [Baltag and Smets, 20061. 

3.3 Process Algebra 

Background 

One of the major areas of activity in Theoretical Computer Science over the past 
three decades has been Concurrency Theory, and in particular Process Algebra. 



Ch12-N5 1726.fm Page 503 Monday, September 1,2008 7:21 AM @ I* 

Information, Processes and Games 503 

Whereas modelling sequential computation in terms of input-output functions or 
relations essentially uses off-the-shelf tools from Discrete Mathematics and Logic, 
albeit in novel combinations and with new technical twists, and even Domain 
Theory can be seen as an off-shoot of General Topology and Lattice Theory, Con- 
currency Theory has really opened up some new territory. In Concurrency Theory, 
the computational processes themselves become the objects of study; concurrent 
systems are executed for the behaviour they produce, rather than to compute 
some pre-specified function. In this setting, even such corner-stones of computa- 
tion as Turing's analysis of computability do not provide all the answers. For all 
its conceptual depth, Turing's analysis of computability was still calibrated us- 
ing familiar mathematical objects: which functions or numbers are computable? 
When we enter the vast range of possibilities for the behaviour of computational 
systems in general, the whole issue of what it means for a concurrent formalism 
to  be expressively complete must be re-examined. There is in fact no generally 
accepted form of Church-Turing thesis for concurrency; and no widely accepted 
candidate for a universally expressive formalism. Instead, there are a huge range 
of concurrency formalisms, embodying a host of computational features. 

Another question which ramifies alarmingly in this context is what is the right 
notion of behavioural equivalence of processes. Again, a large number of candidates 
have arisen. Experts use what seems most appropriate for their purpose; it is not 
even plausible that a single notion will gain general acceptance as "the right one". 

In fact, a great deal of progress has been achieved, and the situation is much 
more positive than might appear from these remarks. There is a great diversity 
of particular formalisms and definitions in Concurrency Theory; but underpinning 
these are a much smaller number of underlying paradigms and technical tool-kits, 
which do provide effective intellectual instruments, both for fundamental research 
and applications. 

Examples include: 

labelled transition systems and bisimulation 

0 naming and scope restriction and extrusion 

the automata-theoretic paradigm for model-checking 

These tool-kits are the real fruits of these theories. They may be compared to the 
traditional tool-kits of physics and engineering: Differential Equations, Laplace 
and Fourier Transforms, Numerical Linear Algebra, etc. They can be applied 
to a wide range of situations, going well beyond those originally envisaged, e.g. 
Security, Computational Biology, and Quantum Computation. 

Some Basics of Process Algebra 

We now turn to  a brief description of a few basic notions, in a subject on which 
there is a vast literature. We begin with the key semantic structure, namely 
labelled transition systems. A labelled transition system is a structure (S, Act, T), 



Ch12-N5 1726.fm Page 504 Monday, September 1,2008 7:21 AM @ I* 

504 Samson Abramsky 

where S is a set of states, Act is a set of actions, and T c S x Act x S is the 
transition relation. We write s 5 t for (s, a , t )  E T. Note how close this is to 
the notion of Kripke structure we have already encountered. However, that notion 
is tuned to  a state-based view of computation, in which we focus on assertions 
which are true in given states. The transition relation plays an indirect r61e, in 
controlling the behaviour of the modal operators. By contrast, the point of view in 
labelled transition systems is that states are not directly observable, and hence do 
not have properties directly attributable to them. Rather, it is the actions which 
are the basic observables, and we infer information about states indirectly from 
their potential for observable behaviour. Thus the point of view here is closer to 
automata theory. A key difference from classical automata theory, however, is that 
we look beyond the classical notion of behaviour in terms of the words or traces 
(sequences of actions) accepted or generated by the system, and also encompass 
branching behaviour. The classical example which illustrates this is the following 
[Milner, 19801: 

These systems have the same linear traces {ab, ac). However, if we think of a 
scenario where we can perform experiments by pressing buttons labelled with the 
various actions, and observe if the experiments succeed, i.e. whether the system 
performs the corresponding action, then after observing an a in the first system, it 
is clear that whether we press the b button or the c button, we will succeed; whereas 
in the second system, one button will succeed and the other won't. A fundamental 
notion of process equivalence which enforces this distinction is bisimulation. We 
define a bisimulation [van Benthem, 1976; Hennessy and Milner, 1980; Park, 1981; 
Milner, 1989; Sangiorgi, 20041 on a labelled transition system (S, Act, T) to be a 
relation R C S x S such that: 

We write s t if there is a bisimulation R such that sRt. We can see that indeed 
the root states of the two trees in the above example are not bisimilar, since the 
first has an action a to a state in which both the actions b and c are possible, while 
the second has no a-move to a matching state. 

We now turn to  a suitable modal logic for labelled transition systems. The 
basic form for such a logic is Hennessy-Milner Logic. This has modal operators 
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[a], (a) for each action a. In general, this logic does not have (or require) any 
propositional atoms; just constants t t  (true) and ff (false). The semantic clauses 
are as expected for a multi-modal logic, where we view the transition relation as 
an Act-indexed family of relations {Ta)aE~a,  where Ta S x S is defined by 

Thus we have the clauses 

The basic result here is that, under suitable hypotheses, two states in a labelled 
transition system are bisimilar if and only if they satisfy the same formulas in this 
modal logic. Thus in our example above, the first system satisfies the formula 
(a)((b)tt A (c)tt), while the second does not. 

We now turn, finally, to the algebraic aspect of process algebra. Just as we 
structured the programs in Dynamic Logic using relational algebra, so we seek an 
algebraic structure to generate a wide class of process behaviours. As we have 
already discussed, there is no one universally adopted set of process combinators, 
but we shall consider a standard set of operations, essentially a fragment of Milner's 
CCS [Milner, 1980; Milner, 19891. The syntax of process terms P is defined, 
assuming a set Act of actions, as follows: 

P ::= a.P (a E Act) I P + Q I 0 I  P 1 1  Q. 

Here a . P  is action prefixing; first do a, then behave as P. P + Q is non- 
deterministic choice between P and A, while 0 is inaction; the process which 
can do nothing. Finally, P 11  Q is parallel composition, which we take here in a 
simple form, not involving any interaction between P and Q. 

We formalize these intuitions as a labelled transition system in which the states 
are the process terms, while the transition relation is defined by structural in- 
duction on the syntax of terms-the Structural Operational Semantics paradigm 
[Plotkin, 2004). 

The transition relation is specified as follows. 

This labelled transition system gives rise to a notion of bisimulation, which is 
an equivalence relation, and in fact a congruence for the process algebra. The 
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corresponding equational theory for the algebra can be axiomatized as follows: 

together with the following equational scheme. If P = ai.Pi and Q - 
bj.Qj, then: 

This is an infinite family of equations. In fact, the equational theory of bisimulation 
on process terms is not finitely axiomatizable [Moller, 1990bI; however, with the 
aid of an auxiliary operator (the "left merge"), a finite axiomatization can be 
achieved [Moller, 1990a]. 

Communication and Interaction in Process Algebra 

We shall take a brief glimpse at this large topic. For illustration, we shall describe 
the CCS approach [Milner, 1980]. However, it should be emphasized that there is 
a huge diversity of approaches in the process algebra literature, with none having 
a clear claim to being considered canonical. (For further remarks on this issue of 
non-canonicity, see the final section of this article, and [Abramsky, 20061). 

We assume some structure on the set A: a fixed-point free involution a H a, so 
that we have a # 15 and B = a. The idea is that a and 6 will be complementary 
partners to an interaction or synchronized action. We also introduce a special 
action 7, which is intended to be a "silent action", unobservable to the external 
environment. 

We can now introduce a parallel composition P 1 Q which does allow for inter- 
action, in the form of synchronization between P and Q. Its dynamics are given 
by the following rules: 

The new ingredient is the middle rule, which allows for synchronization between P 
and Q. Note that a and 6 "complete" each other into the action T which is now an 
internal step of the system, and hence unobservable to the external environment. 

To take proper account of the unobservable character of T, we introduce the 
observable transition relation for each a # T: 

We can then define weak bisimulation with respect to these observable transitions. 
However, a new complication arises: this weak bisimulation is not a congruence 
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with respect to  the operations of the process algebra. It is necessary to  take the 
largest congruence compatible with weak bisimulation, finally yielding the notion 
of observational congruence. This notion can be equationally axiomatized, but it 
is considerably more complex and less intuitive than the "strong bisimulation" we 
encountered previously. 

Discussion 

Process Algebra can be used as a vehicle for discussions of information flow and 
information dynamics, e.g. [Lowe, 20021. It does not in itself offer a fully fledged 
theory of these notions. 

Process Algebra is a qualitative theory of process behaviours. It is our first 
example of a dynamic theory, since it makes temporality and the flow of events 
explicit. 

Suggestions for further reading Introductory textbooks include [Hoare, 1985; 
Milner, 1989; Baeten and Weijland, 1990; Milner, 19991. The Handbook of Process 
Algebra [Bergstra and Ponse, 20001 provides wide technical coverage of the field. 

4 COMBINING QUALITATIVE AND QUANTITATIVE THEORIES OF 
INFORMATION 

4.1 Scott domain theory and Shannon infomation theory 

Two important theories of information give contrasting views on the question of 
information increase, which we discussed in Section 1. Information theory a la 
Shannon is a quantitative theory which considers how given information can be 
transmitted losslessly on noisy channels. In this process, information may only be 
lost, never increased. Domain Theory a la Scott is, as we have seen, a qualitative 
theory in which the key notion is the partial order x C y, which can be interpreted 
as: "y has more information content than x". This theory is able to  model a 
wide range of computational phenomena. To take a classical example, consider 
the interval bisection methods for finding the root of a function. We start with an 
interval in which the root is known to  lie. At each step, we halve the length of the 
interval being considered. This represents an increase in our information about the 
location of the root, in an entirely natural sense. In the limit, this nested sequence 
of intervals contains a single point, the root - we have perfect information about 
the solution. 

More generally, in Domain Theory recursion (and thereby control mechanisms 
such as iteration) is modelled as the least fixed point of a monotonic and (order- 
)continuous function: 

I E  f l ~  f 2 ~ c . . . U f k l  
k 
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since f (Uk f k 4  = U k  f k+ll = Uk fkL Thus a basic tenet of this theory is that 
information does increase during computation, and in particular this is how the 
meaning of recursive definitions is given. 

It is intriguing to consider that the different viewpoints taken by Information 
theory and Domain Theory may have been influenced by their technological roots. 
Information theory was summoned forth by the needs of the telecommunications 
industry, whose task is to transmit the customer's data with the highest possible 
fidelity. Domain Theory arose as a mathematical theory of computation; the task 
of computation is to  "add value" to the customer's data.1° 

How can these views be reconciled? Information theory is a thermodynamic 
theory; Shannon information is negative entropy. From this viewpoint, the total 
information of a system can only decrease; however, information can flow from 
one subsystem into another, just as a body can be warmed by transferring heat 
from its environment. 

The Domain Theory view, we suggest, arises most naturally if we think of adding 
an observer to a system. It is the observer's information which increases during 
a computation. This reading has a precise mathematical analogue in the view of 
Domain Theory as a "logic of observable properties" [Abramsky, 1991]. Informa- 
tion increase is always, necessarily it seems, relative to a sub-system. Moreover, 
this is a subsystem which can observe its environment, and which may, symmet- 
rically, act itself to direct information to the environment. It is then a small step 
to viewing such sub-systems as agents. 

It is worth adding that Shannon Information Theory also relies on such a view 
for its guiding intuitions. One of the standard ways of motivating Shannon infor- 
mation is in terms of "twenty questions": the number of bits of information in a 
message is how many yes/no questions we would need to have answered in order 
to know the contents of the message. Again, implicit here is some interaction 
between agents. And of course, the purpose of communication itself is to transfer 
information from one agent to another. 

We need a quantitative theory to deal with essentially quantitative issues such 
as complexity, information content, rate of information flow etc. However, the 
weakness of a purely quantitative theory is that numbers are always comparable, 
so that some more subtle issues are obscured, such as, crucially, distinguishing dif- 
ferent directions of information increase. Beyond this, by combining quantitative 
and qualitative aspects, e.g. in formulating conditions on "informatic processes", 
a unified theory can be more than the sum of its parts. 

lowhich of course raises our question of how this can be possible thermodynamically. The 
answer is, again, that it is the customer's data which is having value added to  it; just as buying 
energy from the National Grid does not violate the Second Law. 
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4.2 Domains with measurements: connecting the quantitative and 
qualitative views 

An important step towards unifying the qualitative and the quantitative points 
of view was taken in Keye Martin's Ph.D. thesis [Martin, 20021 and subsequent 
publications [Martin, 2001a; Martin, 2001b; Martin et al., 20021. Martin intro- 
duced a simple notion of measurement on domains. In its most concrete form, a 
measurement assigns real numbers to domain elements, which can be said to mea- 
sure the degree of undefinedness or uncertainty of the element. Thus the maximal 
elements, which can be regarded as having perfect information, will have measure- 
ment 0. The axioms for measurements, while quite simple and intuitive, tie the 
quantitative notion in with the qualitative domain structure in a very rich way. 
Just to mention some of the highlights: 

There is a rich theory of fixpoints which applies to  increasing, but not neces- 
sarily monotonic, functions on domains. This is already a remarkable depar- 
ture from 'classical' domain theory, in which monotonicity is always assumed. 
However, Martin shows that there are compelling natural examples, such as 
interval bisection, which require this broader framework. Not only are there 
existence and uniqueness theorems for fixpoints in this frameworks, but also 
novel induction principles. 

As the previous point suggests, there is a move away from the use of domain 
theory to model purely extensional aspects of computation, and towards 
using it to capture important features of computational processes. This leads 
to a notion of 'informatic derivative' which can be used to gain information 
about the rate of convergence of a computational process. 

A notable aspect of this development is the unified basis on which it puts 
the study of both discrete and continuous (e.g. real-number) computation. 

It is also important that there are many natural examples of measurement covering 
most of the domains standardly arising as data-types for computation, including 
the domain of intervals, for which the natural measurement is the length of the 
interval; finite lists and other standard finite data-structures; streams; partial 
functions on the natural numbers; and both non-deterministic and probabilistic 
powerdomains. 

However, the example which has really revealed the possibilities of this frame- 
work has only appeared recently, and is a major development in its own right. 

4.3 Combining Scott Information and Shannon Information 

Recently, Bob Coecke and Keye Martin have produced a very interesting construc- 
tion which can be seen as a first step towards a unification of these two theories 
of information [Coecke and Martin, 20021. The problem which they attacked can 
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be formulated as follows. Consider the set of probability distributions on a finite 
set. For an n-element set, these are the "classical n-states" of Physics: 

This is the setting in which Shannon entropy, the fundamental quantitative notion 
in classical Information Theory, is defined. It assigns a number, the "expected 
information", to each classical state. The question is: can we place a partial order 
on An such that: 

1. This partial order forms a domain. 

2. Shannon entropy is a measurement with respect to this domain. 

3. The order extends to quantum states (density operators). 

These are highly non-trivial requirements to satisfy. Note that the set of proba- 
bility distributions on a 3-element set, seen as a subset of Euclidean space, form a 
(solid) triangle, and in general those on a n-element set form an n-simplex. The 
distribution corresponding to maximum uncertainty is the uniform distribution, 
with each point assigned probability l / n  - geometrically, the barycenter of the 
simplex; while the maximal elements max(An), corresponding to perfect infor- 
mation, are the pure states assigning probability 1 to one element, and 0 to  all 
others - geometrically, the vertices of the simplex. This geometrical aspect brings 
a rich mathematical structure to this example which seems different to anything 
previously encountered in Domain Theory. 

Note also the contrast with previous work on the probabilistic powerdomain 
[Jones and Plotkin, 19891. Classical probability distributions are maximal ele- 
ments in the probabilistic powerdomain; non-standard elements (valuations) are 
introduced which provide approximations to measures, but the order restricted 
to the measures themselves is discrete. By contrast, we are seeking a rich infor- 
matic structure on the standard objects of probability (distributions) and quantum 
mechanics (density operators) themselves, without introducing any non-standard 
elements. It  is by no means a priori obvious that this can be done at all; once we 
see that it can, many new possibilities will unfold. 

A classical state x E An is pure when xi = 1 for some i E (1,. . . , n); we denote 
such a state by ei. Pure states {ei)i are the actual states a system can be in, while 
general mixed states x and y are epistemic entities. 

If we know x E An+' and by some means determine that outcome i is not 
possible, our knowledge improves to 

where pi(x) is obtained by first removing xi from x and then renormalizing. The 
partial mappings which result, 
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with dom(pi) = An+' \ {ei}, are called the Bayesian projections and lead one 
directly to the following inductively defined relation on classical states. 

DEFINITION 2. For x, y E A2: 

For n 2 2, and x, y E An+': 

The relation 5 on An is called the Bayesian order. 

See [Coecke and Martin, 20021 for motivation, and results showing that the 
order on A2 is uniquely determined under minimal assumptions. 

The key result is: 

THEOREM 3. (An, E) is a domain with maximal elements 

and least element I := ( l ln ,  . . . , l l n ) .  Moreover, Shannon entropy 

n 

p(x) = - C xi log xi 
i=l 

is a measurement of type An -+ [O, m)*. 

The Bayesian order can also be described in a more direct manner, the sym- 
metric characterization. Let S(n) denote the group of permutations on (1,. . . , n}, 
and 

An := {x E An : (Vi < n) xi 2 xi+l} 

the collection of monotone classical states. 

THEOREM 4. For x, y E An, we have x C y if/ there is a permutation a E S(n) 
such that x . a ,  y - a E An and 

for all i with 1 < i < n.  

In words, this result says that the Bayesian order holds between states x and y 
if we can find a permutation a which rearranges them both as monotone states, 
and such that x falls less rapidly than y as we proceed through the ordered list of 
component probabilities. 

Thus, the Bayesian order is order isomorphic to n! many copies of An identified 
along their common boundaries. This fact, together with the pictures of f x  := 

{y E An I x y} at representative states x in Figure 1, will give the reader a good 
feel for the geometric nature of the Bayesian order. 
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Figure 1. Pictures of fx for x E A3. 

4.4 The Quantum Case 

The real force of the construction for classical states becomes apparent in the fur- 
ther development in [Coecke and Martin, 20021, to  show that it can be lifted to 
analogous constructions for quantum states. Here, rather than probability distri- 
butions on finite sets, one is looking at mixed states on finite-dimensional Hilbert 
spaces. Let Ifn denote an n-dimensional complex Hilbert space. A quantum state 
is a density operator p : 'Kn -, 'Kn, i.e., a self-adjoint, positive, linear operator 
with tr(p) = 1. The quantum states on 'Kn are denoted a n .  A quantum state p 
on 'Kn is pure if 

spec(p) G {0,1). 

The set of pure states is denoted En. They are in bijective correspondence with the 
one-dimensional subspaces of 'Kn. Classical states are distributions on the set of 
pure states max(An). By Gleason7s theorem [Gleason, 19571, an analogous result 
holds for quantum states: Density operators encode distributions on Cn.ll 

If our knowledge about the state of a system is represented by density operator p, 
then quantum mechanics predicts the probability that a measurement of observable 
e yields the value X E spec(e). It  is 

where p2 is the projection corresponding to eigenvalue X and ex is its associated 
eigenspace in the spectral representation of e. 

Let e be an observable on 'Kn with spec(e) = (1,. . . , n). For a quantum state 
p in Qn, 

spec(p1e) := (pr(p --, el),  . . . , pr(p -, en)) E An. 

So what does it mean to say that we have more information about the system 
when we have a E Qn than when we have p E On? It means that there is an 
observable e such that (a) the meaurement of e serves as a physical realization 
of the knowledge each state imparts to us, and (b) we have a better chance of 

llOf course, Gleason's theorem also applies t o  separable infinite-dimensional spaces. 



Ch12-N5 1726.fm Page 513 Monday, September 1,2008 7:21 AM @ I* 

Information, Processes and Games 513 

predicting the result of the measurement of e in state a than we do in state p. 
Formally, (a) means that spec(p) = Im(spec(p1e)) and spec(a) = Im(spec(ale)) 
(where the image Im simply converts a list to the underlying set), which is equiva- 
lent to requiring [p, el = 0 and [a, el = 0, where [a, b] = ab - ba is the commutator 
of operators. 

DEFINITION 5. Let n 2 2. For quantum states p, a E Rn, we have p a iflthere 
is an observable e : 'Kn --+ 'Hn such that [p, el = [a, el = 0 andspec(p1e) 5 spec(a1e) 
in An. 

Taking this definition together with our reading of the Bayesian order on classi- 
cal states, we capture the idea of being able to predict the result of an experiment 
more confidently on a than on p in terms of the less rapid falling off of the values 
of ~pec(ple)~ than of ~pec(a le)~ .  

THEOREM 6. (Rn, _C) is a domain with maximal elements 

and least element I = I l n ,  where I is the identity matrix. Moreover, von Neu- 
mann entropy 

S(P)  = -tr(p 1% P) 

is a measurement of type On -, [0, m)*. 

This order can be characterized in a similar fashion to  the Bayesian order on 
An, in terms of symmetries and projections. In its symmetric formulation, unitary 
operators on 'Kn take the place of permutations on (1,. . . , n), while the projective 
formulation of (On, &) shows that each classical projection pi : An+' An is 
actually the restriction of a special quantum projection an+' - On. 

4.5 The Logics of Birlchofl and von Neumann 

Quantum Logic in the sense of Birkhoff and von Neumann [Birkhoff and von 
Neumann, 19361 consists of the propositions one can make about a physical sys- 
tem. Each proposition takes the form "The value of observable e is contained in 
E C spec(e)." For classical systems, the logic is P(1,  . . . , n), while for quantum 
systems it is ILn, the lattice of (closed) subspaces of 'Hn. In each case, implication 
of propositions is captured by inclusion, and a fundamental distinction between 
classical and quantum - that there are pairs of quantum observables whose exact 
values cannot be simultaneously measured at a single moment in time - finds 
lattice theoretic expression: P i l l . .  . , n )  is distributive; ILn is not. 

The classical and quantum logics can be derived from the Bayesian and spectral 
orders using the same order theoretic construction. 

DEFINITION 7. An element x of a dcpo D is irreducible when 
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The set of irreducible elements in D is written Ir(D). 

The order dual of a poset (D, C D )  is written D*; its order is x C y & y C D  x. 
The following result is proved in [Coecke, 20031. 

THEOREM 8. For n 2 2, the classical lattices arise as 

and the quantum lattices arise as 

Figure 2. The irreducibles of A3 with the corresponding Hasse diagram. 

4.6 Discussion 

The foregoing development has been quite technical, but the underlying pro- 
gramme which these ideas illustrate has a clear conceptual interest. The broad 
agenda of developing a unified quantitativelqualitative theory of information, ap- 
plicable to a wide range of situations in logic and computation, is highly attractive, 
and likely to  lead to  new perspectives on information in general. 

Our discussion thus far has largely been couched in terms of static theories, 
although we have already hinted a t  the importance of agents and explicit dynamics. 
We now turn to interactive models of logic and computation. 

5 GAMES, LOGICAL EQUILIBRIA AND CONSERVATION OF 
INFORMATION FLOW 

In this Section and the next, we shall discuss some dynamical theories of compu- 
tation which are explicitly based on interaction between agents, and which expose 
a structure of information flow which is both geometrical and logical in character. 
These theories, which go under the names of Game Semantics and Geometry of 
Interaction, have played a considerable rble in recent work on the semantics both 
of programming languages, and of logical proofs. 
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Figure 3. Computing "in the isolation ward". 

5.1 Changing Views of Computation 

To set the scene, we begin by recalling how perspectives on computation have 
changed since the first computers appeared. The early practice of computing can 
be pictured as in Figure 3. This is the era of stand-alone machines and programs: 
computers are served by an elite priesthood, and have only a narrow input-output 
interface with the rest of the world. 

First-generation models of computation Given this limited vision of com- 
puting, there is a very natural abstraction of computation, in which programs are 
seen as computing functions or relations from inputs to outputs.12 

1 2 ~ h i s  is the exactly the point of view on which, as we have seen, program logics such as Hoare 
Logic and Dynamic Logic are based. 

These models live on the existing intellectual inheritance from discrete mathe- 
matics and logic. Time and processes lurk in the background, but are largely 
suppressed. 

Input Data 
w 

Computation in the Age of the Internet As we know, the technology has 
changed dramatically. Even a conventional Distributed Systems picture, as illus- 
trated in Figure 4, which has been common-place for the last 20 years, tells a very 
different story. We have witnessed the progression 

Computation 
Output 
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Front end 
processor 

UNlX UNlX 

Figure 4. Distributed Computing 
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multitasking -+ distributed systems -+ Internet -+ "mobile" and "global" 
computing 

Key features of this unfolding new computational universe include: agents inter- 
acting with each other, and information flowing around the system. 

The insufficiency of the first-generation models of computation for this new 
computational environment is evident. The old concepts fail to match the modern 
world of computing and its concerns: 

Robustness in the presence of failures. 

Atomicity of transactions. 

Security of information flows. 

Quality of user interface. 

Quantitative aspects. 

Processes vs. Products We see a shift in emphasis and importance between 
How we compute us. What we compute. Processes were in the background, but 
now come to the fore: the "how" becomes the new "what". 

This leads ineluctably to the need for Second-generation models of compu- 
tation, and in particular Process Models such as Petri nets, Process Algebra, etc. 
Whereas 1st-generation models lived off the intellectual inheritance from mathe- 
matics and logic, there is no adequate pre-existing theory of processes or agents, 
interaction, and information flow, as we see by considering the following questions 
(which have already been mentioned in Section 1): 

What is computed? 

What is a process? 

What are the analogues to  Turing-completeness, universality? 

There are indeed a plethora of models, but no definitive conceptual analysis, com- 
parable to Turing's analysis of computation in its "classical" sense: not least, 
perhaps, because it is indeed a harder problem! 

5.2 Some New Perspectives 

Instead of isolated systems, with rudimentary interactions with their environment, 
the standard unit of description or design becomes a process or agent, the essence 
of whose behaviour is how it interacts with its environment. 
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Who is the System? Who is the Environment? This depends on point of view. 
We may designate some agent or group of agents as the System currently under 
consideration, with everything else as the Environment; but it is always possible to 
contemplate a r61e interchange, in which the Environment becomes the System and 
vice versa. (This is, of course, one of the great devices, and imaginative functions, 
of creative literature). This symmetry between System and Environment carries 
a first clue that there is some structure here; it will lead us to a key duality, and 
a deep connection to logic. 

5.3 Interaction 

Complex behaviour arises as the global effect of a system of interacting agents (or 
processes). 

The key building block is the agent. The key operation is interaction - plugging 
agents together so that they interact with each other 

This conceptual model works at all "scales" : 

Macro-scale: processes in operating systems, software agents on the Internet, 
transactions. 

Micro-scale: how programs are implemented (subroutine call-return proto- 
cols, register transfer) all the way down into hardware. 

It  is applicable both to design (synthesis) and to  description (analysis); to artificial 
and to  natural information-processing systems. 

There are of course large issues lurking here, e.g. in the realm of "Complex Sys- 
tems": emergent behaviour and even intelligence. Is is helpful, or even feasible, to 
understand this complexity compositionally? We need new conceptual tools, new 
theories, to  help us analyze and synthesize these systems, to help us to understand 
and to build. 
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5.4 Towards a "Logic of Interaction" 

Specifying and reasoning about the behaviour of computer programs takes us 
into the realm of logic. For the first-generation models, logic could be taken 
"as it wasn-static and timeless. For our second-generation models, getting an 
adequate account-a genuine "logic of interactionn-may require a fundamental 
reconceptualization of logic itself. This radical revision of our view of logic is 
happening anyway-prompted partly by the applications, and partly by ideas 
arising within logic. 

The  Static Conception of Logic 

We provide an unfair caricature of the standard logical idea of tautology to make 
our point. The usual "static" notion of tautology is as "a statement which is 
vacuously true because it is compatible with all states of affairs". 

"It is raining or  it is not r.ainingn-truth-functional semantics. This is illustrated 
(subversively) in Figure 5. 

Figure 5. Tertium non datur? 

But what could a dynamic notion of tautology look like? 

T h e  Copy-Cat Strategy 

We begin with a lit,tle fable, illustrated by Figure 6: 

I How to beat an International Chess Grandmaster by the power of pure logic 1 
Since we are relying on logic, rather than on any talent at  Chess, we proceed as 
follows. We arrange to play two games of Chess with the grandmaster, say Gary 
Kasparov, once as White and once as Black. Moreover, we so arrange matters that 
we start with the game in which we play as Black. Kasparov makes his opening 
move; we respond by playing the same move in the other game-this makes sense, 



Ch12-N5 1726.fm Page 520 Monday, September 1,2008 7:21 AM @ I* 
- 

Samson Abramsky 

The copy-cat strategy 

Figure 6. How to beat a Grandmaster 

since we are playing as White there. Now Kasparov responds (as Black) to our 
move in that game; and we copy that response back in the first game. We simply 
proceed in this fashion, copying the moves that our opponent makes in one board 
to  the other board. The net effect is that we play the same game twice-once 
as White, and once as Black. (We have essentially made Kasparov play against 
himself). Thus, whoever wins that game, we can claim a win in one of our games 
against Kasparov! (Even if the game results in a stalemate, we have done as well 
as Kasparov over the two games-surely still a good result!)13 

Of course, this idea has nothing particularly to do with Chess. It can be applied 
to any two-person game of a very general form. We shall continue to use Chess- 
boards to illustrate our discussion, but this underlying generality should be kept 
in mind. 

What are the salient features which can be extracted from this example? 

A dynamic tautology There is a sense (which will shortly be made more pre- 
cise) in which the copy-cat strategy can be seen as a dynamic version of the 

130ur fable is actually recorded as having happened a t  least once in the chronicles of Chess. 
Two players conspired to  play this copy-cat strategy against Alekhine in the  1920's. Alekhine 
realized what was happening, and made a tempting offer of a sacrifice t o  one of his opponents. 
That  opponent was not able to  resist such a coup against the great Alekhine, and departed from 
the  copy-cat strategy to  swallow the bait. Then the symmetry was broken, and Alekhine was 
able t o  win easily in both games. Thus we are reminded of the familiar truth, that logic rarely 
prevails over psychology in "real life". 
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tautology A v -A. Note, indeed, that an essential condition for being able 
to play the copy-cat is that the r6les of the two players are inter-changed 
on one board as compared to the other. Note also the disjunctive quality of 
the argument that we must win in one or other of the two games. But the 
copy-cat strategy is a dynamic process: a two-way channel which maintains 
the correlation between the plays in the two games. 

Conservation of information flow The copy-cat strategy does not create any 
information; it  reacts to  the environment in such a way that information is 
conserved. It ensures that exactly the same information flows out to the 
environment as flows in from it. Thus one gets a sense of logic appearing in 
the form of conservation laws for information dynamics. 

The power of copying Another theme which appears here, and which we will 
see more of later, concerns the surprising power of simple processes of copying 
information from one place to another. Indeed, as we shall eventually see, 
such processes are computationally universal. 

The geometry of information flow From a dynamical point of view, the copy- 
cat strategy realizes a channel between the two game boards, by performing 
the actions of copying moves. But there is also some implicit geometry here. 
Indeed, the very idea of two boards laid out side by side appeals to some 
basic underlying spatial structure. In these terms, the copy-cat channel can 
also be understood geometrically, as creating a graphical link between these 
two spatial 1ocations.These two points of view are complementary, and link 
the logical perspective to powerful ideas arising in modern geometry and 
mathematical physics. 

To provide further evidence that the copy-cat strategy embodies more substantial 
ideas than might at first be apparent, we consider varying the scenario. Consider 
now the case where we play against Kasparov on three boards; one as Black, two 
as White. 

Kasparov Kasparov Kasparov 

I W I  I B I I  

Does the Copy-Cat strategy still work here? In fact, we can easily see that it does 
not. Suppose Kasparov makes an opening move ml in the left-hand board where 
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he plays as White; we copy it to the board where we play as White; he responds 
with ma; and we copy mz back to the board where Kasparov opened. So far, all 
has proceeded as in our original scenario. But now Kasparov has the option of 
playing a different opening move, ms say, in the rightmost board. We have no idea 
how to respond to  this move; nor can we copy it anywhere, since the board where 
we play as White is already "in use". This shows that these simple ideas already 
lead us naturally to the setting of a resource-sensitive logic, in which in particular 
the Contraction Rule, which can be expressed as A -+ A A A (or equivalently as 
TA V (A A A))  cannot be assumed to be valid. 

What about the other obvious variation, where we play on two boards as White, 
and one as Black? 

Kasparov Kasparov Kasparov 

I W I I W I  I B I  

It seems that the copy-cat strategy does still work here, since we can simply ignore 
one of the boards where we play as White. However, a geometrical property of the 
original copy-cat strategy has been lost, namely a connectedness property, that 
information flows to every part of the system. This at least calls the correspond- 
ing logical principle of Weakening, which can be expressed as A A A + A, (or 
equivalently as 1 A  V 1 A  V A) into question. 

We see from these remarks that we are close to the realm of Linear Logic and 
its variants; and, mathematically, to the world of monoidal (rather than cartesian) 
categories. 

Game Semantics 

These ideas find formal expression in Game Semantics. Games play the role of: 

Interface types for computation modules 

Propositions with dynamic content. 

In particular, 2-person games capture the duality of: 

Player us. Opponent 

System us. Environment. 
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Agents a re  strategies In this setting, we model our agents or processes as 
strategies for playing the game. These strategies interact by playing against each 
other. We obtain a notion of correctness which is logical in character in terms 
of the idea of winning strategy-one which is guaranteed to  reach a successful 
outcome however the environment behaves. This in a sense replaces (or better, 
refines) the logical notion of "truth": winning strategies are our dynamic version 
of tautologies (more accurately, of proofs). 

Building complex systems by  combining games We shall now see how 
games can be combined to produce more complex behaviours while retaining con- 
trol over the interface. This provides a basis for the compositional understanding 
of our systems of interacting agents-understanding the behaviour of a complex 
system in terms of the behaviour of its parts. This is crucial for both analysis 
and synthesis, i.e. for both description and design. These operations for building 
games can be seen as (dynamic forms of) "type constructors" or "logical connec- 
tives". (The underlying logic here will in fact be Linear Logic). 

Duality-"Linear Negation" AL - interchange r6les of Player and Oppo- 
nent (reflecting the symmetry of interaction). 

Note that, with this interpretation, negation is involutive: 

= A. 
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Tensor - "Linear conjunction" 

The idea here is that we combine the two game boards into one system, without 
any information flow between the two sub-systems. (This is the significance of 
the "wall" separating our two players, who we shall refer to as Gary (Kasparov) 
and Nigel (Short)). This connective has a conjunctive quality, since we must 
independently be able to play (and to win) in each conjunct. Note however, that 
there is no constraint on information flow for the environment, as it plays against 
this compound system. 

Par - "Linear disjunction" 

In this case, we have two boards, but one player (who we refer to as the Copy-Cat), 
indicating that we do allow information flow for this player between the two game 
boards. This for example allows information revealed in one game board by the 
Opponent to  be used against him on the other game board-as exemplified by the 
copy-cat strategy. However, note that the wall appears on the environment's side 
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now, indicating that the environment is constrained to play separately on the two 
boards, with no communication between them. 

Thus we have a De Morgan duality between these two connectives, mediated 
by the Linear negation: 

The idea is that on one side of the mirror of duality (Player/System for the Tensor, 
Opponent/Environment for the Par), we have the constraint of no information 
flow, while on the other side, we do have information flow. 

We can now reconstrue the Copy-Cat strategy in logical terms: 

We see that it is indeed a winning strategy for A1%A. Moreover, we can define 
A 4 B ("Linear implication") by 

(cf .  A A B B -A V B.) Then the copy-cat strategy becomes the canonical proof 
of the most basic tautology of all: A - A. 

The information flow possibilities of Par receive a more familiar logical inter- 
pretation in terms of the Linear implication; namely, that we can use information 
about the antecedent in proving the consequent (and conversely with respect to 
their negations, if we think of proof by contraposition). 

Thus an entire "linearized" logical structure opens up before us, with a natural 
interpretation in terms of the dynamics of information flow. 

Interaction 

We now turn to a key step in the development: the modelling of interaction itself. 
Constructors create "potentials" for interaction; the operation of plugging modules 
together so that they can communicate with each other releases this potential into 
actual computation. 
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Here we see two separate sub-systems, each with a compound structure, expressed 
by the logical types of their interfaces. What these types tell us is that these 
systems are composable; in particular, the output type of the first system, namely 
B ,  matches the input type of the second system. Note that this "logical plug- 
compatibility" makes essential use of the duality, just as the copy-cat strategy did. 
What makes Gary (the player for the first system) a fit partner for interaction with 
Nigel (the player for the second system), is that they have complementary views 
of their locus of interaction, namely B. Gary will play in this type "positively", 
as Player (he sees it as B),  while Nigel will play "negatively", as Opponent (he 
sees it as B ~ ) .  Thus each will become part of the environment of the other-part 
of the potential environment of each will be realized by the other, and hence part 
of the potential behaviour of each will become actual interaction. 

This leads to a dynamical interpretation of the fundamental operation of com- 
position, in mathematical terms: 

A Gary * B 
Nigel 

C 

or of the Cut rule, in logical terms: 

Cut: 
t r , A  I-AL,A 

r, A 
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Composition as Interaction 

The Interaction Game 

The picture here shows the new system formed by plugging together the two sub- 
systems. The "external interface" to the environment now shows just the left 
hand board A as input, and the right hand board C as output. The Cut formula 
B is hidden from the environment, and becomes the locus of interaction inside the 
black box of the system. Suppose that the Environment makes some move m in 
C. This is visible only to Nigel, who as a strategy for B 4 C has a response. 
Suppose this response ml is in B. This is a move by Nigel as Player in BL,  hence 
appears to Gary as a move by Opponent in B. Gary as a strategy for A 4 B 
has a response ma to this move. If this response is again in B,  Nigel sees it as a 
response by the environment to his move, and will have a response again; and so 
on. We thus have a sequence of moves ml ,  . . . , mk in B ,  ping-ponging back and 
forth between Nigel and Gary. If, eventually, Nigel responds to Gary's last move 
by playing in C,  or Gary responds to Nigel's last move by playing in A, then we 
have the response of the composed strategy Gary;Nigel to the original move m. 
Indeed, all that is visible to the Environment is that it played m, and eventually 
some response appeared, in A or C. 

Moreover, if both Nigel and Gary are winning strategies, then so is the composed 
strategy; and the composed strategy will not get stuck forever in the internal ping- 
pong in B. To see this, suppose for a contradiction that it did in fact get stuck in 
B. Then we would have an infinite play in B following the winning strategy Gary 
for Player in B,  and the same infinite play following the winning strategy Nigel 
for Player in B', hence for Opponent in B. Hence the same play would count as 
a win for both Player and Opponent. This yields the desired contradiction. 
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5.5 Discussion 

Game Semantics in the sense discussed in this section has had an extensive de- 
velopment over the past decade and a half, with a wealth of applications to 
the semantics of programming languages, type theories and logics [Abramsky 
and Jagadeesan, 199410; Abramsky et al., 2000; Abramsky and McCusker, 1997; 
Abramsky and McCusker, 1999a; Abramksy and McCusker, 1998; Abramsky and 
McCusker, 1999b; Abramsky and Mellies, 1999; Hyland and Ong, 20001. More 
recently, there has been an algorithmic turn, and some striking applications to 
verification and program analysis [Ghica and McCusker, 2000; Abramsky, 2002; 
Abramsky et al., 2004a; Murawski et al., 20051. 

From the point of view of the general analysis of Information, we see the fol- 
lowing promising lines of development: 

Game semantics provides a promising arena for exploring the combination of 
quantitative and qualitative theories of information, as discussed in Section 4, 
but now in a dynamic setting. In particular, it provides a setting for quan- 
tifying information flow between agents. We would like to ask quantitative 
questions about rate of information flow through a strategy (representing a 
program, or a proof); how can a system gain maximum information from its 
environment while providing minimal information in return; robustness in 
the presence of noise, etc. 

As we saw in our discussion of the copy-cat strategy, there is an intuition 
of logical principles arising as conservation laws for information flow. (And 
indeed, in the case of Multiplicative Linear Logic, the proofs correspond 
exactly to "generalized copy-cat strategies"). Can we develop this intuition 
into a fully-fledged theory? Can we characterize logical principles as those 
expressing the conservation principles of this information flow dynamics? 

There is also the hope that the more structured setting of game seman- 
tics will usefully constrain the exuberant variety of possibilities offered by 
process algebra, and allow a sharper exploration of the logical space of pos- 
sibilities for information dynamics14. This has already been borne out in 
part, by the success of game semantics in exploring the space of program- 
ming language semantics. It has been possible to  give crisp characterizations 
of the "shapes" of computations carried out within certain programming dis- 
ciplines: including purely functional programming [Abramsky et al., 2000; 
Hyland and Ong, 2000], stateful programming [Abramsky and McCusker, 
1997; Abramsky and McCusker, 1999a], general references [Abramsky et 

141t should be said that the exuberant variety of process algebras has been directly motivated 
by the vast range of real-word informatic processes which we need t o  model. The whole area of 
information dynamics is in a dynamic tension between the need on the one hand for descriptive 
adequacy, and on the other for mathematical structure and tractability [Milner, 2006a; Milner, 
2006bI. Process algebra, game semantics, and other approaches are making valuable inroads into 
this territory. We need to  combine the strengths of all these ideas! 
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al., 19981, programming with non-local jumps and exceptions [Laird, 1997a; 
Laird, 1997131, non-determinism [Harmer and McCusker, 19991, probabil- 
ity [Danos, 20021, concurrency [Ghica andMurawski, 2004; Ghica and Mu- 
rawski, 20061, names [Abramsky et al., 2004b], polymorphism [Hughes, 2000; 
Abramsky and Jagadeesan, 20051 and more. See [Abramsky and McCusker, 
1999b] for an overview (now rather out of date). 

There has also been a parallel line of development of giving full complete- 
ness results for a range of logics and type theories, characterizing the "space 
of proofs" for a logic in terms of informatic or geometric constraints which 
pick out those processes which are proofs for that logic [Abramsky and Ja- 
gadeesan, 199413; Abramsky and Mellies, 1999; Loader, 1994; Blute, 1998; 
Devarajan et al., 1999; Blute et al., 20051. This allows a new look at such 
issues as the boundaries between classical and constructive logic, or the fine 
structure of polymorphism and second-order quantification. 

This also gives some grounds for optimism that we can capture-in a "machine- 
independent", and moreover "geometrical", non-inductive way-what com- 
putational processes are, without referring back to Turing machines or any 
other explicit machine model. 

In the same spirit as for computability, can we characterize polynomial-time 
computation and other complexity classes in such terms? 

6 EMERGENT LOGIC: THE GEOMETRY OF INFORMATION FLOW 

Game Semantics carries many vivid intuitions arising from our experiences of 
game-playing as a human activity. We were able to take advantage of this in 
the previous section to explain some key ideas without resorting to any explicit 
formalization. We now turn to a related but somewhat different development 
of interactive models for logic and computation, known loosely as "Geometry of 
Interaction particle-style models".15 We will use this setting to carry forward our 
discussion of dynamic models for information flow, with particular emphasis on 
the following themes: 

Firstly, the model or family of models we shall discuss is technically simpler to 
formalize mathematically than Game Semantics, although also less cloaked 
in familiar intuitions. Thus we can introduce some more precision into our 
discussion without unduly taxing the reader. 

Secondly, the simple yet expressive nature of these models is itself of con- 
ceptual interest. They show how logic and computation can be understood 

15See [Girard, 1989; Girard, 1990; Girard, 1995; Malacaria and Reginer, 1991; Danos and 
Reginer, 1993; Danos and Reginer, 19961, and [Abramsky and Jagadeesan, 1994a; Abramsky and 
Jagadeesan, 199413; Abramsky, 1996; Abramsky, 1997; Abramsky and Lenisa, 2005; Abramsky 
et al., 20021. 



Ch12-N5 1726.fm Page 530 Monday, September 1,2008 7:21 AM @ I* 

Samson Abramsky 

in terms of simple processes of copying information from one "place" to an- 
other, generalizing what we have already seen of the copy-cat strategy. In 
fact, we shall see that mere copying is computationally universal. Moreover, 
models of logics and type theories arise from these models; because of the 
simplicity of the models, we may reasonably speak of emergent logic-where, 
as discussed in the previous section, we may think of the logical character 
of certain principles as arising from the fact that they express conservation 
laws of information flow. 

We will also be able to make visible how geometrical structure unfolds in 
these models, in a striking and unexpected fashion. This part of the devel- 
opment can be carried much further than we can describe here; there is a 
thread of ideas linking logical processes of cut-elimination to diagram alge- 
bras, knot theory and topological quantum field theory [Abramsky, 20071. 

We shall also begin to see the beginnings of links between Logic and Physics. 
The processes we shall describe will be reversible in a very strong sense. This 
link can in fact be carried much further, and the same kind of structures we 
are discussing here can be used to axiomatize Quantum Mechanics, and 
to give an incisive analysis of quantum entanglement and information flow 
[Abramsky and Coecke, 2002; Abramsky and Coecke, 2004; Abramsky and 
Coecke, 2005; Abramsky, 20071. 

6.1 Background: Cornbinatory Logic 

It will be convenient to work in the setting of Combinatory Logic [Curry and 
Feys, 1958; Hindley and Seldin, 19861, which provides one of the simplest of all 
the formulations of computability-and moreover one which is purely algebraic. 
Combinatory Logic is also the basis for realizability constructions, which provide 
powerful methods for building extensional models of strong impredicative type 
theories and higher-order logics. 

We recall that combinatory logic is the algebraic theory CL given by the sig- 
nature with one binary operation (application) written as an infix - .  -, and two 
constants S and K, subject to the equations 

(application associates to  the left, so x . y . z = (x . y) . z). Note that we can define 
I = S . K . K,  and verify that 1 .  x = x. 

The key fact about the combinators is that they are functionally complete, i.e. 
they can simulate the effect of A-abstraction. Specifically, we can define bracket 
abstraction on combinatory terms built using a set of variables X: 
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Moreover (Theorem 2.15 in [Hindley and Seldin, 19861): 

The B combinator can be defined by bracket abstraction from its defining equation: 

The combinatory Church numerals are then defined by 

where we define 
an . b = a -  ( a . - - ( a . b ) . . . )  . 

A partial function 4 : N - N is numeralwise represented by a combinatory term 
M if for all n E N, if 4(n) is defined and equal to m, then 

and if 4(n) is undefined, then Me n has no normal form. 
The basic result on computational universality of CL is then the following (The- 
orem 4.18 in [Hindley and Seldin, 19861): 

THEOREM 9. The partial functions numemlwise representable in C L  are exactly 
the partial recursive functions. 

Principal Types of Combinators The functional behaviour of combinatory 
terms can be described using types. The type expression T -+ U denotes the set 
of terms which, when applied to an argument of type T ,  produce a result of type 
U .  By convention, -+ associates to the right, so we write TI --+ T2 -, . - .  Tk -+ U  
as short-hand for TI -, (T2 -+ . . . (Tk 4 U )  . . - ). 

Now consider the combinator K. The equation K . x . y = x tells us that this 
combinator expects to receive an argument x, say of type a, then an argument y, 
say of type /3, and then returns a result, namely x, of type a. Thus its type has 
the form 

K : a -+ ( p  -+ a) .  

In fact, if we take a and to be type variables, this is the principal, i.e. the 
most general, type of this combinator. A similar but more complicated argument 
establishes that the principal type of the S combinator is 

These principal types can in fact be computed by the Hindley-Milner algorithm 
[Hindley, 19971 from the defining equations for the combinators. (This algorithm 
is nowadays routinely used to perform "type-checking" for modern programming 
languages with polymorphic types.) 
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Curry observed [Curry and Feys, 19581 that the principal types of the combina- 
tors correspond to axiom schemes for a Hilbert-style proof system for Intuition- 
istic implicational logic-with the application operation corresponding to Modus 
Ponens. This is the "Curry" part of the Curry-Howard isomorphism. Thus com- 
binators are to Hilbert-style systems as A-calculus is to Natural Deduction. 

The Curry Combinators Curry's original set of combinators was not the 
Schonfinkel combinators S and K, but rather the combinators B ,  C ,  K ,  and 
W :  

B . 2 - 9 . z  = x . ( y . z )  
c . 2 . y - z  = 2 . z . y  
w . 2 . y  = x . y . y  

These combinators are equivalent to the Schonfinkel combinators, in the sense 
that the two sets are inter-definable [Barendregt, 1984; Hindley and Seldin, 19861. 
In particular, S can be defined from B ,  C ,  I and W .  They have the following 
principal types: 

I : a- ia  Axiom 
B : ( p + y ) + ( a + / 3 ) + a + y  Cut 
C : (a  -+ P + 7 )  + P + a + y Exchange 
K : a ~ p ~ a  Weakening 
W : ( a + a + @ ) + a + p  Contraction 

Thus we see that in logical terms, B expresses the transitivity of implication, or 
the Cut rule; C is the Exchange rule; W is Contraction; and K is Weakening. 
Curry's analysis of substitution is close to Gentzen's analysis of proofs. 

6.2 Linear Combinatory Logic 

We shall now present another system of combinatory logic: Linear Combinatory 
Logic [Abramsky, 1997; Abramsky et al., 2002; Abramsky and Lenisa, 20051. This 
can be seen as a finer-grained system into which standard combinatory logic, as 
presented in the previous section, can be interpreted. By exposing some finer 
structure, Linear Combinatory Logic offers a more accessible and insightful path 
towards our goal of mapping universal functional computation into a simple model 
of computation as copying. 

Linear Combinatory Logic can be seen as the combinatory analogue of Linear 
Logic [Girard, 19871; the interpretation of standard Combinatory Logic into Linear 
Combinatory Logic corresponds to the interpretation of Intuitionistic Logic into 
Linear Logic. Note, however, that the combinatory systems we are considering are 
type-free and "logic-free" (i. e. purely equational). 

DEFINITION 10. A Linear Combinatory Algebra (A,  ., !) consists of the following 
data: 

An applicative structure (A ,  .) 
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A unary operator ! : A -+ A 

Distinguished elements B ,  C ,  I ,  K ,  D ,  6, F ,  W of A 

satisfying the following identities (we associate . to the left and write x .  !y for 
x . (!(y)), etc.) for all variables x, y, z ranging over A): 

Composition/Cut 
Exchange 

Identity 
Weakening 
Dereliction 

Comultiplication 
Monoidal Functoriality 

Contraction 

The notion of LCA corresponds to a Hilbert style axiomatization of the {!, 4) 

fragment of linear logic [Abramsky, 1997; Avron, 1988; Troelstra, 19921. The 
principal types of the combinators correspond to the axiom schemes which they 
name. They can be computed by a Hindley-Milner style algorithm [Hindley, 19971 
from the above equations: 

1. B : ( p - 7 ) - ( a + p ) - a - y  
2. C : ( ~ - , 8 4 y ) 4 ( p 4 C X + y )  
3. I : a-a  
4. K : cy-o!P-a 
5. D : !a--ocr 
6. 6 : !a--o!!cy 
7. F : !(a-p)-o!a-!p 
8. W : ( !a- !a-p)- !a*@ 

Here - is a linear function type (linearity means that the argument is used exactly 
once), and !a allows arbitrary copying of an object of type a. 

A Standard Combinatory Algebra consists of a pair ( A ,  .,) where A is a nonempty 
set and ., is a binary operation on A, together with distinguished elements B,, C,, I,, 
K,, and W, of A, satisfying the following identities for all x, y, z ranging over A: 

This is just a combinatory algebra with interpretations of the Curry combinators. 
Note that this is equivalent to the more familiar definition of SK-combinatory 
algebra as discussed in the previous sub-section. 
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Let (A, ., !) be a linear combinatory algebra. We define a binary operation ., on 
A as follows: for a,  b E A, a ., b - a .  !b. We define D' - C . (B . B . I) - ( B  . D . I). 
Note that 

D 1 . z . ! y = x . y .  

Now consider the following elements of A. 

THEOREM 11. Let (A, -, !) be a linear combinatoy algebra. Then (A, .,) with ., 
and the elements B,, C,, I, ,K,,W, as defined above is a standard combinatory 
algebra. 

Finally, we mention a special case which will arise in our model. An Af ine  
Combinatory Algebra is a Linear Combinatory Algebra such that the K combinator 
satisfies the stronger equation 

Note that in this case we can define the identity combinator: I = C - K . K. 

6.3 Universal Computat ion  by Copy- Cats  

Our aim is to describe an interactive model for logic and computation, which can 
be understood in two complementary ways: 

A model built from simple dynamical processes of copying information from 
one place to another. 

A model built from simple geometrical constructions, in which computation 
is interpreted as geometric simplification-tracing paths through tangles, 
and yanking them straight. 

We begin with the dynamical interpretation. Here we think of an informatic token 
or particle traversing a path through logical (discrete) "space" and "time". For 
this purpose, we assume a set Pos of positions or places in "logical space". For the 
purposes of obtaining a type-free universal model of computation, it is important 
that Pos is (countably) infinite. (So we could just take it to be the set N of natural 
numbers). The only significant property of the instantaneous state of the particle 
is its current position p E Pos. 

The processes we shall consider will be very simple, "history-free" or "time- 
independent" reversible dynamics, which we represent as partial injective functions 

f : Pos - Pos. 
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Such a process maps a particle in position p at any time t to the position f (p) at 
time t+  1; or may be undefined. In fact, we will have no need to make time explicit, 
since discrete time will be modelled adequately by function composition.'6Thus the 
path traced by the particle starting from position po under the dynamics f will be 

where pi+l = f (pi). This dynamics is clearly reversible. Since f is a partial 
injective map, its inverse f-l  (i.e. the relational converse of f )  is also a partial 
injective function on Pos, and pi = f-l(pi+l), so we can trace the reverse path 
using the inverse dynamics. 

In fact, it will be possible to restrict ourselves to an even simpler class of dy- 
namics: namely the fixed-point free partial involutions, i.e. those partial injective 
functions f : Pos - Pos satisfying 

Thus such a map satisfies: 

A partial involution on a set X is equivalently described as a partial partition 
of X into Zelement subsets: 

where E = {{x, y) I f (x) = y). 

This defines an undirected graph Gf = (X, E). Clearly each vertex in this graph 
has at most one incident edge. Conversely, every graph G = (X, E) with this 
property determines a unique partial involution f on X ,  with Gf = G. 

Partial involutions will be our model at this basic level of "copy-cat processes"; 
they simply copy information back and forth between pairs of "locations". It is 
somewhat remarkable that such simple maps can form a universal computational 
model. 

Function Application as Interaction 

Our next and key step is to  model functional application by interaction of these 
simple dynamical processes. This will in fact be a bare-bones version of the game- 
theoretic model of composition as interaction which we gave in the previous section. 
We shall view a "functional process" which can be applied to other processes as a 
two-input two-output function 

1 6 ~ h e  non-trivial dynamics we shall actually consider, which will arise when we model function 
application, will in fact come from the interaction between two very simple functions -the "ping- 
ponging" back and forth between them, in the terms of our informal discussion of interaction in 
Section 5. Note that all elements of our combinatory algebra, whether they appear as "functions" 
or "arguments" in the context of a given application, will be represented by functions on positions, 
corresponding to  processes or strategies. 
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The interpretation of these two pairs of input-output lines is that the first will be 
used to connect the functional process to its argument, and the second to connect 
it to  its external environment or context-which will interact with the function to 
consume its output. Formally, this is a function 

f : Pos + Pos - Pos + Pos. 

Note that we have the used the disjoint union (two copies of Pos) rather than 
the cartesian product Pos x Pos (infinitely many copies of Pos). This is because 
a particle coming in as input must either be on the first input line, or (in the 
exclusive sense) on the second input line; and similarly for the outputs. 

However, since we want to make a type-free universal model of computation, 
we must reduce all our processes to one-input one-output functions. This is where 
our assumption that Pos is infinite becomes important. It  allows us to define a 
splitting function s: 

s! 
s : Pos + Pos ---c Pos. 

We can think of this as splitting logical space into two disjoint "address spaces". 
This allows us to transform any one-inputlone-output function into a two-input/two- 
output function, or conversely, by conjugation. Thus if f : Pos + Pos is any 
process, we can view it as a two-input, two-output functional process, namely 

s-l 0 f 0 s : Pos + Pos - Pos + Pos. 

Geometrical Representation of Application 

Suppose we wish to apply f ,  qua functional process, to g, where both f and g are 
partial involutions on Pos. The application operation f g is indicated pictorially 
as follows. 
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As already explained, we conjugate f by s to turn it  into something with the right 
shape to be a functional process. Then we connect it to its argument, g, by a 
feedback loop using the first input and output lines of f '  = s-' o f o s. The resid- 
ual behaviour by which the process resulting from the application communicates 
with its environment uses the second input and output lines. The full geometric 
significance of how this notion of application works will become apparent when we 
discuss the interpretation of the combinators in this setting. But we can give the 
dynamical interpretation of application immediately. Suppose the process f l g 
receives a token p on its input. The function f' may immediately dispatch this to 
its second output line as pl--in which case, that will be the response of f og. This 
would correspond to the behaviour of a constant function, which knows its output 
without consulting its input. Otherwise, f '  may dispatch p to its first output 
line, as pl. This is then fed as input to g. Thus this corresponds to the function 
represented by f '  interrogating its argument. If g(pl) = p2, then this is fed back 
around the loop as input to f' (now on its first input line). We may continue 
in this fashion, ping-ponging between f '  (on its first input/output lines) and g 
around the feedback loop. Eventually, f '  may have seen enough, and decide to 
despatch the token on its second output line, asp'. We then say that f og(p) = p'. 
In other words, to the external environment, the whole interaction between f' and 
g has been hidden inside the black box of the application f l g; it only sees the 
final response p' to  the initial entry of the token at p. 

All of this should seem very familiar. It follows exactly the same general lines 
as the game-semantical interpretation of composition which we presented in the 
previous section. We note the following points of difference: 

l The notion of composition we discussed in the previous section was fully 
symmetrical between the two agents involved, reflecting the classical nature 
of the underlying logic. Here, we are discussing functional computation, and 
our description of application reflects the asymmetry between function and 
argument. 

l Since we are dealing with a type-free universal model of computation, we 
must allow some partiality in our model. The token may get trapped in the 
feedback loop for ever, for example, so the involutions giving the dynamics 
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must be partial in general. This is unavoidable, for well-known metamathe- 
matical reasons. 

l We are also considering a very restricted, simple notion of dynamics here. 
Certainly in the game semantics context, we would not want in general to 
limit ourselves to such a restricted class of strategies. 

Algebraic Description of Application 

We now give a formal definition of the application operation. Firstly, consider the 
map f' = s-' o f o s : Pos + Pos - Pos + Pos. Each input lies in either the first 
component of the disjoint union, or (exclusive or) the second, and similarly for 
the corresponding output. This leads to a decomposition of f '  into four disjoint 
partial maps fij, i, j E {1,2), where fij maps the i'th input summand to the 
j ' th output summand. Note that f' can be recovered as the union of these four 
maps. Since f '  is a partial involution, these maps will also be partial involutions. 
The decomposition is indicated pictorially in the preceding diagram. Now we can 
define 

where we use relational algebra (union R U S,  relational composition R; S and 
reflexive transitive closure R*) to write down formally exactly the information 
flow we described in our informal explanation of application above. It is a nice 
exercise to show that partial involutions are closed under application; that is, that 
f l g is again a partial involution. 

6.4 Combinators as Copy-Cats 

At this point, we have defined our applicative structure (A, e), where A is the 
set of partial involutions. We must now show that we can define combinators as 
partial involutions such that this structure will indeed form a Linear Combinatory 
Algebra. From now on, we shall mainly resort to drawing pictures, rather than 
writing algebraic expressions. 

The Identity Combinator 

Our first example is the simplest, and yet already shows the essence of the matter. 
The identity combinator I is represented by the twist map, which copies any token 
on its first input line to the second output line, and vice versa. This is depicted 
as follows. 
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x 

What is surprising, and striking, is the geometric picture of why this works: that 
is, why the equation I x = x holds: 

We see that geometrically, this is a matter of yanking the string straight; while 
dynamically, we picture the token flowing once around the feedback loop, and 
exiting exactly according to x. 

Once again, we can recognize this combinator as a new description of an old 
friend from the previous section. This  is exactly the copy-cat strategy! Reduced to 
its essence, it simply copies "tokens" or "moves" from one place to another, and 
vice versa; the logical requirement is that one of these places should be positive 
(or output); while the other should be negative (or input). 

The  Composition Combinator 

We now consider the composition combinator B. We interpret it as a combination 
of copy-cats. That is, it plays copy-cat between three pairs of input and output 
lines. (Thus, in particular, it is a partial involution). 
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Note that we can regard this combinator as having six inputs and six outputs, 
as shown in the diagram, simply by iterating the trick of conjugating it by the 
splitting map s. Our reason for giving it this many inputs and outputs is based on 
the functionality of B ,  2.e. its principal type. It  expects to get three arguments, 
the first two of which will themselves be applied to arguments, and hence should 
each have two inputs and two outputs. 

Once again, the real insight as to how this combinator works will come from 
the geometry, or equivalently the particle dynamics. We let the picture speak for 
itself. 
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Other A f i n e  Combinators 

The remaining Linear Combinators can be described in similar style. We simply 
show the definition for C .  

We note that geometrically, this is our first example of a non-planar combinator.17 
This gives a hint of the geometrical possibilities lurking just below the surface. We 
shall not pursue this fascinating theme here for lack of space, but see [Abramsky, 
20071. 

In fact, the algebra is naturally af ine .  We can define a K combinator: 

However, note that another topological property is violated here; the first input 
and output lines are disconnected from the information flow. (Recall our discussion 
of the second variation of the Chess copy-cat scenario). 

170ur diagrammatic conventions obscure this point, since all our diagrams involve over-crossing 
lines. For an explicit discussion of planarity and an alternative diagrammatics, see [Abramsky, 
20071. 
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Duplication 

We shall conclude our discussion of the algebra by sketching how explicit duplica- 
tion of arguments is handled. This is needed for full expressive power. 

We define another auxiliary function 

.2d 

p : N x Pos * Pos 

which splits logical space into countably many disjoint copies. Again, this requires 
the assumption that Pos is infinite. Using this, we can define an operation ! f 
which is intended to produce infinitely many  copies o f f .  These are obtained by 
simply tagging each copy with a natural number, i.e. we define: 

1 ! f  =, ,o( lpfx  f ) o p - .  

We can then define W satisfying 

The W combinator 

This combinator can be understood as effecting a "translation between dialects": 

x sees two arguments, each in many copies. 

! y  provides one argument, in as many copies as needed. 

The combinator in effect decomposes into infinitely many copy-cat strategies, using 
a suitable splitting function to split the "address space" of the countably many 
copies of !y into two infinite, disjoint parts, and copying between each of these and 
the corresponding argument position of x. 
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6.5 Putting the Pieces Together 

We can round out the descriptions of the combinators as partial involutions to 
obtain a Linear Combinatory Algebra. By Theorem 11, this yields a standard 
Combinatory Algebra, and hence by Theorem 9 a universal model of computa- 
tion. Moreover, realizability constructions over this Combinatory Algebra provide 
models for higher-order logics and type theories. Thus we have fulfilled our pro- 
gramme for this Section, of exhibiting the power of copying, leading to emergent 
models of logic and computation. 

6.6 Discussion 

Our gentle description of the partial involutions model in this section has merely 
indicated some first steps in this topic. We list some further directions: 

There is a general axiomatic formulation of this construction in terms of 
traced monoidal categories [Joyal et al., 19961, with instances for determin- 
istic, non-deterministic, probabilistic and quantum interaction [Abramsky, 
1996; Abramsky et al., 20021. 

The connections with reversible computation have been mentioned; this topic 
is carried further in [Abramsky, 20051. 

These models have some striking applications to the analysis of proofs, and 
of definability in various type theories, via Full Completeness theorems for 
models arising by realizability constructions over the basic Geometry of In- 
teraction models [Abramsky and Lenisa, 20051. 

Current work is showing that the suggestive connections with geometry can 
be carried much further. In particular, there are connections with diagram 
algebras such as the Temperley-Lieb algebra, and hence with the Jones poly- 
nomial and ensuing developments [Abramsky, 20071. 

Finally, as already mentioned, there are strong connections with Quantum 
Information and Computation, which deserve a proper account of their own. 
Some references are [Abramsky and Coecke, 2002; Abramsky and Coecke, 
2004; Abramsky and Coecke, 20051. 

7 CONCLUDING REMARKS 

The underlying project we have tried to  illuminate in this article, via some partial 
exemplifications, has been that of developing a free-standing, syntax-independent 
Information Dynamics, worthy of the name. 

In our view, this project is significant not just for Computer Science, but for 
Applied Logic, and for the theory and philosophy of information in general. 
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7.1 Combining Static and Dynamic 

We have already emphasized the importance of combining qualitative and quanti- 
tative aspects of information, in the context of both static and dynamic theories. 
We conclude by making the point that it can be fruitful to combine static and 
dynamic aspects as well.ls 

We can set this in a wider context. One can distinguish two views on how Logic 
relates to Structure: 

1. The Descriptive View. Logic is used to talk about structure. This is the 
view taken in Model Theory, and in most of the uses of Logic (Temporal 
logics, MSO etc.) in Verification in Computer Science. It is by far the more 
prevalent and widely-understood view. 

2. T h e  Intrinsic View. Logic is taken to embody structure. This is, implicitly 
or explicitly, the view taken in the Curry-Howard isomorphism, and more 
generally in Structural Proof Theory, and in (much of) Categorical Logic. 
In the Curry-Howard isomorphism, one is not using logic to talk about func- 
tional programming; rather, logic (in this aspect) is functional programming. 

The descriptive view is well exemplified by Dynamic Logic and other modal 
logics. Indeed, one can use modal logics to talk about games and strategies, while 
on the other hand these can be used as a manifestation of the intrinsic view, 
modelling proofs as certain interactive processes. In some sense the intrinsic view 
is global, giving the structure of a type theory or semantic category; while the 
descriptive view is local, exploring the structure of particular games (objects) or 
strategies (morphisms). There is no reason why these two views cannot be brought 
fruitfully together, e.g. using a suitable modal logic to verify the logical soundness 
properties of strategies such as the copy-cat strategies we have discussed. 

This further attempt to draw some of the strands we have examined in this 
article together is one of many promising directions for future work. 

7.2 The Fundamental Challenge 

The most fundamental challenge faced by the project of an Informatic Dynamics 
is in our view this: how to expose what is really robust and intrinsic structure, 
a bedrock on which we can build, as opposed to what is more or less arbitrarily 
chosen.lg This problem is all the more acute, given the ever-increasing range 
of concrete informatic phenomena which we are continually being challenged to 
model by the rapidly-moving world of Information Technology. 

Without under-estimating these difficulties, we find numerous, if "local", grounds 
for optimism in the theories we have surveyed, in the insights and structures which 

18This point was emphasized by Johan van Benthem (personal communication). 
l g ~ h e r e  is a name in Computer Science for the syndrome of a profusion of choices, none 

canonical: the "next 700 syndrome". It comes from Peter Landin's classic paper (from 1966!), 
"The Next 700 Programming Languages" [Landin, 19661. For further discussion of this syndrome, 
and where we might find inspiration in addressing it, see [Abramsky, 20061. 
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they have brought to light. We venture to  believe that real and exciting progress 
will continue to be made, and that a fundamental and widely applicable scientific 
theory of Information, incorporating qualitative and structural as well as quanti- 
tative features, is in the making. 
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INFORMATION AND BELIEFS 
IN GAME THEORY 

Bernard Walliser 

Game theory is devoted to the study of strategic interactions established be- 
tween several rational players. It  is concerned by information since players have 
some uncertainty about their environment and compensate for it  by direct obser- 
vation or by communication with other players. It is concerned by beliefs since 
players form expectations about their environment by relying on representations 
about it as well as representations about others' representations. Information and 
beliefs are strongly linked since acquired information modifies the previous be- 
liefs and revised beliefs shape new information. Hence, information and beliefs 
became together a central topic of game theory and even appear as the main 
device allowing the players to coordinate. Moreover, since game theory grounds 
economic theory, their study leads respectively to the 'economics of information' 
[Macho-Stadler et al., 20011 and to the 'economics of knowledge' [Foray, 20041. 

The aim of this paper is not to summarize the huge technical literature concern- 
ing information and beliefs in game theory. Many chapters of game theory text- 
books are devoted to the study of information, with a lot of illustrative examples 
[Osborne-Rubinstein, 1994; Aumann-Hart, 1992; 1994; 20021. Many proceedings 
of specialized conferences such as LOFT (1994 to 2006) and TARK (1986 to 2005) 
are devoted to the treatment of beliefs in game theory, even if a synthesis is not 
already available. The aim of the article is rather to proceed to a rational recon- 
struction of information and beliefs in game theory. It shows in what terms the 
problems were initially conceptualized, how some formal tools were imported and 
considered to  be adequate, and in what ways these problems were then considered 
as being solved. Problems and solutions will be presented in a rather informal 
way, but various toy examples (used at length in game theory) will be mentioned. 

First section recalls how information and beliefs were historically introduced in 
game theory and induced an evolution of the usual equilibrium notions. Second 
section presents what type of information is needed and gathered by a player and 
describes the formal tools used by the modeller in order to formalize it. Third sec- 
tion considers in which way such information is treated by a player, and especially 
how it contributes to the revision of its basic or crossed beliefs. Fourth section 
examines how information is captured by a specific equilibrium notion and how it 
is assessed by a player by means of an 'information value'. Fifth section analyzes 
information as a strategic item that a player has interest or not to diffuse, and 
examines if an equilibrium state reveals or not the players' information. Sixth sec- 
tion is devoted to  the way information is diffused among the players and examines 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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if it leads or not that information to become common knowledge. Seventh section 
considers the learning process of players endowed with bounded rationality and 
examines if it converges or not towards some usual equilibrium state. 

1 ONTOLOGY OF GAME THEORY 

Game theory is intended to describe formally how rational players engage in strate- 
gic interactions. Interactions are strategic in the sense that the consequences of a 
player's action depend not only on his action, but on others' action. Hence, each 
player follows a decision process taking into account his expectations about the 
others' behaviour. Such expectations are grounded on prior beliefs of the player 
as well as on information progressively gathered by him. Hence, in the history of 
game theory, information and beliefs became progressively more and more explicit. 
More precisely, game theory developed its own formalism even if it appeared later 
to be similar to the one developed in epistemic logics. 

1 .  Classical game theory 

Any game is defined by two kinds of actors, a set of players (acting a s  genuine 
decision-makers) and nature (acting mechanically) which are jointly involved in 
strategic interactions. Each player is assumed to choose an 'action', independently 
from others, by a rational deliberation process. More precisely, he is endowed with 
three 'determinants7: opportunities (delimitating his action set), beliefs (represent- 
ing his view of his material and social environment) and preferences (evaluating 
the expected consequences of his actions). He combines these three determinants 
into a 'choice rule' which reflects two distinct forms of rationality (Walliser, 1989). 
Instrumental rationality refers to the adequacy of pursued objectives to available 
means and cognitive rationality refers to the adequacy of designed beliefs to avail- 
able information. Nature, which summarizes the common material environment, 
takes a state by some passive process, characterized by a 'generation law'. It  is as- 
sumed to be neutral with regard to the players, taking its states in a deterministic 
way independently of players' actions. 

Originally [von Neumann and Morgenstern, 1944; Nash, 19621, the players were 
considered to play simultaneously. Their joint actions (constituting a 'profile of 
actions') lead to common consequences which are evaluated differently by the 
players. Such a one-shot game is structurally expressed by the modeller under the 
'normal form' which makes the players' determinants more precise. A game matrix 
is obtained by considering every combination of an action for each player and of 
a state of nature. In each cell of the matrix, the payoff (or the utility) obtained 
by each player is indicated (nature is passive and has no payoffs). According to 
the payoff structure, different types of games are distinguished, well illustrated for 
two-player games without nature. In 'twin games', the players have the very same 
interests, hence their payoffs are identical in each cell. In 'zero-sum games', the 
players have contradictory interests, hence their payoffs are opposite in each cell. 
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In 'symmetric games', the players play analogous roles in the sense that they have 
the same set of actions and, when they exchange their actions, they exchange their 
payoffs too. 

In a normal form game, the two basic notions of 'dominance' and 'best re- 
sponse' give rise to three main equilibrium concepts. First, for some player, an 
action dominates another if it gives a higher payoff whatever the other's action. 
Hence, an action of a player is dominant if it dominates all other actions of that 
player and an action is dominated if some other action of that player dominates 
it. A 'dominant equilibrium' state is just a profile of dominant actions. A 'sophis- 
ticated equilibrium' state is a profile of actions which survive 'iterated elimination 
of dominated actions'. In that procedure, the dominated actions of each player 
are first deleted, the same is done on the remaining game and so on. A domi- 
nant equilibrium seldom exists, while sophisticated equilibria are often numerous. 
Second, an action of some player is a best response to the other's one if no other 
action gives him a higher payoff to  it. A 'Nash equilibrium' state is just a profile 
of actions for which each action of some player is a best response to the other's 
action. A Nash equilibrium (in pure actions) may not exist, be unique or be mul- 
tiple. A dominant equilibrium is a Nash equilibrium, and a Nash equilibrium is a 
sophisticated equilibrium. 

1.2 Introduction of t ime  and information 

In the seventies [Selten, 19751, a time dimension was introduced by enlarging the 
game theory framework. Players were considered to play sequential actions which 
induce either a t  each move or globally at the end of the game some common 
consequences. Such a game was structurally expressed by the modeller under 
the 'extensive form' which again makes the players' determinants more precise. 
A game tree is obtained by considering at each node the possible moves for the 
player or nature playing at this node. Hence, one move by one actor conditions 
the further moves of the other ones. For each path in the tree formed of successive 
actions and states and leading to a terminal node, the utility obtained by each 
player is indicated. A special case obtains when the players play a (finite or infinite) 
sequence of the same basic game. Each player receives then a payoff at each period, 
these payoffs being aggregated thanks to a discount rate (which depreciates the 
payoff of each period with regard to the preceding one). 

At the same period [Harsanyi, 19671, uncertainty was first made explicit in the 
normal form of a game. Initially, uncertainty was related to  nature since a player 
does not precisely know, when he plays, what state nature adopts. Usually, the 
modeller assumes that nature takes its states randomly, according to some prior 
probability law, moreover assumed to be known by the players from the beginning 
of the game. Moreover, uncertainty was related to  the determinants of a player 
which are badly known by another one, and eventually even by him. In that 
case, the modeller assumes that the determinants of a player can be summarized 
in the 'type' of the player, that this type can be treated as a state of nature 
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(nature attributes a type t o  each player at the beginning of the game), and that a 
probability distribution exists on the types, again known by the players. Finally, 
uncertainty was introduced in the extensive form of a game. It is essentially related 
with past actions of a player which are not perfectly observed by another one and 
even by him. The modeller assumes that the nodes of a player associated to the 
non discriminated actions of another player are gathered in some 'information set' 
associated to the last. 

The equilibrium notions were extended in order to integrate time and uncer- 
tainty. As far as time is concerned, it can first be observed that, by introducing 
the notion of a 'strategy' (defined as the action played by a player at each relevant 
node), the extensive form game (on actions) can be expressed under a normal form 
(on strategies), hence a Nash equilibrium can be defined. In other respects, a 'sub- 
game perfect equilibrium' is defined as an action path which is a Nash equilibrium 
in the game and all its subgames. When the game is finite, such an equilibrium 
is obtained by the 'backward induction procedure'. This procedure states that a 
player a t  a terminal node chooses his best action, a player at a penultimate node 
chooses his best action, knowing what the next player will do, and so on till the 
root node. A subgame perfect equilibrium is a refinement of a Nash equilibrium, 
but it always exists and is generically unique. As far as uncertainty is concerned, a 
'Bayesian equilibrium' state is defined as a Nash equilibrium of the game where the 
players are decomposed in as much agents as possible types and choose their best 
action, in average on others' types. A Bayesian equilibrium is a Nash equilibrium 
of an extended game, and it frequently exists and is even multiple. 

1.3 Introduction of beliefs and learning 

In the eighties [Aumann, 1976; 19991, beliefs were introduced explicitly in the game 
theoretical framework. The usual framework formalizes essentially the opportu- 
nities and the preferences of the players, respectively as action sets and payoffs. 
But beliefs do not appear in a formal way, even if observations and even expecta- 
tions are considered as basic beliefs. Beliefs are representations made by a player 
about his environment, essentially nature and other agents. In fact, the players 
have crossed beliefs since each player holds beliefs about others' beliefs. Moreover, 
in dynamic games, the players have prior beliefs that they modify when receiv- 
ing new messages. Beliefs were represented semantically in a specific framework 
which revealed further to be identical to that of epistemic logics, more precisely 
a semantical (possible world) framework. Moreover, strong assumptions were im- 
plicitly introduced: truth (what a player knows is true), positive introspection (a 
player knows what he knows), negative introspection (a player knows what he does 
not know). Hence, beliefs were expressed as 'information partitions' in a possible 
world space. When some world is the actual one, a player ignores in what world 
of the corresponding partition cell he is. 

In the same period, learning rules were introduced and form the basis of a new 
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research program labelled as 'evolutionist1 game theory'. The classical program 
considers that the players are strongly rational and optimize their behaviour. The 
new program integrates the fact that the players are boundedly rational and just 
react to their environment in a utility improving direction. First, the models 
were based on biological analogies where the players are exclusively directed by 
mutation and selection mechanisms. The players consequently abandon all their 
reasoning faculties and adopt zero rationality. Later, psychological features were 
reintroduced since the players react to new observations by revising their beliefs 
or adapting their behaviour rules. Moreover, random elements were added in 
the description of players' encounters, observations, expectations and decisions. 
In these models, the work of crossed beliefs is replaced by the work of repeated 
experience. Technically, since the players have a purely reactive behaviour with 
randomness, their sequential actions follows some stochastic process. 

The equilibrium notions are completely revisited by these original views. The 
main problem about a usual equilibrium notion is that it is not constructively de- 
fined. An equilibrium state is a stationary state in the sense that if the players find 
themselves in it, they have no (cognitive or preferential) incentive to deviate from 
it. But the modeller exhibits no concrete process by which the players come to 
such an equilibrium state. Especially, he does not make precise how an equilibrium 
state is selected in case of multiplicity. At the opposite, when introducing beliefs, 
it becomes possible to study under what conditions hyper-intelligent players come 
to an equilibrium state by their sole reasoning. These conditions constitute the 
'epistemic justifications' of the usual equilibrium notions (see 5 6.3.). Likely, when 
introducing learning, it becomes possible to study under what conditions a dy- 
namic process followed by boundedly rational players asymptotically leads to an 
equilibrium state. They constitute the 'evolutionist justifications' of the usual 
equilibrium notions (see 5 7.3.). 

2 INDIVIDUAL GATHERING OF INFORMATION 

In game theory, players are endowed with beliefs conceived as mental representa- 
tions of their surrounding environment. These beliefs are considered as imperfect 
as well as incomplete with regard to the modeller's model acting as a reference. 
They are formalized in the same terms than the model itself, but with truncated 
relations between partial variables. Information is then conceived as some message 
received by the player from outside either by direct observation or mere commu- 
nication. It  gives further details about some actual phenomenon or about some 
law followed by the system. It is formalized in a very simple way, as a more pre- 
cise specification of a variable or as a signal correlated to the actual value of the 
variable. 

lEvolutionist refers to  a general dynamic process while evolutionary refers to  a biology inspired 
dynamic process. 
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2.1 Sources of uncertainty 

Game theory assumes that the modeller, like God, has a complete and perfect 
model of the system under study, including of course the players' beliefs. This 
model is represented by a set of generic relations between observable or non ob- 
servable variables and defines alternative paths of the system. Besides, game 
theory assumes that each player retains beliefs according to the same general on- 
tology than the modeller, as concerns the basic entities and their interactions. But 
his private model is more imperfect and incomplete than the modeller's one, and 
even possibly false. Uncertainty is associated to some event or to some structural 
feature of the system. It concerns the value of some variable or the specification of 
some relation, especially some parameter. To compensate for uncertainty, infor- 
mation makes more precise some fuzzy element of the overall system. It concerns 
some statement about the actual value of a variable or the true specification of a 
relation. 

According to the modeller's view, each player faces nine basic types of uncer- 
tainty obtained by crossing two independent criteria about the uncertain char- 
acteristics of the system. On the one hand, considering the concerned entities, 
a player may be uncertain about nature (physical uncertainty), about the other 
players (actorial uncertainty) or even about himself (personal uncertainty). On 
the other hand, concerning the entities' attributes, he may be uncertain about 
past events (factual uncertainty), about atemporal structural features (structural 
uncertainty) or about future events (strategic uncertainty). More precisely, the 
considered (past or future) events are the nature's states or the players' actions. 
The considered (atemporal) structural features are the nature's generation law (ex- 
plaining the genesis of states) and the consequence law (linking states to actions 
and consequences) as well as the players' determinants. The last are generally 
summarized in players' types having their own generation law. 

Likely, each player is able to receive information from various sources before 
or during the play of the game. The player has some prior information about 
the game structure, especially about the other's determinants. He becomes natu- 
rally informed about some past events, since he observes realized states of nature, 
watches implemented actions of another player or feels his own utility obtained 
by a past action. Information received by a player is believed by him with some 
degree of credibility according to its source. But information is distinguished from 
belief in the following way. Information is considered as a flux coming from the 
environment of the player by observation or communication (hence is explicit). 
Belief is a stock anchored in the player himself and transformed by outside infor- 
mation or by inside restructuring (hence may be tacit). Moreover, information is 
generally an elementary mental state while a belief is more structured. 

2.2 Structure of uncertainty 

Uncertainty affected to some (discrete or continuous) relevant variable can be 
expressed semantically under two main forms. In the probabilistic form, it is 
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expressed by a probability distribution defined over its values. In the set-theoretic 
form, it is expressed by a subset of its values to which the actual value belongs. 
The two cases cannot be easily compared, even if certainty appears as a limit 
case of both (probability 1 on some value or unique value). Probabilities are 
objective when the modeller considers the phenomenon as really stochastic and 
when it informs the player of the actual probabilities, the last endorsing them. 
Such probabilities are frequencies (in a sequence of similar events) or proportions 
(in a population of objects). Probabilities are subjective when the player forms a 
personal probability about the phenomenon, whether or not actually stochastic. 
Such probabilities are logical (expressing a relation between variables) or decisional 
(expressing the willingness to bet for a player). The last ones may be revealed by 
the modeller from player's actions, under strong conditions. 

Uncertainty may also be expressed under a hierarchical form, meaning that a 
player is uncertain either about his own or about other's uncertainty. On the one 
hand, a player may have some second order uncertainty on his first order uncer- 
tainty. The first order uncertainty is generally objective (basic uncertainty) while 
the second order uncertainty is always subjective (ambiguity). Each level may be 
expressed in a probabilistic or a set-theoretic form, leading to original two-level 
belief structures: a probability distribution on probability distributions, a proba- 
bility distribution on sets defining Dempster-Shafer belief functions [Shafer, 19761, 
a set of probability distributions defining multi-prior belief functions [Gilboa and 
Schmeidler, 19891. On the other hand, a player may have a second order uncer- 
tainty on the first order uncertainty of another player. Here again, the second order 
uncertainty is a subjective one while the first is of any kind. The levels are then 
generally expressed either both in a set-theoretic form or both in a probabilistic 
form. 

In game theory, uncertainty is expressed in a way which is precisely adapted 
to  the badly known element as illustrated by some examples. Firstly, uncertainty 
of a player about nature's states can be expressed in a more or less precise way 
[Knight, 19211. Bernoullian uncertainty happens when the player forms a proba- 
bility distribution over the states. Knightian uncertainty happens when the player 
just knows the set of possible states without weighting their respective occurrences. 
Radical uncertainty happens when a player does not even know the set of possi- 
ble states, due to 'unexpected contingencies'. Secondly, uncertainty of a player 
about the other's player type (and even about his own type) is usually expressed 
in a probabilistic form (the players' types are in fact treated as initial states of 
nature). Thirdly, uncertainty of a player about another player's past actions is ex- 
pressed in a set-theoretic way, by 'information sets' gathering all nodes he cannot 
discriminate 

2.3 Stmcture of information 

Information is generally represented by a 'message' received by a player. Such a 
message concerns directly a given variable or parameter or indirectly some other 
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variable correlated to it and called a 'signal'. For instance, when checking the 
existence of gas in the soil, a gas company may search for salt when assuming 
that the presence of salt is correlated with the presence of oil. Hence, information 
is modular in the sense that it appears as a 'psychical quantum' understandable 
independently of another piece of information or of prior beliefs. Information is 
endowed by the modeller with a truth value since a direct observation is correct or 
not while a communicated item is true or not. Information is moreover unambigu- 
ously interpreted by players since it does not depend on its material support or its 
language. More precisely, it is univocally interpreted by each player in the sense 
that he knows what variable is concerned. Likely, it  is interpreted in the same way 
by all players since they agree on a structural representation of the system. 

Information is expressed in different forms, but it depends now on the actual 
value of the relevant variable. A message is set-theoretic when it indicates, for 
each actual value, a subset of possible values. A message is probabilistic when it 
indicates, for each actual value, a probability distribution over the possible values. 
In the last case, the player receives, in a set of possible signals, some specific signal 
and, knowing the probability of that signal conditional on the actual value, he 
computes a probability distribution on the real value. When usual properties are 
attributed to the message (truth, positive introspection, negative introspection), 
it is defined either as a partition on the set of values or as a unique probability 
distribution on the values. In many applications, a player receives both public 
information characterized by a prior objective probability distribution and private 
information characterized by a subjective partition, specific to each player. 

With regard to information, two extreme types of action are considered for any 
player. An 'operational action' aims at producing some material consequences. 
An 'informational action' aims at gathering some additional information. In fact, 
a same action may simultaneously provide information and produce a material 
impact. More precisely, information can be obtained in three ways, corresponding 
to different forms of 'experimentation'. Firstly, in 'exogenous experimentation', a 
player buys some information at some cost from a specialized instance. Secondly, 
in 'passive experimentation', a player obtains information as a by-product of an 
operational action, generally for free. Thirdly, in 'active experimentation', a player 
obtains information by deviating voluntary from some efficient operational action. 
He looses some utility (or incurs some cost) at short term, but compensates by 
the advantage brought by information in enlightening operational actions at long 
term. 

3 INDIVIDUAL TREATMENT OF INFORMATION 

A player is willing to acquire information since it may help to modify his beliefs 
in the direction of truth. The fundamental mental operation is then belief revi- 
sion, which can be implemented for any message, true or false. Belief revision is 
a prototypical reasoning operation which is realized according to some rules in- 
dependently of choice. Individual belief revision concerns only beliefs about the 
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material environment while collective belief revision is extended to crossed beliefs 
between agents. Moreover, information is helpful when a player 'knows more' with 
his final belief than with his initial one. In order to  check this, the modeller has 
to formalize the fact that some belief is more 'accurate' than another. 

3.1 Individual belief revision 

Consider first a single decision-maker who holds an initial belief over his mate- 
rial environment (summarized by states of nature). The decision-maker receives a 
message on the actual state, which may be compatible or contradict his initial be- 
lief. Two main revision contexts are generally considered. In a 'revising context', 
the player just receives some additional information about a fixed environment. 
In an 'updating context', the player receives information about how an evolving 
environment has changed. A third context, the 'focusing context', happens when a 
specific instance of the environment (a state of nature) is sorted out and informa- 
tion is given about it. Formally, the focusing context can be reduced to  a revising 
context if a 'projection principle' is satisfied. For instance, a merchant may sell 
different products according to future meteorological conditions (tempest, rain, 
clouds, little sun, high sun) crudely assessed. In a revising context, he learns that 
it  never rains in the region. In an updating context, he learns that a depression 
affects globally the meteorological conditions. In a focusing context, he learns that 
it does not rain this day. 

The revision process, conveniently represented by a revision rule in semantics, 
is sustained by an axiom system in syntax. For set-theoretic beliefs, in a revising 
context, the AGM axiom system [Alchourron et al., 19851 designs a 'conditioning 
rule'. In the possible worlds space, nested coronas more and more distant from 
the first one constituted by the initial belief are defined. The final belief is just 
the intersection of the message with the first corona intersecting it. Especially, 
when the initial belief and the message are compatible, the final belief resumes 
to their intersection. In an updating context, the KM axiom system [Katsuno 
and Mendelzon, 19921 designs an 'imaging rule' in a similar way. When dealing 
with probabilistic beliefs, the usual revision rule used in game theory is Bayes 
rule, restricted to the case where initial belief and message are compatible. The 
posterior probability distribution is obtained by renormalizing homothetically the 
prior distribution to the worlds not excluded by the message. In fact, Bayes rule is 
relevant only in a revising context and can only be justified by very strong axioms 
[Walliser and Zwirn, 20021. 

Belief revision is strongly related to other reasoning modes attributed to a player 
in game theory in order to solve specific problems. It appears as his central rea- 
soning mode from which the other modes are variants. A correspondence can 
be established in syntax between their respective axiom systems and in seman- 
tics between their corresponding rules. For instance, nonmonotonic reasoning is 
isomorphic to belief revision in a revising context [Kraus et al., 19901. Likely, 
abductive reasoning (used in game theory for an explanation of other's player be- 
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haviour) is isomorphic to some reverse belief revision process, always in a revising 
context [Walliser et al., 20051. Finally, counterfactual reasoning (used in game 
theory for prediction of other's player behaviour) is isomorphic to belief revision, 
but in an updating context [Stalnaker, 19681. Other reasoning modes attributed 
to players remain unrelated t o  belief revision, for instance analogical reasoning 
(used in game theory for case-based reasoning) or taxonomical reasoning (used in 
game theory for game categorization of the game structure). 

3.2 Collective belief revision 

In a game, each player treats his available information in order to reduce se- 
quentially the different types of uncertainty he faces. First, he uses his acquired 
information in order to reduce factual uncertainty by implementing directly some 
belief revision process. For instance, when he gets a message about the actual state 
of nature, he revises his prior belief about the actual state accordingly. Second, he 
uses his factual beliefs in order to reduce structural uncertainty by implementing 
some abductive process. For instance, when observing some actions of another 
player assumed to be rational, he tries to reveal the other's preferences (and/or 
beliefs) by making some case about him. Third, he uses structural beliefs in order 
to reduce strategic uncertainty by implementing some counterfactual reasoning. 
For instance, when knowing the determinants of another player assumed to be 
rational, he infers more or less precisely what actions he will choose in a game 
tree, even in nodes which may not be reached by the equilibrium path. 

Consider now that each player is endowed with a hierarchical belief structure in 
a set-theoretic form. Such a structure expresses the crossed beliefs of the player 
about the states of nature (I know that you know.. . that p). The player then 
receives a message, defined both by its content and its status. The 'content' 
of the message expresses as usual what information is given to the players. For 
instance, one defines a material message (about the state of nature) or an epistemic 
message (about a player's belief on the state of nature). The 'status' of the message 
indicates to whom the message is diffused and what the players know about that 
diffusion. For instance, one defines a public message (the message is sent to all 
players and this is common belief), a private message (the message is sent to one 
player, the other knowing that the first received a message, but not its content, and 
all this is common belief) or a secret message (one player receives a message, the 
other being unaware of this). But a lot of other types of messages are conceivable (a 
private message believed public, a quasi secret message). Such a two-dimensional 
message can conveniently be expressed by an auxiliary belief structure, called the 
message structure. 

Moreover, a 'specification message' is a message which does not contradict the 
initial belief, hence does not surprise the player. However, the initial belief and 
the final belief can include errors, as illustrated by a secret message which turns 
a true belief into a false one. In the framework of dynamic logics, a multi-agent 
belief revision rule combines in a precise way the initial belief structure and the 
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message structure in order to  obtain a final belief structure [Baltag and Moss, 
20041. The syntactic counterpart of the revision rule can be expressed by a few 
axioms, the main one being some kind of modus ponens [Billot et al., 20061. It  
assesses that a player believes a proposition in the final belief when he learns a 
message and believes initially that the message entails that proposition (or con- 
versely for message and initial belief). The case of a 'rectification message', which 
contradicts the initial belief, is harder to deal with and needs again to introduce 
an order between possible worlds. 

3.3 Accuracy orders on belief structures 

Two belief structures can be compared by defining 'accuracy orders', which express 
that one structure is more informative than another. For set-theoretic structures, 
in semantics, stronger and stronger accuracy orders can be defined [Billot et al., 
20061. In semantics, a relation is defined between corresponding worlds and con- 
ditions are expressed on the accessibility relations in these worlds. For instance, a 
belief structure is collectively more accurate than another if, in two corresponding 
worlds, the accessibility domain of the first is always included in the accessibility 
domain of the second. This just means that, in any world, each player consid- 
ers fewer worlds as accessible in the second than in the first. The less accurate 
structure considers all worlds as accessible in each world and the most accurate 
structure considers only itself as accessible in each world. These accuracy orders 
receive again well defined syntactical counterparts. For probabilistic structures, an 
accuracy order is less obvious to define. However, a first probability distribution 
was defined as less accurate than a second one if it is a 'mixture' of it. 

A specific order on belief structures can be constructed when these structures 
are defined in a group of players and concern some given material proposition. In 
syntax, the proposition is 'distributed belief' when the players may (jointly) deduce 
it by gathering their beliefs. The proposition is 'individual belief' when one player 
at least believes it. The proposition is 'shared belief' when all players believe it. 
The proposition is shared belief at order k when all players believe it, believe that 
the others believe it  and so on till level k. The proposition is 'common belief' when 
it is shared belief at any order [Lewis, 19691. This hierarchical definition of common 
belief is weaker than a circular (fixed point) definition [Barwise, 19881. The last 
states that a proposition is common belief if everybody believes that it is true 
and common belief. All these operators have well defined semantic counterparts. 
Especially, in semantics where players have information partitions, the 'common 
belief partition' is the finest partition of the coarsened mutual partitions. 

Coming back to  belief revision, the various types of messages can be partially 
ordered according to their relative accuracy. For instance, a public message is 
collectively more accurate than any other message, for instance a private message 
or a null message. A fundamental result links accuracy orders to belief revision. It  
states that the accuracy order is preserved when carried from the message to the 
final belief [Billot et al., 20061. More precisely, for a given initial belief structure, 
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if some message is more accurate than another (in any sense), the corresponding 
final structure is itself more accurate (in the same sense) than the other final 
structure. For instance, the final belief obtained by a public message is collectively 
more accurate (when compared to the null message) than the initial belief. Such 
a condition, satisfied by a specification message, precisely states that the (true) 
message has improved the player's knowledge. 

4 COLLECTIVE IMPACT OF INFORMATION 

Player's information acts not directly on his selected actions, but only indirectly 
through his revised beliefs. Since player's beliefs are affected by uncertainty, the 
choice rules and equilibrium notions are adapted to it. Information gets evalu- 
ated no more essentially with regard to its contribution to truth, but to  its utility 
in decision. The value of information is precisely introduced in order to check 
if more accurate information is also more efficient. As expected, the answer is 
positive when considering individual decision-making against probabilistic uncer- 
tainty. But surprisingly, it may be negative in a game context since information 
has a complex impact on crossed beliefs. 

4.1 Choice under uncertainty 

When a single decision-maker is confronted to nature, cognitive rationality resumes 
to belief revision and instrumental rationality to utility maximization. For a static 
choice against nature, the relevant choice rule is the maximization of expected 
utility. When the law of nature is probabilistic and the decision-maker is aware 
of these objective probabilities, he computes the choice rule according to these 
probabilities [von Neumann and Morgenstern, 19441. When the law of nature 
is unknown to him, he applies the same choice rule, but according to subjective 
probabilities [Savage, 19541. For a dynamic choice against nature, the same choice 
rule is again assumed to  be relevant, but associated with a new principle, the 
'backward induction principle'. The decision-maker proceeds in the 'decision tree' 
(the game tree reduced to one player and nature) from the terminal nodes to 
the root node. At a nature's node, he computes the expected utility over states 
endowed with progressively revised probabilities. At a decision-maker's node, he 
retains the action which maximizes expected utility. 

The choice rules receive cognitive justifications under the form of an axiom 
system relying on preferences about strategies. This axiom system was progres- 
sively extended from Bernoullian uncertainty to Knightian uncertainty, from static 
choice to dynamic choice. The choice rules receive moreover pragmatic justifica- 
tions, especially the Dutch book argument stating that if a decision-maker does 
not maximize his expected utility, he can be confronted to  a sequence of choices 
at the end of which he always looses. The choice rules receive finally evolution- 
ist justifications, stating that in competition with others, a decision-maker who 
does not maximize his expected utility will be eliminated. In other respects, two 
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main interpretations are generally given to the choice rules. The instrumental 
interpretation considers that the decision-maker behaves as if he maximized ex- 
pected utility (like a billiard player). The realist interpretation considers that the 
decision-maker consciously maximizes his expected utility (like a poker player). 

When several players are involved in an uncertain and dynamic game, a specific 
equilibrium notion called 'perfect Bayesian equilibrium' is stated. It  extends si- 
multaneously a subgame perfect equilibrium and a Bayesian equilibrium. At each 
information set of the game tree, the decision-maker associates a probability dis- 
tribution to the constituting nodes (expressing his beliefs about the past moves 
of an opponent). The two usual rationality principles are then applied. Instru- 
mental rationality states that, at each node, the player chooses the action which 
maximizes his expected utility, according to the fact that the future nodes were 
already optimized (backward induction procedure). Cognitive rationality states 
that the probability distribution, at each node, is adjusted along Bayes rule, with 
respect to the information gathered about past moves (Bayes conditioning pro- 
cedure). Hence, uncertainty about another player's action is treated in the same 
way that uncertainty about the nature's state, even if the first is endogenous and 
the second exogenous. 

4.2 Information value in individual decision-making 

Consider a decision-maker who, before choosing an operational action, proceeds 
first to an exogenous experimentation. More precisely, he is endowed with a prior 
probability distribution about the states of nature and may buy in some agency 
a partitional message. As for any item, he chooses to buy the message if its 
(exogenous) cost is smaller than its value. By definition, the information value 
brought by the message is the difference of actor's expected utility before receiving 
the message and after receiving it. In a fundamental theorem, Blackwell [I9511 
proves that the information value of a message is always positive for a strongly 
rational decision-maker. The decision-maker cannot be worse after receiving the 
message than before receiving it. However, the information value may nevertheless 
be negative in two unusual cases: the decision-maker adopts another choice rule 
than expected utility maximization, the message is not a partitional one. Similar 
results are obtained with probabilistic messages. 

Consider now that the decision-maker is involved in a sequential choice in which 
he acquires progressively some information by active experimentation. More pre- 
cisely, he faces a repeated choice process with an infinite horizon, receives a payoff 
at each period and aggregates them thanks to a discount factor. He faces then 
a typical trade-off between exploration and exploitation. Exploration consists in 
gathering as much information as possible, exploitation consists in using at best 
the available information. In fact, this trade-off is automatically solved by com- 
puting the dynamic optimal choice rule. Intuitively, the decision-maker will do 
much exploration at the beginning of the process and much exploitation at its 
end. Moreover, an increase in the discount rate induces more exploration at the 
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beginning of the process. When the discount rate tends to  1, he proceeds only 
to exploration in the first periods till acquiring the information he wants, then he 
shifts to pure exploitation. 

For instance, consider that the decision-maker is confronted in a casino to a two- 
armed bandit. He may use at successive periods one of two levers with a random 
effect. Each lever gives him a payoff of 1 with a given probability and a payoff of 
0 with the complementary probability. He faces structural uncertainty since the 
probability of winning with each lever is unknown to  him. He is only endowed with 
a second-order probability distribution about the probability assigned to a positive 
payoff (for each lever). The optimal behaviour can be proved to be a deterministic 
index rule [Gittins, 19891. In all periods, the decision-maker associates an index 
to each lever, which depends on the prior probability and on the discount rate. In 
simple cases, the index aggregates an exploration value and an exploitation value 
of each lever. Within a period, the decision-maker chooses the lever with greatest 
index, observes the payoff he obtains and adapts the index consequently. After 
some time, the decision-maker always uses the same lever, even if he has a (small) 
probability of using the wrong one. 

4.3 Information value in games 

In a one-shot game involving nature, the players receive from outside a set-theoretic 
message of any content and status about its actual state. The information value 
of the message for some player is again the differential utility he gets at some 
Bayesian equilibrium state computed before and after receiving the message. In 
fact, different notions of information value, more and more averaged, can be defined 
and assessed. The actual value is the utility differential really improved by the 
player, but it  is only known by the modeller. The ex post value is the utility 
differential measured with the final beliefs, and it is computable by the player 
after he got the message. The ex ante value is the utility differential measured 
with the initial beliefs, and it is computable by the player before receiving the 
message, hence allows him to decide to  acquire it or not. 

Contrary to decision-making against nature, the ex ante information value in 
games may well be negative for any player [Kamien et al., 19901. More precisely, 
when one of two players receives a message, all combinations of signs of information 
value may be realized : both may become better, both may become worse, the 
receiver may become better and the other worse, the receiver may become worse 
and the other better. However, under technical assumptions, the information 
value is always positive for the receiver of a message for some types of messages 
and some classes of games. The first case corresponds to a secret message in 
any game [Neyman, 19911. The player is then in a similar position than a single 
decision-maker. The second case corresponds to a private message in a zero-sum 
game (Gossner-Mertens, 2001). The player receives a message such that its impact 
is opposite to  the impact of the message received by the other player. The third 
case corresponds to a public message in a pure coordination game. The players 
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act as a team and both can only be beneficial from the message. 
In a repeated game involving nature, the players are again confronted to the 

exploration-exploitation dilemma. The last may concern the nature's law, but 
also the distribution of players' types. The dilemma is far trickier than for an 
individual decision-maker and receives no general solution, but it  can be solved 
in specific situations. For instance, consider an investor in some product, who is 
confronted to a high or low demand with some prior probability. His investment 
can be realized in one step or decomposed in two successive steps, the second 
option involving an additional cost with regard to the first option, but allowing 
him to observe the demand after the first step. Hence, at the first period, he 
can adopt an irreversible option (invest completely) or a flexible option (invest 
partially, observe the demand and complete the investment if and only if demand 
is high). It can be shown that, in the choice process, the flexible option has to be 
given some 'bonus', which is precisely equal to  the information value given by the 
message about the demand. 

5 INDIVIDUAL PROVIDING OF INFORMATION 

A player not only receives information from other players, he also provides infor- 
mation to other players. Transmission of information is again a voluntary action, 
but is realized either directly or through a material action. Information becomes 
then a strategic item which is delivered only if it is in the player's interest. Such a 
phenomenon is precisely studied in specific classes of games with asymmetric in- 
formation such as 'signalling games'. The sender, provided with some information 
about the context, may transmit a message to the receiver who acts materially 
according to it. The results obtained are based on equilibrium concepts which 
assume that the players simulate each other, and even form self-fulfilling expecta- 
tions. 

5.1 Asymmetry of infomnation 

Many concrete situations involve the existence of prior asymmetric information 
between players. Especially, a player knows generally more about himself than 
about the others. Such an asymmetry may be reduced if a player provides his 
information to a second one by direct transmission or through an action (which 
reflects more or less some information he holds). However, depending on how the 
second player is expected to  use such information, hence on the utility differential 
it  will induce on him, the first player has an interest or not to provide it. When 
information is directly communicated, he may provide it, abstain to provide it or 
even distort it. When information transits through an action, he may implement 
the intended action, render the action fuzzy or even try to transmit biased infor- 
mation. Two situations are usually distinguished, according to the item concerned 
by information. 'Moral hazard' happens when a player has no interest to  publi- 
cize the action he implements. 'Adverse selection' happens when a player has no 



Ch13-N51726.fin Page 566 Thursday, Angust 21,2008 11:23 AM @ ~k 

566 Bernard Walliser 

interest to diffuse a state of nature he privately knows (for instance his type). 
Reflecting the moral hazard situation, the 'agency game' considers two players 

(principal and agent) facing nature [Grossman and Hart, 19831. The agent first 
performs some action of interest for the principal. Nature provides then a message 
- related both to that action and to its actual state - to the principal. The 
principal finally observes the message (and knows its dependence on the action), 
but not the agent's action itself, and gives a retribution to the agent according to 
the signal. The payoff of both players depends on the agent's action and on the 
principal's retribution, and eventually on the message itself. The problem faced 
by the principal is to induce the agent to act in his own interest by a 'contract' 
fixing an adequate retribution. In a perfect Bayesian equilibrium state, the agent 
takes an action which departs more or less from the action he would have token if 
this action were observable by the principal. 

For instance, on a car insurance market, the insured may or not implement 
some self-protection action, nature indicates the occurrence of an accident (which 
includes a random element) and the insurer just observes the accidents and pays 
a reimbursement linked to the premium. However, the insurer may adapt the pre- 
mium and the reimbursement to the number of past accidents or even to variables 
more correlated to the self-protection actions (driver's age). Likely, in a firm, the 
employee is able to modulate his effort rate at work, nature indicates the produc- 
tion of the firm (which depends on other random factors) and the employer just 
observes the production and gives a wage to the employee related to the produc- 
tion. Here again, the employer may adjust the wage not only to its final profit, 
but to variables more correlated with the effort rate. 

5.2 Signalling games 

Reflecting the adverse selection situation, a 'signalling game' considers two players 
(sender and receiver) facing nature [Rasmusen, 19891. Nature first defines a state 
according to  some probability distribution which is common belief. The sender 
observes the actual state and sends one of two signals to  the receiver about that 
state, eventually a mixed one (probability distribution over the pure signals). The 
receiver observes the signal, but not the state of nature, and implements an action, 
eventually a mixed one (probability distribution over the pure actions). The payoff 
of both players depends in general on the state, on the signal as well as on the 
action. However, in 'cheap talk' for instance, the players' payoff does not depend 
on the signal, hence one player may talk freely to  the other by expressing what is 
in its interest. Finally, the receiver revises his beliefs (the probability of the state 
conditional to the signal) according to public information. 

Two contrasted types of perfect Bayesian equilibrium states may appear. In a 
'separating equilibrium', a different signal is transmitted by the sender in each state 
of nature, hence the receiver is able to reveal from the signal the actual state. The 
sender has an interest to transmit his private information and the receiver learns it  
perfectly. In a 'pooling equilibrium', the same signal is transmitted by the sender 
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for all states of nature, hence the receiver is not able to  reveal anything. The sender 
has no interest to transmit his information and the receiver learns nothing. Some 
hybrid equilibrium states may also be available for which the message transmitted 
by the sender is a mixed one. The equilibrium state which actually occurs is 
conditioned on the main parameters of the problem (probability of states, cost of 
actions). For given values of the parameters, one or more equilibrium states may 
happen simultaneously. 

For instance, on a health insurance market, nature defines the actual risk of 
illness of the insured, the insured gives a signal to the insurer in form of the 
degree of insurance he wants to buy and the insurer fixes the insurance premium 
according to the cover degree. In a separating equilibrium, the insurer is able to 
differentiate high risk insured (asking for full cover) and low risk insured (asking 
for partial cover). Again, the insurer may condition the treatment reimbursement 
to variables correlated to the health (age, gender). Likely, on a car market [Akerlof, 
19761, nature fixes the quality of the car (with a probability commonly known), the 
sender knows the quality of the car and proposes some price, the buyer observes 
only the price and accepts or not to  transact. In many cases, only a pooling 
equilibrium happens, the one where nobody transacts. However, when the price 
is exogenously fixed, a transaction always takes place with private information, 
but fails when information about the quality of the car becomes public. This is a 
specific case of negative value of information for both players. 

5.3 Self- fulfilling expectations 

The previous examples show that the players make some expectations about the 
others' behaviour and these expectations are realized at the equilibrium state. 
In fact, such self-fulfilling expectations can happen at two levels. At the first 
level, they concern directly some action of another player. By definition of an 
equilibrium, these expectations have to be fulfilled at the equilibrium state. At the 
second level, they concern a relation between some structural variable (especially 
the other's type) and an action. This relation has again to be satisfied at the 
equilibrium state, but it may not hold out of equilibrium. However, in both cases, 
no process is described showing how the expectations are computed by the players, 
hence how the equilibrium state is concretely achieved. Moreover, if many self- 
fulfilling expectations are available, hence if many equilibrium states are possible, 
no process describes how one is selected. 

A self-fulfilling expectation, in its structural form, is made explicit in the 'job 
market game' [Spence, 19731 showing adverse selection. Nature attributes to an 
employee a strong or weak (exogenous) ability, acting as his type. The employee 
may acquire a high or low education level at a cost which is inversely proportional 
to its ability. The employer gives a wage to the employee according to his assess- 
ment concerning his type. It is fixed with regard to a prior belief relating causally 
the ability of the employee to his education level. More precisely, the employer 
believes that a highly educated employee acquires a strong ability and conversely. 
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In fact, a reversed causality holds since, for the modeller, education follows from 
ability. If the equilibrium is separating, such a belief becomes self-fulfilled. The 
belief considered to  be true by the employer contributes to realize what it asserts 
(except for the direction of causality). 

Two more illustrations can be given in a dynamic setting. Firstly, the 'simplified 
poker game' exemplifies the notion of 'bluff '. Nature distributes a high or low card, 
the first player stakes or not, the second player asks to see or not (if the first stakes). 
Of the two forms of bluff theoretically possible for the first player (to stake with 
a low card, not to stake with a high card), only the first appears at equilibrium. 
Secondly, the 'repeated entry game' exemplifies the notion of 'reputation' astutely 
formalized. Nature defines the hard or soft type of a monopolist, the incumbent 
enters or not, the monopolist is aggressive or pacific (if the incumbent enters). In 
a one-shot game, a soft monopolist is always pacific while a hard one is always 
aggressive. In a repeated game, even a soft monopolist may be aggressive in 
order to acquire a reputation of being hard. At equilibrium, the monopolist is 
aggressive in the first periods and the incumbent keeps out, then the monopolist 
stays aggressive only with a given probability, and the first time he is pacific, he 
looses his reputation and the incumbent enters for ever. 

6 COLLECTIVE DIFFUSION OF INFORMATION 

At a collective level, communication of information is the main device able to 
ensure an efficient coordination between the players. An equilibrium state appears 
no longer as an equilibrium in actions, but becomes an equilibrium in beliefs. A 
first question is whether some private information becomes shared belief and even 
common belief after their interactions took place. It is answered in classical puzzles 
which were developed outside game theory, but are easily reinterpreted in game 
theory. A related question is whether hyper-intelligent players can coordinate on 
some equilibrium state by their sole reasoning. Unexpectedly, if some equilibrium 
notions can easily be justified, this is not the case for Nash equilibrium. 

6.1 Communication between players 

The fundamental question is how information diffuses among players, according 
to their more or less convergent interests. Assume that the information of players 
concerns only states of nature. As usual, each player is endowed both with pub- 
lic information (prior probability distribution on states) and private information 
(information partition, signal correlated to the actual state). He combines these 
two sources of information in a Bayesian way. Moreover, the players exchange 
sequentially some information either by direct communication or through their ac- 
tions. A first problem is to  examine if they achieve asymptotically a shared belief 
which gathers in some sense all their private beliefs (homogeneisation of beliefs). 
A second problem is to examine if this shared belief becomes even a common belief 



Ch13-N51726.fin Page 569 Thursday, Angust 21,2008 11:23 AM @ ~k 

Information and Beliefs in Game Theory 569 

(homogeneisation of crossed beliefs). However, when considering similar agents, 
their actions may become identical even if their beliefs do not. 

A general result about communication is the 'not agreeing to disagree' theorem 
[Aumann, 19761. In a dynamic version, two actors share a common prior prob- 
ability over a set of states, receive initially some private information about the 
nature's state and announce sequentially and publicly their posterior probability 
about some specific event. The players have no utility associated to their announce- 
ment, which means that their announcements have no strategic component. It can 
be shown that their beliefs converge in a finite number of steps to  a common pos- 
terior probability of the event. The result follows from the pre-coordination of the 
players by their common prior probability, reflecting some common culture. To 
be sure, the result no longer holds when the players have different priors due for 
instance to different past experiences. 

An application of the preceding theorem is the 'no-trade' result [Milgrom and 
Stokey, 19821. Consider two risk-averse agents who are able to trade together, an 
exchange contingent on the actual state of nature. They share a common prior 
probability and receive partitional private information over the states of nature. 
The players have opposite interests and the game is moroever submitted to two 
more restrictive conditions. At a Bayesian equilibrium state, it appears that no 
trade will actually take place. The reason is that any player thinks that if the 
other is willing to trade, he holds some private information working in his own 
favour. Hence, this information is in his disfavour and he will abstain. However, 
if the players do not share a common prior (for instance, if one has an optimistic 
belief and the other a pessimistic one about the state of nature), trade may take 
place. 

6.2 Usual puzzles 

In the 'three hats problem', three boys have a white or red hat on their head, 
actually all three hats are red. Each boy observes the others' hat but not his own 
one. At successive periods, he has to say if he knows the colour of his hat. Before 
the initial period, an observer says that one hat at least is red, such information 
being already shared knowledge but becoming then common knowledge. Each 
boy gets a positive utility if he is right, a zero utility if he does not answer and 
a negative one if he is false; hence, his utility function depends only on his own 
action. In a Bayesian equilibrium state, each player gives no answer a t  the first 
two periods and answers rightly a t  the third (as can be shown by iteration on the 
number of boys). In that case, the players converge towards a common belief about 
the colours of their hats. Technically, the possible worlds are finite, since they are 
materially constituted by the possible combinations of hats and associated beliefs 
about them. With finite worlds, shared belief goes up one level at each period and 
necessarily becomes common belief. 

In the 'Byzantine generals problem' [Rubinstein, 19891, two allied generals have 
to choose to attack or not a common enemy. One general observes the situation 
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which may be good or bad (with some probability). If the situation is good, he 
sends a message to the other, but the message has a small probability of being 
lost. Hence, the second general sends a confirming counter-message which has 
the same probability of being lost and so on the messages traveling go and forth. 
The payoffs are such that a general gets a high disutility when attacking alone, 
and gets a smaller disutility when they attack together in a bad situation. In 
a perfect Bayesian equilibrium state, the generals never attack. In fact, even if 
at least one message is sent in both ways, the shared belief that the situation is 
good never becomes common belief. Technically, the game involves an infinite 
number of possible worlds, each world expressing either that the situation is bad 
or that the situation is good and n messages exactly arrived. Since common belief 
is necessary to jointly attack, this never happens, but some conventions (attack if 
two messages are sent) make nevertheless an attack possible. 

In the 'two restaurants problem', two restaurants such that one is slightly bet- 
ter than the other are situated in a same street. The customers come sequentially 
in order to  choose a restaurant. Public information consists in a common prior 
probability distribution over the quality of the restaurants. Private information 
gives to each customer a signal correlated with the relative quality of the restau- 
rants. Additional (public) information comes from the observation of the previous 
choices of the customers. The payoffs just attribute a higher utility to the best 
restaurant, hence consider the customers as payoff-independent without external- 
ities. In a perfect Bayesian equilibrium, after some period, all customers go to the 
same restaurant, with (small) probability that it is the wrong one. The fact that 
one restaurant is the best one becomes common belief, even if it may be the wrong 
one. Technically, the possible worlds reduce to two for their material parts, but 
the beliefs about them are here truly probabilistic. 

6.3 Epistemic justifications of equilibria 

An extended reasoning process followed by hyper-intelligent players leads to 'epis- 
temic justifications' of static equilibrium notions [Walliser, 20061. With the only 
assumptions of common knowledge of the game structure and of the players' ra- 
tionality, the relevant equilibrium notion is 'sophisticated equilibrium', obtained 
by iterated elimination of dominated strategies. With the additional assumption 
that players play independently, the relevant notion is 'rationalizable equilibrium', 
where each strategy is a best response to others' strategies, considered as best 
responses, and so on. With the other additional assumption that the players have 
a common prior on the state space, the relevant notion is 'correlated equilibrium', 
where an outside entity, the 'correlator', chooses probabilistically an issue of the 
game and indicates to each player what it should do. Surprisingly, the two alter- 
native assumptions taken together are not enough to justify a Nash equilibrium. 
To obtain it, it must moreover (rather heroically) be stated [Aumann and Bran- 
denburger, 19951 that the strategies of the players become shared belief (for two 
players) or common belief (for more players). 
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Dynamic equilibrium notions are apparently easier to justify cognitively. For an 
extensive form game without uncertainty, a 'subgame perfect equilibrium' obtains 
when common knowledge of rationality applies at each node. The problem is that 
a player may observe a deviation from the equilibrium path during the play of the 
game and needs to interpret it. According to  a standard result [Aumann, 19953, a 
deviation just cannot happen under the main assumption and the subgame perfect 
equilibrium is perfectly justified. However, when such a deviation is counterfactu- 
ally considered as possible, a player may wonder what assumption sustaining the 
equilibrium is not satisfied [Reny, 1993; Binmore, 19971. The relevant equilibrium 
notion depends on that precise assumption. For instance, considering the 'trem- 
bling hand' assumption (the player may deviate from the intended action with 
some exogenous probability) preserves the subgame perfect equilibrium [Selten, 
19751. At the opposite, lack of common belief of rationality enlarges the set of 
possible equilibria. 

In both cases, the results were obtained by introducing more and more epistemic 
logics in classical game theory. In that respect, the state space of the system, which 
already includes the nature's state, has to  be extended to the players' strategies. 
Conversely, the selection of some equilibrium state in case of multiplicity is treated 
in a more informal way. Some 'selection principles' are exhibited which are more 
or less homogenous with the former 'implementation principles'. A first path is 
to consider that some states are 'culturally' salient hence are conjointly selected 
as 'focal points' [Schelling, 19601. But salience refers to cultural traits which 
are not included in the game structure and are essentially context-dependent. 
A second path is to assume that some selection rules are grounded on various 
properties of equilibrium states (Pareto optimality, simplicity, symmetry) and act 
as common 'conventions' among players. But the origin of such conventions is not 
made explicit and may be history-dependent. 

7 INFORMATION AND LEARNING 

On the one hand, a player gathers limited information since he faces search costs 
when he voluntary acquires it. On the other hand, a player is endowed with 
bounded rationality since he faces computation costs when he treats it. Hence, 
learning models are introduced where the players supply for the lack of cognitive 
capacities by repeated experience. However, if the strong rationality model is 
unique, there exists a large spectrum of bounded rationality models. The strategic 
dimension of game theory is lost since the players just react to past information 
without expectation loops. Nevertheless, the usual equilibrium notions can easily 
be justified as asymptotic states of such processes. 

7. I Bounded rationality 

Players are more and more considered as endowed with bounded rationality [Ru- 
binstein, 19941, related to limited capacities for treating information [Simon, 19821. 
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Bounded rationality was initially associated with instrumental rationality. A first 
primitive model is the 'satisficing model' [Simon, 19571 where an actor chooses the 
first action which entails results above some aspiration levels on partial criteria. 
A second primitive model is the 'stochastic choice model' [Luce, 19591 where an 
actor chooses an action with a probability proportional to its utility. But it is 
difficult to  state precisely the link of these rules with limited reasoning capaci- 
ties. Hence, bounded rationality is better associated with cognitive rationality. 
Two further models inspired by Artificial Intelligence are the 'automaton model' 
(an actor computes his intended action with a finite number of inner states) and 
the 'complexity model' (an actor has complexity constraints in his computation). 
More subtly, limited reasoning may be related to some violations of the cognitive 
rationality axioms. Especially, the actor may lack 'logical omniscience' in the sense 
that he is not able to deduce all consequences of what he knows. 

Of course, the usual equilibrium notions may easily be extended to boundedly 
rational agents, keeping the idea of a fixed point of players' actions. But bounded 
rationality is more naturally expressed in learning processes a t  work in situations 
where the same players play sequentially the same basic game (a static or a dy- 
namic one). Learning just means that a player behaves by adjusting his actions 
to  what he observed in the past in order to perform better. Due to limited in- 
formation and bounded rationality, he no more takes into account the strategic 
dimension of the game. He generally assumes that the other players are not in- 
fluenced by his own action and have even a stationary strategy (even if he knows 
that they learn too). Moreover, he holds little prior structural information and 
relies essentially on factual information. His behaviour rule is fixed, only his ac- 
tion changes, but it now may change even if he is faced to the same situation. Of 
course, a second order learning may happen on the behaviour rule itself, but the 
two learning levels can formally be collapsed into one. 

Five principles are involved in evolutionist game theory, only the first being com- 
mon to traditional game theory [fidenberg and Levine, 19981. They all introduce 
some form of randomness. First, the 'utility principle' indicates that each player 
has a given action set and receives at each period an utility from any combina- 
tion of players' actions. Second, the 'interaction principle' describes which players 
meet a t  each period, the matches being situated in some 'interaction neighbour- 
hood' and involving some 'encounter randomness'. The 'information principle' 
describes the information gathered by a player, such an information being limited 
to some 'information neighbourhood' and implying some 'sampling randomness'. 
The 'evaluation principle' describes how a player treats his past information in 
order to build 'indices' for enlightening the future, eventually introducing some 
'computation randomness'. The 'decision principle' indicates how a player uses 
the preceding indices in order to compute the chosen strategy, eventually intro- 
ducing some 'behaviour randomness'. 
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7.2 Basic learning processes 

A first learning process, 'belief-based learning' (or 'epistemic learning'), is grounded 
on a belief revision procedure. Each player first observes the other's past actions. 
He then revises his belief about the other's behaviour and forms an expectation 
about the other's future action. In doing so, he assumes that the other follows 
a stationary mixed strategy. He finally takes the action which maximizes his 
expected utility, hence ensuring an exploitation behaviour. In order to add an 
exploration behaviour, he may alternatively and with a small probability imple- 
ment a random action. Especially, in the 'fictitious play model', a player considers 
the past frequency of the other's action, transforms it into a future probability of 
other's action and implements a best response to it. For instance, on the road, 
a driver observes if the others drive more often right or left and adopts the side 
followed by the majority. 

A second learning process, 'reinforcement learning' (or 'behavioural learning7), 
is grounded on reinforcement of best actions. Each player first contents with 
observing the past utility obtained with his own actions. He then computes a 
'performance index' for each action by aggregating its past utilities. In doing so, he 
assumes that the performance of each own action is stationary, even if it concretely 
evolves. He finally chooses an action with a probability increasing with the past 
performance. This rule incorporates the exploration-exploitation dilemma since 
the players use more and more the best performing actions without eliminating 
totally any other one. Especially, with the 'basic reinforcement model' (Roth- 
Erev, 1995), a player computes the cumulated utility obtained by each action and 
chooses an action with a probability which is proportional to that index. For 
instance, on the road, a driver observes the accidents he had when driving right 
or left and drives on the side with the less accidents. 

A third process, an 'evolutionary process', is no more a learning process, but 
shares some features with it even if inspired by biology (Weibull, 1995). Each 
player belongs to a subpopulation of players using the same fixed (pure or mixed) 
strategy and interacts randomly with players from another subpopulation or from 
the whole population. He observes nothing (except in order to implement his 
strategy) and he even computes nothing. He reproduces according to his util- 
ity, assimilated to the biological notion of 'fitness', and this ensures exploitation. 
Moreover, some mutants in small quantity may be introduced randomly in the 
population in order to ensure exploration. Especially, in 'replicator dynamics', the 
players of some subpopulation reproduce proportionally to the average utility they 
get from their interactions, without mutation. For instance, on the road, a driver 
dies if he meets another one driving on the other side and duplicates if he meets 
another one driving on the same side. 

7.3 Evolutionist justzfications of equilibria 

Of course, these learning or evolution rules can be mixed in different ways. Dif- 
ferent players may use different rules, a same player may adapt the rule to the 
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context or to the present stage of a game, the rules may be combined in hybrid 
ones. Moreover, it is easy to observe that the evolutionary process is isomorphic to 
reinforcement learning. The proportion of players playing some action is replaced 
by the probability that a player chooses some action. Hence, if an evolutionary 
process based on biological analogies was historically an important framework to  
produce original results, it is more and more replaced by the two more realistic 
learning processes. However, since these learning processes appear themselves as 
too passive and past oriented, learning processes tend to  endow the players with 
more elaborated cognitive activity (categorization of the choice frame, analogical 
reasoning in the choice process). 

The modeller may be interested by the transitory behaviour of the learning 
system since it is such a transitory behaviour which is essentially observable. Nev- 
ertheless, he is essentially interested by the asymptotic behaviour, characterized 
by various notions of convergence. The modeller looks for insights not only about 
the attractors of the process, but also about its speed of convergence. He studies 
not only the final distribution of strategies, but the emergence of some spatial 
or qualitative regularities (segmentation of the agents, construction of permanent 
links). The main problem is that the learning processes are numerous and lead to 
dispersed results, especially linked to the types of randomness introduced by each 
principle. The only result which is valid for almost all processes concerns their 
capacity to  eliminate the (strongly) dominated strategies. 

The asymptotic properties of the learning processes provide an 'evolutionist 
justification' to the equilibrium notions when it can be shown that the system 
converges to a corresponding equilibrium state. For a basic static game, many 
processes lead to some Nash equilibrium, either strict pure strategies, or in pure 
strategies or even in mixed strategies. Some processes even lead to 'refinements' 
of Nash equilibrium (such as a 'risk-dominant' equilibrium). For a basic dynamic 
game, many processes lead to a subgame perfect equilibrium. However, some 
learning processes may converge towards other states, for instance Pareto-optimal 
states which are not equilibrium states. A good news is that the selection problem 
is no more relevant in a dynamical view. The system always evolves and, if it 
converges, it converges towards a well-defined equilibrium state (at least proba- 
bilistically). But this state not only depends on the initial conditions, but also on 
the history of the game ('path-dependency') 

Game theory has progressively internalized information and beliefs, information 
being treated as an item which makes the player's belief more precise with regard 
to the modeller's model. In order to give to  these notions a more formal account, 
it imported some frameworks from outside, namely probability theory and epis- 
temic logics. By making minimal and empirically naYve assumptions about them, 
game theory was moreover able to derive strong statements meeting empirical 
phenomena. Especially, it dealt with the value of information or the diffusion of 
information and their collective consequences. Other formal developments were 
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ignored, for instance the Shannon theory of communication or the Kolmogorov 
theory of complexity. The reason is just that it was not yet possible to deduce 
interesting conclusions from them. However, game theory stays open to new tools, 
for instance able to deal with the 'meaning' of information or to the 'acceptance' 
of beliefs. 

In its economic applications, game theory was used to explore other phenomena 
involving heavily information. For instance, various institutions are justified by 
informational principles, especially when they help to coordinate the agents facing 
uncertainty. Since Hayek (1973), the competitive market is seen essentially as 
providing prices which are a good summary of what agents have to know about 
scarcity and desirability of goods. Some institutions are specialized for dealing with 
risk, especially the insurance market. Some further institutions sustain the market 
when information is imperfect or incomplete, especially trust or money. Some 
other institutions may replace the market by providing a more local treatment of 
information, such as auction mechanisms. Even institutions framing the market 
such as language can be analyzed in a game-theoretical framework [Rubinstein, 
2000; Benz e t  al., 20051. 
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INFORMATION IN COMPUTER SCIENCE 

J. Michael Dunn 

WHAT IS INFORMATION? 

Before addressing the topic of "Information in Computer Science," it is obvious 
that I will have to say something about what is meant by 'Linformation." I expect 
this to be a common preoccupation of the many authors contributing to this 
volume. Though perhaps not as obvious, it turns out to be equally important that 
we should be clear what is meant by "computer science," which we will address in 
the next section. 

Information is of course closely linked to knowledge (and in some contexts they 
are even confused, as we shall discuss below). Let us start then with knowledge. 
In several of his dialogs, Plato considers the definition of knowledge as "true belief 
with an account." It  is not clear whether Plato himself accepts this definition - in 
some dialogs he seems to, but in the Theatetus he seems to reject this definition. 
Whatever Plato intended, this definition seems to have been widely adopted in 
philosophy as "justified true belief" until the seemingly decisive, and in any event 
widely accepted objections of Gettier [1963]. These objections have led a whole 
industry of philosophers to add other requirements that supplement, entail, or 
otherwise account for justification. Just to cite one example, Goldman [I9671 says 
that knowledge requires an appropriate causal connection between the fact which 
is believed and the existence of the belief, and this was subsequently refined by 
him so that a true belief counts as knowledge only if it  is produced by a reliable 
process. 

I like to think of information, at least as a first approximation, as what is 
left from knowledge when you subtract, justification, truth, belief, and any other 
ingredients such as reliability that relate to justification. Information is, as it 
were, a mere "idle thought." Oh, one other thing, I want to subtract the thinker. 
Anyone who has searched for information on the Web does not have to have this 
concept drummed home. So much of what we find on the Web has no truth or 
justification, and one would have to be a fool to believe it, and it is not even 
clear that anyone would want to claim credit for thinking it. It is something like a 
Fregean "thought," i.e., the "content" of a belief that is equally shared by a doubt, 
a concern, a wish, etc. It  might be helpful to say that it is what philosophers call 
a "proposition," but that term itself would need explanation. 

Some people believe information must be true. Floridi [2003] has claimed this, 
and Fetzer [2004] has responded. Floridi's point has more to do with technical 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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considerations than natural language considerations, most notably to deal with 
a semantic paradox from Carnap and Bar-Hillel, namely that on the standard 
technical definition of information a contradiction contains the maximum amount 
of information (see below). 

Fetzer gives several examples from ordinary life about false information, or 
l'misinformation," e.g., giving wrong directions to Hyde Park. He does give Floridi 
a conceivable defense of his position, saying that "Floridi might want to defend his 
position by claiming that false information is to information as artificial flowers are 
to flowers." I have heard a similar defense in a story of the "Information Booth" 
in a railway station and how it would be misnamed if it gave out false information. 
But note that I said "false information" in a very natural way. I think it is part 
of the pragmatics of the word "information" that when one asks for information, 
one expects to get true information, but it is not part of the semantics, the literal 
meaning of the term. If there is a booth in the train station advertising "food," 
one expects to get edible, safe food, not rotten or poisoned food. But rotten food 
is still food. 

Another way to approach the notion of information is through the so-called 
"DIKW Hierarchy." It is common in some circles to make a useful distinction 
between Data and Information, Information and Knowledge, and even Knowledge 
and Wisd0m.l It  is unfortunately equally common to conflate a t  least two the 
first of these three terms. Thus a so-called "data base" might be better called 
an "information base," and L'knowledge representation" is more accurately called 
"information representation." There seems to be no standard agreement about 
how to define the elements in the DIKW Hierarchy. Some authors talk of data as 
symbols or numbers, others allow pictures or sounds. The main point seems to be 
that data does not necessarily come with a context or interpretation. 

Data is what is produced by instruments, but does not become information 
until it is somehow recorded in an interpreted way - typically these days in a 
computer. And information does not become knowledge, at least in the traditional 
sense much discussed by philosophers, until it at least meets Plato's three tests 
(believed, justified, true). Information technology has enhanced human cognitive 
abilities much more profoundly than perhaps anything but the invention of writing, 
and in some sense it  is a natural extension of what began with signs and symbols 
and progressed to  the printed book. 

But information technology makes information much more immediately acces- 
sible than does a book, and it also makes it much more easily manipulable. Many 
of us when stuck with only a paper copy of an elaborate document have wished 
that we had an electronic version that we could search or transform. Think of 
- - - 

'A very good account of the history of this distinction can be found in Sharma [2005], starting 
with the poet T.S. Eliot, of all sources, and tracing it throuah Harland Cleveland. Russell Ackoff. 
and others. An interesting mathematical abstraction of the DIK layers is in  in [2004]. ~d 
Dahlbom and Lars Mathiassen [I9931 give an interesting critique of the traditional "bottom up" 
DKI pyramid, and in effect invert it, starting with the notion that knowledge is situated. This 
is somewhat reminiscent of debates regarding logical empiricist philosophy as t o  whether "sense 
data" are completely uninterpreted or not. 
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a spreadsheet as a simple example. The issues of accessibility and manipulabil- 
ity become even more extreme with large, distributed databases, say a genomic 
database with tools such as BLAST to do similarity searches on the sequences - 
or to use the ultimate example, the Web with search engines such as Google. It  
seems to me that examples such as these change in some fundamental sense the 
old fashioned paradigm of the expert who has internalized not just the belief but 
also all of the justification for that belief. How many of us have much of a sense 
as to how BLAST or Google work? I believe that information technology, viewed 
as an augmentation of the human condition, raises new issues about the meaning 
of knowledge, or perhaps some extendedjupdated sense of it, and challenges the 
idea that information somehow has to be "believed" (internalized, mastered) by 
humans or other suitable agents in order to be knowledge. 

Once we discuss what Computer Science is we shall return to the concept of 
information, and see how it has been defined in a more technical setting, perhaps 
the most famous of these definitions being due to Claude Shannon [1948]. In 
approaching the concept of information we should bear in mind the advice given 
by Shannon [1993, p. 1801: 

The word 'information' has been given different meanings by various 
writers in the general field of information theory. It  is likely that at 
least a number of these will prove sufficiently useful in certain applica- 
tions to deserve further study and permanent recognition. It is hardly 
to  be expected that a single concept of information would satisfactorily 
account for the numerous possible applications of this general field. 

WHAT IS "COMPUTER SCIENCE"? 

It turns out that there are philosophical or at least conceptual issues arising in 
about just what is included under the label "Computer Science." 

At various universities and other institutions the units that house at least some 
computer scientists have many variations in their name and structure. Variants 
include Computing Science, Computer Engineering, Informatics, Information Sci- 
ence, Information Systems, Information Technology (IT), and various combina- 
tions of these and other names, e.g., Computer and Information Science, Library 
and Information Science, Information and Communications Technology (ICT), 
Bioinformatics, Medical Informatics, Legal Informatics, etc. This keeps you on 
your toes in getting the names right. 

The exact boundaries of "computer science" are clearly difficult to define, but 
I take it from the above that it can include the study of computing, not just 
computing machines, and that it can also include the study of information, at 
least in digital form. This is not just an accident of institutional nomenclature, 
or even of technology. As we shall see below, because of the von Neumann notion 
of a "stored program," the very distinction in a "computer" between computation 
and information becomes subtle and there is in fact a kind of duality between the 
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two. 

COMPUTERS AS INFORMATION ("DATA) PROCESSORS 

"Computers" store and process digital information, which can be thought of as a 
series of bits (1, 0) or a series of switch settings (on, off) or a series of voltages 
(high, low). The future may replace the current electronics with "spintronics" 
where the bits can be represented on single electrons by "spin up," %pin down." 

The numbers 1 and 0 are abstract, but the numerals "1" and "0," switch set- 
tings, and voltages are not. These are implementations of the abstract bits, and 
they are conventional in nature. Not only might there be different implementa- 
tions, but they could have been reversed for example. They need to be distin- 
guishable (discrete). In reality, a switch is not just in the two states: closed (on) 
or open (off). It  can instead be in the process of closing (or opening). And a 
voltage can be somewhere in the middle of the process, say of dropping from high 
to low. It depends on when the measurement is taken. Computers are typically 
based on Boolean/2-valued logic, but there have been proposals to base them on 
many-valued, even continuous logics, because of the transition of voltages. 

This helps emphasize the arbitrariness of picking out certain parts of the phys- 
ical world as implementations of the two bits. Computers may be digital, but the 
world that they are a part of is not (except at the quantum level, at least when 
a measurement is made). In practice computers avoid the intermediate values by 
settling on ranges of "fault tolerance" of the strength of the voltages. Also, a 
clock counts the number of cycles per second and only measures the voltages at 
approximately their maximum and minimum. This is why we talk of computers 
being so-and-so numbers of cycles per second. This relates to the refresh rate of 
the central processing unit (CPU chip). 

Information stored in a computer is, in a purely technical sense, just a string 
of bits. But in an intuitive/practical sense, the information coded in those bits 
is a derivative notion depending on the encoding (encoder?) and the program 
(programmer?) and the interpreter (user?). Must the meaning of those bits derive 
from human intelligence, or can there be "real" A1 that does not depend on the 
parenthetical items? This is the most profound question for AI. I do not pretend 
to know the answer, but we shall discuss this a bit more when we talk explicitly 
about A1 below. 

COMPUTERS DO MORE THAN "COMPUTE" 

Before the advent of the modern computer in the form of a machine, there were 
people who did complicated series of mathematical calculations, and these people 
were actually called computers. During WWII many of these were women doing 
ballistics calculations. Indeed, the first electronic computers were developed at the 
end of WWII to do calculations for ballistics, the atomic bomb, code-breaking, 
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etc. Sometime in the late 1950's "computers" became information processors. 
This all led as we know successively to  main-frame computers, mini computers, 
workstations, and most familiar to most of us now, personal computers. 

Consider the common uses of "personal computers": word processing, e-mail, 
calendar, notes, address book, games, digital photos/video, CD/DVD player, etc. 
And we now have new applications such as VOIP (Voice Over IP).' Spreadsheets 
are the exception in "office suites" - they actually are used in computing in 
something like the original meaning of the word. 

Other "computers" that are not used for computation in any usual sense include: 
digital cameras, digital thermostats, cell phones, PDA7s, digital music editors, 
slot machines, GPS devices, trains, planes and automobiles, e t ~ . ~  Pervasive or 
ubiquitous computing envisages computers, or at least network nodes, in more 
or less everything that we use in our daily lives. With RFID (Radio-Frequency 
IDentification) tags this can even include the clothes we purchase, and wear, and 
can lead to  issues concerning security and privacy. The digital revolution is with 
us! Computers greatly enhance our abilities to deal with information, but they 
also control us to some extent. Think of the PDA (Personal Digital Assistant) as 
an analog of a real human assistant, who certainly serves both functions. 

HISTORY OF THE CONCEPT OF INFORMATION 

Early History 

I defer to  Pieter Adriaans and Johan van Benthem's introductory chapter in this 
Handbook as a kind of division of labor, and also reference an earlier work of my 
own on the history of the concept of information, Dunn [2001a]. 

The part of this last that I need to go over quickly is the development of what 
has been called a "UCLA Proposition." I believe the term originated with Alan 
Anderson, but the concept originated in the work of Boole, with his dual inter- 
pretation of what is now called "Boolean algebra." Famously, the elements of a 
Boolean algebra can be interpreted as either classes (operated upon by relative 
complement, intersection, union) or as propositions (operated upon by negation, 
conjunction, disjunction). Boole was well aware of this and he termed the first his 
primary interpretation and the second his secondary interpretation. Boole con- 
nected these: a proposition can be regarded as the set of "times" in which it is 

2A colleague told me that he was startled when his computer "rang" when a "phone" message 
came in. I replied "I wish I had been there with my cell phone to  take your picture." It  is clear 
that not only are computers everywhere but that their universal character allows for devices to  
blend into each other. 

3Alan Cooper [1999], the creator of Visual Basic and an advocate for goal oriented interaction 
design, makes this point very amusingly in asking a series of questions. Question: What do you 
get when you combine a camera with a computer? Answer: A computer. Question: What do 
you get when you combine a car with a computer? Answer: A computer. Etc. Cooper's point is 
that putting a computer in a device does not necessarily make it easier t o  use, indeed quite the 
opposite. Thankfully they are usually not programmable by the user, though many modern day 
"hot rodders" do "chip" their cars, e.g., t o  remove the built in speed limit. 
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true [Dipert, 19781. If we take "times" metaphorically (as something like occasions, 
cases, states, or possible worlds) we find the beginning of a thread that weaves 
through Carnap, Montague, Kripke, where propositions are viewed respectively as 
sets of "state-descriptions," "indices," "possible worlds." Carnap and Bar-Hillel 
have actually two concepts: "information," i.e., the set of state-descriptions that 
make a proposition true, and "content" the set of state descriptions that make a 
proposition false. Of course classically, one is just the set-theoretic complement 
of the other, and so one can choose to work with either one. This may be an 
over-simplifying assumption as we will see later. 

Carnap and Bar-Hillel also suggested a numeric measure for a UCLA proposition 
A that could be given by counting the number of states, and they also suggested 
another numeric measure: 

Computer science represents information as a string of zeros and ones ("bits"). 
Given a set of indices I ,  any set A C I can be understood as an indexed set 
of bits: 1 if i E A, 0 if i @ A. This is an abstract version of the Carnap and 
Bar-Hillel notion of information: view the members of I as being abstractions of 
state-descriptions, and view the indexing functions as characteristic functions. 

CLASSICAL INFORMATION TKEORY 

Shannon Information 

While logicians were busy with various variations on the theme we have labeled 
"UCLA propositions," Claude Shannon [I9481 (see also Shannon and Weaver 
[1949]) was independently developing the quantitative counterpart to a UCLA 
proposition (actually to  its complement). Shannon suggested that we measure the 
information in a message as roughly the inverse of probability; formally log to  the 
base 2 (log2) of the inverse of the probability. 

Frequently the messages have meaning: that is they are referred to or 
correlated according to some system with certain physical or conceptual 
entities. These semantic aspects of communication are irrelevant to the 
engineering problem. The significant aspect is that the actual message 
is one selected from a set of possible messages. 

The intuitive idea behind Shannon's measure is that the more surprising a message 
is, the more information it conveys. If I tell you that the sun will rise tomorrow, 
this is very unsurprising. But if I say that it won't, this is very surprising indeed, 
and in some intuitive sense more informative. 

This corresponds to the quantitative measure of content proposed by Carnap 
and Bar-Hillel in that rather than the more probable getting the highest measure, 
it is the least probable. Carnap and Bar-Hillel used the arithmetic inverse of 
addition, which is subtraction (from 1). Alternatively, Shannon chose in effect to 
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use the multiplicative inverse, which is division (of 1). So the multiplicative inverse 
of n is l l n .  Both have the effect of inverting a high number to a low number (and 
vice versa) so as to make the more surprising be the more informative. 

Shannon's definition corresponds elegantly with the notion of information as a 
string of bits: 

Info(s) = log, Inv Prob(s) = Length(s). 

Thus the information in a binary string is just the length of the string. 
Remember that log to the base 2 (log,) is the inverse of the corresponding power 

of 2, i.e., the following are equivalent: 

2 = 2 Y ,  
y = log, x. 

Thus: 

log, of 2 = 1 since 2' = 2, 
log, of 4 = 2 since 2, = 4, 
log, of 8 = 3 since 23 = 8, 
log, of 16 = 4 since 24 = 16, etc. 

Formally the Shannon information measure of an event E is given by: 

Info(E) = log, [l/Prob(E)]. 

Considering a few examples helps. Let us suppose that someone in the next room 
is tossing a fair coin. Let us decide that 1 means heads, and 0 means tails. 
This incidentally indicates a very important aspect of information, which Shannon 
emphasized. All information is relative to an initial encoding. 

If they do just one toss, and I, standing in the doorway, yell out "1," I have 
given you a certain amount of information. How much? Well since Prob = 112, 
Info = log2 (Inv 112) = log2 (2) = 1. 

What if there are two tosses, and I yell "1 On? This time we figure that since 
Prob = 114, then Info = log,(Inv 1/4) = log2 (4) = 2. 

And with three tosses, and "10lV? This time we figure that since Prob = 118, 
then Info =log2 (Inv 1/8) = log2 (8) = 3. 

Not only is this pleasant mathematically, but as Shannon noted it has a common 
sense appeal as well. If I have 2 books and buy a 3Td(as an idealization let's assume 
that all are of equal length), from an intuitive point I view I have not doubled the 
amount of information I possess, rather added just one more book (increased it by 
half). Shannon's formula above fits nicely with this i n t ~ i t i o n . ~  

4~magine the economic and practical consequences of pricing books based on Shannon's for- 
mula if "logn" were not thrown in. Before Amazon sells you a book, they would first have to  
send out an appraiser t o  find out how many books you already have, or perhaps more feasibly 
check how many books you have bought from them. 
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THE "PARADOX OF THE MONKEYS" 

Not everyone finds Shannon's definition intuitive. It is a kind of "paradox" that 
this means that the works of Shakespeare contain less information that a random 
rearrangement of their letters and punctuation marks. There is the well-known 
story, commonly attributed to Aldous H u ~ l e y , ~  that 100 monkeys, typing randomly 
for a sufficiently long time, would eventually (through pure chance and statistics), 
type all of Shakespeare's works. Most of the time, the monkey will type complete 
nonsense, but occasionally it will type Hamlet. Of course Hamlet would appear 
over and over again out of this "mist" of typing (and so would Faulkner's Sound 
and the Fury, and Miss Manners' column from last weekend's newspaper, etc.) 
but the vast preponderance would be totally meaningless. 

The "Paradox of the Monkeys, " as I call it, is that the utter nonsense of most 
of this typing would contain more information than the small amount of time that 
Hamlet might appear.6 

On one way of thinking about this, it would seem that when the monkey is 
typing scenes from Hamlet, the characters are more predictable than when typing 
total nonsense. We know that spaces occur rather frequently, that most of the 
strings between spaces (words) occur in a reasonably small dictionary, that the 
words "Hamlet" and "Ophelia" occur with some relative frequency, etc. The 
Monkey Paradox, put quickly, is that complete nonsense would seem to carry 
more information than the words of a great author. 

I believe there are several answers, in stages, to this supposed "paradox" (and 
hence the quotes). First, let us suppose that the monkey is in fact typing com- 
pletely a t  random. Then there is in fact no more likelihood that he will type the 
18 character string "signifying nothing" than the string "gnihton gniyfingis" (the 
last is just a reversal of the first). This is just like the fact that if the monkey had 
typed 3 "ans, this in no way increases the probability of the next character being 
"a" - this no more than does a (fairly) tossed coin turning up "heads" 3 times in 
a row increase the probability that the next toss will be "heads." In truly random 
sequences, patterns are in the mind of the beholder. 

In a recent paper, Dalkilic et al., [2006] have devised a computer program that 
can recognize "authentic texts" as those that fall into "the sweet spot7' between 
total randomness and total predictability. 

Of course, patterns can arise because of hidden causal influences. I am reminded 
of a story about Raymond Smullyan, a first-class magician as well as a first-class 
logician, who, while teaching some elementary probability to  a class, pulled out a 
deck of cards and proceeded to deal a Royal Flush. Raymond told the class that 

5Luciano Floridi has pointed out to  me the Wzkzpedia article on the Infinite Monkey Theorem 
http://en.wikipedia.org/wiki/Inf inite-Monkey-Theorem (accessed July 24, 2007), which chal- 
lenges the Huxley attribution and a t  the same time talks about a number of early anticipations 
going back t o  Aristotle. 

6The "Paradox of the Monkeys" is my name because of my way of putting it, but the point 
that  random nonsense would on Shannon's characterization contain a high amount of information 
is not original with me. 
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surprising as this might seem, this hand was just as likely as any other hand. And 
of course he repeated the procedure producing one Royal Flush after another until 
the class broke up with laughter. 

Can it be that a predictable sequence can in fact provide significant information? 
Consider the following, which is based on a true event.' During the Second World 
War, the Allies had broken the German's Enigma code. But the Germans used 
certain special code names for ships, so it didn't matter if one had deciphered the 
code name - it was still a code name. But the Allies had good reasons to predict 
that a certain code name was that of a certain ship they knew. So they sent a 
message with low encryption mentioning something of interest about that ship. 
They listened to the German traffic, and, as predicted, that information was sent 
on mentioning that ship using its code name. This of course confirmed that the 
prediction was right. Thus, even though it was say highly probable that the allies 
had the right code name, and hence highly probable that it would show up in the 
German transmission, it seems it still contained significant information when it 
did. 

My reading of this is that what was significantly increased was not the actual 
information. The probability of the code name being the name of that specific 
ship was not significantly changed from a purely numerical point of view. Risk 
was reduced. 

It  is commonly recognized that the concept of risk involves both probability and 
the cost of the consequences, and the standard mathematization of "risk" used by 
insurance companies (and in fact anyone involved in so-called "risk assessment") 
involves a function in both of those variables. The standard notion is that the 
risk of an event is a product of the probability and the cost of the consequences, 
and those of us who are rational use that notion on a daily basis, with some very 
rough idea of both the probability and the cost of a given event. 

I suggest that some similar composite notion is involved with what we might 
call the "significance" of a piece of information. I am not sure of how to  best 
mathematicize it, but as at least a first approximation I suggest that we just 
multiply the inverse of the probability by the cost. 

SOLOMONOFF-KOLMOGOROV-CHAITIN "ALGORTTHMIC 
INFORMATION" 

We mention this just briefly to indicate that there are other possible mathematical 
definitions of information. Suppose that one has a very long sequence: 

7 0 r  a t  least I believe it is. I tried finding a reference to this incident, which I believe I once 
read about someplace, but failed. Fortunately it does not matter to  the point I am making with 
it whether it actually happened or not. A good general reference about the  Enigma Machine is 
Wilcox [2004]. 



Ch14-N51726.fin Page 590 Tuesday, August 26,2008 2:55 PM @ ~M+ 

590 J. Michael Dunn 

Perhaps it can be given by an even shorter algorithm that computes this sequence. 
In fact it can as is given by the hint of the decimal point in the third position -this 
is just .rr in binary notation and expressed to 64 places. Roughly the algorithmic 
information of a sequence is the length of the shortest algorithm that generates 
the sequence. If that algorithm is essentially just to list the sequence, then that 
sequence is viewed as incompressible or "random." 

The notion of "algorithmic information" was developed independently by Chaitin, 
Solomonoff, and Kolmogorov in the 1960s. The exact history is complicated, and 
the creators had somewhat different motivations (though all had something to 
do with information, probability, and randomne~s).~ Algorithmic information is 
known by a number of different names, the most common likely being "Kolmogorov 
complexity." The general subject heading now though seems to be "Algorithmic 
Information Theory" (AIT) . 

Kolmogorov formally defined the complexity of a string s as the length of its 
shortest description d on a universal Turing machine U. Chaitin's definition is 
essentially the same. Solomonoff was interested in addressing the philosophical 
issues of induction in a formal way, and used the idea that the a priori probability 
of a finite sequence of symbols is determined by the shortest input to a universal 
Turing machine whose output is the sequence in question. 

VON NEUMANN DUALITY 

The so-called von Neumann model of a computer emphasizes that there are both 
static and dynamic aspects of a computer. This is the duality of programs and 
"data" (stored programs). A stored program is simply a series of bits (information) 
that can be taken as an input to a program (even itself, perhaps copying it first 
to  make the process transparent). And in principle any series of bits can be called 
as a program. Yes, it is very likely that it will not execute and there will be a 
"syntax error" message - but this can be viewed as just an "identity program" 
that leaves the input unchanged. 

The von Neumann model was actually anticipated by Turing's Universal Ma- 
chine. Turing observed that all of what we now call Turing machines could be 
enumerated 

and then by some clever reasoning he constructed a universal machine U that given 
an ordinary input n plus the input of the appropriate index i would compute 

8Solomonoff says he distributed "A Preliminary Report on a General Theory of Inductive 
Inference" a t  the conference "Cerebral Systems and Computers" held at the California Institute 
of Technology February 8-11, 1960. See the preface t o  the revised version a t  http://world.std. 
com/"rjs/pubs.html (accessed July 24, 2007). Chaitin claims he had the basic idea in 1962 and 
worked it out in 1965. See h t tp :  //www. c s  .umaine. edu/"chaitin/bO. html (accessed July 24, 
2007). I do not know when Kolmogorov might first have had the idea before his published paper 
[1965]. 
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In effect the index i codes up the program that the machine Mi implements. A 
Turing machine Mi can even be applied in effect to itself by "diagonalization": 
Mi (i) . 

One can similarly argue that the von Neumann model was also anticipated by 
other early models of computation, e.g., by the Schonfinkel-Curry Combinatory 
Logic and by Church's Lambda Calculus. In both cases these were originally 
regarded as untyped so that a term can function as either a function or as an 
argument, and a term can be applied to itself. For some time, it was puzzling 
how t o  give mathematical models of these systems because self-reference or self- 
application is notorious in its tendency to produce paradoxes. Think of the famous 
Russell paradox of the set of all sets that are not members of themselves. 

But Dana Scott, working with Christopher Strachey, produced models of the 
Lambda Calculus and of Combinatory Logic. There were in fact two kinds of 
models, a model based on "continuous lattices" first introduced by Scott [1969], 
and an easier to understand "graph model" introduced by Plotkin [I9721 and 
Scott [1974]. This general approach has been very fruitful in the semantics of 
programming languages, and is studied under the headings "domain theory" and 
"denotational semantics" (with slightly different connotations). See Stoy [1977]. 

The basic idea of the graph model P, is to start with the set of natural numbers 
w and then to consider a binary relation Ron  w. (This is why it is called the "graph 
model," because a (directed) graph is essentially just a binary relation.) mRn can 
be thought of as n is a possible output of a computation with input m. Given 
A c w,  The R-image of A, 

Set-theoretically, R is of course just a set of ordered pairs, and an ordered pair 
(m, n) can be coded up arithmetically in some standard way as just a single natural 
number. Scott chose to code (m,n) as l/z(m + n)(m + n + 1) + m. So R can be 
regarded as just a set of natural numbers. Now given two sets A, B c w, we can 
view say A as implicitly a relation RA = {(m, n) : 3k E A, k = l/z(m + n)(m + n + 
1) + m) and define 

A* (B) = [RA] * (B). 

Computational magic has occurred. Objects of the same type (sets of numbers) 
can be applied one to another, and the output is again an object of the same type. 
An object can be even applied to itself: A*(A). 

There is another way of approaching the von Neumann duality that stems from 
the Routley-Meyer semantics for relevance logic. This semantics famously uses a 
ternary frame (U, R), where U is a non-empty set and R is a 3-placed relation on 
U.g The trick we use is to  view the ternary relation RaPy as a binary relation 

the actual semantics for relevance logic there may be other features on the frame, such 
as a distinguished world or set of worlds, and an involution * to  model negation. We overlook 
these here. 
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R,Py indexed by a.1° This means that for A U, A can simultaneously be viewed 
as a UCLA proposition (a set of information states) and as a program, i.e., a set of 
actions (binary relations) on states. This allows for a semantics for combinatory 
logic and (with further additions) relation algebras. In the first A B  is interpreted 
as "apply the actions coded up by the states in A to the states in B." For the 
second we understand both of A and B to be sets of actions (relations) and we 
take AB to  be the relative product of these relations. Details can be found in 
Dunn and Meyer [I9971 and Dunn [2001c] (see also Dunn [2001b]). Comparisons 
should also be made to "arrow logic" developed by van Benthem [I9911 and his 
collaborators, and also the "logic of information flow" developed by Barwise and 
Seligrnan [1997]. 

INFORMATION RETRIEVAL, INFORMATION REPRESENTATION, 
NETWORKS, AND DISTRIBUTED INFORMATION 

Information Retrieval (IR) has a long and distinguished history. It can be said 
to  go back in antiquity at least to the Library of Alexandria. Unfortunately the 
story of the burning library underscores the importance to  information retrieval 
the presupposition of information storage. An important reference to the history 
of information retrieval is Crestani, Lalmas and van Rijsbergen [1998]. 

There are many ways of representing information that are of direct or indirect 
interest to philosophers. Those that are the closest to familiar logics are the 
most obvious. I am thinking of the programming language PROLOG, the Rich 
Description Framework (RDF) for the Semantic Web, etc. 

Perhaps the most remarkable recycling of a philosophical notion is "ontology," 
which has become very important in the area of knowledge representation and 
object oriented programming.'' Recently Communications of the ACM devoted 
an entire issue to the subject of ontology (February 2002, vol. 45, no. 2). One 
philosophical or at least conceptual issue is just what there is to "ontology" that 
goes beyond more familiar and mundane classification familiar from such diverse 
subjects as botany, chemistry, genealogy, library science, and medicine. Wikipedia 
has an interesting discussion of ontologies in computer science and the relations 
to  the philosophical origins of the concept: http : //en. wikipedia . org/wiki/ 
Ontology-%28computer-scienceX29 (accessed July 23, 2007). 

Information representation can be viewed in a quadrant. Along say the side 
we have Structured/Unstructured, and across the top we have Text/Multi-Media. 
The primary example of structured information is to  be found in a traditional 

l O ~ h e  frame models can actually be seen as generalizing the graph model. Note that in the 
graph model there is an implicit ternary relation on numbers Rkmn: k = 1/2(rn+n)(m+n+l)+m. 
The difference between the graph model and the frame model is basically one of type level: each 
point in the graph model codes up an ordered pair, while in the frame model each point represents 
a set of ordered pairs. The latter essentially reduces to  the former when the set is a singleton. 

"Incidentally knowledge representation, or KR as it is familiarly called, is a good example of 
the  tendency t o  use "knowledge" when what is really meant is "information." 
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tabular database where one has tables say with the names of employees, their 
classification, date of hiring, salary, etc. Relational databases are much more 
flexible, but they are still relatively rigid. The primary example of unstructured 
information is to be found in the World Wide Web. 

Once upon a time all information was in effect textual, but again the World 
Wide Web has brought multi-media to  the fore. One can browse the Web and 
find pictures and music, not just text. Perhaps an example of a structured multi- 
media database would be the Apple i-Store, and an unstructured example would 
be Napster. 

Unstructured information, the Web in particular, emphasizes the importance 
of search engines. There is an interesting, emerging distinction between memory 
(storage) and search, particularly when one emphasizes unstructured storage. Ex- 
ternal storage and search can be seen as genuine extensions of human abilities, 
much like the first writing on a cave wall or on stone tablets. 

Another philosophical issue has to do with the meaning of negation. In tradi- 
tional data bases one can assume the so-called "closed world assumption." Thus 
one does not list the non-employees in the database, and one can assume that if 
Joe Smith is not listed as an employee, then he is not an employee. This was 
made explicit in the programming language PROLOG, based on a fragment of 
first-order logic (Horn clauses), with an added "negation as failure.'' 

Belnap [I9771 introduced the idea of databases that might contain inconsistent 
information, and used this to  motivate the need for a 4-valued logic to limit the 
effect of inconsistencies (since in the usual 2-valued logic a contradiction implies 
anything whatsoever). This was in the high day of structured tabular databases 
when inconsistent entries were difficult to imagine, and so was very prescient, as 
the now commonplace inconsistency of the Web demonstrates. While I have given 
credit to Belnap for the explicit application to databases (and by extension to 
W), the idea of using the 4-valued semantics to limit the effect of inconsisten- 
cies is implicit in my dissertation and explicit in Dunn [1976]. See also Dunn [I9861 
for relevant history. Another motivation for a 4-valued logic might come from a 
computer network, where the state of information about the network at say a given 
node is very partial and much of what goes on in the network is invisible - truth 
values are under determined. This is a concern to security since one would like to 
know of abnormal behavior anywhere in the network signaling an attack. It might 
seem harder to motivate a situation where information is contradictory - truth 
values are over determined. I hope I am not stretching too far by pointing out 
the growing prevalence of mirror sites and the serious possibility of discrepancies, 
especially if updating is done periodically. 

There are of course attempts to make the Web more structured. "Markup lan- 
guages" such as HTML and particularly XML add structure to Websites. Inciden- 
tally, the increasing importance of audio and video files on the Web and elsewhere 
raises the question again of just what information is. There is no obvious way to 
structure audio and video information, and this makes it difficult to search. This 
is a realm in digital libraries where "metadata" is particularly important. 
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There is a whole planned architecture of the Web led by the group W3C (World 
Wide Web Consortium). It starts with the Rich Description Framework (RDF) 
which is very roughly a very restricted form of positive first-order logic - no 
negation. RDF viewed as a sublanguage of FOL has just conjunction, existen- 
tial quantification, and binary predication. The official description of RDF may 
be found in the W3C RDF Primer at http : //www . w3. org/TR/rdf -primer/ (ac- 
cessed July 23, 2007). 

The underlying structure of any expression in RDF is a collection of triples, each 
consisting of a subject, a predicate and an object. A set of such triples is called 
an "RDF graph." This can be illustrated by a node and directed-arc diagram, in 
which each triple is represented as a node-arc-node link (hence the term "graph"). 

Predicate 

One significant difference between RDF and FOL is that RDF lacks negation. 
Another is that RDF has only binary predication. While many seeming ternary 
predications can be reduced to  conjunctions of binary predications, it seems not 
obvious that all ternary predications can be reduced to binary predications, unless 
that is one adds to  RDF the computationally heavy apparatus of set theory.12 
But RDF is intended to  be computationally light. One wonders about adopting 
a "Peircean" framework in which ternary predicates are the primitive, since it 
seems true, as Peirce thought, that all predication can be reduced to  ternary 
predications, and without using set theory but essentially just conjunction and 
existential quantification (see Dunn and Meyer [1997]). 

There are many issues raised by the digital storage and transmission of infor- 
mation, and by parallel computation on that information. The World Wide Web 
is just one example in this general framework, and perhaps the most extreme in 
terms of being the "Wild, Wild Web." We cannot go into these many issues here, 
but do want to mention the philosophically important work by Dretske [1981], 
Barwise & Seligman [1997], Devlin [1997], etc. Some of this relates to Shannon's 
mathematical theory of communication, but there is much more to it. 

Let us close this discussion by noting the fact that the form of representation 
can greatly influence the ease with which information can be manipulated. The 
introduction of the decimal notation to replace Roman numerals certainly made 
much easier the school-child arithmetic of addition, multiplication, etc. (and is an- 
other good example, in addition to our earlier example of writing, of an advanced 
enhancement of human cognitive abilities that predates computers). One very 
important example of how the form can influence the communication of informa- 
tion is visualization, and particularly beautiful examples come from the work of 

121n set theory, all relations are in effect reducible t o  the binary relation x E y. A ternary 
relation is construed as a set of ordered triples, and an ordered triple (a ,  b, c) is taken t o  be an 
ordered pair ( ( a ,  b), c). An ordered pair (a,  b) is taken to  be the set {{a ,  b) ,  { a ) ) .  This is clearly 
generalizable t o  n-ary relations as sets of ordered n-tuples. 
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Edward Tufte, e.g. [Tufte, 19901. 

QUANTUM COMPUTATION/INFORMATION 

Our discussion here shall be brief because of limitations of space and time, and 
because the concepts of quantum computation and information are still somewhat 
speculative. Let me take the occasion to recommend an excellent book to the 
reader on this subject, Julian Brown [2001]. Although this is a "popular" book it 
is extremely informative on both the detail and history of quantum computation, 
and includes a foreword by one of the early proponents of quantum computing, 
David Deutsch. Deutsch's contributions go back to 1983, and were preceded by 
Richard Feynman's suggestion in 1979, about using a quantum computer to model 
quantum mechanics. 

In the classical model of a computer the most fundamental building block, the 
bit, can only exist in one of two distinct states, "0" or "1." We have already 
indicated that with spintronics bits might be represented as say the spin up or 
spin down of an electron. This suggests great advantages in miniaturization and 
hence speed, and this is itself of great practical potential. Gordon Moore, the co- 
founder of Intel, suggested that computing power (actually literally the number 
of transistors on an integrated circuit of a given area) doubles roughly every two 
years, and this has become famously known as "Moore's Law." Moore's Law has 
been predicted to run out in a decade or so because the transistors on a chip would 
by then have to  be down to the molecular level. But spintronics promises to go past 
that level and down to the atomic level. But the promise of quantum computing is 
much more fundamental than extending Moore's Law by some decades, important 
as that might be. 

A "quantum bit" (qubit) can be in the classical "0" and "1" states, but it can 
also be in a superposition (coherent state) of both "0" and "1." This has to do 
with the well-known concept of "superposition" in which say an electron can be 
simultaneously in both the states "spin up" and "spin down" until measured, when 
it will then "decohere" into a single one of those states.13 Some examples of qubits 
include the polarization state of a photon (i.e., parallel or perpendicular polarized 
to a given axis), an atomic two level system (e.g., hydrogen atom, with the electron 
in the ground state and the first excited state) and of course poor "Schrodinger's 
cat" (which is both dead and alive until a measurement is taken by looking at the 
cat to determine whether a radioactive atom decayed). 

Consider a register of 3 classical bits: it would be possible to use this register 
to represent any one of the numbers from 0 to 7 at any one time. In a register of 
3 qubits, the register can represent all the numbers from 0 to 7 simultaneously! 

A processor that can use registers of qubits will in effect be able to perform cal- 
culations using all the possible values of the input registers simultaneously. This 

13~hornas  Siegfried [2000], in his somewhat journalistic but very readable book The Bit and 
the Pendulum, has a clever metaphor for a qubit: it is like a tossed coin, spinning in the air, and 
neither heads not tails until say you grab it and slap it on the back of your other hand. 
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phenomenon is sometimes called quantum parallelism. There are thus conceivably 
more advantages to quantum computing that just the miniaturization given by 
spintronics. In principle, quantum computations can involve completely new al- 
gorithms on qubits that exploit the phenomenon of quantum parallelism. Perhaps 
the most famous of these is "Shor's algorithm," created by Peter Shor of AT&T 
Bell laboratories. This algorithm factors a large number into its prime factors. 
This task is classically so difficult that it forms the basis of RSA public-key en- 
cryption, the standard method of public-key encryption used today.14 This raises 
strongly the issues of quantum complexity theory and whether this might dif- 
fer from classical complexity theory, and perhaps even that a quantum computer 
might be able to solve at least certain N P  problems in polynomial time. But it is 
an open question whether factoring is classically an NP problem. 

Another important quantum algorithm, though not as impressive in it seeming 
speed advantage is "Grover's algorithm" which can search an unsorted list of length 
n on average in time on the order Jn  as opposed to the usual n/2 for the classical 
linear search algorithm which checks every element of a list until a match is found. 
Grover's algorithm starts by setting a quantum register to a superposition of all 
possible items in the search space. Grover's algorithm involves a sequence of simple 
quantum operations on the register's state. Grover describes these in terms of wave 
mechanics: "All the paths leading to the desired results interfere constructively, 
and the others ones interfere destructively and cancel each other out." 

Some interpretations of quantum parallelism have used the "many worlds inter- 
pretation" (MWI) of quantum mechanics, first proposed by Hugh Everett [I9571 
and "popularized" by Bryce Seligman De Witt [1970], who actually gave it the 
exciting label "many worlds." "Many universes" is actually better terminology 
that "many worlds," and the term "multiverse" is sometime used for a "super 
universe" of all possible universes. 

The basic idea of MWI, familiar to philosophers from the debate surrounding 
"modal realism" in the possible worlds semantics for modal logic, is that there are 
many possible worlds and we are in only one. Where quantum mechanics enters 
in is that every time a quantum experiment is performed with different possible 
outcomes, each of these outcomes exists in a different possible world. All are real, 
even though "I" will be aware of only the one containing the outcome I have seen. 
I put "I" in quotes because obviously there will be actually a "me" corresponding 
to each of the outcomes. This of course excludes quantum murder or suicide where 
I am in effect Schrodinger's cat and have been killed as one of the outcomes. 

David Deutsch, whom I already mentioned as foundational in quantum comput- 
ing, is a believer in the many worlds interpretation. In Deutsch [I9851 he suggested 
quantum computation could take place simultaneously in many possible worlds, 
giving a kind of parallelism which would give "a method by which certain proba- 
bilistic tasks can be performed faster by a universal quantum computer than by 
any classical restriction of it." 

According to Deutsch the single photon interference pattern observed in the 

'*We shall say more about public-key encryption below when we discuss "quantum encryption." 



Ch14-N51726.fin Page 597 Tuesday, August 26,2008 2:55 PM @ ~M+ 

Information in Computer Science 597 

double slit experiment, can be explained by interference of photons in multiple 
universes. Viewed in this way, the single photon interference experiment is indis- 
tinguishable from the multiple photon interference experiment. 

It  is interesting that regarding the potential for quantum computation to break 
RSA encryption, that one can "make lemonade out of lemons" by using certain 
quantum encryption devices, which in fact appear to be making faster practical 
headway than building quantum computers - there are already several companies 
offering commercial quantum cryptography. What the quantum taketh away, the 
quantum giveth back. 

As noted above, classical public-key cryptography relies on the computational 
difficulty of certain mathematical problems, e.g., factorization. However quan- 
tum cryptography relies on one of the two peculiarities of quantum mechanics, 
either Heisenberg uncertainty of quantum entanglement. To convey even a limited 
knowledge of how these peculiarities are invoked, we must digress and talk briefly 
about cryptography. 

The key to cryptography is of course a "key," i.e., a mechanism for generating 
cypher text from plain text, and/or vice versa. We are probably all familiar from 
our childhood with the "alphabetical shift" key, where plain text is encrypted with 
"a" becoming "b," "b" becoming "c," etc., and "z" becoming "a." The cipher text 
is of course decrypted by the reverse. A key can actually be regarded as a positive 
integer, say in this case 1 (for "shift 1," a s  opposed to 2 for "shift 2"). This is 
so-called "secret key" or "symmetric" cryptography, because essentially the same 
key can be used to code (shift 1 left) or decode (shift 1 right). "Public key" or 
"asymmetric" cryptography uses a pair of keys, a public key known in principle 
to everyone, and a private key known only to the receiver of the message. When 
Alice sends a message to Bob she uses Bob's widely distributed public key, and 
then he decodes it using his private key. 

With secret key cryptography the key must be transmitted secretly, either in 
person or by a transmission (in olden times, a courier). Finding the best way to 
do this is the so-called Key Distribution Problem. The difficulty with doing this 
in person is that it takes a great deal of effort, and the issue with transmissions is 
that they can be intercepted. An underlying problem with secret key cryptography 
that exacerbates the Key Distribution Problem is the need to send keys frequently. 
The best guarantee that a key cannot be broken by looking for patterns is to use a 
different key each time, making sure it is longer than the message to be sent. The 
great advantage of public key cryptography is that your private key need never 
be transmitted (you can just randomly generate it), and yet the public key can 
be transmitted openly and widely. But the corresponding difficulty is that it is 
then open to  breaking, say by prime factorization.15 Wouldn't it be nice for you 
to have a way of distributing a secret key that is relatively effortless and that 
cannot be compromised without your detection? This is the promise of quantum 

151t is actually common practice to use a combination of secret key and public key cryptography, 
using public key cryptography to  distribute the secret keys. The  Advance Encryption Standard 
(AES), adopted by the U.S. government, is a private key encryption used this way. 
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cryptography. 

Quantum cryptography originated with Stephen Wiesner [I9831 (he actually 
drafted the paper around 1970), where he showed how to transmit a key using 
complementary observables. The most familiar complementary observables are 
position and momentum of a particle, made famous by many discussions of the 
Heisenberg Uncertainty Principle. But perpendicular photon polarization states 
of light are also complementary observables, e.g. rectilinear (vertical and horizon- 
tal) and also diagonal polarization (at 45 " and 135" ). Just as it  is impossible 
to  determine with precision both the position and momentum of a particle (as 
measurements zero in on one, they blur out on the other), it is also impossible to 
simultaneously measure both say the vertical and horizontal polarization of light. 
Charles Bennett and Giles Brassard [I9841 developed a protocol (called BB84) 
using photon polarization states to transmit the cryptographic key. We will not 
go into the precise protocol of BB84, but simply remark the feature that protects 
against compromise. Measuring the value of one complementary observable im- 
plies an uncertainty about the other. This means in particular that obtaining some 
information about an unknown quantum system generally causes a disturbance to 
the quantum state of that system. The security of quantum cryptography relies 
on this trade-off. 

A second method of quantum cryptography, using entangled pairs of photons, 
was developed by Artur Ekert [1991]. We shall introduce it by way of a "wishful 
thinking7' thought experiment. Suppose Alice and Bob each have one of a pair of 
"entangled coins." By "entangled" is meant that if in a given sequence Alice's coin 
comes up heads, Bob's coin will come up tails when he tosses it, and vice versa, 
and this will happen instantaneously even over large distances. Now if Alice wants 
to  transmit a random key to Bob she tosses her coin some appropriate number of 
times, making note of each toss. She then sends an uncoded message to Bob, say 
by phone, and tells him to do the same. If Alice tosses HTT . . . , then Bob will 
toss THH . . . , and with the prior understanding that H = 1, T = 0 they know 
that the key is 100 . . . . 

Does this sound too good to be true? Well so far it is just magic. But now let 
us introduce quantum entanglement. Quantum entanglement is when the states 
of two objects cannot be described separately, and thus there are correlations 
between observable properties. For example, it is possible to prepare two particles 
in a single quantum state such that when one is observed to be spin-up, the 
other one will always be observed to be spin-down and vice versa. There are two 
important features of quantum entanglement: first, quantum entanglement can 
persist even though the two objects are widely separated by space, and second, 
quantum entanglement can exist even though it is impossible to predict which 
properties will be observed. 

So let us now substitute a sequence of entangled pairs of particles for the two 
sequences of coin tosses, and let Alice measure the first particle in each pair, and 
Bob measure the second particle. We then have in effect the same thing as the 
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magic coins, but now it is not magic, it is quantum mechanics!16 
How are the particles communicated? There could be a secret meeting between 

Alice and Bob where the sequences of particles are distributed to the two, but it 
is also possible that the particles could be distributed say through a fiber optic 
cable if they are photons, or even through free space. An eavesdropper (always 
named "Eve") on this cable would have to observe a photon to read the signal, and 
this measurement could be detected by an application of something called Bell's 
Theorem. 

Returning to quantum computation, one philosophical question that I believe 
has not been sufficiently examined is the relationship between quantum computa- 
tion and quantum logic. The latter was initially introduced by Birkhoff and von 
Neumann [I9361 but had very different motivations and the concept of a "qubit" 
was not explicitly introduced. Dunn, Hagge, Moss, and Wang [2004] is a beginning. 

Another philosophically interesting aspect of quantum computing is that it  is 
reversible. No information is lost! This can also happen in a classical closed 
system, or it can be programmed with great overhead into a computation on a 
classical computer (one needs to keep somehow all of the previous steps). But the 
remarkable fact about quantum computing is that reversibility comes for free with 
no special attention. 

Is the world ultimately digital because of quantum mechanics? The answer is 
yes, and no. Yes when it is measured, no when it is not. Quantum computing is 
a kind of hybrid between digital and analog computing. Perhaps it represents the 
best of both? 

Rather than end on this high note, honesty compels me to mention the great 
practical difficulty with building a quantum computer due to the fact that coher- 
ent states are easily destroyed by small changes in their environment. For this 
reason it is important to develop fault tolerant quantum computing. One promis- 
ing direction is "topological quantum computing," where the qubits are stored as 
"quantum knots." As all of us know who have tried to untangle a knot in our 
shoestring, knots are very resistant to  even large changes in their environment. 
This was first proposed by Freedman, Kitaev, and Wang [2000], where the "knots" 
are braids in a 2-dimensional quasi-particle called an "anyon." The serious imple- 
mentation issue is whether appropriate anyons can actually be found in nature. 
An excellent general article with references is Collins [2006]. This paradigm for 
quantum computing is being pursued by Microsoft Station Q in Santa Barbara. 
http: //stationq.ucsb . edu/research. html (accessed July 23, 2007). 

The first quantum computers were independently constructed in 1998 at Oxford 
University and at IBM's Almaden Research Center.17 They were based on nuclear 

16Einstein would likely think it is still magic, for the Ekert protocol uses the famous Einstein- 
Podolsky-Rosen [I9351 effect, which Einstein saw as raising serious doubts about the very founda- 
tions of quantum mechanics. Entanglement though has come to  be an accepted part of quantum 
mechanics, and there is recent experimental evidence for entanglement. See e.g., Xu et al. (20051. 

17A "Timeline of Quantum Computing," can be found in Wikipedia, http://en.wikipedia. 
org/wiki/Timeline-of -quantum-computing (accessed July 23, 2007). 
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magnetic resonance (NRM) and had 2 qubits. Then 5, 6,  7, qubit computers were 
demonstrated, culminating in a 12 qubit NRM model in 2006. D-Wave Systems, 
Inc. demonstrated in February 2007 a working prototype of a commercially 16- 
qubit "adiabatic" quantum computer. 

MODELING, SIMULATION, COMPLEX SYSTEMS, VIRTUAL REALITY 

There are distinctions to be made between "modeling" and "simulation" (though 
they are often used interchangeably), but it seems to me difficult to get agreement 
on what those distinctions are. In the context of computer science, simulation 
of course means simulation on a computer, and modeling usually means the con- 
struction of a formal mathematical theory that is somehow implemented by the 
program run on the computer. I think of a model, perhaps a set of differential 
equations describing the motions of some bodies, as static, whereas the simula- 
tion is dynamic. Sometimes modeling is taken to be more scientifically serious 
than simulation, trying to (mathematically) represent the reality of the underly- 
ing causes of a phenomenon, and simulation is allowed to be mere mimicry at the 
phenomenal level. Sometimes simulation is taken to presuppose modeling, mod- 
eling being the (scientifically serious) structure that underlies simulation, which 
itself must be programmed into a machine.18 I shall tend to use the terms "mod- 
eling" and "simulation" in this last sense, which I think is the most common in 
the computing community, and talk about "imitation" when I have the weaker 
sense of mimicry in mind. I should point out that there is even a stronger sense 
of modeling/simulation, as when a person tries to model the flight of a bird by 
building an actual machine with flapping wings. Let us call that "emulation." 

Whatever the terminology, computers have become more and more used in 
modeling and simulation, and can be used to model complex systems in a way 
that often produces unexpected outcomes. In biology it has been common place 
for sometime to distinguish between experiments in vitro (in the glass, "test tube") 
and in wivo (in the living organism). Now a new type of experiment has arisen 
given computer modeling: "in silicon (in silicon, or in the computer). This raises 
certain issues in scientific methodology and statistics. 

A related issue is "virtual reality," where computers can simulate the real world, 
or wildly imaginary worlds. The CAVE was developed at the University of Illinois 
in 1992. "CAVE" is an acronym for "Computer Assisted Virtual Environment," 
and the name was cleverly chosen as a take off on Plato's metaphor of The Cave 
in his Republic. In the Republic denizens of a cave see shadows reflected on a wall, 
and mistake them for the real things they represent. Plato of course wanted to 
say that the "real things" we see in everyday life are but poor reflections of their 
ideal forms. But there is another way to  interpret this and that is that at least 
under certain conditions people cannot tell illusion from reality. 

1 8 ~ o  paraphrase Kant, simulation without modeling is empty, modeling without simulation is 
blind. 
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This reminds us of Descartes' Evil Demon who might deceive him (or us) into 
believing that we are sitting in front of a fire, etc. when in fact we are not. It  is 
by now a commonplace skeptical argument, and is sometimes gotten a t  through 
talking about a "brain in a vat." The movie The Matrix is a more current example 
and is based on the premises that (most) people are in fact encased as cells in a 
large power-generating "matrix" and are deluded into thinking that they live ordi- 
nary lives by complicated computer programs manipulating their brains. Bostrom 
I20031 with his "simulation argument" is an extreme but well argued version of 
this. Heim [2001] is a good source of philosophical issues, both old and new, 
raised by so-called "virtual reality." I love his phrase: Cyberspace is Platonism as 
a working product. One might substitute "Computer Science" for "Cyberspace." 

ARTIFICIAL INTELLIGENCE 

There has also been a significant role for logic and philosophy in Artificial Intel- 
ligence (AI) since its beginnings. It  is common to cite John McCarthy among 
the trinity of legendary founders of A1 (the other two being Marvin Minsky and 
Herbert Simon), and McCarthy [1959], expanded in McCarthy and Hayes [1969], 
clearly articulates the importance of logic/philosophy to AI. 

Alan Turing raised the issue as to  what would count as a computer showing 
intelligence, and devised what has been canonized as "The Turing Test." The 
Turing Test famously has to do with whether having a "conversation" with a 
computer under suitably disguised circumstances would allow you to determine 
that it is a machine and not a human. Artificial Intelligence (AI) might thus be 
viewed as a special case of simulation (in either the strong or the weak sense), and 
of course this raises many interesting philosophical issues. 

John Searle [I9801 introduced a distinction between "strong AI" and "weak AI" : 

According to weak AI, the principal value of the computer in the study 
of the mind is that it gives us a very powerful tool. For example, it 
enables us to formulate and test hypotheses in a more rigorous and pre- 
cise fashion. But according to strong AI, the computer is not merely a 
tool in the study of the mind; rather, the appropriately programmed 
computer really is a mind, in the sense that computers given the right 
programs can be literally said to understand and have other cognitive 
states. In strong AI, because the programmed computer has cogni- 
tive states, the programs are not mere tools that enable us to test 
psychological explanations; rather, the programs are themselves the 
explanation. (p. 417) 

There is even something else, which I dub "spineless AI." Put quickly, spineless 
A1 might be described as the engineering approach to intelligence - do whatever 
is easy and effective to solve the problem in question, whether that is the way 
humans do it  or not. For Searle, even weak A1 seems to be based on models of 
cognitive processes. Perhaps the distinction between weak and strong A1 should be 
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placed with three distinctions: engineering (spineless) AI, cognitive science (weak) 
AI, and metaphysical (strong) AI. Viewed as "simulation," these correspond, at 
least roughly, to imitation (mimicry), simulation, and emulation. 

I believe that the fundamental philosophical question regarding A1 relates to the 
representation of information: how much "lies in the eye of the beholder?" This is 
meant metaphorically of course - replace the word "eye" with "I" or 
Dretske [I9851 argued that since the semantics of the symbols manipulated by 
machines are defined by humans and can change irrespective of the machine, there 
is no meaning in the machine.20 Stevan Harnad [I9901 labeled the issue of how 
symbols get their meaning The Symbol Grounding Problem: "How can the se- 
mantic interpretation of a formal symbol system be made intrinsic to the system, 
rather than just parasitic on the meanings in our heads?"21 Dretske made some 
important first steps in setting out "specs" for solving this problem, and central 
among these was that the symbols play a causal role in determining the machine's 
interaction with its environment. "Embodied Embedded Cognition" has become 
the catch phrase for this, and "cognitive robotics" is a promising and rapidly grow- 
ing field. An early anticipation of this is Clark and Grush [1999]. Andy Clark has 
written a number of pieces on embedded cognition. See for example Clark [1998]. 

It  would seem to me to be obvious that for the Turing Test to reveal anything 
beyond imitation, the use of symbols need to be grounded. A related and perhaps 
more difficult question has to do with whether "intelligence" requires conscious- 
ness, and just what is meant by consciousness. It would seem logically possible, 
as has been pointed out by Chalmers [I9971 and others, for there to be a creature 
with seeming intelligence in navigating its environment, but which might not have 
an "inner life," and certainly not self-consciousness. Chalmers defends conscious- 
ness as a primitive, non-reducible property. For quite the opposite see Dennett 
[1992]. For an interesting more recent attempt to understand consciousness see 
Hofstadter [2007]. 

Nick Bostrom, Ray Kurzweil, and Bill Joy have all independently been con- 
cerned with machines becoming more intelligent than humans. "Concerned" is 
perhaps the wrong term to use for Bostrom and Kurzweil. Bostrom co-founded 
(with David Pearce) the World Transhumanist Association (WTA) http: //www . 
transhumanism. org/ (accessed July 23, 2007), "an interdisciplinary approach to 
understanding and evaluating the possibilities for overcoming biological limitations 
through technological progress," and Kurzweil [I9991 has written with striking op- 
timism about the time when machines will outrun humankind in intelligence and 
perhaps even in "spirituality" - quite in opposition to the view of say the Ter- 

191 shamelessly borrow here from the title of the  book The Mind's I: Fantasies and Reflections 
on Self and Soul by Douglas Hofstadter and Daniel Dennett [1981]. 

20This can be nicely illustrated by an anecdote the late Australian philosopher Ian Hinkfus 
once told me. He was working for IBM in the design of an early computer and they ran out of 
nand gates in building their prototype. So they used nor gates instead and just reinterpreted the 
output. 

21See Kay [2001] for an excellent review of the issues and the literature on whether artificial 
intelligence systems can incorporate intrinsic meaning. 
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minator films. Bostrom and Kurzweil in various of their writing also suggest that 
human brains may in effect be uploaded into powerful computers thus extending 
human capabilities and even experiences by a kind of virtual reality, giving to my 
mind the title The Matrix Revisited a new meaning. 

ETHICAL ISSUES 

By a natural transition this takes us to ethical issues relating to information and 
computer science. It is difficult not to be a bit of a luddite when contemplating 
issues such as the above. The original Luddites were English textile workers in 
the early l g t h  century who objected to the introduction of power looms, which 
they felt threatened their jobs. It  is ironic that Charles Babbage, the inventor 
of the "analytical engine" which foreshadowed the modern digital computer, was 
heavily influenced by the use of punched cards for programming the weaving in 
a Jacquard loom. Needless to say there is often the perception today that infor- 
mation technology threatens various people's jobs. What started off as an issue 
about the "digital divide" between the information have's and have not's, has now 
often become an issue about off-shoring, finding the cheapest labor that still has 
the relevant IT knowledge. As it was famously put by Nandan Nilekani, CEO 
of Infosys Technologies, an Indian outsourcing company at the World Economic 
Forum in 2004: "Everything you can send down a wire is up for grabs" (reported 
by Drezner 2004). 

Another important ethical issue has to do with the "digital divide," the growing 
division between those individuals (and parts of the world) that have access to the 
fruits of information technology and those that do not. 

The familiar story of Napster and musical file sharing makes clear that there 
are ethical issues regarding shared information. We talk about "the information 
economy," but there seems to be no general consent that "information workers" 
should be paid for the information they produce. Intellectual Property (IP) raises 
a number of philosophical/conceptual/legal issues under the headings of Digital 
Rights Management (DRM) and Digital Content Management (DCM) - this last 
is newer and oriented towards music and video content. 

Another set of ethical issues concerning the Internet has to do with confiden- 
tiality, privacy, identity theft, etc. It is worth pointing out that one of the Ten 
Commandments was "Thou shall not bear false witness against thy neighbor," and 
not lying (I might put it as intentionally conveying false information) is taken as a 
general rule in all cultures. Clearly information and communications technologies 
unfortunately give feasible ways of distributing false information to many millions 
of people. The "Nigerian scam" is perhaps the most familiar of these and it also 
is intended to violate another of the Commandments: "Thou shall not steal." 
"Phishing" as a means of identity theft is another increasingly familiar example.22 

221f any reader is not familiar with these, I suggest that they "google" to  find out more, and 
in the  meantime that they not send any money or divulge any personal information t o  untrusted 
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It is left as "an exercise to the reader" to say more about the important ethical 
issues raised by computing and information. 

CONCLUSION 

This essay has been a bit rambling. I have tried to convince myself that it is 
not my fault - it is because of the wide range of topics. But frankly it was 
my choosing to broaden the definition of "computer science" so as to include the 
study of digital information that made the task of writing this chapter especially 
difficult. It  made it somewhat like my having to write the chapter on the role of 
the library in library science in a volume on "the philosophy of libraries." Anyway, 
I conclude not by giving a simple summary, but trying to leave the reader with a 
correct understanding of the limits of this connection of information with computer 
science. I do not mean to suggest that all there is to the study of information, 
even digital information, is to be found in traditional areas of computer science 
and relates to mathematical and logical aspects of information, even though the 
topic of this chapter brings a focus on these aspects. 

As an antidote to such a misconception, just consider "Information Science," 
in the sense in which it is used in the common academic label of "Library and 
Information Science." While it overlaps with computer science in areas such as 
databases, it typically emphasizes the social sciences, studying the human, social, 
and organizational aspects of information. 

Also, information can not only be studied by the social sciences, it can be an 
important ingredient in them, say in the context of decision making. Such studies 
are particularly advanced in economics. The other chapters of this volume make 
clear that the concept of information plays a role not only in the social sciences, 
but also in the biological and physical sciences. 

So it seems clear that the label "information science" is misleading. It should 
be "information sciences" (plural) or even "information studies." It should per- 
haps be compared to "medical sciences," where the emphasis is on health and 
healing, but the topics range from the most applied to the most basic. No one 
seems to mind much if a medical school has a biochemistry department, or even 
a biomedical ethicist, and medical schools increasingly include topics in the so- 
cial and behavioral sciences, e.g., patient behavior, physician role and behavior, 
physician-patient interactions, social and cultural issues in health care, and health 
policy and economics. I think the real challenge for computing and the information 
sciences is to be transdisciplinary while keeping ties with the traditional disciplines. 

sources who approach them over the Internet, and t o  be cautious even if they appear t o  be 
trusted since the whole point of phishing is t o  deceive on that score. O 
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THE PHYSICS OF INFORMATION 

F. Alexander Bais and J. Doyne Farmer 

1 THE PHYSICS OF INFORMATION 

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica 
on the head of a pin? 

R. P. Feynman 

Information is carried, stored, retrieved and processed by machines, whether 
they be electronic computers or living organisms. All information, which in an 
abstract sense one may think of as a string of zeros and ones, has to be carried by 
a physical substrate, be it paper, silicon chips or holograms, and the handling of 
this information is physical, so information is ultimately constrained by the funda- 
mental laws of physics. It is therefore not surprising that physics and information 
share a rich interface. 

The notion of information as used by Shannon is a generalization of the notion 
of entropy, which first appeared in thermodynamics. In thermodynamics entropy 
is an abstract quantity depending on heat and temperature whose interpretation is 
not obvious. This changed with the theory of statistical mechanics, which explains 
and generalizes thermodynamics. Statistical mechanics exploits a decomposition 
of a system into microscopic units such as atoms to explain macroscopic phenom- 
ena such as temperature and pressure in terms of the statistical properties of the 
microscopic units. Statistical mechanics makes it clear that entropy can be re- 
garded as a measure of microscopic disorder. The entropy S can be written as 
S = - C pi log pi, where pi is the probability of a particular microscopic state, for 
example the likelihood that a given atom will have its velocity and position within 
a given range. 

Shannon realized that entropy is useful to describe disorder in much more gen- 
eral settings, which might have nothing to do with atoms or physics. The entropy 
of a probability distribution {pi) is well defined as long as pi is well defined. In 
this more general context he argued that measuring order and measuring disor- 
der are essentially the same - in a situation that is highly disordered, making 
a measurement gives a great deal of information, and conversely, in a situation 
that is highly ordered, making a measurement gives little information. Thus for a 
system that can randomly be in one of several different states the entropy of its 
distribution is the same as the information gained by knowing which state i it is 

Handbook of the  Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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in. It turns out that the concept of entropy or equivalently information is useful 
in many applications that have nothing to do with physics. 

It  also turns out that thinking in these more general terms is useful for physics. 
For example, Shannon's work makes it clear that entropy is in some sense more 
fundamental than the quantities from which it was originally derived. This led 
Jaynes to formulate all of statistical mechanics as a problem of maximizing entropy. 
In fact, all of science can be viewed as an application of the principle of maximum 
entropy, which provides a means of quantifying the tradeoff between simplicity and 
accuracy of description. If we want to understand how physical systems can be 
used to perform computations, or construct computer memories, it  can be useful 
to define entropies that may not correspond to thermodynamic entropy. But if 
we want to understand the limits to computation it is very useful to think in 
thermodynamic or statistical terms. This has become particularly important in 
efforts to understand how to take advantage of quantum mechanics to improve 
computation. These considerations have given rise to a subfield of physics that is 
often called the physics of information. 

In this chapter we attempt to explain to a non-physicist where the idea of infor- 
mation came from. We begin in Section 2 by describing the origin of the concept 
of entropy in thermodynamics, where entropy is just a macroscopic state variable 
related to heat flow and temperature, a rather mathematical device without a con- 
crete physical interpretation. In Section 3 We then discuss how the microscopic 
theory of atoms led to statistical mechanics, which makes it possible to derive 
and extend thermodynamics. This led to the definition of entropy in terms of 
probabilities on the set of accessible microscopic states of a system and provided 
the inspiration for modern information theory starting with the seminal work of 
Shannon [Shannon, 19481. A close examination of the foundations of statistical 
mechanics and the need to reconcile the probabilistic and deterministic views of 
the world leads us to a discussion of chaotic dynamics in Section 4, where infor- 
mation plays a crucial role in quantifying predictability. In Section 5 we discuss 
a variety of fundamental issues that emerge in defining information and how one 
must exercise care in discussing concepts such as order, disorder, and incomplete 
knowledge. We also discuss an alternative form of entropy and its possible rele- 
vance for nonequilibrium thermodynamics. 

Toward the end of the chapter in Section 6 we give a brief axpose of how 
quantum mechanics gives rise to the concept of quantum information. Entirely 
new possibilities for information storage and transfer and computation are possible 
due to the massive parallel processing inherent in quantum mechanics. We also 
point out how entropy can be extended to apply to quantum mechanics to provide 
a useful measurement for quantum entanglement. Finally, in Section 7 we make a 
small excursion to  the interface betweeen quantum theory and general relativity, 
where one is confronted with the "ultimate information paradox" posed by the 
physics of Black Holes. In this review we have limited ourselves; not all relevant 
topics that touch on physics and information have been covered. 

In our quest for more and more volume and speed in storing and processing in- 
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formation we are naturally led to the smallest scales we can physically manipulate. 
We began the introduction by quoting Feynman's visionary 1959 lecture "Plenty 
of room at the bottom" [Feynman, February, 1959) 
(and http://www.zyvex.com/feynman.html] where he discusses storing and ma- 
nipulating information on the atomic level. Currently commercially available pro- 
cessors work a t  scales of 60 nm (1 nm = 1 nanometer = lo-' meter). In 2006, IBM 
announced circuitry on a 30 nm scale, which indeed makes it possible to write the 
Encyclopedia Britannica on the head of a pin, so Feynmann's speculative remark 
in 1959 is now just a marker of the current scale of computation. To make it clear 
how close this is to the atomic scale, a square with sides of length 30 nm con- 
tains about 1000 atoms. Under the historical pattern of Moore's law, integrated 
circuitry halves in size every 2 years. If we continue on the same trajectory of 
improvement, within about 20 years the components will be the size of individual 
atoms, and it is difficult to imagine that computers will be able to get any smaller. 
Once this occurs information at the atomic scale will be directly connected to our 
use of information on a macroscopic scale. There is a certain poetry to this: Once 
a computer has components on a quantum scale, the motion of its atoms will no 
longer be random, and in a certain sense will not be described by classical statis- 
tical mechanics, at the same time that it will be used to process information on a 
macroscopic scale. 

2 THERMODYNAMICS 

The truth of the second law is, therefore, a statistical and not a mathematical 
truth, for it depends on the fact that the bodies we deal with consist of 
millions of molecules and that we never can get a hold of single molecules 

J.C. Maxwell 

Thermodynamics is the study of macroscopic physical systems.' These systems 
contain a large number of degrees of freedom, typically of the order of Avogadro's 
number, i.e. NA z loz3. The three laws of thermodynamics describe processes in 
which systems exchange energy with each other or with their environment. For 
example, the system may do work, or exchange heat or mass through a diffusive 
process. A key idea is that of equilibrium, which in thermodynamics is the as- 
sumption that the exchange of energy or mass between two systems is the same 
in both directions; this is typically only achieved when two systems are left alone 
for a long period of time. A process is quasistatic if it always remains close to 
equilibrium, which also implies that it is reversible, i.e that the process can be 
undone and the system can return to its original state without any external en- 
ergy inputs. We distinguish various types of processes, for example an isothermal 
process in which the system is in thermal contact with a reservoir that keeps it at 

lMany details of this brief expose of selected items from thermodynamics and statistical 
mechanics can be found in standard textbooks on these subjects [Reif, 1965; Kittel, 1966; Huang, 
1987; Lifschitz and Landau, 19801. 
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a fixed temperature. Another example is an adiabatic process in which the system 
is kept thermally isolated and the temperature is allowed to change. A system 
may also go from one equilibrium state to  another via a nonequilibrium process, 
such as the free expansion of a gas or the mixing of two fluids, in which case it is 
not reversible. No real system is fully reversible, but it is nonetheless a very useful 
concept. 

The remarkable property of systems in equilibrium is that the macro states can 
be characterized by only very few variables, such as the volume V, pressure P, 
temperature T, entropy S,  chemical potential p and particle number N. These 
state variables are in general not independent, but rather are linked by an equation 
of state, which describes the constraints imposed by physics. A familiar example 
is the ideal gas law P V  = NAkT, where k is the Boltzmann constant relating 
temperature to energy (k = 1.4 x joule/Kelvin). In general the state 
variables come in pairs, one of which is intensive while the other conjugate variable 
is extensive. Intensive variables like pressure or temperature are independent of 
system size, while extenstive variables like volume and entropy are proportional 
to  system size. 

In this lightning review we will only highlight the essential features of thermo- 
dynamics that are most relevant in connection with information theory. 

2.1 The laws 

The first law of thermodynamics reads2 

and amounts to the statement that heat is a form of energy and that energy is 
conserved. More precisely, the change in internal energy dU equals the amount of 
heat dQ absorbed by the system minus the work done by the system, d W .  

The second law introduces the concept of entropy S ,  which is defined as the 
ratio of heat flow to temperature. The law states that the entropy for a closed 
system (with constant energy, volume and number of particles) can never decrease. 
In mathematical terms 

By using a gas as the canonical example, we can rewrite the first law in proper 
differentials as 

(3) dU = TdS - PdV, 

where PdV is the work done by changing the volume of the container, for example 
by compressing the gas with a piston. It  follows from the relation between entropy, 
heat and temperature that entropy differences can be measured by measuring the 

2 ~ h e  bars through the differentials indicate that the quantities following them are not state 
variables: the d-bars therefore refer to small quantities rather then proper differentials. 
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temperature with a thermometer and the change in heat with a calorimeter. This 
illustrates that from the point of view of thermodynamics entropy is a purely 
macroscopic quantity. 

Hot reservoir 1 
Work Work 

Hot reservoir 1 

I Cold reservoir I 

Figure 1. The relation between heat and work illustrating the two formulations of 
the second law of thermodynamics. On the left we have the Kelvin formulation. 
The ideal engine corresponds to the diagram with the black arrows only. The 
second law tells us that the third, grey arrow is necessarily there. The right 
picture with only the black arrows corresponds to the ideal refrigerator, and the 
third, grey arrow is again required by the second law. 

There are two different formulations of the second law. The Kelvin formulation 
states that it is impossible to have a machine whose sole effect is to convert heat 
into work. We can use heat to do work, but to do so we must inevitably make other 
alterations, e.g. letting heat flow from hot to  cold and thereby bringing the system 
closer to equilibrium. Clausius' formulation says that it is impossible to have a 
machine that only extracts heat from a reservoir at low t e m p e r a t ~ ~ e  and delivers 
that same amount of heat to a reservoir at higher temperature. Rephrasing these 
formulations, Kelvin says that ideal engines cannot exist and Clausius says that 
ideal refrigerators can't exist. See figure 1. 

The action of a heat engine or refrigerator machines can be pictured in a diagram 
in which the reversible sequence of states the system goes through are a closed 
curve, called a Carnot cycle. We give an example for the Kelvin formulation 
in figure 2. Imagine a piston in a chamber; our goal is to use the temperature 
differential between two reservoirs to do work. The cycle consists of four steps: In 
step a --+ b, isothermal expansion, the system absorbs an amount Q1 of heat from 
the reservoir at high temperature TI, which causes the gas to expand and push 
on the piston, doing work; In step b + c, adiabatic expansion, the gas continues 
to expand and do work, but the chamber is detached from the reservoir, so that 
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it no longer absorbs any heat. Now as the gas expands it cools until it reaches 
temperature T2. In step c -+ d, isothermal compression, the surroundings do work 
on the gas, as heat flows into the cooler reservoir, giving off an amount Q2 of heat; 
and in step d -, a ,  adiabatic compression, the surroundings continue to do work, 
as the gas is further compressed (without any heat transfer) and brought back up 
to the original temperature. The net work done by the machine is given by the 
line integral: 

(4) W = f PdV = enclosed area 
cycle 

which by the first law should also be equal to W = Q1 - Q2 because the internal 
energy is the same a t  the beginning and end of the cycle. We also can calculate 
the total net change in entropy of the two reservoirs as 

where the last inequality has to hold because of the second law. Note that the two 
latter equations can have solutions with positive W. The efficiency of the engine 
7 is by definition the ratio of the work done to  the heat entering the system, or 

This equals one for an ideal heat engine, but is less then one for a real engine. 

,Figure 2. The Carnot cycle corresponding to the Kelvin formulation of the second 
law. The work done by the engine equals the line integral along the closed contour 
and is therefore equal to the enclosed area. 

A modern formulation of the second law, which in the setting of statistical me- 
chanics is equivalent to the statements of Kelvin and Clausius, is the Landauer 
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principle, which says that there is no machine whose sole effect is the erasure of 
information. There is a price to forgetting: The principle states that the erasure of 
information (which is irreversible) is inevitably accompanied by the generation of 
heat. In other words, logical irreversibility necessarily involves thermodynamical 
irreversibility. One has to  generate at least kTln 2 to  get rid of one bit of infor- 
mation [Landauer, 1961; Landauer, 19911. We return to  the Landauer principle in 
the section on Statistical mechanics. 

We just showed that the second law sets fundamental limits on the possible effi- 
ciency of real machines like steam engines, refrigerators and information processing 
devices. As everybody knows, real engines give off heat and real refrigerators and 
real computers need power to do their job. The second law tells us to what extent 
heat can be used to perform work. The increase of entropy as we go from one 
equilibrium situation to another is related to dissipation and the production of 
heat, which is intimately linked to the important notion of irreversibility. A given 
action in a closed system is irreversible if it makes it impossible for the system to 
return to the state it was in before the action took place without external inputs. 
Irreversibility is always associated with production of heat, because heat cannot 
be freely converted to other forms of energy (whereas any other form of energy 
can always be converted to heat). One can decrease the entropy of a system by 
doing work on it, but in doing the work one has to increase the entropy of another 
system (or of the system's environment) by an equal or greater amount. 

The theory of thermodynamics taken by itself does not connect entropy with 
information. This only comes about when the results are interpreted in terms 
of a microscopic theory, in which case temperature can be interpreted as being 
related to uncertainty and incoherence in the position of particles. This requires 
a discussion of statistical mechanics, as done in the next section. 

There is another fundamental aspect to the second law which is important from 
an operational as well as philosophical point of view. A profound implication of 
the second law is that it defines an "arrow of time", i.e., it allows us to distinguish 
the past from the future. This is in contrast to the fundamental microscopic laws 
of physics which are time reversal invariant (except for a few exotic interactions, 
that are only very rarely seen under normal conditions as we find them on earth). 
If one watches a movie of fundamental processes on the microscopic level it is 
impossible to tell whether it is running forwards or backwards. In contrast, if we 
watch a movie of macroscopic events, it is not hard to identify irreversible actions 
such as the curling of smoke, the spilling of a glass of water, or the mixing of bread 
dough, which easily allow us to determine whether we are running in forward or 
reverse. More formally, even if we didn't know which way time were running, 
we could pick out some systems a t  random and measure their entropy at times 
t l ,  tz, . . . The direction in which entropy increases is the one that is going forward 
in time. Note that we didn't define an a priori direction of time in formulating the 
second law - it establishes a time direction on its own, without any reference to 
atomic theory or any other laws of physics. 
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The second law of thermodynamics talks only about the difference between the 
entropy of different macrostates. The absolute scale for entropy is provided by the 
third law of thermodynamics. This law states that when a system approaches the 
absolute zero of temperature the entropy will go to zero, i.e. 

When T = 0 the heat is zero, corresponding classically to no atomic motion, and 
the energy takes on its lowest possible value. In quantum theory we know that such 
a lowest energy "ground" state also exists, though, if the ground state of the system 
turns out to be degenerate the entropy will approach a nonzero constant at zero 
temperature. We conclude by emphasizing that the laws of thermodynamics have 
a wide applicability and a rich phenomenology that supports them unequivocally. 

2.2 Free energy 

Physicists are particularly concerned with what is called the (Helmholtz) free en- 
ergy, denoted F. It is a very important quantity because it defines the amount 
of energy available to do work. As we discuss in the next section, the free en- 
ergy plays a central role in establishing the relation between thermodynamics and 
statistical mechanics, and in particular for deriving the microscopic definition of 
entropy in terms of probabilities. 

The free energy is defined as 

( 8 )  F U - TS. 

This implies that in differential form we have 

(9) dF = dU - TdS - SdT, 

which using (3) can be written as 

(10) dF = -PdV - SdT. 

The natural independent variables to describe the free energy of a gas are volume 
and temperature. 

Let us briefly reflect on the meaning of the free energy. Consider a system A in 
thermal contact with a heat bath A' kept at a constant temperature To. Suppose 
the system A absorbs heat d Q  from the reservoir. We may think of the total 
system consisting of system plus bath as a closed system: A0 = A + A'. For A0 
the second law implies that its entropy can only increase: dSO = dS + dS' 2 0. As 
the temperature of the heat bath A' is constant and its absorbed heat is -dQ, we 
may write TodS1 = -ItQ. From the first law applied to system A we obtain that 
-dQ = -dU - dW, so that we can substitute the expression TodS1 = -dU - d W  
in TodS + TodS' > 0 to get -dU + TodS > It W. As the system A is kept at a 
constant temperature the left hand side is just equal to -dF, demonstrating that 
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The maximum work that can be done by the system in contact with a heat reservoir 
is (-dF).  If we keep the system parameters fixed, i.e. d W  = 0, we obtain that 
dF 5 0, showing that for a system coupled to  a heat bath the free energy can 
only decrease, and consequently in a thermal equilibrium situation the free energy 
reaches a minimum. This should be compared with the entropy, which reaches a 
maximum at equilibrium. 

We can think of the second law as telling us how different kinds of energy are 
converted into one another: In an isolated system, work can be converted into 
heat, but heat cannot be converted into work. From a microscopic point of view 
forms of energy that are "more organized", such as light, can be converted into 
those that are "less organized", such as the random motion of particles, but the 
opposite is not possible. 

From Equation (10) the pressure and entropy of a gas can be written as partial 
derivatives of the free energy 

So we see that for a system in thermal equilibrium the entropy is a state variable, 
meaning that if we reversibly traverse a closed path we will return to  the same value 
(in contrast to other quantities, such as heat, which do not satisfy this property). 
The variables P and S are dependent variables. This is evident from the Maxwell 
relation, obtained by equating the two second derivatives 

yielding the relation 

3 STATISTICAL MECHANICS 

In dealing with masses of matter, while we do not perceive the individual 
molecules, we are compelled to adopt what I have described as the statistical 
method of calculation, and to abandon the strict dynamical method, in which 
we follow every motion by the calculus. 

J.C. Maxwell 

We are forced to be contented with the more modest aim of deducing some of 
the more obvious propositions relating to the statistical branch of mechanics. 
Here there can be no mistake in regard to the agreement with the facts of 
nature. 

J.W. Gibbs 
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Statistical mechanics is the explanation of the macroscopic behavior of physical 
systems using the underlying microscopic laws of physics, even though the mi- 
croscopic states, such as the position and velocity of individual particles, are un- 
known. The key figures in the late 19th century development of statistical mechan- 
ics were Maxwell, Boltzmann and Gibbs [Maxwell, 1872; Boltzmann, 1896-1898; 
Gibbs, 19021. One of the outstanding questions was to  derive the laws of thermo- 
dynamics, in particular to give a microscopic definition of the notion of entropy. 
Another objective was the understanding of phenomena that cannot be computed 
from thermodynamics alone, such as transport phenomena. For our purpose of 
highlighting the links with information theory we will give a brief and somewhat 
lopsided introduction. Our main goal is to show the origin of the famous expression 
due to Gibbs for the entropy, S = - Cipi lnpi ,  which was later used by Shannon 
to define information. 

3.1 Definitions and postulates 

Considerable semantic confusion has resulted from failure to distinguish be- 
tween prediction and interpretation problems, and attempting a single for- 
malism to do both. 

T.S. Jaynes 

Statistical mechanics considers systems with many degrees of freedom, such as 
atoms in a gas or spins on a lattice. We can think in terms of the microstates of the 
system which are, for example, the positions and velocities of all the particles in a 
vessel with gas. The space of possible microstates is called the phase space. For a 
monatomic gas with N particles, the phase space is 6N-dimensional, corresponding 
to the fact that under Newtonian mechanics there are three positions and three 
velocities that must be measured for each particle in order to determine its future 
evolution. A microstate of the whole system thus corresponds to a single point in 
phase space. 

Statistical mechanics involves the assumption that, even though we know that 
the microstates exist,, we are largely ignorant of their actual values. The only 
information we have about them comes from macroscopic quantities, which are 
bulk properties such as the total energy, the temperature, the volume, the pressure, 
or the magnetization. Because of our ignorance we have to  treat the microstates 
in statistical terms. But the knowledge of the macroscopic quantities, along with 
the laws of physics that the microstates follow, constrain the microstates and 
allow us to compute relations between macroscopic variables that might otherwise 
not be obvious. Once the values of the macroscopic variables are fixed there 
is typically only a subset of microscopic states that are compatible with them, 
which are called the accessible states. The number of accessible states is usually 
huge, but differences in this number can be very important. In this chapter we 
will for simplicity assume a discrete set of microstates, but the formalism can be 
straightforwardly generalized to the continuous case. 
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The first fundamental assumption of statistical mechanics is that in equilibrium 
a closed system has an equal a priori probability to be in any of its accessible 
states. For systems that are not closed, for example because they are in thermal 
contact or their particle number is not constant, the set of accessible states will be 
different and their probabilities have to be calculated. In either case we associate 
an ensemble of systems with a characteristic probability distribution over the al- 
lowed microscopic states. Tolman [Tolman, 19381 clearly describes the notion of 
an ensemble: 

In using ensembles for statistical purposes, however, it is to be noted that 
there is no need to maintain distinctions between individual systems since 
we shall be interested merely in the number of systems at any time which 
would be found in the different states that correspond to different regions 
of phase space. Moreover, it is also to be noted for statistical purposes 
that we shall wish to use ensembles containing a large enough population of 
separate members so that the number of systems in such different states can 
be regarded as changing continuously as we pass from the states lying in one 
region of the phase space to those in another. Hence, for the purpose in view, 
it is evident that the condition of an ensemble at any time can be regarded 
as appropriately specified by the density r with which representative points 
are distributed over phase space. 

The second postulate of statistical mechanics, called ergodicity, says that time 
averages correspond to  ensemble averages. That is, on one hand we can take 
the time average by following the deterministic motion of the all the microscopic 
variables of all the particles making up a system. On the other hand, at  a given 
instant in time we can take an average over all possible accessible states, weighting 
them by their probability of occurrence. The ergodic hypothesis says that these 
two averages are the same. We return to the restricted validity of this hypothesis 
in the section on nonlinear dynamics. 

3.2 Counting microstates for a system of magnetic spins 

In the following example we show how it is possible to derive the distribution of 
microscopic states through the assumption of equipartition and simple counting 
arguments. This also illustrates that the distribution over microstates becomes 
extremely narrow in the thermodynamic (i.e. N --+ clo limit). Consider a system 
of N magnetic spins that can only take two values s j  = f 1, corresponding to 
whether the spin is pointing up or down (often called Ising spins). The total 
number of possible configurations equals 2 N .  For convenience assume N is even, 
and that the spins do not interact. Now put these spins in an upward pointing 
magnetic field H and ask how many configurations of spins are consistent with each 
possible value of the energy. The energy of each spin is e j  = T ~ H ,  and because 
they do not interact, the total energy of the system is just the sum of the energies 
of each spin. For a configuration with k spins pointing up and N - k spins pointing 
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down the total energy can be written as E, = 2mpH with m r ( N  - 2k)/2 and 
-N/2 5 m 5 N/2. The value of E, is bounded : -NpH 5 E, 5 N p H  and 
the difference between two adjacent energy levels, corresponding to the flipping of 
one spin, is AE = 2pH. The number of microscopic configurations with energy E, 

equals 

The total number of states is x, g(N, m) = 2N. For a thermodynamic system N 
is really large, so we can approximate the factorials by the Stirling formula 

Some elementary math gives the Gaussian approximation for the binomial distri- 
bution for large N ,  

We will return to this system later on, but at this point we merely want to show 
that for large N the distribution is sharply peaked. Roughly speaking the width 
of the distribution grows with fi while the peak height grows as 2N, so the 
degeneracy of the states around m = 0 increases very rapidly. For example 
g(50,O) = 1.264 x 1014, but for N w NA one has g(NA,O) 2 We will 
return to this example in the following section to calculate the magnetization of a 
spin system in thermal equilibrium. 

3.3 The Maxwell-Boltzmann- Gibbs distribution 

Maxwell was the first to derive an expression for the probability distribution pi 
for a system in thermal equilibrium, i.e. in thermal contact with a heat reservoir 
kept at a fixed temperature T. This result was later generalized by Boltzmann 
and Gibbs. An equilibrium distribution function of an ideal gas without external 
force applied to  it  should not depend on either position or time, and thus can 
only depend on the velocities of the individual particles. In general there are 
interactions between the particles that need to be taken into account. A simplifying 
assumption that is well justified by probabilistic calculations is that processes in 
which two particles interact at once are much more common than those in which 
three or more particles interact. If we assume that the velocities of two particles 
are independent before they interact we can write their joint probability to have 
velocities vl and v2 as a product of the probability for each particle alone. This 
implies P ( v ~ , v ~ )  = p(v1)p(v~). The same holds after they interact: p(vi, v;) = 
p(v;)p(v;). In equilibrium, where nothing can depend on time, the probability 
has to be the same afterward, i.e. p(vl,v2) = p(vi,v;). How do we connect 
these conditions before and after the interaction? A crucial observation is that 
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there are conserved quantities that are preserved during the interaction and the 
equilibrium distribution function can therefore only depend on those. Homogeneity 
and isotropy of the distribution function selects the total energy of the particles as 
the only function on which the distribution depends. The conservation of energy 
in this situation boils down to the simple statement that ;mu: + +mu; = ;rnvi2 + 
;mvi2. From these relations Maxwell derived the well known thermal equilibrium 
velocity distribution, 

The distribution is Gaussian. As we saw, to derive it Maxwell had to make a 
number of assumptions which were plausible even though they couldn't be derived 
from the fundamental laws of physics. Boltzmann generalized the result to include 
the effect of an external conservative force, leading to the replacement of the kinetic 
energy in (18) by the total conserved energy, which includes potential a s  well as 
kinetic energy. 

Boltzmann's generalization of Maxwell's result makes it clear that the proba- 
bility distribution pi for a general system in thermal equilibrium is given by 

Z is a normalization factor that ensures the conservation of probability, i.e. Ci pi = 
1. This implies that 

Z is called the partition function. The Boltzmann distribution describes the canon- 
ical ensemble, that is it applies to any situation where a system is in thermal 
equilibrium and exchanging energy with its environment. This is in contrast to  
the microcanonical ensemble, which applies to isolated systems where the energy 
is constant, or the grand canonical ensemble, which applies to systems that are 
exchanging both energy and particles with their environment3. To illustrate the 
power of the Boltzmann distribution let us briefly return to the example of the 
thermal distribution of Ising spins on a lattice in an external magnetic field. As 
we pointed out in section (3.2), the energy of a single spin is f pH. According to  
the Boltzmann distribution, the probabilities of spin up or spin down are 

The spin antiparallel to the field has lowest energy and therefore is favored. This 
leads to an average field dependent magnetization m~ (per spin) 

----- 

3Gibbs extended the Boltzmann result to  situations where the  number of particles is not 
fixed, leading t o  the introduction of the chemzcal potentzal. Because of its complicated history, 
the exponential distribution is referred t o  by a variety of names, including Gibbs, Boltzmann, 
Boltzmann-Maxwell, and Boltzmann-Gibbs. 
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This example shows how statistical mechanics can be used to establish relations 
between macroscopic variables that cannot be obtained using thermodynamics 
alone. 

3.4 Free energy revisited 

In our discussion of thermodynamics in section 2.2 we introduced the concept of 
the free energy F defined by equation 8, and argued that it  plays a central role 
for systems in thermal contact with a heat bath, i.e. systems kept at a fixed 
temperature T. In the previous section we introduced the concept of the partition 
function Z defined by equation 20. Because all thermodynamic quantities can be 
calculated from it, the importance of the partition function Z goes well beyond 
its role as a normalization factor. The free energy is of particular importance, 
because its functional form leads directly to the definition of entropy in terms of 
probabilities. We can now directly link the thermodynamical quantities to the 
ones defined in statistical mechanics. This is done by postulating4 the relation 
between the free energy and the partition function as5 

or alternatively Z = e - F / T .  F'rom this definition it is possible to calculate all 
thermodynamical quantities, for example using equations (12). We will now derive 
the expression for the entropy in statistical mechanics in terms of probabilities. 

3.5 Gibbs entropy 

The definition of the free energy in equation (8) implies that 

U - F  
(24) S = - 

T . 
F'rom (23) and (19) it  follows that 

Note that even though both the terms on the right depend on i the free energy F  
is independent of i. The equilibrium value for the internal energy is by definition 

(26) U  = ( c )  = ci pi . 

40nce we have identified a certain macroscopic quantity like the free energy with a microscopic 
expression, then of course the rest follows. Which expression is taken a s  the starting point for 
the  identification is quite arbitrary. The justification is a posteriori in the sense that the well 
known thermodynamical relations should be recovered. 

5Boltzmann's constant k relates energy to  temperature. Its value in conventional units is 
1 . 4 ~  l ~ - ~ ~ j o u l e / k e l v a n ,  but we haveset it equal to  unity, which amounts to  choosing a convenient 
unit for energy or temperature. 
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With these expressions for S, F and U7 and making use of the fact that F is 
independent of i and z i p i  = I, we can rewrite the entropy in terms of the 
probabilities pi and arrive at the famous expression for the entropy: 

This expression is usually called the Gibbs entropy6. 
In the special case where the total energy is fixed, the w different (accessible) 

states all have equal a priori probability pi = p  = l /w.  Substitution in the Gibbs 
formula yields the expression in terms of the number of accessible states, originally 
due to Boltzmann (and engraved on his tombstone): 

(28) S = lnw. 

We emphasize that the entropy grows logarithmically with the number of accessible 
states7. Consider a system consisting of a single particle that can be in one of 
two states. Assuming equipartition the entropy is S1 = ln2. For a system with 
Avogadro7s number of particles N N there are 2N states and if we assume 
independence the entropy is SN = ln2N = NS17 a very large number. The 
tendency of a system to maximize its entropy is a probabilistic statement: The 
number of states with half of the particles in one state and half in the other is 
enormously larger than the number in which all the particles are in the same state, 
and when the system is left free it will relax to the most probable accessible state. 
The state of a gas particle depends not only on its allowed position (i.e. the volume 
of the vessel), but also on its allowed range of velocities: If the vessel is hot that 
range is larger then when the vessel is cold. So for an ideal gas one finds that 
the entropy increases with the logarithm of the temperature. The fact that the 
law is a probabilistic implies that it  is not completely impossible that the system 
will return to a highly improbable initial state. Poincar6 showed that it is bound 
to happen and gave an estimate of the recurrence time (which for a macroscopic 
system is much larger than the lifetime of the universe). 

The Gibbs entropy transcends its origins in statistical mechanics. It can be 
used to describe any system with states { $ i )  and a given probability distribution 
{ p i ) .  Credit for realizing this is usually given to Shannon [Shannon, 19481, al- 
though antecedents include Szilard, Nyquist and Hartley. Shannon proposed that 
by analogy to the entropy S ,  information can be defined as 

(29) H = - pi log2 pi. 
i 

6 ~ n  quantum theory this expression is replaced by S = -TT p l n p  where p is the density 
matrix of the system. 

7 ~ h e s e  numbers can be overwhelmingly large. Imagine two macrostates of a system which 
differ by 1 millicalorie a t  room temperature. The difference in entropy is A S  = -AQ/T = 
1OW3/293 % Thus the ratio of the number of accessible states is wz/wl = exp(AS/k) x 
exp(l0l8), a big number! 
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In information theory it is common t o  take logarithms in base two and drop the 
Boltzmann constant8. Base two is a natural choice of units when dealing with 
binary numbers and the units of entropy in this case are called bits; in contrast, 
when using the natural logarithm the units are called nuts, with the conversion 
that 1 nut =1.443 bits . For example a memory consisting of 5 bits (which is 
the same as a system of 5 Ising spins), has N = 25 states. Without further 
restrictions all of these states (messages) have equal probability i.e. pi = 1/N so 
that the information content is H = -N& log, & = log, 25 = 5 bits. Similarly 
consider a DNA-molecule with 10 billion base pairs, each of which can be in one 
of four combinations (A-T,C-G,T-A,G-C). The molecule can a priori be in any of 
41°10 configurations so the naive information content (assuming independence) is 
H = 2 x 101° bits. The logarithmic nature of the definition is unavoidable if one 
wants the additive property of information under the addition of bits. If in the 
previous spin example we add another string of 3 bits then the total number of 
states is N = N1N2 = 25 x z3 = 28 from which it also follows that H = HI + H2 = 
8. If we add extra ab initio correlations or extra constraints we reduce the number 
of independent configurations and consequently H will be smaller. 

As we will discuss in Section 5, this quantitative definition of information and its 
applications transcend the limited origin and scope of conventional thermodynam- 
ics and statistical mechanics, as well as Shannon's original purpose of describing 
properties of communication channels. See also [Brillouin, 19561. 

4 NONLINEAR DYNAMICS 

The present state of the system of nature is evidently a consequence of what 
it was in the preceding moment, and if we conceive of an intelligence which at 
a given instant comprehends all the relations of the entities of this universe, 
it could state the respective position, motions, and general effects of all these 
entities at any time in the past or future. 

Pierre Simon de Laplace (1776) 

A very small cause which escapes our notice determines a considerable effect 
that we cannot fail to see, and then we say that the effect is due to chance. 

Henri Poincarh (1903). 

From a naive point of view statistical mechanics seems to contradict the deter- 
minism of Newtonian mechanics. For any initial state x(0) (a vector of positions 
and velocities) Newton's laws define a dynamical system q5t (a set of differential 
equations) that maps x(0) into its future states x(t) = @(z(O)). This is com- 
pletely deterministic. As Laplace so famously asserted, if mechanical objects obey 
Newton's laws, why do we need to discuss perfect certainties in statistical terms? 
Laplace partially answered his own question: 

our convention k=l, so H = S/ In 2. 
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. . . But ignorance of the different causes involved in the production of events, 
as well as their complexity, taken together with the imperfection of analysis, 
prevent our reaching the same certainty [as in astronomy] about the vast 
majority of phenomena. Thus there are things that are uncertain for us, 
things more or less probable, and we seek to compensate for the impossibility 
of knowing them by determining their different degrees of likelihood. So it 
is that we owe to the weakness of the human mind one of the most delicate 
and ingenious of mathematical theories, the science of chance or probability. 

Laplace clearly understood the need for statistical descriptions, but at  that point in 
time was not fully aware of the consequences of nonlinear dynamics. As Poincar6 
later showed, even without human uncertainty (or quantum mechanics), when 
Newton's laws give rise to differential equations with chaotic dynamics, we in- 
evitably arrive at  a probabilistic description of nature. Although Poincar6 discov- 
ered this in the course of studying the three body problem in celestial mechanics, 
the answer he found turns out to have relevance for the reconciliation of the de- 
terministic Laplacian universe with statistical mechanics. 

1 The ergodic hypothesis 

As we mentioned in the previous section, one of the key foundations in Boltzmann's 
formulation of statistical mechanics is the ergodic hypothesis. Roughly speaking, 
it is the hypothesis that a given trajectory will eventually find its way through 
all the accessible microstates of the system, e.g. all those that are compatible 
with conservation of energy. At equilibrium the average length of time that a 
trajectory spends in a given region of the state space is proportional to the number 
of accessible states the region contains. If the ergodic hypothesis is true, then time 
averages equal ensemble averages, and equipartition is a valid assumption. 

The ergodic hypothesis proved to be highly controversial for good reason: It is 
generally not true. The first numerical experiment ever performed on a computer 
took place in 1947 at  Los Alamos when Fermi, Pasta, and Ulam set out to test the 
ergodic hypothesis. They simulated a system of masses connected by nonlinear 
springs. They perturbed one of the masses, expecting that the disturbance would 
rapidly spread to  all the other masses and equilibrate, so that after a long time 
they would find all the masses shaking more or less randomly. Instead they were 
quite surprised to discover that the disturbance remained well defined - although 
it propagated through the system, it kept its identity, and after a relatively short 
period of time the system returned very close to its initial state. They had in fact 
rediscovered a phenomenon that has come to be called a soliton, a localized but 
very stable travelling disturbance. There are many examples of nonlinear systems 
that support solitons. Such systems do not have equal probability to be in all their 
accessible states, and so are not ergodic. 

Despite these problems, there are many examples where we know that statis- 
tical mechanics works extremely well. There are even a few cases, such as the 
hard sphere gas, where the ergodic hypothesis can actually be proved. But more 
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typically this is not the case. The evidence for statistical mechanics is largely 
empirical: we know that it works, at least to a very high degree of approxima- 
tion. Subsequent work has made it clear that the typical situation is much more 
complicated than was originally imagined. While some trajectories may wander 
in more or less random fashion around much of the accessible phase space, they 
are blocked from entering certain regions by what are called KAM (Kolomogorov- 
Arnold-Moser) tori. Other initial conditions yield trajectories that make regular 
motions and lie on KAM tori trajectories. The KAM tori are separated from each 
other, and have a lower dimension than the full accessible phase space. Such KAM 
tori correspond to situations in which there are other conversation laws in addition 
to the conservation of energy, which may depend on initial conditions as well as 
other parametersg. Solitons are examples of this in which the solutions can be 
interpreted as a geometrically isolated pulse. 

There have now been an enormous number of studies of ergodicity in nonlinear 
dynamics. While there are no formal theorems that definitively resolve this, the 
accumulated lore from these studies suggests that for nonlinear systems that do 
not have hidden symmetries, as the number of interacting components increases 
and nonlinearities become stronger, the generic behavior is that chaotic behavior 
becomes more and more likely - the KAM tori shrink, fewer and fewer initial 
conditions are trapped on them, and the regions they exclude become smaller. 
The ergodic hypothesis becomes an increasingly better approximation, a typical 
single trajectory can reach almost all accessible states, and equipartition becomes 
a good assumption. The problems occur in understanding when there are hidden 
symmetries that can support phenomena like solitons. The necessary and suffi- 
cient conditions for ergodicity to be a good assumption remains an active field of 
research. 

4.2 Chaos and limits to prediction 

The discovery of chaos makes it clear that Boltzmann's use of probability is even 
more justified than he realized. When motion is chaotic, two infinitesimally 
nearby trajectories separate at an exponential rate [Lorenz, 1963; Shaw, 1981; 
Crutchfield e t  al., 1986; Strogatz, 19941. This is a geometric property of the un- 
derlying nonlinear dynamics. From a linear point of view the dynamics are locally 
unstable. To make this precise, consider two N dimensional initial conditions x(0) 
and xf(0) that are initially separated by an infinitesimal vector Sx(0) = x(0)-x'(0). 
Providing the dynamical system is differentiable, the separation will grow as 

(30) Sx(t) = Dqht(x(0))Sx(O), 

where Dqht(x(0)) is the derivative of the dynamical system qht evaluated a t  the 
initial condition x(0). For any fixed time t and initial condition x(0), D# is just 

'Dynamical systems that conserve energy and obey Newton's laws have special properties 
that  cause the  existence of KAM tori. Dissipative systems typically have attractors, subsets of 
the  state space that orbits converge onto. Energy conserving systems do not have attractors, 
and often have chaotic orbits tightly interwoven with regular orbits. 
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an N x N matrix, and this is just a linear equation. If the motion is chaotic 
the length of the separation vector bx will grow exponentially with t in at least 
one direction, as shown in Figure 3. The figure shows how the divergence of 
nearby trajectories is the underlying reason chaos leads to unpredictability. A 
perfect measurement would correspond to a point in the state space, but any 
real measurement is inaccurate, generating a cloud of uncertainty. The true state 
might be anywhere inside the cloud. As shown here for the Lorenz equations (a  
simple system of three coupled nonlinear differential equations [~orenz ,  1963]), the 
uncertainty of the initial measurement is represented by 10,000 dark dots, initially 
so close together that they form a single dark spot (t = 0, top right); a single 
trajectory is shown for reference in light dark. As each point moves under the 
action of the equations, the cloud is stretched into a long, thin dark thread, which 
then folds over onto itself many times, until the points are mixed more or less 
randomly over the entire attractor. Prediction has now become impossible: the 
final state can be anywhere on the attractor. For a regular motion, in contrast, 
all the final states remain close together. We can think about this in information 
theoretic terms; for a chaotic motion information is initially lost at a linear rate 
which eventually results in all the information being lost - for a regular motion 
the information loss is relatively small. The numbers above the illustration are in 
units of 1/200 of the natural time units of the Lorenz equations. (From [Crutchfield 
et al., 19861). 

Nonetheless, at the same time the motion can be globally stable, meaning that 
it remains contained inside a finite volume in the phase space. This is achieved by 
stretching and folding - the nonlinear dynamics knead the phase space through 
local stretching and global folding, just like a baker making a loaf of bread. Two 
trajectories that are initially nearby may later be quite far apart, and still later, 
may be close together again. This property is called mzxing. More formally, the 
dynamics are mixing over a given set C and invariant measure1' p with support 
C such that for any subsets A and B 

(31) lim p ( & ~  n A) = p(A)p(B). t-03 

Intuitively, this just means that I3 is smeared throughout C by the flow, so that 
the probability of finding a point originating in B inside of A is just the original 
probability of B ,  weighted by the probability of A. Geometrically, this happens 
if and only if the future trajectory of B is finely "mixed" throughout C by the 
stretching and folding action of dt.  

Mixing implies ergodicity, so any dynamical system that is mixing over C will 
also be ergodic on C.  It only satisfies the ergodic hypothesis, however, if C is the 
set of accessible states. This need not be the case. Thus, the fact that a system has 
orbits with chaotic dynamics doesn't mean that it necessarily satisfies the ergodic 

1°A measure is invariant over a set C with respect to  the dynamics +t if it satisfies the condition 
p ( A )  = ~ ( I $ - ~ ( A ) ) ,  where A is any subset of C. There can be many invariant measures, but the 
one that we have in mind throughout is the one corresponding to  time averages. 
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Figure 3. The divergence of nearby trajectories for the Lorenz equations. See the 
text for an explanation 
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hypothesis - there may be still be subsets of finite volume in the phase space that 
are stuck making regular motions, for example on KAM tori. 

Nonetheless, chaotic dynamics has strong implications for statistical mechanics. 
If a dynamical system is ergodic but not mixing1', by measuring the microstates 
it is in principle possible to  make detailed long range predictions by measuring the 
position and velocity of all its microstates, as suggested by Laplace. In contrast, if 
it is mixing then even if we know the initial values of the microstates at a high (but 
finite) level of precision, all this information is asymptotically lost, and statistical 
mechanics is unavoidable12. 

4.3 Quant i fy ing  predictability 

Information theory can be used to quantify predictability [Shaw, 19811. To begin 
the discussion, consider a measuring instrument with a uniform scale of resolution 
E .  For a ruler, for example, E is the distance between adjacent graduations. If such 
a measuring instrument is assigned to each of the N real variables in a dynamical 
system, the graduations of these instruments induce a partition ll of the phase 
space, which is a set of non-overlapping N dimensional cubes, labeled Ci, which 
we will call the outcomes of the measurement. A measurement determines that 
the state of the system is in a given cube Ci. If we let transients die out, and 
restrict our attention to asymptotic motions without external perturbations, let 
us assume the motion is confined to a set C (which in general depends on the 
initial condition). We can then compute the asymptotic probability of a given 
measurement by measuring its frequency of occurrence pi, and if the motion is 
ergodic on C, then we know that there exists an invariant measure p such that 
pi = p(Ci). To someone who knows the invariant measure p but knows nothing 
else about the state of the system, the average information that will be gained in 
making a measurement is just the entropy 

We are following Shannon in calling this "information" since it represents the 
element of surprise in making the measurement. The information is written I(€) 
to emphasize its dependence on the scale of resolution of the measurements. This 
can be used to define a dimension for p. This is just the asymptotic rate of increase 
of the information with increasing resolution, i.e. 

I ( € )  (33) D = lim - 
c--0 I log € 1  ' 

l lA simple example of a system that is ergodic but not mixing is a dynamical system whose 
solution is the sum of two sinusoids with irrationally related frequencies. 

12An exception is that some systems display phase invariance even while they are chaotic. 
The orbits move around an attractor, being chaotically scrambled transverse to their direction 
of motion but keeping their timing for completing a circuit of the attractor [Farmer et al., 19801. 
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This is called the information dimension [Farmer, 19821. Note that this reduces 
to  what is commonly called the fractal dimension when pi is sufficiently smooth, 
i.e. when x i p i  logpi = logn, where n is the number of measurement outcomes 
with nonzero values of pi. 

This notion of dimension can be generalized by using the RQnyi entropy R, 

1 
(34) R, = - log x p: 

1-0  

where a > 0 and a # 1. The value for a = 1 is defined by taking the limit as 
a -+ 1, which reduces to the usual Shannon entropy. By replacing the Shannon 
entropy by the RQnyi entropy it is possible to define a generalized dimension d,. 
This contains the information dimension in the special case a = 1. This has proved 
to  be very useful in the study of multifractal phenomena (fractals whose scalings 
are irregular). We will say more about the use of such alternative entropies in the 
next section. 

The discussion so far has concerned the amount of information gained by an 
observer in making a single, isolated measurement, i.e. the information gained in 
taking a "snapshot" of a dynamical system. We can alternatively ask how much 
new information is obtained per unit time by an observer who is watching a movie 
of a dynamical system. In other words, what is the information acquisition rate of 
an experimenter who makes a series of measurements to monitor the behavior of a 
dynamical system? For a regular dynamical system (to be defined more precisely 
in a moment) new measurements asymptotically provide no further information in 
the limit t -, co. But if the dynamical system is chaotic, new measurements are 
constantly required to update the knowledge of the observer in order to keep the 
observer's knowledge of the state of the system at the same resolution. 

This can be made more precise as follows. Consider a sequence of m measure- 
ments (xl, 2 2 ,  . . . ,%,) = X,, where each measurement corresponds to observing 
the system in a particular N dimensional cube. Letting p(X,) be the probability 
of observing the sequence X,, the entropy of this sequence of measurements is 

We can then define the information acquisition rate as 

H m  (36) h = lim - 
m-00 m a t '  

At is the sampling rate for making the measurements. Providing At is sufficiently 
small and other conditions are met, h is equal to the metric entropy, also called 
the Kolmogorov-Sinai (KS) entropy13. Note that this is not really an entropy, 

131n our discussion of metric entropy we are sweeping many important mathematical formalities 
under the  rug. For example, to  make this definition precise we need to  take a supremum over 
all partitions-and sampling rates. Also, it is not necessary to  make the measurements in N 
dimensions - there typically exists a one dimensional projection that is sufficient, under an 
optimal partition. 
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but an entropy production rate, which (if logs are taken to base 2) has units of 
bitslsecond. If h)O the motion is chaotic, and if h = 0 it is regular. Thus, when 
the system is chaotic, the entropy H, contained in a sequence of measurements 
continues to increase even in the limit as the sequence becomes very long. In 
contrast, for a regular motion this reaches a limiting value. 

Although we have so far couched the discussion in terms of probabilities, the 
metric entropy is determined by geometry. The average rates of expansion and 
contraction in a trajectory of a dynamical system can be characterized by the 
spectrum of Lyapunov exponents. These are defined in terms of the eigenvalues 
of D4t, the derivative of the dynarnical system, as defined in equation 30. For a 
dynamical system in N dimensions, let the N eigenvalues of the matrix D # J ~ ( ~ ( O ) )  
be ai(t). Because Ddt is a positive definite matrix, the ai are all positive. The 
Lyapunov exponents are defined as X i  = limt,, logai(t)/t. To think about this 
more geometrically, imagine an infinitesimal ball that has radius ~ ( 0 )  at time t = 0. 
As this ball evolves under the action of the dynamical system it will distort. Since 
the ball is infinitesimal, however, it  will remain an ellipsoid as it  evolves. Let 
the principal axes of this ellipsoid have length ei(t). The spectrum of Lyapunov 
exponents for a given trajectory passing through the initial ball is 

1 ~ i ( t )  
(37) Xi = lim lim - log -. 

t-03 E(O)'O t ~ ( 0 )  

For an N dimensional dynamical system there are N Lyapunov exponents. The 
positive Lyapunov exponents A+ measure the rates of exponential divergence, and 
the negative ones X- the rates of convergence. They are related to the metric 
entropy by Pesin's theorem 

In other words, the metric entropy is the sum of the positive Lyapunov exponents, 
and it corresponds to the average exponential rate of expansion in the phase space. 

Taken together the metric entropy and information dimension can be used to  
estimate the length of time that predictions remain valid. The information di- 
mension allows an estimate to be made of the information contained in an initial 
measurement, and the metric entropy estimates the rate at which this information 
decays. 

As we have already seen, for a series of measurements the metric entropy tells 
us the information gained with each measurement. But if each measurement is 
made with the same precision, the information gained must equal the information 
that would have been lost had the measurement not been made. Thus the metric 
entropy also quantifies the initial rate at which knowledge of the state of the system 
is lost after a measurement. 

To make this more precise, let pij(t) be the probability that a measurement 
at time t has outcome j if a measurement at time 0 has outcome i. In other 
words, given the state was measured in partition element Ci a t  time 0, what is the 
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probability it will be in partition element Cj at time t?. By definition pij(0) = 1 
if i = j and pij(0) = 0 otherwise. With no initial information, the information 
gained from the measurement is determined solely by the asymptotic measure p, 
and is - log p(Cj). In contrast, if Ci is known the information gained on learning 
outcome j is - logpij(t). The extra information using a prediction from the initial 
data is the difference of the two or log(pij (t)/p(Cj)). This must be averaged over 
all possible measurements Cj at time t ,  and all possible initial measurements Ci. 
The measurements Cj are weighted by their probability of occurrence pij ( t ) ,  and 
the initial measurements are weighted by p(Ci). This gives 

It can easily be shown that in the limit where the initial measurements are made 
arbitrarily precise, I ( t )  will initially decay at a linear rate, whose slope is equal to 
the metric entropy. For measurements with signal to noise ratio s, i.e. with logs x 
I log €1, I(0) = DI logs. Thus I( t)  can be approximated as I( t)  = DI logs - ht, 
and the initial data becomes useless after a characteristic time T = (DI/h) log s. 

To conclude, chaotic dynamics provides the link that connects deterministic 
dynamics with probability. While we can discuss chaotic systems in completely 
deterministic terms, as soon as we address problems of measurement and long- 
term predictability we are forced to think in probabilistic terms. The language we 
have developed above, of information dimension, Lyapunov exponents, and metric 
entropy, provide the link between the geometric and probabilistic views. Chaotic 
dynamics can happen even in a few dimensions, but as we move to high dimensional 
systems, e.g. when we discuss the interactions between many particles, probability 
is thrust on us for two reasons: The difficulty of keeping track of all the degrees of 
freedom, and the "increased likelihood" that nonlinear interactions will give rise 
to chaotic dynamics. "Increased likelihood" is in quotations because, despite more 
than a century of effort, understanding the necessary and sufficient conditions for 
the validity of statistical mechanics remains an open problem. 

5 ABOUT ENTROPY 

In this section we will discuss various aspects of entropy, its relation with informa- 
tion theory and the sometimes confusing connotations of order, disorder, ignorance 
and incomplete knowledge. This will be done by treating several well known puz- 
zles and paradoxes related with the concept of entropy. A derivation of the second 
law using the procedure called coarse graining is presented. The extensivity or ad- 
ditivity of entropy is considered in some detail, also when we discuss nonstandard 
extensions of the definition of entropy. 
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5.1 Entropy and information 

The important innovation Shannon made was to show that the relevance of the 
concept of entropy considered as a measure of information was not restricted to 
thermodynamics, but could be used in any context where probabilities can be 
defined. He applied it to problems in communication theory and showed that it 
can be used to  compute a bound on the information transmission rate using an 
optimal code. 

One of the most basic results that Shannon obtained was to show that the choice 
of the Gibbs form of entropy to describe uncertainty is not arbitrary, even when 
it is used in a very general context. Both Shannon and Khinchin [Khinchin, 19491 
proved that if one wants certain conditions to be met by the entropy function 
then the functional form originally proposed by Gibbs is the unique choice. The 
fundamental conditions as specified by Khinchin are: 

1. For a given n and ~ ~ = ,  pi = 1, the required function H(pl, ...p,) is maximal 
for all pi = lln. 

2. The function should satisfy H(pl , ...p,, 0) = H (pl , ...p,). The inclusion of 
an impossible event should not change the value of H .  

3. If A and B are two finite sets of events, not necessarily independent, the 
entropy H(A, B)  for the occurrence of joint events A and B is the entropy 
for the set A alone plus the weighted average of the conditional entropy 
H(B(Ai) for B given the occurrence of the ith event Ai in A, 

where event Ai occurs with probability pi. 

The important result is that given these conditions the function H given in equa- 
tion (29) is the unique solution. Shannon's key insight was that the results of 
Boltzmann and Gibbs in explaining entropy in terms of statistical mechanics had 
unintended and profound side-effects, with a broader and more fundamental mean- 
ing that transcended their physical origin of entropy. The importance of the ab- 
stract conditions formulated by Shannon and Khinchin show the very general con- 
text in which the Gibbs-Shannon function is the unique answer. Later on we will 
pose the question of whether there are situations where not all three conditions 
are appropriate, leading to alternative expressions for the entropy. 

5.2 The Landauer principle 

Talking about the relation between information and entropy it may be illuminating 
to return briefly to the Landauer principle[Landauer, 1961; Landauer, 19911, which 
as we mentioned in the first section, is a particular formulation of the second law 
of thermodynamics well suited for the context of information theory. The principle 
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expresses the fact that erasure of data in a system necessarily involves producing 
heat, and thereby increasing the entropy. We have illustrated the principle in 
figure 4. Consider a "gas" consisting of a single atom in a symmetric container 

Figure 4. An illustration of the Landauer principle using a very simple thermody- 
namical system. 

with volume 2V, in contact with a heat bath. We imagine that the position 
of the particle acts as a memory with one bit of information, corresponding to 
whether the atom is on the left or on the right. Erasing the information amounts 
to resetting the device to the "reference" state 1 independent of the initial state. 
Erasure corresponds therefore to  reinitializing the system rather then making a 
measurement. It can be done by first opening a diaphragm in the middle, then 
reversibly moving the piston from the right in, and finally closing the diaphragm 
and moving the piston back. In the first step the gas expands freely to the double 
volume. The particle doesn't do any work, the energy is conserved, and therefore 
no heat will be absorbed from the reservoir. This is an irreversible adiabatic 
process by which the entropy S of the gas increases by a factor k In 2V/V = k In 2. 
(The number of states the particle can be in is just the volume; the average velocity 
is conserved because of the contact with the thermal bath and will not contribute 
to  the change in entropy). In the second part of the erasure procedure we bring 
the system back to a state which has the same entropy as the initial state. We do 
this through a quasistatic (i.e. reversible) isothermal process a t  temperature T. 
During the compression the entropy decreases by k In 2. This change of entropy is 
nothing but the amount of heat delivered by the gas to the reservoir divided by 
the temperature, i.e. AS = J d S  = JdQIT = AQ/T. The heat produced AQ 
equals the net amount of work W that has been done in the cycle by moving the 
piston during the compression. The conclusion is that during the erasure of one 
bit of information the device had to produce at least AQ = k T  ln 2 of heat. 

We may look at the same process somewhat more abstractly, purely from the 
point of view of information. We map the erasure of information for the simple 
memory device on the sequence of diagrams depicted in figure 5. We choose 
this representation of the accessible (phase) space to clearly mark the differences 
between the situation where the particle is in the left o r  the right (A), the left 
and the right (B), and the left compartment only (C). In part A the memory 
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Figure 5. A phase space picture of Landauer's principle. See text for an explana- 
tion. 

corresponds to the particle being either in the left or in the right compartment. In 
B the partition has been removed and through the free expansion the phase space 
has doubled and consequently the entropy increased by ln2. In C the system 
is brought back to  the reference state, i.e. the particle is brought in the left 
compartment. This is done by moving a piston in from the right, inserting the 
partition, and moving the piston out again. It is in the compressing step that the 
phase space is reduced by a factor of two and hence entropy is reduced by ln2. 
This is possible because we did work, producing a corresponding amount of heat 
(AQ 2 Tln2).  Note that in this representation one can in principle change the 
sizes of the partitions along the horizontal directions and the a priori probabilities 
along the vertical direction to model different types or aspects of memory devices. 

5.3 T h e  entropy as a relative concept 

Irreversibility is a consequence of the explicit introduction of ignorance into 
the fundamental laws. 

M. Born 

There is a surprising amount of confusion about the interpretation and meaning 
of the concept of entropy [Guttman, 1999; Denbigh and Denbigh, 19851. One 
may wonder to  what extent the "entropic principle" just is an L'anthropocentric 
principle"? That is, does entropy depend only on our perception, or is it something 
more fundamental? Is it a subjective attribute in the domain of the observer or 
is it an intrinsic property of the physical system we study? Let us consider the 
common definition of entropy as a measure of disorder. This definition can be 
confusing unless we are careful in spelling out what we mean by order or disorder. 
We may for instance look at the crystallization of a supercooled liquid under 
conditions where it is a closed system, i.e. when no energy is exchanged with 
the environment. Initially the molecules of the liquid are free to randomly move 
about, but then (often through the addition of a small perturbation that breaks 
the symmetry) the liquid suddenly turns into a solid by forming a crystal in which 
the molecules are pinned to the sites of a regular lattice. From one point of 
view this a splendid example of the creation of order out of chaos. Yet from 
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standard calculations in statistical mechanics we know that the entropy increases 
during crystallization. This is because what meets the eye is only part of the 
story. During crystallization entropy is generated in the form of latent heat, which 
is stored in the vibrational modes of the molecules in the lattice. Thus, even 
though in the crystal the individual molecules are constrained to be roughly in 
a particular location, they vibrate around their lattice sites more energetically 
than when they were free to wander. From a microscopic point of view there are 
more accessible states in the crystal than there were in the liquid, and thus the 
entropy increases. The thermodynamic entropy is indifferent to whether motions 
are microscopic or macroscopic - it only counts the number of accessible states 
and their probabilities. 

In contrast, to  measure the sense in which the crystal is more orderly, we must 
measure a different set of probabilities. To do this we need to define probabilities 
that depend only on the positions of the particles and not on their velocities. 
To make this even more clear-cut, we can also use a more macroscopic partition, 
large enough so that the thermal motions of a molecule around its lattice site 
tend to stay within the same partition element. The entropy associated with this 
set of probabilities, which we might call the "spatial order entropy", will behave 
quite differently from the thermodynamic entropy. For the liquid, when every 
particle is free to move anywhere in the container, the spatial order entropy will 
be high, essentially at its largest possible value. After the crystallization occurs, 
in contrast, the spatial order entropy will drop dramatically. Of course, this is 
not the thermodynamic entropy, but rather an entropy that we have designed 
to quantitatively capture the aspect of the crystalline order that we intuitively 
perceive. 

As we emphasized before, Shannon's great insight was that it  is possible to as- 
sociate an entropy with any set of probabilities. However, the example just given 
illustrates that when we use entropy in the broader sense of Shannon we must be 
very careful to specify the context of the problem. Shannon entropy is just a func- 
tion that reduces a set of probabilities to a number, reflecting how many nonzero 
possibilities there are as well as the extent to which the set of nonzero probabilities 
is uniform or concentrated. Within a fixed context, a set of probabilities that is 
smaller and more concentrated can be interpreted as more "orderly", in the sense 
that fewer numbers are needed to  specify the set of possibilities. Thermodynamics 
dictates a particular context - we have to measure probabilities in the full state 
space. Thermodynamic entropy is a special case of Shannon entropy. In the more 
general context of Shannon, in contrast, we can define probabilities however we 
want, depending on what we want to do. But to  avoid confusion we must always 
be careful to keep this context in mind, so that we know what our computation 
means. 

5.4 Maxwell's demon 

The "being" soon came to be called Maxwell's demon, because of its far- 
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reaching subversive effects on the natural order of things. Chief among these 
effects would be to abolish the need for energy sources such as oil, uranium 
and sunlight. 

C.H. Bennett 

The second law of thermodynamics is statistical, deriving from the fact that the 
individual motions of the molecules are not observed or controlled in any way. 
Would things be different if we could intervene on a molecular scale? This question 
gives rise to an important paradox posed by Maxwell in 1872, which appeared 
in his Theory of Heat [Maxwell, 18721. This has subsequently been discussed 
by generations of physicists, notably Szilard [Szilard, 19291, Brillouin [Brillouin, 
19561, Landauer [Landauer, 19611, Bennett [Bennett, 19821 and others. 

Maxwell described his demonic setup as follows: "Let us suppose that a vessel 
is divided in two portions, A and B, by a division in which there is a small hole, 
and that a being who can see individual molecules opens and closes this hole, so 
as to allow only the swifter particles to to  pass from A to B, and only the slower 
ones to pass from B to A. He will thus, without expenditure of work, raise the 
temperature of B and lower that of A, in contradiction with the second law of 
thermodynamics." In attempts to save the second law from this demise, many 
aspects of the problem have been proposed for its resolution, including Brownian 
motion, quantum uncertainty and even Godel's Theorem. The resolution of the 
paradox touches on some very fundamental issues that center on the question of 
how the demon might actually realize his subversive interventions. 

Szilard clarified the discussion by introducing an engine (or thermodynamic 
cycle), which is depicted in the left half of figure 6. He and Brillouin focused on 
the measurement the demon has to perform in order to find out in which half of 
the vessel the particle is located after the partition has been put into place. For 
the demon to "see" the actual molecules he has to use a measurement device, such 
as a source of light (photons) and a photon detector. He will in principle be able 
to measure whether a molecule is faster or slower then the thermal average by 
scattering a photon off of it. Brillouin tried to argue that the entropy increase 
to the whole system once the measurement is included would always be larger 
or equal then the entropy gain achieved by the subsequent actions of the demon. 
However, this argument didn't hold; people were able to invent devices that got 
around the measurement problem, so that it appeared the demon could beat the 
second law. 

Instead, the resolution of the paradox comes from a very different source. In 
1982 Bennett gave a completely different argument to rescue the second law. The 
fundamental problem is that under Landauer's principle, production of heat is 
necessary for erasure of information (see section 5.2). Bennett showed that a 
reversible measurement could in principle be made, so that Brillouin's original 
argument was wrong - measurement does not necessarily produce any entropy. 
However, to  truly complete the thermodynamic cycle, the demon has to  erase the 
information he obtained about the location of the gas molecule. As we already 
discussed in section 5.2, erasing that information produces entropy. It turns out 
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Figure 6. The one-particle Maxwell demon apparatus as envisaged by Bennett 
[Bennett, 1982; Bennett, 19871. An explanation is given in the text. 

that the work that has to be done to  erase the demon's memory is a t  least as much 
as was originally gained. 

Figure 6 illustrates the one-particle Maxwell demon apparatus as envisaged by 
Bennett [Bennett, 1982; Bennett, 19871, which is a generalization of the engine 
proposed by Szilard [Szilard, 19291. On the left in row (A) is a gas container con- 
taining one molecule with a partition and two pistons. On the right is a schematic 
representation of the phase space of the system, including the demon. The state 
of mind of the demon can be in three different states: He can know the molecule is 
on the right (state 0), on the left (state l ) ,  or he can be in the reference or blank 
state r ,  where he lacks any information and knows that he doesn't know where 
the particle is. In the schematic diagram of the phase space, shown on the right, 
the vertical direction indicates the state of memory of the demon and the hori- 
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zontal direction indicates the position of the particle. In step (B) a thin partition 
is placed in the container, trapping the particle in either the left or right half. In 
step (C) the demon makes a (reversible) measurement to determine the location 
of the particle. This alters his state of mind as indicated - if the particle is on 
the right, it goes into state 0, if on the left, into state 1. In step (D), depending 
on the outcome of the measurement, he moves either the right or left piston in 
and removes the partition. In (E) the gas freely expands, moving the piston out 
and thereby doing work. In state (E) it appears as if the system has returned to  
its original state - it has the same volume, temperature and entropy - yet work 
has been done. What's missing? The problem is that in (E) the demon's mind has 
not returned to its original blank state. He needs to know that he doesn't know 
the position of the particle. Setting the demon's memory back into its original 
state requires erasing a bit of information. This is evident in the fact that to go 
from (E) to (F) the occupied portion of the phase space is reduced by a factor of 
two. This reduction in entropy has to be accompanied by production of heat as a 
consequence of Landauer's principle (see figure 4 and figure 5) - the work that 
is done to  erase a bit of information is greater than or equal to the work gained by 
the demon. This ensures that the full cycle of the complete system respects the 
second law after all. 

This resolution of the paradox is remarkable, because it is not the acquisition of 
information (the measurement) which is irreversible and thermodynamically costly, 
but it is the process of erasure, which is both logically and thermodynamically 
irreversible, that leads to the increase of entropy required by the second law. The 
information comes for free, but it  poses a waste disposal problem which is costly. It 
is gratifying to see information theory come to rescue of one of the most cherished 
physical laws. 

5.5 The Gibbs paradox 

The Gibbs paradox provides another interesting chapter in the debate on the 
meaning of entropy. The basic question is to what extent entropy is a subjective 
notion. In its simplest form the paradox concerns the mixing of two ideal gases 
(kept a t  the same temperature and pressure) after removing a partition. If it has 
been removed the gases will mix, and if the particles of the two gases are distin- 
guishable the entropy will increase due to this mixing. However, if the gases are 
identical, so that their particles are indistinguishable from those on the other side, 
there is no increase in the entropy. Maxwell imagined the situation where the gases 
were initially supposed to be identical, and only later recognized to be different. 
This reasoning led to the painful conclusion that the notion of irreversibility and 
entropy would depend on our knowledge of physics. He concluded that the entropy 
would thus depend on the state of mind of the experimenter and therefore lacked 
an objective ground. It was again Maxwell with a simple question who created 
an uncomfortable situation which caused a long debate. After the development of 
quantum mechanics, it became clear that particles of the same species are truly 
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indistinguishable. There is no such thing as labeling N individual electrons, and 
therefore interchanging electrons doesn't change the state and this fact reduces 
the number of states by a relative factor of N!. Therefore the conclusion is that 
the entropy does not increase when the gases have the same constituent particles, 
and it does increase when they are different. 

However, the resolution of Gibbs paradox does not really depend on quantum 
mechanics. Jaynes has emphasized that in the early works of Gibbs, the correct ar- 
gument was already given (well before the advent of quantum mechanics) [ ~ a ~ n e s ,  
19961. Gibbs made an operational definition, saying that if "identical" means any- 
thing, it means that there is no way an "unmixing" apparatus could determine 
whether a particular molecule came from a given side of the box, short of having 
followed its entire trajectory. Thus if the particles of the gas are identical in this 
sense, the entropy will not change. We conclude that the adequate definition of 
entropy reflects the objective physical constraints we put on the system, i.e. what 
measurements are possible or admissible. This has nothing to do with our lack of 
knowledge but rather with our choices. The 'incompleteness of our knowledge' is 
an exact and objective reflection of a particular set of macroscopic constraints im- 
posed on the physical system we want to describe. The system's behavior depends 
on these constraints, and so does the entropy. 

5.6 T h e  maxzmal entropy principle of Jaynes 

The statistical practice of physicists has tended to lag about 20 years behind 
current developments in the field of basic probability and statistics. 

E.T. Jaynes (1963) 

There are two equivalent sets of postulates that can be used as a foundation to 
derive an equilibrium distribution in statistical mechanics. One is to begin with 
the hypothesis that equilibrium corresponds to a minimum of the free energy, and 
the other is that it corresponds to a maimum of the entropy. The latter approach 
is a relatively modern development. Inspired by Shannon, Jaynes turned the pro- 
gram of statistical mechanics upside down [Jaynes, 19831. Starting from a very 
general set of axioms he showed that under the assumption of equilibrium the 
Gibbs expression for the entropy is unique. Under Jaynes' approach, any problem 
in equilibrium statistical mechanics is reduced to finding the set of pi for which 
the entropy is maximal, under a set of constraints that specify the macroscopic 
conditions, which may come from theory or may come directly from observational 
data [Japes,  19631. This variational approach removes some of the arbitrariness 
that was previously present in the foundations of statistical mechanics. The prin- 
ciple of maximum entropy is very simple and has broad application. For example 
if one maximizes S only under the normalization condition xi pi = 1 ,  then one 
finds the unique solution that pi = 1/N with N the total number of states. This is 
the uniform probability distribution underlying the equipartition principle. Sim- 
ilarly, if we now add the constraint that energy is conserved, i.e. C i t ^ i p i  = U ,  
then the unique solution is given by the Boltzmann distribution, equation (19). 
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The maximum entropy principle as a starting point clearly separates the physical 
input and purely probabilistic arguments that enter the theory. Let us derive the 
Maxwell-Boltzmann distribution to illustrate the maximal entropy principle. We 
start with the function L(pi, cr,P) which depends on the probability distribution 
and two Lagrange multipliers to impose the constraints: 

The maximum is determined by setting the partial derivatives of L equal zero: 

a L  N 

(43) - = 5 - l = O  
dcr i=l 

From the first equation we immediately obtain that: 

(45) p. 2 - - e- ( l+a+P~i)  j pi = ye-P&i 

The parameters y  and P are determined by the constraint equations. If we first 
substitute the above solution in the normalisation constraint, and then use the 
defining equation for the partition sum (20), we find that y = 112. The solution 
for ,B is most easily obtained using the following argument. First substitute (45) 
in the definition (27) of S to obtain the relation: 

Next we use the thermodynamic relation between energy and entropy (3), from 
which we obtain hat dU/dS = T .  Combining these two relations we find that 
/3 = l / T ,  which yields the thermal equilibrium distribution (19). 

The maximal entropy formalism has a much wider validity than just statisti- 
cal mechanics. It is widely used for statistical inference in applications such as 
optimizing data transfer and statistical image improvement. In these contexts it 
provides a clean answer to the question, "given the constraints I know about in 
the problem, what is the model that is as random as possible (i.e. minimally 
biased) subject to  these constraints?". A common application is missing data: 
Suppose one observes a series of points xi at regular time intervals, but some of 
the observations are missing. One can make a good guess for the missing values by 
solving for the distribution that maximizes the entropy, subject to the constraints 
imposed by the know data points. 

One must always bear in mind, however, that in physics the maximum entropy 
principle only applies to equilibrium situations, which are only a small subset of 
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the problems in physics. For systems that are not in equilibrium one must take a 
different approach. Attempts to understand non-equilibrium statistical mechanics 
have led some researchers to explore the use of alternative notions of entropy, as 
discussed in Section 5.11. 

5.7 Ockham's razor 

Entia non sunt multiplicanda praeter neccessitatem 
(Ent i t ies  should not be introduced except when strictly necessary) 

William van Ockham (1285-1347) 

An interesting and important application of information is to the process of 
modeling itself. When developing a model it  is always necessary to make a tradeoff 
between models that are too simple and fail to explain the data properly, and 
models that are too complicated and fit fluctuations in the data that are really 
just noise. The desirability of simpler models is often called "Ockham's razor": 
If two models fit the existing data equally well, the simplest model is preferable, 
in the sense that the simpler model is more likely to  make good predictions for 
data that has not yet been seen. While the value of using simple models seems 
like something we can all agree on, the tradeoff in real problems is typically not 
so obvious. Suppose model A fits the data a little better than model B, but has 
one more parameter. How does one trade off goodness of fit against number of 
parameters? 

Using ideas from information theory Akaike [Akaike, 19741 introduced a method 
for making tradeoffs between goodness of fit and model complexity that can be 
applied in the context of simple linear models. Rissenen subsequently introduced 
a more general framework to  think about this problem based on a principle that he 
called minimum description length (MDL) [Rissanen, 1978; Grunwald et al., 2004; 
Grunwald and VitAnyi, 1. The basic idea is that the ability to make predictions 
and the ability to compress information are essentially two sides of the same coin. 
We can only compress data if it contains regularities, i.e. if the structure of the 
data is a t  least partially predictable. We can therefore find a good prediction 
model by seeking the model that gives the shortest description of the data we 
already have. When we do this we have to take the description length of the 
model into account, as well as the description length of the deviations between the 
model's predictions and the actual data. The deviations between the model and 
the data can be treated as probabilistic events. A model that gives a better fit has 
less deviation from the data, and hence implies a tighter probability distribution, 
which translates into a lower entropy for the deviations from the data. This entropy 
is then added to the information needed to specify the model and its parameters. 
The best model is the one with the lowest sum, i.e. the smallest total description 
length. By characterizing the goodness of fit in terms of bits, this approach puts 
the complexity of the model and the goodness of fit on the same footing, and gives 
the correct tradeoff between goodness of fit and model complexity, so that the 
quality of any two models can be compared, at least in principle. 
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This shows how at some level the concept of entropy underlies the whole sci- 
entific method, and indeed, our ability to make sense out of the world. To 
describe the patterns in the world, we need to make a trade-off between over- 
fitting (fitting every bump even if it is a random variation, i.e. fitting noise) 
and overgeneralization (identifying events that really are different). A similar 
trade-off arises in assigning a causal mechanism to the occurrence of an event 
or explaining it as random. This problem of how to exactly make such trade- 
offs based on time series analysis has a rather long history but on the other 
hand is still an active topic of research [Kan, 2006; Crutchfield and Young, 1989; 
Still and Crutchfield, 20071. Even if we do not do these trade-offs perfectly and 
do not think about it quantitatively, when we discover and model regularities in 
the world, we are implicitly relying on a model selection process of this type. Any 
generalization makes a judgment that trades off the information needed to  specify 
the model and the entropy of the fit of the model to the world. 

5.8 Coarse graining and irreversibility 

Our aim is not t o  Lexplain irreversibility' but to describe and predict the 

observable facts. If one succeeds in doing this correctly, from first principles, 

we will find that  philosophical questions about the 'nature of irreversibility' 

will either have been answered automatically or else will be seen as ill con- 

sidered and irrelevant. 

E.T. Jaynes 

The second law of thermodynamics says that for a closed system the entropy 
will increase until it reaches its equilibrium value. This corresponds to the irre- 
versibility we all know from daily experience. If we put a drop of ink in a glass of 
water the drop will diffuse through the water and dilute until the ink is uniformly 
spread through the water. The increase of entropy is evident in the fact that the 
ink is initially in a small region, with pi = 0 except for this region, leading to a 
probability distribution concentrated on a small region of space and hence a low 
entropy. The system will not return to its original configuration. Although this is 
not impossible in principle, it is so improbable that it will never be observed14 

Irreversibility is hard to understand from the microscopic point of view because 
the microscopic laws of nature that determine the time evolution of any physical 

l4 "Never say never" is a saying of unchallenged wisdom. What we mean here by "never", is 
inconceivably stronger then "never in a lifetime", or even "never in the lifetime of the universe". 
Let's make a rough estimate: consider a dilute inert gas, say helium, that fills the left half 
of a container of volume V. Then we release the gas into the full container and ask what 
the recurrence time would be, i.e. how long it would take before all particles would be in 
the left half again. A simple argument giving a reasonable estimate, would be as follows: At 
any given instant the probability for a given particle to be in the left half is 1/2, but since 
the particles are independent, the probability of N - NA particles to be in the left half is 

20 
P = (1/2)1023 % lo(-lo ). Assuming a typical time scale for completely rearranging all the 
particles in the container of, say, TO = seconds, the typical time that will pass before such 

20 
a fluctuation occurs is T = TO/P = 10l0 x 101020 sec. 
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system on the fundamental level are all symmetric under time reversal. That is, 
the microscopic equations of physics, such as F = ma, are unchanged under the 
substitution t --+ -t. How can irreversibility arise on the macroscopic level if it 
has no counterpart on the microscopic level? 

In fact, if we compute the entropy at a completely microscopic level it is con- 
served, which seems to violate the second law of thermodynamics. This follows 
from the fact that momentum is conserved, which implies that volumes in phase 
space are conserved. This is called Liouville's theorem. It is easy to prove that 
this implies that the entropy S is conserved. This doesn't depend on the use of 
continuous variables - it only depends on applying the laws of physics at the 
microscopic level. It  reflects the idea of Laplace, which can be interpreted as a 
statement that statistical mechanics wouldn't really be necessary if we could only 
measure and track all the little details. The ingenious argument that Gibbs used 
to  clarify this, and thereby to reconcile statistical mechanics with the second law 
of thermodynamics, was to introduce the notion of coarse graining. This proce- 
dure corresponds to a systematic description of what we could call "zooming out". 
As we have already mentioned, this zooming out involves dividing phase space up 
in finite regions 6 according to  a partition ll. Suppose, for example, that at a 
microscopic level the system can be described by discrete probabilities pi for each 
state. Let us start with a closed system in equilibrium, with a uniform distribution 
over the accessible states. For the Ising system, for example, pi = l/g(N, i) is the 
probability of a particular configuration of spins. Now we replace in each little 
region S the values of pi by its average value pi over 6: 

and consider the associated coarse grained entropy 

Because we start at time t = 0 with a uniform probability distribution, S(0)  = 
S(0). Next we change the situation by removing a constraint of the system so that 
it is no longer in equilibrium. In other words, we enlarge the space of accessible 
states but have as an initial condition that the probabilities are zero for the new 
states. For the new situation we still have that S(0) = S(O), and now we can 
compare the evolution of the fine-grained entropy S(t)  and the coarse-grained 
entropy S(t). The evolution of S(t) is governed by the reversible microscopic 
dynamics and therefore it  stays constant, so that S(t)  = S(0). To study the 
evolution of the coarse-grained entropy we can use a few simple mathematical 
tricks. First, note that because ySi is constant over each region with 6 elements, 

Then we may write 
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which in information theory is called he Kullback-Leibler divergence. The math- 
ematical inequality x l n x  > (x - I), with x = pi/pi, then implies the Gibbs 
inequality: 

Equality only occurs if pi/pi = 1 throughout, so except for the special case where 
this is true, this is a strict inequality and the entropy increases. We see how the 
second law is obtained as a consequence of coarse graining. 

The second law describes mathematically the irreversibility we witness when 
somebody blows smoke in the air. Suppose we make a film of the developing 
smoke cloud. If we film the movie at an enormous magnification, so that what we 
see are individual particles whizzing back and forth, it will be impossible to tell 
which way the movie is running - from a statistical point of view it will look the 
same whether we run the movie forward or backward. But if we film it at a normal 
macroscopic scale of resolution, the answer is immediately obvious - the direction 
of increasing time is clear from the diffusion of the smoke from a well-defined thin 
stream to a diffuse cloud. 

From a philosophical point of view one should ask to what extent coarse graining 
introduces an element of subjectivity into the theory. One could object that the 
way we should coarse grain is not decided upon by the physics but rather by 
the person who performs the calculation. The key point is that, as in so many 
other situations in physics, we have to use some common sense, and distinguish 
between observable and unobservable quantities. Entropy does not increase in 
the highly idealized classical world that Laplace envisioned, as long as we can 
observe all the microscopic degrees of freedom and there are no chaotic dynamics. 
However, as soon as we violate these conditions and observe the world at a finite 
level of resolution (no matter how accurate), chaotic dynamics ensures that we 
will lose information and entropy will increase. While the coarse graining may 
be subjective, this is not surprising - measurements are inherently subjective 
operations. In most systems one will have that the entropy may stabilize on 
plateaus corresponding to certain ranges of the fineness of the coarseness. In many 
applications the increase of entropy will therefore be constant (i.e. well defined) 
for a sensible choice for the scale of coarse graining. The increase in (equilibrium) 
entropy between the microscopic scale and the macroscopic scale can also be seen 
as the amount of information that is lost by increasing the graining scale from 
the microscopic to the macroscopic. A relevant remark at this point is that a 
system is of course never perfectly closed - there are always small perturbations 
from the environment that act as a stochastic perturbation of the system, thereby 
continuously smearing out the actual distribution in phase space and simulating 
the effect of coarse graining. Coarse graining correctly captures the fact that 
entropy is a measure of our uncertainty; the fact that this uncertainty does not 
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exist for regular motions and perfect measurements is not relevant to most physical 
problems. 

5.9 Coarse graining and renomalization 

In a written natural language not all finite combinations of letters are words, not all 
finite combinations of words are sentences, and not all finite sequences of sentences 
make sense. So by identifying what we call meaningful with accessible, what we 
just said means that compared with arbitrary letter combinations, the entropy of 
a language is extremely small. 

Something similar is true for the structures studied in science. We are used to 
thinking of the rich diversity of biological, chemical and physical structures as being 
enormous, yet relative to  what one might imagine, the set of possibilities is highly 
constrained. The complete hierarchy starting from the most elementary building 
blocks of matter such as leptons and quarks, all the way up to  living organisms, 
is surprisingly restricted. This has to do with the very specific nature of the 
interactions between these building blocks. To our knowledge at the microscopic 
level there are only four fundamental forces that control all interactions. At each 
new structural level (quarks, protons and neutrons, nuclei, atoms, molecules, etc) 
there is a more or less autonomous theory describing the physics at that level 
involving only the relevant degrees of freedom at that scale. Thus moving up a level 
corresponds to throwing out an enormous part of the phase space available to the 
fundamental degrees of freedom in the absence of interactions. For example, at the 
highest, most macroscopic levels of the hierarchy only the long range interactions 
(electromagnetism and gravity) play an important role -the structure of quantum 
mechanics and the details of the other two fundamental forces are more or less 
irrelevant. 

We may call the structural hierarchy we just described "coarse graining" a t  
large. Although this ability to leave the details of each level behind in moving up 
to the next is essential to science, there is no cut and dried procedure that tells us 
how to  do this. The only exception is that in some situations it is possible to do 
this coarse graining exactly by a procedure called renormalization  inn-  us tin, 
19891. This is done by systematically studying how a set of microscopic degrees of 
freedom at  one level can be averaged together to describe the degrees of freedom 
at the next level. There are some situations, such as phase transitions, where this 
process can then be used repeatedly to demonstrate the existence of fixed points 
of the mapping from one level to the next (an example of a phase transition is the 
change from a liquid to  a gas). This procedure has provided important insights in 
the nature of phase transitions, and in many cases it has been shown that some of 
their properties are universal, in the sense that they do not depend on the details 
of the microscopic interactions. 
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5.10 Adding the entropy of subsystems 

Entropy is an extensive quantity. Generally speaking the extensivity of entropy 
means that it has to satisfy the fundamental linear scaling property 

(52) S(T, qV, qN) = qS(T, V, N) ,  0 < q < oo. 

Extensivity translates into additivity of entropies: If we combine two noninteract- 
ing systems (labelled 1 and 2) with entropies S1 and S2, then the total number 
of states will just be the product of those of the individual systems. Taking the 
logarithm, the entropy of the total system S becomes: 

Applying this to two spin systems without an external field, the number of states 
of the combined system is w = 2 N l + N ~ ,  i.e. w = w1 w2. Taking the logarithm 
establishes the additivity of entropy. 

However if we allow for a nonzero magnetic field, this result is no longer obvious. 
In Section 3.2 we calculated the number of configurations with a given energy 
~k = -kpH as g(N, k). If we now allow two systems to  exchange energy but keep 
the total energy fixed, then this generates a dependence between the two systems 
that lowers the total entropy. We illustrate this with an example: 

Let the number of spins pointing up in system 1 be kl and the number of 
particles be Nl, and similarly let this be k2 and N2 for system 2. The total energy 
k = kl + k2 is conserved, but the energy in either subsystem (kl and k2) is not 
conserved. The total number of spins, N = Nl + N2 is fixed, and so are the spins 
(Nl and N2) in either subsystem. Because the systems only interact when the 
number of up spins in one of them (and hence also the other one) changes, we can 
write the total number of states for the combined system as 

where we are taking advantage of the fact that as long as k1 is fixed, systems 
one and two are independent. Taking the log of the above formula clearly does 
not lead to the additivity of entropies because we have to sum over kl. This 
little calculation illustrates the remark made before: Since we have relaxed the 
constraint that each system has a fixed energy to the condition that only the 
sum of their energies is fixed, the number of accessible states for the total system 
is increased. The subsystems themselves are no longer closed and therefore the 
entropy will change. 

The extensivity of entropy is recovered in the thermodynamic limit in the above 
example, i.e. when N -+ ce. Consider the contributions to the sum in (54) as a 
function of kl, and let the value of kl where g reaches a maximum be kl = i1. 
We can now write the contribution in the sum in terms S = kl - k1 as 
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where the correction factor can be calculated by expanding the g functions around 
their respective k values. Not surprisingly, in the limit where N is large it turns 
out that f is on the order o f f  - exp(-2S2) SO that the contributions to g(N, k)  of 
the nonmaximal terms in the sum (54) are exponentially suppressed. Thus in the 
limit that the number of particles goes to infinity the entropy becomes additive. 
This exercise shows that when a system gets large we may replace the averages of 
a quantity by its value in the most probable configuration, as our intuition would 
have suggested. From a mathematical point of view this result follows from the 
fact that the binomial distribution approaches a gaussian for large values of N, 
which becomes ever sharper as N -+ m. This simple example shows that the 
extensivity of entropy may or may not be true, depending on the context of the 
physical situation and in particular on the range of the inter-particle forces. 

When two subsystems interact, it is certainly possible that the entropy of one 
decreases at the expense of the other. This can happen, for example, because sys- 
tem one does work on system two, so the entropy of system one goes up while that 
of system two goes down. This is very important for living systems, which collect 
free energy from their environment and expel heat energy as waste. Nonetheless, 
the total entropy S of an organism plus its environment still increases, and so does 
the sum of the independent entropies of the non interacting subsystems. That is, 
if at time zero 

then at time t it may be true that 

This is due to the fact that only interactions with other parts of the system can 
lower the entropy of a given subsystem. In such a situation we are of course free 
to call the difference between the entropy of the individual systems and their joint 
entropy a negative correlation entropy. However, despite this apparent decrease of 
entropy, both the total entropy and the sum of the individual entropies can only 
increase, i.e. 

The point here is thus that equations (57) and (58) are not in conflict. 

5.11 Beyond the Boltzmann, Gibbs and Shannon entropy: the Tsallis 
entropy 

The equation S = k log W + const appears without an elementary theory - or 
however one wants to say it - devoid of any meaning from a phenomenological 
point of view. 

A. Einstein (1910) 
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As we have already stressed, the definition of entropy as - xi pi logpi and the 
associated exponential distribution of states apply only for systems in equilibrium. 
Similarly, the requirements for an entropy function as laid out by Shannon and 
Khinchin are not the only possibilities. By modifying these assumptions there are 
other entropies that are useful. We have already mentioned the R6nyi entropy, 
which has proved to be valuable to describe multi-fractals. 

Another context where considering an alternative definition of entropy appears 
to be useful concerns power laws. Power laws are ubiquitous in both natural 
and social systems. A power law15 is something that behaves for large x as 
f (x) N x - ~ ,  with a! > 0. Power law probability distributions decay much more 
slowly for large values of z than exponentials, and as a result have very differ- 
ent statistical properties and are less well-behaved1=. Power law distributions 
are observed in phenomena as diverse as the energy of cosmic rays, fluid tur- 
bulence, earthquakes, flood levels of rivers, the size of insurance claims, price 
fluctuations, the distribution of individual wealth, city size, firm size, govern- 
ment project cost overruns, film sales, and word usage frequencies [Newman, 2005; 
Farmer and Geanakoplos, 20061. Many different models can produce power laws, 
but so far there is no unifying theory, and it  is not yet clear whether any such uni- 
fying theory is even possible. It  is clear that power laws (in energy, for instance) 
can't be explained by equilibrium statistical mechanics, where the resulting dis- 
tributions are always exponential. A common property of all the physical systems 
that are known to have power laws and the models that purport to explain them 
is that they are in some sense nonequilibrium systems. The ubiquity of power laws 
suggests that there might be nonequilibrium generalizations of statistical mechan- 
ics for which they are the standard probability distribution in the same way that 
the exponential is the standard in equilibrium systems. 

From simulations of model systems with long-range interactions (such as stars in 
a galaxy) or systems that remain for long periods of time a t  the "edge of chaos", 
there is mounting evidence that such systems can get stuck in nonequilibrium 
meta-stable states with power law probability distributions for very long periods 
of time before they finally relax to equilibrium. Alternatively, power laws also 
occur in many driven systems that are maintained in a steady state away from 
equilibrium. Another possible area of applications is describing the behaviour of 
small subsystems of finite systems. 

From a purely statistical point of view it is interesting to  ask what type of 
entropy functions are allowed. The natural assumption to alter is the last of the 
Khinchin postulates as discussed in Section 5.2. The question becomes which en- 
tropy functions satisfy the remaining two conditions, and some sensible alternative 
for the third? It turns out that there is at least one interesting class of solutions 
called q-entropies introduced in 1988 by Tsallis [Tsallis, 1988; Gell-Mann and 
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Tsallis, 20041. The parameter q is usually referred to as the bias or correlation 
parameter. For q # 1 the expression for the q-entropy S, is 

For q = 1, Sq reduces to the standard Gibbs entropy by taking the limit as 
q -+ 1. Following Jaynes's approach to  statistical mechanics, one can maximize this 
entropy function under suitable constraints to obtain distribution functions that 
exhibit power law behavior for q # 1. These functions are called q-exponentials 
and are defined as 

An important property of the q-exponential function is that for q > 1 and x << -1 
it has a power law decay. The inverse of the q-exponential is the lnq(x) function 

The q-exponential can also be obtained as the solution of the equation 

This is the typical behavior for a dynamical system at the edge of linear stability, 
where the first term in its Taylor series vanishes. This gives some alternative 
insight into one possible reason why such solutions may be prevalent. Other typical 
situations involve long range interactions (such as the gravitational interactions 
between stars in galaxy formation) or nonlinear generalizations of the central limit 
theorem [Umarov et al., 20061 for variables with strong correlations. 

At first sight a problem with q-entropies is that for q # 1 they are not additive. 
In fact the following equality holds: 

(63) S, [ ~ ( ' ) p ( ~ ) ]  = S, [P( ' ) ]  + sq ( p ( 2 ) ]  + (1 - q) sq [p(l)] sq [p(2) ]  

with the corresponding product rule for the q-exponentials: 

(64) eq(x)eq(y) = eq(x + Y + (1 - ~ ) x Y )  

This is why the q-entropy is often referred to as a non-extensive entropy. However, 
this is in fact a blessing in disguise. If the appropriate type of scale invariant corre- 
lations between subsystems are typical, then the q-entropies for q # 1 are strictly 
additive. When there are sufficiently long-range interactions Shannon entropy is 
not extensive; Tsallis entropy provides a substitute that is additive (under the 
right class of long-range interactions), thereby capturing an underlying regularity 
with a simple description. 

This alternative statistical mechanical theory involves another convenient defi- 
nition which makes the whole formalism look like the "old" one. Motivated by the 
fact that the Tsallis entropy weights all probabilities according to p p ,  it is possible 
to define an "escort" distribution P?) 
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as introduced by Beck [Beck, 20011. One can then define the corresponding expec- 
tation values of a variable A in terms of the escort distribution as 

With these definitions the whole formalism runs parallel to the Boltzmann-Gibbs 
program. 

One can of course ask what the Tsallis entropy "means". The entropy Sq is 
a measure of lack of information along the same lines as the Boltzmann-Gibbs- 
Shannon entropy is. In particular, perfect knowledge of the microscopic state of 
the system yields Sq = 0, and maximal uncertainty (i.e., all W possible microscopic 
states are equally probable) yields maximal entropy, Sq = In, W. The question 
remains how generic such correlations are and which physical systems exhibit 
them, though a t  this point quite a lot of empirical evidence is accumulating to  
suggest that such functions are at least a good approximation in many situations. 
In addition recent results have shown that q-exponentials obey a central limit-like 
behavior for combining random variables with appropriate long-range correlations. 

A central question is what determines q? There is a class of natural, artificial 
and social systems for which it  is possible to choose a unique value of q such that 
the entropy is simultaneously extensive (i.e., Sq(N) proportional to the number 
of elements N, N >> 1) and there is finite entropy production per unit time (i.e., 
Sq(t) proportional to time t,  t >> l ) [~sa l l i s  e t  al., 2005b; Tsallis e t  al., 2005al. It 
is possible to acquire some intuition about the nature and meaning of the index q 
through the following analogy: If we consider an idealized planar surface, it is only 
its d  = 2 Lebesgue measure which is finite; the measure for any d > 2 vanishes, and 
that for any d < 2 diverges. If we have a fractal system, only the d  = d f  measure 
is finite, where d f  is the Hausdorff dimension; any d  > d f  measure vanishes, and 
any d  < dJ  measure diverges. Analogously, only for a special value of q does 
the entropy Sq match the thermodynamical requirement of extensivity and the 
equally physical requirement of finite entropy production. The value of q reflects 
the geometry of the measure in phase space on which probability is concentrated. 

Values of q differing from unity are consistent with the recent q-generalization of 
the Central Limit Theorem and the alpha-stable (Levy) distributions. Indeed, if in- 
stead of adding a large number of exactly or nearly independent random variables, 
we add globally correlated random variables, the attractors shift from Gaussians 
and Levy distributions to q-Gaussian and (q,a)-stable distributions respectively 
[Moyano et al., 2006; Umarov e t  al., 2006; Umarov et al., 20061. 

The framework described above is still in development. It may turn out to be 
relevant to 'statistical mechanics' not only in nonequilibrium physics, but also in 
quite different arenas, such as economics. 
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6 QUANTUM INFORMATION 

Until recently, most people thought of quantum mechanics in terms of the 
uncertainty principle and unavoidable limitations on measurement. Einstein 
and Schrodinger understood early on the importance of entanglement, but 
most people failed to notice, thinking of the EPR paradox as a question for 
philosophers. The appreciation of the positive application of quantum effects 
to information processing grew slowly. 

Nicolas Gisin 

Quantum mechanics provides a fundamentally different means of computing, 
and potentially makes it  possible to solve problems that would be intractable on 
classical computers. For example, with a classical computer the typical time it 
takes to factor a number grows exponentially with the size of the number, but 
using quantum computation Shor has shown that this can be done in polynomial 
time [Shor, 19941. Factorization is one of the main tools in cryptography, so this 
is not just a matter of academic interest. To see the huge importance of expo- 
nential vs. polynomial scaling, suppose an elementary computational step takes 
At seconds. If the number of steps increases exponentially, factorizing a number 
with N digits will take At exp(aN) seconds, where a is a constant that depends 
on the details of the algorithm. For example, if At = and a = fac- 
toring a number with N = 10,000 digits will take seconds, which is much, 
much longer than the lifetime of the universe (which is a mere 4.6 x 1017 sec- 
onds). In contrast, if the number of steps scales as the third power of the number 
of digits, the same computation takes a'AtN3 seconds, which with a' = 
is lo4 seconds or a little under three hours. Of course the constants a, a' and 
At are implementation dependent, but because of the dramatic difference be- 
tween exponential vs. polynomial scaling, for sufficiently large N there is always 
a fundamental difference in speed. In fact for the factoring problem as such, the 
situation is more subtle: at present the best available classical algorithm requires 
e ~ ~ ( O ( n ' / ~  log2l3 n)) operations, whereas the best available quantum algorithm 
would require O(n2 log n log log n) operations. Factorization is only one of several 
problems that could potentially benefit from quantum computing. The implica- 
tions go beyond quantum computing, and include diverse applications such as 
quantum cryptography and quantum communication [Nielsen and Chuang, 1990; 
Kaye et al., 2007; Mermin, 2007; Lloyd, 20081. 

The possibility for such huge speed-ups comes from the intrinsically parallel 
nature of quantum systems. The reasons for this are sufficiently subtle that it took 
many decades after the discovery of quantum mechanics before anyone realized 
that its computational properties are fundamentally different. The huge interest 
in quantum computation in recent years has caused a re-examination of the concept 
of information in physical systems, spawning a field that is sometimes referred to 
as "quantum information theory". 

Before entering the specifics of quantum information and computing, we give a 
brief introduction to the basic setting of quantum theory and contrast it with its 
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classical counterpart. We describe the physical states of a quantum systems, the 
definition of quantum observables, and time evolution according to  the Schrodinger 
equation. Then we briefly explain the measurement process, the basics of quan- 
tum teleportation and quantum computation. To connect to  classical statistical 
physics we describe the density matrix and the von Neumann entropy. Quantum 
computation in practice involves sophisticated and highly specialized subfields of 
experimental physics which are beyond the scope of this brief review - we have 
tried to limit the discussion to the essential principles. 

6.1 Quantum states and the definition of a qubit 

In classical physics we describe the state of a system by specifying the values of 
dynamical variables, for example, the position and velocity of a particle at a given 
instant in time. The time evolution is then described by Newton's laws, and any 
uncertainty in its evolution is driven by the accuracy of the measurements. As 
we described in Section 4.2, uncertainties can be amplified by chaotic dynam- 
ics, but within classical physics there is no fundamental limit on the accuracy of 
measurements - by measuring more and more carefully, we can predict the time 
evolution of a system more and more accurately. At a fundamental level, however, 
all of physics behaves according to the laws of quantum mechanics, which are very 
different from the laws of classical physics. At the macroscopic scales of space, 
time and energy where classical physics is a good approximation, the predictions 
of classical and quantum theories have to be roughly the same, a statement that 
is called the correspondence principle. Nonetheless, understanding the emergence 
of classical physics from an underlying quantum description is not always easy. 

The scale of the quantum regime is set by Planck7s constant, which has dimen- 
sions of energy x time (or equivalently momentum x length). It is extremely 
small in ordinary units1?: h = 1.05 x Joule-seconds. This is why quantum 
properties only manifest themselves at very small scales or very low tempera- 
tures. One has to  keep in mind however, that radically different properties at a 
microscopic scale (say at the level of atomic and molecular structure) will also 
lead to fundamentally different collective behavior on a macroscopic scale. Most 
phases of condensed matter realized in nature, such as crystals, super, ordinary or 
semi-conductors or magnetic materials, can only be understood from the quantum 
mechanical perspective. The stability and structure of matter is to a large extent 
a consequence of the quantum behavior of its fundamental constituents. 

To explain the basic ideas of quantum information theory we will restrict our 
attention to systems of qubits, which can be viewed as the basic building blocks of 
quantum information systems. The physical state of a quantum system is described 
by a wavefunction that can be thought of a vector in an abstract multidimensional 
space, called a Hilbert space. For our purposes here, this is just a finite dimensional 
vector space where the vectors have complex rather than real coefficients, and 
where the length of a vector is the usual length in such a space, i.e. the square root 

''we are using the reduced Planck's constant, A = h/2a. 
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of the sum of the square amplitudes of its  component^'^. Hilbert space replaces the 
concept of phase space in classical mechanics. Orthogonal basis vectors defining 
the axes of the space correspond to different values of measurable quantities, also 
called observables, such as spin, position, or momentum. 

As we will see, an important difference from classical mechanics is that many 
quantum mechanical quantities, such as position and momentum or spin along the 
x-axis and spin along the y-axis, cannot be measured simultaneously. Another 
essential difference from classical physics is that the dimensionality of the state 
space of the quantum system is huge compared to that of the classical phase 
space. To illustrate this drastic difference think of a particle that can move along 
an infinite line with an arbitrary momentum. From the classical perspective it has 
a phase space that is two dimensional and real (a position x and a momentum 
p ), but from the quantum point of view it it is given by a wavefunction Q of 
one variable (typically the position x or the momentum p). This wave function 
corresponds to an element in an infinite dimensional Hilbert space. 

We discussed the classical Ising spin in section 3.2. It is a system with only two 
states, denoted by s = f 1, called spin up or spin down, which can be thought of 
as representing a classical bit with two possible states, "0" and "1". The quantum 
analog of the Ising spin is a very different kind of animal. Where the Ising spin 
corresponds to a classical bit, the quantum spin corresponds to what is called a 
qubit. As we will make clear in a moment, the state space of a qubit is much 
larger then that of its classical counterpart, making it possible to store much more 
information. This is only true in a certain sense, as one has to take into account to 
what extent the state is truly observable and whether it can be precisely prepared, 
questions we will return to  later. 

Any well-defined two level quantum system can be thought of as representing 
a qubit. Examples of two state quantum systems are a photon, which possesses 
two polarization states, an electron, which possesses two possible spin states, or 
a particle in one of two possible energy states. In the first two examples the 
physical quantities in the Hilbert space are literally spins, corresponding to angular 
momentum, but in the last example this is not the case. This doesn't matter - 
even if the underlying quantities have nothing to do with angular momentum, as 
long as it is a two state quantum system we can refer to it as a "spin". We can 
arbitrarily designate one quantum state as "spin up", represented by the symbol 
[ I ) ,  and the other "spin down", represented by the symbol 10). 

The state of a qubit is described by a wavefunction or state vector I$), which 
can be written as 

(67) I$) = a l l )  + PlO) with la12 + 1pl2 = 1. 

Here a and p are complex numberslg, and thus we can think of I$) as a vector 
in the 2-dimensional complex vector space, denoted C2, and we can represent the 

lsMore generally it is necessary t o  allow for the  possibility of infinite dimensions, which in- 
troduces complications about the convergence of series that we do  not need t o  worry about 
here. 

19A complex number a has a real and imaginary part a = a1 + iaz, where a1 and az are both 
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state as a column vector ( ) We can also define a dual vector space in C2 

with dual vectors that can either be represented as row vectors or alternatively be 
written 

This allows us to define the inner product between two state vectors I$) and 
19) = rll) + 610) as 

Each additional state (or configuration) in the classical system yields an additional 
orthogonal dimension (complex parameter) in the quantum system. Hence a finite 
state classical system will lead to a finite dimensional complex vector space for the 
corresponding quantum system. 

Let us describe the geometry of the quantum configuration space of a single 
qubit in more detail. The constraint laI2 + IPI2 = 1 says that the state vector 
has unit length, which defines the complex unit circle in C2, but if we write the 
complex numbers in terms of their real and imaginary parts as a = a1 + ia2 and 
,B = bl  + ibz, then we obtain la1 + a2iI2 + I b l +  b2iI2 = a: +a; + bf + b; = 1. The 
geometry of the space described by the latter equation is just the three dimensional 
unit sphere S3 embedded in a four dimensional Euclidean space, R ~ .  

To do any nontrivial quantum computation we need to consider a system with 
multiple qubits. Physically it is easiest to imagine a system of n particles, each with 
its own spin. (As before, the formalism does not depend on this, and it is possible to 
have examples in which the individual qubits might correspond to other physical 
properties). The mathematical space in which the n qubits live is the tensor 
product of the individual qubit spaces, which we may write as C2 @C2 8 ... @C2 = 

c2". For example, the Hilbert space for two qubits is C2 8 C2. This is a four 
dimensional complex vector space spanned by the vectors 11) @ I 1) , 10) @ 1 1) , 11) @ lo), 
and 10) @ 10). For convenience we will often abbreviate the tensor product by 
omitting the tensor product symbols, or by simply listing the spins. For example 

The tensor product of two qubits with wave functions I$) = all) + PIO) and 

19) = rll) + 610) is 

The most important feature of the tensor product is that it is multi-linear, i.e. 
(al0) +PIl)) @J I$) = a1O) 8 I$) +PIl) 8 14). Again we emphasize that whereas the 
classical n-bit system has 2n states, the n-qubit system corresponds to a vector 

real, and i is the imaginary unit with the property i2 = -1. Note that a complex number can 
therefore also be thought of as a vector in a two dimensional real space.The complex conjugate is 
defined as a* = a* -iaz and the square of the modulus, or absolute value, as lalz = a*a = a:+ag. 
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of unit length in a 2n dimensional complex space, with twice as many degrees of 
freedom. For example a three-qubit can be expanded as: 

Sometimes it is convenient to  denote the state vector by the column vector of its 
components a l ,  cr2, ..., a p .  

6.2 Observables 

How are ordinary physical variables such as energy, position, velocity, and spin 
retrieved from the state vector? In the quantum formalism observables are de- 
fined as hermitian operators acting on the state space. In quantum mechanics 
an operator is a linear transformation that maps one state into another, which 
providing the state space is finite dimensional, can be represented by a matrix. A 
hermitian operator or matrix satisfies the condition A = At, where At = (AtT)* is 
the complex conjugate of the transpose of A. The fact that observables are repre- 
sented by operators reflects the property that measurements may alter the state 
and that outcomes of different measurements may depend on the order in which 
the measurements are performed. In general observables in quantummechanics do 
not necessarily commute, by which we mean that for the product of two observ- 
ables A and B one may have that AB # BA. The reason that observables have 
to  be hermitian is because the outcome of measurements are the eigenvalues of 
observables, and hermitian operators are guaranteed to have real eigenvalues. 

For example consider a single qubit. The physical observables are the compo- 
nents of the spin along the x, y or z directions, which are by convention written 

1 sZ = p Z ,  sy = ioy, etc. The operators a are the Pauli matrices 

which obviously do not commute. In writing the spin operators this way we 
have arbitrarily chosen2' the z-axis to  have a diagonal representation, so that 
the eigenstates21 for spin along the z axis are the column vectors 

"We can rotate into a different representation that makes either of the other two axes diagonal, 
and in which the z-axis is no longer diagonal - it is only possible to  make one of the three axes 
diagonal at  a time. Experimental set-ups often have conditions that break symmetry, such a s  
an applied magnetic fields, in which case it is most convenient to  let the symmetry breaking 
direction be the  z-axis. 

"The eigenstates Ixk} of a linear operator A are defined by the equation AIxk) = Xklxk). If A 
is hermitian the eigenvalue Xk is a real number. It is generally possible t o  choose the  eigenstates 
as orthonormal, so that (xjIxk) = 6?k, where 6ij = 1 when i = j and 6ij = 0 otherwise. 
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6.3 Quantum evolution: the Schrodinger equation 

The wave function of a quantum system evolves in time according to the famous 
Schrodinger equation. Dynamical changes in a physical system are induced by 
the underlying forces acting on the system and between its constituent parts, and 
their effect can be represented in terms of what is called the energy or Hamiltonian 
operator H. For a single qubit system the operators can be represented as 2 x 2 
matrices, for a two qubit system they are 4 x 4 matrices, etc. The Schrodinger 
equation can be written 

This is a linear differential equation expressing the property that the time evolution 
of a quantum system is generated by its energy operator. Assuming that H is 
constant, given an initial state I+(O)) the solution is simply 

(72) I+(t)) = U(t)l$(O)) with U(t) = e-iHt'h. 

The time evolution is unitary, meaning that the operator U(t) satisfies U U ~  = 1. 

Unitary time evolution means that the length of the state vector remains invariant, 
which is necessary to preserve the total probability for the system to be in any 
of its possible states. The unitary nature of the the time evolution operator U 
follows directly from the fact that H is hermitian. Any hermitean 2 x 2 matrix 
can be written 

where a,  b and c are real numbers22. 
For the simple example of a single qubit, suppose the initial state is 

On the right, for the sake of convenience, we have written the state as a column 
vector. Consider the energy of a spin in a magnetic field B directed along the 
positive z-axis23. In this case H is given by H = Bs,. From (70) 

Using (72) we obtain an oscillatory time dependence for the state, i.e. 

2 2 ~ e  omitted a component proportional t o  the unit matrix as it acts trivially on any state. 
23Quantum spins necessarily have a magnetic moment, so in addition to  carrying angular 

momentum they also interact with a magnetic field. 
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We thus see that, in contrast to classical mechanics, time evolution in quantum 
mechanics is always linear. It is in this sense much simpler than classical mechan- 
ics. The complication is that when we consider more complicated examples, for 
example corresponding to a macroscopic object such as a planet, the dimension of 
the space in which the quantum dynamics takes place becomes extremely high. 

6.4 Quantum measurements 

Measurement in classical physics is conceptually trivial: One simply estimates the 
value of the classical state at finite precision and approximates the state as a real 
number with a finite number of digits. The accuracy of measurements is limited 
only by background noise and the precision of the measuring instrument. The 
measurement process in quantum mechanics, in contrast, is not at all trivial. One 
difference with classical mechanics is that in many instances the set of measurable 
states is discrete, with quantized values for the observables. It is this property 
that has given the theory of quantum mechanics its name. But perhaps an even 
more profound difference is that quantum measurement typically causes a radical 
alteration of the wavefunction. Before the measurement of an observable we can 
only describe the possible outcomes in terms of probabilities, whereas after the 
measurement the outcome is known with certainty, and the wavefunction is irre- 
vocably altered to reflect this. In the conventional Copenhagen interpretation of 
quantum mechanics the wave function is said to "collapse" when a measurement is 
made. In spite of the fact that quantum mechanics makes spectacularly successful 
predictions, the fact that quantum measurements are inherently probabilistic and 
can "instantly" alter the state of the system has caused a great deal of controversy. 
In fact, one can argue that historically the field of quantum computation emerged 
from thinking carefully about the measurement problem [Deutsch, 19851. 

In the formalism of quantum mechanics the possible outcomes of an observable 
quantity A are given by the eigenvalues of the matrix A. For example, the three 
spin operators defined in Eq. 70 all have the same two eigenvalues A* = f 112. This 
means that the possible outcomes of a measurement of the spin in any direction 
can only be plus or minus one half. This is completely different than a spinning 
object in classical physics, which can spin at any possible rate in any direction. 
This is why quantum mechanics is so nonintuitive! 

If a quantum system is in an eigenstate then the outcome of measurements in 
the corresponding direction is certain. For example, imagine we have a qubit in 
the state with a = 1 and /3 = 0 so I$) = 11). It is then in the eigenstate of 
s, with eigenvalue ++, so the measurement of s, will always yield that value. 
This is reflected in the mathematical machinery of quantum mechanics by the 
fact that for the spin operator in the z-direction, A = s,, the eigenvector with 

eigenvalue A+ = +1/2 is 11) = and the eigenvector with A- = -112 is 
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10) = ( ) . In contrast, if we make measurements in the orthogonal directions 

to the eigenstate, e.g. A = s,, the outcomes become probabilistic. In the example - - 
above the eigenvectors of s, are Ix+) = Ji(11) + 10)) and I x - )  = Jt(l1) - 10)). 
In general the probability of finding the system in a given state in a measurement 
is computed by first expanding the given state I+) into the eigenstates Ixk) of the 
matrix A corresponding to  the observable, i.e. 

The probability of measuring the system in the state corresponding to eigenvalue 
Xk is pk = IakI2 .  The predictions of quantum mechanics are therefore probabilis- 
tic but the theory is essentially different from classical probability theory. On 
the one hand it is clear that a given operator defines a probability measure on 
Hilbert space, however as the operators are non-commuting (like matrices) one 
is dealing with a non-commutative probability theory [Holevo, 19821. It is the 
non-commutativity of observables that gives rise to the intricacies in the quantum 
theory of measurement. 

Let us discuss an example for clarification. Consider the spin in the x-direction, 
A = s,, and I$) = Il), i.e. spin up in the z-direction. Expanding in eigenstates of - - 
a, we get I+) = 11) = Ji lX+) + \/:lX-). The probability of measuring spin up 

along the x-direction is'la+12 = l j2 ,  and the probability of measuring spin down 
along the x-direction is la- l 2  = 112. We see how probability enters quantum 
mechanics at a fundamental level. The average of an observable is its expectation 
value, which is the weighted sum 

In the example at hand (a,) = 0. 
The act of measurement influences the state of the system. If we measure 

s, = +$ and then measure it again immediately afterward, we will get the same 
value with certainty. Stated differently, doing the measurement somehow forces 
the system into the eigenstate I x + ) ,  and once it is there, in the absence of further 
interactions, it stays there. This strange property of measurement, in which the 
wavefunction collapses onto the observed eigenstate, was originally added to the 
theory in an ad hoc manner, and is called the projection postulate. This postulate 
introduces a rather arbitrary element into the theory that appears to be inconsis- 
tent: The system evolves under quantum mechanics according to the Schrodinger 
equation until a measurement is made, at which point some kind of magic associ- 
ated with the classical measurement apparatus takes place, which lies completely 
outside the rest of the theory. 

To understand the measurement process better it is necessary to discuss the 
coupling of a quantum system and a classical measurement apparatus in more 



Ch15-N5 1726.fm Page 660 Monday, September 1,2008 7:54 AM @ I* 

660 F. Alexander Bais and J. Doyne Farmer 

detail. A measurement apparatus, such as a pointer on a dial or the conditional 
emission of a light pulse, is also a quantum mechanical system. If we treat the 
measurement device quantum mechanically as well, it should be possible to regard 
the apparent "collapse" of the wavefunction as the outcome of the quantum evolu- 
tion of the combined system of the measurement device and the original quantum 
system under study, without invoking the projection postulate. We return to this 
when we discuss decoherence in Section 6.7 . 

Note that a measurement does not allow one to completely determine the state. 
A complete measurement of the two-qubit system yields at most two classical 
bits of information, whereas determining the full quantum state requires knowing 
seven real numbers ( four complex numbers subject to a normalization condition). 
In this sense one cannot just say that a quantum states LLcontains" much more 
information that its classical counterpart. In fact, due to the non-commutativity 
of the observables, with simultaneous measurements one is able to extract less 
information than from the corresponding classical system. 

There are two ways to talk about quantum theory: If one insists it  is a theory of a 
single system, then one has to live with the fact that it only predicts the probability 
of things to  happen and as such is a retrenchment from the ideal of classical physics. 
Alternatively one may take the view that quantum theory is a theory that only 
applies to ensembles of particles. To actually measure probability distributions 
one has to make many measurements on "identically prepared quantum systems. 
From this perspective the dimensionality of Hilbert space should be compared to 
that of classical distributions defined over a classical phase space, which makes the 
difference between classical and quantum theories far less dramatic. This raises 
the quest for a theory underlying quantum mechanics which applies for a single 
system. So far nobody has succeeded in producing such a theory, and on the 
contrary, attempts to build such theories based on "hidden variables" have failed. 
The Bell inequalities suggest that such a theory is probably impossible [Omnes, 
19991. 

6.5 Multi qubit states and entanglement 

When we have more than one qubit an important practical question is when and 
how measurements of a given qubit depend on measurements of other qubits. 
Because of the deep properties of quantum mechanics, qubits can be coupled in 
subtle ways that produce consequences for measurement that are very different 
from classical bits. Understanding this has proved to be important for the prob- 
lems of computation and information transmission. To explain this we need to 
introduce the opposing concepts of separability and entanglement, which describe 
whether measurements on different qubits are statistically independent or statis- 
tically dependent. 

An n-qubit state is separable if it can be factored into n-single qubit states24, 
i.e. if it can be written as n - 1 tensor products of sums of qubit states, with each 

24Str i~t ly  speaking this is only true for pure states, which we define in the next section. 
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factor depending only on a single qubit. An example of a separable two-qubit state 
is 

If an n-qubit state is separable then measurements on individual qubits are sta- 
tistically independent, i.e. the probability of making a series of measurements on 
each qubit can be written as a product of probabilities of the measurements for 
each qubit. 

An n-qubit state is entangled if it is not separable. An example of an entangled 
two-qubit state is 

which cannot be factored into a single product. For entangled states measurements 
on individual qubits depend on each other. 

We now illustrate this for the two examples above. Suppose we do an experiment 
in which we measure the spin of the first qubit and then measure the spin of the 
second qubit. For both the separable and entangled examples, there is a 50% 
chance of observing either spin up or spin down on the first measurement. Suppose 
it  gives spin up. For the separable state this transforms the wave function as 

If we now measure the spin of the second qubit, the probability of measuring spin 
up or spin down is still 50%. The first measurement has no effect on the second 
measurement. 

In contrast, suppose we do a similar experiment on the entangled state of equa- 
tion 80 and observe spin up in the first measurement. This transforms the wave 
function as 

(Note the disappearance of the factor 1 / a  due to the necessity that the wave 
function remains normalized). If we now measure the spin of the second qubit we 
are certain to observe spin up! Similarly, if we observe spin down in the first mea- 
surement, we will also observe it in the second. For the entangled example above 
the measurements are completely coupled - the outcome of the first determines 
the second25. This property of entangled states was originally pointed out by 
Einstein, Podolsky and Rosen [Einstein et al., 19351, who expressed concern about 
the possible consequences of this when the qubits are widely separated in space. 

250ne may argue that  a perfectly correlated classical system would exhibit similar behaviour. 
The difference between classical and classical system would still become manifest in the depen- 
dence of the correlation on the angle of two successive measurements with different measurement 
angle. 
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This line of thinking did not point out a fundamental problem with quantum me- 
chanics as they perhaps originally hoped, but rather led to a deeper understanding 
of the quantum measurement problem and to the practical application of quantum 
teleportation as discussed in Section 6.9. 

The degree of entanglement of a system of qubits is a reflection of their past 
history. By applying the right time evolution operator, i.e. by introducing appro- 
priate interactions, we can begin with a separable state and entangle it, or begin 
with an entangled state and separate it. Separation can be achieved, for example, 
by applying the inverse of the operator that brought about the entanglement in 
the first place - quantum dynamics is reversible. Alternatively separation can 
be achieved by transferring the entanglement to something else, such as the ex- 
ternal environment. (In the latter case there will still be entanglement, but it will 
be between one of the qubits and the environment, rather than between the two 
original qubits). 

6.6 Entanglement and entropy 

So far we have assumed that we are able to  study a single particle or a few particles 
with perfect knowledge of the state. This is called a statistically pure state, or 
often more simply, a pure state. In experiments it can be difficult to prepare a 
system in a pure state. More typically there is an ensemble of particles that might 
be in different states, or we might have incomplete knowledge of the states. Such a 
situation, in which there is a nonzero probability for the particle to be in more than 
one state, is called a mixed state. As we explain below, von Neumann developed an 
alternative formalism for quantum mechanics in terms of what is called a density 
matrix, which replaces the wavefunction as the elementary level of description. 
The density matrix representation very simply handles mixed states, and leads 
to a natural way to measure the entropy of a quantum mechanical system and 
measure entanglement. 

Consider a mixed state in which there is a probability pi for the system to have 
wavefunction qi and an observable characterized by operator A. The average value 
measured for the observable (also called its expectation value) is 

We can expand each wavefunction $i in terms of a basis Ixj) in the form 

where in our earlier notation (xjlqbi) = a:). Performing this expansion for the 
dual vector ($a1 as well, substituting into (82) and interchanging the order of 
summation gives 
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where 

is called the density matris6. Because the trace tr(pA) is independent of the 
representation this can be evaluated in any convenient basis, and so provides an 
easy way t o  compute expectations. Note that tr(p) = 1. For a pure state pi = 1 
for some value of i and pi = 0 otherwise. In this case the density matrix has rank 
one. This is obvious if we write it in a basis in which it is diagonal - there will 
only be one nonzero element. When there is more than one nonzero value of pi it 
is a mixed state and the rank is greater than one. 

To get a better feel for how this works, consider the very simple example of a 
single qubit, and let = 11). If this is a pure state then the density matrix is just 

The expectation of the spin along the z-axis is tr(ps,) = 112. If, however, the 
system is in a mixed state with 50% of the population spin up and 50% spin down, 
this becomes 

In this case the expectation of the spin along the z-axis is tr(ps,) = 0. 
This led von Neumann to define the entropy of a quantum state in analogy with 

the Gibbs entropy for a classical ensemble as 

(84) S(p) = -tr p log p = - z pi log pi . 
i 

The entropy of a quantum state provides a quantitative measure of "how mixed" 
a system is. The entropy of a pure state is equal to zero, whereas the entropy of 
a mixed state is greater than zero. 

In some situations there is a close relationship between entangled and mixed 
states. An entangled but pure state in a high dimensional multi-qubit space can 
appear to be a mixed state when viewed from the point of view of a lower dimen- 
sional state space. The view of the wavefunction from a lower dimensional factor 
in a tensor product space is formally taken using a partial trace. This is done by 

2 6 ~ h e  density matrix provides an alternative representation for quantum mechanics - the 
Schriidinger equation can be rewritten in terms of the density matrix so that we never need t o  
use wavefunctions a t  all. 
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summing over all the coordinates associated with the factors we want to ignore. 
This corresponds to leaving some subsystems out of consideration, for example, 
because we can only measure a certain qubit and can't measure the qubits on 
which we perform the partial trace. As an example consider the entangled state of 
equation (go), and trace it with respect to the second qubit. To do this we make 
use of the fact that tr(l$)(4I) = ($14). Using labels A and B to keep the qubits 
straight, and remembering that because we are using orthogonal coordinates terms 
of the form (011) = 0, the calculation can be written 

1 
= - ( I ~ ) A ( ~ I A  + IO)A(OIA) 

2 

This is a mixed state with probability 112 to be either spin up or spin down. The 
corresponding entropy is also higher: In base two S = - log(1/2) = 1 bit, while 
for the original pure state S = log 1 = 0. In general if we begin with a statistically 
pure separable state and perform a partial trace we will still have a pure state, but 
if we begin with an entangled state, when we perform a partial trace we will get a 
mixed state. In the former case the entropy remains zero, but in the latter case it 
increases. Thus the von Neumann entropy yields a useful measure of entanglement. 

6.7 Measurement and Decoherence 

In this section we return to the measurement problem and the complications that 
arise if one wants to  couple a classical measurement device to  a quantum system. 
A classical system is by definition described in terms of macro-states, and one 
macro-state can easily correspond to lo4' micro-states. A classical measurement 
apparatus like a Geiger counter or a photo multiplier tube is prepared in a meta- 
stable state in which an interaction with the quantum system can produce a decay 
into a more stable state indicating the outcome of the measurement. For example, 
imagine that we want to detect the presence of an electron. We can do so by 
creating a detector consisting of a meta-stable atom. If the electron passes by 
its interaction with the meta-stable atom via its electromagnetic field can cause 
the decay of the meta-stable atom, and we observe the emission of a photon. 
If it doesn't pass by we observe nothing. There are very many possible final 
states for the system, corresponding to different micro-states of the electron and 
the photon, but we aren't interested in that - all we want to  know is whether 
or not a photon was emitted. Thus we have to sum over all possible combined 
photon-electron configurations. This amounts to tracing the density matrix of the 
complete system consisting of the electron and the measurement apparatus over 
all states in which a photon is present in the final state. This leads to a reduced 
density matrix describing the electron after the measurement, with the electron 
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in a mixed state, corresponding to  the many possible photon states. Thus even 
though we started with a zero entropy pure state in the combined system of the 
electron and photon, we end up with a positive entropy mixed state in the space 
of the electron alone. The state of the electron is reduced to a classical probability 
distribution, and due to the huge number of microstates that are averaged over, 
the process of measurement is thermodynamically irreversible. Even if we do not 
observe the outcoming photon with our own eyes, it is clear whether or not the 
metastable atom decayed, and thus whether or not the electron passed by. 

The description of the measurement process above is an example of decoherence, 
i.e. of a process whereby quantum mechanical systems come to behave as if they 
were governed by classical probabilities. A common way for this to  happen is for 
a quantum system to interact with its environment, or for that matter any other 
quantum system, in such a way that the reduced density matrix for the system 
of interest becomes diagonal in a particular basis. The phases are randomized, so 
that after the measurement the system is found to be in a mixed state. According 
to this view, the wavefunction does not actually collapse, there is just the appear- 
ance of a collapse due to quantum decoherence. The details of how this happen 
remain controversial, and is a subject of active research [~urek ,  1991; Zurek, 2003; 
Schlosshauer, 2004; Omnes, 19991. In Section 6.11 we will give an example of how 
decoherence can be generated even by interactions between simple systems. 

6.8 T h e  no-cloning theorem 

We have seen that by doing a measurement we may destroy the original state. 
One important consequence connected to this destructive property of the act of 
measurement is that a quantum state cannot be cloned; one may be able to transfer 
a state from one register to another but one cannot make a Xerox copy of a given 
quantum state. This is expressed by the necloning theorem [Wootters and Zurek, 
1982; Dieks, 19821. Worded differently, the no-cloning theorem states that for 
an arbitrary state [$I) on one qubit and some particular state 14) on another, 
there is no quantum device [A] that transforms I$l) @ 14) -+ @ i.e. that 
transforms 14) into $1). Letting UA be the unitary operator representing A, this 
can be rewritten I+l)I+l) = U~I$1)14). For a true cloning device this property has 
to hold for any other state 1$2), i.e. we must also have 1$2)1$72) = UA1$2)14). We 
now show the existence of such a device leads to a contradiction. Since (414) = 1 
and ULUA = 1, and U~l$i)ld) = UAI~)I$~) ,  the existence of a device that can 
clone both $1 and $2 would imply that 

The property ($11$2) = ($11$2)~ only holds if $1 and $2 are either orthogonal 
or equal, i.e. it does not hold for arbitrary values of $1 and $2, so there can 
be no such general purpose cloning device. In fact, in view of the uncertainty of 
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quantum measurements, the no-cloning theorem does not come as a surprise: If 
it were possible to clone wavefunctions, it would be possible to circumvent the 
uncertainty of quantum measurements by making a very large number of copies 
of a wavefunction, measuring different properties of each copy, and reconstructing 
the exact state of the original wavefunction. 

6.9 Quantum teleportation 

Quantum teleportation provides a method for privately sending messages in a way 
that ensures that the receiver will know if anyone eavesdrops. This is possible 
because a quantum state is literally teleported, in the sense of StarTrek: A quan- 
tum state is destroyed in one place and recreated in another. Because of the 
necloning theorem, it is impossible to make more than one copy of this quantum 
state, and as a result when the new teleported state appears, the original state 
must be destroyed. Furthermore, it is impossible for both the intended receiver 
and an eavesdropper to have the state at the same time, which helps make the 
communication secure. 

Quantum teleportation takes advantage of the correlation between entangled 
states as discussed in Section 6.5. Suppose Alice wants to send a secure message 
to Charlie at a (possibly distant) location. The process of teleportation depends 
on Alice and Charlie sharing different qubits of an entangled state. Alice makes 
a measurement of her part of the entangled state, which is coupled to the state 
she wants to  teleport to Charlie, and sends him some classical information about 
the entangled state. With the classical information plus his half of the entangled 
state, Charlie can reconstruct the teleported state. We have indicated the process 
in figure 7. We follow the method proposed by Bennett et al. [Bennett et al., 
19931, and first realized in an experimental setup by the group of Zeilinger in 1997 
[Bouwmeester et al., 19971. In realistic cases the needed qubit states are typically 
implemented as left and right handed polarized light quanta (i.e. photons). 

The simplest example of quantum teleportation can be implemented with three 
qubits. The (A) qubit is the unknown state to  be teleported, 

This state is literally teleported from one place to another. If Charlie likes, once 
he has the teleported state he can make a quantum measurement and extract the 
same information about a and p that he would have been able to extract had he 
made the measurement on the original state. 

The teleportation of this state is enabled by an auxiliary two-qubit entangled 
state. We label these two qubits B and C. For technical reasons it is convenient to 
represent this in a special basis consisting of four states, called Bell states, which 
are written 
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Figure 7. Quantum teleportation of a quantum state as proposed by Bennett et 
al. [Bennett et al., 19931, using an entangled pair. An explanation is given in the 
text. 

The process of teleportation can be outlined as follows (please refer to Figure 7). 

1. Someone prepares an entangled two qubit state BC (the Entangled'pair in 
the diagram). 

2. Qubit B is sent to Alice and qubit C is sent to Charlie. 

3. In the Scanning step, Alice measures in the Bell states basis the combined 
wavefunction of qubits A (the original in the diagram) and the entangled 
state B, leaving behind the Disrupted original. 

4. Alice sends two bits of classical data to Charlie telling him the outcome of 
her measurements (Send classical data). 

5. Based on the classical information received from Alice, Charlie applies one 
of four possible operators to qubit C (Apply treament), and thereby recon- 
structs A, getting a teleported replica of the original. If he likes, he can now 
make a measurement on A to recover the message Alice has sent him. 

We now explain this process in more detail. In step (1) an entangled two qubit 
state $BC such as that of (80) is prepared. In step (2) qubit B is transmitted to 
Alice and qubit C is transmitted to  Charlie. This can be done, for example, by 
sending two entangled photons, one to each of them. In step (3) Alice measures 
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the joint state of qubit A and B in the Bell states basis, getting two classical 
bits of information, and projecting the joint wavefunction +AB onto one of the 
Bell states. The Bell states basis has the nice property that the four possible 
outcomes of the measurement have equal probability. To see how this works, for 
convenience suppose the entangled state BC was prepared in state I Q & ~ ) .  In this 
case the combined wavefunction of the three qubit state is 

If this is expanded in the Bell states basis for the pair AB, it can be written in 
the form 

We see that the two qubit AB has equal probability to be in the four possible 
states I Q L ~ ) ,  ~ a y i ) ,  l ~ L 2 )  and I C P ~ ~ ) .  

In step (4), Alice transmits two classical bits to Charlie, telling him which of the 
four basis functions she observed. Charlie now makes use of the fact that in the 
Bell basis there are four possible states for the entangled qubit that he has, and 
his qubit C was entangled with Alice's qubit B before she made the measurement. 
In particular, let 1 4 ~ )  be the state of the C qubit, which from (88) is one of the 
four states: 

In step (5), based on the information that he receives from Alice, Charlie selects 
one of four possible operators Fi and applies it to the C qubit. There is one 
operator Fi for each of the four possible Bell states, which are respectively: 

Providing Charlie has the correct classical information and an intact entangled 
state he can reconstruct the original A qubit by evolving 1 4 ~ )  with the appropriate 
unitary operator Fi. 

By simply multiplying each of the four possibilities it is easy to verify that as long 
as his information is correct, he will correctly reconstruct the A qubit a1 lA)+PIOA). 
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We stress that Charlie needs the classical measurement information from Alice. 
If he could do without it the teleportation process would violate causality, since 
information could be transferred instantaneously from Alice to Charlie. That 
is, when Alice measures the B qubit, naively it might seem that because the B 
and C qubits are entangled, this instantaneously collapses the C qubit, sending 
Charlie the information about Alice's measurement, no matter how far away he 
is. To understand why such instantaneous communication is not possible, suppose 
Charlie just randomly guesses the outcome and randomly selects one of the four 
operators F,. Then the original state will be reconstructed as a random mixture of 
the four possible incoming states This mixture does not give any information 
about the original state I$A). 

The same reasoning also applies to a possible eavesdropper, conveniently named 
Eve. If she manages to intercept qubit (C) and measures it before Charlie does, 
without the two bits of classical information she will not be able to recover the 
original state. Furthermore she will have affected that state. If Charlie somehow 
gets the mutilated state he will not be able to reconstruct the original state A. 
Security can be achieved if Alice first sends a sequence of known states which 
can be checked by Charlie after reconstruction. If the original and reconstructed 
sequence are perfectly correlated then that guarantees that Eve is not interfering. 
Note that the cloning theorem is satisfied, since when Alice makes her measurement 
she alters the state $A as well as her qubit B. Once she has done that, the only 
hope to reconstruct the original $A is for her to send her measurement to Charlie, 
who can apply the appropriate operator to his entangled qubit C. 

The quantum security mechanism of teleportation is based on strongly corre- 
lated, highly non-local entangled states. While a strength, the non-locality of the 
correlations is also a weakness. Quantum correlations are extremely fragile and 
can be corrupted by random interactions with the environment, i.e. by decoher- 
ence. As we discussed before, this is a process in which the quantum correlations 
are destroyed and information gets lost. The problem of decoherence is the main 
stumbling block in making progress towards large scale development and applica- 
tion of quantum technologies. Nevertheless, in 2006 the research group of Gisin at 
the University of Geneva succeeded in demonstrating teleportation over a distance 
of 550 meters using the optical fiber network of Swisscom [Landry et al., 20071. 

6.10 Quantum computation 

Quantum computation is performed by setting up controlled interactions with 
non-trivial dynamics that successively couple individual qubits together and alter 
the time evolution of the wavefunction in a predetermined manner. A multi-qubit 
system is first prepared in a known initial state, representing the input to the 
program. Then interactions are switched on by applying forces, such as magnetic 
fields, that determine the direction in which the wavefunction rotates in its state 
space. Thus a quantum program is just a sequence of unitary operations that are 
externally applied to the initial state. This is achieved in practice by a correspond- 
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ing sequence of quantum gates. When the computation is done measurements are 
made to  read out the final state. 

Quantum computation is essentially a form of analog computation. A physical 
system is used to simulate a mathematical problem, taking advantage of the fact 
that they both obey the same equations. The mathematical problem is mapped 
onto the physical system by finding an appropriate arrangement of magnets or 
other fields that will generate the proper equation of motion. One then prepares 
the initial state, lets the system evolve, and reads out the answer. Analog com- 
puters are nothing new. For example, Leibnitz built a mechanical calculator for 
performing multiplication in 1694, and in the middle of the twentieth century, 
because of their vastly superior speed in comparison with digital computers, elec- 
tronic analog computers were often used to solve differential equations. 

Then why is quantum computation special? The key to  its exceptional power is 
the massive parallelism at intermediate stages of the computation. Any operation 
on a given state works exactly the same on all basis vectors. The physical process 
that defines the quantum computation for an n qubit system thus acts in parallel 
on a set of 2n complex numbers, and the phases of these numbers (which would not 
exist in a classical computation) are important in determining the time evolution 
of the state. When the measurement is made to read out the answer a t  the end 
of the computation we are left with the n-bit output and the phase information is 
lost. 

Because quantum measurements are generically probabilistic, it is possible for 
the 'same' computation to yield different "answers", e.g. because the measurement 
process projects the system onto different eigenstates. This can require the need 
for error correction mechanisms, though for some problems, such as factoring large 
numbers, it is possible to test for correctness by simply checking the answer to be 
sure it works. It  is also possible for quantum computers to make mistakes due to 
decoherence, i.e. because of essentially random interactions between the quantum 
state used to  perform the computation and the environment. This also necessitates 
error correction mechanisms. 

The problems caused by decoherence are perhaps the central difficulty in creat- 
ing physical implementations of quantum computation. These can potentially be 
overcome by constructing systems where the quantum state is not encoded locally, 
but rather globally, in terms of topological properties of the system that cannot 
be disrupted by external (local) noise. This is called topological quantum comput- 
ing. This interesting possibility arises in certain two-dimensional physical media 
which exhibit topological order, referring to  states of matter in which the essential 
quantum degrees of freedom and their interactions are topological [Kitaev, 2003; 
DasSarma et al., 20071. 

6 . 1  Quantum gates and circuits 

In the same way that classical gates are the building blocks of classical comput- 
ers, quantum gates are the basic building blocks of quantum computers. A gate 
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used for a classical computation implements binary operations on binary inputs, 
changing zeros into ones and vice versa. For example, the only nontrivial single bit 
logic operation is NOT,  which takes 0 to 1 and 1 to 0. In a quantum computation 
the situation is quite different, because qubits can exist in superpositions of 0 and 
1. The set of allowable single qubit operations consists of unitary transformations 
corresponding to 2 x 2 complex matrices U such that U ~ U  = 1. The correspond- 
ing action on a single qubit is represented in a circuit as illustrated in figure 8. 
Some quantum gates have classical analogues, but many do not. For example, the 

Figure 8. The diagram representing the action of a unitary matrix U corresponding 
to a quantum gate on a qubit in a state I$). 

operator X = ( : ) is the quantum equivalent of the classical NOT gate, 

and serves the function of interchanging spin up and spin down. In contrast, the 

operation ( ) rotates the phase of the wavefunction by 180 degrees and 

has no classical equivalent. 
A general purpose quantum computer has to be able to transform an arbitrary n- 

qubit input into an n-qubit output corresponding to the result of the computation. 
In principle implementing such a computation might be extremely complicated, 
and might require constructing quantum gates of arbitrary order and complexity. 

Fortunately, it is possible to prove that the transformations needed to implement 
a universal quantum computer can be generated by a simple - so-called universal 
- set of elementary quantum gates, for example involving a well chosen pair of 
a one-qubit and a two-qubit gate. Single qubit gates are unitary matrices with 
three real degrees of freedom. If we allow ourselves to work with finite precision, 
the set of all gates can be arbitrary well approximated by a small well chosen 
set. There are many possibilities - the optimal choice depends on the physical 
implementation of the qubits. Typical one-qubit logical gates are for example the 
following: 

X is the quantum equivalent of the classical NOT gate, serving the function of 
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interchanging 11) and 10). The two other ones have no classical equivalent. The 
P(I9) operation corresponds to the phase gate, it changes the relative phase by I9 
degrees, typically with 19 an irrational multiple of T .  For the third gate we can 
choose the so-called Hadamard gate H which creates a superposition of the basis 
states, e.g. 11) + 4Cll) + 10)). 

From the perspective of experimental implementation, a convenient twequbit 
gate is the CNOT gate. It  has been shown that for example the CNOT in 
combination with a Hadamard and a phase gate forms a universal set [Barenco et 
al., 19951. The CNOT gate acts as follows on the state IA) @ IB): 

(95) CNOT : IA) @ IB) + IA) @ l[A + Blmod 2) 

In words, the CNOT gate flips the state of B if A = 1, and does nothing if A = 0. 
In matrix form one may write the CNOT gate as [ E  ;; i )  
(96) C N O T :  . 

We have fully specified its action on the basis states in figure 9. 

Figure 9. The circuit diagram representing the action of the CNOT gate defined 
in (96) on the four possible two-qubit basis states. The filled dot on the upper 
qubit denotes the control and the cross is the symbol for the conditional one qubit 
NOT gate. 

With the CNOT gate one can generate an entangled state from a separable one, 
as follows: 

In fact, from an intuitive point of view the ability to generate substantial speed- 
ups using a quantum computer vs. a classical computer is related to the ability 
to operate on the high dimensional state space including the entangled states. To 
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describe a separable n-qubit state with k bits of accuracy we only need to  describe 
each of the individual qubits separately, which only requires the order of nk bits. 
In contrast, to describe an n-qubit entangled state we need the order of k bits 
for each dimension in the Hilbert space, i.e. we need the order of k2" bits. If we 
were to simulate the evolution of an entangled state on a classical computer we 
would have to process all these bits of information and the computation would be 
extremely slow. Quantum computation, in contrast, acts on all this information at 
once - a quantum computation acting on an entangled state is just as fast as one 
acting on a separable state. Thus, if we can find situations where the evolution 
of an entangled state can be mapped into a hard mathematical problem, we can 
sometimes get substantial speedups. 

The CNOT gate can also be used to illustrate how decoherence comes about. 
Through the same action that allows it to generate an entangled state from a 
separable state, when viewed from the perspective of a single qubit, the resulting 
state becomes decoherent. That is, suppose we look at (97) in the density matrix 
representation. Looking at the first qubit only, the wavefunction of the separable 
state is I$) = l / f i ( J l )  + lo)), or in the density matrix representation 

Under the action of CNOT this becomes ( ), i.e. it becomes diagonal 

and clearly has positive entropy. 

6.12 Applications 

At the present point in time there are many different efforts in progress to im- 
plement quantum computing. In principle all that is needed is a simple two level 
quantum system that can easily be manipulated and scaled up to a large number 
of qubits. The first requirement is not very restrictive, and many different physi- 
cal implementations of systems with a single or a few qubits have been achieved, 
including NMR, spin lattices, linear optics with single photons, quantum dots, 
Josephson junction networks, ion traps and atoms and polar molecules in optical 
lattices [Di Vincenzo, 20011. The much harder problem that has so far limited 
progress toward practical computation is to  couple the individual qubits in a con- 
trollable way and to achieve a sufficiently low level of decoherence. With the great 
efforts now taking place, future developments could be surprisingly fast2?. If we 
had quantum computers at our disposal, what miracles would they perform? As 
we said in the introduction to this section, there are many problems where the 
intrinsic massive parallelism of quantum evolution might yield dramatic speedups. 

27A first 16-qubit quantum computer has been announced by D-Wave Systems Inc. in Cali- 
fornia, but a t  the time of writing this product is not available yet. 
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The point is not that a classical computer would not be able to  do the same com- 
putation - after all, one can always simulate a quantum computer on a classical 
one - but rather the time that is needed. As we mentioned already, the most 
spectacular speedup is the Shor algorithm (1994) for factorizing large numbers 
into their prime factors [Shor, 19941. Because many security keys are based on 
the inability to factor large numbers into prime factors, the reduction from an 
exponentially hard to a polynomial hard problem has many practical applications 
for code breaking. Another important application is the quadratic speedup by 
Grover's algorithm [Grover, 19961 for problems such as the traveling salesman, in 
which large spaces need to be searched. Finally, an important application is the 
simulation of quantum systems themselves [Aspuru-Guzik et al., 20051. Having 
a quantum computer naturally provides an exponential speed-up, which in turn 
feeds back directly into the development of new quantum technologies. 

Quantum computation and security are another challenging instance of the sur- 
prising and important interplay between the basic concepts of physics and informa- 
tion theory. If physicists and engineers succeed in mastering quantum technologies 
it will mark an important turning point in information science. 

7 BLACK HOLES: A SPACE TIME INFORMATION PARADOX 

In this section we make a modest excursion into the realm of curved space-time 
as described by Einstein's theory of general relativity. As was realized only in 
the 1970's, this theory poses an interesting and still not fully resolved information 
paradox for fundamental physics. In general relativity gravity is understood as a 
manifestation of the curvature of space-time: the curvature of space-time deter- 
mines how matter and radiation propagate, while at the same time matter and 
radiation determine how space-time is curved. Particles follow geodesics in curved 
space-time to produce the curvilinear motion that we observe. 

An unexpected and long-ignored prediction of general relativity was the exis- 
tence of mysterious objects called black holes that correspond to solutions with 
a curvature singularity at their center. Black holes can be created when a very 
massive star burns all of its nuclear fuel and subsequently collapses into an ultra- 
compact object under its own gravitational pull. The space-time curvature at the 
surface of a black hole is so strong that even light cannot escape - hence the term 
"black hole". The fact that the escape velocity from a black hole is larger then 
the speed of light implies, at least classically, that no information from inside the 
black hole can ever reach far away observers. The physical size of a black hole of 
mass M is defined by its event horizon, which is an imaginary sphere centered on 
the hole with a radius (called the Schwarzchild radius) 

where GN is Newton's gravitational constant and c is the velocity of light. For a 
black hole with the mass of the sun this yields Rs = 31cm, and for the earth only 
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Rs = I n !  The only measurable quantities of a black hole for an observer far 
away are its mass, its charge and its angular momentum. 

But what about the second law of thermodynamics? If we throw an object with 
non-zero entropy into black hole, it naively seems that the entropy would disappear 
for ever and thus the total entropy of the universe would decrease, causing a blunt 
violation of the second law of thermodynamics. In the early 1970's, however, 
Bekenstein [Bekenstein, 19731 and Hawking [Bardeen et al., 19731 showed that it 
is possible to assign an entropy to a black hole. This entropy is proportional to 
the area A = 4 7 r ( R ~ ) ~  of the event horizon, 

A striking analogy with the laws thermodynamics became evident: The change 
of mass (or energy) as we throw things in leads according to classical general 
relativity to a change of horizon area, as the Schwarzchild radius also increases. 
For an electrically neutral, spherically symmetric black hole, it is possible to show 
that the incremental change of mass dM of the black hole is related to the change 
of area d A  as 

where rc = hc/2RS is the surface gravity at  the horizon. One can make an anal- 
ogy with thermodynamics, where d A  plays the role of "entropy", dM the role of 
"heat", and the rc the role of "temperature". Since no energy can leave the black 
hole, dM is positive and therefore d A  2 0, analogous to the second law of ther- 
modynamics. At this point the correspondence between black hole dynamics and 
thermodynamics is a mere analogy, because we know that a classical black hole 
does not radiate and therefore has zero temperature. One can still argue that the 
information is not necessarily be lost, it is only somewhere else and unretrievable 
for certain observers. 

What happens to this picture if we take quantum physics into account? Steven 
Hawking was the first to investigate the quantum behavior of black holes and his 
results radically changed their physical interpretation. He showed [Hawking, 1974; 
Hawking, 19751 that if we apply quantum theory to the spacetime region close 
to the horizon then black holes aren't black at  all! Using arguments based on 
the spontaneous creation of particle-antiparticle pairs in the strong gravitational 
field near the horizon he showed that a black hole behaves like a stove, emitting 
black body thermal radiation of a characteristic temperature, called the Hawking 
temperature, given by28 

fully consistent with the first law (100). We see that the black hole temperature is 
inversely proportional to its mass, which means that a black hole becomes hotter 

28We recall that we adopted units where Boltzmann's constant k is equal t o  one. 
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and radiates more energy as it becomes lighter. In other words, a black hole will 
radiate and lose mass at an ever-increasing rate until it finally explodes29. 

We conclude that quantum mechanics indeed radically changes the picture of 
a black hole. Black holes will eventually evaporate, presumably leaving nothing 
behind except thermal radiation, which has a nonzero entropy. However, as we 
discussed in the previous section, if we start with a physical system in a pure state 
that develops into a black hole, which subsequently evaporates, then at the level of 
quantum mechanics the information about the wavefunction should be rigorously 
preserved - the quantum mechanical entropy should not change. 

It  may be helpful to compare the complete black hole formation and evapora- 
tion process with a similar, more familiar situation (proposed by Sidney Coleman) 
where we know that quantum processes conserve entropy. Imagine a piece of coal 
at zero temperature (where by definition S = 0) that gets irradiated with a given 
amount of high entropy radiation, which we assume gets absorbed completely. It 
brings the coal into an excited state of finite temperature. As a consequence the 
piece of coal starts radiating, but since there is no more incoming radiation, it 
eventually returns to the zero temperature state, with zero entropy. As the quan- 
tum process of absorbing the initial radiation and emitting the outgoing radiation 
is unitary, it follows that the outcoming radiation should have exactly the same 
entropy as the incoming radiation. 

Thus, if we view the complete process of black hole formation and subsequent 
evaporation from a quantum mechanical point of view there should be no loss of 
information. So if the initial state is a pure state than a pure state should come out. 
But how can this be compatible with the observation that only thermal radiation 
comes out, independent of what we throw in? Thermal radiation is produced 
by entropy generating processes, is maximally uncorrelated and random, and has 
maximal entropy. If we throw the Encyclopedia Brittanica into the black hole and 
only get radiation out, its highly correlated initial state would seem to have been 
completely lost. This suggests that Hawking's quantum calculation is in some way 
incomplete. These conflicting views on the process of black hole formation and 
evaporation are referred to as the black hole information paradox. It has given rise 
to a fundamental debate in physics between the two principle theories of nature: 
the theory of relativity describing space-time and gravity on one hand and the 
theory of quantum mechanics describing matter and radiation on the other. Does 
the geometry of Einstein's theory of relativity prevail over quantum theory, or visa 
versa? 

If quantum theory is to survive one has to explain how the incoming information 
gets transferred to the outgoing radiation coming from the horizon30, so that a 

 he type of blackholes that are most commonly considered are very massive objects like 
collapsed stars. The lifetime of a black hole is given by T E G ~ , M ~ / T L c ~  which implies that the 
lifetime of such a massive black hole is on the  order of T 2 io50 years (much larger than the 
lifetime of the  universe TO IX 101° y). Theoretical physicists have also considered microscopic 
black holes, where the information paradox we are discussing leads to  a problem of principle. 

301t has been speculated by a number of authors that there is the logical possibility that the 
black hole does not disappear altogether, but leaves some remnant behind just in order t o  preserve 
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clever quantum detective making extremely careful measurements with very fancy 
equipment could recover it. If such a mechanism is not operative the incoming 
information is completely lost, and the laws of quantum mechanics are violated. 
The question is, what cherished principles must be given up? 

There is a generic way to think about this problem along the lines of quantum 
teleportation and a so-called final state projection [Horowitz and Maldacena, 2004; 
Lloyd, 20061. We mentioned that Hawking radiation can be considered as a con- 
sequence of virtual particle-antiparticle pair production near the horizon of the 
black hole. The pairs that are created and separated at the horizon are in a highly 
entangled state, leading to highly correlated in-falling and outgoing radiation. It  is 
then possible, at least in principle, that the interaction between the in-falling radi- 
ation and the in-falling matter (making the black hole) would lead to a projection 
in a given quantum state. Knowing that final state - for example by proving that 
only a unique state is possible - one would instantaneously have teleported the 
information from the incoming mass ( qubit A) to the outgoing radiation (qubit 
C) by using the entangled pair (qubit pair BC) in analogy with the process of tele- 
portation we discussed in section 6.9 . The parallel with quantum teleportation 
is only partial, because in that situation the sender Alice (inside the black hole) 
has to send some classical information on the outcome of her measurements to the 
receiver Charlie (outside the black hole) before he is able decode the information 
in the outcoming radiation. But sending classical information out of a black hole 
is impossible. So this mechanism to rescue the information from the interior can 
only work if there is a projection onto an a priori known unique final state, so that 
it is as if Alice made a measurement yielding this state and sent the information 
to Charlie. But how this assumption could be justified is still a mystery. 

A more ambitious way to  attack this problem is to attempt to construct a 
quantum theory of gravity, where one assumes the existence of microscopic degrees 
of freedom so that the thermodynamic properties of black holes could be explained 
by the statistical mechanics of these underlying degrees of freedom. Giving the 
quantum description of these new fundamental degrees of freedom would then 
allow for a unitary description. Before we explain what these degrees of freedom 
might be, let us first consider another remarkable property of black holes. As 
we explained before, the entropy of systems that are not strongly coupled is an 
extensive property, i.e. proportional to volume. The entropy of a black hole, in 
contrast, is proportional to the area of the event horizon rather than the volume. 
This dimensional reduction of the number of degrees of freedom is highly suggestive 
that all the physics of a black hole takes place at its horizon, an idea introduced by 
't Hooft and Susskind [Susskind and Lindesay, 20041, that is called the holographic 
principle.31 

the information. The final state of the remnant should then somehow contain the information of 
the matter thrown in. 

31A hologram is a two dimensional image that appears to  be a three dimensional image; in a 
similar vein, a black hole is a massive object for which everything appears t o  take place on the 
surface. 
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Resolving the clash between the quantum theory of matter and general relativ- 
ity of space-time is one of the main motivations for the great effort to search for a 
theory that overarches all of fundamental physics. At this moment the main line 
of attack is based on superstring theory, which is a quantum theory in which both 
matter and space-time are a manifestation of extremely tiny strings (1 = ~ O - ~ ~ r n ) .  
This theory incorporates microscopic degrees of freedom that might provide a sta- 
tistical mechanical account of the entropy of black holes. In 1996 Strominger and 
Vafa[Strominger and Vafa, 19961 managed to calculate the Bekenstein-Hawking 
entropy for (extremal) black holes in terms of microscopic strings using a prop- 
erty of string theory called duality, which allowed them to count the number of 
accessible quantum states. The answer they found implied that for the exterior 
observer information is preserved on the surface of the horizon, basically realizing 
the holographic principle. 

There are indeed situations (so-called Anti-de Sitter/Conformal Field Theory 
dualities or AdS/CFT models) in string theory describing space-times with a 
boundary where the holographic principle is realized explicitly. One hopes that 
in such models the complete process of formation and evaporation of a black hole 
can be described by the time evolution of its holographic image on the boundary, 
which in this case is a super-symmetric gauge theory, a well behaved quantum 
conformal field theory (CFT). A caveat is that in this particular Anti-de Sitter 
(Ads) classical setting so far only a static "eternal" black hole solution has been 
found, so interesting as that situation may be, it  doesn't yet allow for a decisive 
answer to a completely realistic process of black hole formation and evaporation. 
Nevertheless, the communis opinion - at least for the moment - is that the prin- 
ciples of quantum theory have successfully passed a severe test32 [Susskind and 
Lindesay, 20041. 

8 CONCLUSION 

The basic method of scientific investigation is to acquire information about nature 
by doing measurements and then to make models which optimally compress that 
information. Therefore information theoretic questions arise naturally a t  all levels 
of scientific enterprise: in the analysis of measurements, in performing computer 
simulations, and in evaluating the quality of mathematical models and theories. 

The notion of entropy started in thermodynamics as a rather abstract math- 
ematical property. With the development of statistical mechanics it emerged as 
a measure of disorder, though the notion of disorder referred to a very restricted 
context. With the passage of time the generality and the power of the notion of 
entropy became clearer, so that now the line of reasoning is easily reversed - fol- 

32~ndicative is that a long standing bet between Hawking and Presskil of Caltech was settled in 
2004 when Hawking officially declared defeat. In doing so he recognized the fact that information 
is not lost when we throw something into a black hole - quantum correlations between the in- 
falling matter and the  out-coming radiation should in principle make it possible t o  retrieve the 
original information. 
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lowing Jaynes, statistical mechanics is reduced to an application of the maximum 
entropy principle, using constraints that are determined by the physical system. 
Forecasting is a process whose effectiveness can be understood in terms of the in- 
formation contained in measurements, and the rate at which the geometry of the 
underlying dynamical system, used to make the forecast, causes this information 
to  be lost. And following Rissanen, the whole scientific enterprise is reduced to 
the principle of minimum description length, which essentially amounts to finding 
the optimal compromise between the information contained in a model and the 
information contained in the discrepancies between the model and the data. 

Questions related to the philosophy of information have lead us naturally back to 
some of the profound debates in physics on the nature of the concept of entropy as 
it  appears in the description of systems about which we have a priori only limited 
information. The Gibbs paradox, for example, centers around the question of 
whether entropy is subjective or objective. We have seen that while the description 
might have subjective components, whenever we use the concept of entropy to ask 
concrete physical questions, we always get objective physical answers. Similarly, 
when we inject intelligent actors into the story, as for Maxwell's demon, we see 
that the second law remains valid - it applies equally well in a universe with 
sentient beings. 

Fundamental turning points in physics have always left important traces in infor- 
mation theory. A particularly interesting example is the development of quantum 
information theory, with its envisaged applications to quantum security, quantum 
teleportation and quantum computation. Another interesting example is the black 
hole information paradox, where the notions of entropy and information continue 
to be central players in our attempts to resolve some of the principal debates of 
modern theoretical physics. In a sense, our ability to construct a proper statistical 
mechanics is a good test of our theories. If we could only formulate an underly- 
ing statistical mechanics of black holes, we might be able to resolve fundamental 
questions about the interface between gravity and quantum mechanics. 

Finally, as we enter the realm of nonequilbrium statistical mechanics, we see 
that the question of what information means and how it can be used remains vital. 
New entropies are being defined, and their usefulness and theoretical consistency 
are topics that are actively debated. The physics of information is an emerging 
field, one that is still very much in progress. 
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INFORMATION IN THE STUDY OF 
HUMAN INTERACTION 

Keith Devlin and Duska Rosenberg 

INFORMATION AS AN ANALYTIC TOOL 

This chapter describes one way that information - a s  a conceptual entity - may 
be used (by an analyst, as a tool) in a study of human interaction. (Actually, 
most of what we say will apply to interaction in general, for instance human- 
machine interaction, but our examples will be taken from human interaction.) 
The "analyst" here may be a professional social scientist (as is the case for our 
main technical example), or could be an ordinary person trying to make sense of a 
particular interaction. When applied to such latter cases, our article also provides 
insight into much of the common talk about "information" that takes place in 
today's "information society", and in that way our essay can be viewed as an 
analysis of the rational structure that lies behind (and is implicit in) the modern, 
information-oriented view of the world. 

To give a very simple example, suppose Alice (A) issues the instruction "Sit 
down" to  Bill (B). We may view this as an attempt by A to achieve a particular 
action by B. A makes this attempt by herself carrying out a particular action, 
namely uttering certain words. The analysis could proceed by examining why A 
chooses the particular words she does, why B interprets those words the way he 
does, and what action B carries out as a result and why. Typically, this might 
be done by identifying social norms that describe (or prescribe) how people use 
language to achieve their ends. (An example we shall examine in some depth later 
in the paper will show just how such an analysis may proceed.) 

But there is another way we could analyze the same interaction; namely as being 
mediated by the transmission of information from A to B.  In the alternative, 
information-based approach, we analyze Alice and Bill's interaction in terms of 
the issuance of certain information by A, its reception by B, and the consequences 
of this transmission in terms of the actions of the two participants. 

What is gained (or lost, or obscured) by the introduction of the mediating notion 
of information? Which (if any) approach is better (for what purpose), and why? 

An analogy might help to explain the distinction between the two approaches. 
Suppose we want to study a wrestling match between two people. Then we would 
most naturally analyze the interaction in terms of the forces each exerts on the 
other. In contrast. if we want to examine a game of tennis between the two 
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individuals, it is more appropriate (and surely more productive) to look at the 
way the ball is batted from one to the other. Why, in the second case, do we not 
analyze the game in terms of the forces each player exerts (through the racket) 
on the ball? After all, the ball is an inert object; the entire play of the game is 
dictated by the actions of the two players, just as it is in the wrestling match. 

The reason we analyze the tennis match in terms of the motion of the ball, 
is precisely that the ball does indeed mediate between the actions of the two 
players in the tennis match. Mediation of a human-human interaction, even if 
by an inert object, changes things sufficiently that a framework appropriate for 
analyzing one form of interaction may be unsuitable for analyzing another. This 
is why newspaper accounts of tennis games typically include descriptions of the 
motion of the ball as well as the two players. 

In the case of a human-human linguistic interaction, however (such as the "Sit 
down" example we just gave), we seem to have an entirely free choice between 
two different forms of analysis. We can adopt one of several traditional (non- 
information-based) approaches, focusing on the (descriptive or prescriptive) rules 
and protocols that describe or prescribe how interaction is done, the choice of 
words each participant makes, and the way each understands the words spoken 
by the other. This corresponds to the way we analyze the wrestling match, where 
we look at the various capacities each participant brings to the encounter and the 
manner in which those capacities result in the physical interaction that ensues. 
Or we may equally well consider the linguistic interaction as a transmission of 
information. This would correspond to our analysis of the tennis match, with 
the information passed from one person to the other at any one stage being the 
analogue of the tennis ball. 

Of course, as with any analogy, it is important to recognize the limitations of the 
comparison. In the case of a tennis game, the same ball gets passed back and forth 
between one player and another; in human interaction, considered as mediated by 
an exchange of information, different information is conveyed at each stage.' In a 
typical human linguistic interaction (such as a conversation), for instance, there is 
something physical passed from one participant to another at each stage, namely 
the individual utterances (tokens); but these are not the information, rather they 
(can be said to) carry the information. Part of any formal account of information 
exchange has not only to  include a definition of information, but also provide a 
mechanism for how tokens can in fact carry information. (The theory we make use 

'Interaction also involves feedback - implicit information - that helps A and B coordinate 
their actions, which is necessary if they work together on a shared task, or perform any kind 
of joint action. Conversation can be viewed as a joint action whereby participant establish 
mutual understanding, or, in the words of Clark [Clark, 19961, "common ground". However, 
joint action does not always involve using language. Imagine two people carrying a plank. Each 
of the  individual movements is felt through the movement of the plank, which can be said to  
carry information about the participants' moves. We can also call this "feed-through" (Dix in 
[Rosenberg and Hutchinson, 19941). In this context the medium plays an important part. If, 
instead of the plank, the  two people carry a mattress, the medium does not transmit information 
about their movements in the same way. The characteristics of information in interaction and 
joint action therefore depend significantly on the medium or the way the interaction is mediated. 
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of in our account, situation theory, does just that.) The purpose of the analogy 
is to distinguish between the conceptualization or analysis of a wrestling match 
as an unmediated interaction and a tennis match as being mediated by a neutral 
object, namely the ball. 

Is one approach better than the other, and if so how? The answer is that each 
offers advantages the other does not. For some purposes, a descriptive analysis 
is better, on other occasions the information-based approach is more suitable. In 
some cases, carrying out both forms of analysis may result in greater understanding. 

This distinction between the two analytic approaches is not unlike the one that 
arises in several different guises in physics, between "action at a distance" and 
the transmission of a particle. For example, do we think of gravity in terms of 
geometric distortion of space-time or as the transmission of gravitons? Again, is 
light a wave (a perturbation in the fabric of space-time) or a particle (a photon)?2 

The distinction is not merely one of theoretical interest to the analyst; it  gets 
at a fundamental feature of the way we conceive of and live in our current world. 
Today, much of our everyday thinking, writing, and talk about human activities 
is couched in terms of information. Yet, this way of talking about the world is 
relatively recent. The change was brought about largely by the development of 
various communication technologies - printing, the newspapers, postal services, 
dictionaries and reference books, radio, telephone, television, photocopiers, the 
Internet - that, by mediating human-human interaction, made possible (indeed 
encouraged) an information-based (tennis game or particle) way of thinking about 
comm~nication.~ We say a little more about the development of the modern, 
popular concept of information in just a moment. 

INFORMATION 

As indicated by some of the other articles in this collection, the word "information" 
has several different meanings, including a fundamental entity (closely related to 
entropy) that exists in the universe, a measure of order in the universe, a number of 
(different) mathematical concepts, and the less precise but more common, everyday 
(and, of particular relevance to this article, socially constructed) notion implicit 

2 0 u r  mathematical treatment of information, described later, takes this analogy a step further 
by regarding information as made up of discrete items called "infons." Indeed, the  invention of 
that word, by Devlin, was motivated entirely by that analogy. 

3 ~ h e  use of a concept of information as a mediator is not restricted to  communication. In 
human action and interaction (especially in computer-mediated communication), we are not 
talking only about transmission of information. We define the concept of mediation further, 
t o  include sharing of information as well. This refers in particular to  the use of information 
t o  coordinate action, express communicative intent, and ultimately create trust, identity with a 
group or a community, and shared culture, all of which are essential features of social life. Sharing 
information is different from exchange and utilization; in particular, sharing is more profoundly 
social than transactional. When we exchange information, nothing changes unless the  exchange 
causes some kind of change in the cognition of individuals involved. When we share information, 
then the  information that is shared changes, because the act of sharing gives rise t o  new and 
different information. 
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in terms such as "information desk," "departure/arrivals information," and "Can 
you give me some information about renting bicycles in Amsterdam?" 

In this article, we take as our concept of information the socially constructed, 
everyday notion mentioned last in the above list. In the more technical part of 
the paper, we shall make that everyday notion a little more precise by way of 
a mathematical definition, and use that additional precision to examine in some 
detail the way that information may be used to analyze human interaction (and, 
more generally, human action). 

We make no attempt to provide a comprehensive overview of the topic. The 
field is far too broad for any short survey such as this to come even close to 
completeness. Rather we shall outline the main themes and illustrate the way 
information can play a role in an analysis of a social phenomenon. 

It will be helpful to begin with a few brief (and hence simplified) remarks about 
the origins of the notion of information we shall focus on. 

Prior to  the nineteenth century, the word "information" (which first appeared 
in the English language in the fourteenth century) was used to refer to a knowl- 
edgable or informed individual. For example, the term "man of information" would 
translate into modern English as "man of learning", "well educated man", or "well 
informed man". 

During the nineteenth century, the generally accepted conception of information 
shifted from something possessed by an individual (if indeed it was conceived as 
some-thing that could be "possessed") to one of a public commodity - something 
(and in this case definitely a thing) that could be shared. The cause of this shift in 
meaning can be traced to the growth of communication technologies, in particular 
the publication of mass market newspapers in the early eighteenth century and 
onwards. With the appearance of newspapers, and also dictionaries, encyclopedias, 
and general reference books and the introduction of postal services, the telegraph, 
and later the telephone, it was possible to identify (or conceive of) a "substance" 
or "commodity" that could be called "information". 

That substance was largely autonomous, having an existence outside the in- 
dividual human mind. It came in identifiable chunks. For instance, newspapers 
impose the same physical structure (a block of text within a very small range of 
size) on every topic reported on, be it politics, war, sport, theater, science, or 
whatever. Moreover, the organizations that produce newspapers, reference books, 
and the like provide an institutional "stamp of approval" on the information they 
impart, giving it the air of being neutral, free of bias and personal perspective or 
interpretation - %he truth." 

The nineteenth century concept of information was thus an itemized one that 
was largely identified with its representation. It became possible to talk in terms 
of "amount of information." Information was also true; otherwise it would be 
called misinformation. 

With the rise of itemized, autonomous information, it was no longer appropriate 
to use the term "information" to describe personal facts. For instance, only in 
very special circumstances would a person today say "Alice provided me with the 
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information that she enjoyed last night's movie." Rather one might say "Alice told 
me she enjoyed the movie," this fact neither being public property nor having an 
"institutional stamp of authority" that would grant it the status of information. 

With the nineteenthc century shift in meaning, information also came to be 
viewed not as the result of a person being informed, but its cause.* 

The modern everyday conception of information is different again. Whereas 
the nineteenth century notion was closely tied to  the "containers" of information 
that gave rise to the notion - the books, encyclopedias, newspapers, etc. - 
the concept of information that arose around the middle of the twentieth century 
transcends its representation. Moroever, whereas nineteenth century information 
was, by definition, true, the same cannot be said for today's concept. 

The modern notion of information did not fully develop until the 1970s, although 
the beginnings of the shift can be seen as far back as the 1940s. Like its predecessor, 
this new notion also developed as a result of changes in communication technologies 
- in this case the development of the digital computer and the growth of the many 
associated electrical and electronic "information and communication" media that 
are now part of our everyday lives. 

Today, most of us think of information as a commodity that is largely indepen- 
dent of how it is embodied. It can be bought, sold, stolen, exchanged, shared, 
stored, sent along wires and through the ether, and s o  forth. It can also be pro- 
cessed, using information technologies, both concepts that would have sounded 
alien (and probably nonsensical) to anyone living in the nineteenth century, and 
even the first half of the twentieth. 

The separation of information from its various representations is what made it 
possible for contemporary technology guru Ted Nelson to make his oft-repeated 
observation "Paper is just an object that information has been sprayed onto in 
the past." 

The way present-day society conceives of information today is well captured 
by the following passage from Business Week (special issue on '"The Information 
Revolution") in 1994: 

We can glean it [information] from the pages of a book or the morning 
newspaper and from the glowing phosphors of a video screen. Scientists 
find it  stored in our genes and in the lush complexity of the rain forest. 
And it's always in the air where people come together, whether to 
work, play, or just gab. 

It is the use of today's concept of (disembodied) information as a means to 
understand (and, when done more formally, analyze) human interaction that is 
the subject of this paper. 

*Nunberg [1996], a good reference for much of the present discussion, observes that a similar 
shift in meaning occurred when the terms mystery and howor began t o  be used to  describe 
literary genres. 
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HOW DOES INFORMATION ARISE? 

A fundamental question to be answered at the start is, how is it possible for 
something in the world, say a book or a magnetic disk, to store, or represent, 
information? This question immediately generalizes. For, although we generally 
think of information as being stored (by way of representations) in things such 
as books and computer databases, any physical object may store information. In 
fact, during the course of a normal day, we acquire information from a variety of 
physical objects, and from the environment. 

For example, if we see dark clouds in the sky, we may take an umbrella as we 
leave for work, the state of the sky having provided us with the information that it 
might rain. On Halloween night in North America, a light on in the porch provides 
the information that it is acceptable for children to approach the house and ask 
for candy; no light indicates that the householders do not want to be disturbed. 
In rural parts of North America, setting the flag on the mailbox in the upright 
position indicates to the mail carrier that there is outgoing mail to pick up. 

How can an object or a collection of objects encode or represent information? 
How can part of the environment encode or represent information? For instance, 
how does smoke provide information that there is fire, and how do dark clouds 
provide information that it is likely to rain? Part of the explanation is that this 
is the way the world is: there is a systematic regularity between the existence of 
smoke and the existence of fire, and a systematic regularity between dark clouds 
in the sky and rain. Human beings and other creatures that are able to recognize 
those systematic regularities can use them in order to extract information. The 
person who sees dark clouds can take an umbrella to work, the animal that sees 
smoke on the horizon can take flight. 

Notice that we are definitely talking about information in these examples, not 
what the information is about. For example, people or animals that see smoke do 
not necessarily see fire, but they nevertheless acquire the information that there 
is a fire. And the sight of dark clouds can provide the information that rain is on 
the way long before the first drop falls. 

In general thea, one way information can arise is by virtue of systematic regulari- 
ties in the world. People (and certain animals) learn to recognize those regularities, 
either consciously or subconsciously, possibly as a result of repeated exposure to 
them. They may then utilize those regularities in order to obtain information from 
aspects of their environment. 

What about the acquisition of information from books, newspapers, radio, etc., 
or from being spoken to by fellow humans? This too depends on systematic regu- 
larities. In this case, however, those regularities are not natural in origin like dark 
clouds and rain, or smoke and fire. Rather they depend on regularities created by 
people, the regularities of human language. 

In order to acquire information from the words and sentences of English, you 
have to understand English - you need to know the meanings of the English words 
and you need a working knowledge of the rules of English grammar. In addition, 
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in the case of written English, you need to know how to read - you need to 
know the conventions whereby certain sequences of symbols denote certain words. 
Those conventions of word meaning, grammar, and symbol representation are just 
that: conventions. Different countries have different conventions: different rules 
of grammar, different words for the same thing, different alphabets, even different 
directions of reading - left to right, right to left, top to bottom, or bottom to 
top. 

At an even more local level, there are the conventional information encoding 
devices that communities establish on an ad hoc basis. For example, a school may 
designate a bell ring as providing the information that the class should end, or a 
factory may use a whistle to  signal that the shift is over. 

The fact is, anything can be used to store information. All it takes to store 
information by means of some object -or more generally a configuration of objects 
- is a convention that such a configuration represents that information. In the 
case of information stored by people, the conventions range from ones adopted by 
an entire nation (such as languages) to those adopted by a single person (such as a 
knotted handkerchief). For a non-human example, DNA encodes the information 
required to create a lifeform (in an appropriate environment). 

People also have the ability to obtain information from a configuration of objects 
in a particular context. An example is a hotel key rack. The original purpose of the 
key rack is to  store keys. However, because it is commonly understood that each 
room in a hotel has a key, the number of keys on the key rack gives information 
about the size of the hotel. Because the traditional key racks were also used to 
store passports, messages, bills, a glance at the key rack can result in obtaining 
information about guests who are in their rooms, who have just checked in, or 
who are about to  leave. In this respect, an object such as a key rack can be said 
to carry information because of the way it is used by a community of people who 
share experience of hotels - hotel employees, guests, visitors and others. 

For a more modern example, a management consultancy today employs ever 
increasing number of mobile workers. Since the consultants travel a lot, infor- 
mation about their whereabouts is quite important. If, for example, A's mobile 
phone is on the charger rack, most of his colleagues will assume he is in the office. 
Otherwise, the mobile phone would not be there. The phone charger carries that 
information for people who understand work practices in the organisation and can 
make reasonably accurate assumptions about the meaning of their colleagues' ac- 
tions. Irlformation in this context is often related to knowledge and understanding 
- the phone charger is what is often called a "common artefact" that functions 
as a focus of interaction. It  can only fulfil this function, however, if there is shared 
understanding of how it is used. 

This is more than convention - the result of some kind of mutual agreement by 
a group of people that "table" will refer to an object with a flat surface and one or 
more legs. Information carrying capacity of common artefacts is more dynamic, 
as it  arises from action and interaction whose significance is understood by a given 
community. 
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To make any progress in understanding information in a precise, scientific way, 
we need, first, to provide a precise, representation-free5 definition of information, 
and, second, to examine the regularities, conventions, etc. whereby things in the 
world represent information. This is what two Stanford University researchers, 
Jon Barwise and John Perry, set out to do in the late 1970s and early 1980s. The 
mathematical framework they developed to do this they named Situation Theory, 
initially described in their book Situations and Attitudes [Barwise and Perry, 19831, 
with a more developed version of the theory subsequently presented by Devlin in 
[Devlin, 19911. We shall provide a brief summary of part of situation theory in 
due c o u r ~ e . ~  

One question that arises naturally in a study such a s  ours is whether informa- 
tion really exists. Perhaps talk of information is just that: so much twentieth and 
twenty-first century talk. This is a fascinating question, and one that we will touch 
on again at the end of the chapter. For the purposes of our discussion, however, we 
may sidestep the issue, and remain completely agnostic as to whether information 
has any kind of real existence. To do this, we can adopt what we shall call the in- 
fornation stance. This refers to the information-based way of thinking about (and 
analyzing) human action that we shall outline. When we adopt the information 
stance, we agree to talk as if information really exists and we approach human 
action and interaction in terms of the creation, acquisition, storage, transmission, 
exchange, sharing, and utilization of information. In adopting such an approach, 
we are taking our lead from the philosopher Daniel Dennett [Dennett, 19891, who 
sidestepped many thorny questions about intentionality by viewing it as a stance 
("the intentional stance") that may be adopted for various purposes. 

SITUATION THEORY 

In situation theory, recognition is made of the partiality of information due to the 
finite, situated nature of the agent (human, animal, or machine) with limited cog- 
nitive resources. Any agent must employ necessarily limited information extracted 
from the environment in order to reason and communicate effectively. 

The theory takes its name from the mathematical device introduced in order to 
take account of that partiality. A situation can be thought of a s  a limited part of 
reality. Such parts may have spatio-temporal extent, or they may be more abstract, 
such as fictional worlds, contexts of utterance, problem domains, mathematical 
structures, databases, or Unix directories. The distinction between situations and 
individuals is that situations have a structure that plays a significant role in the 
theory whereas individuals do not. Examples of situations of particular relevance 

5 0 f  course, our theoretical framework will have to  have its own representations. The theory we 
will use adopts the standard application-domain-neutral representation used in science, namely 
mathematics. 

6However, since situation theory is not the focus of this paper, our description will be very 
partial; we introduce just those situation-theoretic concepts and tools we require for our present 
purposes. 
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to the subject matter of this paper will arise as our development proceeds. 
The basic ontology of situation theory consists of entities that a finite, cognitive 

agent individuates and/or discriminates as it  makes its way in the world: spatial 
locations, temporal locations, individuals, finitary relations, situations, types, and 
a number of other, higher-order entities. 

The objects (known as uniformities) in this ontology include the following: 

individuals - objects such as tables, chairs, tetrahedra, people, hands, fin- 
gers, etc. that the agent either individuates or at least discriminates (by its 
behavior) as single, essentially unitary items; usually denoted in situation 
theory by a, b, c, . . . 

relations- uniformities individuated or discriminated by the agent that hold 
of, or link together specific numbers of, certain other uniformities; denoted 
by P,Q,R,... 

spatial locations, denoted by 1, l', l", lo,ll, lz, etc. These are not necessarily 
like the points of mathematical spaces (though they may be so), but can 
have spatial extension. 

temporal locations, denoted by t,  t', to,. . . . As with spatial locations, tem- 
poral locations may be either points in time or regions of time. 

situations - structured parts of the world (concrete or abstract) discrimi- 
nated by (or perhaps individuated by) the agent; denoted by s, st, s", so,. . . 

types - higher order uniformities discriminated (and possibly individuated) 
by the agent; denoted by S, T, U, V, . . . 

parameters - indeterminates that range over objects of the various types; 
denoted by a, 3, i, i, etc. 

The intuition behind this ontology is that in a study of the activity (both 
physical and cognitive) of a particular agent or species of agent, we notice that 
there are certain regularities or uniformities that the agent either individuates or 
else discriminates in its b e h a ~ i o r . ~  

For instance, people individuate certain parts of reality as objects ('individuals' 
in our theory), and their behavior can vary in a systematic way according to spatial 
location, time, and the nature of the immediate environment ('situation types' in 
our theory). 

We note that the ontology of situation theory allows for the fact that different 
people may discriminate differently. For instance, Russians discriminate as two 
different colors what Americans classify as merely different shades of blue. 

7 ~ h i s  is true not only of individuals but also of groups, teams, communities. If A and B are 
engaged in a dialogue or a conversation, or indeed any other form of joint action, they recognize 
uniformities a s  individuals in similar ways. Socially, they negotiate the precise meanings of these, 
so that  they can agree the exact shape of the uniformities that apply in the situation they are 
in. 
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Information is always taken to be information about some situation, and is taken 
to be in the form of discrete items known as infons. These are of the form 

where R is an n-place relation and a1 , . . . ,a, are objects appropriate for R (often 
including spatial and/or temporal locations). These may be thought of as the 
informational item that objects a l ,  . . . , an  do, respectively, do not, stand in the 
relation R. 

Infons are items of information. They are not things that in themselves are 
true or false. Rather a particular item of information may be true or false about a 
certain part of the world (a s i t u a t i ~ n ) . ~  

Given a situation, s,  and an infon cr, we write 

to indicate that the infon a is made factual by the situation s, or, to put it another 
way, that u is an item of information that is true of s. The official name for this 
relation is that s supports a. 

It should be noted that this approach treats information as a commodity. More- 
over a commodity that does not have to be true. Indeed, for every positive infon 
there is a dual negative infon that can be thought of as the opposite informational 
item, and both of these cannot be true (in the same situation). 

Over the years, several people have misunderstood the role of infons in situa- 
tion theory, and more generally have misunderstood the purpose of the situation- 
theoretic ontology, so it is worth making a few remarks here. A fundamental 
assumption underlying the situation-theoretic approach to information is that in- 
formation is not intrinsic to any signal or to any object or configuration of objects 
in the world; rather information arises from ineractions of agents with their en- 
vironment (including interactions with other agents). The individuals, relations, 
types, etc. of the situation-theoretic ontology are (third-party) theorist's inven- 
tions. For an agent to carry out purposeful, rational activities, however, and even 
more so for two or more agents to communicate effectively, there must be a sub- 
stantial agreement first between the way an agent carves up the world from one 
moment to another, and second between the uniformities of two communicating 
agents. For instance, if Alice says to Bob, "My car is dirty," and if this com- 
municative act is successful, then the words Alice utters must mean effectively 
the same to both individuals. In order for a successful information flow to take 
place, it is not necessary that Alice and Bob share exactly the same concept of 
"car" or of "dirty," whatever it might mean (if anything) to have or to share an 

8 0 n e  of the advantages of the framework and notation provided by situation theory is that  
it allows us t o  express partial information about complex relations. For example, the relation 
eat presupposes agent, object, instrument, place, time, but much of this information can remain 
implicit, as  in "I'm eating." This makes it possible to  choose which aspect of the  structure t o  
emphasize in a given instance of interaction. This choice of emphasis also carries information in 
its own right, since it is recognised and interpreted as attitude or intent. 
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exact concept. Rather, what is required is that their two concepts of "car" and 
of "dirty" overlap sufficiently. The objects in the ontology of situation theory are 
intended to be theorist's idealized representatives - prototypes - of the common 
part of the extensions of individual agent's ontologies. In consequence, the infons 
are theoretical constructs that enable the theorist to analyze information flow. (In 
terms of our tennis-ball analogue of communication, the tennis ball - the infon 
- is a figment of the analyst's imagination, but one that facilitates a useful and 
meaningful analysis of a communicative act.) 

Moving on now, situation theory provides various mechanisms for defining types. 
The two most basic methods are type-abstraction procedures for the construction 
of two kinds of types: situation-types and object-types. 
Situation-types. Given a SIT-parameter, S, and a compound infon a ,  there is a 
corresponding situation-type 

[ B I B +  01, 

the type of situation in which a obtains. 
This process of obtaining a type from a parameter, S, and a compound infon, 

a ,  is known as (situation-) type abstraction. 
For example, 

[SITl I SITl I= {(running, p, LOCI, TIMI, I))] 

Object-types. These include the basic types TIM, L OC, IND, RELn, SIT, INF, 
TYP, PAR, and POL, as well as the more fine-grained uniformities described 
below. 

Object-types are determined over some initial situation. 
Let s be a given situation. If x is a parameter and 0 is some compound infon 

(in general involving x), then there is a type 

the type of all those objects x to which x may be anchored in the situation s, for 
which the conditions imposed by a obtain. 

This process of obtaining a type [x 1 s a] from a parameter, x, a situation, 
s, and a compound infon, a, is called (object-) type abstraction. 

The situation s is known as the grounding situation for the type. In many 
instances, the grounding situation, s, is the world or the environment we live in 
(generally denoted by w). 

For example, the type of all people could be denoted by 

Again, if s denotes Jon's environment (over a suitable time span), then 

[d I s ((sees, Jon, e, LOCI, TIMI, I))] 
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denotes the type of all those situations Jon sees (within s). 
This is a case of an object-type that is a type of situation. 
This example is not the same as a situation-type. Situation-types classify situ- 

ations according to their internal structure, whereas in the type 

[e I s ((sees, Jon, 6 ,  LOCI, TIMI ,  I))] 

the situation is typed from the outside. 
Types and the type abstraction procedures provide a mechanism for capturing 

the fundamental process whereby a cognitive agent classifies the world. Applying 
the distinction between situation types and object types to interaction phenom- 
ena, we may say that we all recognise that the relationship between situation-type 
fire and the situation-type smoke obtains only if both are in the same place at 
the same time. This is then a part of the shared knowledge among members of 
the same group or community that is often assumed and therefore rarely articu- 
lated. Situation theory offers a mechanism for articulating these assumptions by 
means of defined constraints. Constraints provide the situation theoretic mech- 
anism that captures the way that agents make inferences and act in a rational 
fashion. Constraints are linkages between situation types. They may be natural 
laws, conventions, logical (i.e., analytic) rules, linguistic rules, empirical, law-like 
correspondences, etc. 

For example, humans and other agents are familiar with the constraint: 

Smoke means fire. 

If S is the type of situations where there is smoke present, .and S' is the type 
of situations where there is a fire, then an agent (e.g. a person) can pick up 
the information that there is a fire by observing that there is smoke (a type S 
situation) and being aware of, or attuned to, the constraint that links the two 
types of situation. 

This constraint is denoted by 
S =+ St 

(This is read as "S involves S'.") 
Another example is provided by the constraint 

FIRE means fire. 

This constraint is written 
S" =+ St 

It links situations (of type S") where someone yells the word FIRE to situations 
(of type S') where there is a fire. 

Awareness of the constraint 

FIRE means fire 
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involves knowing the meaning of the word FIRE and being familiar with the rules 
that govern the use of language. 

The three types that occur in the above examples may be defined as follows: 

S = [i I i ((smokey, i, I))] 

Sf' = [u I u ((speaking, a, i!, I)) A ((utters, a,fire, i, I))] 

Notice that constraints link types, not situations. However, any particular in- 
stance where a constraint is utilized to make an inference or to govern/influence 
behavior will involve specific situations (of the relevant types). Constraints func- 
tion by capturing various regularities across actual situations. 

A constraint 
C = [S * Sf] 

allows an agent to make a logical inference, and hence facilitates information flow, 
as follows. First the agent must be able to discriminate the two types S and St. 
Second, the agent must be aware of, or behaviorally attuned to, the constraint. 
Then, when the agent finds itself in a situation s of type S ,  it  knows that there 
must be a situation s' of type Sf. We may depict this diagrammatically as follows: 

For example, suppose S =+ Sf represents the constraint smoke means fire. 
Agent A sees a situation s of type S .  The constraint then enables A to conclude 
correctly that there must in fact be a fire, that is, there must be a situation st of 
type Sf. (For this example, the constraint S + St is most likely reflexive, in that 
the situation st will be the same as the encountered situation s.) 

A particularly important feature of this analysis is that it separates clearly the 
two very different kinds of entity that are crucial to the creation and transmission 
of information: one the one hand the abstract types and the constraints that link 
them, and on the other hand the actual situations in the world that the agent 
either encounters or whose existence it infers. 

For further details of situation theory, the reader should consult [~ev l in ,  19911. 

AN EXAMPLE OF HUMAN INTERACTION 

In his seminal article [Sacks, 19721, published in 1972, the sociologist Harvey Sacks 
sought to illustrate the role played by social knowledge in our everyday use of 
language. He took the following two sentences from the beginning of a child's 
story 
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T h e  baby cried. T h e  mommy picked it up. 

and examined the way these two sentences are normally understood, paying par- 
ticular attention to the role played by social knowledge in our interpretation of 
the story.g 

As Sacks observes, virtually every competent speaker of English understands 
this story the same way. In particular, we all hear it as referring to a very small 
human (though the word 'baby' has other meanings in everyday speech) and to 
that baby's mommy (though there is no genitive in the second sentence, and it is 
certainly consistent for the mommy to be some other child's mother). Moreover it 
is the baby that the mother picks up (though the 'it' in the second sentence could 
refer to  some object other than the baby). 

To continue, we are also likely to regard the second sentence as describing an 
action (the mommy picking up the baby) that follows, and is caused by, the action 
described by the first sentence (the baby crying), though there is no general rule to 
the effect the sentence order corresponds to temporal order or causality of events 
(though it often does so). 

Moreover, we may form this interpretation without knowing what baby or what 
mommy is being talked of. 

Why do we almost certainly, and without seeming to give the matter any 
thought, choose this particular interpretation? Sacks asks. 

Having made all of his observations, Sacks explains [Sacks, 1972, p.332]: 

My reason for having gone through the observations I have so far made 
was to give you some sense, right off, of the fine power of a culture. 
It  does not, so to speak, merely fill brains in roughly the same way, 
it fills them so that they are alike in fine detail. The sentences we 
are considering are after all rather minor, and yet all of you, or many 
of you, hear just what I said you heard, and many of us are quite 
unacquainted with each other. I am, then, dealing with something real 
and something finely powerful. 

It is worth pausing at this point to emphasize our purpose in working through 
Sacks' example in some detail, as we shall do momentarily. After all, as Sacks 
himself notes, "the sentences we are considering are . . .rather minor." Yet, from 
the point of view of understanding the complexities of human interaction, the 
example embodies many of the key issues that arise. As Sacks himself observes, 
almost all of us understand the two sentences the same way. We do so despite the 
fact the practically none of that understanding is within the sentences themselves; 
it depends on our experience - what Sacks calls the 'fine power of a culture'. 

One way to analyze the way the sentences are (normally) understood is to 
explicate the social relationships that are not overtly expressed. Sacks himself 
studied the semantic strategies people use in communication. He showed how 

9We first discussed Sacks' example in our research monograph [Devlin and Rosenberg, 19961. 
Much of the  technical material in this article is taken from that monograph. 
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they may draw upon their knowledge of the social systems in order to arrive a t  
shared interpretations of the actions they observe (or imagine, as in the case of 
the example of the child's story). His main concern was to explain how shared 
social norms make such actions intelligible and interpretable (cf. [Gumpertz and 
Hymes, 1972, p.3271). 

An alternative approach - which is the one we shall adopt here - is to iden- 
tify the informational and cognitive structures that lead to the understanding, in 
particular the relational structures where relations that apply in a given situation 
represent the regularities the agent discriminates. The underlying structural form 
is indicated by the diagram on page 697. Our analysis has two main components. 
To identify which types S and S' are used and identify which constraints C con- 
nect those types. Paralleling Sacks' analysis in our framework, we formulate rules 
that explicate how his "fine power of a culture" leads to  the choice of types used 
to describe or understand the event or action. We use the type structure (i.e., 
the information-supporting structure) to explicate how that same "fine power of 
a culture" guides the interpretation in a structural way. 

Because the example, even though it may seem mundane, encompasses all of the 
main elements of human interaction, either form of analysis will result in insights 
and methods that have wide applicability. 

The importance of such studies goes beyond the internal goals of social science. 
For, the better our understanding of human action and interaction, the better 
we will be able to design information and communication technologies. For this 
particular application, structural analyses are particularly well suited, of course. 
Descriptive analyses were created to enhance understandimg, not to design tech- 
nologies. To bring that understanding closer to design, we need to be able to use 
a different framework, which is what we explore here. 

In our analysis of the example, we shall concentrate on both speaker and lis- 
tener, as we seek to  describe the mechanisms they invoke to  achieve successful 
communication. One of the advantages that is gained by including the informa- 
tion flow as part of our study is that we are able to pull apart the speaker and 
listener actions, and track the manner in which the speaker invokes mechanisms 
that enable the listener to correctly interpret the utterance.1° 

We should note that our analysis assumes that the speaker's perspective has 
been determined. That is, we shall not, at this stage, ask ourseives why the 
speaker chooses the particular form of words; she does, an issue closely related to  
the question why we see things in a certain way, but rather shall use the framework 
of situation theory to track the way the speaker and listener cooperate in order 
for the communicative act to be successful. 

By carrying out our analysis in terms of information flow inspired by the frame- 
work of situation theory, we will be able to achieve a level of granularity that is 
conceptually (and intellectually) closer (compared with standard descriptive anal- 
yses) to the concept of information that is the concern of those working with 

1°Just as a description of a tennis game can be given in terms of the  individual x t ions  of the 
two players in a way that is simply not possible for a wrestling match. 
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Information Technology, Information and Communication Technology, etc. 
It is important to observe that, although Sacks' example concerns a linguistic 

event, his analysis (and the information-mediated alternative account we subse- 
quently present here) is not a linguist's analysis - neither he nor we are doing a 
syntactic or semantic analysis. (In particular, we are not doing situation semantics, 
the application of situation theory that motivated the original development of sit- 
uation theory by Barwise and Perry.) Our focus is on the interaction between the 
speaker and the listener and between the speaker and what he or she hears. We seek 
to highlight how information-mediated analysis can lead to the development (or 
uncovering) of information structure (more precisely the information-supporting 
structure) .ll 

AN INFORMATION-BASED ANALYSIS OF THE SACKS EXAMPLE 

In order to carry out our analysis, we need to introduce some situation-theoretic 
structures to  represent the way that information flows from the speaker to  the 
listener. 

Reference to  babies and mommies is captured in our framework by means of 
the types: 

'baby' = Tbaby = I w +<< baby, p, tnow, 1 >>I ,  

'mommy' = Tmother = I w +<< mother,p, t,,,, 1 >>I, 

where p is a parameter for a person. (In these type definitions, the situation w 
is "the world", by which we mean any situation big enough to include everything 
under discussion. It  is purely a convenience to think of this situation as the world, 
thereby providing a fixed context for the type definitions.) 

We observe (as did Sacks in his original analysis) that both babies and mommies 
have different aspects. For instance, a baby can be thought of as a young person 
or as a member of a family, and a mommy can be viewed in relation to a child or 
to a father. These aspects, which affect the choice of words speakers make and the 
way listeners interpret them, are captured in our framework by the hierarchical 
structure on types (types of types, types of types of types, etc.). 

Let: 
Tfamily = [C I w k<< family, 6,tnow, 1 >>I, 
Tstase-of-life = [e I w k<< stage-of-life, k,tnow, 1 >>I ,  

where 1 is a parameter for a type. 
The activity of crying is closely bound to babies in the stage-of-life type, so 

when the listener hears the sentence "The baby cried" he will understand it in 
such a way that 

llThis information structure plays a role in our analysis somewhat parallel to, though very 
different from, the social structure of Sack's analysis. 
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That is to say, this item of information will be available to the listener as he pro- 
cesses the incoming utterance, and will influence the way the input is interpreted. 

Since the reader may be familiar to uses of "types" in other disciplines (such as 
computer science), where they are generally rigid in nature, we should stress that 
in situation theory, any type will typically be a member of an entire stucture of 
types, and the applicability of a particular type may well depend upon two or more 
levels in the of-type hierarchy. For instance, the applicability of the type Thaby 
will be different when it is considered in the light of being in the type Tstage-oj-lije 
as opposed to being in the type Tjamily. In the former case, individuals in the 
type Thaby will be typically and naturally associated with the activity of crying 
(type TCrying); in the latter case they will be typically and naturally associated 
with having a mother (Ztype Tmother-oj). (In situation-theoretic terms, these 
associations will be captured by constraints that link types. Those constraints are 
in general not universals, rather they may depend on, say, individual or cultural 
factors.) This particular distinction will play a significant role in the analysis that 
follows. 

One immediate question concerns the use of the definite noun phrases 'the baby' 
and 'the mommy'. Use of the definite article generally entails uniqueness of the 
referent. In the case of the phrase 'the baby', where, as in the Sacks example, no 
baby has previously been introduced, one would normally expect this to be part 
of a more complex descriptive phrase, such as 'the baby of the duchess's maid', 
or 'the baby on last night's midnight movie'. So just what is it that enables the 
speaker to open an explanation with the sentence 'The baby cried'? It could be 
argued that an implicit suggestion for an answer lies in his later discussion of 
proper openings for 'stories', but this is a part of his article we do not consider 
here. 

For a situation-theoretic analysis, there is no problem here. The situation the- 
orist assumes that all communicative acts involve a described situation, that part 
of the world the act is about. Exactly how this described situation is determined 
varies very much from case to case. For example, the speaker may have witnessed, 
read about, or even imagined the event she describes. In the Sacks example, the 
speaker imagines a situation in which a baby cried and its mother picked it up. 
Let s denote that situation.12 

The situation s will be such that it involves one and only one baby, otherwise the 
use of the phrase 'the baby' would not be appropriate. In starting a communicative 
act with the sentence 'The baby cried', the speaker is informing the listener that 

121t does not affect the  mechanics of our analysis whether you think of situations a s  objects in 
the speaker and listener's realm - possibly as things they are aware of - or purely as theorist's 
objects in an abstract ontology adopted t o  study interaction. All we need t o  know is that these 
situations are definite objects available to  the theorist as part of a framework for looking a t  
the world. In the case where situations are regarded purely as theorist's abstractions, s will 
correspond t o  some feature of the interaction-you can think of s as providing us with a name 
for that feature. 
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she is commencing a description of a situation, s,  in which there is exactly one 
baby, call it b. (Whether or not b is a real individual in the world, or some fictional 
entity, depends on s. This does not affect the way our analysis proceeds, nor indeed 
the way people understand the utterance.) 

The principal item of information about the described situation that is conveyed 
by the utterance of the first sentence 'The baby cried' is 

where to is the time, prior to  the time of utterance, at which the crying took place. 
In words, in the situation s, the baby b was crying at the time to. 

Notice that, in the absence of any additional information, the only means avail- 
able to  the listener to identify b is as the referent for the utterance of the phrase 
'the baby'. The utterance of this phrase tells the listener two pertinent things 
about s and b: 

(2) b : Tbaby (i.e. b is of type Tbaby) 

where Tbaby is the type of all babies, and 

(3) b is the unique individual of this type in s. 

Now let's consider what additional information is conveyed by the utterance of 
second sentence, 'The mommy picked it up.' Mention of both babies and mommies 
invokes the family type, Tfamily . This has the following structural components that 
are relevant to our analysis: 

M(x) the property of x being a mother 

B (x) the property of x being a baby 

M(x,  y) the relation of x being the mother of y 

Tmother the type of being a mother 

Tbaby the type of being a baby 

Tmother-of the 2-type that relates mothers to their offspring 

In the type Tfamily7 the type Tmother-of acts as a fundamental one, with the types 
Tmother and Tbaby being linked to, and potentially derivative on, that type. More 
precisely, the following structural constraints13 are salient in the category Tfamily: 

where 
Tmother = [ i , y  I w b<< mother-of, X, y,tnO,, 1 >>I. 

13The notion of constraint used here extends that described in [Devlin, 1991]. 
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What do these mean? Well, Tmother-of is a 2-type, the type of all pairs of 
individuals x, y such that x is the mother of y (at the present time, in the world). 
The first of the above two constraints says that the type Tmother involves (or is 
linked to) the type 3yTmother-ofi This has the following consequence: in the case 
where Tmother : Tfamily (i.e. Tmother is of type Tfamily ) and Tbaby : Tfamily the 
following implications are salient: 

These two implications are not constraints. In fact they do not have any formal 
significance in situation theory. They are purely guides to the reader as to where 
this is all leading. (4) says that if p is of type Tmother (i.e. if p is a mother), then 
there is an individual q such that the pair p, q is of type Tmothe,of (i.e. such that 
p is the mother of q). The salience of this implication for an agent A has the 
consequence that, if A recognizes that p is a mother then A will, if possible, look 
for an individual q of which p is the mother. Analogously for (5). 

To continue with our analysis, as in the case of 'the baby', in order for the 
speaker to  make appropriate and informative use of the phrase 'the mommy', the 
described situation s must contain exactly one individual m who is a mother. In 
fact we can make a stronger claim: the individual m is the mother of the baby b 
referred to in the first sentence. For if m were the mother not of b but of some 
other baby, then the appropriate form of reference would be 'a mother', even in 
the case were m was the unique mother in s. We can describe the mechanism that 
produces this interpretation as follows. 

Having heard the phrase 'the baby' in the first sentence and 'the mommy' in 
the second, the following two items of information are salient to the listener: 

(6) m : Tmother 

(7) m is the unique individual of this type in s. 

In addition, we shall show that the following, third item of information is also 
salient: 

(8) m is the mother of b. 

Following the utterance of the first sentence, the listener's cognitive state is such 
that the type Tbaby is of type Tstage-of-life. This type has categories that include 
Tbaby, Tchild, Tadolescent, Tadvlt, all of which have equal ontological status within 
the stage-of-life type, with none being derivative on any other. But as soon as the 
phrase 'the mommy' is heard, the combination of 'baby' and 'mommy' switches 
the emphasis from the type Tstage-of-lzfe to the type TfamilY, making salient the 
following propositions: 
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In the Tfamily category, the various family relationships that bind a family to- 
gether (and which therefore serve to give this type its status as a type) are more 
fundamental than the categories they give rise to. In particular, the types Tbaby 
and Tmother are derivative on the type Tmother-of that relates mothers to their 
babies. 

Now, proposition (9) is the precondition for the salience of implication (5)'  
namely 

q : Tbaby  -' IP (P, : Tmother-of). 

Substituting the particular individual b for the variable q, we get 

But by (2), we know that 
b : Tbaby  . 

Thus we have the salient information 

(11) there is an m such that m, b : Tmother-of. 

The use of the definite article in the phrase 'the mommy' then makes it natural 
to take this phrase to refer to  the unique m that satisfies (11). Thus the listener 
naturally takes the phrase 'the mommy' to refer to the baby's mother. This 
interpretation is reinforced by the completion of the second sentence '. . .picked it 
up', since there is an expectation that a mother picks up and comforts her crying 
baby. This explains how the fact (8) becomes salient to the listener. 

It should be noticed that the switch from the salience of one set of constraints to 
another was caused by the second level of types in the hierarchy. The constraints 
we were primarily interested in concerned the types Tmother and Tbaby These 
types are part of a complex network of inter-relationships (constraints). Just 
which constraints in this network are salient to the agent is governed by the way 
the agent encounters the types, that is to say, by the type(s) of those types-for 
instance, whether Tbaby  is regarded (or encountered) as of type Tstage-of-lzfe or of 
type Tfamily. By moving to a second level of typing (i.e. to types of types), we are 
able to track the way agents may use one set of constraints rather than another, 
and switch from one set to  another. The first level of types allows us to capture 
the informational connections between two objects; the second level allows us to 
capture the agent's preference of a particular informational connection. This level 
of uncertainty is needed or else there could be no negotiation in interaction. 

Our analysis thus explicates the information structure that the speaker and 
listener implicitly make use of in order a communicative act to succeed. In partic- 
ular, it highlights the crucial roles played not only by constraints (the key players 
in a situation semantic analysis) but also by the internal and hierarchical type- 
structures. This latter feature is quite new, and takes the analysis a considerable 
distance from situation semantics. We believe it is a significant tribute to the care 
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Barwise, Perry, and their colleagues gave to the choice of the ontology for situ- 
ation theory as a framework to support the study of information and of natural 
language semantics that it proves to be adequate for a detailed analysis of human 
interaction such as the one presented here.14 

AN EXAMPLE FROM INDUSTRY 

The fundamental nature of the issues emmbodied in the Sacks example means 
that the methods we employed in our anaysis have much wider applicability. For 
instance, in the late 1980s and early 1990s, we analyzed what had gone wrong 
when a large manufacturer and supplier of mainframe computer systems had tried 
to automate part of its own information system, namely the data collected in the 
standard form (the Problem Report Form, or PRF) filled in when an engineer was 
called out on a repair job. 

The PRF was a simple slot-and-filler document on which could be entered vari- 
ous reference numbers to  identify the customer and the installed system, the fault 
as reported by the customer, the date of the report, the date of the engineer's 
visit, the repair action he took, and any components he replaced. 

The PRF was a valuable document, providing the company with an excellent 
way to track the performance of both their computer systems and their field en- 
gineers, as well as the demand for spare parts. In particular, by analyzing the 
data supplied by the forms, the company could identify and hopefully rectify the 
weakest components in the design of their systems. 

Because of the highly constrained nature of the PRFs, the highly focused na- 
ture of the domain - computer fault reporting and repair - and the fact that the 
important technical information on the forms was all entered by trained computer 
engineers, the PRFs formed the basis of a highly efficient source of information for 
all parts of the company. In the early days, when the PRFs were paper documents, 
experts faced with reading the forms frequently encountered great difficulty un- 
derstanding exactly what had gone wrong with the customer's system and what 
the engineer had done to  put it right. The PRF was a shared artefact - the focus 
of interaction between many departments: customer services, spare parts, diag- 
nostics, etc. Information flowed naturally and any uncertainties were cleared up in 
conversation. When the PRF was computerised, it became an information record 
in a database, and the information flow between people was interrupted. If a par- 
ticular PRF had (what company employees referred to as) "good information" in 
it, it could be easily interpreted and understood well enough to lead to action. If 
it contained "bad information", it presented a problem. 

When an expert system was introduced, the expectation was that it would in- 
troduce intelligence into the interrupted information flow, so that the PRF could 
continue to function as mediated by the expert system. But this did not happen. 

14Both Barwise and Perry expressed on many occasions a desire t o  extend their work t o  look 
a t  action and interaction, but they never made such a step. 
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Things got worse; the information flow was disrupted. Different people (agents) 
had different perspectiveam the information in the PRF. The database represen- 
tation of this information did not allow for different perspectives, it only encoded 
what the database designer specified and in the form that the designer specified. 
There was therefore no flexibility that could allow individual perspectives to be 
recognized and negotiated, and for people to establish shared understanding.15 

Applying extensions of the techniques used to  analyze the Sacks example, we 
were able to  carry out a detailed analysis of the way social and cultural knowledge 
affected the information conveyed by the PRFs. This led to a restructuring of 
the procedures surrounding the completion and use of the documents, resulting in 
better information flow and improved efficiency in the company. 

Furthermore, the additional problem our analysis addressed was to  relate the 
structure of the document to its broader uses in the organisation as a whole. We 
viewed the PRF as a resource that facilitates (or obstructs, as the case may be) 
the interaction between different sections of the organisation. In this context, the 
social significance of the document needs to be understood so that the information 
flow between different sections may be organised and managed. 

An investigation into the uses of the document, as opposed to its structure, 
brought to light the need to develop a dual perspective - what we called the 
document intension and the schema of investigation. The document intension is 
an "information-structure-skeleton" of the PRF that captures the communicative 
intent of the various sections of the document, through the use of the constraints 
that formalize the informational links within the document (essentially its underly- 
ing type structure). The schema of investigation traces the information pathways 
a reader of the document creates in the process of interpretation, schematically 
presented in Figure 1. 

The schema captures formally how the successive application of constraints 
leads to 'Lperfect" information in the "scene", when everything fits - on the far 
left of the tree - and also to the "bad PRF" on the far right of the tree. These 
examples illustrate the strategies that computerized resources capture easily. 

However, most of the everyday cases analyzed were not so clear cut. Going 
from left to right in the tree in Figure 1, if the fault description is clear and the 
remedial action is not, this would be interpreted as the engineer not knowing his 
job. Needless to say, no PRF among the hundreds analyzed gave this information 
explicitly. The most frequent and the most challenging examples were those in 
the middle of the tree, where the fit had to be established between the fault de- 
scription, the appropriate remedial action and the resources used in implementing 
the remedy. This is where most of human interrpretive effort was focused. Sadly, 
this is also where computerized tools are still grossly inadequate as they are not 
responsive to  the human uses of the information stored in them. 

An empirical study of the uses of the PRF in the organization showed that the 
information contained in the document was needed to support the decisions of cus- 

15Following Perry and Israel [Israel and Perry, 19901, we can say that a PRF had the informa- 
tion potential that agents could pick up, but the database could not. 
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Tcall 

1 clear 1 clear 

Scene Excluded +EC/ \-EC Bad PRF 

Explanation Bad pm 

Figure 1. Interpretive grammar 

tomer services, fault diagnosis, spare parts, change management, and production, 
as well as intra-organizational partnerships with the suppliers of various parts of 
the total system delivered to the customer. 

We should stress that, even though both examples presented in this paper, the 
baby and the fault record, concern particular interactions in particular contexts, 
the analytic methods used to analyze them, described above, are able to capture 
the underlying regularities, or uniformities, and hence can be generally applied. 
This is where the information-based, structural approach can offer advantages 
over purely descriptive analyses. If our interest were solely the understanding of 
human action and interaction, that advantage might be of little consequence. It 
can become significant, however, if we are interested in the design of tools and 
resources that embody this understanding, and in the organisation of work that 
recognises the importance of social relationships in everyday practice. 

For further details on the PRF example, we refer the reader to our monograph 
[Devlin and Rosenberg, 19961. 

THE UTILITY AND RELEVANCE OF THE INFORMATION STANCE 

In our analysis of the Sacks example, we showed how a communicative interaction 
can be analyzed in terms of information flow, using the framework of situation 
theory. What makes viewers see a scene the way they do, and why do they 
choose the precise form of words they use to convey information about that scene? 
Information may be regarded as (and arguably is, if it is anything at all beyond a 
manner of speaking) an inert commodity exchanged by the two participants in a 
linguistic interaction. Hence, adopting the information stance allows us to tease 
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apart the two individuals in a communicative interaction. This allows us to  analyze 
the actions of each with respect to the information transmitted or received, thereby 
shedding light on some of the intricacies of everyday human-human interaction. 

The price that we might pay for this increased level of analytic precision is 
twofold. First, for some interactions, viewing the interaction as mediated may 
impede or even skew the analysis. (To go back to an earlier analogy, it would 
be possible to analyze a wrestling match in terms of some postulated "particles 
of force" that the two protagonists emit toward one another, but this is unlikely 
to lead to a better analysis, and in fact will probably obscure the interaction.) 
Second, it is at least arguable that information simply does not exist - that it  is 
just a way of talking - and that it is more intellectually honest to stick to what 
is really there. 

This last point might be a significant objection if the results of an information- 
based analysis could be presented only in terms of information. However, when 
it is possible to  adopt the information stance for the purposes of carrying out an 
analysis, and then present the conclusions without reference to information, as 
we could with our examination of the Sacks example, that objection surely melts 
away. 

There remains the question as to whether information really does exist. If 
the matter were to be settled by popular vote, the answer would surely be a 
resounding "Yes." Indeed, we suspect it would be almost unanimous. This is 
clearly a significant observation for the relevance of information-based analyses 
of social phenomena. If information is universally accepted in society, then it is 
legitimate to analyze social phenomena in terms of information. The results of that 
analysis (presented i n  terms of information) may then be legitimately presented 
as conclusions relevant to social science concerns. 

In other words, an analysis of a social phenomenon based on information has 
validity in and of itself. It need not defend itself by an appeal to the information 
stance. (Although that remains a valid methodological approach.) Given a socially 
accepted notion of information that appears reasonably stable, an analysis like our 
study of the Sacks example we presented above turns out to be more than just 
a "what if" argument, where the intermediate steps are mere ephemera to  be 
discarded once the final conclusion is reached. Rather, each step in the analysis 
establishes a genuine truth about the world - a truth about the information 
that flows from one agent to another. Viewed in this way, such an information- 
based analysis of human action is both valid and genuinely, qualitatively different 
from other forms of sociological analysis. That difference can be of significance 
when it comes to applications. A particular strength of the information-based 
approach, based on a mathematical framework such as situation theory, is that 
it allows for a formal treatment that can be informed by insights from sociology 
while at the same time yielding an analysis that can be applied to the design of 
information and communication technologies. This, in fact, was the reason we 
developed our analytic technique and carried out our analysis of the Sacks example 
in the first place. The work desribed here represents a genuine, original, and on 
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this occasion highly successful, application of the modern concept of information 
to the development of understanding of a certain domain of human activity leading 
to a successful engineering design. 

We end on a more speculative note. Today's concept of information assumes 
- and encourages us to believe - that information has some form of existence 
beyond its various physical encodings, each of which is often viewed as a container. 
Futurist commentator John Perry Barlow, cefounder of the Electronic Frontier 
Foundation is quoted16 as having said: 

"So far we have placed all of our intellectual protection on the con- 
tainers and not on the contents. And one of the side effects of digital 
technology is that it makes those containers irrelevant. Books, CDs, 
filmstrips - whatever - don't need to exist anymore in order to get 
ideas out. So whereas we thought we had been in the wine business, 
suddenly we realized that all along we've been in the bottling business." 

The suggestion is that today's digital technologies will completely separate the 
information from its various representations, which are seen as containers. "In- 
formation wants to  be free" is a popular rallying cry. But perhaps - and this 
is definitely where our sympathies lie - social scientist Paul Duguid had it  right 
when he observed that such talk is akin to saying we want to remove the banks 
and still have the river. 

For all that (today's conception of) information has a form of existence, we 
lean toward the view that what that existence really amounts to is a collective 
acceptance of the information stance. That is to say, it really is just a way of 
conceiving of and talking about various aspects of our world. 
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THE PHILOSOPHY OF A1 
AND THE 

A1 OF PHILOSOPHY 

John McCarthy 

1 INTRODUCTION 

Richmond Thomason [2003] wrote 

The relations between A1 and philosophical logic are part of a larger 
story. It is hard to find a major philosophical theme that doesn't be- 
come entangled with issues having to do with reasoning. Implicatures, 
for instance, have to correspond to  inferences that can be carried out 
by a rational interpreter of discourse. Whatever causality is, causal re- 
lations should be inferable in everyday common sense settings. What- 
ever belief is, it should be possible for rational agents to make plausible 
inferences about the beliefs of other agents. The goals and standing 
constraints that inform a rational agent's behavior must permit the 
formation of reasonable plans. 

The relation of A1 and philosophy involves many concepts that both subjects 
include-for example, action, goals, knowledge, belief, and consciousness. How- 
ever, A1 takes what we may call the designer stance about these concepts; it asks 
what kinds of knowledge, belief, consciousness, etc. does a computer system need 
in order to behave intelligently and how to build them into a computer program. 
Philosophers have generally taken a more abstract view and asked what are knowl- 
edge, etc. The designer stance is akin to Daniel Dennett's design stance[Dennett, 
19781 but not the same. The design stance looks at an existing artifact or organism 
in terms of what it is designed to do or has evolved to do. The designer stance 
considers how to design an artifact. This may necessitate giving it knowledge, 
beliefs, etc., and the ability to plan and execute plans. 

Philosophical questions are especially relevant to A1 when human-level A1 is 
sought. However, most A1 research since the 1970s is not aimed towards human- 
level A1 but a t  the application of A1 theories and techniques to particular problems. 

I have to admit dissatisfaction with the lack of ambition displayed by most of my 
fellow A1 researchers. Many useful and interesting programs are written without 
use of concepts common to A1 and philosophy. For example, the language used by 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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the Deep Blue program that defeated world chess champion Garry Kasparov can- 
not be used to express "I am a chess program, but consider many more irrelevant 
moves than a human does." and draw conclusions from it. The designers of the 
program did not see a need for this capability. Likewise none of the programs that 
competed in the DARPA Grand Challenge contest to drive a vehicle knew that it 
was one of 20 competing programs. The DARPA referees prevented the vehicles 
from seeing each other by making them pause when necessary. A more advanced 
contest in which one vehicle can pass another might need some awareness of "other 
minds". 

The 1950s A1 researchers did think about human-level intelligence. Alan n r i n g ,  
who pioneered AI, was also the first to emphasize that A1 would be realized by 
computer programs. Now there is more interest in human-level A1 and methods 
to achieve it than in the last 40 years. 

[Nilsson, 20051 offers a criterion for telling when for human-level A1 has been 
reached. It  is that the system should be teachable to do a wide variety of jobs 
that humans do--in particular that it should be able to pass the examinations 
used to select people for these jobs, admitting that passing the exams may be 
possible without having adequate common sense to do the job. Nilsson is not 
specific about what kind of teaching is involved, and his criterion is weaker than 
Lenat's requirement that the system be able to learn from textbooks written for 
humans. I agree that this is one of the requirements for human-level AI. 

[McCarthy, 1996al also discusses criteria for human-level AI, emphasizing the 
common sense informatic situation. 

Even as the work aimed at human-level A1 increases, important methodological 
differences between A1 research and philosophical research are likely to remain. 
Consider the notion of belief. Philosophers consider belief in general. A1 research 
is likely to  continue with systems with very limited beliefs and build up from there. 
Perhaps these are topdown and bottom-up approaches. 

We will discuss several of the concepts common to A1 and philosophy in con- 
nection with the following example. 

A policeman stops a car and says, 

"I'm giving you a ticket for reckless driving. If another car had come 
over the hill when you passed that BMW, there would have been a 
head-on collision." 

Notice that the example involves a counterfactual conditional "if you had passed 
. . . " with a non-counterfactual consequence ". . . reckless driving." Less obviously 
perhaps, a system understanding the sentence must jump into a suitable context 
and reason within that context, using concepts meaningful in the context. Thus a 
particular hypothetical head-on collision is in question, not, for example, statistics 
about how often a head-on collision is fatal. 

The philosophy of X, where X is a science, often involves philosophers analyzing 
the concepts of X and commenting on what concepts are or are not likely to 
be coherent. A1 necessarily shares many concepts with philosophy, e.g. action, 
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consciousness, epistemology (what it is sensible to  say about the world), and even 
free will. 

This article treats the philosophy of AI, but section 6 reverses the usual course 
and analyzes some basic concepts of philosophy from the standpoint of AI. The 
philosophy of X often involves advice to practitioners of X about what they can 
and cannot do. Section 6 reverses the usual course and offers advice to philoso- 
phers, especially philosophers of mind. One point is that philosophical theories 
can make sense for us only if they don't preclude human-level artificial systems. 
Philosophical theories are most useful if they take the designer stance and offer 
suggestions as to  what features to  put in intelligent systems. 

Philosophy of mind studies mind as a phenomenon and studies how thinking, 
knowledge, and consciousness can be related to the material world. A1 is concerned 
with designing computer programs that think and act. This leads to some different 
approaches to problems considered in philosophy, and we will argue that it adds 
new considerations or at least different emphases that philosophers should consider. 
I take the opportunity of this Handbook to present some ideas and formalisms 
rather brashly. 

Some of the formalisms, e.g. nonmonotonic reasoning and situation calculus, are 
heavily used in A1 systems. Others have not yet been used in computer programs, 
but I think the problems they address will be important for human-level AI. 

2 SOME HISTORICAL REMARKS 

Although there were some precursors, serious A1 work began in the early 1950s 
when it became apparent that electronics was advanced enough to do universal 
computation. Alan Turing recognized in [Turing, 19471 that programming general 
purpose computers was better than building special purpose machines. This ap- 
proach depended on A1 researchers having access to computers, marginal in the 
early 50s but nearly universal by the late 1950s.' 

The 1956 Dartmouth workshop, whose 1955 proposal introduced the term arti- 
ficial intelligence triggered A1 as a named field.2 

My [McCarthy, 19591 triggered work in logical AI, i.e. using mathematical 
logical languages and reasoning to represent common sense. Progress in logical A1 
has been continuous, but is still far from human-level. 

The Ernst-Newell-Simon General Problem Solver (GPS) [Ernst and Newell, 
19691 was based on the idea that problem solving could be put in the form of 
starting with an initial expression and transforming it by a sequence of applica- 
tions of given rules into a goal expression. Alas, this was an inadequate idea for 
problem solving in general. 

'I  began thinking about A1 in 1948, but my access t o  computers began in 1955. This converted 
me t o  Turing's opinion. 

2 ~ e w e l l  and Simon, who got started first, and who had definite results to  present a t  Dart- 
mouth, used the term complex infomation processing for some years which didn't do justice to  
their own work. 
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The first chess programs were written in the 1950s and reached world champion 
level in the late SOs, through a combination of heuristics and faster computers. 
Unfortunately, the ideas adequate for champion level chess are inadequate for 
games like go that branch more than chess and which require recognition of parts 
of a situation. 

Marvin Minsky [1963] summarized the ideas available in 1963. 
McCarthy and Hayes [1969] got the situation calculus formalism to a large A1 

audience. 
Pat Hayes [1979; 19851 advanced a set of ideas that proved influential in subse- 

quent A1 research 
David Marr [1982] influenced much work in computer vision with its idea of the 

2 112 dimensional representation. 
The Stanford Artificial Intelligence Laboratory introduced the first robotic arms 

controlled by programs with input from TV cameras. [Moravec, 19771 described a 
cart with a TV camera controlled by radio from a time-shared computer. 

I will not go much beyond the 1960s in describing A1 research in general, because 
my own interests became too specialized to  do the work justice. 

3 PHILOSOPHICAL PRESUPPOSITIONS OF A1 

That it should be possible to make machines as intelligent as humans involves 
some philosophical premises, although the possibility is probably accepted by a 
majority of philosophers. The way we propose to build intelligent machines makes 
more presuppositions, some of which are likely to be controversial. 

This section is somewhat dogmatic, because it doesn't offer detailed arguments 
for its contentions and doesn't discuss other philosophical points of view except 
by way of making contrasts. 

Our way is called logical AI, and involves expressing knowledge in a computer 
in logical languages and reasoning by logical inference, including nonmonotonic 
inference. The other main approach to  A1 involves studying and imitating human 
neurophysiology. It may also work. 

Here are our candidate philosophical presuppositions of logical AI. They are 
most important for research aimed at human-level AI. There are a lot of them. 
However, much present A1 is too limited in its objectives for it to be important to 
get the philosophy right. 

objective world The world exists independently of humans. The facts of math- 
ematics and physical science are independent of there being people to know 
them. Intelligent Martians and robots will need to know the same facts as 
humans. 

A robot also needs to believe that the world exists independently of itself 
and that it cannot learn all about the world. Science tells us that humans 
evolved in a world which formerly did not contain humans. Given this, it is 
odd to regard the world as a human construct from sense data. It is even 
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more odd to program a robot to regard the world as its own construct. What 
the robot believes about the world in general doesn't arise for the limited 
robots of today, because the languages they are programmed to use can't 
express assertions about the world in general. This limits what they can 
learn or can be told-and hence what we can get them to do for us.3 

In the example, neither the driver nor the policeman will have any problems 
with the existence of the objective world. Neither should a robot driver or 
policeman. 

correspondence theory of t r u t h  A logical robot represents what it believes 
about the world by logical sentences. Some of these beliefs we build in; others 
come from its observations and still others by induction from its experience. 
Within the sentences, it uses terms to refer to objects in the world. 

In every case, we try to design it so that what it will believe about the 
world is as accurate as possible, though not usually as detailed as possible. 
Debugging and improving the robot includes detecting false beliefs about 
the world and changing the way it acquires information to maximize the 
correspondence between what it believes and the facts of the world. 

correspondence theory  of reference A1 also needs a correspondence theory 
of reference , i.e. that a mental structure can refer to an external object and 
can be judged by the accuracy of the reference. The terms the robot uses to 
refer to entities need to correspond to the entities so that the sentences will 
express facts about these entities. We have in mind both material objects 
and other entities, e.g. a plan or the electronic structure of the helium atom. 
The simple case of verification of correspondence of reference is when a robot 
is asked to pick up block B3, and it then picks up that block and not some 
other block. 

As with science, a robot's theories are tested experimentally, but the concepts 
robots use are hardly ever defined in terms of experiments. Their proper- 
ties are partially axiomatized, and some axioms relate terms representing 
concepts to objects in the world via observations. 

A robot policeman would need debugging if it thought a car was going 20 
mph when it was really going 75 mph. It would also need debugging if its 
internal visual memory highlighted a cow when it should have highlighted a 
particular car. 

A correspondence theory of reference will necessarily be more elaborate than 
a theory of truth, because terms refer to objects in the world or to objects in 
semantic interpretations, whereas sentences refer to truth values. Alas, real 

3Physics, chemistry, and biology have long been at a level where it more feasible to  understand 
sensation in terms of science than to  carry out the project of [Russell, 19141 of constructing science 
in terms of sensation. The justification of common sense and scientific knowledge is in terms of 
the  whole scientific picture of human sensation and its relation to  the world rather than as a 
construction from sensation. 



Ch17-N51726.fm Page 716 Thursday, August 28,2008 1152 AM @ I* 

John McCarthy 

world theories of reference haven't been much studied. Cognitive scientists 
and allied philosophers refer to the symbol grounding problem, but I'm not 
sure what they mean. 

reality and appearance The important consequence of the correspondence the- 
ory is the need to keep in mind the relation between appearance, the informa- 
tion coming through the robot's sensors, and reality. Only in certain simple 
cases, e.g. when a program plays chess with typed in moves, does the robot 
have sufficient access to  reality for this distinction to be ignored. A physical 
robot that played chess by looking at the board and moving pieces would 
operate on two levels-the abstract level, using (say) algebraic notation for 
positions and moves, and a concrete level in which a piece on a square has a 
particular shape, location, and orientation, the latter necessary to recognize 
an opponent's move and to make its own move on the board. Its vision sys- 
tem would have to  compute algebraic representations of positions from TV 
images. 

It is an accident of evolution that unlike bats, we do not have an ultra-sonic 
sense that would give information about the internal structure of objects. 

As common sense and science tell us, the world is three dimensional, and 
objects usually have complex internal structures. What senses humans and 
animals have are accidents of evolution. We don't have immediate access 
to  the internal structures of objects or how they are built from atoms and 
molecules. Our senses and reasoning tell us about objects in the world in 
complex ways. 

Some robots react directly to their inputs without memory or inferences. It 
is our scientific (i.e. not philosophical) contention that these are inadequate 
for human-level intelligence, because a robot needs to reason about too many 
important entities that cannot be fully observed directly. 

A robot that reasons about the acquisition of information must itself be 
aware of these relations. In order that a robot should not always believe 
what it  sees with its own eyes, it must distinguish between appearance and 
reality. 

A robot policeman would also need to be skeptical about whether what it 
remembered having seen (appearance) corresponded to reality. 

third person point of view We ask "How does it (or he) know?", "What does 
it  perceive?" rather than how do I know and what do I perceive. This is 
compatible with correspondence theories of truth and reference. It applies 
to how we look at robots, but also to how we want robots to reason about 
the knowledge of people and other robots. 

The interaction between the driver and the policeman involves each reasoning 
about the other's knowledge. 
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science Science is substantially correct in what it tells us about the world, and 
scientific activity is the best way to obtain more knowledge. 20th century 
corrections to previous scientific knowledge mostly left the old theories as 
good approximations to reality. Since science separated from philosophy 
(say a t  the time of Galileo), scientific theories have been more reliable than 
philosophy as a source of knowledge. 

The policeman typically relies on his radar, although he is unlikely to know 
much of the science behind it. 

mind and brain The human mind is an activity of the human brain. This is a 
scientific proposition, supported by all the evidence science has discovered 
so far. However, the dualist intuition of separation between mind and body 
is related to  the fact that it is often important to think about action without 
acting. Dualist theories may have some use as psychological abstractions. 
In the case of a programmed robot, the separation between mind and brain 
(program and computer) can be made quite sharp. 

conlmon sense Common sense ways of perceiving the world and common opin- 
ion are also mostly correct. When general common sense errs, it can often 
be corrected by science, and the results of the correction may become part of 
common sense if they are not too mathematical. Thus common sense has ab- 
sorbed the notion of inertia. However, its mathematical generalization, the 
law of conservation of momentum, has made its way into the common sense 
of only a small fraction of people-even among the people who have taken 
courses in physics. People who move to asteroids will need to build conser- 
vation of momentum and even angular momentum into their intuitions. 

From Socrates on, philosophers have found many inadequacies in common 
sense usage, e.g. common sense notions of the meanings of words. The 
corrections are often elaborations, making distinctions blurred in common 
sense usage. Unfortunately, there is no end to possible elaboration of many 
concepts, and the theories become very complex. However, some of the 
elaborations seem essential to avoid confusion in some circumstances. 

Robots will need both the simplest common sense usages and to be able 
to tolerate elaborations when required. For this we have proposed three 
notions--contexts as formal objects [McCarthy, 1993bI and [Mccarthy and 
BuvaE, 19971, elaboration tolerance [McCarthy, 1999b], and approximate ob- 
jects. [McCarthy, 200014 

4 ~ i l a r y  Putnam [Putnam, 19751 discusses two notions concerning meaning proposed by pre- 
vious philosophers which he finds inadequate. These are 

(I) That  knowing the meaning of a term is just a matter of being in a certain "psy- 
chological state" (in the sense of "psychological state" in which states of memory and 
psychological dispositions are "psychological states"; no one thought that knowing 
the meaning of a word was a continuous state of consciousness, of course.) 
(11) That  the meaning of a term (in the sense of "intension") determines its extension 
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science embedded in common sense Science is embedded in common sense. 
Galileo taught us that the distance s that a dropped body falls in time t is 
given by the formula 

1 2  s = -gt . 
2 

To use this information, the English or Italian (or their logical equivalent) 
are just as essential as the formula, and common sense knowledge of the 
world is required to make the measurements required to use or verify the 
formula. 

common sense expressible in mathematical logic Common sense knowledge 
and reasoning are expressible a s  logical formulas and logical reasoning. Some 
extensions to  present mathematical logic are needed. 

possibility of A1 According to some philosophers' views, artificia,l intelligence 
is either a contradiction in terms [Searle, 19841 or intrinsically impossible 
[Dreyfus, 19921 or [Penrose, 1994). The methodological basis of these argu- 
ments has to be wrong and not just the arguments themselves. 

mental qualities treated individually A1 has to treat mind in terms of com- 
ponents rather than regarding mind as a unit that necessarily has all the 
mental features that occur in humans. Thus we design some very simple 
systems in terms of the beliefs we want them to have and debug them by 
identifying erroneous beliefs. Its systematic theory allows ascribing mini- 
mal beliefs to entities as simple as thermostats, analogously to including 0 
and 1 in the number system. Thus a simple thermostat can have as its set 
of possible beliefs only that the room is too hot or that it is too cold. It  
does not have to know that it is a thermostat. This led to controversy with 
philosophers, e.g. John Searle, who think that beliefs can only be ascribed 
to  systems with a large set of mental qualities. [McCarthy, 1979al treats the 
thermostat example in detail. 

rich ontology Our theories involve many kinds of entity-material objects, sit- 
uations, properties as objects, contexts, propositions, individual concepts, 
wishes, intentions. Even when one kind A of entity can be defined in terms 
of others, we will often prefer to treat A separately, because we may later 
want to change our ideas of its relation to other entities. 

(in the sense that sameness of intension entails sameness of extension). 

Suppose Putnam is right in his criticism of the  general correctness of (I) and (11). His own 
ideas are more elaborate. 

It may be convenient for a robot to  work mostly in contexts within a larger context Cohill in 
r ----- 

which (I) and (11) (or something even simpler) hold. However, the same robot, if it is to  have 
human level intelligence, must be able t o  transcend Cphill when it has t o  work in contexts t o  
which Putnam's criticisms of the assumptions of Cphill apply. 

It is interesting, but perhaps not necessary for A1 a t  first, to  characterize those circumstances 
in which (I) and (11) are correct. 
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A1 has to consider several related concepts, where many philosophers ad- 
vocate minimal ontologies. Suppose a man sees a dog. Is seeing a relation 
between the man and the dog or a relation between the man and an appear- 
ance of a dog? Some purport to refute calling seeing a relation between the 
man and the dog by pointing out that the man may actually see a hologram 
or picture of the dog. A1 needs the relation between the man and the ap- 
pearance of a dog, the relation between the man and the dog and also the 
relation between dogs and appearances of them. None need be regarded as 
most fundamental. 

Both the driver and the policeman use enriched ontologies including con- 
cepts whose definition in terms of more basic concepts is unknown or even 
undefined. Thus both have a concept of a car not based on prior knowledge 
of its parts. The policeman has concepts of and names for offenses for which 
a ticket is appropriate and those requiring arrest. 

na tura l  kinds The entities the robot must refer to  often are rich with properties 
the robot cannot know all about. The best example is a natural kind like 
a lemon. A child buying a lemon at a store knows enough properties of 
the lemons that occur in the stores he frequents to  distinguish lemons from 
other fruits in that particular store. It is a convenience for the child that 
there isn't a continuum of fruits between lemons and oranges. Distinguishing 
hills from mountains gives more problems and disagreements. Experts know 
more properties of lemons than we laymen, but no-one knows all of them. 
A1 systems also have to distinguish between sets of properties that suffice to 
recognize an object in particular kinds of situation and a general kind. 

Curiously, many of the notions studied in philosophy are not natural kinds, 
e.g. proposition, meaning, necessity. When they are regarded as natural 
kinds, fruitless arguments about what they really are often take place. A1 
needs these notions but must be able to work with limited notions of them. 

approximate entities Many common sense terms and propositions used success- 
fully in conversation and writing cannot be given agreed-upon if-and-only-if 
definitions by the participants in a dialog. Examples include "x believes 
y", which has attracted much philosophical attention but also terms like 
"location(x)" which have not. 

Some people have said that the use of computers requires terms to be defined 
precisely, but I don't agree. Many approximate entities will have to be con- 
sidered by computer programs, internally and in communication. However, 
precision can often be achieved when terms and statements are interpreted in 
a context appropriate to a particular situation. In human usage, the context 
itself is not usually specified explicitly, and people understand each other, 
because the common context is implicit. 

Our emphasis on the first class character of approximate entities may be new. 
It means that we can quantify over approximate entities and also express how 
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an entity is approximate. [McCarthy, 2000] treats approximate entities and 
approximate theories. 

The counterfactual "If another car had come over the hill when you passed 
. . ." is very approximate. It is adequate for communication between the 
driver and the policeman, but attempts by them to  define it more precisely 
would probably not agree. 

There is some overlap between the discussion of approximate entities and 
philosophical discussions of vagueness. However, our point is the need for 
approximate entities in AI. 

compatibility of determinism and free will A logical robot needs to consider 
its choices and the consequences of them. Therefore, it; must regard itself 
as having (and indeed has) a kind of free will even though it is a determin- 
istic device. In the example, a judge might be offered the excuse that the 
driver couldn't drop back after he started to pass, because someone was right 
behind him. 

[McCarthy, 20051 formalizes a simple form of deterministic free will. A 
robot's or human's action sometimes has two stages. The first uses a non- 
deterministic theory, e.g. situation calculus, to compute a set of choices and 
their consequences and to evaluate the situations that result from perform- 
ing the actions. The second stage chooses the action whose consequences are 
regarded as best. The sensation of free will is the situation at the end of the 
first stage. The choices are calculated, but the action isn't yet decided on 
or performed. This simple theory should be useful in itself but needs to be 
elaborated to take into account further aspects of human free will. The need 
is both philosophical and practical for robot design. One aspect of human 
free will that is probably unnecessary for robots is weakness of will. 

mind-brain distinctions I'm not sure whether this point is philosophical or sci- 
entific. The mind corresponds somewhat to software, perhaps with an inter- 
nal distinction between program and knowledge. Software won't do anything 
without hardware, but the hardware can be quite simple, e.g. a universal 
Turing machine or simple stored program computer. Some hardware con- 
figurations can run many different programs concurrently, i.e. there can be 
many minds in the same computer body. Software can also interpret other 
software. 

Confusion about this is the basis of the Searle Chinese room fallacy [Searle, 
19841. The man in the hypothetical Chinese room is interpreting the software 
of a Chinese personality. Interpreting a program does not require having the 
knowledge possessed by that program. This would be obvious if people could 
interpret other personalities at a practical speed, but Chinese room software 
interpreted by an unaided human might run at lo-' the speed of an actual 
Ch ine~e .~  

51f Searle would settle for an interaction at  the level of Joseph Weizenbaum's [Weizenbaum, 
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Most A1 work does not assume so much philosophy. For example, classifying 
scenes and other inputs need not assume that there is any reality behind the 
appearances being classified. However, ignoring reality behind appearance will 
not lead to human-level AI, and some short term A1 goals have also suffered from 
incorrect, philosophical presumptions, almost always implicit. 

Human-level A1 also has scientific presuppositions. 

4 SCIENTIFIC PRESUPPOSITIONS OF A1 

Some of the premises of logical A1 are scientific in the sense that they are subject to 
scientific verification or refutation. This may also be true of some of the premises 
listed above as philosophical. 

innate  knowledge The human brain has important innate knowledge, e.g. that 
the world includes three dimensional objects that usually persist even when 
not observed. This knowledge was learned by evolution. The existence of 
innate knowledge was not settled by philosophical analysis of the concept, 
but is being learned by psychological experiment and theorizing. Acquiring 
such knowledge by learning from sense data will be quite hard but possible. 

Indeed it is worthwhile to build as much knowledge as possible into our 
robots. The CYC project of Douglas Lenat is an attempt to put a large 
amount of common sense knowledge into a database. 

Identifying human innate knowledge has been the subject of recent psycho- 
logical research. See [Spelkel 19941 and the discussion in [pinker, 19971 and 
the references Pinker gives. In particular, babies and dogs know innately that 
there are permanent objects and look for them when they go out of sight. 
We'd better build that into our robots, as well as other innate knowledge 
psychologists identify. Evolution went to a lot of trouble to acquire knowl- 
edge that we needn't require robots to learn from experience. Maybe the 
childhood preference for natural kind concepts is something robots should 
have built in. 

middle ou t  Humans deal with middle-sized objects and develop our knowledge 
up and down from the middle. Formal theories of the world must also start 
from the middle where our experience informs us. Efforts to start from the 
most basic concepts, e.g. to make a basic ontology, are unlikely to succeed 
as well as starting in the middle. The ontology must be compatible with the 
fact that the basic entities in one's initial ontology are not the basic entities 
in the world. More basic entities, e.g. electrons and quarks, are known less 
well than the middle entities. 

19651, a person could interpret the rules without computer aid-as Weizenbaum recently informed 
me. 
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logic level Allen Newell, who did not use logical AI, nevertheless proposed [Newell, 
19931 that there was a level of analysis of human rationality that he called 
the logic level at  which humans could be regarded as doing what they thought 
would achieve their goals. Many of the systems the Carnegie-Mellon group 
built, e.g. SOAR, were first designed at the logic level. 

universality of intelligence Achieving goals in the world requires that an agent 
with limited knowledge, computational ability and ability to observe use cer- 
tain methods. This is independent of whether the agent is human, Martian, 
or machine. For example, playing chess-like games effectively requires some- 
thing like alpha-beta pruning. 

universal expressiveness of logic This is a proposition analogous to the Tur- 
ing thesis that Turing machines are computationally universal-anything 
that can be computed by any machine can be computed by a Turing ma- 
chine. The expressiveness thesis is that anything that can be expressed, can 
be expressed in first order logic with a suitable collection of functions and 
predicates. 

Some elaboration of the idea is required before it will be as clear as the 
Turing thesis. First order logic isn't the best way of expressing all that can 
be expressed any more than Turing machines are the best way of express- 
ing computations. However, with set theory, as axiomatized in first order 
logic, whatever can be expressed in stronger systems can apparently also be 
expressed in first order logic. 

Godel's completeness theorem tells us that every sentence p true in all models 
of a set a of sentences can be deduced. However, nonmonotonic reasoning 
is needed and used by humans to get consequences true in simple models. 
Very likely, reflection principles are also needed. 

We expect these philosophical and scientific presuppositions to become more 
important as A1 begins to  tackle human-level intelligence. 

5 COMMON SENSE AND THE COMMON SENSE INFORMATIC 
SITUATION 

The main obstacle to getting computer programs with human-level intelligence 
is that we don't understand yet how to give them human level common sense. 
Without common sense, no amount of computer power will give human-level in- 
telligence. Once programs have common sense, improvements in computer power 
and algorithm design will be directly applicable to making them more intelligent. 
Understanding common sense is also key to solving many philosophical problems. 

The logical A1 and knowledge representation communities undertake to study 
the world and represent common sense knowledge by logical formulas. A competing 
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approach is based on studying the brain and how common sense knowledge is 
represented in synapses and other neurological structures. 

CYC [Lenat, 19951 is a knowledge base with several million common sense 
facts. Douglas Lenat [Matuszek and Lenat, 20051 has repeatedly emphasized that 
a key level of common sense will be reached when programs can learn from the 
Worldwide Web facts about science, history, current affairs, etc. The above cited 
2005 paper says 

The original promise of the CYC project-to provide a basis of real 
world knowledge sufficient to support the sort of learning from language 
of which humans are capable-has not yet been fulfilled. 

Notice the implication that the lack is common sense knowledge rather than 
the ability to parse English. I agree. 

This section is an informal summary of various aspects of common sense. The 
key phenomenon for both A1 and philosophy is what we call the common sense 
informatic situation. 

What is common sense? 
Common sense is a certain collection of knowledge, reasoning abilities, and 

perhaps other abilities. 
In [ ~ c C a r t h ~ ,  19591 I wrote that the computer programs that had been written 

up to 1958 lacked common sense. Common sense has proved to be a difficult phe- 
nomenon to  understand, and the programs of 2005 also lack common sense or have 
common sense in bounded informatic situations. In the 1959 paper, I wrote "We 
shall therefore say that a program has common sense if it automatically 
deduces for itself a sufficiently wide class of immediate consequences of 
anything it is told and what it already knows." 

Programs with common sense B la [McCarthy, 19591 are still lacking, and, more- 
over, the ideas of that paper are not enough. Logical deduction is insufficient, and 
nonmonotonic reasoning is required. Common sense knowledge is also required. 

Here's what I think is a more up-to-date formulation. 
A program has common sense if it has sufficient common sense knowl- 

edge of the world and suitable inference methods to infer a sufficiently 
wide class of reasonable consequences of anything it is told and what it 
already knows. Moreover, many inferences that people consider obvious are not 
deduced. Some are made by mental simulation and some involve nonmonotonic 
reasoning. 

Requiring some intelligence as part of the idea of common sense gives another 
formulation. 

A program has common sense if it can act effectively in the common 
sense informatic situation, using the available information to achieve 
its goals. 

A program that decides what to do has certain information built in, gets other 
information from its inputs or observations; still other information is generated by 
reasoning. Thus it is in a certain informatic situation. If the information that has 
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to be used has a common sense character, it will be in what we call the common 
sense informatic situation. 

We need to contrast the general common sense informatic situation with less 
general bounded informatic situations. The latter are more familiar in science and 
probably in philosophy. 

5.1 Bounded informatic situations 

Current (2006) science and technology requires that to write a computer program 
in some area, construct a database, or even write a formal theory, one has to bound 
the set of concepts taken into account. 

Present formal theories in mathematics and the physical sciences deal with 
bounded informatic situations. A scientist decides informally in advance what 
phenomena to take into account. For example, much celestial mechanics is done 
within the Newtonian gravitational theory and does not take into account possible 
additional effects such as outgassing from a comet or electromagnetic forces exerted 
by the solar wind. If more phenomena are to be considered, scientists must make 
new theories-and of course they do. 

Likewise present A1 formalisms work only in bounded informatic situations. 
What phenomena to take into account is decided by a person before the formal 
theory is constructed. With such restrictions, much of the reasoning can be mono- 
tonic, but such systems cannot reach human-level ability. For that, the machine 
will have to decide for itself what information is relevant, and that reasoning will 
inevitably be partly nonmonotonic. 

One example is the simple "blocks world" much studied in A1 where the position 
of a block x is entirely characterized by a sentence At(%, I )  or On(x, y), where I is a 
location or y is another block. The language does not permit saying that one block 
is partly on another. Moreover, using On(x, y) does not require a previous analysis 
of the meaning of the word "on" or the concept it represents. Only certain simple 
axioms are used. This works, because within the context of the kind of simple 
block stacking program being built, one block is definitely on or not on another, 
assuming the program never makes the robot put a block in an ambiguous position. 
Patrick Winston extended the blocks world to allow a block to  be supported by 
two others and discussed structures like arches. See [Winston, 19771. 

Another example is the MYCIN [Davis et al. , 19771 expert system in which 
the ontology (objects considered) includes diseases, symptoms, and drugs, but not 
patients (there is only one), doctors or events occurring in time. Thus MYCIN 
cannot be told that the previous patient with the same symptoms died. See 
[McCarthy, 19831 for more comment on MYCIN. 

Systems in a bounded informatic situation are redesigned from the outside when 
the set of phenomena they take into account is inadequate. However, there is no- 
one to  redesign a human from the outside, so a human has to be able to take new 
phenomena into account. A human-level A1 system needs the same ability to take 
new phenomena into account. 
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In general a thinking human is in what we call the common sense informatic 
situation. The known facts are necessarily incomplete. 

5.2 The  general common sense informatic situation 

By the informatic situation of an animal, person or computer program, I mean 
the kinds of information available to it and the reasoning methods available to it. 
The common sense informatic situation is that of a human with ordinary abilities 
to  observe, ordinary innate knowledge, and ordinary ability to reason, especially 
about the consequences of events that might occur including the consequences 
of actions it might take. Specialized information, like science and about human 
institutions such as law, can be learned and embedded in a person's common 
sense information. In spite of almost 50 years of effort, only modest progress has 
been made towards making computer systems with human-level common sense 
abilities. Much more progress has been made with specialized systems in bounded 
informatic situations. 

No-one has a full understanding of what the common sense informatic situation 
is. I think understanding it is the single biggest problem for AI, and maybe for 
philosophy and cognitive science. However, it has at least the following features. 

beliefs about actions and other events The policeman believes that one car 
passed another. His beliefs about the effects of events cause him to believe 
that if another car had come over the hill, there would have been a head-on 
collision. 

elaboration tolerant theories The theory used by the agent is open to new 
facts and new phenomena. For example, the driver and the policeman could 
take possible fog into account, or the driver could claim that if another car 
had been coming he'd have seen the headlights reflected on a barn at the 
top of the hill. The cop's theory recommended that he reply, "Tell that to 
the judge." 

Another example: A housewife shopping for dinner is at the butcher counter 
and thinks that her son coming on an airplane at that afternoon likes steak. 
She decides to check whether the airplane will be in on time. Suddenly 
a whole different area of common sense knowledge that is not part of the 
shopping-for-dinner script becomes relevant, i.e. the flight information num- 
ber of the airline and how to get it if it isn't on her cell phone's telephone 
list. Section 6 has more on elaboration tolerance. 

6As discussed in section 4, we live in a world of middle-sized objects which can only be 
partly observed. Science fiction and scientific and philosophical speculation have often indulged 
in the  Laplacean fantasy of super-beings able to  predict the future by knowing the positions 
and velocities of all the particles. That isn't the direction to  speculate. More plausible super- 
beings would be better a t  using the information that is available to  the senses-maybe having 
more and more sensitive senses, e.g. ultrasound, permitting seeing internal surfaces of objects. 
Nevertheless, their ability t o  predict the  future and anticipate the  consequences of actions they 
might choose would still be limited by chaotic processes. 



Ch17-N51726.fm Page 726 Thursday, August 28,2008 1152 AM @ I* 

726 John McCarthy 

incompletely known a n d  incompletely defined entities The objects and 
other entities under consideration are incompletely known and are not fully 
characterized by what is known about them. The real cars of the driver 
and the policeman are incompletely known, and the hypothetical car that 
might have come over the hill is quite vague. It would not be appropriate for 
the driver to ask the policeman "What kind of car did you have in mind?" 
Most of the entities considered are intrinsically not even fully defined. The 
hypothetical car that might have come over the hill is ill-defined, but so are 
the actual cars. 

nonmonotonic reasoning Elaboration tolerance imposes one requirement on 
the logic, and this is the ability to do nonmonotonic reasoning. The sys- 
tem must reach conclusions that further facts not contradicting the original 
facts are can alter. For example, when a bird is mentioned, one normally 
concludes that it can fly. Learning that it  is a penguin changes this. There 
are two major formalisms for doing nonmonotonic reasoning, circumscrip- 
tion and default logic. Also Prolog programs do nonmonotonic inference 
when negation as failure is used. 

Circumsc~ption, [McCarthy, 19801, [McCarthy, 19861, and [Lifschitz, 19931, 
minimizes the extension of a predicate, keeping the extensions of some oth- 
ers fixed and allowing still others to be varied in achieving the minimum. 
Circumscription is the logical analog of the calculus of variations in math- 
ematical analysis, but it doesn't so far have as elegant a theory. Here's a 
basic form of circumscription. 

Let a be an axiom with the arguments p (to be minimized), z (which can 
be varied), and c (which is held constant). Then the circumscription of p, 
Circum(a, p, z, c) is defined by 

where we have the definitions 

P ' < P - P ' I P A P ' # P ,  
(2) and 

P' I P = (Vx)(pl(x) --+ P(X)). 

Taking into account only some of the phenomena is a nonmonotonic reason- 
ing step. It  doesn't matter whether phenomena not taken into account are 
intentionally left out or if they are unknown to the reasoner. 

While nonmonotonic reasoning is essential for both man and machine, it 
leads to  error when an important fact is not taken into account. These are 
the errors most often noticed. ' 

 e ere's an extended example from the history of science. 
Starting in the  middle of the 19th century, Lord Kelvin (William Thomson) undertook t o  set 

limits on the  age of the  earth. He had measurements of the  rate of increase of temperature with 
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[Koons, 20051 contains a good discussion of various kinds of nonmonotonic 
reasoning. 

reasoning in contexts and about contexts In the context of the Sherlock 
Holmes stories, Holmes is a detective and his mother's maiden name is unde- 
fined. In the context of U.S. legal history Holmes is a judge, and his mother's 
maiden name is Jackson. Bounded theories, usually have a fixed context. 

An agent in the common sense informatic situation is often confronted with 
new contexts. Section 7 is devoted to information in and about contexts as 
well as relations between information in different contexts. 

knowledge of physical objects There is increasing evidence from psychological 
experiments [Spelke, 19943 that babies have innate knowledge of physical 
objects and their permanence when they go out of sight. Any common sense 
system should have this built in. [McCarthy, 1996~1, "The well-designed 
child" discusses what information about the world should be built into a 
robot. 

composition of objects Consider an object composed of parts. It  is convenient 
logically when what we knew about the parts and how they are put together 
enables us to determine the behavior of the compound object. Indeed this is 
often true in science and engineering and is often the goal of the search for 
a scientific theory. . Thus it is quite helpful that the properties of molecules 
follow from the properties of atoms and their interactions. 

The common sense informatic situation is not so convenient logically. The 
properties of an object are often more readily available than the properties 
of the parts and their relations. 

For example, a baseball has a visible and feelable surface, and we can see 
and feel the seams and can feel its compliance and its simplest heat transfer 
properties. We also know, from reading or from seeing a baseball disassem- 
bled, something about its innards. However, this knowledge of structure is 
less usable than the knowledge of the baseball as a whole. 

depth and of the thermal conductivity of rock. He started with the assumption that the earth 
was originally molten and computed how long it would have taken for the earth to  cool to  its 
present temperature. He first estimated 98 million years and later reduced the estimate to  20-40 
million years. This put him into conflict with geologists who already had greater estimates based 
on counting annual layers in sedimentary rock. 

Kelvin's calculations were correct but gave the wrong answer, because no-one until Becquerel's 
discovery in 1896 knew about radioactive decay, the main source of energy that keeps the earth 
hot. 

Kelvin's reasoning was nonmonotonic. Namely, he assumed that all the sources of energy 
whose existence could be inferred from his scientific knowledge were all that existed. 

Nonmonotonic reasoning is necessary in science as in daily life. There can always be phenomena 
we don't know about. Indeed there might be another source of energy in the earth besides 
radioactivity. 

Experience tells us that careful nonmonotonic reasoning, taking into account all the sources 
of information we can find and understand, usually gives good results, but we can never be as 
certain as we can be of purely mathematical results. 
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The phenomenon of often knowing more about the whole than about the 
parts, applies to  more than physical objects. It  can apply to  processes. The 
phenomenon even existed in mathematics. Euclid's geometry was a powerful 
logical structure, but the basic concepts were fuzzy. 

knowledge of regions i n  space I don't know how to formulate this precisely 
nor do I know of comprehensive discussions in the psychological literature, 
but some such knowledge can be expected to be innate. Evolution has had 
almost 4 billion years to make it intrinsic. Knowledge of the space on the 
highway is common to the driver and the policeman in the example. 

localization We do not expect events on the moon to influence the physical 
location of objects on the table. However, we can provide for the possibility 
that an astronomer looking through a telescope might be so startled by seeing 
a meteorite collide with the moon that he would fall off his chair and knock 
an object off the table. Distant causality is a special phenomenon. We take 
it  into account only when we have a specific reason. 

knowledge of o ther  actors Babies distinguish faces from other objects very 
early. Presumably babies have some innate expectations about how other 
actors may respond to the baby's actions. 

self reference In general the informatic situation itself is an object about which 
facts are known. This human capability is not used in much human reason- 
ing, and very likely animals don't have it. 

introspective knowledge This is perhaps a distinctly human characteristic, but 
some introspective knowledge becomes part of common sense early in child- 
hood, at least by the age of five. By that age, a typical child can remember 
that it previously thought a box contained candy even when it has learned 
that it actually contained crayons. 

counterfactuals Common sense often involves knowledge of counterfactuals and 
the ability to infer them from observation and to draw non-counterfactual 
conclusions from them. In the example, the policeman, infers that he should 
give the driver a ticket from the counterfactual that there would have been 
a collision if another car had come over the hill. People learn from counter- 
factual experiences they would rather not have in reality. 

bounded informatic situations in contexts Bounded informatic situations 
have an important relation to the common sense informatic situation. For 
example, suppose there are some blocks on a table. They are not perfect 
cubes and they are not precisely aligned. Nevertheless, a simple blocks world 
theory may be useful for planning building a tower by moving and painting 
blocks. The bounded theory of the simple blocks world in which the blocks 
are related only by the on(x, y, s) relation is related to the common sense 
informatic situation faced by the tower builder. This relation is conveniently 
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expressed using the theory of contexts as objects discussed in section 7 and 
[McCarthy and BuvaE, 19971. The blocks world theory holds in a subcontext 
cblocks of the common sense theory c, and sentences can be lzfied in either 
direction between c and cblocks. 

learning A child can learn facts both from experience and from being told. Quite 
young children can be told about Santa Claus. Unfortunately, no A1 systems 
so far developed (2006 January) can learn facts expressed in natural language 
on web pages. 

Closer to hand, we do not expect objects not touching or connected through 
intermediate objects to affect each other. Perhaps there is a lot of common 
sense knowledge of the physical motion of table scale objects and how they 
affect each other that needs to  be expressed as a logical theory. 

The difficulties imposed by these requirements are the reason why the goal of 
Leibniz, Boole and Frege to use logical calculation as the main way of deciding 
questions in human affairs has not yet been realized. Realizing their goal will 
require extensions to logic beyond those required to reason in bounded informatic 
situations. Computer programs operating in the common sense informatic situa- 
tion also need tools beyond those that have been used so far. 

In contrast to the above view, Nagel [Nagel, 19611 treats common sense knowl- 
edge as the same kind of knowledge as scientific knowledge, only not systemat- 
ically tested and justified. This is true of some common sense knowledge, but 
much common sense knowledge concerns entities that are necessarily ill-defined 
and knowledge about their relations that is necessarily imprecise. 

Shannon's quantitative information theory seems to have little application to 
the common sense informatic situation. Neither does the Chaitin-Kolmogorov- 
Solomonoff computational theory. Neither theory concerns what common sense 
information is. 

6 THE A1 OF PHILOSOPHY-SOME ADVICE 

Van Benthem [1990], tells us that A1 is philosophy pursued by other means. That's 
part of what A1 has to do. 

A1 research attacks problems common to A1 and philosophy in a different way. 
For some philosophical questions, the A1 approach is advantageous. In turn A1 has 
already taken advantage of work in analytic philosophy and philosophical logic, and 
further interactions will help both kinds of endeavor. This section offers reasons 
why philosophers might be interested in A1 approaches to some specific common 
problems and how A1 might benefit from the interaction. 

Achieving human-level common sense involves at least partial solutions to many 
philosophical problems, some of which are long standing in the philosophical, AI, 
and/or cognitive science literature, and others which have not yet been identified. 
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Identifying these problems is important for philosophy, for AI, and for cognitive 
science. 

To ascribe certain beliefs, knowledge, free will, intentions, consciousness, 
abilities or wants to a machine or computer program is legitimate when such 
an ascription expresses the same information about the machine that it expresses 
about a person. It is web1 when the ascription helps us understand the structure 
of the machine, its past or future behavior, or how to repair or improve it. It is 
perhaps never logically required even for humans, but expressing reasonably briefly 
what is actually known about the state of a machine in a particular situation may 
require ascribing mental qualities or qualities isomorphic to them. Theories of 
belief, knowledge and wanting can be constructed for machines in a simpler setting 
than for humans and later applied to humans. Ascription of mental qualities is 
most straightforward for machines of known structure such as thermostats and 
computer operating systems, but is most useful when applied to entities whose 
structure is very incompletely known. 

While we are quite liberal in ascribing some mental qualities even to rather 
primitive machines, we should be conservative in our criteria for ascribing any 
particular quality. The ascriptions are what [Dennett, 19781 calls taking the in- 
tentional stance. 

Even more important than ascribing mental qualities to existing machines is 
designing machines to have desired mental qualities. 

Here are some features of some A1 approaches to common problems of A1 and 
philosophy. 

A1 starts small. Fortunately, A1 research can often make do with small versions 
of the concepts. These small versions of the concepts and their relations are 
valid in limited contexts. We discuss three examples here and in section 7, 
which is about context. These are belief, action in the blocks world, and 
ownership of purchased objects. 

An intelligent temperature control system for a building should be designed 
to  know about the temperatures of particular rooms, the state of various 
valves, the occupants of rooms, etc. Because the system is not always cor- 
rect about these facts, we and it should regard them as beliefs. Weather 
predictions need always be regarded as uncertain, i.e. as beliefs. 

It  is worthwhile to consider the simplest beliefs first, e.g. those of a thermo- 
stat. 

A simple thermostat may have just three possible beliefs: the temperature 
is too cold, okay, or too hot. It behaves according to its current belief, 
turning the heat on, leaving it  as is, or turning it off. It doesn't believe it's 
a thermostat or believe it believes the room is too cold. 

Of course, the behavior of this simple thermostat can be understood without 
ascribing any beliefs. Beginning a theory of belief with such simple cases has 
the same advantage as including 1 in the number system. (Ascribing no 
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beliefs to  a rock is like including 0.) A temperature control system for a 
whole building is appropriately ascribed more elaborate beliefs. Ascribing 
beliefs and other mental qualities is more thoroughly discussed in [McCarthy, 
1979al. 

A child benefits from knowing that it is one child among others. Likewise, 
a temperature controller might even benefit from knowing that it is one 
temperature controller among other such systems. If it learns via the Internet 
that another system adjusts to snow on the roof, it  might modify its program 
accordingly. 

Naive common sense is often right in context. An example is the common 
sense notion of "x caused y". 

There is a context in which "The window was broken by Susan's baseball" is 
true and "The window was broken, because the building contractor neglected 
to put a grill in front of it" is not even in the language used by the principal 
in discussing the punishment of the girl who threw the ball. Such limited 
contexts are often used and useful. Their relation to more general contexts 
of causality require study and logical formalization. 

theory of action and the frame problem The conditions for an agent achiev- 
ing goals in the world are very complicated in general, but A1 research has 
developed theories and computer programs of increasing sophistication. 

A1 has long (since the 1950s anyway) concerned itself with finding sequences 
of actions that achieve goals. For this A1 needs theories of the effects of in- 
dividual actions, the tree of situations arising from an initial situation, and 
the effects of sequences of actions. The most used A1 formalism for. this is 
the situation calculus8 introduced in [McCarthy and Hayes, 19691. Its rela- 
tions to philosophy are discussed in [Thomason, 20031. There are thorough 
discussions in [Shanahan, 19971 and [Reiter, 20011, and a new version with 
occurrence axioms as well as the usual effect axioms is introduced in [Mc- 
Carthy, 20021. Three problems, the frame problem, the qualification problem, 
and the ramification problem have arisen and are extensively discussed in the 
A1 literature and also in [~homason, 20031. The frame problem, also taken 
up by philosophers, concerns how to avoid stating which fiuents (aspects of a 
situation) are unchanged when an action takes place, e.g. avoiding explicitly 
stating that the color of an object doesn't change when the object is moved. 

The basic situation calculus is a non-deterministic (branching) theory of 
action. A1 has also treated deterministic (linear) theories of action. The 
new formalism of [McCarthy, 20021 permits a treatment [ ~ c C a r t h ~ ,  20051 of 
a kind of deterministic free will in which a non-deterministic theory serves 
as part of the deterministic computational mechanism. 

A1 has considered simple examples that can be subsequently elaborated. The 
well-known blocb world is treated with logical sentences like On(Block1, 

8The event calculus [Mueller, 20061 is an alternative. 



Ch17-N51726.fm Page 732 Thursday, August 28,2008 1152 AM @ I* 

John McCarthy 

Block2) or On(Block1, Block2, SO) in which the situation is explicit. An- 
other formalism uses Value(Location(Blockl), SO) = Top(Block2). We may 
also have 

(Vs)(. . . -+ Location(block, Result(Move(block, l), s)) = 1) 
(3) and 

(Vs) (. . . -, Color(block, Result(Paint(block, c), s)) = c 

where . . .stands for some preconditions for the success of the action. On 
one hand, such simple action models have been incorporated in programs 
controlling robot arms that successfully move blocks. On the other hand, 
the fmme problem arose in specifying that moving a block didn't change the 
locations of other blocks or the colors of the blocks. This problem, along with 
its mates, the qualification problem and the ramification problem, arose in 
A1 research but arise also in studying the effects of action in philosophy. 

Note that in the bounded theory of the blocks world as partly described here, 
there is only one actor, and a block is never partly on one block and partly on 
another. Elaborations have been made to study these complications, but the 
methodology of doing the simple cases first has led to good results. Making 
a full theory of action from scratch is still only a vaguely defined project. 

nonmonotonic reasoning Nonmonotonic reasoning is essentially the same topic 
as defeasible reasoning, long studied in philosophy. What's new since the 
1970s is the development of formal systems for nonmonotonic reasoning, 
e.g. the logic of defaults [Reiter, 19801 and circumscription, [McCarthy, 
1980] and [ ~ c C a r t h ~ ,  19861. There are also computer systems dating from 
the 1970s that do nonmonotonic reasoning, e.g. Microplanner and Prolog. 
Nonmonotonic reasoning has been prominent in programs that make plans 
to achieve goals. 

Recent articles in the Stanford Encyclopedia of Philosophy have made the 
connection between A1 work in nonmonotonic reasoning and philosophical 
work on defeasibility. Convenient references are [Thomason, 2003; Koons, 
20051, and [Antonelli , 20031. 

elaboration tolerance Explicit formalizations of common sense phenomena are 
almost never complete. There is always more information that can be taken 
into account. This is independent of whether the phenomena are described in 
ordinary language or by logical sentences. Theories always have to be elab- 
orated. According to how the theory is written in the first place, the theory 
may tolerate a given elaboration just by adding sentences, which usually re- 
quires nonmonotonicity in making inferences from the theory, or the theory 
may have to be scrapped and a new theory built from scratch. [McCarthy, 
1999b] introduces the concept of elaboration tolerance and illustrates it with 
19 elaborations of the well-known missionaries and cannibals puzzle. The 
elaborations seem to be straightforward in English but rely on the common 
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sense of the reader. Some of the logical formulations tolerate some of the 
elaborations just by adding sentences; others don't. One goal is find a logical 
language in which all the elaborations are additive. 

[~ifschitz, 20001 accomplishes 9 of the above-mentioned 19 elaborations in 
the Causal Calculator of McCain and Turner [McCain and Turner, 19981. 
[Shanahan, 19971 has an extensive discussion of elaboration tolerance. 

I don't know of discussions of the elaboration tolerance of theories proposed 
in the philosophical literature. 

sufficient complexity usually yields essentially unique interpretations A 
robot that interacts with the world in a sufficiently complex way gives rise 
to an essentially unique interpretation of the part of the world with which it 
interacts. This is an empirical, scientific proposition, but many people, espe- 
cially philosophers (see [Quine, 19601, [Quine, 19691, [Putnam, 19751, [Den- 
nett, 19711, [Dennett, 1998]), seem to take its negation for granted. There 
are often many interpretations in the world of short descriptions, but long 
descriptions almost always admit at most one. As far as I can see, [Quine, 
19601 did not discuss the effect of a large context on the indeterminacy of 
translation-of say gavagai. 

The most straightforward example is that a simple substitution cipher cryp- 
togram of an English phrase. Thus XYZ could be decrypted as either "cat" 
or "dog". A simple substitution cryptogram of an English sentence usually 
has multiple interpretations if the text is less than 21 letters and usually has 
a unique interpretation if the text is longer than 21 letters. Why 21? It's 
a measure of the redundancy of English [Shannon and Weaver, 19491. The 
redundancy of the sequence of a person's or a robot's interactions with the 
world is just as real-though clearly much harder to quantify. 

approximate objects and theories The idea that entities of philosophical in- 
terest are not always well defined can, if you like such attributions, be at- 
tributed to Aristotle's 

Our discussion will be adequate if it has as much clearness as the 
subject matter admits of, for precision is not to be sought for alike 
in all discussions, any more than in all the products of the crafts. 
-Nicomachean Ethics. 

I don't know whether Aristotle pursued the idea further. 

I proposed [McCarthy, 20001 that A1 requires the formalization of approx- 
imate entities that sometimes yields firm logical theories on foundations of 
semantic quicksand. Thus it is definite that Mount Everest was climbed in 
1953 even though it is not definite what rock and ice constitute Mount Ever- 
est. A much more approximate concept though still useful is "The United 
States wanted in  1990" applied to "that Iraq would withdraw from Kuwait". 
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One proposal is to use necessary conditions for a proposition and sufficient 
conditions but not to  strive for conditions that are both necessary and suf- 
ficient. These ideas are connected to notions of vagueness that have been 
discussed by philosophers, but the discussion in the article [Sorensen, 20031 
in the Stanford Encyclopedia of Philosophy does not discuss how to formalize 
essentially vague concepts. 

contexts as objects This is an area where, judging from the Stanford Ency- 
clopedia of Philosophy, there is as yet no connection between the rather 
extensive research in A1 that started with [McCarthy, 1993bj and research 
in philosophy. Since information in A I  (and in ordinary language) is always 
presented in a context, section 7 is devoted to a sketch of a theory of contexts 
as objects. 

concepts as objects In natural language, concepts are discussed all the time. 
Nevertheless, Carnap wrote 

. . . it  seems that hardly anybody proposes to use different variables 
for propositions and for truth-values, or different variables for in- 
dividuals and individual concepts. 
([Carnap, 19561 , p. 113. 

Perhaps Carnap was thinking of [Church, 19511 as the exception. Instead, 
modal logic is used for expressing certain assertions about propositions, and 
individual concepts are scarcely formalized at all. 

human-level A1 will require the ability to express anything humans express 
in natural language and also to expressions statements about the expressions 
themselves and their semantics. 

[McCarthy, 1979131 proposes distinguishing propositions from truth values 
and individual concepts from objects in a base domain-and using different 
variables for them. Here are some examples of the notation. The value 
of Mike is a person, whereas the value of MMike is a concept-intended 
to  be a concept of that Mike in this case, but that it should be is not a 
typographical convention. Here are some sentences of a first order language 
with concepts and objects. 

Denot(MMike) = Mike, 
Male(Mike), 
Denot(MMale(MMike)), 
Denot(HHusband(MMary)) = Mike, 

(4) Husband(Mary) = Mike, 
HHusband(MMary f MMike, 
(Vx)(x # Husband(Mike) 
+ ~Exis ts (HHusband(MMike)) .  
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The sentence Denot(MMike) # Mike might be true under some circum- 
stances. 

The distinction between concepts and objects makes it convenient to ex- 
press some assertions that simpler notations find puzzling. Thus Russell's "I 
thought your yacht was longer than it is" is treated in [McCarthy, 1979bl. 

This example and others use functions from objects to concepts of them. 
Thus we might write CConceptl(Cicero) = CCicero. If we also have 
Cicero = Tully, we'll get CConceptl(Tul1y) = CCicero. While we would 
not ordinarily want TTully = CCicero, but since concepts are not character- 
ized by the typography used to  write them, this would not be a contradiction. 

Some objects have standard concepts, e.g. numbers. We'd like to write 
Conceptl(3) = 33, but this conflicts with decimal notation, so it is better to 
write Conceptl(3) = 3'3. Consider the true sentences 

lKnew(Kepler, CComposite(NNumber(PP1anets))) 
(5) and 

Knew(Kepler, CComposite(CConcept1 (Number(P1anets)))). 

The first says that Kepler didn't know the number of planets is composite. 
The second says that Kepler knew that the number, which happens to be 
the number of planets, is composite. See also [Maida and Shapiro, 19821 and 
[Shapiro, 19931 for another A1 approach to representing concepts. 

These considerations are only a small step in the direction, necessary both 
for A1 and philosophy, of treating concepts as first class objects. [McCarthy, 
19971 argues the inadequacy of modal logic for a full treatment of modality. 
The article incited some vigorous replies. 

correspondence theory of reference This is more complicated than the cor- 
respondence theory of truth, because the entities to which a term can refer 
are not just truth values. We recommend that philosophers study the prob- 
lem of formalizing reference. There isn't even an analog of modal logic for 
reference. 

appearance and reality Science tells us that our limited senses, and indeed any 
senses we might build into robots, are too limited to observe the world in full 
detail, i.e. at the atomic level. A1 in general, and robotics in particular, must 
live with this fact and therefore requires a theory of the relations between 
appearance and reality. This theory must accomodate different levels of 
detail in both. I haven't got far with this, but [McCarthy, 1999a] gives 
a small example of the relation between two-dimensional appearance and 
three-dimensional reality. Realist, especially materialist, philosophers also 
need to formalize this relationship. 
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consciousness, especially consciousness of self Humans have a certain amount 
of ability to observe and reason about their own internal states. For exam- 
ple, I may conclude that I have no way of knowing, short of phoning her, 
whether my wife is in her office at this moment. Such consciousness of one's 
internal state is important for achieving goals that do not themselves involve 
consciousness. [McCarthy, 1996bI discusses what consciousness a robot will 
need to accomplish the tasks we give it. 

7 INFORMATION IN CONTEXTS AND ABOUT CONTEXTS 

Information is always transmitted in a context. Indeed a person thinks in a context. 
For the philosophy of information, information in contexts and the relations among 
contexts are more important than the Shannon entropy of a text. 

This section discusses formalizing contexts as first class objects. The basic rela- 
tion is Ist(c,p). It  asserts that the propositionp is true in the context c. The most 
important formulas relate the propositions true in different contexts. Introducing 
contexts as formal objects will permit axiomatizations in limited contexts to  be 
expanded to transcend the original limitations. This seems necessary to provide 
A1 programs using logic with certain capabilities that human fact representation 
and human reasoning possess. Fully implementing transcendence seems to require 
further extensions to mathematical logic, i.e. beyond the nonmonotonic inference 
methods first invented in A1 and now studied as a new domain of logic. 

The expression Value(c, term) giving the value of the expression term in the 
context c is just as important as Ist(c, p), perhaps more important for applications. 

Here are some of the features of a formalized theory of context. 

1. There are many kinds of contexts, e.g. the context of Newtonian gravitation 
and within it the context of the trajectory of a particular spacecraft, the con- 
text of a theory formalizing the binary relations On(x, y) and Above(x, y), a 
situation calculus context with the ternary relations On(x, y,s) and Above(x, y,s), 
the context of a particular conversation or lecture, the context of a discussion 
of group theory in F'rench, and the context of the Sherlock Holmes stories. 

2. There must be language for expressing the value of a term in a context. For 
example, we have 

CO : Value(Context(ThisArticle), Author) = JohnMcCarthy. 

3. The theory must provide language for expressing the relations of contexts, 
e.g. that one context specializes another in time or place, that one context 
assumes more group theory than another, that one discusses the same subject 
but in a different language. 

4. There must be language for expressing relations between sentences true in 
related contexts and also for expressing relations between terms in related 
contexts. When c l  is a specialization of d), such rules are called lifting rules. 
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5. Here's an example of a lifting rule associated with databases. Suppose GE 
(General Electric) sells jet engines to AF (U.S. Air Force) and each organi- 
zation has a database of jet engines including the price. Assume that the 
AF context (database) assumes that the price of an engine includes a spare 
parts kit, whereas the GE context prices them separately. We may have the 
lifizng formula 

expressing in an outer context Outer a relation between an expression in the 
AF context and expressions in the GE context. Others call such formulas 
bridging fomulas. 

[McCarthy, 1993bl has an example of lifting a general rule relating predi- 
cates On(x, y) and Above(x, y) to a situation with three argument relations 
On(x, y, s) and Abme(x, y, s), in which the third argument s is a situation. 

6. We envisage a reasoner that is always in a context. It can enter specializa- 
tions and other modifications of the current context and then reason in it. 
Afterwards, it can exit the inner context, returning to the outer context. In 
human-level A1 systems there will be no outermost context. It will always 
be possible to transcend the outermost context so far named and reason in 
a new context in which the previous context is an object. 

[McCarthy, 1993bl and [McCarthy and BuvaE, 19981 present a more detailed 
theory of formalized contexts. See also [Guha, 19911. 

Not included in those papers is the more recent idea that what some A1 re- 
searchers call "toy theories" may be valid in some contexts, and that a reasoner 
may do an important part of his thinking in such a limited context. 

For example, consider a simple theory of buying and owning. From the point 
of view of a small child in a store after he has learned that he may not just 
take something off the shelf, he knows that it is necessary for the parent to buy 
something in order give it to the child. Call this context OwnO. The details 
of buying are unspecified, and this simple notion may last several years. The 
next level of sophistication involves paying the price of the object. Not only 
does this notion last longer for the child, but an adult in a grocery store usually 
operates in this context Ownl, which admits a straightforward situation calculus 
axiomatization. Outside of supermarkets, ownership becomes more complicated, 
e.g. buying a house with a mortgage. Certain of these ownership contexts are 
understood by the general public and others by lawyer and real estate investors, 
but no-one has a full theory of ownership. 

8 CONCLUSIONS AND REMARKS 

Artificial intelligence is based on some philosophical and scientific presuppositions. 
The simplest forms of A1 make fewer presuppositions than A1 research aimed at 
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human-level AI. The feature of human-level A1 we emphasize is the ability to  learn 
from its experience without being further programmed. 

The concreteness of A1 research has led to a number of discoveries that are rel- 
evant to  philosophy, and these are only beginning to be noticed by philosophers. 
Three of the topics treated in this chapter are formalized nonmonotonic reason- 
ing, formalized contexts, and the need to deal with concepts that have only an 
approximate meaning in general. Besides what's in this chapter, we particularly 
recommend [Thomason, 20031. 
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INFORMATION, COMPUTATION, 
AND COGNITIVE SCIENCE 

Margaret A. Boden 

Cognitive science views the mind, or mind-brain, as an abstract machine: specif- 
ically, as an information-processing machine. In other words, it offers a compu- 
tational psychology (and anthropology), a computational linguistics, and a com- 
putational approach to neuroscience - and, via A-Life, to general biology too. 
(A-Life, or artificial life, is a close sibling of AI, or artificial intelligence: it uses 
formal theories and simulations to  explore phenomena typical of living things, and 
to illuminate the nature of life in, general.) By the same token, it offers a compu- 
tational philosophy of mind. More accurately, as we shall see, it offers a range of 
computational theories in each of these disciplines. 

Many non-computational psychologists and neuroscientists use computers as 
a tool - to handle statistics, for example. What is distinctive about cognitive 
science is that the computer is not just a tool but a theoretical inspiration. That 
is, the substantive concepts in the theories of cognitive science are drawn from 
cybernetics and AI, since they concern abstract matters of information processing 
and control. 

Since the focus of cognitive science is on biological organisms, whether human 
or non-human, purely technological A1 is irrelevant. The paradigm illustration 
is the "Deep Blue" chess program, which beat the world chess champion Gary 
Kasparov in 1997. To be sure, the program shared some of its processing with 
human beings: it employed heuristics such as "Protect your queen", for instance. 
But the key to its success was the fact that it used dedicated chips enabling it, 
by processing 200 million positions per second, to consider every legal move for as 
many as eight steps ahead. Since no human being can do anything remotely like 
that, Deep Blue's exhaustive look-ahead is of no psychological interest. In general, 
technological achievements that rely on fundamentally non-human information- 
processing strategies or computing tricks do not form part of cognitive science. 

Cognitive scientists often implement their ideas about brain and behaviour as 
functioning computer models. So too do other scientists, such as chemists or me- 
teorologists. What is special about models in cognitive science is that the key 
computational concepts defining the model are substantive terms in the psycho- 
logical theories concerned. (For instance, whereas models of rainfall are not really 
wet, models of search in problem-solving really do carry out search.) Such models 
are invaluable in testing/exploring the implications and coherence of a new theory. 
But computational theories may be articulated, and scientific questions suggested, 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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without actually building models. That is especially likely when the phenomena 
in question are complex and high-level. 

Computational theories of hypnosis, for instance, are focussed on the informa- 
tion processing involved in hypnotic thought and action, and on how this differs 
from normal processing. Zoltan Dienes and Josef Perner [2007] have outlined 
computational mechanisms whereby hypnosis of varying types can occur. These 
mechanisms explain why, as many experimenters have reported, some sorts of hyp- 
notic suggestion are easier to communicate than others. The easiest are "motor" 
examples, such as 

Your arm is becoming so light it is rising in the air. 

Next come "challenge" examples, such as 

Your arm is rigid. 

Negative cognitive demands (wherein you are ordered to avoid a particular belief 
or idea) are more difficult still: 

Whenever you count, you'll forget the number four. 

And the most difficult of all are positive hallucinations. But even here, there are 
systematic differences. It  is easier to make someone hallucinate as required to  the 
suggestions 

You can taste something sweet 

You can hear/feel a mosquito 

than to 

You can hear a voice speaking. 

Dienes and Perner explain these facts by arguing that the more computational ef- 
fort goes into performing a task the harder it is to suppress higher-order thoughts 
of intention. They outline experiments to distinguish between various computa- 
tional possibilities, and predict how "high" and "low hypnotisable subjects" will 
differ in tasks where hypnosis is not involved; in addition, they relate their psy- 
chological theory to data about the brain. In short, the fact that their theory of 
mental processing has not been expressed in the form of a computer model does 
not mean that it is empirically ungrounded or untestable. 

The very earliest cognitive science was prompted by information theory, by 
the cyberneticists' notion of feedback, and by ideas about (analogue) models in 
the brain [Shannon and Weaver, 1949; Rosenblueth and Wiener, 1950; Craik, 
19431. A particular attraction of information theory, for mid-century experimen- 
tal psychologists, was its promise that the mind/brain's information-processing 
capacities/limitations could be not only compared, but measured. For instance, a 
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particular sensory channel could be shown to convey x bits per second. As for the 
concept of feedback, this - together with the notion of reduction of differences - 
promised to  illuminate some aspects of purposive behaviour [Rosenblueth, Wiener 
and Bigelow, 19431. Notoriously, goals and purposes had long caused theoreti- 
cal, not to say philosophical, headaches for psychology [McDougall, 1911; 1923; 
Tolman, 1920; 1922; 19321. 

Prime examples of psychological work that was part-inspired by information the- 
ory included Herbert Simon's [I9571 account of decision making in social groups 
- although this owed much also to his early views on heuristics and satisficing 
[Simon, 19471. Information theory was prominent in Donald Broadbent's [I9581 
studies of perception, communication, and attention (a.k.a. consciousness), in- 
cluding how human beings can interact efficiently with machines. Likewise, it  
informed George Miller's [I9561 account of the limits on short-term memory, and 
the need for informational recoding by "chunking". And it was a key source for 
Jerome Bruner's influential experiments on concept learning [Bruner, Goodnow, 
and Austin, 19561. All four of these individuals were hugely important for the 
development of cognitive science. 

As for problem-solving, the typical information-theoretic approach was to recall 
the parlour game Twenty Questions, in which the sensible problem solver aims to 
halve the number of possibilities at each successive step. This assumes that all 
possibilities are equally likely. If they are not, then other strategies must be cal- 
culated [Attneave, 1959, 5-91. The core idea, that some rational strategy or other 
must be used, was picked up by "New Look" psychologists such as Bruner, and 
was developed also (from rather different roots) in symbolic A1 work on heuristic 
planning [Newell, Shaw, and Simon, 1958; 1959; Newell and Simon, 19611. 

(Later, Allen Newel1 declared that LLYou Can't Play Twenty Questions with 
Nature and Win" - by which he meant that the mind's overall computational 
architecture, its principles of information processing, has to be understood if we 
are to understand what it does [Newell, 19731. His account of "production systems" 
was intended not just as a new form of programming language for A1 but as a model 
of how the mindlbrain works [Newell and Simon, 19721. Other theories of mental 
architecture are briefly mentioned below.) 

Information theory was welcomed by these experimental psychologists, and by 
some neurophysiologists too, because it  offered quantitative measurements and 
because it  dealt with the coding, or transformation, of information as well as its 
transmission. Psychologists (such as Miller) theorizing about internal represen- 
tations - chunks, schemas, models ... - could use it to explain why (though 
as we shall see, not how) these are constructed. In addition, it supported anti- 
behaviourist centralism without falling into homunculism: positing mysterious 
'little men' in the mindlbrain. 

Strictly speaking, Claude Shannon's information theory was in itself non-psycho- 
logical. That is, it  dealt only with the statistical predictability of messages and 
message-passing, not with the messages' meaning as such. Notoriously, the core 
term information was ambiguous. Because it is normally understood as an inten- 
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tional (that is: meaning-oriented) concept, it was bound to lead psychologists to 
think about information and communication (another non-intentional term, when 
used by Shannon) in their everyday, mentalistic, senses. In that sense, after all, 
someone who is said to have the information that the next train to London leaves 
at 6 o'clock is deemed to have that thought in their minds, or to  be able to conjure 
up that idea if asked, or a t  worst to possess a written note which they can interpret 
in that way. 

However, information needed to be supplemented by computation in order to 
develop what is now known as cognitive science. For information theory alone was 
not enough to describe the central (mental) processes concerned-which is why it 
could not explain how chunks, or schemas, are formed. It had provided statisti- 
cal/formal ideas about machines (initially, telephone systems) which psychologists 
could apply to humans and other animals. But since computers were not yet 
available, it had not suggested computer modelling, nor even the general notion of 
computation that is presupposed in programming. The theoretical focus was on 
the passage of information, not of control - still less, of step-by-step processing. 

That idea was used to explain human thinking in the late 1950s [Newell, Shaw, 
and Simon, 19581, the explanation resting heavily on a program for problem- 
solving-by-planning [Newell and Simon, 19611. A similar theoretical approach was 
soon recommended by Miller as a way of thinking about all aspects of psychol- 
ogy, in a book called Plans and the Structure of Behavior ([Miller, Galanter, and 
Pribram, 19601; cf. [Boden, 2006, ch. 6.iv.c]). This brief volume acted as cogni- 
tive science's defining manifesto. Besides problem solving, language, and memory, 
it discussed (albeit very sketchily) instincts, motives, emotion, personality, hyp- 
nosis, and psychopathology. The key idea throughout was not information, but 
programs: not bits, but processes. 

If cognitive science's manifesto did not appear until 1960, its seminal paper - 
Warren McCulloch and Walter Pitts' LA Logical Calculus of the Ideas Immanent 
in Nervous Activity' [I9431 - had been published many years earlier. Much as 
information theory was sidelined in the 1960 book, so it had been ignored in 
the 1943 paper. Programs were not mentioned there either, because the paper 
was written before the development of digital computers. Instead, it combined 
early-twentieth century ideas from three distinct disciplines: logic (and logicist 
philosophy), the mathematical theory of computation, and neurophysiology. 

Specifically, the propositional calculus [Russell and Whitehead, 19101 was mapped 
onto Turing machines [Turing, 19361, and both of these onto 'all-or-none' neurone 
theory [Sherrington, 19061. However, McCulloch and Pitts' core notion of TPEs 
(Temporal Propositional Expressions) represented not timeless logical truths (the 
focus of the propositional calculus) but temporal steps. These were conceptual- 
ized in terms of one or more neurones influencing (exciting or inhibiting) another, 
but could equally well have been termed computations. Indeed, the paper's def- 
initions of TPEs for computing the basic logical connectives (identity, negation, 
conjunction, disjunction) were soon adopted by John von Neumann in designing 
logic-gates for digital computers. This highly abstract paper was seminal in three 
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ways. First, it explicitly declared "the whole of psychology" to be a matter of 
defining computational systems ("networks") capable of implementing the vari- 
ous psychological phenomena. In other words, it committed itself to what is now 
recognized as the core aim of cognitive science. Moreover, it spawned both connec- 
tionist and logical-symbolic AI. Its emphasis on specific networks of computational 
units, alias neurones, soon led to early experiments in connectionism. And it later 
encouraged the development of GOFAI, or Good Old-Fashioned A1 [Haugeland, 
1985, 1121, seen as a way of modelling semantic information: propositions and 
inferences bearing meaning, or intentional content. 

That assumes, of course, that GOFAI symbols can properly be interpreted as 
having semantic content. Given that McCulloch's logicism was a popular philo- 
sophical position at mid-century [Boden, 2006, 4.iii.c], the early A1 workers and 
other cognitive scientists influenced by them easily made this assumption. It  would 
later be stated explicitly as part of the Physical Symbol System hypothesis [Newell, 
19801. 

However, it was often challenged. Some philosophers objected immediately that 
the meaning was wholly provided by the human interpreters, including the A1 pro- 
grammers themselves [Mays, 19521. This objection eventually became notorious, 
when John Searle [I9801 expressed it in his parable of the Chinese Room. Searle's 
argument has been roundly rebutted, on various grounds, by many people in cog- 
nitive science, but it refuses to lie down: the controversy continues [Preston and 
Bishop, 20021. 

That is partly because the notion of intentionality in general is still highly 
controversial. For example, some philosophers argue that it  can be defined in 
causal/informational terms [Dretske, 1984; 19951 - a position that is implied by 
the Physical Symbol System hypothesis, too. Others argue that intentionality 
is evolutionarily based [Millikan, 19841. If so, then it would follow that meanings 
might properly be ascribed to A-Life evolutionary robots (see below), though not to 
designed/programmed systems [Boden, 20011. In short, the semantic "grounding" 
of concepts is a contentious matter [Harnad, 19901. 

These philosophical controversies are highly relevant to "strong AI" , according 
to which some conceivable computer systems would literally possess meaning, un- 
derstanding, and intelligence [Searle, 19801. So they are raised in opposition, for 
instance, to any work in cognitive science which is based on the Physical Symbol 
System approach (specifically attacked by Searle in his paper). However, they 
are rarely relevant to work in 'weak AI". Here, the claim is merely that real 
psychological processes are sufficiently like (some) computer processes for it to 
be helpful for psychologists to express their theories in computational, and even 
programmed, terms. It  is that claim, rather than the thesis of strong AI, which 
motivates cognitive science. 

As remarked above, the key concepts of cognitive science are, in a broad sense, 
computational. "Computational", here, is a shorthand term that covers not only 
symbolic computation but other types of information processing too. For the con- 
cepts in question fall into two camps, cybernetic-dynamical and logical-symbolic. 
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Some theories in cognitive science are hybrids of both. For example, a model of 
certain types of clinical apraxia [Norman and Shallice, 1986; Cooper, Shallice and 
Farringdon, 1995; Cooper et al., 19961 combines connectionism with hierarchical 
planning as envisaged in GOFAI. Usually, however, they are confined to one side 
of this intellectual fence. Indeed, the authors often express pungent criticism of, 
not to  say scorn for, the other side. 

The history of the field shows changing fashions in these two approaches, each of 
which has defined increasingly complex and powerful forms of processing over the 
years. Today, the first is in the ascendant. Connectionist AI, situated robotics, dy- 
namical systems based on differential equations, cellular automata, self-organizing 
and evolutionary systems, and even decentralized versions of GOFAI (such as 
work on 'agents" and 'distributed cognition") are all flavour of the month at the 
beginning of the twenty-first century. 

The best-known form of connectionism is PDP (parallel distributed processing), 
especially those PDP networks which can learn [Rumelhart, McClelland, and the 
PDP Group, 19861. These systems are associative memories made up of large num- 
bers of simple, locally interconnected, computational units, whose associations may 
be positive or negative. Their learning rules are versions of those initially described 
by the psychophysiologist Donald Hebb [1949]. Representations are stored as a 
large set of mutually equilibrated connection-weights, distributed across the whole 
network [Hinton, McClelland and Rumelhart, 19861. PDP systems can therefore 
carry out multiple constraint-satisfaction (wherein many, perhaps partly conflict- 
ing, constraints are simultaneously satisfied or approximated), and are inherently 
capable of noise-tolerant pattern recognition. This form of information processing 
is very difficult to  achieve in symbolic AI, not least because the potential errors 
have to be specifically anticipated; GOFAI programs are notoriously brittle as a 
result. 

Connectionism has provided models of many cognitive and developmental pro- 
cesses. Most of these are based on PDP research. Localist, i.e. non-distributed, 
connectionism - in which semantic content is represented by only one, or a few, 
unit/s - is much less popular (although it has recently been robustly defended 
[Page, ZOOO]). Besides various series of annuallbiennial conference proceedings, 
collections of psychologically relevant PDP papers abound (e.g. [McClelland, 
Rumelhart, and the PDP Group, 1986; Ramsey, Stich and Rumelhart, 1991; 
Holyoak and Barnden, 1993; Elman et al., 19961). 

Some PDP results have had surprising implications for cognitive science as a 
whole. An early example, and still one of the best-known, was the past-tense 
learner [Rumelhart and McClelland, 19861. This network was never provided with 
any explicit rules for forming the past tense of verbs (such as add -ed to  the 
present-tense form"). Instead, it  was trained by being continually presented with 
pairs of presentlpast forms (e.g. go/went, runIran, reachlreached, slip/slipped). 
In the testing mode, only the present tense would be presented as input, and the 
network would produce some output in response. At first, all the test-responses 
would be correct (including the output "went" for the input "go"). Later, there 
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was an apparent regression, as irregular forms were over-regularized (so "go" now 
elicited "goed"). Eventually, however, the output would always be the correct 
past-tense form, whether regular (e.g. reached) or irregular (e.g. went). 

This system caused an explosion of interest, because it appeared to contradict 
a hugely influential belief in, not to say a dogma of, classical cognitive science: 
Noam Chomsky's [1957; 19651 claim that language learning requires the acquisi- 
tion/development of formal syntactic rules. If Chomsky had applied this claim 
to language, analogous claims had been made with respect to problem solving by 
Newell and Simon. Indeed, the GOFAI-based computational approach in general 
assumed that mental processing involves symbolic rules (including heuristics). 

Whether the past-tense learner really did show just what it was claimed to 
show was, and remains, controversial. Some critics argued that the network did 
not make exactly the same errors as infants do, and that some of the errors made 
by children could be explained by GOFAI but not by PDP [Pinker and Prince, 
19881. They added that the system could in principle learn any linguistic regular- 
ity, whereas children do not (because natural languages share certain structures, 
and lack others) and cannot (because some pre-existing bias is needed to enable 
interesting structure to be picked out). Even non-Chomskians had to admit that 
if people find it difficult to  learn a grammatical structure (mirror-image reversal 
of word strings, for example), then a PDP simulation should do so too. A further 
difficulty was raised by GOFAI researchers who argued that connectionism could 
not allow that the meaning of a sentence depends recursively on the meaning of its 
component parts [Fodor and Pylyshyn, 19881. If so, then it could not explain how 
an infant comes to be able to generate indefinitely many new sentences. Although 
a PDP model could learn word pairs, it would never be able to learn syntactically 
structured language. 

(Problem solving and planning were seen as similarly out of reach. Indeed, these 
GOFAI-based critics held that connectionism had no interest for computational 
psychology. They saw it as addressing the neurological implementation of cogni- 
tion, rather than cognition as such. Newell, for instance, said that nothing below 
100 milliseconds of brain-activity is significant in the study of cognition [Newell, 
1980; 19901 .) 

It turned out later that the psychological data being used on both sides of 
this late-1980s debate were faulty. For example, psycholinguists had reported, 
or anyway implied, that-for a while-children always over-regularize all irregular 
verbs. But they do not: they over-regularize only 5-10% of irregulars, and correct 
uses co-occur with the incorrect ones. Moreover, psychologists had not reported 
any irregularizations of regular verbs - which, indeed, a Chomskian would never 
expect. Yet they do happen. However, both these unexpected phenomena, and 
many others, fell out 'for free' from PDP networks explored in the early 1990s 
[Plunkett and Marchman, 1991; 19931. 

Even these brief remarks about the past-tense learner illustrate how computer 
models can lead to theoretical debate, and to empirical advance, in cognitive sci- 
ence. The subtle complexities in the pattern of infants' usage of the past tense, for 
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example, were discovered only as a result of this controversy about the underlying 
computational mechanisms. 

The complaint (above) about recursiveness and componentiality is a reminder of 
something that is often forgotten. Namely, that many of the strengths of classical 
symbolic A1 have yet t o  be matched in connectionist and/or situated systems 
[Boden, 2007, 12.viii-ix and 13.iii.cl. Whether this reflects a point of principle or 
merely of practice is a hotly contested issue. 

For example, Marvin Minsky and Seymour Papert have mounted a fundamen- 
tal critique of connectionism, first published in 1969 and reiterated twenty years 
later after the mid-1980s renaissance of interest in that area [Minsky and Papert, 
19881. Their overall charge is that certain types of information processing that 
are carried out by minds cannot, in principle, be computed by networks based on 
current ideas about connectionism. Their own (hybrid) theory of mental archi- 
tecture allows for distributed cognition (they speak of the "society" of mind) and 
connectionist computation. But it draws as much, or even more, on GOFAI as on 
neural networks [Minsky, 1985; 20061. 

That is no accident, for deductive argument, verbal reasoning, hierarchical plan- 
ning, and critical self-monitoring are all best modelled in GOFAI terms. Of course, 
the brain itself is at base a connectionist (parallel-processing) machine. But it does 
not follow that the virtual machine it uses to do logic, for instance, is not broadly 
GOFAI in nature. Indeed, some leading connectionists allow that the brain must 
emulate a (sequential) von Neumann machine in order to accomplish certain logi- 
cal/linguistic tasks (e.g. [Norman 1986: 541fl.). And some of them have tried to 
model hierarchical structures, such as language or family-trees, in PDP systems 
(several examples are described in [Hinton, 19901). So far, however, success has 
been very limited. 

A main attraction of symbolic AI, once the von Neumann computer was avail- 
able to implement it, was the promise (the logicist assumption) that it could be 
used to represent specific propositional meanings. Still today, if one wants to 
model the inferential relations between distinct propositions, one is much better 
off using a GOFAI approach than a connectionist/dynamical one. Connectionist 
systems, on the other hand, are better than GOFAI if one wants to model noise- 
tolerant pattern-recognition [Hinton et al., 19861. Likewise, a dynamical model of 
problem-solving [Busemeyer and Townsend, 19931 may simulate how various rele- 
vant considerations ebb and flow in conscious reasoning. But it does not explain 
how those considerations are generated in the first place. 

Connectionism is not the only information-processing approach that has been 
hailed as a much-needed alternative to symbolic A1 (and that has failed to match 
the key strengths of GOFAI): another is situated robotics. Situated robots may 
be based on "subsumption" architectures [Brooks, 1991a; b], or on dynamical 
systems [Beer, 19901. The general principle was foreseen in Simon's description 
of the apparently-complex pathway of the actually-simple (obstacle-avoiding) ant 
[Simon, 1962; 1969: ch. 31. Namely, that the situated system, whether organism 
or computer, responds directly to environmental cues, in predetermined ways. 
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In other words, it relies on relatively inflexible sets of inbuilt reflex mechanisms. 
There is no planning, no deliberation, no choice - and no internal representation. 
The general motivation is that the behaviour of many animals, such as insects, 
seems to be like this (a position backed up by extensive neuroscientific and etho- 
logical evidence). And a further claim is added: that human behaviour too is 
mostly, or even entirely, free of such representations. 

The latter claim has attracted fierce criticism. David Kirsh [1991], for instance, 
argues that situationist systems cannot, in principle, compute certain types of 
information. Specifically, they cannot do those tasks which depend on concept 
formation. Concepts, he says, are internal representations which enable their 
possessor to recognize perceptual invariance (as in recognizing many different cats 
as cats), to reify and combine invariances (in referring predicates to names, for 
instance, or in drawing inferences), and to reidentify individuals over time. They 
allow for anticipatory self-control (i.e. planning), and negotiation between (not just 
scheduling of) potentially conflicting desires. Moreover, they enable one to think 
counterfactually, and to use the cognitive technology of language to create new 
abilities and teach them to others. Human adults possess all these information- 
processing capacities, chimps most of them, dogs some of them, and newborn 
babies hardly any. Insects, by contrast, do not feature at all on the conceptual 
radar. 

Some models of situated action in animals-crickets, hoverflies, cockroaches, lam- 
preys ... and even frogs [Boden, 2006, 14.vii and 15.viiI - are examples of "neuro- 
ethology". That is, they take detailed account of the organism's behaviour and 
neurophysiology, and many have led in turn to further biological investigations 
(e.g. [Arbib and Cobas, 1991; Arbib and Liaw, 1995; Webb and Scutt, 20001). 

Sometimes, the limits of all possible anatomical arrangements of a certain type 
have been explored. For instance, consider the patterns of neuromuscular con- 
nections that could enable lampreylike creatures - including those which do not 
actually exist - to  swim. Lampreys do not have moveable fins, but swim by 
rhythmic undulations of the entire body. Computational experiments have shown 
that there are many network architectures capable of controlling this type of swim- 
ming [Ijspeert, Hallam, and Willshaw, 19971. Moreover, some artificial networks 
for undulatory swimming, despite being composed of "neurones" closely based on 
the biological data, were much more efficient than those found in real lampreys. 
Some had a frequency range five times larger; even when the connections (and 
their type: excitatory or inhibitory) were fixed to be identical with those in real 
lampreys, some had frequency ranges three times larger. 

That last finding counters the assumption made by some computational psy- 
chologists (such as David Marr) that living organisms will in general employ the 
mathematically optimal solution for a given computational task. This assumption 
was explicitly used by Marr as a reason for favouring one hypothesis rather than 
others (e.g. [Marr, 19821; cf. [Boden, 1986: 63ff., 761). Evidently, it is mistaken. 

It  is true, nevertheless, that biological evolution tends on the whole to eliminate 
inefficiencies. For instance, a number of quick-and-dirty information-processing 
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methods have been evolved in Homo sapiens, whereby a surpisingly wide range of 
problems are not so much solved by rational thought as dissolved by biologically- 
inspired guessing [Gigerenzer, 20001. The reduction of inefficiency is the prime 
reason why evolutionary computing has become popular in cognitive science (it 
was used in the lamprey study itself) - and in technological A1 as well. 

In evolutionary computing, a program, or a specification of a neural network, 
is randomly mutated by "genetic" algorithms (GAS). A GA causes alterations 
similar to point mutations and crossovers in biology. There may be many simulta- 
neous mutations within the one program (hence the credit-assignment problem). 
And the random process of mutation is continually repeated, over successive gen- 
erations. More accurately, the members of an entire population of 100 or more 
(initially identical) programs or networks are repeatedly mutated. At each gen- 
eration, some fitness function is applied - either automatically by the system 
itself, or interactively by a human being. The fitness function identifies the one or 
two best (least-worst) members of that generation, which islare then used a s  the 
'parent/& in breeding the next generation. 

The method was foreseen as a possibility by von Neumann in his writings on 
cellular automata, and first defined mathematically by John Holland [1962]. Small 
evolutionary programs were soon written (e.g. [Fogel, Owens, and Walsh 1966]), 
and key figures in cybernetics-AI-including Minsky, McCulloch, Newell, and John 
McCarthy - asked how one might evolve program-controlled sensory/motor pros- 
theses for human beings [Fogel and McCulloch, 1970: 271-2951. But with scant 
results. A major difficulty, in practice, was a version of the "credit-assignment 
problem" of A1 in general: if a program results in satisfactory performance, how 
can one decide just which aspects of it were (most) responsible? In the case of 
evolutionary models, how can one identify the mutations that were (most) help- 
ful? Eventually, Holland solved this problem by defining the "bucket-brigade al- 
gorithm" [Holland et al., 1986 70-731. Consequently, and also thanks to 1980s 
computer power, evolutionary computing began to be pursued in earnest. It  is 
now used to  evolve programs, networks, and robot-morphologies (and artworks, 
too [Whitelaw, 20041). 

After hundreds, or thousands, of generations, the resulting program or network 
may be successful in achieving the task which the programmers had in mind from 
the beginning, when they specified the fitness function. But this task is not rep- 
resented as a goal in the system, as is done in classical AI. (Compare snails, or 
bees: they do what they do, without knowinglrepresenting what it is that they are 
managing to  achieve.) The final outcome may even be maximally efficient, though 
in general this is not guaranteed. Moreover, an evolved system may achieve the 
task that the programmers had in mind in ways which they had never expected, 
or imagined. 

For example, the evolving network may function as the sensorimotor controller 
of a robot. In that case, the successive generations of the evolving population are 
simulated: there are not 100 or more real robots scattered across the floor. But 
after every 500 generations (say), the currently-best network is downloaded into 
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a real robot for testing/confirmation. Even when the task assigned is very simple 
- such as moving to the centre of the floor and staying there, or navigating from 
one side of the floor to  another - entirely unexpected computational mechanisms 
may evolve. So sensory "organs" that are not strictly necessary for the task, such 
as pressure-sensitive whiskers or a second eye, may sometimes happen to lose their 
connections to  the network controller [Cliff, Harvey, and Husbands, 19933, and/or 
mini-circuits may evolve which act as visual line-orientation detectors compara- 
ble with those found in mammals [Harvey, Husbands and Cliff, 1994; Husbands, 
Harvey and Cliff, 19951. 

Evolution is an example of the biologically crucial phenomenon of self-organ- 
ization, wherein structure spontaneously appears from a less well-ordered base. 
Just as this description applies to the development of the individual organism, 
from fertilized egg to embryo and adult, so it applies to the process of evolution 
itself, wherein new structures and new species emerge over time. 

As it  happens, one of the researchers responsible for the lamprey models had 
previously co-authored a seminal study of self-organization in neural networks 
([Willshaw and von der Malsburg, 19761; cf. [Linsker, 1988; 19901). That study 
showed that internal structure will emerge spontaneously in an initially random 
system, given certain very general-and minimal - conditions. Besides suggest- 
ing explanations of the development of various information-processing mechanisms 
(e.g. orientation columns in visual cortex), this undermined simplistic interpre- 
tations of the naturelnurture divide [Boden, 2006, chs. 7.vi.g and 14.vi.bl. If 
a network can organize itself spontaneously, then from the fact that a new-born 
animal already possesses structure X in its brain, it does not follow that structure 
X was "innate" in the sense of being specifically coded in the genes. 

I said at the outset that cognitive scientists view the mind-brain as an "abstract" 
information-processing machine. But this is not to say that they endorse the - 
quintessentially abstract-dogma of strict multiple realizability. This dogma asserts 
that there are many different ways in which a given computation or information- 
processing system could be implemented, and that the implementation details are 
irrelevant in considering the computations concerned. 

According to classical functionalism, multiple realizability implies that psychol- 
ogy is autonomous: in other words, biological facts about the brain are irrelevant 
to it [Putnam, 1960; 1967; Fodor, 19681. As one computationalist put it: "whether 
the physical descriptions of the events subsumed by [psychological] generalizations 
have anything in common is, in an obvious sense, entirely irrelevant to the truth 
of the generalizations, or to their interestingness, or to their degree of confirma- 
tion, or, indeed, to any of their epistemologically important properties" [Fodor, 
1974: 14f.l. This doctrine is still used as an argument to counter the objection that 
metal-and-silicon computers are (physically) very different from neuroprotein, and 
also as a way of avoiding neuroscientific questions to which, as yet, answers cannot 
be given. 

But, largely due to the advance of neuroscience since multiple realizability was 
first defined, current cognitive science sometimes attempts a fairly close integra- 



Ch18-N51726.fm Page 752 Thursday, August 28,2008 12:19 PM @ I* 

752 Margaret A. Boden 

tion of psychological and neurophysiological data and theories. This is especially 
evident in neuro-ethological modelling, and in (some) work on connectionism. 

The information-processing systems defined by connectionism are broadly in- 
spired by the brain. For example, positive and negative connection-weights echo 
facilitatory and inhibitory synapses; and Hebbian rules were first defined to de- 
scribe the results of coactivation among cerebral neurones. Indeed, connectionists 
typically make much of their neurological roots, when asserting the superiority 
of their approach over GOFAI. And it is certainly true that connectionist mod- 
els have sometimes prompted fruitful neuroscientific research (into dyslexia, for 
example, or pathological action-errors of various kinds). 

However, most existing connectionist systems are in fact hugely different from 
the brain. In general, the component units are computationally far too simple in 
comparison with real neurones. Moreover, the mathematics that defines the learn- 
ing rules is usually highly unrealistic. The popular method of back propagation 
[Rumelhart, Hinton and Williams, 1986a; b], for example, depends on units' being 
able to transmit information in two directions - which real neurones cannot do. 

In recent years, some attempts have been made to model actual neurones more 
faithfully [O'Reilly and Munakata, 2000] - which is to  say, to compromise on the 
doctrine of multiple realizability. Increasingly, the extent to  which the doctrine 
can be safely followed, or must be specifically challenged, is coming to  be seen as 
an interesting empirical question. 

One interesting - and, to many people, counterintuitive - example is the de- 
velopment of "neuromodulatory" information-processing systems called GasNets 
[Philippides, Husbands and O'Shea, 1998; Philippides et al., 20051. These are in- 
spired by the discovery of simple chemicals in the brain (such as nitrous oxide) 
whose diffusion across wide areas alters the computational properties of the indi- 
vidual cells concerned. The size of the diffusion volume matters, and so does the 
shape of the source - both of which biological facts are simulated in GasNets. 

In these models, some nodes scattered across the network can release diffusible 
'gases,' which modulate the intrinsic properties of other nodes and connections 
in various ways, depending on concentration. So one and the same node behaves 
differently at different times. Given certain gaseous conditions, a particular node 
will affect another despite there being no direct synaptic link. In other words, it 
is the interaction between the gas and the electrical connectivities in the system 
which is crucial. And, since the gas is emitted only on certain occasions, and 
diffuses and decays at varying rates, this interaction is dynamically complex. So, 
unlike the usual connectionist system, the pattern of connectivities is not the only 
important factor determining what types of computation will take place. 

In short, multiple realizability should not be used as an excuse for always ig- 
noring what is known about neurophysiology. The neuroscientific facts may even 
alert us to aspects of computation (e.g. neuromodulation, as in GasNets) which 
were not formerly suspected. Nevertheless, the theoretical "autonomy" of psy- 
chology/computation remains, in the sense that one may-and sometimes, one 
must - consider what computer scientists would term the virtual machine of the 
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mindlbrain, without worrying about the details of its biological implementation. 
This is especially true when those details are not yet known. And that, in turn, 

is most likely to be true when high-level and/or global processes within human 
personalities are concerned - hypnosis, for example (see above). Where such 
phenomena are the focus of interest, it may not even be necessary - yet - to 
worry about implementation in computer models. For if one is considering the 
computational architecture of the whole mind, many theoretical questions have to 
be posed, and answered, at a much higher level. 

To be sure, Newell's SOAR system is a relatively wide-ranging and inclusive 
model of the architecture of human cognition, which has been implemented [Rosen- 
bloom, Laird, and Newell, 19931. So has ACT*, a similarly inclusive model [An- 
derson, 1983; 19931. But the prime focus of both SOAR and ACT* is cognition 
(problem solving, memory ...). Emotion is hardly featured, and personality is 
ignored. 

Two cognitive scientists who have considered such issues at length are Minsky 
[1985; 20061 and Aaron Sloman [2003, n.d.1. Their accounts are overwhelmingly 
theoretical, concerned with the general principles of the sorts of computation which 
might - indeed, must - underlie the rich complexities of adult human minds. 
One example of these complexities is the emotion of grief. Sloman's analysis of the 
computational structure of grief makes clear that grief is more than mere feeling 
[Wright, Sloman, and Beaudoin, 19961. It involves irrational behaviour driven by 
obsessional thoughts, continual distraction, depression, anger, and guilt - all of 
which gradually pass, over many months, as mourning does its work. Just what 
"work" that is, is explained in terms of the deconstruction and restructuring of 
fundamental goal-complexes in the bereaved person's mind. 

Although both these architectural theories are deeply rooted in practical AI, 
neither of them is implementable at this stage. Nor will they be (in my opinion) for 
many, many decades hence. Sloman, however, has provided - and is continually 
improving - a model of certain aspects of his approach. Namely, his analysis of 
various types of anxiety: their essential nature (and subtle differences), and the 
differing psychological/computional conditions in which they arise, and for which 
they were evolved [Wright and Sloman, 19971. 

Emotions in general are seen by Sloman as scheduling mechanisms, by means 
of which an organism having diverse (potentially conflicting) motives or goals can 
achieve as many of them as possible. His model of anxiety, then, suggests how 
varying types of anxiety function so as to shape purposive behaviour in broadly 
coherent, intelligent, ways. It  simulates a nursemaid caring for a dozen babies, each 
of whom has to be fed, and prevented from falling into a ditch or crawling towards 
a busy road. Even these few motives, or goals, can conflict. (For instance, while 
she is feeding a very hungry baby, another may crawl near the ditch.) Further, 
they can each arise unexpectedly as the result of environmental contingencies. For 
every simulated baby is an autonomous agent, whose crawling and hungry crying 
is independent of other babies, and of the nursemaid's actions and motives. 

Consequently, the simulated nursemaid's choices about what to do at each mo- 
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ment are computationally complex. They are constrained by her notional embod- 
iment: she only has two hands, so cannot pick up several babies simultaneously; 
and she cannot be in two places at once. They are guided, too, by the seven dif- 
ferent motives she wants to satisfy: feeding, protecting, moving, and rescuing the 
babies, building a protective fence, patrolling the ditch, and - if no other motive 
is currently activated - wandering around the nursery. 

That is not all, for her decisions are constrained also by the priorities she holds 
(moving a baby away from the ditch is more urgent than feeding it, even though 
feeding is just as necessary), and by her assumptions about consequences (falling 
into the ditch results in a dead baby). Her current perceptions (of the hungriness 
of each baby, and its location vis-a-vis the ditch and the road) must be taken into 
account as well. Finally, she must rely on her judgements of urgency - even the 
hungriest baby can be temporarily ignored, if another is nearing the road - and 
of danger: sometimes, she must rescue the baby immediately, without stopping to 
think. 

Different emotional processes (different modes of anxiety) are defined within the 
model to  simulate these interacting phenomena. By and large, the babies survive. 
(In real life, of course, there are other pertinent considerations: personal prefer- 
ences, for instance, and moral priorities. These are ignored in Sloman's simulation, 
though not in his background theory. There are many other simplifications too - 
to  the "visual" system, for example; some will soon be overcome, while others are 
more problematic.) 

Such architectural theories cast light on the nature of human freedom [Boden, 
2006, ch. 7.i.f-g]. A real nursemaid is free to choose what to do at any time. 
She can delay feeding one baby so as to  finish singing a lullaby to another. She 
can even ignore the babies entirely for a while, to phone her boyfriend (and if a 
tragedy results, she can rightly be held responsible). On some occasions, to be 
sure, she "has no choice": the perceived danger must be averted, now. In Sloman's 
model, as in real life, the particular type of anxiety that is triggered in such cases 
preempts any deliberative thinking: the carer just does what needs to be done 
- "automatically", one might say. However, the sense in which a human being 
(sometimes) has no choice is fundamentally different from the sense in which an 
insect (always) has no choice about what to do next. 

Only an organism with at least the computational complexity that is imple- 
mented in Sloman's simulation, and sketched in his (or Minsky's) architectural 
theory, is capable of "having no choice" in the human sense (cf. [Dennett, 19841). 
In short, freedom does not depend on randomness, or on mysterious spiritual in- 
fluences: it is an aspect of how our minds work. 

Similarly, creativity - also believed by many people to be somehow beyond 
the reach of science - has been illuminated by computational theories and com- 
puter models [Boden, 1990/2004]. For example, distinct types of creativity have 
been defined, involving the exploration and/or transformation of accepted think- 
ing styles, or unfamiliar combinations of familiar ideas. The latter type, of course, 
has long been noted by experimental psychologists. What is new is the use of com- 
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putational ideas in trying to explain just how such combinations can arise [Boden 
1990/2004: ch. 6; Hofstadter and FARG, 1995; Fauconnier and Turner, 20021. Not 
all computer models that appear to be creative - composing extremely impressive 
music, for example [Cope, 20011 - are intended as simulations of human creative 
processes. But even these may suggest some psychologically interesting ideas. 

I've argued that the computational approach of cognitive science has already 
cast light on many areas of psychology, from low-level vision all the way to  freedom 
and creativity, and that it promises more such advances in the future. It  has 
furthered many aspects of anthropology, neuroscience, and biology too [Boden, 
2006, chs. 8, 14, and 15 respectively]. But that is not to deny that there are 
some deeply puzzling problems, alongside the many as-yet-unanswered, though 
apparently manageable, questions. 

These puzzling problems are philosophical, rather than scientific. But all science 
assumes and implies particular philosophical positions, so this is not a clean divide. 
Moreover, because of the many disagreements within the philosophy of mind in 
general, cognitive science has been especially prone to philosophical argument - 
both from within the field and outside it, and from philosophers and scientists 
alike. 

Two such problems, the nature of intentionality and the possibility of strong AI, 
were mentioned above. A third is the frame problem, first named by A1 scientists 
[McCarthy and Hayes, 19691 and revisited by countless authors ever afterwards 
(e.g. [Pylyshyn, 1987; Ford and Hayes, 19921). 

The essence of the frame problem is that the contingencies of real-world events, 
the complexities of human world-knowledge, and the open texture of words in nat- 
ural language all militate against cut-and-dried computer programs - and logicist 
philosophy, too. Whatever obstacles A1 modellers anticipate, or whatever features 
they include in their programmed definitions, something else may turn out to 
be relevant - and lead the system to  fail. Connectionism can counter the frame 
problem to  some extent, avoiding brittleness by means of multiple constraint satis- 
faction; even so, unanticipated constraints (not represented in the network) may be 
crucial. GOFAI researchers have developed various types of non-monotonic logic, 
for use in expert systems and robotics [Boden, 2006, 13.iii.ej. And psycholinguists 
have tried to corral the notion of relevance [Sperber and Wilson, 19861. Cognitive 
science has advanced accordingly. But that is not to say that the frame problem 
has been fully solved, or ever can be. 

Yet another troubling problem is the radical divide between realism and con- 
structivism in philosophy: the Anglo-American (neeCartesian) and Continental 
(neo-Kantian) approaches, respectively. Most cognitive scientists, like scientists in 
general, adopt the realist view - usually, without even considering the alternative. 
But some have recently moved in the opposite direction, and their empirical re- 
search - in robotics as well as psychology - has been affected accordingly [Varela, 
Thompson, and Rosch, 1991; Clark, 1997; Harvey, 2005; Wheeler, 20051. Indeed, 
one A1 scientist has offered an ambitious new definition of "computation" which 
not only includes intentionality but also seeks to combine the AngleAmerican and 
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Continental viewpoints [Smith, 19961; however, his ideas (and his writing-style) are 
highly idiosyncratic, and more readers have been repelled than have been intrigued 
- still less, convinced. 

The realist/constructivist split is arguably the most fundamental dispute in 
Western philosophy. Among other things, it underlies the huge - and seemingly 
insuperable - difficulties in explaining how it is possible for phenomenal con- 
sciousness to arise in the brainlbody. Mind-brain correlations cannot answer this 
question, and their very existence as normally conceptualized is put into doubt 
on the constructivist view, wherein to posit the existence of mind or mental rep- 
resentations is itself regarded as illegitimate [Boden, in press: 14.x-xi]. (As an 
example, consider the Wittgensteinian critique of the references to "mind" and 
"mind-brain" that are widespread in cognitive science and general neuroscience 
[Bennett and Hacker, 20031.) The Continental viewpoint also prompted most of 
Hubert Dreyfus' [1972; 19921 influential criticisms of A1 and computational psy- 
chology. 

My own view is that constructivism is not only anti-scientific but essentially 
irrational [Boden, 2006, l.iii.b]. However, there is no knock-down argument for 
this - a point admitted even by the arch-computationalist Jerry Fodor [1995]. 
Perhaps there never can be. For sure, a definitive verdict will not be forthcoming 
tomorrow. 

To end on a more positive note: one common objection to cognitive science can 
be robustly rejected, by recalling the key theme of this chapter. Critics often point 
out that, over past centuries, the mindlbrain has been likened to many different 
machines. These were always the most up-to-date technology at the time, but were 
recognized later as inadequate or even grossly misleading analogies for psychology 
and neuroscience. Computers (so this argument goes) are the current version of 
this habitual metaphor. They will fall out of favour eventually, like all the others, 
and cognitive science will expire - probably, to be replaced by theories cast in 
terms of the next generation of technological gizmos. 

If by "computers" these objectors mean today's A1 technology, they have a 
point. After all, the current stock of computational concepts and computing ma- 
chines has not provided answers to  all of cognitive science's questions. (Thirty 
years ago, and partly because of the more primitive technology then available, the 
plausible/promising answers were even fewer.) But if they mean computing mech- 
anisms in general, they are mistaken. Much as physicalists do not claim that every 
aspect of the world can be captured by today's physics, but rather by whatever 
turns out to be the best theory of physics, so cognitive scientists claim that the 
mind is to be understood by whatever turns out to be the best theory of computers 
[Chrisley, 20001. It remains to be seen just how different from today's notions that 
theory will be. But, as in physics, much of our current thinking may endure. 

In sum, the computer - understood as a generic information-processing ma- 
chine - is not merely the latest technological metaphor for mind. It is the last, 
whose implications are being continually enriched. 
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INFORMATION IN BIOLOGICAL SYSTEMS 

John Collier 

1 INTRODUCTION 

The notion of information has developed in a number of different ways (as discussed 
in this volume), and many of them have been applied to biology, both usefully and 
gratuitously, and even misleadingly. These multiple notions of information have 
not surprisingly led to apparently contradictory claims by authors who have really 
been talking past each other, although there are also substantive issues at stake. 
The aim of this chapter is to review some of the ways that notions of information 
have been used in biology, to disentangle them, and to evaluate their implications 
and aptness, as well as to point out some of the more widespread confusions. 

In particular, I will compare the use of information as a technology of measure- 
ment, which does not imply that there is anything present that might be called 
'information', with a stronger usage of information in biology that attributes infor- 
mation to biological systems in a non-instrumental way. This distinction between 
instrumental and substantive uses of information in biological studies often turns 
on the notion of information used, so it is important in each case to  be clear what 
is at stake. Where there is a choice, I will focus on the substantive use of infor- 
mation in biology. Roughly, substantive use of information uses information in 
an explanatory way in addition to any representational instruments.' I will not 
discuss what falls under the general heading of bioinfomatics in this chapter. 

It will be impossible to cover all the varied uses of information concepts by 
biologists, so I will look primarily at cases that seem to be historically significant 
or else philosophically pivotal (the two often c ~ r r e s ~ o n d ) . ~  The central case I 
will look at is heredity. The association of information with heredity goes back 

lSarkar [2000] makes a similar distinction between heuristic and substantive uses of infor- 
mation, but as  an avowed instrumentalist he does not see a clear distinction. In particular, 
one would assume he sees no special role for explanation in the way that Chomsky [1959], for 
example, distinguishes between descriptive and explanatory adequacy. I believe that  some of 
Sarkar's obtuseness about the role of information in biological systems is a result of blindness t o  
the distinction, resulting in a failure to  consider things relevant to  the higher standards required 
for explanation. Maynard Smith [2000a, 2000bl attributes other problems t o  Sarkar's misrepre- 
sentation of the biology. Between the two problems, there is not much left in Sarkar's objections 
t o  information that are not addressed in a more general way in this chapter. 

2 ~ n  1987 I did a search on the last three years of Biological Abstracts (on CD, at the Uni- 
versity of Indiana Biology Library). Based on the abstracts, I tried to  judge whether the use 
of information in the paper was required, or was more or less gratuitous. I found as  few as 
seven abstracts that seemed t o  me t o  use the information concept in some essential way. The 

Handbook of the Philosophy of Science. Volume 8: Philosophy of Information 
Volume editors: Pieter Adriaans and Johan van Benthem. General editors: Dov M. Gabbay, 
Paul Thagard and John Woods. 
@ 2008 Elsevier B.V. All rights reserved. 
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at least to  Weissmann [1904], and was adopted by such disparate biologists as 
Francis Crick [I9581 and Konrad Lorenz [1973]. It is difficult to find well known 
theoretical biologists who object to the use of information concepts in relation to 
genetics, and if anything the use of information concepts in biology has increased 
over the last few decades. Dawkins [1986, p. 1121 declared: "If you want to un- 
derstand life, don't think about vibrant, throbbing gels and oozes, think about 
information technology." Increasingly, the "throbbing gels and oozes" can them- 
selves be understood as made up of molecular machines that process information 
[Holzmiiller, 1984; Schneider, 1991a; 1991b; 2000; 2006; Darden, 20061. In order 
to give a strong grounding in accepted theoretical biology, I will take my lead 
from the role of information assigned by Maynard Smith and Szathmky in The 
Major Transitions i n  Evolution [1995]. They argue that the increase in complex- 
ity observed (however roughly) in some lineages results from relatively few major 
transitions in how genetic information is passed down from generation to gener- 
ation. As we shall see, things are possibly and probably more complicated than 
this relatively simple hypothesis, but following it critically will raise some impor- 
tant philosophical issues. Importantly, however, Maynard Smith and Szathmky 
use information explanatorily and their views and usages are fairly authoritative; 
therefore, presumably they pick out authoritative substantive uses of information 
in biology. 

There are a variety of mathematical technologies that can be used for infor- 
mation measurement, but they fall into three general classes [Kolmogorov, 19651: 
statistical (e.g., Shannon and Weaver [1949]), combinatorial (a variation on Shan- 
non methods not used directly by Shannon himself), and algorithmic [Chaitin, 
19871. The last has inspired two technologies for information measurement that 
have been applied to DNA and other biological objects: minimum description 
length - MDL [Rissanen, 19891 and minimum message length - MML [Wallace 
and Freeman, 19871. It is worth noting, however, that the statistical methods are 
best used on ensembles, whereas the combinatorial and algorithmic methods work 
best on individuals. This suggests that the latter methods are more appropriate 
for dealing with information in biological organisms, even though the statistical 
approach is used so widely that it is often taken to be information theory (for more 
on this, see Winnie [2000]). Despite this, each of the general classes of methods 
can be used on any particular subject matter with clever adaptation. Thus there 
is nothing in the mathematical methods themselves that distinguishes the use of 
information technology in studying the properties of a system from the substantive 
attribution of information to a system. In particular, the instrumental usefulness 
of information technologies does not in itself imply the existence of substantive 
information within the system being studied, at least not without more being 
said. The instrumental usefulness of information may, for example, reflect epis- 
temic considerations such as how we decide to organize our data. Furthermore, 

situation was worse for the  entropy concept, which had only two clearly non-gratuitous mentions 
out of over 200 papers that used it. I would expect that things have not improved, so there is 
understandable suspicion about the use of these related concepts. 
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Figure 1. Nesting of major kinds of information 

mathematical methods are limited by their nature to the syntactic (formalizable) 
aspects of information, and are not suited in themselves to dealing with issues of 
communication, representation, semiosis and meaning, all of which are have an 
importance in biology that they do not have in, say, physics.3 

In order to deal with these issues, and evaluate whether or not information in 
some substantive role has a place in biology, it is useful to give a classification of 
the ways in which information has been thought to play a substantive role in the 
sciences. Ignoring many fine distinctions, the basic ways can be placed into an 
increasingly nested hierarchy: "it from bit", negentropy, hierarchical negentropy, 
functional information, and meaningful information (see Figure 1). Each inherits 
the logical and ontological commitments of the containing views, but adds further 
restrictions. 

The most liberal and inclusive view is the "It from bit" view. It has originated 
independently from so many people that it is pointless to  attribute an origin, 
though it probably goes back to Leibniz' view that the world has a logical structure 
of perceptions based in the ability to discriminate. The term is due to John 
Wheeler, and the view has recently been powerfully if controversially championed 
by Stephen Wolfram [2002]. On this view, any causally (dynamically) grounded 
distinction makes a difference, thereby ensuring that it is information ([MacKay, 
19691, see also [Bateson, 19731). On this view information is objective, and there 
is nothing else. 

The negentropy view of information is a restriction on the It from bit view. 

3 ~ h i s  is also true of formal methods in general, including the Barwise-Seligman idea of an 
information channel in distributed systems [Barwise and Seligman, 19971. Their approach invokes 
"regularities", which cannot be understood purely formally (accidental regularities do not carry 
information), but even this informal part of their approach does not imply anything more than 
non-accidental relations, which can be found in the most basic physics. 
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Only those Its that are capable of doing work (either directing and using energy 
or sorting things) count as information. The rest is disorder. This view is due to 
Schrodinger [1944], though the groundwork was done by Szillard, and the implica- 
tions were generalized and clarified by Brillouin [1962], though the significance is 
still controversial [Earman and Norton, 1998; 19991. The motivation for this view 
is that work is required for control, and the information in microstates beyond that 
in macrostates is hidden from view in macroscopic interactions [Collier, 1990bl. 
Negentropy measures the capacity for control (in bits this is the number of binary 
discriminations that a system can possibly make). 

The next view is a restriction of the negentropic approach to particular levels 
of a physical hierarchy, so that information is relativized to a cohesive level of an 
object, such as an organism or a species. The view is due to Brooks and Wiley 
[1988], Collier [1986; 20031 and Smith [1998].~ The idea is that not all negentropy 
is expressed at a given level, and the "Its" available are level relative. This in- 
formation is a measure of the constraints on the objects within the level; because 
of their connection to biological and cognitive form, Collier ([1990a], Collier and 
Hooker, [1999]) calls this expressed information enformation to distinguish it from 
other forms of negentropy (for example, statistical information due to nonequilib- 
rium conditions is sometimes called i n t r ~ ~ ~ ) . ~  Expressed information is relative 
to  a certain level in a hierarchy [Collier, 20031, an idea that will be clarified below. 
Expressed information at higher levels is able to control information at lower levels 
only to a certain degree (sometimes called downward causation), but can control 
information at its own and higher levels more completely [Collier, 1990b; 20031. 
This asymmetry is biologically important. 

Restricting further, we have functional information, which is the expressed in- 
formation that is functional. This sort of information is easily seen as information 
from outside the system. It has both syntax and semantics (reference), but does 
not require that the information is information for the system i t ~ e l f . ~  Functional 
organization is biologically important, of course, but at least one common account 
of biological functionality tends to suppress the informational aspect. Whether or 
not we can call information that arises through functionality meaningful has been 
a subject of some debate. The nature of meaning is the great object of desire for 
information theory. I will address this issue throughout this chapter, but especially 

4Stan Salthe [1985; 19931 also uses similar technology very widely, but to  different effect, as 
does Robert Ulanowicz [1986; 19971 in ecology. I will not discuss these uses here, as it would take 
me much further afield from the issues of heredity and function that are my main focus. Wicken 
[I9871 and James Kay and Eric Schneider [I9941 specifically avoid this information technology, at  
least in name, though they have been in close communication with the authors that do explicitly 
use this levels based information technology. They also use the technology very widely, including 
ecology. 

5Collier [1990a] borrowed this term from engineering usage. Lyla Gatlin [I9721 called this 
information stored information, but this name is somewhat misleading, as it does not reflect the 
dynamical and often active nature that expressed information allows, nor its hierarchical nature. 

6 ~ a t u r a n a  and Varela [I9801 apply this distinction by calling functional organization infor- 
mation externally, but not internally. I think this distinction is not sustainable [Collier, 2004a; 
2004bl. 
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in the final two sections before the conclusion. 
Within the scope of meaningful information is intentional information, or cog- 

nitive content. At the next level of restriction is social information, though some 
authors hold that cognitive content depends on language, which is a social activ- 
ity. I will not discuss these levels further here, which is not to say that either 
they are unimportant, or are in some sense reducible to the information forms 
that I do discuss. These forms of information are better discussed in the context 
of cognition, though the biological roots of cognition are interesting, and connect 
to various forms of biological information. 

INFORMATION AS A TOOL 

The use of information theory as a tool in biology is fairly widespread. Biological 
systems are both complicated and complexly organized, so information theory can 
be used to calculate or estimate the information content in biological structures 
from macromolecules to whole organisms, as well as in and between populations. 
This is not controversial, nor is this sort of application of information theory pe- 
culiar to biology. Similarly, communications theory can be used to analyze various 
biological channels, such as sensory processes, molecular communication, neural 
communication, intraspecies and interspecies communication and ecological net- 
works in terms of their capacity, connectivity, order, and organization. Algorithmic 
information theory and its variants, MDL and MML are also useful for the last 
three, and Charles Bennett's notion of logical depth may provide a measure of 
organization. Another useful tool, at least potentially, is the notion of information 
channel developed by Barwise and Seligman [I9971 for the logic of distributed sys- 
tems. Biological information channels, whether artifactual or inherent, are nothing 
if not distributed. Again, there is nothing particularly biological about these ap- 
plications, and many of them are known from systems theory, electronics and 
computer science. Some of the applications, however, present interesting issues for 
the philosophy of biology, especially concerning whether the instrumental use of 
information is sufficient to explain the use of the idea of information by biologists. 

DNA is probably the biological entity most closely associated with information. 
Maynard Smith and Szathmbry consider only hereditary transmission as the basis 
of information involved in increasing biological complexity, though they do men- 
tion major phenotypic changes that opened up new habitats, sensory inputs, and 
physiological mechanisms for adaptive (and not) radiation without direct change 
in hereditary channels. They are therefore committed [Maynard Smith and Sza- 
thm&ry, 1995, p. 81 to a gene-centered approach as outlined in Williams [I9661 and 
explicit in Dawkins [1976]. In light of recent work on developmental systems the- 
ory [Griffiths and Grey, 1994; Oyama, 2000; Jablonka and Lamb, 19951 and niche 
construction ([Odling-Smee et al., 19961, see also [Odling-Smee et al., 2003]), both 
of which point to  non-genetic channels of heredity, it now seems unlikely that 
the gene-centric view can be sustained. One should not get too excited about 
his, however, as genes are still very important. Griffiths [2001], Godfrey Smith 
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[2000] and Sterelny [2000] criticize the gene centred approach offered by Maynard 
Smith, but seem to  carry this over to substantive claims about information in bi- 
ology, especially with regard to the role of genes, though they vary in the strength 
of this particular criticism. Griffiths argues for a "parity principle" that seems 
to  lead him to  the conclusion that information must be treated the same for all 
modes of heredity. I see no basis for parity if these means equally important. If 
it means that all heredity must be treated in terms of information channels, this 
is unobjectionable. One still has to deal with the issue of coding, however; some 
heredity is through codings, other heredity is not. Coded heredity is more reliable 
in both transmission and expression, all other things being equal, and this differ- 
ence undermines complete parity. I will discuss the importance of coding in more 
detail below. On the other hand, Maynard Smith's [2000b] response to alternative 
modes of heredity that these are ultimately grounded in the genes seems to be 
either wrong or beside the point. All biology is ultimately grounded in chemistry 
and physics, but that does not mean that there aren't special biological principles. 
Non-genetic heredity may depend on genetic heredity, but it is much too quick 
to  infer that it can be eliminated in favour of genetic heredity. If there are inde- 
pendent channels of heredity that carry non-genetic information Maynard Smith's 
'ultimately grounded' argument fails. 

One has to be careful here, though. Sterelny [2000] raises the issue that the 
regulation of genes depends on the cytoplasm, which is passed down maternally. 
He suggests that this presents a non-genetic mode of heredity that may contain 
semantic information. Now it may be true that semantic information is passed 
on in the cytoplasm, but at least for the regulatory part of the cytoplasm this is 
best understood not as information, but as part of the information channel that 
carries genetic information reliably. The cytoplasm is continuous from mother to 
offspring, and does not reproduce like the genes do. It plays a role in heredity, 
but not that of carrying information - it provides a continuity of channel for 
the genetic information, so that its expression is reliable. The same can be said 
of many environmental conditions: they control the expression of genes to some 
degree, and hence act as part of the channel for gene expression, affecting what 
genetic information is expressed. This doesn't rule out the possibility that there 
may be cellular or environmental information channels that do not carry genetic 
information. But much of the literature against the primacy of the gene misrep- 
resents the issue of hereditary information by confusing channel conditions with 
channel content, as Sterelny did. More sophisticated arguments for non-genetic 
inheritance that make this distinction are required. I will have more to say about 
channels later. 

Despite the likely existence of other channels of inheritance, the most widely 
assumed view remains that DNA is the predominant if not only focus of biological 
information transmission. Genetic information is of undeniable importance, so it 
is worth looking at in more detail. I will look a t  some alternative channels of inher- 
itance and their significance later. The workings of genes alone have implications 
for biological information channels, and how best to understand them, and most 
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of the main issues can be understood within the scope of this focus. 
DNA is often said to  code for proteins, regulation, and various phenotypic prop- 

erties from chemical networks in the body to social phenomena. None of this is 
straightforward, not even the mapping of DNA onto proteim7 Since many bio- 
chemicals (such as, to take an instance, opium) are not proteins, there is no gene 
that codes for them. This is even more obvious for chemical networks and espe- 
cially for behavior. Fortunately it is possible to get to the heart of the nature 
of genetic information without going into details of these complexities, but the 
technique required for doing so (information channels) perhaps opens up the field 
for biological information too far. More will be said about this soon. For the time 
being, focus will be on the channels of genetic heredity in terms of the Weiss- 
mannian view of separation of developmental and germ channels, rendered as the 
"central dogma" of molecular biology. This view is close enough to  being true at 
the molecular level that it is useful. 

With the above restrictions, the major transitions in evolution, according to 
Maynard Smith and Szathmky are: 

Table 1. The Major Transitions (after Maynard Smith and Szathmiiry 1995) 

1. Replicating molecules 
2. Independent replicators 
3. RNA as gene and enzyme 
4. Prokaryotes 
5. Asexual clones 
6. Protists 
7. Solitary individuals 
8. Primate societies 

--+ Populations of molecules in compartments 
+ Chromosomes (linked replicators) 
+ DNA + protein (genetic code) 
+ Eukaryotes 
+ Sexual populations 
4 Animals, plants, fungi (cell differentiation) 
+ Colonies (non-reproductive castes) 
+ Human societies 

Several things to note about these transitions are a) they occur in only some lin- 
eages, so they are not inevitable, but are contingent and confer a fitness advantage 
only relative to others in their lineage, so post transition organisms don't neces- 
sarily replace all those in lineages that have not made the transitior, in question, 
b) entities that were capable of independent replication before the transition can 
replicate only as part of a larger whole after the transition, c) selfish mutations 
leading to conflict between levels of inclusion are possible in the larger whole - 
they happen - but there are so many chances for suppressor mutations in the 
whole that the influence of selfish mutations is rather small, d) the transitions 
typically involve differentiation and specialization that increase efficiency, and e) 
the notion of coding appears only in transition 3, but information concepts are 
applicable from the start. 

?For discussion of these issues and a general empirically grounded critique of the  centrality of 
the gene see [Keller, 20001. None of her discussion affects the logic used in this paper. 



Ch19-N51726.fm Page 770 Thursday, August 28,2008 1251 PM @ I* 

770 John Collier 

Maynard Smith and Szathmary note that a-d are common to all of the transi- 
tions, suggesting that there are some general principles at work. Since the early 
transitions are not part of biological evolution per se, but occur in molecular or 
chemical evolution, these general principles are not strictly biological. However, 
they note that point (e) marks the most significant transition - a division of labor 
that requires coding and translation. The major part of their book, not surpris- 
ingly, deals with this transition. I will argue below that transition 3 significantly 
enhances the role for substantive information by separating through significant 
dynamical decoupling the roles of the energy and information budgets in prebiotic 
and living systems, and opens the door for semantic information in biological sys- 
tems. This distinguishes genetic inheritance from most other forms of inheritance 
(so-called) enlisted to support the parity thesis. 

Arguably, to  be alive requires this sort of separation of function and the requi- 
site dynamical decoupling between metabolism and replication ([Brooks and Wiley, 
1988; Brooks et al., 1989; Maynard Smith and Szathmky, 19951, and many oth- 
ers), but nothing incontestable appears to rest on this definition of 'living7, since 
the functional and dynamical separation are a matter of degree. In any case, the 
definition allows us to distinguish between chemical evolution, in which replica- 
tion and metabolic processes are not distinct, and biological evolution, in which 
they are. A useful distinction made by Maynard Smith and Szathmky is between 
limited replication and indefinite replication [1995, pp. 41-42]. The former allows 
only a limited variety of forms dependent on the structure of the replicators, act- 
ing as templates. This sort of replication is highly subject to interference from 
parasitic replicators (ones that replicate at the expense of system organization, 
but nonetheless use system resources) that limits the size of reliably replicating 
structures. Limited replication cannot, therefore, support open-ended evolution. 
Sustained evolution is possible with template reproduction involving complemen- 
tary base pairing, as with DNA. Is this sort of structure necessary for sustained 
evolution? If it is, then the dawn of coding is equivalent to the dawn of indefi- 
nite replication as well as the distinct decoupling of information transmission and 
metabolism. This would support the definition of living system given a t  the start 
of this paragraph. Unfortunately, as is often the case in biology, the answer is a 
bit fuzzy: the transition from RNA genes and enzymes to DNA code specializing 
in information transmission with protein enzymes taking care of the catalysis re- 
quired for metabolism is not sharp, and the history of the transition is still muddy 
and incomplete. 

The details of transition 3 as they are currently known are given by Maynard 
Smith and Szathmky [1995, chapters 5, 6 and 71. As far as the evolution of the 
code itself goes, Maynard Smith and Szathmky describe it using Orgel7s phrase: 
"like coming into focus of an obscure picture." The evolution of the code was 
gradual, and it came to be more reliable and efficient through selection. Likewise, 
the replacement of RNA enzymes (ribozymes) by protein enzymes was gradual, 
and probably evolved in parallel with the evolution of the code. Similar gradual 
evolution seems to apply to other aspects of transition 3. With the development 
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of protocells (which I will not discuss), longer strands of RNA could be selected 
at the protocellular level. The fitness advantage comes through the linking of 
related genes, increasing reliability, but at the expense of some efficiency of repli- 
cation, since linked genes take longer to reproduce. Other factors were no doubt 
important. In principle it is possible to gain increased stability through double 
stranded RNA, but the chemical stability of DNA, produced through the reduc- 
tion of RNA, gave it a selective advantage (probably appearing first before the 
evolution of translation and protein enzymes). Its appearance is the final compo- 
nent of transition 3. The result is stable, stored reliably transmitted information 
that is reliably translatable into proteins. It  should be noted that transition 3 has 
continued in minor detail through the selection of more efficient and reliable com- 
ponents. The transitions are not completely sequential, and the processes making 
up the transitions are gradual and evolve in parallel. 

The general character of the transitions is that they involve greater complexity 
in how genetic information is translated and transmitted. This increased complex- 
ity increases the reliability, speed and/or efficiency of transmission and/or transla- 
tion, and also opens up new regions of adaptive space that can be occupied. Each 
of these changes is produced accidentally and is then retained by relative fitness 
advantages, or so the story goes. The common aspects of the major transitions 
are shared between biotic and prebiotic evolution, so there is nothing particularly 
biological about them. Transition 3, however, appears to  be a boundary (how- 
ever fuzzy) between the prebiotic and biotic. If there is something special about 
biological information, this is where to look. 

It  from bit, intropic and level intropic substantive views of processes are all 
found outside of biology, so the relevant level for specifically biological informa- 
tion is the functional level. Instrumentally, the intropic and level intropic views 
are useful for describing the formation of self-organized structures, their replica- 
tion and heredity in prebiotic evolution, as Maynard Smith and Szathmky do in 
their book. This sort of process occurs in physics and chemistry as well, and con- 
tinues into biological processes that support functionality. Maturana and Varela 
[I9801 relegate the formation and support of autopoietic structures such as cells 
to  such processes, with functional processes (operational processes) internal to the 
autopoietic system. They do not apply the notion of information to the internal 
perspective of autopoietic systems (at least for cells, perhaps not for higher level 
autopoietic systems), but argue that the concept of information is useful only from 
an external perspective. Thus, arguably (and it seems to be their considered opin- 
ion), information is useful only instrumentally for describing cells, even though 
they have a robust notion of functionality based in organizational or operational 
role. Despite their instrumental use of information, many of their followers talk 
of information internally, using the convenient connection from systems theory 
between the concept of operationality (function and control) and the concept of 
information somewhat unquestioningly. Maturana and Varela define autopoiesis 
in terms of operational closure, indicating that there is no information flow into 
or out of an autopoietic system, which I believe makes the information concept 
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redundant in discussing the internal operations of the system. This, however, 
violates the general idea of openness central to most systems theory, and many 
of their followers have dropped the closure requirement, typically without com- 
ment, and allow autopoietic systems to be open to information. This undermines 
the justification for treating information as useful only for an external description 
of autopoietic systems, though of course it is still possible to treat information 
theoretic accounts as only of instrumental value. I have given principled reasons 
elsewhere [Collier, 20021 for thinking that, contrary to Maturana, even cells are 
open to information, and that the self-organization process itself requires that the 
resulting system be open [Collier, 2004al. Functionality depends on some sort of 
organizational closure, but it need not be complete and is not complete in bio- 
logical cases [Collier, 1999b; 2000; 2004bl. These are based in well established 
principles of open systems theory [Ingarden et al., 19971, so I will not go into more 
detail here. 

The decoupling of energy and information budgets, which is a matter of degree, 
and increases through the major transitions, permits self-organization within the 
information system itself [Collier, 1986; 2003; Brooks and Wiley, 1988; Brooks 
et al., 1989; Layzer 19901. The degree to which this occurs is presently unclear 
(it is an empirical matter), but it is a potential source of new organization and 
information within the information system itself, including within adaptive space 
itself [Layzer, 1980; Collier, 19981. This permits "minor transitions", allowing 
gradual increases in the size of information space. These transitions, like the 
major transitions, are chance events, but are favoured probabilistically. On the 
level intropic account they increase both information and entropy (disorder of the 
lower level) simultaneously, a phenomenon well known in physics [Landsberg, 1984; 
Layzer, 19901. Furthermore, as previously mentioned, there are other channels of 
heredity through the environment by way of niche construction [Odling-Smee et 
al., 1996; 20031 and developmental systems more generally [Griffiths and Grey, 
1994; Oyama 20001. The interaction of multiple channels of information not only 
allows the influence of those other channels, but also sets up conditions favourable 
for further self-organization. Thus Maynard Smith and Szathmiry's focus on DNA 
is questionable, as there may well be other informationgenic (or morphogenic, to 
use a less awkward word) processes in biology other than DNA selection based on 
the functionality of its phenotypic expression alone. 

Setting this issue aside for the moment, I will focus on the complexities of the 
instrumental use of information in DNA in order to get clearer what is implied 
by its use in order to  clear the ground for the discussion of the substantive use 
of information in biology more generally. It is worth noting, however, that the 
self-organization of information systems and developmental and environmental 
channels for the inheritance of information can all be understood with the resources 
of the intropic and level intropic accounts of information, without invocation of a 
substantive use of functional information tied to  genetic information, even though 
it presupposes the partial decoupling of information and energy (but see below on 
storage). To understand functional information we need to  look more closely at 
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how gene expression and phenotypic selection works. 
The route from information stored and transmitted from DNA to the phenotype 

of an organism is much more complex than the replication of genetic information in 
reproduction. Replication is fairly well understood, but gene expression, especially 
in multicellular eukaryotes, is very complex and not very direct. Fortunately, it is 
possible to avoid the complexities here. James MacLaurin [I9981 (see also [Collier, 
1999aI) has observed that substantive information has the nice property that if 
you wiggle something at one end of an information channel the result at the other 
end will reproduce the aspects of the information transmitted. This means that 
the complexities of gene expression, such as those discussed by Evelyn Fox Keller 
[2000], can be ignored in the discussion here, no matter what their scientific interest 
otherwise. 

There seems to be considerable confusion on this issue, with one of the referees 
of this chapter complaining that issues of gene expression complicate the issue so 
that one cannot distinguish the genetic component. The nice thing about informa- 
tion, however, is that its effects are carried through a channel without modification 
in the information to exactly that extent that the information is carried through. 
Complicating factors do not change the information; they can only reduce the 
transmitted information. If it is reduced to zero, then there is no genetic informa- 
tion expressed. One has to distinguish here between what happens and how we 
know it. It  might be difficult to distinguish genetic information in the phenotype, 
but that does not mean that it is not there. Selection of hereditary material de- 
pends on its expression in the phenotype, not on whether we can recognize this 
expression. If we wish to understand the dynamics of evolution, we need to focus 
on ontological, not epistemological issues. If selection is on a trait, and the trait 
expresses some genetic information, then the genes are selected. If the genetic (or 
other hereditary) contribution is not relevant to the trait selection, then there will 
be no inheritance, so what we have is not a case of natural selection. I will have 
more to say on this shortly. 

Marcello Barbieri [2001] describes the "bridge between genes and organism" in 
two parts. The f i s t  part is transcription of DNA into primary transcripts. The 
second part, with eight steps, is epigenetic. The steps are shwon in Table 1: 

Table 2. Epigenesis (after [Barbieri, 20011) 

1. Splicing 
2. Translation 
3. Folding 
4. Protein Assembly 
5. Organelle Assembly 
6 .  Cell Assembly 
7. Tissue Assembly 
8. Organ Assembly 

Messengers 
Polypeptides 
Proteins 
Organelles 
Cells 
Tissues 
Organs 
Organism 
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These steps correspond to common phenotypic levels. There are various minor 
steps as well, such as the formation of control networks, membranes and their var- 
ious inclusions, etc., as well as the back control of earlier processes. For example, 
opium is not composed of proteins, and its components must be produced under 
control of the appropriate tissue kind by networks composed of proteins and other 
substances. Similar observations could be made about behavior and other complex 
phenotypic states that are not the directly composed of proteins. The minor steps 
in general do not fit as well into a levels account. For example, networks involving 
hormones can extend across the whole organism, but their production and action 
is always local. I am ignoring these sorts of networks in this chapter, since they 
would need too much space to discuss, and would take me away from the focus 
on genetic information. Nonetheless, there are interesting issues concerning the 
extent to  which these can be reduced to  genetic information, the extent to which 
they can be analyzed as communication channels, and the way(s) in which they 
are committed to substantive information accounts. But these interesting issues 
must be set aside here in favor of the focus on genetic inf~rmation.~ If phenotypic 
changes result from genetic changes, then we have genetic information expressed 
phenotypically. Knockout techniques are one way to measure such changes, but 
the relations can be much more complex and subtle. The essential condition is 
that there is an information channel from the DNA to the relevant trait. 

Barwise and Seligman [I9971 offer an account of information flow in distributed 
systems that is widely applicable in biology as well as non-biological systems. 
The basic idea is of an infomorphism based on regular relations between two 
sets of classifications relating types to tokens. Networks of infomorphisms can 
be constructed to form information channels that have the intuitively expected 
properties. However, regularities are not sufficient for the purpose of information 
channels (accidental regularities do not count for the transmission of information) 
so the Barwise and Seligman account is already substantive to some degree, de- 
spite appearances. The use of types in the formalization suggests that there must 
be an abstract aspect to infomorphisms, and thus information channels, that is 
not substantive, but Barwise and Seligman prove that types and tokens are logical 
duals in the formalization, so there is nothing to stop taking types as substan- 
tive. For example, a type can be a filter that sorts out tokens of a particular 
kind. Realizations of information channels must embody the types, which will be 
something like a filter. Genetic information is expressed at various levels up to 
the organism through such channels, and is combined and filtered to produce phe- 
notypic properties both complex and simple, subtle and coarse. The distributed 
network of channels permits complex interactions to form the information in traits, 
and there can be (and are) other sources of information that are not genetic (nor 

8Maynard Smith [2000a] suggests that enzymes should not be understood informationally, but 
that  hormones should. This is in line with the usual notion that hormones signal, but enzymes 
merely facilitate chemical reactions. Nonetheless there have been some attempts t o  treat enzyme 
action biosemiotically. The idea is that they contain a message 'carry out chemical reaction X 
here1. Given that enzymes are functional, and are not merely chemicals that happen t o  be there, 
this idea is not a s  preposterous as it might a t  first seem. 
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environmental, if self-organization occurs within the organism). That such chan- 
nels exist is beyond doubt; the contributions to phenotypic form from non-genetic 
sources and the processes involved are less well known. The existence of channels 
from genes to phenotype will depend on conditions within the organic environment 
(high acidity, for example, would make expression impossible, blocking the first 
step - generally the contribution of the internal environment will be more signif- 
icant). However, despite this non-genetic dependency, the information expressed 
phenotypically through the cross-level channels is still genetic information. This is 
sufficient for enough genetic determination of the phenotype to be evolutionarily 
significant. This is quite aside from the issue of the extent to which the internal 
environment is itself genetically determined. 

The issue of genetic determinism is fraught with confusion. As far as we are 
concerned with whether heredity or environment (nature or nurture) cause certain 
traits, we want to know their relative contribution to those traits. However, for 
evolutionary biology, the important issue is typically not the relative contribution, 
but whether there is any genetic contribution at all to differences in traits [Wilson, 
1988, p. 81. The idea is that over evolutionary time environmental variation will 
be statistically insignificant (it will come out in the wash of time), and genetic 
differences will be all that matters to selection processes. Thus, if something is 
the product of selection, and thus more adaptive than its alternatives, it will be 
an adaptation [West-Eberhard, 19921, and presumably will be functional on many 
standard accounts of biological function [Wright, 1973; Millikan, 1989, Neander, 
19911. If so, this would allow us to bridge the gap between genetic information 
expression and function, taking us to the next substantive level of information: 
functional information. I will discuss this further below, but a few more technical 
details are required first. 

The important point here is that the connection between genetic information 
and function need not deal with the complications of gene expression despite nu- 
merous recent criticisms of the idea of genetic determination in general, nor need it 
account for all aspects of phenotypic traits. Even in cases in which there are plau- 
sible emergent forms, such as has been claimed for the early development in sea 
urchins by systems biologists who have studied in full the first 16 stages [Davidson 
et al., 20021, genetic change can lead to developmental change (different attractors 
become more likely). Again we see the advantage of the information approach in 
that it  can explain even across non-reducible  level^.^ 

So far I have kept mostly to the technical application of information theoretic 
methods to biology. However, in explaining their application, I have shown that 
at least substantive notions of information are required to make sense of the ap- 
plications. The substantive notions required so far, though, are not peculiarly 
biological in any way, until perhaps we come to the issue of adaptation. It is time 
to look in more detail at the peculiarly biological. 

gAn analysis of the conditions required for this in terms of a formal account of levels and 
information across levels was given by Collier [2003]. The basic ideas, let alone the details 
require much too much space t o  be recounted here. 
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INFORMATION STORAGE AND PROCESSING 

Transition 3 (Table I), as discussed in the previous section, is the most significant, 
marking the transition from prebiotic to biotic evolution. At the very least, before 
transition 3 the processes are questionably biological, while after transition 3 they 
are clearly biological. Maynard Smith and Szathmky describe the transition as 
being to  a genetic code from RNA as both gene and enzyme, but I have described 
this in the previous section as a transition to decoupled information and energy 
budgets, with specialization for heredity and metaboli~m.'~ The reason I described 
it this way in the previous section is that I did not want to presume there, like they 
do, that the notion of code, which strongly implies a robust sense of information, 
is required to make sense of the dynamical decoupling. I will set the issue of codes 
aside until the next section. In this section I will deal only with the implications 
of the decoupling for the explanatory role of information. Transition 3 also im- 
plies the decoupling of genotype and phenotype. Replication after the transition 
requires storage and transmission of information that is supported by, but largely 
unaffected by metabolic processes in any way specific to  the information stored 
and transmitted. This information, then, is a candidate for specifically biological 
information. What is specifically biological about its nature, and why would we 
call it information? 

Perhaps the most obvious reason to call the hereditary processes after transition 
3 informational processes is that they involve storage and transmission. Gatlin 
[1972], for example, places great emphasis on these aspects of genetic information, 
and gives it no independent characterization, at least not explicitly. However 
attractive this idea might be, it  can't be right, because energy is also stored and 
transmitted in organisms. Almost exclusively, the vehicle for energy transmission 
and storage in organisms is ATP, but we are not inclined to call ATP information 
bearing. The reason, I think, is obvious: ATP is not discriminating; information 
is. A requirement for information to be discriminating is that its embodiment 
is complex. This is a direct consequence of information theory: the amount of 
information capacity of a channel can be no greater than the complexity of its 
embodiment. 

While it is theoretically possible for information to be transferred without any 
net transfer of energy [Bennett, 19731, this can occur only in fully conservative 
systems, so information transfer will typically also involve energy transfer. Why, 
then, would we want to refer to information rather than energy in certain biolog- 
ical processes, and especially in the focal case of this article, genetic information 
transmission? The answer has to do with guidance and control, at least, and 
possibly function and meaning (semantics) as well. I will deal with guidance and 

1°Godfrey-Smith [2000] argues that coding is not necessary, since proteins could be used to  
replicate themselves. True, but this would not allow open ended-evolution unless there were 
some sort of protein code allowing a finite number of proteins to  map an open-ended range of 
possible products. However, Godfrey-Smith's suggestion is consistent with decoupling without 
coding. 
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control in this section, and function and meaning in later sections. 
Shannon [I9491 observed that the notions of information and constraint are 

interchangeable. The Barwise and Seligman [I9971 formalization of the idea of 
an information channel places the constraints in non-accidental regularities char- 
acterized as infomorphisms. These are grounded in classifications that have an 
embodiment in relations among tokens. However, many purely physical systems 
can be characterized in the same way1', so what, if anything, is peculiar to biol- 
ogy? The best answer available is that biological information channels typically 
show organized complexity [Collier and Hooker, 19991. They are complex them- 
selves, carry complex information, and are interconnected in complex ways that 
show considerable logical depth [Bennett, 19851 (see also a similar concept dubbed 
sophistication by Atlan [1972]), indicating organization. In the physical sciences, 
boundary conditions are typically distinguished from laws governing dynamical 
transitions, which are regarded as peculiar to typical circumstances. In biology, 
however, the boundary conditions themselves have considerable regularity, and 
embody the special laws of the discipline (if any - if not, their closest analogue), 
or at least the foundation for those laws, such as Mendelian genetics and Fisher's 
population genetics. This is another aspect of the dynamical decoupling of energy 
and information in biological systems: the information system is free to form its 
own regularities, more or less free from any special restrictions of the boundary 
conditions on the energy budget. In evolutionary time, this has led to the produc- 
tion of more complex informational regularities of the sort described by Maynard 
Smith and SzathmAry as major transitions, as well as the minor transitions of 
Brooks and Wiley [1988]. If we were to focus only on the energy budget, most of 
this organized complexity would be missed. For this reason it is at least incon- 
venient to reduce biological processes to energy governed ones; whether reduction 
also misrepresents biological processes requires more investigation. 

Inasmuch as the regularities in boundary conditions and their interactions guide 
changes in the energy of a system, it is natural to refer to them controlling the 
system. In particular, the genes place boundary conditions on traits, and it is 
natural to say that they have some control of the traits that are produced epige- 
netically. Although the traits also have information about the genes, the relation is 
asymmetrical, since only some of the genetic information is expressed in the traits, 
and they are a t  best signs of the genetic information, and the genetic information 
is not an expression of the traits. The reason for this is that infomorphisms and 
the logic of distributed systems are not like standard logic: in general one cannot 
deduce from the knowledge that there is a channel from A to B that changes in 
the state of B will lead to corresponding changes in the state of A. For example, 
changing the dials in the control of a nuclear reactor that indicate it is out of 
control to indicate that it  is in control will not put the reactor back into control. 
At best it will break the channel. However, changing the conditions in the reactor 
by using the reverse control channel has some hope that the dials will correctly 
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indicate the reactor is back in control. In this sense the genes control the traits, 
but not vice versa. 

There are two reasons to reject the idea that genes control traits: 1) control 
might be regarded as requiring function, but function is not required for explaining 
gene expression, and 2) control might be regarded as requiring intention, which 
adds to  function some sort of meaningful purpose, but genes are not intentional. 
This brings us back to the issue of whether the functional kind of substantive 
information in Figure 1 needs to be invoked in biology, and also raises the issue 
of intentionality, meaning and semantics. I will address these issues later. Before 
that I want to address the issue of coding, a notion Maynard Smith and SzathmAry 
use in their characterization of transition 3, but which I deliberately set aside in 
this section. 

CODES 

In the previous section it has been established that the decoupling of metabolism 
and information required by Transition 3 implies information channels, especially 
channels from DNA to phenotypic traits. These channels are grounded in classi- 
fications grounded in processes that show a regular and organized structure. The 
regularities are both essential and sufficient for the existence of such channels. 
Why would Maynard Smith and SzathmLry also require that DNA be a code? It 
has two major implications for inheritance and variability, required for evolution. 
Before the discrete character of genes was understood, objections were raised to 
Darwin's theory of evolution by selection that sexual reproduction would lead to a 
mixing of genomes, and a tendency to converge towards some intermediate state, 
which is not what we observe, and not what we need for the origin of species (di- 
vergence). The discrete character of genes resolved this problem. It also permits 
recombination in the reproductive process, and recombination is known to be more 
effective in creating variable phenotypes than mutations alone. Of course both of 
these were the result of innovations later than Transition 3 itself, which applies 
to nonsexual bacteria. Since evolution by selection is not anticipative, these ad- 
vantages could not have underlain Transition 3, however useful they were in later 
transitions. 

One clear advantage of a code is the reduction of ambiguity in the regularities 
underlying the information channels involved in gene expression. This leads to 
an increase in fidelity of reproduction even in nonsexual organisms. The discrete 
character of changes in the genome is also advantageous even to nonsexual repro- 
ducers in that it introduces a degree of modularity into genotypic and resulting 
phenotypic changes. This modularity presumably makes it easier to change some 
parts of an organism without changing others. This conservatism is more likely to 
lead to mutated organisms that are viable. Thus a genetic code has an immediate 
advantage for even nonsexual organisms, as well as opening up the possibility of 
later major transitions. It is difficult to see how a more holistic form of heredity 
could be equally successful, but it is also difficult to rule out the possibility a pri- 
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ori. It is safe to say, however, that if such a mechanism had evolved and become 
dominant, the evolution of sexual reproduction would not have occurred. 

What is a code? Barbieri [2001] argues that codes 1) are rules of correspondence 
between two independent worlds, 2) give meanings to informational structures and 
3) are collective rules that do not depend on individual features of their support 
structures. The independence in this case is grounded in dynamic decoupling in 
which at least one of the "worlds" is informational in the sense of the last section. 
It  is not necessary that both "worlds" be informational in this sense, since it is pos- 
sible for information to be expressed in a non-informational structure or process. 
Strictly speaking, requirement (3) does not imply discreteness, but discreteness at 
least greatly enhances the possibility of both collectivity and independence of sup- 
port structures, as well as the efficiency of the code in the sense of using the same 
parts in different combinations to express different information. Collier [I9861 in- 
troduced the notion of a physical information system that requires some degree of 
discreteness, but the advantages, all other things considered, are increased with 
the degree of discreteness. Such systems satisfy the storage and transmission re- 
quirements of the previous section, as well as Barbieri's requirements (1) and (3). 
The most controversial requirement is the second one, which will be discussed 
later. 

Is the code concept required in biology? Although it is possible to regard hered- 
itary and expression processes entirely in terms of energetic transformations, as 
in the first section, taking a non-substantive or very weak substantive view of 
information, genetic information behaves so as to satisfy the requirements of a 
physical information system, so something more is going on than just transforma- 
tions of energy. To miss this point is to miss the special character of biological 
information, not to mention belying the way in which accomplished biologists like 
Maynard Smith and Szathmky talk about the systems they study. Although re- 
ductionists might argue that such talk is unnecessary, their position is based on a 
metaphysical view that need not hold, and probably does not hold for gene expres- 
sion (recall [Davidson et al., 2002]), and possibly for the other forms of biological 
codes that Barbieri discusses. The reductionist position is thus metaphysically 
dubious, factually inadequate, and flies in the face of the way experts talk. 

Barbieri [2001] points out that the bridge between genes and proteins has one 
genetic step and at least four levels of epigenetic processes. The first is widely 
regarded by biologists as a codified assembly, but the epigenetic processes are 
typically regarded as catalyzed assembly. The difference is between the sort of 
processes found prior to Transition 3 and those found after the transition. Bar- 
bieri argues, however, that the assumption that epigenetic processes are of the 
older catalyzed form, with no clear distinction between metabolic informational 
processes, has not been proven. Much of his book takes up an argument that 
many epigenetic processes are also processes of codified assembly. He provides 
rich evidence from molecular biology that splicing at step 2, translation at step 3, 
signal transduction to form organelles, cells and tissues are also codified. Given 
the advantages of codification described in this section, perhaps this should not be 
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very surprising. It is less easy to accept, however, that the codes require anything 
more than a syntax (the rules), but Barbieri also argues for a semantics or meaning 
(condition 2). 

INFORMATION AND MEANING 

The idea that meaning or semantics is required for fully understanding biological 
information has been attractive, but also highly controversial. I confess that in 
my own work so far I have had no need of the idea, but I have taken what I think 
is a very cautious approach to  meaning, and perhaps I have not yet encountered 
the sorts of problems that require the hypothesis of meaning for their solution. 
Barbieri trumps his book as a revolutionary manifesto for what he calls "semantic 
biology". Whether or not he is successful in this, he shows fairly convincingly 
that the code concept (in its restricted, non-semantic physical information system 
form) applies far more broadly than is generally accepted. 

One thing that is generally agreed is that meaning requires function. A com- 
mon further requirement is intentionality. Matthen and Levy [I9841 (see also 
[Hershberg and Efroni, 2001; Ahmed and Hashishb, 20031 for more recent views 
along the same lines, and [Melander, 19931 for the opposite perspective) have ar- 
gued for intentionality in the immune system, but to  the best of my knowledge 
there are no other arguments for intentionality within biological systems except 
for the mind. On the other hand, teleosemantics [Millikan, 1987; MacDonald and 
Papineau, 20061 argues for continuity between selection processes and semantic 
representation, which suggests at least the possibility of non-mental intentional- 
ity, but the idea has not been developed beyond the immune system. Barbieri 
[2001] seems to take it for granted that a code implies a semantics, but this must 
be non-intentional, if intentionality is peculiar to the mind and perhaps a few 
specialized systems like the immune system. I will discuss this possibility in the 
remainder of this chapter, with a discussion first of function, representation and 
biosemiotics. This discussion will be necessarily cursory, since a complete discus- 
sion would be worthy of a book (or several), and almost all of the main aspects 
are highly controversial. 

The standard account of function used in biology is the etiological account 
[Wright, 1973; Millikan, 1989; Neander, 19911. According to this account, a trait 
is functional if it is selected for, meaning that it is an adaptation. On this account, 
a selected trait will contain information produced by certain genes that are selected 
along with the trait. Thus, it is sometimes said, the selected genes have information 
about the environment, as well as about the traits that they express information in. 
The problem with this account is that meaning is an asymmetrical relationship on 
most accounts (like control, incidentally). I have already argued that this presents 
no special problem for the information in traits, but for environmental features the 
problem is not so easily solved. On the etiological account, it is certainly arguable 
that since the genes are (indirectly) selected, they are under the control of the 
environment. Thus the genes don't have the right relation to the environment to 
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have information about it in the same way that they might have information about 
traits. At best, the genes could be signs of environmental features, not meaningful 
representations. It all depends on which way the channel goes. One can't have it 
that both that the genes mean the traits and that they mean the environmental 
features that selected them. To put it another way, genes are sometimes described 
as blueprints for the organism, but if this is fair then the etiological account implies 
that the environment is a blueprint for the genes. Something has gone wrong.12 
Perhaps it is the idea of meaning here, but perhaps it is the etiological view of 
function. 

The etiological account just seems wrong in several very obvious ways. Jeff Foss 
[I9941 has noted that we can typically assign function without knowing anything 
about etiology (though etiologists will argue that this is often fallible). Alterna- 
tive accounts of function focus on organizational role [Maturana and Varela, 1980; 
Rosen, 1991; Cummins, 19831, with selection and resulting adaptation being ex- 
plained in terms of differences in functionality rather than defining function. On 
this account the function of genes is heredity and the guidance of ontogeny. Se- 
lection acts on the results as a sort of filter, creating a channel guiding the gene 
pool to greater fitness (see, especially, [Winnie, 20001 for a helpful account). The 
representational role, if any, remains always in the genes. Perhaps this is a reason 
to reject the etiological view in favor of the organizational role view of function, 
but it depends on the cogency of the genes representing. It should be noted that, 
mutatis mutandis, similar problems can be raised for teleosemantics. 

Representation typically requires some sort of system of rules that does not 
depend on their underlying substratum. Physical information systems (or Barbieri 
codes minus the meaning) have these. What more is required? The usual answer 
would be interpretation. Without interpretation, a representation is useless, non- 
functional. This suggests that we should look for some sort of interpretation in 
biological systems if we wish to find meaning. On standard accounts of meaning, 
the interpretation is given by the semantics, which is an abstract relation between 
symbols and their reference. This will not do for biological representation, however, 
since the relation has to  be embodied in concrete biological processes. In order 
to correct this deficit, Bend-Olaf Kiippers [1990] suggested that we include, along 
with the syntax (rules) and semantics (reference) of the genes a pragmatics. His 
view at that time was that the pragmatics was given by selection, but we have seen 
the problems with that view. Kiippers has told me since that he has abandoned 
his earlier view, but the move towards pragmatics is a good one. How do we get 
a sa.tisfactory biological pragmatics (if we can)? 
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BIOSEMIOTICS 

Biosemiotics is an attempt to apply semiotics to biological systems in order to ac- 
count for communication from the molecular level through the behavioral and 
social levels. The dominant approach today is the Copenhagen school (e.g., 
[Hoheyer,  1996]), which takes the semiotics of C.S. Peirce as its starting point. 
Again, since there are many controversies involved that would take much space to 
represent, let alone resolve, I will be brief. Peirce believed that pragmatic issues 
were the basis of meaning, in particular what expectations about the world are 
attached to a given idea in a way that might guide action. On Peirce's full-fledged 
view signs are an irreducible whole of three parts, one what we would normally call 
the symbol, the object (which corresponds roughly to the intensional reference), 
and the interpretant. This whole is embedded in a system of interpretance that 
connects to expectations and actions. If these ideas are to be applied to biologi- 
cal systems, the interpretant has to be within the organism, or more accurately, 
within the relevant biological system. He considers the sunflower, whose flower 
tends to face the sun very reliably. The direction the flower faces, then, is a good 
sign of the direction of the sun. However it is not a sign for the sunflower, since 
there is nothing in the sunflower that makes use of the information in the sign. 
The effect is a tropism caused by the size of the sunflower, its rapid growth, and 
the induction of growth inhibiting hormones by sunlight. The direction of the 
flower itself plays no functional role for the sunflower. Peirce did not know the 
explanation, but inferred correctly that the direction the flower faces was not a 
sign for the sunflower. On the other hand, he did not rule out that there could be 
genuine biological signs. 

If we consider DNA as a sign of (at least some aspects of) traits, we need to 
find an appropriate interpretant within the organism to complete the trinity. As 
described early in this chapter, genetic information is expressed if differences in the 
genes make a difference to  the traits expressed, no matter how small. This expres- 
sion is functional on either the organizational role or the etiological accounts. The 
best candidate for the interpretant in this case is the other coding and catalytic 
processes involved in epigenesis. If this idea can be made out coherently, then 
there is a good case that DNA contains information about the phenotype of the 
organism for the organism itself, rather than from merely external view of some 
anthropomorphizing observer. And this meaning would be about in the semantic 
sense, with epigenesis providing the pragmatics. John Winnie [2000], though not 
in the biosemiotic tradition, suggests that parameters whose effects on the com- 
ponents of the system contribute to the likely performance of the system exhausts 
the "semantic" aspect. In a living system the performance is the contribution to 
viability of the system, which is subject to selection. This is not very different 
from Peirce's idea. 
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SUMMARY AND CONCLUSIONS 

The first section showed how information theory can be used descriptively in bi- 
ology in the case of the genes. This descriptive use is also explanatory to some 
extent, and invokes substantive information, but in no way that is specifically bi- 
ological. However, the talk of biologists, and the distinction created by Transition 
3, suggests that biological information involves something more than this. It  is 
relatively easy to introduce notions of transmission, control and guidance as sub- 
stantive, somewhat less easy to convincingly introduce a need for the substantive 
use of information codes, and much less easy at this time to justify substantive 
notions of meaning and semantics, though biosemiotics is highly suggestive. 

Much of what has been said in this chapter about genetic information applies, 
mutatis mutandis, to other forms of biological information, such as molecular com- 
munication, communication in the nervous system, immune system, hormones, 
pheromones, and behavioral transmission between organisms. There are special 
aspects of each case, but most of the arguments justifying the use of information 
concepts in a substantive way carry through to these cases. I hope that the por- 
trait I have given of genetic information is helpful in extending the ideas to other 
cases. 
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