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To my family



Foreword

What is the ultimate cause of aging? Before Dr. Annette Baudisch
began her research on this question, aging was thought to be funda-
mentally a consequence of the decline with age of the force of Darwinian
selection. Only a fraction of individuals survive to older ages and only a
fraction of their fertility remains. Consequently, deleterious mutations
that act only at older ages will be purged so slowly over successive gen-
erations that such mutations will accumulate in the population. This
implies that starting at the age of reproductive maturity death rates
will begin to increase. As William D. Hamilton put it, ”senescence is
an inevitable outcome of evolution.” This view was biological dogma
for half a century – until Dr. Baudisch’s compelling critique and radical
breakthrough, cogently explained in this monograph.

Dr. Baudisch distinguishes between aging and senescence, defining
aging as the pattern of change in mortality over age and senescence
as an increase in mortality with age. She shows that for some species
mortality goes down with age or stays constant – something she calls
sustenance. In this monograph she presents some empirical evidence
for this, but mainly she develops the theoretical argument that the
age-pattern of mortality is a consequence of a species’ optimizing lim-
ited resources. Tradeoffs must be made between spending energy on
growth, repair and maintenance, on the one hand, and reproduction,
on the other. If enough is spent on growth, repair and maintenance,
then there is no increase in mortality with age. Senescence results from
the cumulative impact of an imbalance between damage and repair. If,
as Dr. Baudisch demonstrates, the level of repair and regeneration is
sufficient to counter-balance new damage and destruction, then an or-
ganism can maintain itself. With this research Dr. Baudisch has made
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a major contribution to knowledge and has created a new agenda for
research on the evolutionary biology of aging.

The first chapter of Dr. Baudisch’s monograph sets the stage by
reviewing evolutionary theories of senescence, discussing how senes-
cence and fitness can be measured, outlining the optimal life-history
approach, and summarizing some recent research developments. The
chapter is much more than a critical survey of the literature: it is a
lucid, original account of key research questions and strategies.

The second chapter carefully considers Hamilton’s indicators of the
force of selection. Insight after insight is gained as Dr. Baudisch probes
deeper and deeper. She shows that Hamilton’s claim that senescence
is inevitable can be disproved even within Hamilton’s restricted frame-
work. In particular, she demonstrates that depending on the measure
used and on levels of mortality and fertility, the force of selection can
increase with age. Furthermore, she explains why and how the age-
trajectories of mortality and fertility depend not only on the force of
selection but also on the incidence of mutations. Dr. Baudisch’s find-
ings in this chapter strengthen the case that demographic schedules of
mortality and fertility over most of the life course are largely shaped
by optimization of tradeoffs rather than by mutation accumulation. An
earlier version of the chapter was published as a single-authored arti-
cle1 in PNAS, the Proceedings of the National Academy of Sciences of
the United States.

In her third chapter, Dr. Baudisch critically explains the limitations
of Hamilton’s framework. By presenting empirical evidence and by sys-
tematically reviewing various theoretical considerations, she develops
further reasons why mutation accumulation is of secondary importance
in molding age-trajectories of mortality. Instead, the primary force is
adaptation: patterns of aging are a byproduct of the optimization of
tradeoffs. In addition, Dr. Baudisch shows that Hamilton’s notion –
that the age pattern of mortality is inversely related to his indicator
– is wrong. The relationship between the force of selection and the
pattern of mortality is so complicated that sophisticated modeling is
required.

Chapters 4 and 5 of Dr. Baudisch’s monograph develop two kinds of
optimization models, which she analyzes using sophisticated methods
of control theory and dynamic programming. In Chapter 4 the focus is
on the role of growth. By investing in continued growth, the individuals

1 Annette Baudisch. Hamilton’s Indicators of the Force of Selection. Proceedings

of the National Academy of Sciences, USA, 102(23):8263–8268, 2005. Copyright
(2005) National Academy of Sciences, U.S.A.
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in a species can attain greater size. If chances of survival increase as
size increases, then death rates can fall with continued growth. Dr. Bau-
disch shows that it can be optimal to grow rather than to invest more
available resources in fertility.

In Chapter 5, she considers a model of vitality, i.e., size adjusted
for functioning. Dr. Baudisch shows that various patterns of aging are
optimal depending on a species’ characteristics. In particular, some-
times senescence is optimal and sometimes it is not. The dichotomy
depends on various factors, including the hazardousness of the envi-
ronment, whether there are economies of scale in investing in growth
and maintenance, and whether there are economies of scale in repro-
duction.

Only under particular conditions do Dr. Baudisch’s models in Chap-
ters 4 and 5 lead to senescence. Her simpler models imply sustenance;
senescence is optimal only in more complicated, restricted models. Not
only is senescence not inevitable: senescence is a special case. In her
sixth and final chapter, Dr. Baudisch points to directions for future
research. Some of the suggestions concern the burning questions she
would like to address next. Other suggestions pertain to the devel-
opment of the field of evolutionary demography. This is an exciting,
insightful chapter, full of ideas presented in a judicious balanced man-
ner. It will guide other researchers: it adumbrates an important new
field of inquiry.

The monograph builds on Dr. Baudisch’s doctoral dissertation. In
particular, Chapter 5 has been substantially revised and strengthened,
in part of a result of an insight of Arthur Robson, Professor of Eco-
nomics at Simon Fraser University, and comments from and subse-
quent interchanges with Kenneth Wachter, Professor of Demography
and Mathematical Statistics at the University of California Berkeley,
member of the U.S. National Academy of Sciences. Prof. Linda Par-
tridge, an evolutionary biologist at University College London who was
recently appointed Director of the new Max Planck Institute for the
Biology of Aging, and I served as her dissertation advisors. Annette
Baudisch received her doctorate after being examined in June 2006
by Michael Murphy, Professor at the London School of Economics
and past President of the British Population Association and Brian
Charlesworth, Professor at the University of Edinburgh and Fellow of
the Royal Society, an evolutionary biologist who has focused much of
his research on evolutionary theories of aging.

Kenneth Wachter emailed Dr. Baudisch:“I read your dissertation. . .
It is the most thought-provoking and comprehensive dissertation I have
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read in many years.” This judgment was confirmed when the Max
Planck Society in June of this year awarded Dr. Baudisch the Otto
Hahn Medal, the Society’s highest prize for doctoral research.

The pathbreaking research of Dr. Annette Baudisch in her disser-
tation, further developed in this monograph, fundamentally alters un-
derstanding of the evolution of aging. Numerous researchers will spend
years exploring the field she has opened up, trying to understand why
some kinds of species suffer senescence whereas others enjoy sustenance.
Her dissertation is exceptionally important, stimulating and insightful.
This monograph is even better.

The series of Demographic Research Monographs is under the ed-
itorial supervision of the Max Planck Institute for Demographic Re-
search. I am Editor-in-Chief. I am advised by an Editorial Board that
currently consists of Prof. Elisabetta Barbi (Messina University, Italy),
Prof. Gabriele Doblhammer (Rostock University, Germany), Dr. Jutta
Gampe (Max Planck Institute), Prof. Joshua Goldstein (Max Planck
Institute), and Prof. Bernard Jeune (University of Southern Denmark).
Additional members of the Editorial Board will be appointed as needed
to review manuscripts submitted for possible publication. The current
manuscript was reviewed and accepted by James Vaupel, Joshua Gold-
stein and Jutta Gampe.

The Demographic Research Monographs series can be considered
the successor to the series called Odense Monographs on Population
Aging, edited by Bernard Jeune and James Vaupel. The volumes in
this now-terminated series were first published as hardcover books
by an academic publisher, Odense University Press, and subsequently
made available online at www.demogr.mpg.de/books/odense. The nine
Odense Monographs on Population Aging include two collections of
research articles that focus on specific subjects on the frontier of de-
mographic research, three volumes by senior researchers that present
path-breaking findings, a review of research on a topic of emerging
interest, a presentation of a new method for analysis of demographic
data, an outstanding doctoral dissertation, and a unique collection of
important demographic data on non-human species.

The series of Demographic Research Monographs will continue this
mix, with books that are often under 200 pages in length, that have
a clear focus, and that significantly advance demographic knowledge.
Research related to population aging will continue to be a focus on
the series, but it will not be the only one. The series will embrace all
of demography, broadly defined. As indicated by the first volume in
the series, an important subject will be historical demography. We also
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plan to publish research on fertility and family dynamics. Mathematical
demography is the core of the population sciences and we will strive
to foster monographs that use mathematics and statistics to further
develop the theories and methods of demography. Biodemography is
a small but rapidly growing and particularly innovative branch of de-
mography: we will seize opportunities to publish monographs at the
intersection of biology and demography, pertaining both to human and
other species, and including demographic research with ties to such
fields as epidemiology, genetics, evolutionary biology, life-history biol-
ogy, experimental demography, and paleodemography.

Each volume in the Demographic Research Monograph series will
have a substantial link to the Max Planck Institute for Demographic
Research. As well as being published as hardcover books by Springer-
Verlag, the volumes of the Max Planck series of Demographic Research
Monographs will subsequently be available at www. demogr. mpg. de
/books/drm. The online version may include color graphs, supplemen-
tal analyses, databases and other ancillary or enhanced material. Par-
allel publication online and in print is a significant innovation that will
make the monograph series particularly useful to scholars and students
around the world.

Rostock, James W. Vaupel
August 2007 Editor-in-Chief
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1

Introduction

1.1 Synopsis

Death is part of life, and it can strike any time. The question is
whether death necessarily becomes more likely as life proceeds. William
D. Hamilton (1966), one of the leading biologists of the last century
claimed that senescence is inevitable1 because the force of selection de-
clines with age, making later ages unimportant to evolution. Survival
and reproduction are the key players in this game and they are the
traits negatively affected when selection loosens its grip.

Since 1966 it has been dogma among gerontologists that a decline
in physiological functioning with age, i.e. senescence, is an inherent,
inescapable part of life. Humans inevitably grow old, which is probably
why it seems so unlikely to us that other forms of life could escape senes-
cence. Biologists, however, often observe that functioning improves as
individuals develop. Therefore the idea of living beings that perform
equally well or better over their life course until they eventually meet
the Grim Reaper might not be so strange after all.

One major result of my article published in PNAS [11] is that no
dogmatic statement can be made about the universality of senescence.
By carefully studying Hamilton’s work on the molding of senescence
I show that Hamilton did not prove that senescence is unavoidable.
He claimed that the force of selection must decrease with age for any

1 The word “aging” is often used instead of the narrower, more precise but less com-
mon word “senescence” to describe a decline in physiological functioning with age.
Hence I chose to entitle this monograph “Inevitable aging?” instead of “Inevitable
senescence?”. Throughout the monograph, however, I make a clear distinction be-
tween aging and senescence: I use the term aging to refer to any kind of variation
in functioning with age, for the better or worse, and reserve the term senescence
for a deterioration in functioning.
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conceivable organism. The weaker the force of selection, the more un-
favorable mutations might sneak in, constituting a mutational burden.
Contrary to his results, I point out that the force of selection can in-
crease with age and, in this case, will counteract mutational burden at
higher ages more strongly than at younger ages. The specific nature
of a mutational effect, i.e. whether a mutation affects mortality in an
additive or in a proportional way, determines the dynamics of the force
of selection with age.

Combining Hamilton’s analysis with the concept of mutation– se-
lection balance and providing a critical analysis of theoretical issues
and empirical evidence, I strengthen the view that the age-patterns of
mortality and fertility are largely shaped by optimization rather than
by the accumulation of deleterious mutations. However, the question
of the impact of mutational burden vs. optimization is not yet closed.

Building on the insight that senescence is likely to be a byproduct of
an adaptive process, I developed simple state-dependent models, three
based on size and one on vitality.

The size-based models [200] show that negative senescence can be
an optimal life-history strategy. The trajectory of growth is a crucial
determinant in tipping the scale between senescence and sustenance. In-
determinate growers, i.e. species that exhibit a period of parallel growth
and reproduction as part of their life history, are likely candidates for
sustenant strategies, whereas senescence is expected for species that
stop growing at about the age of reproductive maturity.

A fundamental insight gained from the vitality-based optimization
approach, vitality being the size of an individual weighted by function-
ing, is the major importance of the costs of maintenance and growth for
the determination of senescence versus sustenance. The model shows
that a rich diversity of age-patterns of mortality can be optimal. Suste-
nance outperform senescence when maintenance costs are low. I show
that changes in intrinsic and extrinsic mortality can switch the life his-
tory between senescence and sustenance strategies if the level of costs
of reproduction and growth is not too high. The model is a step forward
in identifying the characteristics in a species that predict whether the
species follows a senescent or a non-senescent life history.

A further insight from the vitality model concerns a mortality para-
dox. Contrary to “Williams’ Hypothesis” that species living under
more hazardous extrinsic conditions should exhibit faster senescence, I
show that an increasing extrinsic hazard could switch an optimal life
history from a senescent to a non-senescent one if maintenance costs
are low.
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In all my models, optimal equilibrium is assumed, something that
might never be reached in nature. The variability of the environment is
neglected. Competition between individuals in a population and among
populations as well as the resulting interdependent population dynam-
ics are not taken into account. One might perhaps claim that I study
evolution without evolution. I defend my approach with the argument
that I wish to study whether and when senescence can be avoided by
any conceivable organism. The idea is that if senescence is not inevitable
and is only one of many options for the age-patterns of life in optimal
equilibrium, then this is a hint that the real world may provide these
options as well.

1.2 Background

1.2.1 Senescence – Paradox? – Inevitable?

Life is shaped by evolution as described by Darwin [48, p. 5]:

“As many more individuals of each species are born than can
possibly survive; and as, consequently, there is a frequently re-
curring struggle for existence, it follows that any being, if it
vary however slightly in any manner profitable to itself, under
the complex and sometimes varying conditions of life, will have a
better chance of surviving, and thus be naturally selected. From
the strong principle of inheritance, any selected variety will tend
to propagate its new and modified form”.

The key players in evolution are survival and reproduction. To re-
produce you have to be alive, to be selected you need to reproduce
more successfully than your competitors, and finally you have to trans-
mit this ability to your offspring. Senescence is a process of decline in
physiological functioning that results in a decrease in survival and/or
reproduction with age. Therefore, senescence is an unfavorable process
in the struggle for existence. The question arises: Why, then, could it
evolve at all? Clearly, senescence did evolve – but did it evolve in all
forms of life? This is the burning question I wish to answer from a
theoretical perspective. Is senescence an inherent part of life or could
it be that some species have escaped senescence?

William D. Hamilton wrote a very influential article in 1966 on “The
moulding of senescence by natural selection,” in which he claimed that
senescence is inevitable. Hamilton states that “no life schedule, even
under the most benign ecology imaginable, could escape my spectrum
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of forces of senescence . . . in the farthest reaches of almost any bizarre
universe” [76, p. 90]. “[F]or organisms that reproduce repeatedly, senes-
cence is to be expected as an inevitable consequence of the working of
natural selection” [76, p. 109]. Did Hamilton really prove that senes-
cence is inevitable? I will treat this question in Chaps. 2 and 3, and the
answer is: No, he did not.

1.2.2 Evolutionary Theories of Senescence

Two main approaches have been developed to explain the evolution
of senescence: The first approach assumes that senescence is due to
a burden of deleterious mutations at later ages, whereas the second
approach assumes that senescence is a negative byproduct of an adap-
tive process constrained by trade-offs. Both approaches hinge on the
assumption that the force of selection declines with age. The force of se-
lection is determined by differences in reproductive success. The larger
the difference in reproductive success between two alternative variants
of a trait, the stronger the force of selection on that trait. Reproductive
success is determined by survival and reproduction. Consequently, the
force of selection is determined by survival and reproduction.

Since death is certain, the number of survivors of a birth cohort
declines with age. Medawar [126] conjectured that, because fewer and
fewer individuals survive up to higher and higher ages, those ages mat-
ter less and less to life-time reproductive success, leading to a decline
in the force of selection with age. Hamilton [75] thought he had proved
that the force of selection must decline with age, but I will show later
that, under some circumstances, the force of selection can increase with
age.

Medawar [126] proposed the theory of mutation accumulation. Mu-
tations occur recurrently. To the extent that reproduction or survival
are in any way negatively affected, an individual carrying such a mu-
tation will be at an evolutionary disadvantage relative to non-carriers
of that mutation. Clearly, the force of selection would tend to wipe out
deleterious mutations. However, as the force of selection peters out, bad
mutations manage to creep in, being less and less strongly opposed by
evolutionary forces. Medawar argues that the smaller the force of se-
lection, the more mutations would accumulate.

Williams [212] proposed the theory of antagonistic pleiotropy after
the basic idea was initially formulated by Medawar [126, p. 64]. Like
the theory of mutation accumulation, Williams’s approach is based on
the precondition that the force of selection decreases with age. Genes
are considered that have fitness enhancing effects earlier in life and
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fitness depressing effects later in life. Because the force of selection
decreases with age, the advantage early in life receives a much stronger
weighting than the disadvantage late in life. Unlike the passive process
underlying mutation accumulation, mutations are actively selected that
imply a deleterious effect at older ages, since the balance between costs
and benefits favors younger ages.

Note that the general idea underlying antagonistic pleiotropy is to
actively balance linked traits that affect survival and reproduction in
opposite ways. Genes with antagonistic and pleiotropic effects are a
specific case of a trade-off affecting fitness. The general idea of trade-offs
underlies the disposable soma theory proposed by Thomas Kirkwood
[97, 98]. Kirkwood’s approach is based on the observation that the
critical part of an individual that must survive is the genetic code. The
genetic code contains all information needed to ensure the persistence
of a lineage. It is therefore economic to separate the germ cells from
the rest of the body cells, the soma, and to protect only the germ line
from the ubiquitous occurrence of damage. The soma merely serves
as a vehicle for the genetic code to be transported over generations.
Kirkwood conjectured that the costs required for the persistent repair
of the soma is too high and evolution therefore trades off the protection
of the germ line against senescence of the soma.

1.2.3 Measuring Senescence

Senescence can be defined as a decline in physiological functioning with
age that negatively affects the ability to survive and/or to reproduce.
There is, however, no generally agreed upon measure of senescence.

One approach to measure senescence is to look at the change in
mortality with age. In this case, senescence corresponds to an increase
in mortality with age. This is a simple and widely accepted working
definition [56, p. 12].

Since mortality and fertility are closely linked, an ultimate measure
of senescence should include both survival and reproduction. Partridge
and Barton [149] suggest using reproductive value at age a to determine
the state of senescence of an individual. Reproductive value captures
the remaining reproductive contribution of an individual that is alive
at age a. It was defined by Fisher [59] as

v(a) =
er a

l(a)

∫ ∞

a
e−r x l(x)m(x) dx . (1.1)

The survival function l(x) indicates the probability of survival from
birth (or conception) to age x and the maternity function m(x) indi-
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cates age-specific reproduction. Age-specific survival and reproduction
are weighted by the population growth term e−r x, which discounts fu-
ture reproduction by the intrinsic rate of population increase r [94]. The
integral sums up all reproductive contributions from age a onwards.
Multiplication by er a/l(a) accounts for the fact that the individual has
already survived to age a.

Senescence in this framework corresponds to cases when reproduc-
tive value declines with age, i.e. the derivative of v(a) given in (1.1)
with respect to age is negative,

dv(a)

da
< 0 . (1.2)

Applying the product and chain rules from basic calculus yields

dv(a)

da
= r

er a

l(a)

∫ ∞

a
e−r x l(x)m(x) dx (1.3)

−
er a

l2(a)

dl(a)

da

∫ ∞

a
e−r x l(x)m(x) dx

−
er a

l(a)
e−r a l(a)m(a) < 0 .

Note that the probability of survival to age a, l(a), is determined by
the age-trajectory of mortality μ(x) from age zero to age a through the
relation

l(a) = e−
∫ a
0

μ(x) dx . (1.4)

Thus, (1.3) can be simplified by substituting

μ(a) = −
dl(a)
da

l(a)
(1.5)

as well as substituting expression (1.1) for reproductive value, which
leads to

dv(a)

da
= r v(a) + μ(a) v(a) − m(a) < 0 . (1.6)

After rearranging it can be concluded that senescence occurs when

v(a) <
m(a)

μ(a) + r
, (1.7)

where μ(a) + r > 0. Note that, if mortality and fertility do not change
with age , i.e. m(a) = m and μ(a) = μ, then – following from its
definition in 1.1 – reproductive value is constant at the level
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v(a) =
m

μ + r
(1.8)

for all ages a. Conditions (1.7) and (1.8) imply that senescence occurs if
reproductive value at age a is lower than it would be if both mortality
and fertility remained constant from that age onwards. Clearly if mor-
tality and fertility are constant, then the organism does not senesce.
Condition (1.7) implies that at least one of the two fitness components
is adversely affected, which is intuitively appealing.

The change in reproductive value with age accounts for both the
change in mortality and fertility, which is a favorable argument for its
use as a measure of senescence. However, reproductive value in general
and condition (1.7) in particular take into account the whole remaining
life history. It seems more reasonable that the state of senescence of an
individual at a certain age interval should be determined by changes in
mortality and fertility at that specific age interval alone without any
knowledge about the future. Furthermore, note that the population
growth rate r enters the measure of senescence if reproductive value is
used to account for the senescent state of an individual. But why should
the population growth rate influence the definition of senescence? This
issue disappears under the optimal equilibrium assumption since r = 0.

An alternative definition of senescence can be derived that accounts
only for changes in the state of an individual at the current age interval,
determined by mortality and fertility. Senescence corresponds to cases
where mortality increases while reproduction is constant or decreases
with age. Senescence also occurs if mortality does not change with age
but fertility decreases. On the other hand, no senescence is observed
if mortality decreases or remains constant and fertility increases or
remains constant.

If mortality and fertility both increase, or both decrease, one has
to be careful. If, for instance, fertility increases but mortality increases
even more, then the loss in survival outweighs the gain in reproduction.
If, on the other hand, mortality decreases, say, at a rate of −2% but
fertility decreases even more, say, at a rate of −4%, then the gain in
survival is more than erased by the loss in reproduction, i.e. −4% <
−2%. In sum, senescence depends on the change in mortality vs. the
change in fertility.

Formally, this can be expressed by comparing the relative change
in mortality with the relative change in fertility. Relative changes are
used to produce comparable quantities with the same units; change per
time. The relative change in mortality is given by
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d μ(a)
da

μ(a)
≡ μ́(a) , (1.9)

where the change in mortality over age relative to the current level of
mortality is denoted by the short hand notation μ́(a). The same holds
analogously for fertility m(a).

In general, senescence2 pertains to cases when the relative change
in mortality is greater than the relative change in fertility at age a, i.e.

μ́(a) > ḿ(a) . (1.10)

Table 1.1 summarizes the cases for senescence vs. non-senescence 3.

Table 1.1. Senescence or not

ḿ(a) > 0 ḿ(a) = 0 ḿ(a) < 0

sen if μ́(a) > ḿ(a)
μ́(a) > 0

not if μ́(a) ≤ ḿ(a)
sen sen

μ́(a) = 0 not not sen

sen if μ́(a) > ḿ(a)
μ́(a) < 0 not not

not if μ́(a) ≤ ḿ(a)

The burning question of my work is whether the lower “triangle” in
Table 1.1 is filled with life. Are there life histories that lack senescence
which have been evolutionarily more successful than life histories with
senescence? The first step on the way to answering this question is to

2 Note that my definition of senescence is a demographic definition, i.e. on the level
of changes in mortality and fertility. The definition of senescence as decline in
physiological functioning (see [172]) pertains to the level of phenotypic traits. It
is possible that some changes in physiology do not become apparent (at least not
immediately) at the demographic level.

3 Carey and colleagues [21] point out that mortality patterns of medflies fluctuate
up and down with age, which would correspond to “alternating periods of posi-
tive and negative senescence. It is questionable whether it is helpful to define the
word senescence in this way.” I agree that short-term fluctuations in mortality
may not indicate positive vs. negative senescence. Consequently, in defining senes-
cence as in (1.10), it is important to consider changes in mortality and fertility
over reasonable age intervals, which should be determined relative to a species’
lifespan.
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determine how to measure “fitness”, i.e. the evolutionary success of a
strategy.

1.2.4 Measuring Fitness

The notion “fitness” captures the reproductive success of a genotype.
Reproductive success results in population growth. Fitness is therefore
often measured by the intrinsic rate of population increase, r, which is
implicitly defined by the Lotka Equation [179],

1 =

∫ ∞

0
e−r a l(a)m(a) da . (1.11)

From the beginning of life until the end, this integral sums up age-
specific reproduction m(a), which can only be realized if an individual
is alive at age a, captured by l(a). Furthermore, later-born offspring are
discounted by population growth (e−r a) because earlier-born offspring
contribute relatively more to future generations. The value of r that
uniquely satisfies this equation for given schedules of l(a) and m(a) is
the intrinsic rate of population increase.

Another frequently used measure of fitness is the net reproduction
rate, R, given by

R =

∫ ∞

0
l(a)m(a) da . (1.12)

Note that R counts the number of offspring produced per lifetime,
accounting for survival. This measure of fitness is appropriate when
the population size does not change. Otherwise, the intrinsic rate of
population increase is more appropriate.

Both fitness measures hinge on the underlying assumptions of stable
population theory. In his famous equation Lotka assumes a homoge-
neous population that is closed to migration. Either individuals are of
one sex or individuals of only one sex determine r and R. Birth and
death rates are constant over time and the environment is unchang-
ing. There are no density effects. Intergenerational transfers such as
parental care are neglected.

In the 1970s Charlesworth, building on Haldane [72] and Nor-
ton [141], justified the use of r as a fitness measure. The results of
Charlesworth [24] show that in an age-structured, diploid, randomly
mating population r can be associated with the fate of a rare, nonre-
cessive gene. In Charlesworth [25] he gives approximations that are
otherwise necessary. A comprehensive treatment can be found in
Charlesworth [27, Sect. 4.6.1].
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The use of the intrinsic rate of population increase, r, is accepted
as a reasonable working assumption [27, 28, 172] for cases of constant
and density-independent environments, but one must be aware of its
restrictions (see Chap. 6).

1.2.5 Optimal Life History

An optimal life history is captured by the age-trajectories of survival
and reproduction that maximize fitness. Fitness can be measured by
the intrinsic rate of population increase r and is determined by the
schedules of survival and reproduction. In this context it is important
to highlight that optimal life-history schedules depend on the level of r
[69]. If a population grows quickly, later births are devalued heavily and
therefore a short generation time are favored. This strategy might differ
substantially from a strategy that maximizes fitness in a non-growing,
stationary population.

In my work, I will assume a population that is in long-term optimal
equilibrium. I will not consider the evolutionary process of getting there
and I will exclude the possibility that an equilibrium might never be
reached. This is a simplified but reasonable assumption because, on
an evolutionary time scale, any small deviation from r = 0 will have
strong consequences: “...any being, if it vary however slightly in any
manner profitable to itself, under the complex and sometimes varying
conditions of life, will have a better chance of surviving, and thus be
naturally selected.” [48, p. 5]. Many species have survived in essentially
unchanged form for many generations: their life histories may be close
to optimal. In any case, it is possible that some species are close to
optimal equilibrium and it is of interest to study whether for such
species senescence is inevitable. If it is, then this strengthens Hamilton’s
case. If it is not, this disproves Hamilton’s claim that senescence is
inevitable for any conceivable organism.

Taylor and colleagues [192] analytically proved that “[m]aximizing
the reproductive value at age zero is mathematically equivalent to max-
imizing the ultimate rate of increase”. Here r is referred to as the ulti-
mate rate of increase in order to emphasize that this is the rate to which
a population’s growth rate will ultimately converge [94]. Discussion of
the theorem was raised by Caswell [22], who claimed that this would
hold only under some very specific conditions. Yodzis [219] clarified the
issue and showed that Taylor and colleagues [192] were generally right.
However, he also pointed out the critical restrictions. First, maximiz-
ing the reproductive value gives only a local maximum of r. Second,
the use of r as a fitness measure is an issue in itself. And third, the
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consequences of population regulation mechanisms, such as predation
and density effects, are not taken into account.

For r = 0 the reproductive value given in (1.1) at age a = 0 equals
the net reproduction rate R given in (1.12), which is an alternative
measure of fitness to r (see Sect. 1.2.4). Following the result of Taylor
et al. [192] maximizing R is equivalent to maximizing r such that
rmax = 0.

Maximizing life-time reproduction R with respect to any trait X
can be formally expressed by the condition

dR

dX
= 0 . (1.13)

If trait X is independent of age and affects both survival, l(a,X), and
reproduction, m(a,X), at various ages, then together with (1.12) this
condition yields∫ ∞

0

(
∂l(a,X)

∂X
m(a,X) +

∂m(a,X)

∂X
l(a,X)

)
da = 0 . (1.14)

Extracting the product l(a,X)m(a,X) and using the shorthand nota-
tion

∂l(a,X)
∂X

l(a,X)
≡ ĺX(a,X) (1.15)

for the relative change in survival with respect to trait X and an anal-
ogous notation for the relative change in reproduction, the condition
can be expressed as∫ ∞

0

(
ĺX(a,X) + ḿX(a,X)

)
l(a,X)m(a,X) da = 0 . (1.16)

Finally, note that dividing by the life-time reproduction given in (1.12)
yields the average value (indicated by the bar) of the relative change
(indicated by the acute accent) in survival,∫∞

0
´lX(a,X) l(a,X)m(a,X) da∫∞
0 l(a,X)m(a,X) da

≡
¯́
l(a,X) , (1.17)

and analogously for reproduction. Consequently, Condition (1.13) is
equivalent to

¯́
lX(a,X) + ¯́mX(a,X) = 0 . (1.18)

The value of X that maximizes fitness corresponds to the point where
the average relative change in survival plus the average relative change
in reproduction with respect to trait X equals zero.



12 1 Introduction

If trait X(a) only affects survival and reproduction at a specific age
a, i.e. l(x,X(a)) and m(x,X(a)), then (1.14) reduces to

dμ(a, X(a))

dX(a)
v(a) =

dm(a, X(a))

dX(a)
. (1.19)

The value of X(a) that maximizes fitness corresponds to the value
where the change in mortality μ(a,X(a)) with respect to trait X(a) at
age a times the reproductive value v(a) at age a equals the change in
reproduction m(a,X(a)) with respect to the trait at age a.

There are alternative ways to find the optimal schedule for a trait.
Being optimal implies achieving the best life history strategy over the
entire lifespan, which is equivalent to doing this at every age. Since the
future does not influence the past, the optimal strategy at every age is
to maximize

current reproduction + (1.20)

survival to next age · remaining reproduction

assuming the individual is alive at that age. Maximizing this quantity
is equivalent to maximizing the current reproductive value given by
(1.1), which can be seen using the discrete-time formulation

va =
er a

la

∞∑
i=a

e−r i li mi . (1.21)

Extracting the first term from the sum yields

va = ma +
er a

la

∞∑
i=a+1

e−r i li mi .

Multiplying the sum by a factor of 1 = la+1e
r / la+1 er and letting p(a)

be the probability of surviving from age a to a+1, p(a) = l(a+1) / l(a),
the nature of the general life history trade-off becomes apparent:

va = ma + p(a) e−r va+1 . (1.22)

The first term captures the profits obtained from current reproduc-
tion, ma. The second term captures the future prospects. The future
prospects depend on the chance of getting there, i.e. surviving the age
interval (p(a), discounted by population growth e−r) and future repro-
ductive potential, which is reproductive value va+1 at the next age (see
[27, Chap. 5] for review).
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Current reproduction trades off with future survival and reproduc-
tion. On the one hand, this trade-off could be due to a direct negative
effect of reproduction on survival. Mating activities, for instance, could
be risky. Also, reproduction could cause damage that negatively affects
future breeding attempts. Whereas this direct negative effect is not
necessarily observed in all species, a negative indirect link becomes ap-
parent if survival and reproduction are understood as distinct processes
that compete for limited resources.

Schaffer [176] stated that the general life-history problem is to al-
locate restricted resources between survival and reproduction in a
way that maximizes an individual’s fitness. To approach this prob-
lem Williams [213] introduced the reproductive effort model, where
reproductive effort is defined as the fraction of energy devoted to re-
production. Williams [213] conjectured that, at every age, resources are
allocated to maximize the remaining reproductive contribution of an
individual that already survived to that age, i.e. the reproductive value.
From Bellman’s principle (see [12] and Sect. 4.3 of this manuscript) we
know that maximizing reproductive value at every age is equivalent to
maximizing reproductive value at age zero. In that way Williams [213]
anticipated Taylor et al.’s [192] result that “[m]aximizing the repro-
ductive value at age zero is mathematically equivalent to maximizing
the ultimate rate of increase”. Extensive treatments of the evolution of
optimal life histories can be found in [186] and [169].

I want to emphasize how reproductive value emerges again and again
as an important quantity. Not only was it proposed as a measure of
senescence [149] – it was also proved to be a measure of fitness [192]
and a central quantity for solving the general life-history problem [213].

1.2.6 Interesting Recent Developments

In Chaps. 4 and 5, I will develop models to explain the evolution of
senescence that focus on the age-patterns of mortality, fertility and
growth using the concepts outlined above. Reproductive-effort models
were developed in the 1970s to understand when iteroparity (repeated
breeding) is favored over semelparity (single breeding event, in which
reproduction is fatal) (see [62], [175] and [31]). The shape of the age-
trajectory of mortality itself attracted little interest. Instead, mortality
was assumed to follow a particular pattern, for example to be constant,
to be stepwise constant (distinguishing only between a juvenile and an
adult period) or to follow an exponential pattern.

Some recent models of the evolution of senescence, however, do focus
on the age-trajectory of mortality in conjunction with age-trajectories
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of growth, reproduction and transfers. These models draw heavily on
the concept of allocation of restricted resources and on dynamic opti-
mization techniques (see [12] and Sect. 4.3).

Abrams and Ludwig [5] develop a theoretical model based on the
disposable soma theory [97] and find that many different mortality
trajectories can be optimal, an exponential increase being only one
possible outcome. The model, however, does not allow for a decline in
mortality with age.

Mangel and Bonsall [120] also show that a diversity of optimal mor-
tality trajectories is possible when mortality is viewed as a result of
multiple physiological processes as well as when mortality is the con-
sequence of growth and metabolism and associated damage. In their
model, mortality can decrease over some ages before it ultimately in-
creases. Another recent model by Mangel and Munch [121] that focuses
on compensatory growth derives mortality as result of growth and dam-
age. The approach taken by Mangel and colleagues shows that optimal
age-patterns of mortality can decrease if mortality is, at least in part,
determined by physiological state. They point out the importance of
“reunifying the connections between the biology of aging and demog-
raphy” [120, p. 357]. Munch and Mangel [131] recently showed that
mortality can follow various patterns at juvenile ages.

Dynamic programming models that optimize resource allocation to
growth, reproduction and repair of somatic damage based on the dis-
posable soma theory of aging have been studied intensively by Ko-
zlowski and Cichon [37, 38, 39, 102, 103]. Their models do not allow
mortality to decline with age. Drenos and Kirkwood [52] also describe
a mathematical model based on the disposable soma theory. In their
model the optimal level of investment in repair is always less than that
required for non-senescence.

An approach that explicitly questions when senescence can be es-
caped is given by Gardner and Mangel [64]. They develop a stage-based
model and find that the strength of selection can, under some circum-
stances, increase with age for clonal organisms.

Travis [196] claims that, in a spatially structured population, a de-
terminate lifespan can evolve with an optimal specific age of death, but
in a freely mixing population with global dispersal evolution selects for
individuals with ever-increasing lifespan. In a working paper, Doncaster
and Seymour [50] demonstrate that ever-extending reproductive life can
be optimal in populations with density regulated recruitment, e.g., in
the case of Bristlecone Pines. If seeds can be established only on a
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patch freed by the death of an adult, it pays to outlive your neighbors
to ensure that your offspring can occupy the newly opened space.

Sozou and Seymour [183] show that mortality does not necessarily
have to increase, i.e. that non-senescence can be locally optimal, if the
potential onset of deterioration is sufficiently rapid or early. Interest-
ingly, they find that “for all forms of profile considered, conditions can
be found for which a strategy involving no ageing is locally optimal”.

In a recent paper, Chu and Lee [36] study the conditions under which
transfers from adult to offspring can be optimal. Applying dynamic op-
timization techniques and the idea of optimal resource allocation, they
model the co-evolution of survival and transfers. A recent working pa-
per by Robson and Kaplan [168] derive a dynamic optimization model
for the evolution of the human mortality pattern incorporating invest-
ment in quantity and quality of somatic capital and a budget constraint
that reflects intergenerational transfers. These models can explain why
mortality declines during development and why evolution licences a
substantial period of post-reproductive life in humans.

With the models I am going to develop, I will not be focusing on
a single species such as humans. I wish to understand more generally
under what conditions what pattern of mortality can be expected. In
particular, I want to study if and when non-senescence can be optimal.
My work is the first systematic attempt to find the characteristics that
determine when senescence is optimal and when it is not. I will not
focus on lifespan. A species with a short lifespan can still have a non-
senescent life history. The length of life only reflects different time scales
that different species live on. This would be a different question: When
is it optimal to live on what time scale? Instead I ask: When is it
optimal to live under what qualitative mortality pattern?

My modeling strategy is to exploit the power of focused simplicity.
The models will be kept as simple as possible, including only necessary
ingredients that are chosen based on my particular question.

1.3 Orientation

In the following two chapters I discuss Hamilton’s paper on the molding
of senescence [75], disproving his dogmatic claim that senescence is
inevitable and pointing out deficiencies of Hamilton’s framework. Given
the theoretical issues and empirical evidence, I come to the conclusion
that life histories are likely to be shaped largely by optimization rather
than by a burden of deleterious mutations, at least over ages where the
bulk of life-time reproduction is realized.
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In the subsequent two chapters, I develop optimization models to
determine the optimal pattern of survival and reproduction over the
life course of a species. The models in Chap. 4 are based on the state-
variable size. The Chapter makes the case for negative senescence, i.e.
the models show that, theoretically, senescence is not an inherent part
of life. The model in Chap. 5 is built around the state-variable “vitality”
and takes into account and addresses some of the deficiencies of the
size-based models. The vitality model demonstrates that the space of
optimal life histories is wide and covers a broad range of senescent and
non-senescent strategies.

The final chapter, Chap. 6, emphasizes the need to connect the world
of mutation accumulation and the world of optimization. I also suggest
directions for future research on the evolution of senescence.



Part I

Hamilton



2

Hamilton’s Indicators of the Force of Selection

2.1 Introduction

To quantify the force of selection, Hamilton derived expressions for the
change in fitness with respect to age-specific mutations. Hamilton’s in-
dicators are decreasing functions of age. He concluded that senescence
is inevitable: survival and fertility must decline with age. I show that
an alternative parametrization of mutational effects leads to indica-
tors that can increase with age. I then consider the case of deleterious
mutations with age-specific effects. In this case, it is the balance be-
tween mutation and selection pressure that determines the equilibrium
number of mutations in a population. In this balance the effects of
different parameterizations cancel out, but only to a linear approxima-
tion. I show that mutation accumulation has little impact at ages when
this linear approximation holds. When mutation accumulation mat-
ters, nonlinear effects become important and the parameterizations of
mutational effects make a difference. The results also suggest that mu-
tation accumulation may be relatively unimportant over most of the
reproductive lifespan of any species.

Senescence can be defined as an increase in mortality and/or a de-
crease in fertility with age. Is senescence a universal characteristic of
life? It is not obvious from an evolutionary perspective why it should
be. Early in life, when individuals develop and grow, mortality falls
and reproductive potential increases. Why is it that these age-patterns
cannot persist, in some form, with mortality continuing to decline and
reproductive capacity continuing to increase? George C. Williams [212,
p. 398] wrote:
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“It is indeed remarkable that after a seemingly miraculous feat of
morphogenesis a complex metazoan should be unable to perform the
much simpler task of merely maintaining what is already formed”.

William D. Hamilton’s influential article on “The Moulding of Senes-
cence by Natural Selection” [75, 76] provides a reason why senescence
“cannot be avoided by any conceivable organism”. Hamilton combines
insights about the evolution of senescence [126, 212] with concepts and
models of population dynamics [115]. Hamilton asserts that “ senes-
cence is an inevitable outcome of evolution”. Did Hamilton genuinely
prove that senescence is theoretically inevitable?

2.2 Hamilton’s Derivations

How does a mutation that acts only at a specific age a influence the
evolutionary success of an individual? Does it matter if this age is early
or late in life? Hamilton [75] built on the insight of Medawar [126] that
later-acting genes should be under weaker selection than earlier-acting
ones due to the unavoidable decline in the number of survivors at higher
and higher ages. A genetically-determined fatal disease that struck only
at post-reproductive ages would be entirely out of reach of the force of
selection.

2.2.1 The Framework

To quantify the force of selection Hamilton considered age-specific,
mutation-induced changes in fitness. Hamilton used the most widely-
accepted measure of Darwinian fitness, the intrinsic rate of population
increase r, implicitly defined by the discrete version of the Lotka equa-
tion

∞∑
x=0

e−r x lx mx = 1 . (2.1)

The function lx gives the chance of survival to age x. The function mx

measures the amount of reproduction at that age. If the population
is stable, as assumed by Hamilton, then each combination of an age-
specific maternity function mx and an age-specific survival function lx
is associated with exactly one real r that satisfies (2.1).
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The survival function lx is defined as the product of the probabilities
pa of survival from age a to a + 1:

lx = p0 p1 . . . px−1 , (2.2)

with
l0 = 1 .

The age-specific survival probabilities pa depend on the instantaneous
death rate μt, the force of mortality between age a and a + 1, via

pa = e−
∫ a+1

a
μt dt = e−μ̄a . (2.3)

The cumulative mortality in the exponent reflects the average mortality
during that time interval, denoted by μ̄a.

2.2.2 Hamilton’s Indicator of Survival

By taking the derivative of (2.1) with respect to ln pa and rearranging,
Hamilton derived his basic result:

H† ≡
d r

d ln pa
=

∑∞
x=a+1 e−r x lx mx∑∞
x=0 x e−r x lx mx

. (2.4a)

Note that (2.3) implies that H† can also be expressed as:

H† ≡ −
d r

d μ̄a
. (2.4b)

The value of H† is a measure of the force of selection. It captures
the change in fitness r induced by an increase in ln pa. An increase in
ln pa is equivalent to a reduction in average mortality μ̄a between age a
and a + 1. This sensitivity of fitness to changes in age-specific survival
is captured by the ratio of remaining reproduction, the numerator in
(2.4a), to generation time, the denominator. Because H† declines as age
increases, Hamilton concluded that the force of selection must decline
with age.
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2.3 Alternative Indicators

2.3.1 Different Parametrization

Hamilton’s conclusion hinges on the particular parametrization he
chose for the nature of the effect of a mutation. Equally reason-
able, alternative forms would have been dr/dpa, dr/dqa, dr/d ln qa or
dr/d ln μ̄a, where qa is the probability of dying (qa = 1 − pa) and μ̄a,
as noted above, equals − ln pa. The results are as follows:

d r

d pa
=

1

pa
H†, (2.5a)

d r

d qa
= −

1

pa
H†, (2.5b)

d r

d ln qa
= −

qa

pa
H† (2.5c)

and

d r

d ln μ̄a
= − μ̄a H† . (2.5d)

Strikingly, the expressions in (2.5a-d) can increase in absolute value
with age – in contrast to H†, which always declines.

2.3.2 When Selection Pressure Increases

Consider, for instance, (2.5d). At pre-reproductive ages the value of
dr/d ln μ̄a is entirely determined by μ̄a, as H† is constant before matu-
rity. At reproductive ages the change in fitness with respect to mortality
increases from age a to a + 1 if∣∣∣∣ d r

d ln μ̄a

∣∣∣∣ <

∣∣∣∣ d r

d ln μ̄a+1

∣∣∣∣ .
Substituting (2.5d) and (2.4a), and using the notion of reproductive
value,

va =
er a

la

∞∑
x=a

e−r x lx mx , (2.6)

this inequality can be rearranged to give the following condition,(
μ̄a+1 − μ̄a

μ̄a+1

)
va+1

ma+1
> 1 . (2.7)



2.3 Alternative Indicators 23

Hence, the value of dr/d ln μ̄a will increase with age if μ̄a < μ̄a+1 and
if future reproductive value is sufficiently large compared to fertility
ma+1. Taking into account the fact that (2.1) must hold, the inequality
in (2.7) can be rearranged as(

μ̄a+1 − μ̄a

μ̄a+1

)
er(a+1)

la+1

(
1 −

a∑
x=0

e−r x lx mx

)
> ma+1 . (2.8)

This inequality determines trajectories for ma+1 that lead to increasing
sensitivity of fitness to changes in mortality over age given a specified,
increasing path for μ̄a. The survival and fertility functions plotted in
Fig. 2.1 and the resulting indicators dr/d ln μ̄a and dr/d ln pa plotted
in Fig. 2.2 provide an illustrative example.

5 10 15 20 25 30 35
age

0.5

1

1.5

2

la and ma

Fig. 2.1. Example of survival and maternity functions la and ma (If age-
specific survival probabilities pa change according to pa = pa

0 with p0 < 1,
then the average force of mortality between age a and a + 1 is given by
μ̄a = − ln pa

0 = −a ln p0. Maternity ma+1 was chosen to be 0.01 units smaller
than the left-hand side of the inequality in (2.8), setting r = 0, p0 = 0.99 and
m0 = 0. By age 34, survival falls to 0.25%. After age 34, I fixed age-specific
survival pa at its level of p35 = 0.70 corresponding to μ̄35 = 0.35 and adjusted
ma to a constant level of 133.265 such that (2.1) is fulfilled.)

2.3.3 Fertility Indicators

The quantity Hamilton derived for the force of selection on age-specific
mutations that affect fertility is

H∗ ≡
d r

dma
=

e−r a la∑∞
x=0 x e−r x lx mx

. (2.9)
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age
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1

indicator

Fig. 2.2. Comparison of H† = dr
d ln pa

(dashed line) with dr
d ln μ̄a

(solid line)

(While Hamilton’s indicator H† declines, the alternative one increases until
age 34. The increase would have continued if ma+1 had been further deter-
mined by the inequality in (2.8). This, however, would result in a trajectory
for ma that would rise to enormous heights. Also note that Hamilton’s indi-
cator is greater than the alternative indicator, especially before age 35. This
implies a considerably stronger force of selection on age-specific mutations
that affect mortality.)

Hamilton considered survival effects on a log scale: He could have done
the same for reproduction, calculating

d r

d ln ma
= ma H∗ . (2.10)

Hamilton’s indicator in (2.9) necessarily declines with age but the al-
ternative indicator in (2.10) can increase with age, depending on the
trajectory of ma.

Table 2.1 summarizes the direction of changes over age of the various
indicators of the force of selection. The differences in the dynamics are
due to the nonlinearity of logarithmic and exponential transformations.

2.3.4 Are Some Indicators Better?

Charlesworth [27, p.191], who reconstructed Hamilton’s results, sug-
gested that “genetic effects on survival probabilities are more likely
to be additive on a log scale.” His conjecture implies that mutations
have additive effects on mortality. Indeed, both of Hamilton’s indicators
H† = −dr/dμ̄ and H∗ = dr/dm can be interpreted as assuming that
mutations additively affect average mortality μ̄ and fertility m. This
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Table 2.1. Various indicators
of the force of selection in
Hamilton’s framework

Indicator Change with age a

d r
d ln pa

−

d r
d pa

+ or −*

d r
d qa

+ or −

d r
d ln qa

+ or −

d r
d ln μ̄a

+ or −

d r
d ma

−

d r
d ln ma

+ or −

* “+ or −” means that the
change with age can be posi-
tive or negative, depending on
the trajectories of mx and lx.

is plausible because additive risk models are widely used, most com-
monly in evolutionary modeling [23, 29]. The indicators μ̄H† and mH∗

capture the effect of a proportional change in μ̄ and m. Proportional-
hazard models in general and Cox proportional-hazard models [45] in
particular are frequently used in demographic and epidemiological re-
search.

Deleterious mutations influence the internal condition of an organ-
ism. Internal conditions are known to interact with the environment
[163, 214]. These interactions affect mortality in a non-additive man-
ner. The idea that traits are likely to combine non-additively is also
supported by recent work by Promislow [160] and Spencer and Promis-
low [184] which concerns the network structure of genes and epistasis
respectively.

Whether age-specific mutations act proportionally or additively has
been a question for empirical research. Support for the preeminence of
proportional hazards comes from Drosophila. The study by Promislow
and colleagues [161] of additive genetic variance favors proportional
hazards. In the papers by Good and Tatar [68] and Mair et al. [116]
change in current nutrient conditions affects mortality in a proportional
manner. Furthermore, many mutants extend lifespan in Drosophila be-
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cause they reduce mortality proportionally [87, 112, 170]). An excep-
tion is the work on the mutant chico [197]. Evidence for proportional
hazards also comes from baboons [14] and mice [60] 1.

Numerous demographic and epidemiological analyses of risk factors
have found that proportional effects are more common than additive ef-
fects. In particular, the impact of genetic polymorphisms, such as ApoE
2, 3 and 4, on mortality has been modeled by proportional hazards [66].
Empirical results reviewed by Promislow and Tatar [158] support the
proportional-hazard assumption, suggesting that mutations act addi-
tively on log-mortality rather than log-survival. Hence, it seems plau-
sible that the indicators μ̄H† and mH∗ will prove at least as valid as
Hamilton’s indicators.

2.3.5 Optimization vs. Mutational Burden

How mutations affect fitness is the focus of a vast literature [17, 27,
46, 54, 73, 74, 96]. Since Medawar [126] and Hamilton [75], many bi-
ologists have considered the sensitivity of fitness with respect to age-
specific changes in survival or fertility [23] as an indicator of selection
pressure. A key issue is whether age-patterns of mortality and fertil-
ity are molded by adaptive optimization processes or by the burden of
non-adaptive mutations [2, 27, 147, 148]. Note that, in either case, an
increase in mortality or a decrease in fertility is a byproduct of evo-
lutionary processes. In the former case, senescence can arise as a side
effect of an optimal balance between linked traits that effect fitness,
and in the latter case senescence emerges as the weakening selection
pressure is less and less successful in eradicating deleterious mutations.

Optimization models can be solved without using Hamilton’s indi-
cators [200]. If the age-patterns mainly reflect the age-specific burden
of mutations, then Hamilton’s indicators are not sufficient. Age-specific
levels of birth and death rates depend not only on the selection pres-
sure but also on mutation rates. In the following section I analyze this
balance.

2.4 Mutation–Selection Balance

How do the alternatives of parametrization in Table 2.1 affect the equi-
librium number of deleterious mutations at each age? In particular,

1 I thank Marc Tatar for emphasizing the preeminence of proportional hazards and
for pointing me to the relevant empirical evidence.
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is the magnitude of mutation accumulation great enough to mold the
trajectory of mortality?

The equilibrium number of mutations under mutation–selection bal-
ance can be approximated by the ratio of the total mutation rate ν
(i.e., the hazard of a mutation from a set of possible mutations) and
the change in fitness r:

n̄ ≈
ν
dr
dn

, (2.11)

where n denotes the number of mutations and n̄ denotes the equilibrium
number [27, pp. 125-126]. The approximation holds if ν and n̄ are small.
Using the chain rule, the derivative in (2.11) can be factored into the
change in fitness with respect to survival or fertility and the effect on
survival or fertility of having n mutations:

dr

dn
=

dr

df

df

dn
, (2.12)

where f could be any of the denominators in Table 2.1.

2.4.1 Additive vs. Proportional Parametrization

Consider a mutation that has a small effect δ on mortality. Then f is
equivalent to

μa(n) = μa(0) + n δ (2.13a)

in the additive case and

lnμa(n) = ln μa(0) + n δ (2.13b)

in the proportional case. From (2.11), (2.12) and Table 2.1 it follows
that

n̄ ≈
ν

h†
a δ

(2.14a)

in the additive case and

n̄ ≈
ν

μa(0)h†
a δ

(2.14b)

in the proportional case. In these ratios h†
a denotes remaining repro-

duction at age a of an individual with no deleterious mutations. It is

related to Hamilton’s indicator via h†
a = H†

aT , where T captures gen-
eration time.
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Combining (2.13) and (2.14) leads to the result

μa(n̄) ≈ μa(0) +
ν

h†
a

(2.15a)

in the additive case and

μa(n̄) ≈ μa(0) exp

(
ν

μa(0)h†
a

)
(2.15b)

in the proportional case. If mutations are rare, i.e. if ν/μa(0) is small,
then the formula for the proportional case can be approximated by

μa(n̄) ≈ μa(0)

(
1 +

ν

μa(0)h†
a

)
= μa(0) +

ν

h†
a

. (2.16)

Hence, if ν and n̄ are small enough that the approximations in (2.11)
and (2.16) hold, then mutation accumulation will result in about the
same age-specific mortality regardless of whether mutations have addi-
tive or proportional effects.

2.4.2 A Simple Box Model

If n̄ is large, an alternative approach is necessary. Several helpful models
have been developed (e.g. [95, 127, 128, 142]); for a review see [17, 27]. A
recent general model by Steinsaltz, Evans, and Wachter [187] includes
earlier models as special cases.

A solution based on a simple box model similar to that of Kimura
and Maruyama [95] can be readily developed. Assume a haploid, asex-
ual population that is stationary in size. Further assume that muta-
tions affect only one age class, to ensure that the equilibrium numbers
of mutations are independent across ages. Focus on a single age a. In-
dividuals are sorted into boxes according to their number of mutations
at age a. Let N(n) be the number of individuals in box n and let N
be the total, constant population size at age a. In mutation–selection
balance, the proportions N(n)/N are fixed. Denote the lifetime repro-
duction of an individual in box n by R(n). Let ν be the probability
of passing on a new, additional mutation to the next generation. As-
sume that mutations occur successively, i.e. it is not possible to jump
over boxes. Ignore back mutations. Mutations are deleterious, therefore
R(0) > R(1) > R(2)... > R(K), K being some maximum number.
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The number of individuals N(n) in box n is given by the inflow of
individuals minus the outflow per generation,

N(n) = N(n − 1)R(n − 1) ν + N(n)R(n) (1 − ν) . (2.17)

It follows immediately that reproduction in box zero is

R(0) =
1

1 − ν
. (2.18)

In the case of mutations that affect mortality, the lifetime reproduction
of individuals in the n’th box is given by

R(n) =

a−1∑
x=0

lx mx + eμa(0)−μa(n)
∞∑

x=a

lx mx . (2.19)

This result can be expressed as

R(n) = R(0) − Δ(n)h†
a , (2.20)

where Δ(n) is the fraction of remaining reproduction h†
a that is lost

due to carrying n mutations. In the additive case

Δ(n) = 1 − e−δ n (2.21a)

and in the proportional case

Δ(n) = 1 − e−μa(0) (exp[δ n]− 1) . (2.21b)

It follows from (2.17) and (2.20) that

N(n) =
N(0)∏n

k=1 Δ(k)
R(0)n+1

( ν

h†
a

)n
n−1∏
k=1

(R(0) − Δ(k)h†
a ) . (2.22)

The equilibrium number of mutations is the average over all boxes, i.e.

n̄ =

∑K
n=0 n N(n)∑K
n=0 N(n)

. (2.23)

Figure 2.3 plots the equilibrium number of mutations over age in the
additive versus proportional case for the example presented in Fig. 2.1
and 2.2. As a second example I consider female mortality, as given in
the Swedish life table for 1778-82. Results are shown in Figs. 2.4 and
2.5.
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Fig. 2.3. Equilibrium number of mutations: additive (dashed), proportional
(solid) (I assume that mutation pressure ν = 0.001. Furthermore, I assume
that a mutation at any age reduces remaining reproduction by about ten
percent in both the additive and proportional case. This refers to an average
reduction in the proportional case since Δ(n) depends on the level of mortality
at age a, as can be seen from (2.21b). Specifically, δ = 0.1 in (2.21a) and
δ = 0.35 in (2.21b). While in the Hamiltonian case of an additive hazard the
number of mutations remains low and then increases with age, proportional
effects lead to an age-specific mutational load that declines at young ages. In
the example only one quarter of one percent of individuals are alive at age 34.
Before this age the mutational load is close to zero. After this age, however,
the equilibrium number of mutations rises sharply.)

The values of h† that determine the number of mutations in Figs.
2.3 and 2.4 are calculated using specific initial fertility and mortal-
ity schedules. The mutations, however, will raise mortality, producing
a new schedule that determines a new h†, as illustrated in Fig. 2.5.
These dynamics are beyond the scope of this chapter. Note, however,
that higher hazard rates would reduce the fitness costs of a change in
age-specific mortality. Thus, more mutations would accumulate and the
difference between additive and proportional parameterizations would
be larger than predicted by my conservative estimate. A general treat-
ment that takes into account interactions between ages is given by
Steinsaltz, Evans, and Wachter [187].2

2 I thank Kenneth W. Wachter and Brian Charlesworth for helping me considerably
with this section.
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Fig. 2.4. Equilibrium number of mutations: additive (dashed), proportional
(solid) (The example is based on female mortality as given in the Swedish
life table for 1778-82, for seven 5-year age-groups, beginning at age 15. Since
the Swedish population was growing at that time, I normalized reproduction
to ensure R = 1.00. I consider a deleterious mutation that reduces remaining
reproduction at any age by about one percent, either in an additive or in a
proportional way, i.e. δ = 0.01 in (2.21a) and δ = 0.7 in (2.21b), and I assume
a mutation pressure of ν = 0.001. The difference between the additive and
proportional case increases at higher ages, as levels of remaining reproduction
decline. A slight decrease in the equilibrium number of mutations from the
first to the second age-group can be observed.)
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Fig. 2.5. Mortality: additive (dashed), proportional (solid), initial mortality
μa(0)(dotted) (Initial mortality is from the Swedish life table for 1778-82,
females, for seven 5-year age-groups, beginning at age 15.)
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2.5 The Importance of Mutation Accumulation

The age-trajectory of mortality can be decomposed into three parts: one
component is due to the accumulation of unfavorable mutations, an-
other fraction results from selection processes that optimize the trade-
offs necessitated by resource limitations, and the remaining fraction
can be attributed to unavoidable, external risks of death. How strong
is the influence of mutation accumulation?

The relative impact of mutation accumulation on the molding of the
mortality trajectory is crucially determined by the ratio of mutation

pressure ν to remaining reproduction h†
a, as indicated by (2.14). The

larger the value of ν, the more influential is mutation accumulation. But
what is the magnitude of ν? Keightley and Charlesworth [92] point
out that the rate of deleterious mutations per haploid genome in C.
elegans in protein coding genes is about 0.5 per generation. Kimura and
Maruyama [95] and Drake et al. [51] suggest mutation rates per genome
per generation of about 0.1 and between 0.1 − 100, respectively. More
recent publications estimate the genomic rate of deleterious mutations
in humans to be at least 1.6 [55] or even 3 [133] per generation.

If the fraction of mutations that exclusively affect mortality at a
specific age is low, then these values could be consistent with a value
of ν = 0.001. If ν is 0.001, then Fig. 2.6 suggests that the influence of
mutation accumulation is likely to be small over the major part of re-
productive life. This remains speculation, however, until the magnitude
of ν is estimated empirically. Abrams [2] provides suggestive evidence
that the importance of mutation accumulation is likely to be small
relative to the importance of optimization among trade-offs. Partridge
[147] points out that little evidence can be found in favor of mutation
accumulation but considerable evidence can be found to confirm the
importance of trade-offs.

The conclusions drawn above and in the previous section were
reached on the basis of a specific model of mutation accumulation. In
general cases covered by the solutions given by Steinsaltz, Evans, and
Wachter [187], the form of the mutation–selection equilibrium depends
on the extent of assumed genetic recombination. At both extremes, in
the absence of recombination (Equation 9 in their article) and in the
presence of free recombination (Equation 27), the parametrization of
the mutational effect, i.e. whether the effect is additive or proportional,
influences the mutation–selection equilibrium.
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Fig. 2.6. Proportion of mortality explained by mutation accumulation: ad-
ditive (dashed) vs. proportional (solid) case (The fraction 1 − μa(0)/μa(n̄)
indicates the proportion of equilibrium mortality that can be explained by
the accumulation of mutations. For the example of Swedish females, when
ν = 0.001, mutation accumulation explains less than a third of total mor-
tality. At ages 45-50, however, when mortality is high and fertility is low,
mutation accumulation accounts for the bulk of total mortality. Note that
this illustrative example does not pertain to actual Swedish mortality but to
the hypothetical outcome of one round of mutation accumulation: see Sect.
3.1 for further discussion.)

2.6 Conclusion

Hamilton stated that the force of selection inevitably has to decline with
age, even “in the farthest reaches of almost any bizarre universe” [76].
He concluded that the declining selection pressure would mold the age-
pattern of mortality in a way that mortality is lowest at reproductive
maturity and “trails upward indefinitely at the right . . . roughly asymp-
totic to the age of the ending of reproduction” [76, p. 119]. Hamilton’s
claim about the inevitability of senescence has been generally accepted,
but it can be disproved, even adopting his restrictive assumptions. As
shown above, alternative indicators can be derived, within Hamilton’s
own framework, that can result, in some circumstances and over some
age ranges, in an increasing force of selection with age, thus contradict-
ing the basis for his claim.

The results of this chapter strengthen the view that demographic
schedules of mortality and fertility appear to be shaped largely by op-
timization of trade-offs rather than by mutation accumulation. Only at
ages when remaining reproduction is low does the influence of mutation
accumulation appear to become predominant. At those ages, different
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parameterizations lead to different conclusions about the equilibrium
number of mutations.

Some important empirical research questions are suggested by the
theoretical findings of this chapter. Does the age-specific mutation rate
ν change with age? If so, what is the age-trajectory of ν?



3

Further Challenges

Hamilton’s claim of the inevitability of senescence can be disproved
even within his own framework. Furthermore, his framework has sev-
eral limitations. In this chapter theoretical and empirical issues that
weaken his approach as the main explanation for the evolution of senes-
cence will be discussed. Building on Medawar [126] and Williams [212],
Hamilton wrote the pioneering first chapter on the moulding of senes-
cence.

I draw two main conclusions.

• First, Hamilton’s basic notion – that the age-pattern of mortality
is an inverse function of the age-pattern of his indicator – is wrong.
For both his indicator and the other indicators in Table 2.1 the
relationship between the indicator and mortality is so complicated
that sophisticated modeling is required.

• Second, several theoretical arguments as well as the bulk of em-
pirical findings suggest that mutation accumulation is of secondary
importance in molding the age-trajectories of mortality across the
varied species of life. The primary force appears to be adaptation,
i.e. the concept that patterns of aging are a byproduct of optimiza-
tion of trade-offs. Hence, deep understanding of the evolution of
aging requires optimization modeling.

3.1 General Problem with All Indicators

Because his indicator declines with age, Hamilton deduced that mor-
tality must increase with age. The relationship between his indicator of
selection pressure and the age-pattern of mortality is not a simple one,
however. During development his indicator is constant, while mortality,
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for many and perhaps all species, is falling. At post-reproductive ages
his indicator is zero, while mortality, at least in humans, rises and then
slowly levels off. Although the mismatch between indicator and pattern
was acknowledged by Hamilton himself, an inverse relation between his
indicator and the age-pattern of mortality is commonly assumed. The
main justification, from Hamilton onwards, appears to be that there
is an inverse relation between his indicator and the age-trajectory of
mortality at reproductive ages in humans.

It is well known among plant biologists that many plants are ca-
pable of reducing their hazard of death by continued growth after the
onset of reproduction. As discussed later in this chapter, various ani-
mals show negligibly increasing or declining mortality. I will show in
Chaps. 4 and 5 that optimization models can lead to strategies where
mortality is constant or keeps on falling after reproductive maturity.
Figure 3.1 compares these patterns to Hamilton’s inevitably decreasing
indicator. It is clear that mortality is not necessarily an inverse function
of Hamilton’s indicator.

The alternative indicator that I suggested for the force of selection
can increase with age, but only if the hazard of death is increasing. The
indicator, however, can also decrease when the hazard of death is in-
creasing: whether the indicator increases or decreases depends on how
fertility is changing. Furthermore, the indicator decreases if the hazard
of death is decreasing. So, as with Hamilton’s indicator, the alterna-
tive indicator is not necessarily inversely related to the age-pattern of
mortality.

But then how are the indicators of the force of selection against
senescence related to the shape of the age-pattern of mortality? Hamil-
ton quantified the selection pressure but he did not think carefully
about the response to that pressure, although he acknowledges that
“what way life schedules will be moulded by natural selection depends
on what sort of genetical variation is available” [76, p. 118]. Lande
[105] emphasizes that the change in a phenotype is determined by se-
lection pressure (i.e. the indicator) together with the response matrix
(the so called G-matrix), which includes variances and covariances for
all fitness-relevant traits. The matrix not only takes into account “ge-
netical variation” but also trade-offs among traits. Hamilton ignored
these trade-offs.

The indicator of selection pressure together with the response matrix
yields information about short term evolutionary processes. The impli-
cations for the long term, however, cannot be readily assessed because
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Fig. 3.1. The relation between Hamilton’s declining indicator of selection
pressure (left side, in black) and three possible age-patterns of mortality (right
side, in grey)

the selection pressure is determined by what it shapes. The calculation
of the indicator of selection pressure is based on the age-trajectories of
mortality and fertility, and these trajectories depend on current levels
of fitness-relevant traits. The entries in the G-matrix correspond to the
variances and covariances at current levels of traits. But if, say, n traits
are involved, then the indicator as well as the matrix take different val-
ues in an n-dimensional space. Evolution moves a species in this space
at the speed and in the direction specifically determined by its position
in that space. As position changes, speed and direction change.

In other words, as traits are shaped by evolution, they re-shape the
selection pressure and possibly the G-matrix. It is not clear whether this
process will ultimately converge and, if it does, to what evolutionary
equilibrium. Since the force of selection is essential for evolutionary
demographic theory, the implications of this feedback loop have to be
understood. This requires modeling.
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In sum, the quantities in Table 2.1 are indicators of the force of
selection. They can provide an impression of the short-term direction
and magnitude of the force of selection on age-specific survival and
reproduction. But they are only one aspect of a multi-faceted story.

3.2 Theoretical Arguments

3.2.1 Mutation–Selection Balance

If mutation accumulation were the main explanation for senescence,
which Hamilton assumes is a trait that is common to all individuals in
a population, then each individual must be affected. For any particular
deleterious mutation, mutation–selection balance implies that at least
some individuals do not carry that mutation, namely those individu-
als in the zero-box. As long as selection pressure significantly exceeds
mutation pressure, most individuals will be in the zero-box. Therefore,
each individual would have to have his or her own set of deleterious
mutations, being non-mutant for some genes and mutant for others.
If genes had large and/or epistatic (non-linear) effects, a small set of
genes could be sufficient. A population however, would then be highly
heterogeneous, with some individuals suffering a rapid increase in mor-
tality and others enjoying slow or postponed senescence. This does not
appear to be the case, at least not for humans. Low variance in the
age of senescent death requires the existence of many genes that have
negative effects towards the end of reproductive life but no effects be-
fore that. Hamilton’s theory assumes then that many genes have small
effects that act additively. I will review the empirical evidence for age-
specific, late-acting mutations in a subsequent section.

If there are few genes that have age-specific effects, then for mutation
accumulation to be the main cause of senescence, these genes must be
fixed in the population to lead to the phenomenon of senescence, which
Hamilton claims to be universal. Fixation of a mutation implies that
every individual in the population carries the same mutant allele for the
gene in question. In this theoretical model this means that no individual
is left in the zero box. The fixation of deleterious mutations at advanced
ages poses a further challenge: unraveling.

3.2.2 Unraveling

Human mortality rises much more slowly than suggested by the results
in Fig. 2.5, consistent with an earlier, similar observation by Abrams
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[2, p. 357f]. This leads to a problem we have not yet touched on. All the
indicators in Table 2.1 imply that the force of selection drops to zero
when reproduction ceases. Several authors have argued that recurrent,
deleterious mutations that only effect post-reproductive ages would be-
come fixed, yielding a black hole of death at the age when reproduction
ends [32, 146, 198, 208]. This could have been shown in all the figures

above if the curves were drawn to higher ages. As h†
a approaches ν, the

equilibrium number of mutations steeply rises.

However, remaining reproduction h†
a is calculated on the basis of a

non-mutant life-history schedule. As h†
a approaches zero, the equilib-

rium number of mutations rises to its maximum number at the age

when 0 < h†
a << ν, even though a small fraction of reproduction is

left. Hence, all bad genes after that age are fixed in the population and
no individual is left with the non-mutant schedule. The disadvantage
of carrying the mutation disappears, since every individual carries it.
The fitness differential with respect to that mutation is gone. There-

fore, a new h†
a that falls more quickly near the end of reproductive life

determines the selection pressure. Consequently, the point at which all
mutations become fixed moves forward to a younger age. This process
of unraveling would move the wall of death to younger and younger
ages until it ultimately reaches maturity. Semelparity would be the
only life-history strategy possible, which clearly is not the case.

Unraveling crucially depends on the age-trajectory of the mutation
pressure. The age–window at the end of reproductive life, when selec-
tion pressure is weak and mutation pressure is strong, might be small.
Let a be the first age when remaining reproduction is much smaller

in magnitude compared to the mutation pressure, i.e. 0 < h†
a << ν,

and A the age from which onwards remaining reproduction is zero, i.e.

h†
A = 0. Unraveling will occur only if there are mutations whose ef-

fects become apparent inside but not before the age interval [a,A]. On
the other hand, mutation accumulation will shape the age-pattern of
mortality only if there are mutations that increase mortality at older
ages, including within the interval [a,A]. Furthermore, such mutations
cannot have major effects at ages where selection pressure is high.

In sum, there are many restrictions on the nature of the mutations
that could permit mutation accumulation to shape aging, as discussed
in this section and in the previous section. We will see in Sect. 3.3.1
below, that it is not clear that enough such mutations exist.



40 3 Further Challenges

3.2.3 Variable Environments

Hamilton assumes a constant environment but environments are – in
fact – variable. Accounting for changing environments can weaken mu-
tation accumulation considerably. As the environment switches between
good and bad times, it becomes essential during bad periods (during
droughts, for example) to survive a long time in order to reproduce at
all. Such a period would create a bottleneck. Only those individuals
that were able to switch to a “survival mode”, having no or very few
bad mutations at higher ages, would constitute the gene-pool for all
following generations, cleaning out any mutation accumulation.

Many species are able to switch between different life-history strate-
gies depending on environmental conditions [7, 20, 63]. The same
genome allows for strategies that can substantially differ in life ex-
pectancy. Given the short-lived strategy that might be optimal un-
der average environmental conditions, mutations are predicted to ac-
cumulate at ages beyond the corresponding expected end of life. These
mutations would raise mortality, preventing a substantial extension of
lifespan, i.e. switching to the long-lived strategy. For species with al-
ternative short and long-lived strategies, an increase in mortality with
age in the short-lived strategy cannot be explained by mutation accu-
mulation.

This reasoning only holds if mutations are assumed to be age-
specific, i.e. time counting. Probably, however, gene expression is state-
specific rather than age-specific. In this case a deleterious mutation
could hide in the genome if the respective gene is not expressed in
survival mode.

State– or condition-specific mutations could also explain results
from an experiment conducted in Linda Partridge’s laboratory. Mair
et al. [116] show that dietary shifts can lead to switching between two
different trajectories of mortality, one for the line on a restricted diet
and one for the unrestricted line. The possibility of immediate shifts
between a higher and a lower mortality curve in both directions, up
and down, cannot be explained by simple mutation accumulation, es-
pecially since the shifts can occur at both younger and older ages. Such
shifts and other kinds of plasticity in the age-pattern of mortality can,
however, be explained by optimization models, as I discuss in Chap. 6.

Let me also note that the influence of unpredictable, stochastic en-
vironments (and in this regard also finite population sizes, finite time,
and neutral theory) cannot be neglected when explaining the evolution
of senescence [143, 199]. I will return to these points in Chap. 6.



3.3 Empirical Evidence 41

3.2.4 Other Mechanisms

Variable environments are one counter–mechanism against mutation
accumulation. Other mechanisms that can reduce the amount of mu-
tations accumulating are synergistic epistasis and the occurrence of
beneficial mutations [177, 211]. In the former case, the force of selec-
tion prevents the accumulation of mutations more strongly, because
mutational effects magnify each other. In the latter case, the beneficial
effect of some mutations offsets the deleterious effect of other mutations
and therefore prevents an increase in mortality. Note that optimization
of age-patterns of mortality, fertility and other traits results from the
selection of beneficial mutations.

Hamilton pointed out that his results cannot explain the decline in
mortality during development nor the existence of a post-reproductive
period. Hamilton hypothesized that parental care is a missing piece in
his framework that could account for both decreasing juvenile mortality
as well as life after the end of reproduction. Parental care is a special
form of resource transfer from parents to offspring. Lee, [109], Chu and
Lee [36] and Robson and Kaplan [168] argue that intergenerational
transfers that are made before, at and after birth can significantly in-
fluence the evolution of life-history schedules and, in particular, could
explain the U-shaped trajectory of mortality in humans.

3.3 Empirical Evidence

3.3.1 Testing Preconditions for Mutation Accumulation

Three important preconditions for Hamilton’s approach are:

• The existence of genes with effects confined to particular ages,
especially to later ages.

• Mutations in these genes have small, deleterious effects.
• Effects of mutations do not interact with each other.

These preconditions have been tested empirically with an emphasis on
the first condition.

To test the first precondition for the theory of mutation accumula-
tion two large demographic studies in Drosophila have been conducted.
Pletcher et al. [155] used inbred lines and found only weak evidence for
the existence of mutations with deleterious effects confined to higher
ages. The mutational load at later ages of their lines, however, might
have been effectively saturated because of inbreeding depression (Yam-
polsky et al. [216], see also Sgrò and Partridge [178]). Negative epistasis
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at such a high mutational load could explain the results of Pletcher
and colleagues [155]. Yampolsky and colleagues [216] conducted exper-
iments with outbred lines of Drosophila and found clear evidence for
age-specific effects after 10 and 20 generations. This evidence, however,
decreased after 30 generations.

Evidence from Pletcher et al. [156] (for Drosophila) and Golden
and Melov [67] (for C. elegans), who tested age-specific gene-expression
levels, supports the existence of genes with age-specific effects, whereas
Landis et al. [106] found a small tendency towards down-regulation of
energy metabolism genes in Drosophila over adult ages. As a general
pattern for both Drosophila and C. elegans, McCarroll et al. [124] found
gene expression levels to be higher at younger ages than at later ages.

The second precondition of mutation accumulation is that mutations
have small effects. Some mutations may, however, have major effects.
It has been shown that the lifespan can be strongly effected by single
mutations in C.elegans [89, 113] and Drosophila [40, 112, 145, 190].

Hamilton’s third precondition is that aging-related genes should ef-
fect mortality in a linear, i.e. non-epistatic, manner. It has been shown,
however, that genes effecting the lifespan of flies and worms interact
[110, 180] and their expression depends on their genetic background
[185]. Recently, Spencer and Promislow [184] showed for Drosophila
that gene × genetic background interactions not only affect lifespan
as a whole, but they also affect mortality in an age-specific manner.
They conclude that aging-related traits could, to a significant extent,
be shaped by age-specific epistasis. This possibility has not been consid-
ered so far in the evolutionary theories of senescence. The epistatic ac-
tion of aging-related genes is further supported by Promislow [160], who
shows that proteins associated with senescence interact more strongly
than would be expected by chance.

If mutation accumulation were the main cause of senescence, the
empirical evidence should be abundant and clear. The evidence, how-
ever, suggests that two out of three preconditions may be violated and
evidence for the first precondition is not unambiguous.

3.3.2 Checking Predictions from Mutation Accumulation

If mutation accumulation were at work, then a main prediction is that
there will be an increase in genetic variation and inbreeding effects with
age. The evidence for an increase in genetic variation is mixed. Some
evidence supports such an increase [82, 83] whereas others report an
increase in genetic variance early in life followed by a decline in later life
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[161, 191]. The strongest support for the mutation accumulation the-
ory is given by Hughes et al. [84], who show a marked increase in both
genetic variation and inbreeding effects in Drosophila with age. The au-
thors emphasize that the increase in inbreeding effects is expected only
under mutation accumulation, not under antagonistic pleiotrophy [30].
Caution should be exercised regarding evidence of increasing inbreed-
ing depression with age because old flies may just be more enfeebled
and hence susceptible to the effects of inbreeding.

On the basis of his results, Hamilton made predictions about the
age-pattern of mortality. He inferred that mortality should be lowest
at reproductive maturity and “trails upward indefinitely at the right
. . . roughly asymptotic to the age of the ending of reproduction” [76,
p. 119], i.e. the theory of mutation accumulation would rule out the
existence of a post-reproductive period. Mortality trajectories at older
ages, however, have been found to level off and, in some studies, to
decline for humans and various species kept in protected environments
[21, 32, 47, 151, 201]. Several species studied in the laboratory have
been shown to enjoy an extended period of post-reproductive life.

The level of extrinsic mortality determines the age beyond which

remaining reproduction (h†
a) becomes negligible in the wild. This is

the age at which Hamilton predicts a steep increase in mortality. The
higher the extrinsic risk of death, the earlier the age at which mutations
could accumulate. Hence, animals kept in laboratories, zoos, or other
protected environments should suffer senescence at ages few of them
would reach in the wild. Their lifespans should not exceed maximum
lifespan in the wild. Many lab and zoo animals, however, live much
longer than in the wild [19, 21]).

Furthermore, when kept protected from extrinsic hazards, a steeper
rise in mortality with age is predicted for populations from high risk
environments than for populations from lower risk environments. How-
ever, guppies from high risk pools showed a slower pace of senescence
than guppies from lower risk pools when brought into the laboratory
[163], contrary to the prediction of mutation accumulation theory. Dif-
ferences in phenotypic development under high and low density condi-
tions is one explanation for this phenomenon. Abrams [4] discusses this
and several other explanations for the guppy puzzle. To explain long
lives in protected environments, alternatives to the theory of mutation
accumulation, e.g., alternatives based on optimization approaches, have
to be found.
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3.3.3 Empirical Evidence for Non-senescence

According to Hamilton senescence should be a ubiquitous characteris-
tic of life histories, and mortality should start rising when reproductive
maturity is reached. Three well-known gerontologists [43, 56, 188] em-
phasized, however, that “certain animals and plants do not manifest
increases of mortality rate or other signs of senescence” [56, p. 221].
In particular, Finch [56, 57], Finch and Austad [58] and Ottinger et
al. [144] have prepared the way for studies of non-senescence by fo-
cusing research on species with “ negligible senescence”, i.e., species
for which death rates rise very slowly, if at all, with age. Caswell [23,
p. 39] discusses increases in fertility as well as decreases in mortality
with size (and therefore with age) and provides numerous examples and
references.

The strongest evidence for non-senescence in animal species comes
from studies of corals. Babcook [10] shows in three coral species (Goni-
astrea aspera, G. favulus, and Platygyra sinensis) that mortality is in-
versely related to colony size and age. Furthermore, the total fecundity
of the three species increases steeply with size and age, “due to a com-
bination of increased polyp fecundity and increased surface area”[10].
Grigg [70] presents comparable results for two other corals, Muricea
californica and Muricea fruticosa.

Like the massive reef-building corals, some plants develop into large
clonal clusters [56, Table 4.2, p. 229]. The quaking aspen (Populus
tremuloides) grove studied by Kemperman and Barnes [93] covered
81,000 square meters and was estimated to be at least 10,000 years old.
It seems likely that the bigger such a clonal cluster is, the lower is its
chance of death.

Other species that are candidates for non-senescence include the
wild leek Allium tricocum [136], brown algae Ascophyllum nodosum
[1], the forest tree Garcinia lucida [71], the neotropical tree Cecropia
obtusifolia [6] and the cushion plant Limonium delicatulum [78].

Strong evidence for a period of parallel increase in age-specific sur-
vival and fertility in non-modular animals can be found for some species
of molluscs. Fertility often increases by ten-fold or so as individuals
grow following reproductive maturity, and mortality decreases sharply
(e.g., for the marine gastropods Umbonium costatum [139, 140] and
Littorina rudis [85] and the bivalve Yoldia notabilis [134, 135]). There
is also evidence of non-senescence for echinoderms such as sea urchins
[53]. Hydra species [123] are likely candidates as well.

Some vertebrates may possibly enjoy non-senescence. Finch [56]
summarizes suggestive data on rockfish, hagfish and various other
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species. For some reptiles, death rates decline somewhat after the age
of reproductive maturity is reached, e.g., for Sceloporus graciosus [195],
some populations of Sceloporus undulatus [194] and some populations
of Lacerta vivipara [80]1.

Kohler et al. [100] analyze data sets for various species living in zoos
and aquaria worldwide. They state that “there are several groups for
which the age-pattern of mortality is nearly level”. Comparing survival
probabilities from the first decade of life (age 1 to 10, i.e. excluding
juvenile death) with the second decade of life the evidence shows that
raptors and crocodiles enjoy better survival in the second decade of
their lives than in the first decade. Ratites show no signs of decrease in
survival probability from their first to their second decade of life.

Non-senescent life histories cannot be explained by mutation accu-
mulation.

3.4 Conclusion

The empirical evidence together with the theoretical arguments pre-
sented in this chapter indicate that mutation accumulation theory
does not provide the fundamental explanation for the evolution of age-
patterns of mortality. Together with my results from Chap. 2 they cast
doubt on the assertion that senescence is inevitable.

It seems likely that the variety of possible age-trajectories of mor-
tality is broad. Figure 3.2 summarizes various possibilities. During the
first phase of life, development, mortality declines. During the second
phase, mortality may increase, it may remain roughly constant, or it
may decline. Then late in life, when most adults are dead, mortality
may increase, level off or decline.

The age that marks the start and end of the different phases might
be influenced strongly by growth patterns. For some species, growth
ceases at reproductive maturity and marks the age when mortality
starts rising. As noted above, however, individuals from many species
continue to grow after the onset of reproduction and mortality may
continue to fall until the age when growth stops. Models are needed to
study which of these hypothetical age-patterns are theoretically possi-
ble. I will derive such models in the following two chapters.

1 I thank my colleague Martin Dölling for his substantial help in gathering the
references regarding evidence of non-senescent species.
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Fig. 3.2. Different hypothetical mortality trajectories

Note that the age-pattern of mortality reflects the average mor-
tality in the population. The frail tend to die first. Hence, as indi-
viduals die, average mortality successively approaches the individual
mortality trajectory of the most robust ones. The more heterogeneous
a population is, the stronger is this effect. Therefore the age-pattern
of mortality might exhibit a leveling and even a decline in mortal-
ity although the underlying individual age-pattern is still increasing
[32, 151, 204, 206, 207].

The evidence suggests that mortality and fertility over the bulk of
reproductive life are shaped by mechanisms other than mutation ac-
cumulation. Theories based on trade-offs might explain the existence
of non-senescent life-history strategies [147, 148, 150]. It is not clear
whether mutation accumulation plays a significant role in the evolution
of senescence. If it turns out that mutation accumulation is an impor-
tant mechanism for some species at older ages, then models of mutation
accumulation need to be combined with trade-off models of the evolu-
tion of senescence to clarify the dynamics of demographic schedules
[2, 200]. In the following two chapters, I develop trade-off models and
explore their implications for the evolution of the age-patterns of mor-
tality.
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Optimization Models
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Optimization Models Based on Size

4.1 Size Matters

Hamilton did not prove that senescence is inevitable. Furthermore, it
seems likely that the age-trajectory of mortality is largely shaped by
optimization: only at advanced ages, when the bulk of total lifetime
reproduction has been realized, might mutation accumulation play a
role. So the question arises: could it be optimal for a species not to
follow a senescent life-history strategy?

As Caswell argues, for many organisms “the age of an individual
tells little or nothing about its demographic properties” [23, p. 39].
Often what is important is size or stage of development. He concludes
that “ [s]ize-dependent demography is probably the rule rather than the
exception and is especially pronounced in species with a large range of
adult body size as a result of indeterminate adult growth.”

Trees, for example, continue growing over an extended period of
their life, gaining strength, becoming more robust and thereby reduc-
ing their susceptibility to death. (If trees at sites exposed to wind are
too tall, then their susceptibility to damage and death might increase:
this, however, is a special case.) A larger size (tall, thick stem, more
leaves, longer roots) lowers the risk of death and enables better access
to resources (light, water, nutrients). Larger trees produce more seeds
than smaller trees.

The same is true for some species of fish. For instance, in some
species the young adult fish, still small, has only a few progeny and is
the prey of bigger fish. Over time the fish grows large enough to become
a predator itself, increasing its level of resources and lowering its own
risk of death.
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Small alligators are prey to a variety of predators including rac-
coons, otters, wading birds, and fish. But most dangerous to small al-
ligators probably are predators of their own kind, the larger alligators.
Large alligators also die of cannibalism and fight with each other (see
http://myfwc.com/gators/facts.htm). An individual alligator’s size and
strength determines whether it receives or becomes an additional ration
of food.

In this chapter, I hypothesize that candidate species for non-senes-
cent life histories are species that continue to grow substantially after
the onset of reproduction and for which size is strongly associated with
continued survival and reproductive success. This appears to be the
case for the plant Plantago lanceolata after seasonal effects are removed
[167]. The study of Plantago lanceolata by Deborah Roach was the
particular motivation for me to develop a general life-history model
based on size rather than age to understand whether non-senescence is
theoretically possible.

Evidence for size-dependent mortality is reported for herbaceous
plants in general [44, 77, 173, 182], thistles in particular [162, 171], trees
[88], corals [86] and fish [129, 154]. Sauer and Slade [174] also document
the effect of body mass on reproduction and survival in vertebrates.

For some species mortality may not decrease as size increases: there
may be no relation, or mortality may increase with size. In addition, it is
important to note that, for some species, larger size may not cause lower
mortality. Larger size may have co-evolved with lower mortality, both
resulting from some other aspect of the species’ life history. For some
species, for instance species like Drosophila, which exhibits discrete
developmental stages rather than continuous growth, size may not be a
key determinant of mortality. So a size-based model can shed light on
the life history of only some species. But these species are “conceivable
organisms” and may show non-senescent life-history strategies.

Size is the central state variable in the models I will develop in this
chapter. Size determines mortality and fertility. Age enters the models
only insofar as it takes time to grow – age itself does not matter. Using
size as the state variable in these kinds of models is a first step to
understanding whether any life history could be non-senescent. Note
that the state variable size can be understood not only as physiological
size but more generally as “size and strength”. In Chap. 5, I develop a
new model that is based on “vitality” rather than size.
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4.2 A Size-Based Life-History Model

An optimal life history maximizes lifetime reproductive success. Ac-
cordingly, the energy available to an organism, which is always limited,
has to be distributed among the basic processes of life: reproduction,
maintenance and growth. How evolution solves this allocation problem
determines the optimal trajectory of growth and thereby the optimal
trajectories of the main demographic schedules, mortality and fertility.

All forms of life have to deal with damage. Damage occurs all the
time and is discarded or repaired continuously, sometimes fully, some-
times partially. Models that take into account the influence of damage
on mortality and fertility can do so on the occurrence and/or on the
disposal and repair side. Energy allocation problems imply that dis-
posal and repair of damage decreases when more energy is allocated to
reproduction and therefore less energy remains for processes of mainte-
nance and growth. Models based on the concept of energy allocation do
not necessarily account for where the damage comes from. Reproduc-
tion itself, for instance, can be a direct cause of damage. For simplicity,
the model I am going to develop in this chapter will focus on the en-
ergy allocation trade-off between reproduction, on the one hand, and
maintenance and growth on the other. That is, I treat growth and re-
pair as elements of the same general process and I do not explicitly
model damage resulting from reproductive activities. I assume that the
occurrence of damage increases proportionally with size.

Models based on the concept of optimal energy allocation over
the life cycle represent a fundamental approach in life history mod-
eling. Early applications of this concept were developed more than
three decades ago, for example by Cole [42], Gadgil and Bossert [62],
Schaffer [175], Taylor et al. [192], and Leon [111]. More recent exam-
ples of the application of the concept of optimal energy allocation
include Charlesworth [26], Perrin [152], Perrin and Sibly [153], Ko-
zlowski [102], Chichon [37], Teriokhin [193], Charnov et al. [35], Man-
gel and Stamps[122], Kaplan and Robson [91], Chu and Lee [36] and
Charlesworth [34].

Generally, such life-history models are driven by the trade-off be-
tween reproduction and growth. Depending on the particular research
focus, growth is sometimes further differentiated into growth of ac-
quisition structure, storage structure, defense structure, reproductive
structure and/or cognitive functioning. The central quantity of inter-
est is the fraction of energy allocated to reproduction, the reproductive
effort of an individual.
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Life history models based on the concept of reproductive effort have
been studied intensively (for a review see Charlesworth [27, Section
5.3.4.]). Common to these models is the assumption of a direct, in-
verse relation between survival and reproduction, which is mediated by
reproductive effort. One outcome of these models is that reproductive
effort should increase with age [62, 175]. However, Fragen [61] produced
some counter-examples and Charlesworth and Leon [31] derived condi-
tions that would lead to a decreasing reproductive effort with age, i.e.
to an increase in survival with age. These results illuminate the gen-
eral pattern of how reproductive effort should change with age. But,
as Charlesworth [27, p 214] put it: “The problem of solving for the
optimal life history with this model is a formidable one.”

My research aim is to study the variety of qualitative patterns of
mortality and fertility over age. In particular, I wish to understand
whether it can be optimal for mortality to be constant or to fall over
an extended period of life after the onset of reproduction. Interestingly,
optimal patterns of mortality and fertility were commonly found to
be flat in numerical studies by Charlesworth [26]. In these studies,
reproductive effort increased so slowly, that it appeared to be virtually
constant.

The examples given in the previous section suggest that, for some
species, mortality decreases with size and fertility increases with size.
For species with continued growth that follow this pattern, constant
or falling mortality after the onset of reproduction seems to be opti-
mal, at least for some period of the lifespan. Consequently, the models
developed in this chapter are designed to capture this simple pattern
based on the state variable size.

In contrast to previous reproductive effort models, the link between
survival and reproduction will be mediated by size. The important
implication of this assumption is that an increase in reproductive effort
does not necessarily lead to a decrease in survival, and a decrease in
reproductive effort does not necessarily lead to an increase in survival.
I will emphasize this point in Sect. 4.2.2.

Every organism has to cope with the ubiquitous processes of dete-
rioration. This means that some of the energy invested in “ growth” is
needed to repair damage. Only what is left after the requirements of
maintenance have been met can be used to increase current size. Size
changes according to the balance between repair and damage. Thus, size
in this framework can increase, decrease or remain constant and, conse-
quently, mortality can increase, decrease or remain constant. Whether
mortality increases or decreases is an outcome of the model and not an
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assumption. This is a crucial feature, which distinguishes this model
from previous models.

The importance of size is generally recognized [23, p.39]. A state-
based model that assumes an inverse relation between state and mor-
tality has been developed before by Perrin [152]. However, Perrin im-
plicitly assumes a non-senescent life history because mortality cannot
increase in his model. Perrin’s approach does not account for the oc-
currence of damage and its possible repair. A model that incorporates
damage and repair was developed by Kozlowski [102], Cichon [37] and
Cichon and Kozlowski [39]. In their framework mortality does not de-
pend on state but on accumulated damage and can, at best, remain
constant. Complete repair of current damage is realized only if all en-
ergy is invested in repair, i.e. at the cost of zero reproduction. Otherwise
mortality rises at a pace determined by reproductive effort. An increase
in mortality is inevitable.

An innovative feature of the approach I will be taking is that I
combine the inverse relation of mortality and size with the possible
accumulation of damage and its repair. My research builds on and
further develops Vaupel, Baudisch et al. [200]. Mangel and colleagues
[120, 121] have recently developed other models in which mortality is
the consequence of growth and metabolism and associated damage.

4.2.1 The General Optimization Problem

The general optimization problem can be formalized as follows. Let
ξ(a) denote the size (and strength) of an individual at age a. Let π(a)
denote the fraction of energy allocated to growth at that age. Assume
that the change in size over age depends on investment π(a) and size
ξ(a) but not on age a itself, i.e. that the trajectory of ξ(a) is determined
by the autonomous first-order differential equation

d ξ

d a
≡ ξ̇ = g(ξ(a), π(a)) . (4.1)

Note that the dot indicates a change over age. Initial size is given by
ξ(0). From that size onwards, the age-trajectory of π(a) determines the
age-trajectory of ξ(a).

The optimal trajectory of π(a) over the life course is assumed to
be the strategy that maximizes Darwinian fitness, measured as lifetime
reproductive success, a functional of the form

max R =

∫ ∞

0
f(ξ(a), π(a)) da , (4.2)
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where f(ξ(a), π(a)) depends on the age-trajectories of mortality and
fertility and hence on the age trajectories of ξ(a) and π(a). The age
horizon is potentially infinite, but non-zero mortality insures that every
individual has a finite lifespan.

The general optimization problem is described by the objective as
given in (4.2) and the autonomous first-order differential equation as
given in (4.1), which determines the change in size over age.

4.2.2 The Specific Optimization Problem

The change in size is determined by the fraction of energy invested
in growth, π(a). Energy is allocated between growth and maintenance
on the one hand, and reproduction on the other hand. The fraction of
energy allocated to reproduction, the reproductive effort, is captured
by 1 − π(a), since in this model maintenance and growth are assumed
to be paid out of the same budget. In accordance with the literature,
the change in size is assumed to be inversely related to reproductive
effort.

Larger size implies higher complexity, which is more costly to main-
tain. The rate of occurrence of new damage will be assumed to increase
proportionally with size [101, 210]. A simple way of modeling deterio-
ration is to assume a linear relation with size, i.e.

δ(ξ(a)) = δ0 + δ1 ξ(a) , (4.3)

where δ0 > 0 and δ1 > 0 are constant parameters.
Size is assumed to change proportionally to the level of current size

ξ(a). This implies the assumption that available resources are propor-
tional to size, an assumption also made by Charlesworth and Leon
[31], Gadgil and Bossert [62] and Leon [111]. Furthermore I assume
that the change in size is proportional to the difference between invest-
ment π(a) and deterioration δ(ξ(a)). Growth only occurs if investment
exceeds the current rate of deterioration. Therefore, the change in size
can be specified as

d

da
ξ(a) = k (π(a) − δ(ξ(a))) ξ(a) (4.4)

where k > 0 is a constant scaling parameter. Initial size can be nor-
malized by setting ξ(0) = 1. Substituting (4.3) into (4.4) yields the
following logistic differential equation

dξ(a)

da
= k (π(a) − δ0 − δ1 ξ(a)) ξ(a) . (4.5)
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This equation captures the change in size and specifies the general
function g(·) of (4.1).

Life starts off with growth. Then at some age some energy is invested
in reproduction. This age at onset of reproduction (reproductive ma-
turity) α is determined by the age when π(a) < 1 for the first time.
Figure 4.1 depicts the age-trajectory of size during development. The
curve is given by the solution to (4.5), namely

ξ(a) =

(
δ1

1 − δ0
+

(
1 −

δ1

1 − δ0

)
e−k (1− δ0 ) a

)−1

, (4.6)

taking into account that investment is constant at π(a) = 1 over
that period and ξ(0) = 1 . This logistic function has an upper limit
of (1 − δ0) / δ1, which reflects the size an organism would eventually
approach if it continues to spend all available resources on maintenance
and growth. In size-based approaches, growth functions that have an

Fig. 4.1. Size ξ(a) as a function of age a according to (4.5)

upper bound, such as the logistic function or the von Bertalanffy growth
function, are frequently used, since size cannot increase indefinitely.

To ensure that the initial investment of π0 = 1 actually leads to
growth an additional restriction on the parameters in (4.3) is necessary.
From (4.5) one gets

dξ(a)

da

∣∣∣∣
a=0

= k ( 1 − δ0 − δ1) > 0
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and hence
δ0 + δ1 < 1 . (4.7)

This inequality concurrently guarantees that δ(ξ) < 1.
The general function f(·) given in (4.2) can be specified by the

product of the probability of surviving to age a, l(a), and the amount of
reproduction at that age, m(a). The objective function is then specified
by

max R =

∫ ∞

0
l(a) m( ξ(a), π(a) ) da . (4.8)

The survival function l(a) is determined by the trajectory of mortality
up to age a via

l(a) = e−
∫ a

0
μ(ξ(t)) dt. (4.9)

The age-specific force of mortality, denoted by μ(a), is assumed to
be inversely proportional to ξ(a). As discussed in Sect. 4.1, I focus on
species for which growth enhances future survival. A simple way to
model mortality in this case is to let

μ(a) =
b

ξ(a)
+ c . (4.10)

The constant parameter b ≥ 0 captures the size-dependent, “intrinsic”
component of death and the constant parameter c > 0 captures the
size-independent, “extrinsic” component of death.

The model implies that, if no energy is allocated to growth, then
size deteriorates exponentially and therefore mortality increases ex-
ponentially. However, whether it is optimal to invest all available en-
ergy in reproduction is an outcome of the model. An exponential in-
crease in mortality is not a built-in property of the model. If mortal-
ity increases, it can do so at any pace, exponential being the extreme
case. In the exponential case, the mortality function is the same as
the Gompertz-Makeham function. Exponentially increasing mortality
(“Gompertz Law”) is frequently assumed in the literature, based on
various empirical observations. The general structure of the mortal-
ity function is the same as that used by Perrin [152] (except for an
exponent to size).

In accordance with the literature, I assume reproduction to be pro-
portional to available resources (which are proportional to ξ(a)) and to
the reproductive effort (in this model (1−π(a))). A simple way to spec-
ify reproduction is to assume a linear relation with reproductive effort;
this approach was taken by Charlesworth [26], Perrin [152], Kozlowski
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[102], Cichon [37] and Cichon and Kozlowski [39]. The maternity func-
tion, denoted by m(a), is thus given by

m(a) = ϕ (1 − π(a)) ξ(a) . (4.11)

Note that the constant, positive parameter ϕ can be adjusted to ensure
that the optimal strategy yields a net reproduction rate R = 1. This
implies that population density is assumed to affect lifetime reproduc-
tive success in a proportional manner. Note further that fertility and
mortality are written as functions of age for purposes of brevity only.
To be precise, m(a) = m(ξ(a), π(a)) and μ(a) = μ(ξ(a)).

The pleiotropic effects of size can be summarized as

d

dξ
μ(ξ) < 0,

∂

∂ξ
m(ξ, π) > 0,

d

dξ
δ(ξ) > 0 . (4.12)

A larger size implies a lower risk of death, a higher reproductive poten-
tial but also a higher level of deterioration, which increases the costs of
maintenance. Recall that the mediating effect of size between mortal-
ity, fertility and damage constitutes an important difference to previous
models of reproductive effort, as emphasized at the beginning of this
chapter. Equations (4.3), (4.4), (4.10) and (4.11) imply that an increase
in reproductive effort (1−π(a)) does not necessarily lead to a reduction
in survival. As long as the level of π(a) does not fall below the level
of damage δ(ξ(a)), size does not shrink and therefore mortality does
not increase. Conversely, a declining investment in reproduction does
not lead to improved survival as long as the level of investment π(a) is
below the level of damage δ(ξ(a)).

4.3 An Optimization Model that Leads to

Non-senescence

The optimal solution is a trajectory over age. Therefore, this is a dy-
namic rather than a static optimization problem. Two main approaches
can be distinguished: Bellman’s dynamic programming approach [12]
and Pontryagin’s Maximum Principle [157]. Comprehensive treatments
of dynamic programming methods applied to biological problems are
given in Mangel and Clark [118] and Clark and Mangel [41] as well as
Bulmer [16]. The Appendix to Mangel [119] shows how to connect dy-
namic state variable modeling with the ideas of classical demography
and life history models.
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4.3.1 The State Ratchet

Bellman’s general way of thinking implies a feedback loop strategy.
In any particular given state, make the best possible decision. This
decision will steer the state to some subsequent level. Again, given
this subsequent state, do the best you can do. An optimal trajectory
of decisions can be found by beginning at the last possible state and
working backwards. The most important precondition for this strategy
is that decisions only depend on the current state and potential future
gains and losses but not on the past.

In particular, at each size ξ(a) the amount of energy invested in
growth π(ξ(a)) at that size determines whether size increases, decreases
or is maintained. Depending on this decision, size changes over age ac-
cording to (4.2). The optimal trajectory of energy allocation to growth
determines the optimal trajectory of size over age, which in turn deter-
mines the optimal age-trajectories of mortality and fertility.

Following Bellman’s way of reasoning, the general nature of the
optimal strategy can be understood intuitively. Assume each size is
associated with a unique level of optimal investment and size changes
continuously over age. Then each ξ(a) is associated with a single π∗(a)
(the star indicating ‘optimal’) that determines whether size increases,
decreases or is maintained.

Assume at a particular size ξ(a) that the optimal investment results
in an increase in size to ξ(a+) > ξ(a) at age a+ > a . Assume further
that, at the subsequent bigger size, it would be optimal to shrink. Then
size would shrink to some lower value ξ(a++) < ξ(a+) at age a++ > a+.
However, size is a continuous variable. In order to grow from ξ(a) to
ξ(a+) it must have been optimal to grow at each intermediate size
between ξ(a) and ξ(a+). Shrinking again from ξ(a+) to ξ(a++)) would
imply that this optimality is violated at each level of size between
ξ(a+) and ξ(a++). Each intermediate size would be associated with
two optimal strategies instead of one, which is a contradiction.

This line of reasoning leads to an important result, which I will call
“the state ratchet”. If, for the optimization problem formulated above,
an optimal solution exists and each state is associated with exactly one
optimal strategy, then any continuous, optimal state trajectory must
be a monotonic function over age. Consequently, if the state variable
initially increases, it will never decrease and if the state variable initially
decreases it will never increase. Since maintenance implies that state
does not change, the optimal strategy, which is bound to state only, will
not change over age. Therefore, if, for any finite interval, it is optimal
to maintain the current state, it will be maintained forever.
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The state ratchet has important consequences for any optimal life
history in this framework. Since life begins with growth it can never
be optimal to shrink. Size can only increase and then be maintained at
some point. Since mortality is assumed to be inversely related to size,
mortality can never increase. Senescence is impossible. Intriguingly, this
simple approach challenges Hamilton’s postulate of inevitable senes-
cence. It is possible to overcome the state ratchet, as I will discuss in
a later section of this chapter, but only by making the model more
complicated. Let’s first consider the basic model.

4.3.2 The Maximum Principle

Pontryagin’s way of thinking involves planning the whole future at time
zero, in contrast to Bellman’s backward step-by-step approach. Opti-
mizing all future decisions at time zero requires knowledge about how
decisions, the “control variable(s)”, influence the change in the state
variable(s) over time. The change in state(s) over time is determined by
the so called “equation(s) of motion”, i.e. first order differential equa-
tions that capture the change in any state variable over age. For my
particular problem the control variable is the investment in growth,
π(a). One state variable is size, ξ(a). Equation (4.5) determines the
corresponding equation of motion, the change in size over age.

As in Bellman’s approach, there is an important precondition. The
optimal decision at any age a should only depend on the current state
and potential future gains and losses but not on previous ages. How-
ever, survival to age a, as given in (4.9), depends on the trajectory
of mortality between age zero and age a. Therefore, survival must be
treated as an additional state variable. Note that survival changes over
time according to

d

da
l(a) = −l(a)μ(a) (4.13)

with initial condition l(0) = 1. Equation (4.13) depicts the equation
of motion for the second state variable, survival.

Pontryagin’s Maximum Principle [157] associates a specific function
with the optimal control problem stated above, the “Hamiltonian”

H( ξ, l, π, λ1, λ2 ) = l(a)m(ξ, π)

+ λ1(a) [ k (π(a) − δ0 − δ1 ξ(a) ) ξ(a) ]

−λ2(a) l(a)μ(ξ) . (4.14)

The first term is the contribution of the objective function (given in
(4.8) at age a: This term captures the current gains from a decision
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π(a) at states ξ(a) and l(a). The remaining terms are the weighted sum
of the change in the state variables. The factors λ1(a) and λ2(a) are
costate variables. Costate variables capture the values of a hypothetical
additional unit of ξ(a) and l(a) respectively at age a, the “shadow price”
of size and survival.

Conditions for an Optimum

The Maximum Principle requires that an optimal solution necessarily
fulfills the following criteria:

• The Hamiltonian function is maximized with respect to the invest-
ment strategy. In general, if H(·) is differentiable, then

d

dπ
H(·) = 0 . (4.15)

In particular

Hπ(·) = l(a)mπ(ξ, π) + λ1(a) k ξ(a) = 0 , (4.16)

the subscript π indicating the partial derivative. Clearly, if the
Hamiltonian is linear in the control variable, then the maximum
is attained at the boundaries of the feasible set for the control. Note
that the last term dropped out. The shadow price of survival does
not influence the maximum of the Hamiltonian.

• Furthermore the “adjoint equations”

d

dξ
H(·) = −

d

da
λ1(a), and

d

dl
H(·) = −

d

da
λ2(a) (4.17)

must hold. The change in the shadow price of a state variable must
equal the negative change in the Hamiltonian with respect to that
state. More specifically, the adjoint equations associated with size
and survival, respectively, are given by

λ̇1 = −Hξ(·)

= − l mξ(ξ, π)

−λ1 k (π − δ0 − 2 δ1 ξ )

+ λ2 l μξ(ξ) (4.18)

and
λ̇2 = −Hl(·) = −m(ξ, π) + λ2 μ(ξ) . (4.19)
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• As age approaches infinity the values of an additional unit of size and
survival, as captured by λ1 and λ2, respectively, have to approach
zero. This is reflected in the transversality conditions, given by

lim
a→∞

λ1(a) = lim
a→∞

λ2(a) = 0 . (4.20)

Note that the state, control and costate variables are all functions of
age. However, for brevity they are written as ξ, π, λ1 and λ2 wherever
no confusion arises.

Solution

Taking into account that

k (π − δ0 − 2 δ1 ξ) =
ξ̇

ξ
− k δ1 ξ (4.21)

the solution to the differential Equation in (4.18) gives the shadow price
of an additional unit size at age a,

λ1(a) = −
1

ξ(a)

∫ ∞

a
e−k δ1

∫ t
a

ξ(τ) dτ ξ(t)

× l(t) (λ2(t)μξ(t) − mξ(t)) dt . (4.22)

Equation (4.19) can be solved as

λ2(a) =
1

l(a)

∫ ∞

a
l(t)m(t) dt . (4.23)

The shadow price of survival at age a is equivalent to the reproductive
value at that age. Inserting (4.23) into (4.18) leads to

λ1(a) = 1
ξ(a)

∫∞
a e−k δ1

∫ t
a

ξ(τ) dτ ξ(t) (4.24)

×
(

l(t)mξ(t) − μξ(t)
∫∞
t l(τ)m(τ) dτ

)
dt .

To find an explicit expression for size, (4.5) can be solved, resulting
in

ξ(a) =
exp
{∫ a

0 k (π(t) − δ0) dt
}

1
ξ(0) +

∫ a
0 k δ1 exp

{∫ t
0 k (π(τ) − δ0) dτ

}
dt

. (4.25)

It can be seen that the state variable size increases in a logistic manner.
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Result

With the state ratchet I showed that size must follow a monotonic path.
The same result can be proved applying optimal control theory. For
an infinite horizon autonomous optimal control problem with a single
state variable, the optimal state path must be monotone (Kamien and
Schwartz [90, p. 179] and Léonard and Van Long [114, p. 294]). Recall
from (4.11) that fertility is linear in π. Therefore, the Hamiltonian
function is linear in π, which results in solutions at the boundaries of
the feasible set of investment strategies π, i.e. either one or zero.

Initially, π0 = 1 and π remains at one until maturity. At maturity,
a boundary solution implies that π = 0. If this were so, size would
decrease, contradicting the state ratchet. Therefore, one expects what
is called a “singular solution” in control theory. A singular solution
requires that

Ḣπ = 0 = l̇ m∗
π + λ̇1 k ξ∗ (4.26)

has to be satisfied. It would be natural if π = δ(a) were the singular
solution required. Since size is constant in maintenance mode, the opti-
mal solution would stay on the singular path forever. It turns out that
π = δ(a) is the singular solution, as discussed below.

Since a logistic increase in size implies an upper limit to growth,
there must be an age a∗ at which size is finally maintained,

π = δ(ξ), ∀ a ≥ a∗ . (4.27)

Consequently ξ(a∗) = ξ∗, m(a∗) = m∗ and μ(a∗) = μ∗ will be constant.
If size is constant the reproductive value is simply given by the quotient
of m∗ and μ∗. Since the reproductive value of an individual at age a is
captured by the costate variable λ2(a), this costate will be constant as
well.

Assume π = δ(a) from age a∗ onwards. Taking into account that

l(a) = l(a∗)e−μ∗ (a−a∗), (4.28)

it follows from (4.24) for all a ≥ a∗ that

λ1(a) =
l(a)m∗

(k δ1 ξ∗ + μ∗)

(
m∗

ξ

m∗
−

μ∗
ξ

μ∗

)
. (4.29)
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This expression combined with condition (4.26) leads to an equation
that determines the size at which the optimal investment should switch
to maintenance mode,

m∗
π

m∗
=

k ξ∗

k δ1 ξ∗ + μ∗

(
μ∗

ξ

μ∗
−

m∗
ξ

m∗

)
. (4.30)

The relative change in reproduction with respect to the investment in
growth must equal the weighted difference between the relative changes
in mortality and reproduction with respect to size. Note that this con-
dition does not depend on age: (4.26) will be zero for all ages a > a∗

once maintenance mode is reached.
In this model fertility is given by (4.11). From (4.30) it follows that

a singular solution is determined by

μ(ξ∗a)

k
= (1 − δ0 − 2 δ1 ξ∗a) +

(1 − δ0 − δ1 ξ∗a) b

μ(ξ∗a) ξ∗a
. (4.31)

The individual will grow at full speed until its size satisfies (4.31)1.
Substituting μ(ξ) = b / ξ + c yields a cubic polynomial with three

roots. Generally, these roots can be real and complex. Viable strategies
correspond to real, nonnegative roots. The optimal size at maturity cor-
responds to the root that maximizes life-time reproduction. Strategies
can be determined numerically; I used Mathematica

TM to calculate
the solution.

4.3.3 An Alternative Derivation

The state ratchet implies that if there is a single state variable, then the
optimal investment strategy of an organism has to be growth, possibly
followed by maintenance, i.e. the feasible set of π(a) is

π(a) ∈ [ δ(a), 1 ] . (4.32)

A valuable hint follows from Pontryagin’s Maximum Principle. Since
the Hamiltonian is linear in π(a) the optimal investment maximizes the
Hamiltonian function at the boundaries of the feasible set (4.32). The
upper limit π(a) = 1 is associated with full growth and no reproduction.
The lower limit π(a) = δ(a) switches the organism to maintenance
mode with constant, nonzero fertility and mortality.

1 I thank Anatoli Michalski for his explanations regarding optimal control theory.
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In this case the integral in (4.8) can be solved explicitly. The switch-
ing age, when π(a) drops to δ(a), marks the onset of reproduction, age
α. It follows that

R = l(α)m(α)

∫ ∞

α
exp

{
−

∫ a

α
μ(t) dt

}
da = l(α)

m(α)

μ(α)
, (4.33)

where m(α) and μ(α) are the constant levels of fertility and mortality
in maintenance mode after α.

The age α at which reproduction starts is determined by the value
ξα that maximizes R in (4.33). Using the fact that from age zero to α
there is a one-to-one correspondence between age a and size ξ, one can
express (4.33) as a function of ξα. Inverting the logistic growth function
ξ = L(a) given in (4.6) leads to

a = L
−1(ξ) =

1

k ( 1 − δ0)
ln

(
1 − δ1

1− δ0
1
ξ − δ1

1− δ0

)
. (4.34)

Thus, by substituting α = L
−1(ξα) in (4.33) one can express R = R(ξα)

as a function of size at reproductive maturity ξα. The optimization
problem now can be solved by setting the derivative of R(ξα) with
respect to ξα equal to zero, i.e.,

lξα

m

μ
+ mξα

l

μ
− μξα

l m

μ2
= 0 . (4.35)

Because

lξα =
d

dξα
l(ξα) =

d

dξα
exp

{
−

∫ ξα

1
μ(ξ) [k ( 1 − δ0 − δ1 ξ) ξ]−1 dξ

}

= −l(ξα)μ(ξα) [k ( 1 − δ0 − δ1 ξα) ξα]−1 ,

optimal size at maturity is given by

μ(ξα)

k
= (1 − δ0 − 2 δ1 ξα ) +

( 1 − δ0 − δ1 ξα ) b

μ(ξα) ξα
. (4.36)

This equation is equivalent to (4.31). Using calculus and static op-
timization and applying Bellman’s way of thinking with a hint from
Pontryagin leads to the same result as using dynamic optimization ap-
plying Pontryagin’s Maximum Principle.
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4.3.4 The Simplest Model Leads to Sustenance

In the simplest case of size-independent mortality, i.e. b = 0, an explicit
solution for the optimal size at maturity can be derived:

ξα =
(1 − c

k − δ0 )

2 δ1
. (4.37)

Results for three illustrative parameter combinations are shown in
Fig. 4.2. Equation (4.37) implies
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dξα

dc
< 0 ,

dξα

dδ0
< 0 ,

dξα

dδ1
< 0 and

dξα

dk
> 0 . (4.38)

Furthermore, (4.37) and (4.34) imply

dα

dc
< 0 and

dα

dδ1
< 0 . (4.39)

Increasing extrinsic mortality reduces age and size at maturity. Changes
in α with respect to k and δ0 depend on the parameter combination
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Table 4.1. Optimal size ξα and age α at the start of reproduction for size-
dependent mortality (b > 0) according to (4.31)

ξα α ξmax l(α) b c k δ0 δ1

62.26 50.96 100 0.005 0.5 0.001 1 0.9 0.001

53.46 47.34 100 1.1 · 10−9 2 0.001 1 0.9 0.001

60.02 50.02 100 0.00003 1 0.001 1 0.9 0.001

25.68 17.66 100 0.0012 1 0.1 2 0.9 0.001

56.86 24.36 100 0.0045 1 0.01 2 0.9 0.001

64.06 25.87 100 0.0056 1 0.000001 2 0.9 0.001

127.66 29.31 200 0.006 1 0.001 1 0.8 0.001

129.18 14.74 200 0.08 1 0.001 2 0.8 0.001

in a rather complicated way. For very small maximum attainable sizes
and very slow speed of growth, α can increase with increasing k and
decrease with increasing δ0. Usually, however, an increase in k will lead
to a decline in α while an increase in δ0 will lead to a decrease in α.

If b > 0 in (4.10), then mortality declines as size increases. Hence
for positive but small b

ξα |b>0 > ξα |b=0 . (4.40)

If, however, b is large then the increased risk of death may make it
optimal to start reproducing at a smaller size. Some illustrative results
are shown in Table 4.1. If b gets too large then the resulting solutions
are nonviable strategies: the species cannot survive because mortality
is too high. Such nonviable strategies correspond to roots of (4.31) that
are complex or negative.

In sum, the simplest model in which a single state variable deter-
mines the optimal strategy and reproductive effort affects fertility in
a linear way can only lead to sustenance, i.e. a period of development
followed by maintenance. Senescence is impossible and all there is to
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be optimized is the age at maturity. From this age onwards the indi-
vidual maintains its state forever. Complications have to be added to
the simple model to get optimal strategies that are more flexible than
this basic strategy. Note that flat mortality and fertility profiles were
found to be very common in numerical studies by Charlesworth [26].

4.3.5 Introducing Nonlinearity Can Lead to Enhancement

Enhancement2 – a sustenance strategy that includes a period of par-
allel growth and reproduction after the initial period of development
and before the terminal period of maintenance – is precluded by the
linearity in π(a) of Pontryagin’s Hamiltonian. To allow enhancement
a model specification has to be found which results in a Hamiltonian
that is nonlinear in π(a).

To solve such an optimization problem the Bellman principle of dy-
namic programming can be used. Because the size ratchet precludes an
organism from returning to previous states, the optimal trajectory of
the allocation strategy can be found by a backward algorithm starting
at the maximum attainable size at which maintenance is the only pos-
sible strategy. I developed such an algorithm, which produced results
that were consistent with the analytic solution in the case of fertil-
ity being linear in π(a). This algorithm can be readily applied to the
following nonlinear fertility function:

m(a) = ϕ π(a) (1 − π(a)) ξ(a) = ϕ (π(a) − π2(a)) ξ(a) . (4.41)

The second term in the product, π(a), can be interpreted as the ef-
ficiency of converting size ξ(a) into reproduction m(a). As π(a) ap-
proaches zero, i.e. as resources are largely directed to fertility rather
than growth and maintenance, this efficiency declines.

Figure 4.3 shows an illustrative result. For the parameters used in
this model, reproduction starts when the organism grows to about 25%
of its potential maximum size. Then, until maintenance mode is even-
tually reached at age 250, there is an extended period of enhancement.

This still simple model leads to optimal strategies of development
followed by a period of parallel growth and reproduction followed by

2 Maren Rebke and James W. Vaupel suggested this term to describe a period of
life with increasing fertility and declining mortality. This enhancement is due to
some kind of growth, but perhaps in strength or capability and not in size. I also
use it to describe a life history strategy that starts with development, switches to
parallel growth and reproduction and then ends with maintenance.
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Fig. 4.3. Enhancement for model variant (4.41) (Parameter values were k =
0.1, δ0 = 0.5, δ1 = 0.0005, b = 0.1, c = 0.001, ϕ = 0.02. The force of mortality
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maintenance. In addition to the age at maturity, the age at maintenance
as well as the path of investment between maturity and maintenance
need to be optimized. However, senescence is still not an option. Any
decline in size (i.e. an increase in mortality) is precluded by the state
ratchet. To arrive ultimately at a framework where senescence is a
possible optimal outcome the basic model has to be complicated even
further.

4.4 An Optimization Model that Leads to Senescence

The state ratchet implies that any single-state life-history model along
the general lines described above will always yield growth, declining
mortality and increasing fertility followed by maintenance mode. Even
if an exogenous event reduces ξ to some lower level ξ−, then the in-
dividual would simply resume growth with the π-strategy previously
followed at ξ−.

In this kind of model, the single variable size ξ determines the capa-
bility of an individual to gather resources, to produce progeny and to
avoid death. This spectrum might be too broad to be captured by size
alone. Size can be measured by weight, length, number of cells, number
of modular units or some similar index. While body size is determined
by the number of cells and may remain constant, the functioning of cells
may decline due to insufficient investment in maintenance because each
cell is subject to continuous wear and tear. Therefore, it seems reason-
able to distinguish between quantity and quality of cells. Functioning
can be captured by a second state variable denoted by the Greek let-
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ter υ, which can take values between one and zero. The “vitality” of
an individual can then be modeled as the product of ξ times υ, size
weighted by functioning. Adding a second state variable to the model
is a way to escape the state ratchet.

The model can be reformulated as follows. Fertility is given by

m(a) = ϕ (π(a) − π2(a)) ξ(a)υ(a) , (4.42)

and mortality is given by

μ(a) =
b

ξ(a)υ(a)
+ c . (4.43)

Note that both fertility and mortality now depend on the product of
size and functioning, ξ(a)υ(a), which captures vitality. The particular
nonlinearity in fertility was retained.

This model can lead to determinate growth. Let a∗ be the age at
which growth is completed. Then dξ/da = 0 for all a > a∗, where
ξ(a∗) = ξ∗ denotes the size attained at the end of the determinate
growth period. For a < a∗, functioning does not change, i.e. υ(a) = 1.
If investment falls below maintenance level, i.e. π(a∗) < δ0 + δ1 ξ(a∗)
at a∗, functioning starts to deteriorate exponentially at the rate ύ =
κ (π(a)− δ0 −δ1 ξ∗) with initial condition υ(a∗) = 1. If π(a∗) is chosen
to equal the deterioration at that age, the individual maintains its cur-
rent functioning: this corresponds to the case of determinate growers
with sufficient repair or replacement of tissues to escape senescence.
The age a∗ is not necessarily identical to age at reproductive matu-
rity α, although for many determinate growers the two approximately
coincide. The parameter combinations I used in the algorithm led to
strategies for which a∗ = α.

Growth in ξ is positive until determinate size is attained and zero
afterwards:

dξ(a)
da

ξ(a)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k (π(a) − δ0 − δ1 ξ(a)) if π(a) > δ0 + δ1 ξ(a)

0 otherwise,

(4.44)

where ξ(0) = 1. Functioning is constant at one until determinate size
is reached and then declines:
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dυ(a)
da

υ(a)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a < a∗

κ (π(a) − δ0 − δ1 ξ∗) if a ≥ a∗

(4.45)

where υ(0) = 1. Note that π(a) − δ0 − δ1 ξ∗ < 1. The parameters k
and κ determine the speed of increase in size and the speed of decline
in functioning, respectively.

Figure 4.4 exemplifies the optimal trajectories of π(a), ξ(a) · υ(a),
μ(a) and m(a) for determinate growth for this model. The results were
obtained numerically. The maximum attainable size is ξ = 25; this size
is almost reached at age of reproductive maturity α.

Fig. 4.4. ξ(a)·υ(a), force of mortality μ and fertility m resulting from optimal
strategy π(a) as a function of age a, for model with parameters k = 3, δ0 = 0.9,
δ1 = 0.004, κ = 0.05, b = 0.05, c = 0.002, ϕ = 0.02

In this model, the state variable that effectively determines the strat-
egy switches from size to functioning at age a∗. Before age a∗ size is the
only effective state variable, since functioning is constant. After age a∗

functioning is the only effective state variable, since size is constant.
Therefore, the state ratchet applies and functioning cannot increase
again once it has fallen below one. The switch between size and func-
tioning is assumed to occur only once. Growth cannot be resumed.

Another possibility for overcoming the state ratchet, but keeping
a model that is essentially based on a single state, is to introduce a
switch variable, which is a binary indicator that determines whether
the organism is in up or down mode. The switch itself does not affect
survival or reproduction. To jump the maintenance barrier, the switch
needs to change from up into down mode. In this case the optimality
of the strategy is not violated, as the smaller state is now associated
with a different value of the switch. Depending on whether the switch is
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triggered once or several times, internally or externally, different state
trajectories can emerge. Any repeated trajectories of increase and de-
crease have to be identical. This line of reasoning will be taken further
in the next chapter.

4.5 Discussion

The first, simplest, model developed above led to sustenance as the only
possible life-history strategy. The function describing reproduction had
to be made nonlinear to get divergence from this prototype life history.
The slightly more complex model led to a variety of possible life-history
strategies between sustenance and enhancement. But senescence could
still never be optimal.

To arrive at senescent strategies the state of the individual had
to become more complicated, now being, effectively, a product of two
variables, size and functioning. The product of size and functioning can
be interpreted as reflecting the vitality of the individual. Vitality and
not size determines mortality and fertility. Consequently it is possible
that individuals might maintain about the same body weight, length
or cell number over an extended period of life but suffer a decline in
vitality due to wear and tear and lack of repair.

Although the eventuality was not considered here, size could in-
crease over an extended period of life with this growth counterbalancing
forces of deterioration and functional decline. In such species the abil-
ity to escape mortality, as captured by ξ times υ, may remain roughly
constant—resulting in non-senescence.

Note the distinction between senescence, on the one hand, and de-
terioration and functional decline, on the other. The term senescence
is used only with regard to entire organisms, not parts of organisms. In
this model deterioration is captured by δ(a) and decline in functioning
by a decrease in υ(a). A tendency for existing body parts to deterio-
rate and to require repair or replacement to maintain functioning may
possibly be a “fundamental, universal, and intrinsic” property of living
organisms [9]; senescence, as defined here, is not.

The theoretical results of this chapter and the empirical evidence
presented in Sect. 3.3.3, suggest the following hypotheses:

• Senescence characterizes individuals in species that attain a size
at reproductive maturity that is close to maximum size. Such
determinate- growth species include mammals, birds, insects and
some other species including the nematode worm C. elegans. The
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main model species studied by gerontologists are mammals (includ-
ing humans, rats and mice), insects (especially Drosophila but also
Medflies and some other insect species), C. elegans, and yeast. All
of these species fall into this determinate- growth category. Many
determinate- growth species also have fixed oocyte stocks or are
otherwise limited with regard to reproductive capacity. Species that
experience declines in fertility with age or that have limited fertility
seem likely to suffer senescence.

• Non-senescence characterizes individuals in species that attain a size
at reproductive maturity that is less than maximum size and that
gain reproductive capacity as they grow. Such species with inde-
terminate growth include most trees, many other perennial plants,
many modular animals such as corals and perhaps sponges, some
kinds of algae, many fish, reptiles and amphibians, and probably
various nonmodular invertebrates such as some mollusks and some
echinoderms.

Species falling into the second category are not typically model or-
ganisms in gerontological research. This might be one reason why the
universality of senescence was accepted as gerontological dogma.

Many biologists would agree that, for many species, stage is what
determines mortality and fertility rather than age. If age itself matters
at all, this line of thinking leads to the conjecture that biological age
may be better captured by the “average age” of an individual — i.e., by
some appropriate measure of the average age of the organs, body parts
or cells of an individual — than by the chronological age of the indi-
vidual. In indeterminate- growth species, continuing increases in size
keep average age below chronological age. Furthermore, organisms that
can repair, replace or rejuvenate body parts may show, over chronolog-
ical time, slow increases or even decreases in average age. For instance,
trees that replace their leaves annually, that develop new roots and new
branches to replace damaged or lost ones, and that continue to grow
may be of an average individual age that remains roughly constant and
may even decline with chronological age. For some species of plants and
animals, there can be a complete turnover of body parts over a time in-
terval: for these species, average individual age can be much lower than
chronological age and can decline over time if the individual grows and
its component parts continue to renew themselves with time.

A remarkable example is Hydra [123]. Most species as small as hy-
dra have a short life expectancy. Hamilton’s reasoning would imply
that hydra should senescence quickly after having lived past its typical
lifespan in the wild. Contrary to this prediction, mortality is constant
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and has been effectively zero for hydras kept in the laboratory of Daniel
Martinez for four years. Because there is rapid turnover of a hydra’s
cells, this example directs attention to considering not only size, i.e.
quantity of cells, but also quality of cells. The first two models devel-
oped in this chapter consider size only, while the third model is a first
attempt to incorporate not only quantity but also quality of cells. The
model I develop in the following chapter accounts for both quantity
and quality of cells.

This chapter has shown that non-senescence is a life-history strat-
egy that is theoretically possible. Senescence can be avoided by “con-
ceivable” organisms, namely by species with size-dependent vital rates.
This finding together with the empirical evidence presented in Sect. 3.3
leads me to the hypothesis that non-senescence may indeed be a life
history followed by some and maybe many plant and animal species. In
the following chapter I develop a more general model to further study
the evolution of senescence vs. non-senescence.

4.6 Next Steps

A critical examination of the model developed above indicates several
directions to explore.

• The nonlinearity in fertility was introduced by means of efficiency of
reproduction. Is there a more elegant way to incorporate efficiency?

• Reproduction and growth relate directly to size. This implicitly as-
sumes that available resources are proportional to size. Is there a
more realistic way to model resources?

• The vitality of an organism was modeled as a product of the two
states size and functioning, in order to develop a model that can
lead to non-senescent as well as senescent life-history strategies. The
resulting model specifications seem rather complicated. Furthermore
this model is not able to capture a simultaneous increase in size
with a decrease in functioning. Size and deterioration were assumed
to remain constant once functioning starts to decline. An idea for
getting around this complication was suggested in Sect. 4.4.

The following chapter will take these points into account.
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An Optimization Model Based on Vitality

The models developed in Chap. 4 show that non-senescence can be
optimal. Size constitutes the central state variable in this framework.
Mortality falls with increasing size and reproductive potential rises.
The case of determinate growth, however, poses a challenge to this
framework. Determinate growers, such as humans, often reach their fi-
nal size at about the age of maturity. While size remains constant after
the onset of reproduction, mortality steadily rises. This is incompati-
ble with the strict size-dependence of mortality. A new model can be
developed to address the deficiencies of the size-based model. To cap-
ture changing mortality at a constant size, the quality of size will be
considered. The approach is rationalized in the following way. Even if
size remains unchanged, all cells progressively accumulate damage over
time and deteriorate. Vitality, defined as an individual’s size adjusted
for the functioning of body cells, can decline and therefore mortality
can increase despite a constant body size. This notion was introduced
in Sect. 4.4, where vitality was defined as the product of two functions,
size and functioning. Here, vitality captures the accumulated function-
ing of all body cells, i.e. if a cell has been damaged and only works at
80 % of the capacity of an undamaged cell, this cell will account for 0.8
units of total vitality.

Facing ubiquitous decay, life is sustained by processes of regener-
ation and rejuvenation. The continuous creation of new, undamaged
cells counterbalances deterioration. This balance determines whether
or not vitality declines. The level of rejuvenation and repair depends
on the trade-offs between reproduction on the one hand and growth and
maintenance on the other. The optimal schedule of resource allocation
determines the optimal trajectory of vitality. Increasing vitality raises
reproductive potential and lowers mortality. Reproduction results in
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offspring but entails slower growth or even decline in vitality. The tra-
jectory of vitality over age determines the age-trajectories of fertility,
mortality and growth. The following evolutionary-demographic model
sheds light on the fundamental questions of life-history theory based
on the single state variable, vitality.

Anderson [8] developed a model based on the variable vitality. An-
derson defines vitality as a randomly varying component of mortality
which leads to death if vitality ever reaches zero. The use of the state
variable vitality, as defined here, constitutes a new approach to life
history modeling.

5.1 The Vitality Model

Survival is a function of mortality. In accordance with the size-based
models it seems natural to model mortality as an inverse function of
vitality, denoted by ψ. A simple function for the force of mortality, μ,
is

μ(ψ) =
b

ψ
+ c , (5.1)

where b and c are constant parameters. The intrinsic parameter b cap-
tures all causes of death an individual can escape from by increasing its
vitality, while the extrinsic parameter c captures the always prevalent,
non-zero risk of death. Note that “extrinsic” and “intrinsic” refer to
vitality-dependent vs. vitality-independent mortality.

Reproduction and growth depend on the level of available energy. In
the size-based models, energy was simply proportional to size. However,
energy production is not equivalent to size but has been found to scale
allometrically with it [107]. A sound theoretical basis for a particular
relation between size and net energy available was given by West et al.
[210], their Equation (3). This formula captures the difference between
energy created by cell metabolism and energy required for it, based on
an allometric relation between size and energy production.

The model developed in this chapter uses Equation (3) from West
et al. [210] to determine the available resources of an individual at
its current level of vitality. The formula of West and colleagues [210] is
based on the variable size. The link between vitality and size is assumed
to be tight enough to justify the substitution of vitality for size in
this equation for this specific model. Net energy production, denoted
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by ε(ψ), depends on the difference between build-up and break-down
processes at current vitality,

ε(ψ) = k ψ0.75 − κψ , (5.2)

where k and κ are constant parameters. Anabolic, build-up processes
are directly linked to metabolic output, which is assumed to be propor-
tional to vitality to the power 0.75. Catabolic, break-down processes
are assumed to be proportional to vitality to the power one.

The exact value 0.75 for anabolic processes was thought to be a
so called life-history invariant [33]. The method of calculating these
life-history invariants has recently been called into question [49, 137].
The particular value of 0.75 might therefore not be invariant across
species. The qualitative results of my model, however, do not depend
on the particular value 0.75 but only require the existence of such an
allometric relation.

Energy production is maximal at vitality ψε

ψε =

(
3

4

k

κ

)4

. (5.3)

As in the size-based model, growth and maintenance are paid out
of the same budget. Part of the energy available must be used to offset
the declining functioning of cells. The change in vitality is given by
the difference between the fraction of resources allocated to growth
(newly built cells) and the unavoidable deterioration of functioning of
current cells at a constant rate δ. Damage is proportional to vitality
and integrates naturally into the structure of West et al.’s equation.
Consequently, vitality ψ changes over time according to

ψ̇ = π(ψ)ηg ε(ψ) − δ ψ , (5.4)

where π(ψ) denotes the fraction of energy allocated to growth, as in
the models in Chap. 4. In contrast to those models, π(ψ) can now have
a nonlinear effect on the change in state depending on the value of the
constant parameter ηg (g for growth). In the extreme case of no energy
allocation to growth and maintenance, vitality deteriorates exponen-
tially and, as in the size-based model, mortality rises exponentially.
The reasoning behind the incorporation of parameter ηg will be given
below.

The level of initial vitality is ψ(0) = 1 and initial time zero corre-
sponds to time at birth1. Vitality is treated as a dimensionless variable,

1 Note that the model in its current form does not account for stage-specific life-
histories.
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assuming that vitality is normalized by dividing through with a rea-
sonable base unit. If the state of an organism at birth corresponds to
some ψreal(0), this implies that vitality ψ(a) in this model is given by2

ψ(a) = ψreal(a)/ψreal(0) (5.5)

and therefore

ψ(0) =
ψreal(0)

ψreal(0)
= 1 . (5.6)

The level of π(ψ) that corresponds to maintenance of current vitality
can be derived from (5.4). Denoting the level of π(ψ) at ψ̇ = 0 by π0

and inserting (5.2) yields

π0 =

(
δ

k ψ−0.25 − κ

) 1
ηg

. (5.7)

Vitality cannot increase indefinitely. An upper limit to ψ, denoted
by Ψ , is reached at maximum investment π(ψ) = 1 and ψ̇ = 0,

Ψ ≡

(
k

κ + δ

)4

. (5.8)

Available energy must be nonnegative. This implies that

ψ ≤

(
k

κ

)4

(5.9)

must hold. This is always true since (5.9) implies that ψ cannot exceed
maximum attainable vitality Ψ , as given by (5.8).

In the initial size-based model (Sect. 4.3) reproductive effort and
reproductive output are related linearly. As explained in Sect. 4.3.2,
it turns out that this assumption restricts optimal solutions to energy
allocation exclusively to either growth or reproduction. To develop a
model that permits a broad scope of possible investment strategies, a
nonlinear influence of investment needs to be incorporated that still
includes the possibility of exclusive allocation. This is the technical
argument that motivates the introduction of parameter ηg in (5.4). The
biological motivation for introducing nonlinear effects is the following.

2 If functioning at birth is assumed to be perfect, then ψreal(0) is equal to the
number of cells (corresponding to the minimum size) at birth. In order to establish
the real vitality scale ψreal from the algorithm, vitality has to be multiplied by
ψreal(0).
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Growing a human arm requires considerable effort and is so difficult
that, if the arm is lost, no new arm can regrow. In contrast, growing a
branch of a tree can be done readily to increase size or replace broken
branches. The growth apparatus in humans and trees is inherently dif-
ferent. In the former case, it might be very costly and even impossible
to keep or rebuild the machinery that would allow the regrowth of a
lost arm. In the latter case, maintenance is cheap because existing ma-
chinery can be used to maintain the organism without much additional
cost.

Parameter ηg captures the nature of the growth and maintenance
apparatus of a species. When ηg exceeds one, the investment function
πηg in (5.4) is convex. The marginal benefits in outcome become larger
as π approaches one. Note that the convexity favors exclusive invest-
ment strategies. When ηg is below one, the investment function πηg is
concave. The marginal benefits in output become smaller as investment
approaches one. Note that concavity favors intermediate investment
strategies. The parameter ηg in (5.4) captures the returns to scale in
growth and maintenance investment. The parameter can also be inter-
preted as the efficiency of the growth system. Values of ηg below one
correspond to efficient, i.e. cheap, growth, and values of ηg above one
correspond to inefficient, i.e. costly, growth.

Figure 5.1 illustrates the influence of parameter ηg via investment
π on the change in vitality. Note that the change in vitality is always
larger for a given level of investment π when ηg is below one as opposed
to being above one. Likewise, any particular level of change in vitality
requires a smaller investment, given that ηg is below one rather than
above one. Note further that values of ηg below one imply a concave
shape, while values above one correspond to a convex shape of the
change in vitality with increasing investment.

In the modified size-based model (Sect. 4.4) an arbitrary attempt
was made to introduce nonlinearity with respect to reproductive effort.
In the vitality model the maternity function is specified as

m(ψ) = ϕ ( 1 − π(ψ) )ηr ε(ψ) . (5.10)

In accordance with the size-based models, fertility is proportional to
available energy, in this model ε(ψ), and reproductive effort, 1− π(ψ).
In contrast to the size-based model, nonlinearity in reproductive effort
is incorporated by parameter ηr (r for reproduction) which captures the
efficiency of reproduction, analogous to ηg. As in the size-based models,
the constant ϕ is a scaling parameter set to the value that ensures that
optimal lifetime reproduction is equal to one and, hence, rmax = 0.
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Fig. 5.1. The influence of ηg via investment π on the change in vitality
as specified by (5.4) (The dashed line exemplifies values of ηg below one, in
particular ηg = 0.5. The solid line exemplifies values of ηg above one, in
particular ηg = 2. In both cases ψ = 20, k = 3, κ = 0.8 and δ = 0.1.)

The manner in which nonlinearities enter the model is biologically
and technically motivated. The approach makes use of the well-known
concept used in economics of the Cobb Douglas production function.
Each input factor to the production function is raised to a power reflect-
ing how efficient each factor, in economics labor and capital, is in pro-
ducing output. Two new parameters (that influence the optimal trajec-
tory of investment) enter the model as exponents of investments. Power
functions have previously been used to introduce nonlinearities into life-
history models [26, 37, 39, 62, 175]; see Charlesworth [27, Sect. 5.3.4.]
for review). In particular, the importance of the shape of the investment
function for the optimal life history strategy has been recognized. In
their reproductive effort models, Gadgil and Bossert [62] and Schaffer
[175] found that concave investment functions favor iteroparous strate-
gies (repeated breeding, i.e. intermediate reproductive effort) while con-
vex investment functions favor semelparous strategies (a single breeding
event, in which reproduction is fatal, i.e. exclusive investment).

George E. P. Box said: “All models are wrong, but some are use-
ful.” [13] Models are wrong because they simplify the complexity of
life. But without this simplification, patterns can hardly be observed
and understood. A useful model captures the most important aspects
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of reality, reveals general patterns and provides a source for hypothe-
ses that could explain basic processes of life. Such a model, although
necessarily wrong, enhances our understanding of nature.

Adding efficiency to the size-based model increases complexity but it
also considerably broadens the model’s potential for predicting various
life-history strategies. The non-linearities capture cases in nature when
parallel investment in growth and reproduction is optimal. Therefore,
these extensions to the model can be justified as a useful complication
to a still simple model.

5.1.1 The Parameters

k, κ and δ

Parameter k captures the speed of growth of vitality (see (5.2) and
(5.4)). Faster growth implies a rapid fall in mortality (5.1) and re-
duces the time of development. Furthermore, higher values of k de-
crease maintenance costs (5.7) and increase maximum vitality (5.8).
Parameter κ is inversely related to maximum vitality. Elevating κ slows
growth, increases maintenance costs (5.7) and decreases maximum vi-
tality (5.8). Parameter δ determines the rate of decline in vitality (5.4).
Higher δ increases maintenance costs (5.7) and decreases maximum vi-
tality (5.8).

If all available energy is allocated to reproduction, then δ determines
the constant rate of increase in mortality (5.1). A decline in vitality im-
plies not only a reduction in survival but also in reproductive potential.
Therefore, larger values of δ will tend to increase the investment of re-
sources in growth in order to slow down the deterioration process.

Parameters k and κ determine the shape of the energy trajectory
over vitality (5.2). If κ < 3δ, then energy is an increasing function of
vitality because the maximum attainable vitality is smaller than the
level of vitality that maximizes energy, Ψ < ψε. Otherwise, if κ > 3δ,
then the trajectory of energy is hump-shaped with respect to vitality.
The influence of the relation between κ and δ on the energy trajectory
over vitality is visualized in Fig. 5.2. Note that an increase in vitality
beyond the threshold given by (5.3), which corresponds to the peak of
energy, can only be optimal if the corresponding reduction in mortality
offsets the loss in available resources, i.e. in growth and reproductive
potential.
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Fig. 5.2. Comparison of trajectories of energy over vitality for two parameter
combinations that lead to a maximum attainable vitality of Ψ = 123 but imply
different shapes (left: k = 3, κ = 0.6, δ = 0.3; right: k = 3, κ = 0.8, δ = 0.1)

The parameters k, κ, and δ set the speed of growth and decay and
can therefore be used to determine the time and size scale of the strat-
egy. Getting a handle on measurable quantities like time and size in
this model is one future project that naturally follows from my work
(see Chap. 6).

b and c

Parameters b and c determine the overall level of mortality (5.1). Pa-
rameter b captures the state-dependent, intrinsic component of mor-
tality, i.e. b determines how important it is to attain and maintain a
high level of vitality. Reasonable magnitudes of parameter b are given
by the fact that b/ψ(0) determines infant mortality. Furthermore, the
minimum level of state-dependent mortality depends on parameter b
and on maximum vitality Ψ and is given by b/Ψ . Parameter c captures
the state-independent, extrinsic mortality component. The overall level
of infant mortality is given by b/ψ(0) + c and the minimum mortality
that can be attained is given by b/Ψ + c.

The influence of extrinsic and intrinsic mortality in this model is
investigated below (see Sect. 5.5.3).

ηr and ηg

Parameter ηr captures the intrinsic costs of reproduction (5.10). It de-
termines the propensity to share resources between reproduction and
growth. Clearly, if an organism follows an exclusive strategy, i.e. either
reproduction or growth and repair, then π equals one or zero and an
exponent will have no influence. However, if energy is shared between
processes, then larger values of ηr reduce the reproductive output that
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could have been achieved with the same level of investment at lower
values of ηr. Values below one favor parallel investment in growth and
reproduction.

Parameter ηg captures the intrinsic costs of growth and determines
the maintenance costs of a certain level of vitality (5.7). A large value
of ηg implies higher maintenance costs at each level of vitality. There-
fore, low values of ηg favor non-senescence strategies. During periods
of parallel growth and reproduction, higher ηg implies a reduced speed
of growth.

Both parameters ηr and ηg capture the efficiency of energy use and
determine how advantageous it is to specialize in growth and reproduc-
tion, i.e. how costly it is to run a growth and reproduction system in
parallel. The costs of reproduction and maintenance are expected to
crucially determine the optimal energy allocation between reproduc-
tion and growth. In this chapter I will investigate whether or not this
expectation is fulfilled.

5.2 The Vitality Model as a Control Problem

The model developed in the previous section is an autonomous con-
trol problem with an infinite time horizon. In the following sections
the problem is formulated and subsequently a solution is approached
including a discussion of the range of possible optimal solutions.

5.2.1 Problem Formulation

The objective function to be maximized is given by

max
π

∫ ∞

0
e−φ (1 − π)ηr ε(ψ) da (5.11)

where
ε(ψ) = k ψ0.75 − κψ (5.12)

is associated with the level of energy available, as defined earlier. The
cumulative hazard of death, φ, is defined as the logarithm of survival
l(a) at age a

φ(a) = − ln (l(a)) . (5.13)

The only control variable in this problem is the proportion of in-
vestment π(a) ε [0, 1] towards growth and survival versus reproduction.
The state variables of this problem are vitality ψ(a) εR+ and the cu-
mulative hazard of death φ(a) εR+.
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The change in vitality with age is given by

ψ̇ = f(ψ, π) ≡ πηg ε(ψ) − δ ψ , (5.14)

and the change in the cumulative hazard of death is given by

φ̇ = μ(ψ) , (5.15)

obeying the initial conditions3

ψ(0) = 1 (5.16)

and
φ(0) = 0 . (5.17)

The Hamiltonian function4 associated with this problem is given by

H = e−φ (1 − π)ηr ε(ψ) + λψ ψ̇ + λφ φ̇ , (5.18)

i.e.

H = e−φ (1 − π)ηr ε(ψ) + λψ (πηg ε(ψ) − δ ψ) + λφ μ(ψ) , (5.19)

with the transversality conditions for the two co-state variables5

λψ(∞) = λφ(∞) = 0 . (5.20)

Note that the Hamiltonian function, denoted simply as H, is a function
of the control, state and costate variables but does not explicitly depend
on time t, i.e. H = H(π(t), ψ(t), φ(t), λψ (t), λφ(t)) .

3 Note that the model does not account for optimization of size at birth. This is an
interesting topic that could be explored with an extended version of this model.
Including variable size at birth which can be reasonably interpreted as vitality
at birth implies several issues that will be discussed in a future joint paper by
Kenneth Wachter and me.

4 see Sec. 4.3.2
5 Note that the subscripts ‘ψ’ and ‘φ’ to λ should not be confused with denoting

partial derivatives.
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5.2.2 Solution

The Maximum Principle requires that an optimal control path has to
maximize the Hamiltonian function H. If H is differentiable w.r.t. π
the optimal π∗ (star indicates “optimal”) can be found by

dH

dπ
= −ηr e−φ (1 − π)ηr−1 ε(ψ) + ηg λψ πηg−1 ε(ψ) = 0 . (5.21)

Rearranging this expression yields

(1 − π)ηr−1

πηg−1
=

ηg

ηr
eφ λψ . (5.22)

A maximum further requires the second derivative of H to be negative,
and therefore condition

Hππ = ηr (ηr − 1)e−φ (1 − π)ηr−2 ε(ψ) (5.23)

+ ηg (ηg − 1)λψ πηg−2 ε(ψ) < 0

must hold, which after rearranging becomes6

(ηr − 1)
(1 − π)ηr−2

πηg−2
< −(ηg − 1)

ηg

ηr
eφ λψ . (5.24)

If both conditions (5.22) and (5.24) are true, expression (5.22) can
be substituted for in (5.24), yielding

(ηr − 1)
(1 − π)ηr−2

πηg−2
< −(ηg − 1)

(1 − π)ηr−1

πηg−1
, (5.25)

and after rearranging

(ηr − 1)
π

1 − π
< −(ηg − 1) . (5.26)

It should be emphasized that conditions (5.22) and (5.24) are not nec-
essary for an optimal solution to exist. But if they are satisfied, then
the sufficiency condition derived by Mangasarian [117] is satisfied. The
Hamiltonian function is concave in π and an interior solution is optimal.

A Hamiltonian function that is linear (as in Sect. 4.3.2) or convex
in π implies that a potential maximum can only be achieved at the
boundaries of the feasible set of π. Thus this maximum cannot be

6 I am not dividing by η−1 terms, since they could become negative depending on
the parameter values in which case the inequality would turn around.
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found by differentiating the Hamiltonian function as done in 5.21. The
case of a convex Hamiltonian will be discussed later in this chapter.7

Condition (5.26) helps determine the range of parameters ηr and ηg

for which it is safe to say that problem (5.11) has an optimal solution:

• It is immediately apparent that condition (5.26) is true for values
of ηr < 1 & ηg < 1, ηr = 1 & ηg < 1, and ηr < 1 & ηg = 1. This
range of the parameter space corresponds to a concave Hamiltonian
function.

• If ηr = 1 & ηg = 1, the condition is violated. Instead, the Hamil-
tonian is linear in π and, as discussed in Sect. 4.3.2, the optimal
solution is singular.

• For values ηr > 1 & ηg < 1 and ηr < 1 & ηg > 1 the Hamiltonian
can be concave as well as convex, depending on the value of π and
on the relative magnitude of ηr and ηg. I will further investigate this
very interesting case later in this chapter.

• If both ηr > 1 & ηg > 1 the concavity condition is violated,
the Hamiltonian is convex. Do optimal solution exists for problem
(5.11)? And if not, is there a way to modify the model in order to
get optimal solutions for the case of ηr > 1 & ηg > 1? As for the
previous case I will tackle those questions later in this chapter.

Maximizing the Hamiltonian function is not the only condition the
Maximum Principle requires to be fulfilled. As discussed in Sec. 4.3.2 in
Chap. 4, the co-state variables have to meet the following conditions:

λ̇ψ = −
dH

dψ
(5.27)

and

λ̇φ = −
dH

dφ
. (5.28)

Solving the differential equations (see App. A.1) yields the following
results:

The shadow price of vitality at age a is given by the associated
cumulated changes in fertility and mortality over all remaining ages
discounted by the corresponding cumulative changes in growth.

λψ(a) =

∫ ∞

a

(
e−φ (1 − π)ηr εψ + λφ μψ

)
(5.29)

× e
∫ x

a
πηg εψ − δ ds dx .

7 The existence of optimal solutions for my problem will be discussed in more detail
in a forthcoming paper by Kenneth Wachter and me.
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The shadow price of the cumulative hazard of death at age a is the
negative value of remaining reproduction at age a, i.e. the penalty for
having one unit higher cumulative hazard:

λφ(a) = −

∫ ∞

a
e−φ (1 − π)ηr ε(ψ) dx . (5.30)

Equation (5.30) can be substituted in (5.29) to yield the final ex-
pression for λψ(a) , being

λψ(a) =
∫∞
a e

∫ x

a
πηg εψ − δ ds (5.31)

×
(
e−φ (1 − π)ηr εψ + b

ψ2

∫∞
x e−φ (1 − π)ηr ε(ψ) dτ

)
dx .

The shadow price of vitality is given by the benefits of increasing re-
production due to higher vitality as well as the gains in remaining
reproduction due to lower mortality, both weighted by the change in
growth. As long as an increase in vitality leads to faster growth, this
weight is above one (revaluating), if the increase in vitality leads to
slower growth, then the weight is below one (devaluating).

5.2.3 The Role of the Second State Variable

A condition for optimal investment is given in (5.22). This condition
requires that λψ(a), given in (5.31), is multiplied by exp (φ(a)). It be-
comes apparent that an optimal solution depends only on the current
value8 λc

ψ ≡ exp(φ(a)) λψ(a) which is not discounted by death up to
age a, in other words the cumulative hazard of death from birth to
age a is erased. Consequently, expression (5.22) and thus an optimal
investment path after age a is independent of the state variable φ(a);
the hazard of death accumulated between age zero and age a has no
effect.

Why is that so? Why does the second state variable not influence the
optimal solution? The answer can be found reformulating the control
problem. Maximizing the objective function in (5.11) from age zero
to infinity requires maximizing the objective from any time point T
onwards. Thus, the objective can be written as

max
π

( ∫ T

0
e−φ(x) m(x) dx + max

π

∫ ∞

T
e−φ(x) m(x) dx

)
, (5.32)

8 The concept of current values, i.e. values at time t rather than their equivalent
at time zero is well described in [90, pp. 164–174]
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where m(x) denotes the maternity function at age x. Maximization
before age T is conditional on the maximization after T . But the maxi-
mization after T is conditional only on the value of ψ(T ). In particular
the cumulative hazard of death between age zero and T does not in-
fluence the optimal strategy after age T . Instead, the factor exp−φ(T )
can be drawn outside the integral, i.e.

max
π

∫ ∞

T
e−φ m(x) dx = e−φ(T ) max

π

∫ ∞

T
e−φ(x−T ) m(x) dx ,

(5.33)
revealing its nature as a mere scaling factor. Effectively, the cumulative
hazard starts off at φ = 0 for any time point the control problem is
supposed to be solved from. It has no effect on the first state variable
since the change in vitality is entirely driven by investment π and by
vitality itself. The fact that the change in cumulative hazard φ depends
on mortality which in turn depends on vitality further emphasizes the
point that vitality is the only actual state variable that matters.

Thus, the control problem formulated in this chapter is essentially
a single state, single control, autonomous, infinite horizon optimal con-
trol problem. As discussed earlier in Chap. 4 this implies that any
optimal state path has to be monotone. Since life starts by growth,
only initially increasing vitality trajectories are sensible. This means
mortality cannot increase; senescence is impossible. Only growth fol-
lowed by either a period of parallel growth and reproduction and then
maintenance or development followed by maintenance directly are the
possible strategies. Given the idea of “inevitable senescence” it is re-
markable how challenging it is to actually develop a model that can
lead to senescence as an optimal life history strategy.

In the size chapter I was able to modify my model by adding a
second state variable to come up with solutions that yielded senescence.
How could I change my vitality model to broaden the scope of possible
solutions, including the pattern of human senescence? As mentioned
above there are several parameter combinations for ηr and ηg for which
the Hamiltonian function is convex. Maybe the “weird” cases of ηr > 1
& ηg < 1, ηr < 1 & ηg > 1 and ηr > 1 & ηg > 1 provide a rich ground
for exploring exotic strategies? Before I make the leap to modifying my
model let me step back for a moment and have another look at the
results.

5.2.4 Hamilton and Reproductive Value - Revisited

First note that the shadow price of the cumulative hazard of death at
age a given in (5.30) corresponds to the negative of remaining repro-
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duction at that age, which is equivalent to the numerator in Hamil-
ton’s indicator for the force of selection on age-specific mortality. As
discussed at length in Chap. 2, this quantity inevitably declines with
age. But in my control problem it does not automatically mean that
mortality becomes less important, and that mortality would ultimately
increase with age. My results just showed that when the Hamiltonian
function is concave, then vitality has to increase and thus mortality has
to decline, despite an inevitable falling shadow price of the cumulative
hazard of death.

Hamilton emphasized how important it was to use ‘remaining repro-
duction’ and not ‘reproductive value’ for quantifying selection pressure.
Interestingly, reproductive value can be recovered if I modify my model
formulation, though leaving it essentially unchanged: as just shown the
cumulative hazard of death at age a has no influence on the optimal
solution at age a. Looking closer at the problem formulation, the defi-
nition of the cumulative hazard φ(a) as the second state variable seems
somewhat arbitrary. Indeed, I could have equally well let survival l(a)
serve as the second state variable. This would have given me a equation
of motion, different to the one in (5.15), namely l̇(a) = −μ(a) l(a), but
again the condition for optimal π would have been independent of the
second state. Doing the corresponding modifications and calculations
leads to a shadow price of survival that is equal to

λl(a) =
1

l(a)

∫ ∞

a
l(x) (1 − π)ηr ε(ψ) dx . (5.34)

This expression corresponds to the reproductive value at age a. Con-
trary to the shadow price of the cumulative hazard of death which
inevitably declines with age, the shadow price of survival can also be
constant or increase with age.

Both the quantities – remaining reproduction and reproductive
value – that were of central importance to Hamilton’s discussion of
the evolution of senescence emerge as part of my life history optimal
control problem. Furthermore, the quantities have been associated with
opposite answers to the essential question of whether senescence is in-
evitable or not. Now it turns out that both quantities have their in-
terpretation as shadow prices for either survival or cumulative hazard.
They are weights in the Hamiltonian function. But neither of them
actually influences the optimal control path (see (5.22)). The optimal
control path only depends on the current value of the shadow price of
vitality and the magnitude of the η parameters.

This is an important finding because it is tempting to predict the
shape of mortality and fertility from the fitness sensitivities directly.
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My result underlines the fact that one should not do so. Explaining the
change in a trait (and ultimately the evolution of age-trajectories of
mortality and fertility) requires multiplying the sensitivity in fitness by
the variance-covariance matrix [105], as discussed in Chap. 3. Lande’s
so called G-matrix essentially contains all the trade offs among the
fitness relevant traits.

People studying the evolution of senescence try to understand
whether optimization approaches that rest on trade-offs or approaches
based on fitness sensitivities (which is what Hamilton’s indicators are
and reproductive value is the fitness sensitivity with respect to sur-
vival) are a better way of explaining the evolution of senescence (see
Chap. 3). I find that in my optimization framework fitness sensitivities
appear as weights in the optimization formulas. Thus, both approaches
are intertwined. The justification and importance for fitness sensitiv-
ities in shaping age-trajectories of mortality and fertility is in giving
appropriate weights to the trade-offs that are balanced by evolution.
Giving weights to trade-offs is exactly the same function that sensi-
tivities take on in determining short term evolutionary change, when
fitness sensitivities are multiplied by the appropriate G-matrix. For
both approaches the central role of trade offs is conspicuous. Nailing
down the trade offs - however - is one of the hardest nuts to crack for
life history biologists, independently of which approach is taken.

5.3 The Constrained Vitality Model

Let me now get to the ‘weird’ ranges of parameters ηr and ηg. For
values of ηr and ηg that lead to a convex Hamiltonian function no
simple answer can be given as to whether an optimal solution exists or
not. Mangasarian’s theorem [117] is sufficient for an optimal solution
but not necessary. An example will help to understand why convexity
is a problem.

Let me focus on the case of ηr > 1& ηg > 1. If both ηr and ηg

exceed one, then the Hamiltonian is convex in π. Therefore the highest
value of H is found at the boundaries of the feasible set for values of
π. Thus the only two possible values of π that could maximize H are
either π = 1 or π = 0.

If π = 1 no reproduction is realized at all, so the Hamiltonian equals
zero. If π = 0, then all resources are spend on reproduction, and vitality
declines. For π = 0 the Hamiltonian function takes on some positive
value, hence the Hamiltonian is larger for π = 0 than for π = 1, i.e.
H(π = 0) > H(π = 1). As π = 1 implies growth in vitality whereas
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π = 0 implies shrinkage in vitality, π would have to remain at the
level of zero forever because an optimal trajectory for this problem
has to be monotone. It can be proven, however, that H(0) > H(1)
will be violated at some point, at least for the special case of constant
mortality, μ = c (see App. A.2). This case illustrates the fact that the
model has no optimal solution if both η’s are larger than one9.

An interesting aspect of the proof, however, is the insight that at
some point the Hamiltonian will lead to higher values for π = 1 than for
π = 0. Thus the strategy switches from full reproduction to full growth.
One can show that the convex Hamiltonian produces zig-zagging strate-
gies. And it is this zig-zagging that holds the key to the explanation for
the non-existence of a solution10. To prevent this behavior one could
constrain the vitality model in a way that zig-zagging is not an option.
Let me explore this avenue further.

The mode of change of an organism can be constrained such that
it can be changed only once. Hence, periods of growth and shrinkage
cannot occur repeatedly but can only alternate once. Since life starts
with growth, initially the mode of change for any organism is to increase
in vitality. The organism is free to grow and increase in vitality until
eventually maintenance level is reached or the organism could switch
to shrinkage. Once the organism is on a decreasing vitality path, it will
eventually reach maintenance but cannot get back on an increasing
path. For the example discussed above this would imply that initially
π equals one, at the onset of reproduction π switches to zero and at the
age when λψ rises above one, π rises up to its maximum permissable
level, i.e. maintenance π = π0. In this way, the problem encountered
without the constraint disappears. There is an optimal solution inside
the range of feasible trajectories of π. It is clear that this strategy could
be beaten in the unconstrained model, but for the modified, constrained
version π0 is the best feasible strategy.11

Let me formalize the constrained model. I will introduce a second
control variable defined as the time point T ε [0,∞] of switch between
growth and shrinkage. Since life starts with growth, all ages younger
than T are associated with increasing vitality. Note that theoretically,
optimal strategies can imply pure shrinkage (T = 0; initially being in
shrinkage mode) as well as pure growth strategies (T = ∞; never switch

9 As discussed in more detail in a forthcoming paper by Kenneth Wachter and me.
10 Ditto.
11 It may well be that for some species it is physiologically impossible to switch

from a senescent back to a non-senescent trajectory, i.e. from increasing back to
decreasing mortality, and thus my constraint might not be unrealistic.
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to shrinkage). Thus, the change in vitality is given by

ψ̇ = max[f(ψ, π), 0] for a in [0, T ) , (5.35)

where f is the same as in the unconstrained model given in (5.14).
Equation (5.35) implies that any feasible strategy π associated with
negative changes in vitality in the unconstrained model is now mapped
on the zero-line for all ages before T . After T the change in vitality is
given by

ψ̇ = min[f(ψ, π), 0] for a in [T,∞] . (5.36)

Now the objective function can be written as

max
π, T

(∫ T

0
l(x)m(x) dx (5.37)

+ e−φ(T )

∫ ∞

T
e−(φ(x)−φ(T )) m(x) dx

)
,

using general notation for survival l(x) and reproduction m(x). Apply-
ing (5.33) this expression is equivalent to

max
π, T

(∫ T

0
l(x)m(x) dx (5.38)

+ e−φ(T ) max
π

∫ ∞

T
e−(φ(x)−φ(T )) m(x) dx

)
.

It turns out that the constrained model consists of two optimization
problems that are linked. The inner maximization problem in (5.38) is
given by

max
π

∫ ∞

T
e−(φ(x)−φ(T )) m(x) dx . (5.39)

Note that the mode of change in vitality for the inner problem is shrink-
age. The initial conditions for the inner problem are

ψS(T ) = ψG(T ) (5.40)

and
φS(T ) = φG(T ) . (5.41)

The upper case letters S and G indicate the different modes of change
for the inner and the outer problem. The outer problem (where vitality
can not decrease) sets initial conditions for the inner problem (where
vitality can not increase) but the inner problem can otherwise be solved
independently of the outer one.
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The change in vitality for the inner problem is given by (5.36) and
the transversality conditions are as before

λS
ψ(∞) = λS

φ(∞) = 0 . (5.42)

The Hamiltonian function is essentially the same as in the uncon-
strained model, and the solutions for λψ, λφ and ψ remain the same,
just with new initial vitality level ψ(T ). An optimal solution for this
problem again has to be monotone, therefore vitality can only decline
until zero or some level that is maintained.

The outer maximization problem depends on the maximum value of
the objective of the inner problem. The initial conditions of the outer
problem are

ψG(0) = 1 (5.43)

and
φG(0) = 0 (5.44)

while now the transversality conditions are unusual in the way that
they connect the outer problem to the inner problem,

λG
ψ (T ) = e−φ(T )λS

ψ(T ) (5.45)

and
λG

φ (T ) = e−φ(T )λS
φ(T ) . (5.46)

These conditions ensure that the problems are properly related.
The Hamiltonian function for the outer problem is again the same

as for the unconstrained model, taking into account that the change in
vitality is now given by (5.35). Effectively, the constraint on the change
in vitality is a constraint on the range of possible trajectories of π to the
subset πε[π0, 1]. Note that the second control variable T marks start
and end conditions for the two connected problems but does not enter
the associated Hamiltonian functions. Further note that if one applies
conditions (5.43), (5.45) and (5.46) in the solutions for ψ, λψ and λφ it
turns out that the solutions remain the same for both problems.

The Hamiltonian for the constrained model is

H = HG + e−φ(T ) HS (5.47)

where HG is different from zero in [0, T ) and HS is different from
zero in [T,∞]. Both HG and HS are essentially the same except for
min/max[f, 0] (see (5.35) and (5.36)) and the different initial values for
vitality. To find the optimal value for T it is not necessary, however, to
go through the procedure of maximizing H w.r.t. T . There is a simpler
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way: Basically, one has two optimization problems that can be solved
separately and be spliced together for any given value of ψ(T ). Solving
the two problems for any ψ(T ) the optimal ψ(T ) can subsequently be
found by simple maximization.

The big advantage of introducing the second control variable T is
that for the modified model an optimal solution for vitality has to be
monotone not for one whole but for two distinct time intervals corre-
sponding to two distinct yet related optimization problems. Between
age zero and age T vitality can increase and between age T and infinity
vitality may go down but must not increase. Obviously, all solutions to
the modified model are subsets to solutions of the initial, unconstrained
model. As such, optimal solutions for the initial model are optimal so-
lutions for the modified model. But for ranges of parameters that have
no optimal solution in the unconstrained model there might well be an
optimal solution in the constrained model.

One runs into the paradoxical situation that adding restrictions
opens up opportunities. Though the modified model is a constrained
version of the initial model it extends the range of the parameter space
for which optimal solutions exist, and in this way it also extends the
range of possible qualitative trajectories. In particular, the constrained
model has a solution for the case where both η parameter exceed one,
namely full growth at π = 1 followed by full reproduction at π = 0 ac-
companied by a decline in vitality and thus increasing mortality, eventu-
ally followed by maintenance at π = π0, when mortality plateaus. Thus,
the constrained model can explain senescent as well as non-senescent
life history strategies while the unconstrained model can only explain
non-senescence.

5.3.1 Expected Solutions

In the following I list the expected solutions for all subsets of the pa-
rameter space for combinations of ηr and ηg, depending on whether
those parameters are smaller, equal or larger than one:

• ηr < 1 & ηg < 1: If both η’s are smaller than one the Hamiltonian
is concave in π. An optimal solution exists and intermediate in-
vestment is expected. Parallel growth and reproduction followed by
maintenance should be optimal. The optimal strategy for the second
control should be to not throw the switch (T = ∞). I will call this
strategy Enhancement (one may also call it Negative Senescence as
in Vaupel et al. 2004).
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• ηr < 1 & ηg = 1 or ηr = 1 & ηg < 1 : If one of the η’s is equal
to one and the other is smaller than one, then the Hamiltonian is
concave in π. Therefore Enhancement should be optimal.

• ηr = 1 & ηg = 1: If both η’s are equal to one the Hamiltonian is
linear in π. As discussed in Chap. 4 the optimal solution involves
a period of full growth corresponding to π = 1 followed by mainte-
nance at π0. I will call this strategy Sustenance.

• ηr > 1 & ηg > 1: If both η’s are larger than one the Hamiltonian
is convex in π. As discussed above, my modified model yields opti-
mal solutions corresponding to full growth (π = 1) followed by full
reproduction (π = 0) followed by maintenance (π = π0). I call this
kind of strategy Senescence.

• ηr > 1 & ηg = 1 or ηr = 1 & ηg > 1: If one of the η’s is equal to
one but the other is larger than one the Hamiltonian is convex in π
and Senescence should be optimal.

• ηr > 1 & ηg < 1 or ηr < 1 & ηg > 1: If one η is larger than one
and the other is smaller than one, the balance between ηr and ηg

determines whether the Hamiltonian is concave or not. These exotic
cases need further investigation.

Exotic Strategies

In the beginning of this section I derived the condition that determines
whether the Hamiltonian function is concave or convex (see inequality
(5.26)). Strikingly, the Hamiltonian function H can be concave or con-
vex, if one η is larger and the other is smaller than one, depending on
the value of π. To see this more clearly one can equate both sides of
inequality (5.26) to find the point πc that separates the two regions of
π that are associated with concave vs convex H:

πc =
1 − ηg

ηr − ηg
, (5.48)

lower case c indicating “cut between convex and concave”. With a
minute of thought one can establish that 0 < πc < 1, i.e. the cut point
truly lies within the interval [0, 1].

Interestingly, depending on whether ηr or ηg is the parameter that
exceeds one, it is the interval to the left or to the right side of πc that
corresponds to concave H. This should have important implications for
the associated optimal strategies. It should matter whether it is growth
or reproduction that faces increasing vs. decreasing returns to scale.
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From inequality (5.26) one can show that the concave zone of H lies
to the left of πc when ηr exceeds one. An optimal π∗-strategy that does
not run into my constraint has to obey

π∗ < πc if ηr > 1 . (5.49)

Conversely, the concave zone of H lies to the right of πc if ηg exceeds
one. An optimal π∗-strategy that does not run into my constraint has
to obey

π∗ > πc if ηg > 1 . (5.50)

A helpful insight can be gained from (5.48): As ηr approaches one
the cut point πc moves towards one,

lim
ηr→1

πc = 1 . (5.51)

Equations (5.49) and (5.51) together imply that – as ηr approaches the
limit of 1 from above – the whole interval will become concave. The
strategy converges to Enhancement. This is intuitively right since one is
back to the well behaved case of ηr = 1& ηg < 1. For values of ηr < 1,
(5.50) and (5.51) imply convergence to the case of ηr = 1& ηg > 1,
where the whole interval corresponds to convex H, so the strategy
converges to Senescence.

Analogously, it holds that

lim
ηg→1

πc = 0 . (5.52)

If ηg approaches 1 from below, then the strategy converges to senes-
cence, since ηg < 1 means π < πc, so the region where H is concave
disappears as πc → 0. If ηg approaches 1 from above, then the strategy
converges to Enhancement, since ηg > 1 means π > πc, so the region
where H is concave covers the whole interval.

These dynamics can also be seen from

∂πc

∂ηr
= −

1 − ηg

(ηr − ηg)2

⎧⎨
⎩< 0 if ηg < 1

> 0 if ηg > 1
(5.53)

and

∂πc

∂ηg
=

1 − ηg

(ηr − ηg)2
−

1

ηr − ηg

⎧⎨
⎩< 0 if ηg < 1

> 0 if ηg > 1 .
(5.54)



5.3 The Constrained Vitality Model 97

What can be deduced about the shape of possible strategies? It is
hard to predict the expected optimal solutions. Presumably, some part
of a strategy should correspond to extreme cases of π = 1, or π = 0
followed by maintenance π = π0 and the other half of the strategy could
be intermediate investment, i.e. either parallel growth and reproduction
or parallel shrinkage and reproduction. In the latter case, slower than
exponential senescence would be optimal.

For ηg > 1 the well-behaved area is right of πc (i.e. above πc), thus
larger values of π up to one correspond to concave H. Therefore, a
smooth transition from π = 1 to lower values is expected. This sug-
gests parallel growth and reproduction. Hence, the “good” part of the
strategy would be in the beginning of life. Therefore, the second part
of life might correspond to the extreme case where the constraint of
my constrained model comes into action.

For ηr > 1 the well-behaved area is left of πc (i.e. below πc), thus
smaller values of π down to zero correspond to concave H. Therefore,
a distinct jump of π from π = 1 to some lower value is expected. Since
the case of ηr > 1 mirrors the one of ηg > 1, I would deduce that now
the second part of the strategy is the “good” one. Thus, full growth
followed by slower than exponential senescence could be an optimal
strategy.

The discussion above suggests that there are several stages of life.
For my models, life always starts with a period of development in which
an organism grows and mortality falls but there is no fertility. Then
there are four possibilities: First, the organism could maintain itself at
a constant level of vitality, mortality and fertility – I call this “suste-
nance”. Second, the organism could start to reproduce but continue to
grow, with declining mortality – I call this “enhancement”. Third, the
organism could reproduce as much as possible, with mortality rising
exponentially – this I call “senescence”. Fourth, the organism could re-
duce the increase in mortality and decline in vitality by diverting some
resources from fertility to repair – I call this “subsenescence”. In my
vitality model, the first stage is always development and the last stage
is always maintenance. Thus, possible life history stages resulting from
my model are development, enhancement, senescence, subsenescence
and maintenance.12

12 Note that maintenance and Sustenance both pertain to cases of constant mortality
and fertility. I use Sustenance with capital letter to describe a life history strategy,
namely that of development followed by maintenance, whereas maintenance with
lower case letter simply refers to one phase of a life history. Analogously, I use
Enhancement and Senescence with capital letters to describe life history strategies
while the same terms in lower case letters refer to phases of a life history.
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5.4 Numerical Results

While it is possible to write down integral equations that can explicitly
be solved for the cases where ηr > 1& ηg > 1, finding solutions for
the remaining η parameter space is difficult to do analytically. To solve
for the age-trajectories of optimal investment, vitality, mortality and
fertility, I implemented an algorithm based on Bellman’s approach of
dynamic programming (see App. A.3).

Applying this algorithm13 I gain particular solutions for each part of
the η parameter space and can check, whether the general shape of my
numerical results fits the expected solutions based on my theoretical
considerations in Sect. 5.3.1.

5.4.1 The Five Varieties of Life History Strategies

Five different types of optimal strategies can be found to result from
this model. They are:

• Sustenance – development followed by maintenance,
• Enhancement – development followed by enhancement followed by

maintenance
• Senescence – development followed by senescence followed by main-

tenance
• Subsenescence – development followed by subsenescence followed by

maintenance
• Ensenescence – development followed by enhancement followed by

senescence followed by maintenance

Note that this variety of strategies includes senescent as well as non-
senescent life histories as predicted by my theoretical considerations
above. The following figures exemplify particular optimal life history
strategies for particular parameter values of ηr and ηg to show the scope
of possible solutions and to emphasize the major importance of those
two parameters.

Strategies Without Senescence

As expected, parameter values that are below one lead to Enhancement
(see Figs. 5.3, 5.4 and 5.5). Note that for ηr = 1 & ηg = 0.5 the onset of

13 Due to numerical approximation errors caused by step length in vitality and
investment, the algorithm sometimes leads to solutions that are pseudo mainte-
nance, i.e. very slow senescence, where π is almost π0. This pseudo maintenance
converges to true maintenance when step length for vitality and investment are
more and more reduced.
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reproduction is abrupt, investment “falls down a cliff” whereas for ηr =
0.5 & ηg = 0.5 as well as ηr = 0.5 & ηg = 1 the onset of reproduction
comes smoothly. Thus, if reproduction faces constant returns to scale
in investment, reproduction starts abruptly while decreasing returns
to scale imply a smooth transition (in agreement with my theoretical
considerations in Sect 5.3.1).

If both parameters equal one, then - as predicted - Sustenance is
optimal, as can be seen in Fig. 5.6.14
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Fig. 5.3. Example Enhancement: ηr = 0.5 and ηg = 0.5

Strategies with Senescence

Strategies with senescence emerge as the η parameters start to ex-
ceed one as exemplified in the following figures. Note the difference
between Fig. 5.7 and Fig. 5.8: a higher value of ηr leads to lower vita-

14 For this and all the following figures in this section, the thick line in the lower
left graph depicts the optimal investment strategy across age and the thin line
depicts the corresponding level of investment π0 required for maintenance.
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Fig. 5.4. Example Enhancement: ηr = 1 and ηg = 0.5
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Fig. 5.5. Example Enhancement: ηr = 0.5 and ηg = 1
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Fig. 5.6. Example Sustenance: ηr = 1 and ηg = 1

lity at maintenance and thus higher mortality. Interestingly, mortality
increases only a little bit (relative to initial mortality15 of 0.3) before
reaching a plateau. For both η’s equal to 3, Fig. 5.9 depicts the as-
sociated strategy (note that the time axis is double as long as in the
previous figures). If the time units corresponded to years this setting
of parameters captures a life history strategy of with humanesque fea-
tures. Mortality falls until the age of maturity at about 13. Thereafter,
mortality rises exponentially at a constant rate δ = 0.1. Reproduction
follows a hump-shaped curve. At the age of 60 reproduction drops to
close to zero, corresponding to its level at the plateau. Note that vir-
tually all lifetime reproduction is realized before this age and further
contributions of later age classes are negligible. My model does not lead
to true menopause – reproduction continues albeit at a very low level,
and mortality remains constant. In a human life history reproduction,
at least for females, should cease and mortality should keep on rising
exponentially. Clearly, a model as simple as mine that is solely based
on vitality can only capture a rough, humanesque pattern.

15 Note that in Figs. 5.7, 5.8, 5.10, 5.11 and 5.13 the increase in mortality is barely
visible because mortality is shown on a scale set by initial mortality, which is
at the magnitude of 0.3. It should be emphasized, however, that the force of
mortality is increasing substantially in all these figures relative to its level at
reproductive maturity.
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Fig. 5.7. Example Senescence: ηr = 1 ηg = 1.5
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Fig. 5.8. Example Senescence: ηr = 3 ηg = 1.5

Ensenescence

Figures 5.10, 5.11, 5.12 and 5.13 show results that exemplify parame-
ter combinations corresponding to areas where exotic strategies were
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Fig. 5.9. Example Senescence (humanesque case): ηr = 3 ηg = 3

expected. And indeed, the strategies are really interesting: The combi-
nation of ηr = 0.5 & ηg = 1.5 and ηr = 0.5 & ηg = 3 (Figs. 5.10 and
5.11) depict strategies that include parallel reproduction and growth.
An initial period of development (π = 1) is followed by a period of
parallel growth and reproduction (π > π0), leading into a period of
exponential senescence due to a drop in the strategy to π = 0 and
eventually reaching a level of vitality that will be maintained ever after
(π = π0). I call this strategy Ensenescence because it includes a period
of enhancement and a period of senescence. Figure 5.11 shows the effect
of increasing ηg, which is to widen the period of senescence and flatten
the dip.

Note that the dip in the strategy depicted in Figs. 5.10 and 5.11 is
not an artefact. I calculated many different η combinations for the case
of ηr < 1 and ηg > 1 and always found this peculiar strategy.

Senescence and Non-senescence Close Together

The range of parameters ηr > 1 and ηg < 1 reveals a surprise: For
ηr = 1.5 & ηg = 0.5 (Fig. 5.12) the optimal strategy is Enhancement.
Investment shows a cliff at the onset of reproduction as predicted from
ηr > 1 and the discussion of πc. This kind of enhancement differs from
the very early and gradual start of reproduction shown in Figs. 5.3–5.5
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Fascinatingly, there is yet another strategy to be found in this pa-
rameter region. Increasing ηr to 3 as shown in Fig. 5.13 moves the
non-senescent life history towards a senescent one. Parallel reproduc-
tion and growth is not favored anymore. Instead the optimal strategy is
development (π = 1) followed by slower than exponential senescence16

(0 < π < π0), followed by maintenance (π = π0). I call this strategy
Subsenescence.

If the optimal strategy is Enhancement the vitality trajectory is
monotone increasing (and my model constraint is not in action). If,
however, Subsenescence is optimal the vitality trajectory first increases
and then decreases (my model constraint applies)17. Thus, for increas-
ing returns to scale in reproduction but decreasing returns to growth
and maintenance, both senescent and non-senescent strategies can be
optimal.
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Fig. 5.10. Example Ensenescence: ηr = 0.5 ηg = 1.5

16 This is a true strategy and not an artifact, the strategy is robust with decreasing
step length.

17 The cliff when π drops from one to below π0 shows that the investment trajec-
tory jumps over the convex area of π’s which lies above πc for this range of η

parameters.
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Fig. 5.11. Example Ensenescence: ηr = 0.5 ηg = 3
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Fig. 5.12. Example Enhancement: ηr = 1.5 ηg = 0.5

Strategies Across η Parameters

The matrix of strategies in Fig. 5.14 shows how strategies change across
the range of ηr and ηg. Each graph displays the optimal investment
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Fig. 5.13. Example Subsenescence: ηr = 3 ηg = 0.5

strategy π∗ across age. In each graph, initially π∗ equals one and drops
below one at the age of maturity18.

Consider for instance the first column, with ηg fixed at 0.5. As ηr in-
creases from 0.5 to 1.5, the onset of reproduction becomes more abrupt.
When ηr is 3.0 the optimal strategy is Subsenescence rather than En-
hancement: there is no longer a period of parallel reproduction and
growth.

Another interesting example concerns the upper right corner of Fig.
5.14. The strategy in the corner is Ensenescence. The name “Ensenes-
cence” combines two strategies – Enhancement and Senescence, and
it is those two strategies that Ensenescence converges to as either of
the η parameters changes. My computational results (not presented
here) show how a reduction in ηg from 1.5 to 1 drives the strategy
towards Enhancement. As ηg decreases the valley of the dip becomes
more and more pronounced, eventually flattening out and the period of
senescence becomes shorter and eventually disappears. When instead
ηr increases from 0.5 to 1, Ensenescence converges to Senescence. The

18 Note that the thin line that depicts the required investment for maintenance
originating from the lower left corner of each graph starts off at higher and higher
values as ηg increases along each row. The reason are higher costs of maintenance
due to larger values of ηg (compare (5.7)).
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dip becomes more and more shallow, eventually disappearing and the
period of senescence lengthens19.

EnhancementEnhancement Ensenescence

SustenanceEnhancement Senescence

SenescenceEnhancement Senescence

SenescenceSubsenescence Senescence

Fig. 5.14. Overview of optimal investment strategies across η parameters

19 I believe that the increase in π just before the onset of senescence is due to the
fact that the organism invests more in growth and survival to ensure survival to
the beneficial phase of full reproduction.
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5.4.2 When Senescence Is Optimal and when It Is Not

The previous section concentrated on qualitative age-patterns of mor-
tality. Several of the mortality and fertility trajectories increase over
some part of reproductive life but decrease or remain constant over
other parts of reproductive life. How should one decide whether those
life histories are senescent or non-senescent? How could one describe
the ‘degree of senescence’ of a life history strategy? This section offers
a measure of the degree of senescence and subsequently sheds light on
the characteristics that determine whether senescent or non-senescent
life histories are optimal.

The Degree of Senescence

My suggestion for a definition of ‘senescence’ in Chap. 1 applies to
particular age-groups. What criteria should be used to label a complete
life-history strategy senescent or non-senescent? In the following, one
way of approaching such a classification is suggested.

Whether a particular life history is classified as senescent or non-
senescent can be determined by the proportion of lifetime reproduc-
tion that is realized at ages when mortality rises, i.e. when π < π0.
This senescence indicator, S, measures the degree of senescence for a
particular life history strategy. S is given by

S =

∑∞
x=0 Jx lx mx∑∞

x=0 lx mx
, (5.55)

where Jx = 1 if investment in growth is below maintenance level
(π(ψ(x)) < π0(ψ(x))) and Jx = 0 if investment is greater than or equal
to the amount required for maintenance of vitality. If S = 1, the strat-
egy is fully senescent and if S = 0, the strategy is fully non-senescent.
All values in between describe mixed strategies.

The Crucial Parameters

The crucial parameters that are responsible for the qualitative shape of
an optimal life history strategy are the η parameters and the mortality
parameters.

Figure 5.15 shows how different levels of mortality can influence the
degree of senescence in a particular life history strategy depending on
the range of η parameters. Each combination of η’s corresponds to one
graph. Each graph displays the degree of senescence, i.e. values of S
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Fig. 5.15. Degree of senescence S, in%, across η and mortality parameters;
Color code: darker = more senescent; numbers refer to percent life time re-
production realized at ages when mortality increases
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across extrinsic20 mortality c along the x-axis and intrinsic mortality b
along the y-axis. Two general results can be derived from this figure:

• The upper left triangle of Fig. 5.15 is white; those ranges of param-
eters are associated with pure non-senescence, i.e. S = 0. Towards
the lower right corner the areas become more and more shady and
dark. Thus, higher levels of the η parameters generally correspond
to higher degrees of senescence.21

• Inside each of the 12 graphs, lighter areas can be found towards
the left and further down. Hence, higher levels of mortality – be
it extrinsic (on the x-axis) or intrinsic (on the y-axis) – go hand
in hand with higher degrees of senescence, in other words a larger
fraction of lifetime reproductive success is realized during ages when
mortality increases.

The influence of the η and mortality parameters on age and vitality
at maturity can be seen in Figure 5.16, which follows the same logic
as the previous figure. Clear gradients in shading from light to dark
become apparent: from left to right, top to bottom and – inside each
graph – right to left. Three general observations can be made:

• Higher levels of overall mortality are generally associated with
smaller vitality at maturity, higher extrinsic mortality c in partic-
ular has this effect. Note, however, that higher intrinsic mortality
b affects vitality at maturity in a nonlinear fashion: intermediate b
leads to higher vitality at maturity, i.e. continued growth pays off
via better survival at maturity. Too high a level of b, however, coun-
terbalances this advantage because of increasing overall mortality –
earlier maturation at a smaller level of vitality is favored.

• Higher levels of the η parameters are generally associated with larger
vitality and thus a later age at maturity.

• For non-senescent strategies (white areas), vitality at maturity
barely exceeding 50 % of the maximum vitality possible, i.e. de-
velopment does not proceed beyond the point where the increase
in vitality starts to slow down (The age-trajectory of vitality is s-
shaped for π = 1). For senescent strategies vitality at maturity is
generally higher than for non-senescent strategies, reaching about
75% and more percent of maximum vitality. Thus there is a distinct
shift in vitality at maturity relative to maximum attainable vitality

20 In this monograph I use the term “extrinsic” meaning “state-independent” and
“intrinsic” meaning “state-dependent”.

21 A forth column for ηg = 3 would reveal the same pattern, mainly being dark; it
is not displayed here.
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Fig. 5.16. Vitality at maturity across η and mortality parameters; Color
code: darker = larger vitality at maturity
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Ψ between senescent and non-senescent strategies(as can be seen
from the distinct shift between light and dark areas).

In short, higher levels of the η parameters correspond to a higher
degree of senescence as well as greater vitality at maturity. Higher levels
of mortality lead to higher degrees of senescence but reduce vitality at
maturity. Non-senescent strategies are associated with relatively22 low
vitality and thus early age at maturity, while senescent strategies are
associated with relatively large vitality and thus late age at maturity.

A Peculiar Little White Square

Figure 5.15 reveals a peculiarity: the lower right little square of the
lowest left graph is white, there is no senescence. Given the patterns
elsewhere in the figure one would expect a value of S above 80. While all
strategies for ηr = 3 and ηg = 0.5 are Subsenescence, the highest value
of c = 0.1 at the lowest value of b = 0.1 corresponds to Enhancement.
Why?

First note that all except one (namely Ensenescence) of my strate-
gies exhibit monotone state trajectories after reproductive maturity.
Thus, for those strategies the relative level of vitality at maturity to
vitality at maintenance can predict whether vitality increases or de-
creases across adult ages. If vitality at maturity is larger than vitality
at maintenance, the organism must have been shrinking after maturity
to reach that lower level, thus there must have been senescence. If vi-
tality at maturity is smaller than vitality at maintenance, the organism
must have been growing after maturity to reach that higher level, thus
there must have been non-senescence.

If one secondly recalls that non-senescence implies small and senes-
cence implies large vitality at maturity, then it seems that vitality at
maturity and vitality at maintenance hold the key to explain the pe-
culiar little white square.

Influence of η Parameters

The influence of the η parameters on vitality at maturity and at main-
tenance is shown in more detail in Figs. 5.17 and 5.18 23:

22 “Relative” here means relative to maximum vitality.
23 Both figures are calculated keeping all other parameters unchanged at b = 0.3, c =

0.01, k = 3, κ = 0.8, δ = 0.1 which correspond to a maximum attainable vitality
of 123. Remember that vitality is a dimensionless variable so the specific value of
123 only means that maximum vitality is 123 times greater than vitality at age
zero.
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• Optimal vitality at maturity increases as either ηr or ηg increases,
i.e. the steeper the returns to scale in either reproduction or growth
and maintenance (stronger convexity), the later the age at maturity
and the higher the acquired reproductive potential. Figure 5.17 vi-
sualizes this finding, both by reading the figure across the four lines
from thinnest to thickest and by looking at each line from left to
right.

• The ultimate level of vitality that will be maintained decreases as
either η increases, i.e. the more convex the returns to scale in ei-
ther reproduction or growth and maintenance, the later the age at
maintenance and the lower the reproductive potential ultimately
maintained. Figure 5.18 visualizes this finding, again both by read-
ing the figure across the four lines from thinnest to thickest and by
looking at each line from left to right.

Thus, for low values of the η’s maturity happens early at a low level of
vitality while a much higher level of vitality eventually is maintained.
For high values of the η’s, maturity is postponed, hence vitality at
maturity is large, but the level that is eventually maintained is small.
Consequently, there is a region of η parameters where vitality at matu-
rity is smaller than vitality at maintenance, and there is a region of η
parameters where vitality at maturity is larger than vitality at mainte-
nance. This implies that there is a cut point where vitality at maturity
equals vitality at maintenance. Figure 5.19 makes this verbal argument
clearer by displaying the results from Fig. 5.17 and 5.18 together. The
cut points for lines of equal thickness correspond to the values of ηr

and ηg that lead to strategies where vitality at maturity equals vitality
at maintenance24.

The influence of the mortality parameter c on vitality at maturity
and vitality at maintenance is shown Figure 5.20. Clearly, both vitality
at maturity and vitality at maintenance decline as extrinsic mortality
c increases, but since vitality at maturity declines faster than vitality
at maintenance, there is a level of c where maturity and maintenance
cross. At this cut point, Sustenance is the optimal strategy. For values
of c smaller than the cut point, vitality at maturity exceeds vitality at
maintenance, which implies a falling trajectory of vitality. Subsenes-
cence is optimal. For values of c larger than the cut point, vitality at
maturity falls below vitality at maintenance, which implies an increas-
ing trajectory of vitality. Enhancement is optimal. Note that the curves

24 Analogous figures not displayed here can be calculated for the case when ηg runs
across the x-axis while different levels of ηr are given by lines of different thickness.
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Fig. 5.17. Vitality at maturity across four distinct values of ηr plotted for
the same four values of ηg; line thickness being proportional to the value of ηg

Fig. 5.18. Vitality at maintenance across four distinct values of ηr plotted
for the same four values of ηg; line thickness being proportional to the value
of ηg
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Fig. 5.19. Vitality at maturity and vitality at maintenance across four dis-
tinct values of ηr plotted for the same four values of ηg; line thickness being
proportional to the value of ηg

for different values of b converge for large values of c, as the level of c
dominates total mortality, i.e. when b is small compared to c 25.

In sum, the peculiar white little square is not so peculiar anymore.
The explanation is straightforward: c can shift a strategy from Subse-
nescence to Enhancement by shifting vitality at maturity from above
to below vitality at maintenance. At the cut point, where vitality at
maturity is also the level of vitality that is maintained, Sustenance
is optimal. Thus, a change in the extrinsic mortality parameter c can
change a strategy from senescent to non-senescent, at least for the part
of the η parameter space where ηr > 1 & ηg < 1.26 The transition
at the boundary between senescence and non-senescence is smooth,
when caused by a change in c, contrary to the transition caused by
changes in the η parameters. At the boundary between senescence and
non-senescence that is set by the η parameters, the shift in vitality at
maturity is distinct (compare Fig. 5.16).

25 For values of c larger than those depicted in Fig. 5.15, non-senescence would have
emerged in the graphs for values of ηr > 1 & ηg < 1. It is only because the range
of c is not wide enough that this pattern did not become more apparent in this
picture.

26 From the analytic section in the beginning of this chapter it is clear that this
range is the only one where mortality could shift the strategy from senescent to
non-senescent
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Fig. 5.20. Vitality at maturity and vitality at maintenance are plotted across
extrinsic mortality c for values of parameter b = 0.1 and b = 1.1. Since the
curves for b = 2.1 turned out to be very similar to those for b = 1.1, the case
b = 2.1 is not shown. The pair of thick lines correspond to b = 1.1, the pair of
thin lines correspond to b = 0.1. The initially upper curve of each pair depicts
vitality at maturity, and the initially lower curve of each pair depicts vitality
at maintenance.

5.5 Discussion

Whether a strategy follows a senescent or a non-senescent path is cru-
cially dependent on the η parameters.

5.5.1 Senescence vs. Non-senescence

Non-senescent strategies are favored when the η parameters are below
or equal to one. Values below one imply that returns to investment are
decreasing, i.e. concave. An alternative verbal interpretation of decreas-
ing returns to scale would be “cheap” or “efficient” investment, since
a substantial amount of output can be realized with a small fraction
of input. Thus, organisms with growth, maintenance and reproductive
systems that can be used efficiently with only a fraction of total re-
sources should follow non-senescent life history strategies.

Senescent strategies are favored when none of the two η parame-
ters is below one and at least one of the two η parameters is above
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one. Values above one imply that returns to investment are increasing,
i.e. convex. An alternative verbal interpretation of increasing returns
to investment would be “costly” or “inefficient” investment, since a
significant amount of output can only be realized if all resources are
concentrated on one process exclusively. Thus, organisms with growth,
maintenance and reproductive systems that work best if used succes-
sively should tend to adopt senescent life history strategies.

Mixed strategies that include aspects of both senescent and non-
senescent life histories can be found if one η- parameter is above and the
other below one, i.e. when returns to investment are decreasing (con-
cave, cheap, efficient) in one and increasing (convex, costly, inefficient)
in the other process - either reproduction or growth and maintenance.

If growth and maintenance are efficient, then strategies can be ei-
ther non-senescent (mortality never increases) or partially senescent
(mortality increases slower than exponentially for some time after re-
productive maturity) depending on the extrinsic hazard of death.

If reproduction is efficient, then it is optimal to grow and repro-
duce simultaneously for some time after reproductive maturity. Fol-
lowing this non-senescent phase of life, it is favorable to concentrate
all resources on reproduction and let mortality increase exponentially
(eventually levelling).

5.5.2 The η Parameters in Nature

How could one identify a species’ η- parameter range? Species that show
concave returns to scale in both reproduction and growth are species
that can easily share resources between those processes and that do
not gain much by specializing in either one of them. Organisms that
are capable of vegetative propagation, where growth can be considered
an investment in reproduction are candidates for this category. It is
important to note, however, that species with the ability for this asex-
ual mode of reproduction also have the ability to reproduce sexually. I
believe that the values of ηr, i.e. the returns to investment in reproduc-
tion, are significantly different from each other for asexual vs. sexual
reproductive mode. If asexual reproduction is associated with concave
investment and sexual reproduction with convex investment, then the
former case is associated with non-senescence and the latter case with
senescence. An example is Hydra oligactis that sustains its state unless
it starts to reproduce sexually [220]. Understanding the different re-
turns to scale for asexual and sexual reproduction and its implications
for senescence vs. non-senescence of a species is one interesting avenue
for future research.
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Non-senescence is part of a species’s life history if at least one of
the η parameters is below one. Life histories with at least one η pa-
rameter below one should involve a period of simultaneous growth and
reproduction. All indeterminately growing species, as for example most
trees and many fish fall into this category. Whether those species show
exponential senescence later in life or not depends on whether growth
and maintenance or reproduction is efficient.

Convexity or concavity in reproduction can be distinguished as fol-
lows: if organisms face convexity in reproduction, i.e. ηr > 1, then the
onset of reproduction should be sudden and pronounced. If on the other
hand ηr < 1, then the transition into adult ages happens smoothly. An
analogous prediction for growth and maintenance can not be derived
from my model.

An indication for concave (cheap and efficient) reproduction might
also be given by number and size of offspring. Many small offspring
(each single offspring only contributing an iota to life time reproduc-
tion) could indicate concave reproduction and few large offspring (each
offspring requiring ‘heavy’ investment and contributing substantially
to life time reproduction) could indicate convex reproduction.

Convexity with respect to reproduction could also mean that it is
initially costly to build the required machinery that is necessary to
reproduce at all. Lavish reproductive structures like huge fancy flowers,
long stalks in bamboo, or feeding structures inside and outside the
mothers body in animals could be an indication.

Convexity in growth and maintenance could mean that the machin-
ery for growth and maintenance can only keep going efficiently if all
energy is used for that purpose.

An efficient, cheap way of maintenance is “throw away and grow
new”. Disposing of damaged tissue does not require a lot of energy,
indeed it should not cost much at all. If lost tissue can easily be replaced
at reasonable costs without disturbing an organism’s functioning and
integrity it may be a cheaper strategy than repairing the damage that
occurred. Repair of existing structure is costly because it requires error
recognition, knowledge of the undamaged state that is about to be
restored and the appropriate machinery to do so. Loosing body parts
or tissue (like leaves in a plant) might not need much information or
energy at all but happen more or less automatically. Replacement of
parts and tissue (in case of the leaves) might only need the template for
making that part or tissue but can do without any knowledge about
the damaged one. The signal for producing a new leaf, for instance,
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might solely require the signal of too little overall energy production
by the remaining leaves.

Therefore organisms that are made of simple, repeated structure
that can easily be discarded and regenerated when damaged, are can-
didates for concave returns to investment in maintenance and growth.27

A thorough understanding of the η− parameters in nature is an impor-
tant avenue for future research.

5.5.3 The Mortality Paradox

In this section I further consider the case when reproduction is costly
and growth and maintenance are cheap (ηr > 1 and ηg < 1). I found
that an increase in parameter c, which captures state-independent mor-
tality, can shift a strategy from Subsenescence to Enhancement. It ap-
pears that non-senescence is favored more strongly, the greater the ex-
trinsic hazard. This is striking. Exactly the opposite has generally been
stated – that a high risk of extrinsic death should favor senescence [212].
But my model predicts that this hypothesis is not true for species with
low costs of maintenance and high costs of reproduction. What could
explain this unexpected and seemingly paradoxical result? I addressed
this above in terms of vitality at maturity vs. at maintenance. Here I
take a different perspective.

It is a well-supported [169, 186] and intuitively appealing fact that
a high extrinsic hazard of death favors early reproductive maturity. A
short juvenile period reduces the time available for development and
hence the time to attain a certain vitality. Vitality, however, deter-
mines the level of energy available and therefore the potential to re-
produce. If individuals have to mature early because of a very risky

27 Another example for repeated, easily replaced parts are red blood cells. Each cell
wears out over its average lifetime of 120 days in humans, but new undamaged red
blood cells are constantly provided by the bone marrow. Thus, there is senescence
at the level of the red blood cells, but there could be sustenance at the next
higher level of organization – the blood – if the age- and damage-structure in the
population of red blood cells is constant, at least over a long period of a human’s
life. But at the whole organism level, the human being senesces. This further
leads to the idea of looking at senescence vs. non-senescence at different levels
of organization of an organism. Different levels may have different η parameters.
The individual red blood cells might face increasing returns to scale, but the
blood itself may have decreasing returns to scale while the whole body is subject
to convex investment. Also, the value of the η parameters might change with age,
being concave early in live and transitioning to convex later in live. For now this
remains speculation and is far beyond the scope of this chapter. But it points to
exciting research questions for future research.



120 5 An Optimization Model Based on Vitality

environment, their reproductive potential might be small. The short
life to be expected gives only few opportunities to reproduce. Thus, ev-
ery additional reproductive event increases total lifetime reproduction
by a large relative share compared to what has been realized before.
Therefore, depending on the costs of reproduction, a small potential
should be maintained (Sustenance) and, if possible, further increased
(Enhancement) when maintenance costs are low (ηg < 1).

If, on the other hand, life is safe the individual can afford to spend
a long time building up a high level of vitality, i.e. a large reproductive
potential. Instead of paying the price of maintaining a high level of
vitality, it may be evolutionarily advantageous to harvest this poten-
tial at the cost of a loss in functioning. Subsenescence is the strategy
that particularly suits this circumstances. It is Subsenescence and not
Senescence that is the optimal strategy at low levels of extrinsic mor-
tality when maintenance is cheap but reproduction is expensive. And
this is why: The propensity to share resources between reproduction
and growth is small due to costly reproduction. Therefore exclusive in-
vestment is desirable. Low maintenance costs, on the other hand, favor
the preservation of vitality rather than decay, which implies sharing of
resources. As long as mortality is low the individual can afford to ma-
ture late, attaining a high reproductive potential. However, maintaining
this level of vitality would be strongly penalized in terms of reduced
reproduction. Instead, the individual harvests the large potential and
mortality increases after reproductive maturity. But when vitality has
fallen to a level that can be preserved without too much penalty, any
further deterioration is suboptimal. The individual maintains its state
and mortality is constant.

Williams [212] conjectures that low levels of extrinsic mortality
should be associated with slow-senescent strategies and high levels of
extrinsic mortality should be associated with fast-senescent strategies.
His hypothesis is in accordance with the results from previous reproduc-
tive effort models (for a review see Charlesworth [27, Section 5.3.4.]).
Higher extrinsic risk tends to increase reproductive effort, which im-
plies higher levels of mortality. I have shown that my results predict
under some circumstances the opposite effect of an increase in parame-
ter c. Moreover, my results imply that non-senescent strategies can be
optimal. A theory based on optimization of trade-offs can account for
constant or declining age-patterns of mortality while a theory based on
mutation accumulation cannot explain these patterns. In Sects. 6.3.1,
6.4.1, and 6.4.3, I will discuss the concept of extrinsic mortality and
return to Williams’s hypothesis.
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5.5.4 Plateaus

All my life history strategies show maintenance from a certain vital-
ity onwards, i.e. plateaus in mortality and fertility are part of all life
history strategies. Plateaus have been observed in large populations of
Medflies, Drosophila, nematode worms, beetles, and humans ([21], [47],
[189], [201]), and understanding the cause of this pattern has caught
the attention of many researchers (for example [32], [151], [201], [208],
[209]).

In my model plateaus naturally arise as part of non-senescent life
history strategies, since vitality cannot increase indefinitely and thus
at some level will have to be maintained. The plateau that follows a
period of exponentially increasing mortality results from the constraint
I impose that vitality can not follow a zig-zag path. Therefore, even
though my model can lead to mortality plateaus one has to be careful
in interpreting this technical result. From a biological perspective there
may be organisms that cannot halt further deterioration after they have
deteriorated substantially. In such species, individuals may continue to
suffer senescence with age; observed plateaus maybe due to population
heterogeneity [201, 202, 204, 206, 207]. On the other hand, it may
indeed be the case that mortality plateaus for some species are due to
a strategy of sustenance at older ages. Research is needed.

5.6 Summary

The simple model developed in this chapter captures the main features
of life: mortality, reproduction, development, growth and maintenance.
The results show that the range of optimal life histories is wide. Senes-
cent as well as non-senescent life history strategies can be optimal.

Whether an optimal life history follows a non-senescent strategy or
a senescent strategy is crucially determined by the returns to scale to
growth and maintenance as well as to reproduction. Efficient mainte-
nance and growth systems favor maintenance strategies after growth is
completed while efficient reproductive systems favor strategies of par-
allel growth and reproduction.

Senescent and non-senescent strategies show distinct differences in
the level of vitality and age at maturity: Non-senescence is associated
with early maturity at relatively low vitality and senescent strategies
are associated with late maturity at a level of vitality that is close to
its maximum attainable level. Since vitality at maturity can reasonably
be interpreted as size at maturity, my vitality-based model leads to a
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hypothesis that also followed from my size-based model: species that
mature early at a relatively small size with the potential of growth and
increase in reproductive potential afterwards are likely to follow a non-
senescent strategy, whereas species who mature more closely to their
maximum attainable size are more likely to show senescence.

An exception is the special case of costly reproduction and cheap
maintenance and growth. This is the only case where the level of extrin-
sic mortality can shift a strategy from a senescent to a non-senescent
one. Here, the difference in vitality at maturity between two otherwise
similar organism, one of which exhibits non-senescence and the other
senescence, can be small.

In general, however, it can be stated that the the qualitative shape
of a life history is determined by the returns to scale in growth and
maintenance and reproduction. Senescence, i.e. exponentially increas-
ing mortality during adult ages, is the prevalent optimal strategy only if
both reproduction and maintenance are costly. If maintenance is cheap,
then exponentially increasing mortality is not favored. In this case,
Senescence is never optimal but instead Subsenescence can be optimal.
If maintenance is costly but reproduction is cheap then exponentially
increasing mortality is part of an optimal life history strategy. Ense-
nescence is optimal.

The degree of senescence and the age of and vitality at maturity
are determined by the η parameters and the mortality parameters:
Higher values of either of the η parameters (i.e. investment becomes
increasingly costly and less efficient) are associated with a higher degree
of senescence and larger vitality at maturity. Generally, low overall
mortality favors low degrees of senescence. Higher values of extrinsic
mortality are associated with a higher degree of senescence and smaller
vitality at maturity. Higher values of intrinsic mortality, on the other
hand can favor larger vitality at maturity as long as overall mortality
does not rise to a level where again early maturation, i.e. small vitality
is more favorable.

In sum, the crucial determinants of the degree of senescence, i.e. of
the fraction of lifetime reproduction realized at ages when mortality in-
creases, are the η parameters as well as the mortality parameters. The
crucial determinants of whether a species follows a senescent or a non-
senescent life history strategy are the returns to investment. Last but
not least this chapter contributes to the discussion about the impor-
tance of fitness sensitivities to the evolution of age-patterns of mortality
and fertility – these sensitivities are weights on the trade-offs that are
balanced by evolution.
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Directions for Research

6.1 Orientation

The models and analyses of the preceding chapters have shown that
senescence is not inevitable. Much more research is needed to under-
stand why in some species mortality increases after maturity while in
others it does not. My results raise an important new question for aging
research: when does senescence vs. sustenance evolve?

The study of the evolution of the age-patterns of mortality and
fertility is still a wide-open field of research waiting for exploration. In
this chapter, I summarize my thoughts about what I think are the most
interesting and important parts of the field to explore next.

6.2 Direct Extensions of my Models

In this section I will describe several directions for research that follow
naturally from my work described in this monograph.

6.2.1 Linking Burden & Optimization

Whether senescence is due to a burden of deleterious mutations or is
a byproduct of optimization among trade-offs has been and still is the
subject of intense discussion. In the following, I will outline my ideas
of how linking both approaches could help to resolve the debate.

A Future Project

An interesting research project is to develop a model that combines
mutational burden and optimization. Using the model developed in
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Chap. 5, this could be done by including a mutational load term in
the mortality function. Initially, the mutational load would be equal
to zero. The optimal mortality and fertility patterns, given zero mu-
tational load, can then be used to calculate selection pressure. The
selection pressure plus assumptions about the magnitude and possible
age-pattern of the mutation rate will determine the new mutational
load. Given the new mutational load, a new round of optimization
could be done. With this approach one would be able to analyze what
proportion of mortality is due to optimization and what proportion is
due to mutational load.

The question is whether the procedure converges. If decreasing selec-
tion pressure allows deleterious mutations to accumulate and leads to
a rising mortality pattern, then the new selection pressure would fall
more quickly, allowing still more mutations to accumulate. As more
mutations accumulate, mortality would start rising earlier and earlier.
Therefore, this model could shed light on whether the feedback loop
between traits and evolution can lead to an unraveling of the life his-
tory.

6.2.2 Measurable Quantities and Testable Hypotheses

Evolutionary demographic theory is based on models. Each model is
based on assumptions that simplify reality. A set of models can form
a theory that illuminates a broad range of the real world because dif-
ferent simple models shed light on different, specific aspects of reality.
Some models generate general insights, other models lead to testable
hypothesis, and still other models make both contributions. I have de-
veloped simple models that contribute general insights to evolutionary
demographic theory. In the future I plan to rethink and maybe refor-
mulate my models to get a handle on measurable quantities to derive
testable hypotheses from them.

This effort is a direct extension of my work. The parameters k, κ,
and δ in the vitality model can be used to set a time and size scale.
What is needed is an explicit expression that links vitality and size.
This relationship hinges on knowledge about the rate at which cells are
lost.

The η parameters capture the costs of maintenance and reproduc-
tion and have a major influence on the results of the model. Therefore
it is important to understand how to root them in reality. What are
the magnitudes of the η parameters for different types of species? This
question has to be answered to generate testable hypotheses from the
model.
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6.2.3 The Diversity of Aging

My work described in this monograph can be viewed as a theoretical
exploration of the inter-species diversity of aging, i.e., of how varied
aging can be for different species and what factors determine whether
a species’ strategy involves sustenance or senescence. I believe that the
models I developed can also be usefully applied, if somewhat refocused,
to studies of intra-species variability of aging patterns resulting from
environmental cues or conditions. A further research project that de-
rives from my work is to develop this kind of application of my models.

As an example, consider the article by Mair et al. [116]. This group,
from Linda Partridge’s laboratory, explored two kinds of phenotypic
plasticity of aging in genetically-identical lines of Drosophila. They ma-
nipulated diet and demonstrated that flies shifted to a restricted diet
experienced, for the rest of their lives, the same trajectory of lower
mortality as flies kept on the restricted diet all their lives. In terms
of my vitality model, this effect is most simply explained by a shift
in the parameter b. The “vitality” of a fly is unchanged by the dietary
shift: the shift influences how vitality determines mortality. In contrast,
Mair et al. [116] show that a reduction in temperature slows the pace of
mortality increase with age. This effect can be captured in my model
by a change in the deterioration parameter δ, or by a more general
change in all the “scale” parameters k, κ, and δ or by a change in the
strategy π. Which of these possibilities best captures reality? Collabo-
rative theoretical and empirical research might answer this intriguing
question.

A variety of other researchers, including James Carey, Thomas
Johnson, James Curtsinger and Marc Tatar, have conducted labora-
tory studies of how some environmental change alters subsequent age-
patterns of mortality and, in some cases, fertility. It may be possible
to interpret the results of such studies in terms of changes in the pa-
rameters of my models – and this might shed light on mechanisms that
underlie the phenotypic plasticity of aging.

6.2.4 The Characteristics of Senescent vs. Non-senescent

Species

Species can be classified according to various characteristics. A chal-
lenging direction for future research is to identify the characteristics
that distinguish senescent from non-senescent species.

The results of my models suggest that species with the capability
of continued growth after the onset of reproduction are candidates for
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non-senescent life-history strategies. The results of my vitality-based
model of Chap. 5 suggest that the costs of growth and maintenance
and the costs of reproduction (as captured by parameters ηg and ηr)
are the major determinants of senescence vs. sustenance. Developing
a theory that identifies the relevant traits in reality that correspond
to low vs. high values of ηg and ηr is a promising direction for future
research opened up by my work.

In this regard, modularity might prove to be an important trait that
can be associated with inexpensive growth and maintenance. The abil-
ity to reproduce clonally from segregated body parts, i.e. vegetative
propagation, might prove to be associated with inexpensive reproduc-
tion. More thought is needed to come up with plausible hypotheses
about characteristics that correspond to particular values of ηg and ηr.

A deep understanding of the returns to scale of investment to basic
processes of life will shed light on why some species senesce and other
species do not. Chap. 5 develops several ideas for exploration: Are there
differences in returns to scale for asexual and sexual reproduction?
Can the η parameters change with age, maybe being concave early in
live and transitioning to convex later in live? Could different levels of
organization, from the molecule over the cell to the whole organism be
associated with different shapes of trade offs? Much more research is
needed to answer all these questions.

The results of Chap. 5 further suggest that the parameters for intrin-
sic (i.e. state-dependent) and extrinsic (i.e. state-independent) mortal-
ity conditions (as captured by parameters b and c respectively) mainly
influence the degree of senescence of a life history. What characteristics
in a species determines the level of b and c? Williams [212] provides one
hypothesis of how mortality conditions should influence the patterns of
senescence. Research on this question has been done, e.g. by Ricklefs
[164] and Ricklefs and Scheuerlein [165], but further research is needed
to understand the influence of mortality components on the evolution
of aging.

Mapping typologies of species into a typology of aging would be
a major step towards understanding the evolution of senescence vs.
sustenance. The simplest typology of aging would distinguish between
species with strategies of senescence vs. sustenance. A more elaborate
typology could be based on the five age-patterns of mortality and fer-
tility discussed in Chap. 5. In addition to classifying species according
to the shape of age-patterns of mortality and fertility, species could
also be classified by their time scale: is life measured in hours, days,
weeks, months, years, decades or centuries? Similarly, their size scale
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could be used: is size measured in nanometers, micrometers, millime-
ters, centimeters, decimeters or meters? As discussed above, other pos-
sible classifications could be growth mode, i.e. determinate vs. inde-
terminate growth, or the structure of the body plan, i.e. modular vs.
non-modular structure.

6.2.5 Alternative Applications

The vitality model is a general model that could also shed light on other
aspects of life that influence successful survival and reproduction. One
important aspect is learning. If the single state variable in my models is
interpreted as including the level of knowledge or cognitive ability, then
the change in state can be due to learning or loss in cognitive ability. If
more experience and knowledge imply a lower risk of death and more
reproductive success, then my model can be extended to apply to the
evolution of learning.

6.3 Other Modeling Extensions

In this section, I discuss several other directions for research for de-
veloping evolutionary demographic models. Over the past three years,
there has been a spate of stimulating research in this area and I cite
some pathbreaking recent advances.

6.3.1 Density Effects

Trees do not move. To live they need space to stand on. Therefore
population density is crucial in a forest. If all patches are taken, no
seedlings can establish themselves. This is true not only for trees in a
forest but for many plants in many environments. In a recent working
paper, Doncaster and Seymour [50] show that this density effect can
explain the evolution of the great longevity of Bristlecone Pines. If seeds
can only root themselves on a patch freed by the death of an adult, then
longer lived trees have an evolutionary advantage. Their offspring will
occupy the space opened by the death of the shorter lived trees whose
offspring will not have found space to successfully establish themselves.
The density effect favors the evolution of longevity.

Density is not only important for trees. The abundance of individ-
uals in a population can significantly influence the evolution of life-
history traits in general. If density effects play a role, then Lotka’s
intrinsic rate of population increase r is not an appropriate measure
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of fitness. Charlesworth [24] suggests using the number of individuals
in the so called critical age group instead. Mylius and Diekmann [132]
analyze what fitness measure to use, given the specific way density con-
strains population dynamics. The fitness measure used in the models I
developed in Chaps. 4 and 5 is in accordance with the results of Mylius
and Diekmann [132, p. 4]. In my models, density affects fertility via the
multiplicative parameter ϕ for all ages equally.

Abrams [3] analyzes theoretically how extrinsic mortality should
affect senescence, given different scenarios of density dependence. Will-
iams [212] hypothesized that individuals living under more hazardous
conditions should exhibit faster senescence and thereby lower survival
than individuals living under more benign conditions. Abrams [3] shows
that Williams’ hypothesis will not always be valid if density effects alter
population dynamics.

Density could also affect the optimal phenotype in a population.
This could help to explain a puzzle recently noted by Resznick et al.
[163]. They observe that, for a population of guppies living under two
different mortality regimes in the wild, individuals from the high-risk
environment show better survival when brought into the laboratory
than individuals from the low-risk environment, contrary to Williams’
hypothesis. However, because fewer individuals survive in the danger-
ous habitat, density is lower than under safer conditions. Therefore, the
optimal high-risk phenotype develops when resources are more abun-
dant, while the low-risk phenotype develops when resources are scarce.
If more abundant resources allow for better growth and development
and if this influences adult mortality, then the high-risk phenotype
can be more robust than the low-risk phenotype. This density effect
as well as several other possible explanations for the guppy-puzzle are
discussed by Abrams [4].

Bronikowski and Promislow [15] emphasize that, depending on how
senescence is defined and what kind of condition-dependent mortality
is prevalent, different long-term effects on the evolution of senescence
can be expected.

6.3.2 Intergenerational Transfers

Resources are scarce. Therefore, the age-trajectory of resources avail-
able to an individual over the life course constrains the evolution of
optimal life histories. In this regard, resource flows among individuals
are a crucial fitness component. The common fitness measures R and r
do not include intergenerational transfers and, in particular, parental
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care. This can seriously distort results for species with significant pe-
riods of offspring dependence. Indeed, the degree of independence and
the level of mortality at birth both reflect initial parental investment
in offspring. From this perspective, size at birth relative to size at re-
productive maturity is an important quantity. Lee [109] points out that
the act of giving birth in itself can be interpreted as a transfer from
mother to child. Therefore transfers should generally be captured by
any measure of fitness.

Chu and Lee [36] and Robson and Kaplan [168] study conditions
under which transfers from adult to offspring can be optimal: they
model the co-evolution of longevity and transfers in human populations.
Modeling efforts along these lines could explain the decline in mortality
during development as well as the modest rather than steep increase
at post-reproductive ages.

6.3.3 Environmental Fluctuations

Environmental fluctuations are certain over the life course of nearly all
species. But their timing and magnitude can be highly uncertain. Natu-
ral selection needs time to work. If the environment changes faster than
it takes selection to be effective, then chance plays a major role in favor-
ing one species over another from one moment to the next. Populations
can keep on fluctuating and might not reach a stable age-distribution.
In variable environments the intrinsic rate of population increase is a
poor measure of fitness because it assumes a stable population. Instead,
the stochastic growth rate should be used to measure fitness (Orzack
and Tuljapurkar [143], for a review see Tuljapurkar [199]). In a changing
environment, the intrinsic rate of population increase r can be negative
at every point in time but the stochastic growth rate can be positive:
r does not capture real population dynamics.

Ripley and Caswell [166] demonstrate that an indicator of selection
pressure – namely the relative change in the stochastic growth rate
induced by changes in adult growth and survival of soft-shell clams – is
strongly dependent on the amount of uncertainty in the recruitment of
baby-clams. This state-dependent analysis implies that their indicator
of selection pressure can increase with age if this uncertainty is large.

The development of phenotypes depends on the environment. En-
vironmental cues can switch life histories between alternative age-
trajectories of mortality and fertility most suitable to current condi-
tions; some phenotypes can have prolonged life expectancy [7, 20, 63].
If life is harsh, nematode worms, for instance, can enter a state of very
low metabolic activity, called the dauer state, that enables the worm to
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survive long periods of drought. Switching strategies require survival
and reproductive patterns to be highly plastic.

In a recent issue of Science, Kussell and Leibler [104] offer a new
method for approximating long-term reproductive success in fluctuat-
ing environments. Organisms can switch phenotypes according to the
prevalent environment. Switching rates turn out to mimic the rate at
which the environment is fluctuating. Furthermore, two extreme strate-
gies of switching are compared – responsive vs. stochastic switching.
Kussell and Leibler [104] show that switching strategies will be re-
sponsive or stochastic, depending on whether the costs of sensing the
environment match the gains in reproductive success. An important de-
terminant of this decision is the speed at which environments fluctuate.
The information content of the environment (entropy) appears explic-
itly in the optimal solution, pointing to a deep connection between
population biology and information theory.

6.3.4 Population Dynamics

It is useful to assume optimal equilibrium when studying whether non-
senescence could be optimal at all. Research is needed to relax this as-
sumption to better understand the domain of non-senescence vs. senes-
cence. Given within-species dynamics like frequency dependence, could
a non-senescent strategy be invaded by an alternative, senescent vari-
ant?

Survival is heavily influenced by the ability to resist diseases. A
more or less costly immune system is necessary to fight the threats
from the fast-evolving micro world. Given across-species dynamics like
the co-evolution of the micro and macro world, how does the never-
ending battle with parasites influence the evolution of senescence? More
generally, some species are prey and other species are predators. Almost
all species compete with other species for food and other resources. How
does the competition among species influence age-patterns of mortality
and fertility?

6.3.5 Summary

The models developed in this monograph were designed to shed light
on whether non-senescent life-history strategies could be optimal. Fur-
ther research can deepen and extend evolutionary demographic theory
in various directions. In the previous sections I have highlighted the
directions that I think are of most immediate interest and importance.
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In particular, I laid out several research projects that directly derive
from my work, namely:

• Integrating optimization and the burden of deleterious mutations in
a single model,

• Reformulating my models such that the parameters are measurable
and testable hypotheses can be derived,

• Focusing my models so that they can be used to understand how a
species responds to changes in laboratory conditions, such as dietary
or temperature manipulations,

• Mapping typologies of species into typologies of aging, and
• Applying the general model to alternative questions such as the

co-evolution of longevity and learning.

In addition I have outlined five other directions for further evolutionary-
demographic modeling, involving

• Density effects,
• Intergenerational transfers,
• Fluctuating environments,
• Intra-species population dynamics, and
• Inter-species population dynamics.

6.4 Prospects for Evolutionary Demography

Evolutionary Demography is an interdisciplinary area of research that
has been newly evolving in recent years. In the following sections I high-
light three lines along which the field could move forward. First, some
canonical ideas need to be rethought. Second, new data, methods and
measures are needed. Third, aging – the processes of change over age –
can only be understood in the light of both senescence and sustenance
together.

6.4.1 Moving Beyond the Burden of “Deleterious Fixations”

The phrase “deleterious fixations” is meant to emphasize that research
on aging has been and still is influenced by long-held “truths” that
channel thinking into directions that are limited and might even be
wrong.

One of these fixations has successfully been rethought. For a long
time, lifespan was believed to be strictly limited and specific to a
species, i.e. nothing could be done about aging. The origin of the
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species-specific, limited lifespan paradigm can be traced back to Aris-
totle and Buffon. But over the past two decades gerontology has expe-
rienced a paradigm shift. Many experiments on flies, worms, yeast,
rodents and other species led to the discovery that dietary restric-
tion can prolong survival, helping shape the newly emerging insight
that lifespan is not limited but plastic. Vaupel et al. [201] present age-
patterns of mortality based on large sample sizes that do not increase
steeply but instead level off or even decline at later ages for several
species, thereby disproving the limited lifespan paradigm. Research on
nematode worms, starting with Klass and Hirsch [99] and Johnson and
Wood [89], demonstrates that changes in single genes can radically alter
longevity.

One of the most remarkable examples of the plasticity of aging is
presented in a paper by Mair et al. [116] that shows that changes in
diet enable switching up and down between different mortality curves
in Drosophila. Vaupel et al. [205] point out that similar patterns of
switches have been observed in humans. Vaupel and colleagues show
that mortality is plastic in humans even at advanced ages. One illustra-
tion is the convergence of mortality patterns in East and West Germany
after reunification.

Indeed, a lot can be done about aging. The shift from the limited to
the plastic lifespan paradigm is a major step forward in understanding
senescence, exemplifying the importance of moving beyond a “delete-
rious fixation”.

In the following, I list some other recalcitrant concepts that have
channeled thinking on aging.

• Universal senescence
Hamilton made the dogmatic claim that the force of selection in-
evitably declines, thus postulating the universality of senescence.
This has restricted creative thinking about possible age-patterns of
mortality.
How universal is senescence?

• Gompertz Law
It is widely believed that the age-pattern of mortality follows Gom-
pertz law, but is it a law? We do not know what species exhibit this
pattern over what range of age.
How universal is an exponentially increasing hazard of death?

• No senescence in the wild
It is often asserted that senescence is not experienced in the wild
because individuals do not live long enough due to a high extrinsic
hazard of death. This conjecture is intuitively appealing but it might
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be wrong, as pointed out by Nesse [138] and Carey and Gruenfelder
[18]. Carey and Gruenfelder summarize information available on the
role of the elderly in primates, elephants and whales. Furthermore,
Carey’s recent observation of supine behavior in medflies – flies ap-
proaching death start lying on their backs, taking a rest once in a
while over the remaining days of their lives – indicates that inter-
esting patterns of senescence may be open to study.
Is there senescence in the wild? What are the age-patterns of mor-
tality in the wild compared to those of creatures in captivity?

• Extrinsic hazard of death
Is it useful to distinguish between “extrinsic” and “intrinsic” hazards
of death? The “intrinsic” hazard depends on age or, more generally,
on an individual’s state or condition. Are there “extrinsic” hazards
that are independent of age or condition?
Extrinsic mortality is sometimes understood to be captured by the
difference in mortality patterns of animals in the wild compared
to patterns of those in captivity. However, animals kept in the zoo
cannot pursue their natural behavior, for instance running long dis-
tances. The lack of exercise and of other behaviors performed in
natural environments might distort mortality patterns in artificial
habitats. Therefore, extrinsic mortality is not captured simply by
the difference between mortality patterns in the wild and in captiv-
ity.
Probably most causes of death are condition-dependent. Natural
catastrophes that kill all members of a group independently of con-
dition could be seen as extrinsic risk, but such catastrophes may be
rare.
What causes of death are truly condition-independent for a partic-
ular species?

6.4.2 The Need for Data, Methods, and Measures

Future theories of the evolution of aging should rest on scientific evi-
dence. So far, the empirical evidence available on the age-trajectories
of mortality and fertility for most species is based on small sample sizes
[56, 159, 189, 215]. Meaningful age-patterns of demographic schedules,
however, need to be based on large numbers of individuals, especially
when studying senescence, because the size of the “interesting”, later
age-groups is progressively diminished by death. Vaupel [202] and Vau-
pel et al. [201] review the current empirical evidence of age-trajectories
of mortality for species that are based on large sample sizes. These
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species include humans, Drosophila, medflies, three other species of fruit
flies, a parasitoid wasp, the nematode worm C. Elegans, and yeast.

Serious study of the process of aging requires knowledge about ac-
tual patterns across a wide range of very different species. Biologists
interested in different species collect a large amount of data on their
particular species to answer their particular questions. It would be use-
ful to obtain knowledge about what data are out there and whether
people would be willing to contribute their data to a large database
that allows for broad comparative studies of life-history patterns. A
comparative study of the qualitative age-trajectories of mortality and
fertility including candidates from the whole range of species with suf-
ficiently large sample sizes is essential for developing theories of the
evolution of aging.1

Methods need to be developed and applied that allow extraction of
as much information as possible from the data available. Combining
information from different data sources can lead to more conclusive
results as emphasized by Anatoli Yashin and colleagues [217, 218]. An
important step has recently been taken by James Carey and colleagues
[130]: they developed a method for constructing life tables for captured
cohorts of unknown age.2 Their method circumvents the necessity to
follow individuals longitudinally in the wild from birth onwards.

In addition to the strong need for new data and methods, it is
important to develop a deeper understanding of how to measure senes-
cence and sustenance. I suggest defining senescence as was discussed in
Chap. 1: senescence occurs if but only if the relative change in mortal-
ity with age exceeds the relative change in fertility. I further suggest
a general measure for the degree of senescence of a whole life history
(Chap. 5): the fraction of life time reproduction that is realized at ages
at which mortality increases. When gathering data to get compara-
tive evidence it is essential to agree upon what is to be measured and
compared.

1 The Max Planck Institute for Demographic Research in Rostock has started
a project headed by Alexander Scheuerlein to collect data-sets on patterns of
mortality, fertility and growth for non-human species, in captivity and in the
wild. A related research initiative will be coordinated at Duke University by Cliff
Cunningham and will involve Jim Clark, James R. Carey and others. Other re-
searchers, including Shripad Tuljapurkar and Steven Orzack, Susan Alberts and
Tim Coulson, are also in the process of building databases on age-trajectories of
mortality, fertility, and growth. The ISIS (International Species Information Sys-
tem) provides data for species kept in zoos; these data have recently been used
to calculated comparative life tables for selected species of captive animals [100].

2 This became necessary because the capture-recapture approach is not feasible for
some species, including the medflies studied by Carey.
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Even though the ultimate interest of evolutionary demography is
focused on patterns over age, the deeper causal link is more than likely
with stage and not age. Models should be based on stage and incor-
porate a biologically justified link from stage to age. Empirical ob-
servations and theoretical insights should be used to identify the cru-
cial stage-variables that determine mortality and fertility patterns of a
species. These variables need to be measured and included in the data
sets.

6.4.3 A New Burning Question

A major and very important focus of research over the last decades has
been testing which of the two leading theories, mutation accumulation
vs. antagonistic pleiotropy, has more power to explain the evolution of
senescence. Half a century after Medawar, Williams and Hamilton, ev-
idence has been published both for and against mutation accumulation
and antagonistic pleiotropy. The debate has still not been settled. Re-
cent contributions include Charlesworth and Hughes [30], Charlesworth
[29], Hughes et al. [84], Partridge and Barton [148], Partridge [147] and
Steinsaltz et al. [187].

This monograph shows that senescence and sustenance are two sides
of the process of aging. One cannot be deeply understood without
the other. The new burning question that arises from my work is:
when does senescence vs. sustenance evolve? An overarching theme
that could guide theoretical and empirical work is: to what extent are
age-schedules shaped by adaptive vs. non-adaptive processes? What I
have done in this monograph is to broaden the focus from

• mutation accumulation vs. antagonistic pleiotropy to explain senes-
cence to

• adaptive vs. non-adaptive theories to explain senescence vs. suste-
nance.

Medawar, Williams and Hamilton developed the basic ideas of the evo-
lutionary theories of aging. The broadened focus suggested here allows
us a wider perspective.

Adaptive

Adaptive theories explain aging as a byproduct of evolutionary op-
timization. Such theories are based on models of optimization con-
strained by trade-offs. Antagonistic pleiotropy and the disposable soma
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theory are adaptive theories of senescence. Senescence, which in itself is
always a maladaptive process, is selected for because the trade-offs that
constrain the life history are such that the benefits in fitness outweigh
the costs due to senescence.

Reliability theory [65, 81, 108, 203] is another adaptive approach
to explain senescence. Individuals are adapted to functioning over a
sufficient period to guarantee the transmission of their genes. The sub-
sequent senescent process is a byproduct that is determined by the
preceding adaptive pattern.

If senescence and sustenance, i.e. aging, is explained by adaptive
processes, then understanding is needed of the factors that have a
strong impact on selection pressure vs. the factors that change se-
lection pressure only slightly. Identification of the “strong forces” vs.
“weak forces” of selection would provide a priority list of factors for
understanding what shapes the age pattern of demographic schedules
and its underlying variables3. For instance, Smith et al. [181, p. 1042,
Fig. 5] show that environmental conditions can radically change stage-
specific (and thereby age-specific) selection pressure. That is, the fac-
tor “environment” changes the importance of the different life-history
transitions among states. This means that the variability of the envi-
ronment is a strong force of selection. Note that, for this example (a
threatened floodplain plant), selection pressure is highly state- but not
age-dependent.

The list of valuable extensions to evolutionary demographic models
given above in Sect. 6.3 is, likewise, a list of strong forces of selection,
i.e. variability of the environment, density dependence, resource trans-
fers, dynamics within and across species and probably more. Clearly,
these components could interact with each other. Such interactions to-
gether with trade-offs among life-history traits at different ages can lead
to dynamics that are not captured by the simple age-specific changes
assumed in the indicators for the force of selection discussed in Chap. 2.

Non-adaptive

A non-adaptive theory is about what the force of selection cannot
achieve. From the viewpoint of a non-adaptive theory, senescence exists
because evolution is not strong enough to eradicate it. Sustenance, on
the other hand, cannot be explained by non-adaptive theories. Only
adaptive approaches have the potential to fully explain the aging pro-
cess, while non-adaptive theory can partially account for the senescent

3 I am grateful to Marc Tatar and Daniel Promislow for discussions about this.
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side of the story. This indicates that adaptive approaches will be more
powerful in explaining the aging process, although non-adaptive ap-
proaches could still play some role in explaining senescence.

The theory of mutation accumulation is a non-adaptive theory. The
successive weakening of the force of selection for or against mutations
implies that these mutations become increasingly neutral. Neutral the-
ory explains the fate of a gene due to genetic drift and this drift
strongly depends on population size. In this regard, assumptions about
the time-horizon (infinite vs. finite) and the rate at which mutations
occur at different ages are crucial to the conclusions from any mutation-
accumulation model.

Over the last few years mounting knowledge about the human
genome has been accumulating. Sufficient data are now available to
check for age-specific gene-expression patterns in humans and also in
other species such as Drosophila. It is possible to compare the fraction
of individuals exhibiting neutral versus non-neutral mutations at young
versus old ages. Evolutionary theories of senescence predict that falling
selection pressure should make non-neutral mutations look more and
more like neutral mutations as age increases. So if the fraction of in-
dividuals exhibiting non-neutral age-specific mutations becomes more
similar over age to the fraction with neutral mutations, then this would
be evidence for senescence being influenced by a non-adaptive process.

Evolution is constrained by phylogenetic history. A species can ex-
hibit a non-adaptive age-pattern because a particular evolutionary path
channels traits to a limited, possibly sub-optimal range. These phylo-
genetic channels could only be overcome in the very long run. So both
mutation accumulation and phylogeny are non-adaptive forces shaping
aging.

Further Thoughts

Creative thinking about alternative approaches to explain aging is
needed. What are possible factors that shape the age-trajectories of
mortality and fertility? Williams’s hypothesis suggests the crucial im-
portance of the extrinsic hazard of death. His hypothesis has been
tested and evidence has been found for and against it. The contra-
dictory evidence shows that this single factor is not enough to explain
the pace of senescence. Williams identified one important variable that
now needs to be put into perspective with other possible candidates.

What combination of these candidates leads to what qualitative
age-pattern? In particular, when does senescence evolve and when sus-
tenance? Clear, testable hypotheses need to be derived from theoretical
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models and empirical observations for what qualitative patterns of mor-
tality and fertility are expected and when. My models in Chaps. 4 and 5
are a first systematic contribution to answering this question. My find-
ings suggest that attention should be given to the costs of maintenance
and reproduction.

An equally interesting and related question is how plastic the process
of aging can be. For instance, studies of human twins have shown that
the same genome can be associated with different patterns of senescence
due to phenotypic plasticity. Only 25 % of the variation among humans
in life expectancy can be attributed to genetic variation [79, 125]. So,
how heterogeneous are species with respect to aging? What species
have high plasticity, what species have low plasticity, what characteris-
tics determine the degree of plasticity? Understanding the plasticity of
senescence and sustenance would provide a strong tool in steering our
own process of aging in the most advantageous way, i.e. towards a long
and healthy life.

6.5 Conclusion

Senescence and sustenance are described by the age-trajectories of mor-
tality and fertility. The age-trajectories of mortality and fertility are
the fundamental demographic schedules: they determine the dynamics
and structures of populations. In particular, they determine a popu-
lation’s genetic structure and size. Evolution can be viewed as change
in genetic structure and size of populations over time. Changes in ge-
netic structure lead to changes in age-trajectories. Therefore, evolution
molds and is molded by demographic schedules of mortality and fer-
tility. To understand the evolution of life it is crucial to study these
schedules. Mortality and fertility are deeply interconnected with each
other and in particular with the age-schedule of growth. The models
developed in the previous chapters shed new theoretical light on the
evolution of the age-schedules of mortality, fertility and growth and
their interconnections.

My models suggest that a remarkable variety of patterns may be op-
timal under different circumstances. The limited empirical data avail-
able suggests that species may exhibit a rich diversity of age-schedules
of mortality, fertility and growth. Current understanding of the biology
of aging is largely based on laboratory studies of a restricted range of
species. Getting reliable data on a wide variety of species is a crucial
research need.
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The evolutionary demographic theory of aging should aim at illumi-
nating senescence vs. sustenance through the study of the age-patterns
of mortality, fertility and growth. In particular, the research should
explain why some species have a quickly or slowly increasing hazard
of death and why others have a constant or falling hazard of death.
The models I have developed are a first step towards gaining a deeper
understanding of the evolution of senescence vs. sustenance. They lead
to the general insight that the costs of maintenance and reproduction
are the major determinants shaping these patterns.

In addition to exploring alternative qualitative patterns, evolution-
ary demographic theory should shed light on questions such as why
some species live on short time scales and others on long ones, why
some species grow large and others stay tiny and why some species
produce numerous small progeny while others produce only few large
progeny compared to adult body size. Thinking about scales of time
and size could aid in the understanding of what kinds of species exhibit
senescence vs. sustenance.

These species can be classified according to several characteristics.
How such typologies map onto the typologies of senescence vs. suste-
nance will undoubtedly be a stimulating direction for future research.

Senescence is not inevitable. Life provides an alternative strategy:
sustenance. Sustenance can theoretically be an optimal life-history
strategy and is empirically observed for some species. Sustenance may
be the strategy for a great many species in which mortality appears to
fall or be constant over age, at least over an extended period of life af-
ter reproductive maturity. More extensive empirical evidence is needed
for a broad range of species beyond humans, rodents, flies, nematodes
and yeast. My thesis, the central insight of this work, is: to deeply un-
derstand why some species senesce, it is necessary to understand why
other species do not.
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Vitality Model - Appendix

A.1 Solving Differential Equations

Solving for λψ

The Maximum Principle requires that

λ̇ψ = −
dH

dψ
, (A.1)

hence

λ̇ψ = −e−φ (1 − π)ηr εψ − λψ (πηg εψ − δ) − λφ μψ . (A.2)

Solving the differential equation leads to

λψ(a) =

(
−

∫ a

0
gψ e

∫ x
0

fψ(s) ds dx + A

)
e−
∫ a
0

fψ(s) ds (A.3)

with
gψ ≡ e−φ (1 − π)ηr εψ + λφ μψ (A.4)

capturing the change in fertility and in mortality with respect to a
change in vitality, and with

fψ ≡ πηg εψ − δ (A.5)

capturing the change in growth with respect to a change in vitality.
Note that the change in energy with respect to vitality εψ is given by

εψ = 0.75 k ψ−0.25 − κ , (A.6)

being the derivative of (5.12) with respect to vitality.
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Applying the transversality condition (5.20) in (A.3) one can solve
for the constant A and find

λψ(a) =

∫ ∞

a
gψ e

∫ x
a

fψ(s) ds dx , (A.7)

i.e.

λψ(a) =

∫ ∞

a

(
e−φ (1 − π)ηr εψ + λφ μψ

)
(A.8)

× e
∫ x

a
πηg εψ − δ ds dx .

The shadow price of vitality at age a is given by the associated
cumulated changes in fertility and mortality over all remaining ages
discounted by the corresponding cumulative changes in growth.

Solving for λφ

The Maximum Principle further requires that

λ̇φ = −
dH

dφ
, (A.9)

hence
λ̇φ = e−φ (1 − π)ηr ε(ψ) (A.10)

and thus

λφ =

∫ a

0
e−φ (1 − π)ηr ε(ψ) dx + C . (A.11)

Again applying the transversality conditions (5.20) helps to solve for
the constant C:

λφ(a) = −

∫ ∞

a
e−φ (1 − π)ηr ε(ψ) dx . (A.12)

The shadow price of the cumulative hazard of death at age a is the
negative value of remaining reproduction at age a, i.e. the penalty for
having one unit higher cumulative hazard.

The expression in (A.12) can be substituted in (A.8) to yield the
expression for λψ(a):

λψ(a) =
∫∞
a e

∫ x
a

πηg εψ − δ ds (A.13)

×
(
e−φ (1 − π)ηr εψ

+ b
ψ2

∫∞
x e−φ (1 − π)ηr ε(ψ) dτ

)
dx .
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The shadow price of vitality is given by the benefits of increasing re-
production due to higher vitality as well as the gains in remaining
reproduction due to lower mortality, both weighted by the change in
growth. As long as an increase in vitality leads to faster growth, this
weight is above one (revaluating), if the increase in vitality leads to
slower growth, then the weight is below one (devaluating).

Solving for Vitality

The differential equation in (5.14) can be solved substituting z4 = ψ.
After solving and re-substituting ψ, the equation for vitality is given
by

ψ(a) =

[
k

4

∫ a

0
πηg e−

κ
4

∫ a

s
πηg dτ − δ

4
(a− s) ds (A.14)

+ ψ(0)
1
4 e−

κ
4

∫ a
0

πηg dτ − δ
4

a

]4

where ψ(0) corresponds to vitality at age zero.
Note that for π = 0 expression (A.14) simplifies to

ψ(a) = ψ(0) e−δ a , (A.15)

and for π = 1 to

ψ(a) =

[
k

κ + δ
− e−0.25 (κ + δ) a

(
k

κ + δ
− ψ(0)0.25

)]4
. (A.16)

A.2 Proof of Non-Existence of an Optimal Solution for a

Special Case

Given that both ηr and ηg exceed one it can be proven that for the
special case of constant mortality (i.e. b = 0) no optimal solution exists.

Proof From (5.19) it follows that

H(π = 0) = λψ (ε(ψ) − δ ψ) + λμ(ψ) (A.17)

and
H(π = 1) = e−φ ε(ψ) − λψ δ ψ + λμ(ψ) . (A.18)

Inserting those equations into the inequality H(0) > H(1) and rear-
ranging terms leads to



144 A Vitality Model - Appendix

eφ λψ < 1 . (A.19)

The current value of the shadow price of vitality has to be smaller
than one forever. Note that it is the current value of the shadow price
of vitality, λc

ψ ≡ eφ λψ, that matters for the optimal solution (see

(5.22)).
For the special case of μ(ψ) = c, i.e. b = 0, it can be shown that at

some age a condition (A.19) will be violated: Since π = 0, (5.31) can
be written as

λψ(a) =

∫ ∞

a
e−c x εψ e− δ (x−a) dx . (A.20)

For constant mortality, condition (A.19) becomes ec a λ < 1. Thus,
multiplying (A.20) by ec a yields

λc
ψ(a) =

∫ ∞

a
e−c (x− a) εψ e− δ (x− a) dx . (A.21)

Taking into account that for π = 0 vitality is given by (A.15) and energy
changes with respect to vitality according to (A.6), (A.21) becomes

λc
ψ(a) =

∫ ∞

a
εψ e−(c + δ) (x−a) dx (A.22)

= 0.75ψ(a)−0.25 k

c + 0.75 δ
−

κ

c + δ
.

Does (A.19) hold? Inserting (A.22) and rearranging terms yields

ψ(a) ≥

(
0.75 k (c + δ)

(κ + c + δ) (c + 0.75 δ)

)4

. (A.23)

Since zero investment in growth (π = 0) causes vitality ψ(a) to ap-
proach zero as age a approaches infinity while the right-hand side
of (A.23) is a positive constant, condition (A.23) and thus condition
(A.19) will definitely be violated at a certain low level of vitality.

A.3 The Algorithm

To solve the dynamic optimization problem I applied a dynamic pro-
gramming approach by developing an algorithm following a backward
procedure and assuming stepwise constant vitality [12]. Crucial to Bell-
man’s approach is that the optimal decision does not depend on the
past, but is based solely on the current state. The state determines
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possible current and future payoffs. An essential requirement for this
backward optimization to work is the knowledge of an ultimate state
with known payoffs, the ultimate future expectation. The procedure
starts at this ultimate state and then works backwards along the state
trajectory. If the mode of change can switch back and forth between
growth and shrinkage, then such an ultimate state cannot be identified
and the problem becomes intractable with Bellman’s approach. My
model constraint implies that the switch can only occur once. Since life
necessarily starts off with growth, the switch is initially in up mode
and can optionally change into down mode.

The state trajectory is assumed to be stepwise constant. The time
it takes to change from vitality ψ to vitality ψ ± Δ (Δ > 0, step size)
is given by the step time

τ(ψ, π) =
Δ

ψ̇
, (A.24)

where ψ̇ is defined in Equation 5.4. Note that if vitality falls, then
τ(ψ, π) = −Δ/ψ̇ and if vitality is maintained then τ(ψ, π) = ∞.

At each level of vitality the algorithm maximizes remaining repro-
duction, given by

R(ψ) =

∫ τ

0
e−μ(ψ) a m(ψ, π) da + e−μ(ψ) τ(ψ,π) R(ψnext). (A.25)

Since vitality is constant over the time interval τ , the integral in Equa-
tion A.25 can be solved, yielding

R(ψ) =
m(ψ, π)

μ(ψ)

[
1 − e−μ(ψ)τ(ψ,π)

]
+ e−μ(ψ) τ(ψ,π) R(ψnext). (A.26)

Remaining reproduction is given by current reproduction weighted by
the chance of dying in that interval and remaining reproduction at the
subsequent level of vitality weighted by the probability of surviving the
time interval.

The algorithm to determine the optimal investment trajectory π∗(ψ)
(the star indicates “optimal”) has two parts, one for each mode. For
this application, the ultimate state corresponds to a vitality of ψ = 0
and therefore to a mortality that is infinite and remaining reproduction
of zero. Consequently, the first part of the algorithm begins in down
mode at the end of possible state trajectories, i.e. at the last level of
vitality ψ > 0 when the switch is in down mode. Since initial vitality
equals one, it is convenient to choose ψ = 1. Then, the initial step is to
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find π∗
d(1) and the corresponding R∗

d(1) (the d indicates “down mode”)
using Equation A.26:

π∗
d(1)) = max

π ε [0, π0]
Rd(1) (A.27)

= max
π ε [0, π0]

m(1, π)

μ(1)

[
1 − e−μ(1)τ(1,π)

]
+ 0

= max
π ε [0, π0]

(1 − π)ηr (k − κ)

b + c

×
[
1 − e−(b + c)Δ / (πηg (k−κ)− δ)

]
.

Note that my constraint implies that optimal investment π will lie
between zero and π0.

The procedure is repeated working backwards for all levels of vitality
up to the maximum attainable vitality ψ = Ψ , determined by Equation
5.8. For each level of vitality the optimal investment is found by

π∗
d(ψ) = max

πε[0, π0]

m(ψ, π)

μ(ψ)

[
1 − e−μ(ψ)τ(ψ,π)

]
(A.28)

+ e−μ(ψ) τ(ψ,π) R∗
d(ψ − Δ).

This part of the algorithm gives an optimal decision for each level of
vitality in down mode.

Maximum attainable vitality Ψ gives the ultimate state for the sec-
ond part of the algorithm. If the switch is in up mode and vitality
is at its maximum attainable level Ψ , then the decision is whether to
either stay in up mode and maintain maximum vitality or to switch
into down mode and follow the already calculated optimal investment
in down mode:

π∗
u(Ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π0(Ψ) if R∗
u(Ψ) = m(Ψ,π0)

μ(Ψ) > R∗
d(Ψ)

π∗
d(Ψ) otherwise.

(A.29)

Note that if mortality μ and fertility m are constant, then remaining
reproduction is given by m/μ.

Then vitality is followed backwards, down to the smallest level of
vitality ψ = 1. At each level of vitality the optimal investment is found
by
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π∗
u(ψ) = max

πε[π0, 1]
Ru(ψ) (A.30)

= max
πε[π0, 1]

m(ψ, π)

μ(ψ)
(1 − e−μ(ψ)τ(ψ,π))

+ e−μ(ψ) τ(ψ,π) R∗
u(ψ + Δ)

if R∗
u(ψ) > R∗

d(ψ) and otherwise π∗
u(ψ) = π∗

d(ψ). The second part of
the algorithm gives an optimal strategy for each level of vitality in up
mode.

The optimal strategy over the life course can be found by connecting
the results from part one and two of the algorithm in the following way:
Results are saved in the form of a vector⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

remaining reproduction

mode of change

vitality

investment

time

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R∗(ψ)

G, S or M

ψ

π∗(ψ)

τ∗(ψ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.31)

Note that the variable “mode of change” takes on the value G for
growth if vitality increases, S for shrinkage if vitality decreases and
M for maintenance if vitality remains constant. For each level of vi-
tality, the optimal vector is saved in a list. The optimal solution can
be found from this list by connecting the vectors in the right order.
The only logical succession of vectors regarding the mode of change are
(G, . . . , G,M), (G, . . . , G, S, . . . , S,M) and (G, . . . , G, S, . . . , S). Triv-
ially, vectors need be be nested according to subsequent levels of vital-
ity.

Finally, the constant parameter ϕ can be used to adjust R∗ to be
equal to one. This implies that density effects produce population sta-
tionarity by reducing life-time fertility [24, 132].
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Dölling, 45
damage, 5, 13, 14, 49, 51–54, 57, 72,

75, 77, 118, 119
Darwin, 3
degree of senescence, 108, 112, 122
Diekmann, 128
disposable soma, 5, 14, 135
Doblhammer, X
Doncaster, XIV, 14, 127
Drake, 32
Drenos, 14
dynamic programming, 14, 57, 67,

98, 144

Enhancement, 67, 68, 71, 95, 96,
98–100, 103–106, 113, 115, 119

Ensenescence, 103–106, 112, 122
epistasis, 25, 38, 41, 42
Evans, 28, 30, 32

Feichtinger, XIII
Finch, 44
Fisher, 5
force of selection, 1, 2, 4, 5, 19–21,

23–25, 33, 36–39, 41, 89, 132,
136, 137

Fragen, 52
Fuernkranz-Prskawetz, XIII

G-matrix, 37, 90
Gadgil, 51, 54, 80
Gampe, X, XIII
Gardner, 14
Gems, XIV
Golden, 42
Goldstein, X
Gompertz, 56, 132
Gompertz-Makeham, 56
Good, 25

Grigg, 44
growth, 2, 6, 13, 14, 36, 45, 50–56,

58, 59, 62–64, 66–73, 75–79,
81–83, 86–88, 90, 91, 94, 95, 97,
103, 104, 107, 108, 110, 113,
116–122, 125–129, 134, 138, 139

Gruenfelder, 133

Haldane, 9
Hamilton, VII, VIII, 1–4, 15, 19–27,

30, 33, 35–38, 40–44, 49, 59, 72,
89, 90, 132, 135

Hamiltonian, 59, 60, 62, 63, 67,
84–86, 88–91, 93–95

Hirsch, 132
Hughes, 43, 135

indeterminate growth, 2, 49, 72, 118,
127

Jeune, X
Johnson, 125, 132

Kamien, 62
Kaplan, 15, 41, 51, 129
Keightley, 32
Kemperman, 44
Kimura, 28, 32
Kirkwood, 5, 14
Klass, 132
Kohler, 45
Kozlowski, 14, 51, 53, 56, 57
Kussel, 130
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