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Foreword

How should life expectancy be calculated? More generally, how should life ta-
bles be estimated? Since John Graunt’s pioneering contribution, read before
the Royal Society of London at 6 p.m. on the 27th of February 1661, demogra-
phers have developed better and better methods. Some concerns were raised,
including concerns about how to deal with heterogeneous populations pub-
lished in an article in Demography in 1979 that I wrote with Kenneth Manton
and Eric Stallard. Yet, a few years ago nearly all demographers believed that
as long as the underlying population and death counts were accurate, then
lifetables could be reliably estimated.

John Bongaarts and Griff Feeney launched a revolutionary assault on this
dogma. Two key contributions by them are reprinted in Part I of this mono-
graph. Some very good demographers agreed, as least in part, with Bon-
gaarts’ and Feeney’s radical argument that when death rates are changing,
then tempo effects distort conventional calculations of life expectancy. Other
very good demographers disagreed. So John Bongaarts and I brought some
leading demographers together in a research meeting, co-sponsored by the
Max Planck Institute for Demographic Research and the Population Coun-
cil and held in New York City on November 18 and 19, 2004. Many of the
papers discussed at the workshop, generally after considerable revision, were
published in Demographic Research in 2005 and 2006. Nine of these articles,
in some cases somewhat revised, are published in this monograph: they are
the first seven chapters in Part II and the two chapters in Part III. Some pro-
vide support for the importance of tempo effects; others raise doubts, either
about the general concept or about methods proposed to remove the alleged
distortions.

Five additional contributions are published in this monograph. The In-
troduction, by Elisabetta Barbi, provides an overview of the monograph-and
thinking about tempo effects on mortality. The final chapter in Part II, by
Marc Luy, is a considerably expanded version of a shorter article published in
Demographic Research; it applies tempo methods to study the convergence of
death rates in East vs. West Germany following unification in 1989. The two
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chapters in Part IV are both new. In the first, John Bongaarts and Griff Feeney
share their afterthoughts. In the second, I present four simple examples that
demonstrate how and why mortality change can roil lifetable calculations. Fi-
nally, an Appendix by Jutta Gampe and Anatoli Yashin provides two proofs
of a formula developed by Griff Feeney; this material was previously published
in Demographic Research.

The chapters in this monograph are competently written, but nearly all
of them are difficult to read. The material is complicated, controversial, and
difficult to explain. I finally began to understand tempo effects, and the more
general concept of turbulence in demographic rates, when I worked through
some stylized examples. Some readers of this monograph might, therefore,
want to start with my concluding chapter. Others may find it more satisfying
to experience the developments of ideas by reading the book through from
the beginning.

The series of Demographic Research Monographs is under the editorial su-
pervision of the Max Planck Institute for Demographic Research. I am Editor-
in-Chief. I am advised by an Editorial Board that currently consists of Prof.
Elisabetta Barbi (Messina University, Italy), Prof. Gabriele Doblhammer (Ro-
stock University, Germany), Dr. Jutta Gampe (Max Planck Institute), Prof.
Joshua Goldstein (Max Planck Institute), and Prof. Bernard Jeune (Univer-
sity of Southern Denmark). Additional members of the Editorial Board will
be appointed as needed to review manuscripts submitted for possible publi-
cation. The current manuscript was reviewed and accepted by James Vaupel,
Elisabetta Barbi and Joshua Goldstein.The Editors thank Tobias Strauss for
helping prepare the manuscript for publication.

The Demographic Research Monographs series can be considered the
successor to the series called Odense Monographs on Population Aging,
edited by Bernard Jeune and James Vaupel. The volumes in this now-
terminated series were first published as hardcover books by an academic
publisher, Odense University Press, and subsequently made available online
at www.demogr.mpg.de/books/odense. The nine Odense Monographs on Pop-
ulation Aging include two collections of research articles that focus on specific
subjects on the frontier of demographic research, three volumes by senior re-
searchers that present path-breaking findings, a review of research on a topic
of emerging interest, a presentation of a new method for analysis of demo-
graphic data, an outstanding doctoral dissertation, and a unique collection of
important demographic data on non-human species.

The series of Demographic Research Monographs will continue this mix,
with books that are often under 200 pages in length, that have a clear focus,
and that significantly advance demographic knowledge. Research related to
population aging will continue to be a focus on the series, but it will not
the only one. The series will embrace all of demography, broadly defined.
As indicated by the first volume in the series, an important subject will be
historical demography. We also plan to publish research on fertility and family
dynamics. Mathematical demography is the core of the population sciences
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and we will strive to foster monographs, such as this one, that use mathematics
and statistics to further develop the theories and methods of demography.
Biodemography is a small but rapidly growing and particularly innovative
branch of demography: we will seize opportunities to publish monographs at
the intersection of biology and demography, pertaining both to humans and
other species, and including demographic research with ties to such fields as
epidemiology, genetics, evolutionary biology, life-history biology, experimental
demography, and paleodemography. The previous monograph in the series,
Inevitable Aging? by Annette Baudisch, combines mathematical demography
and biodemography.

Each volume in the Demographic Research Monograph series will have a
substantial link to the Max Planck Institute for Demographic Research. As
well as being published as hardcover books by Springer-Verlag, the volumes
of the Max Planck series of Demographic Research Monographs will subse-
quently be available at www.demogr.mpg.de/books/drm. The online version
may include color graphs, supplemental analyses, databases and other ancil-
lary or enhanced material. Parallel publication online and in print is a signif-
icant innovation that will make the monograph series particularly useful to
scholars and students around the world.

James W. Vaupel
Editor-in-Chief
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1 Background

The measurement of human longevity is one of the oldest topics in demogra-
phy. The most widely used measure of longevity is the period life expectancy
at birth which is calculated from age specific death rates by life table meth-
ods that originated with Graunt (1661) and have been standard in the field
for well over a century. Period life expectancy equals the mean age at death
in a synthetic cohort and it should be distinguished from the actual cohort
life expectancies calculated for a group of individuals observed over long time
periods.

A tempo effect is defined as an inflation or deflation of the period incidence
of a demographic event (e.g., births, marriages, deaths) resulting from a rise
or fall in the mean age at which the event occurs (Bongaarts and Feeney,
in this volume p.11 and p.29). The existence of tempo effects has been well
established in measures of fertility and nuptiality but the idea that mortality
measures may be also affected is new and controversial.

Tempo effects were first discovered and analyzed in the study of fertility.
If women shift the ages at which they bear children upward without changing
their completed fertility, annual numbers of births will be less than they would
have been because the same number of births will be spread out over a longer
time period. Similarly, if women begin to have children at younger ages, an-
nual numbers of births will be larger than they would have been because the
same number of births occurs over a shorter time period. These changes in
annual number of births induced by changes in the timing of childbearing are
tempo effects. The post-war “baby boom” in the United States, for example,
was due in part to a decline in the mean age at childbearing during the late
1940s and the 1950s (Ryder, 1964,1980) and in much of Europe recent period
fertility levels are depressed by tempo effects resulting from the postpone-
ment of childbearing (Sobotka, 2004). Tempo effects complicate the study of
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levels and trends of fertility because they produce changes in period fertility
rates that depend on the rate at which the mean age at childbearing changes,
independently of changes in completed fertility of cohorts. Ryder (1956) in-
troduced the term “timing distortion” to refer to tempo effects in the total
fertility rate because they are undesirable in most analyses of fertility levels
and trends.

Ryder’s pioneering work established the existence of tempo distortions in
the total fertility rate, but he did not propose quantitative adjustments to
remove tempo distortions. This may be explained in part by his strong em-
phasis on the conceptual priority of cohort fertility measures. Bongaarts and
Feeney (1998) first proposed to remove tempo distortion from the period total
fertility rate. Their tempo adjustment is obtained by dividing the observed
total fertility rate by 1 − r, where r equals the annual change in the period
mean age at birth. Recent applications of this method to obtain tempo ad-
justed fertility levels by birth order in many European countries are presented
in Sobotka (2003, 2004). The same method can be used to remove tempo dis-
tortions in period nuptiality measures as demonstrated by Winkler-Dworak
and Engelhardt (2004).

Bongaarts and Feeney (2002, in this volume p.11 and p.29) noted that
tempo effects affect the numerators of all period event rates. As a result,
tempo effects inflate and deflate not only incidence rates such as conventional
age specific birth or marriage rates (rates of the second kind) but also occur-
rence/exposure rates (rates of the first kind). Kohler and Ortega (2002,a,b)
propose procedures for calculating period fertility measures based on tempo
adjusted occurrence/exposure rates and applications of this method are found
in Sobotka (2003) and Winkler-Dworak and Engelhardt (2004).

The possibility that period life expectancy contains tempo effects was
proposed and studied by Bongaarts and Feeney (2002, in this volume p.11
and p.29). They reasoned that if occurrence/exposure rates for births and
marriages contain tempo effects then the same should be true for occur-
rence/exposure rates of other events such as deaths. Period life-expectancy
derived from these rates therefore should contain tempo effects as well when
the mean age at death changes. Their studies also propose an adjustment
to remove the tempo effect which is conceptually similar to the adjustments
made in fertility and nuptiality measures.

Tempo adjusted period measures of fertility, nuptiality and mortality
should be interpreted as variants of their conventional counterparts. The life
expectancy at birth, for example, is defined as the average age at death of
a newborn subjected throughout life to the age-specific death rates observed
in a given year. This is a hypothetical lifespan because no actual cohort will
experience these observed period death rates. According to Bongaarts and
Feeney, the tempo adjusted life expectancy is a similar hypothetical measure,
but one that corrects for distortions caused by year to year tempo changes.
Neither the observed nor adjusted life expectancy attempts to estimate the
mean age at death of any actual cohort, nor do they attempt any prediction
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of future mortality. The goal of the tempo adjustment is simply to provide
period quantum and tempo measures that are free of the tempo distortions.

This volume examines the question whether period life expectancy as cal-
culated by a conventional life table is affected by tempo effects. The interest in
the mortality tempo effect has grown recently and has generated an animate
debate among scientists involved in mortality research. Some scholars remain
unpersuaded about the existence of the effect in mortality but some skeptics
have begun to revise their views about the significance of the effect.

In order to promote further research on this important but controversial is-
sue, the Max Planck Institute for Demographic Research (Rostock, Germany),
in collaboration with the Population Council (New York, USA), organized an
international workshop on 18-19 November 2004 in New York.

The workshop produced a number of high-quality papers. Many of these
papers were then revised and submitted for publication to the journal Demo-
graphic Research and underwent the usual process of peer review. The present
volume collects a selection of these articles which have been already published
in Demographic Research during 2005 and 2006. Furthermore, the volume in-
cludes other important studies on the mortality tempo effect which were not
presented at the workshop in New York.

2 Overview of the monograph

This collection includes fourteen chapters grouped into four sections, plus an
Appendix. Two chapters by John Bongaarts and Griffith Feeney in the first
group present the background and the theoretical framework for the mortality
tempo effect. The first one, a pioneering work in the field, was published in
the Proceedings of the National Academy of Sciences in 2003. It shows that
observed death rates and period life expectancy as conventionally estimated
are distorted whenever mortality is changing and lead to a misleading indi-
cation of current mortality conditions. The authors propose an alternative
period measure of longevity adjusted for tempo changes. The new measure
is based on the assumption that the observed force of mortality at a given
time t is proportional to an age intensity defined as the rate at which the
proportion of cohort survivors in a population at time t varies from one age
to the next. It is shown that this assumption implies uniform delays of death
to older (younger) ages as mortality declines (increases). The authors demon-
strate that the so-called proportionality assumption is realistic in populations
with high life expectancy and when ignoring child and young adult mortal-
ity. In the second chapter, published in the Vienna Yearbook of Population
Research in 2006, the authors extend their previous studies and demonstrate
the existence of tempo distortions in period quantum and tempo measures of
a wide range of life cycle events. This chapter makes the connection between
the fertility and mortality tempo effects and gives a more general framework
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for the analysis of the tempo effect in demographic events, with empirical
examples for fertility, marriage and mortality.

The second section of the volume, consisting of eight chapters, is devoted
to critiques, extensions and applications of the mortality tempo effect. The
leitmotif of the first four chapters is the definition and the interpretation of
longevity measures for a better understanding of the complexity of mortality
dynamics.

German Rodriguez analytically reviews the concept of tempo effect in de-
mography. He analyzes the cohort implications of the Bongaarts-Feeney delay-
death model and shows that this is closely linked to accelerated failure time
models used in survival analysis. The author emphasizes important similarities
as well as fundamental differences between the analysis of fertility and mortal-
ity. He argues that in the case of fertility, the adjustments help to distinguish
changes in the quantum or tempo. This is not the case for mortality which
is a pure tempo phenomenon. When cohorts start delaying death, observed
mortality rates decline. Conventional life expectancy reacts instantly, whereas
the Bongaarts-Feeney tempo adjusted life expectancy reacts more slowly. Ac-
cording to the author, there is no bias or distortion in the observed force of
mortality. The two indicators - the conventional and the tempo-adjusted life
expectancy - simply measure different things. Conventional life expectancy de-
pends only on the force of mortality, whereas, the adjusted measure is affected
by the age composition of cohort survivors and, thus, reflects past rather than
current mortality. So, the conventional life expectancy tells us how long to-
day’s newborns will live under the current rates, whereas the tempo-adjusted
life expectancy tells us how long those dying today have lived under the pro-
portionality assumption.

James Vaupel argues that life expectancy under current rates and life ex-
pectancy under current conditions are different under a broad variety of cir-
cumstances. In particular, when mortality is changing, calculations of period
life expectancy do not, except in special circumstances, measure the life ex-
pectancy of a cohort of newborns that hypothetically live all their lives un-
der the current mortality regime, as argued by Bongaarts and Feeney. The
Bongaarts-Feeney delay-death model as well as various models accounting
for population heterogeneity in individual frailty are considered special cases.
The author then presents a model of stretched lifetimes based on the idea
that deaths that would have occurred over some period of time occur over
a longer period of time after a mortality improvement. Neither the conven-
tional life table approach nor the delay-death model nor the stretched lifetimes
model account for population heterogeneity. Vaupel concludes that the tempo-
quantum metaphor may not be optimal and considers the issue of selective
survival a better starting point as mortality changes may affect individuals
differently. Instead of the narrower term “tempo distortion in mortality” he
suggests to use a broader “theory of mortality turbulence” to allude to the
general phenomenon that when mortality is changing conventional lifetables
do not describe the cohort mortality experience under current conditions.
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In the following chapter, Kenneth Wachter focuses on the understanding
of what the mortality tempo adjusted measures do measure. He shows that,
under the proportionality assumption, the Bongaarts-Feeney measure is an
exponentially weighted moving average of period life expectancies from recent
past. This dependence on the past is the fundamental property of the mortality
adjusted measure. In contrast, the conventional life expectancy is an indicator
of current observed mortality. The fact that it is sensitive to sudden mortality
changes is, according to Wachter, an advantage, not a drawback. The author
concludes that adjustments for tempo do not make obvious sense in mortality
but only when there is a distinction between quantum and tempo in individual
experience as in the case of fertility.

The existence of tempo effect in mortality is critically examined by
Michel Guillot. He concludes that the Bongaarts-Feeney indicator can indeed
be considered a period measure under specific assumptions. But he argues
that the proportionality assumption is met only if one disregards mortality
under age 30 and that this additional assumption may not be appropriate
even in contemporary populations. Furthermore, the author asserts that Bon-
gaarts and Feeney’s index relies on a particular definition of changes in period
mortality conditions which implies, as a result of mortality changes, delays in
future cohort deaths that are cohort-constant. Thus, for instance, the fact
that the amount of benefits (delays in age at death) of a medical innovation
depends on how long before the innovation appeared is not considered in Bon-
gaarts and Feeney’s approach. Guillot concludes that until our knowledge of
mortality dynamics is better developed, it is preferable to use the conventional
life expectancy as an indicator of current mortality conditions.

One of the assumptions in the Bongaarts-Feeney’s approach is that delays
of death are age-independent. This issue is addressed in the following chap-
ter by Griffith Feeney who introduces the idea of “increments to life” as a
complementary perspective to the force of mortality in the study of chang-
ing mortality and length of life. The author develops a general mathemati-
cal representation of life gains allowing for continuous variation in age and
time which provide a method for assessing the robustness of the Bongaarts-
Feeney mortality tempo adjustment formula. Furthermore, the formulation of
age-variable increments to life is useful to avoid a restrictive assumption of
the Bongaarts-Feeney approach, that is the assumption of ignoring mortality
changes in infancy, childhood and young adult ages. Linked to this chapter is
an appendix by Jutta Gampe and Anatoli Yashin who provide two different
proofs for the first formula appearing in Feeney’s chapter. This formula, for
which the author did not give a mathematical proof, decomposes the differ-
ence between the expectations of life at birth for two cohorts in terms of the
increments to life values.

An alternative way of dealing with mortality tempo is devised by Hervé
Le Bras. The author proposes a model where mortality changes take place
with the removal of a given cause of death. This may produce a delay in
death but, contrary to Bongaarts-Feeney delay-death model, one that de-
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pends strongly on age. In the removal model, there is no discrepancy between
cross-sectional and longitudinal indexes, period measures of longevity are not
distorted and, thus, no correction is needed. The author claims that the pro-
posed method is more general and better suited to the true nature of mortality
processes. He concludes that the removal method should be preferred to the
delay method.

The following two chapters support enthusiastically the idea of tempo
effect in mortality. Shiro Horiuchi investigates the effects of changes in the
age distribution of cohort deaths on the age-specific number of period deaths
and, in turn, on the age-specific period death rate, under the assumption that
the age-specific number of deaths is constant among cohorts but allowing
for non parallel shifts in the age distribution. He first gives an intuitive and
visually oriented demonstration that a tempo distortion can in effect occur in
age-specific mortality. Then he provides a mathematical representation of the
mechanism. However, Horiuchi recognises that the study presented clarifies
the logical mechanism of only one of all possible pathways through which
mortality changes can affect period measures.

Finally, Marc Luy also has no doubt about the existence of tempo effects
in period life expectancy and the distortions they may cause (this chapter
does not spring from the workshop in New York). A shorter version of this
chapter was recently published in Demographic Research. Here we reproduce
an extended version including an extension of an example provided by Feeney
(2003) in his unpublished paper “Mortality tempo: a guide for the skeptic”.
Luy presents an application of the Bongaarts-Feeney method to the analysis of
mortality differences between western and eastern Germany. The results from
tempo-adjusted life expectancy provide a better fit than those from the con-
ventional life expectancy to the expected trends of changing mortality in Ger-
many. As a consequence, the author claims that the adjusted life expectancy
is a more realistic indicator of the level and changes in current mortality con-
ditions than the conventional life expectancy. Luy concludes that, although
the Bongaarts-Feeney adjusted measure can be improved since it is based on
strong assumptions, their approach should be preferred as long as there are
no better solutions.

The third part of the volume includes two chapters focusing on the compar-
ison of period and cohort measures of longevity. John Bongaarts summarizes
five recently proposed period measures of longevity and shows that three of the
five measures are identical to one another under the assumption that mortal-
ity follows a Gompertz model with a constant rate of improvement over time.
These measures, however, differ substantially from the conventional period life
expectancy when mortality changes over time. The author notes that these
empirical findings are consistent with the theoretical analysis by Bongaarts
and Feeney which showed that the deviation of conventional life expectancy
from the other longevity measures is caused by a tempo effect whose size
varies with the rate of change in mortality.
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The following chapter by Joshua Goldstein shows that, under the Bon-
gaarts - Feeney’s assumption of uniform postponement of death across all
ages, the additional assumption of linear mortality shift, and ignoring mortal-
ity below age 30, the tempo-adjusted life expectancy for a given year t, e∗0(t),
is equal to the life expectancy of the cohort dying in that year t, that is the co-
hort born e∗0(t) years earlier. Accordingly, Bongaarts-Feeney period longevity
measure corrected for tempo distortion may be seen also as a measure of co-
hort life expectancy. The author concludes that, in case of sudden mortality
change, the tempo adjustment is useful for understanding the implications of
mortality rates during shocks. However, in recent years, almost all the de-
veloped countries have experienced a steady mortality decline, a situation in
which the cohort interpretation gives more valuable sense.

Two chapters in the final section of the volume summarize the discussion
about the existence and the meaning of the mortality tempo effect. In their
concluding note Bongaarts and Feeney comment briefly on the main question
that has been raised by some chapters in the volume about their analysis of
the tempo effect and their proposal to remove this effect by adjusting the
conventionally calculated life expectancy. This question is whether the tempo
adjusted life expectancy is a current measure of mortality conditions as they
and Vaupel and Guillot believe, or a measure of the past mortality as sug-
gested by Rodriguez and Wachter. The authors also discuss the assumptions
underlying their tempo adjustment and argue that these assumptions hold for
senescent mortality which dominates in contemporary low mortality countries.

The issue of distortion in period death rates and life expectancy occurring
whenever mortality is changing is complicated and difficult to explain. For this
reason, James Vaupel presents four simple examples which clearly show how
lifesaving can roil lifetable statistics. He concludes that the question about
the existence of tempo effects in mortality is open but there is no doubt that
mortality change produces turbulence in lifetables. However, how much life is
extended when a death is averted is a question that needs further research.

What is then the “true life expectancy”? There is no doubt that the con-
ventional period life expectancy is not an accurate measure of longevity of
people born in or living in a given year. However, the debate on how best to
measure period longevity, the existence of tempo distortion in mortality and
the need of adjustments in longevity measures is still open. Nevertheless, I
believe that this set of insightful studies makes an important step toward a
deeper understanding of the population dynamics and the tune of valuable
longevity measures, and hope that it will stimulate further extensive research
in the field.
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mortality tempo effect



Estimating mean lifetime�

John Bongaarts1 and Griffith Feeney2

1 Population Council, 1 Dag Hammarskjold Plaza, New York, NY 10017, USA.
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2 9 Fairview Road, Scarsdale, NY 10583, USA. E-Mail: feeney@gfeeney.com

Summary. The life expectancy implied by current age-specific mortality rates is
calculated with life table methods that are among the oldest and most fundamental
tools of demography. We demonstrate that these conventional estimates of period
life expectancy are affected by an undesirable “tempo effect.” The tempo effect
is positive when the mean age at death is rising and negative when the mean is
declining. Estimates of the effect for females in three countries with high and rising
life expectancy range from 1.6 yr in the U.S. and Sweden to 2.4 yr in France for the
period 1980-1995.

When a group of persons is observed from birth to death, mean lifetime
may be calculated simply and directly as mean age at death. This statistic is
problematic, however, for studying trends in mean lifetime. Mean lifetime for
Swedish females born in 1850, for example, reflects mortality conditions from
the mid-19th to the mid-20th centuries, a period of historically unprecedented
increases in human survival. The study of these changes requires a different
approach.

Period life expectancy at birth calculated by life table methods has been
the standard solution to this problem since the mid-19th century (Preston,
Heuveline and Guillot, 2001). This chapter argues that it is an imperfect
solution, because life expectancy at birth calculated in this way is distorted
whenever it is changing.

Conventional life expectancy depends solely on the force of mortality func-
tion for time t. We propose an alternative measure that depends both on the
force of mortality function and on the rate of change in the standardized mean
age at death. Our alternative is based on the assumption that the observed
force of mortality function at any given time has the same shape as the force
of mortality function inherent in the standardized population age distribu-
tion at time t, which reflects the history of mortality in the population. We
� c©2003 Proceedings of the National Academy of Sciences of the United States of

America, 100(23):13127-13133. http://www.pnas.org/. Reprinted with permission
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demonstrate that this assumption is realistic in contemporary societies with
high life expectancy and also that the proposed measure is consistent with
well-established measures used in other demographic contexts.

1 Methods

1.1 Cohort mean lifetime

The distribution of lifetimes for a group of persons born during any given
time period (a “birth cohort”) may be described in three different ways. The
survival function,

l(a) , a ≥ 0 , (1a)

gives the proportion of individuals who survive to exact age a. It is nonin-
creasing, with l(0) = 1.0 and l(ω) = 0 for some advanced age ω. The death
density function,

d(a) ≡ −∂l(a)
∂a

, (1b)

gives the distribution of deaths by age. The force of mortality function,

µ(a) =
d(a)
l(a)

=
−∂l(a)/∂a

l(a)
(1c)

gives the risk of dying at each age. These functions are formally equivalent in
the sense that any two may be derived from the third. The force of mortality
function µ(a) may be derived from d(a) or l(a) by using Eq. (1c), for example,
and l(a) may be derived from µ(a) or d(a) by using

l(a) =
∫ ω

a

d(x) dx = exp
[
−

∫ a

0

µ(x) dx

]
. (1d)

Fig. 1 plots l(a), d(a), and µ(a) for the cohort of females born in Sweden in
1850. The survival function declines to zero at around age 100 yr. The density
function is broadly bimodal with peaks at age 0 and ≈ 80 yr. The force of
mortality exhibits a U-shaped pattern with a minimum at about age 10. Note
the use of the log scale to accommodate the large differences in magnitude at
different ages. These patterns are broadly typical, although levels of mortality
vary widely between populations and over time.

Mean lifetime for a birth cohort, M , may be calculated from l(a) as∫ ∞

0

l(a) d(a) , (2a)

from d(a) as ∫ ∞

0

ad(a) da , (2b)
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or from µ(a) as

∫ ∞

0

{
exp

[
−

∫ a

0

µ(x) dx

]}
da (2c)

These formulas give identical results. For the 1850 cohort of Swedish females,
for example, we calculate M = 48.1yr from each.

1.2 Period mean lifetime

Let

l(a, t) ≡ lt−a(a) , (3a)
d(a, t) ≡ dt−a(a) , and (3b)
µ(a, t) ≡ µt−a(a) , (3c)

where the subscripts at right indicate time of birth. Thus l(a, t) denotes the
proportion of persons born at time t − a who are surviving at time t; d(a, t)
denotes the density of deaths for this cohort at age a and time t; and µ(a, t)
denotes the corresponding force of mortality. Note that l(a, t) and d(a, t) differ
from the survival and density functions for synthetic cohorts obtained from
conventional period life tables, and that their calculation requires data on
either past births and migrations or on past deaths.

We refer to l(a, t) as the standardized population age distribution at time
t and to d(a, t) as the standardized age distribution of deaths at time t. The
standardized population age distribution and age distribution of deaths are the
same as their unstandardized counterparts in any population that experiences
constant numbers of births over time.

By analogy with Eq. (2), mean lifetime at time t may be calculated as

M1(t) =
∫ ∞

0

l(a, t) da , as (4a)

M2(t) =

∫ ∞
0

ad(a, t) da∫ ∞
0

d(a, t) da
, or as (4b)

M1(t) =
∫ ∞

0

exp
[
−

∫ a

0

µ(x, t) dx

]
da . (4c)

Each of these formulas has been used in demography to calculate period mean
age for some demographic event. Mean age at first marriage is often calculated
as a variant of M1(t) that allows for persons not marrying. This is the singulate
mean age at marriage introduced by Hajnal (1953), with l(a, t) taken as the
proportion of single persons at age a at time t (see, for example, ref. United
Nations (1990)). Mean age at childbearing is generally calculated as M2(t),
with agespecific or age-order-specific birth rates substituted for d(a, t) (see,
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Fig. 1. Mortality experience of the cohort of Swedish females born in 1850, as
summarized by the survival function, l(a) (A), the death density function d(a) (B),
and the force of mortality function µ(a) (C).

for example, ref. Council of Europe (2001)). Life expectancy at birth, denoted
e0(t), is conventionally calculated as M3(t).

We refer to M2(t) as the standardized mean age at death. The unstandard-
ized mean age at death is unacceptable as a measure of mean lifetime, because
it may be heavily distorted by the population age distribution. This objec-
tion does not apply to the standardized mean age at death, which might be a
widely used measure of period mean lifetime if it were more easily calculated.

If l(a, t) is constant with respect to t, the three means defined by Eq.
(4) are identical. When length of life changes, the three means diverge. The
following sections develop relationships among them.
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2 Results

2.1 Relation between M1 and M2

To establish a simple relationship between M1(t) and M2(t), let

ds(a, t) =
−∂l(a, t)

∂a
and µs(a, t)

ds(a, t)
l(a, t)

. (5a,b)

The age schedules ds(a, t) and µs(a, t) are inherent in the standardized popu-
lation age distribution at time t. They may be interpreted as the age distribu-
tion of deaths and the force of mortality function in the stationary population
whose age distribution is given by l(a, t), with l(0, t) = 1 for all t. This inter-
pretation is, of course, valid only if the mortality history of the population is
such that l(a, t) is a nonincreasing function of a (dl(a, t)/da ≤ 0).

Assume now that for t in the time interval [0,∆], there exists a function
p(t) independent of age, such that

µ(a, t) = p(t)µs(a, t) or, equivalently, (6a)
d(a, t) = p(t)ds(a, t) , (6b)

and that the function p(t) is a real valued integrable function bounded below
by 0. We refer to this as the proportionality assumption.

The proportionality assumption implies that the age schedules of µ(a, t)
and d(a, t) are the same in shape (but not necessarily level) as the age sched-
ules of µs(a, t) and ds(a, t). As will be shown below, this assumption provides a
good approximation for patterns of adult mortality in contemporary countries
with high life expectancy.

From Eqs. (4a) and (5a),

M1 =
∫ ∞

0

l(a, t) da =

∫ ∞
0

ads(a, t) da∫ ∞
0

ds(a, t) da
(7a)

and from Eq. (4b) and (6b),

M2 =

∫ ∞
0

ap(t)ds(a, t) da∫ ∞
0

p(t)ds(a, t) da
(7a)

On cancellation of the proportionality factor p(t), Eq. (7b) becomes Eq. (7a),
thus proving that M1(t) = M2(t).

2.2 Other implications of the proportionality assumption

It is shown in Appendix A that if the proportionality assumption holds, then

p(t) = 1 − ∂M1(t)
∂t

. (8a)
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Fig. 2. Average force of mortality for 1980-1995, observed as µ(a, t), estimated from
l(a, t) as µs(a, t), and estimated as the product µs(a, 1980 − 1995)p(t) for France
(A), Sweden (B), and the U.S. (C). Also shown is the average death density function
for 1980-1995, observed as d(a, t), estimated from l(a, t) as ds(a, t), and estimated
as the product ds(a, 1980− 1995)p(t) for France (D), Sweden (E), and the U.S. (F).

Substituting this in Eq. (6) and noting that M1(t) = M2(t) yields

µ(a, t) =
[
1 − ∂M2(t)

∂t

]
µs(a, t) , (8b)

d(a, t) =
[
1 − ∂M2(t)

∂t

]
ds(a, t) . (8c)

This shows that µ(a, t) and d(a, t) are functions of the rate of change in
the standardized mean age at death M2(t), because µs(a, t) and ds(a, t) are
determined by mortality conditions up to time t. When this mean age is rising,
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µ(a, t) < µs(a, t) and d(a, t) < ds(a, t), but when it is declining, µ(a, t) >
µs(a, t) and d(a, t) > ds(a, t).

As shown in Appendix B, the proportionality assumption also implies that
the age schedule l(a, t) shifts uniformly to older (younger) ages as the mean
age at death rises (falls). Uniform shifting between time 0 and time T means
that there is a function F (t) = M1(t) − M1(0), giving the magnitude of the
shift between time 0 and time t, such that, for all 0 ≤ t ≤ T ,

l(a, t) = l(a − F (t), 0) ∀a ≥ F (t) , (9)

and l(a, t) = 1 for a ≤ F (t). Downward as well as upward shifts are possible,
provided that l(a, t) = 1 for a less than some number > 0.

It follows from Eq. (5) that uniform shifts in l(a, t) imply uniform shifts
in µs(a, t) and ds(a, t) with the same shift function F (t), with µs(a, t) =
ds(a, t) = 0 when l(a, t) = 1. The proportionality assumption is therefore
equivalent to the shifting assumption made by Bongaarts and Feeney (2002).

Changes over time in the schedules µ(a, t) and d(a, t) are of two types.
First, as the mean age at death rises or falls, µ(a, t) and d(a, t) shift to higher
or lower ages with l(a, t), µs(a, t), and ds(a, t). Second, µ(a, t) and d(a, t)
are deflated or inflated relative to µs(a, t) and ds(a, t) by the proportionality
factor p(t).

2.3 Mortality change in France, Sweden, and the U.S.

We will now show that observed mortality patterns conform closely to the
proportionality assumption (Eq. (6)) if child and young adult mortality is
ignored. All quantities in this section, in Figs. 2-6, and in Table 1 are calculated
from observed values of µ(a, t) for ages > 30, but µ(a, t) is set to zero for ages
< 30 years for all t. Our estimates of life expectancy at birth are therefore
equal to 30 plus the life expectancy at age 30. For populations with high life
expectancy, nearly all deaths (97-98%) occur at ages > 30 yr, and actual life
expectancy at birth is therefore close to 30 plus the life expectancy at age 30.

Table 1. Alternative estimates of the period mean age at death (assuming no
mortality under age 30).

Mean age at death, females, 1980 − 1995
M3(t) Tempo effect

M1(t) M2(t) (= e0(t)) M4(t) M3(t) − M4(t)
France 79.0 79.2 81.4 79.0 2.4
Sweden 79.5 79.5 81.1 79.4 1.6
U.S. 78.3 78.3 79.9 78.3 1.6

Fig. 2 A-C shows the age schedules, µ(a, t), µs(a, t), and p(t)µs(a, t), all
calculated as averages of annual values for 1980-1995, for France, Sweden, and
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the U.S. Fig. 2 D-F shows the age schedules d(a, t), ds(a, t), and p(t)ds(a, t)
calculated in the same way with p(t) estimated with Eq. (8a). The near coin-
cidence of µ(a, t) and p(t)µs(a, t) and of d(a, t) and p(t)ds(a, t) shows that the
proportionality assumption is a good approximation for all three countries.
Note that the logarithmic scale used in Fig. 2 A-C means that perfect pro-
portionality corresponds to constant differences between the plotted values of
µ(a, t) and µs(a, t).

Fig. 3. Observed period force of mortality µ(a, t) in 1980 and 1995 for France (A),
Sweden (B), and the U.S. (C). Also shown is the observed period death density
function d(a, t) in 1980 and 1995 for France (D), Sweden (E), and the U.S. (F).

Fig. 3 A-C shows µ(a, t) for 1980 and 1995 for the same three countries.
Fig. 3 D-F shows corresponding values for d(a, t). The pattern of change in
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these schedules is consistent with the pattern of shifting and inflation/deflation
noted above.

Fig. 4 plots the age schedule l(a, t) for 1980 and 1995 for the three coun-
tries. The shape of l(a, t) changes very little, but there is a shift to higher ages
as life expectancy rises. The magnitude of the shift was 3.4 yr for France, 2.4
yr for Sweden, and 2.1 yr for the U.S.

The first three columns of Table 1 present averages of annual estimates of
M1(t), M2(t), and M3(t) for the years 1980-1995. The values for M1(t) and
M2(t) are nearly identical, as expected, but the M3(t) values are substantially
higher. The reason for the higher value of M3(t) is discussed below.

2.4 Tempo effects in demographic analysis

Tempo effects were first discovered and analyzed in the study of fertility. If
women shift the ages at which they bear children upward without changing
their completed fertility, annual numbers of births will be less than they would
have been, because the same number of births will be spread out over a longer
time period. Similarly, if women begin to have children at younger ages, annual
numbers of births will be larger than they would have been, because the same
number of births occurs over a shorter time period. These changes in annual
number of births induced by changes in the timing of childbearing are tempo
effects.

Fertility tempo effects have been extensively documented. The postwar
“baby boom” in the U.S., for example, was due in part to a decline in the
mean age at childbearing during the late 1940s and the 1950s (Hajnal, 1947,
Ryder, 1964, 1980, Bongaarts and Feeney, 1998).

Tempo effects complicate the study of levels and trends of fertility, because
they produce changes in period fertility rates that depend on the rate at which
the mean age at childbearing changes, independently of changes in completed
fertility of cohorts. Ryder (1956) introduced the term “timing distortion” to
refer to tempo effects, because they are undesirable in most analyses of fertility
levels and trends.

Tempo effects influence demographic processes other than fertility. A
tempo effect can be defined in general as an inflation or deflation of the pe-
riod incidence of a demographic event (births, marriages, and deaths) resulting
from a rise or fall in the mean age at which the event occurs.

Tempo effects influence demographic processes other than fertility. A
tempo effect can be defined in general as an inflation or deflation of the pe-
riod incidence of a demographic event (births, marriages, and deaths) resulting
from a rise or fall in the mean age at which the event occurs.

2.5 Tempo effects in mortality

A simple example will demonstrate how mortality tempo effects operate. Con-
sider a stationary population with a life expectancy at birth of 70 yr. Suppose
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Fig. 4. Observed period survival function l(a, t) in 1980 and 1995 for France (A),
Sweden (B), and the U.S. (C).

the exact age of death of each individual is predetermined until the invention
of a “life extension” pill that adds 3 mo to the life of any person who consumes
it.

If everyone in the population takes this pill on January 1 of year T , there
will be no deaths during the first 3 mo of the year. The number of deaths in
year T will fall by 25%, and the mean age at death will rise from 70 to 70.25
yr. Because the pill’s effect is the same at all ages, the level of the force of
mortality function is also reduced by 25%, and the age to which each value of
the function is attached increases by 0.25 yr. This fall in values of the force of
mortality function, together with the shift to older ages, causes life expectancy
at birth as conventionally calculated to rise to ≈ 73 yr for year T .
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Fig. 5. Hypothetical illustration of effect of increase in mean age at death by 0.25
yr (from 70.0 to 70.25) during year T on conventional life expectancy. Before and
after T , M1(t) = M2(t) = M3(t). During T , a tempo distortion of −25% in the
number of deaths results in an upward distortion of ≈ 2.5 yr in M3(t).

In the next year, the number of deaths and the force of mortality function
rise to the level observed before year T , but with values shifted forward to
older ages by 0.25 yr. Life expectancy at birth as conventionally calculated,
having risen from 70 yr prior to year T to ≈ 73 yr during year T , falls back
to 70.25 yr (Fig. 5). We contend that this temporary rise in life expectancy
at birth as conventionally calculated is a tempo distortion, because it is at
variance with the known trend in the mean length of life. Distortion of this
kind occurs whenever the standardized mean age at death changes.

2.6 Removing tempo effects

The tempo effect deflates (inflates) d(a, t) and µ(a, t) when the standardized
mean age at death rises (falls). Formulas (8b,c) show this deflation or inflation
is estimated by the multiplicative factor 1−∂M2(t)/∂t when the proportional-
ity assumption holds. The tempo effect may therefore be removed by dividing
d(a, t) and µ(a, t) by 1 − ∂M2(t)/∂t. Because M1(t) = M2(t), division by
1 − ∂M1(t)/∂t gives the same result. The latter approach is preferred, be-
cause it gives more stable results when applied to observed mortality rates.
We define

µ∗(a, t) =
µ(a, t)

1 − ∂M1(t)/∂t
and (10a)

d∗(a, t) =
d(a, t)

1 − ∂M1(t)/∂t
(10b)
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and refer to the expressions on the left as the tempo-adjusted death density
and force of mortality. It follows from Eq. (8) that µ∗(a, t) = µs(a, t) and
d∗(a, t) = ds(a, t) when the proportionality assumption holds.

Fig. 6. Trends from 1980 to 1995 for alternative estimates of mean age at death
M1, M2, M3, and M4 for France (A), Sweden (B), and the U.S. (C). The difference
M3 − M4 equals the tempo effect.

To calculate life expectancy at birth corrected for the tempo effect, the
defining formula (4c) is used with µ∗(a, t) substituted for µ(a, t), giving
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M4(t) =
∫ ∞

0

exp
{
−

∫ a

0

[
µ(x, t)

1 − ∂M1(t)/∂t

]
dx

}
da

=
∫ ∞

0

exp
{
−

∫ a

0

µs(a, t) dx

}
da =

∫ ∞

0

l(a, t) da = M1(t) , (11)

where M4(t) denotes life expectancy at birth without the tempo effect. Re-
moving the tempo effect from M3(t) gives the same result as M1(t) or M2(t).
The undistorted life expectancy at birth can be estimated as M1(t), M2(t),
or M4(t).

Table 1 shows average annual values of M4(t) as well as M1(t), M2(t),
and M3(t) for females in France, Sweden, and the U.S. for the period 1980-
1995. The corresponding annual trends are plotted in Fig. 6. These results
confirm that M1(t), M2(t), and M4(t) are nearly identical, but M3(t), the
life expectancy at birth calculated by conventional life table methods, is sub-
stantially higher than the other three means. The tempo effect, M3(t) minus
M4(t), averages 2.4 yr for France and 1.6 yr for Sweden and the U.S.

This analysis of tempo effects is based on trends in adult mortality only. We
ignore any tempo effects in mortality under age 30, because they are probably
small and difficult to quantify. In the absence of tempo effects under age 30,
the tempo effect in life expectancy at birth is only 2% or 3% smaller than the
tempo effect above age 30 measured here. This is because the probability of
survival from birth to age 30 is typically 0.98-0.97 in contemporary societies
with high life expectancy.

3 Conclusion

Life expectancy at birth as conventionally calculated is distorted whenever it is
changing. We have provided formulas to adjust for this distortion. The formu-
las are applicable to populations with high life expectancy. The adjustments
for France, Sweden, and the U.S. in recent decades reduce conventionally cal-
culated life expectancy at birth by 1.6 to 2.4 yr. These results confirm and
extend those given in Bongaarts and Feeney (2002).

The essential argument is as follows. Empirical observation indicates that
the proportionality assumption is closely approximated when life expectancy
at birth is high and child and young adult mortality are ignored. When the
proportionality assumption holds, increases (decreases) in length of life are
realized by a uniform translation of the standardized population age distri-
bution and the force of mortality function inherent in this age distribution
to higher (lower) ages. Neither the shape nor the level of the standardized
age distribution or the inherent force of mortality function changes; only their
location on the age scale changes.

The force of mortality function is likewise translated to higher (or lower)
ages without any change in shape, but its level changes with the rate of change
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in the standardized mean age at death, as shown by Eq. (8b). When the stan-
dardized mean age at death rises (falls), the force of mortality function falls
and shifts to the right (rises and shifts to the left). This fall (rise) in the force
of mortality represents the tempo effect and produces an undesirable rise (fall)
in life expectancy at birth as conventionally calculated. In our hypothetical
example (Fig. 5), increasing the standardized mean age at death from 70 to
70.25 yr over 1 yr results in a temporary decline of 25% in the force of mortal-
ity function and a temporary rise of nearly 3 yr in conventionally calculated
life expectancy at birth. The tempo effect in life expectancy in this case is
≈ 10 times the net change in mean lifetime.

In interpreting these findings, it is important to distinguish between cur-
rent observed death rates and current mortality conditions Ryder(1956). We
do not question the conventional life table calculation of period life expectancy
from observed age-specific death rates. We argue rather that tempo effects dis-
tort both the observed death rates and the corresponding life expectancy, so
that their values give a misleading indication of current mortality conditions.

Our empirical focus has been on human survival, but life table methods are
widely applied to survival data of all kinds. Examples include age at marriage
(the interval between birth and marriage), birth interval analysis (intervals
between successive births), length of schooling (interval between entering and
leaving school), and postoperative survival (interval between operation and
death). It is therefore likely that tempo effects are pertinent to many other
kinds of statistical survival analyses.
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Appendix A

We have to prove that the proportionality assumption (Eq. (6)) implies Eq.
(8a) of the text. Bennett and Horiuchi(1981), Preston and Coale(1982), and
Arthur and Vaupel (1984) show that

µ(a, t) = µs(a, t) − r(a, t) (A1)

where

r(a, t) =
−∂l(a, t)/∂t

l(a, t)
(A2)
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is the age-specific growth rate for age a at time t for the population whose age
distribution at time is t given by l(a, t). Note that Eq. (A1) may be written
as

µ(a, t) = −
[
∂l(a, t)/∂a

l(a, t)
+

∂l(a, t)/∂t

l(a, t)

]
, (A3)

which is an equation used in modeling cell population dynamics (McKendrick,
1926; Von Foerster, 1959; Trucco, 1965a,b). Equating the expressions for
µ(a, t) given by the proportionality assumption (Eq. (6a)) and Eq. (A1) and
rearranging terms gives

r(a, t) = [1 − p(t)]µs(a, t) . (A4)

Substitution of Eqs. (A2) and (5b) in Eq. (A4) yields

∂l(a, t)
∂t

= [1 − p(t)]
−∂l(a, t)

∂a
. (A5)

From the definition (Eq. (4a)) of M1(t), then,

∂M1(t)
∂t

=
∂

∂t

∫ ∞

0

l(a, t) da =
∫ ∞

0

∂l(a, t)
∂t

da

= [1 − p(t)]
∫ ∞

0

−∂l(a, t)
∂a

da . (A6)

Because the last integral on the right equals one, we have established formula
8a of the text.

Integrating the density function d(a, t) over age results in a period mor-
tality measure that may be called the total mortality rate TMR(t). (This
measure is equivalent to the total fertility rate widely used in the analysis of
fertility levels and trends.)

TMR(t) =
∫ ∞

0

d(a, t) da . (A7)

Substitution of Eq. (8a) gives

TMR(t) =
∫ ∞

0

p(t)ds(a, t) da = p(t) . (A8)

Appendix B

We have to prove that the proportionality assumption implies uniformly shift-
ing age distributions, i.e., Eq. (9), provided there is no mortality at younger
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ages. The first step is to find a characterization of uniformly shifting age dis-
tributions that applies to a point in time. The directional derivative provides
such a characterization. The directional derivative of the function l(a, t) at
the point (a, t) in the direction (b, u) is the rate of change at time t of the
function l(a + bt, t + ut), which may be expressed as

1√
b2 + u2

[
b
∂l(a, t)

∂a
+ u

∂l(a, t)
∂t

]
. (A9)

Now let f(a, t) be such that the directional derivative of l(a, t) at the point
(a, t) in the direction (f(a, t), 1) equals zero. Uniform translation corresponds
to the condition that f(a, t) be constant with respect to age, f(a, t) f(t) for
all t, and therefore to the condition

f(t)
∂l(a, t)

∂a
+

∂l(a, t)
∂t

= 0 . (A10)

If this identity holds, the directional derivative of l(a, t) at the point (a, t) in
the direction (f(t), 1) is zero.

If the proportionality assumption holds, text formula (8b) holds (as just
shown in Appendix A), and this together with Eq. (A1) implies, equating the
expressions for µ(a, t) and rearranging terms,

∂M1(t)
∂t

µs(a, t) − r(a, t) = 0 . (A11)

Multiplying both sides by −l(a, t) gives

∂M1(t)
∂t

∂l(a, t)
∂a

+
∂l(a, t)

∂t
= 0 , (A12)

which shows that the directional derivative of l(a, t) at (a, t) in the direction
(f(t), t) equals 0 for all ages a, with f(t) = ∂M1(t)/∂t.

To show that this implies uniform shifting of the age distribution, it is
necessary only to note that f(t) is the rate of change of the contour line in the
age-time plane defined by the points (x + t, t) for which l(x + t, t) = l(a, 0).
The function F (t) of the uniform shifting formula (Eq. (9)) therefore equals
the integral of f(·) from 0 to t.
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Summary. This study develops and applies a general framework for the analysis
of the period quantum and tempo of life-cycle events, extending methods developed
previously by the authors. The existence of tempo distortions is demonstrated in
selected period quantum measures such as the total fertility rate and in period tempo
measures such as life expectancy. A tempo distortion is defined as an inflation or
deflation of a period quantum or tempo indicator of a life-cycle event, such as birth,
marriage, or death, that results from a rise or fall in the mean age at which the
event occurs. Period measures derived from life tables are also found to be subject
to tempo distortions. Methods to remove these tempo distortions are then developed
and applied.

1 Introduction

Questions about human life-cycle events are central to demographic analysis
and to social and health policies. How many children do we have? How long
do we live? What proportion of men and women ever marry? When do we
retire? How much time in old age is spent in good health?

To answer such questions standard demographic methods have been devel-
oped to measure key dimensions of the distribution of events over the life cycle.
Attention usually focuses on the two primary components of these distribu-
tions, the level or quantum component and the timing or tempo component.
Quantum is measured as the average number of events over the course of the
life cycle and tempo as the mean age at the event3. The total fertility rate is
a quantum measure of fertility, for example, and life expectancy at birth is a
tempo measure of mortality.

The quantum and tempo of events can be measured either for cohorts, to
summarise the actual experience of a group of persons born in the same year,
� c©2006 Vienna Yearbook of Population Research, pp. 115-151.
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3 On the standard hypothetical condition that the cohort experiences no deaths.
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or for periods, to describe the experience of a hypothetical cohort subject to
the conditions observed in a given time period. Cohort measures of quantum
and tempo are easily and unambiguously obtained by following a cohort over
time until it reaches an age at which the risk of the event equals zero.

Period measures of quantum and tempo, though conceptually more dif-
ficult, are far more widely used for two main reasons. First, because cohort
indicators measure ongoing changes in demographic processes after a lag, they
cannot adequately describe year-to-year changes. Second, period measures re-
quire less historical data than cohort measures and may therefore be calculated
for many more countries and more times.

This study continues our work on tempo effects in demographic analy-
sis. Bongaarts and Feeney (1988a) defines period tempo distortions for total
fertility rates and provides a method for correcting these distortions. Bon-
gaarts and Feeney (2002, in this volume p. 11) gives analogous results for life
expectancy. This chapter develops and applies a general framework for the
analysis of the period quantum and tempo of life-cycle events of all kinds,
with empirical examples for fertility, marriage and mortality. We begin with
a brief presentation of the two main types of age-specific rates from which pe-
riod quantum and tempo measures are calculated. The remainder of the study
is divided into two parts corresponding to the two types of rates. Both of these
parts demonstrate the existence of tempo distortions in selected period quan-
tum and tempo measures. A tempo distortion is defined as an inflation or
deflation of a period quantum or tempo indicator of a life-cycle event, such as
birth, marriage, or death, that results from a rise or fall in the mean age at
which the event occurs. We then develop and apply methods to remove these
tempo effects.

2 Background: age-specific event rates

Two types of age-specific rates are used in demographic analysis: rates of the
1st kind, or hazard rates; and rates of the 2nd kind, or incidence rates (Henry
1972; Sobotka 2003, 2004a; Kohler and Ortega 2002a).

Rates of the 1st kind (hazard rates) are illustrated by standard age-specific
death rates. They are quotients in which the numerator counts events occur-
ring to persons at age a and time t and the denominator counts persons
exposed to risk of the event in question at age a and time t. These rates are
also called risks, intensities, conditional rates and occurrence/exposure rates.
For the life–cycle events considered in this chapter–first birth, first marriage,
and death-persons exposed to risk are those who have not already experienced
the event.

Rates of the 2nd kind (incidence rates) are illustrated by standard age–
specific birth and marriage rates. They are quotients in which the numerator
counts events occurring to persons at age a and time t and the denominator
counts all persons at age a and time t, including those who have already
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experienced the event. Incidence rates are also called densities, unconditional
rates, reduced rates, and frequencies.

The relation between rates of the 1st kind and rates of the 2nd kind
is straightforward for first births, first marriages, and death. The denom-
inators of hazard rates exclude persons who have already experienced the
event, whereas the denominators of rates of incidence include these persons.
This relationship may be expressed using life table notation as µ(a, t) =
d(a, t)/p(a, t), where µ(a, t) denotes a hazard rate, d(a, t) a corresponding
incidence rate, and p(a, t) denotes the proportion of persons born at time
t − a who have not experienced the event by age a.

The relation between the two kinds of rates for events that can occur more
than once in a lifetime (recurrent events) is more complicated. The established
way of dealing with recurrent events is to number events in order of occurrence
to each individual. For example, births are divided into first births, second
births, third births, and so on. In this way any recurrent event may be resolved
into a series of non-recurrent events, which can be analysed separately.

Table 1 displays and compares the two kinds of rates for first birth, first
marriage, and death. The first row shows clearly the distinction between rates
of the 1st and 2nd kind. The numerators of the two rates are the same (first
births), but the denominators of rates of the 1st kind exclude women who
have already had a first birth, whereas the denominators of rates of the 2nd
kind include these women. Summing these rates of the 2nd kind for all birth
orders gives the standard age-specific birth rates from which the total fertility
rate is calculated.

The second row of Table 1 shows the two kinds of rates for first marriages.
As in the case of first births, the numerators of the two rates are the same.
The denominators of rates of the 1st kind exclude women who have already
married, whereas the denominators of rates of the 2nd kind include these
women.

The last row of the table shows the two kinds of rates for death. The rates
of the 1st kind are standard age-specific death rates or, given the continuous
formulation, the force of mortality. As in the case of the rates for first birth and
first marriage, the numerators of the two kinds of death rates are the same, but
the denominators of the rates of the 1st kind exclude persons who have already
experienced the event–i.e., persons who have died–whereas the denominators
of rates of the 2nd kind include these persons. Thus the denominators of the
death rates of the 2nd kind include persons in the cohort who have already
died as well as those who are living.

Death rates of the 2nd kind are obviously unconventional, for although the
quotient shown is a standard demographic statistic–the value of d(x) in the
cohort life table for persons born at time t− a–this statistic has not generally
been regarded as comparable to the other frequencies shown in the table.
Indeed, it is only regarded in this way in a very few studies, e.g., by Sardon
(1993, 1994) and Bongaarts and Feeney (2002, in this volume p. 11).
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Table 1. Rates of the 1st and 2nd kind for first birth, first marriage, and death.

Event Rates of the 1st kind Rates of the 2nd kind
(occurrence-exposure rates) (frequencies)

First 1st births at age a and time t 1st births at age a and time t
birth Childless women age a at time t All women age a at time t

First 1st marriages at age a and time t 1st marriages at age a and time t
marriage Never-married women at All women age a at time t

age a and time t

Death Deaths at age a and time t Deaths at age a and time t
Persons living at age a and time t All persons born at time t a

Death rates of the 2nd kind are strictly analogous to first birth rates and
first marriage rates of the 2nd kind. For all three events, the denominator
includes persons who have not yet experienced the event as well as persons who
have already experienced the event. The characterisation of the denominator
for death rates of the 2nd kind appears exceptional only because “persons”
usually connotes “living persons”, though of course it may refer to deceased
persons as well.

An important general property of rates of the 2nd kind for non-repeatable
life cycle events is that the sum (integral) of these rates over all ages for a
birth cohort gives the proportion of the cohort that experiences the event.
Thus summing age-specific first birth rates gives the proportion of women
ever having a (first) child, and summing age-specific first marriage rates gives
the proportion ever marrying. The sum of the death rates of the 2nd kind
over all ages for a birth cohort will equal one because everyone dies.

The interpretation of the sum of rates of the 2nd kind over all ages as
the proportion experiencing the event is straightforward and unambiguous
for cohorts. Calculating the sum of first birth, first marriage or death rates
for periods is equally straightforward, but the interpretation of these sums as
the proportions ever experiencing the event in synthetic cohorts is problematic
due to tempo effects in period measures, as will be demonstrated next.

3 Period quantum and tempo measures of the 2nd kind

3.1 Standard equations for quantum and tempo measures

Table 2 presents general equations for calculating period quantum and tempo
from rates of the 2nd kind and specific results for first birth, first marriage, and
death. The total event rate TER(t) and the mean age at event MAE(t) are
defined by the formulas in the first row of the table, with d(a, t) denoting the
age-specific rate of the 2nd kind for any of the events shown. The total event
rate equals the average number of events over the life cycle for a hypothetical
cohort subjected to the rates at time t (in the absence of competing events).
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For events that occur only once, the total event rate equals the proportion of
persons in the hypothetical cohort who ever experience the event.

The quantum and tempo measures of first birth and first marriage in Table
2 are standard tools in demographic analysis and estimates are available for
many countries. The total mortality rate and the mean age at death (birth
cohort normalised), though defined in precise analogy with the fertility and
mortality measures, were introduced for the first time by Sardon (1993, 1994)
and further analysed in Bongaarts and Feeney (2002, in this volume p. 11;
note that MAD(t) is not the mean age of deaths occurring at time t because
the effects of variations in cohort size are removed). The table therefore illus-
trates that measures that are standard for some demographic processes may
be unknown in the study of other processes.

Table 2. Period measures of quantum and tempo based on rates of the 2nd kind
for first birth, first marriage, and death.

Period quantum

General formula Total event rate, TER(t)
TER(t) =

∫ ∞
0

d(a, t)da
First birth Total fertility rate, order 1, TFR1(t)
First marriage Total 1st marriage rate, TNR1(t)
Death Total mortality rate, TMR(t)

Period tempo

General formula Mean age at event, MAE(t)
MAE(t) = 1

TER(t)

∫ ∞
0

ad(a, t)da

First birth Mean age at 1st birth, MAB1(t)
First marriage Mean age at 1st marriage, MAM1(t)
Death Mean age at death (birth cohort normalised), MAD(t)

Note: ”TNR” (N for ”nuptiality”) is written for 1st marriage so that ”TMR” may be used for
Total mortality rate.

Figures 1 to 3 present empirical results for the quantum and tempo mea-
sures summarised in Table 2 for selected populations. Figure 1 shows total
fertility rates for birth order one, TFR1(t), and the mean age at first birth,
MAB1(t), for the United States from 1950 to 2000. Values of TFR1(t) ex-
ceeded one for most of the 1950s, an obvious anomaly since no woman can
have more than one first birth. This period of elevated fertility coincided with
the decline in the age at first birth during the baby boom years of the 1950s.

Figure 2 shows total first marriage rates, TNR1(t), and the mean age at
first marriage, MAM1(t), for France from 1960 through 2001. The above-
one rates for France in the early 1960s are anomalous because a woman can
experience at most one first marriage. The apparent explanation, by analogy
with that for first births, is the declining mean age at first marriage. First
marriage rates for France decline over the period shown, with values around
0.5 toward the end of the period. Similar trends are observed in many other



34 John Bongaarts and Griffith Feeney

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1950 1970 1990 2010

B
ir

th
s
/w

o
m

a
n

21

22

23

24

25

26

27

28

M
e
a
n

a
g

e
a
t

b
ir

th

Fertility quantum, TFR1(t)

Fertility tempo,

MAB1(t)

Fig. 1. Total fertility rate, order one, and mean age at first birth in the USA.

European countries, but proportions ever-married for cohorts born in the late
1960s are much higher than 0.5 (Council of Europe 2002). This suggests that
the low first marriage rates are distorted.
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Fig. 2. Total first marriage rate and mean age at first marriage, females in France.
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Figure 3 shows total mortality rates, TMR(t), and the mean age at death,
MAD(t), for England and Wales from 1975 to 1998. (For reasons given below
all mortality measures in this study include adult mortality above age 30 only.)
The total mortality rate is well below one (0.85-0.90). Since every person dies
once, any total mortality rate other than one is anomalous. Mortality tempo
(MAD) rose sharply throughout the period, and the analogy for first birth and
first marriage therefore suggests again that this is the reason for the TMR
values different from one.
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Fig. 3. Total mortality rate and mean ages at death, females in England and Wales
(adult mortality only).

3.2 Tempo effects

We will now demonstrate that the various anomalies evident in Figures 1, 2,
and 3 are largely attributable to tempo effects. A tempo effect is defined as
an inflation or deflation of the number of events observed in a period when
the period (cohort size adjusted) mean age changes. Tempo effects in event
numbers lead to tempo effects in event rates (of the first and second kind)
and these in turn lead to tempo effects in most period tempo and quantum
measures. Tempo effects in these aggregate measures (but not in rates) will
also be referred to as distortions, following terminology introduced by Ry-
der (1956) in his analysis of the fertility tempo effect. This section presents
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the theoretical basis for this effect and offers additional empirical evidence
supporting the theory.

Theoretical basis for tempo effects

Norman B. Ryder (1956, 1959, 1964, 1980, 1983) made a series of fundamental
contributions to the study of quantum and tempo measures. His paradigmatic
contribution was a simple model that showed that the period total fertility rate
(TFR) does not, in general, equal the cohort completed fertility rate (CFR)
even if fertility has been constant for a long period of time. His “translation”
formula

TFR = CFR(1 − rc) (1)

shows that the TFR in a constant fertility population tends to be lower than
the CFR when the cohort mean age at childbearing is rising (i.e., the rate
of change in this mean, rc, is positive and hence (1 − rc) < 1) and higher
than the CFR when the mean age at childbearing is falling (rc is negative,
(1−rc) > 1). This equation assumes linearity in time trends of the age-specific
fertility rates. Ryder refers to (1− rc) as an “index of fertility distortion” and
he considered the TFR to be a distorted measure when the fertility tempo
changes.

Ryder’s analyses of period fertility trends in the United States (1980, 1983)
showed how changes in the timing of childbearing among cohorts of women in-
fluenced annual age-specific birth rates and total fertility rates. When women
shift upward the ages at which they bear children, annual numbers of births
tend to be deflated because the same number of births will be spread out over
a longer time period (e.g., during the 1970s and 1980s). Similarly, when age
at childbearing shifts to younger ages, total fertility rates tend to be inflated
because the same number of births are compressed into a shorter time period
(e.g., during the late 1940s and 1950s).

Zeng and Land (2002) extend Ryder’s analysis by deriving the following
translation formula,

TFR = CFR(1 − rp) , (2)

where rp denotes the rate of change in the period mean age at childbearing
and TFR, CFR, rp, and the shape of the schedule of age-specific fertility rates
are assumed constant. They consider this alternative version of the translation
equation preferable to (1) because their constant shape assumption is more
realistic than Ryder’s linearity assumption.4 The conditions under which (2)
holds (i.e., constant quantum, fixed rate of increase in the period mean, and
an invariant shape) will collectively be referred to as the “translation assump-
tions”.
4 Zeng and Land (2002) prove this with their assumptions TFR = CFR/(1 + rc)

and rc = rp/(1 − rp), where rp is the rate of change of the period mean age of
childbearing. Cf. formula (2).
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These translation equations were developed for the analysis of fertility
trends, but analogous equations apply to other life-cycle processes provided
that the same translation assumptions apply. For mortality, for example, we
have

TMR = CMR(1 − rp) , (3)

where TMR is the total mortality rate, CMR denotes the cohort completed
mortality rate, and rp is the rate of change in the period mean age at death,
MAD (see Table 2). Because everyone dies once, the CMR equals (1) and (3)
simplifies to

TMR = 1 − rp (4)

This result shows the operation of the tempo distortion in its most basic
form: the TMR simply equals the distortion index. The undistorted value of
TMR = 1 is obtained only if the mean age at death is constant (i.e., rp = 0).
Any change in the mean age at death, whether up or down, results in a tempo
effect in the total mortality rate and in the mortality rates of the 2nd kind
from which it is calculated. The effect is evident in Figure 3, which shows that
estimates of TMR for England and Wales is about 0.86. This is more or less
consistent with the rate of change in the mean age at death shown in Figure
3, about 0.14 years per year.

The period-cohort translation formulas of Ryder (1) and Zeng and Land
(2) may be applied when fertility is changing slowly by comparing the TFR
for any given year with the CFR for the cohort that reaches its mean age at
childbearing in this year (Ryder 1956; Sobotka 2003). If the 1960 birth cohort
has a mean age at first birth of 25 years, for example, the CFR for this cohort
is compared with the TFR for 1985. To attenuate year-to-year fluctuations,
TFRs may be averaged over a series of years.

To illustrate, Table 3 presents evidence for tempo distortion in the TFR
of France during the last quarter of the 20th century. The TFR was relatively
stable during this period, with an average value of 1.80 children per woman.
The completed fertility rate (CFR) for the cohorts that were at prime child-
bearing ages during these periods was also nearly stable, but with an average
value of 2.08 children per woman, 0.28 children per woman higher than the
average total fertility rate.

This disparity between period and cohort fertility is explained largely by a
tempo distortion on the TFR resulting from the change in the period mean age
at childbearing. This mean rose at an average annual rate of 0.125 years per
year between 1975-80 and 1995-99 (rp = 0.125). Since the constant fertility
assumption is approximately valid, the TFR implied by (2) is CFR(1− rp) =
2.08(1 − 0.125) = 1.82 births per woman. This is very close to the observed
average total fertility rate for the period, 1.80 children per woman. In this
example, the translation formula (2) quite accurately estimates the tempo
distortion due to rising mean age at childbearing.

In this illustration, the translation formula has been applied to births of
all orders. In general, however, it is recommended that the translation formula
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Table 3. Analysis of tempo distortion of the period total fertility rate (TFR) in
France, 1975-1999.

Period TFR CFR Mean age at child-
(births per woman) (births per woman)a bearing (years)

1975-79 1.86 2.11 (1950)a 26.6
1980-84 1.88 2.13 (1955) 27.1
1985-89 1.81 2.10 (1960) 27.9
1990-94 1.72 1.99 (1965) 28.5
1995-99 1.74 29.1

Average 1.80 2.08

Source: Council of Europe 2002.
Note: a Year of birth of cohort in parentheses.

be applied separately for births of each order, as illustrated in Bongaarts and
Feeney (1998a).

Empirical evidence supporting the theory: first births, first
marriages, and deaths

This section systematically applies and tests the Zeng-Land translation for-
mula (2) using empirical data for first birth, first marriage, and death.

-First births. Figure 4 compares completed first birth cohort fertility for
women born in 1960 (CFR1) and period first birth total fertility for 1980-89
(TFR1) for 15 European countries, the USA, and Japan. In most countries,
the cohort level exceeds the period level. To show that this difference is due
largely to tempo distortions, the translation equation (2) is rearranged as
follows:

TFR
CFR

= 1 − rp . (5)

This shows that, in a constant fertility population, there is a simple linear
relationship between TFRCFR and (1 − rp), so that if values of these two
quantities for different countries are scatter plotted, the points will lie on a
straight line with slope one that passes through the origin. We refer to (1−rp)
as the period distortion index.

To test the validity of this translation equation for first births, Figure
5 plots TFR1/CFR1 ratios (vertical axis) against the corresponding values
(horizontal axis)5 for the 17 countries represented in Figure 4. There is a close
correspondence between the data points for the 17 countries and the linear
relation predicted by the translation equation. This is consistent with tempo
distortions of the TFR1 being the main explanation for the difference between
the TFR1 and the CFR1. We do not expect the observations for the different
5 The TFR value is the average TFR1 for 1980-89. The CFR value is CFR1 for

the 1960 birth cohort. Values of rp are estimated as one tenth of the difference
between the period mean ages at first birth in 1980 and 1990.
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countries to fall exactly on the diagonal because the translation assumptions
hold only approximately.
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Fig. 4. Completed cohort fertility (1960) and period total fertility(1980-89), first
births.
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-First marriages. The same translation formula analysis may be applied to
quantum and tempo measures of first marriage. The total first marriage rate
is influenced by tempo effects in the same way that the total fertility rate is.
When the mean age at marriage is rising (falling), the same number of mar-
riages occur over a longer (shorter) period and annual numbers of marriages
are lower (higher) than they would have been in the absence of the change
in mean age. Most of the concepts and derivations developed for the analysis
of fertility tempo apply to the analysis of “nuptiality tempo” as well. Recent
studies by Goldstein (2003) and by Winkler-Dworak and Engelhardt (2004)
provide examples of this application.

Figure 6 tests the translation equation for nuptiality. The ratio of the pe-
riod to cohort quantum for first marriage (TNR1/CNR1) is plotted against
the distortion index (1 − rp), with rp representing the rate of change in pe-
riod mean age at first marriage. The diagonal line represents the relationship
predicted by the translation equation. Most countries again fall close to the
predicted values, confirming the existence of tempo effects for first marriage
rates.

-Deaths. We now extend the same translation formula analysis to the quan-
tum and tempo measures of mortality based on rates of the 2nd kind. Since
the cohort completed mortality rate necessarily equals one, the period-cohort
ratio equals the TMR. The relationship predicted by the translation equation
(4) is given by the diagonal line in Figure 7. (Following Bongaarts and Feeney
(2002, in this volume p. 11) the analysis of the quantum and tempo of mor-
tality is limited to adult mortality above age 30 to ensure consistency with
the constant shape assumption.) Figure 7 includes the resulting data points
for seven countries (England and Wales, Italy, France, Norway, Switzerland,
Sweden, and the US) for which the required historical data from 1900 to
the present are available. As in the fertility and nuptiality analyses, the data
points fall close to the line predicted by the translation equation, support-
ing both the validity of the translation equation and the existence of tempo
distortions for adult mortality.

These analyses show that the distortions established in the case of fertility
apply to nuptiality and (adult) mortality as well when the period quantum
measures for each event are calculated from rates of the 2nd kind. They also
show that the magnitude of tempo distortions may be substantial. Figures 5-7
show that average distortions of 10 per cent are common during the 1980s and
that distortions exceeding 20 per cent occur for some countries for fertility,
mortality, and in particular for nuptiality. The distortions are even larger in
individual years. Bongaarts and Feeney (1998a), for example, estimate distor-
tions in the TFR in the United States ranging from +28% in 1948 to -11 %
in 1975.
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Fig. 6. Ratio of period to cohort marriage rate by tempo distortion index, first
marriages, 17 countries.
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3.3 Correcting tempo distortions in quantum measures of the 2nd
kind

Ryder’s work established the existence of tempo distortions in the total fertil-
ity rate, but he did not propose specific, quantitative adjustments to counter-
act tempo distortions. This may be explained in part by his strong emphasis on
the conceptual priority of cohort fertility. The emphasis on cohorts probably
influenced his focus on ”translating” period measures to cohort measures as
well, which diverted attention from the problem of adjusting period measures
for tempo distortions.

Empirical research over the past three decades has demonstrated, how-
ever, that period influences on fertility are much more important than cohort
influences. Brass (1974) concludes that cohort completed fertility reveals no
significant feature that distinguishes it from time averages of period indexes.
Pullum (1980) concludes that “temporal variations that cut across cohorts,
such as economic cycles, appear to be more important than changes in those
variables that distinguish cohorts, such as shared socialising experiences” (see
also Page 1977). Foster’s (1990) analysis of data for eight countries in Europe
and North America arrives at a similar conclusion. In an authoritative review,
N Bhrolchin (1992) concludes that “of the two dimensions of calendar time–
period and cohort–period is unambiguously the prime source of variation in
fertility rates.” Bongaarts and Feeney (in this volume p. 11) demonstrate that
the same dominance of period effects exists for adult mortality rates in con-
temporary populations with high life expectancy. These findings provide the
basis for the tempo adjustment procedure discussed next.

Correcting tempo distortions in period quantum measures of
fertility

Bongaarts and Feeney (1998a) reformulated the issue of tempo distortions by
posing the following counterfactual question: What would the total fertility
rate have been in a particular year, other things being equal, if the mean age at
childbearing had been constant during that year? The purpose is to remove the
distortion resulting from a changing mean age of the event to obtain a better
measure of current fertility conditions. Subject to a simplifying assumption
on the pattern of fertility change, they show that the answer to this question
is given by

TFR∗(t) =
TFR(t)
1 − rp(t)

(6)

where rp denotes the rate of change in the period mean age at childbearing
in year t. TFR∗(t) is referred to as the tempo-adjusted TFR, and the tempo
distortion in the observed TFR equals TFR∗(t) − TFR(t).

Unlike the translation formulas (1) and (2), formula (6) involves only pe-
riod measures. Another advantage of (6) is that it separates the issue of tempo
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distortion from the question of the relationship between period and cohort
measures. The tempo-adjusted is not intended to estimate and need not equal
the CFR for any cohort. (However, as shown in Appendix A, the CFR is ap-
proximately equal to the weighted average of values observed during the years
in which the cohort reproduces.)

Formula (6) depends on the constant shape assumption, which may be
stated in this way: the age schedule of fertility rates (of the 2nd kind) observed
at any time can be transformed into the schedule observed at any other time
by inflating or deflating and/or by shifting the schedule to higher or lower
ages. This is equivalent to assuming that fertility is determined strictly by
period effects. By comparison, formula (2) requires not only the constant
shape assumption, but also (page 9) constant quantum and a constant rate of
increase of the mean age. The tempo adjustment equation (6) can therefore
be applied much more widely. Recent studies by Kohler and Philipov (2001)
and Zeng and Land (2001) confirm the mathematical derivation of (6).

Although equation (6) can be applied to births of all orders combined,
superior results are obtained by applying the formula separately to each birth
order component of the TFR, because the constant shape assumption is more
valid for the fertility schedule at each order than for all orders combined
(Bongaarts and Feeney 1998a). This disaggregation is particularly important
in countries in which the overall TFR is changing rapidly, for this is likely
to result in substantial changes in the weighting of the different birth order
components.

Bongaarts and Feeney (1998a) and the follow-up work of Bongaarts (1999a,
1999b, 2002) have stimulated a number of criticisms, extensions, and elabora-
tions. Van Imhoff and Keilman (2000) and Van Imhoff (2001) point out that
the constant shape assumption does not hold exactly for the Netherlands and
Norway during the second half of the 20th century. This issue is addressed by
Zeng and Land (2001), who carried out a sensitivity analysis and concluded
that “the Bongaarts-Feeney formula is not sensitive to temporal changes in
the shape of the fertility schedules”. Kohler and Philipov (2001), on the other
hand, find that errors resulting from deviations from the assumption in Swe-
den were not insignificant and addressed this by proposing a procedure for
calculating tempo-adjusted total fertility rates when the variance of the fertil-
ity schedule changes over time (see also Kohler and Ortega 2002a and 2002b).
A number of past studies have applied the adjustment to fertility (Lesthaeghe
and Willems 1999; Smallwood 2002; Sobotka 2003, 2004a, 2004b). Implications
of fertility tempo effects for population growth are examined by Goldstein et
al. (2003).

Extension of tempo adjustments to nuptiality and mortality

The Bongaarts-Feeney method can be extended to obtain estimates of tempo-
adjusted period quantum measures for life-cycle events other than fertility.
Table 4 shows formulas for adjusted quantum and tempo for the total first
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birth rate, the total first marriage rate, and the total mortality rate. Tempo
adjustments are effected by dividing observed event rates of the 2nd kind by
the period tempo distortion index, as in formula (6) above. As in Table 2, the
formulas in the first row of the table define the tempo-adjusted total event
rate TER∗(t) and the tempo-adjusted mean age at event MAE∗(t), with d(a, t)
denoting the age-specific rate of the 2nd kind for any of the events shown.

The tempo-adjusted total mortality rate TMR∗

TMR∗(t) =
TMR(t)
1 − rp

(7)

is of particular interest. Because TMR∗(t) must equal one, it follows that

TMR(t) = 1 − rp(t) (8)

This is a more general version of (4) because it allows TMR(t) and rp(t)
to vary over time. As noted, the results in Figure 7 confirm this relationship
for mortality over age 30.

The right hand column of Table 4 shows that tempo measures based on
rates of the 2nd kind are not affected by tempo distortion (assuming the
constant shape assumption holds). This is because the distortion index occurs
in both the numerator and the denominator of the formula, and so cancels out.
Empirical confirmation of this conclusion will be provided in a later section.

Table 4. Adjustments for tempo distortions in period quantum and tempo measures
based on rates of the 2nd kind.

Event Adjusted quantum Adjusted tempo
(total event rate) (mean age at event)

General TER∗(t) =
∫ ∞
0

d(a,t)
1−rp(t)

da MAE∗(t) = 1
TER∗(t)

·
= TER(t)

1−rp(t)
· ∫ ∞

0

ad(a,t)
1−rp(t)

da

rp(t) = dMAE(t)
dt

= MAE(t)
First birth Tempo-adjusted total fertility No adjustment needed:

rate, order 1, TFR∗
1(t) MAB∗

1(t) = MAB1(t)
First marriage Tempo-adjusted total first No adjustment needed:

marriage rate TNR∗
1(t) MAM ∗

1(t) = MAM 1(t)
Death Tempo-adjusted total No adjustment needed:

mortality rate TMR∗
1(t) MAD∗(t) = MAD(t)

Empirical application to first births, first marriages, and deaths

Empirical estimates of tempo-adjusted quantum measures contain seemingly
random year-to-year fluctuations. These are caused by sensitivity to small
errors in rp(t) and by deviations from the constant shape assumption. To
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minimise these fluctuations, we plot five-year moving averages of TER∗(t) in
place of annual values in Figures 8-10.

Figure 8 presents observed and tempo-adjusted total first birth fertility
rates for the United States6. The adjusted rates are lower than the observed
rates during the 1950s and early 1960s, when the mean age at first birth was
declining, and higher than the observed rates between 1975 and 1990, when
the mean age at first birth was rising.

Figure 9 presents observed and adjusted total first marriage rates for
France from 1960 to 1996. The adjusted rates are more plausible than the
observed rates, because the adjusted rates are uniformly below one and be-
cause the tempo-adjusted total first marriage rate circa 1990 is 0.7, which is
approximately equal to the proportion ever marrying among cohorts born in
the late 1960s.

Figure 10 gives the observed and adjusted total mortality rate (adult mor-
tality only) for England and Wales. The adjusted rate fluctuates around to the
level of one, as it should. If the constant shape assumption holds perfectly, the
tempo-adjusted TMRs would all equal one exactly, assuming no measurement
error.

Figures 8-10 also include the corresponding quantum estimates for suc-
cessive cohorts. Let M(c) be the mean age at the event for the cohort born
in year c. In Figure 8 the cohort quantum (i.e., the proportion ever having a
first birth) for the cohort born in year c = t − M(c) is plotted at time t. In
Figure 9 this comparison of cohort and period quantum is made for the first
marriage quantum and in Figure 10 for the quantum of mortality. In each
of these comparisons, the (lagged) cohort quantum is close to the adjusted
rate of the 2nd kind, but the fit is not perfect. Perfect agreement between the
cohort and adjusted period quantum is expected only when all the translation
assumptions hold: the period and cohort quantum are constant, the period
mean age is rising linearly, and the shape of the age pattern is constant. Since
these assumptions do not hold exactly, the cohort quantum is not exactly
equal to the adjusted total event rates, but the correspondence is good and
clearly better than for the unadjusted rates. The observed differences between
the cohort quantum and adjusted period quantum are due to three factors:
deviation from the constant quantum assumption, deviation from the linear
change assumption, and deviation from the constant shape assumption. The
first two of these deviations do not cause errors in the adjusted quantum,
which only requires the constant shape assumption. As a result even when
6 Application of the tempo-adjustment formulas requires annual estimates of the

total event rate and the rate of change in the period mean age of the event.
The rate of change during year t is estimated as 0.5[MAE(t + 1) −MAE(t − 1)].
Application of formulas in Table 4 then gives the time series of tempo-adjusted
total event rates. Since the adjustment is sensitive to small errors in rp(t), the
annual adjusted estimates tend to contain seemingly random fluctuations. To
minimise these fluctuations, we use five-year moving averages of TER∗(t) in place
of annual values.
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the adjusted quantum is accurately estimated, it can differ from the lagged
cohort quantum.

In the applications summarised in Figures 8-10 the adjustment procedure
appears to work well. The obvious anomalies in unadjusted quantum measures
noted earlier are all removed by the tempo adjustment, and the adjusted
quantum is close to the lagged cohort quantum, even though the conditions
for this comparison are not fully met.

Quantum and tempo measures of the 2nd kind are much more widely
used in the analysis of fertility and nuptiality than measures of the 1st kind,
because age-specific rates of the 2nd kind (adjusted and unadjusted) are easier
to calculate and more widely available. A disadvantage of rates of the 2nd kind
is that they can be affected by compositional effects (Kohler and Ortega 2004).
It is therefore generally considered preferable to derive quantum and tempo
measures from rates of the 1st kind if such rates are available. As we will show
below, however, these rates are affected by tempo effects, and therefore need
adjustment.

4 Period quantum and tempo measures of the 1st kind

The preceding sections of this study examined quantum and tempo measures
of the 2nd kind as well as tempo effects in these measures. The present sec-
tion will cover these same topics for rates of the 1st kind. These rates are
used extensively in life table analyses of the quantum and tempo of life-cycle
events. This discussion will be briefer because the main concepts have already
been introduced and because data on measures of the 1st kind are not widely
available except for mortality.

4.1 Standard equations for quantum and tempo measures

Table 5 presents equations for estimating quantum and tempo measures de-
rived from rates of the 1st kind7 . Applying the general formulas in the first row
to first birth, first marriage, and death produces quantum estimates TFR1L

,
TNR1L(t), and TMRL(t) and tempo estimates MAB1L(t), MAM 1L(t), and
MADL(t). The subscript L signifies that these measures are based on the life
table calculation using rates of the 1st kind. This distinguishes them from the
corresponding measures based on rates of the 2nd kind (see Table 2).

Period quantum based on rates of the 1st kind is defined as the propor-
tion of persons ever experiencing the event in a hypothetical cohort subjected
to these rates, as given by the standard life table calculation. The quan-
tum of mortality TMRL(t) necessarily equals one because everyone eventually

7 The first formula in the first line of Table 5 shows that TMRL(t) equals one
minus an integral. This integral equals the proportion of individuals that never
experiences the event.



The quantum and tempo of life-cycle events 47

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1950 1960 1970 1980 1990 2000 2010

B
ir

th
s/

w
o
m

a
n TFR1(t)

TFR1*(t)

Tempo

distortion

Cohort quantum (lagged)

Source: Bongaarts and Feeney, 1998

Fig. 8. Observed and tempo adjusted total fertility rate, birth order one, United
States.
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Fig. 9. Observed and tempo adjusted total first marriage rate, females, France.
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dies. The quantum of first birth TFR1L(t) and the quantum of first marriage
TNR1L(t) are less than one because the rates from which they are calculated
fall rapidly to zero at older ages.

The most widely used period tempo measure of the 1st kind is life table
mean age at death MADL(t), which is usually referred to as life expectancy.
With TMRL(t) = 1 the general tempo equation on the right in Table 5 sim-
plifies to

MADL(t) = e0(t) =
∫ ∞

0

e−
∫ a
0 µ(x,t) dx da , (9)

which is the conventional expression for the life table estimate of life ex-
pectancy at birth conventionally denoted e0(t).

Cohort measures based on rates of the 1st kind are identical to the corre-
sponding measures based on rates of the 2nd kind, but period measures based
rates of the 1st kind do not in general equal the corresponding measures based
on rates of the 2nd kind. This will be illustrated in the following section.

Table 5. Adjustments for tempo distortions in period quantum and tempo measures
based on rates of the 2nd kind.

Event Quantum Tempo
(total event rate = proportion (mean age at event)

ever experiencing event)

General MAEL(t) =
1

TERL(t)

∫ ∞
0

e
∫ a
0 µ(x,t) dx da +

+
∫ ∞
0

TERL(t) − 1 da

TERL(t) = 1 − e−
∫ ∞
0 µ(a,t) da

First birth TFR1L(t) MAB1L(t)
First marriage TNR1L(t) MAM 1L(t)
Death TMRL(t) MADL(t)

4.2 Tempo effects

Tempo effects result from a depression or inflation in the numbers of events
that occur in the numerators of rates. These effects therefore affect age-specific
rates of the 1st kind as well as rates of the 2nd kind. Moreover, the effect is
proportionally the same for the numerators of age-specific rates of the 1st
and 2nd kind and it is determined by the distortion index, which varies with
the rate of change in the mean age at the event. This point was first made
by Bongaarts and Feeney (1998a) and subsequently by Kohler and Ortega
(2002a, 2002b) in their analysis of tempo effects in fertility rates of the 1st
kind.

Tempo distortions of measures of the 1st kind are generally less noticeable
than distortions of measures of the 2nd kind. Tempo distortions in quantum
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measures based on rates of the 2nd kind are obvious, for example, whenever
these measures exceed one. This cannot happen for quantum measures based
on rates of the 1st kind because the life table calculations used necessarily lead
to values less than or equal to one. The absence of obvious anomalies in these
measures does not mean that they are free of tempo distortions, however.

Tempo distortions in period quantum measures of the 1st kind are well
established and uncontroversial in fertility (Sobotka 2003, 2004a,b; Kohler
and Ortega 2002a, 2002b) and in nuptiality (Goldstein 2003; Winkler-Dworak
and Engelhardt 2004). Mortality rates of the 1st kind also contain tempo
effects, but the period mortality quantum derived from them always equals
one because these rates rise with age.

Tempo distortions in period tempo measures of the 1st kind are much less
established and we will therefore examine this issue in more detail. The theo-
retical basis for the existence of such an effect is that tempo measures of the
1st kind are derived from the same numbers of events that produce quantum
measures of the 1st kind. As noted earlier, a rising mean age depresses rates
of the 1st kind and hence depresses quantum measures calculated from them.
When these depressed rates are then used in a life table to obtain a mean
age, this mean will contain an upward distortion. Since means of the 2nd kind
are not distorted, the difference between the means of the 1st and 2nd kind
equals the tempo effect (assuming the constant shape assumption holds).

Tempo effects in the period mean age at first birth

Figures 11-13 compare mean ages at first birth of the 1st and 2nd kind in the
Czech Republic, the Netherlands, and Spain. In all three countries these means
have risen, but the means of the 1st kind are higher than those of the 2nd
kind. The difference between these means is as expected from the operation of
the tempo effect. According to the theoretical argument presented earlier, the
mean of the 1st kind is distorted because the numerators of rates of the first
kind contain tempo effects. Means of the 2nd kind are not distorted because
tempo effects in the numerators of rates of the 2nd kind are offset by tempo
effects in their denominators. As a result, in years when the mean age at first
birth is rising, tempo effects raise the mean of the 1st kind (based on hazard
rates) above the mean of the 2nd kind (based on incidence rates). Note that
these means are nearly equal to one another in the Czech Republic before
1990 and in the Netherlands after 1997. These are periods when the mean age
at first birth did not change and as a result there are no tempo effects. In
Spain such a convergence of the two kinds of means is not observed because
the mean of the 2nd kind rises throughout the period plotted in Figure 13.

In support of the argument that the mean of the 2nd kind is not distorted,
Figures 11-13 include the mean ages at first birth of successive cohorts. The
cohort mean age at first birth M(c) for a cohort born in year c = t − M(c)
is plotted at time t. This cohort mean age is close to the mean age of the
2nd kind in the Czech Republic and in Spain and falls between the means
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of the 1st and 2nd kind in the Netherlands. Theoretical work by Rodriguez
(in this volume) and Goldstein (in this volume) has proved that M(c) for
people born in year t − MAE (t) equals the mean of the 2nd kind at time t
when the translation assumptions hold. Since these assumptions do not hold
exactly, M(c) is not exactly equal to the observed mean of the 2nd kind, but
the correspondence is good and clearly better than for means of the 1st kind.

Tempo effects in the period mean age at death (i.e., in life
expectancy)

Figures 14-16 compare the period mean ages at death of the 1st and 2nd kind
for Denmark, England and Wales, and Sweden (as before mortality under age
30 is assumed to be absent). The results are broadly similar to those for first
birth: the means have risen over time and the mean of the 1st kind (i.e., period
life expectancy) exceeds the mean of the 2nd kind. The difference between the
two means again equals the tempo effect. In addition, the lagged cohort mean
age at death is close to the mean age of the 2nd kind, which is as expected
in a population in which the translation assumptions hold for adult death
rates8. In sum, our conclusion that the period mean age at a life-cycle event
calculated with standard life table methods is distorted by tempo effects is
based on and supported by the following findings:

a. The theoretical analysis of the preceding sections shows that a rising mean
age at an event depresses numbers of events in the numerators of period
age-specific hazard rates. This inflates the calculated period mean ages
calculated from these rates. Similarly, a falling mean age at an event in-
flates numbers of events in the numerators of period age-specific hazard
rates and depresses the mean ages calculated from these rates by standard
life table methods.

b. The observed period mean age based on hazard rates exceeds the period
mean age based on incidence rates in populations in which the mean age
is rising. Figures 11-13 demonstrate this for first birth and Figures 14-16
for death. This difference is due to a tempo distortion in the mean age
based on hazard rates, because, as noted, the mean age based on incidence
rates is not affected.

c. The differences between the period mean ages based on hazard and in-
cidence rates (i.e., the tempo effect) disappear when the mean age stops
rising. This is evident for means of the first birth in the Czech Republic
before 1990 in Figure 11 and for the Netherlands after 1997 in Figure 12,
as well as for the mean ages at death in Denmark in the mid-1990s in
Figure 14. These results are of course as expected because when there is
no change in the tempo of an event there should be no tempo effect.

8 In the calculation of period and cohort tempo of mortality the risk of mortality
under age 30 is set to zero, thus insuring the comparability of estimates.
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Fig. 11. Mean age at first birth. Means of 1st and 2nd kind and lagged cohort
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mean, France.
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d. The cohort mean age for a cohort born in year c = t − M(c) is close to
the period mean age of the 2nd kind. This is illustrated in Figures 11-16.

In addition, as shown below, the tempo-adjusted mean of the 1st kind is
close to the observed mean of the 2nd kind.

A simple example of the mortality tempo effect

Since a tempo effect in life expectancy is a new and complex concept, we
present a simple hypothetical example to demonstrate how the mortality
tempo effect operates (Bongaarts and Feeney 2002, in this volume p. 11).
Consider a stationary population with a life expectancy at birth of 70 years.
Suppose further that a “life extension” pill is invented that defers the death
of any person who consumes it by 3 months. If everyone in the population
takes this pill on January 1 of year T , there will be no deaths during the first
three months of the year. The number of deaths during this year is 25 per cent
lower than it would have been without the pill, and the mean age at death is
70.25 years rather than 70 years. Since the pill’s effect is the same at all ages,
the level of the force of mortality function is also reduced by 25 per cent, and
the age to which each value of the function is attached increases by 0.25 years.
This change in the force of mortality function causes life expectancy at birth
as conventionally calculated to rise to nearly 73 years for year T (see Figure
17).

In the following year, T +1, the number of deaths and the force of mortality
function rise to the level observed before year T , but with values shifted
forward to older ages by 0.25 years. Life expectancy at birth as conventionally
calculated, having risen from 70 years prior to year T to nearly 73 years during
year T , falls back to 70.25 years, as shown in Figure 17. This rise and fall in life
expectancy at birth as conventionally calculated is a tempo distortion because
it is at variance with the known trend in the mean length of life. Distortion
of this kind occurs whenever the mean age at death changes.

This illustration demonstrates the operation of the tempo effect that dis-
torts life expectancy under highly simplified hypothetical conditions. The ex-
ample can be made more realistic in several ways. First, the life-extending pill
can be taken year after year from year T onward. In that case, life expectancy
will be distorted not only in year T but in every subsequent year as well.
The mean age at death will rise over time and the observed life expectancy
will continuously exceed the rising mean age at death due to the tempo ef-
fect. Second, the strength of the pill can vary from year to year, thus yielding
tempo effects that also vary from year to year. Third, continuous change may
be approximated by reducing intervals between pill taking while correspond-
ingly reducing the pill’s life-extending effect so that the annual “dose” remains
the same. In the limit the mortality pattern in the hypothetical illustration
approaches a real adult mortality pattern in a population in which the fixed-
shape assumption holds. Subject to this assumption, improvements in adult
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Fig. 14. Mean age at death. Means of the 1st and 2nd kind and lagged cohort mean.
Females in Denmark. No mortality under age 30.
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Fig. 15. Mean age at death. Means of the 1st and 2nd kind and lagged cohort mean.
Females in England and Wales. No mortality under age 30.
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mortality can therefore be seen as resulting from the continuous provision of
increments to life to all living individuals in every period, with the increments
varying over time.

A similar illustration of the impact of a hypothetical “pill” to delay a birth
could easily by provided, and it would show a similar tempo distortion of the
mean age at birth calculated with a conventional life table.

4.3 Correcting tempo distortions

The method for removing tempo effects from rates of the 1st kind is the same
as for rates of the 2nd kind: division of the numerators of the observed rates
by the distortion index. Table 6 presents general equations for adjustment as
well as applications to first births, first marriages, and deaths. Subject to a
constant shape assumption9, tempo distortions in summary measures of the
1st kind are removed by dividing the numerators of the hazard rates from
which they are derived by 1− rp(t), where rp(t) denotes the rate of change in
the period mean age of the event.

Observe that, for period measures of the 1st kind, tempo distortions occur
for tempo as well as for quantum measures. This is in striking contrast to
period measures of the 2nd kind, for which tempo measures are unaffected by
tempo distortions if the constant shape assumption holds (because distortions
in the numerator and denominator cancel out; see Table 4, right column). For
this reason, tempo adjustments are best made using the rate of change in
9 In the case of mortality, the constant shape assumption is applied to adult ages

(30+) only. Bongaarts and Feeney (in this volume p. 11) demonstrate that for
mortality the constant shape assumption is equivalent to assuming that the sur-
vival function p(a, t) shifts to higher or lower ages as the mean age at death rises or
falls over time and to assuming that the force of mortality µ(a, t) is proportional
to the relative derivative of the survival function with respect to age.
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the mean age of the 2nd kind to calculate the distortion index. Note that the
procedure used here to make tempo adjustments is different from the one used
by Kohler and Ortega (2002a), who rely on the rate of change in the mean
age derived from the schedule of rates of the 1st kind. We believe that our
approach is more accurate. Note also that if the translation assumption holds,
the rates of change calculated from rates of the 1st and 2nd will be equal.

Table 6. Adjustments for tempo distortions in period quantum and tempo measures
based on rates of the 1st kind.

Event Adjusted quantum Adjusted tempo
(total event rate) (mean age at event)

General MAE∗
L(t) =

1
TER∗

L
(t)

∫ ∞
0

e
∫ a
0

µ(a,t)
1−rp(t) dx

da+

+
∫ ∞
0

TER∗
L(t) − 1 da

TER∗
L(t) = 1 − e

− ∫ ∞
0

µ(a,t)
1−rp(t) da

First birth TFR∗
L(t) MAB∗

L(t)
First marriage TNR∗

L(t) MAM ∗
L(t)

Death TMR∗
L(t) MAD∗

L(t)

To illustrate the correction for tempo distortion in tempo measures, we
apply the above procedure to mortality, to obtain a tempo-adjusted life ex-
pectancy (mean of the 1st kind). It follows that calculated life expectancy
at birth may be adjusted for the tempo distortion by dividing the numera-
tors of the observed age-specific death rates by 1 − rp(t) and by using the
resulting adjusted age-specific rates in the life table calculation (provided the
constant shape assumption holds). This result is equivalent to substituting
TER∗

L(t) = TMR∗
L(t) = 1 in the tempo equation in the top right cell of Table

6, giving the following tempo-adjusted life expectancy at birth

MAD∗
L(t) = e∗0(t) =

∫ ∞

0

e
− ∫ a

0
µ(x,t)

1−rp(t) dx
da , (10)

where rp(t) denotes the rate of change in the period mean age at death
MAD(t). Because 1 − rp(t) = TMR(t) (see formula (8) above), (10) may
also be written as

MAD∗
L(t) = e∗0(t) =

∫ ∞

0

e−
∫ a
0

µ(x,t)
TMR(t) dx da , (11)

which gives more stable results in empirical application. The tempo distortion
in the conventional life expectancy at birth equals the difference between
MADL(t) and MAD∗

L(t).
Bongaarts and Feeney (in this volume p. 11) prove that the tempo-adjusted

life expectancy at birth given by (10) or (11) equals the mean age at death
calculated from rates of the 2nd kind (i.e., MAD(t) in Table 2),
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MAD∗
L = MAD(t) , (12)

provided the constant shape assumption holds.
Table 7 shows empirical estimates for three alternative estimates of the

mean age at death (average of annual values for 1970-1990, no mortality under
age 30) for females in Denmark, England and Wales, and Sweden10 :

MAD(t), derived from rates of the 2nd kind (not distorted)
MADL(t) = e0(t), derived from rates of the 1st kind (distorted)
MAD∗

L(t), derived from tempo-adjusted rates of the 1st kind (distor-
tion corrected)

These results confirm that MAD(t) and MAD∗
L(t) have nearly the same

value as predicted by (12). Table 7 also documents substantial tempo effects in
the conventionally calculated life expectancy, e0(t) = MADL(t). The upward
distortions in female life expectancy at birth for 1970-1990 are estimated at 1.5
years in Denmark, 1.4 years in England and Wales, and 1.9 years in Sweden.
Using an indirect method Bongaarts and Feeney (2002) estimate a distortion
of 3.3 years for Japan.

The preceding analysis has demonstrated that tempo-adjusted mortality
tempo measures of the 1st and 2nd kind are equal under the constant shape
assumption. As shown in Appendix B, this equality holds in general for both
tempo-adjusted quantum and tempo measures for any life-cycle event when-
ever the observed proportion ever having experienced the event, p(t), main-
tains its shape over time as the mean age at the event rises or falls over time.
This condition holds approximately for adult mortality in contemporary low-
mortality populations (Bongaarts and Feeney 2002, in this volume p. 11).

5 Conclusion

Demographers have developed a number of widely used methods to estimate
the quantum and tempo of life-cycle events. The level of fertility, for example,
10 The estimates of alternative measures of the mean age at death in Tables 7 and

Figure 14-16 assume no tempo effects under age 30. For simplicity, life expectancy
at birth is calculated as e0 = 30+e30 and e∗0 = 30+e∗30, ignoring mortality under
age 30. In countries where mortality under age 30 is not small, we recommend
the following more general equations for estimating observed and tempo-adjusted
life expectancy:
e0 =30 L0 + l30e30 e∗0 =30 L0 + l30e

∗
30

Note also that Bongaarts and Feeney (in this volume p. 11) use yet another way
to calculate the period mean age at death, as

∫ ∞
0

p(a, t) da, with p(a, t) denoting
the proportion of the cohort born at time t−a who survive to age a. This estimate
is identical to the variable called CAL, the cross-sectional average length of life,
introduced by Brouard (1986) and Guillot (2003).
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Table 7. Alternative estimates of the observed and tempo-adjusted period mean
age at death: Average of annual estimates from 1970 to 1990 for females with no
mortality under age 30a.

Mean age at death, females (average, 1970-1990)

MAD(t) MADL(t) = e0(t) MAD∗
L(t) = e∗0(t) Tempo effect

(from rates of (from rates of (tempo-adjusted) MADL(t)−
the 2nd kind) the 1st kind) −MAD∗

L(t)

Denmark 76.8 78.4 76.9 1.5
England

and Wales 76.9 78.3 76.8 1.4
Sweden 78.2 80 78.1 1.9

Source: Bongaarts and Feeney 2002, in this volume p. 11. Death rates from University of Cali-
fornia, Berkeley Mortality Data Base.
Note: a With no mortality under age 30, e0(t) = e30(t) + 30

is usually measured by the total fertility rate and the level of mortality by
the life expectancy at birth. The wide availability, ease of interpretation, and
up-to-date nature of these conventional period indicators have led to neglect
of some of their deficiencies. Most analysts are aware of inaccuracies due to
sampling error and incomplete vital registration, but they often neglect the
pervasive influence of tempo distortions of many period indicators of life-cycle
events.

Tempo distortions in period fertility measures were discovered more than
half a century ago and are generally acknowledged. The post-war baby boom
in the United States, for example, was due in part to a decline in the age at
childbearing, and the recent low total fertility rates in many developed coun-
tries are in part due to delays in childbearing. This study argues that similar
tempo distortions can occur in period measures of other life-cycle events, in-
cluding marriage and death. This is the case even for measures derived from
period life tables such as life expectancy at birth. These distortions are not
generally recognised and are rarely if ever taken account of in empirical anal-
ysis.

Comparisons of period and cohort measures indicate that tempo distor-
tions can be substantial in size. Distortions in the total fertility, marriage,
and mortality rates of more than 10% were common during the 1980s. Using
distorted age-specific death rates in a mortality life table leads to distorted
estimates of life expectancy (typically exaggerated by 1-2 years).

The adjustment method proposed earlier by Bongaarts and Feeney is
shown both by theoretical argument and by empirical example to be an effec-
tive, if approximate, solution to the problem of adjusting tempo and quantum
measures for life-cycle events. Although this approach makes a simplifying as-
sumption about changes over time in the age patterns of event rates, the
results appear generally robust to deviations from this assumption.

The adjusted period tempo and quantum measures should be interpreted
as variants of their conventional counterparts. The total fertility rate, for



58 John Bongaarts and Griffith Feeney

example, is defined as the average number of births for a hypothetical cohort
of women subjected throughout life to the age-specific birth rates observed in a
given year. This is a hypothetical rate because no actual cohort will experience
these observed period birth rates. The tempo-adjusted total fertility rate is a
similarly hypothetical measure, but one that corrects for distortions caused
by year-to-year tempo changes. Neither the observed nor the adjusted total
fertility rate attempts to estimate the fertility rate of any actual cohort, nor
do they attempt any prediction of future fertility. The goal of the tempo
adjustment is simply to provide period quantum and tempo measures that
are free of the tempo distortions in conventional measures.

Adjusted period measures are hypothetical in that they tell us what the
observed period measure would have been if there had been no change in
the timing of the event. This hypothetical measure does not correspond to
the behaviour of a particular cohort because the translation assumptions are
often violated. However, as we have seen in this chapter, the patterns of change
observed in practice are often close enough to the translation assumptions that
the adjusted period measures are approximate measures of lagged cohorts.
Furthermore, the adjusted period measures give us an indication of what rates
could be like in the future if postponement comes to an end.

Distorted views of past levels and trends in the quantum and tempo of
life-cycle events may lead to misleading projections and to the adoption of
sub-optimal social and health policies. It is therefore desirable for analysts
to understand the strengths and weaknesses of period indicators of life-cycle
events and to recognise and correct tempo distortions.
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Appendix A: Relationship between the completed
fertility rate and the weighted average of
tempo-adjusted period total fertility rates

Let age-specific fertility rates at time t and age a be denoted d(a, t). The total
fertility rate equals

TFR(t) =
∫

d(a, t) da (1a)

The distribution of fertility by age at time t is denoted f(a, t):

f(a, t) =
d(a, t)
TFR(t)

(2a)

so that
∫

f(a, t) da = 1 and d(a, t) = TFR(t)f(a, t).
The completed fertility rate for the cohort born in year t0 equals

CFR(t0) =
∫

d(a, t0 + a) da =
∫

TFR(t0 + a)f(a, t0 + a) da (3a)

rearranging (6) yields

TFR(t) = [1 − rp(t)]TFR∗(t) (4a)

and substitution of (4a) in (3a) gives

CFR(t0) =
∫

TFR∗(t0 + a)[1 − rp(t0 + a)]f(a, t0 + a) da

=
∫

TFR∗(t0 + a)ν(a, t0) da (5a)

where ν(a, t0) = [1 − rp(t0 + a)]f(a, t0 + a).
The weighted average of TFR∗(t) is defined as
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TFR(t0) =
∫

TFR∗(t0 + a)ν(a, t0) da∫
ν(a, t0) da

=
∫

TFR∗(t0 + a)ω(a, t0) da (6a)

where ω(a, t0) = ν(a,t0)∫
ν(a,t0) da

It follows from (5a) and (6a) that

CFR(t0) = TFR(t0)
∫

ν(a, t0) da (7a)

Equations (5a), (6a), and (7a) hold in general and do not require any sim-
plifying assumptions. However, it can be shown that

∫
ν(a, t0) da = 1 and

ω(a, t0) = ν(a, t0) when the constant shape assumption holds. In that case
CFR(t0) = TFR(t0).

Appendix B: Comparison of measures of the 1st and 2nd
kind

If age-specific rates change without conditions, then period quantum and
tempo measures of the 1st kind generally differ from measures of the 2nd
kind. We will now demonstrate that this difference between measures of the
1st and 2nd kind disappears if the tempo effect is removed and if the shape
of the proportion ever having experienced the event remains invariant as the
mean age at the event changes. Holding the shape of p(t) constant implies

p(a, t) = p(a − S(t), 0) for a ≥ S(t) and p(a, t) = 1 for a < S(t) (1b)

where S(t) is equal to the amount of the shift since t = 0. As shown by
Bongaarts and Feeney (2002, in this volume p. 11) (1b) implies that

d(a, t) = [1 − rp(t)]
−∂p(a, t)

∂a
(2b)

and

µ(a, t) = [1 − rp(t)]
−∂p(a,t)

∂a

p(a, t)
(3b)

Let the tempo-adjusted versions of µ(a, t) and d(a, t) be denoted µ∗(a, t) and
d∗(a, t) respectively; then

d∗(a, t) =
d(a, t)

1 − rp(t)
=

−∂p(a, t)
∂a

(4b)

and

µ∗(a, t) =
d∗(a, t)
p(a, t)

=
−∂p(a,t)

∂a

p(a, t)
(5b)
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It follows from (4b) and (5b) that

p(a, t) = 1 −
∫ a

0

d∗(x, t) dx = 1 − e−
∫ a
0 µ∗(x,t) dx (6b)

Rearranging (6b) and integrating to m, the highest age at which the event is
observed, gives

e−
∫ m
0 µ∗(x,t) dxp(a) = 1 − p(m, t) (7b)

and ∫ m

0

d∗(x) dx = 1 − p(m, t) (8b)

Substitution of (7b) and (8b) in the equations for tempo-adjusted quantum
of the 1st and 2nd kind (from Tables 4 and 6 respectively) shows that the
tempo-adjusted quantum of the 1st kind

TER∗
L(t) = 1 − e

− ∫ m
0

µ(a,t)
1−rp(t) da = 1 − e−

∫ m
0 µ∗(a,t) da = 1 − p(m, t) (9b)

equals the tempo-adjusted quantum of the 2nd kind

TER∗
L(t) =

∫ m

0

d(a, t)
1 − rp(t)

da =
∫ m

0

d∗(a, t) da = 1 − p(m, t) (10b)

Similarly, the tempo-adjusted mean age of the 1st kind

MAE∗
L(t) =

1
TER∗

L(t)

∫ m

0

e
− ∫ a

0
µ(x,t)

1−rp(t) dx + TER∗
L(t) − 1 da

=
1

1 − p(m, t)

∫ m

0

e−
∫ a
0 µ∗(x,t) da − p(m, t) da

=
1

1 − p(m, t)

∫ m

0

p(a, t) − p(m, t) da (11b)

equals the tempo-adjusted mean age of the second kind

MAE∗(t) =
1

TER∗
L(t)

∫ m

0

ad(a, t)
1 − rp(t)

da

=
1

1 − p(m, t)

∫ m

0

ad∗(a, t) da

=
1

1 − p(m, t)

∫ m

0

a
∂p(a, t)

∂a
da

=
1

1 − p(m, t)

∫ m

0

p(a, t) − p(m, t) da (12b)
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Whenever (1b) holds, tempo-adjusted quantum and tempo measures of the
1st and 2nd kind are equal to one another.

The finding that TER∗
L(t) = TER∗(t) and MAE∗

L(t) = MAE∗(t) is of
interest because it implies that quantum and tempo measures of the first kind
are equal to those of second kind even when the age-specific proportions of
individuals exposed to the risk of an event are changing, provided (1b) holds.
Bongaarts and Feeney (in this volume p. 11) have examined this assump-
tion for mortality and found that it provides a good approximation of reality
in recent decades among adults in countries with low mortality. But the as-
sumption is probably less applicable to the fertility and nuptiality processes in
which quantum changes can occur at the same time as tempo changes. Further
research is required on the implication of deviations from this assumption.
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Summary. In this chapter I review the concept of tempo effects in demography,
focusing on the tempo adjustments proposed by Bongaarts and Feeney and drawing
on the work of Ryder and Zeng and Land. I show that the period-shift model that
underlies the proposed adjustments can be motivated from an accelerated failure
time cohort perspective. I propose alternative measures of tempo under changing
fertility and mortality that share a synthetic cohort interpretation with the adjusted
measure of quantum. I stress similarities between the results for fertility and mor-
tality, particularly in terms of mean age of childbearing and mean age at death,
but also note some important distinctions. I conclude that the fertility adjustments
can help distinguish quantum and tempo effects, but argue that in the case of mor-
tality the Bongaarts-Feeney measure of tempo-adjusted life expectancy differs from
conventional estimates because if reflects past mortality.

1 Introduction

How long do we live? According to the U.S. National Center for Health Statis-
tics, “in 2002 the overall expectation of life at birth was 77.3 years”(Arias,
2004). The center makes clear that this measure represents “what would hap-
pen to a hypothetical (or synthetic) cohort if it experienced throughout its
entire life the mortality conditions of a particular period in time”, in this case
2002. In real life a child born in the U.S. in 2002 would probably live longer
than 77.3 years on average, because we expect mortality to improve in the
future.

Bongaarts and Feeney (2002, in this volume p. 11 and p. 29) have chal-
lenged the conventional wisdom, and created quite a stir in the demographic
community, by postulating the existence of mortality “tempo effects” that bias
standard measures of longevity, such as the period life expectancy, whenever
mortality is changing. The measures are believed to be biased upwards when
� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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expectation of life is increasing, so we don’t live as long as we think. Bon-
gaarts and Feeney (in this volume p. 11) note that “[e]stimates of the effect
for females in three countries with high and rising life expectancy range from
1.6 yr in the U.S. and Sweden to 2.4 yr in France for the period 1980-1995”.

The concept of tempo distortion originated in the field of fertility analysis,
where one can draw a clear distinction between quantum and tempo, and
refers to the fact that a reduction in period rates could be caused by delays
in childbearing without any changes in completed cohort family size. Many
demographers have found the extension of these ideas to mortality baffling
because a reduction in period mortality rates can only mean that people will
die later. With mortality the quantum is fixed, only tempo can change, and
no one would mistake one for the other.

It is, of course, possible for cohort and period summaries of age-specific
mortality rates to differ. But Bongaarts and Feeney (in this volume p. 11)
make the stronger claim that “tempo effects distort both the observed death
rates and the corresponding life expectancy”. It is also quite likely that mortal-
ity rates are distorted by unobserved heterogeneity, particularly at old ages,
but Vaupel (2002) reports that Bongaarts believes that “tempo effects can
distort mortality in homogeneous populations”.

Like others I have gone over the underlying mathematical argument and
have found no fault. But I come up with a different interpretation of the
Bongaarts-Feeney results. I show that working strictly within their framework,
one can produce an estimate of expectation of life when mortality is declining
that is higher, not lower, than the conventional estimate. This differs, of course,
from the Bongaarts-Feeney adjustment, and I hope the argument will clarify
exactly why this is the case. As Wachter (in this volume) has noted “every
measure measures something”, and we are just measuring different things.
Specifically, I will argue that their measure combines the observed force of
mortality with features of the age distribution that reflect past rather than
current mortality.

Because so much of the work builds upon earlier results on fertility I start
with a brief review of Ryder’s (1964) famous translation formula. My main
goal is to clarify its intent and the conditions under which it is valid. I then
review the Bongaarts-Feeney (1998) tempo-adjusted total fertility rate and a
synthetic-cohort interpretation due to Zeng and Land (2001, 2002). I show
that the period-shift fertility model used by Bongaarts and Feeney can be
motivated in terms of a cohort-delay model where the passage of time slows
down. I then obtain a measure of mean age of childbearing under changing
tempo that complements the Bongaarts-Feeney tempo-adjusted total fertility
rate, yet differs from their tempo estimate.

Having laid the groundwork in the field of fertility, where these ideas are
less controversial, I move to the field of mortality. I mention briefly why Ry-
der (1964) didn’t pursue a translation formula for mortality, as well as how one
might go about it knowing what we know today. I then turn to the Bongaarts-
Feeney framework showing how their period-shift mortality model results from
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a slowing down of time in an accelerated-failure-time framework. I then dis-
cuss, and I hope explicate, the various measures of longevity that have been
proposed, noting how some of these indices depend on the past via the age
structure. I also derive a synthetic cohort measure of life expectancy under
changing mortality that provides an exact analog of the measure of fertil-
ity tempo derived earlier, yet differs substantially from the Bongaarts-Feeney
tempo-adjusted measure of life expectancy.

While most of the chapter emphasizes parallels between the analysis of
fertility and mortality, in the discussion I return to some of the fundamental
differences noted at the outset. In the case of fertility we have recurrent events
where a distinction between quantum and tempo is meaningful and, more
importantly, adjustments can be useful in determining the extent to which
period changes reflect quantum or tempo effects. In the case of mortality
trends have an unambiguous interpretation as tempo effects. The fact that
the proposed adjusted measures differ from conventional life expectancy is not
due to a bias or distortion, but simply to the fact that they measure different
things. Specifically, conventional life expectancy depends only on the force of
mortality, whereas the adjusted measures are affected by age composition and
thus past mortality.

2 Fertility

Let us consider a surface of age-period fertility rates where f(a, t) is the fer-
tility rate at age a and time t. This rate pertains both to period t, and to the
cohort born at time t − a.

2.1 Translating fertility

Ryder (1964) was interested in the relative strengths and weaknesses of cohort
and period summaries of these rates. Useful summaries for the cohort born at
time t include the average number of children per woman, TFRc(t), a measure
of the quantum of fertility, and the mean age of childbearing µc(t), a measure
of the tempo of fertility, defined as

TFRc(t) =
∫

f(a, t+a)da and µc(t) =
∫

af(a, t+a)da/TFRc(t). (1)

Together these indices tell us whether women have more or fewer children,
and whether they have them earlier or later in life.

The aggregates can also be computed for periods, and are usually inter-
preted in terms of a synthetic cohort that goes through life bearing children
at the current observed rates. The synthetic cohort representing period t has
TFRp(t) children at an average age of µp(t) where

TFRp(t) =
∫

f(a, t) da and µp(t) =
∫

af(a, t) da/TFRp(t). (2)
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Ryder’s chief concern was that period summaries provide a distorted view of
the behavior of cohorts when fertility is changing, and he was able to formalize
this view in a remarkable result.

Ryder (1964) assumes that f(a, t) may be expanded in a Taylor series
separately for each age. The most useful result is obtained by expanding rates
for the cohort which is now at its mean age of childbearing and ignoring
terms beyond the first derivative. If the cohort of interest has mean age of
childbearing µ, and was thus born at t − µ, we have

f(a, t − µ + a) ≈ f(a, t) + (a − µ)f ′(a, t). (3)

Under this approximation Ryder obtained the following relationship between
cohort and period TFRs:

TFRc(t − µ) =
TFRp(t)
1 − rc

, (4)

where rc is the time derivative or rate of change of cohort mean age of child-
bearing at time t − µ.

This remarkable formula shows that if cohorts postpone childbearing then,
to a first order of approximation, the period TFR will fall below the cohort
TFR (for the cohort at its mean childbearing age) by an amount that de-
pends on how fast the mean age of childbearing is increasing. If mean age of
childbearing is decreasing then the period TFR will rise above the correspond-
ing cohort TFR. This in fact happened during the baby boom, when period
TFRs rose to levels that exceeded the completed fertility of all active cohorts
(Ryder, 1964; Schoen, 2004).

It is important to note that Ryder’s result relies solely on a first-order
Taylor series approximation to the rates at each age. Contrary to popular
belief, there is no assumption that the shape of the period or cohort schedules
is constant, or that the cohort and period TFRs are constant. To see this
point note that one can generate rates f(a, t) that satisfy the assumption of
linearity by interpolating between any two arbitrary age schedules f(a, 0) and
f(a, τ).

Ryder (1964) also considered a translation procedure for mean age of
childbearing, introducing a second type of formula with stronger assump-
tions (which may account for some of the confusion). We will not pursue this
development further because it is not central to the argument that follows,
except to note Ryder’s conclusion that “the period mean is a distorted version
of the cohort mean” when quantum is changing, “just as the period sum is a
distorted version of the cohort sum” when tempo is changing.

2.2 Tempo-adjusted fertility

Bongaarts and Feeney (1998) proposed a tempo-adjusted total fertility rate,
usually denoted TFR∗, based on an expression that looks remarkably like
Ryder’s translation formula:
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TFR∗(t) =
TFRp(t)
1 − rp(t)

. (5)

There are, however, two subtle but important differences. First, the rp(t) on
the right-hand-side is the rate of change in the period, not the cohort, mean
age of childbearing at time t. This is much easier to calculate from available
data. Second, TFR∗ is not a cohort rate, but rather a pure-period measure
representing tempo-corrected fertility, as we will see presently.

A third difference I should mention is that Bongaarts and Feeney recom-
mend applying their procedure separately by birth order, using rates that
divide births of a given order by all women. I ignore this breakdown to keep
the argument simple. (I also believe that parity-specific fertility is best an-
alyzed using hazard rates where births of order k are divided by women at
parity k−1, but that’s an argument best left for another time; see van Imhoff
and Keilman (2000) and the rejoinder by Bongaarts and Feeney (2000).)

We will derive the adjustment in Equation 5 considering a situation where
all cohorts start delaying fertility at the same time and rate without reducing
their completed family size. The situation where quantum is fixed is simpler–
and more relevant to the analysis of mortality—than where quantum is chang-
ing as well, although the Bongaarts-Feeney adjustment can be applied in both
cases. The assumption of a constant rate also simplifies things, in particular it
leads to explicit cohort results, although Equation 5 can also be applied when
the rate of change varies over time.

It will be useful to introduce a function F (a, t) representing the cumulative
fertility or average parity of women age a at time t (the cohort born at time
t − a). This schedule can be obtained as a cohort integral, by accumulating
fertility along a diagonal of the Lexis diagram:

F (a, t) =
∫ a

0

f(x, t − a + x) dx. (6)

The age-period specific rates f(a, t) are the cohort derivatives of these rates,
and can be recovered by differentiating F (a, c+ a) with respect to a, i.e. with
respect to both age and time.

Let us also introduce a fertility schedule f0(a) with corresponding cumu-
lative schedule F0(a), total fertility rate TFR0 =

∫
f0(a) da and mean age of

childbearing µ0 =
∫

af0(a)da/TFR0. This baseline schedule will represent the
situation at time zero, so that F (a, 0) = F0(a). If fertility has been constant
for a long time we could view all rates prior to time zero as generated by the
baseline schedule, but this assumption is not necessary for the developments
that follow. All we need is the assumption that just before time zero women
were following the cumulative schedule F0(a).

Now suppose that at time zero all cohorts slow down their pace of child-
bearing at the same rate r. Let us give this statement a precise meaning.
The cohort that has reached average parity F0(a) at age a and time zero,
and would have been expected to reach parity F0(a + 1) a year later, will
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instead climb only as far as F0(a + 1− r). This is similar to taking a pill that
prevents all births (and stops a woman’s biological clock) for a fraction r of
the year, but I prefer to work in continuous time. The same idea is used in
Coale’s (1971) classic nuptiality model, where he speeds up or slows down
the Swedish schedule of first marriages. The device of accelerating or slowing
down the passage of time is also used in survival analysis, as we will see in
Section 3.

It turns out that this slowing down of time is exactly equivalent to a period
shift in the cumulative fertility schedule, so that

F (a, t) = F0(a − rt), t ≥ 0. (7)

For example the cohort age a at time zero had parity F (a, 0) = F0(a) and
will now move to F (a + 1, 1) = F0(a + 1 − r).

If we now take cohort derivatives, differentiating with respect to both age
and time (which of course vary together for a cohort) we obtain

f(a, t) = f0(a − rt)(1 − r), t ≥ 0. (8)

This shows that when all cohorts slow down the pace of childbearing at the
same rate r the age-specific rates are instantly deflated by a factor 1 − r and
start shifting to older ages.

The simplest way to prove Equation 8 is to write the period-shift model
for a cohort that reaches age a at time t = c + a > 0, which is

F (a, c + a) = F0(a − r(c + a)) = F0(a(1 − r) − rc), (9)

and then take derivatives with respect to a for fixed c to obtain

f(a, c + a) = f0(a(1 − r) − rc)(1 − r) = f0(a − r(c + a))(1 − r). (10)

Integrating the period schedule in Equation 8 over a for fixed t we obtain
the period TFR, and we can also obtain the period mean age of childbearing.
As long as the cumulative schedule continues to shift at a rate r,

TFRp(t) = TFR0(1 − r) and µp(t) = µ0 + rt. (11)

The period TFR declines at time zero by a factor 1−r as a result of the delay.
This could be misinterpreted as a change in the quantum of fertility when in
fact it is a pure tempo effect. The fact that the derivative of period mean age
of childbearing is r provides an ingenious way to recover the baseline TFR
simply dividing by 1− r, which leads to the Bongaarts-Feeney formula 5. The
key assumption required is that all cohorts delay fertility at the same time
and rate.

This leads to a direct interpretation of the tempo-adjusted TFR as a coun-
terfactual measure; paraphrasing Bongaarts and Feeney (1998), it provides an
estimate of what the period TFR would have been if cohorts had not de-
layed childbearing at time t. Note that this is indeed a pure period measure
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as claimed; it estimates TFR0, which does not correspond to the completed
family size of any real cohort unless fertility has been constant for the last
thirty five years or so. It can, however, be interpreted as the completed family
size of a synthetic cohort, as we will see below.

It is interesting to note that Bongaarts and Feeney adjust the quantum but
not the tempo of fertility, considering the mean age of childbearing unaffected
by tempo distortions. This can be seen to be the case in the present framework
because µp(0) = µ0, a result that obtains because the factor 1−r appears both
in the numerator and the denominator of the mean. Delays affect the mean
age of childbearing only after time zero. This point will be quite important
when we turn to an analysis of mortality.

2.3 A synthetic cohort interpretation

In the previous section we focused on period measures. Let us now consider
what happens to the cohort that starts childbearing at time zero, when the
passage of time slows down. Let a0 denote the lowest age of childbearing, so
the cohort in question was born at time −a0. From Equation 8, we see that
this cohort would follow the schedule

f†(a) = f0(a − r(a − a0))(1 − r) = f0(a(1 − r) + ra0)(1 − r). (12)

Integrating this expression over all ages a we find the total fertility rate for
this cohort to be

TFR† =
∫

f0(a(1 − r) + ra0)(1 − r) da = TFR0, (13)

where the results follows by changing variables from a to y = a(1 − r) + ra0

and noting that the Jacobian da/dy = 1/(1 − r) cancels out the multiplier
1 − r. This result is due to Zeng and Land (2001), who provide a simplified
derivation of the Bongaarts-Feeney adjustment.

Because TFR† = TFR∗, the Zeng-Land approach leads to an interesting
interpretation of the Bongaarts-Feeney measure in synthetic cohort terms, as
the number of children that a cohort would have under current conditions, if
by that we mean the current rates and the fact that they are shifting to older
ages at a constant rate r.

The corresponding mean age of childbearing for this cohort can easily be
obtained using the same change of variables technique, but appears to have
been overlooked in the literature:

µ† =
∫

af0(a(1 − r) + ra0)(1 − r) da/TFR0 =
µ0 − ra0

1 − r
. (14)

The notation could be streamlined considerably if we measured age from a0

as done by Zeng and Land (2001), in which case Equation 14 would simplify
to µ† = µ0/(1 − r) and we would have the remarkable result that under a
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period shift the quantum and tempo of fertility are affected exactly the same
way.

Bongaarts and Feeney (1998) argue that TFR∗ removes a tempo distortion
from TFR, and one could make the point that µ† removes a tempo distortion
from µ. I prefer the more neutral view that the two sets of indices measure dif-
ferent things: TFR (and µ) tell us how many children a synthetic cohort would
have (and when) if it followed a fixed period fertility schedule with constant
shape, quantum and tempo. In contrast, TFR∗ (and µ†) tell us how many
children the synthetic cohort would have (and when) if it followed a shifting
period schedule with constant shape and quantum but changing tempo.

Fig. 1. Period and cohort rates when childbearing is delayed.

Figure 1 illustrates these ideas with a Coale-Trussell (1974) fertility sched-
ule where 90% of women marry, age at marriage has mean 23 and standard
deviation 4, the level of natural fertility (M) is 1 and the control parameter
(m) is −1. Under this schedule the TFR is 4 children per woman and the
mean age of childbearing is 29.2. Suppose, however, that women start delay-
ing fertility at the rate of r = 0.2 years per year. As shown in Equation 8, the
period age-specific fertility rates would be instantly reduced by 20%, a neces-
sary consequence of the fact that women have slowed down childbearing. The
curve labelled “period” shows the deflated schedule, which has a TFR of 3.2
children per woman but the same mean age of childbearing as the original.
The curve labelled “cohort” shows the schedule followed by the cohort just
starting its reproductive career, assuming the shift continues indefinitely at
the same rate. This cohort would have 4.0 children per woman, on average at
age 33.5 given by Equation 14.

Figure 2 shows how a shift in a period schedule leads to a stretched cohort
schedule. Here we plot the cumulative schedule F0(a) in the example at 10
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Fig. 2. How a period shift in a parity schedule translates into a cohort delay.

year intervals. We also show in gray the parity schedule for the cohort start-
ing reproductive life when the shift starts, and we mark the points where it
“borrows” its cumulative fertility from the three central curves. Note that all
schedules lead to a completed family size of four, but the cohort takes longer
to climb that far.

To summarize, we have illustrated how a reduction in period fertility from
4.0 to 3.2 can result from delayed childbearing without changes in quantum.
Noting that mean age of childbearing increases 0.2 years per year we obtain
a TFR∗ of 4.0. We can interpret this number as a counterfactual estimate of
what the period TFR would have been if women had not delayed childbearing,
in which case the mean age of childbearing would still be 29.2. We can also
interpret it as the number of children that a synthetic cohort would have if
the delay continued indefinitely, in which case mean age of childbearing would
be 33.5. The last estimate pairs TFR∗ with µ†, the estimate of mean age of
childbearing under changing tempo proposed here.

2.4 Cohort and period shifts

The foregoing results generalize to multiple cohorts if we assume that the
cumulative period schedule F (a, t) continues to shift according to Equation 7.
For later cohorts this means not only that once childbearing starts it proceeds
at a slower pace than before, but also that the start of childbearing itself is
delayed. This implication of period-shift models will be of some significance
when we turn to mortality, and represents a departure from accelerated failure
time models.

Following exactly the same change of variables technique we used for the
Zeng-Land cohort, we can show that the cohort born at time t for t ≥ −a0

has
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TFRc(t) = TFR0 and µc(t) = µ† + rc(t + a0) (15)

where rc is the rate of change of cohort mean age of childbearing, and is
related to the period derivative by

rc =
r

1 − r
. (16)

Equation 16 is due to Zeng and Land (2002), who noted that period changes
in tempo provide a distorted view of cohort changes in tempo. (They use
the notation r∗ for rc.) Note that the cohort considered earlier was born at
t = −a0, and that evaluating these expressions at that value leads to TFR†

and µ†.

Fig. 3. Shifting period and cohort fertility schedules.

An interesting implication of these results is that a shift in period fertility
schedules generates a parallel shift in cohort fertility schedules, with both
moving up the age axis but at slightly different rates r and rc. Figure 3
illustrates this idea using model Coale-Trussell schedules. The left panel shows
a period schedule that is shifting to older ages at the rate of r = 0.2 years per
year, and the right panel shows the corresponding cohort schedules shifting
at the rate of rc = 0.25 years per cohort.

Thus, under a simple linear shift model cohort and period quantum are
constant and differ by a factor 1−r at time zero and later. Cohort and period
tempo change over time. The period mean age of childbearing increases at
the rate of r years per year starting from µ0 at time zero. Cohort mean age
of childbearing varies between µ0 and µ† for the active cohorts at time zero,
and increases at the rate of rc years per cohort for cohorts that start their
reproductive careers after that. These results provide a way to translate cohort
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and period quantum and tempo, but the assumptions required are stronger
than for a simple counterfactual interpretation of TFR∗.

3 Mortality

Let us now turn our attention to mortality, focusing on a surface of age-
period specific rates µ(a, t) representing the force of mortality at age a and
time t for the cohort born at t− a. The rates along a diagonal can be used to
compute a cohort life table, but the data required are often not available and
the calculation can only be completed after the cohort has died.

More often the mortality rates for fixed t are used to compute a period
life table, which may be interpreted in terms of a synthetic cohort that goes
through life subject to the force of mortality prevailing at time t. Bongaarts
and Feeney’s concern is that period measures, including the period expectation
of life and the rates themselves, may be distorted by a tempo effect.

3.1 Mortality translation

Ryder (1964) noted that “the development of translation procedures has
proven more difficult for mortality functions than for fertility functions” be-
cause of the multiplicative relationships involved in an attrition process, al-
though he made some headway working with the logarithms of the rates.
Keilman (1994) later obtained useful translation formulas for the hazards of
non-repeatable events, but these do not lead to simple summary results such
as Equation 4.

Further progress can be made working with a survival surface where S(a, t)
represents the probability that someone born at time t− a will survive to age
a at time t,

S(a, t) = exp{−
∫ a

0

µ(x, t − a + x) dx}. (17)

A nice feature of this surface is that integrating along a diagonal leads to
cohort life expectancy:

e
(c)
0 (t) =

∫ ∞

0

S(a, t + a) da. (18)

Unfortunately, integrating over a for fixed t does not lead to period life ex-
pectancy unless mortality is constant. It does, however, lead to a meaningful
alternative period measure of longevity, the cross-sectional average length of
life (CAL) described by Guillot (2003):

CAL(t) =
∫ ∞

0

S(a, t) da. (19)
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The survival probabilities S(a, t) for fixed t may be interpreted as the age dis-
tribution of a population that has a constant stream of births and is subject
to the mortality risks µ(a, t). Bongaarts and Feeney (in this volume p. 11)
call this the standardized age distribution. CAL is a function of this age dis-
tribution and thus depends on past mortality, a point to which we will return
later.

In addition to life expectancy and CAL it will be useful to define α =∫
aS(a) da /

∫
S(a) da, the mean age in the stationary population implied

by a survival schedule S(a). A straightforward application of Ryder’s (1964)
translation formula, which would expand the survival probabilities for the
cohort now at its mean stationary age around the current age distribution
using a first-order Taylor series, yields

e
(c)
0 (t − α) =

CAL(t)
1 − rc

, (20)

where rc is the rate of change in the cohort mean stationary age. This shows
that, to a first order of approximation, CAL falls below cohort life expectancy
when mortality is declining, to an extent determined by the speed of the
decline, provided we line up cohorts and periods using mean stationary age.

Guillot (in this volume) applies Ryder’s ideas using a somewhat different
approach, but reaches essentially the same conclusions. He divides CAL(t) by
an index of distributional distortion to obtain an adjusted measure, which
can be interpreted as a weighted average of the life expectancies of all cohorts
alive at t. He then notes in an application to France that the result is close to
the life expectancy of the cohort born at time t−A(t), where A(t) is the mean
age of the stationary population at time t, between 30 and 37 years for France
in the twentieth century. Here we divide by 1 − rc instead of the distortion
index, and use cohort rather than period mean age. But we both conclude that
when mortality declines CAL falls below the life expectancy of the cohort near
its mean stationary age. (I later show under different assumptions that CAL
equals the life expectancy of the cohort now at its mean age at death.)

One could take this result to mean that CAL provides a distorted view
of cohort life expectancy, or is subject to a tempo effect when mortality is
declining, in much the same way that the period TFR distorts cohort fertility.
I prefer to view it as indicating that when mortality is declining the age
structure lags behind the cohort mortality schedule. In other words, it takes
a while for a population to forget its past.

I realize that applying a formula developed for the quantum of fertility to
the tempo of mortality seems unusual, if not plain wrong, but Ryder’s result
is quite general. Given any age-period surface, it relates a cohort integral
to a period integral and to the rate of change of the first cohort moment.
In fertility we applied it to age-specific rates, so the integrals are measures of
quantum and the first moment is tempo. In mortality we applied it to survival
probabilities (or age distributions), so the integrals are mean survivals and the
first moment is mean stationary age.
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3.2 The Bongaarts-Feeney model

The Bongaarts-Feeney model of mortality change is formally identical to the
fertility model, except that the period schedule that shifts over time is the
standardized age distribution S(a, t) rather than the parity schedule F (a, t).
In this section we motivate the model in terms of a slowing down of the passage
of time, just as we did for fertility. Later we discuss various period and cohort
measures of longevity under the model.

Let S0(a) denote a survival function and let d0(a) and µ0(a) denote the
corresponding density and hazard functions. This could be a conventional
period life table or a mathematical model. We will assume that at time zero
survival is governed by S0(a) in the sense that all cohorts are following this
schedule. This is equivalent to assuming that the population is stationary with
age distribution S0(a).

Suppose, however, that at time zero all cohorts postpone death at the same
rate r. Consider specifically the cohort that has reached age a at time zero,
of which a fraction S0(a) is still alive. We would expect a fraction S0(a +
1) to be alive a year later at age a + 1, but instead we observe that the
proportion surviving has increased to S0(a + 1 − r). It is precisely as if the
cohort had aged only 1−r years in one year. This type of model is known in the
statistical literature as an accelerated life model, see for example Kalbfleisch
and Prentice (2002). The situation is similar to taking a pill that prevents
death (and stops aging) for a fraction r of the year, but I prefer to view the
process as developing in continuous time.

Remarkably, this model is equivalent for all active cohorts to a period shift
in the standardized age distribution, where

S(a, t) =
{

1 if a < rt
S0(a − rt) if a ≥ rt

(21)

For example the survival probabilities for the cohort considered in the previous
paragraph are S(a, 0) = S0(a) and S(a + 1, 1) = S0(a + 1− r). If we compute
a cohort derivative, differentiating Equation 21 with respect to both age and
time, and changing sign, we obtain a density reflecting the age distribution of
deaths at each time

d(a, t) =
{

0 if a < rt
d0(a − rt)(1 − r) if a ≥ rt.

(22)

Note that d(a, t) is a probability density function only for a cohort, i.e. if we
consider d(a, c + a) for fixed c. The period profile is not a real density but a
collection of densities for various cohorts, and in this model it integrates to
1 − r, not one. Bongaarts and Feeney (in this volume p. 11) call the integral
of d(a, t) for fixed t the total mortality rate (TMR). Watcher (in this volume)
notes that it can be interpreted as a period count of deaths.

If we divide the deaths d(a, t) by the numbers exposed S(a, t) we obtain
the age-period specific force of mortality
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µ(a, t) =
{

0 if a < rt
µ0(a − rt)(1 − r) if a ≥ rt.

(23)

This is both a period and a cohort hazard, pertaining to time t and to the
cohort born at t − a. Note that when all cohorts start delaying death at the
same rate the hazard is instantly deflated by a factor 1− r and starts shifting
to older ages. This is clearly a tempo effect, as it is caused by a delay in death.
I don’t believe, however, that it is a distortion. The only way that cohorts can
delay death is by dying at lower rates, so I view the reduction in hazards
as real. The interesting question concerns the implications of this change for
longevity.

It will be useful to introduce for completeness two additional functions
defined by Bongaarts and Feeney (in this volume p. 11) in (their) Equations
5a and 5b. If we differentiate S(a, t) with respect to time only (as opposed to
time and age simultaneously) we obtain the death density

ds(a, t) = d0(a − rt), (24)

and dividing this by the survivors S(a, t) we obtain the hazard

µs(a, t) = µ0(a − rt). (25)

These are proper density and hazard functions for a ≥ rt and can best be
viewed as inherent features of the standardized age distribution S(a, t), so I
will call then the age-distribution density and hazard, respectively. Note that
under the period shift model the observed force of mortality µ(a, t) is pro-
portional to the age distribution hazard µs(a, t), with proportionality factor
1 − r. This is called the proportionality assumption in the Bongaarts-Feeney
framework.

I should also note that Bongaarts and Feeney consider a more general shift
model where the rate of delay is not a constant r but a function of time r(t).
I stick to the linear case because it is simpler and leads to explicit results for
cohorts.

3.3 Four measures of longevity

Bongaarts and Feeney (in this volume p. 11) consider four measures of
longevity, denoted M1 to M4. Three of them are equal under the period-shift
model of the previous section. The odd one out is period life expectancy.

The first measure is cohort average length of life (CAL)

M1(t) = CAL(t) =
∫ ∞

0

S(a, t) da. (26)

This measure is easily computed by integrating the standardized age distri-
bution. From Equation 21 we find that under the period shift model
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CAL(t) = CAL(0) + rt, (27)

where CAL(0) is both CAL and the conventional expectation of life in the
baseline schedule S0(a). CAL may be computed as an ordinary mean age
at death where deaths are obtained by applying the age-distribution hazard
µs(a, t) to the standardized age distribution S(a, t). Interestingly, CAL doesn’t
change when cohorts start postponing death, but it starts increasing at the
rate of r years per year as long as the shift (or slow down of time) continues.
This occurs because CAL is based solely on the age structure at time t, and
does not respond to changes in mortality until these are reflected in the age
structure.

The second measure is standardized mean age at death

M2(t) =
∫ ∞

0

ad(a, t) da /

∫ ∞

0

d(a, t) da, (28)

which is based on the standardized age distribution of deaths at time t. The
deaths in this index result from applying the current force of mortality µ(a, t)
to the standardized age distribution S(a, t), and may thus be viewed as a
measure that depends both on current mortality risks and the current age
distribution.

Under the period-shift model the force of mortality µ(a, t) and the age-
distribution hazard µs(a, t) are proportional, with proportionality factor 1−r.
Because this factor appears both in the numerator and denominator of the
mean it cancels out, so M2(t) = M1(t) as noted by Bongaarts and Feeney (in
this volume p. 11). If the proportionality assumption is not satisfied, however,
the two indices will differ.

The third measure is conventional period life expectancy

M3(t) = e
(p)
0 (t) =

∫ ∞

0

exp{−
∫ a

0

µ(x, t) dx} da. (29)

This index may also be viewed as an ordinary mean age at death where
deaths result from applying the force of mortality µ(a, t) to the stationary
population implied by that hazard, which is of course the period survival
function exp{− ∫ a

0
µ(x, t) da} (not to be confused with S(a, t)). This measure

depends on the current force of mortality only.
Under the period shift model the force of mortality µ(a, t) is proportional

to µs(a, t) and therefore the period survival function is a power of the stan-
dardized age structure, but there is no simple relationship between M3(t) and
either M1(t) or M2(t).

Note that when cohorts start postponing death the conventional expecta-
tion of life reacts instantly. Because it depends only on the force of mortality
µ(a, t), which has been deflated by a factor 1−r, conventional life expectancy
e0 will increase. This is again a tempo effect, but in my view is not a dis-
tortion. Conventional life expectancy is just a summary of age-period specific
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mortality, and responds appropriately by increasing when the rates decline.
In particular, the synthetic cohort interpretation of e0 as the mean lifetime
implied by the current rates continues to be correct.

The fourth measure is the Bongaarts-Feeney tempo-adjusted life ex-
pectancy. This index seeks to remove the tempo effect from the force of mor-
tality dividing by 1 − r and is therefore defined as

M4(t) =
∫ ∞

0

exp{−
∫ a

0

µ(x, t)/(1 − r) dx} da. (30)

Under the period-shift model µ(a, t) is proportional to µs(a, t) with propor-
tionality factor (1 − r) and therefore M4(t) = M1(t) = M2(t), as noted by
Bongaarts and Feeney (in this volume p. 11). In this case the adjusted measure
can be viewed as an ingenious way to estimate CAL or mean age at death from
the observed hazard. If the model does not hold, however, M4(t) is a different
measure that ostensibly depends only on the current force of mortality and the
rate of delay r, but in practice requires knowledge of the standardized age dis-
tribution for estimation. Watcher (in this volume) provides a characterization
of M4(t) that clarifies this issue.

To summarize, when cohorts start delaying death conventional life ex-
pectancy reacts instantly, whereas the other three measures react more slowly,
increasing only as the changes work their way into the age structure. The
fundamental issue is whether this is a bias or distortion in conventional life
expectancy. I argue that it is just a reflection of the fact that when mortal-
ity declines the age structure lags behind the force of mortality. To further
explore this issue we now look at the cohort implications of the period-shift
model.

3.4 Cohort survival

Consider again the cohort born at the time the period shift, or the slowing
down of the passage of time, starts. This cohort would have been expected to
follow the schedule S0(a) but instead will follow a stretched schedule, where
the probability of surviving to age a is

S†(a) = S0(a(1 − r)). (31)

This result follows directly from the period-shift model in Equation 21 and
shows that each calendar year the cohort ages only 1 − r years.

Figure 4 illustrates how a period shift leads to a cohort delay using a
Weibull distribution that is shifting towards higher ages at a rate of 0.2 years
per year, an artificially high rate chosen to make the illustration clear. I show
the schedule at the start of the process as well as 25, 50, 75 and 100 years later,
and superimpose the survival probabilities that would apply to a synthetic
cohort undergoing this regime, highlighting the ages where the cohort survival
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Fig. 4. How a period shift in survival translates into a cohort delay.

“borrows” its probability from the three central curves. The analogy to Figure
2 for fertility should be obvious.

We can compute the expectation of life under S†(a) using the same change
of variables technique that we used in the case of fertility:

e†0 =
∫ ∞

0

S0(a(1 − r)) da =
∫ ∞

0

S0(y)
dy

1 − r
=

e0

1 − r
. (32)

We find that if r > 0 the expectation of life under a shifting schedule exceeds
the value it would have if the schedule remained fixed. The area under the
original curve is e0, the shaded area under the stretched curve is e†0.

Note by way of illustration that life expectancy in the U.S. today is 77.3
under a fixed mortality schedule, but would be 85.8 if the schedule shifted 0.1
years per year, which is the observed gain in period life expectancy between
2001 and 2002. The value 85.8 is computed simply as 77.3/0.9.

Let us return to S†(a), the survival function that applies to our synthetic
cohort. Differentiating we find the density to be

d†(a) =
d

da
S†(a) =

d

da
S0(a(1 − r)) = d0(a(1 − r))(1 − r). (33)

The hazard, computed as the ratio of deaths to survival, is

µ†(a) = d†(a)/S†(a) = µ0(a(1 − r))(1 − r). (34)

Thus, if the mortality schedule shifts 0.1 years per year, a 60 year old would
be exposed to 90% of the risk that would have applied at age 54 under a static
schedule. These results are consistent with Equations 22 and 23 in the previous
section, and thus with equations 8b and 8c in Bongaarts and Feeney (in this
volume p. 11). (We showed before that their d

dtM2(t) = r.)
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We note again that as soon as time slows down the hazard is deflated
by a factor 1 − r, which is how the cohort manages to live longer. Consider
an example where the baseline survival S0(a) is Weibull with parameters p
and λ, so S0(a) = exp{−(λa)p}. In this case the stretched survival S†(a) is
also Weibull with parameters p and λ† = λ(1−r), so the shift and consequent
slowing down of the passage of time translate into a proportionate reduction in
the hazard at all ages. Kalbfleisch and Prentice (2002) show that the Weibull
is the only distribution where the accelerated life and proportional hazards
families coincide.

For an example more relevant to human mortality, at least in adult ages,
consider a Gompertz model with parameters α and β, where the baseline
hazard µ0(a) = exp{α+βa} increases exponentially with age. In this case the
stretched survival is also Gompertz but with parameters α† = α + log(1 − r)
and β† = β(1 − r), a result that follows directly from the general expression
given above. In this case the change in the hazard is not proportional, but
relatively larger at older ages. For a country such as the U.S., where adult
mortality is roughly Gompertz, a shift of 0.1 years per year starting at age
30 would reduce the hazard by 10% at age 30, 30% at age 60 and 46% at age
90. As a result a 30 year old, who is expected to live another 48.4 years under
current conditions, would live on average about 53.8. (These calculations are
based on α = −9.696 and β = 0.0855, which implies α† = −9.545 and β† =
0.07694. Note that for a shift starting at age a0 rather than zero α† = α +
log(1 − r) + βra0. The value of e†0 = 53.8 can be obtained as 48.4/0.9 or by
numerical integration of the Gompertz hazard.)

These results can be extended to multiple cohorts, just as we did in the
case of fertility, by assuming that the standardized age distribution continues
to shift at a constant rate. Using essentially the same argument as in the
previous section, we can show that the cohort born at time t > 0 goes through
the survival schedule

S(a, t + a) =
{

1 if a < tr/(1 − r)
S0(a − r(t + a)) otherwise (35)

and thus has life expectancy

e
(c)
0 (t) = e†0 + rct, (36)

where e†0 is the life expectancy of the cohort born at time zero and rc, the
rate of change in cohort life expectancy, is

rc =
r

1 − r
. (37)

The cohort born at time zero experiences just a stretching of the survival
function S0(a), which yields a plausible model for all ages. Subsequent co-
horts, however, are assumed to experience no mortality until they reach age
rct, at which time they join a stretched and shifted schedule. This feature
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makes the model less realistic in multiple-cohort settings unless one restricts
its applicability, as Bongaarts and Feeney do, to the adult ages, say above 30,
in low mortality populations.

With these caveats, the foregoing results allow us to relate period CAL
or mean age at death to cohort life expectancy. As we noted in the previous
section, when mortality declines the age structure lags behind the force of
mortality and as a result

CAL(t) < e
(p)
0 (t) < e

(c)
0 (t). (38)

Under the period-shift model we can be a bit more precise. We can show that
the Bongaarts-Feeney measure M4, which is then the same as CAL, M1 and
M2, is the life expectancy of the cohort now at its mean age at death:

CAL(t + e
(c)
0 (t)) = e

(c)
0 (t), (39)

a result easily verified by direct substitution, noting that the cohort born at
t has mean age at death (e0 + rt)/(1 − r). Alternatively, one can go back in
time and note that the cohort dying today was born at time (t− e†0)/(1 + rc)
and has life expectancy CAL(t).

Goldstein (in this volume) has also derived the translation formula (39) and
has used it to show that under a continuing linear shift the cohort born today
would have life expectancy given by equation (32); this provides increased
confidence in these results.

To summarize, conventional life expectancy e0 measures how long a new
born would live under current rates. This may not be a realistic estimate if
mortality is declining. Under a period-shift model we have shown that a new
born would in fact live longer, e†0 years. On the other hand period CAL, mean
age at death and the Bongaarts-Feeney adjusted measure M4 would all be
lower, corresponding to the mean age at death of the cohort now reaching its
life expectancy, provided the assumptions underlying the simpler linear shift
model are satisfied.

3.5 A proportional hazards model

We now consider an example where the assumption is not quite satisfied, and
therefore CAL, M2 and M4 differ. Specifically, consider a population with a
constant stream of births and no mortality before age 30. Suppose the force
of mortality follows a Gompertz function with α = −9.997 and β = 0.0855,
which as noted earlier fits very closely the U.S. 2002 life table. Suppose further
that mortality has been constant long enough for the population to become
stationary. In this case all four measures, CAL, mean age at death, e0 and the
Bongaarts-Feeney tempo-adjusted life expectancy M4 are 78.45.

Suppose now that at time zero the force of mortality declines 20% at
all ages. The conventional period life expectancy, being just a summary of
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age-specific mortality, would increase instantly to 80.97 to reflect this im-
provement. One has to be careful no to conclude that all cohorts will live this
long, as the calculation applies only to the cohort age 30 at time zero, assum-
ing mortality remains constant thereafter. CAL, on the other hand, doesn’t
change at time zero but starts increasing immediately afterwards as the de-
cline in mortality is reflected on the standardized age distribution. Eventually
the population becomes stationary again and CAL reaches 80.97. Figure 5
shows the trajectory of CAL for this example.

Fig. 5. Measures of longevity after a one-time reduction in hazard.

Mean age at death doesn’t change instantly either. Although this index
depends on the observed force of mortality, which is 20% lower at time zero,
the reduction factor appears both in the numerator and denominator and
cancels out. It is only as the reduction works its way into the age structure
that mean age at death starts to increase, eventually reaching 80.97. Figure
5 shows that the trajectory of mean age at death is very similar to CAL. The
Bongaarts-Feeney tempo-adjusted measure depends on the force of mortality
and a correction factor based on r, which I estimated using the TMR. (Using a
numerical derivative of M2(t) gives very similar results except for the first two
years.) The key result is that M4 is very similar to the other two measures.
It takes them nearly sixty years to fully reflect the instantaneous change in
mortality that occurred at time zero.

The figure also shows cohort life expectancy, estimated assuming that mor-
tality was constant both before and after time zero at the specified level. We
plot a cohort’s life expectancy on the year when it reaches its mean age at
death. We note that the three measures of longevity track the increase in
cohort life expectancy, albeit only approximately.
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4 Discussion

This chapter has emphasized similarities between the analysis of fertility and
mortality. I have argued that Ryder’s translation formula can be applied quite
generally to demographic surfaces. When the surface represents age-specific
fertility rates the formula translates period and cohort quantum. When the
surface represents survival probabilities the formula translates period and co-
hort tempo, but using CAL rather than conventional life expectancy. The
common theme is that period and cohort demographic summaries can differ
in times of change. I believe that labelling these differences a bias or distor-
tion has been unfortunate. Period aggregates provide convenient summaries,
while cohort aggregates are often needed to fully understand the underlying
process.

I have also stressed the fact that the Bongaarts-Feeney framework is es-
sentially the same for fertility and mortality, postulating a period shift in a
cumulative schedule representing average parity or survival probabilities. The
shift can be motivated by assuming that all cohorts delay childbearing or
postpone death at the same rate, and is closely linked to accelerated failure
time models used in survival analysis. The shift results in a proportionate
reduction in fertility or mortality rates, which also move to older ages. The
model applies to multiple cohorts but requires assuming that later cohorts
experience not just a slowing down of time but also a delay in the onset of
exposure, an assumption that may be less realistic and, in the case of mortal-
ity, requires restricting application to adult ages in low mortality populations.
I have also proposed measures of tempo under changing fertility or mortal-
ity which complement the Zeng-Land interpretation of the Bongaarts-Feeney
adjustment by applying to the same synthetic cohort.

Having stressed similarities between fertility and mortality, it is perhaps
appropriate to remind ourselves of some fundamental differences. In the case
of fertility a reduction in age-period specific rates could represent changes in
the quantum or tempo of fertility: women could be having fewer children or
just having them later (or both). By assuming that delays occur at all ages
at the same rate the Bongaarts-Feeney framework can ingeniously separate
the two types of change. In our illustration we could have misinterpreted a
reduction in TFR from 4.0 to 3.2 as a change in completed family size, but
because it was accompanied by an annual increase of 0.2 years in mean age of
childbearing–which would lead to just such a reduction–we concluded that it
was a pure tempo effect. This does not mean, incidentally, that the reduction
in period rates is not real. The only way cohorts can still have 4.0 children
but over a longer time is by having them at a slower pace. The new measure
of tempo introduced here tells us how much longer it would take.

There are two reasons why mortality is different, even if the same period-
shift model applies. First, mortality is a pure tempo phenomenon; everyone
dies exactly one time and the only question is when. Consequently, a reduction
in the period force of mortality can only mean that cohorts are delaying death.
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There is no risk of misinterpretation, and therefore, one might argue, no need
for adjustment. Bongaarts and Feeney implicitly acknowledge this point when
they note that mean age at death, which they view as a direct analog of
mean age of childbearing, needs no adjustment. They do adjust the force of
mortality, of course, but I view this adjustment as merely a device to bring
the conventional calculation of life expectancy inline with CAL or mean age
at death. I see no bias or distortion in the observed force of mortality, just as
I see no bias in age-specific fertility, and the best proof of that is the fact that
cohort survival is determined entirely by µ(a, t), not by its tempo-adjusted
version. The question then is whether we should use standardized mean age
at death or conventional life expectancy as a measure of longevity.

That brings us directly to the second reason why mortality is different,
and it has to do with exposure. In fertility all women are exposed to have a
birth, whether they have had one before or not, which makes f(a, t) a true
event-exposure rate. Both the cohort and period TFR and mean age of child-
bearing are summaries of these rates and are not affected by exposure. In the
case of mortality only survivors are at risk of dying, which is why analytical
interest usually focuses on the force of mortality µ(a, t), which acts on sur-
vivors S(a, t) to produce deaths d(a, t). For a cohort the choice of measure
is immaterial because exposure is itself determined by the force of mortality
and as a result conventional life expectancy and mean age at death are iden-
tical. For a period the two measures can be quite different when mortality
is changing. Conventional life expectancy depends only on the period force
of mortality µ(a, t), whereas mean age at death depends also on S(a, t) and
thus on the population’s past mortality history. We have seen that under the
strong assumption of a linear-shift model, mean age at death coincides with
the life expectancy of the cohort now reaching its mean age at death.

The question we asked at the outset, ‘How long do we live?’, can thus
be seen to have different answers depending on our precise definition of ‘we’.
Conventional life expectancy applies to a hypothetical cohort that is exposed
to a constant set of rates. It has the great merit of also applying to everyone
else when mortality is constant. But when mortality is changing the construc-
tion is less useful; why ask how long someone would live subject to these
rates if they are changing? We know that they would probably live longer
than that, and we can estimate how much longer if we are willing to make
strong assumptions about future changes. In particular, a continuing linear
shift to older ages leads to e†0, the simple measure of life expectancy under
changing mortality proposed here. It is also the case that when mortality
is declining no cohort has yet lived that long, or even as long as e0 would
imply. The Bongaarts-Feeney measure tells us how long those dying today
have lived, standardizing for cohort size, when the proportionality assump-
tion holds. The fact that those dying today haven’t lived as long as today’s
newborns will probably live, under either fixed or changing rates, is not a bias
or distortion; it’s just a fact of life.



Demographic translation and tempo effects 91

The foregoing discussion has emphasized the practical interpretation of
various measures of longevity while implicitly accepting the conventional view
that mortality change is driven by the hazard function. But the Bongaarts-
Feeney approach is fundamentally different; it views mortality change as
driven by gains in longevity that shift the age distribution. This deflates the
hazard by a factor 1 − r and shifts it to older ages. Unfortunately, it is diffi-
cult to differentiate these frameworks empirically because the age patterns in
low-mortality countries are very close to a Gompertz model, where a propor-
tionate reduction in the hazard cannot be distinguished from a shift to older
ages. But if mortality were to stop declining we would soon know, because the
period-shift model predicts an increase in the hazard as the factor 1−r disap-
pears and our past catches up with us, whereas the conventional view is that
the hazard would stay constant. Faced with such choice, one may very well
prefer to see hazards continue to decline and live longer with the uncertainty.
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Lifesaving, lifetimes and lifetables�

James W. Vaupel

Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057
Rostock, Germany. E-mail: jwv@demogr.mpg.de

Summary. Mortality change roils period rates. In the short term, conventional
calculations of age-specific probabilities of death and life expectancy in the period
immediately after the change depend on how many lives have been saved. In the
long term, the probabilities and period life expectancy also depend on how long
these lives have been saved. When mortality is changing, calculations of period life
expectancy do not, except in special circumstances, measure the life expectancy of
a cohort of newborns that hypothetically live all their lives under the new mortality
regime.

1 Introduction

When a life is saved, how long is death averted? When death rates are de-
clining, how should period lifetables be estimated? This demographic essay
explains why and how the answer to the second question hinges on the answer
to the first. My thinking was stimulated by the pathbreaking research by Bon-
gaarts and Feeney (2002; in this volume p. 11 and p. 29) on why conventional
calculations may lead to distorted estimates of period life expectancy.

The conventional formula for period life expectancy at current death rates
can be expressed as

e0 =
∫ w

0

e−
∫ a
0 µ(x) dx da , (1)

where µ(x) is the force of mortality (hazard of death) at age x as estimated
from observed counts of age-specific deaths and the age-specific population at
risk. In contrast, life expectancy under current conditions is given by

e∗0 =
∫ w

0

e−
∫ a
0 µ∗(x) dx da , (2)

� c©2005 Max-Planck-Gesellschaft, reprinted with permission
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where is the force of mortality that would be experienced by a cohort of
newborns that lived all their lives under the mortality regime that prevailed at
the time of their birth (Vaupel 2002). Note that this concept of life expectancy
under current conditions is a period measure based on the hypothetical notion
that the mortality regime at the time of the cohort’s birth continues unchanged
until the last member of the cohort dies.

It is helpful to consider a special, simple case. Suppose that there is a
mortality regime that prevails up until some point in time after which a new
mortality regime prevails. Although there may have been human populations
in the past that lived under a more or less fixed mortality regime, a sudden
but long-term shift from one regime to another may rarely if ever been experi-
enced. In contemporary human populations mortality conditions are changing
incessantly. In laboratory experiments, however, with non-human populations,
it is possible to switch from one mortality regime to another. For instance,
many experiments have been performed with animals such as fruit flies or
mice that are given one kind of diet up until some point and a different kind
of diet afterwards (e.g., Mair et al. 2003, Carey et al. 1998). The Max Planck
Institute for Demographic Research houses a lightbulb laboratory in which
large numbers of small bulbs can be lit at either 5 or 6 volts. A population of
lightbulbs can be kept under harsh 6 volt conditions until some moment and
then at a more salubrious 5 volts thereafter.

To simply the exposition, it is also helpful to make three other assump-
tions. The number of births in the population during each time interval is
assumed to be constant. The population is assumed to be closed to migration.
And the new mortality regime is assumed to be more favorable than the old
regime. In particular, every individual under the new conditions would live at
least as long as under the older conditions and some individuals would live
longer. Again, such assumptions do not pertain to actual human populations,
but they can be achieved in laboratory experiments. So it is possible to imag-
ine a concrete instance of the kind of mortality shift I will consider in this
chapter-think, e.g., about laboratory flies fed a poor diet and then a better
diet or about lightbulbs lit at 6 volts and then at 5 volts. In any case, the as-
sumptions are not of fundamental importance. The theory can be generalized.
The assumptions, however, drastically simplify the exposition of the theory.

Consider age-specific death rates in the interval right after the shift from
the unfavorable mortality regime to the favorable regime. To be specific, con-
sider lightbulbs during the day after voltage has been lowered from 6 to 5
volts. Suppose that the population of lightbulbs consists of different cohorts
that were turned on on different days. Let µ(x) in formula (1) above be the
force of mortality for bulbs that were turned on x days ago, as estimated from
observations of how many bulbs died over the course of the day. Then e0 ,
life expectancy at current rates, can be calculated using (1). Suppose a cohort
of lightbulbs is illuminated at 5 volts until the last bulb fails. If laboratory
conditions are held constant, then observations of this cohort can be used to
estimate µ∗(x) in formula (2) and hence e∗0 , life expectancy under current
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conditions. The main thrust of this chapter is to demonstrate that, except in
special circumstances, µ(x) will not equal µ∗(x) and hence e0 will differ from
e∗0 . Annette Baudisch, Jutta Gampe, Mieke Reuser, Dirk Vieregg and I are
currently conducting lightbulb experiments to provide empirical evidence for
this assertion; in this chapter I will present the theoretical case.

Vaupel, Manton and Stallard (1979) considered populations of individuals
that are heterogeneous with respect to their age-specific chances of death.
They showed that if mortality conditions are changing, then life expectancy at
current rates does not, except in special circumstances, equal life expectancy
under current conditions, i.e., that e0 �= e∗0 . They developed a model of
gamma-distributed frailty (i.e., relative risk of death) and used it to derive
formulas for µ∗ and e∗0 . Further research (e.g., Vaupel and Yashin 1985,
1987a, 1987b; Vaupel, Yashin and Manton 1988; and Vaupel 2002) extends this
line of thinking to other kinds of models of heterogeneous populations. The
fundamental concept of these models is that a cohort’s mortality at some age
depends not only on current conditions but also on the historical conditions
the cohort has suffered.

Bongaarts and Feeney (2002) formulated a delayed-death model such that
health improvements in some year add an increment δ to the remaining lifes-
pans of everyone over 30. Note that this increment does not depend on the
mortality history of a population but only on a change in current conditions.
In the delayed-death model it is also the case that, except in special circum-
stances, e0 �= e∗0 . Bongaarts and Feeney (2002, in this volume p. 11 and p. 29)
suggest various formulas for estimating e∗0 . Some scholars think that these
formulas are problematic (e.g., Wachter in this volume). I will not consider
this issue here, but I will show that Bongaarts and Feeney’s basic point, that
e0 �= e∗0 , is correct.

The general conclusion of the present chapter is that e0 �= e∗0 (and
µ(x) �= µ∗(x)) under much broader circumstances than those considered by
Vaupel, Manton and Stallard (1979) or by Bongaarts and Feeney (2002, in
this volume p. 11 and p. 29). A discrepancy can arise whenever mortality con-
ditions are changing. The two life expectancies will differ when lives saved at
age x are extended by an average increment that is not equal to remaining life
expectancy at age x at current death rates. Furthermore, the two life expectan-
cies will differ when lives lost at age x are shortened by an average decrement
that is not equal to conventionally-calculated remaining life expectancy at
age x. Bongaarts and Feeney’s delayed-death model and the various models
of heterogeneity in innate and acquired frailty are special cases.

2 How saving a life alters life expectancy

Consider a stylized population with constant age-specific death rates. Suppose
that the population is closed to migration and that the number of births each
year is constant. Suppose that at some age x in some year y a life is saved.
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How will the conventional lifetable for that year differ from the lifetable for
previous years? The answer is easily derived if the following formula is used:

ex =
Dx

Nx
· 1
2

+
Nx − Dx

Nx
· (1 + ex+1) , (3)

where ex is remaining life expectancy at age x, Nx is the number of individuals
who celebrate their xth birthday in year y and Dx is the number of deaths
among those individuals. This formula is consistent with conventional lifetable
methods and from the values of ex age-specific death rates and other lifetable
statistics can be calculated. In this formulation ex is calculated using data
for Lexis rhombuses that extend from the start of year y to the end of year
y + 1, but other formulations based on Lexis squares or on Lexis rhombuses
that stretch over two years of age and one year of time could also be used.

If a death is averted at age x, then

e∗x =
Dx − 1

Nx
· 1
2

+
Nx − (Dx − 1)

Nx
· (1 + ex+1) . (4)

Subtracting 3 from 4 yields

e∗x − ex =
1

Nx
· (0.5 + ex+1) . (5a)

If nx deaths are averted, then

e∗x − ex =
nx

Nx
· (0.5 + ex+1) . (5b)

The expression 0.5+ex+1 can be interpreted as the remaining life expectancy
of someone whose life was saved at age x (under the assumption that such a
life is saved, on average, halfway through the year.)

The implication of (5b) is clear and important: conventional lifetable cal-
culations are consistent with the assumption that when lives are saved at some
age x the beneficiaries gain, on average, the remaining life expectancy at that
age. More precisely, the assumption is that each beneficiary will face the same
age-specific hazards of death for the remainder of his or her life as those faced
by individuals with lifespans greater than x.

The actual average lifespan gained by the resuscitated may, however, be
more or less than remaining life expectancy. To be concrete let 0.5 + ex+1

equal ten but suppose that each resuscitated individual dies one year after
being saved. Further suppose that nx

Nx
is one percent. Then conventional cal-

culations yield an increase in remaining life expectancy at age x of a tenth of
a year whereas the actual gain is only a hundredth of a year. In other words,
conventional calculations lead to a distorted estimate of real life expectancy.

Before analyzing this distortion further, it is useful to consider mortality
improvements at several ages. Suppose that nx deaths are averted at age x
and that nx+1 deaths are averted at age x + 1. Then
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e∗x+1 =
Dx+1 − nx+1

Nx+1
· 1
2

+
Nx+1 − (Dx+1 − nx+1)

Nx+1
· (1 + ex+2) (6)

and

e∗x =
Dx − nx

Nx
· 1
2

+
Nx − (Dx − nx)

Nx
· (1 + e∗x+1) . (7)

Note that e∗x depends on e∗x+1 rather than on ex+1 . More generally, if mor-
tality improvements are made at older ages, then persons whose lives are
saved at some younger age are assumed to gain, on average, the remaining life
expectancy at this age taking into account the progress at older ages.

3 Individual lifetimes

To further explore why and when e0 �= e∗0 , the notion of individual lifetimes
is useful. Let Xi be the lifetime (i.e., age at death) of some specific individual
i. Let Xi(x, y) be the total lifetime of this individual if he or she survives to
age x in year y, under the assumption that the mortality conditions prevailing
in year y persist for the rest of the individual’s life. Hence Xi(0, y0) is the age
at which the individual would die if mortality conditions remain the same as
in the individual’s year of birth y0 .

Suppose mortality is being reduced. For simplicity assume that mortality
levels remain the same from year y0 to just before year y and then fall sud-
denly. Suppose that individual i survives to age x in year y. Let x− and y−

denote the individual’s exact age and the exact time just prior to the mor-
tality improvement. Because before year y there is no change in death rates,
Xi(x−, y−) = Xi(0, y0) . Mortality improvement means that for at least some
individuals Xi(x, y) > Xi(x−, y−).

Kenneth Wachter suggested a helpful way of thinking about this model.
Imagine that each individual is given a ticket at birth that entitles the person
to a specific lifespan. This lifespan at the time of birth y0 is denoted above
by Xi(0, y0). Individuals keep their lifespan tickets until time y. Some may
die before this time. Among the survivors, some and perhaps all individuals
get a new ticket with a new lifespan, namely the lifespan denoted above by
Xi(x, y). Because the new mortality regime is assumed to persist indefinitely,
individuals keep their new lifespan until death. Babies born at time y get
tickets that are consistent with the new mortality regime. All babies born at
any time after y similarly get tickets that are consistent with the new mortality
regime. Consider three possibilities.

First, suppose everyone’s life is extended by some increment δ:

Xi(x, y) = Xi(x−, y−) + δ . (8)

This is the elegantly simple model suggested by Bongaarts and Feeney (2002,
in this volume p. 11 and p. 29). The increment δ would be gained not only
by everyone alive at time y, but also by all future generations. One way to



98 James W. Vaupel

capture this notion is to allow x to be negative. If x is negative, then the
person will be born in x years.

Second, suppose that all individuals henceforth age at a slower pace such
that time in the future is stretched out by the factor 1 + ρ :

Xi(x, y) = x + (1 + ρ)(Xi(x−, y−) − x) . (9a)

This model can also be formulated as:

Xi(x, y) = Xi(x−, y−) + δi , (9b)

where
δi = ρ(Xi(x−, y−) − x) . (9c)

Note that the increment δi depends on how much longer the individual would
have lived under the conditions prevailing before the mortality improvement.
As in the case of constant δ , the mortality improvement would benefit future
generations as well as those alive at time y.

Third, suppose that some individuals gain from the mortality improvement
and some do not. In particular, suppose that there is a chance π that a specific
individual’s life will be extended and a corresponding chance 1 − π that the
individual’s life will not be extended. That is, suppose

Pr
{
Xi(x, y) = Xi(x−, y−) + δi

}
= π (10a)

and
Pr

{
Xi(x, y) = Xi(x−, y−)

}
= 1 − π ; (10b)

where Pr denotes “probability of” and the increment δi is greater than zero.
Further suppose that δi is a random variable that has the same distribution
as the distribution of remaining lifespans at age Xi . That is, suppose that
when the life is saved of an individual who would have died at some age Xi,
then this individual thereafter faces the same life chances as individuals whose
lifespans are greater than Xi. If δi is the expected value of δi, then δi equals
remaining life expectancy at age Xi. Hence, individuals whose lives are saved
at age X gain, on average, the remaining life expectancy at age X. This model
is consistent with the conventional approach to estimating life expectancy, as
shown above.

Note that in all three cases the individual does not have to be on the verge
of death. That is, Xi may be larger than x. A person who would have died
at some age in some future year might have the scythe of death averted in an
earlier year. Indeed, as noted above, the person might not even be born yet.
(If Xi is smaller than x, then the individual has died and the improvement is
too late.)
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4 The triangle of turbulence

The three special cases described above are illustrative of the range of possi-
bilities. It is also useful to consider a stylized model of the general situation.
Consider a hypothetical population that is closed to migration. The number
of births each year is constant. Until year 0 an unchanging mortality regime
has prevailed for longer than any individual has lived. Then, on January 1st
of that year, a new, more favorable mortality regime starts and persists for
longer than the maximum lifespan of individuals in the population. Let Dy(x)
denote the number of deaths over the course of year y among those who were
x years old on January 1st of that year. Note that Dy(x) is the number of in-
dividuals such that x ≤ Xi(x, y) < x+1. Let D0

y denote the number of deaths
of babies who are born in year y and who die the same year. Assume that
for any two years y1 < 0, y2 < 0, when the old mortality regime prevailed,
Dy1(x) = Dy2(x) and D0

y1
= D0

y2
. (In a study of empirical data, stochastic

variation would have to be considered, but the purpose of the stylized model
here is cogent exposition rather than statistical analysis.) For cohorts born
in any two years, y1 ≥ 0, y2 ≥ 0, when the new mortality regime prevails,
Dy1+x(x) = Dy2+x(x) and D0

y1
= D0

y2
. The values of interest lie in a triangle

on the x,y plane, the triangle bounded by the x axis at y = 0 and by the
diagonal cohort line along which x = y. There can be a turbulent pattern of
death counts in this triangle even though the entire triangle lies in the domain
of the new mortality regime.

To understand this, consider the number of lives saved in the first year
of the new mortality regime among those who are x years old when the new
regime starts on January 1st of year 0. The number is simply D−1(x)−D0(x)
This difference gives the number of individuals who would have died under
the old regime who do not die under the new regime. In terms of the ticket
concept, it is the number of individuals who get a new ticket that entitles them
to a longer life such that they do not die in the year that they would have died
if they had not gotten a new ticket. Because the number of individuals who
are age x on January 1st of year 0 equals the number on January 1st of year -1,
the values of D−1(x)−D0(x) determine the gain in conventionally-calculated
life expectancy, e0(0)− e0(−1). The number of lives saved, however, does not
reveal the increment of additional lifespan that is gained by the resuscitated.
As discussed above, conventional calculations assume that the increment is
determined by the remaining lifespans of those who lives were not saved but
this may not be the case.

In all years after time 0 a constant mortality regime prevails and there
is a constant number of births each year and no migration. So why should
the number of deaths at some age vary from year to year? In particular, why
should the number of deaths at each age in each year not be the same as
the number at the age in year 0? The reason is that individuals whose lives
were saved in year 0 are dying in various years and at various ages and these
postponed deaths are adding to the death counts. Under the new mortality
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regime some individuals who would have died after year 0 also are gaining
lifespan extensions. As those resuscitated in year 0 and subsequent years die,
they add to death counts.

Except in special cases, notably the conventional life expectancy model, the
shifting pattern of age-specific death counts will result in changing values of
age-specific death rates in the triangle and changing values of conventionally-
calculated period life expectancy. The mortality regime changes on January
1st of year 0, but there is a wake of mortality turbulence that lingers on,
gradually diminishing, until it completely peters out after the death of the last
individual born under the old mortality regime whose lifespan was extended
under the new regime.

5 How large is the distortion?

How distorted is the conventional calculation of life expectancy when death
rates are declining? The results above show that the answer depends on how
long death is averted. As noted earlier, Bongaarts and Feeney (2002) suggest
an ingenious estimate. Let Xi(x − 1, y − 1) be the total lifetime, under the
mortality regime prevailing in year y − 1, of an individual who attains age
x − 1 at the start of year y − 1 and who survives to reach age x at the start
of year y. Suppose there are improvements in health conditions at the start of
year y that benefit everyone equally. That is, suppose the new age at death is

Xi(x, y) = Xi(x − 1, y − 1) + δ ∀i . (11)

Then if deaths are uniformly distributed over the course of a year, the number
of lives saved is nx = δ ·Dx. If, for instance, δ is 0.25 (i.e., three months), then
one-quarter of deaths would be averted (namely, all the deaths from October 1
through December 31). In this view, health improvements delay death equally
for everyone.

This is an extreme assumption-and an elegant one. It can be relaxed by
letting δ vary with age and letting δ vary, in the interval 0 ≤ δ < 1, across
individuals.

These are details. The key idea is that annual health progress lets many
people gain a short additional span of life. Conventional lifetable calculations,
in contrast, are consistent with the notion that lifesaving helps a few people
gain (on average) a long increment of life, namely, remaining life expectancy
at the age when they would have died.

If deaths are being delayed by a fraction of a year δ each year, then e∗0(y),
the true life expectancy at birth in year y, is given by

e∗0(y) =
∫ w

0

exp
(
−

∫ a

0

µ(x, y)
1 − δ

dx

)
da , (12)

Note that the starting age 0 might be age 30 or some other age after which the
delayed-death model is assumed to hold. As described above, death counts are
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assumed to be reduced by the factor δ, so the “observed” force of mortality
has to be adjusted by dividing by 1 − δ . Bongaarts and Feeney suggested
several approaches to estimating δ, reviewed by Bongaarts (in this volume).
The validity of the estimates is controversial, as discussed by Wachter (in
this volume). Further research is needed to resolve the issues. It seems likely,
however, that if conventionally-calculated life expectancy is increasing, say, at
a quarter of a year per year because of a uniform delay in deaths, then δ is
probably close to 0.25. If so, e∗0(y) can be two or three years less than e0(y),
as argued by Bongaarts and Feeney (2002, in this volume p. 11).

6 Considerations about true life expectancy

The true life expectancy of a synthetic cohort living under current mortality
conditions might not be as low as the delayed-death model suggests. It might,
however, be lower than conventional lifetable calculations imply. The issues
here are complicated and require extensive research. Let me adumbrate some
key considerations.

If life expectancy in some year is defined as the value implied by current
death rates using the conventional formula, then life expectancy cannot be
considered distorted. It is simply the value implied by current rates. Demog-
raphers, however, usually describe life expectancy as the average lifespan of
a synthetic cohort of individuals who live all their lives under current mor-
tality conditions. Life expectancy under current mortality conditions may not
be equal to life expectancy calculated using current mortality rates. As ex-
plained above, a discrepancy can arise when mortality changes. When death
rates are decreasing, then life expectancy under current mortality conditions is
less than life expectancy under current mortality rates if those whose deaths
are averted have a remaining lifespan that is less than the remaining life
expectancy implied by conventional calculations. The bigger the difference
between the actual increments in lifespans and lifetable values of remaining
life expectancies, the bigger the discrepancy. A similar kind of discrepancy, of
opposite sign, can arise when death rates are increasing.

At some ages (e.g., infancy and childhood) most of the lives saved, at
least historically and perhaps also today, may have been extended for many
years. Bongaarts and Feeney acknowledge this and apply their delayed-death
approach only after age 30, after 1950, and in developed countries.

At least some mortality improvements have occurred because specific
causes of death have been reduced. To the extent that some people were at
higher risk than others, then a fraction of the population gained substantial
increments of life. LeBras (in this volume) discusses this.

Bongaarts and Feeney (2002, in this volume p. 11) show that in developed
countries the age-specific force of mortality after age 30 can be approximated
by parallel Gompertz curves that shift outward to higher ages over time. This
finding is consistent with the delayed-death model and the notion that health
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progress is helping everyone above 30 more or less uniformly. If lifesaving were
due to multiple actions that reduced various causes of death at various ages,
then a more complicated pattern of change in age-specific mortality might be
expected.

The notion that general improvements in health conditions are delaying
death uniformly for everyone does, however, have an implication that may be
questionable in some circumstances. The delayed-death model assumes that
everyone benefits from the delay–at all ages (at least above 30) and even if a
person would not have died for many years. Hence, a 60 year-old who would
otherwise have died this year and a newborn who would have died at age
60 some 60 years from now are both assumed to gain the same extension
of life. The newborn, however, will enjoy the improved health conditions for
six decades before benefiting whereas the 60 year-old hardly experiences the
improved conditions. Whether this is important depends on the nature of the
mortality improvement. If, for instance, the improvement is a drug that adds
three months between the onset of a disease and death, then the delayed-death
model would be appropriate.

Finally, let me highlight an implausible implication of the conventional
lifetable approach. The implication was discussed in an article on “Repeated
Resuscitation: How Lifesaving Alters Life Tables” (Vaupel and Yashin 1987a).
Suppose death rates are lower at every age in some year compared with some
previous year. A person who lived his or her entire life under the better mor-
tality conditions might benefit from not dying at the age he or she would have
died under the inferior conditions. This person might also benefit at a later
age from the lifesaving implied by the lower death rates. Hence, the person
might be repeatedly resuscitated. The article provides formulas and several
examples. Here let me quote a single example. Consider the simple case such
that death rates in the more favorable mortality regime are half as high, at all
ages, as in the less favorable regime. Then, as explained by Vaupel and Yashin
(1987a), “at the moment death would have occurred, half of the individuals
are reprieved-and the other half die as before. [H]alf of the cohort do not ben-
efit from lifesaving....” That is, life expectancy at birth for those whose lives
are not saved is the life expectancy under the unfavorable mortality regime.
It seems implausible to me, at least under the conditions that have recently
prevailed in developed countries, that mortality improvements that cut death
rates in half would be of no direct benefit to half the population. The halving
of death rates would be achieved as a result of substantial improvements in
health and such improvements would probably, it seems to me, help nearly
everyone live at least a bit longer.

These various considerations suggest that both the conventional lifetable
approach and the delayed-death model may be extreme cases. On the one
hand, it seems unlikely that mortality improvements result in death being
averted for a few people who gain, on average, remaining life expectancy.
Those whose lives are saved probably tend to be relatively frail or vulnerable
and their remaining lifetimes are probably, on average, shorter than the re-
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maining life expectancy of those not rescued from death. On the other hand,
it also seems unlikely that mortality improvements give everyone the same
lifespan increment, regardless of age and regardless of how long an individual
will live under the new health regime. It is therefore useful to consider other
models. One approach is provided by models of heterogeneity in innate or ac-
quired frailty, as I discussed in an earlier reflexion on Bongaarts and Feeney’s
contributions (Vaupel, 2002). Another approach is sketched below.

7 A model of stretched lifetimes

For cold-blooded animals life runs more slowly when temperatures are lower.
In particular, the trajectory of age-specific death rates is stretched out over
a longer period of time at lower vs. higher temperatures (Mair, Goymer,
Pletcher, Partridge 2003). Reliability engineers use “accelerated-failure-time
models” to describe this kind of phenomenon. It is a misleading term from
the perspective of this chapter because the focus here is on reductions rather
than increases in mortality. Hence, I will refer to “stretched-lifetime models”.
The basic idea is that the deaths that would have occurred over some period
of time t occur over a longer period of time (1+ρ)t. This model is summarized
above in formulas (9a), (9b) and (9c).

Consider the simple case when ρ is one. If life expectancy was e0 before
the mortality improvement, then it is 2 · e0 after the improvement. That is, a
cohort living under the new conditions will live twice as long on average. From
a period perspective, the number of deaths in some time interval following the
improvement will be half as many as the number of deaths in a similar time
interval before the improvement. Hence, conventional lifetable calculations
will be based on death rates that have been cut by a factor of two. If death
rates are the same at all ages, then cutting death rates by a factor of two is
equivalent to stretching time by a factor of two. But if death rates change
over age, this is not the case. In some countries women suffer about half the
age-specific chance of death as men, but in these countries women do not live
twice as long as men but only about six years longer. In the case of stretched
lifespans when mortality increases with age, conventional lifetable calculations
underestimate true life expectancy.

8 Quantum and tempo vs. proportions and increments

So far, the word tempo has not appeared in this chapter. This may seem
strange in a contribution, inspired by the work by Bongaarts and Feeney on
tempo distortions, that is appearing in a collection of articles on tempo effects
on mortality. The notion that there are quantum and tempo effects on fertility
was developed by Norman Ryder: quantum refers to the number of births and
tempo to the pace of childbearing. For demographers deeply versed in this
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tradition it may be useful to consider lifesaving from a tempo perspective.
The concept of tempo effects on fertility stimulated Bongaarts and Feeney to
question conventional calculations of life expectancy. It seems to me, however,
that the tempo-quantum metaphor may sometimes be more misleading than
helpful, at least in studies of mortality, and that the metaphor has to be
treated with great caution.

To my mind, a better starting point is the fact that all populations are
heterogeneous and that changes in conditions will affect individuals differently.
If mortality is reduced, then some individuals may gain no additional life, some
may gain a little, and some may gain a lot. So a natural vantage point for me
is to think (e.g., as in Vaupel 2002) about what proportion of people gain how
much. In the case of reductions in period fertility, it may similarly be useful
to consider how many women (and men) are postponing childbearing by how
long (and how many are choosing not to have an additional child at all.)

The three cases considered in this chapter-the conventional lifetable ap-
proach, the delayed-death model, and the stretched-lifetime model-neglect
heterogeneity. In the conventional approach, all individuals resuscitated at
some age, together with all individuals who would otherwise have survived
this age, face the same schedule of mortality at subsequent ages. The delayed-
death model assumes that all individuals gain the same increment of life. The
stretched-lifetime model slows time equally for everyone. Because all popu-
lations are heterogeneous, all three perspectives are wrong. Nonetheless, all
three perspectives may prove useful. Each of the models may provide ser-
viceable approximations or bounds for at least some kinds of lifesaving in-
terventions in some contexts. Alternative models that build on the theory of
heterogeneous populations may also prove useful.

9 Directions for research

The conventional lifetable approach, the delayed-death model, the stretched-
lifetime model, and various models of innate and acquired heterogeneity may
all offer useful perspectives for understanding the fundamental nature of mor-
tality change. Some kinds of change may extend a few people’s lives for an
average period that may approach remaining life expectancy. Other kinds of
change may extend many people’s lives for a short time. Still other kinds of
change may slow the clock of aging. All populations are heterogeneous, so each
of these kinds of changes may affect individuals somewhat differently. Hence
it is a question of both/and rather than either/or. That is, research is not
needed to determine which model is right and which models are wrong. All
the models are wrong. The research required is research to determine which
model or mix of models is most helpful in understanding mortality change at
various ages, various times, and as a result of various kinds of interventions.

There are two directions for this research: theoretical thinking about the
nature of lifesaving and empirical analyses that test alternative theoretical



Lifesaving, lifetimes and lifetables 105

hypotheses. This chapter and previously published studies about tempo effects
on mortality and on the theory of heterogeneous populations have contributed
to theoretical understanding. Great progress has been made in understanding
how lifesaving may, theoretically, affect lifetimes and lifetables. The burst of
innovation since Bongaarts’ and Feeney’s (2002) stimulating insight is greater
than that in any comparable period since 1661, when Graunt’s seminal study
was presented. Theoretical research on the impact of lifesaving is burgeoning
with vitality and fresh new growth. Further thinking will almost certainly
produce a spate of further ideas.

As noted in the introduction, the basic thrust of this chapter is that life
expectancy at current rates will generally differ from life expectancy under
current conditions when the following two conditions both hold. First, current
mortality conditions differ from past mortality conditions. Second, the lives
saved or lost at each age x (because of the change in mortality conditions) are
extended or shortened by an average amount that is not equal to remaining
life expectancy at age x at current death rates. There may be special circum-
stances when the second condition is true but the two life expectancies turn
out to be the same. In particular, at some ages x lives might be saved for
less than remaining life expectancy and at other ages by more and the effects
might cancel out. Such a coincidence, however, will be unusual. Bongaarts’
and Feeney’s delayed-death model is a special, extreme case of the second
condition. Other cases include the stretched-lifetime model and various het-
erogeneity models. The heterogeneity among individuals does not have to be
fixed and innate: the heterogeneity can be acquired as individuals experience
various events that weaken or strengthen them.

Because the phrase “tempo distortions of mortality” is generally used with
reference to the delayed-death model, some broader phrase should be used to
describe the general fact that when mortality is changing conventional lifeta-
bles do not, except in special circumstances, describe the age-trajectory of
mortality that a cohort would experience under current conditions. Let me
suggest use of the phrase “the theory of mortality turbulence” to allude to
the general phenomenon. The notion is that, except in special cases, mortal-
ity change creates a wake of turbulence, of disequilibrium, that temporarily
distorts death rates. In this case, the current rates may not equal the death
rates that will eventually prevail when the turmoil ceases.

The turbulence could be due to various factors. In addition to delays in
death, stretched lifespans, and the impact of differential mortality in hetero-
geneous populations, it may be the case that the longer individuals have lived
under the unfavorable mortality regime, the more debilitated they are and the
less they are to benefit from more favorable conditions. On the other hand,
individuals who have survived the old regime may have been strengthened (in
terms, say, of immune response). Such “hormesis” may enable them to benefit
more from the new regime than cohorts born under the new regime. The shift
in mortality regime may be disturbing to individuals: they may need time
to adapt to the new conditions. For example, animals brought from the wild
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into a zoo or laboratory may suffer especially high mortality during an initial
period.

A broader theory of demographic disturbance might be developed to study
transient distortions produced by fertility change, marriage change, etc. Bon-
gaarts and Feeney (in this volume p. 29) argue that tempo distortions influence
a variety of demographic rates. Similarly and more generally, there may be
a wake of turbulence following change in fertility, marriage and other demo-
graphic regimes. Such turbulence will occur if period statistics are based on
data that reflect how many events (e.g., births or marriages) are averted in
the period but do not capture the length of time the events are postponed.

Empirical research is required to test hypotheses arising from the theory
of mortality turbulence. Data on cohort mortality can be used to distinguish
between interventions that stretch lifetimes vs. those that lower age-specific
mortality but do not decelerate the rate of increase in death rates with age
(Mair et al. 2002). What are urgently needed are empirical tests that distin-
guish between the conventional view of lifesaving and the Bongaarts-Feeney
delayed-death model. It seems clear that both perspectives are wrong and that
true period life expectancy probably lies somewhere between the conventional
estimate and a delayed-death estimate. But where in-between? It may well be
that for remaining life expectancy at age 30 in developed countries since 1950
Bongaarts and Feeney are closer to the truth. Indirectly relevant evidence can
be advanced to support their position. The discussion, however, will remain
speculative until direct tests can be developed. This is the key challenge today
for basic research on mortality.

The lightbulb experiments being conducted at the Max Planck Institute
for Demographic Research are a first step. Experiments with various animal
models, flies or nematode worms for instance, will also be important. As theo-
retical understanding of mortality turbulence develops and as empirical results
are found in laboratory experiments, then it may become possible to develop
and refine strategies for analyzing human data. If the Bongaarts-Feeney de-
layed death model is consistent with the results of laboratory experiments,
then it might also hold for human populations under some circumstances.
More generally, the lightbulb and other experiments will help illuminate how
the terrain of the triangle of mortality turbulence is shaped by different kinds
of mortality change.
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Summary. Bongaarts and Feeney offer alternatives to period life expectancy with
a set of demographic measures equivalent to each other under a Proportionality
Assumption. Under this assumption, we show that the measures are given by expo-
nentially weighted moving averages of earlier values of period life expectancy. They
are indices of mortality conditions in the recent past. The period life expectancy is an
index of current mortality conditions. The difference is a difference between past and
present, not a “tempo distortion” in the present. In contrast, the Bongaarts-Feeney
tempo-adjusted Total Fertility Rate is a measure of current fertility conditions,
which can be understood in terms of a process of birth-age standardization.

1 Tempo

In the study of fertility, a distinction between quantum and tempo in the
spirit of Norman Ryder (1964) is universally acknowledged. A woman may
have more or fewer children, and she may have them earlier or later in her
life. It makes sense to ask for period measures of total fertility which adjust
for changes in the timing of childbearing independent of changes in numbers
of children at the individual level. John Bongaarts and Griffeth Feeney (1998)
provided such a fertility measure which has gained many adherents, including
the present author.

In the study of mortality, no distinction between quantum and tempo
exists at the individual level. A person has one death, his or her own, and
mortality pertains to whether death comes early or late. It makes no obvi-
ous sense to adjust away the effects of changes in the timing of death, thus
adjusting away changes in mortality itself. New papers by Bongaarts and
Feeney (2002) and (in this volume p. 11) came as a surprise, offering a fam-
ily of measures put forward to adjust period life expectancy for effects which
they called tempo distortions. The different measures in the family coincide
with each other under a condition on the age and time-specific hazard rates
� c©2005 Max-Planck-Gesellschaft, reprinted with permission
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called the “Proportionality Assumption” which the authors find to be approx-
imately satisfied by adult mortality schedules in various developed countries
over some recent decades.

Any measure measures something. The question is whether the something
being measured is a version of current period life expectancy freed from some
kind of distortion. This chapter puts the spotlight on a representation which
helps in visualizing what the new measures do measure. The new measures do
not measure current mortality conditions but rather the cumulative effects of
earlier mortality conditions. The period life expectancy does measure current
mortality conditions.

The words “current conditions” are used here in their ordinary English-
language sense. Current mortality is the mortality that can be currently ob-
served by counting deaths and counting person-years at risk. An alternative
usage introduced by Vaupel (2002) in which “current conditions” is used as
shorthand for “current latent conditions” in a latent-structure representation
is discussed in Section 6.

The representation of the Bongaarts-Feeney measures takes the form

M(t) ≈
∫ t

−∞
wt(τ)e0(τ) dτ (1)

Here e0(t) is period life expectancy at time t. (In applications, e0 is replaced
by e30 since the approach is intended solely for adult mortality.) M(t) is a
Bongaarts-Feeney measure of adjusted life expectancy. For each t, wt(τ) is
a probability distribution defining weights over a set of lagged time periods
τ < t. As functions of the lag s = t − τ , the weights are nearly exponential
and nearly independent of t.

The representation is an approximation which holds to first order in the
time derivative of M under the hypothesis that Bongaarts and Feeney’s Pro-
portionality Assumption is sufficiently nearly satisfied that the different mea-
sures in the family are equivalent to each other within the limits of the ap-
proximation. Details are spelled out in Section 3.

The representation shows that the Bongaarts-Feeney measure M is a
weighted average of period e0 values from the recent past. The period life
expectancy itself at time t depends only on current age-specific hazard rates
for time t. The Bongaarts-Feeney measure depends on past as well as current
age-specific hazard rates. When longevity has been increasing, past values of
e0 are lower than current values, and the Bongaarts-Feeney measure aver-
ages over these lower past values and produces a value below present-day e0.
When longevity has been decreasing, past values exceed current values, and
the Bongaarts-Feeney measure averages over these higher past values and
hovers above present-day e0.

The word “distortion” is out of place when contrasting M to e0. The
measures measure different things. If one cares about average mortality levels
in the recent past, one can use one of the Bongaarts-Feeney measures. If one
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cares about mortality levels under current conditions, one can use the period
life expectancy.

The representation (1) gives concrete form to the general observation that
the Bongaarts-Feeney mortality measures are functions not solely of current
mortality but also of the population age structure that would be produced by
past mortality conditions given a hypothetical constant stream of prior births.
This dependence was pointed out in their initial paper (2002 ,p. 23). Bongaarts
and Feeney noted that their adjusted measure could not be calculated directly
from period hazard rates “because µ∗(a, t) [their adjusted hazard rates] are
in general not observable”. They discussed a need for a century or more of
age-specific death rates for their calculations.

In this same early paper, Bongaarts and Feeney (2002, Eq. 12), intro-
duced a differential equation (originally under Gompertzian assumptions)
which agrees to first order with equation (7) of Section 3. They imposed a
boundary condition which allowed them to estimate values of their measure
at each time t from the sequence of prior values of period life expectancy,
in effect implementing a numerical calculation of the representation (1). The
equation for M(t) in terms of coefficient values for time t is a differential equa-
tion, not an algebraic equation. It is therefore not a recipe for calculating the
value of M at time t solely from period information for time t. The solution M
is only defined with respect to the boundary conditions and time trajectories
of the coefficients. This dependence on the past is the fundamental property
of the Bongaarts-Feeney mortality measures.

Definitions of the measures are given in Section 2. The representation is
presented in Section 3 with examples in Section 4 and discussion in Section
5. Proposals to relate the Bongaarts-Feeney measures to latent structure rep-
resentations of mortality are analyzed in Section 6. Unlike the adjusted life
expectancies, Bongaarts and Feeney’s adjusted total fertility measure at a time
t depends only on age-specific fertility rates in an arbitrarily small neighbor-
hood of t. It is independent of population age structure and independent of
past levels of fertility. This fundamental difference between the proposed mor-
tality adjustments and the fertility adjustments precludes any close analogy
between them. The difference is highlighted in Section 7, which presents an
interpretation of the fertility adjustments in terms of a process of birth-age
standardization.

2 Measures

Clarity is promoted by expressing the measures under discussion in standard
demographic notation.

µ(a, t) is the hazard rate at age a at time t;
N(a, t) = N(0, t) exp(− ∫ a

0
µ(x, t − a + x) dx) is the number of population

members aged a at time t expressed as a density with respect to da dt;
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N(0, t) = 1 is a normalization on initial cohort size which keeps the number
of births per unit time constant at unity;

e0(t) =
∫

exp
(− ∫ a

0
µ(x, t) dx

)
da is the period expectation of life;

d(a, t) = N(a, t)µ(a, t) is the count of deaths at age a and time t;
D+(t) =

∫
N(a, t)µ(a, t)da =

∫
d(a, t)da is the period count of total deaths;

N+(t) =
∫

N(a, t) da is the period total population;

The basic condition on the population distribution N(a, t) is the normal-
ization which sets the size of every cohort at birth equal to unity, equivalent
to dividing the numbers aged a at time t by the numbers aged 0 at time
t − a for all a and t. Given this normalization, the measures M1 . . . M4 intro-
duced in the notation of their PNAS article (Bongaarts and Feeney 2003, also
published in this volume p. 11) correspond to familiar population quantities:

• M1 is the total population count N+(t), equal to the “Cross-Sectional
Average Length of Life” CAL(t) introduced by Nicolas Brouard (1986)
and Michel Guillot (2003);

• M2 is the period mean age at death, MAD(t) in the terminology of Bon-
gaarts and Feeney (in this volume p.29) , given by∫

aN(a, t)µ(a, t) da/D+(t);

• M3 is the period life expectancy e0(t);
• M4 is an adjusted life expectancy defined by

M4(t) =
∫

exp

(
−

∫ a

0

µ(x, t)
1 − d

dtM1(t)
dx

)
da (2)

In Bongaarts and Feeney (in this volume p.29), the derivative of M1 in
(2) is replaced by the derivative of M2, producing a closely related measure
which might reasonably be called M5.

The total population count changes over time by the addition of births
and subtraction of deaths, so the time derivative of N+(t) = M1(t) = CAL(t)
is 1−D+(t). Dividing the hazard rates for time t at every age by the count of
total deaths, retaining an unchanged population N(a, t) at risk, resets the total
deaths to unity. In other words, the rates inside the integral in the definition of
M4 are rates which, given the age structure, would make period deaths equal
normalized period births. Caution is advisable in interpreting these measures.
The measure CAL does not always correspond to the statistical expectation
of a waiting time, even though the formula might seem to suggest so. The
measure M4 employs a proportional adjustment to hazards, whether or not
hazards have been changing proportionally in the past.
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The “Proportionality Assumption” of Bongaarts and Feeney (in this vol-
ume p.11) is a condition on the partial derivatives of N(a, t) for all a and t in
terms of a function r(t) varying in a neighborhood of zero:

∂N(a, t)
∂t

= −r(t)
∂N(a, t)

∂a
(3)

(This r(t) is the same as 1 − p(t) in Bongaarts and Feeney (in this volume
p.11, Eq. 6).) It should be borne in mind that the condition expressed in terms
of N for given a and t involves a whole family of constraints on the hazard
rates µ at earlier ages and earlier times which produce the value of N and its
rates of change with age and time. It is not a local condition confined to a
neighborhood of a and t.

Equation (3) determines a family of parallel curves giving contours of con-
stant N over time. The shape of the age distribution is preserved and shifted
up or down as shown in Bongaarts and Feeney (in this volume p.11). Specif-
ically, setting F (t) =

∫ t

0
r(τ) dτ , (3) provides for a vanishing time derivative

for N(a + F (t), t), allowing N(a, t) to be expressed in terms of N(a, 0). The
hazards µ(a, t), defined from the partial derivatives of the logarithm of N at
time t and hence from the partial derivatives at time zero, have to take the
form

µ(a, t) = (1 − F ′(t))ψ(a − F (t)) (4)

Here ψ is a non-negative function of age a vanishing for negative a, defined
from derivatives of the logarithm of N at time zero.

Three other results proved in Bongaarts and Feeney (in this volume p.11)
follow readily from (3). Integrating both sides of (3) with respect to a shows
that the time derivative of M1(t), that is, of CAL(t), is given by M ′

1(t) =
1−D+(t) = r(t). Integrating

∫
ad(a, t)da =

∫
aN(a, t)µ(a, t)da by parts yields

the equality M2 = M1. Writing the hazard rate quotient µ(a, t)/(1 − r(t)) as
the partial derivative with respect to a of − log(N(a, t)) shows that M4 = M1.

3 Representation of M

When the Proportionality Assumption holds, the equality of M1, M2, and M4

allows us to set M = M1 = M4 in the equation defining M4 and obtain a
differential equation satisfied by the common values of M1, M2, and M4:

M(t) =
∫

exp

(
−

∫ a

0

µ(x, t)
1 − d

dtM(t)
dx

)
da (5)

When the Proportionality Assumption does not hold exactly, this equation
can also be regarded as defining a measure of interest in its own right, which
could take a place beside M1, M2, and M4 in the family of measures. Indeed,
the original measure introduced in (2002, 23) was a solution to a version of
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this equation. It is expected that all these measures will be close to each other
when the Proportionality Assumption is approximately valid. One could, for
example, stipulate that µ(a, t) agree to first order in some parameter ε with
the corresponding values for a set of hazard rates that do satisfy the Pro-
portionality Assumption. Weaker conditions might also suffice to guarantee
agreement to order O(ε) among the measures. All that is at stake here is ap-
proximate consistency among the different choices of measures in the family.
Once Equation (5) is in hand, the further arguments leading to our represen-
tation do not depend on the Proportionality Assumption.

We obtain our representation by expanding the right-hand side of (5) in
powers of r = M ′(t) for each t. The value of the right-hand side at r = 0 is the
period life expectancy. The inner integrand µ/(1−r) in (5), being proportional
to µ, brings into play the familiar machinery of proportional hazards. As in
(1985, 80), the derivative with respect to r is a multiple of “lifetable entropy”
given, at r = 0, by minus the quantity

g(t) =
∫ ∞

0

e−
∫ a
0 µ(x,t) dx

∫ a

0

µ(y, t) dy da (6)

The result is an equation which is a first-order approximation to (5) when
M ′(t) is uniformly small:

M(t) = e0(t) − g(t)M ′(t) (7)

Under appropriate regularity conditions mentioned below, the differential
equation (7) has a unique solution bounded at minus infinity given by the
integral already presented in Equation (1):

M(t) =
∫ t

−∞
wt(τ)e0(τ) dτ (8)

The time-dependent weights wt(τ) are given in terms of the reciprocals of g(τ)
by the expression

wt(τ) = g−1(τ) exp
(−∫ t

τ

g−1(s) ds
)

(9)

For each t, these positive weights integrate up to unity over τ and define a
probability distribution. The inner integral in (9) can be used to define an
alternative time-like coordinate in terms of which the weights become expo-
nential functions.

It is easy to verify that (1) formally satisfies (7) by differentiating the
right-hand side of (1) with respect to the argument t which occurs both in
the limit of integration and in the function wt(τ). The derivative of wt(τ) with
respect to t is −wt(τ)/g(t) and wt(t) = 1/g(t).
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e0(t) − g(t)M ′(t) = e0(t) − g(t)
d

dt

∫ t

−∞
wt(τ)e0(τ) dτ

= e0(t) − g(t)wt(t)e0(t) − g(t)
∫ t

−∞

d

dt
wt(τ)e0(τ) dτ

= e0(t) − g(t)(1/g(t))e0(t) −
∫ t

−∞
−wt(τ)e0(τ) dτ

= M(t)

The function g(t) is strictly greater than zero, so long as lifetable deaths in the
period lifetable are not concentrated all at a single age, which is always true
if µ is finite. We assume further that 1/g(t) and e0(t)/g(t) are integrable on
bounded intervals and that g(t) is bounded, making the weights in (9) finite
and the solution in (8) the unique one bounded at minus infinity (1955, pp.
67,97).

In expanding the right-hand side of (5), we could have expressed the dif-
ference between the values at zero and at r using the derivative evaluated at
r instead of at zero. The answers would agree to first order. The derivative
at zero from (6) has the advantage of being a purely period measure. But the
derivative at r, obtained from (6) by substituting µ/(1−r) for µ, is also infor-
mative. It is exactly constant when the Proportionality Assumption is exactly
valid. It follows that g(t) must be nearly constant so long as the Proportion-
ality Assumption is nearly valid, making the weights wt(t − s) as a function
of the lag s nearly equal to a fixed exponential distribution (1/g) exp(−s/g).

A clear conclusion follows from this representation: This candidate for
a “tempo-adjusted expectation of life” is, to first order, an explicit moving
average of recent past values of the period expectation of life. When levels
of survival are increasing, current values of e0(t) exceed past values. What
Bongaarts and Feeney are interpreting as a “tempo distortion” is simply the
difference produced by focussing on the present instead of focussing on the
recent past.

Period life expectancy is sensitive to sudden changes affecting mortality
at many ages. It is meant to be so. That is an advantage, not a drawback.
When period life expectancy falls, deaths are surging. People are dying. It is
no mirage or distortion of reality.

A rise or fall in hazard rates concentrated in time but spread over many
ages will have effects spread over many cohorts, so a large temporary change in
period life expectancy should and does correspond to a suite of small changes
in cohort life expectancy for many cohorts. Averaging period measures over
a stretch of time that includes large parts of the lifespans of many cohorts
naturally leads to values in line with the average values of the corresponding
cohort measures. The retrospective averaging implemented by the Bongaarts-
Feeney measures has this kind of outcome. The period life expectancy, for its
part, is a faithful indicator of current conditions.
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4 The moving average

To see how the representation of the Bongaarts-Feeney measures works out
in practice, consider Swedish female adult mortality, example B of Bongaarts
and Feeney (in this volume p.11, Figure 6). The measures are only meant
to apply after about age 30, so we let age a = 0 correspond to age 30 and
condition on survival to that age. Single-year age-specific mortality rates from
1861 to 2001 are taken from the Human Mortality Database (2004) assembled
by John Wilmoth at Berkeley, allowing calculation of CAL and MAD for ages
above 30 from 1941 onwards.

In these Swedish data, the entropy measure g (for ages above 30) is close
to 9 back to about 1945, a level reached after a gradual long-term drop from
Nineteenth Century values around 13. The gradual changes in g imply slight
changes in exponential weights, but for measures after 1941 the moving av-
erage (8) with changing weights (9) is only slightly different from a moving
average with fixed exponential weights set with g = 9. (The mean difference
is 0.063 years and the maximum difference is 0.186 years.) Thus we are essen-
tially dealing with a simple exponential distribution with a nine-year mean.
The Bongaarts-Feeney measures CAL, MAD , and M4, where they agree with
each other, are given by a simple exponential weighted average of past values
of period life expectancy, with an average look-back time of 9 years.

For example, consider the calculation of M for t = 2001.0. The year from
December 2000 back to January 2000 is the first year back. The weight for this
year, applied to period life expectancy centered at mid-year, is the integral of
(1/9) exp(−s/9) between 0 and 1, or e−0/9− e−1/9. The weight for the second
year back (1999) is e−1/9 − e−2/9, etc. M is the weighted average, the sum of
weights times life expectancies back over time:

M = (e−0/9 − e−1/9)e30(2000) + (e−1/9 − e−2/9)e30(1999) . . .

= (0.10516)(52.587) + (0.09410)(52.451) . . .

= 51.55

For 2001, comparing M to values of CAL, MAD , and M4 calculated directly
from single-year mortality rates, we see that the weighted average M = 51.55
years falls a little above CAL = 51.43 years between M4 = 51.52 years and
MAD = 51.58 years. The period life expectancy e30 is a year higher, at 52.63
years.

It is instructive to see with formulas how the weighted average recovers
the values of CAL and MAD when the Proportionality Assumption holds. As
before, we let a = 0 correspond to human age 30. Thanks to (4), we have
µ(a, t) = (1 − F ′(t))ψ(a − F (t)) with a baseline age schedule ψ and a shift
function F (t) whose time derivative equals the proportionality factor r(t).
Values of CAL and MAD at time zero are given by η =

∫
exp(− ∫ a

0
ψ(x)dx)da

and the values at time t include the shift F (t):
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CAL(t) = MAD(t) = η + F (t) (10)

The same Taylor expansion as in (7) for life expectancies under proportional
hazards yields

e0(t) ≈ η + F (t) + gF ′(t) (11)

Here the coefficient g can be set equal to the rescaled entropy derived from
ψ which is constant over time. It is given by formula (6) with ψ(x − F (t)) in
place of µ(x, t). Since ψ vanishes for negative a and the outer integral runs
over all a, the formula is unchanged when F (t) is deleted from the arguments
of ψ, leaving an expression independent of t.

The weights are given by wt(t − s) = (1/g) exp(−s/g). The weighted av-
erage is an integral with respect to this exponential probability distribution
whose mean is g:

M =
∫ ∞

0

e0(t − s)(1/g)e−s/g ds

=
∫

(η + F (t − s) + gF ′(t − s)) (1/g)e−s/g ds

= η + F (t) −
∫

(F (t) − F (t − s))(1/g)e−s/g ds

+
∫

F ′(t − s)) e−s/g ds

Integrating the third term by parts yields − ∫
F ′(t − s)e−s/g ds, exactly can-

celling the fourth term, so that

M = η + F (t) = CAL(t) = MAD(t) (12)

When the proportionality factor r(t) = F ′(t) is constant, we have the case
of linear shifts analyzed by Goldstein (in this volume) and by Rodriguez (in
this volume). The graphs of e0(t) and CAL(t) = MAD(t) are parallel straight
lines with slope r. Lagged life expectancy is the linear function e0(t − s) =
e0(0) + r(t− s). Its average is e0(0) + r(t− g) since the average value for s is
g. Thus CAL(t) comes out to be the lagged value e0(t − g).

When g is calculated from a hazard function given by a Gompertz model
αeβa, we have g = (1/β) − (α/β)e0. The second term is usually two orders
of magnitude smaller than the first term, so g ≈ 1/β. Suppose that hazards
change over time according to a Gompertz model with constant β and more
or less exponentially declining α(t) approximated, say, by α(0) exp(−rβt).
Suppose also that α(0) is small enough that young mortality can be neglected
or set to zero. Then the Proportionality Assumption comes to be satisfied with
something close to a linear shift of slope r. In principle the Proportionality
Assumption could hold under different, non-Gompertzian conditions, but in
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the empirical examples known to the present author it seems to arise in this
way.

Since the weights in the moving average representation fall off exponen-
tially, the remote past has negligible impact, and the full moving average can
be replaced by an average reaching back over a finite span of years. The rep-
resentation is meant to hold to first order in M ′. In the Swedish data, M ′ is
on the order of 0.15 and second-order terms are on the order of 0.02. A span
of 6g years, or 54 years, includes all but exp(−6g/g) = exp(−6) = 0.002 of
the weight from the exponential distribution. Periods that represent the early
adult life experience of cohorts older than 30+54 = 84 years have only minor
impact on CAL and MAD .

Mathematically speaking, when the Proportionality Assumption is only
tenable for some limited span t > T , the solution (8) to the differential equa-
tion (7) (which is the solution vanishing at minus infinity) needs to be replaced
by the solution satisfying an appropriate boundary condition at t = T , that
is, one making M(T ) = CAL(T ). The moving average only reaches back to T
and the term introduced by the boundary condition tapers exponentially as
time goes by.

Figure 1 shows mortality measures for Swedish women from 1941 to 2001,
all calculated beyond age 30. The upper solid line is period life expectancy.
The lower solid line is CAL, trending steadily upward with an average slope
of 0.17 per year. The dashed line for MAD hugs CAL from 2001 back to 1975
but separates from it at earlier times just outside the range of years shown
in Bongaarts and Feeney (in this volume p.11, Figure 6B). The separation
signals failure of the Proportionality Assumption. The moving average M is
the dotted line. The measure M4, not shown in the plot, is close to M before
1970 and close to CAL after 1980. Where CAL and MAD diverge from each
other, the moving average M turns out to strike a balance between them.
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Fig. 1. Mortality measures for Swedish women 1941-2001.

5 Period counts of deaths

Period counts of deaths play an important role in the formulas for the mor-
tality measures and an important role in the analogies which Bongaarts and
Feeney (in this volume p.29) seek to develop. In their papers they give a new
name to the period count of deaths D+(t), calling it the “Total Mortality
Rate” or “TMR”. They liken this quantity to the Total Fertility Rate, Total
First Marriage Rate, and other indices for processes that, unlike mortality,
admit a distinction between quantum and tempo at the individual level.

Ordinarily, one would expect instead to define the “TMR” with a formula
parallel to the formula for the TFR:

TFR(t) =
∫

f(a, t) da (13)

TMR(t) =
∫

µ(a, t) da (14)
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The period count of deaths is a count, not a rate. Bongaarts and Feeney
defend their practice of calling it a rate by taking the usual denominator, those
at risk of the event, and adding on a set of “ghosts”, those who would have
been at risk had they not exited from the population by dying. The same
construction can be applied with fertility to obtain period counts of births
B+(t) from the fertility rates, albeit counts that need not agree with initial
cohort sizes:

B+(t) =
∫

N(a, t)f(a, t)/N(0, t − a) da (15)

D+(t) =
∫

N(a, t)µ(a, t)/N(0, t − a) da (16)

The tempo adjustment for fertility in (1998) is an adjustment to the TFR,
not B+(t), whereas the tempo adjustments for mortality in Bongaarts and
Feeney (in this volume p.11) involve adjustments to D+(t), not to the TMR,
which is generally infinite.

The normalization which enforces a constant unit stream of births into
the population means that the population is increasing when and only when
D+(t) is less than 1, that is, when births exceed deaths, and decreasing when
D+(t) > 1. This quantity D+(t), the period count of deaths per unit birth,
is less than 1 if mortality has been higher in the past than in the present.
The higher death rates of the past deplete the surviving population at risk of
dying and thus reduce current deaths. This outcome is not a tempo effect. It
can remain true even if current mortality is increasing rather than declining.

Replacement of the hazard rates µ(a, t) by rates µ(a, t)/D+(t) in the for-
mula for M4 does, as mentioned, bring total deaths into equality with normal-
ized total births so long as the population age structure is retained unaltered.
However, this transformation cannot be achieved by a systematic reassignment
of times of death, because any reassignment necessarily alters the population
age structure. The substitution underlying the M4 measure is a form of stan-
dardization for the total flow of deaths which is difficult to interpret in terms
of any assumptions about individual experience.

6 Current latent conditions

A question arises as to whether measures equivalent or similar to those of Bon-
gaarts and Feeney might be definable from some latent structure representa-
tion of mortality. Vaupel (in this volume p.93) writes about such possibilities.
An example predicated on the heterogeneous frailty model of Vaupel, Manton,
and Stallard (1979) is given by Vaupel (2002). Starting from any µ(x, t), for
each choice of a frailty dispersion parameter σ, one can define hypothetical
latent baseline hazards µo(x, t) by the equation
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µo(x, t) = µ(x, t) exp
(
σ2

∫ x

0

µ(a, t − x + a) da
)

(17)

This formula is a representation. For any observed µ(x, t) it supplies a latent
µo(x, t) which will reproduce it. From µo, Vaupel defines a measure which he
calls a version of life-expectancy “under current conditions”, that is, under
current latent rather than current observed conditions.

Vaupel’s frailty-based measures are well defined but they are at a far re-
move from the Bongaarts-Feeney measures. They depend on population het-
erogeneity, whereas Bongaarts and Feeney’s arguments apply to wholly ho-
mogeneous populations. In empirical cases like the Swedish series, the frailty-
based measures fluctuate in tandem with period life expectancy, lack the
smoothing properties of CAL, MAD , and M4, and differ only by small amounts
from period life expectancy.

The interesting feature of the frailty-based measures is conceptual. Al-
though current µo is calculated from past values of µ, one can imagine an
experiment for measuring current µo from current observations. Take a ran-
dom sample of people who had lived in a country with negligible mortality up
to age x, transplant them to a country beset by µ, and identify µo with any
higher hazards that such higher-mean-frailty refugees experience. In practice,
debilitation probably dominates culling, and the experiment would founder,
but the concept is coherent.

Recognizing the absence of connection between his frailty-based measures
and the actual Bongaarts-Feeney measures, Vaupel (in this volume p.93) goes
on to sketch a different approach which might also come under the heading of
“mortality under current latent conditions”. The latent variables are tickets
associated with predestined ages of death. Life is like a pastiche of an old
Beatles song

“I have a ticket to die.”

Vaupel’s chapter presents examples rather than a general treatment. In
some examples, the proposal is to have ticket values that can change either
deterministically or stochastically over time, depending on the current ticket
value but not on the current age of the holder. When a person’s age catches
up with his or her current ticket value, the person dies.

We may write V (U, t) for a ticket process started at an initial state indexed
by U and varying over time t. U has some probability distribution across the
population. In versions with deterministic transitions, V (U, t) is a function of
U and t, usually a continuous function. In versions with stochastic transitions,
V (U, t) is a Markov process started at a state indexed by U unfolding either
with discrete time steps and discrete states corresponding to age groups, or
with continuous time and age. The distribution of ticket values at birth for a
cohort born at time τ is the marginal distribution of V (U, τ) generated by the
randomness in U and the randomness, if any, in V given U . The distribution
of ages at death for the cohort is the distribution of the random variable
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min{x : V (U, τ + x) ≤ x} (18)

A person dies when he or she first reaches an age coinciding with the age
currently on his or her ticket.

Detailed treatment is beyond the scope of this chapter, but we proffer
some reflections based on early analysis.

If V (U, t) can be specified, then a current measure can be defined to equal
the period mean of V . That part is easy. What is difficult is the representation
problem. No equation like (17) is at hand for taking observed µ(x, t) and writ-
ing down some specific V that generates it. Without a representation formula,
one has no well-defined measure and nothing to compare with Bongaarts and
Feeney’s proposed adjustments.

One can, of course, make up ticket models de novo and endeavor to test
their goodness of fit to µ values like the Swedish series. That may be interest-
ing, but testing goodness of fit is not what Bongaarts and Feeney are doing.
They are defining measures. From any µ, they obtain measures to contrast
with period life expectancy, and they argue for an automatic adjustment to
period life expectancy whenever observed past hazards differ from present
ones.

To make ticket models relevant to Bongaarts and Feeney’s proposals, one
needs, then, to focus on the representation problem. With deterministic tran-
sitions, the only apparent prospect is a version of Feeney’s (in this volume)
derivations. See also Wilmoth (2005). We can let U be a uniform random
variable marking a cohort member’s predestined proportional placement in a
rank ordering of the cohort from oldest to youngest by age at death. Define
the quantile function

Q(U, τ) = min{x :
∫ x

0

µ(a, τ + a) da = − log(U)} (19)

For each fixed U and t , the equation Q(U, t − v) = v may have a unique
solution v, and if it does, we can set V (U, t) = v. In such cases the measure,
the period mean of V , comes out to equal CAL.

However, unique solutions do not always exist. The same cases that defeat
Feeney’s (in this volume) attempt at generality prevent this construction from
yielding a general representation of mortality schedules. Cases that fail occur
when the partial derivative of Q with respect to τ takes values less than or
equal to −1. These tickets are intrinsically cohort objects that resist alignment
by periods. A person’s U value is a cohort percentage. Today’s ticket values
only have meaning insofar as we match values for current survivors to values
for current decedents who share the same U , fixed by their cohort’s prior
history. Unlike Vaupel’s frailty-based µo values, the current values of these
latent variables have no independent reality in the present that can be easily
discerned. No experiment is on the table which would allow us to elicit present-
day ticket values from present-day observations alone.
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Turning to ticket models with stochastic transitions, we encounter the rep-
resentation problem in a different guise. Here the specification of V (U, t) is
drastically underdetermined. Analysis in continuous time is technically chal-
lenging, but the issues can be scrutinized in discrete time with Markov chains
with finitely many states corresponding to age groups numbered from 1 to k.
Each transition matrix at each time t contains k(k− 1) elements that need to
be determined. The observed distribution of deaths for each cohort, which the
model has to match, is specified by k − 1 quantities. Thus, ignoring endpoint
effects, T cohorts give (k − 1)T equations in k(k − 1)T unknowns. Already
with k = 3, a wide range of different solutions are allowed. Subject to some
messy inequalities, one can choose one’s solution at will to make the result-
ing period measure agree with any of a wide variety of arbitrary sequences.
Without some natural set of identifying restrictions, as yet to be discovered,
the ticket model framework with stochastic transitions gives nothing definite
to compare with Bongaarts and Feeney’s measures.

7 Total fertility

It would be an unhappy outcome if the limitations of the proposed measures
for adjusted life expectancies undermined confidence in the tempo-adjusted
measures for total fertility proposed earlier by Bongaarts and Feeney (1998).
Unlike the mortality measures, the fertility measures are standardized indica-
tors of current conditions. The adjusted total fertility rate at time t depends
only on age-specific fertility rates f(a, t) in an arbitrarily small neighborhood
of t. It does not depend on age structure and it does not depend on past fertil-
ity rates. It has a direct interpretation in terms of individual experience. This
section offers a formulation of the adjusted fertility measures which highlights
these attractive features.

Age-specific fertility rates f(a, t) are written here as a function of contin-
uous age a and continuous time t. As usual, the period Total Fertility Rate
TFR(t) and period mean age at childbearing A(t) are given by

TFR(t) =
∫

f(a, t) da (20)

and

A(t) =
∫

a f(a, t) da

TFR(t)
(21)

A simple procedure for producing an adjusted index is to define a coor-
dinate transformation which, in effect, reassigns the timing of births within
cohorts leaving numbers of births invariant within cohorts. The transforma-
tion is chosen so that, after reassignment has been carried out, a period com-
putation of mean age at childbearing would give a constant outcome, thus
erasing period variations in timing. The post-reassignment value for the mean
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age can be set arbitrarily to some standard value As, perhaps most sensibly
to a long-term average for cohort mean ages at childbearing conditional on
survival through childbearing years.

The transformation Ψ is given by

a → α = a − A(t) + As (22)
t → τ = t − A(t) + As (23)

We assume that A(t) is differentiable and we impose the reasonable assump-
tion that the period mean age at childbearing never increases by as much as
a full year per year, so that the time derivative A′(t) is always less than 1.
Then the transformation is invertible and has a finite Jacobian given by

∂ α, τ

∂ a, t
= 1 − A′(t) (24)

The inverse function t(α, τ) only depends on τ . Age-specific fertility rates after
reassignment are given by

f̃(α, τ) =
f(a(α, τ), t(τ))
1 − A′(t(τ))

(25)

This definition guarantees agreement between integrals over subsets S in the
Lexis plane: ∫ ∫

S

f̃ dα dτ =
∫ ∫

Ψ−1S

f da dt (26)

An adjusted or standardized Total Fertility Rate STFR can be defined
from f̃ :

STFR(τ) =
∫

f̃(α, τ) dα =
TFR(t(τ))

(1 − A′(t(τ))
(27)

These integrals are taken over α for fixed τ , unlike the double integrals of
Equation (26). It is readily verified that the period mean age of childbearing
defined from f̃ remains constant at a level As and that integrals of f̃ along
diagonals of the Lexis diagram are identical to integrals of f itself.

Kohler and Philipov (2001) introduce this Jacobian-based formulation for
tempo adjustments, although they deviate from it in the definition of their
own generalized measure. The transformation shifts fertility backwards or
forwards along cohort lifelines on the Lexis diagram. The cohort quantum of
fertility measured by a cohort TFR (conditional on survival) is unchanged.
The positioning of births along the lifelines of mothers in the cohort is adjusted
in such a way as to hold the transformed period mean age at birth constant
at the chosen standard value As.

The size of STFR defined by Equation (27) is the same as Bongaarts and
Feeney’s tempo-adjusted TFR. It is expressed as a function of the hypothetical
coordinate τ rather than the real time coordinate t, but, if desired, it can
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be attributed back to t, since the transformation is invertible. Although τ
depends on the choice of the standard age As, the measure itself does not
depend on it. The mathematics would be the same if we took As equal to
zero, but visualization is easier if we take it equal to some realistic benchmark
age.

The reassignment process expressed by our coordinate transformation can
be regarded as a kind of standardization. It differs from familiar kinds of
demographic standardization like the standardization of Crude Birth Rates
for effects of age distributions. But it serves a parallel purpose. Just as one
asks, “What would a Crude Birth Rate turn into if population age group sizes
were set to standard values?”, one can ask, “What would a Total Fertility Rate
turn into, if period mean ages at childbirth were set to a standard values?” In
this sense, the Bongaarts-Feeney tempo adjustment for fertility can be viewed
as a process of birth-age standardization.

This way of viewing the measure clarifies several issues. Bongaarts and
Feeney’s fertility measure does not depend on any behavioral assumptions
about fertility, any more than an age-standardized birth rate depends on be-
havioral assumptions. It does, however, suggest a thought experiment, because
one can imagine individuals changing the timing of their births in such a way
as to change the observed TFR into the adjusted or standardized one.

For applications of their measure, Bongaarts and Feeney recommend ap-
plying their adjustment separately parity-by-parity to birth-order-specific fre-
quencies. These are not the same as age and parity-specific rates. Each nu-
merator includes only births of a given parity while the corresponding denom-
inator includes person-years from women of all parities. These quantities sum
up to the overall age-specific fertility rates, so they comprise an additive de-
composition. Conceptual difficulties arising from reliance on such frequencies
or “rates of the second kind” in place of occurrence-exposure rates or “rates
of the first kind” have been pointed out by Van Imhoff and Keilman (2000).

As a formal procedure, nothing prevents the kind of standardization
achieved by Equation (22) from being applied separately to any additive de-
composition of age-specific fertility rates:

f(a, t) =
∑

i

fi(a, t) (28)

Any such decomposition in terms of some categorization of births can be ac-
commodated. Birth order is one option, but mother’s marital status, mother’s
education, region of birth, and sex of baby are among a host of others. When
a transformation is applied to each fi and the resulting STFRi are added to-
gether to produce an aggregate STFR, the result is an index which has been
standardized for changes in period mean ages at childbearing within each of
the subgroups. No behavioral claims need be at issue. It is probably a mistake
to make a fetish of the decomposition by parity. The fact that one particular
breakdown among many would allow a complicated re-expression in terms of
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occurrence-exposure rates need have no deep bearing on the nature of the
adjustment.

In summary, Bongaarts and Feeney’s tempo adjustment for the Total Fer-
tility Rate can be viewed as a process of standardization. It erases effects of
changes in period mean ages while preserving cohort quantum (conditional on
survival). There is a clear distinction at the individual level between something
that is being reset and something that is being left invariant. The adjustment
does not rely on any behavioral model or structural representation of fertility
processes. Like traditional standardized measures, it is a valuable device for
comparing cases, controlling for a particular source of variation.

No such process of standardization makes sense in the context of mortality,
because there is no distinction at the individual level between something to
reset and something to leave invariant. The timing of a person’s death is what
is being assessed when we assess mortality. Controlling for changes in the
timing of death is tantamount to controlling for mortality itself.

Discussions of quasi-behavioral models and structural representations in
the context of Bongaarts and Feeney’s proposed mortality measures serve
to highlight the gulf between these measures and their fertility measure. No
elaborate modeling is required with fertility.

Bongaarts and Feeney’s adjusted Total Fertility Rate is a current mea-
sure, whose value at a time t depends only on values and slopes of age-specific
fertility rates at time t. Altogether otherwise, the mortality measures they
propose as alternatives to period life expectancy are not current measures.
They average over mortality conditions observed in the past. Under the Pro-
portionality Assumption which makes the measures coincide with each other,
the measures average over conditions in the past in a particular simple way,
as a weighted moving average of prior period life expectancies, as shown in
this chapter.

Mortality measures like CAL and MAD are valuable for studying chang-
ing hazard schedules, smoothing as they do over sudden changes. Everyone
agrees that changing hazards make cohort life expectancies diverge from pe-
riod life expectancies and that the divergence is worthy of attention. But
measures that depend on past hazards serve different purposes from period
life expectancy, which depends on current hazards. The past may differ from
the present. This fact is not a “tempo” distortion. Adjustments for “tempo”
are only meaningful when there is a meaningful distinction between quantum
and tempo in individual experience.
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Summary. This study examines the existence of tempo effects in mortality and
evaluates the procedure developed by Bongaarts and Feeney for calculating a tempo-
adjusted life expectancy. It is shown that the performance of Bongaarts and Feeney’s
index as an indicator reflecting current mortality conditions depends primarily on
specific assumptions regarding the effects of changing period mortality conditions
on the timing of future cohort deaths. It is argued that, currently, there is no clear
evidence about the existence of such effects in actual populations. This chapter
concludes that, until the existence of these effects can be demonstrated, it is prefer-
able to continue using the conventional life expectancy as an indicator of current
mortality conditions.

1 Introduction

There are three main uses of period indicators – such as the total fertility
rate (TFR) or the life expectancy at birth (e0) – in demography. First, period
indicators are used as summaries of period age-specific rates, in order to allow
easy comparisons of arrays of rates across populations and time periods. For
example, a TFR that is lower in Population A than in Population B implies
that at least one age-specific fertility rate is lower in Population A. In or-
der to give a metric to these summary measures that is easy to interpret in
terms of the underlying demographic processes, demographers use the clas-
sic synthetic-cohort scenario, which simulates a cohort of individuals exposed
throughout their entire life to the age-specific rates of one particular period.
This transforms a set of period age-specific mortality rates, for example, into
years of life, interpreted as the life expectancy at birth “under current rates”.

Second, period summary measures are used as indicators of current “con-
ditions”, which can be defined as all underlying factors affecting demographic
behavior. For example, an increase in life expectancy is often interpreted as a
� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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sign that progress is being made with respect to public health, medical tech-
nology, personal health behaviors, living standards, or other factors affecting
survival. One way to conceptualize how current conditions may produce a
certain level of a demographic indicator is to hypothesize about a scenario in
which current conditions stay constant in the future. Under this scenario, one
would expect period demographic indicators to eventually stabilize at a level
that would be the product of these constant conditions. In the remainder of
this chapter, I will refer to levels of demographic indicators that would even-
tually be observed in the population if current conditions remained constant
in the future as the “stationary-equivalent” levels, or levels “under current
conditions”.

Third, period summary measures are used as proxies for tracking the
changing behavior of real cohorts in the absence of complete cohort infor-
mation. For example, an increase in the period life expectancy at birth is
often interpreted as an indication that “we are living longer”, i.e., that life
expectancy is also increasing for real cohorts of individuals.

While the first use of period summary measures does not present any
particular problem, the second and third uses are potentially undermined by
the presence of “tempo effects”. In fertility, tempo effects traditionally refer to
the impact on the period TFR of changes in the timing of births within cohorts
(Ryder, 1980). For example, in a population where cohort fertility levels are
constant, indicated by a constant cohort TFR, but where the timing of births
is changing, the period TFR may not equate the value of the constant cohort
TFR and thus poorly reflects the behavior of real cohorts. Because of tempo
effects, it is inappropriate to use the period TFR of 3.7 in 1955 in the US as
an indicator of the level of fertility for some actual cohort, since no cohort
contributing births during that year experienced such high fertility levels (the
highest cohort TFR among cohorts active in 1955 is 3.2, for the cohort born
in 1930). Also, the below-replacement period TFRs currently observed in a
number of countries may poorly reflect current fertility conditions, because
cohorts may be currently delaying their births while retaining fertility goals
at or above replacement. If the conditions affecting individuals’ completed
fertility remain constant in these countries, the cohort TFR may eventually
stabilize at a level that is higher than the one indicated by current period
TFRs. Tempo effects thus pose a challenge for the interpretation of levels and
trends in period TFRs.

Tempo effects have been extensively studied for fertility and marriage (Ry-
der, 1956, 1964, 1980; Keilman, 1994; Bongaarts, 1998, 1999; Kohler, 2002;
Goldstein, 2003; Winkler-Dworak and Engelhardt, 2004). Various approaches
have been proposed to adjust period measures for tempo effects. It is impor-
tant to state that the solution for the adjustment may vary depending on the
purpose of the correction, i.e., measuring period conditions or tracking real
cohort behavior. In fertility, the first purpose involves estimating the level
at which the TFR would eventually stabilize if factors affecting individuals’
completed fertility remained constant at the levels of a particular period. The
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second purpose involves estimating the TFR that would have been observed
during that particular period if cohorts had not modified the timing of their
births, while retaining their potentially changing completed fertility. These
two scenarios differ and may thus yield different solutions. Differences in ob-
jectives explain in part why different procedures for tempo adjustments in
fertility have yielded different results.

More recently, the concept of tempo effects has been applied to mortality
(Bongaarts and Feeney, 2002, in this volume p. 11 and p. 29). The authors
argue that the conventionally-calculated period life expectancy at birth is
affected by tempo effects whenever mortality is changing. They propose an
alternative period measure of longevity, which they claim adjusts for tempo
effects. Although not explicitly stated, the purpose of the adjustment is to
obtain a measure that better reflects current conditions, i.e., the level at which
the life expectancy at birth would eventually stabilize if mortality conditions,
defined as all factors affecting survival, remained constant at current levels.

In this chapter, I first examine the existence of tempo effects in mortality,
by looking at historical discrepancies between period and cohort mortality
measures. I then discuss the strategy proposed by Bongaarts and Feeney. I
argue that the performance of Bongaarts and Feeney’s tempo-adjusted life
expectancy as an indicator reflecting current mortality conditions depends
primarily on specific assumptions regarding the effects of changing period
mortality conditions on the timing of future cohort deaths, and that currently
there is no clear evidence about the existence of such effects in actual popula-
tions. I conclude that until the existence of such effects can be demonstrated, it
is preferable to continue using the conventional life expectancy as an indicator
of current mortality conditions.

2 The existence of tempo effects in mortality

There are interesting parallels between mortality and fertility with regards
the study of tempo effects. The mortality index for which the parallel best
applies is the total mortality rate (TMR) (Bongaarts and Feeney, in this
volume p. 11). In a cohort (real or synthetic), the TMR is the number of
lifetime deaths divided by the initial size of the cohort. In a life table with a
radix of one, the TMR can be calculated by adding all age-specific life table
deaths. Obviously, the TMR in a cohort, real or synthetic, is invariably one.
The following equation pertains to a real cohort born at time t:

TMRc(t) =
∫ ∞

0

dc(x, t) dx (1)

where dc(x, t) is the number (or proportion) of deaths at age x for a cohort
born at time t (radix= 1).

The TMR can also be calculated in a cross-sectional fashion by calculating
for each cohort the proportion of deaths occurring during a particular period,
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and by summing these proportions across all cohorts:

TMR(t) =
∫ ∞

0

dc(x, t − x) dx (2)

The period TMR can be interpreted as the proportion of cohort deaths that
are occurring during period t. If all cohorts have the same age distribution of
deaths, the period TMR is constant at 1.00. If the age distribution of deaths
changes from cohort to cohort, however, the period TMR deviates from one.
For example, if cohort deaths are being progressively spread out over a longer
period of time, with smaller proportions occurring during a given period, the
period TMR is less than one. This means that less than 100% of cohort deaths
are occurring during period t, which is a sign that cohort deaths are being
delayed, i.e., that mortality is declining. Conversely, the period TMR is greater
than 1.00 during periods of increased mortality, when increased proportions
of cohort deaths are occurring at the same time.

Figures 1 and 2 show long-term trends in the period TMR among French
males and Swedish females, together with trends in period and cohort life
expectancy. (The data come from the Vallin-Meslé database for France, and
from Human Mortality Database for Sweden.) The period TMR is generally
below 1.00, indicating mortality decline. However, TMRs above 1.00 were
experienced by French males during WWI and WWII, and by Swedish females
in 1918 during the influenza epidemic.

In Figures 1 and 2, changes in the period TMR can be attributed to
changes in the timing of deaths from cohort to cohort. Because of these
changes, the period TMR is a poor indicator of the “stationary-equivalent”
TMR, i.e., the period TMR that would eventually be observed if current mor-
tality conditions remained constant in the future. Indeed, under this constant-
conditions scenario, one would expect the age distribution of deaths to be
eventually identical for all cohorts, and the period TMR to reach a value of
1.00 eventually. The period TMR is also a poor indicator of the trend in the
cohort TMR, which is constant at 1.00 for all cohorts. Making a parallel with
fertility, it can be stated that the period TMR is affected by tempo changes,
defined as changes in the timing of deaths within cohorts. Unlike the cohort
TFR, however, there are no quantum variations in the cohort TMR, since it
is constant at 1.00. This implies that deviations from 1.00 in the period TMR
can be entirely attributed to tempo effects, and that a “tempo-adjusted” pe-
riod TMR necessarily equals 1.00.

In mortality, the most important period indicator is not the TMR, but the
period life expectancy at birth, e0. In order to assess the presence of tempo
effects in e0, one may first examine the existence of situations in which e0 has
no relevance for actual cohorts. Figure 1 shows trends in period life expectancy
in France, along with trends in cohort life expectancy (ec

0), plotted at the time
of birth. This figure illustrates the fact that in France, there are a few years –
the WWI years – during which period e0 levels have no relevance for any par-
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Note: Data source: Vallin-Meslé database.
http://www.ined.fr/publications/cdrom vallin mesle/contenu.htm

Note: ec
0(t) is plotted at time when the cohort was born.

Fig. 1. Period life expectancy at birth, e0(t); cohort life expectancy at birth, ec
0(t);

and period total mortality rate, TMR(t). France, males, 1806-1998.

ticular cohort. During these years, many cohorts had elevated mortality risks
at the same time, resulting in period life expectancies as low as 27.2 years
in 1915. But these elevated risks were relatively short-term, and no actual
cohort contributing deaths during these years have experienced such low life
expectancy levels (the lowest cohort life expectancy among contributing co-
horts is 37.0 years for the cohort born in 1895). In a sense, the sudden decline
in life expectancy in 1915 gives an exaggerated indication of mortality change
occurring within cohorts. Changes in cohort mortality levels would have been
poorly predicted on the basis of these large drops in e0. This discussion of
trends in period life expectancy has parallels with discussions of trends in
the period TFR and the difficulty to use this measure as an indicator of real
changes in cohort completed fertility.

It is less easy to tell if the period life expectancy at birth is a biased
indicator of the “stationary-equivalent” life expectancy, or life expectancy
under “current conditions”. If today’s mortality conditions remained constant,
would the life expectancy at birth stabilize at the current period level or at
some other level? Historical trends in cohort life expectancy are of little use for
answering that question, because cohorts are exposed to constantly-changing
period conditions.
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Data source: Human Mortality Database. www.mortality.org.

Note: ec
0(t) is plotted at the time (t) when the cohort was born.

Fig. 2. Period life expectancy at birth, e0(t); cohort life expectancy at birth, ec
0(t);

and period total mortality rate, TMR(t). Sweden, females, 1752-1998.

3 Bongaarts and Feeney’s tempo-adjusted life
expectancy

The goal of Bongaarts and Feeney’s alternative measure of survival is pre-
cisely to resolve potential discrepancies between period levels and stationary-
equivalent levels of life expectancy. As said earlier, the goal of their tempo-
adjusted measures is not to better track real changes in cohort life expectancy,
so I will not discuss here how their approach performs this task. There are a
number of papers in this volume and elsewhere which deal with this somewhat
different issue (Guillot, 2003b; Schoen and Canudas-Romo, 2005; Goldstein,
in this volume).

Bongaarts and Feeney (referred to as BF in the remainder of the chapter)
compare three mortality indexes:

CAL(t) =
∫ ∞

0

pc(x, t − x) dx (3)

where pc(x, t − x) is the probability of surviving from birth to age x for the
cohort born at time t − x.

MAD(t) =

∫ ∞
0

x · dc(x, t − x) dx∫ ∞
0

dc(x, t − x) dx
(4)
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M4(t) =
∫ ∞

0

exp
{
−

∫ x

0

µ(a, t)
TMR(t)

da

}
dx (5)

where µ(a, t) is the force of mortality at age a at time t.
The first index, CAL(t) (= cross-sectional average length of life), sums

actual proportions of cohort survivors at time t, rather than proportions of
survivors in the synthetic cohort at time t as in the case of e0(t). Thus CAL
takes into account all mortality rates previously experienced by cohorts whose
survivors are present in the population at time t. This index, which is described
in detail elsewhere (Brouard, 1986; Guillot, 1999, 2003a, 2005), has been used
primarily for examining the impact of mortality change on population growth.

The second index, MAD(t), is the mean age at death that would be ob-
served at time t if the studied population, while subject to actual mortality
trends, had experienced constant births per unit of time (constant-birth pop-
ulation) and had been closed to migration. MAD can be interpreted as the
population mean age at death at time t, controlling for changes in the initial
size of cohorts.

The third index, M4(t), is a period life expectancy at birth where all age-
specific death rates are adjusted by a factor 1/TMR(t). If the TMR is equal
to .8, each death rate will be adjusted upwards by a factor 1.25, and M4(t)
will be lower than the actual e0(t).

An important feature of these summary indexes of mortality is that when
mortality is constant over time, then CAL(t) = MAD(t) = M4(t) = e0(t). If
mortality varies, however, these indexes diverge. In particular, if age-specific
mortality rates have been steadily declining, e0 will be systematically higher
than CAL, MAD or M4.

Bongaarts and Feeney calculate these three indexes in populations where
mortality has changed overtime. They demonstrate that CAL = MAD = M4

under a specific pattern of mortality change, which they claim is a good ap-
proximation of the current situation in low-mortality populations. This quan-
tity is then interpreted as a tempo-adjusted life expectancy at birth. These
two propositions are examined successively in the following sections.

4 Evaluating Bongaarts and Feeney’s “proportionality”
assumption

The first assumption proposed by Bongaarts and Feeney involves a quantity
described by Preston and Coale (1982) and Arthur and Vaupel (1984). This
quantity may be called an age intensity, ν∗:

ν∗(x, t) =
−∂pc(x, t − x)/∂x

pc(x, t − x)
. (6)

In Equation (6), ν∗ is the rate at which the proportion of cohort survivors in
a population at time t varies from one age to the next. It also corresponds to
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the age intensity of the constant-birth population. It is in fact a special case
of Arthur and Vaupel’s age intensity, ν, which applies to the more general
case of populations with varying births and open to migration.

In their chapter, Bongaarts and Feeney (in this volume p. 11) demonstrate
that CAL(t) = MAD(t) = M4(t) if at time t the age intensity ν∗(x, t) is
proportional to µ(x, t), i.e., if the following equation holds:

µ(x, t) = p(t)ν∗(x, t) (7)

They refer to this assumption as the “proportionality” assumption, and claim
that this assumption is a good approximation of the current situation in Swe-
den, France and the US. As Wachter demonstrates in this volume, one situa-
tion which approximately produces proportionality is when all cohorts expe-
rience a Gompertz force of mortality and a constant, age-invariant rate of de-
cline in age-specific death rates (Wachter, in this volume). More generally, the
proportionality assumption is immediately met in a given year if, during that
year, the proportions of cohort survivors shift along the age axis by an amount
that is identical for all cohorts, i.e., if pc(x, t2−x) = pc(x−F (t), t1−x+F (t)),
where F (t) is the amount of the shift, in years, between t1 and t2 (Bongaarts
and Feeney, 2002). For example, the proportionality assumption would be met
if the proportion of cohort survivors at age 80 in 2000 was equal to the pro-
portion of cohort survivors at age 78 in 1995 (i.e., a 2-year shift in 5 years),
and if this correspondence could be established for all cohorts.

While it is true that if Equation (7) holds at time t, then MAD(t) =
CAL(t) = M4(t), there are deviations from the proportionality assumptions in
real populations which produce important discrepancies between the three in-
dicators. This can be shown by calculating the three indicators in real popula-
tions, without making any assumption about the pattern of mortality change.

Figures 3 and 4 show that among French males and Swedish females, there
are important differences between the three indicators. Typically, CAL has the
lowest value, MAD has the highest value, and M4 is somewhere in between.
The difference between CAL and MAD is as large as 9.46 years in 1953 in
France. Although the gap between the two measures has decreased over time,
it is still 2.76 years for French males in 1998, and 2.08 years for Swedish
females in 1997.

More importantly, Figure 3 and 4 also show that CAL, MAD and M4 react
very differently to period variations in mortality. In particular, MAD and M4

are much more sensitive to variations in period mortality, with a trajectory
somewhat parallel to that of the period life expectancy at birth, although
at a lower level. In contrast, CAL is much less reactive to period variations
in mortality. Since in real populations CAL, MAD and M4 offer a different
picture of changes in mortality over time, these three indexes should not be
interpreted interchangeably. In particular, CAL should not be interpreted as
a population mean age at death purged of changes in cohort size (MAD).
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Fig. 3. Period life expectancy at birth, e0(t); cross-sectional average length of life,
CAL(t); mean age at death in the constant-birth population, MAD(t); and Bon-
gaarts and Feeney’s M4(t). France, males, 1900-1998.

Fig. 4. Period life expectancy at birth, e0(t); cross-sectional average length of life,
CAL(t); mean age at death in the constant-birth population, MAD(t); and Bon-
gaarts and Feeney’s M4(t). Sweden, females, 1862-1998.



138 Michel Guillot

Even if today, the difference between the two indexes is not as large as earlier
(though still significant), they remain distinct conceptually.

The reason why BF do not find large differences between CAL, MAD and
M4 is that in their empirical examples, they make the additional assumption
that there is no mortality below age 30 throughout the entire life time of
all cohorts who have survivors at time t (i.e., since the early 20th century
for current estimates of CAL, MAD or M4). Indeed, if we discard mortality
information below age 30 and estimate the mean number of years to be lived
above age 30 only, the proportionality assumption is met in France and Sweden
since the 1970s, and we obtain three indicators, CAL30, MAD30 and M4[30]

that are nearly equal for the recent period, as shown in Figures 5 and 6.
(Note, however, that they still differed by about .75 years in the early 1990s
in France.)

Note: Like e30(t), CAL30(t), MAD30(t), and M4[30](t) represent a number of additional years

expected to be lived above age 30, given survival to age 30.

Fig. 5. Period life expectancy at age 30, e30(t); cross-sectional average length of
life, CAL30(t); mean age at death in the constant-birth population, MAD30(t); and
Bongaarts and Feeney’s M4[30](t). France, males, 1880-1998.

In reality, mortality below age 30 is not negligible, especially when con-
sidering earlier decades of the twentieth century. Even in 1998 among French
males, mortality below age 30 still produced a loss of 1.37 years of period life
expectancy at birth. As a result, when all ages are taken into account, the pro-
portionality assumption is not met, and this creates important discrepancies
between CAL, MAD and M4 which are not well addressed in BF’s procedure.
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Fig. 6. Period life expectancy at age 30, e30(t); cross-sectional average length of
life, CAL30(t); mean age at death in the constant-birth population, MAD30(t); and
Bongaarts and Feeney’s M4[30](t). Sweden, females, 1832-1998.

So far, BF’s procedure refers to mortality above age 30 only and does not
permit the calculation of a life expectancy at birth that is consistent with
their overall proposition. (In this volume, BF deal with mortality below age
30 differently. Instead of assuming that there is no mortality below age 30, as
in their earlier work, they assume that there are no tempo effects below age
30. This allows them to calculate an adjusted life expectancy at birth which
combines unadjusted rates below age 30 with adjusted rates above age 30.
This assumption of no tempo effects below age 30, however, seems somewhat
arbitrary.)

5 Bongaarts and Feeney’s definition of changes in period
mortality conditions

While departures from the proportionality assumption raises practical issues
with the estimation of BF’s adjusted life expectancy, there are more funda-
mental considerations to examine in order to evaluate the interpretation of
CAL, MAD or M4 as tempo-adjusted indicators. These considerations apply
even if the proportionality assumption is met. Since CAL = MAD = M4

under the proportionality assumption, this section focuses on the behavior of
CAL only. I choose CAL, because unlike MAD or M4, it has relevant proper-
ties (for example, Equation (8) later in this chapter) that do not require any
assumption about the pattern of mortality change.
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BF’s approach relies on a particular definition of changes in period mor-
tality conditions, which is different from the classic definition. Traditionally,
demographers assume that particular period mortality conditions generate a
set of age-specific mortality rates which completely reflect these conditions, as
long as the population is homogeneous with respect to the risk of death. There-
fore, it is assumed that changes in period age-specific mortality rates com-
pletely reflect changes in period mortality conditions. Similarly, it is assumed
that when period mortality conditions stop changing, period age-specific mor-
tality rates – or e0 – become constant. Under this assumption, the period life
expectancy at birth, as traditionally calculated, is an unbiased indicator of
period mortality conditions, and no adjustment is needed.

As in the classic approach, BF assume that populations are homogeneous
with respect to the risk of death, but they address mortality change differently.
They define period mortality changes in terms of changes overtime in the
pc(x, t−x) curve. According to them, a change in mortality conditions during
a certain period is indicated by a change in pc(x, t − x), producing a change
in the value of CAL. Conversely, they assume that mortality conditions stop
changing whenever the curve pc(x, t−x) – or when CAL(t) – becomes constant
(Bongaarts and Feeney, 2002, p.17).

BF’s definition of mortality change implies that, as a result of new mor-
tality conditions appearing during a given period, all future cohort deaths are
delayed by a certain amount of time. These delays in future cohort deaths
accumulate over time as mortality conditions keep improving. When mortal-
ity conditions stop improving, no additional delay occurs, which implies that
the delays in future cohort deaths, already accumulated by previous mortality
change, remain unchanged.

This conception of mortality change is illustrated with Lexis diagrams in
Figures 7a and 7b. The quantities in the Lexis areas refer to deaths in cohort
life tables with a constant radix at age zero. (For simplicity, this illustration
uses a starting age of zero, but a similar argument could be developed for
any starting age.) In this illustration, mortality conditions are constant up to
year T − 1. As a result, up to year T − 1, the age distribution of life table
cohort deaths, Dx, is constant over time and the period TMR is equal to 1.00.
This stationary situation changes as a new set of mortality conditions appear
in year T (Diagram A). According to BF’s definition of mortality change,
these new mortality conditions generate postponements (or delays) in cohort
deaths, and thus a certain proportion of deaths “migrate” to the following
year. These delays are illustrated with arrows indicating the proportion of
cohort deaths λ(T ) that are postponed to the following year as a result of
the new mortality conditions appearing in year T . These proportions apply
to the stationary deaths Dx that would have been observed during year T
and subsequently if no change in mortality conditions had occurred during
year T . λ(T ) also corresponds to the amount of delay (as fraction of a year)
experienced by cohort deaths (Vaupel, in this volume p. 93, refers to these
delays as δ). It also corresponds to the amount (in years) by which the curve
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pc(x, t − x) shifts along the age axis. Note that the new conditions of year T
do not only generate delays during year T , but during all future years. Delays
resulting from new period mortality conditions can be experienced many years
after the new conditions appeared. In the notation λ(T ), T refers to the time
at which new conditions appear, generating delays in future cohort deaths. It
does not refer to the time when these delays are actually experienced, because
these delays can indeed be experienced many years later.

According to this scenario of mortality change, the TMR during year T
is equal to (1 − λ(T )). However, if cohorts experience no additional delays in
the timing of their future deaths, i.e., if mortality conditions stop changing
according to BF’s definition of mortality change, constant numbers of cohort
deaths, D′

x, reemerge as early as the year T + 1. This implies that, starting
in year T + 1, a TMR of 1.00 is reestablished, CAL becomes constant, and
e0(t) = ec

0(t) = CAL(t). The life expectancy at birth during year T will be
higher than the new constant level starting at T +1, because unlike year T +1,
less than 100% of cohort deaths (i.e., 1 − λ(T )) are occurring during year T .
The discrepancy is due to the fact that starting with year T +1, the number of
additional deaths resulting from the previous year’s delays equals the number
of deaths postponed to the following year, while during year T , there are only
“missed” deaths, postponed to the following year.

Mortality conditions, however, may not remain constant but be replaced
by new mortality conditions appearing during year T +1 (Diagram B). These
new conditions, according to BF, generate additional delays in cohort deaths,
illustrated by a second set of arrows indicating the proportions of cohort
deaths λ(T + 1) that are postponed to the following year as a result of the
new mortality conditions of year T +1. These proportions apply to the deaths
D′

x that would have been observed during year T + 1 and subsequently if no
further mortality change had occurred after time T (a counter-factual scenario
that corresponds to the situation described in Diagram A).

In Diagram B, the TMR during year T + 1 is equal to (1 − λ(T + 1)).
Here also, if no new mortality conditions appear after year T + 1, starting
at year T + 2, a TMR of 1.00 is reestablished, CAL becomes constant and
e0(t) = ec

0(t) = CAL(t). The life expectancy at birth during year T + 1
will be higher than the new constant level starting at T + 2, because fewer
cohort deaths are occurring during year T + 1. This mechanism of mortality
change could continue during following years, with new mortality conditions
appearing every year and creating delays in cohort deaths which would come
in addition to the delays already accumulated as a result of previous mortality
change.

This example illustrates the implications of BF’s conception of mortal-
ity change. The first implication is that changes in mortality conditions are
entirely indicated by deviations from 1.00 in the TMR. When new period
mortality conditions appear, the TMR deviates from 1.00, and the quantity
(1 − TMR) indicates the proportion of cohort deaths that are postponed to
the following year as a result of these new conditions, or equivalently, the



142 Michel Guillot

Note: The quantities in the Lexis areas refer to deaths in cohort life tables with a constant

radix at age zero. The arrows indicate the proportions of cohort deaths λ(T ) that “migrate” to

the following year as a results of the new conditions appearing in year T . These proportions

apply to the stationary deaths Dx of year T − 1. D′
x = Dx · [1 − λ(T )] + Dx−1 · λ(T )

Fig. 7a. Lexis diagram illustrating Bongaarts and Fenney’s scenario of mortality
change. Diagram A: New conditions appear at time T .

Note: The quantities in the Lexis areas refer to deaths in cohort life tables with a constant

radix at age zero. The arrows indicate the proportions of cohort deaths λ(T + 1) that “migrate”

to the following year as a results of the new conditions appearing in year T + 1. These

proportions apply to the stationary deaths D′
x that would have been observed during the year

T + 1 and subsequently if no further mortality change had occurred after time T (as shown in

Diagram A). D′′
x = D′

x · [1 − λ(T + 1)] + D′
x−1 · λ(T + 1)

Fig. 7b. Diagram B: New conditions appear at time T + 1.
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amount of the delay. As period mortality conditions stop changing, a TMR of
1.00 is immediately reestablished. Similarly, changes in mortality conditions
are entirely indicated by changes in CAL, because there is a direct connection
between changes in CAL and levels of the period TMR (Guillot, 2003a, p.53):

TMR(t) = 1 − dCAL(t)
dt

(8)

(Note that unlike BF’s similar equation (Bongaarts and Feeney, in this volume
p. 11, Equation [8a]), Equation (8) does not require any assumption.)

The second implication of BF’s conception of mortality change pertains
to the interpretation of CAL as a stationary-equivalent life expectancy. BF’s
assumption about the effect of new mortality conditions on the timing of
future cohort deaths produces a situation in which CAL better reflects cur-
rent mortality conditions, because CAL corresponds to the life expectancy at
birth that would eventually be observed in the population if mortality con-
ditions stopped changing (i.e., if cohorts experienced no additional delays in
the timing of their future deaths). In Diagram B of Figure 7, the period life
expectancy at birth observed during year T + 1 does not reflect well the new
mortality conditions emerging during that year, because it is different from
the constant level of life expectancy at birth that would be observed starting
in year T + 2 if mortality conditions remained constant. In reality, new mor-
tality conditions may appear in year T + 2 and subsequently. Nonetheless, no
matter what happens during year T +2, the level of CAL observed on January
1 of year T + 2 indicates this stationary-equivalent level of mortality.

BF’s tempo-adjusted life expectancy is thus a stationary-equivalent period
life expectancy that is consistent with their definition of mortality change,
based on the behavior of pc(x, t−x). In general terms, if pc(x, t−x) becomes
constant at time t, then p(x, t) = pc(x, t−x). Therefore, if pc(x, t−x) becomes
constant, e0 immediately adjusts to the corresponding CAL level and remains
constant thereafter.

One can note here that this scenario of constant mortality conditions is
possible only if the function pc(x, t − x) is monotonically decreasing. This
assumption is less restrictive than BF’s proportionality assumption, and allows
for the proportion of postponed deaths, λ(T ), to vary with age. (Age-varying
delays are also examined by Feeney in this volume). One assumption that
must remain, however, in order to use CAL as a stationary-equivalent life
expectancy, is that these age-specific delays in future cohort deaths generated
by the new conditions of year T – which we can denote λ(x, T ) – must be
identical for all cohorts. For example, new mortality conditions of year T
must generate delays in deaths of age 80 for the cohort age 40 at time T
that are equal to the delays in deaths of age 80 for the cohort aged 70 at
time T . In other words, age-specific delays need to remain constant with time
in the constant-condition scenario. In Figure 7a, the proportions of deaths
transferred to the following year as a result of new mortality conditions of
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year T , illustrated with the arrows, may vary vertically, but must be constant
horizontally. This insures that e0 adjusts to CAL in BF’s scenario of constant
mortality conditions.

6 Assessing indicators of period mortality conditions: e0

vs. CAL

The assessment of BF’s tempo-adjusted life expectancy (apart from discussing
the adequacy of the proportionality assumption) comes down to determining
whether new mortality conditions generate a new set of period age-specific
death rates, as traditionally believed, or whether these new conditions gen-
erate delays in the timing of future cohort deaths, as illustrated in Figure 7.
In particular, it comes down to determining whether cohorts would stop ex-
periencing additional delays in the timing of their future deaths if mortality
conditions stopped changing. In general terms, it comes down to determining
whether levels and trends in period mortality conditions are better reflected
by changes in life expectancy or changes in CAL.

In order to contrast these two views, one first needs to recognize that life
expectancy and CAL are not independent of one another. In particular, it
can be shown that variations in CAL depend in part on differences between
proportions of survivors in the synthetic cohort at time t and proportions of
survivors in real cohorts at time t (Guillot, 2003a, p.53):

dCAL(t)
dt

=
∫ ω

0

µ(x, t)[p(x, t) − pc(x, t − x)] dx (9)

where ω is the age at which p(x, t) = pc(x, t − x) = 0.
Under steady mortality decline, p(x, t) tends to be greater than pc(x, t−x),

and CAL tends to increase. In fact, if p(x, t) �= pc(x, t − x) for any x in the
interval (0, ω) (which happens for most years in France and Sweden), the
direction of the change in CAL will be determined by the sign of the difference
between e0 and CAL:

dCAL(t)
dt

= µ̄(t)[e0(t) − CAL(t)] (10)

where µ̄(t) is a value, always positive, of the force of mortality µ(x, t) at an
age in the interval (0, ω).

Figure 8 and 9 show trends in life expectancy and CAL among French
males and Swedish females. In order to examine these trends in the context
of BF’s discussion of tempo effects, these figures use mortality information
above age 30 only, but similar correspondences between CAL and life ex-
pectancy would be observed if all ages were taken into account. As expected,
the direction of the change in CAL is related to whether life expectancy is
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above or below the corresponding value of CAL. These figures also illustrate
the relationship between CAL change and the TMR levels (Equation (8)).

Fig. 8. Period life expectancy, e30(t); cross-sectional average length of life, CAL30(t);
and period total mortality rate, TMR30(t). France, males, 1880-1998.

Equations (9) and (10), illustrated in Figures 8 and 9, allow us to contrast
two different views of mortality change above age 30. The classic view implies
that changes in mortality conditions at these ages is indicated by changes
in e30, and that CAL30 simply “reacts” to these variations, depending on
whether e30 is above or below CAL30 during a given year. According to this
view, if current conditions stopped changing, e30 would remain constant while
CAL30 would gradually increase towards e30, as expected from Equation (9).
This view implies that CAL30 is a biased indicator of stationary-equivalent
life expectancy, because if mortality conditions stopped changing, e30 would
remain constant while CAL30 would continue changing.

On the contrary, BF consider that changes in mortality conditions are indi-
cated by changes in CAL30, and perceive variations in e30 as less meaningful,
created by whatever trajectory CAL30 is taking. According to this view, e30

is a biased indicator of stationary-equivalent life expectancy, because CAL30

would remain constant while e30 would change if mortality conditions stopped
changing.

Another way to contrast these two views is to examine the equation for the
TMR. Equation (11) is a modified version of Equation (2) in which cohort
deaths at time t are expressed in terms of cohort survivors exposed to the
force of mortality at time t and in which only ages 30 and above are taken
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Fig. 9. Period life expectancy, e30(t); cross-sectional average length of life, CAL30(t);
and period total mortality rate, TMR30(t). Sweden, females, 1832-1998.

into account (i.e., pc(30, t − 30) = 1):

TMR30(t) =
∫ ∞

30

pc(x, t − x) · µ(x, t) dx (11)

As we saw earlier, the TMR will deviate from 1.00 whenever the timing
of deaths is changing from cohort to cohort. No matter how we define mor-
tality conditions, if period mortality conditions stopped changing, one would
expect TMR30 to eventually reach the stationary value of 1.00. The stationary-
equivalent period TMR30, or TMR30(∞), can thus be expressed for a given
year as TMR30(t) divided by itself. This produces the following equation:

TMR30(∞) =
1

TMR30(t)

∫ ∞

30

pc(x, t − x) · µ(x, t) dx (12)

The conventional approach would attribute deviations in TMR30(t) to the
fact that the proportions of cohort survivors, representing individuals exposed
to past mortality levels, tend to be smaller than proportions of survivors in
the synthetic cohort for year t, while µ(x, t) adequately represents current
mortality conditions. If current mortality conditions stopped changing, the
stationary-equivalent TMR30(∞) of 1.00 would be reached through a pro-
gressive increase in pc(x, t − x), while µ(x, t) would stay constant at current
levels. In contrast, BF assume that, if mortality conditions stopped chang-
ing, the stationary-equivalent TMR30(∞) of 1.00 would be reached through
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a change in the force of mortality by a factor 1/TMR30(t), while pc(x, t − x)
would stay constant at current levels. They are able to entirely attribute the
correction factor of 1/TMR(t) in Equation (12) to µ(x, t) because of their
assumption of cohort-invariant delays of future cohort deaths in the constant-
condition scenario. (This adjustment of µ(x, t) appears in Equation (5) for
M4.) In sum, both views agree that TMR30(t) is biased an indicator of the
stationary-equivalent TMR30 by a factor 1/TMR30(t), but this correction fac-
tor is allocated to different components of Equation (12), yielding different
estimates of the stationary-equivalent level of life expectancy.

It is difficult to tell with certainty whether mortality change above age
30 is indicated by e30 or by CAL30, or equivalently, whether life expectancy
would stabilize at e30(t) or CAL30(t) if mortality conditions stopped changing
after time t. Bongaarts and Feeney rely on the existence of proportionality
above age 30 as a key element in support of their view of mortality change.
Proportionality, however, does not per se demonstrate the existence of cohort-
invariant delays of future cohort deaths in the constant-condition scenario.
Proportionality means that up to now, as a result of mortality change, suc-
cessive cohorts have been delaying there deaths according to a specific pat-
tern, but it does not allow to predict what would happen to the timing of
future cohort deaths if mortality conditions stopped changing. In particular,
the proportionality assumption does not demonstrate that cohorts will stop
experiencing additional delays in the constant-condition scenario. Also, the
proportionality assumption does not disprove the classic view assuming that
if conditions stopped changing, mortality rates would remain constant at cur-
rent levels. A hypothetical test (although perhaps not impossible for animal
populations) would involve fixing the current epidemiological conditions (de-
fined as all factors - technological, behavioral and environmental - affecting
survival) at current levels and observing the resulting dynamics of CAL and
life expectancy.

There are, however, several reasons to believe that period mortality con-
ditions above age 30 are better reflected by e30, and that CAL30 would not
remain constant if mortality conditions stopped changing:

(1) In Sweden (Figure 9), periods during which CAL30 remained constant (or
equivalently, when TMR30 reached a value of 1.00) seem to coincide with
mortality crises (1870, 1892, 1900 and 1918, for example) rather than with
periods during which mortality conditions remained constant.

(2) In Figures 8 and 9, e30(t) appears to have a dynamics of its own, as one
would expect from an indicator reflecting changes in the epidemiological
environment of a population. CAL30, in comparison, appears as a “re-
sponse” indicator, reacting to changes in e30 rather than generating them.
(CAL reacts to changes in life expectancy somewhat like the temperature
of a glass of water reacts to changes in ambient temperature.) For ex-
ample, excess mortality during WWI in France appears as a short-term
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deviation from an underlying trend in e30. After the war, e30 quickly recov-
ers this underlying trend, plausibly indicating that prewar epidemiological
conditions were quickly recovered after the war. CAL30, however, does not
recover prewar levels until 1938, implausibly suggesting that pre-WWI epi-
demiological conditions were not reestablished until 20 years after the end
of the war. Similarly, the relatively small decreases in CAL30 during WWII
in France and during the 1918 Influenza epidemic in Sweden seem to un-
derstate the worsening of epidemiological conditions during these years.
The independent nature of life expectancy is not as obvious today because
of the absence of mortality crises, but this doesn’t mean that CAL is now
driving mortality change. (The sudden increase in e30 after WWII among
French males, however, is somewhat puzzling. The level of e30 in 1946 is 3.9
years higher than in 1938, suggesting a sudden, substantial, and somewhat
implausible improvement in mortality conditions relative to the pre-war
period.)

(3) As stated earlier, the most important assumption of BF’s approach is that
new mortality conditions generate delays in future cohort deaths that may
vary with age but are identical for all cohorts (or equivalently, that are
constant with time). BF’s approach thus does not address the fact that
cohorts may react differently to new epidemiological conditions, with some
cohorts benefitting more than others. In particular, younger cohorts – ex-
posed to the new conditions for a longer period of time – may experience
greater delays at older ages, as a result of these new conditions, than co-
horts already old at the time when the new conditions appeared. It seems
likely that many medical innovations, such as new drugs or new knowledge
regarding health behaviors, have benefits that accumulate with time. For
example, we expect delays in ages at death resulting from the 1964 US sur-
geon general’s statement establishing smoking as a risk factor to be greater
for smokers who were young in 1964 than for smokers who were older. The
amount of delay generated by a medical innovation may thus depend to a
large degree on how long before the innovation appeared. In other words,
delays may very well be cohort-specific, implying that delays – and CAL
– could continue changing even in the absence of further changes in con-
ditions. (In fact, a scenario of constant e30 allows the occurrence of such
cohort-specific delays.) It is true that certain medical discoveries apply
only to individuals who are at the terminal stage of a disease, in which
case the resulting delays in deaths may not depend on how long before
the new technology appeared. However, mortality conditions encompass a
broad range of factors, including some that likely have cumulative effects
on survival.

These various points support the notion that current period conditions – and
changes thereof – may be better described by life expectancy than by CAL.
The above argumentation is imperfect because based on historical rather than
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contemporary data, or on expectations regarding the cumulative effect of med-
ical innovations on the timing of cohort deaths. The nature of mortality dy-
namics may well have changed, along with the nature of medical innovations,
as Bongaarts and Feeney argue. Nonetheless, in the absence of direct evidence
regarding the long-term impact of new epidemiological conditions on the tim-
ing of cohort deaths, it seems preferable to continue to believe in the classic
view of mortality conditions, based on period age-specific death rates.

7 Conclusion

This chapter first makes the distinction between two different purposes for
calculating tempo-adjusted indicators in demography. The first purpose is the
estimation of stationary-equivalent demographic levels, i.e., the levels that
would be eventually observed in the population if all factors affecting de-
mographic behavior remained constant in the future. The second purpose is
the estimation of changes in the behavior of real cohorts. Since these two
purposes have different solutions, the various methodologies for dealing with
tempo adjustments need to be distinguished according to their objectives.

This chapter then shows that the performance of Bongaarts and Feeney’s
adjusted life expectancy as an indicator reflecting current mortality conditions
depends primarily on the assumption that new mortality conditions generate
delays in future cohort deaths that may be age-specific but need to be cohort-
invariant (or, equivalently, time-invariant). At present, there is no clear ev-
idence about the existence of such effects, although this may just reflect a
gap in the existing knowledge regarding the dynamics of mortality in con-
temporary populations. Nonetheless, until the existence of such effects can be
demonstrated, I argue that it is preferable to continue using the conventional
life expectancy as an indicator of period mortality conditions.

The assumption of homogeneity, necessary for simulating the synthetic
cohort in classic period life table construction, presents a challenge to the
interpretation of the period life expectancy as an indicator of current condi-
tions that is better documented than BF’s tempo effects. If mortality risks
vary across individuals, and if the frailty composition of the actual population
differs from that of the stationary-equivalent population, the conventionally-
calculated period life expectancy will be biased (Vaupel et al., 1979; Yashin
et al. 1985; Pollard, 1993). There is a body of evidence suggesting that age-
specific mortality rates are affected by earlier life conditions (Wilmoth, 1990;
Elo and Preston, 1992), and that consequently period age-specific mortality
rates do not completely reflect period mortality conditions. Unlike BF’s con-
clusion that conventional e0 provides too high an estimate of the stationary-
equivalent e0 level, recent research in this area suggests that conventional e0

is too low, because the prevalence of disability in the population is higher
than in the stationary-equivalent population (Lièvre et al., 2004). Similarly,
Avdeev et al. (1998) have suggested that low levels of life expectancy in Rus-
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sia in the early 1990s may provide too negative a picture of period mortality
conditions because of increases in the proportion of frail individuals resulting
from the abrupt mortality decreases of the late 1980s. While heterogeneity
and tempo effects are two separate issues, they both address discrepancies be-
tween life expectancy under current rates and life expectancy under current
conditions. Our current knowledge on both issues suggests that there may be
a more urgent need for developing period life expectancy estimates that take
heterogeneity into account.
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Lièvre, A., Brouard, N., and Heathcote, C. (2003). The estimation of health
expectancies from cross-longitudinal surveys. Mathematical Population
Studies, 10:211–248.

Pollard, J. (1993). Heterogeneity, dependence among causes of death and
gompertz. Mathematical Population Studies, 4(2):117–132.

Preston, S. and Coale, A. (1982). Age structure, growth, attrition and acces-
sion: A new synthesis. Population Index, 48(2):217–259.

Ryder, N. B. (1956). Problems of trend determination during a transition in
fertility. ilbank Memorial Fund Quarterly, 34:5–21.

Ryder, N. B. (1959). An appraisal of fertility trends in the United States.
Thirty Years of Research in Human Fertility: Retrospect and Prospect, New
York: Milbank Memorial Fund, pages 38–49.

Ryder, N. B. (1964). The process of demographic translation. Demography,
1(1):74–82.

Ryder, N. B. (1980). Components of temporal variations in american fertility.
In: Hiorns RW, ed. Demographic patterns in developed societies, London,
Taylor and Francis Ltd., 1980 (Society for the Study of Human Biology.
Symposia, 19:15–54.

Ryder, N. B. (1983). Cohort and period measures of changing fertility. in
Rodolfo A. Bulatao and Ronald D. Lee (eds.), Determinants of Fertility in
Developing Countries, New York: Academic Press, 2:737–756.



152 Michel Guillot

Ryder, N. B. (1986). Observations on the history of cohort fertility in the
United States. Population and Development Review, 12:617–643.

Schoen, R. and Canudas-Romo, V. (2005). Changing mortality and av-
erage cohort life expectancy. Demographic Research, 13(5):117–142.
http://www.demographic-research.org/volumes/vol13/5/.

Vaupel, J. Lifesaving, lifetimes and lifetables. In this volume, also published
in Demographic Research, 13(24):597–614. 2005.

Vaupel, J., Manton, K., and Stallard, E. (1979). The impact of heterogeneity
in individual frailty on the dynamics of mortality. Demography, 16(3):439–
454.

Wachter, K. Tempo and its tribulation. In this volume, also published in
Demographic Research, 13(9):201–222. 2005.

Wilmoth, J. (1990). When does a cohort’s mortality differ from what we
might expect? Population: An English Selection, 2:93–126.

Winkler-Dworak, M. and Engelhardt, H. (2004). On the tempo and quan-
tum of first marriages in Austria, Germany, and Switzerland. Demographic
Research, 10(9):231–263.

Yashin, A., Manton, K., and J.Vaupel (1985). Mortality and aging in a het-
erogeneous population: a stochastic process model with observed and un-
observed variables. Theoretical Population Biology, 27(2):154–175.



Increments to life and mortality tempo�

Griffith Feeney

9 Fairview Road, Scarsdale, NY 10583, USA. E-Mail: feeney@gfeeney.com

Summary. This chapter introduces and develops the idea of “ increments to life.”
Increments to life are roughly analogous to forces of mortality: they are quantities
specified for each age and time by a mathematical function of two variables that
may be used to describe, analyze and model changing length of life in populations.

The rationale is three-fold. First, I wanted a general mathematical representation
of Bongaart’s “life extension” pill (Bongaarts and Feeney in this volume p. 11)
allowing for continuous variation in age and time. This is accomplished in sections
3-5, to which sections 1-2 are preliminaries. It turned out to be a good deal more
difficult than I expected, partly on account of the mathematics, but mostly because
it requires thinking in very unaccustomed ways.

Second, I wanted a means of assessing the robustness of the Bongaarts-Feeney
mortality tempo adjustment formula (Bongaarts and Feeney in this volume p. 11)
against variations in increments to life by age. Section 6 shows how the increments
to life mathematics accomplishes this with an application to the Swedish data used
in Bongaarts and Feeney (in this volume p. 11). In this application, at least, the
Bongaarts-Feeney adjustment is robust.

Third, I hoped by formulating age-variable increments to life to avoid the slight
awkwardness of working with conditional rather than unconditional survival func-
tions. This third aim has not been accomplished, but this appears to be because it
was unreasonable to begin with. While it is possible to conceptualize length of life
as completely described by an age-varying increments to life function, this is not
consistent with the Bongaarts-Feeney mortality tempo adjustment.

What seems to be needed, rather, is a model that incorporates two fundamentally
different kinds of changes in mortality and length of life, one based on the familiar
force of mortality function, the other based on the increments to life function. Section
7 considers heuristically what such models might look like.

1 Time-discrete increments to life

Figure 1 shows cohort survival for two birth cohorts of Swedish females. In
the usual way of thinking, the survival curve for the later cohort has moved
� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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up because risks of death have declined, but we might equally well think of
the curve for the later cohort as having moved to the right as a result of the
prolongation of life.

To quantify this idea, consider the earlier cohort, choose a particular age
(x = 50 years, say) and consider the horizontal distance between the two
survival curves at the corresponding survival proportion, lc(50, t1) = 0.6666
(Figure 1), t1 denoting the time of birth of the earlier cohort. To calculate this
distance we need to know the age to which this proportion of persons survive
in the later cohort. Interpolating on the values for the later cohort we find
this age to be 60.65 years, i.e., lc(60.65, t) = 0.6666 . The horizontal distance
between the two curves at the ordinate value lc(50, t1) = lc(60.65, t2) = 0.6666
is thus λt1,t2

c (50) = 10.65 years.
The difference between any two survival curves may be described as the

collection of all such horizontal distances. These “increments to life” are plot-
ted in Figure 2. The increment for any given age represents “how much longer”
persons in the second cohort live in a rather special and formal sense. The
persons in the second cohort who survive to age x + λt1,t2

c (x) live λt1,n
c (x)

years longer than the persons in the first cohort who survive to age x. Their
advantage is retrospective, however, not prospective. The increment to life for
older ages may be smaller, zero or negative.

The area under the increments to life curve is the difference between the
areas under the survival curves. Since the area under the survival curves gives
the expectation of life at birth for the two cohorts, we have the following
decomposition of the difference between the expectations of life at birth in
the two cohorts in terms of the increments to life values,

ec
0(t2) − ec

0(t1) = −
∫ ∞

0

λt1,t2
c (x) dlc(x, t1) (1)

where the integral is taken with respect to the first survivorship function.

2 Empirical results: Swedish females, 1751-2002

Increments to life by single years of age may be calculated for successive
pairs of annual birth cohorts for Swedish females using the data provided
in the Human Mortality Database (http://www.mortality.org). The database
provides period life tables by single years of age to age 110 years for Sweden
for (as of September 2004) 252 years, from 1751 through 2002. The qx values
from these tables may be used to compute cumulative cohort survival for the
birth cohorts of persons born at the beginning of each calendar year. Applying
the calculation of the preceding section to each successive pair of cohorts gives
increments to life by single years of age for successive pairs of cohorts. These
values may be arranged in a table in which rows correspond to single years of
age and columns to pairs of adjacent birth cohorts and therefore to calendar
years.



Increments to life and mortality tempo 155

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age

P
ro

p
o
rt

io
n

S
u
rv

iv
in

g

Age = 50

Prop = 0.6666

Age = 60.65

Fig. 1. Survivorship for Swedish female cohorts of 1890 and 1900.

Figure 3 shows increments to life averaged over successive pairs of birth
cohorts for the period 1751-1760. It illustrates that increments to life may
be negative as well as positive, corresponding to a rise in mortality risks and
a decline in length of life. Figure 4 shows increments to life averaged over
successive pairs of birth cohorts for the period 1891-1900. Values are positive
here, and the age pattern quite different. The depression at young adult ages
is notable.

3 Time-continuous cohort-indexed increments to life

Let lc(x, t) denote the proportion of persons surviving to age x in the cohort of
persons born at time t. These values define a two-dimensional surface over the
age-time plane of the Lexis diagram. This surface may be described by its con-
tour lines, the lines on the age-time plane along which proportions surviving
are constant. If length of life is constant, these contour lines will be straight
lines parallel to the time axis. If length of life is increasing (decreasing), they
will move to higher (lower) ages. The assumption that the population age
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Fig. 2. Time discrete increments to life for Swedish female cohorts of 1890 and
1900.

distribution defined by lc(x, t) shifts to uniformly to higher ages (Bongaarts
and Feeney 2002:16) is equivalent to the assumption that the rate of change
of the contour lines with respect to age at any given time is invariant with
respect to age.

Let the rate of change with respect to age of the contour line passing
through the point (x, t) be λ(x, t). The directional derivative of the surface
defined by (λ(x, t), 1) in the direction lc(x, t) equals zero because the value of
lc(x, t) does not change on the contour line. We therefore have

∂lc(x, t)
∂x

λc(x, t) +
∂lc(x, t)

∂t
= 0 , (2)

where the constant factor in the definition of the directional derivative may
be ignored since the value is zero. Formula (2) is equivalent to

λc(x, t) = −
[

∂lc(x, t)/∂t

∂lc(x, t)/∂x

]
, (3)

which may be taken as the formal definition of the time-continuous cohort-
indexed increment to life λc(x, t) at age x and time . The partial derivative
in the denominator shows that empirical increments to life values will tend
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Fig. 3. Time-continuous cohort increments to life, Swedish females, average over
cohorts of 1751-1760.

to be unstable over age intervals over which few deaths occur, since for these
intervals ∂lc(x, t)/∂x will be close to zero.

Dividing both sides of (2) by lc(x, t) and rearranging terms gives

λc(x, t)µ(x, t) = r(x, t + x) , (4)

where µ(x, t) denotes the force of mortality at age x and time t and r(x, t)
denotes the age-specific growth rate at age x and time t of the normalized
population lc(•, •). This shows that values of the increments to life function
vary inversely with the values of the force of mortality function for any given
age and time.

The definition of increments to life by formula (3) supposes that the values
lc(x, t) are given. If we assume instead that values λc(x, t) are given, formula
(2) defines a partial differential equation that may be solved for the values
lc(x, t) given the boundary condition lc(x, t) for x > 0.
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Fig. 4. Time-continuous cohort increments to life, Swedish females, average over
cohorts of 1891-1900.

4 Time-continuous period-indexed increments to life

Let lp(x, t) denote the proportion of persons born at time t − x who survive
to age x. From this definition and that of lc(x, t) it follows immediately that

lp(x, t) = lc(x, t − x) (5a)

and

lc(x, t) = lp(x, t + x) (5b)

Compare Appendix 1 of Bongaarts and Feeney (1998), which states the same
relation using slightly different notation. The subscripts refer to the cohort
indexing of the preceding section and the period indexing of this section.
Note that both lp(x, t) and lc(x, t) are survival proportions for cohorts; the
difference is only in the time reference.
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The apparently trifling difference between the two representations turns
out to have non-trivial consequences. Proceeding as before, consider contour
lines of the surface defined by the values lp(x, t). In the period case these
contour lines may move backward as well as forward in time. Backward move-
ment will occur whenever a later cohort experiences much lower survivorship
than an earlier cohort.

Suppose for example that (a) for the cohort born at time , half of all
persons survive to age 50 years, corresponding to the point (50, t + 50) and
that (b) the cohort born at time t+1 experiences much higher infant mortality,
with the result that the age to which half of all persons in the cohort survive
is only 40 years, corresponding to the point (40, t + 41). The time coordinate
of the point for the later cohort lies 9 years before the time coordinate of the
point for the earlier cohort.

The time-continuous increment to life may still be defined as the direction
for which the directional derivative equals zero, but this direction must now
be specified as a vector rather than as a scalar. The period version of formula
(2) is

∂lp(x, t)
∂x

λ1
p(x, t) +

∂lp(x, t)
∂t

λ2
p(x, t) = 0 , (6)

where the vector (λ1
p(x, t), λ2

p(x, t)) gives the direction of the tangent to the
contour line at the point (x,t). For consistency with the cohort formulation we
may assume that λ2

p(x, t) assumes only the values +1 and −1, corresponding
to movement forward and backward in time.

5 Relation between cohort and period increments to life

Figure 5 shows a Lexis diagram in which the diagonal line beginning at time
t and ending at time t + 1 + λc represents the tangent line to the contour line
that passes through the point (x, t) of the surface lp(x, t). The slope of this
line is by definition the period increment to life λp = λp(x, t).

The corresponding rate of change between the cohorts born at times t−x
and t − x + 1, represented by the dotted diagonal lines, is λc = λc(x, t − x).
From the similarity of the two right triangles,

λp(x, t − x) =
λc(x, t − x)

1 + λc(x, t − x)
, (7)

from which it follows that λp(x, t) → 1 as λc(x, t) → ∞ and λp(x, t) → −∞
as λp(x, t) → −1. Values of λc(x, t) less than correspond contour lines moving
backward in time.

Zeng Yi and Land (2002) prove a special case of (7) for a model in which
cohort fertility, period fertility, the shape of the age-schedule of fertility and
the rate of change in the mean age at childbearing are all constant over time.
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Fig. 5. Lexis diagram illustrating relation between cohort and period increment to
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To obtain a more general formula, observe that the partial derivatives in
(6) may be expressed as

∂lp(x, t)
∂x

=
∂lc(x, t − x)

∂x
− ∂lc(x, t − x)

∂t
(8a)

and

∂lp(x, t)
∂t

=
∂lc(x, t − x)

∂t
, (8b)

these expressions being obtained by differentiating (5a). Substituting the right
hand sides here in (6) and rearranging terms gives

λ1
p(x, t) =

−∂lc(x, t − x)/∂t

∂lc(x, t − x)/∂x − ∂lc(x, t − x)/∂t
(9a)

if λ2
p(x, t) = +1 and

λ1
p(x, t) =

∂lc(x, t − x)/∂t

∂lc(x, t − x)/∂x − ∂lc(x, t − x)/∂t
(9b)

if λ2
p(x, t) = −1. Dividing the numerator and denominator on the right hand

sides of (9) gives
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λ1
p(x, t − x) =

−λc(x, t − x)
1 + λc(x, t − x)

> −1 , (10a)

if λ2
p(x, t) = +1 and

λ1
p(x, t − x) =

λc(x, t − x)
1 + λc(x, t − x)

< −1 (10b)

if λ2
p(x, t) = −1.Formula (10a) is the same as formula (7), but the graphical

approach leaves it unclear how to cope with the case in which λ2
p(x, t) = −1

or, equivalently, λc(x, t) < −1.
The relationship between ,λc(x, t), λ1

p(x, t) and λ2
p(x, t) is shown in Figure

6. The curve to the right of the vertical at λc(x, t) = 1 shows the relation
between λc(x, t) and λ1

p(x, t) when λ2
p(x, t) = +1 and the curve to the left of

this vertical shows this relation when λ2
p(x, t) = −1.

The relation displayed in Figure 6 is curious indeed. Discussion of tempo
effects in the demographic literature has generally (always, so far as I am
aware) been limited to values of λc and λp fairly close to zero (roughly, say,
the unit square centered on the origin), and in this neighborhood the relation-
ship is unremarkable. The Lexis diagram in Figure 5 shows that λp cannot
exceed one, whereas λc may assume arbitrarily large values, so it is not sur-
prising to see in Figure 6 that λp → 1 as λc → ∞. To see λp → −∞ as
λc → −1 is rather less comfortable (though obviously, from (10a), this is
what happens), since this suggests that tempo effects in this case can have
arbitrarily large magnitude. In demographic terms (Lexis diagram in Figure
5), events in successive cohorts are shifting to younger ages in such a way as
to pile up events on the vertical line at time t.

The portion of Figure 6 to the left of the vertical (dotted line) at x = −1
is even more surprising. The idea that events occurring in successive cohorts
may be moved to earlier ages so rapidly that the period effect is to “thin
out” events and reduce period levels rather than to “bunching up” events
and increase period levels has not, so far as I am aware, ever been considered
in the demographic literature. Yet this is what happens when λc < 1. In
demographic terms (Lexis diagram in Figure 5), events in subsequent cohorts
are moved to earlier ages so rapidly that they occur earlier in time than events
to earlier cohorts. The asymptotic approach to λp to the left of the vertical
line (dotted) at x = −1 mirrors the asymptote on the other side, but with λc

decelerating toward −1. Of course the value of λc is constrained on the left
because events cannot be shifted to a time before the cohort’s birth!
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6 Robustness of the Bongaarts-Feeney tempo
adjustment formula

The Bongaarts-Feeney mortality tempo adjustment formula (Bongaarts and
Feeney 2002, in this volume p. 11) is based on the “constant shape assump-
tion,” which they show to be equivalent to the assumption that the normalized
age distributions lp(x, t) are translated uniformly up or down the age axis with
changing time. This is equivalent to the assumption that period increments to
life λp(x, t) are constant with respect to age for each time t, λp(x, t) = λ(t) for
all a. This suggests that tempo adjusted life expectancy at birth may be cal-
culated more generally by replacing λ(t) by λp(x, t) in the Bongaarts-Feeney
tempo adjustment formula (2003: formula 11, in which λ(t) = ∂M1(t)/∂t.

This adjustment may be applied to average of annual values of qx for
Swedish females for 1980-1995 with qx set equal to zero for x < 30 years,
the same Swedish data used in Bongaarts and Feeney (in this volume p. 11).
Values of λp(x, t) are obtained by first calculating λc(x, t) using formula (3)
and then applying formula (10) to obtain values of λp(x, t). The resulting
period increments to life by age λp(x, t) are plotted in Figure 7, which suggests
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that they are reasonably close to constant with respect to age from about age
35 onward.

Calculation of a tempo-adjusted e0 using these values gives 79.5 years, as
compared with an unadjusted value of e0 = 81.0 years, for a tempo effect of
1.5 years. This is very close to the 1.6 years given in Bongaarts and Feeney
(in this volume p. 11). I conclude that the simple, non-age-specific adjustment
is robust against observed departures from the constant shape assumption in
this application, and also that the increments to life concept has succeeded in
providing a general method for assessing robustness.
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Fig. 7. Time-continuous period increments to life, Swedish females, 1980-1995 (qx =
0 for x < 30 years).

7 Increments to life and mortality tempo: mixed models

What happens if the conditioning on survival to mid-adult ages is dropped and
variable increments to life are substituted for the constant increment to life
used in the Bongaarts-Feeney adjustment formula? The procedure described
in the previous section gives in this case an expectation of life more than
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5 years lower than the conventional expectation of life. The magnitude of
the implied tempo effects is about three times larger than the tempo effects
calculated by Bongaarts and Feeney.

The explanation for this discrepancy is evidently the age variation in incre-
ments to life shown Figures 3 and 4. The Bongaarts-Feeney mortality tempo
adjustment is derived on the assumption that increments to life are constant
with respect to age. When the survival function is conditional on survival
to age 30 years, the Swedish increments to life 1980-1995 vary in a range of
about ±0.05, as shown in Figure 7. When the survival function is uncondi-
tional, increments are very far from constant. Figure 4 shows a variation of
about ±0.9. Conditioning on survival to age 30 has the effect of radically
reducing the variability of increments to life by age.

Consistency with the Bongaarts-Feeney mortality tempo model therefore
requires that increments to life be considered only for adult survival. The
nature of mortality change at younger and older ages appears to be funda-
mentally different, so that the tempo model that makes sense at older ages
does not make sense at younger ages.

This suggests that we need a “mixed” model in which mortality change
at younger ages is modeled differently from mortality change at older ages.
To suggest what such models might look like, consider the familiar graph of
the force of mortality function with values (vertical axis) plotted against age
(horizontal axis). Thinking heuristically, suppose that there are two kinds of
mortality change, “up and down” change (movement in the vertical direction
to higher or lower values), and “back and forth” change (movement of a fixed
schedule of values in the horizontal direction, to the left or to the right).
Suppose further than “up and down” change occurs in infancy, childhood and
young adult ages, and that “back and forth” change occurs at older ages.

The force of mortality function may be most appropriate representation
of “up and down” change, the increments to life function the most appro-
priate representation of “back and forth” change. The distinction may be
captured mathematically by writing the Makeham force of mortality function
as µ(x, t) = a(t)ebx + c(t), where c(t) represents “up and down” change and
a(t) represents “back and forth” change that may be equivalently expressed in
terms of increment to life values λ(t) representing the rate at which movement
toward older or younger ages occurs.

So regarded, the Makeham defines a mixed model incorporating both forces
of mortality and increments to life. Both components of the model could be
generalized, to arrive at a more realistic model without changing the mixed
nature of the model.

8 Conclusion

The study of mortality and length of life has been dominated by the con-
cept of risks of death, to the point that mortality is sometimes regarded as
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being defined by age-specific death rates and the force of mortality function.
Empirically, however, survival functions are the theoretical structure closest
to the empirical data (migration may be handled with product limit survival
functions), and changing survival functions give rise to and may be modeled
by both forces of mortality and increments to life.

When we think in terms of risks of death, life times are a residual. How long
we live reflects how successful we are in escaping various risks of death. When
we think in terms of increments to life, deaths are the residual. Death is what
happens when we run out of life. As pointed out by Vaupel and Yashin (1987),
physicians and health personnel tend to think more in the latter terms than
the former. They suggest also that the two perspectives are complementary
rather than contradictory. A better understanding of this complementarity
may usefully advance the study of changing mortality and length of life.
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Summary. We propose an alternative way of dealing with mortality tempo. Bon-
gaarts and Feeney have developed a model that assumes a fixed delay postponing
each death. Our model, however, assumes that changes take place with the removal
of a given cause of mortality. Cross-sectional risks of mortality by age and expec-
tations of life therefore are not biased, contrary to the model of the two authors.
Treating the two approaches as two particular cases of a more general process, we
demonstrate that these two particular cases are the only ones that have general prop-
erties: The only model enjoying a decomposable expression is the removal model and
the only model enjoying the proportionality property is the fixed delay model.

1 Introduction

A change in the timing of events does not exert the same influence on cross-
sectional mortality indexes (i.e. life expectancy) as it does on fertility (i.e.
the total fertility rate). The total fertility rate measures an intensity that
is sensitive to the changing pace as well as delays or advances in events. In
a life table, by contrast, the intensity remains equal to one because death
occurs only once and all die in the end. Can we thus assert that timing has
no effect on mortality indexes? In two recent papers, John Bongaarts and
Griffith Feeney (2002, 2003 also published in this volume p. 11) have taken
the opposite stance, showing that delays or advances in mortality modified
cross-sectional life expectancy. They found that the delay observed led to an
overestimation by 2.4 years in France and by 1.6 years in the US and Sweden.

Following a brief overview of the computations made by the two authors,
we propose an alternative way of dealing with mortality changes ; using mul-
tiple decrement life-tables and removing different causes of death. In contrast
to the delay model advocated by Bongaarts and Feeney, our model shows no
discrepancy between cross-sectional and longitudinal indexes. We argue that
� c©2005 Max-Planck-Gesellschaft, reprinted with permission
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our model is more general than that of the above authors and more at pace
with the true nature of mortality processes, the latter of which cannot be com-
pared with nuptial or fertility processes. In brief, delays are a causal factor in
the field of fertility and a consequential one in the field of mortality.

2 Decreasing mortality as a sign of delay in deaths

Let us suppose that on January 1st of year t, all deaths are suddenly post-
poned by a delay equal to a proportion u of the same year. When we follow this
change on a Lexis diagram, the half plane at the right of vertical t is translated
into a 45 degree direction by a vector (u, u). In the vertical strip stretching
between t and t + u, there is no death at all. After t + u, the deaths reappear
as before, this time, however, with a shift of u in age. Thus, instant life ex-
pectancy becomes infinite in the gap because no death occurs. After t + u, it
reverts to its former value (i.e. the value before the change), increased by u.
Despite the fact the changes occurred in t = 0, the cross-sectional value of life
expectancy does not reflect the true conditions of mortality during a period of
u until it resumes its actual longitudinal value in t+u. When we compute the
mortality table on an annual basis during year 0 following the change, each
number of deaths by age group is reduced by a proportion of u, independent
of age. In the literature, such a change is called the “proportionality rule”
and is in keeping with the observed data on modern countries. When we use
these deaths to compute the forces (quotients) of mortality and to build a life
table, we find an expectation of life that is higher than during the preceding
and following years. This is an example of the discrepancy introduced between
longitudinal and cross-sectional measures when delays occur.

The same discrepancy is found when the delay changes (increases) con-
tinually through time. Le t = 0 be the beginning of the process. The delay
ending in t will be called f(t), s(x, t) denotes the survival function at age x
and time t, and will be called S(x) before t = 0, instead of s(x, 0). With these
notations, we get:

s(x, t) = S(x + t − f(t) − t) = S(x − f(t))

The deaths since time t − f(t) or age x − f(t) were not postponed by a
delay greater than f(t). From this we deduce an expression of deaths d(x, t)dt
between t and t+dt (and x and x + dx) and of the forces of mortality q(x, t)
by dividing these deaths by the survivors at that time and age:
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d(x, t) dt = d(x, t)x = s(x, t) − s(x + dt, t + dt)
= S(x − f(t)) − S(x + dt − f(t + dt))
= S(x − f(t)) − S(x − t(t)) − (1 − f ′(t))S′(x − f(t)) dt

d(x, t) = (1 − f ′(t))D(x − f(t))

Consequently
q(x, t) = (1 − f ′(t)) µ(x − f(t)) (1)

where µ(x) is the force of mortality at age x and initial time t = 0. A simple
case is that of a linear evolution of the delay at rate α which means that
f(t) = αt. It follows that:

d(x, t) = (1 − α)D(x − αt) (2)

The same relationship holds for the forces of mortality. By integrating them,
the relationship can be expressed in terms of survivors:

s(x, t) = (S(x − αt))1−α

Cross-sectional life expectancy at time t, e(t) is:

e(t) =
∫ w

0

S(x, t) dx =
∫ w

0

(S(x − αt))1−α dx

=
∫ w

0

(S(x, t))1−α dx + αt

If the delay is stabilized just after t, then the longitudinal expectation of life
E(t) will become

e(t) =
∫ w

0

S(x) dx + αt (3)

The more the computation of e(t) overestimates the gain in life expectancy,
the more rapidly the delay increases. For example, in Table 1 we computed the
discrepancy value of the most recent life table for France for different values
of the rate of increase (the delays were taken into account at age 36 and over).

Table 1. Overestimation of life expectancy at various rates of increase of the delay.

Annual rate of increase of the delay (%) Overestimation(discrepancy)
5 0.44

10 0.86
15 1.26
20 1.65
25 2.02
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At the rate of 25% we find a value not far from the one found by Bongaarts
and Feeney (2002, in this volume p. 11). This is due to the actual rate of
increase in life expectancy in France, which is approximately a quarter of a
percent each year.

The entire process, in mathematical terms, results in a change in the time
scale but not in the age scale, thus it is not necessary to go into further detail
on the equations. The change in the time scale can be compared to a twisting
of the life-lines on the Lexis diagram by a continuous deformation. In t, the
deaths occurring during a small interval ∆t can be written as: d(x−f(t))(1−
∂f(t)/∂t)∆t; the survivors, S(x−f(t)), and the life table corresponding to the
forces computed by dividing the deaths by the survivors have the survivorship
functions:

S(x, t) = S(x − f(t))β(t) (4)

with β(t) = (1 − ∂h(t)
∂t )

3 Decreasing mortality as a change in the causes of death

One can consider evolution by processes other than delays and advances of
events in order to analyze more precisely how the mortality process works.
When we compare the distribution of the actual causes of death, we see
very significant differences in comparison to the past (for example, the old-
est table published in 1661 by Petty and Graunt in Natural Observations...).
Some causes, such as smallpox, have disappeared or have become negligible,
(measles, infectious diseases and appendicitis are among these). This is the
true process by which mortality diminishes. There are two reasons why this
historical process can not be simulated with small delays added to the life
of every individual in the population. Firstly, only those who contracted the
fatal illness (before they could be cured) are affected (i.e. not everybody is
affected), and secondly, after being cured, the delay or added expectation of
life is quite large and does not receive a definite value. Let us start with a very
simple situation: At time t = 0, a successful treatment for a certain cause of
death is discovered and applied to every patient who is consequently saved
from death. We assume, as is common in the computations of removed causes
of mortality, that the individuals thus saved do not suffer the after-effects of
the treatment, and they can enjoy the same mortality pattern as all other
individuals of the same age who are not affected. This means, that since the
first instant t > 0, all individuals are dying, following the law of mortality
where all other causes are unchanged and one particular cause is removed.
At any time after t = 0, the forces of mortality and the expectations of life
are constant and correspond to the new life table, which is the longitudinal
table if no other change occurs. In contrast to the results obtained by Bon-
gaarts and Feeney when they introduce a delay, no temporary large increase in
life expectancy is observed. No discrepancy arises between cross-sectional and
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longitudinal indexes and no correction is needed. This result requires more
detailed explanations and a mathematical proof.

4 Removing one cause of death: deeper insights

The method of suppressing causes of death leads to a delay in death, but
there are different forms of delay. In the case postulated by Bongaarts and
Feeney (we will call it the delay method or model), the delay applies to all
individuals and is independent of age. As to the suppressed cause of death (we
will call it the removal method or model), the delay affects only those struck
by the particular cause, and this depends strongly on age. More precisely, let
(S, µ,D), (S1, µ1, D1), (S2, µ2, D2), respectively, be the life table (survivors,
forces of mortality, deaths), first before the change, second for the specified
cause, and third after the removal of this cause. This results in two very simple
relationships:

µ1 + µ2 = µ(x) (5a)

and

S(x) = S1(x)S2(x) (5b)

Let us describe in greater detail the different stages of the decline in mortality:
before t = 0, the population follows the first mortality pattern (S, µ,D). Since
time t = 0, amongst those µ(x)S(x) who are assumed to die, µ2(x)dx do
so and µ1(x)dx are saved and follow from this point the second pattern of
mortality (S2, µ2, D2). Therefore they have a probability density of k(u) =
D2(x + u)/S2(x) of dying after delay u. This is in line with the hypothesis
of independence of the causes of mortality: After being cured, the probability
of dying from another cause is the same as in the general population of the
same age. From these remarks, we can compute the deaths d(x, t) at age x
and time t by taking in t at age x the endpoint of all delays (including 0):

d(x, t) =
∫ t

0

S(x − u)µ1D2(x)/S2(x − u) du + µ2(x)S(x) (6)

Similarly, the survivors s(x, t) are those who have survived any cause of mor-
tality at age x and S(x) and those who were hit at a former time t−u by the
cause of death that was removed and whose delays are superior to u:

s(x, t) = S(x) +
∫ t

0

S(x − u)µ1(x − u)S2(x)/S2(x − u) du (7)
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When dividing the deaths by the survivors, one can compute the forces of
mortality q(x, t) = d(x, t)/s(x, t). As demonstrated in Appendix B, after some
mathematical manipulations we arrive at: q(x, t) = µ2(x). The forces are
independent of t at any time after t = 0 and they are the same as those of
the actual longitudinal pattern of mortality after t = 0.

A sudden change in mortality preceded and followed by complete stability
is not very realistic. The method of introducing a sudden change was used
here, and was in the paper by Bongaarts and Feeney as well, to introduce
a change of delays through time and not only at a fixed point in time. The
same generalization as in delay can be made for the removal of a cause of
death. We can assume that this removal is made at intervals T/n in n stages,
each accounting for 1/n of the force of mortality µ1(x). Because the life table
corresponding to the removal of each successive change is immediately followed
by the population, the result, applicable separately for each elementary stage,
holds for the whole change and can be made continuous by increasing n to
infinity. For the same reason, the change does not need to be regular but can
follow any time path. It is not even necessary to use the same age pattern; the
only requirement is to have the table at the end without the removed cause
or causes (S2, µ2, D2).

5 A numerical example of the two methods

The preceding results are abstract ones. Let us be more concrete in comparing
the two methods using the same example. We assume the law of mortality
defined over five years with survivorship function (100, 60, 30, 10, 0, 0) at age
(0, 1, 2, 3, 4, 5). First, let us assume that a delay by half a year is gained by some
mean since the beginning of the process at t = 0 (Bongaarts and Feeney call
this mean a “ survival pill ”) that automatically expands life by six months. If
the deaths are spread regularly over each age, then we observe at each age only
half of the deaths of the preceding years during the year following t = 0 (Table
2). Thereafter, the deaths will be as numerous as before but shifted to half
a year later (under the assumption that the newborns also take the miracle
pill). Table 2 can be extended indefinitely, but this is not necessary because
the numerical values are stabilized as of the second year after the change in
the number of deaths, as well as for the survivors and quotients. The total
number of deaths is the same as the preceding year 0, but the expectation of
life is extended by half a year.

Now, let us take the same life table as in Table 3, before (year -1) and after
(year 1) the change, but suppose it results from a sudden change of pattern
due to the removal of a cause of death at time t = 0. For that cause, the
quotients of mortality Q1 are such that

1 − Q2(x) = (1 − Q1(x))(1 − Q(x))
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which gives the following tables:

Table 2. Quotients of the life table before and after the removal of one cause.

Age x Final table Q2(x) Mortality cause removed: Q1(x) Initial table Q(x)
0-1 0.20 0.25 0.40
1-2 0.44 0.11 0.50
2-3 0.56 0.25 0.67
3-4 0.75 1.00 1.00
4-5 1.00

Each year following t = 0, the survivors of the initial table are distributed
in three groups: those who die from a cause of death in the final table, those
who are facing death but survive, and those who will survive anyway. The
second group dies according to the figures in the final table. For example,
amongst the 40 foreseen deaths of the initial table at t = 0, 20 die as given
by the quotient of the final table, and the other 20 follow the pattern of the
second table. Similarly, of the 30 individuals of the initial table who are prone
to die within one or two years, 26.25 (30 x 0.44) die and 3.75 survive according
to the figures in the final table. The survival times of those cured from the
removed cause of death are distributed by duration, as shown in Table 4.

Table 3. An example of delay in mortality.

Survivors and deaths Quotients
Time -1 0 1 2 3 -1-0 0-1 1-2 2-3

Sur D Sur D Sur D Sur D Sur D

Age
0 100 100 100 100 100

40 20 20 20 20 0.40 0.20 0.20 0.20
1 60 60 80 80 80

30 15 35 35 35 0.50 0.25 0.44 0.44
2 30 30 45 45 45

20 10 25 25 25 0.67 0.33 0.56 0.56
3 10 10 20 20 20

10 5 15 15 15 1.00 0.50 0.75 0.75
4 0 0 5 5 5

0 0 5 5 5 1.00 1.00

Deaths 100 50 100 100 100
(Total)
Life expectancy 1.5 2.5 2.0 2.0 2.0

With this distribution, it is now possible to establish, at each successive
year, the balance of deaths in the same way as in the preceding case of a
given delay. We arrive at a similar table, in which the number of deaths is
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Table 4. Distribution of durations after the given cause of death was suppressed.

Survival duration (years)
Age when the given 1 2 3 4 Total surviving at
cause is cured the beginning

0-1 8.75 6.25 3.75 1.25 20
1-2 2.08 1.25 0.42 3.75
2-3 2.50 0.83 3.33
3-4 2.50 2.50

computed according to the delays ending in t at age x. For example, the 11.25
(7.5+2.5+1.25) dead during period 3-4 at age 3 in completed years come from
7.5 with delay 0 because they died from a cause other than the suppressed
one, 2.5 with delay 1 from the preceding year and 1.25 with delay 2 coming
from the preceding two years (see Table 4).

We see in Table 5 that the quotients and expectations of life reach directly
and immediately their value in the second or final table where the given cause
is removed. However, deaths and survivors rejoin the structure of the final
table only after four periods, which is the length of the greatest delay. The
overall structure displayed in Table 5 is more general than that of Table 2. The
quotients of the given cause can take any value smaller than the quotient of
the initial life table at the same age (the only restriction.). No proportionality
hypothesis or rule is further required.

6 Which life table is the reference table?

Bongaarts and Feeney contrast three ways of computing life expectancy:
firstly, summing the survivors over the life course, secondly, taking the mean
age at death in the standardized distribution of deaths, and thirdly, starting
with the forces or quotients to construct the life table. In the real world, the
last method is by far the most common one applied by statistical offices. The
distributions of survivors or deaths are seldomly handled directly since they
reflect generational history and are distorted by migrations. A cross-sectional
life table is not intended to represent a remote past but to capture the actual
trend. A usual justification of the cross-sectional life table, the fictitious gen-
eration, is that it can be observed in a generation for which all the observed
data at time t are frozen and reproduced in the future during the time span
of a generation.

This pseudo-empirical definition is not very useful. It seems better to freeze
the causes that command the data rather than the data itself. With this
causal approach, a good cross-sectional life table at time t is one that would
be observed in a generation if suddenly all the parameters that configurate
mortality were instantaneously immobilized at time t, including of course
the advances and delays or the removal of some causes of mortality. In the



Mortality tempo versus removal of causes of mortality 175

Table 5. An example of the removal of a mortality cause.

Survivors and deaths

Time -1 1 2 3 4 5
Sur D Sur D Sur D Sur D Sur D Sur D

Age
0 100 100 100 100 100 100

40 20 20 20 20 20
1 60 60 80 80 80 80

30 26.25 35 35 35 35
2 30 30 33.75 45 45 45

20 16.67 18.75 25 25 25
3 10 10 13.33 20 20 20

10 7.50 10 11.25 15 15
4 0 0 2.50 3.33 5 5

0 0 2.5 3.33 3.755 5
Deaths 100 70.42 86.25 94.58 98.75 100
(Total)
Life expectancy 1.5 2.0 2.0 2.0 2.0 2.0

Quotients

Time -1-0 0-1 1-2 2-3
Age

0
0.40 0.20 0.20 0.20

1
0.50 0.25 0.44 0.44

2
0.67 0.33 0.56 0.56

3
1.00 0.50 0.75 0.75

4
1.00 1.00

Deaths (Total)
Life expectancy

preceding example where the two ways of change have been explored, the life
table of reference is called the final life table. Its survivor and death functions
emerged rapidly according to the delay method and progressively when a
cause of mortality had been removed. However, with the removal method, the
final table was immediately given by its quotients, in contrast to the delay
method where fluctuations took place until the fixed delay was achieved. The
issue, therefore, is not whether to choose between an estimation from the
quotients, the survivors, or the deaths, but rather which life table constructed
in the usual manner from the quotients provides an exact estimate of the
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longitudinal table corresponding to the “ frozen ” causes. Herein lies the large
discrepancy between the model of delay and the model of removal.

What is meant by “ frozen ” causes is clearer than what is meant by “ficti-
tious” generation, but the former still needs to be explained in greater detail.
To a certain extent, the assumed behavior depends on the model adopted. A
difference can be noted between the two models of a single change in t = 0.
In the case of removal, there is no direct transformation of the cross-sectional
data to longitudinal data, but a continuation of the process until the last de-
lay is completed and all the distributions stabilized, as shown in Table 5. In
the delay process, the stabilization is more rapid, as shown occurring in the
second period in Table 2. However, in each case, the longitudinal life-table
does not exist on an empirical basis during the stabilization process. It is
only defined as a process that converges more or less rapidly according to the
model selected.

Continuous change of causes through time is more problematic. In the re-
moval model, the quotients of the longitudinal “frozen” table are immediately
reached, owing to instantaneous adjustment. But with a change in delay f(t)
through time t, the question arises: What is the behavior to be frozen at time
t? Is it the behavior corresponding to the last (observed) delay ending just at
t which began at t − f(t) and consequently, the behavior in t − f(t), or the
behavior corresponding to the delay (non-observed) starting just in t ? The
second solution is a more rational one, but the length of the delay beginning
in t is unknown and will only be determined when it ends, by the mean age at
the standardized deaths. The difference is not small, as the following example
illustrates: if f(t) = αt (linear case), with t being the end point of the delay
(see Appendix C), the delay beginning in t amounts to αt/(1−α). The differ-
ence d to delay αt ending in t is quite high: d = αt/(1−α)−αt = α2t/(1−α).
If the rate of increase is 25% and t = 30 (as in Europe), d = 2.5 years, and
amusingly, equal to the overestimation computed by Bongaarts and Feeney.
That is, there are no definite “frozen” causes in the delay model. Furthermore,
there is naturally no empirical reference that can be used for building the hy-
pothetical life-table during the process. If one needs to design a correction
procedure, the reference must be defined prior to the correction, but this is
not feasible in any circumstance.

7 Unifying the two views: the repartition function of the
delays by age and duration

The only difference between the two methods rests in the way by which the
delays are postulated in formulating the two methods. We propose a more
general model that covers the two instances considered so far. By the same
token, we will demonstrate that they have strong and unique properties. Let
us call λ(x − u, u) the density proportion of deaths foreseen to occur at age
x−u and delayed at time t−u until age u is reached at time t, and let θ(x) be
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the proportion of deaths at age x non-delayed. By counting all delays which
end in t at age x , we arrive at the number of deaths2 :

d(x, t) =
∫ 1

0

S(x − u)λ(x − u, u) du + θ(x)S(x) (8)

Using the same procedure, we recount the survivors as all those who have
either never directly been threatened by death, or, if threatened, are cured
and alive:

s(x, t) = S(x) +
∫ t

0

S(x − u)
(∫ w

u

λ(x − u, v) dv

)
du (9)

The two methods analyzed can be rewritten as follows:

for the removal method:

λ(x, v) = (µ(x) − θ(x))D2(x + v)/S2(x)
θ = µ2(x)

for the delay method:

λ(x, v) = δ(v − T )µ(x)

where δ stands for the Dirac function and T for the fixed delay, θ(x) = 0.
Both methods have special properties. The removal method is the only

decomposable method for which the forces of mortality by age adjust in-
stantaneously to the final or longitudinal quotients of the table without the
removed cause. The delay method assumes a fixed and common delay f(t) for
every member of the population at any time t.

It is not a difficult but rather a tedious task to demonstrate the existence
of these two properties. They are developed in Appendixes B and C. The
first property is a good justification for using cross-sectional life expectancy
as an indicator of longitudinal tendencies. It reveals, again, a large difference
to fertility, where the total fertility rate is an inappropriate indicator of the
evolution of the total number of children ever born.

The delay method is quite restrictive. Appendix C shows that it implies
a common duration in the delay for all individuals. At time t − f(t), each
death is delayed by f(t) exactly. This is not evident at first sight because the
method starts from the proportionality rule. Nevertheless, it is a necessary
consequence of the assumptions made. We can illustrate this with a simple
2 The formulae could be made simpler by working with Lebesgue measures instead

of Riemann Integrals. All the terms would be put under the integral sign, θ(x)
becoming λ(x, 0) δ(x). However, we prefer to keep contact with the real process,
distinguishing those who enjoy a delay from those who die directly.



178 Hervé Le Bras

model. In a single delay in t = 0, assume that delay T applies only to a
proportion p of the foreseen deaths at each age instead of being universal.
The other 1 − p deaths are in time according to the initial life-table. For
t < T , the formulae (I) and (II) take the form:

d(x, t) = (1 − p)µ(x)S(x) = (1 − p)D(x)
s(x, t) = S(x) + p(S(x − t) − S(x)) = (1 − p)S(x) + pS(x − t)

The resulting force of mortality is: q(x, t) = µ(x)/(1+pS(x−t)/((1−p)S(x)).
We see in the formula that the proportionality rule no longer exists, the

denominator varying with age x. When delay T is over, the force of mortality
becomes:

q(x, t) = ((1 − p)D(x) + pD(x − T ))/((1 − p)S(x) + pS(x − T )). (10)

The shift in the survivorship function is no longer constant, and depends
on age because of the varying slope of S(x). The proportionality rule no
longer applies. These remarks hold when the delay is not the same for all
individuals but follows a probability distribution. A discussion of this issue
is provided in Appendix C. The delay method is, therefore, restrictive. It
supposes that at time t− f(t) every death without exception is postponed by
a fixed duration f(t). From an empirical view, this seems unlikely. Below, we
discuss the features and the likelihood of each method, delays or removal of
the causes of death.

8 Which is the best model? A discussion of the two
methods

The two models are now embedded in a common pattern of delays depending
on age and time, yet the difference in the results is, so far, not suppressed. The
delay model reveals an overestimation or an underestimation of life expectancy
according to an increase or decrease in mortality. In the removal model, no
overestimation, yet rather a correct estimation of the longitudinal trend, can
be seen. Which method is the most appropriate one? Which model provides
a more accurate representation of the process of changing mortality? The
answers are found in the comparative handling of delays and risks. As its
name indicates, the delay method moves the delays forward in time. The risks
measured by the quotients and forces are the results of changing delays, which
are the causal factor. The removal method, by contrast, sees the mortality
change as a process of changing risks pertaining to certain causes. The delays
are the consequence of changing risks through which the acting causes are
channeled.
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Let us begin with the simple model of a single change at t = 0. Can we
make the assumption of a delay by a few months for each foreseen death?
With very old and very sick people, the delay can depend on euthanasia. But
most of the deaths are not imputable to extreme age or to severely deterio-
rated physical conditions. Infectious diseases (some of which are contracted
in hospital), accidents, cancers and heart attacks, when cured, give a large
and aleatory respite whose average is the expectation of life at the age of
the patient. The word aleatory is important here: It is impossible to fix an
individual delay for any individual, to assure the individual that he or she
will stay alive for a specific time. A murder, an earthquake, or a new disease
can hurt the individual. In fertility, the situation is different. If one wants to
avoid birth during a given period, one can rely on contraception and abortion
in case of unwanted conception. The delays play a major role in fertility and
nuptial processes because they involve the will. One can postpone the wedding
day, even postpone it indefinitely, but one cannot do the same for the day of
death, which is only partially influenced by our will.

There is another difficulty with the delay model. As demonstrated, all
individual delays f(t) ending at time t are the same. Furthermore, they are
postponed only once. If we enter the full details of the longitudinal process
of mortality into the delay model, when a death is foreseen at age x, then
the death is postponed until age x + f(t) but at that age, it becomes certain.
There is no second chance of delay. It means that the population is split into
two groups; those who are subject to a known date of death and those whose
death has never been delayed. The expectations of life differ considerably in
the two groups. In the removal model, by contrast, this difference disappears.
After removing the given cause, all individuals run the same risk of death at
a given age x. As mentioned before, the delays do not matter; they are the
result of the process, not its cause. The new or final life-table is computed by
changing the overall risks at each age in substracting the force of mortality
of the given cause from the overall force of mortality. In the delay model,
the new life-table is computed by the mean of the added delays. If we take
a very long term view of mortality, say, from the Cro Magnon Era onwards,
the process of mortality in the delay model results in the sum of many small
delays of survival, each certain and the same for all individuals. This does
not concur with the data on mortality. In such a model, there is no way to
differentiate between individuals and no room for chance, and if it existed,
then the resulting curve of deaths according to age should be Gaussian.

The removal model seems to be the more realistic one. In the long term,
it depicts mortality as a process of removing the causes of mortality one
after the other. To a demographer, this corresponds well with the analysis of
mortality by cause and with the techniques of the multiple decrement life-
table. In summation, mortality appears to be more of a multiplicative process
than an additive one. One could say, nevertheless, that the language of delays
and the language of causes of mortality are two different expressions of the
same reality. This is not true, however. Knowing the delays T = f(t), we can



180 Hervé Le Bras

compute the corresponding gain in risks at each age using the same notations
as before:

µ2(x) = µ(x) − µ1(x) = µ(x − T )
µ1(x) = µ(x) − µ(x − T )

If µ(x) follows the Gompertz law, µ(x) = Aerx, µ1(x) and µ2(x) also follow
this law with the same exponent but with a different scale factor:

µ2(x) = Aerx(1 − e−rT )

µ1(x) = Aerx(e−rt)

This property seems to be an empirical argument in favor of the delay
method, because in the developed countries since the 1970s, the reduction
of mortality has followed this pattern. Yet, as the preceding equations show,
the same pattern can be generated with the removal of a cause of mortality
displaying the same Gompertzian slope as the general mortality. Moreover,
there is a one-to-one correspondence between delays and risks. In general, a
given profile of risk by age has no equivalent in terms of delay. The removal
method is more general. It allows for any risk profile, with µ1(x) < µ(x) being
the only condition, whereas the delay method imposes a specific age profile of
the risks.

In brief, the removal method is better suited to the process of mortality:

• Life expectancy after a postponed death is likely large, and not limited to
a few months. However, if the delay is long, it provides a long duration
with no risk of mortality. This is an unrealistic assumption, considering
the nature of mortality.

• The delay is the same at any age in the delay method, yet it varies ac-
cording to the expectation of life at age x in the removal method. This
variation seems more realistic.

• The reference to the initial and final life tables is straightforward in the
removal model, but not well defined during the course of the delay in the
delay model.

• In the removal model, there is always one single population with every
individual at age x who is threatened at any time by the same force of
mortality, either µ(x) or µ2(x). In the delay model, some individuals ex-
periencing delay are exposed to high risks and are near death, whereas the
other individuals remain exposed to the usual risks.

• The removal model is coherent with the analysis of mortality in terms of
multiple decrements.

Until now, a comparison was drawn only in the simple case of a unique
and sudden change in t = 0. Does this result hold when mortality varies
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continuously? In these circumstances, a comparison between the two methods
shows further advantage of the removal method. All preceding remarks still
apply. One additional remark sharpens the difference, where the delay method
raises the problem of reference life tables. One cannot take a reference table
that was computed in a former epoch and that can embody bias, as found by
Bongaarts and Feeney, and counterbalance its effect. What former life table
brings the guarantee of having been computed under stationary conditions?
As discussed, the longitudinal reference life table cannot be well defined in this
respect. It cannot be computed at t, that since t − f(t) the delays were held
constant, and the delays beginning after t− f(t) are not known because they
can be determined only when they come to their end. The removal method
does not raise such problems. At each point in time, the observed life table is
the reference table.

It does not follow from the discussion that any change of mortality pertains
to the removal method. Only the long term changes or the trend in mortality
obey such a model. In the short term, many causes of fluctuation are at
work, suffice it to say seasonal variations related to atmospheric conditions,
cold or hot weather, and influenza more severe than usual. They can delay
or advance some deaths, but their effect is negligible on the average at a
medium term range. The following statement could stem from Solomon: For
the short term, take the delay method and for the long term, take the removal
method. For short term fluctuations, the proportionality rule which is crucial
for the working of the delay method, is not observed. Influenza, hot or cold
weather, humidity or dry weather conditions, have a negative effect on very
young and very old persons. A good example was provided by the heat wave
that hit France in August 2003. The rates of mortality following the wave and
computed for the age groups are reported in Table 6. Here, we can see how
late and accelerated the increase of the probability of death was, and how
far we are from proportionality when we compare these rates to the overall
quotients at the same ages provided by the most recent French tables (2001).

The best way to tackle seasonal accidents remains the multiple decrement
life table. It allows computing the decrease of life expectancy. The interest
focuses on µ1(x) and not on µ2(x). This is because it is clear that the change
is not a permanent but an accidental one. In any case, the removal method
should be preferred to the delay method and no correction is needed.
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Table 6. Rates of death caused by the heat wave (France, August 2003) compared
to the general quotients of mortality.

Age group Heat wave mortality rates Overall quotients
(for one million) (for one thousand)

Men Women Men Women
60-64 115.000 50.000 65 27
65-69 244.000 138.000 99 41
70-74 396.000 281.000 149 69
75-79 786.000 673.000 226 122
80-84 1.901 1.923 356 227
85-89 2.759 2.821 528 400
90-94 5.702 6.696 712 620
95 and + 9.900 12.431 809 780
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Appendix A: Deaths and survivors of age x in t after the
removal of a mortality cause in t = 0

The aim of the computation is to show that the force of mortality in t and
x is independent of t and equal to its final value µ2(x). We have seen that
the distribution of delays u in t = 0 at age x was u = 0 in µ2(x) cases and
f(u) = D2(x + u)/S2(x) in µ1(x) cases. Conversely, the deaths at age x in t
can be computed by adding up all the delays terminating in t at age x:
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d(x, t) =
∫ t

0

S(x − u)µ1(x − u)D2(x)
S2(x − u)

du + µ2(x)S(x)

= D2(x)
∫ t

0

µ1(x − u)S1(x − u) du +
D2(x)S(x)

S2(x)

because S(x) = S1(x)S2(x) et µ1(x−u) = −S′
1(x−u)/S1(x−u). This results

in:

D2(x) = D2(x)
∫ t

0

−S′
1(x − u) du + D2(x)S1(x)

= D2(x)(S1(x − t) − S1(x)) + D2(x)S1(x) = D2(x)S1(x − t) if t < x

and

= D2(x)(1 − S1(x)) + D2(x)S1(x) = D2(x) if t > x.

We get the survivors s(x, t) at age x in t with the same kind of computa-
tion:

d(x, t) =
∫ t

0

S(x − u)µ1(x − u)D2(x)
S2(x − u)

du + µ2(x)S(x)

= D2(x)
∫ t

0

µ1(x − u)S1(x − u) du +
D2(x)S(x)

S2(x)

because S(x) = S1(x)S2(x) et µ1(x−u) = −S′
1(x−u)/S1(x−u). This results

in:

s(x, t) = S(x) +
∫ t

0

S(x − u)µ1(x − u)S2(x)
S2(x − u)

du,

= S(x) +
∫ t

0

S1(x − u)µ1(x − u)S2(x) du,

= S(x) +
∫ t

0

S1(x − u)µ1(x − u)S2(x) du,

= S(x) + S2(x)
∫ t

0

−S′
1(x − u) du,

= S(x) + S2(x)(S1(x − t) − S1(x)) = S2(x)S1(x − t) if t < x

and

= S(x) + S2(x)(1 − S1(x)) = S2(x) if t > x.



184 Hervé Le Bras

The mortality force q(x, t) = d(x, t)/s(x, t) follows:

q(x, t) =
D2(x)S1(x − t)
S2(x)S1(x − t)

=
D2(x)
S2(x)

= µ2(x) if t < x,

and

=
D2(x)
S2(x)

= µ2(x) if t > x.

Therefore, for any t > 0, the force of mortality at age x is the force of
mortality µ2(x) of the final life table (the initial table from which the given
cause was removed under the assumption of independence).

Appendix B: Demonstrating the strong properties of the
two methods

Let (S,D, µ) be the life table of reference, d(x, t) the density of deaths at age
x in t > 0, s(x, t) the survivors and λ(x − u, u) the probability for a death
foreseen in t − u at age x − u to be delayed until age t (the delay is u). In
summing all deaths in t at age x by considering the end of the delays and
those who experience no delay, we get the same results as in Appendix A:

d(x, t) =
∫ t

0

S(x − u)λ(x − u, u) du + θ(x)S(x), (1)

s(x, t) = S(x) +
∫ t

0

S(x − u)
(∫ w

u

(x − u, v) dv

)
du. (2)

A third relation results from the fact that the sum of the probability of the
different situations for the foreseen death is the overall force of mortality µ(x):∫ w

0

λ(x + u, u) du + θ(x) = µ(x). (3)

As examples:

−λ(x, v) = (µ(x) − θ(x))
D2(x + v)

S2(x)
,

when a cause of mortality is removed (S2, D2, µ2) denotes the final life table).

−λ(x, v) = µ(x)f(v) (4)

when the delays v do not depend on age and have a probability distribution
f(v).
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We will demonstrate that the removal method is the only decomposable
method that keeps the force of mortality unchanged after t = 0 and in this
case gives θ(x) = µ2(x).

Let use define:

ϕ(x) =
d(x, t)
s(x, t)

.

The derivative in t of the left part of this equation needs to be 0 for any t > 0.
Using the formulae (I) and (II), this can be written as:

∂d(x, t)
∂t

s(x, t) = d(x, t)
∂s(x, t)

∂t
.

S(x − t)λ(x − t, t)s(x, t) = d(x, t)S(t − x)
(∫ w

t

(x − t, v) dv

)
,

so:

λ(x − t, t)s(x, t) = d(x, t)
(∫ w

t

λ(x − t, v) dv

)
,

and:

λ(x − t, t) = ϕ(x)
(∫ w

t

λ(x − t, v) dv

)
. (4a)

If we put the expression λ(x − t, t) in the formula (I) giving the deaths, we
get:

d(x, t) = ϕ(x)
∫ t

0

S(x − u)
(∫ w

u

λ(x − u, v) dv

)
du + θ(x)S(x),

= ϕ(x)(S(x, t) − S(x)) + θ(x)S(x)

according to (2)

= d(x, t) + S(x)(θ(x) − ϕ(x)),

thus:

ϕ(x) = θ(x),

from what:

λ(x − t, t) = θ(x)
(∫ w

t

λ(x − t, v) dv

)
. (4b)

Now take the decomposability assumption for λ(x − t, t):
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λ(x − t, t) = A(x − t)B(x).

Putting it in (4b), it becomes:

A(x − t)B(x) = θ(x)
∫ w

t

A(x − t)B(x + v − t)dv.

B(x) = θ(x)
∫ w

t

B(x + v − t) dv.

B(x) = θ(x)
∫ w

x

B(u) du.

This formula is that of a life table, and more precisely, the final life table
(S2, µ2, D2), already encountered when looking at the removal of a cause of
mortality. Effectively:

B(x) = D2(x); S2(x) =
∫ w

x

B(u) du =
∫ w

x

B2(u) du; µ2(x) = θ(x).

There remains to determine the possible values for A(x− t). To that end,
we need the equation (3):∫ w

0

λ(x + u, u) du + θ(x) = µ(x),

which becomes:∫ w

0

D2(x + u)A(x) du + µ2(x) = µ(x).

A(x)
∫ w

x

D2(v) dv = µ(x) − µ2(x).

A(x)S2(x) = µ(x) − µ2(x),

A(x) =
µ(x) − µ2(x)

S2(x)
.

Knowing that µ1(x) = µ(x) − µ2(x) : A(x) = µ1(x)/S2(x), we can now give
the expression λ(x − t, t):

λ(x − t, t) = A(x − t)B(x),

=
D2(x)µ1(x − t)

S2(x − t)
.

This is exactly the expression obtained when a cause of mortality described by
the table (S1, µ1, D1) is removed in t = 0. The method of removal, therefore,
is the only decomposable model for which the forces of mortality at any age
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x and any time t > 0 catch up with their value in the actual longitudinal life
table and does not depend on the time passed since the removal of the cause
of mortality.

When the delays are independent of age, λ(x − t, t) can be written as:

λ(x − t, t) = µ(x − t)g(t).

Putting this expression in the equation (4b) for the equality of the cross-
sectional and longitudinal life tables after the change in t = 0, we get:

µ(x − t)g(t) = ϕ(x)
(∫ w

t

µ(x − t)g(v) dv

)
,

g(t) = ϕ(x)
∫ w

t

g(v) dv.

It imposes ϕ(x) = k constant and g(t) = Ce−kt. Substituting in equations (I)
and (II) for deaths d(x, t) and the survivors s(x, t), we arrive at a contradiction
for their ratio that depends on t:

d(x, t)
s(x, t)

= k
s(x, t) − S(x)

s(x, t)
.

Appendix C: Fixed and variable delays

First, let us go back to the evaluation of deaths and forces of mortality from
the value of the delays g(θ) taken at θ, the time of their beginning (and not
f(t) taken at their end). Let θ be the time at the departure of the delay that
ends at t. We get: t = θ + g(θ) = θ + f(t). Let us take a small interval ∆θ
after θ. The delay beginning in θ + ∆θ will end in t1 = θ + ∆θ + g(θ + ∆θ)
which is equivalent to θ +∆θ +g(θ)+g′(θ)∆θ. The interval ∆t between t and
t1 is as follows:

∆t = (1 + g′(θ))∆θ.

At the end time in t, the density of delayed deaths is therefore at the ratio
1/(1 + g′(θ)) with the density of the deaths delayed at the departure between
θ and θ + ∆θ. Consider now the increase of the delay at the point of arrival
of the delay in t: between t and t1 , the delay f(t) grows by g′(θ)∆θ. Its
derivative is:

f ′(t) = g′(θ)
∆θ

∆t
=

g′(θ)∆θ

1 + g′(θ)
; ∆θ =

g′(θ)
1 + g′(θ)

.

This gives the formula for the deaths in case of delay:
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d(x, t) = (1 − f ′(t))D(x − f(t)) =
1

1 + g′(θ)
D(x − g(θ)),

because

1 − f ′(t) = 1 − g′(θ)
(1 + g′(θ))

=
1

1 + g′(θ)
.

It is necessary to have the formula at the departure of the delay and not
only at its arrival if we want to write the case where delay u varies according to
the law of probability k(u)du. Let us demonstrate in these circumstances that
the proportionality rule no longer holds. In consequence, the delay method
necessarily rests on the particular hypothesis of a fixed delay. There is at a
time t only one value for the delay for any individual threatened by death.
We can begin the demonstration with the simple case of a sudden and unique
change in t = 0. The deaths at age x and time t will be:

d(x, t) =
∫ ∞

Ξ

k(u)D(x − u) du, (5)

and the survivors s(x, t):

s(x, t) = S(x) +
∫ t

0

G(u)D(x − u) du, (6)

where:

K(u) =
∫ w

u

k(v) dv. (7)

If the proportionality property holds, it is necessary that:

d(x, t) = p(t)D(x − l(t)). (8)

Integrating in the whole age range the two formulae of the deaths (6) and (8)
leads to: ∫ t

0

k(u) du

∫ w

−∞
D(x − u) dx = p(t)

∫ w

−∞
D(x − l(t)) dx,

according to (7):

1 − K(t) = p(t).
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Under these conditions, we would get:

D(x − l(t)) =
∫ t

0

k(u)
1 − K(t)

D(x − u) du.

With (k(u)/(1−K(t))) being a probability distribution on the interval of time
0, t , the distribution of deaths should be at each age a weighted average of
itself with a constant shift (playing the role of the delay). This is impossible
a priori and a posteriori because the distributions of delays u, (k(u)), and of
deaths x, (D(x)), have no relationship.

If the proportionality property is lost in the case of a unique and sudden
change, when a fixed duration of the delay is replaced by a distribution of du-
rations, it is also the case, a fortiori, when the change is continuous through
time. In making the assumption of proportionality as a way of defining delays,
Bongaarts and Feeney are postulating a very strong structure and a question-
able one, because it means that all those who had to die in t−f(t) in absence
of delay would have the same duration f(t) of the delay.
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Summary. It is widely known that shifts of cohort fertility schedule can produce
misleading trends in period TFR. This note shows that such a “tempo bias” can
occur in age-specific mortality as well: if the age distribution of cohort deaths shifts
toward older (younger) ages, the period age-specific death rate is biased downward
(upward).

1 Introduction

Relationships between “quantum” and “tempo” of demographic behavior are
crucial for understanding population dynamics, in particular, discrepancies
between demographic profiles of periods and cohorts. In this note, tempo
measures are defined as indicators of the location and shape of the age curve
of the given demographic behavior. Thus the first and higher moments of
the age curve are tempo measures. Quantum measures are based on the area
under the age curve, either over the entire life span or for a finite age range.
For example, the number of deaths is a function of age, the mean and variance
of age at death are tempo measures of the age curve, and the total number of
deaths and the crude death rate are quantum measures.

Changes in tempo and quantum of demographic behavior among cohorts
and over periods can produce trends that are misleading, apparently incon-
sistent, or difficult to interpret. Such trends may be considered biased or
distorted, even though the concept of the true value is not always clear. It is
widely known that shifts of cohort fertility schedule can produce misleading
trends in period TFR (Ryder 1956).

Bongaarts and Feeney (2002, in this volume p. 11) argue that tempo biases
occur in mortality as well. Using an artificial example, Feeney (2003, Figure
4) has demonstrated that cohort changes in the death distribution within
an age interval can distort the period death rate for the age interval. The
� c©2005 Max-Planck-Gesellschaft, reprinted with permission
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example is essentially a straightforward conversion of their previous fertility
example (Bongaarts and Feeney 1998, Figure 2) from birth to death. It has
been developed for a special case that all deaths occur only at one point in
the age range and the point shifts linearly among cohorts.

The purpose of this note is to show that tempo effects can operate in mor-
tality, using a more general assumption about the shape and shift of death
distribution than Feeney’s hypothetical example. Sections 2 and 3 give a math-
ematical proof that if the age distribution of cohort deaths within an age in-
terval shifts toward older (younger) ages, the period number of deaths in the
age interval and, in turn, the age-specific death rate are biased downward (up-
ward). Section 2 discusses main points of the proof in an intuitive and visually
oriented way and Section 3 presents the inference in a formal manner. In ad-
dition, two hypothetical illustrations of mortality tempo effect by Bongaarts
and Feeney are examined in Appendix, with focus on their implications for
age-specific survival ratios.

2 Intuitive visual explanation

Two notions, which are familiar to demographers, are essential to the proof.
The first is the split of Lexis square into two triangles. Figure 1 shows a Lexis
diagram for the age interval between x and x + 1 over the time period from
t − 1 to t + 2. Time-age coordinates of six important points in Figure 1 are
as follows: A(t, x + 1), B(t + 1, x + 1), C(t + 2, x + 1), D(t − 1, x), E(t, x)
and F (t + 1, x). We compare the number of deaths in the square ABFE (the
estimation period), that in the parallelogram ABED (the earlier cohort) and
that in BCFE (the later cohort). If both the number and the distribution of
deaths in the age interval are identical for the two cohorts and age-specific
deaths are evenly distributed over time within each cohort, the square ABFE
also has the same number of deaths as each parallelogram has.

Suppose that the number of deaths that occur between x and x + 1 is
identical for the two cohorts, but the distribution of those deaths within the
age interval is older in the later cohort. Then, at relatively young ages between
x and x+1, more deaths occur in the earlier cohort than in the later cohort; but
at relatively older ages in the range, more deaths occur in the later cohort than
in the earlier cohort. Therefore, more deaths occur in the triangle AED than
in BFE, and more deaths occur in the triangle BCF than in ABE. Because the
square ABFE can be split into two triangles BFE and ABE, both of which have
fewer deaths than their corresponding triangles have, the number of deaths
in ABFE is smaller than that in ABED and that in BCFE. Because usually
the number of person-years does not differ significantly among ABFE, ABED
and BCFE, this leads to a paradoxical result that the age-specific death rate
for the period is lower than that for either one of the two cohorts that pass
through the age interval during the period.
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Fig. 1. Lexis Diagram for one period (ABFE) and two cohorts (ABED and BCFE)

The second main point of the proof is the definition of “shift of age distribu-
tion of deaths toward older ages (or more briefly, aging of death distribution)
within a given age range.” This issue is essential when the continuous cohort
(instead of two discrete cohorts) is considered. There are possibly at least
several different definitions of the concept, including those based on central
tendency measures (e.g., rise in the mean age at death). In this note, the shift
is defined as an overall rise of survival curve, as illustrated by the three curves
in Figure 2. If the age distribution of deaths in population A is older than
that in population B, then for any age (excluding the both ends of the age
range), the proportion of all deaths above the age is greater in A than in B,
and equivalently, the proportion of all deaths below the age is smaller in A
than in B.

This may seem to be a strong condition, because the inequality has to hold
at any age. However, to my knowledge, in any of widely used model life table
systems, survival curves within the system do not cross over with each other,
as illustrated in Figure 3. This means that in the model life system, the age
distribution of deaths over the entire life span shifts toward older ages in the
manner defined above.

Figure 2 shows survival curves for three cohorts over the one-year age
range from x to x + 1. It can be viewed as a part (for example, the small
rectangle on the highest curve) of Figure 3, which covers the entire life span.
Thus the survival curves in Figure 2 are for only those who died in the age
interval, excluding all those who died outside the interval. It is assumed that
all of the three cohorts have the same number of survivors at age x and the
same number of deaths between x and x+1, but different death distributions
within the one-year age range.

Now, for further discussion, the definition of “cohort” needs to be changed
from discrete (the two parallelograms in Figure 1) to continuous (infinitely
many 45-degree diagonal lines in the parallelogram ACFD). Let the cohort
aged x at t (line EB) be called the mid-cohort, which splits the rest into
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Fig. 2. Survival curves for those who died within the one-year age interval.

earlier cohorts and later cohorts. Suppose that the number of deaths2 in the
age interval is same for all cohorts, but the age distribution of deaths shifts
toward older ages as defined above. Then the three survival curves in Figure
2, from high to low, can be considered to represent mortality experiences of a
later cohort, the mid-cohort, and an earlier cohort in Figure 1. Obviously, for
any age x + y in the age range (y is between 0 and 1), the number of deaths
above age x+y(corresponding to l(x+y)− l(x+1), the dashed line in Figure
2) in an earlier cohort is lower than that in the mid-cohort, and the number
of deaths below age x + y (corresponding to l(x)− l(x + y), the dash-dot line
in Figure 2) in an later cohort is lower than that in the mid-cohort.

Figure 1 indicates, however, that for an earlier cohort, deaths above a
certain age occur during the period from t to t + 1 (e.g., on the dashed line
in Figure 1), and for a later cohort, deaths below a certain age occur in the
period (e.g., on the dash-dot line in Figure 1). (Note that the vertical dashed
(dash-dot) line at age x + y1 (age x + y2) in Figure 2 corresponds to the
number of deaths occurred on the diagonal dashed (dash-dot) line in Figure
1.) Thus, for any cohort of the both earlier and later groups, the number of
deaths that occur between t and t + 1 is smaller than the number of deaths
that would occur to the cohort during the period if the cohort has the same
death distribution as that of the mid-cohort. This means that if the death
distribution shifts toward old ages, the total number of deaths in ABFE is
smaller than the total number of deaths in ABFE that would occur if the
2 It is more accurate to call this “the single-year cohort equivalent of the density of

death” rather than just “the number of deaths,” but for simplicity, this lengthy
expression is not used in this note.
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Fig. 3. Survival curves over the human life span.

death distribution remains same as that of the mid-cohort (or actually that of
any cohort because the number of deaths for each cohort was set to be equal).

Therefore, a cohort shift of death distribution toward older ages seems to
downwardly bias the age-specific number of period deaths. In the next section,
this intuitive explanation is presented in a more formal manner.

3 Mathematical presentation

We use the regular continuous-variable Lexis framework. Let d(x, t) be the
number (density) of deaths at age x and time t, and let dc(x, u) be the number
of deaths at age x for the cohort born at time u:

dc(x, u) = d(x, u + x). (1)

The cumulative death function from age x to x + y is given by

F (x, y, t) =
∫ y

0

d(x + z, t) dz for time t (2)

and

Fc(x, y, u) =
∫ y

0

d(x + z, u) dz for cohort born at time u (3)
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We consider a Lexis square for the age interval between x and x + 1 and
the time period from t and t + 1 (ABFE in Figure 1). The number (density)
of deaths that occur in the square is:

D(x, 1, t, 1) =
∫ t+1

t

∫ x+1

x

d(y, u) dy du (4)

Now, it is assumed that the cumulated death function from age x and x+1
is constant for all cohorts:

Fc(x, 1, u) = g (5)

for any u between t − x − 1 and t − x + 1. This assumption is needed in
order to examine effects of cohort changes in the age distribution of deaths,
independently of effects of cohort changes in the number of deaths. Obviously,
if the age distribution of age at death remain constant among cohorts, i.e., if

Fc(x, y, u1) = Fc(x, y, u2) (6)

for any y between 0 and 1 and any u1 and u2 between t−x− 1 and t−x+1,
then the total number of deaths in the Lexis square is

D(x, 1, t, 1) = g. (7)

Suppose that the distribution of age at death within the age interval shifts
toward older ages among cohorts. As described earlier, this means, by defini-
tion,

Fc(x, y, u1) < Fc(x, y, u2) if u1 > u2 (8)

for any y between 0 and 1 (excluding 0 and 1) and any u1 and u2 between
t − x − 1 and t − x + 1.

Inequality (8) concerns deaths below age x+y. As for deaths above age
x+y, we have

g − Fc(x, y, u1) < g − Fc (x, y, u2) if u1 < u2. (9)

Cohorts that pass through the Lexis square were born between t − x − 1
and t− x + 1 and reached age x between t− 1 and t + 1. Let the cohort born
at t−x be called the mid-cohort. It follows from (8) and (9) that for a cohort
born after the mid-cohort, i.e. for u > t − x

Fc(x, y, u) < Fc(x, y, t − x), (10)
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and for a cohort born before the mid-cohort, i.e., for u < t − x,

g − Fc(x, y, u) < g − Fc(x, y, t − x). (11)

By separating deaths during the period into deaths to cohorts born before
and after the mid-cohort and using (10) and (11), the total number of deaths
in the Lexis square is given by

D(x, 1, t, 1) =
∫ t+1

t

∫ x+1

x

d(y, u) dy du

=
∫ 1

0

∫ 1

1−u

dc(x + y, t − x − 1 + u) dy du

+
∫ 1

0

∫ 1−u

0

dc(x + y, t − x + u) dy du

=
∫ 1

0

{g − Fc(x, 1 − u, t − x − 1 + u)} du

+
∫ 1

0

Fc(x, 1 − u, t − x + u) du

<

∫ 1

0

{g − Fc(x, 1 − u, t − x)} du +
∫ 1

0

Fc(x, 1 − u, t − x) du

= g. (12)

4 Discussion

As indicated above, if the number of deaths in an age range remains constant
among cohorts but the death distribution within the age interval shifts toward
older ages, the number of deaths in the age range for the estimation period is
smaller than the corresponding number of cohort deaths. Similarly, a cohort
shift of death distribution toward younger ages makes the number of period
deaths higher than the corresponding number of cohort deaths.

The proof was given for the age-specific number of deaths, but essentially
the same effect on the age-specific death rate is expected, because the relative
effect on the number of person-years (the denominator of age-specific death
rate) is smaller than the effect on the number of deaths (the numerator)
(Feeney 2003). This is mainly because the shift does not significantly change
the number of person-years of those who do not die in the age interval. In
most one-year age intervals, a vast majority of persons survive through the
interval.
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In addition, the number of person-years for the period is likely to be very
close to the number of person-years that would be obtained if the death dis-
tributions of all cohorts are identical to that of the mid-cohort, because losses
in ABE and gains in BFE cancel each other to some extent.3 Thus, it can
be concluded that a shift of death distribution toward older (younger) ages is
likely to bias the age-specific death rate downward (upward).

A few points about the assumptions adopted in this analytical study
may be noteworthy. The age-specific number of deaths was assumed constant
among cohorts. Admittedly, this is not realistic for two reasons. First, when
the age-specific death rate changes, usually both the number and distribution
of deaths within the age range change. When the overall mortality level de-
clines, the number of deaths tends to increase above the modal age of adult
deaths and decrease below it, shifting the mode to the right. Second, when the
distribution of deaths moves toward older or younger ages, the shift occurs
over a wide age range, thereby changing the number of deaths in each age
group. Furthermore, in practice, the tempo effect will be numerically small if
the distributional change is restricted to a narrow age range.

The purpose of this note, however, is not to produce a realistic and com-
prehensive picture of mortality change. Probably there are different pathways
through which mortality changes bias period measures, and this investigation
is an attempt to clarify the logical mechanism of one of those pathways. Thus
the cohort number of deaths was assumed constant in order to investigate
effects of cohort changes in the distribution of deaths independently of other
effects that may confound the analysis.

Concerning the shift of age distribution, this analytical study is less re-
strictive than some previous studies of tempo effects, in which linear parallel
shifts of the age curves were assumed (Ryder 1956, Inaba 1986, Bongaarts
and Feeney 1998, Feeney 2003). The assumed pattern of shift in this study
allows changes to occur in both the location and shape of distribution.

3 If l(x) is same for all of the cohorts, then for any y between 0 and 1, l(x+y) of
an earlier cohort, which passes through ABE, is smaller that of the mid-cohort.
Similarly, l(x+y) of a later cohort, which passes through BFE, is larger that of
the mid-cohort.
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Appendix

An implication of transition between two stationary age distribu-
tions for age-specific death rates

This appendix examines two artificial examples of mortality tempo effects pre-
sented by Bongaarts and Feeney (2002: Figure 3; in this volume p. 11: Figure
5) and discusses an implication for age-specific death rates of the population
dynamics assumed in the examples. In both of the examples, the hypotheti-
cal population shifts from a stationary age distribution to another stationary
distribution through a one-year transition period. Thus there are three differ-
ent periods (first stationary period, transition period, and second stationary
period), and the number of births remains unchanged throughout these three
periods. The mortality level in the second stationary period is slightly lower
than that in the first stationary period.

It seems reasonable to expect that the mortality level for the transition
period falls between those for the two stationary periods. However, the hypo-
thetical computations show that the total number of annual deaths and the
crude death rate for the transition period are substantially lower and the life
expectancy at birth is considerably higher than those for either stationary pe-
riod. For example, in one of the hypothetical illustrations, the life expectancy
rises suddenly from 70.0 years in the first stationary period to about 73 in the
transition period, and then falls to 70.25 in the second stationary period. This
anomalous trend was interpreted to show the tendency for the life expectancy
to be distorted when the mortality pattern is changing.

However, it is important to note that these examples were produced under
the special scenario of shift between two stationary age distributions. In the
hypothetical populations, tempo effects of mortality change seem to be con-
founded with effects on mortality trend of this particular type of population
dynamics. This appendix will explain why the special scenario leads to the
anomalous mortality trend.

Suppose that a population is stationary before time T and after time T +1
and the age distribution shifts between T and T +1. The number of individuals
in the age interval between x and x + 1 at time t is given by

N(x, t) = N1(x) if t ≤ T and N(x, t) = N2(x) if t ≥ T + 1 (A.1)

where N1(x) and N2(x) are the number of individuals in the age interval
between x and x + 1 during the first stationary period and that during the
second stationary period, respectively.

It is assumed that the number of births remains constant and the force of
mortality at any age is lower in the second stationary period than in the first
stationary period. Then
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N1(x) < N2(x) for any x > 0 (A.2)

if x is not greater the highest age of the second stationary population.
The age-specific survival ratio from the age interval between x and x + 1

to the next age interval between x + 1 and x + 2 is N1(x + 1)/N1(x) for the
first stationary period, N2(x+1)/N2(x) for the second stationary period, and
N2(x+1)/N1(x) for the one-year transition period. The survival ratio for the
transition period is higher than that for the first stationary period because of
the inequality of the numerator, i.e., N2(x + 1) > N1(x + 1). It is higher than
that for the second stationary period as well, because of the inequality of the
denominator, i.e., N1(x) < N2(x).

The above results can be generalized to any length u of transition period
by considering the survival ratio from the age interval between x and x+1 to
the age interval between x+u and x+u+1, as far as x+u is under the highest
age of the population. Obviously, high age-specific survival ratios imply low
age-specific death rates. Thus it can be claimed that if the population shifts
between two stationary age distributions and the mortality level in the later
stationary period is lower (higher) than that in the earlier stationary period,
then age-specific death rates in the transition period tend to be lower (higher)
than those in either stationary period.

This anomalous mortality trend is due to the very special type of age
structure change, i.e., shift from a stationary population to another. Suppose
that the mortality pattern remains constant for a while, then changes in a
short period of time, and remains constant again thereafter. Usually, it will
take many years for the population to eventually become stationary. (The
number of births is assumed unchanged in this population.) However, the two
simulations adopt an unusual scenario that the population becomes stationary
immediately after some mortality change. Therefore, the high life expectancy
during the transition period in the artificial examples may be attributable
mainly to this unusual scenario, i.e., shift between two stationary age distri-
butions. It does not seem to be a typical tempo bias.
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Summary. The number of scholars following the tempo approach in fertility con-
tinues to grow, whereas tempo-adjustment in mortality generally still is rejected.
This rejection is irrational in principle, as the basic idea behind the tempo approach
is independent of the kind of demographic event. Providing the first empirical appli-
cation to a substantial problem, this chapter shows that mortality tempo-adjustment
can paint a different picture of current mortality conditions compared to conven-
tional life expectancy. An application of the Bongaarts and Feeney method to the
analysis of mortality differences between western and eastern Germany shows that
the eastern German disadvantages still are considerably higher and that the mor-
tality gap between the two entities began to narrow some years later than trends in
conventional life expectancy suggest. Thus, the picture drawn by tempo-adjusted life
expectancy fits the expected trends of changing mortality and also the self-reported
health conditions of eastern and western Germans better than that painted by con-
ventional life expectancy.

1 Introduction

One of the main goals of quantitative demography is the derivation of period
measures with a clear and distinct meaning to analyze demographic develop-
ments in time as well as current demographic conditions in different popula-
tions. Since more than a century demographers have been assuming to know
how to provide correct calculations and interpretations of period measures,
such as the total fertility rate (TFR) or life expectancy at birth (e0). Both
are summary measures and have the purpose to represent current fertility and
mortality conditions respectively, standardized for the given age composition
of populations driving the number of observed events and thus the values of
crude rates.
� Great part of this chapter is reprinted from “Mortality tempo-adjustment: An

empirical application” by Marc Luy, Demographic Research Vol. 15, 2006. c©2006
Max-Planck-Gesellschaft, reprinted with permission
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In a series of studies, Bongaarts and Feeney (1998, 2002, in this volume
p. 11 and p. 29) recently have claimed that summary measures such as these
should not only be standardized for age but also for tempo effects that arise
whenever demographic conditions are changing. In their most recent study,
Bongaarts and Feeney (in this volume p. 29) define a tempo distortion as an
“inflation or deflation of a period quantum or tempo indicator of a life-cycle
event, such as birth, marriage, or death, resulting from a rise or fall in the
mean age at which the event occurs”. Introducing the idea with correspond-
ing formulae for tempo-adjustment, Bongaarts and Feeney stirred the world of
demographers and divided their community into tempo supporters and tempo
opponents. Despite existing critics (e.g., Van Imhoff and Keilman, 2000; Kim
and Schoen, 2000; Van Imhoff, 2001; Smallwood, 2002; Schoen, 2004; Keilman,
2006), the number of scholars following the tempo approach in fertility con-
tinues to grow (see e.g., Lesthaeghe and Willems, 1999; Kohler and Philipov,
2001; Philipov and Kohler, 2001; Zeng Yi and Land, 2001, 2002; Goldstein
et al., 2003; Sobotka, 2003, 2004a, 2004b; Winkler-Dworak and Engelhardt,
2004)2. However, Bongaarts and Feeney’s successive work on mortality tempo
effects still is generally rejected (see Guillot, 2003b, in this volume; Le Bras,
in this volume; Wachter, in this volume; Wilmoth, 2005; Rodŕıguez, in this
volume).

The rejection is irrational in principle, as the basic idea behind the tempo
approach is independent of the kind of demographic event3. The idea of ad-
justing period life expectancy for tempo effects is as follows. When deaths are
postponed to increasingly later ages, the number of deaths occurring in a given
period is thinning out. For example, if every death in a given year were to be
postponed by six months, there would be only half as many deaths observed
in that year as one would have expected if there had been no postponement
at all. Because death rates would decline at all ages, life expectancy would in-
2 Winkler-Dworak and Engelhardt (2004) applied the tempo approach to the anal-

ysis of first marriage. From a methodological point of view, their work belongs
to the papers dealing with tempo effects in fertility since the demographic logic
behind the analysis of first marriages is identical to the analysis of first births.

3 Bongaarts and Feeney’s paper on mortality tempo is based on a paper published
by them earlier and entitled “On the quantum and tempo of fertility”. Following
the idea presented in that paper, the most common critcisms of the mortality
tempo approach holds that the quantum of mortality is necessarily one, and that
life expectancy itself is a pure tempo measure and thus cannot be adjusted for
tempo effects (Guillot, 2003b; Wachter, in this volume; Wilmoth, 2005; Rodŕıguez,
in this volume). Note, however, that tempo effects are not necessarily connected
to a quantum. Tempo generally affects period rates and the quantum is impacted
by tempo effects only if the period rates are used to estimate the demographic
quantum, such as is done with the TFR. When period rates are used to derive
any other demographic measures, then these measures are affected by tempo
distortions. It does not matter whether they contain a quantum component or
not, as is the case in period life expectancy.
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crease by a larger amount, many times the half a year that was actually added
to the length of life in that period. Tempo-adjustment produces a period mea-
sure of longevity that changes only by the amount of lifetime by which deaths
were postponed, and as such is a potentially useful tool for demographers4.
It has already been shown that in a given situation of mortality decline, i.e.
the mean age at death increases, life expectancy calculated from age-specific
death rates during the period of changing mortality conditions is higher than
life expectancy calculated from age-specific death rates under stationary mor-
tality conditions at the end of this transition (Bongaarts and Feeney, 2002,
in this volume p. 29; Feeney, 2003; Horiuchi, in this volume). An illuminating
paper about the consequences of such biases on the interpretation of period
data was written by Vaupel (2002), who called for a distinction between “life
expectancy at current rates” and “life expectancy at current conditions”5.

It seems that tempo effects impact current period measures for mortality
significantly, as they do with fertility measures. In the actual discussion on
mortality tempo, this aspect is given no consideration: the published papers
solely deal with theoretical and technical questions, while empirical applica-
tions are used exclusively to compare different measures of period mortality
conditions and to demonstrate their properties against the background of his-
torical mortality trends (besides the Bongaarts and Feeney papers mentioned
above, see e.g. Vaupel, 2002, in this volume p. 93; Feeney, 2003, in this vol-
ume; Guillot, 2003b, in this volume; Bongaarts, in this volume; Le Bras, in this
volume; Wachter, in this volume; Wilmoth, 2005; Goldstein, in this volume;
Rodŕıguez, in this volume). Empirical applications to a substantive problem
of mortality differentials are, however, missing so far. An interesting aspect
- although not explicitly mentioned by the authors - of the initial mortal-
ity tempo paper of Bongaarts and Feeney (2002) is that the variance in life
expectancy between the US, Sweden, Japan, and France decreases from 3.4
years according to conventional life expectancy to only 1.7 years according to
tempo-adjusted life expectancy. Applying the Bongaarts and Feeney method
to mortality differences between eastern and western Germany, I will show
that adjusting period life expectancy for tempo effects paints a different pic-
ture of mortality trends and of differences between these two regions than
conventional tempo-unadjusted calculations. I will conclude that the results
of tempo-adjusted life expectancy provides a better fit to the expected trends
4 The author thanks an anonymous referee of this paper for his or her suggestion

to include this example in order to describe the basic idea of mortality tempo-
adjustment.

5 In the paper mentioned, Vaupel (2002) regarded the distortions inherent in the
current mortality rates as a consequence of the changed timing of death resulting
from the effects of heterogeneity rather than from the effects of mortality tempo.
Regardless of the different views on the origin of distortions in period mortality
rates, Vaupel’s message applies universally to all kinds of demographic period
measures.
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of changing mortality, and also to self-reported health conditions of eastern
and western Germans.

First, however, I will demonstrate how tempo effects impact period life
tables and why they should be seen as distortions.

2 How mortality tempo affects period life expectancy

Inspired by an example in an unpublished paper of Feeney (2003) with the apt
title “Mortality tempo: a guide for the skeptic”, I use a simple illustration to
demonstrate the idea of tempo effects in mortality. Consider a population A
in which all births occur intermittently at intervals of 0.2 years and in which
all deaths taking place during some base year occur at exactly the midpoint
of a single year of age. Suppose that, at the end of the base year, age at death
within a certain age group begins to increase linearly at the rate of 0.2 years
per year for all persons, and cedes increasing at the end of the year. The Lexis
diagram in Figure 1a shows this scenario for age 62 as an example. The life
lines of each cohort are represented by an arrow moving through time and age.
In base year t0, all deaths at age 62 happen exactly at age 62.5. During year
t1, the age at death increases linearly with the given annual rate, from 62.5
to 62.7. The latter level is reached in year t2 and remains constant from then
on. Assume further that the annual numbers of births in the population have
been constant and that the proportion of deaths at a certain age is constant
over all cohorts (meaning unchanged mortality conditions until base year t0).
The two assumptions imply that each dot in Figure 1a represents the same
number of deaths and that each arrow represents the same number of persons
surviving until age 62.5. Let us assume that 20,000 individuals of each cohort
reach age 62 and that 1,000 of them die at this age. Thus, according to the
old mortality conditions until year t0 there are 5,000 annual deaths at age 62.
The age-specific death rate for age 62 in year t0 is then given by 5,000 deaths
divided by 97,500 risk years lived:

MA
62,t0 =

5, 000
97, 500

= 0.05128 .

The number of risk years lived can easily be derived. If all individuals
survived until age 63, the number of risk years lived was 100,000 since each
individual lived exactly 1 person year at age 62. Since the 5,000 deceased
individuals live only 2,500 person years at age 62, the total number of risk
years lived reduces to 97,500.

Now it is important to see what happens with the number of deaths in
year t1, the year of changing mortality. The five cohorts in t1 reaching age
62.5, the exact age at which those who do not survive the given age group
die according to the old conditions, are marked with the letters A to E. Thus,
cohort A is the oldest cohort reaching age 62.5 in year t1 and cohort E is the
youngest. Due to assumed changes in mortality conditions during year t1, the
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Fig. 1. Mortality tempo effect illustrated in the Lexis diagram.

age at death of cohorts A to E increases steadily and cohort E is the first to
reach the new age at death level of 62.7 years. Since each of the five cohorts
lives longer than the preceding one, the intervals between the deaths are longer
than they are between the births (both intervals are identical before the year
of changing mortality conditions t1). Consequently, the deaths to the five
cohorts that reach age 62.5 during year t1 are spread over a period exceeding
one year. As a result, the deaths of persons belonging to cohort E are shifted
to year t2, shown by the thick grey arrow in Figure 1a. Following Vaupel
(in this volume p. 93), the shift can also be interpreted as “saved lives” in
year t1. The number of deaths in year t1 declines by 1,000 when compared to
the scenario before the mortality conditions changed. This is demonstrated in
Figure 1a: Only four black dots are seen in year t1. Had mortality not changed
during that year, there would have been five dots in year t1, as demonstrated
by the unfilled dots representing age at death to cohorts according to the old
mortality conditions until year t0. Due to the reduced number of deaths and
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the risk years gained in year t1, the age-specific death rate for age 62 decreases
to:

MA
62,t1 =

4, 000
98, 400

= 0.04065 .

The mortality decline is reflected in the decreasing age-specific death rate.
If such mortality change occurred similarly at the other ages, this would lead
to an increase in life expectancy that is derived from the age-specific death
rates. Figure 1a shows that the decline in the annual number of deaths is
transitory in that it disappears when the age at death stops rising. From year
t2 on, the intervals between births and deaths are, again, identical and there
are 5,000 deaths in each subsequent calendar year, leading to the age-specific
death rate:

MA
62,t2 =

5, 000
98, 500

= 0.05076 .

Since the number of deaths in the numerator increases relatively steeper
than the number of risk years lived in the denominator, the period death rate
for year t2 will be higher than that for year t1, although the average age at
death is higher in t2 than it is in t1. As a consequence, life expectancy would
decrease between t1 and t2. Since period life expectancy is generally seen as
an indicator for period mortality conditions, such a decrease is likely to be in-
terpreted as an increase in mortality. However, Figure 1a shows that no cohort
experiences any increase in mortality. In Bongaarts and Feeney’s approach,
such a discrepancy between the development of mortality conditions and its
representation in period death rates (or measures derived from them, such as
life expectancy) represents a tempo effect. The logic behind this argument is
neither limited to the simple assumptions of this example (constant number of
births, birth intervals of 0.2 years) nor is it restricted to one single age group.
If we increased the number of age groups and assumed that the ages at death
in these groups rise at different rates, then different numbers of deaths would
be shifted and the magnitude of the tempo effect would vary from one age
group to another (for more details, see Feeney, 2003).

When the trend in period life expectancy is used in order to analyze the
changing mortality conditions of a specific population, such tempo effects may
not be a problem as long as there is no sudden change or stagnation of mor-
tality. However, tempo effects may lead to a distorted picture when mortality
conditions of two populations are compared that experience mortality changes
that differ in their patterns of change. This is demonstrated by introducing an
additional population B to the illustration in Figure 1b. As with population
A, all births in population B occur intermittently at intervals of 0.2 years,
mortality remains unchanged until year t0 and at the end of year t0, the age
at death begins to increase linearly and cedes increasing at the end of the
year. Compared to population A, the cohorts of population B show lower ages
at death at any time. Until year t0 all deaths at age 62 occur at the exact age
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of 62.1 and the change during year t1 leads to an increased age at death of
62.5 years, thus being equivalent to the mortality conditions of population A
until year t0. Using the same logic of calculating the age-specific death rates
for population B, it follows for the years t0, t1, and t2 that:

MB
62,t0 =

5, 000
95, 500

= 0.05236 ,

MB
62,t1 =

3, 000
97, 900

= 0.03064 ,

MB
62,t2 =

5, 000
97, 500

= 0.05128 .

Although no cohort of population B experiences lower mortality than the
cohorts of population A, the death rate for population B in year t1 is lower
than the death rate for population A. This is due to the fact that during year
t1 mortality changes in population B are stronger than they are in population
A. The higher increase of the age at death in population B leads to higher
tempo distortions in t1 compared to population A.

Despite the confusing outcome, the examples represented in Figures 1a
and 1b show that there is no mistake in the calculation of period death rates.
There might be research questions where the conventional period rates are
interesting, e.g. to analyze and forecast the annual number of deaths. How-
ever, the examples also show that the conventional way of calculating period
measures may convey the wrong message whenever demographic conditions
are changing in the year or period analyzed. As to life expectancy, one can
make generalizations as already described by Bongaarts and Feeney (2002):
If mortality declines, then life expectancy overestimates current conditions;
if mortality rises, then life expectancy underestimates current survival condi-
tions. The bias is the more marked, the more intensive the changes are during
the period observed.

All demographic period measures are hypothetical estimates to standardize
for current demographic conditions. Since different populations have different
experiences of changes in the mean age at death, tempo effects impact them
differently, as do different age compositions of the populations. Thus, tempo
effects should generally be seen and treated as a distortion of period measures,
as the effects of population age composition. Bearing in mind the simple exam-
ples above, the question arises as to the meaning that period measures based
on current rates have in a world of continuous demographic change. This holds
especially when populations with entirely different demographic developments
are compared, such as the populations of West and East Germany. To assure
that conventional period measures do not point into the wrong direction, it is
necessary to look at tempo-adjusted measures regardless of whether fertility,
mortality, or any other demographic process is analyzed.
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3 Why life expectancy differences between western and
eastern Germany call for tempo-adjustment

The demographic changes and developments in eastern and western Germany
are generally seen to present a unique opportunity to understand the inter-
action between societal, social, and economic conditions on the one hand,
and population processes on the other. The German experience thus is used
to understand the reasons behind recent mortality changes. The two pre-war
German regions were characterized by a demographic composition and behav-
ior that was almost identical until 1945, followed however by 45 years under
different political and socioeconomic structures and resulting in demographic
developments that were entirely different (Dinkel, 1992, 1994, 1999; Gjonça et
al., 2000). With unification in 1990, East Germany adopted the western soci-
etal and economic system, causing sudden changes in all of its demographic
processes. These conditions - leading some scholars to describe the eastern
German population as a kind of “natural experiment” (Dinkel, 1999; Vaupel
et al., 2003) - generated a large number of studies on the changes in eastern
German demography. Of central interest in the field of mortality research has
been the rapid convergence of life expectancy since 1990 following roughly two
decades of continuous divergence. The former widening and the subsequent
closing in the life expectancy gap between western and eastern Germany were
mainly caused by the age groups 60-80, leading to the central message that
“it’s never too late” to increase one’s length of life (Vaupel et al., 2003).

Figure 2 shows the trends in period life expectancy at birth e0, using
standard life table techniques for western and eastern German women and
men for each single calendar year from 1950 to 2004. The life table calculations
are based on official population statistics, i.e. data for the living population
and deaths for each calendar year and single age groups (for a more detailed
description of these data, see Luy, 2004a)6.

Regarding mortality differences between western and eastern Germany,
the time span presented can be subdivided into five central phases:

• The first phase, from 1950 to roughly 1960, is characterized by irregular
fluctuations, with several years of mortality crossing over. These trends
correspond with the waves of influenza that swept East and West Germany

6 Because of a reform to Berlin’s district borders in the year 2000 it has been im-
possible since then to divide the population and the demographic events of Berlin
into eastern and western Berlin according to the former borders of separated
Germany. Thus, from the year 2000 onwards, the Statistical Office of Germany
divides population data into western Germany without Berlin, eastern Germany
without Berlin, and Berlin. In order to get a complete time series of life tables for
eastern Germany (former GDR) and western Germany (former FRG) from 1950
to 2004, I divided the data on Berlin’s living population and deaths of the years
2000 to 2004 into east and west according to the sex-specific share of inhabitants
of eastern and western Berlin of the year 1999, assuming identical mortality for
both parts of the city from the year 2000 onwards.
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Fig. 2. Trends in conventional life expectancy at birth for western and eastern
Germany, 1950-2004.

in different years (Luy, 2004a). No mortality differences can be detected
between the two Germanys, neither for men nor for women.

• In the second phase, roughly covering the period 1960 to 1975, the de-
velopments in life expectancy in West and East Germany assumed more
regularity, with mortality slightly higher among East German women and
significantly lower among East German men. The differences in favor of
East German males rose until the first half of the 1970s and reached a
maximum of roughly one year in life expectancy at birth. However, the
disadvantage of West German men arose mainly from different definitions
of live birth in East and West Germany, thus causing lower infant mor-
tality rates in the former GDR on statistical7 grounds. An analysis of
age-specific differences between West and East German mortality shows

7 In West Germany, the result of childbirth is defined as live birth if one of three
signs of life, namely heart-beat, natural respiration, or a pulsating umbilical cord,
is evident. In East German statistics, live birth was defined only by heartbeat
and simultaneous natural respiration (Müller, 1976). Consequently, all deaths of
newborns showing only one of the three signs of life are registered as live births
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that the higher life expectancy among East German men mainly (but not
only) resulted from statistically lower infant mortality (Luy, 2004a).

• The third phase, starting in the middle of the 1970s, is characterized by
the continuous divergence for both sexes in the development of mortality
conditions in favor of West Germany. This development corresponds to
the general divergence in mortality trends between all western and eastern
European countries (e.g. Caselli and Egidi, 1980; Bourgois-Pichat, 1985;
Bobak and Marmot, 1996a, 1996b; Hertzman et al., 1996; Meslé and Her-
trich, 1997; Vallin and Meslé, 2001; Meslé and Vallin, 2002). Figure 1 shows
that the widening of the life expectancy gap was caused by the fact that
East German life expectancy at birth increased at a lower pace for both
sexes, whereas life expectancy in West Germany rose more rapidly (Höhn
and Pollard, 1991; Scholz, 1996; Gjonça et al., 2000; Nolte et al. 2000a).
The differences peaked in 1988 for women (almost 3 years) and in 1990 for
men (roughly 3.5 years).

• These peaks - virtually concurring with German unification - were followed
by the continuous narrowing of the gap in west-east German mortality dif-
ferences until the end of the 1990s, when the difference in e0 reached about
0.5 years for women and about 1.6 years for men. As can be seen in Figure
2, as the two Germanys entered this phase the differences in life expectancy
trends between them started to reverse compared to the trends in the third
phase. The convergence of mortality levels now observable is due to the
fact that since the beginning of the 1990s life expectancy has been rising
much faster in eastern Germany than in the west. Based on these obser-
vations, German demographers assumed that the west-east mortality gap
will fully close during the first two decades of the 21st century, as reflected
in one of the most recent population forecasts of the Statistical Office of
Germany (Statistisches Bundesamt, 2003).

• However, around the year 2000, this trend changed again. The differences
in life expectancy between eastern and western German men now stagnate
on a level around 1.5 years. Eastern German women, by contrast, seem to
further approximate the western German level, however with a decline in
the pace of approximation and with the difference now being around 0.25
years.

Figure 2 shows a striking decrease in life expectancy among eastern Ger-
man men in 1990, a phenomenon described as the eastern German “mortality
crisis” (Dorbritz and Gärtner, 1995; Riphan, 1999; Nolte et al., 2000a, 2000b)
and as characteristic of a “demographic shock” in connection with the changes
in eastern Germany resulting from unification (Eberstadt, 1994). However,
long-term trends in life expectancy question the aptness of this description
and call for an explanation of the rapid closing of the gap. The decisive ques-
tion is: Which factor or which factors are responsible for the trend reversal in

and thus as infant deaths only in West Germany, whereas in East Germany such
cases were registered as stillbirths and did not enter mortality statistics.
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mortality differences between western and eastern Germany, a trend reversal
that has occurred within one or two years only? The factors discussed most
in search of an answer are the same that are assumed to be responsible for
the general mortality gap between western and eastern European countries
(e.g. Bobak and Marmot, 1996a, 1996b; Hertzman et al., 1996; for the dis-
cussion on the mortality differences between eastern and western Germany,
see Luy, 2004a): East German working conditions, environmental conditions,
the consequences of uranium mining and storage, the effects of the ongoing
immigration of a more healthy foreign population to West Germany, selective
internal east-west migration, psychological reactions to the political suppres-
sion, economic conditions, medical technology, lifestyles, and cardiovascular
risk factors.

The similarity to the general European west-east divergence makes the
search for the reasons behind the mortality trends in eastern Germany a sub-
ject of major interest that reaches beyond the borders of Germany. Addi-
tionally, it seems that finding the main cause(s) for the mortality differences
between western and eastern Germany will be an important step forward in
gaining a deeper understanding of general mortality differentials. A large and
continuously increasing number of studies follow this path based on trends in
life expectancy such as shown in Figure 2 (e.g. Chruscz, 1992; Dinkel, 1994,
1999; Schott et al., 1994; Becker and Boyle, 1997; Gjonça et al., 2000; Bucher,
2002; Nolte et al., 2002; Luy, 2004a, 2004b, 2005b; Mai, 2004). Although many
researchers are working on this subject, the rapid approximation of life ex-
pectancy is still not explained in full.

However, following Bongaarts and Feeney’s tempo approach, we must con-
clude that period life expectancy based on annual age-specific death rates is
an imperfect solution for the reflection of period mortality conditions. As has
been shown in the previous chapter, this is because death rates are biased
downward with rising mean age at death (mortality decline) and they are bi-
ased upward when the mean age at death declines (mortality increase). Since
different populations experience changes in the mean age at death with differ-
ent paces, tempo effects impact them differently. Phases of mortality decline
and phases of mortality increase set in in eastern and western Germany in
different years and with different pace, coinciding with observed trends in life
expectancy differences between the two parts of Germany: during Phase 3,
life expectancy increased continuously in West Germany, whereas it rose only
slightly or remained constant in the east. During Phase 4, life expectancy rose
more steeply in eastern Germany than in the west. We can assume that the
sudden improvements in eastern Germany after unification, for instance in
economic conditions and medical technology, caused postponement of deaths
in almost all age groups to an extent that was not possible in western Ger-
many, where these conditions have already been on a high level. Similarly, for
the years preceding unification we can expect that more deaths among western
German women and men have been postponed as a consequence of increas-
ing advantages in living conditions and medical standards. If these different
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trends are causing tempo distortions in the sense of Bongaarts and Feeney’s
approach, then the studies on the causes of eastern German excess mortality
are based on data leading to a distorted picture of mortality conditions in the
two German regions and thus to the differences between them. In the final
consequence, this may be the reason why the factor(s) mainly responsible for
the impressive improvement of mortality conditions in eastern Germany is
(are) still undetected.
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Fig. 3. Conventional life expectancy at birth e0(t) and smoothed estimates e0(t)
S

(sixth degree polynomial), western and eastern Germany, 1950-2004 (no mortality
under age 30).

In the following, tempo-adjusted life expectancy, denoted by e∗0(t), for
western and eastern Germany, is estimated by using the indirect technique
proposed by Bongaarts and Feeney (2002) in their initial paper on tempo
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effects in mortality, assuming no mortality under age 30. Figure 3 shows the
smoothed trends in conventional life expectancy at birth with mortality below
age 30 set to 0 for each of the four populations observed (i.e., e0(t) = e30(t)+
30). These functions form the base for the method used to calculate tempo-
adjusted life expectancy e∗0(t) in eastern and western Germany. The formula
used for tempo-adjusted life expectancy is

e∗0(t) = e0(t) +
1
b

ln
(

1 − de∗0(t)
dt

)
,

with b denoting the “Gompertz parameter” estimated by fitting a Gompertz
model to annual age-specific death rates. The methods of estimation and
the calculations done for western and eastern Germany are provided in the
Appendix.

4 Trends in tempo-adjusted life expectancy in western
and eastern Germany

Figure 4 shows the trends in conventional and tempo-adjusted life expectancy
at birth (no mortality under age 30 in both cases) from 1975 to 2004 for west-
ern and eastern German females and males. The graph for western German
females (Figure 4c) is very similar to the figures for US and Japanese women
presented by Bongaarts and Feeney (2002: 24). As can be seen in Figure 3(c),
western German females represent the only of the four populations analyzed
with an observed life expectancy at birth that has been increasing almost
constantly since 1950. Thus, the tempo distortion S(t) (defined as the differ-
ence between conventional and tempo-adjusted life expectancy) is relatively
constant among western German females during the observation period. Since
improvements in life expectancy developed later (western and eastern German
males) or at a changing pace (eastern German females) among the other three
populations, tempo distortions must vary when compared to western German
females. This is well reflected by the results gained for e∗0(t) and S(t), as can
be seen in Figure 4.

In all cases, the estimated tempo distortions agree with the logic of mortal-
ity tempo effects. This becomes clear when comparing Figures 3 and 4. The
tempo distortion S(t) was very low among West German men in 1975 and
then increased steadily until the second half of the 1980s, when the difference
between conventional and tempo-adjusted life expectancy reached an almost
constant level (Figure 4a). It can be seen in Figure 3(a) that life expectancy
among West German men remained more or less unchanged between 1950
and 1970, thus one cannot expect a noticeable tempo distortion in the mid
1970s. Rising life expectancy after 1970 is caused a by shift in the average age
at death and thus the tempo-adjusted life expectancy also starts to increase,
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although at a lower pace than does conventional life expectancy. Among east-
ern German males, life expectancy remained constant or even declined slightly
until the end of the 1980s and then started to rise at a higher pace than in
any phase of life expectancy trends in western Germany (Figures 3a and 3b).
Consequently, tempo-adjusted life expectancy e∗0(t) did not differ from con-
ventional life expectancy until the beginning of the 1990s and then began to
increase at a considerably lower rate compared to e0(t). The extent of tempo
distortions in conventional life expectancy grew during the observed period
among eastern German females, too. From Figure 3(d) we know that their life
expectancy rose in the period preceding unification, although it did so at a
lower pace than among their West German counterparts (see also Figure 2).
As a result, tempo distortions, i.e. the difference between tempo-adjusted and
conventional life expectancy, remained at an almost constant level between
1975 and 1990. However, the difference between e0(t) and e∗0(t) started to
increase at the end of the 1980s when conventional life expectancy rose at a
higher rate - a phenomenon similar to what has been observed among men in
the eastern part of Germany (Figures 4b and 4d).

The most important question is the way in which the differences in life
expectancy between western and eastern Germany developed in the obser-
vation period 1975 to 2004 when adjusted for tempo distortions. The corre-
sponding results are given in Figures 5 and 6 for males and females respec-
tively; the single values can be found in Table 1. The thinner lines in the two
graphs represent the absolute difference between western and eastern Ger-
many in conventional life expectancy and the bold lines show the difference
in tempo-adjusted life expectancy. Figure 5 again depicts the rapid decrease
in conventional life expectancy differences after 1990, following a continuous
increase since the beginning of the observation period. Whereas West German
males enjoyed a higher life expectancy according to conventional calculation
methods since 1976, East German men showed a higher tempo-adjusted life
expectancy until 1981. Note that the different definitions of live birth do not
affect the results presented in this section; thus there seems to be a real East
German mortality advantage among men in the 1970s. Only after 1981 did
the differences in tempo-adjusted life expectancy switch to an advantage for
West German males, although much less so than the results based on conven-
tional life expectancy. The graph demonstrates that the trend in increasing
west-east differences occurred at a lower pace once life expectancy is adjusted
for tempo effects. In 1990, when the difference in conventional life expectancy
between West and East German men reached a peak of 3.08 years, the dif-
ference in tempo-adjusted life expectancy was only 1.07 years, i.e. two years
less. The finding that the latter differences did not decrease since unification
but continued to increase until the end of the 1990s is even more interest-
ing. While the difference in conventional life expectancy between western and
eastern German males declined to roughly one and a half years in 2004, those
in tempo-adjusted life expectancy are now even higher, with a difference of
about 1.6 years. Only at the end of the 1990s did the trend in increasing
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Fig. 4. Conventional life expectancy at birth e0(t) and estimated tempo-adjusted life
expectancy at birth e∗0(t) with tempo distortion S(t), western and eastern Germany,
1975-2004 (no mortality under age 30).

differences in tempo-adjusted life expectancy lower in speed, pointing to slow
convergence solely in the last years of the observation period.

The results for the west-east German differences among females are sim-
ilar to those just described for males. Until unification, the advantage in
mortality conditions of West German females is lower when tempo-adjusted
life expectancy is used instead of conventional life expectancy. Whereas the
difference in conventional life expectancy increased to 2.85 years in 1988,
those in tempo-adjusted life expectancy did never exceed 1.9 years. Similar to
the situation among men, the differences in tempo-adjusted life expectancy
between western and eastern German females did not decline with unifica-
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Fig. 5. West-east German difference in life expectancy at birth for conventional
life expectancy e0(t) and tempo-adjusted life expectancy e∗0(t), males 1975-2004 (no
mortality under age 30).

tion parallel to conventional life expectancy but instead rose until the mid
1990s. The trends in conventional and tempo-adjusted life expectancy crossed
over between 1992 and 1993. From then on, the mortality advantage of west-
ern German females measured with tempo-adjusted life expectancy is higher
when compared to the results based on tempo-unadjusted values. Although
a decreasing trend in mortality differences between western and eastern Ger-
man females is also evident with tempo-adjusted life expectancy since the
mid 1990s, the remaining differences in favor of western German women are
still considerably higher. While the disadvantage of eastern German women
decreased to 0.28 years in the year 2004 according to conventional life ex-
pectancy, the tempo-adjusted difference still shows 1.1 years.

5 Discussion

The idea of mortality tempo effects is derived directly from the idea of fertility
tempo effects; the latter have been known since more than half a century and
they experience growing acceptance. Following similar approaches of Ryder
(1956, 1964) or Ward and Butz (1980), Bongaarts and Feeney (1998) pro-
posed a new method to estimate the tempo bias in period fertility rates and
they provided a formula to adjust the TFR for these distortions. A few years
later, Bongaarts and Feeney (2002) extended this approach to the analysis
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Fig. 6. West-east German difference in life expectancy at birth for conventional life
expectancy e0(t) and tempo-adjusted life expectancy e∗0(t), females 1975-2004 (no
mortality under age 30).

of mortality and claimed that tempo effects bias period life expectancy, too.
In contrast to the situation in the field of fertility, the tempo approach in
mortality generally still is rejected. However, if we accept the need for tempo-
adjustment in the period TFR, we equally have to accept the need for this
adjustment in period life expectancy. The basic idea of the TFR is to estimate
the fertility quantum under current fertility conditions as a standardized in-
dicator for current fertility conditions. Changes in the mean age at childbirth
cause tempo effects which, in turn, affect age-specific fertility rates and thus
the TFR that is based on them. The same holds for period life expectancy.
The basic idea of life expectancy is to estimate the average length of life under
current mortality conditions as a standardized indicator for current mortality
conditions. Changes in the mean age at death are causing tempo effects, which
affect age-specific death rates and thus life expectancy that is based on them.

There seems to be a misunderstanding in that Bongaarts and Feeney are
assumed to have intended to estimate period measures with a certain cohort
meaning. This is, however, not exactly so. As to their basic application of their
method, they instead used cohort experiences in order to estimate current
changes in age-specific mortality conditions. Thus, Bongaarts and Feeney’s
tempo approach has to be distinguished from methods in order to translate
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Table 1. West-east German difference in life expectancy at birth according to con-
ventional life expectancy e0(t) and tempo-adjusted life expectancy e∗0(t), 1975-2004
(no mortality under age 30).

Years before unification Years after unification
Males Females Males Females

Year e0(t) e∗0(t) e0(t) e∗0(t) Year e0(t) e∗0(t) e0(t) e∗0(t)
1975 -0.10 -0.45 0.93 0.25 1990 3.08 1.07 2.61 1.69
1976 0.03 -0.42 1.02 0.32 1991 3.04 1.20 2.57 1.76
1977 0.37 -0.37 1.20 0.39 1992 2.90 1.32 2.21 1.82
1978 0.52 -0.31 1.41 0.48 1993 2.69 1.42 1.65 1.85
1979 1.00 -0.24 1.63 0.57 1994 2.55 1.51 1.60 1.86
1980 1.22 -0.17 2.10 0.66 1995 2.23 1.60 1.36 1.84
1981 1.01 -0.08 1.98 0.76 1996 2.00 1.65 1.12 1.81
1982 1.19 0.02 2.00 0.87 1997 1.79 1.69 0.90 1.76
1983 1.11 0.14 1.94 0.98 1998 1.56 1.72 0.79 1.69
1984 1.48 0.25 2.38 1.10 1999 1.46 1.72 0.53 1.61
1985 1.69 0.38 2.53 1.21 2000 1.52 1.71 0.46 1.50
1986 2.03 0.52 2.75 1.32 2001 1.42 1.68 0.44 1.39
1987 2.13 0.65 2.67 1.42 2002 1.44 1.65 0.48 1.29
1988 2.51 0.79 2.85 1.52 2003 1.40 1.62 0.24 1.19
1989 2.25 0.93 2.58 1.61 2004 1.43 1.59 0.28 1.11

period information into cohort information8. The misunderstanding possibly
originates from several sources. The first may be the title of their original pa-
per “How long do we live?” since the term “we” does only make sense in the
cohort perspective and does not exist in the logic of pure period measures. An-
other reason may be the similarity of Bongaarts and Feeney’s tempo-adjusted
life expectancy to other period measures that have clearly defined cohort com-
ponents, such as the “cross-sectional average length of life” (CAL) introduced
by Brouard (1986) and Guillot (2003a) or the “mean length of life” proposed
by Sardon (1993, 1994).

In principal, the Bongaarts and Feeney adjustment formulae for the TFR
and for life expectancy follow the same basic idea in that they assume that
period effects influence all currently living cohorts identically. In the case of
fertility, the tempo-adjustment formula is based on a shift of the age-specific
fertility schedule; in the case of mortality, the original tempo-adjustment for-
mula is based on a shift of the age-specific mortality schedule. However, since
the TFR and life expectancy are fundamentally different in their structural
8 Goldstein (in this volume) showed that in conditions of steady mortality change,

tempo-adjusted life expectancy with the Bongaarts and Feeney formula can in-
deed be used as a measure of cohort life expectancy. However, since the formula
contains no direct cohort component - as is shown in the Appendix of this chapter
- the primary interpretation should be made in a period context.
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designs, the adjustment formulae must include fundamental differences. The
tempo-adjusted TFR depends only on age-specific fertility rates within a small
neighborhood of the analyzed calendar year. This does not hold for the Bon-
gaarts and Feeney formula for the tempo-adjusted life expectancy used in this
chapter. The major difference to the fertility procedure is that the proposed
adjustment method for life expectancy uses a series of previous period life
tables. Consequently, it is evident that the Bongaarts and Feeney formula
reflects past mortality conditions in a certain way. But in the logic of tempo
distortions, this does not necessarily represent an inconsistency, especially
when past changes in mortality conditions are steady and continuous, which
approximately holds for adult ages in developed populations and in the last
decades. Since these are the restrictions that Bongaarts and Feeney (2002)
have made to the applicability of their tempo-adjustment formula for life ex-
pectancy, we should not see it as problematic that it leads to values close
(but not exactly) to a weighted moving average of past period life expectancy,
as Wachter (in this volume) has shown. Just the contrary, in restricting the
application to the industrialized countries of the recent past, this property of
the Bongaarts and Feeney formula is consistent with the theoretical idea of
tempo distortions in life expectancy.

However, we cannot see the Bongaarts and Feeney formula providing a
perfect measure for tempo-adjusted period mortality conditions. As already
shown by several scholars, their formula is based on assumptions which cannot
be met in full by reality (e.g. Goldstein, in this volume). Thus, we should see
the Bongaarts and Feeney formula as an attempt to standardize for tempo
effects in period life expectancy to obtain a better measure for comparing
period mortality conditions. It is, however, not clear to which extent the Bon-
gaarts and Feeney method catches factual tempo effects and it is not possible
to assess whether it presents a maximum distortion in the sense that the truth
lies somewhere between conventional and tempo-adjusted life expectancy, as
discussed by Vaupel (in this volume p. 93). While the constant shape assump-
tion turned out to be robust against moderate deviations (Feeney, in this
volume), several scholars described specific characteristics of the Bongaarts
and Feeney formula that under certain conditions may be partly inconsis-
tent with the general idea of tempo-adjustment (e.g. Wachter, in this volume;
Wilmoth, 2005; Guillot, in this volume). Nevertheless, it is important to sep-
arate these methodological aspects from the question of the general existence
of tempo effects in period life expectancy in order to do justice to Bongaarts
and Feeney’s tempo approach.

The empirical results presented in this chapter are striking and may be
important for the general understanding of several phenomena connected with
changing mortality: once life expectancy is adjusted for tempo effects, the dif-
ferences between western and eastern Germany do not decrease immediately
after unification and ten years later they still are higher when compared to the
differences in conventional life expectancy. Taking into consideration what we
know about mortality trends and their driving factors, the following question
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arises: Which of the two stories describes better what we can expect the mor-
tality differences between western and eastern Germany to look like? We know
that mortality differences such as these are caused by a number of different
factors that cannot be separated empirically and that may work in opposite
directions. This group of factors certainly includes some long-term effects on
the mortality conditions of a population, such as the health consequences of
environmental conditions or uranium mining and storage, or other long-term
effects that are still working against life expectancy improvements in eastern
Germany, such as of the continuing immigration of a more healthy foreign
population to western Germany or selective internal east-west migration. But
also the factors that are able to cause sudden changes in mortality conditions
will possibly take at least a few years to display their maximum effects. For
instance, qualitative improvements in medical technology cannot be reached
within the short span of a year, and even if eastern German’s lifestyles changed
immediately after 1990, the impact on health and mortality possibly develops
slowly and steadily. Consequently, following more than two decades of con-
tinuous divergence, it seems unlikely that mortality improvements in eastern
Germany could reach beyond the improvements made in West Germany in
the first year after unification. From this point of view, the picture drawn by
tempo-adjusted life expectancy fits better than that painted by conventional
life expectancy the expected trends and to the fact that the disadvantages
in self-reported health - known to be a good predictor of mortality condi-
tions - of eastern German women and men decreased only slightly during the
1990s (see Luy, 2004a, 2005b). Thus, tempo-adjusted life expectancy seems
to be a more realistic indicator of the level and changes in current mortality
conditions than conventional life expectancy.

These aspects indicate that the discussion on the reasons for the trends in
mortality differences between western and eastern Germany of the last years
might have been based on inappropriate measures and thus possibly have
pointed into the wrong direction. It is puzzling that no factor was found that
could explain the observed trends in conventional life expectancy at birth,
despite the fact that several scholars have been conducting research on the
subject. However, according to the trends in west-east German differences in
tempo-adjusted life expectancy, the explanatory factors obviously do not nec-
essarily narrow the gap in life expectancy by more than two and a half years
among females and by more than 1.5 years among males within ten calendar
years, and they do not necessarily change trends in mortality differences im-
mediately after unification from one year to the next year. Research should
rather focus on finding the factors responsible for producing immediate and
continuous postponement of deaths that are causing these tempo distortions
in life expectancy but do not necessarily increase the average length of life to
the extent indicated by conventional life expectancy. Besides the standard of
medical technology and economic conditions, one of these factors may be the
availability of nursing care that shows a similar development in differences be-
tween western and eastern Germany as does conventional life expectancy in
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the first years after unification (see Luy, 2004a, 2005b). Obviously, a compa-
rable tempo-distorted picture is drawn by conventional life expectancy in the
phase of rising differences prior to unification under changed conditions, with
higher tempo distortions in period life expectancy among the West German
population.

To sum up, the results of the empirical application of mortality tempo-
adjustment presented in this chapter indicate that the extent and the trend of
the differences in mortality conditions between western and eastern Germany
are not what we thought they were. It is not surprising, then, that none of the
explanatory variables usually stated to explain the west-east German mortal-
ity gap fit the observed mortality trends when measured by conventional life
expectancy at birth. To come back to the central statement made by Vaupel
et al. (2003) on the closing west-east mortality gap in Germany: it may never
be too late to increase one’s length of life, but changing mortality conditions
seems to take longer than trends in conventional life expectancy suggest, and
the reasons for such changes may be of different kind than generally expected.

Moreover, since life expectancy without adjustment for tempo effects is
one of the demographic tools most used in order to analyze mortality, we may
have to reconsider our knowledge on the basis of this measure in several other
aspects:

• What about the opening and the recent closing of the mortality gap be-
tween women and men in the developed world?

• What about the linear increase in record life expectancy at birth, described
by Oeppen and Vaupel (2002), especially regarding the impressive slope
of this increase?

• What about the increasing mortality gap between eastern and western
Europe?

This chapter has shown that tempo-adjustment of life expectancy might
provide a different picture of current mortality conditions than does conven-
tional life expectancy. We can expect that tempo effects distort the analysis
in all cases where the compared populations experienced different trends in
changing mortality. Consequently, we should not doubt the existence of tempo
effects in period life expectancy and the distortions they possibly cause. As
discussed above, it is the method proposed by Bongaarts and Feeney (2002)
that has to be improved since it is based on a number of assumptions that will
never be satisfied in full. Having accepted the existence of tempo effects, how-
ever, this method should be preferred to using tempo-unadjusted estimates
for period life expectancy as long as there are no better solutions. Thus, the
main goal of the future work of formal demographers should be the develop-
ment of methods for tempo-adjusted life expectancy based on less restrictive
assumptions that can be applied to all contemporary and past populations,
as claimed similarly by Vaupel (in this volume p. 93) and Feeney (in this
volume).



224 Marc Luy

References

Becker, N. and Boyle, P. (1997). Decline in mortality from testicular cancer
in West Germany after reunification. The Lancet, 350:744.

Bobak, M. and Marmot, M. (1996a). East-west mortality divide and its po-
tential explanations: proposed research agenda. British Medical Journal,
312:421–425.

Bobak, M. and Marmot, M. (1996b). East-west health divide and potential
explanations. In Hertzman, C., Kelly, S., and Bobak, M., editors, East-
west life expectancy gap in Europe. Environmental and non-environmental
determinants, pages 17–44. Dordrecht et al.: Kluwer.

Bongaarts, J. Five period measures of longevity. In this volume, also published
in Demographic Research, 13:547–558. 2005.

Bongaarts, J. and Feeney, G. Estimating mean lifetime. In this volume, also
published in Proceedings of the National Academy of Science, 100:13127–
13133. 2003.

Bongaarts, J. and Feeney, G. The quantum and tempo of life-cycle events.
In this volume, also published in Vienna Yearbook of Population Research,
pages 115–152. 2006.

Bongaarts, J. and Feeney, G. (1998). On the quantum and tempo of fertility.
Population and Development Review, 24:271–291.

Bongaarts, J. and Feeney, G. (2002). How long do we live? Population and
Development Review, 28:13–29.

Bourgeois-Pichat, J. (1985). Recent changes in mortality in industrialized
countries. In Vallin, J., Lopez, A. D., and Behm, H., editors, Health policy,
social policy and mortality prospects, pages 507–539. Liege: Ordina Editions.

Brouard, N. (1982). Structure et dynamique des populations. La pyramide
des années vivre, aspects nationaux et examples régionaux. Espaces, Pop-
ulations, Sociétés, 2:157–168.

Bucher, H. (2002). Die Sterblichkeit in den Regionen der Bundesrepublik
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Vallin, J. and Meslé, F. (2001). Trends in mortality in Europe since 1950:
age-, sex- and cause-specific mortality. In Trends in mortality and differ-
ential mortality, pages 31–186. Strasbourg: Council of Europe Publishing.
(Population Studies No. 36).

Van Imhoff, E. (2001). On the impossibility of inferring cohort fertility mea-
sures from period fertility measures. Demographic Research, 5:23–64.

Van Imhoff, E. and Keilman, N. (2000). On the quantum and tempo of
fertility: comment. Population and Development Review, 26:549–553.

Vaupel, J. W. Lifesaving, lifetimes and lifetables. In this volume, also published
in Demographic Research, 13:597–614. 2005.

Vaupel, J. W. (2002). Life expectancy at current rates vs. current conditions:
a reflexion stimulated by Bongaarts and Feeney’s ’How Long Do We Live?’.
Demographic Research, 7:365–377.

Vaupel, J. W., Carey, J. R., and Christensen, K. (2003). It’s never too late.
Science, 301:1679–1681.

Wachter, K. Tempo and its tribulations. In this volume, also published in
Demographic Research, 13:201–222. 2005.

Ward, M. P. and Butz, W. P. (1980). Completed fertility and its timing.
Journal of Political Economy, 88:915–940.

Wilmoth, J. R. (2005). On the relationship between period and cohort mor-
tality. Demographic Research, 13:231–280.

Winkler-Dworak, M. and Engelhardt, H. (2004). On the quantum and tempo
of first marriages in Austria, Germany, and Switzerland: Changes in mean
age and variance. Demographic Research, 10:231–263.

Zeng, Y. and Land, K. C. (2001). A sensitivity analysis of the Bongaarts-
Feeney method for adjusting bias in observed period total fertility rates.
Demography, 38:17–28.

Zeng, Y. and Land, K. C. (2002). Adjusting period tempo changes with an
extension of Ryder’s basic translation equation. Demography, 39:269–285.



Mortality tempo-adjustment 229

Appendix

In order to estimate tempo-adjusted life expectancy for western and east-
ern Germany, I followed the approach of Bongaarts and Feeney (2002), who
defined the tempo effect S(t) in life expectancy in a year t as the absolute
difference between the conventional life expectancy at birth e0(t) and the
tempo-adjusted life expectancy at birth e∗0(t) (which Bongaarts and Feeney
called the “average age at death”), thus

S(t) = e0(t) − e∗0(t). (1)

Measure e∗0(t) is defined as the average age at death in a population with
a constant number of births. This measure is closely related to the “cross-
sectional average length of life” (CAL) but it is not identical (see Guillot
2003b). In subsequent studies, Bongaarts and Feeney (in this volume p. 11 and
p. 29) presented further possibilities to estimate in a similar manner tempo-
adjusted period life expectancy from complete cohort data on births, deaths,
and migration respective cohort life tables in order to reconstruct empirically
a constant birth population for a certain period. Detailed data such as these
do not exist on the West and East German populations, however. When such
cohort data is not available (at least for a time span long enough), e∗0(t) can
be estimated by solving the equation

e0(t) = e∗0(t) −
1
b

ln
(

1 − de∗0(t)
dt

)
(2)

for e∗0(t) from conventional life table estimates, based on the assumptions
that mortality under age 30 can be neglected and that the annual changes
in the force of mortality follow a shifting Gompertz function9. For a detailed
derivation of this formula, see Bongaarts and Feeney (2002). As proposed
by Bongaarts and Feeney (2002), value b is estimated by fitting a Gompertz
model to annual age-specific death rates for ages 30-9010. Although cohort
experiences are generally connected with age-specific period death rates and
thus with the estimates of the Gompertz parameter b, Equation (2) does not

9 The application of a Gompertz model requires the assumption that mortality
under age 30 is negligible since the model does not fit the pattern of mortality
in ages below 30. As this assumption is close to reality in modern populations
with high life expectancy, it can be accepted as being applicable to western and
eastern Germany from 1975 to 2004. However, this method cannot be used in
populations with high mortality in infancy, childhood, and young adult ages.

10 Bongaarts and Feeney (2002) fitted the age-specific death rates until age 100. For
western and eastern Germany, however, official population and death data for the
time series analyzed in this chapter are available only until age 90.
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contain a direct cohort component and includes only elements derived from
period data.

Table 2 presents the estimates of parameter µ0(t) and the average of pa-
rameter b for the analyzed populations from 1975 to 2004, as done by Bon-
gaarts and Feeney (2002) for the US, Sweden, Japan, and France. The es-
timates for b for the whole series of single observation years are shown in
Tables 3 and 4, respectively. Corresponding to the observed death rates, µ0(t)
declines over time for all four populations. Similar to what is known for sev-
eral other countries, the estimated values of b are close to 0.09 among males
and 0.10 among females for both western and eastern Germany. During the
observation period, the annual estimates of b vary only little over time in each
of these populations, as can be seen from the standard deviation of b in Table
2 or from the single values in Tables 3 and 4, respectively. As with the pop-
ulations analyzed by Bongaarts and Feeney (2002), the Gompertz model fits
the observed adult death rates very well, with the average variance explained
(R2) being around 99 percent. This shows that the proportionality (or “ con-
stant shape”) assumption is approximately valid and the indirect method as
introduced by Bongaarts and Feeney (2002) can be applied.

Table 2. Estimates of the parameters of the Gompertz mortality change model,
males and females, western and eastern Germany, 1975-2004.

Average 1975-2004
µ0(1975) µ0(2004) b St. dev. b R2

Western Germany. males 6.639(·10−5) 2.276(·10−5) 0.092 0.0023 0.997
Eastern Germany. males 4.116(·10−5) 2.211(·10−5) 0.094 0.0029 0.994
Western Germany. females 1.729(·10−5) 4.322(·10−6) 0.105 0.0036 0.984
Eastern Germany. females 1.080(·10−5) 4.254(·10−6) 0.108 0.0043 0.991

Based on these data, I used a three-step procedure similar to the proce-
dure proposed by Bongaarts and Feeney (2002). First, I calculated the annual
estimates of e0(t) from 1950 to 2004 with life tables that have mortality under
age 30 set to 0. Next, I smoothed the estimates by fitting a sixth degree poly-
nomial, using the computer program Microsoft Excel. The resulting values
for the smoothed time series for life expectancy e0(t)S are provided in Tables
3 and 4, respectively. Figure 2 shows the corresponding functions together
with the original estimates for e0(t) with no mortality under age 30. It can
be seen that the trends in e30 + 30 (what corresponds to setting mortality
below age 30 to 0) are very similar to the trends in e0, shown in Figure 2.
They differ only slightly in the years 1950 to 1970, owing to the fact that
mortality below age 30 (and especially infant mortality) had a higher impact
on overall life expectancy than it has had in years more recent. Note that the
significant decrease in life expectancy at birth e0(t) for East German men in
1990 diminishes in the smoothed values e0(t)S .
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To estimate tempo-adjusted life expectancy e∗0(t), the original values for
e0(t) are substituted by values e0(t)S derived from the polynomial func-
tions. To finally solve Equation (2) for e∗0(t), I used the so-called Euler’s
method, with S(1950) = 2 as the initial condition for the differential equa-
tion. From Equation (1) then follows that e∗0(1950) can be directly estimated
from e0(1950)−S(1950). For instance, for West German males it follows that
e∗0(1950) = 71.28 − 2.00 = 69.28. This value represents the assumed tempo
distortion for mortality changes until the year 1950, which was equally set for
all populations observed, and thus the female and male populations of West
and East Germany. The results for the analyzed years after 1975 are not en-
tirely insensitive to this assumed initial condition for the year 1950 but its
effect on the estimates is relatively weak11. An application of Euler’s method
leads to an estimate for the tempo-adjusted life expectancy e∗0(1951) for the
next year from the equation:

e∗0(1951) = e∗0(1950) +
{
1 − exp

[−b(1950)
(
e0(1950)S − e∗0(1950)

)]}
or generally written from

e∗0(t + 1) = e∗0(t) +
{
1 − exp

[−b(t)
(
e0(t)S − e∗0(t)

)]}
. (3)

Equation (3) was used to estimate a complete time series of values for
tempo-adjusted life expectancy at birth (with no mortality under age 30)
until 2004 for western and eastern German females and males. For a more
detailed derivation of Equation (3), see Luy (2005a).

11 Setting the initial condition to S = 1 or S = 3 causes the estimated West-east
German differences in tempo-adjusted life expectancy to deviate from the chosen
initial condition S = 2 by less than 0.01 years for the analyzed years 1975 to
2004; when setting the initial condition to S = 0 or S = 4, the deviation does not
exceed 0.02 years.
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Table 3. Estimates of e0(t), e0(t)
S , b, e∗0(t), and S(t) for single calendar years,

males, western and eastern Germany, 1975-2004 (no mortality under age 30).

Year West Germany East Germany
t e0(t) e0(t)

S b e∗0(t) S(t) e0(t) e0(t)
S b e∗0(t) S(t)

1975 71.17 71.46 0.091 70.91 0.27 71.28 71.49 0.098 71.36 -0.08
1976 71.49 71.59 0.089 70.96 0.53 71.46 71.47 0.093 71.37 0.09
1977 71.96 71.73 0.090 71.01 0.95 71.59 71.44 0.094 71.38 0.21
1978 71.85 71.89 0.091 71.07 0.77 71.33 71.41 0.094 71.39 -0.06
1979 72.20 72.06 0.088 71.15 1.05 71.20 71.38 0.095 71.39 -0.19
1980 72.29 72.23 0.088 71.22 1.07 71.07 71.35 0.097 71.39 -0.31
1981 72.39 72.42 0.089 71.31 1.08 71.38 71.32 0.092 71.38 -0.01
1982 72.63 72.62 0.090 71.40 1.23 71.44 71.30 0.092 71.38 0.06
1983 72.78 72.82 0.089 71.51 1.27 71.66 71.28 0.093 71.37 0.29
1984 73.18 73.03 0.091 71.62 1.57 71.70 71.28 0.094 71.36 0.34
1985 73.26 73.24 0.092 71.74 1.52 71.57 71.29 0.096 71.35 0.21
1986 73.54 73.45 0.091 71.87 1.67 71.51 71.33 0.095 71.35 0.16
1987 73.84 73.67 0.094 72.00 1.84 71.70 71.38 0.094 71.35 0.35
1988 74.07 73.88 0.093 72.14 1.92 71.56 71.46 0.092 71.35 0.21
1989 74.13 74.09 0.094 72.29 1.84 71.88 71.57 0.093 71.36 0.52
1990 74.22 74.29 0.094 72.45 1.77 71.14 71.71 0.090 71.38 -0.24
1991 74.35 74.49 0.092 72.61 1.74 71.31 71.89 0.087 71.41 -0.10
1992 74.68 74.69 0.091 72.77 1.91 71.77 72.10 0.090 71.45 0.32
1993 74.70 74.89 0.094 72.93 1.77 72.01 72.34 0.092 71.51 0.51
1994 74.96 75.08 0.094 73.09 1.86 72.40 72.63 0.090 71.58 0.82
1995 75.05 75.27 0.092 73.26 1.78 72.81 72.95 0.094 71.67 1.14
1996 75.27 75.47 0.093 73.43 1.84 73.27 73.30 0.092 71.78 1.49
1997 75.68 75.67 0.094 73.61 2.07 73.89 73.68 0.095 71.91 1.98
1998 75.99 75.89 0.094 73.78 2.21 74.43 74.08 0.095 72.07 2.37
1999 76.28 76.12 0.095 73.96 2.31 74.82 74.49 0.099 72.24 2.58
2000 76.54 76.37 0.093 74.15 2.39 75.03 74.91 0.096 72.44 2.59
2001 76.93 76.66 0.095 74.33 2.60 75.52 75.32 0.096 72.65 2.87
2002 77.06 77.00 0.095 74.53 2.53 75.63 75.71 0.098 72.88 2.75
2003 77.16 77.38 0.096 74.74 2.42 75.76 76.06 0.100 73.12 2.64
2004 77.76 77.84 0.096 74.96 2.80 76.33 76.34 0.099 73.37 2.96
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Table 4. Estimates of e0(t), e0(t)
S , b, e∗0(t), and S(t) for single calendar years,

females, western and eastern Germany, 1975-2004 (no mortality under age 30).

Year West Germany East Germany
t e0(t) e0(t)

S b e∗0(t) S(t) e0(t) e0(t)
S b e∗0(t) S(t)

1975 76.84 77.10 0.101 75.59 1.25 75.91 76.07 0.106 75.34 0.57
1976 77.17 77.28 0.100 75.73 1.43 76.15 76.10 0.105 75.41 0.73
1977 77.74 77.48 0.102 75.88 1.86 76.53 76.14 0.103 75.48 1.05
1978 77.74 77.68 0.101 76.03 1.71 76.34 76.18 0.106 75.55 0.79
1979 78.03 77.89 0.099 76.18 1.85 76.40 76.23 0.106 75.61 0.79
1980 78.27 78.11 0.102 76.34 1.93 76.17 76.28 0.105 75.68 0.50
1981 78.34 78.33 0.102 76.50 1.84 76.37 76.35 0.105 75.74 0.63
1982 78.57 78.56 0.102 76.67 1.90 76.57 76.43 0.105 75.80 0.77
1983 78.76 78.79 0.102 76.85 1.91 76.82 76.52 0.106 75.87 0.95
1984 79.23 79.01 0.102 77.03 2.20 76.85 76.64 0.107 75.93 0.92
1985 79.30 79.24 0.104 77.21 2.09 76.77 76.77 0.107 76.01 0.76
1986 79.47 79.45 0.106 77.40 2.07 76.73 76.93 0.112 76.08 0.64
1987 79.82 79.67 0.108 77.60 2.22 77.14 77.11 0.111 76.17 0.97
1988 80.02 79.87 0.105 77.80 2.22 77.17 77.31 0.108 76.27 0.90
1989 80.07 80.07 0.104 77.99 2.08 77.49 77.54 0.105 76.38 1.11
1990 80.05 80.25 0.105 78.19 1.87 77.44 77.80 0.103 76.49 0.95
1991 80.26 80.43 0.106 78.38 1.87 77.69 78.09 0.101 76.62 1.07
1992 80.59 80.59 0.104 78.58 2.02 78.38 78.40 0.108 76.76 1.62
1993 80.50 80.74 0.106 78.77 1.74 78.86 78.74 0.106 76.92 1.94
1994 80.78 80.89 0.107 78.96 1.82 79.18 79.10 0.118 77.10 2.08
1995 80.89 81.02 0.107 79.14 1.75 79.53 79.47 0.108 77.31 2.23
1996 80.98 81.15 0.106 79.32 1.66 79.86 79.86 0.105 77.52 2.35
1997 81.32 81.29 0.108 79.50 1.82 80.43 80.26 0.115 77.73 2.69
1998 81.55 81.42 0.108 79.68 1.87 80.76 80.65 0.111 77.99 2.77
1999 81.71 81.57 0.108 79.85 1.86 81.18 81.03 0.115 78.24 2.94
2000 81.93 81.74 0.108 80.02 1.91 81.47 81.39 0.113 78.52 2.95
2001 82.19 81.93 0.111 80.19 2.00 81.75 81.71 0.110 78.79 2.96
2002 82.20 82.17 0.114 80.36 1.84 81.72 81.98 0.117 79.07 2.65
2003 82.21 82.46 0.112 80.55 1.66 81.97 82.18 0.115 79.36 2.61
2004 82.76 82.81 0.111 80.74 2.02 82.48 82.30 0.111 79.63 2.84



III. Comparison of period and

cohort measures of longevity



Five period measures of longevity�

John Bongaarts

Population Council, 1 Dag Hammarskjold Plaza, New York, NY 10017, USA.
E-mail: jbongaarts@popcouncil.org

Summary. This study provides a summary of recently proposed alternatives period
measures of “longevity” and assesses whether empirical differences between these
measures are consistent with predictions from analytic studies. Particular attention
is given to the tempo effect. Three of the five period measures are virtually equal
to one another in a simulated population in which mortality follows a Gompertz
model with a constant rate of improvement. Similar results are observed among
females in Denmark, England and Wales and Sweden in the last quarter century.
However, these three measures differ substantially from the conventional period life
expectancy when mortality changes over time. These findings are consistent with
theoretical analysis by Bongaarts and Feeney (2002, in this volume p. 11 and p. 29)
which demonstrated that this deviation is caused by a tempo effect whose size varies
with the rate of change in mortality.

1 Introduction

The most widely used measure of period mortality is life expectancy at
birth calculated with a conventional life table. Alternative period measures
of “longevity” exist, but have found very limited application. The purpose of
this note is to provide a brief summary of recently proposed alternatives and
to assess whether empirical differences between these measures are consistent
with predictions from analytic studies. Particular attention will be given to
the tempo effect as a cause of differences between measures. Comparisons rely
on simulations in which the force of mortality follows a Gompertz model with
a constant rate of improvement over time. Empirical estimates are also pro-
vided for three countries with long historical data series. A brief concluding
comment summarizes the main reasons why certain measures differ and why
others are nearly the same.
� c©2005 Max-Planck-Gesellschaft, reprinted with permission
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2 Definitions of period longevity measures

2.1 Life expectancy

e0(t) =
∫ ∞

0

exp
{
−

∫ x

0

µ(a, t) da

}
dx (1)

where µ(a, t) is the force of mortality at age a and time t. Standard demo-
graphic text books (e.g. Preston et al. 2001) discuss the calculation of this
conventional measure. Estimates of e0 are available for most countries of the
world (United Nations, 2003)

2.2 Cross-sectional average length of life (Brouard 1986, Guillot,
2003)

CAL(t) =
∫ ∞

0

pc(a, t − a) da (2)

where pc(a, t − a) equals the proportion of survivors at age a and time t for
the cohort born at time t−a. CAL(t) sums proportions of cohort survivors at
time t and it therefore equals the size of the population at time t in a closed
population in which births have occurred at a constant rate of 1 per year in
the past.

2.3 Tempo adjusted life expectancy (Bongaarts and Feeney in this
volume p. 11; Vaupel in this volume p. 93)

e∗0(t) =
∫ ∞

0

exp
{
−

∫ x

0

µ(a, t)
1 − r(t)

da

}
dx (3)

This is a variant of the conventional period life expectancy, but the tempo
effect in the force of mortality is removed by dividing this rate by 1−r(t). The
variable r(t), which is assumed to be the same for all ages, denotes the incre-
ments to life (or the delay in deaths) due to mortality improvements at time
t. Vaupel (in this volume p. 93) refers to e∗0(t) as the “true life expectancy.”
Bongaarts and Feeney (in this volume p. 11) estimate r(t) as

r(t) =
dCAL(t)

dt
(4)

This estimate holds in populations in which the function pc(a, t− a) shifts to
higher and lower ages over time while maintaining its shape as longevity rises
or falls. Bongaarts and Feeney (in this volume p. 11) examine this so-called
“shifting assumption” and demonstrate that it provides a good approximation
of observed patterns of adult mortality in recent decades in three high income
countries.



Five period measures of longevity 239

2.4 Lagged cohort life expectancy (Bongaarts and Feeney in this
volume p. 29; Goldstein in this volume; Rodriguez in this volume)

LCLE (t) = ec
0(c) = ec

0(t − ec
0(c)) (5)

LCLE at time t is estimated as the life expectancy of the cohort born at time
c with the lag between t and c equal to the life expectancy of the cohort:
c = t − ec

0(c). LCLE equals the life expectancy of the cohort that reaches its
mean age at death at time t.

This measure is similar to one proposed and used by Ryder (1980) to study
fertility trends. In Ryder’s analysis of tempo effects in fertility he compared
the quantum and tempo observed at time t with the quantum and tempo
of the cohort born M years ago where M equals the mean age at birth for
the cohort. In the mortality process there are no cohort quantum effects, but
period and cohort tempo may be compared with (5).

2.5 Average weighted cohort life expectancy (Schoen and
Canudas-Romo, 2005)

ACLE (t) =
∫ ∞

0

w(a, t)ec
0(t − a) da (6)

where w(a, t) are the weights for the life expectancy of cohorts born at time
t − a.

Schoen and Canudas-Romo (2004) estimate these weights as

w(a, t) =
pc(a, t − a)

CAL(t)
(7)

Thus, ACLE (t) equals the weighted average of the life expectancies of the
cohorts present at time t, with each cohort weighted by its probability of
survival to time t.

The following empirical analysis will be limited to these five measures
although others have been proposed (see for example Bongaarts and Feeney
in this volume p. 11) and variants of these five might be constructed (e.g.,
alternative weights for ACLE (t)).

3 Results

To compare these five period indicators simulations are used in which mor-
tality follows a Gompertz model with a constant rate of improvement over
time. Following the basic model of Vaupel (1986) as extended by Schoen et
al. (2004), the force of mortality at time t and age a is given by
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µ(x) = αeβxe−ρt (8)

where α and β are the Gompertz level and slope parameters, and ρ equals the
rate of mortality improvement. These parameters are held constant through-
out a simulation.

Each simulation calculates the five longevity measures for a 50-year period
using α = 0.00001887 and β = 0.1. With these parameter values e0(t) equals
80.0 years at time t = 0. The trend in e0(t) during the 50 year simulation
depends on the rate of mortality improvement. With ρ = 0, e0(t) remains
constant, with ρ = 0.01 it rises linearly to 85 years and with ρ = 0.02 it rises
linearly to 90 years. The simulation results are presented in Table 1. Figure 1
plots values for ρ = 0.02.

In the absence of mortality change ( ρ = 0 ) all five period measures are
constant and equal to one another (first panel of Table 1). With declining
mortality ( ρ > 0 ) differences arise, but three of the measures are nearly
equal to one another throughout the simulation period:

CAL(t) ≈ e∗0(t) ≈ LCLE (t) (9)

However, e0(t) is higher than these three measures and ACLE (t) is much
higher still.

The simulations in Table 1 were repeated for different values for α, β with
similar results. Lower values of α raised all estimates for all measures by the
same amount, but kept the difference between them unchanged. Variations
in β also made a difference but results will not be presented here because
empirical estimates differ little from 0.1. The effect of changes in values of
β as well as ρ can be estimated with an equation obtained by Bongaarts
and Feeney (2002). They prove that the difference e0(t) − e∗0(t) (called the
tempo effect) can be estimated as − ln(1 − de∗0(t)/ dt)/β = − ln(1 − ρ/β)/β)
if mortality follows a Gompertz pattern with a constant rate of change in the
force of mortality. According to this equation the difference between e0(t) and
e∗0(t) equals 1.05 years when ρ = 0.01 and 2.23 years when ρ = 0.02 (assuming
β = 0.1). These analytic estimates agree closely with the simulation results
in Table 1.

Figures 2a, b, c plot estimates of four of the five period measures of
longevity for females in Denmark, England and Wales, and Sweden from 1925-
2000. Each measure is calculated with µ(a, t) = 0 for a < 30 to insure that the
shifting assumption holds approximately. ACLE (t) is not included because its
estimation requires projections of future mortality for more than a century.
The results are consistent with the simulations: conventional life expectancy
is higher than the other measures and CAL(t) ≈ e∗0(t) ≈ LCLE (t) in recent
decades.
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Table 1. Values of five period longevity measures in Gompertz model with declining
mortality.

Time. t e0(t) CAL(t) e∗0(t) LCLE (t) ACLE (t)
ρ = 0

0 80 80 80 80 80
25 80 80 80 80 80
50 80 80 80 80 80

ρ = 0.01
0 80 78.96 78.96 78.97 83.23
25 82.5 81.46 81.45 81.46 85.87
50 85 83.95 83.95 83.96 88.5

ρ = 0.02
0 80 77.8 77.79 77.84 87.25
25 85 82.79 82.78 82.81 92.88
50 89.99 87.78 87.77 87.79 98.5
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Fig. 1. Trends in five period longevity measures in a Gompertz model with declining
mortality (α = 0.000018866, β = 0.1, ρ = 0.02).

4 Discussion

A detailed discussion of the alternative longevity measures and their strength
and weaknesses is beyond the scope of this descriptive note, and only brief
comments on the most noteworthy findings will be provided.

First, in the simulations, three of the period longevity indicators CAL(t),
e∗0(t) and LCLE (t) are virtually identical to one another. This finding is con-
sistent with the analytic results by Bongaarts and Feeney (in this volume
p. 11) who prove that CAL(t) = e∗0(t) in populations in which the shifting
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Fig. 2a. Trends in alternative period measures of longevity for females in
Denmark, 1925-2000. No mortality under age 30.

65

70

75

80

85

1925 1950 1975 2000

L
o
n
g
e
v
it
y

(y
e
a
rs

)

e0(t )

CAL(t )

e0
*
(t )

LCLE(t )

Fig. 2b. Trends in alternative period measures of longevity for females in
England and Wales, 1925-2000. No mortality under age 30.

assumption holds. As noted, pc(a, t − a) is assumed to shift to higher and
lower ages over time as longevity rises or falls. In the simulations based on the
Gompertz model presented in Table 1, this shifting assumption is very closely
approximated except at ages near zero. The error is small because the force
of mortality around age zero is very small for a Gompertz with the parameter
values used here. The finding that lagged cohort life expectancy LCLE (t) is
virtually identical to CAL(t) is expected from Goldstein (in this volume) and
Rodriguez (in this volume) who prove that LCLE (t) = CAL(t) if the shifting
assumption holds and if the shift is linear (i.e. annual changes in CAL(t) are
constant). This result is also consistent with the analysis of cohort and period
tempo of fertility by Ryder (1980).
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Fig. 2c. Trends in alternative period measures of longevity for females in
Sweden, 1925-2000. No mortality under age 30.

Second, the conventional life expectancy at birth e0(t) is substantially
higher than three other period measures CAL(t), e∗0(t) and LCLE (t). The
difference between e0(t) and e∗0(t) is constant throughout the simulation but
varies with the rate of improvement in mortality: it equals 2.2 years with
ρ = 0.02, 1.05 years with ρ = 0.01 and 0 when ρ = 0. These findings are
consistent with the mortality tempo effect described by Bongaarts and Feeney
(2002, in this volume p. 11 and p. 29).

Third, the weighted average cohort life expectancy ACLE (t) is much
higher than the other four indicators. This difference is not surprising since
the weights applied to the life expectancies of cohorts alive at time t are high-
est for the youngest (i.e. most recent) cohorts. As a consequence, this measure
is heavily influenced by the mortality that young cohorts will experience in
the future. This is confirmed by Schoen and Romo (2004) who conclude that
ACLE is roughly the arithmetic mean of the period life expectancy at time t
and the cohort life expectancy of the cohort born in year t.

The empirical results for females in Denmark, Sweden, and England in Fig-
ure 2 are similar to the simulation findings for recent decades i.e., since approx-
imately the 1970s. However, in earlier decades, differences between CAL(t),
e∗0(t) and LCLE (t), while still small, are no longer negligible. The probable
reason for the modest divergence between CAL(t) and e∗0(t) before ca. 1970
is that the shifting assumption is then less accurate. The reason for the ap-
pearance of a small but significant divergence between CAL(t) and LCLE (t)
in the earlier period is presumably that the assumption of linear change in
CAL(t) is more accurate later than earlier in the last century.
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5 Conclusion

Three of the five period measures of longevity are virtually equal to one an-
other in a population in which mortality follows a Gompertz model with a
constant rate of improvement. Similar results are observed among females in
Denmark, England and Wales and Sweden in last quarter century. This equal-
ity is as expected from earlier analytic work by Bongaarts and Feeney (2002,
in this volume p. 11 and p. 29), Goldstein (in this volume) and Rodriguez (in
this volume). The finding that these three measures differ substantially from
the conventional period life expectancy when mortality changes over time is
consistent with theoretical analysis by Bongaarts and Feeney (2002,in this
volume p. 11 and p. 29). They demonstrate that the deviation of e0(t) from
the other period longevity measures is caused by a tempo effect whose size
varies with the rate of change in mortality.
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Found in translation?
A cohort perspective on tempo-adjusted life
expectancy �

Joshua R. Goldstein

Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057
Rostock, Germany. E-mail: goldstein@demogr.mpg.de

Summary. What does tempo-adjusted period life expectancy measure? Taking a
cohort perspective, I show that under conditions of constant linear mortality shifts
the tempo-adjusted period indicator translates exactly to the cohort born e∗0(t)
years earlier. I discuss the implications of cohort translation for the interpretation
and application of tempo-adjusted period life expectancy.

1 Introduction

Life expectancy at birth is at root a cohort concept. It tells us how long, on
average, the members of a cohort survive. Actual life expectancy can only
be known fully for cohorts born long ago. To summarize recent mortality
conditions and period-to-period variation, the hypothetical concept of period
life expectancy is conventionally used. But even period life expectancy refers
conceptually to a cohort – the hypothetical one that lives according to the
rates observed in a single period.

When mortality conditions are improving, period life expectancy is less
than that of the cohort born in the period. This is because the hypothetical
cohort following the period life table is deprived of future mortality improve-
ment.

I recite this basic property of period life expectancy because the “tempo
adjusted” method of measuring period life expectancy – as developed by Bon-
gaarts & Feeney (2002) – arrives at exactly the opposite conclusion. Accord-
ing to Bongaarts and Feeney, period life expectancy overstates longevity when
mortality conditions are improving. They conclude: “Our main finding is that
the conventional calculation of period life expectancy at birth gives a mislead-
ing indication of how long we live. We are not living as long as we thought we
were.” (p. 25).

� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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To be fair, Bongaarts and Feeney, except at a few points, are not talk-
ing about cohorts. Instead, they intend e∗0 as a period measure that tries to
improve upon period life expectancy. What such an improved period indica-
tor actually measures is the subject of much debate as is clear from many
of the chapters in this volume. The approach taken here is to recast tempo-
adjustment in cohort terms. Doing this enables us to resolve the counter-
intuitive direction of tempo-adjustment by showing which cohort B&F are
referring to when they say “we.”

The approach is similar to that of Goldstein & Wachter (2004), which
showed – using a different model of temporal mortality change – the corre-
spondence between period life expectancy e0 and the life expectancy of par-
ticular cohort. Here, I look at which cohort has the life expectancy equal to
current tempo-adjusted life expectancy e∗0. I find that under linearly shifting
mortality, defined below, tempo-adjusted life expectancy for year t translates
to the cohort dying in year t: this is the cohort born e∗0 years earlier.2

An additional assumption is needed for this simple cohort translation of e∗0
to hold exactly. B&F’s tempo-adjustment assumes that deaths are postponed
uniformly across all ages, with the size of the shift possibly varying from year
to year. To this I add the assumption that the size of the shift is constant from
year to year, a pattern I call “linear shifts.” As will be seen, the linear shift
pattern is consistent with quite recent mortality trends above age 30 in low
mortality populations. The linear shift assumption is, however, not a general
feature of human populations. Prior to World War II, change was distinctly
non-linear in many countries. It remains to be seen whether the recent linear
shift pattern will continue.

Under the linear shift model, the current tempo-adjusted period life ex-
pectancy has the same value as the life expectancy of a past cohort. This cor-
respondance with cohorts from the past explains why Bongaarts and Feeney’s
measure is less, not more, than current period life expectancy.

Furthermore, under linear shifts, it is possible to obtain directly the life
expectancy of the cohort born in every period, including the current one, a
quantity that is arguably of more interest than e∗0.

Neither B&F’s tempo-adjustment nor the discussion presented here applies
to life expectancy at birth. Instead, both ignore all mortality before about age
30. For notational simplicity, the current discussion follows B&F, using the
shorthand of e0, e∗0, and ec

0 to refer to the period, tempo-adjusted period,
and cohort life expectancies at birth, assuming no mortality below age 30. In
traditional demographic notation, these quantities would be written e30 + 30,
e∗30 + 30, and ec

30 + 30.3

2 This result was suggested in simulation by Bongaarts (2004), who also found that
it held approximately in modern real-world populations.

3 Although we use B&F’s shorthand here, it is worth keeping in mind that although
mortality below age 30 is low in modern industrialized populations, e30 +30 does
not equal e0. In the 2002 Swedish female period life table, ignoring under-30
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2 Proof of exact cohort translation

Let lc(a, t) be the surviving proportion of a cohort born at time t − a and
aged a at time t. For all a ≤ 0, define lc(a, t) = 1 for all t. This formulation
amounts to the same thing as B&F’s requirement of no mortality below age
30.

A proportionally shifting surface lc(a, t) consistent with B&F’s propor-
tionality assumption is obtained by shifting the baseline lc(a, 0) up or down
the age axis by an amount F (t) such that

lc(a, t) = lc(a − F (t), 0), (1)

again letting lc(a, t) = 1 for a−F (t) ≤ 0. The fact that F (t) is not a function
of age is the B&F’s proportionality assumption. The additional assumption
of linearity over time in the shifts can be introduced by letting F (t) = rt.

The cohort born at time τ has life expectancy

ec
0(τ) =

∫ ∞

0

lc(a, τ + a) da.

Following Bongaarts & Feeney (in this volume p. 11), the adjusted period
life expectancy e∗0(t) is equal to

CAL(t) =
∫ ∞

0

lc(a, t) da.

I use the CAL notation to emphasize its correspondence with the “cross sec-
tional average length of life” introduced by Brouard (1986) and developed by
Guillot (2003) .4

I want to show that

ec
0(τ) = CAL(τ + ec

0(τ)). (2)

Showing this demonstrates that the approximation given by Bongaarts (2004),

ec
0(t − e∗0(t)) ≈ e∗0(t), (3)

actually holds exactly.5

This equality is shown as follows by expressing ec
0(τ) and CAL(τ + ec

0(τ))
in terms of CAL(0) =

∫ ∞
0

lc(a, 0) da.

mortality increases life expectancy by 0.6 years, more than a third of the 1.6
years tempo-effect that B&F find for Sweden 1980-1995.

4 The quantity CAL used here differs from that used by Brouard and Guillot in
that it assumes no child or young adult mortality under a given age such as 30.

5 To see the correspondance, substitute t = τ + ec
0(τ) and note that from (2)

ec
0(τ) = CAL(t) = e∗0(t).
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Linear proportional shifts means that the cohort born at time τ has a
survival curve that resembles the initial profile lc(a, 0), except that each age
“a” is shifted to age a − r(τ + a). In effect, a member of the cohort “feels
younger” than they are by a factor of r(τ + a), where the rτ term accounts
for the improvements up to the date at which the cohort is born, and the
ra term accounts for the additional improvements obtained by the time the
cohort reaches age a. Cohort period life expectancy under linear shifts can be
written in terms of the baseline survival at time 0 as

ec
0(τ) =

∫ ∞

0

lc(a − r(τ + a), 0) da.

To evaluate, substitute u = a(1 − r) − rτ and da = du/(1 − r). This gives

ec
0(τ) =

1
1 − r

∫ ∞

0−rτ

lc(u, 0) du. (4)

Recalling that for u ≤ 0, lc(u) = 1, the integral evaluates to

ec
0(τ) =

CAL(0) + rτ

1 − r
. (5)

We can evaluate CAL(τ +ec
0(τ)) in a similar manner. The linearly shifting

age distribution means that CAL(t) is simply growing linearly with time. For
any t,

CAL(t) =
∫ ∞

0

lc(a, t) da =
∫ ∞

0

lc(a − rt, 0) da.

Substituting u = a − rt and du = da,

CAL(t) =
∫ ∞−rt

0−rt

lc(u) du = CAL(0) + rt. (6)

To prove (2), we are interested in t = τ + ec
0(τ). From (6),

CAL(τ + ec
0(τ)) = CAL(0) + r(τ + ec

0(τ)).

Substituting from (5) for ec
0(τ),

CAL(τ + ec
0(τ)) = CAL(0) + rτ + r

CAL(0) + rτ

1 − r
,

which simplifies to

CAL(τ + ec
0(τ)) =

CAL(0) + rτ

1 − r
. (7)
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The right-hand side of this last expression is identical to the right-hand side
of equation (5) for ec

0(τ), which is what we wanted to show to prove (2).
Note that this change of variable approach is perfectly general for any

survival curve lc(a, 0) and any r �= 1. It does not require Gompertzian survival
or any other particular form of the hazards.

3 Discussion

We have shown that tempo-adjusted period life expectancy e∗0(t) under linear
shifts is equal to the life expectancy of the cohort dying in that year t.

The equality of tempo-adjusted life expectancy with lagged cohort life
expectancy provides us with an alternative way to think about e∗0. Whereas
B&F use e∗0 as a counterfactual estimate of period mortality corrected for
tempo distortion, we have shown here that in the context of steadily shifting
survival curves e∗0 is also a measure of cohort life expectancy.

Both interpretations are interesting and potentially useful. I would argue
that the B&F interpretation is most valuable in conditions of sudden mortality
change, whereas the cohort interpretation is more valuable in conditions of
steady mortality change.

Below I lay out two extreme scenarios that help us to understand the
difference. Bongaarts and Feeney introduced the first in their 2002 paper; the
second is explored by their paper in this volume as well as the chapter by
Rodriguez (in this volume).

3.1 A single magic pill

The story of the “life extension” pill discussed by Bongaarts and Feeney (in
this volume p. 11) illustrates the potential advantages of tempo-adjustment in
the case of a sudden shift in survival. (See Figure 1a.) On January 1, everyone
in a previously stationary population takes a pill postponing their previously
programmed date of death by 3 months. Everyone born afterwards also takes
the pill. The effect of such a pill in the year it is taken is to reduce the number
of deaths by one-fourth, since no one will die in the first 3 months of the year.
In the year the pill is introduced, death rates also fall by about one-fourth,
raising life expectancy dramatically, not by the three months indicated by the
pill but by several years because of the enormous drop in death rates.

In the case of a single such pill, period life expectancy spikes in the year
the pill is taken and then falls thereafter to a constant value equal to the
pre-pill life expectancy plus the extension granted by the pill. This makes
the measurement taken in the year the pill appeared suspect, a candidate for
tempo-adjustment. As panel (a) shows, e0 shows a spike in the year the pill
is introduced, but e∗0 shows no spike, instead attributing the appropriate 3
month increase in life expectancy.
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Source: Panel (a) from B&F (2003) Figure 5, with illustrative ec
0(t) added. Panel (b) calculated

for e0 growing linearly from 65 to 75 at a rate of 0.1 years per year, with

e∗
0(t) = e0(t)[1 − r ∗ H] and ec

0(t) = e∗
0/(1 − r), where r = 0.1 and H = .3.

Fig. 1. Time paths of period and cohort life expectancy and of tempo-adjusted
period life expectancy in (a) single shift scenario and (b) linear shift scenario.
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The figure also shows cohort life expectancy for those born in each year.
From a cohort view, adjusted-life expectancy performs well in the year that the
pill is taken. In that year, unadjusted e0 overestimates the life expectancy of
the cohort being born, but the adjusted period measure e∗0 accurately predicts
cohort life expectancy. In the years following the pill introduction, both e∗0
and e0 are equal to ec

0. In the years before the pill is taken, however, neither
period life expectancy nor adjusted period life expectancy matches cohort life
expectancy because neither period measure can foresee the subsequent sudden
increase in longevity.

The lesson to be drawn from this scenario is that under a sudden mor-
tality shock, akin to the one-time pill6, e∗0 provides a better indication of the
implications of the shock for cohort mortality than does e0.

3.2 A series of magic pills

Now let us consider the case where such pills are given year after year, con-
tinually re-extending life by some constant amount each year. This scenario is
the one investigated mathematically above and is illustrated in Figure 1b. In
this case, we still have e(t) larger than e∗0(t), but rather than this difference
occurring in a single year as in the single-pill example, it persists over time.
Now, the equality of e∗0(t) is not with the cohort born in year t, as in the
single year example, but rather with the cohort born e∗0(t) years earlier that
is dying in year t. This result from the formal analysis is illustrated by the
dotted lines in the figure showing that ec

0(0) = 70 = e∗0(70).
Under linear shifts that result from a series of pills, it would clearly be

wrong to interpret tempo-adjusted life expectancy as an estimate of the cohort
born in year t. The adjustment moves period life expectancy farther from, not
closer to, that of the cohort.

3.3 Which scenario is more realistic?

We can now ask which of these two cases bears more resemblance to observed
patterns of mortality change. Here there is no debate. Bongaarts and Feeney
(2002 and in this volume p. 11) answer this question quite clearly in their em-
pirical analysis of 1980-1995 France, Sweden and the United States (See for
example figure 6 of B&F in this volume p. 11). In every case, the improvement
of mortality by all measures has been steady. There is no historical example
that bears any resemblance to the one-time pill example. Tuljapurkar, Li &
Boe (2000) show, using methods different from the shift model, that since
World War II, steady mortality decline is the rule throughout the industrial-
ized world.
6 See Le Bras (in this volume), who argues that even those one-time shocks that

are observed do not occur in a manner that delay or advance deaths uniformly
by age.
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Fig. 2. Observed time paths of mortality change for Swedish females. Panel (a):
Mortality change over all ages as measured by CAL(t) Panel (b): Contour plot of
cohort survival lc(a, t) using isoclines intersecting lc(30), lc(35), . . . , lc(95) in 1950.
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It is useful to look at a longer course of time. Panel (a) shows CAL –
what Bongaarts and Feeney call e∗0 – for Sweden females from 1920 to 1995.
Bongaarts & Feeney (in this volume p. 11) figure 6 shows the last 15 years
of this series. Linearity in CAL implies linear shifts. We see that the near
linearity they find for 1980-1995 is a continuation of the post-World War
II pattern. Before this, however, the pace of improvement was considerably
slower. There is no evidence from looking at CAL of sporadic large mortality
shifts of the kind in the single-pill scenario. Rather, the last half-century has
been consistent with the linear shift scenario.

We can see in detail at how close both the proportionality and linear
shift assumptions hold by looking at the full lc(a, t) surface (Panel (b)). The
contour plot shows the isoclines of lc(x, t) at the levels seen in 1950 for x =
30, 35, . . . 95. For example, the contour labeled “0.048” shows the age at which
lc(90, 1950) is reached over the course of the century, and we can see that by
1995 this level of survival was reached at age 95 rather than 90.

Proportionality can be checked by looking at whether the slopes at dif-
ferent ages change simultaneously. The linearity of the shifts requires further
that the contours be straight lines. The figure shows there were few shifts at
all in the first two decades of the century in Sweden. Starting after World
War I, and the influenza epidemic, survival to younger ages started to shift,
followed by shifts in survival to older ages after World War II. Since about
1950, the contours are nearly linear and nearly parallel, particularly above
age 60, when most deaths are occurring. Overall, neither proportionality or
linearity seems a good description for the whole century. However, the linear
shift model does not seem at odds with recent decades. The only evidence of
mortality change that resembles the single-pill example is perhaps the 1918
influenza epidemic, but even this does not appear across all ages.

3.4 Telling the future

If we expect linear shifts well into the future, then we can go one step further.
We have seen that under linear shifts, e∗0 understates even more dramatically
than period life expectancy the survival of those born in a period. However,
the same derivation we used to show the cohort that has life expectancy e∗0(t)
can also be used to show the life expectancy of the cohort born in year t.
Replacing τ with t and substituting from (6), we find

ec
0(t) = e∗∗0 =

e∗0(t)
1 − r

, (8)

where we use e∗∗0 to denote the rescaled e∗0. Although e∗0(t) is itself a rather
out-of-date measure referring to a cohort born long before t, the simplicity of
the linear shift model allows us to go from e∗0(t) to the cohort born in year t
by rescaling.

These exact relationships for steady mortality change should hold approx-
imately when there are small variations in the pace mortality improvement.
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If there is no temporal autocorrelation, the variations will cancel each other
out. Such random ups and downs seem to encompasses the modern experience
of mortality decline in advanced industrial countries, forming the basis of the
Lee-Carter stochastic forecasting method (Lee and Carter 1992). Systematic
slowdowns or accelerations that last many years can make the relationship
between e∗0 and ec

0 quite different from the results found here. 7

3.5 The order of mortality measures

With an exact expression for cohort life expectancy, we can now provide a full
description of the ordering of different measures of life expectancy and their co-
hort translations under linear shifts. Table 1 shows tempo-adjusted period life
expectancy, unadjusted period life expectancy, and rescaled tempo-adjusted
life expectancy for Sweden using the same data as B&F and the cohort trans-
lation of these quantities. The table reiterates the point we began with that
cohort life expectancy is larger, not smaller, than period life expectancy if we
are considering the cohort born in the period. It shows that e∗0 actually refers
to the cohorts born around 1900-1915, not cohorts born in 1980-1995.

In this example, period life expectancy and tempo-adjusted period life
expectancy are close to each other relative to cohort life expectancy. The
ordering e∗0 < e0 << e∗∗0 applies quite generally in conditions of improving
mortality. Letting H denote Keyfitz’s measure of life table entropy, e∗0 in-
creases the observed mortality rates by a factor of about 1 + r, which reduces
life expectancy by about a factor of 1−Hr (Keyfitz 1985). Life table entropy
is small, on the order of 0.2, and so if r = 0.1, e∗0 ≈ 0.98e0. To see that e∗∗0
is larger than either of these, note that dividing e∗0 by 1 − r gives a quantity
substantially greater than e0.8

7 A more general expression for cohort mortality can be given as follows. Let rt be
the shift in year t and Rt be the cumulative shift

∫ t

0
rtdt. In this case, cohort life

expectancy is given in terms of the baseline survival profile as

ec
0(τ) =

∫ ∞

0

lc(a − Rτ+a, 0) da.

Substituting u = a − F (τ + a) and da = du/[1 − r(τ + a)],

ec
0(τ) =

∫ ∞

−Fτ

lc(u)[1 − rτ+a]−1 du.

This reduces to (4) for when rτ+a is a constant. When rτ+a varies only slightly
and in a manner that is uncorrelated with lc(u), then fluctuations should not
influence ec

0(τ) much, since shifts larger-than-average shifts will be cancelled out
by smaller-than-average shifts.

8 Formally, if entropy is sufficiently large then the inequality need not hold. But high
H implies a high variance of age at death, typically in the form of high mortality
among children, an age-group that is excluded from the Bongaarts-Feeney shift
model.
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Table 1. Ordering and cohort translation of period and tempo-adjusted period
measures under linear shifts.

Period or Estimate for Sweden, Cohort
tempo-adjusted 1980-95 translation
period measure
e∗30 + 30 79.4 ec

0(t − e∗0) ≈ ec
0(1900 − 1915)a

e30 + 30 81.1 ec
0(t − λ) ≈ ec

0(1905 − 1920)b

e∗∗30 + 30 = e∗0+30

(1−r) 94.5 ec
0(t) ≈ ec

0(1980 − 1995)c

a This cohort life table value was reached by the cohort of 1909, according to
www.mortality.org.
b λ < e∗

0 but exact value unknown; 1905-1920 is a rough estimate.
c Assuming continued linear shifts.

Values for e∗
30 + 30 and e30 + 30 from B&F(2004) Table 1. e∗∗

30 + 30 calculated as
e∗
0

(1−r) using

r = 0.16 as estimated by author from www.mortality.org. In “Cohort translation” column ec
0 is

used as shorthand for ec
30 + 30.

Without a crystal ball, we don’t know for sure how long the cohorts born
from 1980 to 1995 will live. But what we do know, assuming continued mortal-
ity decline, is that e∗0 is clearly the worst measure, giving an even lower figure
than the already too low period life expectancy. If we are going to adjust
period life expectancy, we should readjust it again to produce not the cohort
born long ago, but rather our best guess at the cohort born today, e∗∗.9

4 Conclusion

Some critics of Bongaarts and Feeney’s theory of mortality tempo effects ar-
gue that its assumption of uniform postponement of death across all ages is
unrealistic. Others argue that e∗0 is not really a period measure, but rather
depends on the history of the population. In this chapter, my approach has
not been to try to debunk tempo-adjustment but rather to take it even further
by assuming that the Bongaarts and Feeney’s uniform shift repeats itself over
many decades – so long that cohort mortality becomes a simple function of
the baseline mortality schedule and the pace of the shift.

Under these conditions, two results were found. First, e∗0(t) translates to
cohort life expectancy for those born e∗0(t) years earlier, long before the period
under consideration. Second, the cohort life expectancy of those born today,
or in any year t, can be found by a simple inflation of e∗0(t). Viewed this
way, e∗0(t) itself is not a measure of great interest. It does not tell us what is

9 Incidentally, this figure of 94.5 years is not out-of-line with optimistic forecasts.
Oeppen & Vaupel (2002) predict that record period life expectancy will be 95
by 2040, which would apply to cohorts born about 1970 or 1980 (Goldstein and
Wachter 2004).
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happening in year t – this is given by the unadjusted period life table. It does
not tell us the future – this is given by the life table of the new-born cohort.
Rather it tells us about the cohort born in the past that is, on average, dying
in year t.10

If mortality change were to be sudden, and to occur in such a way as to
advance or to postpone deaths uniformly across all ages, tempo-adjustment
could produce measures giving a valuable sense of the implications of the
mortality rates seen during shocks. The difficulty, so far, is that mortality
change has not occurred in this way. Recent history in the industrialized
world has been has been one of steady, not sudden, mortality change. In this
context, the linear shift model provides a framework for understanding what
tempo-adjusted life expectancy is actually measuring and for developing even
more informative indicators.
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Summary. The preceding chapters in this volume provide a broad ranging and
stimulating analysis of our claim that conventional estimates of period life ex-
pectancy may be distorted by a mortality tempo effect. Much new insight into
the process of mortality change and its measurement has been gained, but there is
no clear consensus on the existence, nature and size of the tempo effect. Views from
different contributors range widely from strongly supportive to dismissive.

The purpose of this note is to comment briefly on the main question raised about
our analysis of the mortality tempo effect: Is our tempo adjusted life expectancy a
current measure of mortality conditions as we (and Vaupel in this volume p. 93 and
Guillot in this volume) believe or a measure of the past as suggested by Rodriguez
(in this volume) and Wachter (in this volume)?

1 Do tempo adjusted period longevity measures reflect
current mortality conditions?

Conventional analyses of levels and trends in period mortality indicators such
as life expectancy at birth are based on the assumption that current mortality
rates measure current mortality conditions. Vaupel (2002, in this volume p.
93) concludes that mortality rates do not necessarily represent mortality con-
ditions because of heterogeneity in mortality risks and/or because of delays
in deaths, where “death delays” refer to the empirical tendency of survival
curves to shift uniformly to the right at ages beyond young adulthood. We
focus here on the role of death delays.

To clarify what is meant by “conditions” we turn to a published comment
of Hajnal (1948). Discussing the relation between the marriage rate and the
population age and sex structure he observes that

...we must know how, given the present marriage habits of the pop-
ulation, marriage rates would change as the age and sex structure of
the population changes.
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The remark is notable as an early articulation of the idea that demo-
graphic phenomena may or may not be adequately described by rates in the
conventional sense of the word.

By “conditions” we mean what Hajnal meant by “habits:” an idea about
how the phenomena in question “works” that may be represented by a math-
ematical model. The model will express the phenomena in question in terms
of one or more parameters that describe the state of the system. If the values
of these parameters cannot be directly observed, we will search for observ-
able quantities that provide information on (and preferably determine) the
parameter values.

The distinction between rates and conditions implies two potentially dif-
ferent period longevity measures defined as follows:

e0(t) = the mean age at death implied by current mortality rates
M(t) = the mean age at death implied by current mortality conditions

We will refer to e0(t) as the conventional or unadjusted life expectancy and
to M(t) as the adjusted life expectancy. The interpretation of these period
measures and any distortions in them depends on how the underlying process
is modeled, as we discuss below.

1.1 The conventional “rates” perspective

The conventional “rates” perspective on the measurement of longevity holds
that observed mortality rates (hazards or rates of the first kind) are the ap-
propriate measures of period mortality and e0(t), calculated from these rates,
is the most appropriate measure of period longevity. All other mortality vari-
ables, including M(t), are derived from these rates. Expectation of life at
birth, for example, is calculated as

e0(t) =
∫ ∞

0

exp
(
−

∫ a

0

µ(x, t) dx

)
da. (1)

where µ(x, t) denotes the force of mortality at age x and time t.
As Wachter (in this volume) points out, our estimate of M(t), obtained

with equation (3) below, is related to the conventional period life expectancy
as

M(t) ≈
∫ t

−∞
wt(x)e0(x) dx (2)

thus making M(t) a weighted average of e0(t). (We follow Wachter’s simpli-
fying assumptions and use his notation)

The conception of “how mortality works” in this context, how the under-
lying process is modeled, is rarely made explicit, but a plausible underlying
model is that of organisms exposed to shocks and stresses imposed by their
environment that may result in immediate death. This being the case, the
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numbers of deaths will be linear function of the number of persons exposed to
risk, which function is fully specified by the ratio of deaths to persons at risk.
Mortality rates are in this case a faithful representation mortality conditions.

1.2 The “conditions” perspective

In what we call the “conditions” perspective, adult mortality in high life
expectancy populations “works” differently. Individuals die when their allot-
ment of life has been exhausted. An allotment can increase or decrease over
time as mortality conditions in successive periods vary during the individual’s
life. In this perspective the most appropriate measure of period longevity is
M(t), with all other mortality variables, including e0(t), derived from these
fundamental conditions.

M(t) is a period indicator of current mortality conditions and is defined
as the life expectancy of the cohort born in year t if no further changes in
conditions occur after time t (see Vaupel in this volume p. 93 and Guillot in
this volume for similar definitions).

As shown by Vaupel (in this volume p. 93) current conditions by age can
be estimated as µ(x,t)

1−δ(t) and the adjusted period life expectancy of life is given
by

M(t) =
∫ ∞

0

exp
(
−

∫ a

0

µ(x, t)
1 − δ(t)

dx

)
da (3)

where δ(t) equals the increment to life at time t, i.e., the addition made to
the life lines of everyone alive at time t as mortality declines.

Equation (3) is the same as the one provided by Bongaarts and Feeney (in
this volume p. 11 and p. 29), who estimate δ(t) as the rate of change in the
adjusted life expectancy, δ(t) = dM(t)

dt , and present methods for the estimation
of δ(t). Note that nothing on the right side of equation (3) depends on the
past: µ(x, t) is the current force of mortality and δ(t) equals the delay in the
timing of future deaths caused by changes in conditions at time t.Vaupel (in
this volume p. 93) calls M(t) the “true” life expectancy at birth. Guillot (in
this volume) concludes that M(t) can be interpreted as an indicator reflecting
current mortality conditions under specific assumptions.

In the mortality conditions perspective, the conventional period life ex-
pectancy is considered distorted and it is determined by M(t) as follows

e0(t) = M(t) + g(t)
dM(t)

dt
(4)

This equation is obtained by rearranging equation (7) in Wachter (in this
volume); Bongaarts and Feeney (2002) and Guillot (2003, in this volume)
provide similar equations. (For Gompertz mortality with a fixed slope, g(t) ≈
β−1.)

Equation (4) shows that conventional period life expectancy differs from
the adjusted life expectancy M(t) by an amount that depends on the rate at
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which M(t) is changing. This means that e0(t) will be a distorted measure
of period longevity implied by current mortality conditions. The difference
between e0(t) and M(t) is the mortality tempo effect.

It is important to note that (2) and (4) are both expressions relating e0(t)
and M(t). In fact, (2) is the solution to differential equation (4), which means
that substitution of (2) in (4) yields an identity. The difference between these
equations is that M(t) is the independent variable in (4), whereas e0(t) is the
independent variable in (2).

The chapters by Rodriguez, and Wachter focus on the conventional rates
perspective. In this perspective, current rates and the e0(t) calculated from
them are not distorted and M(t) depends on past rates. Vaupel (2002) and
Bongaarts and Feeney (2002, in this volume p. 11 and p. 29) focus on the
perspective in which individuals die when their allotment of life has been
exhausted. In this perspective, M(t) is independent of the past force of mor-
tality, as shown by (3), and e0(t) is distorted. Guillot (in this volume) provides
descriptions and insightful comments on these two perspectives.

The preceding discussion contrasts two quite different perspectives, based
on two different models for the process of mortality, but it leaves open the
question as to which model is the better representation of the reality of human
mortality. A full discussion of this issue is beyond the scope of this note but we
believe that the rates perspective is largely correct for causes of deaths that
occur more or less at random (e.g. deaths from infection, accidents and vio-
lence, which predominate in childhood and among young adults). In contrast
the conditions perspective is correct for mortality at older ages when deaths
do not occur randomly but are instead the result of senescence. Senescence
refers to the slow deterioration of cellular and physiological processes which
precedes deaths from degenerative diseases, mostly above about age 30. This
is why Bongaarts and Feeney (2002, in this volume p. 11 and p. 29) restrict
their analysis of the mortality tempo effect to ages above 30.

1.3 An illustration

To clarify the distinction between the rates and conditions perspectives we
will now present a brief analysis of these contrasting approaches in a model
population. In this population every newborn receives a ticket with a prede-
termined age at death (a random variable). Let T (t) denote the average age on
the tickets issued in year t, but the age on any person’s ticket can be changed
at any time during the person’s life, for example if the person lives through a
year in which medical or public health discoveries occur. Innovations in year
t (e.g. new drugs, surgical techniques) in medicine or public health raise ev-
eryone’s life expectancy (the ticket value) provided the innovations remain
effective over time.

Let r(t) denote the increment to the age on the ticket made in year t.
Suppose that the increment r(t) may vary from year to year, but it is the
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same for all individuals alive at time t. This implies that the increment to the
value of the ticket does not depend on the age of the person holding it.

To illustrate, suppose that the average value of these tickets has been
constant and equal to T (0) until year 0 (i.e. r(t) = 0 for t < 0), and that
mortality improvements occur after t = 0. The average value of the ticket
given to a newborn in year t then equals T (0) plus the sum of all improvements
between years 0 and t so that in continuous time

T (t) = T (0) +
∫ t

0

r(x) dx (5)

and

r(t) =
dT (t)

dt
(6)

In this model population the above equations apply and it can be shown
that

a. the adjusted life expectancy, which measures current conditions, equals
T (t), because T (t) equals the mean age at death of the cohort born at
time t if no further improvements in mortality conditions occur in the
future:

M(t) = T (t) (7)

b. the conventional unadjusted life expectancy differs from the ticket value
and hence from M(t), and the difference depends on the rate of improve-
ment in mortality conditions. This follows from equation (4) :

e0(t) > M(t) for r(t) > 0 (8)

and

e0(t) < M(t) for r(t) < 0

That is, when mortality conditions are improving the conventional life
expectancy derived from rates exceeds the ticket value M(t) and the reverse
is true when the mortality conditions are deteriorating. The difference between
these measures is the mortality tempo effect which varies with the value of r(t)
but is independent of the past. (If mortality follows a Gompertz the tempo
effect equals approximately r(t)

β ). The reason for the existence of the tempo
effect is the thinning out of events in any year in which r(t) is positive. As
conditions improve in year t deaths that would have occurred in the year t
without the improvement are postponed to some future year thus reducing the
density of deaths in year t. This postponement and hence the thinning out of
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events continues as long as conditions keep improving (e.g. with constant non
zero r(t), the values of e0(t) and M(t) will differ but they will change over
time at the same pace).

As shown by Bongaarts and Feeney (2002, in this volume p. 11 and p.
29) the distortion caused by this thinning can be removed by making an
adjustment which divides the observed but distorted force of mortality by
(1 − r(t)). Using this adjusted force of mortality in a conventional life table
yields M(t) which equals T (t). Vaupel (in this volume p. 93) has a very similar
view of this process (in his chapter he uses δ(t) for r(t))

In sum, as noted by Vaupel (2003), life expectancy under current condi-
tions does not equal life expectancy under current rates. The conventional
period life expectancy is of course a summary measure of current rates (e0(t)
in fact equals the inverse of the weighted average of age specific mortality
rates), but when mortality conditions are changing e0(t) does not measure
these conditions accurately. Under the specified simplifying assumptions, our
adjusted life expectancy measures the life expectancy implied by current mor-
tality conditions and it is therefore not a measure of past mortality conditions.

2 Conclusion

The calculation of period life expectancy from hazard rates with conventional
mortality life tables originated more than two centuries ago, when infectious
diseases were the primary causes of death and life expectancy at birth in
European countries was less than half of current levels. The contemporary
“model” for human mortality seems never to have been made explicit, but it
evidently embodied the idea of people being “struck down” by events in the
environment. This model is far less relevant today than it was two centuries
ago, but we are so accustomed to the rates perspective on which the period
life table is based that we tend to accept it without question.

Our research into tempo effects has lead us to a thorough reconsideration
of the fundamentals of mortality measurement. We take it for granted that
measurement is based on some understanding of the process that generates
the observed phenomena, deaths in this case. If the nature of the phenomena
changes, as it has with respect to mortality, it is appropriate to reconsider
whether existing measurements are still appropriate. We agree with Vaupel
that, with respect to measurement of mortality, this is often not the case.

This brief note documents the mathematical relationships between longev-
ity measures derived from the rates and conditions perspectives. We believe
that the assumptions underlying the latter are applicable to senescent mor-
tality which dominates in contemporary low mortality countries. In the con-
ditions perspective the conventional period life expectancy gives a distorted
estimate of the life expectancy implied by current mortality conditions. This
tempo distortion is positive when mortality conditions are improving and neg-
ative when they are deteriorating. Most countries are currently experiencing



Afterthoughts on the mortality tempo effect 269

improvements, and their conventionally calculated period life expectancies
therefore have an upward distortion.
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Turbulence in lifetables: Demonstration by
four simple examples

James W. Vaupel

Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057
Rostock, Germany. Email: jwv@demogr.mpg.de

Summary. To understand why mortality change can distort calculations of death
rates and life expectancy, it is informative to consider some examples that are as
simple as possible. This short chapter presents four such illustrations. They show
how lifesaving can roil lifetable statistics.

1 Introduction

Demographic change can distort demographic rates. In particular, mortal-
ity change can distort period death rates, life expectancy and other lifetable
statistics. This fact is considered from various perspectives in earlier chapters
of this monograph, including my chapter on “Lifesaving, lifetimes and lifeta-
bles”. Some demographers, however, still do not accept the surprising and
uncomfortable reality. The main reason seems to be that published explana-
tions, including those in this book, are difficult to comprehend. My chapter
and my earlier article on “Life expectancy at current rates vs. current condi-
tions” are hard to read, in large part because they were hard to write. John
Bongaarts and Griff Feeney started to correspond with me about tempo ef-
fects on mortality in early 2001. It took me hundreds of hours of thinking,
spread out over several years, before I finally understood the issues sufficiently
well to feel confident about my comprehension and it is only recently that I
have been able to explain to students why demographic change roils period
rates.

As with other puzzling concepts that seem counterintuitive given our ed-
ucation (but eventually become intuitive when we re-educate ourselves), the
best entre to comprehending mortality turbulence is to consider some ex-
amples that are as simple as possible. This short chapter presents four such
illustrations.



272 James W. Vaupel

2 Saving infant lives for one year

Consider the special case of a closed population with a constant mortality
regime that has prevailed for many years. Suppose there are only four ages,
ages 0, 1, 2 and 3. Each year exactly 100 individuals are born, all on January
1st. All deaths occur on July 1st, halfway through the year. The last survivors
die at exact age 3.5. The first three columns of Table 1 provide statistics about
this prevailing regime. Exactly 40 individuals die at age 0, 20 at age 1, 20 at
age 2 and 20 at age 3. Life expectancy at birth is 1.7 years. The statistics for
each period are identical to the corresponding statistics for each birth cohort.
To highlight the fact that individuals age along diagonals, the population sizes
and death counts for the cohorts born in years 1 and 4 are shaded light grey.

Table 1. Population statistics at different ages and times when 30 lives are saved
at age 0 and extended by one year.

Year
Age Statistic 1 2 3 4 5 6 7
0 e 1.7 1.7 1.7 2.3 2 2 2

P 100 100 100 100 100 100 100
D 40 40 40 10 10 10 10
q 0.4 0.4 0.4 0.1 0.1 0.1 0.1

1 e 1.5 1.5 1.5 1.5 1.17 1.17 1.17
P 60 60 60 60 90 90 90
D 20 20 20 20 50 50 50
q 0.33 0.33 0.33 0.33 0.556 0.556 0.556

2 e 1 1 1 1 1 1 1
P 40 40 40 40 40 40 40
D 20 20 20 20 20 20 20
q 0.5 0.5 0.5 0.5 0.5 0.5 0.5

3 e 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P 20 20 20 20 20 20 20
D 20 20 20 20 20 20 20
q 1 1 1 1 1 1 1

Total deaths 100 100 100 70 100 100 100

Note: The new mortality regime starts in year 4. The letter e denotes remaining life expectancy,
P population size, D number of deaths and q probability of death. The values in italics pertain
to times prior to the mortality shift. The values in bold are discordant with subsequent values
prevailing after the shift. Population sizes and death counts for the cohorts born in years 1 and
4 are shaded grey.
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At the start of year 4, a new mortality regime replaces the old one. The
number of deaths at age zero is reduced from 40 to 10. The 30 individuals
whose lives are saved die at age one: their lives are extended by exactly one
year. This is the only change in the mortality regime-but it results in changes
in various statistics.

Note that the number of deaths in year 4 is 70 rather than 100. This
reflects the fact that 30 lives were saved. These individuals, however, die in
year 5, so in year 5 the number of deaths returns to the stationary level of
100 per year. As in year 4, the lives of 30 infants are saved in year 5 and in
subsequent years, but starting in year 5 the resuscitated die, adding 30 deaths
that balance the 30 lives saved.

Examine the number of age-specific deaths each year. Note that at age 0
this number falls from 40 to 10 in year 4, but that it rises at age 1 from 20 to
50 in year 5.

Consider the age-specific probabilities of death. Note that q(0) drops from
.4 to .1 in year 4 and afterwards and that q(1) rises and does so starting in
year 5. This is a very simple example of the “delayed gerontological failure
of pediatric success”: saving lives at younger ages can result in higher death
rates at older ages in later years.

In the 4th year, 60 individuals are alive at the start of age 1. They are the
survivors of the 100 individuals born in the 3rd year. The new mortality regime
does not affect them: as in earlier years 20 of them die and the probability
of death remains 0.33. Because remaining life expectancy at age 2 stays at
1.0, remaining life expectancy at age 1 stays at a level of 1.5. This is readily
verified by using the formula:

e(1) = 0.5q(1) + (1 + e(2))(1 − q(1)) .

The formula is true because those who die in the year die halfway through
the year, adding half a year to life expectancy, whereas those who survive get
a year of life that year plus remaining life expectancy at age 2.

A similar formula can be used to calculate life expectancy at birth:

e(0) = 0.5q(0) + (1 + e(1))(1 − q(0)) .

The formula yields a life expectancy at birth of 2.3, some 0.6 years higher
than the previous level of 1.7.

In year 5 and thereafter life expectancy at birth is calculated not as 2.3
but as 2.0. The value of 2.0 is the correct value for the new regime: 30 lives–
30% of the number of births–were saved for one year, adding 0.3x1 = 0.3 to
the previous life expectancy of 1.7. The underlying mortality regime in year
4 is the same as in later years, but the calculated q(1)’s are different. The
reason is that at age 1 in year 4 there were 20 deaths out of a population
of 60 but in subsequent years there are 50 deaths out of a population of 90.
The population size at age 1 in year 5 is 90 and the number of deaths is 50
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because 30 lives were saved for one year at age 0 the year before. These saved
individuals do not contribute to the death count in year 4.

This simple example is proof that mortality change can roil lifetable statis-
tics. And the example points to the explanation. A second example helps
clarify the nature of the turbulence.

3 Saving infant lives for three years

In Table 2, the mortality regime before the shift is the same as in Table 1.
Now, however, the 30 lives saved at age zero are extended not by one but by
three years. Note that the column of statistics for year 4 is identical for Tables
1 and 2. The same number of lives are saved–and it is this that determines
the column of statistics. How long the lives are extended has no impact on
year 4. Hence, as in Table 1, life expectancy at birth in year 4 in Table 2 is
calculated as 2.3 years.

Lifetable statistics are also distorted in year 5. Note that the values of e,
P , D and q at age 2 in year 5 are the same as they were in earlier years-even
though the mortality regime changed in year 4. The underlying reason for this
is that those saved in year 4 have not died yet–they first die in year 7.

As shown for years 6 and 7, life expectancy under the new regime is not
2.3 or 2.45 years but 2.6 years. Under the old regime, life expectancy was 1.7.
Under the new regime, 30% of the population at age zero gains 3 years of life.
Hence the new life expectancy is 1.7 plus .3 times 3, or 2.6. The erroneous
values of 2.3 and 2.45 calculated in years 4 and 5 are simply a result of the fact
that 30 deaths were averted in year 4 and it is not known, in years 4 and 5,
when these individuals will die. In year 6 and subsequently, it is known-they
will die at age 3. Hence the true life expectancy can be calculated.

4 Saving infant lives for two years on average

In Table 3, some 30 lives are also saved starting in year 4, but now 10 of them
are extended by one year, 10 by two years and 10 by three years. As in Tables
1 and 2, life expectancy at birth in year 4 is computed as 2.3, but now this
turns out to be the correct value. The age-specific population sizes and death
counts do not reach a new equilibrium until year 5 at age 1, year 6 at age 2
and year 7 at age 3. The probabilities of death, however, that are implied by
these numbers are the correct values and so are the resulting calculations of
age-specific life expectancies.

The reason is as follows. In computing lifetables using standard methods, it
is assumed that all persons have the same life chances. If lives are saved, then
it is assumed that those saved get the same life chances as those who would
have survived anyway. In Tables 1, 2, and 3, the individuals who survived to
age 1 under both the old and new regimes faced probabilities of death such
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Table 2. Population statistics at different ages and times when 30 lives are saved
at age 0 and extended by three years.

Year
Age Statistic 1 2 3 4 5 6 7
0 e 1.7 1.7 1.7 2.3 2.45 2.6 2.6

P 100 100 100 100 100 100 100
D 40 40 40 10 10 10 10
q 0.4 0.4 0.4 0.1 0.1 0.1 0.1

1 e 1.5 1.5 1.5 1.5 1.67 1.17 1.17
P 60 60 60 60 90 90 90
D 20 20 20 20 20 20 20
q 0.33 0.33 0.33 0.33 0.222 0.222 0.222

2 e 1 1 1 1 1 1.214 1.214
P 40 40 40 40 40 70 70
D 20 20 20 20 20 20 20
q 0.5 0.5 0.5 0.5 0.5 0.286 0.286

3 e 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P 20 20 20 20 20 20 50
D 20 20 20 20 20 20 50
q 1 1 1 1 1 1 1

Total deaths 100 100 100 70 70 70 100

Note: The new mortality regime starts in year 4. The letter e denotes remaining life expectancy,
P population size, D number of deaths and q probability of death. The values in italics pertain
to times prior to the mortality shift. The values in bold are discordant with subsequent values
prevailing after the shift. Population sizes and death counts for the cohorts born in years 1 and
4 are shaded grey.

that a third of them died at age 1, a third at age 2 and a third at age 3. In
Table 3, the individuals whose lives were saved at age 0 got exactly the same
life chances–a third of them die at age 1, a third at age 2 and a third at age
3. But in Tables 1 and 2 the resuscitated face different mortality schedules
than those not saved. In Table 1 they have a 100% chance of death at age 1;
in Table 3 they have a 100% chance of death at age 3.

5 Saving everyone’s life for one year

How is “turbulence in lifetables” illustrated above related to “tempo effects
on mortality”? If tempo effects are broadly defined as distortions arising from
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Table 3. Population statistics at different ages and times when 30 lives are saved
at age 0, with 10 extended by one year, 10 by two years and 10 by three years.

Year
Age Statistic 1 2 3 4 5 6 7
0 e 1.7 1.7 1.7 2.3 2.3 2.3 2.3

P 100 100 100 100 100 100 100
D 40 40 40 10 10 10 10
q 0.4 0.4 0.4 0.1 0.1 0.1 0.1

1 e 1.5 1.5 1.5 1.5 1.5 1.5 1.5
P 60 60 60 60 90 90 90
D 20 20 20 20 30 30 30
q 0.33 0.33 0.33 0.33 0.33 0.33 0.33

2 e 1 1 1 1 1 1 1
P 40 40 40 40 40 60 60
D 20 20 20 20 20 30 30
q 0.5 0.5 0.5 0.5 0.5 0.5 0.5

3 e 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P 20 20 20 20 20 20 30
D 20 20 20 20 20 20 30
q 1 1 1 1 1 1 1

Total deaths 100 100 100 70 80 90 100

Note: The new mortality regime starts in year 4. The letter e denotes remaining life expectancy,
P population size, D number of deaths and q probability of death. The values in italics pertain
to times prior to the mortality shift. The values in bold are discordant with subsequent values
prevailing after the shift. Population sizes and death counts for the cohorts born in years 1 and
4 are shaded grey.

changes over time in death rates, then the two phrases are synonymous. Bon-
gaarts and Feeney introduced the concept of tempo effects on mortality with a
more specific meaning: tempo effects result from changes in mortality that uni-
formly extend (or shorten) everyone’s remaining lifespan by the same amount.
This is analogous to their concept of tempo effects on fertility and is in keep-
ing with the meaning of tempo in music. Bongaarts and Feeney’s idea is so
interesting and stimulating that it seems appropriate to use “tempo effects on
mortality” to describe it. Table 4 provides a simple illustration, albeit a crude
one because Bongaarts and Feeney hypothesize that tempo effects occur only
at adult ages.



Turbulence in lifetables: Demonstration by four simple examples 277

In year 4 everyone’s life is extended by one year. Those who would have
died at age 0 now die age 1 (one year later). Similarly those who would have
died at age 1, 2 or 3 now die at age 2, 3 or 4–again, one year later. Because no
one dies in year 4, life expectancy is infinite. Actually, however, life expectancy
has been extended exactly one year–from 1.4 years to 2.4 years.

Table 4. Population statistics at different ages and times when all lives at all ages
are saved and extended by one year.

Year
Age Statistic 1 2 3 4 5 6 7
0 e 1.7 1.7 1.7 ∞ 2.7 2.7 2.7

P 100 100 100 100 100 100 100
D 40 40 40 0 0 0 0
q 0.4 0.4 0.4 0 0 0 0

1 e 1.5 1.5 1.5 ∞ 1.7 1.7 1.7
P 60 60 60 60 100 100 100
D 20 20 20 0 40 40 40
q 0.33 0.33 0.33 0 0.4 0.4 0.4

2 e 1 1 1 ∞ 1.5 1.5 1.5
P 40 40 40 40 60 60 60
D 20 20 20 0 20 20 20
q 0.5 0.5 0.5 0 0.33 0.33 0.33

3 e 0.5 0.5 0.5 ∞ 1 1 1
P 20 20 20 20 40 40 40
D 20 20 20 0 20 20 20
q 1 1 1 0 0.5 0.5 0.5

4 e 0.5 0.5 0.5
P 20 20 20
D 20 20 20
Q 1 1 1

Total deaths 100 100 100 0 100 100 100

Note: The new mortality regime starts in year 4. The letter e denotes remaining life expectancy,
P population size, D number of deaths and q probability of death. The values in italics pertain
to times prior to the mortality shift. The values in bold are discordant with subsequent values
prevailing after the shift. Population sizes and death counts for the cohorts born in years 1 and
4 are shaded grey.
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6 Discussion

These four simple examples demonstrate how and why mortality change can
distort lifetable statistics. Table 1 shows that if those whose lives are saved
gain less additional life expectancy than those whose lives are not saved,
then conventional calculations can overestimate true life expectancy. Table 2
shows that if the resuscitated gain more than the remaining life expectancy
of those not saved, then conventional calculations can underestimate true
life expectancy. Table 3 shows that if the remaining life chances (i.e., future
age-specific chances of death) of the resuscitated and the non-resuscitated
are the same, then conventional computations result in correct estimates of
life expectancy and of age-specific death rates. Finally Table 4 shows that if
mortality improvements extend everyone’s life by the same amount, a tempo
effect, then conventional calculations can result in overestimates of life ex-
pectancy. This is explained in detail in my earlier chapter in this volume, but
the general point is more clearly illustrated by the simple examples of this
chapter.

Note that turbulence in lifetables does not depend on a mental model in
which the lifespans of individuals are predetermined. The lifetables in this
chapter could have been described in terms of random hazards of death and
I occasionally used this perspective in the explanations above. The crucial
question is: what are the age-specific chances of death for those whose lives
have been saved as a result of improvements in death rates? If their chances are
the same as the chances for those not saved, then conventional calculations are
correct. If, however, they have different chances, then conventional lifetables
are distorted until it is learned, with the passage of time, when the resuscitated
die.

Conventional calculations rely on the assumption of homogeneity in life
chances for everyone, regardless of whether their lives were saved or not. Bon-
gaarts and Feeney make a very different kind of homogeneity assumption:
they postulate that mortality improvements extend everyone’s life by the same
amount. All populations are heterogeneous and the resuscitated undoubtedly
differ from the non-resuscitated and from each other in their remaining life
chances. Hence, both conventional calculations and the tempo assumption are
wrong. The truth probably lies somewhere in-between.

Some readers may object to my using the phrase “true life expectancy”. I
define it as the average length of life for a synthetic cohort of newborns who
live all their lives under the current mortality regime. An alternative defini-
tion would be the average length of life calculated from current age-specific
death rates. The second definition, by definition, implies that conventional
calculations are correct. This, as I hope the four Tables illustrate, is not an
intelligent mode of thinking. The mortality regime in year 4 is the same as
thereafter, but life expectancy at birth, in Tables 1, 2 and 4, differs in year
4 from subsequent levels. The distortion is an artifact of mortality change: it
does not reflect any underlying differences in mortality regime.
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Whether or not tempo effects exist in some age range, at some time pe-
riods and in some countries is an open question that merits further research.
Whether or not mortality change produces turbulence in lifetables is no longer
a question. Research is needed, however, on how much life is extended when
a death is averted. The answer surely varies over age, time and place. Only
when better knowledge about this is available, will demographers be able to
correctly estimate life expectancy and other lifetable statistics in a world of
changing mortality.
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Two proofs of a recent formula by Griffith
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1 Introduction

In his chapter on increments to life and mortality tempo Feeney gives the fol-
lowing decomposition of the difference between the expectations of life at birth
for two cohorts (see also equation (1) on page 154), but without mathematical
proof:

ec
0(t2) − ec

0(t1) = −
∫ ∞

0

λt1,t2
c (x) dlc(x, t1), (1)

Since the correctness of this formula was contested during the reviewing pro-
cess, the editors decided to include the following brief proofs. They are equiv-
alent, but they look different and each may be useful for a different group of
readers.

2 Proof by Jutta Gampe

The function λ(x) described by Feeney, is given formally as

λ(x) = l−1
2 [l1(x)] − x (2)

when we drop some obvious subscripts and implicitly assume that everything
is invertible etc. Equation (1) can be written either as

e2
0 − e1

0 =
∫ ∞

0

{l2(x) − l1(x)} dx

or as
� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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=
∫ 1

0

{
l−1
2 (p) − l−1

1 (p)
}

dp.

A change of variables p → l1(x) leads to

∫ ∞

0

{
l−1
2 [l1(x)] − x

}
f1(x) dx =

∫ ∞

0

λ(x)f1(x) dx,

with dl1(x)/ dx = −f1(x). The latter integral equals

−
∫ ∞

0

λ(x) dl1(x)

3 Proof by Anatoli Yashin

The condition l2(x + λ(x)) = l1(x) is equivalent to the condition that the
random variables T2 and T1 + λ(T1) are identically distributed, hence ET2 =
ET1 + Eλ(T1), which is equation (1).
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