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Preface

This book is the result of the meeting of two complementary approaches
to the same subject: masonry. The first is the approach developed by Thierry
Ciblac at the Ecole Nationale Supérieure d’Architecture de Paris la Villette
(National School of Architecture of Paris La Villette), which revisits
historical design methods using digital tools. The second consists of studies
led by Jean-Claude Morel at the Ecole Nationale des Travaux Publics de
l’Etat (National Civil Engineering School), which are based on experiments
with masonry structures of earth materials. The convergence of these two
approaches occurs through the common use of the theory of yield design.

This book was written to promote understanding of the mechanical
stability of masonry structures in a contemporary context and to introduce it
to the readers. This approach will allow contractors to carry out diagnostics
on existing heritage and to design new structures.

The challenges presented by sustainability criteria have provided – or
restored – respectability to masonry constructions using earth materials. The
latest research in this area has been formalized by putting it into perspective
with historical approaches. This is done with the dual purpose of making
design methods used for old structures (mostly from the eighteenth century)
more accessible and providing “simple” tools for understanding their
behavior. In particular, developments relative to graphic statics, take on new
educational and demonstrative values with the use of digital tools.

We wish to thank Noël Challamel for proposing the idea for this book, for
his detailed proof-reading of the manuscript and for his valuable advice.
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Such a book is the fruit of a collective effort. Experimental work, in
particular, is the result of a team effort where students, contractors,
technicians, engineers and researchers cooperate.

Work on dry stone began in 1998 at ENTPE, instigated by Patrick Cohen
in the Luberon Regional Natural Park.

Work on earth began in 1981 at ENTPE, instigated by Myriam Olivier
and later, Ali Mesbah. These two researchers were eager to share their
knowledge, and J.C. Morel benefitted from their expertise upon arrival at
ENTPE. Note that Claude Boutin encouraged J.C. Morel to study the theory
of yield design in order to apply it to earth materials.

The authors are particularly thankful to a number of PhD students, whose
work has enriched this book. Laboratories and funding involved in these
PhDs are specified as following:

– Abalo P’kla (DGCB, Ecole Nationale des Travaux Publics de l’Etat –
National Civil Engineering School);

– Boris Villemus (DGCB, Ministère de l’Ecologie, du Développement
Durable et de l’Energie-MEDDE – Ministry of Ecology, Sustainable
Development and Energy);

– Givanildo Azeredo (DGCB, Conselho Nacional de Desenvolvimento
Científico e Tecnológico CNPQ-Brésil – National Council for Scientific and
Technological Development CNPQ-Brazil);

– Anne-Sophie Colas (DGCB, Ministère de l’Ecologie, du
Développement Durable et de l’Energie-MEDDE – Ministry of Ecology,
Sustainable Development and Energy);

– Quoc Bao Bui (Centre National de la Recherche Scientifique-CNRS -
National Centre for Scientific Research);

– Apostolia Th. Oikonomopoulou, (ARIAM-LAREA, Ministère de la
Culture et de la Communication – Ministry of Culture and Communication);

– Hong Hanh Le (LGCB, Ecole Nationale des Travaux Publics de
l’Etat – National Civil Engineering School).

These PhDs were carried out with the assistance of technical staff:

– Odile Roque (MEDDE technician);

– Jean-François Halouze (MEDDE technician);
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– Sébastien Courrier (MEDDE technician);

– Erwan Hamard (MEDDE technician);

– Stéphane Cointet (MEDDE technician);

– Joachim Blanc-Gonnet (CNRS research engineer).

The experimental work which forms the basis of the first part of this book
was carried out in close cooperation with builders, notably via the Ecobâtir
network, which includes Nicolas Meunier, Vincent Rigassi and Alain
Marcom, experts in earthen construction. In the field of dry stone, the series
of experiments were conducted by Paul Arnaud (OPUS) and Philippe
Alexandre (Lithos-APARE) at Le Beaucet. The second series was conducted
in Saint-Germain-de-Calberte by the Artisans Bâtisseurs en Pierres sèches
(Dry Stone Builders’ Association) led by Marc Dombre and Christian Emery.
The third series was conducted at Pont de Montvert by the Artisans
Bâtisseurs en Pierres sèches, led by Bruno Durand and Thomas Brasseur.

Denis Garnier co-supervised Anne-Sophie Colas’ thesis, the second thesis
on dry stone retaining walls, bringing her valuable skills to the optimum
implementation of yield design.

Rabia Charef-Morel carried out careful proof-reading of the manuscript
and created Figures 4.1, 4.2, 4.3, 11.1 and 11.3.

Paul McCombie, Nicolas Meunier, Bruno Durand provided the
photographs in Figures 1.1 and 1.3.

Research was also done in the context of two national projects: PEDRA
and RESTOR:

– RGCU PEDRA project No. 10 MGC S 017, studies on dry stone or
weak mortar masonry of the Civil and Urban Engineering Network,
coordinated by Eric Vincens of the Ecole Centrale de Lyon (Lyon Central
School).

– RESTOR project, restoration of dry stone retaining structures, of the
PNRCC program of the Ministry of Culture and Communication, coordinated
by Eric Vincens of the Ecole Centrale de Lyon (Lyon Central School).

Studies on rockfill dams and dry stone masonry revetment were initiated
at the instigation of EDF.
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Finally, J.C. Morel was supported by the Rhône-Alpes region in
furthering his studies in England, with a 5 month placement at the University
of Bath.

The sections on graphic statics, principles of yield design and stability of
curvilinear masonry, written by Thierry Ciblac, are directly related to his
teaching and research activities at the MAP Maacc/CNRS-MCC UMR 3495
(ex. ARIAM-LAREA) laboratory at the Ecole Nationale Supérieure
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Untersteller and François Guéna, founders and successive directors of the
laboratory, and the initiators of the research focus on digital tools to help
preserve heritage masonry. The quality of their welcome, their support and
their experiences as educators and researchers has been an invaluable aid.
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Thierry CIBLAC and Jean-Claude MOREL
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PART 1

Technologies and Construction Process





1

Introduction to Sustainable Masonry

1.1. Definitions of sustainable masonry

This book is particularly focused on masonry structures made of local
materials, stone and earth. They are among the first materials to have been
used by humans to build shelters thousands years ago and they are called, in
this book, Earth Materials. In this context, earth masonry deals with adobe or
compressed earth block, or rammed earth if the material is manufactured in
successive layers.

This book does not particularly apply to baked clay brick and cement
sand blocks, which are within the scope of Eurocode 6.

1.1.1. Sustainable constructions

Here, we consider sustainable development as defined in [BRU 87] as “a
development mode that meets the needs of present generations without
compromising the ability of future generations to meet their own needs”.

In this book, we will only consider the mechanical stability of masonry.
However, in this introductory chapter, we consider some elements of thermal
and hydric behavior, socio-economic aspects, and sustainability and
environmental impacts of these structures. These elements will include
references so that the reader, if he wishes, can further his knowledge of all
these key aspects of sustainability.

Local materials are acquired from or near the construction site. Here,
‘near’ means a distance of about 20 km. Local materials used in construction

Sustainable Masonry: Stability and Behavior of Structures, 
First Edition. Thierry Ciblac and Jean-Claude Morel. 
© ISTE Ltd 2014. Published by ISTE Ltd and John Wiley & Sons, Inc.



4 Sustainable Masonry

have an impact due to their transportation. When a material is taken from on-
site, as was often the case for earth, rubble stone masonry (rubble stone
blocks and earth or sand lime mortar) and dry stone constructions, the impact
is obviously reduced [HAB 12].

This precision concerning the implied proximity of the word “local” is
important since it implies that the production of these materials cannot be
completely industrialized. Materials therefore maintain a very variable
composition, depending on the soil that is available locally and the geology.
Therefore, it is not possible to give a standard composition of these materials.
Local materials of interest here are: cut or uncut stone assembled with (rubble
stone masonry) or without (dry stone) mortar, adobe and earth mortar and
finally rammed earth. These materials are “earth” materials.

1.1.2.Masonry structures

By masonry structures, we refer to an arrangement of blocks hand-stacked
by a mason, regularly or irregularly, with or without a mortar, over
successive layers. We exclude “Cuzco rampart” type masonry or blocks
exceeding one ton, quarry cut and assembled with a crane and Opus Incertum
in general.

This masonry is done manually, thus is greatly dependent on the mason’s
skill, but following specific rules, which form part of the mason’s skill set.
We will also consider rammed earth as a part of masonry as they depend on a
mason’s art, even if they do not constitute a stack of small elements but
rather layers of compacted earth.

In an industrial context, “sustainable development” can be interpreted as
requiring structures to be designed based on criteria, taking all environmental
consequences (in the broad sense of the word) induced by these constructions
into account. However, the objects discussed here are the result of a systemic
approach whereby an optimum is obtained according to environmental and
sustainability criteria, amongst others, which revert to being current.
Vernacular architecture was erected in a context of limited resources and
energy shortages, thus respecting the criteria of minimum impact on the
planet. Their age provides an obviously tangible guarantee of durability.
However, we must also consider the innovation that characterizes sustainable
masonry, as the use of old materials in a modern context can only be
achieved through an adjustment that includes innovation.
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1.2. Challenges of sustainable development in construction

The use of earth materials in construction allows a technological leap in
terms of sustainability. A case study shows that for structural work of this
type of construction, transport of materials (expressed in t.km), that is to say
the amount of mass transported over a given distance, can be reduced five-
fold, and embodied energy [MOR 01] can be reduced three-fold – embodied
energy is the energy required to manufacture the “product” from its design to
the end of its life. [HAB 10, HAB 12] presents an alternative method for
quantifying the impact of construction using earth materials, which offer
notable benefits in terms of their low impact. Moreover, another case study
shows that work time on the construction site is tripled: this work has a
positive impact upon the economy because it requires skills [MAR 09].

1.2.1. Socio-economic aspects

Our context concerns materials and therefore structures for which new
constructions are few and far between in 21st Century Europe, as they are
transformed and constructed primarily by manual labor. Society’s choice of
industrialization is reflected in the price of non-animal energy (electricity, oil,
etc.), which is one to two hundred times cheaper than human labor
[MAR 02]. Under these conditions, new constructions or restorations are hard
to carry out with short term competitive costs, while the need to innovate
increases; this also comes at a cost. However, there are hundreds of new
structures and many more renovations carried out using masonry with earth
materials. These sites provide some figures for numerical analysis. Socio-
economic aspects are the least well-covered to our knowledge, however
information on these challenges can be found in [MAR 02, MAR 09,
RIG 02].

1.2.2. Environmental impact

Many more studies have been carried out on environmental impact than
on socio-economic aspects. General tools currently used for calculating this
impact are still being developed, but mature tools already exist for industrial
materials and structures. These include lifecycle analysis (LCA). These tools,
despite their complexity, are inadequate for technologies and architectures
using earth materials [HAB 12]. In addition, the databases necessary for their
use are not yet available in the case of earth materials.
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The two best-covered areas in the published literature are embodied
energy and energy expended during service (mainly for heating buildings). In
France, thermal regulations (RT) only apply to the consumption of service
energy. With increasing generalization of construction of “passive” buildings
that do not consume “external” service energy or energy efficiency, the
concept of embodied energy should become more important.

[HAB 12] covers works of art, particularly dry stone retaining walls, and
the case study [BAU 12] covers rubble stone masonry bridges. For earth
material buildings, see [MOR 01, MAR 02, MAR 09].

1.2.3. Sustainability

Sustainability is an important point in works on earth materials, but it
depends on the geology of the site, and as for all structures, the quality of
maintenance. It also depends on the design, the quality of implementation
and therefore on cultural, economic or political criteria. However, it
should be noted that paradoxically, the trend continues to favor
conventional industrial approaches and therefore constructions with low
durability by, for example, decreasing the thickness of concrete and the
quantities of steel used.

Compared to current design criteria, monumental constructions such as
Roman bridges appear to be oversized, while more vernacular structures are
undersized, for example dry stone retaining walls used in farming. In the first
case, the aim was to limit maintenance work in accordance with the available
manual labor force; in the other case, it was to save manual labor on
rebuilding collapsed parts after a storm, if necessary.

Unsuitable contemporary renovations have a more or less significant
effect on reducing the lifecycle of earth materials and can even cause their
sudden destruction. These consequences are the result of two main families
of errors: coatings that are not sufficiently porous, and mechanical
reinforcements that are too rigid to survive earthquakes. This last point is
further detailed in [FER 05]. Further details concerning the case of industrial
coatings which can not be applied to earthen material walls may be found in
[ECO 13].

For sustainability issues concerning physicochemical actions, such as
those caused by pollution or salt, readers may wish to consult the thesis
[GRO 09] for the particular case of earthen structures. There are also many
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publications in this field regarding stone constructions. Organizations such as
ICCROM [ICC 14] (International Centre for the Study of the Preservation
and Restoration of Cultural Property), the Paul Getty Trust [GET 13], have
studied this area extensively.

1.2.4. Recycling and reuse

By definition, the non-industrial use of an earth material allows direct
reuse (of rubble stone masonry, earth mortar and earth masonry). This
practice has been used for thousands of years and is still widespread. Reuse
of a material qualifies it as renewable, even if the resource is not infinitely
renewable. This reuse of an earth material neither affects biodiversity nor
does it tie down agricultural land, unlike intensive forestry, for example. This
reusability aspect is a key advantage of these earth materials in terms of
sustainability.

1.3. Past (civil engineering and architecture), present and future (design
tools) practices

1.3.1. Architectural heritage

There is a rich heritage of masonry using earth materials from all over
the world. We will limit ourselves to mentioning a few key works here.
However, a large number of inventory documents are available, and are
often produced by State agencies: ministries of agriculture, transport, and
housing.

On the one hand, archaeologists and historians have carried out a lot of
work in this area, see for example [BAR 08] for Roman bridges; architects
[LOT 11] have worked on European vernacular earthen heritage. Studies
coordinated by Ferrigni [FER 05] and Klein [DEC 03, DEC 07, DEC 11]
take a trans-disciplinary approach, respectively in the fields of stone masonry
and earthen construction.

Dry stone retaining walls are mainly found in France on county
roads, rural roads, agricultural terraces and footpaths. Statistics relating
to the national network only [ODE 00] include 2,100 studies unevenly
distributed over three-quarters of the French departments. In the UK,
studies emphasize the economic challenges: the road network is
supported by dry stone walls over 2,000–3,000 km long [PRE 00]. It
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would be economically unfeasible to replace these walls which,
although often stable, no longer meet regulatory safety requirements.
This has motivated renewed research into this field over the last twenty
years.

Tunnels lined with stone, like bridges, are also currently being studied as
part of new PhD theses because of their economic importance [DOM 06,
STA 11].

1.3.2. Cultural heritage

Architecture is a natural part of culture. However, in the context of our
chosen subject, it is interesting to highlight that there are two cultural
components in masonry constructions with earth materials: the most obvious
is the structure, once it is built, but there is also the skill set required for
construction. These skills constitute an intangible heritage, leading toward a
more sustainable dimension in our changing society.

This last point implies that regulations are not sufficient to ensure
construction quality; we must also ensure that the skills of stakeholders are
recognized. This requires special procedures, including training of masons
(e.g. through apprenticeships), see section 1.5.

1.3.3. Rehabilitation, strengthening

Renovation of buildings include earth material masonry currently
provides the largest bulk of work, while new buildings are rare. Intervention
in these structures requires a thorough knowledge of the mechanical and
hydrothermal behavior of these structures.

Interventions fall into three broad categories: modifications to suit current
tastes (or the tastes of the client), maintenance or repair (Figures 1.1 and 1.2),
and compliance with thermal or seismic regulations (resistance to horizontal
stress).
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Figure 1.1. Dent repairs on two dry stone retaining walls. Left, repair in progress,
granite (photo: Bruno Durand); right, after restoration, limestone (lighter part on the

right) (photo: Paul McCombie)

Figure 1.2. Renovation of a rammed earth house, raising walls by the Nicolas
Meunier company (photo: Nicolas Meunier)

1.3.4. New constructions

New constructions with earth materials are still rare in Europe, but the last
decade has seen a marked increase in interest in this subject, measurable by
the increase in scientific publications concerning them. These constructions
have found a place in the niche of ‘green building’ (eco-construction). This
type of construction is carried out by clients and contractors involved in
“pioneering” works (Figure 1.3). Other notable contributions have been made
by self-builders.
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Figure 1.3. New constructions: load-bearing rammed earth and timber frame in
Chasselay (France), contractor: Nicolas Meunier; right, rubble stone masonry bridge
at St. Andeol de Clerguemort (France), contractor: Thomas Brasseur and Marc

Dombres (photo: Paul McCombie)

1.4. Durability, deformation and possible movement

Masonry that is sustainable over several decades, even centuries, often
undergoes changes of use over time. These changes can create problems
because they were not taken into account by the original designers. This type
of pathology is similar to those relating to improper restoration, often coupled
with a change of use. In the case of road works, dry stone retaining walls and
arched bridges including stone masonry, the increased weight and speed of
vehicles is a very common source of problems, as these structures were not
designed to cope with these heavy weights. In the case of buildings, including
earthen structures, changes in human behavior are associated with renovation.
For example, the conversion of a barn into a house completely changes the
hydrothermal transfers within the walls and can quickly (in less than 10
years) generate significant increases in the quantities of liquid water in the
walls. Implementation of waterproof coatings, for example, can cause
significant loss of strength, and may even lead to collapse (Figure 1.4).

Cultural aspects should also be taken into consideration, for example, the
perception of cracks. Cracks occur systematically in old and new masonry,
yet seem to be difficult for buyers to accept when purchasing a new house.
The appearance of cracks is not necessarily a symptom of structural stability
issues, but shows the masonry adapting to movement, for example at
foundation level.
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Figure 1.4. Collapse of a rammed earth house wall due to excessive water
content of the walls at the base as a result of capillary action which was

then unable to evaporate

In this book, we will not go into detail concerning the movement
behaviors which precede perfect plasticity or fracturing, which can be
understood using the material’s behavior, that is to say, the relationship
between stress and strain (rheology). Generally, inclusion of the behavior of
the materials is limited to elasticity or elastoplasticity.

In this book, we have chosen only to take account of strength or stress
stability, without consideration of movements and strains. This choice is
based on the fact that, like the soils, “masonry” material exhibits a behavior
that is close to perfect plastic behavior, and it resists very little, or not at all,
to traction. This choice will be detailed in the following chapters. Of course,
the designer should always remember that structural strains must remain
below a certain limit.

1.5. Importance of expertise (complexity of cases and history of the
structure, evolution over time)

The importance of experience and empirical knowledge of local masonry
materials is essential for the reasons discussed above, that is to say, because
of the variability of materials, architectures, heterogeneity of blocks and the
strength of underlying assumptions. For complex structures, it is useful that
the engineer, architect and mason cooperate to better understand the study of
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the structure. This cooperation may also extend to other disciplines, such as
anthropology, sociology and archaeology (see section 1.3).

1.6. Rationalization and calculation methods

We have therefore chosen to use strong hypotheses, which nevertheless
seem realistic, and which, in any case, will provide rigorous results. In Part 3,
we use yield design, which solves a stability problem with equilibrium
equations and failure criterion of the material only. The resulting solution is
correct if we assume a material behaves with perfect plasticity. We discuss
yield design with, on the one hand, the mechanics of rigid bodies in the
formalism of the point mass mechanics, and on the other hand, the formalism
of continuum mechanics.

Local materials used for vernacular buildings have been largely ignored
in academic research; our scientific approach focused on finding models in
the literature that were adaptable to our study, then modifying or limiting
their use as necessary. Our contribution will therefore make use of “rustic”
models that have already been tested, allowing an initial interpretation of the
mechanical stability of masonry using earth materials and the possibility of
expanding to operational contexts.

The pragmatic approach taken in this book is the result of efforts to
respond to a relatively urgent need. The skill sets of artisan builders are
endangered and earth materials heritage is deteriorating. At the same time,
the modern use of local materials constitutes a response to the challenges of
reducing all kinds of industrial pollution.

Throughout this book, we borrow ideas or models from different fields of
mechanics:

– from rigid body mechanics via graphic statics, a simple approach which
gives quantitative results. This concept will be associated with yield design
(defined in Chapter 9) to reach conclusions of the stability of masonry
systems of elements that are considered dimensionally stable (Chapter 10);

– from soil mechanics for which yield design has been developed in a
continuum mechanics formalism (Chapter 11). Masonry materials come from
the soil (including rock), so obey complex material behavior for which much
research is still ongoing. Under these conditions, yield design methods make
it possible to obtain a good level of connection between theory and
experiments;
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– from studies on masonry structures using periodic regular blocks, which
have been subject to a number of developments (Chapter 11).

1.7. Presentation of the outline of this book

In this book, we will follow the chronology of a masonry construction.
We will begin by considering the blocks, then the mortar and finally,
masonry. The quality of its components and their interaction will determine
the quality of the structure they form.

This book is composed of three complementary parts: the first part deals
with technologies and construction process (Chapters 1 to 4), the second with
graphic statics (Chapters 5 to 8) and the third part deals with the
implementation of yield design applied to masonry structures (Chapters 9
to 11).
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2

Earth and Stone Materials

2.1. Stone

Local geology, linked to human needs, is what determined the use of
stones in vernacular masonry structures.

2.1.1. Geological considerations

From a geological point of view, there are three main types of stones.
Sedimentary rocks (limestone and sandstone) are formed from the deposition
and solidification of organic or mineral sediments. These rocks vary a lot
because their creation depends on many factors (sediment type, transportation
mode and deposition area). They are usually stratified deposits in layered
beds. Limestone has a layered characteristic, which gives it a rectangular
shape, while sandstones have more or less significant beds that, through their
mode of erosion, give a rounded shape. Sedimentary rocks are spread over
multiple territories.

Stones of magmatic origin (granite and basalt) form through
crystallization of cooling magma. These stones are devoid of layers and have
a more or less rounded shape due to erosion from wind and water. The units
are obtained through yield due to shock, mass or peak. These rock formations
are located in mountain chains that can be very eroded, as in Britain, for
example.

Stones of metamorphic origin (shale and gneiss) result from the
transformation of a rock due to a rise in temperature and/or pressure. Shales
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are in the form of plates which are easily broken down into layers. Gneisses
have various shapes: some crumble into plates, while others are more granite-
shaped.

Stones used in construction should have a high compressive strength. In
general, compressive strength increases with the hardness and density of the
stone. For stratigraphic stones, which can be compared to milfoil, we must
also ensure that they do not disintegrate too easily. Finally, we should ensure
the non-frost susceptibility of stones and retain those that resist best to water
penetration cycles [AFN 06].

An atlas of construction stones from quarries especially updated for stone
coating exists, see for example [ROC 98] for France. This atlas is obviously
not exhaustive but provides comprehensive guidance on a wide variety of
stones.

2.1.2. Stone supply

A large majority of materials used in various existing vernacular
architectures are either from stones removed from cultivated plots, or from
on-site extraction of the rock itself. Today, a supply of stone can be acquired
by removing stones from fields, but it can also be acquired from the stones
from road grading or demolition works, as well as from a quarry.

Construction or repair of masonry must not coincide with the dismantling
of an existing structure, such as terraces of adjacent plots in the case of dry
stone retaining walls. This type of degradation is not only damaging to the
overall balance of cultures and landscape harmony but it provides, moreover,
a disappointing performance of the stones (many of them are not reusable)
and a lot of backfill. Similarly, looting of ruins that prevent future
rehabilitation and that have proved to be minimally productive in terms of the
damage, must be penalized.

2.1.2.1. Removing stones from fields

This operation involves removing stones from a field in order to be able
to work on the land more easily and enable better crop yields without
damaging the tools. Once these “sterile” stones are sorted and cleaned of
humus, they are placed into piles and are then directly usable for building
walls. Today, we deplore the destruction of many hutches (piles of stones)
that ruins reserves of materials and, therefore, the chances of conservation of
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landscapes that are typical of limestone regions and the ecosystems that have
adapted to them.

2.1.2.2. Road grading works

Road grading works also generate a large quantity of stones that could be
used in construction. However, given the additional costs generated and the
lack of will and organization from the client, this type of recovery is used
infrequently.

2.1.2.3. Rubble recovery

Old buildings or civil engineering works in ruins, which are too altered to
be rebuilt and are destined to be torn down by the owner, can also be sources
of rubble. In this case, it is mandatory to obtain the owner’s consent before
any demolition, to ensure destruction of the work and see if it is subject to a
demolition permit.

2.1.2.4. Quarries

Generally, only large boulders are extracted from quarries. Small stones
or blocks that do not have the required qualities to be sold, as well as
extraction and processing workshop scrap, are set aside and usually end up as
granulate. We can negotiate with the quarry owner to recover stones or small
blocks. Some operators also provide stones from natural quarries, such as
rock outcrops, particularly for limestone or shale, which exhibit strata or
layering and are therefore more easily detached from the rock. These stones
can be extracted without backhoe explosives and instead simply using a
crowbar and mass, corner and chisel.

The majority of stones that are kept are portable by two people, to
facilitate implementation. All stones, whether from recovery or recent
extraction, must be cleaned of earth (de-earthing).

2.1.3. Rheology and mechanical strength

We will restrict ourselves here to behaviors that are relevant to
compression and shear between two carved stones. Even if there is tensile
strength in blocks, in general the joints do not resist traction. Sticking mortar
onto the block is a negligible effect. Moreover, we will see that the
mechanical role of mortar is very limited in compression.
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Literature on the mechanical behavior of stones is abundant in the field of
rock mechanics. However, it involves studying the rock in a geological
context with confining pressures above the megapascal and that has a
significant macroscopic cracking problem. In this regard, the “stone” material
follows the laws of Coulomb or Drucker Prager, meaning that it depends on
confinement. In stone masonry construction, real confinements are rare
because walls, arches or domes can usually be modeled by a two-dimensional
approach. There is always a direction of the stone that is not confined.
Therefore, we are happy enough to study the mechanical behavior by simple
tests, such as those of simple compression and direct shearing of joints.

Let us note that some structures were correctly designed by only taking
non-tensile strength into account, as discussed in the Part 3.

2.1.3.1. Compressive strength

Here, we give an example of a simple compression test. Figure 2.1 shows
a test on shale that was used for the construction of a new arch bridge
[TRA 14] Figure 1.3 right. If we consult the literature, the elastic modulus of
shale ranges from 40 to 200 GPa, depending on its geological origin. It is
likely that the tensile strength varies with the same proportion. The range in
variation is very large, which can make it necessary to test the materials for
each construction in advance if we need more precise values.

Cylindrical shape samples with a diameter of 59 mm were taken by
coring blocks of stone on-site, therefore the height varies depending on the
thickness of the block. It is important to keep an aspect ratio
(height/diameter) close to two, to limit the end-effects due to friction during
the test. During a compression test, as compressive stress increases, the test
specimen expands laterally, however, due to friction along the interface
between the plate and test specimen, lateral expansion of the specimen is
confined.

A common way to measure the elastic modulus is by propagation of
ultrasound; however the only way to get the compressive strength is to do a
simple compression test (Figure 2.1). In this test, it is also possible to
measure the elastic modulus either by sticking strain gauges directly onto the
sample, or (like here) through the use of extensometers attached to the
sample.



Earth and Stone Materials 21

Figure 2.1. Simple compression test of stone, with two vertical
extensometers directly on the sample that measure strain (Photo: Stéphane Cointet)

Type of stone
Elasticity modulus in

GPa (standard
deviation)

Compressive
strength in MPa

(standard
deviation)

Shale, Lozère, France 60 (8) 110 (30)

Sandstone, Vaucluse, France 14 19 (3)

Limestone, St. Gens, Vaucluse, France 18 23 (2)

Table 2.1. Variability of characteristics in compression of stones
from the same site [VIL 04, TRA 14]

The compressive strength of stones was determined and presented in
Table 2.1. Let us note that the variation in the results, which relates to the
variability of the material, is up to 30%. These differences are common in
sustainable masonry, where the amount of material should not be reduced at
any cost. A corollary feature is that these structures have very high safety
factors (from 3 to 10).

2.1.3.2. Friction between cut stones

The study of block on block friction is generally not necessary in the
arched structures because shear forces or stresses that are mobilized in the
masonry joints are generally much smaller than the frictional resistance of
joints. Therefore, this last value is generally not used to design structures.
But, as for beam structures where bending is dominant, shear must be taken
into account for specific cases.
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Two particularly common cases are retaining walls of dry stone and
rubble stone masonry that undergo horizontal forces, especially during
earthquakes. Particularly for stones like shale, shearing can produce yield,
which makes its study necessary.

Block on block shearing is a difficult mechanism to model as it involves
varied and complex phenomena: attrition, physicochemical interactions and
third body production. However, a simple and old law that provides a good
match with experimental results is Coulomb’s law of friction [COU 73].

It is this law that we will use in the model in Part 3. According to
Coulomb’s law of friction, the shear stress required to set a solid in motion is
proportional to normal stress. At the slipping threshold, this stress defines the
shear strength between the solid and the surface such that:

tan߮ ൌ தఙ ൌ ୘ே [2.1]

where ϕ is the angle of friction, N and T are the normal and tangential forces
at the shear surface, σ and τ are normal and shear stresses (compression and
shear respectively).

This is the angle of friction that will appear in the model. However, for a
dry stone wall, the contact surfaces of blocks are not smooth and the
arrangement of stones is not regular – this will be discussed in Chapter 3.

Studies on the mechanical behavior of dry masonry or mortar joints,
conducted on shear boxes, are detailed in [RAF 00, VAS 05], including the
link between displacement and shear stresses. However, here we will build
on the work of [VIL 04] and [COL 09], who carried out a simplified study
that only takes the extent of the angle of friction (yield) into account, without
reliable measurement of displacement. We will see in Chapter 3 that this
gives a sufficiently realistic feature to be used for designing.

This also gives a simplified characterization of block on block friction
with simple shear boxes used in geotechnical engineering, called Casagrande
boxes 6 × 6 cm and 30 × 30 cm on cut stone samples. A Casagrande box
(Figure 2.2) is made of two half-boxes, the upper half-box is fixed while the
other box can move horizontally relative to the former. For a shear test, a
stone sample is placed in each of the half-boxes, then a confining pressure is
applied to the upper half-box. We can then impose displacement of the lower
half-box and gradually measure the tangential force generated by the upper
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half-box as the lower half-box advances. Yield through shearing occurs when
the shear stress reaches a maximum (peak) or a plateau. By performing
several tests on identical samples with different confinement pressures, a
point by point Coulomb plot can be made (Figure 2.3(b)).

Figure 2.2. Direct shear test on a Casagrande box a);and diagram of the principle b)
(Photo and drawing by Anne-Sophie Colas)

In theory, Coulomb’s law does not depend on confinement, however it is
best to carry out the tests in a confined value that corresponds to the level of
stress actually encountered in situ. For a 2.5 m high retaining wall, assuming
linear stress distribution on a horizontal section of the wall, the normal stress
exerted by a wall (that is backfilled to its full height) on its foundation stones
will be about 120 kPa.

Here, we present the results of tests carried out by [COL 09] on granite
(Figure 2.4). By studying the evolution of tangential stress versus
displacement u (Figure 2.3(a)), we see that the four curves show similar
behavior. The tangential forces increase rapidly until a displacement plateau
between 0.5 and 1 mm. We note that this level of shear increases
substantially at the end of the experiment. We can explain this phenomenon
by assuming that, given the offset of the two boxes at the end of the
experiment, there is a slight rotation of samples, which distorts
measurements. Therefore, we choose to keep the beginning of the plateau as
the tangential stress maximum.

For each test, normal and maximum tangential stress pairs are placed in
the Mohr plane (Figure 2.3(b)). A Coulomb plot is obtained by linear
regression. The angle of block on block friction is obtained using
equation [2.1]:

τ = 0.52 σ ⇔ ϕ = 27° [2.2]
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Figure 2.3. Direct shear tests on granite samples [COL 09]

Figure 2.4. Granite samples, 6 × 6 × 1 cm (top, photo Anne-Sophie Colas); molasse,
30 × 30 × 10 cm for Casagrande box tests (photo Boris Villemus)

Let us note that we have chosen, based on the study [VIL 04], to impose a
cohesion of zero. Without this condition, the angle of friction is ϕ = 26.5°
and cohesion c = 0.6 kPa with:ߪ ൌ ߬. tan߮ ൅ ܿ [2.3]

Shear box tests showed that friction obeys Coulomb’s law, meaning that
friction is proportional to normal stress with a proportionality coefficient
(angle of friction) that is not dependent of the contact surface at the joint. The
tests also showed that despite the smoothness of joints, contact is localized to
one, two or three areas of weak surface (Figure 2.4).
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They also showed a bias due to the shearing device: the upper half-box
rotates the lower half-box before reaching the slipping plateau level. Thus we
obtain curves T = f(u) with a slope that corresponds to the bias of the device
and not to shear stiffness Ks.

We have seen that [VIL 04] also measured the angle of block on block
friction by a test on an inclined plane (Figure 2.5). The test consists of fixing
a block of stone onto a plane that is connected to a pivot at one end. We then
place a second block of stone on top of this first block and tilt the plane until
the upper block slides: the angle made with the horizontal plane provides an
estimate of the angle of friction. This test may be particularly interesting for
practical use in situ, due to its ease of implementation and analysis.

Figure 2.5. Principle of the inclined plane test, P is the weight of the stone,
N is the normal reaction and T the tangential reaction

Nature of stones 6 × 6 cm box 30 ×30 cm box Inclined plane

Molasse from Vaucluse 37 ± 1 35.5 ± 1.5
Molasse from St. Gens, Vaucluse 36 ± 1 35.5 ± 1.5 38 ± 2

Limestone from Vers 35 ± 0.5 34 ± 1

Limestone from Espeil 37 ± 1

Hard limestone, Hautes-Alpes 26 ± 3
Limestone from Estaillades 34 ± 1 34 ± 2

Limestone, Lozère 35 ± 3
Shale 1 28.5 ± 1
Shale 2 25
Granite 27

Table 2.2. Value of the angle of interface friction ϕM depending on the type of
interface of the shear test on cut stones
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In Table 2.2, we present a summary of tests done on cut stones. Despite
the hardiness of tests, we found similar results for the three procedures. The
inclined plane test overestimated the angle of friction by 2 degrees. Table 2.2
also gives the orders of magnitude of friction for different types of stones.

We consider here the angles of friction obtained by the Casagrande box
and we will see in Chapter 3 that they can be used in design calculations.
However, we must bear uncertainties about the influence of confinement and
macro-roughness of blocks on the angle of friction in mind; this point will be
discussed in Chapter 3.

2.2. Earth

2.2.1. Geological and geotechnical considerations

Unlike stone, which is directly taken from the bedrock and falls
completely within the scope of geology, earth forms a part of regolith, which
is outside the scope of geologists. The term regolith means the space between
the soil that is enriched with organic matter (arable land or soil) and the
bedrock. We should be able to distinguish between the layers, which have
different names from one specialty to another (geotechnician, geologist,
archaeologist, soil scientist), and which cover different things. To the
geologist, the soil cover is something that hides what he wants to see,
something valuable. The soil scientist distinguishes between rock (solid or
soft), alluvium and colluvium, soil made from the weathering of bedrock and
topsoil. We will discuss this material from the geotechnician’s point of view
in order to take his implementation into account, which arises from actual
geotechnical techniques.

2.2.2. Supply of earth

Road grading work also generates a large amount of earth that can be
used as a building material. However, this requires cooperation and
organization from the developer.

The renovation of a building can provide reusable earth especially if
openings are made. Unlike stone, there is virtually no waste recovery; a block
of broken adobe will be as good as new after rewetting and molding.
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We will discuss here the two main families of implementation of the
material: the “dry” way, by compacting, and the “wet” way, by molding or
shaping.

2.2.3.Manufacturing of material by compaction (dry)

Compaction has been studied for a long time [PRO 33]. The laboratory
compaction geotechnical test is the Proctor test, used in the 20th century for
granular soils (without clay). However, heterogeneity of the sample obtained
by this procedure with a clay-like soil, makes it difficult to be used for
specific laboratory studies.

Figure 2.6. Increasing density from bottom to top, for three modern rammed earth
walls manufactured by Nicolas Meunier Ltd.

Other tests have been developed [OLI 86,VEN 93, MOU 93] where
compaction is quasi-static with a steady increase in axial compressive stress,
as opposed to the dynamic compaction of the Proctor test. This test is closer
to what happens during the manufacturing of blocks for use in construction.

In this section, we will use the static compaction test (SCT) to explain the
process of manufacturing the “compacted earth” material in the form of
blocks. All principles mentioned in this section are also applicable to rammed
earth. In each layer of rammed earth, the dry density decreases from bottom
to top (Figure 2.6). A layer of rammed earth can be compared to a bed of
earth block masonry.

2.2.3.1.Manufacturing of earth blocks by compaction

Firstly, it is important to know the different types of presses that exist for
making blocks of compacted earth. The size of blocks is very variable; we
use a common block size of 90 × 140 × 290 mm3.
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Hydraulic presses allow us to apply a compaction stress of generally
about 5 to 10 MPa, but may go up to 20 MPa for hyper-compressed blocks.
These block presses are monitored by stresses, with hydraulic rams and thus
compaction stress is known.

Mechanical presses impose the same compaction stresses as hydraulic
presses. They are obtained by moving a piston through an imposed stroke.
These presses are driven by displacement to obtain a fixed final volume. If
the amount of earth in the mold is too much, there is a limitation on stress
through a buffer system (springs) to avoid overloading the equipment, but
unlike hydraulic presses, the stress limit is not known.

Finally, manual presses generally apply stresses of about 2 MPa.
Compaction stress depends on the strength that the operator applies and will
determine the maximum stress of compaction, if the press is properly used,
that is, if enough soil is put in to completely fill the mold.

2.2.3.2. Optimization of the material with the block press

Proctor compaction test behavior shows that for a given compaction
energy, there is a so-called “optimal” moisture level that allows us to obtain
the maximum dry weight, which is a desired objective as it allows us to get
the maximum strength at the given compaction energy. However, hydraulic
presses set a compaction energy (through static compression stress) while
mechanical presses are used to impose a final wet volume weight. Research
into optimization of blocks’ manufacture is therefore:

– for hydraulic presses: to investigate the (optimal) water content to
obtain a static compaction stress giving the maximum dry density;

– for mechanical presses: to seek the optimal pair (wet weight of soil to
place in the mold and water content) without exceeding the compression
feasibility of the press, which is more delicate.

For this optimization phase, laboratory tests based on the SCT are a good
approach. For convenience in the laboratory and accuracy reasons, we may
also want to optimize this: the block press is not always available and
sufficient quantities of samples are not always there. We can then use the
SCT to find the optimum water content for a press and a given material. Let
us first present the SCT.
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2.2.3.3. Static compaction test (SCT)

The oedometric mold presented by [OLI 86] (Figure 2.7) is used to
produce cylindrical samples under an axial stress that can vary from 0 to
10 MPa. It consists of two half-shells fixed to an outer axis and two pistons:
lower (fixed) and upper (mobile). This mold can be displaced along its axis
independently of the two pistons for symmetrical compacting relative to the
median horizontal plane, and spread the friction between the material and the
mold sides along the height of the sample. The reduction in static force
imposed between the ends and the middle is approximately half of that
between the top and bottom for a conventional compression from the top.

The parameters measured during a SCT are:

– axial stress σ1h, issued by the press, applied to the top of the sample;

– axial stress σ1b, measured by the fixed piston of the mold at the bottom
of the sample;

– radial stress σ3;

– vertical stacking of the sample Δh = h0 - h (radial strain ε3 = 0, since this
is an oedometric test), where h0 = initial height of the sample corresponding
to the height of the mold initially filled with excess material, h = height of the
sample at time “t”.

Figure 2.7. Static compaction test (SCT) device, diagram (left)
and photo drawing and photo: Ali Mesbah

2.2.3.4. Selection and characterization of the material: procedure

Soils used as an earth construction material must contain a minimum of a
few percent by weight of clay, and should not contain more than 10 or 20 mm
grains, depending on the thickness of the blocks, which can vary from
approximately 40 to 150 mm. For rammed earth, the space between two
formworks varies between 30 and 50 cm (height of layers around 10 cm),
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which allows the use of larger pebbles up to several kilograms in weight.
However, we can sieve the soil to eliminate the large elements and get a finer
material. A large quantity of this material is available on the planet, but
depending on the type of soil used, it will have very different mechanical
properties [OLI 94, WAL 96].

The material presented here must be considered as an example – it is not a
“standard”. It is defined in Table 2.3. The standard Proctor test is given in
Figure 2.8: there is an optimum water content for a standard Proctor energy
which is a dynamic compaction energy of SPE = 550 kJ/m3, of 13.8%.

Figure 2.8. Optimization of water content by Proctor test,
SPE = Standard Proctor Energy

For a compaction test, such as the Proctor test, soil is placed directly into
the mold so that it is in contact with the steel walls. The “friction” surface
corresponds to the lateral surface on which energy dissipation is created
through friction during the movement of soil against the sides of the mold. At
a given height h, friction losses are reduced when the diameter of the sample
increases.

The amount of earth introduced into the mold is weighed to get a final
aspect ratio after compaction between 1.4 and 1.6, or samples that are
112 mm in diameter and 160 to 180 mm in height. The samples are of small
aspect ratio h/d to avoid having a large density gradient between the ends and
the center. Blocks have an even smaller aspect ratio. The difference in dry
density of the sample, measured by gamma densitometry, does not exceed
1% in the case of double compaction.
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Sand 10
mm–
0.080
mm

Silt 0.080
mm–

0.002 mm

Clay
<0.002
mm

Liquid
limit

Plasticity
limit

Plasticity
index

Methylene
blue value of

soil

Specific
density

36% 52% 12% 31% 21% 12% 1.3 2.71

Table 2.3. Identification and composition of soil used in sections 2.2 and 2.3

For manufacturing blocks, the Rs/v = Sc/v ratio – contact area over
compacted soil volume – is around 20 m–1; for the cylindrical sample, it is
around 36 m–1. In both cases, the ratio of the contact area prior to compaction
over the contact area after compaction is around 1.8.

[VEN 93] chose a static compaction laboratory test with set displacement
to get a constant volume (final volume of the block) in order to be consistent
with what happens in this type of block press. In this case, Rs/v = 19 m–1 for
the blocks and Rs/v = 53 m-1 for laboratory samples. Friction has already been
indirectly correlated with the size of the mold used in compaction since there
is a dissipation of frictional energy of 30% in laboratory tests with respect to
the block press. It is therefore necessary to use laboratory samples with an
Rs/v ratio that is as close as possible to that of blocks. For the SCT presented
here with Rs/v = 36 m-1instead of 20 for blocks, we will have increased
compaction energy dissipation for cylindrical samples than for blocks.

Furthermore, by modifying the device, we can compress the top part and
keep the base, which is no longer subjected to the same forces as the SCT,
fixed; friction is evaluated through a differential measurement of the force
between the top and the bottom of the sample. The energy dissipated through
friction may result in a 50% decrease in compaction force at the base of the
sample for old steel molds, and almost zero if the steel surface is new.

2.2.3.5. Using the SCT for laboratory studies

This is to manufacture cylindrical samples that have the same
characteristics as blocks. In Chapter 3 (about blocks), we will consider the
difficulty of finding procedures for laboratory testing of the strength of
blocks themselves.

We have seen that the manufacturing simulation is correct if we assume
that the friction on the sides of the mold during compaction is similar to that
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of blocks or cylinders, because the friction surface ratio (=lateral surface)
over volume is very similar in both cases. The surface of the mold must also
be the same in both cases, which will depend on the level of attrition of the
apparatus and will be variable with time.

Moreover, whatever the friction, we will get a similar decrease in density
in the vertical direction (compaction), from the ends to the center of the
sample, for blocks manufactured by a double compaction block press and
cylindrical samples.

Figure 2.9. Relationship between compaction stress a); energy absorbed by the
densification of the material depending on the dry density b), wf = manufacturing

water content (earth identified in Table 2.3)

In Chapter 3, we will see that the dry density of the sample determines its
mechanical behavior. We can easily measure the manufacturing water
content of blocks and therefore calculate their dry density, knowing the
volume. We consider that the laboratory sample obtained using SCT is
representative of blocks obtained by a block press, if we get the same dry
density for the same water content. This determines an equivalence between
the static compaction stresses of SCT and the block press. To determine the
equivalent stress, an SCT is done on the material until a sufficiently high
(maximum stress of 10 MPa) compaction stress (σc). Figure 2.9(a) is
obtained for two water contents, w = 7.5% and 13.8%. For each pair (dry
density, water content), there is a corresponding static compaction stress σc
(Figure 2.9(a)). For example, for blocks γd/γw =1.9 manufactured with a water
content of 13.8%, we refer to Figure 2.9(a) for w = 13.8% and γd/γw = 1.9
and we get σc = 4.3 MPa. Thus, by carrying out a static compression test up
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to a stress of 4.3 MPa, we get a cylindrical dry density sample of 1.9 that is
representative of the block. Instead of testing the blocks, it is then possible to
test cylindrical samples.

2.2.3.6. Optimization of manufacturing water content by SCT

The energy spent during compaction is the parameter used to set the
intensity of dynamic compaction in the Proctor test. Usually two intensities
are used (Standard Proctor Energy SPE = 550 kJ/m3and Modified Proctor
Energy MPE = 2430 kJ/m3), which are geotechnical engineering reference
values. But the Proctor test principle can be used with other compaction
energies: the number of strokes just needs to be changed. The energy in the
SCT can then be compared to the energy spent during the Proctor test.

Figure 2.10. Principle of static compaction test (SCT) Fcbottom is simplified in Fc

For an SCT, the energy supplied per unit volume is (Figure 2.10):

cb
SCT

F hE
volume

Δ= [2.4]

where Fcb is the compaction force measured by the sensor located beneath the
fixed piston at the base of the sample.

ESCT does not include the energy provided by the press, which may be
dissipated in friction and in any pressurized water.

However, this is not exactly the energy stored in the form of compaction
by the sample. It is Ecomp energy per unit volume:

0

1h

comp z zE F dz
volume

ε= ×∫ [2.5]
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where dz being the compaction of the sample at any point thereof, we get:

0

h

zdz hε Δ=∫ [2.6]

and:

0

z

z cF F dSτ= + ∫ [2.7]

with algebraic τ, soil-wall friction stress, we obtain: ESCT is close to Ecomp if
friction is negligible.

Static compaction was done with a load path of ΔFcb/Δt = 0.5 kN/s or a
stress rate of 0.05 MPa/s up to 10 MPa. Figures 2.10(a) and (b) compare, for
the same material described in Table 2.3 for the two previous water contents,
the degree of saturation, the stress and the compaction energy (ESCT)
depending on the dry density.

Stress is calculated as:

cb
c

F
S

σ = [2.8]

The degree of saturation is calculated from:

1

s
r

sw
d

wS
γ

γγ
γ

= ×
−

[2.9]

with water

dry

Ww
W

= and Wwater = weight of water and Wdry = weight of dry

sample.

We find a classical result: the wettest material (w = 13.8% versus 7.5%)
needs a lot less energy to achieve the same dry density, which emphasizes the
lubricant role of water.

It is interesting to determine the equivalent energy for the Proctor
dynamic compaction. If we consider the standard Proctor test energy ESP, we
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obtain two test results for the two water contents: ESP = 550 kJ/m3 for w =
13.8% and γd/ γw = 1.89 (point O, Figure 2.9(b)).

These values are to be compared with the results of static compaction:

ESCT= ESP for w = 13.8% and γd/ γw =1.96 (point A)

ESCT = 300 kJ/m3<ESP for w = 13.8% and γd/ γw = 1.89 (point B)

We defined the points A, B, O in Table 2.4 and Figures 2.9 and 2.11. The
energy dissipated during the Proctor test outside of the sample (in the
vibrations of the frame, friction against the walls of the mold) is
250 kJ/m3(energy difference of points O and B) or 45% of the total energy
that is not used for compaction. This difference justifies the use of (non-
vibrating) static compaction machines for these materials.

Definitions w: water
content (%)

γd/γw: dry density Energy (kJ/m3)

O: Optimum standard
Proctor

13.8 1.89 550 issued

A: static compaction 13.8 1.96 550 provided

B: static compaction 13.8 1.89 300 provided

Table 2.4. Identification of points A, B and O (earth identified in Table 2.3)

Figure 2.11. Tests for optimization of water content
(earth described in Table 2.3)

A

B et O
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There are large differences in behavior during compaction between a
material containing clay and powdery material. Clay soil will be very
sensitive to water and will have a very different internal and interface friction
behavior (on the mold sides in the Proctor test, for example) compared to
powdery soil.

We verify that, when approaching saturation (Sr > 90%), the dry density
tends to a limit as energy increases: when air bubbles have disappeared (or
are under high pressure), density barely varies, the saturation is reached and
swelling may occur.

Figure 2.12 shows the relationship between stress and energy. For
relatively dry soil (w = 7.5%), the relationship is linear up to a stress of
10 MPa.

Figure 2.12. Relationship between stress and compaction
energy (earth identified in Table 2.3)

In the case of “wet” material w = 13.8%, the ESCT–σc relationship
(Figure 2.12) is no longer linear; we cannot use the stress-compaction energy
equivalence. However, we may consider this relationship linear, as the
compaction stress is less than 3 MPa for w = 13.8%. Beyond this level,
compacting “wet” soil consumes less energy relative to compacting a drier
soil. This is explained by the fact that the dissipation by friction of dry soil is
more significant (internal friction within the material and between the mold
and the sample).

For mechanical or manual block presses, we must find the applied stress
in order to perform the optimization procedure with an SCT. This stress can
be directly measured by a force sensor placed in the same position as the
block, or indirectly, for example, by the procedure described above.
However, in both cases, this measurement is difficult.
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For different types of block presses, it is possible to optimize the
manufacturing process (finding the optimum water content) through SCT, but
this implies that the rate of compaction does not affect the final result.

We must have a laboratory compaction test to get at least the applied
compaction stress and not just energy. In this case, we seek the dry density of
the blocks according to their manufacturing water content for a given press,
i.e. for a given energy or compaction stress.

2.2.3.7. The role of water during compaction

A material is compacted from a bulk state with a certain water content.
During compaction, the material passes from an unsaturated state to, in
extreme cases, a saturated state.

During the SCT, the material is compacted for a few seconds so the water
does not have time to escape. The mass water content w does not change but
the degree of saturation will change as well as the volumetric water content.
Suction will therefore also vary.

Without measuring suction during compaction, it is possible to obtain an
estimation of the variation of suction depending on the degree of saturation.
Figure 2.13 was obtained by measuring the suction (filter paper and
desiccator method) on samples that were statically compacted then dried in
order to get the desired water content. From this water content, we calculate
the degree of saturation.

Figure 2.13. Variation of suction depending on the degree of saturation,
by drainage (drying) after the compaction operation for a water content of wf

(earth identified in Table 2.3)
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If we consider that the “history” of the material begins at the end of
compaction, knowledge of the stress tensor at that time may be useful for
determining an accurate behavior of the material.

2.2.4. Implementation of earth in plastic state (wet)

We just discussed the case of compacted earth, including compressed
earth blocks (CEB) and rammed earth, for which the literature is now more
abundant and older than any other construction technique using earth. CEB
and rammed earth are implemented dry (mass water content <20%). This
leaves us to now examine the other “wet” way, which includes adobe and
cob. We will see that the border between the two channels is progressive,
although for convenience, we can set a transitional value of 20%. However,
adobes are often composed of a material containing more clay than rammed
earth or CEB. Adobes are manufactured in a plastic state (mass water content
> 20%). Many types of earth contain more than 20% clay and were used for
the construction of the first cities of Mesopotamia and Egypt nearly five
thousand years ago. Thus, earth is probably one of the oldest construction
materials. Adobe was also used in the Hadramout valley in Yemen for
building eight floor houses. We will first describe the traditional way and the
modern process of developing adobes. In the book [DEC 11], much scientific
information on adobes can be found.

2.2.4.1.Manufacturing samples of blocks

By way of example, here we use earth from the village of Rochechinard
in the lower valley of the Isère (Hostun, France). Figure 2.14 gives its
granulometric curve. Its geotechnical properties are: liquid limit of 38%,
plastic limit of 20%, plasticity index of 18%, methylene blue value of 2.5 and
clay activity of about 10. Kaolinite clay forms the majority and smectite the
minority.

The traditional technique for producing molded adobe requires a water
content that is generally greater than 20% (“wet”). Adobes are made in molds
of wood or metal and sun-dried on the ground after removal from the mold.
Their method for shaping requires preparation in the plastic state, therefore a
high manufacturing water content (earth). However, this preparation should
have enough consistency not to flow under its own weight. To our
knowledge, there are no methods in the literature for determining this water
content, but in general, adobes are made at sites with water contents near the
plasticity limit.
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Figure 2.14. Granulometric curves of three types of adobe earth used

For the production of adobes presented here, Rochechinard earth is mixed
at different water contents. The first manufacturing water content was
arbitrarily selected at 24%, a value close to the plasticity limit, then it was
lowered for the other samples. This earth is mixed until a visibly
homogenous mixture is acquired. Then this homogeneous earth–water
mixture is poured into a wooden mold (of dimensions 310 × 152 × 71 mm3)
on the ground. Using hands or fists, this mixture is compacted or molded into
the corners and the surplus is removed with a wooden ruler. Finally, the
adobes are dried at room temperature in the laboratory until they reach a
constant weight (about 3 weeks). During this period, they are frequently
turned.

It is possible to make blocks with a lower water content, but their shaping
cannot be done manually. Indeed, the earth–water mixtures used for making
adobes have an higher consistency with decreasing water content. Molding
becomes difficult. It was also necessary to do the compaction with a manual
block press, used for the production of CEB.

Figure 2.15. Different fractions contained in the adobe during its manufacture
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Mechanical compaction is used not only to facilitate the shaping of
blocks, but also to evacuate air bubbles trapped inside the wet mixture
(Figure 2.15). In this respect, it is similar to extrusion. To differentiate these
blocks from conventional CEB, with low water content (around 13%), we
propose to call this wetter paste element “pressed blocks” (PB).

Figure 2.16. PB on the left; adobe before being cut into four on the right

After mixing and kneading, a mass of 8.7 kg of earth–water mixture is
introduced into the press mold, of dimension 295 × 140 × 95 mm3. This
quantity is determined by gradually varying the molded mass until the
surface of the block no longer presents manufacturing defects due to
inadequate quantities of earth–water in the mold. After pressing and removal
from the mold, the blocks obtained (Figure 2.16) are dried as adobes at
laboratory room temperature.

2.2.4.2. Influence of the sample preparation method on their dry density

To assess the influence of the two block-shaping methods, we measured
the manufacturing water content of the adobes and PBs, as well as their dry
density.

The dry density has a direct influence on the compressive strength, hence
it is a parameter to be checked in the quality control process. It is calculated
based on the change in mass of the samples after desiccation in an oven at
105°C until constant mass. The temperature of the oven may also be 50°C,
which will change the value of water content; this latter value being better
suited to earth construction water content definition. Adobes were cut
(Figure 2.16) in order to get samples with an aspect ratio of 2, and reduce the
risk of confinement due to friction on the side of the mold during the
compression test (see Chapter 3). PB, in turn, are tested uncut.

For adobes, Figure 2.17 shows that the dry density of adobe samples
(samples a and b) vary greatly from one sample to another, within the same
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unit, although it has been manufactured with the same earth–water mixture
and dried under the same conditions. The adobes are therefore not
homogeneous. This disparity is partly due to manual molding, which
becomes increasingly difficult with a less wet earth–water mixture
(Figure 2.17). Dry density values are more dispersed with decreasing water
content of the mix, which results in the enlarged scattering of points toward
the left. The dry density values of samples a and b become less
heterogeneous with increasing water content. This regularity is much better
for test sample b that is cut in the middle part of adobes. Indeed, 20% of the
surface of sample b is in contact with the mold throughout manufacture,
while this figure is 40% for sample a (Figure 2.16). Thus, the molding and
demolding procedures are less harmful for sample b than for sample a,
because the friction and adhesion of the wet mixture to the mold walls
generate defects on the surface of the blocks. The material composing the
adobe appears heterogeneous and is therefore difficult to study.

Figure 2.17. Dry density depending on the manufacturing water content

For PB, Figure 2.17 shows (with good correlation) that the dry density of
PB increases as water content in the mix decreases. Thus, the process of
making PB would allow the production of more homogeneous blocks.
However, when the water content in the mix is further reduced (by 14–15%),
the PB become heterogeneous and it is not possible to produce them with a
lower value than this. This heterogeneity can be explained by the difficulty of
mixing earth–water. The quantity of water in the mix is not sufficient for an
adequate consistency. Therefore, blocks thus obtained have a structure
formed by irregular aggregates, which weakens them and prevents their study
as a homogeneous material. The critical amount of water that leads to this
structure is approximately 15% for the example of earth chosen here. This
threshold varies depending on the clay content.
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Let us now draw a comparison of manufacturing water contents (Wf)
between adobes and other earthen blocks (CEB and PB). For the manufacture
of CEB produced with a different earth that contains less clay, we get a
classic bell curve on the left side of Figure 2.17. This bell curve is similar to
the Proctor test curve, for which the right side approaches the saturation
curve without crossing it (see section 2.2.3). For a given soil (with a clay
content of about 20%, for example), it is possible that its compaction curve is
intermediate between the bell curve and the Rocheninard earth curve.

Figure 2.17 can be divided into three areas: the area of the adobe, the area
of PB and the CEB area. The separation between each area is not abrupt.
Passing from the adobe area to the PB area is accompanied by an increase in
dry density caused by the use of a mechanical densification process:
compaction or extrusion. However, this PB increase in density with
decreasing water content of the mix is also due to shrinkage during drying.
Clay minerals have the ability to adsorb water and swell [VAN 13]. The
greater the amount of water applied to the soil, the greater the adsorbed water
layer and the greater the volume of the earth (Figure 2.18). Thus, when water
content in the mix is high, compaction, which has effect of bringing grains
closer to each other, is not efficient because part of the compaction energy is
dissipated by the pressurization of water. The volume taken by water is high,
then when drying, the voids are high too, leading to low dry density value.
However, when the quantity of water in the mix is low, the compaction
energy is entirely used to force the grains closer to each other, wherefrom the
high density value.

Figure 2.18. Diagram of the structure of the material during drying. The material in
the wet state: a) Wf = 20%; b) Wf = 20%, predominance of macropores; c) Wf = 16%,
the clay particles are closer together. Material after drying, appearance of macro and

micropores; d) Wf = 16% predominance of micropores

A block with a high Wf value will shrink and exhibit more significant
porosity (Figure 2.18), and its dry density will be lower (Figure 2.18(b)).
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That is why PB and adobe points are above the saturation of Rochechinard
earth (Figure 2.17), which does not happen in the case of CEB with a bell
curve (while the shrinkage is negligible). Moreover, the increasing gap
between the points and the saturation line, as the manufacturing water content
increases, confirms this influence of shrinkage during drying.

Furthermore, we propose to continuously classify the techniques used
today for the production of earth blocks depending on the manufacturing
water content (Wf) in two ways: dry (8% <Wf<20%) and wet (20%
<Wf<35%). The dry method is that of CEB or rammed earth while wet
includes adobe, earth and straw mortar, and cob. The method developed by
“extrusio-compaction” of PB is classified in the hinge between the two
channels (semi-dry, semi-wet), as seen in Figure 2.17. Thus, the progressive
decrease of water content in the mix from the liquid limit leads to the
determination of the best suited technique for the densification of a given
earth (without added stabilizer or modification of the soil texture).

The comparison of manufacturing water contents of CEB, PB and adobes
shows that these earth shaping processes are categorized into dry (CEB,
rammed earth) and wet (adobe, clay and straw mortar). Moreover, for a given
soil, an “ideal” technique leads to the highest dry density and so greatest
compressive strength.

2.2.5. Physicochemical considerations

The cohesion of earth structures begins in the capillary and electrostatic
forces acting within the clay. Capillary forces are well-known to all since it is
they who hold sand castles up. They are apprehended by the mechanics of
soils by the concept of suction used in the mechanics of unsaturated soils
[OLI 95]. Electrostatic forces are variable depending on the mineralogy of
clays, in particular in two main families of clays: kaolinites and chlorites on
one side, and smectites and illites on the other. To further explore these ideas,
the reader can consult the work of [VAN 13].

2.3. Measurement of dry density

2.3.1. Hydrostatic weighing

The hydrostatic weighing method is used to measure the dry density of
material when it is not possible to get the accurate volume of the sample by
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measuring its dimensions. This applies to stone and earth which, as we have
seen, are not standard materials when it comes to their composition and also
the size of blocks (the latter is discussed in Chapter 3). Moreover, it is often
easier to take a sample of material by breaking a piece of a wall or a block
than to get a complete block or wall.

Hydrostatic weighing involves weighing the same sample in air and then
plunged into a water bath (Figure 2.19). Based on the Archimedes principle,
we know that the apparent weight (weight of the material sample when
immersed in water) P(w)e is equal to the weight of the measured dry material,
Pe, from which Archimedes thrust Pa (which is itself equal to the product of
the unit weight of water γw and sample volume Ve) is subtracted.

௘ܲ௪ ൌ ௘ܲ െ ௔ܲ ൌ ௘ܲ െ ௪ߛ ௘ܸ ൌ ௘ܲ െ ௪ߛ ௉೐ఊ೐ [2.10]

a) b)

Figure 2.19. Hydrostatic weighing a), and waxed sample material b)

We therefore deduce the unit weight of the sample:ߛ௘ ൌ ௪ߛ ௉೐௉೐ି௉೐ೢ [2.11]

In Table 2.5, we present examples of measurements of three types of
stone (granite, shale and limestone), several samples weighing between 100 g
and 1.3 kg were thus tested.

Type of stone Granite Shale Limestone
Number of samples 3 4 20
Dry density (kN/m3) 24.9 26.4 26.0

Standard deviation (kN/m3) 0.3 0.2 0.3

Table 2.5. Example of measured unit weights of three stones
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The unit weight of the material of blocks does not directly give the unit
weight of the masonry since we must consider the volume of the masonry
joints. For stones, based on empiricism and measurements [VIL 04, COL 09,
MUN 09], we can estimate this rate to be 25% for masonry using rubble
blocks (or dry stone). For masonry using earth blocks, the average thickness
of joints must be measured.

For very porous stones and earthen material, samples must first be
waterproofed by dipping them in hot wax, for which the weight is known.
The procedure is then identical but includes consideration of the wax coating
in the calculation of the weight and volume of the sample.

In this case, it is sufficient to calculate Ve by the following formula:ܸ݁ ൌ ௠ೞೌ೘೛೗೐ି௠ೞೌ೘೛೗೐ሺ௪௔௧௘௥ሻఘೢೌ೟೐ೝ െ ௠waxఘwax [2.12]

with:݉௦௔௠௣௟௘: mass of waxed sample (kg)݈݉݁݌݉ܽݏሺݎ݁ݐܽݓሻ: mass of waxed sample when immersed in water (kg)݉୵ୟ୶: mass of wax coating the earth sample (kg)ߩ௪௔௫: density of wax ୵ୟ୶ߩ) ൌ 0.88݇݃/݉ଷሻ
Dry density is deduced from:ߩ ൌ ௠೐ೌೝ೟೓௏௘ [2.13]

The results are shown in Table 2.6. The values presented here are the
averages of several samples tested with the method described above. For St
Antoine earth, no significant difference was found between the upper and
lower parts of beds (or blocks); the value shown is the average of all samples.
St Antoine earth consists of a wide granular range (up to 5 cm). Therefore, it
was necessary to test a larger sample (7 kg) to be as representative as
possible. For other samples, measurements were carried out on samples
without specifying the sample removal location.
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Origin of earth St Antoine Monseveroux Lyon Dolomieu
Dry density
(t/m3)

1.73 1.62 1.62 1.91

Standard
deviation (t/m3)

0.04 0.05 0.07 0.06

Porosity (%) 35 39 39 28

Table 2.6. Measurement of densities of four rammed earth from 4 sites

2.3.2. Gamma densitometer weighing

Depending on the apparatus, samples that are up to 900 cm long, 35 cm
wide and 25 cm high can be measured. The sample must have a bearing
surface that is as flat as possible with surface roughness limited to a few mm
high. The height depends on the measuring range of the sensor so that the
height of the sample can be measured in real-time.

To calculate the apparent density, the density of solid grains of the
material (which can be found with a pycnometer) and the mass absorption
coefficient of the material to Cesium 137 must be known. We can estimate
the coefficient depending on the chemical composition of the material, which
involves a measurement method validation phase.

This device has severe limitations compared to hydrostatic weighing after
wax coating of the sample, but it can measure density gradients within a layer
of earth, or within a block of earth.
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3

Blocks: The Elements of Masonry

3.1 Compression of blocks of uncut stone, dry stone masonry

Compressive stresses are low in weak jointed masonry (earth or lime
mortar, or dry stone), but the irregular geometry of blocks could induce stress
concentrations that exceed the limits of the strength of the material. In
practice, yield due to compression is observed. In this section, we will study
this aspect.

3.1.1. Cylindrical samples with dry joints

To simplify the problem, first we will investigate the effect of the number
of joints on the compressive strength and stiffness. The same device as for
the simple compression test is used, with a cylindrical sample made of
identically-sized disks stacked in two, three, four or five layers.

Number of
joints 0 1 2 3 4

Compressive
strength (MPa) 19 3 3.2 8 4.3

Modulus E
(MPa) 14,300 10,200 9,800 11,300 8,300

Table 3.1. Results of compression tests of cylindrical samples of molasses [VIL 04]

The presence of joints weakens the compressive strength of the sample
(Table 3.1). Yield occurs by splitting, because the joints are not perfectly flat.

Sustainable Masonry: Stability and Behavior of Structures, 
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This gives us an idea of the brittleness to splitting of stones in a dry stone
wall that is built with rubble stones in point contact with each other.

3.1.2. Compression of rough blocks

The test consists of compressing various rubble stones by means of a
press system with a ball joint, such as those used in masonry (Figure 3.1).
This test may be analogous, in the case of compact blocks, with the split test
also called the Brazilian test.

As an example, we took sandstone from Luberon (France) as studied in
[VIL 04]. Three series of tests were carried out for three different sizes of
stones. The loading system was monitored by a displacement rate. The stones
have two types of fracture behavior: one or two stages. In two stages, the first
rupture occurs by bending (Figure 3.1(a)) and the second by splitting or
compression (Figure 3.1(b)).

Contact areas are assessed by placing a sheet of paper between the stone
and the press, in order to estimate the actual contact surface Sc of the total
joint surface S. The purpose of this test is to assess limitations of the use of
these stones in weak joint masonry (earth mortar, lime mortar or dry stone).
However this test may underestimate the compressive strength of the same
stone used within a wall. Indeed, in the least favorable scenario with dry
stone (no mortar to distribute stresses), an experienced mason has to smooth
coarse roughness using a hammer and wedge stones amongst each other
using smaller stones or debris (see Chapter 4). These knappings should avoid
flexion in stones. Some masons use sand to fill gaps and to better distribute
the forces by avoiding hard spots. In the test, stones were subjected to a
relatively large flexion because of the obvious non-compliance with the rules
of the art of building, as defined above.

Table 3.2 gives the results of tests, on which we can comment:

– the actual measured contact surface Sc is estimated at about 5% of
surface S of the stone, which is the cause of localized stresses σc;

– because of the localization of stresses, the first yield generally occurs
through bending, at a fictional averaged stress level of 800 kPa, which
corresponds to a stress level of σc = 15 MPa for estimated contact levels.
This should be compared to the average stress level of 200 kPa for a 10 m
high wall under its own weight. If there is an eccentricity, this level can be
doubled or tripled. This yield is not complete, and stone can support an
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additional normal force until a second yield, which is the majority (crushing
of the sample);

Figure 3.1. Principle of the compression test on raw sandstone samples;
a) failure by bending; b) failure by splitting or compression

– the second yield occurs by crushing the stone at a fictional stress level
of 1 MPa on average, which corresponds to a local stress level of σc =
23 MPa for estimated contact levels. This is very consistent with the simple
compressive strength value Rc = 19 MPa of this stone.

[VIL 04] showed that the compressive strength of a dry stone retaining
wall, that is less than 8 m high, seems sufficient in the context of a classic
design and so that cracking of some stones does not change the behavior of
the wall. The load bearing retaining walls are primarily stressed structures
under compression and horizontal loading, which generates significant
eccentricity.

Yield through flexion Yield through compression

Sc/S (%) σ (Mpa) σc (Mpa) σ (Mpa) σc (Mpa)

Average 4.9 0.81 15 1.1 23
Standard deviation 1.9 0.4 8.4 0.4 5.0

Table 3.2. Compression tests of raw samples of sandstone across 17 tests

3.2. Shear strength of rubble stones

In section 2.1.1, we described the interface behavior between two cut
stones. We will now study uncut stones in order to qualify the effect of
macro-roughness, compared to cut stones.
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3.2.1. Shear tests of one bed of stone on another

To correctly find out what happens in situ, shear tests with a “very large”
Casagrande box must be done. Large dimensions allow consideration of
interactions between the stones, in particular the presence of joints as well as
macro-roughness.

We use a prototype shear box of 100 × 100 cm², which was originally
designed to shear household waste [ABO 99]. This size allows mounting of a
bed of dry stones in the lower box, and shearing by a second bed, mounted in
the top box (Figures 3.2 and 3.3).

Figure 3.2. Principle of interface shear between two beds of stones in a
100 cm x 100 cm box from the Joseph Fourier University of Grenoble drawing by

Boris Villemus

To completely fill the lower half-box, stones are selected to ensure relative
flatness of the upper surface of the bed of stones. This surface is the closest
possible to the shear plane of the box. The stones, once arranged, are blocked in
place using small sharp stones (knappings), as mentioned in Figure 3.3.

For the partial filling of the upper half-box, the joints are crossed by
blocking many stones against each other. Wooden knappings and fairly rigid
polymer pin geomembranes are placed on top of the upper half-box to
distribute the confinement over all the stones of the upper bed. This
distribution of confinement is not uniform but all the stones have at least one
contact point with the loading plate.

Confinement (vertical load of 30 to 130 kPa) is applied using four rams
that are connected to a manometer. The speed of the horizontal ram is less
than 3 mm/min. The test is performed at a defined displacement until there is
a displacement of three to four centimeters per load. The friction between the
two beds of stones is directly related to the construction method of the
sample. We chose to keep the same sample for the four shear tests with
increasing confinement. Between loads, the sample is “deconfined” to
unblock the stones. This procedure changes the displacement response,
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because after the first load, we do not have the necessary displacement to set
stones in relation to the horizontal shear stress. However, this has no impact
on the calculation of cohesion and angle of friction parameters c and ϕ.

During the test, we can sometimes hear stones cracking especially under
highest level of confinement. After opening the cover, two to three stones of
the upper bed were broken in two (out of a total of 13 stones), and five to six
of the lower bed (from a total of 13 stones).

After a test, the surface of stones is damaged, including the creation of
sand from friction, broken angles, crushing of knapping.

To exploit the results, a correction of the shear surface is applied
depending on the displacement. Parasitic friction forces of the box were
calibrated and removed from the measured forces.

Out of five tests, cohesion had an average of 5 kPa and will be ignored,
especially since it can be induced by the very big shear box itself; cohesion
particularly depends on the spacing between the two half-boxes [SHI 98].
The angle of friction obtained is similar to that found through other shear
boxes, see Table 3.3.

Figure 3.3. Views after completion of the interface shear test between two
beds of stones of 100 cm × 100 cm (sandstones): lower bed of stone on the
left, view of the interface with the upper bed; on the right, reconstituted

view of the interface with the upper bed

3.2.2. Shear tests on rubble stone (uncut) on an inclined plane

The idea of these tests is to know whether it is possible to use a simple
device on-site to evaluate the friction of a given stone, and avoid expensive
shear box laboratory tests or not. These tests are also used to measure the
displacement required to mobilize friction, given the parasitic effects induced
by shear boxes on forces and displacements. The procedure of this test is
described in section 2.1.3.2 of Chapter 2 about cut stones.
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Table 3.3 shows that tests on raw uncut stones from St. Gens on an
inclined plane, give an angle of friction that is greater than two degrees for
cut stone compared to uncut stones. Overestimation is about four degrees for
cut stone and the shear box. Dispersion comes from the heterogeneity of
samples: under low stresses, interface roughness is expressed by an angle of
dilatancy. This angle is added to the measured angle of friction for a smooth
interface. Under high stresses, roughness is generally smoothed, reducing the
angle of dilatancy to a negligible value.

Nature of
stones

6 cm × 6 cm
box

cut sample

30 cm × 30 cm
box

cut sample

100 cm × 100 cm
box

raw sample

Inclined plane
cut sample

Inclined
plane
raw

sample
Molasse 37 ± 1° 35.5 ± 1.5° 38 ± 2°
Molasse
from St.
Gens

36 ± 1° 35.5 ± 1.5° 38 ± 2° 40 ± 2°

Limestone
from Vers 35 ± 0.5° 34 ± 1° 36 ± 2°

Limestone
from Espeil 37 ± 1° 40 ± 2°

Limestone
from

Caberan
37 ± 0.5° 39 ± 1°

Hard
limestone
Hautes-
Alpes

26 ± 3° 30 ± 4°

Limestone
from

Estaillades
34 ± 1° 34 ± 2° 39 ± 2°

Table 3.3. Value of the interface angle of friction according to the type of interface
shear test and depending on the nature of interfaces (type of stones and interface

dimensions) [VIL 04, COL 09]

3.2.3. Conclusion

Friction is theoretically intrinsic data that does not depend on contact
surface value in the field of small normal stresses (30 to 200 kPa), which
is a classical result known from the works of Amonton and Coulomb
[COU 21].

In this same case of low stresses, (apparent) cohesion is negligible.
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The displacement required to mobilize friction cannot be properly
evaluated by “classical” shear box tests as they induce parasitic effects for
displacement but also for apparent cohesion. We obtained angle of friction
values (Table 3.3) that were very consistent with those of [RAF 00], who
used a sophisticated shear box adapted to the characterization of the behavior
of rock joints. [RAF 00] found an angle of friction for the Estaillades stone of
32° to 37° and a shear stiffness value between 500 and 9,000 MPa/m, which
can be roughly estimated through inclined plane tests, but not with
Casagrande box tests.

Tests on an inclined plane realistically measure the movement
required to mobilize friction, but they are very limited because they
involve very low stresses (a few kPa). These low stresses induce a
certain dispersion and overestimate the interface angle of friction due to
dilatancy.

3.3. Compression of earth blocks

Compressive strength tests of compressed earth blocks have often
followed the procedures developed for terracotta and concrete blocks
[WAL 96]. However, the compressive strength of compressed earth blocks is
approximately five times smaller than that of baked bricks. Strength is also
heavily influenced by water content.

Studies on the compressive strength of the earth blocks include [LUN 80,
OLI 86, OLI 97, WAL 95, WAL 97, PKL 02, VEN 03]. Strength is improved
by compaction (higher density) and cement content (usually linear
correlation), but is reduced when the water and clay contents increase (see
Chapter 2). National and international standards have also developed for
compressed earth block test procedures [WAL 96, NEW 98, CDE 00].
However, unlike other masonry elements, there is no general consensus on
compressed earth block test procedures. Questions on whether to test blocks
dry or wet, or the dimensions that samples must have (block sizes are very
variable), have not been solved.

Experimental determination of the compressive strength of materials such
as concrete, stone, burned clay brick and earth depends on the dimensions of
the sample, because it is not possible to completely avoid the end effects.
Load is normally applied uniformly by two rigid steel plates. As compressive
stress increases, the sample expands laterally. However, because of friction
along the interface between the plates and the sample, lateral expansion of the
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sample is prevented. Therefore, confinement of samples is generated by the
friction exerted by the rigid steel plates of the press that are in contact with
the samples. This confinement increases the apparent strength of the material.
This induced strength decreases when the aspect ratio of the sample (height
divided by width) increases.

In materials such as concretes and mortars, overestimation of compressive
strength is determined by specifying a standard sample size, parallelepipoid
or cylindrical. While measured compressive strengths are overestimated,
geometry being standard between different samples, it is possible to compare
them to each other. We will first look at approaches used in testing burned
clay bricks and concrete.

3.3.1. Compressive strength tests of clay bricks and concrete masonry units

The compressive strength of stone blocks, concrete or burned clay is
determined by a simple compression test on a unit in a similar manner to the
concrete material or mortar cubes test. To overcome surface irregularities, the
blocks are capped, either by a 3 to 4 mm thick plywood or similar sheet, or
covered with a thin layer of cement mortar or plaster. Bricks containing
recesses are usually tested uncapped and the obtained force is expressed in
terms of the gross section rather than net.

In countries where terracotta bricks are generally manufactured in a
standard format, such as in the UK where almost all bricks are nominally
215 × 102.5 × 65 mm3, the geometric effects on the strength of brick are
ignored because the geometry of the sample is always the same, as is the case
for concrete cubes or cylinders.

Concrete masonry blocks exist in a much wider variety of sizes and
formats (full, cellular and hollow). Consequently, in the British standard for
masonry [BRI 92], the effects of geometry of blocks are taken into account in
the determination of the compressive strength of the masonry. Otherwise, in
Eurocode 6 (on masonry) [CEN 96], the strength of blocks is normalized by
applying a shape factor to account for the effects of aspect ratio [BRI 96]. In
Australia, geometric variations for both clay and concrete blocks are also
supported by the application of a geometrical correction factor. The empirical
correction factor [KRE 38] is designed to eliminate the influence of geometry
by converting compressive strength values to obtain “unconfined” strength,
like those obtained for a sample with an aspect ratio of 5. For example, for
the French standard for baked bricks (measuring 230 × 110 × 76 mm), the
aspect ratio correction factor is 0.60.
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3.3.2. Test on directly flat earth block

The procedure adopted by many national standards is similar to that used
for terracotta and concrete blocks [WAL 96]. The surfaced blocks are tested
directly between the plates of the press. Block surfaces are generally
sufficiently flat and parallel so that only a thin sheet of plywood is needed to
make a surface. The blocks are generally tested in the direction in which they
have been manufactured, which is also the direction in which they are
generally positioned within the masonry. Generally, between 5 and 10 blocks
are tested to get a characteristic strength.

There are some internationally recognized sizes, such as 295 × 140 × 90
mm for CEB. However, in general, block sizes are variable [HOU 94,
STA 02]. The production method, which is generally non-industrial, allows
the manufacturer to vary the size and geometry of the block depending on the
need by using inserts in the mold.

The effects of geometry on the compressive strength of blocks are
generally treated in two ways. In some cases, standard test procedures make
no attempt to correct the results of press plate friction (see [VIL 10], for
example).

In other cases, compressive strengths are simply expressed by a
statistical analysis of the results of tests on several blocks [WAL 96]. In
another approach, applied in Australia [STA 02, MID 92], the effects of
friction are taken into account by reducing the strength values through an
aspect ratio correction factor. Correction factors in these studies are given
in Table 3.4; they are generally the same as for clay bricks. Other studies
have suggested more appropriate correction values for compressed earth
blocks [HEA 92].

Aspect ratio 0 0.4 0.7 1.0 3.0 ≥5.0

[KRE 38] correction factor
(using linear interpolation)

0 0.50 0.60 0.70 0.85 1.00

[HEA 92] correction factor
(non-linear)

0 0.25 0.40 0.58 0.90 1.00

Table 3.4. Aspect ratio correction factors for earth blocks
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In some cases, cubes were cut from blocks then tested under direct
compression. However, comparative strength tests of blocks and cubes of the
same material showed poor correlation. Cubes were manufactured separately
rather than by cutting blocks [VEN 03]. By testing cubes with constant
geometry, confined compressive strengths can be compared between
themselves. However, the effects of heterogeneity of the material within the
cube resulting from the manufacturing process require further investigation
(see also section 2.2.3).

3.3.3. Test developed under RILEM

In an attempt to indirectly measure the compressive strength of
compressed earth blocks, the Technical Committee 164 of the RILEM
(International union of laboratories and experts in construction materials,
systems and structures) proposed the use of the test shown in Figure 3.4. To
double the aspect ratio of the sample, blocks were cut in half and stacked
using an earth mortar joint. The earth mortar joint reproduces the masonry
configuration and allows the uniform transfer of stresses between the two
masonry blocks. To enable uniform transfer of stresses between the plates of
the press and the blocks, a neoprene layer is inserted between the steel plate
and the block. A sheet of Teflon is also placed between the plate and each
end of the sample to minimize friction (Figure 3.4(b)). Half-blocks can be
prepared following a splitting test, which is an indirect tensile test, similar to
the Brazilian test (primarily used on cylinder samples of rock or concrete).

Tests done by this procedure were compared to tests done on cylindrical
samples manufactured by dual compaction of a same material (see Chapter 2
also section 2.2.3). These validation tests were independently verified by
three research laboratories in France and North Africa [OLI 97, PKL 02,
HAK 96], (Figure 3.5).

All blocks are made with a CEB manual press. That is why the
compression strength is around 2 MPa. Higher values would have been
obtained with a hydraulic press or a higher cement content. The materials are
used with or without cement, each point representing an average of between 2
and 13 repeated tests. On average, the RILEM test underestimates the
compressive strength of blocks or cylinders. Differences between the two
procedures are partly due to variations in the dry density of the material
depending on the two manufacturing methods.
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Figure 3.4. Experimental device developed by [OLI 97],
adopted by the RILEM TC164 photograph and drawing by Ali Mesbah

Figure 3.5. Comparison between tests on a cylinder and prism according to RILEM
procedure trials with anti-friction, blocks made with a manual press

The inclusion of a mortar joint between the two tested half-blocks
changes the format of the sample. The mortar joint, even if it is made of a
material that is identical to the blocks, is less rigid than the blocks. This is
due to its high initial water content and the absence of compaction. The
presence of the mortar joint has a further variable that depends on the quality
of its implementation work. On an average, there is a difference of 15%
between the RILEM procedure and other procedures that are more
representative of the material. This small difference entirely justifies the
feasibility of using this test in practice.
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3.3.4. Indirect tests

Other strength tests than compression may give an indirect measurement
of compressive strength. These indirect tests have been primarily developed
to allow in situ quality control of materials when laboratory tests are not
possible. The most widely used method is the “three points bending test”.
The blocks are subjected to a load at their center while they are placed on two
supports. The force required to cause yield in this manner is usually 80 to 150
times lower than that required to cause yield under simple uniform
compression. This level of load is normally quite feasible on-site, without
requiring sophisticated equipment. For example, it can be obtained through
the weight of construction materials (10 blocks can weight 80 kg). The
strength is calculated assuming that the block is a beam in pure bending in
the strength of materials’ theory. Other potentially mobilized effects, such as
shear and compression through struts, due to the aspect ratio of the “beam”
are ignored, which biases the results, as shown in section 3.3.5.6.

The correlation between compression and three point bending strength
was established empirically by a number of studies. The results show
considerable scatter, although they are commonly used for a summary
assessment of compressive strength [VEN 90]. A disadvantage of this test
method is its sensitivity to defects in blocks (shrinkage cracks, for example).

Another less common test is the splitting test, related to the Brazilian test
used on rocks, wherein a block is loaded under compression by two steel bars
along opposite sides. This induces a tensile stress, which causes the yield of
the block along the line of the load. The blocks obtained from this test can
also be used in the RILEM compressive strength test, which allows a direct
correlation between the two measurement results.

3.3.5. Features of the compressive strength of earth blocks

3.3.5.1. Influence of sample geometry

As previously discussed, the geometry of blocks has a significant
influence on the measured compressive strength value depending on the test
method. The increase in confined strength due to friction depends on the ratio
between the height and width (aspect ratio) of the block. As indicated above,
one approach is to correct the strength measured by an aspect ratio correction
factor. The advantage of this approach is that it takes the variety of block
sizes into account.
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To date, correction factors were set up for masonry burned clay. The
effects of the geometry of earth blocks on their compressive strength come
from friction, but also from the effects of friction during the manufacturing of
blocks (see Chapter 2 section 2.2.3). The dry density of blocks produced
through simple compacting presses (on one side) is not constant, but
decreases with increasing height of the block. Experimental studies have
confirmed that a realistic value of compressive strength is obtained when the
aspect ratio of blocks is 5 [WAL 97, KRE 38]. However, with such a high
aspect ratio, the material within the block gradually loses its homogeneity
(see Chapter 2 section 2.2.3).

The influence of geometry of the block on RILEM test results is expected
if we refers to classical masonry behavior [HEN 81]. When the thickness of
the blocks decreases, 10 mm mortar joints have a proportionally greater
effect on measured strength, (Figure 3.6). Direct compression tests were
corrected by the factor given by [HEA 92], (Table 3.4). Although there is no
correction for the thickness of the mortar joint in Figure 3.6, the effect of the
geometry could be alleviated by adjusting the thickness of mortar joints,
depending on the height of the block. The best correlation in Figure 3.6
obtained using the correction factor shows that even with the RILEM
procedure, the size of the block has a measurable effect.

Figure 3.6. Effect of the height of blocks on the RILEM procedure,
the correction is made based on data from [HEA 92] (Table 3.4)

3.3.5.2. Influence of the test procedure

In Figure 3.7, we show that there is no correlation between the results
obtained with the RILEM procedure and strength values obtained from whole
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blocks tested under direct confined compression and corrected with the
[KRE 38] coefficients from Table 3.4. As Figure 3.5 showed that the RILEM
test was representative of blocks, this shows that the Krefeld correction
factors are not applicable to earth blocks.

Figure 3.7. Comparison between the RILEM procedure and
corrected confined strength

3.3.5.3. Influence of the dry density

The compressive strength of earth blocks is linked to the dry density and
increases with increasing dry density as shown in Figure 3.8 for CEB and
Figure 3.9 for adobes. This property is exploited for on-site quality control.

Figure 3.8. Relationship between the dry density and
compressive strength for CEB
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For adobes, cutting them into four (Figure 2.16) resulted in samples of
dimension 70 × 60 × 140 mm, so an aspect ratio of 2. We assume that this
procedure does not affect the quality of the fragments, because of the
fineness of the soil used and the absence of visible cracks on the surface.
Similarly, pressed blocks (PB, see Chapter 2 for the definition, 310 × 152
× 71 mm) were tested at their ends, in order to keep the same aspect ratio
of 2 to compare the compressive strength value to that of adobes
(Figure 3.9).

Figure 3.9 also shows that the curve has an area where the strength and
density of adobes and PB overlap. This coincidence is explained by the
compaction nulling effect, since the material is close to saturation
(Chapter 2). We get dispersion of values of adobes discussed in Chapter 2,
but this could also be because they have been cut, while PB are whole. PB
may have a slight anisotropy, because they have not been tested in the
direction of compaction.

Table 3.5 shows a comparison of adobes from different places. Adobes
from the Toulouse region were probably made in the 19th century, those
from Agadez (Niger) at the end of the 20th century and those from
Rochechinard in 2008. There is a direct relationship between the amount of
binder (clay, here) and compressive strength. Indeed, according to
Figure 2.14, the two Rochechinard and Toulouse region adobes contain twice
as much clay as the one from Agadez, which translates into 2–5 times better
strength.

Figure 3.9. Relationship between dry density and
compressive strength for adobe
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Origin of adobes Number of
samples

Dry density in g/cm3

(standard deviation)
Compressive strength in

MPa
(standard deviation)

Toulouse region
(France)

3 Non-measured 4.4
(0.13)

Rochechinard
(Drôme, France)

12 from 1.9 to 2.1 from 2 to 4.5

Agadès
(Niger)

2 1.89
(0.03)

0.9
(0.07)

Table 3.5. Compressive strength of adobe blocks

3.3.5.4. Influence of cement content on CEB

Cement acts as a stabilizer of compressed earth blocks by improving their
resistance to water and, indirectly, their durability. Data produced by various
researchers show a correlation between compressive strength and cement
content. The data presented in Figure 3.10 are characteristic of the
relationship between compressive strength and cement content.

Figure 3.10. Relationship between compressive strength and cement content
according to data from [GUE 98] and [WAL 00]

3.3.5.5. Influence of the water content of the block during a test

The water content of blocks has a significant influence on their
compressive strength. Blocks are usually tested either after oven drying or
drying at ambient humidity, reflecting service conditions. As water content
increases the suction decreases, clays gradually plasticize, which reduces
their mechanical strength. For a unstabilized earth block, clay is the sole
binder and the compressive strength of blocks in the event of saturation is
zero. The water content of unstabilized tested materials should ideally reflect
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service conditions. Tests on saturated stabilized blocks enable a minimum
controllable strength that is easy and reproducible, even if these conditions
are unlikely to be achieved in practice unless in case of a flooding episode.
The inclusion of the mortar joint in the RILEM test causes determination of
strength under conditions of saturation difficult.

3.3.5.6. Three-point bending test

The three-point bending test was recommended and used as a simple but
indirect measure of the compressive strength of earth blocks [VEN 90,
WAL 96, MOR 02, MOR 03] from a calculation in pure bending.

There is an interpretation other than pure bending given by [MOR 02,
MOR 03] where the compressive strength σc is given by equation ௖ߪ:[3.1] ൌ ି௉௅ଶ௛೚௘௟ට1 ൅ ௅మସ௘మ [3.1]

where P is the yield load of the three-point bending test, L is the distance
between the two supports (hinges), e is the height of the block, l is the width
of the block and ho is a parameter (the height of a fictive strut), taken to be
23 mm for the compressed earth blocks tested by [MOR 02, MOR 03].

In both cases (the conventional formula for pure bending [VEN 92] or
formula [3.1]), there is a linear relationship between compressive strength
and the strength given by the three-point bending test. The correlation
between the two calculations is shown in Figure 3.11. The best correlation
obtained with the RILEM procedure tests also shows that the correction of
confined compressive strength does not work for any random block.

Figure 3.11. Comparison of RILEM tests and corrected confined
compressive strength correlated with compressive strengths calculated

with formula [3.1], derived from [MOR 02]
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3.3.6. Conclusion

Many research works were interested in determining the compressive
strength of earth blocks from a simple compression test and advocate to
reduce friction of the sample through the plates of the press by using an anti-
friction system (latex membrane coated with silicone grease, for example),
for an aspect ratio of elements that is less than 1.5 or even 2. An aspect ratio
(height/width ratio) of 2 reduces the risk of overestimating compressive
strength due to friction.

However, if we want to do the test directly on the block and not on a
sample made specifically for the test, we must consider that earth blocks are
produced in a large variety of sizes.

The RILEM Technical Committee 164 proposed a method that tests
two masonry half-blocks by a mortar joint. This test eliminates the
problem of the low aspect ratio of blocks, but not for very flat blocks
(aspect ratio less than 0.6), which is often the case for adobes. This
procedure underestimates the strength of blocks by a few percent and is
therefore closer to the behavior of the masonry than that of the block. But
this last point is not detrimental in practice since the block will actually
by masoned to make a wall.

An indirect test, such as the three-point bending test, may also provide an
indication of the compressive strength.
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4

Arrangement of Blocks

4.1. Dry assembling, or the art of arranging irregular blocks to make a wall

Although the expertise of the dry stone mason is described in many books
[GUI 08, DSW 04, LAS 08], the working method is still transmitted through
the practice of dry stone building. Here, we will only consider the outlines
that underline this expertise. In addition, these outlines will be explained for
the case of a dry stone retaining wall construction, to illustrate taking the
whole constructive system into account and not merely the arrangement of
stones. This section draws directly on the work of Philippe Alexandre
(PETRA TERRA) in the ASCNI project [ASC 07].

The arrangement of stones for stone masonry construction (with mortar)
follows the rules of dry stone masonry since the mortar has a poor
mechanical role, as discussed later in this chapter (section 4.4). Only the
arrangement of stones provides stability. The mortar has mainly an air sealing
role and eventually also a water sealing role.

4.1.1. The area of influence of a dry stone retaining wall

Whether for a creation or repair, we must evaluate the role (or not) of
natural elements and construction elements in the stability of the structure for
a zone extending to an equal distance, at all points, of up to three times the
maximum height of the wall.

The area of influence may include adjacent slopes (upstream and
downstream), vegetation (root paths or surface, etc.), construction works
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(buildings, fences, etc.), various networks, a stream bed, a developing ravine,
etc.

For the reconstruction of a structure, we must identify in advance what
caused the collapse of the wall:

– overturning from pressure;

– sliding of stones;

– exuberant vegetation;

– deterioration of the material;

– scouring of the foundation;

– a sudden, unusual event;

– poor workmanship.

4.1.2. Quality of the material

Whether for reconstruction or creation, material that is local or found
nearby should be used. Recovery of on-site material should be equally
distributed according to particle size all along the length of the gap (in the
case of repair of an existing wall), leaving a passage of sufficient width (from
0.50 to 1.00 m) to avoid cluttering the foot of the structure. Earth should be
collected and placed above and behind the collapsed area. All areas that do
not respect the initial construction and those that are unstable should be
dismantled.

Each stone is selected according to its position in the wall, its size, shape
and density.

Evaluation of the interface angle of friction is based on an inclined plane
test (see Chapters 2 and 3). This test will give an approximate value of the
angle of friction under low stress.

Stones with a large longitudinal axis will be kept as through stones, to
link or join the two sides of the wall. This means that the largest dimension of
the stone is perpendicular to the external facing of the wall in order to give it
overall cohesion.

4.1.3. Elevation

Elevation is the act of constructing the wall from the bottom upwards.
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4.1.3.1. Excavation

This is excavation into the ground in which the foundation is built.
Sometimes non-existent (on rock), and often reduced, it should be of
sufficient depth and width in relation to the quality of the earth (presence of
non-loose soil) and the height of the structure. The base of the excavation
will be tilted downwards toward the inside face of the future wall.

On a rock base, an inclined plane should be created by dressing the stone
with the same downward inclination and minimum width of the first stone to
be placed on the rock, to facilitate the installation of the first row of facings.

4.1.3.2. Foundations

Foundations distribute the wall load over a wider surface toward the
outside by about a quarter of the thickness of the wall. This enables the
laying of the first course. The foundation consists of a stable base made up of
large stones, which defines the inclined plane of the coursing to follow. The
size of the stones selected allows the foundation to emerge from the ground
level by few centimeters.

The installation of these large and roughly shaped stones is carried out
according to the same rules as specified for “elevation”, see below.

4.1.3.3. Laying the first course

The wall body consists of elements for which the visible face, the
“facing”, is aligned along the external side of the wall (Figure 4.1).

Figure 4.1. Horizontal and vertical cross joints, drawing by
Rabia Charef-Morel from [GUI 08]
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Stones are positioned side by side and fully stabilized to create the
external wall facing, often using “pins” (stone wedges) placed at the heel of
the stone (Figure 4.2). The course is laid with stones placed as tightly as
possible one against another, sometimes using a specially-shaped hammer
(for example with a square, concave head on one side and a point on the other
for shaping, sizing and dressing hard stones). Small stones may be placed
between certain larger joints, although these should be wedged very tightly if
they are to serve a purpose other than aesthetic.

The wall body is supplemented with non-faced stone elements, the
“hearting or packing”, placed throughout its thickness, filling the gaps as
much as possible (Figure 4.3). The type of packing may depend on the
quality of contact points of the facing stones and the number of
throughstones.

4.1.3.4. Laying the second course

At this degree of elevation, care should be taken to install an appropriate
device to enable the waller to follow the line and plane of the wall, if this has
not already been done. This is defined in advance by a cord that runs between
both wall ends, attached to a guide frame that delineates the batter of the
wall. The second course of facing stones systematically covers the joints and
contact points of the previous course. It has the same characteristics as the
previous course and is laid according to the same rules.

Packing is installed like the facing, to cover the previous level of stones,
particularly in the thickness of the wall. The filling between the wall and the
ground behind (the drain) can be done using improper construction elements:
chips, waste excavation, unsuitable elevation stones.

Figure 4.2. Packing wedges, drawing by Rabia Charef-Morel from [GUI 08]

4.1.3.5. Laying the third course

This is a repetition of the previous operation. If the wall has reached a
third of its height, a drain should be installed behind the wall using stone
chips and other small stones.
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The height of the wall is now sufficient to allow the occasional laying of
stones that, with a facing, are not throughstones or headers, but traced stones
or “stretchers”. The length of their axis in the wall is shorter than the length
of the facing.

A sufficient number of “throughs” should be placed from the first quarter
to about half the height of the wall (Figure 4.3).

Construction progresses by alternating traced stones, building stones and
occasionally throughstones which, if they cover both the external face of the
wall and the internal packing, will feature as “binders”.

The installation of the drain behind the wall continues up to 20 to 25 cm
below the ground level retained by the wall.

Figure 4.3. Stones arranged in a wall: elevation (top) and horizontal
section (below), drawing by Rabia Charef-Morel from [GUI 08]

4.1.3.6. Covering or coping

This involves blocking the last row of wall stones to maintain the wall
head in place, enabling circulation on the terrace. Several types of finish are
possible, depending on the characteristics of the stone.

Whether the coping is created using thick, large stones laid horizontally
or smaller stones placed vertically on their edge (“en délit”), it will be aligned
to the surface of the soil that is to be retained.
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The wall is finished by presenting a copestone that will be aligned to the
upper cord and the last stone course will be placed under these thick, heavy
stones according to the same installation rules as before.

4.1.3.7. Finishing the construction

A final sorting of granulates separates the stones that will be part of the
drain from the earth that will be raised on the terrace to finish the job.

4.1.4. Conclusion

In this book, we will not discuss the different types of arrangement that
have already been described in many books, see for example [GUI 08] and
[ACA 01]. Dry stone arrangements are the most difficult to implement,
compared to arrangements with cut stones where the mortar can be used to
correct errors in the geometry of blocks and their placement. The quality of
the masonry is directly dependent on the expertise of the mason, and even if
this knowledge is empirical, it is quite sufficient to obtain stable structures
which can be modeled by an engineering deterministic approach. This
expertise may even allow us to consider masonry as a homogeneous material
in the first approximation and on a certain scale (see Part 3, Chapter 11).

4.2. Mortars of earth blocks and rubble stone masonry

For stone masonry, the first role of mortars is to provide an air seal, which
is necessary in the case of residential buildings. The second role is to transmit
and distribute compressive loads between blocks of irregular geometry. In
some cases of excellent compatibility between the mortar and the block, the
mortar can provide tensile strength to the joints and thus to the masonry. The
tensile strength of the mortar and the joint can be approximately equal to a
maximum of <0.4 MPa, which is highly dependent on the implementation,
without knowledge of its evolution over time. That is why it will not be
considered in this book. Let us note that ignoring this strength is not in the
interest of safety.

In this chapter, we will consider earth mortars but the presented works are
transposable to low-content lime-based mortars. The main macroscopic
difference is less shrinkage for the latter. There are very few studies on these
mortars and testing procedures are different according to various authors. All
procedures used for conventional sand:lime:cement mortar are not directly
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applicable because of clay activity (clay affinity with water) and low stiffness
of earth mortars [PKL 03]. In this section, we present some test procedures
and their influences on the characteristics of some earth mortars. The
results form the basis for a discussion on the choice of test procedures.

Soil Magagnosc Rochechinard Tassin Tamée TR
Amount of clay by weight
(particles <2 µm) 12 26 18 6 15
Liquid limit (%) 29 38 30 60 NM
Plasticity index (%) 9 18 9 31 NM
VBS = Methylene blue
value of the fragment 0/D
(total) 1 2.5 1.4 2.2 <1
AcB Methylene blue
activity =100 × VBS/C2% 8 10 8 37 <3

Figure 4.4. Geotechnical characteristics of soils used for earth mortars, origin:
South-East France

Just like block materials, it is impossible to give a standard composition
of earth mortar as can be done for sand:lime:cement mortar for which
knowledge of the proportions of each component is sufficient to ensure
mechanical behavior. One reason for using earth mortar is for the constraint
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or choice of using soil from (or nearby) the site, which is naturally very
variable depending on the site. To illustrate our point, we arbitrarily choose
given earth as an example (Figure 4.4).

There are two approaches for determining the properties of mortar: direct
tests on the mortar, or masonry element (block + mortar). Measurement of
consistency is obviously done on the mortar alone and the measurement of
the shear strength of the block-mortar interface is obviously done on a
masonry element. The compressive strength of mortar can be studied through
two approaches [SHR 95, WAL 97]. But to our knowledge, there is not yet
correlation between the compressive strength of earth mortar and that of
masonry.

In section 4.3, we will consider block–mortar interactions. Here, we will
study tests on mortar alone and not within the masonry.

4.2.1.Measurements in the fresh state

There are usually five quantities measured in this state for conventional
mortars (sand:lime:cement): workability, consistency, water retention, air
content and water content. All these quantities are related to each other,
which makes their measurement difficult because different procedures can be
used to measure the same parameter.

4.2.1.1.Measuring air content

We used the alcohol method according to the [CEN 94b] standard on
three different earths with a cement content (which we will always express in
dry weight) of 25:2, which means 25 parts soil, sand or granulate for 2 parts
cement (see Table 4.1).

Apart from unstabilized reconstituted earth (1:0), all air content levels are
less than 7%. This is a characteristic for earth mortar and is due to the ability
of clay to adsorb water. Earth mortars therefore have higher water contents
than lime:sand:cement mortars, thus smaller air contents (air cannot dispel
away adsorbed water).



Arrangement of Blocks 77

Mortars Water
content
(%)

Air content
(% in

volume)

Water
retention (%)

Consistency,
slump test, NF P
18-451 1981

Workability
NF EN
413-2

Slump
(cm)

Sample
diameter
(cm)

1st
trial

2nd
trial

Standardized
mortar MC5 12 8 to 20 80 to 95 5 to 30 s

Reconstituted
Earth (1:0) 13 9.8 98 12.5 30 8 s 10 s

Reconstituted
Earth: cement
(25:2)

17 5.9 99 0 20 >5 mn >5
mn

Reconstituted
Earth: cement
(25:2)

21 4.8 98 4.5 22 45 s 30 s

Tamée (1:0) 22 6.5 99 1.5 22 >5 mn >5
mn

Tamée:cement
(25:2) 23 6.0 0.5 21 >5 mn >5

mn
Tamée:cement
(25:2) 25 4.1 1.5 22 >5 mn >5

mn
Tamée:cement
(25:2) 29 2.4 95 7 23 >5 mn >5

mn

Tassin (1:0) 25 3.9 98 0.5 21 >5 mn >5
mn

Table 4.1. Water content (by dry weight) Air content (alcohol method NF EN 413-2),
water retention, slump test consistency, workability of earth mortars

In the case of reconstituted earth, poor quality of mix could explain a
higher value. The air would not have been dispelled as much by the water
added during the procedure. For reconstituted earth (clay–sand mixture), it is
best to allow a reaction time for the plastic mixture of 24 h to 1 week to
ensure good homogeneity.

4.2.1.2.Measuring water retention

To our knowledge, the first water retention measurements on earth mortar
were published by [WAL 97]. These measurements provide a more
significant water retention capacity than conventional mortar
(sand:lime:cement). In light of the variability of earth use on sites, we carried
out further tests. The [WAL 97] tests were carried out on reconstituted earth
containing only kaolinite. This water retention capacity is only relevant when
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correlated with masonry earth blocks as the migration of water and particles
will depend on the two media involved. There are very few studies on this
aspect of earth masonry [VEN 96, WAL 99]. This is also still in the field of
research of masonry using baked bricks and sand:lime:cement mortars
[GRO 00].

This improved water retention capacity will usually promote adhesion to
the block–mortar interface [WAL 99] because it slows down overly-rapid
migration of water toward blocks and the atmosphere. This is accentuated by
the nature of earth blocks that are generally less absorbent than baked bricks.

For all the earth mortars in Table 4.1, water retention measured according
to [CEN 94b] is greater than 95% and therefore greater than that of
conventional standardized MC5 mortar, which varies between 80 and 95%.
These results of natural earths confirm those from [WAL 97] for
reconstituted earths containing kaolinite.

4.2.1.3.Measuring rheology of fresh mortar

Here, we will discuss in a little more detail how to describe the rheology
of fresh mortar paste. A lot of research is being done on this topic on concrete
mortars, having had interest in it be revived through the increasing use of
self-leveling concrete [SED 95] and sand:lime:cement mortar in masonry.
The complexity of this field arises from the fact that earth mortar is:

– a multi-phase medium (clay–sand–water–cement/lime–air);

– these phases act strongly on its rheology over time;

– interacting with blocks (themselves also with very different
characteristics);

– interacting with ambient air and therefore subject to climatic conditions
during laying.

The first attempts to measure the rheology of earth mortars are detailed in
[AZE 05] and partly published in [AZE 08]. Tests done using a rheometer
showed that earth mortars followed a Bingham fluid-like behavior as
described in Figure 4.5. As a first approximation, three parameters are needed
to describe this behavior: the shear threshold τo and the two Bingham flow
line parameters (η and τB).

Despite this complex behavior, experienced masons naturally find a
compromise between all these constraints and therefore the appropriateness
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of a mortar is foremost an appreciation of the mason before it is a laboratory
measurement. An easily-implemented mortar must hold without sticking to
the trowel, must spread well and adhere to a vertical surface when it is
thrown on. However, knowledge of rheology may be useful, at least for
determining the number of parameters needed to define the behavior of fresh
mortar.

Figure 4.5. Behavior law of earth mortar in the fresh state

These properties are divided into two measurements called [BOW96]:

– consistency (resistance to deformation), measured by a penetrometer
type test called cone impression. The use of a flow table and the dropping
ball test is also possible. If using a flow table, one must calibrate the table
using a mortar that satisfies the right consistency criteria for the cone,
otherwise this test gives a workability value;

– workability (static or dynamic), measured by a slump or flow test. The
standard [SAA 84] does not differentiate between workability and
consistency.

[CEN 94a] standards specify the consistency that will determine a
suitable water content for the mortar. The workability of mortar is then
measured for this given consistency.
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The “two points: consistency and workability” approach is justified by the
fact that for years, the behavior of conventional mortars (sand:lime:cement)
was considered to follow a Bingham fluid model
[TAT 91] with two physical parameters called Bingham constants (threshold
shear stress and plastic viscosity (τB,η)). To fully qualify a mortar under this
behavior, these two parameters must be measured. Therefore at least two
different experimental measurements are required, including a time-
dependent measurements (rate, for example), for measuring plastic viscosity.
[TAN89] [HU 95] admit that the value of the slump test indirectly gives the
stress threshold.

We can find the second parameter (plastic viscosity) using rheometers
that are adapted to mortars or by measuring an intermediate slump time with
a modified slump test [DEL 98]. These recent developments are applied to
“fluid”concretes with a slump of over 10 cm for which [DEL98] proposes a
Herschel–Buckley behavior law with three parameters. In this case, we must
measure three parameters as defined by [AZE 08] for earth mortars.

While waiting for progress in this field, we must focus on practical tests
that are already used in situ and integrate them into a larger-scale practice.

4.2.1.3.1. Measuring consistency

Consistency was measured through two tests by [WAL 97] on
reconstituted earths (sand–kaolinite) with clay contents of 10–40%. The two
tests, plunger and flow table give very scattered results for mortars that are,
according to the subjective opinion of a mason, of good consistency.

4.2.1.3.2. The slump test

The slump test measures workability and is only used for concrete in
France. Its use on mortars is nonetheless common for the British who then
measure consistency. [WAL 97] shows that a smaller slump test [SAA 84]
than one for concrete is more suitable than the previously described tests for
reconstituted earth mortars containing kaolinite only.

Slump tests for concrete [NFP 81] gives lumps of 1.5 to 7 cm for the most
acceptable mortars from the perspective of their fresh state implementation,
see Table 4.1. Tests with a smaller cone (adapted to the mortar) require
lubrication of the cone with oil [WAL 97].
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4.2.1.3.3. Measuring workability

According to standards for conventional mortars, we present two tests for
quantifying the workability:

– the flow table, used for earth mortars by [BEI 96] depending on the
[AST 98] standard for the number of strokes. The diameter of the sample
paste giving adequate workability is determined by the experience of a
mason;

– the maniabilimeter [CEN 94] that measures flow time.

These tests have been developed for conventional mortar
(cement:lime:sand) and give cohesivity. We have seen (Table 4.1) that the
values given by the standards do not apply to earth (see also [WAL 97]).

The dynamic workability measured by a maniabilimeter seems
inappropriate for masonry mortars. Indeed, unlike concrete, these mortars are
not vibrated during their implementation. Moreover, it is for concrete mortars
that the maniabilimeter NF EN 413-2 [CEN 94b] was designed. We have a
lot of information about dynamic workability so it therefore seems interesting
to carry out research in this direction. In addition, the French standard
[CEN 94a] gives requirements for this workability for mortars.

Previous studies with the maniabilimeter on earth mortars [OLI 95]
showed that adding:

– Sisal fiber increases water content and decreases flow time. The amount
of extra water depends on the specific surface of the fibers;

– a plasticizer does not change flow time but reduces water content.
Shrinkage decrease with decreasing water content is a way to stop the
appearance of shrinkage cracks.

Maniabilimeter values of flow in Table 4.1 show that the device is not
suitable for all earth mortars because three mortars (suitable for earth
construction) out of 4 give an infinite flow time. We simply propose to
abandon the use of this device rather than modify it. It is indeed necessary, in
the present state of knowledge, to use simple and inexpensive measuring
devices (for example, non-electric).



82 Sustainable Masonry

Figure 4.6. Variation of dynamic workability versus time,
earth (Tassin) described in Figure 4.4

In the field, mortar is not immediately used. Part of the mix remains at
rest before progressively being used to mason blocks. If the mortar contains a
hydraulic binder, it should not be remoistened. In Figure 4.6, we see that
even earth mortars with little cement content (here with a high clay content of
C2% = 18% and a rather fluid consistency according to Table 4.1) lose their
workability significantly from 20 min onwards and after 35 min the mortar is
no longer usable. This is in temperate conditions (France), so in the shade
and at a temperature of about 20°C.

4.2.1.4.Water content

We compared water contents, considered to be adequate, for different
earths and by different authors. Proper workability is either determined by
different masons or by a flow time of 16 s on the EN 412-2 maniabilimeter
for data from [UNI 82]. Figure 4.7 shows the influence of the amount of clay
(a kaolinite for all reconstituted earths; for Tassin, which is a natural earth,
there are more active clays but kaolinite remains the majority, see AcB
Figure 4.4) on the water content of earth mortars. Water content is less
dependent on the amount of cement than the amount of clay and the
mineralogical nature of the clay. Data from [UNI 82] are obtained with a
cement content that is too high for earth construction.

We also note that for the same earth, the manufacturing water content
increases with the amount of cement as well as with clay activity (see
Table 4.1); this is the case for reconstituted earth containing kaolinite, as well
as for Tamee earth, which mainly contains smectite.
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Figure 4.7. Water content of the mortar for acceptable workability according to
different authors, Tassin earth mainly contains illite and very little kaolinite

4.2.1.5. Conclusion

Direct measurements of the rheology of earth mortars show that they have
a Bingham fluid type behavior with three parameters. In this case, we must
carry out three experimental measurements, which remain to be defined.
While awaiting direct rheological measurements, it seems that the slump test
is usable for many earths. The maniabilimeter test is not suitable for earth
mortars.

4.2.2. Drying shrinkage measurements

One of the main problems with earth mortars, especially with unstabilized
mortars (100% earth), is the appearance of shrinkage cracks. If there is no
coating, these cracks can affect the homogeneity of masonry and its
durability, as water can penetrate through the cracks.

Shrinkage greater than 10% is also a problem for obtaining homogeneous
cylindrical samples with an aspect ratio of 2. The mold wall–sample
interaction during the procedure can destroy it.

Another method to reduce drying shrinkage is to add sand (optionally in
addition to cement) or natural fibers [BEI 96]. But in the case of addition of
sand alone, compressive strength will decrease as the amount of binder (clay)
decreases.
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4.2.3. Tests on hardened mortars

Four procedures using the following test samples can be found in the
literature:

– 4 × 4 × 8 cm3 prism with an aspect ratio of 2 with friction when the
sample is in contact with the press [BEI 96] (confined test);

– cylinder (diameter 7 cm, height 14 cm) aspect ratio of 2 without friction
[AZE 05] (unconfined test);

– 7 cm cubes with friction [SHR 95, VEN 96] (confined test);

– 5 cm cubes with friction [WAL 97] (confined test).

As for earth blocks, samples with an aspect ratio of 2 will always be given
priority. The results obtained from cubes without anti-friction cannot describe
the material behavior.

We will not further develop this section because it is either not necessary
to quantify the strength of hardened mortar because they have no important
structural role, or we recommend directly testing the mortar block masonry.
If we still wishes to do tests on mortar alone, for example to compare two
mortars, we may refer to procedures developed for adobes (Chapter 2). It is
possible to treat adobes and fresh state earth mortars in the same frame
because their manufacture follows the same “wet” process, contrary to
compaction, which is “dry”. The material is shaped or “masoned” when it
reaches the consistency of a paste with a water content of about 17–30%.
However, the composition of these two materials may be different when it
comes to proportion and quality of clay; adobe may therefore contain more
clay. Indeed, adobe remains a small element that is dried alone, while mortar
creates a joint that dries under very different conditions by interacting with
blocks and the atmosphere.

4.3. Masonry of earth blocks

When assessing the compressive strength of masonry, Eurocode 6
[CEN 96] correlates compressive strength values of mortar and block
samples obtained in a laboratory with those of masonry strength. Because of
its inaccuracy due to the difficulty of finding the mechanical characteristics
of masonry based on knowledge of its components alone without taking their
interactions into account, this approach is relatively open to criticism. We
recommend carrying out tests on the masonry elements to directly get the
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compressive strength of the masonry, namely on triplets for which examples
will be given in the next section. With tensile strength being ignored, shear
strength is generally not useful.

4.4. Stone blocks and mortars

To show that the very low strength of hand friable mortar (less than 1
MPa) is compatible with masonry stability, tests on triplets were carried out.

The configuration of three blocks/stones with mortar (“triplet”) is
generally considered to be representative of the stone/mortar interaction
within the masonry. Triplets are used as samples subjected to compressive
stress to assess the strength of the stone/mortar composite under loading.

Here we present results matching three different sources (Table 4.2).
[VEN 97] used a low binder content sand:cement mortar (1:8). Tests on
mortars alone were on cubic samples without anti-friction such that their real
strength is probably below 1 MPa. [ASC 07] measured unconfined
compressive strength on samples with an aspect ratio of 2 (Figure 4.8), for
two earth mortars.

Figure 4.8. Anti-friction compression (unconfined) test on
an earth mortar sample
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[TRA 14] used a sand:lime mortar with hydraulic lime NHL5 for
unconfined compression tests on samples with an aspect ratio of 2, as shown
in Figure 4.8.

Tests on triplets were done as described in Figure 4.9. As the stone has
significant stiffness, the influence of friction between the steel press and the
stone is relatively low. In addition, the aspect ratio of the sample is 3, which
justifies not using the anti-friction system. In addition, we are only interested
in the central part, so the intermediate rubble stone (see Figure 4.9).

Figure 4.9. Simple compression test on stone earth mortar triplet [ASC 07]

Crushing of triplets is achieved by breaking stones through vertical
cracks. The three sources in Table 4.2 have consistent and similar results. The
strength of the triplet is far greater than that of the mortar. Even the smallest
triplet strength of 11 MPa leaves a substantial coefficient of safety relative to
the load distribution, which is around 0.25 MPa for a stone house of 2
storeys. These results show that mortar does not play a significant mechanical
role in masonry that is correctly made.

However, one can see that the strength of mortar has an influence on the
strength of the masonry: with a mortar of 3 MPa instead of 0.85 MPa, the
brick work has greater strength (about 15 MPa instead of 11 MPa).

From the results of tests on triplets, we see that the strength of a wall
depends on the stones first and secondarily on the strength of the mortar.
Whatever the composition of the earth mortar, the wall will have a
compressive strength safety coefficient of around 4 if the masonry is well
made. This last point therefore has a greater impact on the performance of the
wall.
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Materials
Compressive

strength of stones
(MPa)

Compressive
strength of mortar

(MPa)

Compressive
strength of the
triplet (MPa)

Granite [VEN 97] 105 (3) 2.8 33 (3)
Granite [VEN 97] 86 (10) 2.8 30 (3)
Limestone [ASC 07] 96 0.85 11 (0.9)
Limestone [ASC 07] 96 3 15 (0.4)
Shale [TRA 14] 110 (30) 0.7 47(2)

Table 4.2. Compressive strength of stones, mortars and triplets
(standard deviation in brackets)
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Graphic Statics



5

The Foundations of Graphic Statics

5.1. Introduction

Graphic statics is a method for determining the equilibrium of solids using
solely geometric constructions. Research on purely geometrical methods for
designing structures was a practice that marked construction history [HUE 04].
Initial attempts involved developing empirical approaches on more or less
complex systems. It is only through developments supporting the principles of
statics that rational graphical approaches have been developed in parallel or in
conjunction with analytical approaches. Thus, the same principles of statics
allow a purely analytical or purely geometrical approach.

Analytical approaches are based on analytical geometry and equilibrium
equations of a structure. These equations reflect the nullity of the sum of
forces and moment applied to a balanced solid. Graphic statics is a way to
graphically solve a static problem without analytical calculation. This type of
approach is a full part calculation method (graphical calculation) as it gives
numerical results by measuring graphical lengths. It is therefore an effective
method for precisions considered acceptable by the user. The graphical
method has an advantage for problems where systems have a large number of
equations and for which there is no computational assistance. So long as
calculations could not be automated by a computer, graphic statics were an
effective calculation method for engineers. The precision of lines on paper is
limited but sufficient if the margin of error can be estimated. Thus, graphic
statics were an effective and widely used method in the 19th and early 20th
Centuries. For example, the Eiffel Tower was calculated by graphic statics.
Today, they have a pedagogical value for direct visualization of values in a
graphical context, rapid implementation, and the direct link between
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geometric operations and physical phenomena. They are also a quick way to
control the consistency of results if an analytical approach is also adopted.
Dynamic geometry tools allow computational implementation of graphic
statics for geometric configurations that change interactively, which has
sparked a renewed interest in this method, especially for structural design
problems for architects or engineers [CIB 08, FLE 08, ALL 10]. Applications
for studying masonry structures using these tools are also the subject of
contemporary developments [BLO 06].

Graphic statics are based on the principle of statics with a vector
formalism of point mechanics for non-deformable solids. These principles are
reflected graphically as they establish relationships between forces
represented by vectors and their points of application. This makes it easy to
translate the zero-sum applied to a solid in equilibrium by a geometric
structure which consists of drawing a polygon of forces that must be closed.
This chapter will only concern coplanar forces. Thus, construction of the
polygon is done on a specially selected plane, called the force plan, which is
independent of the figure representing the body and forces applied to it. The
layout plan is the plane in which the solid and the forces applied are
represented. The zero-sum of forces, which is necessary for the equilibrium
of a solid, is not sufficient since the sum of the moments must also be zero.
For this condition on moments to be taken into account geometrically, we
proceed to the reduction of the system of forces, which can only be done in
the situation plane. If the sum of forces is zero, or the system can be reduced
to a couple, then the sum of the moments is clearly not zero, or it is reduced
to zero force, in which case equilibrium is ensured. The basic concepts of
graphic statics are described in detail in this chapter.

5.2. Concepts and principles of statics

5.2.1. Hypotheses and basic concepts

The purpose of statics is to study the mechanics of the body at rest, so
immobile material points systems in a particular Galilean observation
referential (the general movement of a body at rest in a Galilean referential is
a rectilinear uniform translational movement). We are particularly interested
in statics of solids, meaning bodies on which there are little strains. With this
assumption, we can assume that strains on a solid are negligible under the
effect of the actions applied to it. Thus, we base our reasoning on supposedly
non-deformable solids. We will present concepts generally, particularly three
dimensional aspects, then apply them to planar cases.
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5.2.1.1. Force

For material statics, Galileo’s first principle of inertia or Newton’s first
law (1642–1727) state that a single material point has a constant speed of
linear motion. Thus, if a material point has no external action on it, its
movement is not changed over time. We notice that immobility of the point
relative to the observation referential only corresponds to the particular case
where the velocity is zero. If the material point is not isolated, it may be
influenced by other bodies that exert their forces upon it. Therefore, we can
define the concept of force as the cause that modifies the movement of a
material point. The concept of force is used to express the action exerted by
one body on another with respect to its change in motion. For example, a
pebble on the ground undergoes the influence of gravity in the form of its
weight and its fall reflects its change in motion (constant acceleration) under
the action of its own weight force.

A force is defined by:

– its point of application;

– its line of action;

– its direction;

– its magnitude, expressed in N (Newtons) in the ISU (International
System Units).

When a force is applied to a solid, it will exert an action that modifies its
overall movement in a translational direction with the same direction as the
force.

The graphical representation of a force must be completely defined. Its
point of application, line of action, magnitude and direction must therefore be
characterized. Several equivalent representations exist, depending on whether
we prefer to use vector or scalar (real number) on the oriented action line.

5.2.1.1.1. Vector representation of a force

The vector of force F (vectors are denoted in bold) is associated with a
vector representation in the plane containing it (Figure 5.1). Magnitude F of
the force is equal to vector length F (F=IIFII), therefore it is positive and is
measured on the graph knowing the scale of associated forces. The direction
of the vector directly gives the direction of the force. Application point A and
force vector F are used to characterize and thus draw the line of action. In the
example of Figure 5.1, a force representation scale is given by the length of a
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segment associated with a magnitude of 10 N. This vector representation
allows the graphical addition of vectors, which is why we adopt it as part of
graphic statics.

Figure 5.1. Vector graphical representation of a force in a plane

5.2.1.1.2. Scalar representation of a force

This is another graphical convention, often used for practical reasons. It
involves representing force through the association of a number F (scalar)
equal to the magnitude of force with an arrow indicating the direction of its
oriented line of action (axis). This representation has the advantage of not
being associated with a force representation scale, as the value of F gives its
magnitude.

In this representation, if the direction of the force and its magnitude value
are known, we can very easily switch to vector representation by using a
force representation scale. For example, Figure 5.2 shows the graph
representation of force F applied at A in a plane. Scalar representation
indicates a value of F equal to 20 N, and the arrow shows the direction of the
vector. In the example, the corresponding vector graph representation uses a
force representation scale given by the length of a segment associated with a
magnitude of 10 N. Vector F is oriented in the direction indicated by the
scalar representation, and has a length that is double that of the segment
fixing the forces representation scale.

The force component is equal to magnitude and is assigned a + or – sign
depending on the direction of the axis. For the force shown in Figure 5.2, the
F component on the axis is equal to –20 N.
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Figure 5.2. Scalar and vector representations of a
force F applied at A in a plane

This convention also allows us to represent forces for which direction and
magnitude are not known. For this, we give the arrow an arbitrary direction
and carry out the force component calculations using this direction, the axis
orientation and unknown magnitude F. The component sign obtained through
calculation gives the actual direction of the force. We will see in what
follows that in graphic statics, a static problem with an unknown line of
action, magnitude or direction of force may be solved without analytical
calculation.

A same force can be identified by its magnitude F or vector F. For
notation homogeneity reasons and to present vector operations used in
graphic statics, we denote forces by vectors.

5.2.1.2.Moment

We have seen that a force has the ability to produce a translational motion
for a solid in the direction of its line of action and in the direction of its
action. However, a force may also have the ability to rotate the solid about an
axis, as in the case of a lever or a wheel. This ability is measured using the
moment of this force with respect to a point.

The moment of force F relative to point O (Figure 5.3) is characterized
by:

– its magnitude M, calculated by the following formula: M=F.d expressed
in N.m (Newton meter) in ISU where F is the magnitude of force and d is the
distance from point O to the line of action of the force. Distance d is referred
to as the lever arm;

– the slope of the axis and direction of rotation that the force may cause.
The direction of the axis is perpendicular to the plane containing the force
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and O. The sign of the moment is defined relative to a positive direction of
rotation assigned by convention to the same plane.

Figure 5.3. Graphical representation of the characteristic elements of the moment of
a force relative to point O in a plane and definition of conventional direction

From the expression M=F.d, we notice that the moment of force depends
on the position of point O from which it is calculated and is proportional to
the lever arm d. That is why the notation of moment can be specified by
writing MOF to indicate that this is the moment of force F relative to O.
Another consequence of this expression is that the ability of a given force to
turn a solid is zero if the point from which it is calculated is on the line of
action. In this case, the axis and the direction of rotation are not defined.

We may graphically represent force F in the plane containing O and F.
Thus, the rotational motion that tends to cause force F is about an axis of
rotation passing through O and perpendicular to this plane. On this plane, we
must give a positive conventional direction of rotation and a geometric scale
of representation in order to evaluate the sign of the moment and distances,
especially the lever arm. For example, Figure 5.3 vectorially represents a
force F in the plane containing O and F. In this case, the positive
conventional direction of rotation is the inverse direction to clockwise. Force
F tends to produce a rotation relative to O in the opposite direction of the
positive direction, so the moment will be negative with the chosen
convention. The sign of the moment of F is negative relative to all the points
lying on the same side as O in relation to the line of action, and positive on
the other side. In the example, the force representation scale is given by the
length of a segment associated with magnitude 100 N and the geometrical
representation scale by a segment associated with a length of 1 m.
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5.2.1.2.1. Vector representation of moment

The definition of moment shows that it can be fully characterized by a
free vector. Indeed, a vector may: by its length, indicate magnitude M of the
moment; by its direction, indicate the direction of the axis of rotation, and by
its rotation indicate the direction of rotation. We denote by M, the moment
vector for which the physical significance is very different from the force
vector, since the unit is not the same (N.m) and the arrow indicates the
direction of rotation and not a translation. Thus, it is impossible to add a force
vector to a moment vector. To mark this difference in nature, it is sometimes
useful to draw a curved arrow instead of a straight arrow on the letter
designating the moment vector. In the example of Figure 5.3, the moment
vector of force F relative to O must be perpendicular to the plane of the
figure and the arrow should point to the observer if the convention that the
direction of rotation in the clockwise direction is associated with the direction
of the arrow oriented toward the observer. Analytical relationships between
M and F are beyond the scope of this section on graphic statics, but they
allow demonstrations and elegant calculations in three dimensional space (see
for example [FRE 98]).

5.2.1.2.2. Scalar representation of moment

The scalar graphical representation of moment is mainly useful for setting
planes into equations, but it can describe the moment of a force relative to a
point in the plane containing the force and the point perfectly. This
convention involves representing moment by the association of a number M
(scalar), able to be positive or negative, for which the absolute value is equal
to the absolute value of F.d, and a curved arrow indicating the positive
conventional rotation direction assigned to the moment in question. Thus, if
the direction given by the arrow of force F induces a rotation in the same
direction as the curved arrow, then M = +F.d (as in Figure 5.4). If the
direction of rotation is in the opposite direction to that of the curved arrow,
thenM = -F.d.

With this convention, the positive conventional direction of rotation
defined for the plane is not useful for characterizing the direction of rotation
of moment but it is used as a common convention to all force moments
belonging to this plane and thus for algebraically summing moments. It is
always important to use the graphically defined convention to define the sign
of moment and only consider the overall direction for the algebraic sum.
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5.2.1.3. Degrees of freedom of a point or a solid

The focus here is on the number of parameters, called degrees of freedom,
which indicate the position of a point or a solid in space. We therefore focus
on the only possible movements without addressing the causes of their
modification.

Degrees of freedom of a point: the position of a point in space depends on
three parameters (x, y, z for example) so it has three degrees of freedom in
space. If the point is in a plane (planar case problems), it only has two
degrees of freedom (x and y for example).

Degrees of freedom of a solid: a free solid can have an overall
translational movement in any direction in space and rotational movements,
corresponding to 6 degrees of freedom: 3 for translations in the three
directions x, y, z in space, and 3 for rotations about x, y and z. A solid plane
moving freely in the plane has three degrees of freedom: 2 for translations in
both directions x, y of the plane, and 1 rotation about the orthogonal z
direction of the plane.

5.2.1.4. Connecting elements and contact surfaces

The interaction of a solid with its environment can be achieved through
connecting elements or contact surfaces.

A connecting element is a device connecting two solids by blocking a
number of degrees of freedom of one relative to the other. If a solid is
influenced by the external environment that is assumed to be fixed, for
example to rock, the connection is called an external connection. If a solid is
part of a system of interconnected solids, a connection between the two solids
is called internal connection (implying the internal connection to the system
of solids). Internal connections ensure the assembly of elements of the
structure while external connections ensure the connection of the whole
structure to the external environment.

The connecting elements can be classified according to the movements
they allow. Thus, the following connections are presented in descending
order of the number of degrees of freedom allowed. We describe
conventional connections below:

– a simple support allows rotation of the solid in each of the three axes of
rotation and blocks a single translation in any particular direction, so it allows
5 degrees of freedom (3 rotations and 2 translations) and only blocks 1. In the
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planar case, a single axis of rotation is possible (perpendicular to the plane),
therefore there are 2 possible degrees of freedom and a single degree is
blocked (1 translation);

– a ball joint permits rotation of the solid in each of the three axes of
rotation, it allows 3 degrees of freedom and therefore blocks 3 (3 translations
in x, y and z). A physical device that ensures a connection between two solids
A and B can be considered as a sphere attached to solid A and inserted into a
spherical cavity in solid B. We must of course avoid any friction so that this
system allows rotational movements. The gimbal is a mechanical device that
also provides the same type of connection. In the planar case, a single
rotation axis is possible (perpendicular to the plane), therefore there is only
1 degree of freedom possible and therefore 2 degrees are blocked
(2 translations in x and y);

– a hinge permits rotation of the solid in a single axis of rotation, it allows
1 degree of freedom and therefore blocks 5 (2 rotations and 3 translations in
x, y and z). In the planar case, the single axis of rotation possible for the
hinge is perpendicular to the plane, so there is only 1 degree of freedom
possible and therefore 2 degrees are blocked (2 translations in x and y). In the
planar case, the ball joint and hinge are equivalent but they are no longer in
space;

– a fixed joint neither allows any rotation nor translation of the solid. It
blocks the 6 degrees of freedom in space and 3 degrees of freedom in the
planar case. Thus one fixed joint is sufficient to block all relative movements
of both solids.

In any case, blocking a degree of freedom does not translate as the
capacity of an element to resist relative movement from the two connected
solids. This is characterized by a certain type of interaction between solids
that we will described in section 5.2.4.

The contact surfaces between solids (interfaces) meet at, for example,
foundations, structure supports and of course in masonry. The connecting
elements described above cannot precisely model the behavior of these
assemblies, as resistance criteria occur at these interfaces. These criteria are
important because they allow us to define whether the connection can be
ensured at the interfaces. The definition of criteria and their uses are
described in the third part of this book.
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FEATURE 5.1.– The resultant moment of a couple is independent of the point
from which it is calculated. The moment of force F and of lever arm d, has
magnitude:

Mc = F d [5.1]

This feature illustrates the fact that moment is a free vector that can be
replaced by a couple. In addition, this property shows that couples with
different magnitude forces can have the same moment if the product F.d is
retained. A couple of forces F′ and -F′ must have a lever arm
d′=Mc/F′=F/F′d, for a moment with the same magnitude as the previous one.

This property, which is easily proven in the planar case, is also true in
three dimensional space. Its demonstration in three dimensional space is
facilitated by the use of vector calculus.

5.2.3.5. Reduction of a force at a point

The reduction of a force at a point involves determining a simple system
consisting of a force and an equivalent moment applied at that point.

FEATURE 5.2.– A force F applied at point A is equivalent to a force of the
same direction, slope and magnitude applied on another point B, with the
moment of the force relative to point B.

Figure 5.10. Stages for reduction of a force at a point represented in its plane

Proof of this property is done by adding two forces in equilibrium to point
B: F and -F. Thus, according to Corollary 5.2, this new system (shown in
Figure 5.10(b)) is statistically equivalent to the initial system (a). We then
recognize a couple (F applied at A and -F at B) for which (free) moment can
be applied at B (shown in (c)). Also, the moment of the couple corresponds to
the moment of F (applied at A) with respect to B.
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The theorem of sliding can be seen as a direct application of this property.

5.2.3.6. Torsor

The reduction of a force at a point is characterized by the set consisting of
a force and the moments applied at this point. Moment is applied at this point
but it is still a free vector. This set, consisting of a force and moment applied
at a point, is called torsor.

5.2.4. The principle of reciprocal actions (or action and reaction)

The principle of reciprocal actions, also known as the principle of action
and reaction, is none other than Newton’s third law.

THE PRINCIPLE OF RECIPROCAL ACTIONS.– A solid A that exerts action FA/B on
solid B, receives action FB/A, which has the same support and magnitude as
the first action but in the opposite direction.

We get the relationship:

FB/A= -FA/B [5.2]

Reciprocal actions between solids can be forces and moment. They can
take place remotely (gravitational forces) or through contact. Solids can be
connected by connecting elements characterizing the types of eligible
reciprocal actions (forces, moment and direction).

To illustrate this principle, let us consider the example of two solids
connected at their point of contact by a ball joint (Figure 5.11). At this
contact point, solid A exerts the force FA/B and solid B exerts the force
FB/A= -FA/B on solid B. In space, all relative movements of rotation between
the two solids are permitted by the ball joint, so no moment can occur
between the two solids and only forces passing through the ball joint and
from such directions are involved. In the planar case, Figure 5.11 may be
viewed as representing two planar solids connected by a hinge. In this case,
the only relative movement between the solids is a rotational movement and
as such moment cannot occur between the two solids and only forces passing
through the hinge are involved. If there was a fixed joint at the point of
contact, no relative movement could take place, and reciprocal actions could
include forces and moment.
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represented at a scale called geometric scale, which we denote as eg. This
number is dimensionless since it represents the ratio of length measurements
of the object and the figure. Thus, 1 m on the object measures eg m (for
example, 1 cm if eg = 1/100) on the layout plan figure. Forces applied to the
object are represented by a scale called the scale of forces, which we denote
as ef. This number is dimensional since it represents the ratio between the
measurement of a force and its graphical representation in terms of length in
the plane. The scale of forces ef is expressed in N/m if SI units are selected.
Thus, a length of 1 m in the figure represents a force of ef N (for example, a
vector of length 1 cm represents a force of 50 N if eg = 5000 N/m) on the
layout plan figure. Given the usual dimensions of figures measured in cm, it
may be convenient to express ef, as appropriate, in N/cm or kN/cm.

For reasons of clarity in the graphical troubleshooting of statics, it is
important to dedicate the layout plan to the determination of lines of action
and positioning of forces only. Thus, in the layout plan, no operations on
vectors should be performed. For this, a special plane is used – the force plan.
This approach allows the use of a scalar representation of forces in the layout
plan and vector representation in the force plan. In the latter case, only the
geometric scale is useful in the layout plan.

EXAMPLE 5.1.– SUM OF TWO CONCURRENT FORCES.– Determination of two
concurrent forces in graphic statics reflects the theorem of the parallelogram
of forces. Figure 5.12 shows an illustration of the initial data of the
parallelogram theorem. The resultant of the two forces will be built in terms
of the force plan and positioned in the layout plan.

Figure 5.12. Layout plan in the example of the theorem of the parallelogram
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5.3.2. Force plan

DEFINITION OF THE FORCE PLAN.– The force plan is a separate plane from the
layout plan where only vector operations on forces are built.

The force plan allows visualization of the conditions relative to the sum
of forces, including nullity of equilibrium. Thus, only the scale of forces is
necessary in terms of forces. Conditions for the sum of moments are only
seen in the layout plan. Indeed, lines of action can only be placed in the
layout plan.

EXAMPLE 5.2.– SUM OF TWO CONCURRENT FORCES (CONTINUED).– To
continue Example 5.1, Figure 5.13 shows the resultant of two forces by
vector sum.

Figure 5.13. Force plan in the example of the sum of two concurrent forces

To complete the representation, the resultant vector built in the force plan
is used, and is positioned in the layout plan in A (Figure 5.14). This last step
is used to represent the line of action of the resultant.

The initial forces are shown as solid lines and the resultant as a dotted line
in order to avoid ambiguity about the forces that really act on the solid.

We notice in this simple example that there is to-ing and fro-ing between
the structures of the layout plan and the force plan. This will be a constant in
graphic statics methods.

This basic example, the dissociation of layout plans and planes of forces,
does not seem very useful and even seems somewhat artificial. Its utility will
be revealed for more specific configurations like the determination of the
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resultant of two parallel forces, or more complex events such as the resultant
of n forces. These aspects will be developed in the following chapters.

Figure 5.14. Representation following the conventions of graphic
statics of the sum of two concurrent forces
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6

Reduction and Equilibrium of a System
of Forces in a Plane

6.1. Goals for the reduction of a system of forces

In this chapter, we consider a solid subjected to a system of forces in a
plane. We can use graphic statics methods to study the equilibrium of these
systems. In this chapter, we do not portray solids on which forces are applied.

The reduction of a system of forces involves seeking a system, usually the
simplest possible, that is equivalent to the first, from the point of view of
statics. Thus, the overall effect on the equilibrium of the solid is retained in
the reduction procedure. For example, in the principle of the parallelogram of
forces, finding the result involves reducing two concurrent forces into one.

To shift from a system of forces to an equivalent system from the
perspective of statics, we must rely on the principles of statics. Thus, some
operations on a system of forces that directly arise from these principles are:

– addition or removal of a system of forces in equilibrium (in view of
Corollary 2 of the principle of equilibrium). This can be a very simple system
such as two forces in equilibrium (used in the case of reduction of a force at a
point, see section 5.2.3.5) or it can be more complex but carefully chosen
systems;

– reduction of two concurrent forces into one using the principle of the
parallelogram of forces and the theorem of sliding forces (see
section 6.2.1.1).
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Reduction of a system of forces can be used to simplify a problem, but it
is also a tool for determining the equilibrium conditions of a solid. Indeed, if
the system is reduced by a torsor, all external environment reactions must
balance this torsor.

To study the reduction of systems of forces, we first consider the case of
concurrent forces, then the case of arbitrary forces and deduce equilibrium
conditions from these.

6.2. Concurrent forces in the plane

Cases of concurrent forces are frequently encountered in construction
systems, for example in tensile cable systems, stayed masts and reticulated
structures consisting of rods connected by hinges. For masonry, the forces
applied to a block can be seen as the resultant of stresses at the interfaces. In
the case of equilibrium of a block connected to the rest of the structure by
two interfaces, we consider equilibrium of three forces (weight of the block
and the resultant at the two interfaces), which can only be concurrent, as will
be discussed in section 6.2.4. If there are more than two interfaces, the forces
in equilibrium are generally not concurrent.

6.2.1. Reduction of concurrent forces

Concurrent forces are forces for which the lines of action are concurrent.
In Euclidean geometry, in which we usually place ourselves, such forces are
distinguishable from parallel forces for which the lines of action do not
intersect. Reduction of this system can be done very simply using the
principle of the parallelogram and the theorem of sliding forces.

6.2.1.1. Reduction of two concurrent forces

Here, we consider the case of two concurrent forces. Reducing this
system uses the principle of the parallelogram and the theorem of sliding
forces. There are four stages based on these principles (Figure 6.1):

1) in the force plan, the vector sum of the two forces is determined by the
construction of a force polygon and the resultant vector Fr;

2) in the layout plan, the sliding of the two forces to the point of
intersection I of their lines of action is used (application of theorem of sliding
forces with two forces);
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does not exist (in Euclidean geometry, two distinct parallel lines do not
intersect).

In the force plan, it may be useful to consider the points of origin and
extremities of successive vectors in the vector sum. Thus, F1=a0a1 and
F2=a1a2 and the resultant force Fr=a0a2. Thus, the line of action of force Fr
is parallel to the line (a0a2) that passes through I.

We chose to carry out the vector sum starting with F1, but as the order
does not matter in vector addition, the resultant force is of course the same if
we start with F2.

6.2.1.2. Reduction of n concurrent forces

We can generalize the previous method to the case of n concurrent forces
in I (Figure 6.2). To do this, in a first instance, we apply the method above
for the first two forces F1 and F2. We get the resultant for a0a2 in the force
plan, which passes through the layout plan at the point of intersection I. Force
F3 is then added to this force and the resultant force a0a3 is obtained in the
force plan. This force is then positioned on the line of action parallel to a0a3
and passing through I. This process is continued each time until the last
resultant force Fr=a0a5 and it is positioned in the layout plan on the line
parallel to that of the force through I.

Finally, the only practical operation to identify and locate the resultant
force of n concurrent forces results in:

1) the force plan, determining the vector sum of n forces through the
construction of a force polygon and deducting the resultant vector Fr;

2) the layout plan, placing the resultant Fr on a line parallel to the force
passing through the point of intersection I.

We note once again that the order of forces is chosen arbitrarily (we could
have, for example, added the forces in the following order F2+F5+F3+F1+F4)
and it would not affect the resultant.

We further note that the case of concurrent forces is a simple special case,
as the resultant passes through the point of intersection of forces. Generally,
there is no common point of intersection, and we must therefore determine
the position of the line of action of the resultant in the layout plan.
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weight (P=F assumed to be vertical) and the shape taken by the wire (AI, BI,
CI…) is known, the tensions cannot be determined by initial data only,
because there is an infinite number of possible solutions for tensions (T1=-F1,
T2=-F2, T3=-F3...). This is a hyperstatic case. To get the real equilibrium state
of the structure, we must know the law of behavior of materials that defines
the relationship between the applied strains and stresses. We may notice that
in the case of the geometry of Figure 6.7, wires are tensed under the action of
force F, but in the case of Figure 6.8, wire number 2 should be compressed,
which cannot be the case (a wire can only absorb tension forces). Physically,
a similar device formed of hinged rods and not wires forms a hyperstatic
system that can absorb tension and compression forces of the case in
Figure 6.8.

6.2.4. Theorem of three forces

The theorem of three forces, of particular practical use, gives a geometric
condition necessary for the equilibrium of three forces.

THEOREM OF THREE FORCES.– Three non-parallel forces in a plane can only
be in equilibrium if they are concurrent.

This theorem can be easily deduced from the reduction of two concurrent
forces. Let us suppose three forces F1, F2 and F3 that are non-parallel and in
equilibrium: F1 and F2 are concurrent by assumption and can therefore be
reduced to a force Fr through their point of intersection. Force F3 must
balance Fr and be equal and directly opposite to it. The line of action of F3
must therefore pass through the point of intersection of forces F1 and F2.
Thus, the three forces are concurrent.

COMMENT 6.1.– We can generalize this theorem to the case of parallel forces
by considering that the lines of action of forces have their point of
intersection at infinity. The proof then uses the notion of the funicular
polygon.

COMMENT 6.2.– This theorem in the plane is a special case of a more general
theorem in three-dimensional space that says that the lines of action of three
forces in equilibrium are concurrent and coplanar. Proof is given in
[FRE 98].
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6.3. Arbitrary forces in a plane

Here we will discuss the reduction of arbitrary forces in a plane by
generalizing the approach used for concurrent forces, namely the successive
application of the theorem of the parallelogram of forces. From this approach,
we deduce various possible circumstances of reduction of these systems of
arbitrary forces.

6.3.1. Method of successive applications of the theorem of the
parallelogram of forces

Let us consider a system of n arbitrary forces (F1, F2 …Fn) in a plane. We
wish to reduce this system. To do this, we seek to successively reduce the
forces starting with two that are not parallel (for example, F1 and F2), and
using the theorem of the parallelogram. The resultant passes through the
intersection I of the lines of action of F1 and F2 in the layout plan
(Figure 6.9). The sum R1,2=a0a2 of the two forces is determined in the force
plan and its direction can thus be used to construct the resultant in the layout
plan by drawing a line parallel to a0a2 through I. We continue the process of
reduction by reducing both R1,2 and F3 by applying the theorem of the
parallelogram (provided that these two forces are concurrent). Point J, the
intersection of their lines of action through which their resultant R1,3 will
pass, is thus determined. The latter is determined in force plan by
constructing the sum of R1,2 and F3. To do this, it is advised to use vector R1,2
which is already built and to add the force vector F3 to it. This gives
R1,3=a0a3, for which the direction allows us to plot its line of action through J
in the layout plan. By continuing the process with successive resultants and
subsequent forces until the last, we obtain the resultant force vector Fr in the
force plan, as well as the line of action of the resultant force in the layout
plan. In the example in Figure 6.9, the last resultant passes through point L.
The above steps can only be performed if the resultant and the force it
consists of are not parallel. In this case (Figure 6.9), the points of intersection
of the lines of action of intermediate resultants and subsequent forces are well
defined (I, J, K and L).

The magnitude and direction of the resultant force are obtained simply by
the vector sum of forces constructed by the circuit of forces in the force plan
(which corresponds to an analytical approach). The position of the resultant
force in the layout plan depends on the position of the lines of action and
therefore of the pressure polygon, which we will define below.
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Hence, we see that a required condition for the system of n forces to be in
equilibrium is that the force polygon is closed and the pressure polygon is
also closed.

6.4. Bibliography
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Funicular Polygons

7.1. Reduction of a system of parallel forces

Systems of parallel forces are frequently encountered in all structures,
since forces due to gravity are vertical. In masonry, the weight of materials is
a particularly important set of parallel external forces. The reduction of a
system of parallel forces is fundamental to the study of equilibrium in
masonry. In the previous chapter, we saw that the reduction of a system of
arbitrary forces can be performed with the successive use of the
parallelogram theorem (associated to the theorem of sliding forces). A
limitation of this method is that it can be applied to a system of parallel
forces, because none of the lines of action of forces intersect. Therefore, the
process cannot be initiated. We note that it may be a similar situation in the
case of forces for which the lines of action intersect outside the plot area. To
overcome this limitation, a first approach is to add two forces in equilibrium
(so directly opposing) to the system and to reduce the new system. A second
method, which seems to be less immediate but is particularly useful, is based
on the decomposition of each of the forces into two concurrent forces: this is
the method of constructing funicular polygons. These are the two methods
that we discuss below.

7.1.1. Reduction by adding two directly opposing forces

The limitation of the method of successive composition of forces through
the parallelogram theorem can be easily avoided by using an equivalent
system of forces made by adding two directly opposing and non-parallel
forces to those of the original system. As these two forces are in equilibrium,
the equilibrium principle can be applied and therefore the new system is
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statically equivalent to the first. Otherwise known as a system of n parallel
forces F1, F2, ... , Fn (Figure 7.1 in the case of three parallel forces F1, F2 and
F3). Two directly opposing forces of magnitude F0 are added to this system.
The problem then boils down to reducing the system of n + 2 forces
consisting of forces F0, F1, F2, ..., Fn and -F0. Both forces F0 and -F0 can be
placed anywhere in the layout plan on the same line of action, and they may
have any (non-zero) magnitude and take any direction that is not parallel to
the initial system of forces. In a first instance, the force polygon with vertices
O, a0, a1, a2,…, an and O′ is constructed (Figure 7.1, where n = 3). The
resultant force Fr is given by the vector OO′, which is equal to a0an. The
polygon of pressures is built step by step by positioning successive resultants
Oa1, Oa2, ..., Oan and OO′ in the layout plan on the lines of action,
respectively passing through points S1, S2, ..., Sn, S (points of intersection of
previous resultants with subsequent forces). The resultant force Fr of the
entire system passes through the last point S of the pressure polygon.

Figure 7.1. Reduction of a system of three parallel forces by
addition of two directly opposing forces

We notice that although force F0 is chosen arbitrarily (not parallel to the
initial forces), the position of the line of action of the resultant Fr passing
through S only depends on the initial forces (F1, F2,…, Fn). In this regard, it
is interesting to check this property if dynamic geometry software is used to
make constructions, because it would then be seen that by varying F0, the line
of action of Fr remains unchanged.
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7.1.2. Reduction by decomposition of forces using a pole and construction
of the funicular polygon

Another way to reduce a system of n parallel forces is to decompose each
of the forces F1, F2,…, Fn into two concurrent forces. This gives a system of
2n forces equivalent to the first system which, if suitably selected, enable
reduction of the system. We proceed with the decomposition in ascending
order of the indices of forces. This procedure comprises the following steps:

– decomposition of F1: earlier (in section 6.2.3.1), we have seen that the
decomposition of a force into two concurrent forces is easily done if the lines
of action are known, since we just need to construct the triangle of forces in
the force plan in order to determine their directions and magnitudes. Here, no
assumption is made on the lines of action of forces decomposing F1, we can
choose them freely, both as regards their directions (but not parallel forces of
the initial system) and their positions in the layout plan, taking care, however,
to intersect them on the line of action of F1. We can therefore choose a point
A anywhere in the layout plan (Figure 7.2), and then draw a first line of
action in any orientation intersecting the line of action of F1 in S1. From point
S1, we then draw the line of action in any orientation of the second force
decomposing F1. This way, we define the decomposition of force F1 by the
lines of action of the two concurrent forces in S1. We can then build these
forces in the force plan by drawing the parallel forces decomposing F1 from
points a0 and a1. This determines a point O, apex of the triangle a0Oa1 for
which the sides a0O and Oa1 define the forces decomposing F1;

– decomposition of F2: we will now seek to decompose F2 into two
concurrent forces, such that the forces decomposing F1(Oa1) can balance one
of those that will decompose F2. One of the forces decomposing F2 must be
directly opposite to Oa1; this will be the force a1O, for which the line of
action passes through S1. This line of action intersects the line of action of F2
in S2. The second force that decomposes F2 is then easily deduced in the
triangle of force sa1 O a2 (in the force plan): this is Oa2. Force F2 is split into
two concurrent forces a1O and Oa2 in S2;

– decomposition of other forces Fk: we repeatedly use the same process as
for F2. Thus, the decomposition of any force Fk is determined (k ranging
from 2 to n) in order to balance the force Oak-1 resulting from the
decomposition of force Fk-1. Thus, Fk is decomposed into ak-1O and Oak and
the point of intersection of the forces decomposing Fk are at the intersection
of the lines of action of forces Oak-1 and Fk;
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– end of the process: the process stops at force Fn. Out of 2n forces
decomposing n initial forces, only two are not balanced by other forces: these
are the first a0O and last Oan (Oa3 where n = 3, illustrated in Figure 7.2).
Thus, the set of n forces is statically equivalent to two forces a0O and Oan,
for which the lines of action are determined and intersect at point S through
which the resultant Fr of the system passes.

Figure 7.2. Reduction of a system of three parallel forces
by the funicular polygon method

POLE.– The method that we just discussed shows the importance of the point
O of the force plan. This point enables the decomposition of each of the
forces of the system while ensuring the existence of pairs of directly
opposing forces and therefore equilibrium. Point O is called the pole.

In the present method, pole O is deducted from an arbitrary choice of
lines of action of forces that decompose the first force F1 into two concurrent
forces. Thus, another way to define decomposition of the first force
(wherefrom all other decompositions) is to choose a pole O that is positioned
anywhere in the force plan (but outside of the line (a0a1) in order to
decompose F1 into two forces in different directions).
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FUNICULAR POLYGON.– The method of reduction of n forces by
decomposition using pole O leads to the construction of n+1 lines of action,
supporting decomposition forces a0O, a1O,…, anO. These lines of action
intersect at points S1, S2,…, Sn and the extremity lines support forces a0O and
Oan, which pass through points A and B. The polygon A, S1, S2,…, Sn, B
builds on these lines of action and is called the funicular polygon. This name
is given with reference to the shape taken by a thread in equilibrium under
the load of point forces (funicular comes from the Latin funiculus meaning
small rope). Indeed, the funicular polygon A, S1, S2,…, Sn, B gives the
geometry of a massless and infinitely flexible thread hanging from A and B
and subjected to forces F1, F2,…, Fn applied at S1, S2,…, Sn. Reactions RA
and RB of the thread in A and B balancing the system of forces are
respectively equal to -a0O and -Oan (-a0O and -Oa3 in the case of the 3
forces illustrated in Figure 7.3) and the tension in each segment of the thread
is given by the lengths of segments a0O, a1O,…, anO. Several shapes can be
taken by the thread depending on the position of the pole, and we must
ensure that the wire is properly stretched.

Figure 7.3. Funicular polygon – shape taken by a thread under a given load

COMMENT 7.1.– The line of action of the resultant from the system of forces is
independent of the position of the pole. Indeed, as in the case of reduction by
addition of two directly opposing forces, the method of reduction by
construction of a funicular polygon gives a resultant force that depends on the
initial forces only. It does not depend on the choice of the position of pole O.
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COMMENT 7.2.– The method of addition of two directly opposing forces and
the funicular polygon method are equivalent and lead to identical
constructions.

Indeed, by observing the method of addition of two directly opposing
forces, we can see that force F1 can be decomposed into two forces: -F0 (a0O)
and a0a1 (Figure 7.1). These two forces are concurrent at S1. Force F2 can be
decomposed into two concurrent forces -a0a1 and -a1a2 at S2 in the layout
plan. At this stage, we note that the forces a0a1 and -a0a1 share the same line
of action and are therefore in equilibrium. They can therefore be removed
from the system of forces, keeping only -F0 and a1a2 plus remaining forces
F3,…, Fn. By continuing the process, the directly opposing intermediate
forces (in equilibrium) are removed, to keep only the first a0O=-F0 and last
Oan forces from the system of 2n forces, placed in the layout plan on the
lines of action. Both methods lead to identical constructions, thus giving
point O an important role (as shown in Figure 7.4 compared to Figure 7.1).
The construction of pole O is done directly from knowledge of F0 from the
relationship a0O = -F0.

Figure 7.4. Reduction of a system of three parallel forces by construction of a
funicular polygon from the force F0 of the method by addition of two directly

opposing forces
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7.2. Funicular polygon of a system of n arbitrary forces

The method of reduction of a system of n arbitrary forces through the
construction of a funicular polygon is strictly the same as that established in
the particular case of a system of parallel forces (Figure 3.5, where n = 3). It
is based on the following steps:

1) definition of pole O in the force plan enabling the decomposition of
each of the forces Fk (k varying from 1 to n) in two concurrent forces ak-1O
and Oa. Pole O can be chosen freely in the force plan, but not from the lines
containing the forces to be decomposed. The definition of pole O can be done
directly by positioning it in the force plan, or indirectly by giving, for
example, conditions on the directions of the lines of action of the forces that
decompose F1 (as in section 7.1.2);

2) construction of points of intersection of systems of two forces that
decompose each of the forces of the initial system (by choosing, step by step,
directly opposing forces): these points (S1, S2,…, Sn) are the vertices of the
funicular polygon for which the extremities (A and B) are on the lines of
action of the two extreme forces a0O and Oan;

3) reduction of a system with two forces a0O and Oan (corresponding to
the first decomposing force F1 and the second decomposing force Fn). These
two forces are concurrent at point S and reduce themselves to the resultant Fr
of the system. The line of action of Fr therefore passes through S.

Figure 7.5. Reduction of a system of three arbitrary forces by
construction of a funicular polygon
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FEATURES OF THE REDUCTION OF A SYSTEM OF FORCES DEPENDING ON THE
OPENING OR CLOSING OF FORCE AND FUNICULAR POLYGONS.– In the general
case where the force polygon is open, the system of forces is reduced to a
resultant force Fr, which can be placed in the layout plan. In the case where
the force polygon is closed, the system is then reduced to a couple or is in
equilibrium.

Indeed, if the force polygon is closed, then the vector sum of forces is
zero (Fr = 0) and points a0 and an are combined. All forces are then reduced,
by the construction of the funicular polygon, to two zero-sum forces a0O and
Oa0 (as an=a0). Two situations are possible:

1) these two resultant forces form a couple if the lines of action of parallel
forces through S1 and Sn (AS1 and BSn) are not combined. The funicular
polygon is then open. The initial system is thus reduced to a couple and is
therefore not in equilibrium. Such a configuration is shown in Figure 3.6 for
three forces, and Figure 7.8 for four forces;

2) the two resultant forces are in equilibrium if their lines of action are
combined, because a0O and Oa0 are then directly opposed. The funicular
polygon is then closed. The initial system is in equilibrium. Such a
configuration is shown in Figure 7.7 for three forces in equilibrium and
Figure 3.9 for four forces in equilibrium.

COMMENT ON THE EQUILIBRIUM OF THREE FORCES.– The equilibrium condition
on a system of three forces, namely that the force polygon and the funicular
polygon are closed, must be consistent with other previously established
results: that the three forces in equilibrium are concurrent. Geometrically, this
property is verified (Figure 7.7) by checking that the lines of action of forces
F1, F2 and F3 converge at a point I. This property was obviously not satisfied in
the case of forces reduced to a couple (Figure 7.6). For four forces in
equilibrium, the forces are not necessarily concurrent (as shown in Figure 7.9),
but some properties can be established as we will see later.

NECESSARY AND SUFFICIENT CONDITIONS FOR THE REDUCTION OF A SYSTEM
OF FORCES.– The construction of a funicular polygon for an arbitrary system
of forces can give the necessary and sufficient graphics conditions for
reduction to:

– a force: the force polygon is open (non-zero sum of forces);

– a couple: the force polygon is closed and the funicular polygon is open
(sum of moments is non-zero);
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– equilibrium: the force polygon is closed (zero-sum of forces) and the
funicular polygon is closed (zero-sum of moments).

Figure 7.6. System of three forces reduced to a couple (force polygon
closed and funicular polygon open)

Figure 7.7. System of three forces in equilibrium (force
polygon closed and funicular polygon closed)
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Figure 7.8. System of four forces reduced to a couple (force polygon closed
and funicular polygon open)

Figure 7.9. System of four forces in equilibrium (force polygon closed
and funicular polygon closed)
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7.3. Properties of funicular polygons

The method of reduction of a system of n forces by building a funicular
polygon is based on the introduction of pole O that is chosen freely in the
force plan. This pole allows the decomposition of each of the forces into two
concurrent forces but it also allows the decomposition of the resultant force
into two concurrent forces for which the lines of action are the first and last
of the funicular polygon. The position of the first line of action is given by an
arbitrary point A of the layout plan and the line of action of the second force
is derived from the construction of the funicular polygon (these two lines of
action are thus the beginning and the end of the funicular polygon). The point
of application of the second force is an arbitrary point B of this line of action.
Thus, we see that for a given system of forces, it is possible to construct an
infinite number of funicular polygons that can reduce this system. These
funicular polygons depend on the position of pole O and point A. In practice,
a particular polygon can be sought depending on additional conditions which
may result in a particular position of the pole and point A. These conditions
may involve the intersection points of forces that are balancing the system of
forces, the direction of the forces and their magnitude. For example,
determination of reactions depending on connecting elements or searches for
geometries that are compatible with yield design criteria is based on the
properties of funicular polygons. Therefore, it is necessary to understand
these in order to respond to these multiple constraints.

7.3.1. Funicular polygons of subsystems of forces

Let us consider a system of n forces and an associated funicular polygon;
we can easily notice that a subsystem of these forces (taken in the defined
order for the construction of the funicular polygon) has its own funicular
polygon included in the overall funicular polygon. The resultant of this
subsystem is derived from the associated force sub-polygon and its line of
action passes through the intersection of the extreme sides of the funicular
polygon. With the notation used above, this property is expressed as follows.

Let us consider a system of n forces F1, F2,…, Fn. Let us also consider a
subsystem of p forces (with p < n) for which the first force is Fk: Fk, Fk+1,…,
Fk+p-1 (with k+p-1≤n). The resultant of this subsystem is given by force
akak+p-1, and an associated funicular polygon is the polygon Sk-1,…, Sk+p,
which is included in the overall funicular polygon. The points Sk-1 and Sk+p
can be taken as the points of application of two extreme forces akO and
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Oak+p-1 to which the subsystem of forces reduces. Thus, the point of
intersection Sr and the lines of action (Sk-1 Sk) and (Sk+p-1Sk+p) give a point on
the line of action of the resultant FSr of the subsystem of forces.

Figure 7.10 shows this property in the case of a subsystem of three forces
F2, F3, F4 that are included in a system of five forces from which the
funicular polygon was constructed. The polygon (S2, S3, S4) is a funicular
polygon of this subsystem and its resultant FSr= a1a4 passes through the point
of intersection Sr on its extreme sides S1S2 and S4S5.

Figure 7.10. Funicular polygon and resultant of a subsystem of forces

7.3.2. Funicular polygon through two a priori fixed points

If we consider the construction of the funicular polygon (seen in
section 7.2), we notice that its extreme sides pass through points A and B
(points of application of two forces a0O and Oan reducing the system of
forces). In this construction, only point A is chosen freely in the layout plan.
Point B must be positioned on the line of action of Oan. However, in some
cases it may be useful to construct a funicular polygon that passes through
two a priori fixed points C and D. For example, in the case of a thread hung
from two points C and D and subjected to n forces for which the positions
and magnitudes are known. The problem then is to define the geometry(ies)
through this thread in equilibrium under the load of n forces.
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This problem can be solved easily if an initial funicular polygon
associated to pole O has been constructed (polygon A, S1, S2,…, Sn, B).
Indeed, the resultant Fr of the system is known and passes through S. We
therefore seek a new funicular polygon associated to the same system of
forces and passing through C and D. The new funicular must lead to the same
resultant. Thus, the extremity lines of the new funicular must intersect the
line of action of Fr (line parallel to a0an passing through S) at a point S′. S′
can be selected from anywhere on the line of action of Fr. The new
decomposition of Fr is thus defined and pole O′ of the new funicular and can
be determined by drawing lines parallel to the lines of action CS′ and S′D,
respectively passing through a0 and an. We can then build the new funicular
polygon from S1′ (intersection of CS′ and the line of action of F1) and polar
radius O′a1. By repeating this process, points S2′,…, Sn′ are obtained. We
must then verify that the point Sn′ obtained like this coincides with that
obtained knowing the last side of the funicular polygon. Sn′ must also be at
the intersection of the line S′D and line of action of Fn. Figure 7.11 illustrates
this method for three arbitrary forces.

Figure 7.11. Construction of a funicular polygon passing through two
a priori fixed extreme points C and D
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COMMENTS ON THE ARBITRARY CHOICE OF POINTS.– Arbitrarily choosing
point S′ on the line of action of Fr influences the direction of extreme forces
that decompose Fr and thus the shape of the funicular polygon. There are
infinite funicular polygons that pass through C and D. We also note that as
point A was chosen arbitrarily, A and C could have been identified at the
start.

Thus we see that to particularize a funicular polygon, it is useful to
construct an arbitrary initial funicular polygon to determine the resultant of
the system of forces. Knowing the resultant, we can reconstruct another
funicular based on the constraints that we wish to apply to it. In general, two
funicular polygons must therefore be constructed to particularize a problem.
It is also useful to consider the geometric properties that link two funicular
polygons in order to explore the potential of this approach.

7.3.3. Relationship between funicular polygons constructed from two
distinct poles

The geometric properties that link funicular polygons constructed from
two distinct poles are deduced from the fact that their resultant Fr is the
same. At first, in section 7.3.3.1, we will focus on the equilibrium system
formed by the initial system and two forces balancing Fr. Then, from the
results thus established, in section 7.3.3.2 we will deduce a relationship
between funicular polygons built from two distinct poles.

7.3.3.1. Feature of a funicular polygon of a system in equilibrium resulting
from the reduction of an initial system reduced to a force

Let us consider a system of n forces F1, F2,…, Fn from the resultant Fr.
The funicular polygon of this system of forces has the geometry of the
polygon A, S1, S2,…, Sn, B, where A and B are the points of application of
the two reactions RA and RB balancing the system of forces. Thus, due to the
construction of the funicular polygon of n resultant forces Fr, we can
consider a system of n+2 forces in equilibrium consisting of n forces and the
two reactions RA and RB. The forces of this new system in equilibrium are
taken in the following order: RA, F1, F2,…, Fn and RB. Points associated
with these forces in the force plan are respectively O, a1,…, an, O. Thus, if we
construct the force polygon and the associated funicular polygons, the two
polygons must be closed. The closure of the force polygon (O, a0, a1,…, an,
O) is obvious, since RA and RB balance the forces F1, F2,…, Fn. Closing the
funicular polygon must verify itself by producing its construction.
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We therefore propose to build a funicular polygon of the system, RA, F1,
F2,…, Fn and RB (Figure 7.12 where n = 3). We first give an arbitrary pole O′
in the layout plan and an arbitrary point M through which the line of action of
the first force O′O decomposing RA (the first force of the new system) will
pass. Thus, the line parallel to OO′ that passes through M intersects the line
of action of RA at A′. We then draw the line of action of O′a0 (the second
force decomposing RA) passing through A′. This line intersects the line of
action of F1 at S1′. The point S2′ is then constructed at the intersection of the
line of action of O′a1 passing through S1′ with that of F2. This is done until
Sn′ is constructed (intersection of the line of action of O′an-1 passing through
S′n-1 with the line of action of Fn). Point B is then constructed at the
intersection of the line of action of O′an passing through Sn′ with the line of
action of RB. Finally, the line of action of force OO′ passing through B′ is
constructed (N is chosen arbitrarily on the line parallel to (OO′) passing
through B′). As OO′ must balance the first force O′O passing through M,
their lines of action (MA′) and (NB′) must be combined (closure of the
funicular polygon of the new system of forces in equilibrium). This closure
property of the funicular polygon of the system of forces (RA, F1, F2,…, Fn
and RB) results in the following two geometric properties:

1) the points M, A′, B′ and N are aligned;

2) the line A′B ′ is parallel to the line (OO′).

Figure 7.12. Construction of a funicular polygon of forces in
equilibrium RA, F1, F2, F3 and RB built from pole O′
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Figure 7.12 illustrates these properties for three forces F1, F2 and F3. The
accuracy of plots is essential to verify the alignment of M, A′ and B′. The use
of a computer plotting tool is invaluable in this case. In particular, dynamic
geometry software can give an indication of the membership of a point to a
line. But in this case, it is only a computational result linked to the precision
of numerical calculations.

7.3.3.2. Application of the previous properties to the relationship between
funicular polygons constructed from two distinct poles

The funicular polygon pole O′ of the system of forces in equilibrium RA,
F1, F2,…, Fn and RB is the closed polygon M, A′, S1′, S2′,…, Sn′, B′, N. The
initial system of forces F1, F2,…, Fn is a subsystem of this system of forces,
so it includes the polygon A′, S1′, S2′,…, Sn′, B′ (property seen in
section 3.3.1) as the funicular polygon pole O′. Thus, this system can be
reduced to two forces a0O′ and O′an with point of application A′ and B′.
Therefore, the system can be balanced by two reactions RA′ =- a0O′ and
RB’ = -O′an applied in A′ and B′. The intersection S′ of the lines of action of
these two forces passes through the resultant Fr of the system of forces F1,
F2,…, Fn, as the resultant also passes through point S (intersection of the
lines of action of reactions RA and RB from the first funicular polygon). We
then deduce the following geometric property: (SS′) is parallel to Fr = a0an
(shown in Figure 7.13 for three forces).

Figure 7.13. Relationship between funicular polygons of forces F1, F2 and F3
constructed from poles O and O′
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We will now focus on the points of intersection Ij of the sides of the same
rank j of funicular polygons constructed from poles O and O′. The point Ij
(1≤j ≤ n+1) is therefore the point of intersection of the sides of the funiculars
passing through Sj and Sj′ that are respectively parallel to Oaj-1 and O′aj-1.
Thus, by definition A′=I1 and B′=In+1 (see Figure 7.14 where n = 3). In section
7.3.3.1, we have seen that we get the property:

– I1In+1 is parallel to the line OO′ (because A′B′ = I1In+1).

This property holds for all funiculars built from pole O and O′ and
therefore for all funiculars of subsystems of forces of the initial system. By
considering all the subsystems beginning with Fk and ending with Fn, for all
k from 2 to n, we deduce that all lines IkIn+1 are parallel to (OO′). We
conclude that the points Ij (1 ≤ j ≤ n+1) are aligned on a line parallel to (OO′).

Properties that link funicular polygons are summarized below and
illustrated in Figure 7.14 in the case of three arbitrary forces.

Figure 7.14. Relationship between funicular polygons of forces F1, F2 and F3
constructed from poles O and O′

PROPERTIES LINKING FUNICULAR POLYGONS CONSTRUCTED FROM TWO
DISTINCT POLES.– For a system of n forces, funicular polygons constructed
from two distinct poles O and O′ satisfy the following properties:
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1) vertices of rank i of funicular polygons are located on the line of action
of the force of the same rank (that is to say, Si and Si′ are on the line of action
of Fi with 1 ≤ i ≤ n);

2) the extreme sides of funicular polygons intersect on the line of action
of the resultant;

3) the points of intersection of sides of the same rank of funicular
polygons are aligned on a line parallel to the line of the poles (OO′) (points Ij
(1≤j≤n+1) are aligned on a line parallel to OO′).

The coherence of a figure can be checked using these properties. For
example, in the case of a funicular polygon passing through two a priori
fixed points (section 7.3.2), two polygons were constructed based on two
distinct poles (Figure 7.11). The resulting figure may be completed by the
construction of points Ik and verification of their alignment on a line parallel
to OO′. Conversely, knowledge of these properties can be a way to build
funicular polygons in another way. They may also allow particular
constructions based on constraints, as we will see in the next section.

7.4. Applying the properties of funicular polygons

7.4.1. Relationships between a tensed cable and compressed arc

A particular application of the properties seen in section 7.3.3.2 considers
relationships that can be deduced for systems of parallel forces. These
systems are frequently encountered due to the existence of gravity. Examples
are cables supporting masses or simply stretched under their own weight.
Similarly, compressed masonry arches are systems of masses in equilibrium.

PROPERTIES LINKING A STRETCHED THREAD AND AN ARC COMPRESSED BY THE
SAME SYSTEM OF FORCES WITH THE SAME ORIENTATION.– Consider a system
of n parallel forces, with the same orientation. We consider the following
gravitational forces, i.e. vertical downward forces. We get the following
properties:

1) funicular polygons (A S1 S2... Sn B) and (A S1′ S2′...Sn′ B) passing
through two points A and B respectively constructed from two distinct poles
O and O′ by considering that the forces in the same order (left to right, for
example, as in Figure 7.15) are deduced from each other by an affinity axis
(AB) and the direction parallel to forces. This property is a direct application
of the general properties linking two funiculars (seen in section 7.3.3.2) to the
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particular case of a system of parallel forces. Indeed, all funicular polygons
have their identical invariant points (A = I1, I2,…, In, B = In+1) on the line
(AB) and the corresponding vertices of different polygons are located on
parallel lines. These lines respectively intersect each axis (AB) at A, H1,
H2,…, Hn, B. The ratio of affinity k transforms the funicular of pole O into
that of pole O′ to satisfy equality:

'i i

i i

H Sk
H S

= , 1≤i≤n [7.1]

2) if the poles are located on either side of the polygon of forces, then the
funicular polygons correspond, one to a stretched thread and the other to a
compressed arc. The stretched thread corresponds to a pole located to the
right of the polygon of forces if the forces are taken from left to right (in the
case of O and O′ in Figure 7.15), and the compressed arc corresponds to a
pole located to the left of the polygon of forces if forces are taken from left to
right (in the case of O’’in Figure 7.15);

3) if line (AB) is horizontal, then the affinity linking the two funicular
polygons is orthogonal. The particular orthogonal affinity of ratio -1 is the
symmetrical relative to the horizontal line.

Figure 7.15. Relationships between a stretched thread and compressed
arc by the same system of vertical forces

Property 3) can be applied, with a large number n of forces, to compare
the shape taken by a rope or heavy chain (the chain problem) and the
symmetrical arc relative to the horizontal line. This was stated, but not
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proven, by Robert Hooke (1635–1703) in 1675 in his work [HOO 75] in the
form of an anagram of the Latin phrase “Ut pendet continuum flexile, sic
stabit contiguum rigidum inversum”, translated into English as “as hangs the
flexible line, so but inverted will stand the rigid arch’’ [HEY 98]. The term
“inverted” means the symmetry relative to the horizontal line. This
interpretation is found in the works of Giovani Poleni (1683–1761) in 1748
on the dome of St. Peter’s Basilica in Rome [POL 48] where an illustration of
this property can be found in the form of a hanging chain and a symmetrical
line associated with an arch (Figure 7.16) and a theoretical study of the
application of cracks in the dome [BEN 91, HEY 95]. This same property is
the origin of the use of physical models of hanging chains or weights. The
famous models by Antoni Gaudí (1856–1926) used in the design of these
masonry buildings are emblematic examples. We will see in the third part of
the book, in Chapter 10, how the analogy expressed by Hooke can be
interpreted in the context of the study of the stability of curvilinear masonry
with the help of yield design.

Figure 7.16. Hooke’s hanging chain and symmetrical arc, according to Poleni

7.4.2. Condition on the magnitude of forces

Let us consider the problem of a thread hanging at two points A and B
and subjected to point forces. We assume that a funicular polygon passing
through A and B (from the method seen in section 7.3.2 for example) and its
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materials that are only resistant to compression, such as masonry. Thus, we
construct a thread A S1′ S2′ S3′ B for which the last strand S3′B is stretched
with a tension equal to Tlim. The initial geometry, for which the sag was
bigger, subjected the thread to lower tensions than Tlim, as its maximum
tension Oa3 is within the circle. The geometries which would lower the sags
correspond to tensions above Tlim, for which the poles would be outside of
the circle, to the right of O′ on the line (OO′). The shape of an arc subjected
to the same forces and passing through A and B is determined in a similar
manner. We then seek to determine the shape of the arc when the maximum
compressive force of value Clim is reached at a point. Pole O″ of this arc is on
the line parallel to (AB) passing through O and therefore (OO′), but as forces
F1, F2 and F3 are parallel, O″ will be located on the other side the half-plane
defined by their resultant of forces Fr. In Figure 7.17, pole O″ is located on
the left whereas O′ was on the right. The Clim value is reached in the AS1″
part of the arc. The position of O″ is thus determined at the intersection of a
circle of radius Clim passing through a0 and the line OO′. The arc A S1″ S2″
S3″ B is constructed using polar rays from O″. The arcs which would lower
sags correspond to compression forces greater than Clim for which the poles
are outside of the circle of radius Clim, to the left of O″ on the line (OO′).

7.4.3. Passage of a funicular through three points

In some cases, it may be useful to control the shape of a funicular polygon
associated with a system of forces. For example, in an architectural project, to
impose a height or a gap to a structure of support points. Thus, we are led to
construct a funicular that passes through specific points. To do this, it is
useful to use the geometric properties linking two funiculars. For example,
we may seek to make a funicular polygon with three given points. By
repeating the arc problem from two points A and B and subjected to point
forces, we will seek to make it pass through a third given point C. This point
C can be defined, by example, so that the arc passes close to a specific area
without crossing it.

In the case shown in Figure 7.18, point C is a point of the contour of an
area (shaded) that the arc must not cross. In this case, knowledge of the first
funicular polygon passing through A and B and vertices S1 S2 S3 suggests that
passing through C is a borderline case for which the arc does not intersect the
area. The problem is to construct a funicular polygon with vertices S1′ S2′ S3′
passing through A, B and C. We know that points S2′ and S3′ pass through the
lines of action of forces F2 and F3 (property 1 in section 7.3.3.2). However, C
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is between these two lines of action, so we will first look for a way to find the
points S2′ and S3′ such that they are aligned with C. We also know that the
lines (S2S3) and (S2′S3′) intersect on a line AB at point I3 (property 3 in
section 7.3.3.2). We can therefore deduce the construction of points S2′ and
S3′ by first constructing I3 (intersection of S2S3 and AB) then building (I3C).
This last line intersects the lines of action of F2 and F3, respectively in S2′ and
S3′. By similarly building I2 and the line (S1S2), we can deduce S1′ at the
intersection of I2S2′ and the line of action of F1. In the case of a system with
more forces, the reasoning is the same and the set of points of the funicular
polygon is determined step by step by using properties 1 and 3. We note that
it was not necessary to use the polygon of forces, or to build the new pole O
to construct the new funicular polygon. These last constructions are useful for
determining the compressive forces in the rods of the arc and the reactions.

Figure 7.18. Construction of a funicular polygon through three points
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8

Projective Properties and Duality

8.1. Projective properties and graphic statics

This chapter discusses the geometric properties of constructions using
graphic statics. Its first goal is to understand the coherence between results
derived through static reasoning and results obtained through purely
geometrical arguments. Its second objective is to show how the use of these
projective properties and reciprocal figures (figures linked by reciprocity
relationships) have enabled the development of graphic statics and practical
calculation methods such as that of trusses, commonly known as the
Cremona method. Beyond these theoretical and historical aspects, these
approaches and especially duality, as reciprocal relationships that
associate one figure to another, have a practical interest that is always valid
with the use of computers, whether for planar or spatial problems. In this first
section, we present links between projective properties and graphic statics.
The subsequent sections will look at the use of reciprocal figures and
applications of this duality.

So far, we have implicitly placed ourselves in the context of Euclidean
geometry. We have been faced with limitations particularly due to the fact
that two distinct parallel lines do not intersect by the axiom of parallels from
Euclid’s fifth postulate. In a first instance, we had to exclude the case of
parallel forces because the intersection of their lines of action was not
defined. The introduction of funicular polygons allowed us to no longer make
this distinction, because the method is applicable to any system of forces
through the introduction of non-parallel forces. Thus, it may seem logical to
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think that since funicular polygons can be used to remove distinctions due to
parallelism, it can use the results of a particular geometry which does not use
Euclid’s fifth postulate: projective geometry. Without going into the
mathematical development of projective geometry, we can say that it
involves properties of figures conserved by central plane projections. We
note that the perspective, defined as the central projection of a three-
dimensional scene on a plane, expresses its geometric properties in projective
geometry [FLO 63]. In projective geometry, all lines in the plane are
considered to be intersecting, even parallel lines for which the intersection is
unique and called the point at infinity. Thus, an affine line (Euclidean plane
line) becomes a projective line if a point at infinity is added. Girard
Desargues (1591–1661) is credited with the first “normalization” of the point
at infinity and laying the foundations of projective geometry [DES 39]. By
treating the points at infinity the same as other points in the plane, projective
geometry allows us to establish general results without distinguishing parallel
lines. In Euclidean geometry, it is always possible to particularize the result
of projective geometry by stating, for example, that two straight lines
intersecting at a point at infinity are parallel. The projective plane is an
extension of the affine plane containing the line at infinity formed by the set
of points at infinity of all lines in the plane. One way to implement the
concepts of the point at infinity of a line and the line at infinity of a plane is
to note that their perspectives (their central projections in a plane) generally
respectively correspond to the vanishing point of the line and the vanishing
line of this plan. In projective geometry, lengths and angles are not
conserved. Projective geometry therefore focuses primarily on incidence, so
intersections of lines and planes, and thus in particular to alignments of
points and membership of points to lines. The works of Girard Desargues
were pursued by Blaise Pascal (1623–1662) particularly with his theorem of
the mystic hexagram, but it was not until developments by Jean-Victor
Poncelet (1788–1867) [PON 22] that projective geometry was widely
disseminated. Although Jean-Victor Poncelet was also interested in funicular
polygons [CHA 04], it was his work on geometry that was used by Karl
Culmann (1821-1881), considered to be the founder of graphic statics, in his
treatise on graphic statics [CUL 64]. In its approach, Karl Culmann relied on
projective geometry to determine the properties that link figures in the layout
plan and the force plan. In particular, he used the fact that the line of action of
a force in the layout plan and its representation in the force plan are parallel
and therefore the corresponding lines intersect the line at infinity.

In previous chapters, we discussed graphic statics based on the principles
of statics expressed in graphical form but we did not use projective geometry
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to develop the results. Coherence of geometric figures built in the layout plan
and force plan is justified by statics reasoning. Thus, closure of a funicular
polygon reflects the nullity of the sum of moments of forces of the system in
equilibrium and closure of the force polygon reflects the nullity of the sum of
these forces. Similarly, other funicular polygon properties are deduced from
reasoning based on the principles of statics. Figures formed in the two plans
must satisfy the properties of statics that can result in geometric properties. It
is interesting to note that two application properties of funicular polygons
correspond to projective geometry theorems: the Desargues theorem and the
Jakob Steiner theorem. We will develop these two cases below.

8.1.1. The Desargues theorem and equilibrium of three forces

Here, we consider the relationships between projective geometry and
properties of three forces in equilibrium. Desargues’ theorem is a
fundamental result of projective geometry stated by the mathematician from
Lyon in 1648. It is formulated here in its projective version, incorporating
terms from the work of Y. Ladegaillerie [LAD 02].

DESARGUES’ THEOREM 8.1.– (PROJECTIVE).– Let ABC and A′B′C′ be two
non-flat triangles of a projective plane such that A, A′, B, B′ and C, C′ are
distinct. Lines (AA′), (BB′) and (CC′), assumed to be distinct, are concurrent
if and only if the points of intersection R of (AB) and (A′B′), P of (BC) and
(B′C′) and Q of (AC) and (C′A′) are aligned.

Figure 8.1. Desargues’ theorem
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It is said that the two triangles ABC and A′B′C′ are perspective relative to
the point of intersection I of lines (AA′) (BB′) and (CC′).

Expressing Desargues’ theorem in its projective version implies that the
points P, Q, R and I can or cannot be at infinity, so that Desargues’ theorem
formulation in the Euclidean plane is expressed depending on its
corresponding parallelism. Figure 8.1 shows the case where none of the
points P, Q, R and I are at infinity. Figure 8.2 shows the case where two
homothetic triangles correspond to the case where the points P, Q, R are
positioned on the line at infinity, since the lines (AB) and (A′B′) are parallel,
as well as lines (BC) and (B′C′) and lines (C) and (C′A′).

Figure 8.2. Two homothetic triangles (P, Q and R are at infinity)

Proof of Desargues’ theorem is difficult if we stay in the Euclidean plane.
Thus, assuming that the two triangles ABC and A′B′C′ have their sides
intersecting two by two at a point I, it is not easy to prove the alignment of
points P, Q and R. However, passing into three-dimensional space makes its
proof simpler (see [FLO 63]). Without going into the details of this proof, we
can see that Desargues’ theorem figure can be considered as the planar
projection (central or parallel) of a three-dimensional figure where the two
triangles ABC and A′B′C′ are in two separate planes of Euclidean space and
not in the same plane. Thus, the point of intersection I of lines (AA′), (BB′)
and (CC′) becomes the vertex of a pyramid with base ABC or A′B′C′. The
trihedron formed by three planes IAB, IBC and IAC is intersected by both
planes ABC and A′B′C′. Let D be the line of intersection of the planes ABC
and A′B′C′. The lines (AB) and (A′B′) are included in the plane IAB, their
point of intersection R therefore exists and belongs to planes ABC and
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A′B′C′ and therefore to D. Similarly, we show that Q and R belong to line D.
The line of intersection D of planes ABC and A′B′C′ contains the points P, Q
and R. We can then interpret Desargues’ theorem figure (Figure 8.1) as being
the planar projection of a truncated triangular pyramid.

We now consider the case of three forces in equilibrium from a
geometrical point of view. We have seen that the construction of a funicular
polygon determines the force balancing any two arbitrary forces that do not
form a couple. This construction must be compatible with the fact that three
non-parallel forces in a plane can only be in equilibrium if they are
concurrent (comment in section 7.2). If they are parallel, the construction of
the funicular polygon also shows the position of forces in the force plan.
Constructing a second funicular polygon gives a construction with additional
properties (see section 7.3.3.2) that is the same as if the forces were
concurrent (Figure 8.3) or parallel (Figure 8.4). In particular, “the points of
intersection of the sides of the same rank of funicular polygons are aligned on
a line parallel to the line of poles (OO′)”. Thus, in Figures 8.3 and 8.4 we get
the following property: I1, I2 and I3 are, respectively, the intersection point of
lines (S1S3) and (S1′S3′), (S2S3) and (S2′S3′), (S1S2) and (S1′S2′), however the
points I1, I2 and I3 are aligned and parallel to the line (OO′). The equilibrium
property of three forces indicates that the lines (S1S1′), (S2S2′) and (S3S3′) are
concurrent (or parallel in the case of parallel forces). S1 and S1′ belong to the
line of action of F1, which will be called D1, and S2 and S2′ belong to D2 (line
of action of F2) and S3 and S3′ belong to D3 (line of action of F3). We may
notice that these properties are true for all positions of O and O′ in the force
plan and consequently for all points S1 and S1′, anywhere on D1, all points S2
and S2′ anywhere on D2 and all points S3 and S3′ anywhere on D3. If we
express all these properties in a purely geometric manner, we notice that the
alignment of points I1, I2 and I3 is equivalent to the fact that lines D1, D2 and
D3 are concurrent or parallel. This equivalence is due to the fact that both
methods of construction reflect the equilibrium of three forces. Thus, we get
the result of Desargues’ theorem with, in the case of concurrent forces, point
I to a finite distance (Figure 4.3) and in the case of parallel forces, point I at
infinity (Figure 4.4). In the latter case, we can see the figure as being an
orthogonal projection of a prism intersected by two intersecting planes. It is
remarkable to note that based on statics principles, we can get a powerful
result of projective geometry like Desargues’ theorem. We also note that the
figures linking funicular polygons in the case of three forces in equilibrium
can be seen as planar projections of pyramids or prisms (of base S1S2S3 in
Figures 8.3 and 8.4). We will see later that we can generalize this approach to
the projection of polyhedra for equilibrium of n forces.
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Figure 8.3. Relationship between two funicular polygons of three
non-parallel forces in equilibrium

Figure 8.4. Relationship between two funicular polygons of
three parallel forces in equilibrium
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8.1.2. Steiner’s theorem and equilibrium of n forces

Here, we will focus on projective geometric properties linking n forces in
equilibrium in the plane expressed by Jacob Steiner’s theorem (1796–1863).
Initially, we will focus on properties of n-laterals. An n-lateral is a polygon
defined by a set of n lines considered in a plane in a given order such that
three successive lines (taken in the given order) are not concurrent. The
intersections of these lines taken in successive pairs define n vertices. These n
vertices, connected in order, form an n-sided polygon, also called n-gon. We
note that n-lateral is defined by lines (side supports) while a polygon is
defined by points (vertices). Steiner’s theorem on n-laterals is formulated as
part of geometry of position, which considers the evolution of patterns formed
by lines and points when these change position. Here, we give an equivalent
wording to that given by Pirard [PIR 67]1.

STEINER’S THEOREM 8.2.– Take an n-lateral from the plane (d1, d2, d3,..., dn
with vertices A, B, C, ....), and n-1 lines from all vertices except one (da, dc,...
if B is omitted, as in Figure 8.5). u is a line. n sides of the n-lateral intersect
line u at n points (M1, M2,... Mn). Any other n-lateral for which lines (d1, d2,
d3,..., dn) successively pass through (M1, M2,... Mn), and for which n-1
vertices (A′, C′, ...) are respectively on n-1 lines (da, dc,...) from the vertices
of the initial n-lateral, has its nth vertex located on a fixed line (db, passing
through point B as shown in Figure 8.5).

Figure 8.5. Initial elements of Steiner’s theorem

1 Steiner’s theorem is formulated in terms of geometry of positions: “If n sides of an
n-lateral from a plane change by each pivoting around fixed points, all located on the
same line u, while n-1 of its vertices move on fixed lines, the nth vertex will also
travel on a fixed line”. [PIR 67].
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Figure 8.5 shows the initial elements of Steiner’s theorem, namely the
n-lateral, where n = 5, defined by lines d1 to d5. The corresponding polygon
is ABCDE. The n-1 = 4 vertices (ACDE) move on 4 fixed lines, arbitrary
directions da, dc, dd and de. The nth vertex (5th peak) is point B in the
example. The arbitrary line u allows construction of fixed points M1 to M5 on
it, around which lines d1 to d5 will rotate. Steiner’s theorem states that point
B moves on a fixed line that can be determined.

The movement of vertices on lines da to de can be done step by step by
choosing, to begin with, a point A′ on da. To do this, we must build line
M1A′ = d1′ and line M5A′ = d5′, which allow us to define the point E′ on de
(Figure 8.6). We then construct the line M4E ′= d4′, and point D′ on dd.
Similarly, we construct line M3D′ = d3′ and point C’. And finally, we
construct line M2C′ = d2′. Thus, all lines d1′ to d5′ are defined. Steiner’s
theorem then states that point B′, the intersection of lines d1′ and d2′, is
located on a fixed line db.

Figure 8.6. Steiner’s theorem

According to the theorem, line u is arbitrary. This means that the nth line
is fixed regardless of the position of line u.

We also note that if the n-lateral is a triangle, we get the figure
constructed in the case of Desargues’ theorem, the points M1, M2 and M3
having to identify with P, Q and R. We should see that the three lines da, db
and dc are concurrent at I as a consequence of this same theorem.

As for Desargues’ theorem, we can seek to interpret the Steiner theorem
figure, constructed in the plane, as the planar projection of a three-
dimensional construction. Suppose that the initial elements of Steiner’s
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we can apply the results of section 7.3.2.2 to a system of n-1 forces plus a
force balancing Fr. To illustrate this, Figure 8.7 uses Figure 7.13 from
section 7.3.3.2, considering that force F4 balances the resultant Fr of forces
F1, F2 and F3. Thus, the forces F1, F2, F3 and F4 are in equilibrium and the
funicular polygons corresponding to poles O and O′ are respectively S1 S2
S3 S4 and S1′ S2′ S3′ S4′. We notice that the assumptions of Steiner’s theorem
can be found in the properties linking funicular polygons. The figure from
Steiner’s theorem and that linking funicular polygons can be identified by
noting that the n-laterals correspond to funicular polygons, fixed lines
passing through the vertices (da, db...) correspond to the lines of action of
forces, line u corresponds to the line parallel to (OO′), and the fixed points
(M1, M2...) correspond to the points of intersection of the sides that are of the
same rank as funicular polygons (I1, I2...)2.

8.1.3. Scope of geometric properties in constructions using graphic statics

We can study graphic statics figures just as we can geometric
constructions, linked to each other by rules of parallelism, through lines
crossing at points, etc. With such an approach, a statics problem becomes an
application of a geometric problem with a more general scope. Choosing this
second path leads to the same result as regards statics and may seem
superfluous. Yet it presents theoretical and practical advantages. From a
theoretical point of view, it allows the study of geometric problems
independent of statics problems and can make a link between purely
geometric properties and properties of statics. In addition, the geometric
approach, through its theoretical and mathematical side, allows us to tackle
problems by analyzing the logic of constructions of figures and their
properties. Thus, from a practical point of view, constructions can be led in a
systematic manner only based on constructions and geometric properties
shared with statics. It is only then that reasoning through statics can enlighten
geometric constructions. A significant benefit of this double look on
structures is also to ensure their coherence through multiple criteria. These
criteria are geometrics and statics, but are also, as we have seen, from the
properties of planar projections of polyhedra. Another advantage is the
possibility of using systematic construction methods allowing simultaneous
monitoring of results. Reciprocal figures and their dual relationships are an
expression of these methods. They enlighten, in a geometrical manner, the

2 Note that Cremona, in his book on reciprocal figures in graphic statics [CRE 85])
refers to this subject of Pappus porisme made by Poncelet in his treatise on projective
properties [PON 22].
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links between figures constructed in the layout plan and the force plan in
graphic statics.

8.2. Reciprocal figures and projections of polyhedra

In 1864, James Clerk Maxwell (1831–1879) published an article
[MAX 64] describing the properties of reciprocal figures and their
application to force diagrams. He begins with a purely geometric definition
of reciprocal figures and studies their properties, including those related to
conditions of existence. He proposes a general approach, first considering the
geometric properties of figures before moving to applications of statics. In
what follows, we use the foundations of Maxwell’s approach.

8.2.1. Reciprocal plane figures

Reciprocal figures are such that properties of the first relative to the
second are the same as those of the second relative to the first. The
reciprocity in question involves figures made of line segments that join a
system of points and form closed polygons (Maxwell uses the term line in the
meaning of segment). Reciprocity concerns the existing constant relationship
between the directions of all segments of a figure with those of segments
corresponding to it in the other figure. In the plane figures, the corresponding
segments may be either parallel, perpendicular, or forming a constant angle
between them. The segments meet at a point in the figure and form a closed
polygon that is also in the other. Maxwell also adds that in the case of a
figure in space, the segments of one figure are perpendicular to a plane in the
other, and the planes corresponding to the segments that meet at a point form
a polyhedron in the other. We will limit ourselves here to plane figures.
Maxwell defines reciprocity of two plane figures formed of line segments
that join a system of points by forming closed contours. He gives the
following definition:

DEFINITION 8.1.– Two plane figures are reciprocal if:

1) they have the same number of segments;

2) the corresponding segments of both figures are parallel;

3) the converging segments in a figure form a closed polygon in the other
figure.
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APPROACH 8.1.– Condition 2) can be extended to cases where the
corresponding segments of both figures make a constant angle between each
other, because then it suffices to perform the appropriate rotation of a figure
to get parallelism.

APPROACH 8.2.– From condition 3), we can deduce that each point of a figure
corresponds to a closed polygon in its reciprocal figure, and that through its
reciprocity property, each closed polygon of a figure is a point in its
reciprocal figure.

PROPERTY 8.1.– As each segment of a figure only has two ends where other
segments can converge, each segment of the reciprocal figure can only
belong to two closed polygons.

We can try to determine the simplest reciprocal figures. To do this, we
notice that a closed polygon has at least three sides and therefore, at every
point in the reciprocal figure, at least three segments must converge
(Figure 8.8). The simplest plane figure fulfilling these conditions consists of
six segments connecting four points in pairs (Figure 8.10). The reciprocal
figure comprises six parallel segments respective to those of the initial figure,
and the points of one correspond to the triangles of the other.

Let us detail the above reasoning. Figure 8.8 shows a triangle with
vertices S1, S2 and S3 with sides called A1, A2 and A3. Segments constructed
by the reciprocity procedure are named a1, a2 and a3. They are respectively
parallel to segments A1, A2 and A3 and converge at point z1. Thus, the
triangle S1S2S3 is associated with point z1 of the reciprocal figure. The ends
z2, z3 and z4 are chosen freely on the lines parallel to A1, A2 and A3 since no
other conditions are imposed on their position. By the principle of
reciprocity, the triangle formed by points z2, z3 and z4 must be associated
with a point in the reciprocal figure (Figure 8.9). Point S4 is the reciprocal
point of this triangle and is at the point of convergence of segments A4, A5
and A6 constructed in parallel to segments a4, a5 and a6 forming the triangle z2
z3 z4. It is remarkable to see that the three lines (A4), (A5) and (A6) converge,
reflecting a demonstrable geometrical property. Associating the two
configurations gives the simplest reciprocal figures, each consisting of four
points, four triangles and six segments. The reciprocal relationships, also
termed dual, between the triangles of one and the points of the other,
associate the points S1, S2, S3 and S4 respectively to z1z2z4 (=a1a3a4), z1z2z3
(=a1a2a5), z1z3z4 (=a2a3a6), z2z3z4 (=a4a5a6) in Figure 8.10. This example
illustrates that the reciprocity relationships of figures involve relationships
that link the number of points, segments and polygons. These relationships
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To illustrate the procedure for determining reciprocal figures for another
simple case, let us consider a polygon with four sides, the tetragon S1 S2 S3 S4
equal to the quadrilateral A1 A2 A3 A4 (Figure 8.11). The reciprocal (dual)
point of the tetragon is point z1, from which four segments parallel to A1, A2,
A3 and A4 start, respectively ending at points z2, z3, z4 and z5. The dual point
of the quadrilateral a5 a6 a7 a8 is the point S5. This point is then the vertex of 4
triangles for which the reciprocal (dual) points are z2, z3, z4 and z5. In
Figure 8.11, the sides of the triangles denoted (A1...) are associated with
converging segments denoted (a1...) with the same number. Thus, the
segments a1 a5 a6 converge at z2, and z2 is the dual of triangle A1 A5 A6.

Figure 8.11. Construction of simple reciprocal figures from a quadrilateral

Figure 8.12. Example of reciprocal figures containing twelve segments
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Maxwell gives a slightly more complex example (Figure 8.12) of
reciprocal figures each with 12 segments and 7 points corresponding to 7
polygons in the other figure. We denote A1 to A12 the segments of the first
figure and a1 to a12 the segments corresponding to the reciprocal figure. By
assumption, segments A1 to A12 are respectively parallel to segments a1 to a12.
Among the 7 polygons of the first figure is a pentagon (A1 A3 A12 A11 A8) to
which a point in the reciprocal figure corresponds, where the 5 segments a1,
a3, a12, a11 and a8 converge. The other polygons are a quadrilateral (A4 A5 A7
A6) and five triangles. The seven polygons of the reciprocal figure are
easily determined by identifying convergent segments from the initial figure:
(a1 a2 a3), (a2 a4 a5), (a3 a5 a7 a12), (a1 a4 a6 a8), (a6 a7 a9 a10), (a10 a11 a12) and
(a8 a9 a11). In Figure 8.12, the polygon (a3 a5 a7 a12) and its reciprocal
segments have been drawn in bold and the polygon (a1 a4 a6 a8) and its
reciprocal segments have been drawn in dashed bold.

8.2.2. Reciprocal figures seen as projections of polyhedra

Polyhedra are three-dimensional objects consisting of planar faces, edges
and vertices. The faces of a polyhedron define a closed volume. The edges
have the following properties: (1) an edge joins two points only and (2) an
edge joins two faces only. A polyhedron projected onto a plane will become a
plane figure for which each segment has two ends only, onto which other
segments can converge and where each segment of the figure can only belong
to two closed polygons corresponding to the projections of two connected
polyhedron faces. Here, we find a consequence of property 1 of reciprocal
figures. Thus, there is an analogy between the properties of reciprocal figures
and those of the projection of a polyhedron. Furthermore, each of the
reciprocal figures verifies the properties of a projected polyhedron. Thus, a
polyhedron may be associated with each of the projected figures. For
example, the first two cases of reciprocal figures presented above (Figures
8.10 and 8.11) show figures that can each be seen as projections of pyramids
for which the base is a triangle or a quadrilateral. Maxwell generalized this
result to projections of polyhedra for all figures satisfying the conditions of
reciprocity.

PROPERTY 8.2.– A figure and its reciprocal figure can be considered as
projections of polyhedra.

From this property, we can deduce that reciprocal figures verify the
projective properties of polyhedra projections. We also note that polyhedra,
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for which projections correspond to reciprocal figures, must be dual, so are
connected by a duality relationship. A relationship of this type exists for
example in regular polyhedrals, said to be platonic. The duality relationship
in this case is defined by connecting the center of faces to the vertex of the
dual polyhedron. A cube is thus the dual of the octahedron and vice versa.
Similarly, the dodecahedron and the icosahedron are duals. Finally, the
simplest of them, the tetrahedron is its own dual. We note that the simplest
reciprocal figures (Figure 4.10) correspond exactly to tetrahedrons, but are
not necessarily regular.

8.2.2.1. Relationship linking a polyhedron to its projection and its reciprocal
figure

In this regard, it may be interesting to consider the relationship linking a
polyhedron to its projection and the corresponding reciprocal figure. One
answer is to consider a particular projection of a polyhedron as an orthogonal
projection. An orthogonal projection is a parallel projection for which the
projection direction is orthogonal to the plane of projection. In this
projection, the projected polyhedron dual figure is constructed by combining
a point on the projection plane T to each face of the polyhedron. The
construction of dual points is done as described in the following. Consider a
fixed point Ω that does not belong to a projection plane. For each face, the
point of intersection with the projection plane of the line perpendicular to the
face passing through a fixed point Ω is constructed. Dual points obtained are
then only connected if the corresponding faces of the polyhedron have a
common edge. We note that parallel faces have the same dual point because
their perpendicular lines have the same direction. With this method, we will
show that the obtained dual figure must be rotated 90° so that the segments of
reciprocal figures are parallel. This approach can be used to ensure coherence
of projections of polyhedra when these are only defined by a projection. It is
mainly used in computer applications of 3D reconstruction from projections,
for example by Sugihara in 1982 [SUG 82] (see also [CIB 08, GUE 08]).

To demonstrate and understand the relationships between the
orthogonally projected polyhedron and dual points associated with faces, we
will look at the intersection of two planes A and B that are parallel to two
connected faces Fa and Fb of the polyhedron. We choose to make the planes
A and B pass through a fixed point Ω (Figure 8.13). The intersection of A
and B with the projection plane T are lines TrA and TrB. These lines intersect
at point j. Thus, planes A and B intersect along line (Ωj). By denoting O the
orthogonal projection of Ω on T, we deduce that the orthogonal projection of
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(Ωj) is line (Oj). Let “a” be the point of intersection of the line perpendicular
to A passing through Ω with T, and let “b” be the point of intersection of the
line perpendicular to B passing through Ω with T. Points a and b are, by
definition, the dual points of Fa and Fb. We can then easily show that line
(ab) is perpendicular to line (Oj) which, we recall, is the orthogonal
projection of the intersection of planes A and B. Thus, after a 90° rotation of
dual points (relative to any point on T) giving dual points a′ and b′, we
deduce the following property: the intersection of planes A and B and
consequently, the common edge of faces Fa and Fb are projected
orthogonally on T along a segment parallel to (a′b′). Figure 8.14 shows this
duality relationship, which is characteristic of reciprocal figures. In this
figure, line Δ is the projection of the intersection of planes A and B. The dual
points a and b are on a line perpendicular to Δ. The points a′ and b′ obtained
by a 90° rotation are on a line parallel to Δ. We may notice that if we move Ω
away from T, the dual figure transforms homothetically, which corresponds
to a simple change of scale.

Figure 8.13. Intersections on plane T of perpendicular lines and parallel
planes to those passing through a fixed point Ω.
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Figure 8.14. Duality relationship between the orthogonal projection of the
intersection of planes A and B and their dual points a and b, and

after a 90° rotation of points a′ and b′

It is interesting to note that the relationships established between a
polyhedron, its orthogonal projection and the associated reciprocal (dual)
figure allow:

1) the construction of the reciprocal figure of a figure from a coherent
initial figure, through the construction of dual points. This procedure is
detailed in section 8.2.2.2. We note that the reciprocal figure can also be
interpreted as the projection of a polyhedron;

2) the definition of a coherent initial figure seen as the projection of a
polyhedron. The use of duality allows us to impose a flatness condition to the
faces of the polyhedron and thus ensures coherence of its projection. This
coherence, reflecting projective properties, is also valid if we consider the
figure as being the central projection of a polyhedron. In section 8.2.2.3, we
will see how duality allows us to find Steiner’s theorem;

3) the interpretation of a dual point as a feature of the direction of a
polyhedron plane if it is orthogonally projected. This gives a powerful
interpretation of the link between an orthogonally projected face and a point
on the associated reciprocal figure;

4) determination of the projection of the intersection of two planes,
knowing their dual points. A segment connecting two dual points gives the
direction of the projection of the intersection of two corresponding planes.
This property is coherent with an orthogonal projection, because parallelism
is conserved. It also allows construction of an orthogonal projection, due to
duality, of the intersection of a polyhedron with a plane, knowing its dual
point.
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8.2.2.2. Construction of the reciprocal of figure of a polyhedron projection

We have just seen that one way to address two reciprocal figures is to
interpret them as polyhedra projections. We also saw that the dual point of
the direction of the plane of the latter can be associated with the first face of a
polyhedron. The direction of a common edge with two faces, in projection, is
parallel to the segment linking the associated dual points. Thus, due to this
property, it is advisable to name the faces of the polyhedron and its projection
and give these names corresponding dual points. By proceeding in this
manner in the example of Figure 8.12, Figure 8.15 is obtained where
polygons associated with faces of the polyhedron are labeled A, B, C, D, E, F
and G, and the reciprocal points associated with dual points are named a, b, c,
d, e, f and g. The letters A, B, C, D, E and F are positioned in the center of
the polygons. The letter G is positioned outside the pentagonal contour of the
figure but specifically names it. Pentagon G must be seen as the projection of
a pentagonal planar face for which the dual point is g. We note, for example,
that segment gf of the dual figure corresponds to the common edge of G and
F. With this convention, we see that it is very easy to build a reciprocal figure
from a coherent initial figure. Coherence of the initial figure must be the
same as the projection of a closed polyhedron. We can then easily name the
faces on the initial figure. We start by giving a point on the reciprocal figure
associated with a face, for example, point a for face A. We draw a parallel
line passing through a to the common edge with another face, for example G.
Thus, a point g on this line defines a second reciprocal point. Reciprocal
points are then obtained, step by step, by intersection of lines parallel to the
common segments with two faces, for which at least one of the reciprocal
points is known. Thus, point b is defined by plotting the point of intersection
of lines parallel to the common segments of (A and B) and (G and B)
respectively passing through a and g. Point c can then be built at the
intersection of lines parallel to the common segments of (A and C) and
(B and C) respectively passing through a and b. Similarly, we can construct f,
d and e.

If we wish to interpret the left figure as the projection of a polyhedron, we
will notice that face C of the polyhedron must intersect the face of G, as they
have two vertices in common. We should verify that the segment connecting
these vertices in the left figure is parallel to segment gc in the right figure.
We can also deduce that the common vertex of faces ABC and common
vertex of faces CDEF are located on either side of face G. If, in the same
manner, we wish to interpret the figure on the right as the projection of a
polyhedron, we will see that face (bcdg) of the polyhedron must intersect face
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(acfg) because their vertices c and g are in common. We should therefore
check the parallelism of segment gc with the segment connecting the
corresponding dual points in the other figure.

Figure 8.15. Reciprocal figures identical to that of Figure 8.12 where polygons
of the first figure (initial projected polygon faces) and the points of the reciprocal

figure (dual points of faces) are named

8.2.2.3. Steiner’s theorem considered through duality

In section 8.1.2, we saw that Steiner’s theorem can be interpreted as
characterizing the coherence property of the planar projection (central or
parallel) of a polyhedron. In particular, knowing the projection of a polygonal
planar face with n sides and n-1 edges from these adjacent faces, the
projection of the nth edge may only be on a single line. Here, we will
determine its position through a reasoning using duality. Figure 8.16 shows,
on the left, the initial data from Steiner’s theorem in the case of a five-sided
polygon (from example section 8.1.2). The faces are named P on the
pentagonal face, and A1, A2 A3, A4 and A5 for the faces with a common edge
with P. The five edges of the pentagon are known but only four of the five
edges from the vertices of the pentagon in projection are known. Let us
construct the dual figure of the left projection. Point p is the dual of point P.
Let us also construct a point a1 that is the dual of A1. To do this, we just have



Projective Properties and Duality 175

to take point a1 on the line parallel to the common edge of P and A1 passing
through p. From here onwards, we will denote common edges of two faces
by square brackets, for example [P A1] for the common edge of P and A1. a5
is then easily deduced at the intersection of lines passing through p and a1,
respectively parallel to edges [P A5] and [A1 A5]. Similarly, a4 is the
intersection of lines passing through p and a5, respectively parallel to edges
[P A4] and [A5 A4]. Then a2 is the intersection of lines passing through p and
a1, respectively parallel to edges [P A2] and [A1 A2]. Finally, a3 is the
intersection of lines passing through p and a4, respectively parallel to edges
[P A3] and [A4 A3]. Thus, the dual points of all faces are determined. The
direction of the missing edge [A2 A3] is therefore known since it is parallel to
(a2a3), shown in dotted lines on the figure.

Figure 8.16. Determination by duality of the direction of the
missing edge of Steiner’s theorem

We note that the line u mentioned in the assumptions of Steiner’s theorem
is not necessary to determine the direction of the missing edge. Figure 8.17
shows the missing edge on the left figure and the closure of a polyhedron by
a face Q for which the dual is q. Line u may thus be interpreted as the
projection of the intersection of planes containing P and Q. Thus, we verify
that points M1, M2, M3, M4 and M5 are aligned on a line parallel to line (pq).
The figures representing the projection of the polyhedron formed by faces
(P, A1, A2, A3, A4, A5 and Q) and its dual for which the vertices are (p, a1, a2
a3, a4, a5 and q) are reciprocal figures. They are represented by continuous
lines in Figure 8.17.
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Figure 8.17. Complete configuration of Steiner’s theorem
figure and its associated dual figure

The use of reciprocal figures and their interpretation as dual figures of
polyhedra projections may seem distant from statics calculations. However, if
we note, as did Maxwell, that the coherence properties of projections are the
same as those of a system of forces in equilibrium in a reticulated structure
with nodes that are only in equilibrium under the effect of compression or
tension in the rods, it may be easier to “see” reciprocal figures as projections
of polyhedra rather than as more abstract constructions considering forces.
Later, we will see how duality can be interpreted and usefully implemented in
graphic statics calculations, including such applications as the calculation of
Cremona truss structures. We will also see that Bow’s notation, usually
associated with these methods, shows how to name the faces and dual points
that we used in polyhedra projections. These methods of truss calculation are
useful for the study of equilibrium of masonry if we consider the weight of
the blocks as being a system of external forces, and if we match resultant
stresses at the interfaces to forces in the rods.

8.3. Duality in graphic statics

8.3.1. Interpretation of reciprocal figures in the case of reticulated
structures

Static interpretation of reciprocal figures is partially contained in the
known results of funicular polygons including works by Culmann. It was
generalized by Maxwell and developed by Cremona in graphic statics. Thus,
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reciprocal figures may be considered from not only a purely geometrical
point of view but also as systems of points on which forces act along the
connecting segments. We could imagine a structure in equilibrium consisting
of rods connected together by joints and thus only subjected to compression
or traction effects. If all segments of the figure correspond to rods, it is
assumed that the structure is not subjected to any external force. The structure
thus conceived is free, so not connected to the external environment, which is
considered to be a fixed solid. Equilibrium of the structure is reflected by the
equilibrium of each rod and of each of its nodes. The equilibrium of a node
results in nullity of the sum of the forces at the node and thus closure of the
associated force polygon. For each rod, the equilibrium condition results in
the fact that the force polygons connected to both ends must have a common
side.

It is thus remarkable to note that the reciprocal figure of the structure may
also be considered a reticulated structure in which the equilibrium of a node
results in closure of the polygon corresponding to the initial figure. For
example, we could interpret Figure 8.15 on the left as being a planar
reticulated structure. Equilibrium of the node at the intersection of faces (or
polygons) A, B and G results in closure of the force polygon abg. The forces
in equilibrium in this node are the vectors ag, gb and ba (they could also
have been in the opposite direction, ba, gb and ag). To ensure equilibrium of
the rod [A G], force ga must balance ag of the other node. The other node is
also common to G, A, C and F. The forces in equilibrium are thus the vectors
ga (to balance ag), ac, cf and fg. Conversely, the right figure can be seen as a
reticulated structure and the left figure as force polygons. Thus, equilibrium
of the node is reflected by closure of the force polygon for which the vectors
coincide with the sides of polygon A. This is the same as for equilibrium of
nodes b, c, d, e, f and g, respectively associated with polygons B, C, D, E, F
and G. Figure 8.18 shows these two interpretations with, on top, the
reticulated structure on the left and equilibrium of nodes in rod [A G]
expressed by force polygons on the right. Forces are returned to the same
scale as the nodes on the left-hand side figure. At the bottom of Figure 8.18,
the right-hand side figure shows the reticulated structure, and the left shows
that equilibrium of point g results in closure of the force polygon where the
vectors are drawn. Forces are returned to the same scale as node g in the
right-hand side figure. We note that the structures corresponding to reciprocal
figures are not necessarily isostatic. Reciprocal figures from Steiner’s
theorem in section 8.17 show, on the left, a hypostatic structure (mechanism)
in equilibrium under the forces defined by polygons of forces of the
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reciprocal figure on the right. In the case of indeterminate hyperstatic
structures, non-uniqueness of the reciprocal figure may be observed.

Figure 8.18. Two interpretations of reciprocal figures

8.3.2. Reciprocal figures and funicular polygons

Previously, we introduced the concept of a funicular polygon independent
of the concept of reciprocal figures. However, associating a system of forces
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from a layout plan to that of a force plan through the construction of funicular
polygons suggests a close link must unite these concepts. As a first step
toward understanding the relationship between reciprocal figures as defined
by Maxwell and graphic statics figures, we first note that the criterion of
parallelism of segments is satisfied between figures of the layout plan and
those of the force plan (criterion 2 of the definition of reciprocal figures by
Maxwell). Moreover, we recall that criterion 3 defining reciprocal plane
figures states that converging segments in a figure form a closed polygon in
the other figure. If we mainly consider systems of forces in equilibrium in
graphic statics, we note that:

– concurrent forces in equilibrium in the layout plan correspond to a
closed force polygon in the force plan;

– a funicular polygon forming a closed circuit in the layout plan is
associated with rays converging toward the associated pole in the force plan.
(We recall that the funicular polygon reflects the equilibrium of moments of a
system of forces in equilibrium). These properties are consistent with the
third criterion but the figure must also be complete, so that each segment
belongs to two closed polygons.

If we consider n forces in equilibrium F1, F2,…, Fn (for example, by
balancing n-1 arbitrary forces with their opposing resultant Fr), it is then
possible to draw an associated funicular polygon with pole O (Figure 8.19).
We can thus begin a figure consisting of a polygon and n edges for which
we know that the directions and an end belonging to the polygon. The
associated dual figure consists of edges from O and is connected to points
a0, a1...an-1. To complete the reciprocal figures, if the forces F1, F2,…, Fn
are not concurrent (generally the case for n > 3), it is necessary to build a
second associated funicular polygon with a second pole O′. Thus, the
number of segments will be exactly the same in the dual figures and they
satisfy the reciprocity criteria. We note that it is then a case of Steiner’s
theorem and the associated polyhedron is formed of two polygonal faces
with n sides and n quadrilateral faces. We note that generally, n edges
linking two polygonal faces with n sides have no reason to converge, as the
forces in equilibrium are not generally convergent. In the particular case of
a system of concurrent forces in equilibrium, the polyhedron may be
limited to a pyramid with a polygonal base with n sides, with the vertex of
the pyramid projecting the point of intersection of forces. Thus, in the
simplest case – three forces in equilibrium, so concurrent – a tetrahedron is
obtained (Figure 8.20). We can then truncate the pyramid by a second plane
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and construct a second funicular polygon to form more complicated
reciprocal figures (Figure 8.21).

Figure 8.19. Reciprocal figures linking four forces in equilibrium
from associated funicular polygons

Figure 8.20. The simplest reciprocal figure linking three
forces in equilibrium
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Figure 8.21. Other reciprocal figures linking three forces in equilibrium

8.3.3. Application in the search for tensile planar structure shapes

As we have seen, reciprocal figures are not connected to the outside,
however physical structures are usually in interaction with the external
environment that is generally assumed to be statically fixed. If the interaction
is done through a connecting element such as a joint or single support in the
plane, we can consider linking certain rods from reticulated structures to the
external environment; the link then becomes a support. The connecting
elements are implicitly connected together via the external environment that
is considered to be a rigid solid. The way in which these supports are
interconnected in the external environment does not matter since study of the
structure only considers what happens within it. Only reactions at
the supports matter as they must balance the action of the structure on the
external environment. Thus, we can easily see the reticulated structure of
Figure 8.19 on the left decomposed into two parts:

– a reticulated structure formed of 4 connecting rods connecting S1′, S2′,
S3′ and S4′, and 4 rods connecting these points respectively to support points
S1, S2, S3 and S4;

– an external environment composed of 4 rods connecting the support
points S1, S2, S3 and S4.
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We can then assume, for example, that forces F1 to F4 are the reactions at
the support points. In this case, with reference to the direction of the forces
shown in Figure 8.19, the rods [S1 S1′], [S2 S2′] and [S3 S3′] work in traction
and the rod [S4 S4′] is in compression.

Figure 8.22. Tensile planar structure determined using a funicular polygon

Following the same logic, we can try to build a similar structure for which
all rods would work in traction. Figure 8.22 gives an example of such a
structure for which we give 5 supports L1,..., L5 and 4 directions of the rods
with 4 associated forces. The 5th force must balance the other 4. We have
seen that Steiner’s theorem implies that the direction of the fifth rod depends
on the 4 others. The construction of a funicular polygon with pole p allows us
to determine the direction of the rod linked at L5 as well as the reaction force
at this support. Moreover, the corresponding funicular polygon can construct
rods of polygon P connecting the first five constructed rods. We note that it is
not necessary for points L1,..., L5 to form a funicular polygon (for example,
the dotted line) because the tension in a rod from a support remains
unchanged irrespective of the position of the support on the corresponding
line of action. In this case, it simply means that the external environment
cannot be reduced to rods connecting supports. We note that in the case
where supports are arranged along the vertices of a funicular polygon
associated to q for example (dotted line in the figure), the external
environment may be limited to compressed rods forming this polygon. To
complete it, we must ensure that the structure is actually tensile. To do this,
the equilibrium of each node must be verified, which allows us to determine
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the direction of the action exerted by the rod on the node. For example, the
common node with A2, A3 and P is subjected to the action a2a3 of rod
[A2 A3], a3p of rod [A3 P] and pa3 of rod [P A2]. The direction of forces
applied to this node is therefore that of path a2, a3, p in the dual figure. It
corresponds to a pulling action.

We note that the tensile structure we designed according to the 4 forces
F1, F2, F3 and F4, balanced by F5, may be in equilibrium under the action of
directly opposing forces; in this case, the structure is entirely compressed.
More generally, we also note that once the shape of the structure is fixed, we
can seek other equilibrium states corresponding to forces F1′, F2′, F3′ and
F4′, balanced by F5′. We can easily find that dual points a1′,..., a5′ associated
with faces A1′,..., A5′ must be homothetic to points a1,..., a5 with respect to
point p, noting that the directions of forces are fixed. A homothetic negative
ratio then corresponds to compressed structures.

Figure 8.23. Tensile planar structure determined using duality

We can use duality to define a more complex tensile reticulated structure
and determine tensions in the rods. We can, for example, begin with the 5
anchors (as before) and the 4 reactions R1 to R4. The 5th reaction is then
defined by a funicular polygon by considering for example, pole q, so the
associated dual points are b1, b2,..., b5 (Figure 8.23). We can use the funicular
thus defined to build 5 rods delineating areas B1 to B5. If rods are built in line
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with the directions of reactions, we define 5 nodes where 5 rods converge, for
which equilibrium must result in closed quadrilaterals in the dual figure of
the force plan. Such a quadrilateral is (a1 b1 b2 a2) for the common point of
the faces A1, B1, B2 and A2. If the constructed rods are then connected, on the
lines of action of reactions, by rods forming polygon P, we ensure
equilibrium of the nodes and their position is defined based on the dual point
p. We note that the points (a1, a2, a3, a4) and (b1, b2, b3, b4) form homothetic
figures with respect to point q and could be combined with a ratio of 1. This
would simply mean that tensions in the rods [A1 B1] to [A4 B4] are zero. We
can see that for the same geometry, stress distribution in the rods may be
multiple. To finalize this, we must ensure that the structure is tensile. To do
this, we can check the equilibrium of each node and determine the direction
of the action exerted by the rod on the node.

The structures that we have just studied are only subjected to the action of
reactions applied to supports. However, it is very easy to consider these
structures as only being subjected to external forces at certain nodes, for
example at forces R1 to R5 for the structure in Figure 8.23. It is thus possible
to generally address reticulated structures loaded with nodes.

8.3.4. Search for support reactions of a solid

A first condition of stability of a structure is to ensure that it is in
equilibrium under a load consisting of a set of external forces and reactions to
connections with the external environment. External forces are assumed to be
known and reactions are to be determined such that they balance them. Thus,
to determine reactions, we first search for the resultant of all external forces
applied to the structure. Reaction forces must balance this resultant. We use
the construction of the force polygon and the funicular polygon of all forces
applied to the structure such that both are closed. To determine the reactions,
we use knowledge of the resultant that is to be balanced and the directions
and known crossing points of lines of action of reactions. The line of action
of the reaction is known in the case of a simple support since it passes
through the defined point and is perpendicular to the support surface. In the
case of a joint, we only know that the line of action passes through the point
indicating its position. In all cases, we can define or at least name the zones
(Figure 8.24) between the forces (external and reaction) and construct the
dual points at the same time as the funicular polygon. We illustrate the
method for the case of a solid connected to the outside by a joint and a simple
support and subjected to three external forces F1, F2 and F3 (Figure 8.24).
The system is isostatic, because the supports block the 3 degrees of freedom
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equilibrium F1, F2, F3, R1 and R2. Thus, the end points T1 and T2, constructed
using the first funicular polygon, need to be on a line parallel to oe.

Figure 8.25. Determination of support reactions

We note that the construction gives a unique solution, since the structure
is isostatic. If the solid had been linked by two joints to the external
environment, 4 degrees would be blocked while just 3 are sufficient to
immobilize the solid. In this case, the system would be hyperstatic and its
hyperstatic degree would be 1. This would result in giving the system an
infinite number of reactions that are compatible with the load. As in this case,
the line of action of the reaction of the support at M2 would be indeterminate,
so the solutions would be those obtained for all possible directions of this line
of action.
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If we consider the particular case of external forces parallel to the
direction of reaction R2, we are considering the case of Figure 8.26. By
proceeding in the same manner as above, we see that points a, b, c, d are
aligned and point e must be on the same line. The reaction R1 is therefore
also parallel to other forces. The line of action of Fr is deducted from the
funicular polygon S1 S2 S3 S4, but point T0 cannot be constructed given the
parallelism of lines of action. However, the direction of R1 and R2 is known.
We can therefore construct the funicular polygon of R1, R2 and Fr and
deduce its vertices T2 and T1 that complete the triangle with vertex S4. The
direction of line (T1T2) is then used to construct point e at the intersection of
the line parallel to (T1T2) passing through o and the line (ab). The reactions
are then determined.

Figure 8.26. Determination of support reactions in the
case of forces and parallel reactions

8.3.5. Application to the calculation of reticulated structures loaded at the
nodes

The principle of calculating a structure through graphic statics is to
establish equilibrium relationships of the whole structure and each of its
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elements using the dual figure made from all polygons of forces. In the case
of a reticulated structure that is loaded at the nodes (all or only some of them)
and linked to the outside, the equilibrium reactions at the supports are defined
first. To do this, a previously developed procedure (in section 8.3.4) is used
by considering the reticulated structure as a solid in equilibrium under the
considered load. The complete determination of forces in the rods then uses
the dual figure constructed by considering the zones bounded by contiguous
closed polygons defining the reticulated structure.

Figure 8.27. Determination of forces in a triangulated structure

To illustrate this method, we consider the reticulated structure in
Figure 8.27, which has the distinction of being triangulated and consists of 7
contiguous triangles. The structure thus formed is isostatic and is linked to
the outside by a simple support and joint. The system is therefore isostatic.
Forces F1, F2 and F3 are applied to the nodes of the structure. The areas
between the external forces and reactions are named from A to E. Each
triangle is numbered from 1 to 7. In a first instance, we determine the
reaction with the procedure developed earlier (in section 8.3.4). Thus, the
dual points a, b, c, d, and e are determined. Dual points of triangles 1 to 7 are
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constructed step by step from known points. Thus, dual point 1 is constructed
from points a and e at the intersection of lines parallel to [1 A] and [1 E].
Dual point 2 is constructed from points b and 1 at the intersection of lines
parallel to [2 B] and [2 1]. We proceed in a similar manner until point 7.
Finally, we verify coherence of the figure if line (7d) is parallel to rod [7 D].

Determination of forces in rods is then done step by step from the nodes
for which we at least know the direction of forces acting upon it. For
example, the common node of zones A, B, 2 and 1 is subjected to force F1
represented by ab in the force polygon. By passing from one zone to another
in the same rotation direction, clockwise for example, equilibrium of the
node is reflected as the forces polygon in direction a, b, 2, 1. Thus, the node
is subjected to, in addition to force ab, force b2 through the action of rod
[B 2], 21 through the action of rod [2 1], 1a through the action of rod [1 A].
The direction of corresponding forces indicates that rods [B 2], [2 1] and
[1 A] are compressed. Thus, we can deduce that the common node of B, 4, 3
and 2 is subjected to force 2 b from rod [B 2]. The force polygon in this node
must follow the order 2, b, 4, 3, that is to say, follow the same direction of
rotation as above for the corresponding zones. The direction of forces in this
node indicates that rods [4 3] and [3 2] are tensile and that rod [B 4] is
compressed. After reviewing all rods, we can conclude that for the given load
of the structure, the top rods ([A 1] [B 2] [B 4] [C 5] [D 7]) are all
compressed; the bottom rods are tensile ([E 1] [E 3] [E 6] [E 7]) and
intermediate rods [1 2] and [5 6] are compressed, the remaining rods
remaining tensile.

The ability to uniquely determine the forces in a rod is in agreement with
the fact that the structure is isostatic. If the structure was hyperstatic, there
would be an infinite number of solutions, and if the structure was hypostatic,
there would generally be no solution. The only possible solutions require that
the shape of the structure is adapted to the loads it is subjected to, as a
flexible wire does, for example. In the case of the present structure, we could
remove a rod, for example rod [4 3]. For the structure to be in equilibrium
under the same load, the tension in the rod should be zero. However, this
tension is given by the length of vector 34 in the dual figure. This shows that
the structure cannot be in equilibrium if rod [4 3] is removed. It would be
possible to find a structure shape such that under the same tension, the load in
rod [4 3] is zero. To do this, dual points 3 and 4 would need to be combined.
This could be done by changing the position of the common node of B, 4, 3
and 2 such that dual points 3 and 4 are combined. Such an approach is not
generally used in designing reticulated structures, but we can try to optimize
the shape of a structure based on the main loads it will be subjected to.
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Principles of Yield Design

9.1. Objective and position of the yield design problem

Yield design focuses on the ability of a structure or civil engineering
works to support loads applied in a near-static manner (such that inertia can
be ignored in dynamics equations). This approach only requires knowledge
of geometry, loads and strength of the constituent materials. Yield design is
based on the required condition for stability1 expressed by the compatibility
between near-static equilibrium equations and conditions imposed by the
strength of provided materials. The reasoning used in yield design has been
implemented since the 17th Century to answer the question of resistance of a
structure to the conditions imposed upon it. In this regard, we mention
approaches by Galileo [GAL 38], Coulomb [COU 73] and Méry [MER 40].
Theories based on elastic behavior and plasticity only emerged later. This
chapter aims to introduce the principles of yield design in the formal setting
of works by J. Salençon [SAL 83, SAL 90, SAL 02, SAL 13].

To consider the problem of yield design, it is assumed that three types of
data relative to the structure are known:

1) the geometry of the civil engineering work or the structure;

2) the applied loading mode;

3) the strength of constituent materials.

1 The term stability is defined relative to compatibility with yield criterion, and not
relative to the stability theory used in buckling studies for example (elastic
instability).
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The geometry of the structure is given by its volume V and perimeter
surface S. We assume a loading mode that is dependent on a finite number n
of real parameters. The load is a vector Q with n real components Qi, with i
varying from 1 to n.

It is located in the formalism of continuum mechanics (three
dimensional). However, this formalism can be transposed to two-dimensional
environments (plate-like structure) and lattice structures made of beams
under traction-compression (example in section 9.2) and curvilinear
structures (Chapter 10).

Strength of a constituent material is defined by strength domain G(x) of
the material at any point x of V. G is defined in the R6 space of Cauchy stress
tensors σσ(x):

( ) ( ) is impossible
( ) ( ) is allowed

G
G

∉⎧
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σ x x
σ x x

[9.1]

It is assumed that the strength domain satisfies the following
(experimentally verifiable) properties:

– G(x) contains the zero stress tensor:

( ) ( )G= ∈σ x 0 x [9.2]

– G(x) is convex:
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Yield design aims to determine, for a given geometry, if it is possible for
a given load Q to predict hold or yield of the system, knowing the strength of
the constituent material.

9.2. Potential stability and potentially bearable loads

9.2.1. Notion of potential stability, domain of potentially bearable loads and
extreme loads

The approach used to understand the question of stability of the system
defined above is based on the following necessary condition:
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Stability of the structure under Q

1) is statically possible with Q,
(near-static equilibrium with Q)

such that
2) ( ) ( ), V
(satisfies

G

⇒

∃
∈ ∀ ∈

σ

σ
σ x x x

strength capacity of the material)

⎧
⎪
⎪
⎨
⎪
⎪⎩

[9.4]

Relationship [9.4] indicates a necessary condition and not an equivalence.
Thus, it is not enough to just satisfy both conditions of equilibrium and
strength of the material to ensure stability of the structure. Hence, we
introduce the notion of potential stability of a structure under Q through
equivalence [9.5]. Thus, under load Q, satisfying both conditions of
equilibrium and strength of the material reflects a stability that is said to be
potential:

of the structure under Q

1) is statically admissible with Q
such that

2) ( ) ( ), VG

⇔

⎧
∃ ⎨ ∈ ∀ ∈⎩

Potential stability

σ
σ

σ x x x

[9.5]

This notion allows the definition of domain K of potentially bearable
loads as being all loads Q for which the structure is potentially stable.
Properties [9.2] and [9.3] of G(x) allow us to deduce that K contains the zero
load and is convex [9.6]:

K
K is convex

= ∈⎧
⎨
⎩

Q 0 [9.6]

Figure 9.1. Domain K of potentially bearable loads
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Loads located on the border of K are called extreme loads. Figure 9.1
represents domain K of potentially bearable loads and extreme loads Qx

located on the border of K. All loads located in K are potentially bearable
while any load outside K causes instability.

9.2.2. Potentially bearable loads in a reticulated structure

To illustrate the necessary condition [9.4] and the notion of a “potentially
bearable” load from [9.5] and the search for K, J. Salençon [SAL 83]
provides the example of a reticulated structure shown in Figure 9.2. This is a
square frame hinged at its vertices ABCD comprising two diagonal beams
that are also hinged. The structure is subjected to two directly opposing
forces of intensity Q applied in A and C. The loading mode therefore depends
on a single parameter Q (i=1). The transposition formalism from continuum
mechanics to lattice structure is done by considering Ni forces in the rods.
Strength is assumed to be identical for all beams of the system and is such
that perpendicular forces Ni must remain between +L (traction) and –L
(compression). Therefore, we get:

, 1,...,6iN L i≤ ∀ = [9.7]

From the equilibrium equations of nodes A, B, C and D, the following
relationships are obtained:

1 2 3 4

5 1

6 1

2

2 0

N N N N

N N Q

N N

= = =⎧
⎪

+ =⎨
⎪ + =⎩

[9.8]

Figure 9.2. Lattice made of six beams connect by 4 hinges (figure from [OIK 09])
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Relationship [9.5] expressing potential stability can be transcribed in the
case of a reticulated structure according to perpendicular stresses in the
beams. Equilibrium and strength conditions are respectively given by
equations [9.8] and [9.7]. By considering N1=T, N5=U and N6=V, we then
get:

of the frame under Q

T 2 Q
compatibility between T 2 0

L, L, L

U

V
T U V

⇔

⎧ + =
⎪
⎨ + =
⎪ ≤ ≤ ≤⎩

Potential stability

[9.9]

We note that the system of equations [9.9] has an infinite number of
solutions that can be expressed in terms of a single parameter, T for example.
The structure is hyperstatic by 1 degree. We can express relationship [9.9]
according to the load parameter Q and parameter T, chosen as the hyperstatic
parameter. Thus, we get:

of the frame under

L
2compatibility between
2

T

Q T L

⇔

⎧ ≤⎪
⎨
⎪ − ≤⎩

Potential stability Q

[9.10]

Figure 9.3 shows the points satisfying inequalities expressed in
relationship [9.10] in the plane (Q, T). These are in the parallelogram ABCD.
The set K of potentially bearable loads consists of all values Q for which a
point exists in the parallelogram ABCD. Thus, K is the projection of
parallelogram ABCD on the Q axis. Therefore, we get:

K=[-2L, +2L] [9.11]

K contains the zero load and is convex (in accordance with the properties
stated in section 9.2.1). The structure is potentially stable if Q∈K. Thus, we
can conclude that instability of the structure is certain for all loads Q∉K, so if
Q>2L or Q<-2L. In this case, it is impossible to ensure equilibrium of the
structure under the strength conditions. It is however not possible to assert
that all loads Q belonging to K will not damage the structure. To affirm that
the structure is safe, we need to determine the value of hyperstatic parameter
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T, which is not possible with knowledge of geometry, load and strength of
the material alone.

Figure 9.3. “Potentially bearable” loads for the structure in
Figure 9.2 (Figure from [OIK 09])

To conclude on the stability of a structure, additional data are needed: the
behavior of materials, knowledge of initial self-stress of the structure, the
loading history of the structure.

9.3. Search for domain K of potentially bearable loads

9.3.1. Static approach from the inside

Relationship [9.5] allows the direct construction of K through the search
for potentially bearable loads. Thus, from a practical point of view, we look
for a load Q, a stress field σσ that is statically admissible and that satisfies the
conditions of strength. If it is found, this load belongs to K. This results in
relationship [9.12]:

statically admissible with Q and V, ( ) ( ) KG∃ ∀ ∈ ∈ ⇒ ∈σ x σ x x Q [9.12]

G(x) is usually associated with the yield criterion g, function of σσ(x),
defined as:

( ) ( ) ( ( )) 0G g∈ ⇔ ≤σ x x σ x [9.13]

Construction of domain K involves determining a finite number p of
potentially bearable loads Q1, Q2, ..., Qp (points represented in Figure 9.4).
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According to equation [9.12] and as K is convex, the convex envelope Ks of
all corresponding loads is included in K (Figure 9.4). This corresponds to the
construction of K from the inside. The example given in section 9.2.2 was
done this way. This approach from the inside, transposed to beam formalism,
will be used in Chapter 10.

Figure 9.4. Approximation through the inside of boundary K

9.3.2. Static approach from the outside

This approach involves finding loads for which instability is ensured
based on the contraposition proposal of equation [9.4]. To increase the
effectiveness of this method, we define a necessary condition for stability that
is lower than that in equation [9.4] and is easily manipulated. Thus, it is
possible to limit verification of equilibrium to that of overall equilibrium of a
subsystem. If the necessary weakened condition is not satisfied for load Q,
then Q will be outside K. Construction of domain K is approached by
determining a finite number p of loads Q1, Q2, ..., Qp outside K (points
represented in Figure 9.5). We cannot use the convexity property in this set,
which makes the method not very effective, even if it sometimes provides the
boundary points of K.

This approach is rarely used in practice. However, it has some theoretical
relevance. Thus, in the current formal framework of yield design, J. Salençon
[SAL 02] analyzes Galileo’s reasoning on the console beam supporting a
load P at its end. He shows that Galileo’s result, which is generally regarded
as tainted with error because only the equilibrium of moments is verified, can
be interpreted coherently if it is considered to be a static approach from the
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outside. Load P calculated by Galileo is thus located outside K and therefore
overestimates the extreme value sought.

Figure 9.5. Approximation through the outside of the boundary of K

9.3.3. Kinematic approach from the outside

The kinematic approach from the outside is the most commonly used
approach from the outside for building domain K. This approach is based on
the principle of virtual work. Kinematically admissible virtual velocity v
fields are introduced, meaning velocity fields that are continuously
differentiable piecewise and that respect velocity boundary conditions. The
principle of virtual work is then expressed as follows:

[ ]

statically admissible with Q and
kinematically admissible with q,

( ) : ( )d ( ( ). ( )) ( ) d ( ). ( )
V S

V S
•

∀
∀

+ =∫ ∫

σ
v

σ x d x σ x n x v x Q σ q v

[9.14]

where:

σσ(x) is the Cauchy stress tensor at point x;

d is the strain rate tensor at point x;

n(x) is the line perpendicular to S at x;

[v(x)] is the jump of velocity at x.
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This method consists of measuring the maximum resisting work for a
given virtual velocity field based on equation [9.14] and the yield strength
domain of the material. If the work of a load Q in a virtual velocity field is
greater than the maximum resisting work, Q cannot be supported by the
structure. This approach provides an estimation of excesses of extreme loads.
Developments of this approach are detailed in [SAL 83, SAL 02, SAL 13].

The kinematic approach from the outside has the advantage of relying on
the definition of yield mechanisms expressed in velocity fields. A velocity
field (vector) is generally easier to define than a stress field (tensor), which
makes this method effective. This advantage is particularly significant for
three-dimensional problems. A second advantage is that we can rely on
assumptions of potential yield of the structure with a “physical sense” in the
search for virtual velocity fields that define kinematic calculation. But
beware, in no case can these (virtual) kinematics justify a real mode of yield.
In fact, completely unrealistic virtual kinematics can give satisfactory results
with respect to the search for domain K.

The kinematical approach from the outside will be used in Chapter 11.
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10

Stability of Curvilinear Masonry

10.1. Yield design applied to planar curvilinear masonry

In this chapter, we consider a macro-mechanical approach, a scale at
which the structure can be considered homogeneous and continuous. We
consider structures consisting of a single homogeneous and isotropic material
with specific gravity γ. Curvilinear masonry is a structure for which one
dimension (1D) is much higher than the other two (piers, arches, flying
buttresses, etc.). Statics in curvilinear environments are mainly known by
contemporary construction professionals (architects, engineers, technicians)
for the calculation of beams in assumptions of beam theory. This approach
forms the basis of calculations of structures made of metal, wood or concrete.
The elastic behavior of these materials under both tension and compression
(concrete is reinforced to withstand traction) is used to determine the stresses
and strains of beams. Hyperstatic systems can be determined under these
assumptions. For a given geometry and load, a single solution is obtained
through knowledge of the elasticity modulus of materials. For curvilinear
masonry, we may be tempted to use this approach. Indeed, the elastic
behavior of stone, for example, can be measured (see Chapter 2). However, if
the tensile strength is zero, as we assume it is for masonry, the behavior
cannot be elastic under tension. However, a bending beam contains tension
and compression areas. Thus, under the assumption of zero resistance to

Sustainable Masonry: Stability and Behavior of Structures, 
First Edition. Thierry Ciblac and Jean-Claude Morel. 
© ISTE Ltd 2014. Published by ISTE Ltd and John Wiley & Sons, Inc.
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traction, when bending appears, beam theory cannot account for the behavior
of masonry1.

Yield design (see Chapter 9) can address the question of strength of a
structure by considering the strength criteria of materials, but making no
assumption on the behavioral law of the material, unlike limit analysis, which
considers a perfectly plastic elastic material. Assumptions for yield design
allow us to consider structures for which there is little information on the
mechanical properties of the materials. However, yield design does not
provide the actual static state of a structure (which beam theory does), but a
set of potentially safe states. The implementation of yield design involves
evaluating strength criteria at all points of the structure. The curvilinear
geometry of studied structures leads us to evaluate the criteria of sections that
may coincide with joints. These criteria can then be expressed in a
comprehensive manner for a section based on generalized stresses (normal
force N, bending moment M, shear force T).

The purpose of this section is to implement yield design in curvilinear
masonry structures. The geometric definition of the studied structures is
given in section 10.1.1. We place ourselves under the assumptions made by
J. Heyman [HEY 66]: 1) no tensile strength, 2) infinite compressive strength
and 3) no yield through slipping. The choice of assumptions will be discussed
in relation to other strength criteria (section 10.1.2) and their expressions in
terms of generalized stresses on the sections (section 10.1.3). Within the
context of limit analysis, the assumptions made by Heyman allow the use of
plasticity theorems. In particular, the safe theorem forms the basis for many
masonry analyses and will be presented in section 10.1.4.

10.1.1. Geometric definition of planar curvilinear masonry

Curvilinear masonry is a structure where one dimension is much greater
than the other two. We are particularly interested in two-dimensional (2D)
planar curvilinear structures that correspond to constant depth volumes h in
the third dimension in three-dimensional (3D) space. Arches, flying
buttresses, jack arches and rectangular section piers fall under this category.

1 Note that if we step away from the beam theory assumptions, finite element
calculation models can be used to integrate complex laws of behavior and criteria for
non-resistance to traction. It is also possible to consider non-symmetrical elasticity
under tension and compression (unilateral effect of damage models with constant
damage).
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Curvilinear masonry can be seen in buildings as well as in works of
engineering. They may be connected to another structure at their ends, such
as flying buttresses, or be part of a masonry assembly, such as the arch of a
bridge. These structures support their own weight, the reactions of their
supports are at their ends (like a flying buttress or pier), but sometimes can
also include additional loads along their length (such as a loaded arch at
extrados, in the case of an arch bridge or a discharging arch in a wall). We
consider the case of unreinforced structures in order to consider only
materials without tensile strength.

Evaluation of strength criteria is done on planar sections S of curvilinear
masonry. These sections can correspond to joints of masonry blocks if their
geometry is known. In general, these joints are not necessarily known and
strength criteria may apply to continuously defined sections. We will focus
on two types of geometric descriptions of a curvilinear masonry structure: a
discrete description considering an assembly of blocks and a continuous
description, defined by a guiding curve and a thickness that can be variable.
Given the 2D nature of structures, sections S of constant depth h will be
defined by a segment in the representation plan.

10.1.1.1. Curvilinear assembly blocks

A curvilinear masonry structure can be seen as a set of blocks assembled
through contact at the interfaces (joints) and each block is connected to the
rest or to the outside through two contact surfaces (dry joint or mortar).
The blocks are assumed to be non-deformable and strength criteria will only
be evaluated at the interfaces (Figure 10.1).

Figure 10.1. Curvilinear assembly of blocks

The orientation of joints in a curvilinear masonry structure has multiple
rules for which the origin can be assumed to be constructive or geometric and
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related to stereotomy2. Indeed, cutting stones consists of precisely
determining the shape of the various blocks needing adjustment to form a
predetermined assembly. We cite, for example, cutting planes that radiate
according to circular curves at intrados, a method found in flying buttresses
and jack arches.

From a computational point of view, this description by blocks can easily
lead to graphical approaches because gravitational forces are easily deduced
from the geometry of blocks and the number of forces at play is finite.
Graphic statics may be considered for the study of equilibrium conditions.
We will discuss this aspect in section 10.3.

10.1.1.2. Continuous description along a guiding curve

The continuous geometric description of a masonry structure is adapted to
the case of a homogeneous material for which the strength criteria are
assessed on any section defined from a guiding curve. This section may be
perpendicular to the guiding curve, but this is not a necessity. This approach
allows us to define the orientation of sections that may correspond to joints,
but it is also useful if the position of joints is not precisely known.
Continuous description can be seen as a generalization of the discrete
description for which strength criteria are measured more accurately in the
structure. This implies that results obtained using the continuous approach go
in the direction of safety if static interior approach calculations are carried
out, as we will do next. From a computational point of view, this description
may be amenable to analytical approaches for simple geometries (rectangles,
circle arches, for example). It can also be readily reduced to a description
through blocks of simple discretization of geometry, so by regular cutting.
We will use these considerations in our study of a semi-circular arch
(section 10.2.3).

In this section, we identify a guiding curve with all centers of inertia GS
of section S. Thickness of the masonry at the section is denoted by t. This
thickness may be variable as in Figure 10.2. Given the 2D character of
masonry, its depth h is constant. Section S is therefore rectangular with
an area equal to ht. We graphically represent the masonry in parallel
projection to the plane, and the sections are represented by a segment (dotted

2 Stereotomy, for which the etymology has Greek origins meaning solid and cut,
corresponds to the art of stone cutting, that is to say, drawings of stone cuts. The
three-dimensional definition of volumes is thus based on the construction of their
correlated planar projections. The formalization of this approach led to the
development of descriptive geometry by Gaspard Monge (1746-1818) [SAK 98].
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line in Figure 10.2). We note that y is the algebraic distance to the center of

inertia GS of section S, and varies between 2
t− and

2
t .

Figure 10.2. Two-dimensional curvilinear structure along a guiding curve

10.1.2. Strength criteria

Mechanical tests that were developed in the first part of this book allow
us to determine the strength criteria for materials used in masonry at different
scales. We consider the macroscopic scale of a structure largely exceeding
that of its constituents. At this scale, “masonry” material can be likened to a
homogeneous material. The strength criteria usually used for masonry on the
macroscopic scale are the following:

– tensile strength is zero. Masonry constituent blocks may have non-
negligible resistance to traction, but the presence of joints between blocks
makes the resistance to overall traction extremely low for mortar joints, and
zero in the case of butt joints. The assumption of zero tensile strength goes
more in the direction of safety;

– resistance to simple compression is “great” or even infinite. Resistance
to simple compression is denoted by σ0 and can be finite, especially in the
case of structures subjected to large loads such as road or railway bridges
[DEL 82]. In some cases, it may be considered infinite, so far greater than the
compressive stresses actually present in the masonry. This resistance
assumption of infinite compression is used by Heyman [HEY 95] for most
architectural masonry buildings, especially those made of stone. In some
cases, it may nevertheless be useful to test this assumption a posteriori;
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– the shear criterion of joints is ignored. This assumption reflects the fact
that we assume that there is no sliding of joints. Thus, considering Coulomb’s
shear criterion of dry friction, it is assumed that the following relationship is
always satisfied:

tanCτ σ ϕ≤ + [10.1]

where C is cohesion, σ and τ are the normal and tangential stresses and ϕ is
the angle of friction.

Assuming zero cohesion C under the assumption of non-sliding,
mobilized friction at the interfaces is therefore assumed to be sufficient to
oppose sliding. We note that from a historical point of view, this assumption
was not immediately accepted. The first scientific approaches to stability of
masonry arches, including that of Philippe de la Hire (1640–1718) [HIR 95]
(see [CIB 12]) which is considered to be the first, assumed that there was no
friction at the joints. This amounts to considering that the interfaces behave
as perfectly smooth surfaces with no shear (which is the same as taking C = 0
and ϕ = 0). It was not until the work of Charles Augustus Coulomb
(1736–1806) [COU 73] that full measure of the importance of friction was
taken, and it was quantified. Thus, ignoring the shear criterion allows us to
assume that friction is always sufficiently mobilized to prevent yield through
sliding. This assumption is generally valid for configurations that are usually
encountered in curvilinear masonry. However, it remains that in some special
cases, sliding can occur.

In this chapter, we mainly consider Heyman’s assumptions, namely 1) no
tensile strength, 2) infinite compressive strength and 3) no yield through
sliding. The associated strength criterion for masonry encountered in
architecture only involves perpendicular stress σ. With the sign convention
associating a positive sign with compression3, the strength criterion of
masonry is written under these assumptions at any point:

0σ ≥ [10.2]

3 This sign convention, commonly used in soil mechanics apparently for reasons of
convenience given the preponderance of compression, also seems appropriate in the
context of masonry structures. We note however that this sign convention is opposite
to that usually adopted in continuum mechanics and in particular by Jean Salençon.
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10.1.3. Strength criteria expressed in terms of generalized stresses

A condition necessary for the stability of a given load is that the strength
criteria are satisfied at every point of the structure. If we consider a section S
of the structure, the criteria should be satisfied at all points of the section.
This means that there is a distribution of normal and tangential stresses σ and
τ satisfying the strength criteria. Generalized stresses allow us to express
these criteria for a section S.

10.1.3.1. Generalized stresses

Generalized stresses for section S correspond to the normal force, the
shear force and the bending moment. These concepts are familiar to structural
engineers as they include the classical definitions of moments and forces in
beam theory. However, here we do not place ourselves under the beam theory
assumptions since we take the strength criteria into account and we do not
introduce elastic behavior law.

Generalized stresses are defined as:

– normal force N:

S
N dSσ= ∫∫ [10.3]

– shear force T:

S
T dSτ= ∫∫ [10.4]

– bending momentM:

S
M ydSσ= ∫∫ [10.5]

where y is the algebraic distance to the center of inertia GS of section S. τ is
the component of tangential shear stress. We use the notations defined in
section 10.1.1.2.

10.1.3.2. Relationship between generalized stresses with Heyman’s
assumptions

Considering that the strength criterion is 0σ ≥ , we see that only N and M
will be affected by this condition.
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Let us express the force and moment N and M. We can write
equation [10.3] in the following way:

/2

/2

t

t

N h dyσ
+

−

= ∫ [10.6]

As 0σ ≥ , we get σ σ= , where from:

/2

/2

t

t

N h dyσ
+

−

= ∫ [10.7]

Let us express equation [10.5] in the following form:
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t

t

M h ydyσ
+

−

= ∫ [10.8]

Taking the absolute values of the terms, we get:
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M h ydyσ
+

−

= ∫ [10.9]

We deduce the following inequality:
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M h y dyσ
+

−

≤ ∫ [10.10]

But
2
ty ≤ , where from:

/2

/22

t

t

tM h dyσ
+

−

≤ ∫ [10.11]

Hence, according to equation [10.7], we deduce the following relationship
between M and N:

2
tM N≤ [10.12]
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Geometric interpretation: generalized stresses make up a torsor formed
from the force F of components N and T applied at the center of inertia GS of
the section and moment M. It is therefore possible to search for the
application point J of a force equivalent to this torsor in the plane of the
section. Distance GSJ = e, called eccentricity, is the lever arm of the moment
of N relative to J. The shear force T has its line of action through J, the
moment of T with respect to J is therefore zero. So, moving F from GS to J
introduces a moment of absolute value equal to Ne. To balance the moment
M, we must have the relationship:

M Ne= [10.13]

Equation [10.13] then allows us to write inequality [10.12] in the form:

2
te ≤ [10.14]

This last relationship [10.14] allows us to establish the following
geometric property.

GEOMETRIC PROPERTY 10.1.– The strength criterion defined by inequality
[10.2], which characterizes non-resistance under traction and infinite
resistance under compression, geometrically results in the fact that, in the
plane containing section S, the point of application of the force that is
equivalent to the torsor of generalized stresses is located within the section.

To illustrate this, we consider a parallelepiped block placed on a planar
surface. The block is assumed to be monolithic and we are only interested in
the resistance of support AB (Figures 10.3 and 10.4). The block is subjected
to its own weight P applied in G. Equilibrium of the block on this support
requires that the reaction of the supporting surface has a resultant that is
directly opposite to P. Thus, it is an isostatic problem. The action exerted by
the block on surface AB is limited to force P. P is therefore the force that is
equivalent to the torsor of generalized constraints. By applying the geometric
property that we just established, the strength criterion is satisfied if the line
of action of P intersects the segment AB. For a horizontal support, the point
of intersection J of the line of action of P with AB is at the center I of the
bearing surface (Figures 10.3(a) and 10.4(a)). I therefore corresponds to GS.
We note that moment M of the torsor is zero. For an inclined support
(Figures 10.3(b) and 10.4(b)), the point of intersection J of the line of action
of P with AB is no longer combined with I. Moment M of the torsor is
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non-zero since the lever arm e = IJ of the component is non-zero. If the block
is lying flat (Figure 10.3(b)), J is within section AB. The strength criterion is
satisfied. In contrast, if a block is placed on an inclined support
(Figure 10.4(b)), J is outside section AB. The strength criterion is not satisfied,
and the block is not stable. We understand that it will swing around B.

a) b)

Figure 10.3. Parallelepiped block placed flat on a
horizontal a) or inclined b) support

a) b)

Figure 10.4. Parallelepiped block placed upright on a
horizontal a) or inclined b) support

The geometric property stated above, by its very simple geometric
character, reveals the role played by the point of application J of the force
that is equivalent to the torsor of stresses on the plane of section S. All these
points relating to all the sections form a curve called “the line of thrust”. In
section 10.2, we will present the concept of a line of thrust and consider its
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relationship with the equilibrium conditions of a curvilinear structure in more
detail.

Although in this chapter we limit ourselves to the consideration of
Heyman’s assumptions, in sections 10.1.3.3 and 10.1.3.4, we focus on the
consequences of taking the Coulomb criterion (shear strength) and a
finite resistance to compression σ0 into account. The reader will thus have the
elements to verify or justify their non-inclusion in the case of curvilinear
masonry.

10.1.3.3. Relationship between generalized stresses for the Coulomb criterion

The shear strength condition according to the Coulomb criterion [10.1]
with zero cohesion implies the relationship:

tanT N ϕ≤ [10.15]

If we place ourselves in the context of Heyman’s assumptions, we can
verify, a posteriori, if this relationship is satisfied. We may, for example,
assess this criterion for a block on an inclined plane with angle α
(Figures 10.4 and 10.5). As the weight P of the block is vertical, we get the
following relationship:

tanT N α= [10.16]

We immediately deduce that the criterion is satisfied for α smaller than or
equal to ϕ and sliding occurs if α is greater than ϕ. This result is the same
whether the block is flat or upright. We recall that in this example, the
strength criterion on σ [10.2] is not satisfied if the block is upright.

More generally, it can reflect relationship [10.15] through the following
geometrical condition.

GEOMETRIC PROPERTY 10.2.– The Coulomb criterion [10.1] with zero
cohesion geometrically results in the fact that the angle relative to the line
perpendicular to section S of the force that is equivalent to the torsor of
generalized stresses must be less than ϕ.
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10.1.3.4. Relationship between generalized stresses for a finite resistance to
compression

In the case of a finite resistance to compression σo, the relationship
linking M and N is:

1
2
t NM N

oSσ
⎛ ⎞≤ −⎜ ⎟
⎝ ⎠

[10.17]

where S = ht is the area of the section being considered.

If we consider the limiting case of an infinite compressive strength σ0, we
get relationship [10.12].

Rigorous demonstration of relationship [10.17] can be found in
[DEL 82]. We note, however, that we can imagine distributions of the normal
stresses on the section that allow us to find the upper bound of the absolute
value of M. We may first note that if σ=σ0 over the entire section, then M=0
and N= σ0 S. For a given value of N, the value of M will be increasingly
greater with normal stresses located on the same side as the inertia center of
the section and near an edge. Let us suppose that the normal stresses are
constant piecewise and such that for a value of y0 between -t/2 and t/2, we
have:
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0 0
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ty y

ty y

σ

σ σ

⎧ ⎡ ⎤= ∈ −⎪ ⎢ ⎥⎪ ⎣ ⎦
⎨

⎡ ⎤⎪ = ∈ ⎢ ⎥⎪ ⎣ ⎦⎩

[10.18]

The graphical representation of this distribution is given in Figure 10.5.

Figure 10.5. Distribution of maximum normal stresses near an edge
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We can then easily calculate N corresponding to the normal stress
distribution [10.18] according to equation [10.7]:

0 02
tN h yσ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
[10.19]

Similarly, we can calculate M corresponding to the normal stress
distribution [10.18] according to equation [10.8]:

0
1

2 2 2
t tM N y⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
[10.20]

Using equation [10.19], equation [10.20] can be written:

0

1
2 2
t NM N

hσ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

[10.21]

This equation can then be written as:

0

1
2
t NM N

Sσ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

[10.22]

Equation [10.22] therefore gives a good expression of M corresponding to
the upper bound of inequality [10.16].

Graphical representation of inequality [10.16]. Let us consider the
dimensionless parameters n and m, defined below:

Nn
oSσ

= [10.23]

2Mm
oStσ

= [10.24]

Inequality [10.16] can be written in terms of n and m:

( )1m n n≤ − [10.25]
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Similarly, inequality [10.12] is written in terms of n and m:

m n≤ [10.26]

Thus, we can represent inequalities [10.25] and [10.26] in the reference
(O, n, m) relative to the criteria for, respectively, finite and infinite resistance
to simple compression (Figure 10.6).

Figure 10.6. Graphical representation of inequalities [10.25] and [10.26]

Inequality [10.25] holds for all points located between the portions of
parabolas of equations m=n(1-n) and m=-n(1-n). Inequality [10.26], in turn,
holds for all points located between the lines of equations m=n and m=-n.

To assist in the interpretation of the parabola of equation m=n(1-n), we
note that n decreases from 1 to 0 as y0 increases from -t/2 to t/2.We can then
easily deduce that m increases with n from 0 to n=0 (so for y0=t/2) to a
maximum of mmax at n=0.5 (y0=0, so for maximum normal stresses on one
side of GS). m decreases to 0 at n=1 (for y0=-t/2, so the maximum normal
stresses across the section thus balance either side of GS).

The points satisfying inequality [10.25] are included in the set of points
satisfying inequality [10.26]. This reflects the fact that the assumption of
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infinite resistance to compression implies more cases of potential stability
than finite resistance. We further note that the closer n is to its maximum
equal to 1, the bigger the gap is between the limiting curves of inequalities
[10.25] and [10.26]. Conversely, the closer n is to 0, the closer the curves are.
However, values of n close to 0 correspond to much lower normal stress
levels than σ0, at around 0.1σ0. The two criteria thus provide areas of
potential stability that are nearly identical for normal stresses well below σ0,
which is usually the case in masonry architecture (see [HEY 95]).

We note however that the small gap between the two domains for values
of n close to 0 correspond to the case where normal stresses can be very high
locally and exceed σ0. In particular, when the point of application of N is near
an edge, the associated normal stresses are then concentrated and can be very
high. A local crushing may then appear, increasing the contact surface until
the yield point is reached. This point then behaves like a hinge.

10.1.4. Yield design and limit analysis

The yield design approach is based on the necessary condition for
stability of a structure that can be expressed as follows: “If the structure is
stable, then for the applied load, the structure is in equilibrium and strength
criteria are satisfied”. This prerequisite is not sufficient in that it is not
enough that equilibrium conditions and strength criteria of materials are
satisfied for the structure to be stable under a given load (in this regard, see
the example of a hyperstatic system composed of hinged rods by Salençon
[SAL 83]). This limitation has the effect of introducing the concept of
potential stability of a structure under a given load. We say that a structure is
potentially stable if it simultaneously satisfies the equilibrium conditions and
strength criteria of materials. Thus, an equivalent way to express the
necessary condition for stability (contrapositive proposal) is: “If a structure is
not potentially stable, then it is not stable”. The search in domain K for
potentially bearable loads can rely on a static interior approach or a kinematic
exterior approach (see Chapter 9). The concept of a line of thrust
(characterizing a permissible field of stresses) associated with geometric
property 1 (characterizing the strength criterion under Heyman’s assumptions
1 and 2) allows the search for domain K with the interior approach. We will
use this approach hereon.

Limit analysis considers materials for which the behavior law is elastic
and standard perfectly plastic and studies the load limits of structures. In the
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1950s, development of the theory of plasticity resulted in applications on
masonry including the case formerly studied by Coulomb, revisited by
Kooharian [KOO 52]. Yield design, meanwhile, takes strength criteria into
account, but not behavior law. Theoretical developments and links between
the two approaches can be found in [SAL 83]. The assumptions used in the
context of this chapter, with a computational approach to yield design, are
those issued by J. Heyman in his work on masonry [HEY 66], namely 1) no
tensile strength, 2) infinite compressive strength and 3) no yield through
sliding. However, his approach is based on a limit analysis that considers the
masonry as a material for which the behavior law is perfectly plastic.
Assumptions made by Heyman allow us to use plasticity theorems. The
fundamental theorem on which the analysis of masonry is mainly based on
supports the lower bound theorem or static theorem or safe theorem4. His
statement can be formulated based on the concept of a line of thrust (concept
introduced in section 10.1.3.2, which we develop in section 10.2).

SAFE THEOREM.– For a given load, if it is possible to find a line of thrust
inside the masonry, so its stability is ensured.

This theorem neither asserts that the line of thrust found inside the
masonry is actually present in the structure, nor does it give yield load to the
masonry, but it gives vital information on its stability. The two other
plasticity theorems (the uniqueness theorem and the theorem of the upper
bound or kinematic theorem) allow us to determine the load limit. The search
for a load limit is not yet a priority for studying existing masonry, according
to Heyman [HEY 95], since ensuring stability for the actual load is the
primary information on its behavior. Limit loads can however be used to
calculate safety factors, but Heyman proposes a geometric safety factor
instead.

The limit analysis of a masonry structure made of blocks combines
voussoir kinematics to joints. The assumption of no yield through sliding
allows the possibility of rotating blocks about the edges. Infinite compressive
strength allows the existence of an ad hoc joint. In fact, compressive strength
is not infinite and local crushing can occur at the joint (see section 10.1.3.4).

4 This approach has been discussed and used for masonry by J. Heyman and gave rise
to many publications of which we only cite [HEY 66, HEY 95, HEY 99]. A more
complete bibliography can be found in French in [ACA 01] and [SMA 01] and in
Spanish in [HUE 04], as well as a summary of the theoretical aspects of this approach.



Stability of Curvilinear Masonry 219

Thus, when a force that is equivalent to the torsor of generalized stresses
passes through the edge of a joint, a hinge is formed (Figure 10.6). In other
words, there is formation of joints at the contact points of the line of thrust
with the edges of masonry joints.

a) b)

Figure 10.7. Formation of a hinge between two voussoirs a) and its kinematics b)

The central role of a line of thrust in yield design is seen in Heyman’s
assumptions5, and in limit analysis under the same assumptions through the
static theorem. In both cases, the position of the line of thrust within the
masonry provides information on the stability of the masonry under a given
load. In the first case, stability is potential and in the second case, it is
ensured. This important distinction is due to the fact that in the first case, the
behavior law is not known, and in the second, it is assumed to be perfectly
plastic. The line of thrust is the common “instrument” in both approaches. In
what follows, we will consider a practical determination of the line of thrust
through various methods.

10.2. Line of thrust

The line of thrust is a curve only constructed from the equilibrium
conditions of a curvilinear structure. Its construction is therefore independent
of the strength criterion of the material. Geometric translation of the strength
criterion enables use of the line of thrust in yield design or limit analysis.
Initially, we introduce the concept of a line of thrust with respect to its

5 Within the context of studies on masonry bridges, [DEL 82] developed yield design
calculations from the outside with a finite compressive strength criterion and
Coulomb’s friction criterion. Expression of these generalized stresses criteria were
given in section 10.1.3. Lines of thrust are also used in this approach.
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relevance to the strength criterion of a material that is not resistant to traction
and with infinite resistance to compression. We then discuss the construction
of lines of thrust of isostatic or hyperstatic curvilinear systems through stacks
of cantilever blocks and a semi-circular arch. Finally, we discuss the
interpretation of extreme line of thrust that can be constructed within the
material.

10.2.1. Definition of a line of thrust

In section 10.1.3, we have seen that strength criteria could be expressed in
terms of generalized stresses that are the normal force N, shear force T and
bending moment M. Thus, it is not necessary to know the stress distribution
on a section to assess satisfaction of the strength criterion, we just need to
know the resulting torsor at the inertia center of the section. We saw in Part 2
of the book that a torsor can be reduced to a single force. It is precisely by
seeking the point J of the plane of section S through which the line of action
of the force equivalent to the torsor of generalized stresses passes that we
could geometrically translate the strength criterion under Heyman’s
assumptions (geometric property in section 10.1.3.2). Thus, the strength
criterion is not satisfied if J is outside section S. These considerations define
the concept of a line of thrust as being the set of points J defined for each
section S.

DEFINITION OF A LINE OF THRUST.– If in each section S of curvilinear
masonry, the normal force N is non-zero, then the generalized stresses (N, T
and M) can be reduced to a single force for which the line of action intersects
the plane of section S at point J. All points J form a curve called the “line of
thrust”. For a continuous set of sections, the line of thrust is a continuous
curve. In the case of a finite set of sections, the line of thrust is visualized by
the polygonal curve for which the vertices are the points J, but only the latter
may be used to assess satisfaction of the strength criterion.

If N = 0 for a section, the equivalent force of generalized stresses (N, T,
M) is parallel to the section and therefore does not intersect it. The line of
thrust can only be built if, for each section, the normal force is non-zero. In
the case of zero normal force, the strength criterion (following Heyman’s
assumptions) is not satisfied. Physically, this shows that a single bending
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moment associated with shear must imply the presence of tensile and
compression stresses within the section6.

The definition of a line of thrust as given here is intended to be as general
as possible since it is aimed at curvilinear masonry such as we have defined
them, that is, it can be applied to a curvilinear assembly of blocks or a
continuous curvilinear structure for which a continuous set of sections is
defined. We introduced this definition by relying on the notion of generalized
stresses and the fact that it allows us to geometrically evaluate the criterion of
tensile non-resistance and infinite compressive strength. The concept of a line
of thrust is thus seen as intimately associated with masonry even if its
definition does not refer to a strength criterion. From a historical perspective,
we can see the beginnings of this concept in Hooke’s analogy in 1675
between the behavior of a suspended chain and that of masonry (see
section 7.4.1). Indeed, the shape taken by the inverse chain corresponds to a
line of thrust since, given the flexibility of the chain at each point M = 0 and,
consequently, at each point of the curve, the corresponding resultant passes
through this point. The reader will find historical elements of the concept of
lines of thrust in the work of E. Benvenuto [BEN 91] (in the section on
arches, domes and vaults). In the 1830s, two lines were defined in relation to
the study of arches from resultant forces, the first named “line of resistance”
is none other than the “line of thrust” that we defined above and the second
named “line of pressure” is the set of successive intersection points of the
lines of action of resultant forces. The properties of these two lines were
studied by Moseley in 1831 [MOS 31], but according to [TIM 53], the first
studies of the “line of pressure” were by F.G. Gerstner [GES 31]. Figure 10.8
shows the difference between the two lines. The English term “line of thrust”
(term used by [HEY 95] for example) refers to the thrust of an arch. In
French, the term currently used is “ligne de pression” or “ligne de centres de

6 If we consider the beam theory assumptions, where we have a linear elastic behavior
(which we do not in the present study on masonry), the nullity of N corresponds to
pure bending. There is then traction on one side of the median fiber (location of the
centers of inertia of sections) and compression on the other side. Thus, under the
beam theory assumptions, a steel or wooden horizontal beam placed on simple
supports and subjected to a vertical load works in pure bending and mobilizes all
sections of compression and tension. These materials are resistant to compression and
tension up to a certain limit. Under the same assumptions, with a material that is not
resistant to traction, the strength criterion will be violated at any section, which
reflects the impossibility of constructing a line of thrust in this case. We note that we
can build the line of thrust knowing diagrams M and N (if N is non-zero, the absolute
value of the M/N ratio gives the distance of the line of thrust to the median fiber (line
of centroids)).
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pression” [DEL 82], in reference to the pressure (compression) exerted on the
section by the resultant force. We note that Viollet-le-Duc mainly uses the
term “courbe de pression”, but also uses the expression “ligne de pression” in
the chapter on “construction” in his dictionary [VIO 56].

Figure 10.8. Line of resistance corresponding to the line of thrust and
line of pressure according to Moseley

Determination of the torsor of generalized stresses on section S and
deduction of the equivalent single force is done by consideration of
equilibrium alone. This torsor expresses the action exerted by the part of the
structure located beyond section S. Writing the overall equilibrium of the
structure and equilibrium of the part located below (or beyond) section S
allows us to determine the torsor. In the case of support systems, only one
steady state is possible, as in the case of corbelled stacks under their own
weight (see section 10.2.2). For multiple support systems, as in the case of
arches under their own weight with two supports (see section 10.2.3),
multiple states of equilibrium can be found because no behavior law is given
and the system is hyperstatic. For each equilibrium state found, verification
of strength criteria allows us to determine whether stability of the structure is
possible or not.
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Thus, the study of stability depending on lines of thrust is based on the
following two properties:

1) construction of a line of thrust geometrically reflects the equilibrium
conditions of the structure in each section S;

2) the position of the line of thrust within or outside of the material
respectively reflects satisfaction or not of the strength criterion in each
section (under Heyman’s assumptions).

10.2.2. Systems with one support: example of corbelled stacks under their
own weight

The concept of the line of thrust that we defined previously considers a
set of sections of a continuous masonry structure or contiguous blocks on
each section S. This definition can easily be extrapolated to a set of partially
contiguous blocks provided that the contact surfaces are planar. We will then
be able to search for the line of thrust in the case of a stack of parallelepiped
blocks. To illustrate this, let us consider that the blocks are identical (for
example, bricks) and we stack them on a level surface by shifting them by the
same distance.

For the first block alone, we take the example given in section 10.1.3.2
and illustrated in Figure 10.3(a). The line of thrust is limited to a point at the
centroid of the single contact surface. We consider the system formed by two
blocks numbered 1 and 2 stacked by corbelling (Figure 10.9). Block 1 is
supported by the ground on section S1 (=A1B1) and undergoes the action of
block 2 of section S2 (=A2C1). The action of block 2 on block 1 at section S2
is limited to weight P2 the weight of block 2. We can therefore easily deduce
J2 at the intersection of the plane of section S2 and the line of action of P2.
The action of the structure formed by the assembly of the two blocks is
reduced to resultant P12 of weights P1 and P2 of the two blocks. We therefore
deduce that J1 is at the intersection of the plane of section S1 and the line of
action of P12. As P1 and P2 have the same magnitude, the line of action of P12
is equidistant from those P1 and P2. Thus, we determined the line of thrust
formed by the two points J1 and J2. We note that in Figure 10.9, the two
points are in the sections. This would not be the case for J2 if the offset of
block 2 were to exceed half the length L=D1C1 of the block (so if C1B2 >
0.5 L). In this case, block 2 would shift around C1.
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Figure 10.9. Two stacked blocks

Let us now consider a stack of three blocks. Compared to the previous
case, a third block, numbered 3, is placed on block 2 with the same offset as
before (Figure 10.10). A third contact surface S3 is thus formed. The point J3
can be easily determined first, since the action of block 3 at S3 is limited to
P3. J3 is at the intersection of the plane of section S3 and the line of action of
P3. The action of blocks 2 and 3 in S2 is reduced to resultant P23 of the weight
of the two blocks. J2 is the intersection of the plane of section S2 and the line
of action of P12. The action in S1 of the entire structure formed of blocks 1 to
3 is reduced to resultant P13 of the weight of the three blocks. J1 is at the
intersection of the plane of section S1 and the line of action of P13. As the
offsets are constant and the blocks are identical, the line of action of P13
coincides with that of P2. We note that in Figure 10.10(a), point J2 is outside
of section S2 (=A2C1), which means that the strength criterion is not satisfied,
so the set of blocks 2 and 3 would therefore shift around C1. In
Figure 10.10(b), the offset of blocks is smaller than in Figure 10.10(a), which
allows the three points of the line of thrust (J1 to J3) to be in the sections and
therefore not contradict the strength criterion.

We proceed in the same way if we were to continue the stack. We note
that by starting to determine points of the line of thrust from the last block,
the procedure is iterative and easy to do. We can easily determine the
resultants of weights located above the sections using graphic statics.
Figure 10.11 shows, in the case of a corbelled stack of six blocks, the
construction of a funicular polygon associated with six weights of blocks (P1
to P6). To determine the action of the weights i to n on the block i-1, we use
the subsystem formed by weights Pi to Pn (n = 6 in Figure 10.11). The
resultant of these forces is obtained by considering the funicular polygon Si,
Si-1,..., Sn, M. Indeed, the line of action of the resultant passes through the
point of intersection Sri of lines (Si Si-1) and (Sn, M). The points Ji of the line
of thrust (J1 to J6) in Figure 10.11 do not all belong to their section, which
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means that the strength criterion is not satisfied. In contrast, in Figure 10.12,
the points of the line of thrust all belong to their section, so the line of thrust
is located within the outlines of the masonry at the interfaces.

a) b)

Figure 10.10. Three blocks stacked by corbelling, a) unstable, b) potentially stable

Figure 10.11. Determination of the line of thrust of corbelled stacked
blocks through the construction of funicular polygons
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Figure 10.12. Determination of the line of thrust of corbelled stacked
blocks through the construction of funicular polygons. Case where the

line of thrust is entirely in the joints

Between the above two cases, there is a stack geometry for which the line
of thrust is at the limit of the masonry. By searching for this geometry, we
determine the extreme case of stability of the corbel under its own weight.
We consider the positions of blocks i beyond the first (i>1) where point Ji is
the limit of the corresponding section Si, so the points Ci-1. The resultants of
weights of the upper blocks must then go through the extreme edge of the
support block. Thus, we get in three blocks: J3=C2 and J2=C1, where the total
weight of the three blocks has a resultant through J1. The corresponding
offsets are not constant and may be determined by barycentric calculation.
Indeed, for block i in question, we just need to define the resultant of the
weight of the block and the weight of all the overhanging blocks (including
the line of action passing through Ci). Thus, for a length L of blocks, extreme
offset of the last block (block n) is L/2. The following block (block n-1) will
not be offset by more than L/4, the following (block n-2) by L/6, then L/8,
etc. The offset of block i (i>1 because block 0 is not offset) is L/(2(n-i+1)).
Figure 10.13 illustrates the case of a stack of six identical blocks
corresponding to the extreme position of the line of thrust in any section.
Points J2 to J6 are by definition from the extreme line, combined with the
extreme points of sections (edge of blocks). Offsets are those deduced from
previous calculations. The line of action of the total weight of the structure
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passes through point J1 at a distance of L/2n from the edge of the block. We
note that if one load pile was formed by filling the stack with blocks to form
a vertical wall on the left of the stack, the centroid of the assembly would
shift to the left. Thus, horizontal blocks extending to the left vertical would
result in passing the line of thrust to the inside the masonry. It would no
longer be in a borderline position of stability: this is the stabilizing effect of a
load pile.

Figure 10.13. Six blocks stacked by corbelling for the extreme
position of the line of thrust

A stack of blocks in corbel has the distinction of being a system based on
a single external support. Since the reaction of the support must be in
equilibrium with the weight of the complete structure, it is fully determined.
The isostatic nature of the system implies that a single line of thrust is
associated with a stack. We can generalize by saying that, for a given load, a
system based on one external support only has one line of thrust.

10.2.3. Systems with two supports: example of the semi-circular arch under
its own weight

Here, we will focus on a curvilinear masonry system linked to the outside
by more than one support. The most representative system of a masonry
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resting on two supports is the arch. The two supports upon which the arch
rests each exercise a reaction. The only relationship between these two
support reactions reflects the fact that they must balance the total weight of
the system. This results in undetermined reactions. If we were to make an
assumption on the behavior law of the material and its links with the outside,
we would get a unique solution. Given the few assumptions that we make, all
possible reactions may be considered. We assume, however, that the strength
criterion of supports should not be violated. We therefore limit the study to
reactions for which the line of action passes through the support sections. The
latter assumption implies that the lines of action of reactions pass through the
support sections. The semi-circular arch (so in the shape of semi-circles) of
constant thickness has the advantage of being both present in many structures
and also very simply defined mathematically. The sections of the arch will be
radial, in accordance with the continuous description following a guiding
curve (section 10.1.2.2) with the guiding curve of a semi-circle of radius r,
where r is the mean radius of the arch. The configuration discussed here is
shown in Figure 10.14. It involves a semi-circular arch centered at Ω, with
inner radius Rint and outer radius Rext. The thickness of the arch is denoted by
t. We get the following relationships:

intextt R R= − [10.27]

int

2
extR Rr += [10.28]

The arch supports are located at AB and CD. The reactions of these
supports are respectively denoted Rg and Rd and their points of application at
the supports are noted Mg and Md. These points are taken on any segment
[AB] and [CD] to meet the strength criteria of supports. We consider any
radial section EF of the arch. The arch is thus divided into two parts: part 1 or
block 1 between AB and EF, and part 2 or block 2, located between EF and
CD. We therefore seek the point of application J of the action of part 2 of the
arch on part 1. To do this, we just need to know the weights P1 and P2 of each
part of the arch, and their lines of action. The centroids G1 and G2 of the two
blocks are on the bisectors of the corresponding arches and are located at
distances ρ1 and ρ2 from center Ω. The values of magnitudes P1, P2 and the
values of ρ1 and ρ2 are calculated analytically. To get these, we rely on
the general formulas for a circular crown with opening angle α for radii
inside and outside of Rint and Rext. The magnitude of weight Pα is deduced
from the surface Sα of the portion of crown of angle α. The surface Sα and
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distance ρα from the centroid in the center of the crown are given by
equations [10.29] and [10.30] where α is expressed in radians:

( )2 2
int2 extS R Rα

α= − [10.29]
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Thus, by denoting the angle between (ΩE) and (ΩC) as θ, equations
[10.29] and [10.30] applied for α = θ can be deduced, so the values of surface
S2 of the crown portion 2, and ρ2.

Figure 10.14. Semi-circular arch cut in two by a radial section S

As weights P1 and P2 are known, it only remains to determine the
reactions at the supports and deduce the resultant of the action of part 2 on
part 1.

Let us consider a graphic statics context (Figure 10.15). Reactions Rg and
Rd must balance the total weight P of the arch. Therefore in the particular
case of this problem, given the symmetry of the semi-circular arch, we know
the line of action P: this is the axis of symmetry of the arch. If the case in
question were not symmetrical, it would have been necessary to determine
the resultant with a funicular polygon. As the three forces Rg, Rd and P must
be in equilibrium, we deduce from the theorem of three forces (see
section 6.2.4) that their lines of action are concurrent. Taking a point S
anywhere on the line of action of P, we determine the lines of action (Mg S)
and (Md, S) of reactions Rg and Rd. In the force plan, the sum P of P1 and P2
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is constructed as are the lines parallel to the lines of action of reactions
through a0 and a2. Thus, we determine pole O and the magnitudes of reactions
Rg and Rd. The reactions are now fully known and the action of block 2 on
block 1 can therefore be determined. Block 2 undergoes forces Rd and P2 of
the resultant Rs. The line of action of Rs passes through the point of
intersection S2 of lines of action of forces Rd and P2. The direction of Rs is
given in force plan by a1O as Rs=a1O. The line of action of Rs is parallel to
(a1O) and passes through S2. This line is none other than line (S1S2) of the
funicular polygon (Mg, S1, S2, Md) of a system of forces P1 and P2
constructed using center O. The sought point J is the point of intersection of
the lines (S1S2) and (EF).

The complete line of thrust is constructed by searching for all points J for
all radial sections of the arch. If graphic statics and dynamic geometry
software are used, it is possible to construct a section EF from a “dynamic”
point E (for example) on the arc BC. The “dynamic” nature of point E means
it can be moved on the arc. Thus, the construction of a single funicular
polygon giving the position J allows us to construct all points J defined by
the path of point E on the arc BC. Dynamic geometry software has a
command that allows us to construct the location of a point based on another
point. Figure 10.15 was constructed using dynamic geometry software (Cabri
geometry), which made construction of the line of thrust (curve through Mg, J
and Md) possible using the construction of a single funicular polygon. An
analytical approach can also be conducted in view of the detailed knowledge
of the geometry and centroids. We need to simply write the equations of
equilibrium of forces and moments of a system of forces P1, P2, Rg and Rd
(with Rg and Rd unknowns) based on points Mg and Md to determine
reactions and deduce the position of J. By developing these calculations, we
note that if we place a condition on Rg, for example the angle of the vector
relative to the horizontal or if we are given the horizontal component, which
is also called “thrust” if it is in the direction of compression, solving the
equilibrium equations of the system gives a single solution. This imposed
condition is equivalent to the arbitrary choice of point S (intersection of the
lines of action of three forces in equilibrium P, Rg and Rd) made using
the graphic statics approach. We note that the horizontal component of the
reaction Rg is directly opposite to that of Rd. This is because these two
reactions balance the total weight of the arch P, which is a vertical force by
definition. The magnitude of the horizontal component is given in the force
polygon by the segment [OhO] (Figure 10.15), where hO is the intersection of
the horizontal line passing through the pole O with the vertical line
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containing the sum of weight vectors (meaning the line containing points a0,
a1 and a2).

Figure 10.15. Construction of a point of the line of thrust of a semi-circular
arch with graphic statics and representation of the complete line of thrust

From the construction of lines of thrust of a semi-circular arch under its
own weight, we deduce that:

– for given intersection points of support reactions, several lines of thrust
may be constructed based on magnitude H of their horizontal component. If
this component involves a compression (as shown in Figure 10.15), H is the
magnitude of the thrust of the arch on its supports;

– we can easily notice that if we assume that H = 0, we place ourselves
under the assumption that the arch does not exercise horizontal thrust. The
reactions are then vertical and point S is not defined (in Euclidean geometry).
The action of block 2 on block 1 is the sum of two vertical forces. For the
vertical section located on the axis of symmetry of the arch, we would thus
get a resultant parallel to a section. A consequence of this is making point J at
infinity. The line of thrust could be constructed and strength criterion is not
satisfied. This implies that at least one non-zero thrust is needed to build a
line of thrust;
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– if we place ourselves in the context of yield design, we consider H to be
a parameter of the load of the structure that is mobilized through supports.
Thus, it is possible to search for the potential stability domain of the structure
according to H and the considered strength criterion;

– if we consider that the material is not resistant to traction and has
infinite compressive strength, the lines of thrust must be located within the
masonry in order to not violate the strength criterion. The example of the line
of thrust shown in Figure 10.15 satisfies this condition. The value of H is
within the domain of potential stability. To find the domain of potential
stability, it will be necessary to explore all the lines of thrust located inside
the masonry. Figure 10.16 shows, for fixed positions of Mg and Md, various
lines of thrust for varying thrusts. Figure 10.16(a) shows lines of thrust
located within or through the material. Figure 10.16(b) only shows the lines
of thrust located within the material. If we vary the positions of points Mg and
Md, we can determine the lines of thrust for which thrust values are extreme.
Thus, it is possible to determine the maximum thrust Hmax that corresponds to
a pressure line located inside the material. A pressure line is obtained for the
points of application of reactions located on the upper surface (in A and D)
and tangent to the lower surface of the arch (Figure 10.17). Similarly, one can
determine the position of the thrust line for which thrust is minimal and
denoted Hmin. The corresponding thrust line is tangent to the lower surface
(intrados) at two points and tangent to the upper surface (extrados) at a point
on the axis of symmetry of the arch (Figure 10.18).

Figure 10.16. Lines of thrust of a semi-circular arch under its own weight for fixed
points of application of the reactions. In a) the lines of thrust cross or do not cross the

masonry, in b) only the internal lines of thrust of the arch are shown
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Figure 10.17. Inner line of thrust arch corresponding to the maximum thrust

Figure 10.18. Inner line of thrust arch corresponding to the minimum thrust

In the case of the arch studied in Figures 10.15 to 10.18, the thickness of
the arch corresponds to a value of t/r = 0.29. In this case, we note that the line
of thrust corresponding to Hmax has only a lower surface point of tangency on
the axis of symmetry of the arch. For a thinner arch, we can observe two
lower surface tangency points that are symmetrical about the axis of
symmetry of the arch, which would give four contact points of the line of
thrust with masonry limits. One such example is given in Figure 10.19(a) for
a smaller thickness of the arch (t/r = 0.16);

Figure 10.19. Extreme lines of thrust for t/r=0.16
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– if we consider limit analysis with the same strength criterion and perfect
plastic behavior, we deduce from the safe theorem [HEY 66, HEY 95] that
the arch is stable under its own weight. However, this same theorem does not
ensure that the line of thrust that was constructed corresponds to the actual
state of forces in the structure. In particular, it does not mean that the
mobilized thrust has the value of H corresponding to the line of thrust.

10.2.4. Extreme lines of thrust, joints and associated mechanisms

In the previous section, we saw that in the case of an arch, it is possible to
determine extreme lines of thrust that correspond to the extreme values Hmin
and Hmax of the thrust of the arch. If we consider yield design, we deduce
from these values that the domain of potential stability of the arch is given for
the values of H between Hmin and Hmax. In other words, if we consider a load
H between these limits, we know that there is a line of thrust contained
within the masonry and so the strength criteria are satisfied for all sections.
This is a static approach from the inside since the values sought satisfy the
criteria.

Figure 10.20. Lines of thrust and kinematics associated with horizontal displacements
of the right support of a semi-circular arch by a) distancing of supports associated
with minimum thrust, and b) supports moving closer associated with maximum thrust

In section 10.1.4, we saw that the contact points of a line of thrust with
the edges of the masonry determine the positions of joints. These joints can
be interpreted in terms of the kinematics of yield mechanisms that can be
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associated with them. For a semi-circular arch, Heyman emphasizes that
when the arch is removed after construction, the arch begins to exert thrust on
its supports. Small displacements of the supports result and the arch
undergoes a kinematic allowing it to adapt geometrically. Limit analysis can
take these small quasi-static displacements (no inertia effect) into account.
Assuming a slight horizontal spacing of supports, we find that the three joints
determined by the line of thrust correspond to the minimum thrust Hmin
(Figures 10.18 and 10.19(b)) and allow us to determine the admissible
kinematic with the imposed displacement. Figure 10.20(a) shows the
kinematics which correspond to a distancing of supports by horizontal
displacement of the right support. This figure is done for a large support
displacement in order to make the rotations about the three joints and the
opening of cracks opposite to the joints visible. The actual displacement of
the support is supposed to be much lower so as not to affect the overall
geometry, but it is undetermined. Thus, a spacing of the (undetermined)
supports involves a mechanism corresponding to the line of minimum thrust
and will evaluate the corresponding thrust Hmin. We can describe this state of
the arch as passive (referring to the passive state of a flying buttress exerting
minimum thrust as described by Heyman [HEY 95]) in that it accompanies a
support displacement. This concept of active and passive states is particularly
present in soil mechanics in the design of retaining structures. In yield design,
these statements have an impact on the direction of the inequality of bounds7.
These two types of load are distinguished in the context of kinematics,
depending on the sign of the associated virtual power [SAL 13].

Let us now suppose the supports move slightly closer. The four joints
(Figure 10.19(a)) given by the line of thrust corresponding to the maximum
thrust Hmax allow us to determine an acceptable kinematic with the imposed
displacement. Figure 10.20(b) shows the kinematics corresponding to an
approximation of the supports through a horizontal displacement of the right

7 Usually, the active state of earth corresponds to the case where the retaining
structure is displaced by moving away from earth. The resulting force is called active
thrust and it corresponds to a lower bound in yield design. The passive state of earth is
where the retaining wall is displaced by moving closer to earth. The resultant force is
called passive thrust and it corresponds to the upper bound in yield design. J. Heyman
emphasizes that the optimal structural behavior of a flying buttress is associated with
maximum thrust, which is the abutment of the flying buttress, for which its supports
move closer. This is called the active state, while this state would be passive
depending on soil mechanics. Thus, the active and passive states relative to the thrust
of earth are inverted with respect to the states defined by J. Heyman relative to the
flying buttress. This inversion, of a purely conventional nature, seems related to the
interpretation of the role of this structural element.
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support. This figure is made for a large support displacement for the same
reasons as before. The actual displacement of the support is supposed to be
much lower so as not to affect the overall geometry, but it is undetermined.
Thus, an approximation of supports (even unknown ones) involves a
mechanism corresponding to the line of maximum thrust and will allow us to
evaluate the corresponding thrust Hmax. We can describe this state of the arch
as active (referring to the active state of a flying buttress exerting maximum
thrust as described by Heyman [HEY 95]) in that it resists a displacement
imposed by the support.

We note that with the kinematic exterior approach for yield design,
potential yield mechanisms associated with fields of virtual velocity are used.
Their kinematics also consider the movement of rigid blocks around the
edges of masonry joints. Despite their virtual nature, mechanisms may
correspond to experimentally observed yield mechanisms.

10.2.5.Minimum thickness and geometric factor of safety

The existence of extreme values Hmin and Hmax of thrust for a semi-
circular arch loaded under its own weight, of relative thickness t/r, implies
that it involves a minimum relative thickness t/rmin of the arch for which Hmin
and Hmax are equal. In the case of a semi-circular arch, the value obtained by
static approach from the inside (section 10.2.3) is 0.1075. A kinematic
approach from the outside developed by [OCH 02] gives the same value. A
comparative study of different static and kinematic approaches is given by
[OIK 09] and shows the sensitivity of the results depending on assumptions
and numerical methods. An arch of minimum relative thickness t/rmin is
shown in Figure 10.21(a). For an arch of radius r, the minimum thickness tmin
is denoted as d. The corresponding line of thrust shows 5 contact points with
the limit of the masonry (2 on the lower surface and 3 on the upper surface of
the supports and vertices), forming just as many potential joints. An arch of
thickness t greater than d is shown in Figure 10.21(b), superimposed with the
minimum arch and its associated line of thrust.

The existence of a minimum thickness of the arch below which stability is
impossible is used by Heyman [HEY 66] to define the geometric factor of
safety Fs of an arch of thickness t as a function of d (equation [10.31]):

tFs
d

= [10.31]
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Figure 10.21. Semi-circular arch of minimum thickness d a)
and semi-circular arch of thickness t greater than d b)

The Fs factor equals 3 for an arch of thickness t = 3d and the line of
thrust of the minimum arch is therefore located in the central third of
thickness t of arch. This particular case refers to the rule known as the
“middle third rule” by Méry [MER 40] requiring passage of the line of thrust
of an arch of thickness t to be within the central third of the masonry. But it
differs slightly as lines of thrust of the minimum arch and that of an arch of
thickness t are not exactly the same. It should be noted that Méry’s rule
assumes affine distribution of normal stresses linked to the linear elastic
behavior assumption of stone (see [DEL 82]). The Méry graphic construction
is a funicular polygon inscribed in the central third of masonry with a
variable thickness. It was the basis for the design of a lot of masonry in the
19th and 20th Centuries. The safety factor Fs associated with this design is
close to 3 for a semi-circular arch and translates the safety feature of Méry’s
graphic construction.

10.2.6. Dimensional similitude

A very remarkable property of lines of thrust constructed for loads under
their own weight is that if we change the scale of the structure, lines of thrust
undergo the same scaling as the structure itself. In particular, this implies that
the relative position of a line of thrust to the boundaries of the masonry will
be retained. If we consider Heyman’s three assumptions, the strength
criterion results in a geometric property (geometric property 1) that is
preserved by scaling. We deduce that in this case, if a change of scale of the
masonry structure is carried out, the properties concerning stability
are similar. In particular, the relative position of boundary lines of thrust will
be the same. The position of joints can be deduced by simple scaling. If we
consider limit analysis and the safe theorem, finding a line of thrust within
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the initial masonry implies certainty of the stability of the structure, and thus
this certainty remains through scaling (if Heyman’s assumptions are
satisfied). This allows us to study structures loaded under their own weight
only according to their proportions. For example, a semi-circular arch of
thickness given by ratio t/r can be studied independently of a specific value
of t or r. This is actually what was done implicitly in sections 10.2.3 and
10.2.4. These properties explain the central position occupied by the
geometry in the study of the stability of curvilinear masonry under Heyman’s
assumptions. This property can easily be tested by observing actual cases.
This may also shed light on the use of purely geometric models by masonry
builders through the ages.

Changing the scale of a structure by keeping the same material is
generally accompanied by a change in behavior. We can then question this
“anomaly” in the case of masonry. The purpose of the remainder of this
section is to consider the interpretation, the theoretical justification and the
limits of this property. To do this, we briefly introduce the concepts of
dimensional similitude for which the purpose is to study the conditions for
modeling on a smaller (or larger) scale for a physical study.

The influence of scaling a structure on its mechanical behavior was
highlighted in 1638 by Galileo [GAL 38]. Galileo’s fundamental observation
was to show that physical quantities do not all evolve the same way by
changing the scale and this has consequences on the resistance of structures.
It is readily apparent that if all lengths of an object are doubled through
scaling (scale length = 2), all surfaces are multiplied by 2² = 4 and volumes
will be multiplied by 2³ = 8. We generalize by saying that the surface of an
object changes with the square of the length scale, and its volume relative to
the cube of the length scale. If the same material is used for the two objects,
mass also varies relative to the cube of the length scale. If both models
remain under gravity, weight follows the same cubic law. If we are interested
in, for example, the stress, assumed to be uniform, exerted by a
parallelepiped block of stone placed horizontally on one side, the latter will
vary as the ratio of its own weight to the contact surface, or as the ratio of the
cube on the square of the length scale factor. Compressive stress will vary as
the length scale. If we consider a finite limiting compressive strength σ0 for
stone, not reached by the initial object, it will be achieved by a sufficiently
large scale factor. In this case, we find that a change in scale with the same
material affects the stability of the structure. The two objects are not
equivalent in terms of stability.
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Generalization of these properties related to scale changes is based on the
study of dimensions of physical quantities subjected to dimensional analysis.
The dimensions of a physical quantity are characterized by their unit in a
coherent system, the international system of units (SI), for example. A length
dimension denoted as L is expressed in m (in SI units). Surface area is
expressed in m² and has a squared dimension of length denoted as L². A time
dimension is denoted as T and a mass dimension is denoted as M. The
relationship between physical quantities of a problem depends on their
dimensions. Thus, any surface has dimension L² and any volume has
dimension L³. A density expressed in kg/m³ (in SI units) has the dimension
ML-3. A ratio of two of the same dimensions is dimensionless (a proportion,
length ratio for example). Homogeneity of a physical equation based on units
characterizes the coherence of physical dimensions of the quantities involved.
Dimensional analysis examines exactly what only dimensional relationships
can bring to the study of a physical problem. Dimensional similitude laws
rely on dimensional analysis to define the necessary scaling factors for
establishing reduced (or enlarged) models of a prototype. The theoretical
foundations of dimensional similitude and their applications to the use of
reduced models for the study of physical problems are developed in [SAI 71,
SED 77, MAN 62].

We denote by the star symbol * (as in [MAN 62]) the scale factor
corresponding to a physical quantity. Thus, the scale factor on a quantity G
will be denoted as G*. The scale factor of length l is denoted as l* and
corresponds to what is usually called the model scale. Comparing an object,
called prototype, to its reduced or enlarged model of the same material across
the scale l* (=1/10 for example for a reduced model), the scale factor for the
surfaces s* is equal to l*², and the scale factor for volumes v* will be equal to
l*³. Maintaining gravity for both models, gravitational acceleration g will be
conserved and therefore g* = 1 (this is no longer the case if we artificially
increase gravity using a centrifuge). If density ρ is conserved, we get ρ* = 1.
For a mechanical problem not involving consideration of thermodynamics,
the dimensions of considered quantities can be expressed as the products of
the powers of L, M and T. Knowledge of l*, g* and ρ* can be used to
determine the scale factors and m* and t* as a function of l*. Homogeneity of
equations or units of quantities can be used to deduce scale factors of other
quantities. Table 10.1 gives the scale factors corresponding to similitude
conditions under gravity and with conserved density. The dimensional
similitude between a prototype and a reduced model is complete if all the
physical quantities of the same dimension describing the physical problem
have the same scale factor. For example, pressure, stress, a ratio of force to a
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surface, Young’s modulus (elasticity modulus) have the same scale factor l*
since they are expressed in the same unit and are therefore the same size (see
Table 10.1). In this case, the behavior of the model is representative of the
behavior of the prototype and vice versa. We note, for example, that if we
look at the elastic behavior of a structure, Young’s modulus of the reduced
model will be in proportion to l*. We will therefore have to change materials.
It is not always possible to get a reduced model satisfying all the conditions
imposed by the conditions of similitude, this is called limited similitude.

Symbol Quantities (G) Dimension G*
l Length L l*
ε Strain Dimensionless 1
g Gravitational acceleration LT-2 1
t Dynamic time T l*1/2

ρ Density ML
-3 1

σ Stress ML
-1
T
-2 l*

E Young’s modulus ML
-1
T
-2 l*

ν Poisson’s coefficient Dimensionless 1
F Force MLT

-2 l*3

s Surface L2 l*2

v Volume L3 l*3

m Mass M l*3

Table 10.1. Similitude conditions under gravity and conserved density

Let us suppose that we want a reduced model of a masonry arch and we
are only interested in stability. The theoretical model assumes yield design
and involves the parameters of geometry, density, gravitational acceleration
and strength criteria. For models meeting the conditions of similitude, all
parameters of the problem must have scale factors equal to those in
Table 10.1. The stresses have a scale factor equal to l*. They are present in
the strength criterion [10.2]. This criterion remains unchanged by scaling
since under traction, 0 x l*=0. The infinite compressive strength criterion also
remains unchanged by scaling since infinity remains infinity after
multiplication by l*. However, if we consider a finite resistance σ0, we
require a material of resistance equal to σ0.l* to satisfy the similitude
conditions. The non-sliding assumption is also conserved when considering
criterion [10.2] with C=0. Heyman’s strength criteria are conserved by
scaling. However, we should still ensure that the assumption of infinite
compressive strength is always in accordance with the considered scale.
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10.3. Construction of lines of thrust in graphic statics

The aim of this section is to show how graphic statics can be used to
construct lines of thrust of curvilinear masonry defined by blocks. We used
graphic static reasoning in the stacking examples in section 10.2.2, but it was
a special case because, given the uniqueness of the support, only a single line
of thrust could be constructed. The example of the arch that we studied in
section 10.2.3 helped to construct the line of thrust in graphic statics, but used
the case of equilibrium of two blocks limited by a variable section. Drawing
the line of thrust in the case of masonry defined by blocks will mobilize the
properties of funicular polygons. This method, also usable on paper, is
greatly facilitated through the use of dynamic geometry.

10.3.1. Construction of lines of thrust using funicular polygons

10.3.1.1. Method and stages of construction for masonry defined by blocks

The initial data for the construction of a line of thrust are the geometry of
blocks, their interfaces and their considered support surfaces. The assumption
of a homogeneous material of constant density implies that the weight of
blocks is proportional to the area of each element depicting the block in the
representation plan. Similarly, the centroid of each block corresponds to the
centroid of the surface representing the block. Here, we consider an irregular
arch structure formed of quadrilateral section blocks in the representation
plan (Figure 10.22).

Figure 10.22. Arch formed of blocks

The steps in the construction of a line of thrust are:

1) determining the area and centroid of each quadrilateral in order to
construct the weight vectors of each block;
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2) determining the resultant of all the weights of blocks by construction of
an arbitrary funicular polygon;

3) constructing a funicular polygon passing through two points, Mg and
Md, belonging to the supports of the arch;

4) determining the line of thrust using the funicular polygon constructed
in the previous step.

These steps are discussed in sections 10.3.1.2 to 10.3.1.4.

10.3.1.2. Determination of the centroid of a quadrilateral

10.3.1.2.1. Wittenbauer’s Method

A direct method for determining the centroid of a homogeneous
quadrilateral flat plane was demonstrated by F. Wittenbauer (1857–1922).
We divide each side into three equal parts. Let us draw lines adjacent to
vertices passing through the points of division. These lines form a
parallelogram for which the centroid G is also that of the quadrilateral ABCD
(Figure 10.23).

Figure 10.23. Determination of the centroid of a
quadrilateral by Wittenbauer’s method

10.3.1.2.2. Graphic statics method

This method, which is longer than the previous, is based on the property
of the centroid being the crossing point of the weight regardless of its
position relative to gravitational acceleration. In a first instance, we divide the
quadrilateral into two triangles, and their centroid and weight are determined.
The equivalent force is then determined (by a funicular polygon). We apply
this method again by changing the direction of the gravitational field. The
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intersection of the lines of action of two equivalent forces is the centroid
(Figure 10.24).

Figure 10.24. Determination of the centroid of a quadrilateral by graphic statics

10.3.1.2.3. Third method

A third method allows direct construction without the use of parallelism
or a trisection method as in Wittenbauer’s method. We begin by constructing
the middle of each side of the quadrilateral. This involves considering the
quadrilateral as two triangles joined together for which we know how to
construct the centroids by intersection of medians. The centroid of the
quadrilateral can only be on the line passing through the two centroids of
triangles (Figure 10.25(a)). The operation is repeated by cutting the
quadrilateral into two triangles along the other diagonal, and there is a second
line that contains the centroid of the quadrilateral (Figure 10.25(b)). The
latter can only be located at the intersection of these two lines
(Figure 10.25(c)).

Figure 10.25. Steps in the construction of the third method for
determining the centroid of a quadrilateral
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10.3.1.3. Search for the resultant of the weight of the complete structure

In the general case of a non-symmetrical arch relative to the vertical, it is
necessary to determine the resultant of all weights of blocks in order to
construct the line of action of the total weight of the masonry and the
corresponding vector. Construction of an arbitrary funicular polygon (A S1
S2... Sn B) gives the resultant immediately (see Chapter 7 and Figure 10.26).
We took the forces in the successive order of blocks for clarity of the figure.
The second funicular polygon that we construct in section 10.3.1.4 to
determine the line of thrust will follow the same order, but for a physical
reason this time.

Figure 10.26. Construction of the resultant giving the total weight of
the masonry through the construction of a funicular polygon

10.3.1.4. Construction of a line of thrust

The construction of a funicular polygon through two points, Mg and Md,
belonging to support sections of the arch is the first step to construct a line of
thrust passing through the masonry supports. Reactions Rg and Rd at the
supports respectively pass through Mg and Md and must balance the total
weight P of the masonry determined in section 10.3.1.3. The three forces Rg,
Rd and P must intersect at a single point (three forces theorem) on the line of
action of P, which is known. By taking an arbitrary point S′ on the line of
action of P, we determine lines of action (MgS′) and (MdS′) of Rg and Rd
respectively (Figure 10.27).
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Figure 10.27. Construction of a line of thrust

We can then deduce pole O′ of the corresponding funicular polygon in the
force plan. The corresponding force polygon and (Mg S1′ S2′...Sn′ Md) can
thus be constructed. The relationships between funicular polygons
constructed from two distinct poles explained in section 7.3.3 can be seen in
Figure 10.27. Construction of the line of thrust associated with reactions Rg
and Rd defined above, is based on the determination of the resultant of forces
applied by half the structure on the other half at each joint. We must consider
the forces in the order of the blocks so that the resultants are defined joint-by-
joint using a unique funicular polygon. Let us consider a section given in
Figure 10.27, for example the joint between blocks 4 and 5 denoted as [A5B5]
(see Figure 10.22). The sub-structure formed by blocks 5 to 10 exerts a force
equal to the resultant of weights P5 to P10 and the reaction Rd on the section.
The resultant has the line of action of line (S′4S ′5) of the funicular polygon.
The intersection point of line (A5B5) passing through joint [A5B5], and the
line of action (S′4S ′5) of the resultant is the point J6 of the desired line of
thrust. By generalizing all the joints, the line of thrust is constructed by the
intersection of the lines of the funicular polygon with lines of corresponding
joints. Thus, for i varying from 1 to n-1, the points Ji+1 are the intersection
points of lines (S′iS′i+1) and lines (Ai+1Bi+1). The line of thrust thus
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constructed can be fully contained within the masonry, as shown in
Figure 10.27, but by varying the position of S′ on the line of action of P, this
line may leave the limits of the masonry, as in the case of a semi-circular arch
(see Figure 10.6).

10.3.1.5. Special case of symmetrical arches relative to a vertical axis

The case of symmetrical arches relative to a vertical axis, loaded under
their own weight only, has the distinction of having the line of action of their
total weight combined with their axis of symmetry. This simplifies the search
process since the weight of the resultant of the whole structure no longer
requires construction of an initial funicular polygon (described in
section 10.3.1.3).

10.3.1.6. Additional loads

The method presented above considers the load of an arch under its own
weight. If we want to construct the lines of thrust for the case where the arch
undergoes an additional load, the method is the same, except that the load on
each block is considered, for example, a force Fi applied to the block i. The
resultant force Ri of weight Pi of the block and its overload Fi will have the
same role as force Pi without overload. The total resultant of loads applied to
the arch will of course be changed. Figure 10.28 shows structures relating to
the determination of the line of thrust in the case of an additional load F8
applied to block 8.

10.3.1.7. Additional structure: three supports

Additional charges that were discussed in section 10.3.1.7 may have
various origins. This may be vertical loads due to a filler material above the
arch, for which there would be no additional support. But it can also be the
action of another curvilinear element supported on a block of the arch and on
another external support. Thus, in the example shown in Figure 10.28, the
force F8 could be the action of an arch supported by block 8. Thus, we
constructed a second arch comprising of six blocks, supported by the first on
block 8 (Figure 10.29) and on an external support at its other end. In the same
way as for a single arch, it is possible to construct a line of thrust based on
the application points M′g and M′d of reactions R′′g and R′′d. The lines of
thrust also depend on the direction of the reaction R′′g. Funicular polygons
and corresponding force polygons are represented separately from those of
the first arch so as not to overload the figure. So that the equilibrium
conditions are met, we must identify F8 to R′′g. This is reflected in the force
plan by the fact that the points a8 and b0 are combined and that the origin of
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vector P9 coincides with O′1. It is therefore possible to construct lines of
thrust for structures on three supports by taking care to ensure the equilibrium
of the connecting block (block 8 of the first arch).

Figure 10.28. Construction of a line of thrust with an additional load on a block

Figure 10.29. Construction of a line of thrust in the case of an additional arch
bearing on a block of an existing arch and an external support

We note that the addition of an arch and an additional support doubles the
number of parameters varying the position of lines of thrust in the entire
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structure. Thus, we added the three parameters of the second arch (positions
of M′g and M′d and the angle of R′′g) to the three parameters of the first arch
with positions Mg and Md and the angle of Rg. Manipulation of these
parameters in dynamic geometry makes it easy to determine a line of thrust
within the masonry in the present case. This allows us to apply the static
theorem of limit analysis and conclude on the stability of the assembly. For
thinner layers, it may be more difficult to find a line of thrust inside the
masonry. If the geometry of the structure is not imposed, but if an architect
wants to define a stable and optimized shape with respect to the thickness of
the masonry, the dynamism of the figure is used to affine the structure
depending on the line of thrust. An example is given in Figure 10.30 as
masonry deduced from visualization of the line of thrust after some trial and
error manipulation of the geometry and the parameters.

Figure 10.30. Geometry of an optimized masonry from a line of thrust

The complexity of geometric configurations of masonry involves a
complexity in the search for extreme lines of thrust, especially if we
manipulate a dynamic figure. Numerical methods are used to overcome these
difficulties. We will discuss some methods in section 10.4.

10.3.2. Parametric study of the semi-circular arch and pointed arches
under their own weight

Here, we present the case of a figure constructed with dynamic geometry
software (Cabri geometry) allowing us to vary the geometry of an arch to
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study the lines of thrust of a semi-circular arch in the pointed arch. This
application was developed in an academic setting and is presented in
[CIB 10]. The dynamic figure8 allows us to go from a semi-circular arch to a
pointed arch formed by two symmetrical circles for which the centers are on
the line horizontal to the base of the arch (Figure 10.31). The semi-circular
arch is defined by its center and two points at the base of the arch defining
the inner and outer radii. The transition to a pointed arch is done while
maintaining the width and thickness of the initial semi-circular arch by giving
an RO parameter that characterized the aspect ratio of the arch, which we call
its pointed ratio. We denote the inner half-width Rint, the outer half-width Rext,
and the internal height of the arch (or arrow) Hint. RO is defined by
relationship [10.32]:

int

int

HRO
R

= [10.32]

For a semi-circular arch, we get RO = 100% (Hint = Rint) and the values of
Rint and Rext correspond to those defined in section 10.2.3. For a drop arch
(vertices of an equilateral triangle), RO = 173% (Hint = 3 Rint). The
geometry of an arch may be defined by the two dimensionless parameters: t/r
and RO. In the dynamic geometry example presented here, the arch is
composed of 18 blocks. Geometry is controlled by the position of two points
at the base of the arch (the left part of the arch), which sets the inner
half-width Rint and outer half-width Rext of the arch. The RO pointed ratio
(variable with a cursor on the dynamic figure) completely defines the
geometry of the arch.

The variation parameters of the line of thrust are:

– θ : the angle of the reaction Rg relative to the horizontal line;

– λ1 and λ2, position parameters of Rg and Rd, equal to the distance of the
point of application of reactions at the base of the arch measured from the
inside, divided by the thickness t of the arch.

By varying these parameters in the dynamic figure (manipulating the
application points of reactions and the slope of the left reaction), the user can
determine the funicular polygons that are entirely contained within the arch

8 The dynamic figure is available on this link: http://www.paris-lavillette.archi.fr/
MTC.
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and, through trial and error, deduct the minimum (Figure 10.32(b)) and
maximum thrust (Figure 10.32(a)) and the positions of the associated ball
joints.

Figure 10.31. Geometrical parameters of the studied arches

Figure 10.32. Search on a single dynamic figure for funicular polygons
and lines of thrust corresponding to the maximum thrust a) and

minimum thrust b), in a drop arch
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This type of tool has the advantage of being perfectly adapted to
geometric parameterization of a range of structures from a single
construction. In addition, an interactive real-time approach allows the
structure behavior to be tested, even by students.

Limitations of the tool are due to the nature of dynamic geometry
software: dedicated to teaching, it is not designed to be programmed (or very
little with macros). Thus, feasible configurations are predetermined and are
limited to simple structures. Furthermore, iterative calculations may not be
implemented, which makes it impossible to automatically determine extreme
lines of thrust. The proposed tool that was used to study the structure of
defined geometry can also be used for parametric studies involving
various kinds of parameters (geometry, loads, safety factors). For example,
we conducted a parametric study on the arches presented in dynamic
geometry.

Figure 10.33. Minimum and maximum thrust based on the weight
of the arch depending on t/r (thickness of the arch relative to the average
spacing of the arch) for arches ranging from semi-circular (RO = 100%)

to a pointed arch of ratio (RO = 350%)
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This study aims to investigate the influence of the geometry of an arch on
the minimum and maximum thrust, and determine its minimum thickness
(where minimum thrust is equal to maximum thrust). To use the results
obtained in the most general manner possible, we have presented them in the
form of graphics based on dimensionless parameters (Figure 10.33). This is
possible under the similitude conditions set in section 10.2.6. For a dimensional
case, we only need to know some dimensional values (spacing, height, etc.) and
deduct the dimensional parameters sought from dimensionless parameters. The
limiting curves for minimum and maximum thrust based on the total weight of
the arch are given in terms of t/r for variable values of RO. For a given aspect
ratio of the arch (constant RO), the area between the extreme thrust curves
defines a possible equilibrium zone. The contact point of the curves gives the
minimum relative thickness t/rmin of the arch such that equilibrium is possible.
We note that for RO ranging from 100% to 173%, t/rmin decreases and goes
from 10.9% to 7.9%, while for RO ranging from 173% to 350%, t/rmin
increases and goes from 7.9% to 15%. These results are consistent with the
optimal character of the drop arch (RO = 173%).

This example shows how a parametric study of structure can shed light on
limit values of arch thickness. We could choose to study the minimum
thicknesses of other elements such as buttresses, flying buttresses, arches, etc.
Such approaches also allow us to assess the safety factors of structures and
could be used by construction historians to study typologies of buildings.

10.3.3. Case of an earthquake: quasi-static approach

Taking into account, the effect of an earthquake on a masonry can be
done by considering horizontal acceleration in the structure plan. This
acceleration, in a quasi-static approach, corresponds to the addition of a
horizontal component gh to gravitational acceleration g. In this case, the same
approach as above may be used, except that the direction of the resultant
acceleration is no longer vertical. Figure 10.34 shows adaptation to the
structure studied in section 10.3.1.

10.3.4. Pseudo 3D study of arches or domes

With a few modifications, calculation methods for curvilinear structures
can be used for approaches involving revolution or cylindrical 3D geometries
that we can reduce to a planar problem. Passing from a curvilinear structure
to a 3D structure can be done through geometrical translation operations to
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form arches or rotation to form revolution domes. Associated stability
calculation models consider slices for which the planes of symmetry contain
the involved forces. For a cylindrical arch, use of the 2D case assumes that
the arch acts as a succession of contiguous arches without friction. In the case
of a dome, a pseudo 3D model considers slices intersected by planes passing
through the axis of revolution (such as orange slices). Two opposing slices
(symmetrical relative to the axis) can be divided into blocks such that their
weights will all be contained in the same plane. This approach is used by
Poleni (see section 7.4.1). It is then possible to construct a line of thrust for
the assembly formed by the two slices. This method produces a first approach
to the behavior of a dome, but does not take the possible presence of
compressed rings into account. The relative simplicity of these approaches do
not demean the approach, since observations of radial cracks of domes are
consistent with this assumption. In this regard, J. Heyman’s analyses
[HEY 95] are particularly recommended to the reader.

Figure 10.34. Case of an earthquake: quasi-static loading

10.4. Numerical methods for the construction of lines of thrust

10.4.1. Force network method

Masonry loaded with vertical forces (own weight and additional vertical
loads) are widely encountered in masonry structures. The special character of
the load allows the implementation of numerical procedures involving only
linear systems of equations. In this context, D. O’Dwyer [ODW 99]
developed the force network method, which is an approach for generalizing
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the 2D concept of a line of thrust to the 3D concept of thrust surface. This
approach was the basis of developments by P. Block [BLO 09] that is
compatible with complex 3D geometry based on duality (concept discussed
in Chapter 8). Indeed, the projection of a force network on the horizontal
plane is reduced to a compressed planar structure, with unloaded nodes, that
becomes a tensed planar structure (discussed in section 8.3.3) if the direction
of reactions is reversed. These developments do not fall within the scope of
this chapter, but the method of force networks can easily be applied to a 2D
case.

Applied to the 2D case, the force network method amounts to
algebraically determining a funicular polygon. Let us consider a force
network consisting of n forces Pi (i varying from 1 to n). In the coordinate
system (O, x, z), we place Pi = (0,-Pi); the lines of action of these forces
are vertical and respectively have abscissa values xi (i varying from 1 to n).
We search for the coordinates of points S′i of the funicular polygon such as
the one built in section 10.3.1.4 (see Figure 10.35). The points S′i have
coordinates (xi, zi) in the system (O, x, z) where zi are unknown and where xi
are defined by the lines of action of forces Pi. We place S′0=Mg and S′n+1=Md.
Thus, the values (x0, z0) and (xn+1, zn+1) are defined. Reactions Rg and Rd have
their horizontal components respectively equal to H and -H (by directing x
toward the line), with H being the thrust of the arch. The forces Fi are defined
as those of polar rays O′′ai for all i ranging from 0 to n. We can then write the
equilibrium equations of each force Pi with the forces Fi-1=O′′ai-1 (on the left)
and -Fi=aiO′′ (on the right). We then get:

Pi+Fi-1-Fi = 0 for i ranging from 1 to n [10.33]

The coordinates of forces Fi = O′′ai are (Fx,i, Fz,i). The Fx,i coordinates are
equal to H = O′h. Thus, we get:

Fx,i = H for i ranging from 0 to n [10.34]

Furthermore, considering equation [10.34] and the coordinates of points
S′i, we get the following relationship expressing the equality of coefficients
governing lines (S′iS ′i+1) and (O′ai):

1
,

1

i i
z i

i i

z zF H
x x

+

+

−=
−

, for i ranging from 0 to n [10.35]
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The Z-coordinates of equation [10.33] give:

, 1 , 0i z i z iP F F−− + − = , for i ranging from 1 to n [10.36]

Equations [10.35] and [10.36] give:

1 1

1 1

0i i i i
i

i i i i

z z z zP H H
x x x x

− +

− +

− −− + − =
− −

, for i ranging from 1 to n [10.37]

We then deduce:

1 1
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[10.38]

for i ranging from 1 to n.

These equations form a system of n equations with n unknowns zi
(i varying from 1 to n); z0 and zn+1 are defined by Mg and Md. This system
can be written in matrix form and solved by matrix inversion.

Once the funicular polygon is obtained, and the line of thrust is not
constructed, [ODW 99] forces the funicular polygon to stay inside the
masonry, which is in the interest of safety. However, it is perfectly possible
to deduce the line of thrust from the funicular polygon by simple
intersections of lines, so systems of two equations with two unknowns.

Figure 10.35. Funicular polygon and notations of the force network method
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10.4.2. Complex systems

The use of the force network method in the plane allows the development
of numerical calculations similar to those developed for graphic statics, but
for configurations that can be complex and making the establishment of
graphics or implementation in other systems possible. A. Oikonomopoulou
[OIK 09] used this approach to develop a method and a tool for the study of
complex systems to study the behavior of ancient masonry. Here, we present
an example of a structure derived from [OIK 09]. Figure 10.36 shows a
section inspired by a Romanesque church defined by geometrical parameters.
Given the symmetry of the structure, only the right half is shown.
Symmetrical points relative to Oz of points M on the right side are denoted
M′. The structure is composed of an arch ABB′A′ supported by two piers
ABFU and A′B′F′U′, and two flying buttresses BCJG and B′C′J′G′ supported
by abutments JGQT and J′G′Q′T′. The objective is the determination of the
extreme lines of thrust and associated joints. The construction of lines of
thrust is done by considering the equilibrium of the connecting block ABCD
which supports the arch ABB′A′ and the flying buttress BCJG. Thus, the pier
is considered as an element DCFU that supports the connecting element
ABCD. Given the symmetry of the geometry and the load (its own weight),
extreme lines of thrust are symmetrical relative to (Oz). This defines the two
horizontal forces Harc and Hab. The first applies to supports PR and AB of the
half-arch and the second to the flying buttress supports (BC and JG). An
iterative procedure is proposed to determine combinations of extreme values
of forces Harc and Hab for which the line of thrust is everywhere inside the
structure. Figure 10.37 shows the lines of thrust constructed by this approach
for extreme cases.

The Harc and Hab parameters can be considered as the parameters defining
the equilibrium domain of the structure. This choice reconsiders that
proposed by [SMA 00] and taken by [BLO 06], but with a comprehensive
approach to the structure. The domain of all eligible combinations of thrusts
Harc and Hab for the system can thus be defined as the convex envelope of
combinations of Harc and Hab that define the potential stability of all elements
of the system (Figure 10.38); this is a direct consequence of the static
theorem of yield design (see Chapter 9). Extreme thrusts of the arch
(abscissa) and the flying buttress (ordinate) are given as a percentage of each
element’s own weight.
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Figure 10.36. Geometry of the considered system:
arch – flying buttresses – pier [OIK 09]

Figure 10.37. Lines of thrust of the system for a) minHarc, minHab
< Hab < maxHab and b) maxHarc, minHab <Hab < maxHab [OIK 09]
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Figure 10.38. Domain of equilibrium of the system [OIK 09]

Here, we present the principle of the tool developed by [OIK 09], which
also addresses more complex systems and seismic events through the quasi-
static approach (discussed in section 10.3.3).
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Homogenization and Yield
Design of Masonry

In this chapter, we consider a micro-mechanical approach, i.e. on a scale
of heterogeneities. By heterogeneity, we mean blocks and joints that are very
different in nature. Taking heterogeneities into account through a
homogenization process is then used to consider the structure as homogenous
and continuous.

In this chapter, we present the principles of modeling through yield
design coupled with homogenization of periodic regular masonry blocks, as
established by De Buhan and De Felice [DEB 97]. This model was developed
for plane stress problems. We give some examples for using this method in
order to show its potential and use. In Chapter 10, a static approach within
yield design was used. In this chapter, the kinematic approach from the
outside is used.

Here, we consider the same assumptions of the behavior of masonry
blocks as in Chapter 10. Given the strength of stones compared to that of
joints, blocks are considered as having infinite compressive strength. In
Chapter 3, we saw that this assumption can only be applied to stone masonry,
and within the limit of a stress state that does not exceed that admissible by
blocks. This excludes earth masonry and some vaulted stone structures. It is
entirely possible to complete the model by taking the strength of blocks into
account, but this work is not yet known. In this chapter, yield will take place
exclusively at the joints. Here, we are interested in structures such as walls.

Sustainable Masonry: Stability and Behavior of Structures, 
First Edition. Thierry Ciblac and Jean-Claude Morel. 
© ISTE Ltd 2014. Published by ISTE Ltd and John Wiley & Sons, Inc.
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11.1. 2D understanding of masonry walls

Many practical cases can be reduced to plane problems. There are two
types of plane problems, those under plane strain and those under plane
stress.

Figure 11.1. Walls similar to structures under plane stress according
to direction n “gamma” = unit weight of the masonry and “lamda gamma” =

horizontal load (image by Rabia Charef-Morel)

Figure 11.2. Example of masonry walls that can be considered as under
plane stress (loaded in plane); a) limestone blocks barn (Tarn, France),

b) shale building (Cornwall, UK), c) sandstone blocks, d) monumental granite
structure (Cornwall, UK).
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Figure 11.3. Structures similar to structures in plane strain along y:
example of a retaining wall (image by Rabia Charef-Morel)

Structures with one very small dimension compared to the other two are
modeled under plane stress (Figure 11.1); these are mainly responsible for
building vertically loaded walls by weight of materials and service loads
(Figure 11.2).

Structures with a very long dimension compared to the other two
(Figure 11.3) are modeled under plane strain, for example, dikes, retaining
walls, dams, etc. Examples of drystone retaining walls can be seen in
Figures 11.4 and 11.5. Please note, the photographs only show one face of
the wall, the plane strain geometry to consider is that of the plane thickness
of the wall (Figure 11.3).

Figure 11.4. Roadside retaining wall with typical claved masonry walls in contact
with water. The wear of the stone (shale) by the tide in the lower part of the wall is

very visible. About 4 meters high (Cornwall, UK)
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Figure 11.5. Drystone retaining wall masonry can be considered under plane strain,
built by companies included in the ABPS1. Instrumentation is part of the

PEDRA2project, photograph by Joachim Blanc-Gonnet

11.2. 2D model developed by De Buhan and De Felice [DEB 97]

If the geometry of masonry is imagined as a set of regular blocks
assembled in a staggered manner (Figure 11.6), we can then use the
homogenization technique of periodic media within the framework of yield
design theory as developed by [DEB 86] and [DEB 97]. In the photographs in
Figure 11.2 (both dimensions being visible) and in
Figures 11.4 and 11.5 (one dimension being visible), we see that this
assumption is more or less realistic, depending on the masonry.

If we consider a heterogeneous structure for which geometric and
mechanical characteristics are periodic, we can replace the heterogeneous
masonry (Figure 11.6(a)) with an equivalent homogeneous medium
(Figure 11.6(c)) for which the overall mechanical properties are
representative of the initial heterogeneous medium. The homogenization
process allows us to move from a microscopic scale that takes blocks and
joints into account to a macroscopic scale, with a homogeneous view of the
structure. The representative elementary volume (REV) of masonry is then
defined as the smallest possible element for reconstructing the geometry of
the entire structure.

Application of homogenization is only possible if there is sufficient REV
in both directions of the plane axes. In Figure 11.6, for example, in the
horizontal direction, REV is only reproduced 3 or 4 times, which is the lower

1 National association of builders using dry stone (Association nationale des Artisans
Bâtisseurs en Pierre Sèche), http://www.pierreseche.fr.
2 PEDRA projet No. 10 MGC S 017.
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limit of the applicability of the method. This is the basis for this method and
more detailed explanations can be found in [DEB 86]. In Figure 11.5, the
base thickness is 1.2 m, which allows us to have at least three REVs through
the thickness.

We begin by identifying the characteristics of the microstructure, which
consists of stone blocks of height a and width b and joints (Figure 11.7). The
blocks are regular and joint dimensions can be ignored.

A Mohr–Coulomb law of pure friction is applied to the joints, which is
expressed in terms of perpendicular and tangential stresses at the interface as:݃ሺߪ, ߬ሻ ൌ |߬| ൅ ߪ tan߮ ൑ 0 [11.1]

where ϕ is the angle of friction of stone against stone.

The REV proposed by De Felice and De Buhan is a diamond shape of
volume M with its vertices located at the center of four adjacent blocks
(Figure 11.7). We must ensure that the entire masonry assemblage can be
reconstructed through translation of this REV. The REV thus formed consists
of four pieces of blocks separated by three lines of joints, which will be
denoted as J.

Figure 11.6. a) Idealization of drystone masonry, b) regular periodic
masonry, and c) periodic homogenization of regular masonry

(picture by Anne-Sophie Colas [COL 09])

The homogenization theory in the framework of yield design [DEB 86]
allows us to deduce the characteristics of the equivalent homogenized
medium from the REV characteristics, i.e. the macroscopic strength domain
of masonry Ghom.
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Given the assumptions, we give a first static definition of Ghom based on
macroscopic stress fields Σ:

௛௢௠ܩ ൌ ቄΣ / Σ ൌ ଵெ ׬ ሻܸ݀ெݔሺߪ ቅ [11.2]

with ∀ x ∈M, M being defined in figure 11.7σሺݔሻ߳Թଶand∀ x ∈ J [11.3]σሺݔሻ.n(x) ≤ 0 [11.4]

div σሺݔሻ = 0 [11.5]σሺݔሻ.n(x) anti-periodic [11.6]

We can also use a kinematic approach to define Ghom. To do this, we
apply to the REV mechanism of virtual yield through rigid body motion
(Figure 11.7). This allows us to calculate the maximum work dissipated
through the macroscopic strain D. For dry joints, the homogenized maximum
work is zero; this is explained by the lack of cohesion of joints for drystone
masonry equation [11.7].

Figure 11.7. Yield mechanism of REV blocks according to [DEB 97] to which four
virtual velocity vectors are applied (picture by Anne-Sophie Colas [COL 09])

πhom(D) = 0 [11.7]

with the conditions of existence of the support π-function (as defined by
[DEB 97]), which must be verified. These conditions are inequalities that
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relate to the macroscopic strain tensor D, defined on the basis of virtual
velocities. These conditions are explained by the inequality system below,
equation [11.8] [DEB 97]:െܦଵଵ ൑ |ଵଵܦ|߮݊ܽݐ0 ൑ ଵଶܦ|ଶଶܦ2݉ ൅ |ଶଵܦ ൑ ଵଵܦ߮݊ܽݐ ൅ ଵ௧௔௡ఝܦଶଶ [11.8]

These conditions are expressed differently according to the aspect ratio of
blocks m = a/b, larger or smaller than ଵଶ୲ୟ୬஦. Figure 11.8 shows the two areas
thus defined.

We note that in most cases, stone or earth walls are found in zone B of
Figure 11.8 as regards the average values generally observed for m (less than
0.5) and ϕ (less than 45°). The aspect ratio of blocks m = a/b and the angle of
friction ϕ of blocks then meet the condition:

2m ≤ ଵ୲ୟ୬஦ [11.9]

The masonry in Figure 11.2 falls into this zone B of Figure 11.8.
However, there are still many structures in zones A and C. This, for example,
is the case for masonry in Figure 11.4, zone A and
Figure 11.5, zone C.

Figure 11.8. 2D model by [DEB 97]: two areas in which the
conditions of existence of support functions are defined depending

on the aspect ratio m and the angle of friction ϕ
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In the kinematic approach from the outside [DEB 86], we define the Ghom
domain as:ܩ௛௢௠ ൌ ቄΣ / Σ: D ൑ ௛௢௠ߨ ൌ 0ቅ [11.10]

Figure 11.9. Ghom strength domain for homogenized masonry
(image by Anne-Sophie Colas [COL 09])

We represent the Ghom strength domain (Figure 11.9) as a tetrahedral
convex cone with vertex O, the origin of the stress space. This representation
shows the anisotropy of the field strength of homogenized masonry, linked to
low resistance of joints.

Figure 11.10 shows plane problems that represent various practical cases:
walls of a building under plane stress under their own weight and with
horizontal seismic load (proportional to its unit weight), a retaining wall,
loaded by horizontal forces (hydrostatic pressure or land pressure without
vertical friction with masonry), and a wall of a building subjected to the
interaction of a perpendicular wall limited to a linear force distribution.

11.3. Application to structures under plane stress

In their work, De Felice and De Buhan [DEB 97] give an example of the
application of their model for a rectangular wall, loaded by a horizontal
volume force and its own weight (Figure 11.10(a)). In practice, this type of
load corresponds to the static equivalence of a seismic load. Vector λγ is a
volume force that can be generated by acceleration due to an earthquake.
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Line OO′ in Figure 11.10(a) is the potential yield line. Virtual velocity is
denoted v* and is given by:ݒ∗ ൌ ߯ ൅ ݕ ∧ ߱݁ଷ [11.11]

∗ݒ ൌ อ߯ଵ ൅߱ ଶ߯ଶݕ ൅߱ ଵ0ݕ [11.12]

The unknown λ is proportional to the maximum horizontal volume force
allowable by the wall loaded under its own weight.

Calculation of the work of external forces WE given by [DEB 97] is:

ாܹ ൌ ∬ߛ ߣ ሺ݁ଵ െ ݁ଶሻሺ ߯ ൅ ݕ ∧ ߱݁ଷሻைைᇱ஺஻ ଶݕଵ݀ݕ݀ [11.13]

Figure 11.10. Example of plane problems, boundary conditions
and loads, γ unit weight of masonry; a) case studied by [DEB 97],

b) linear load (for example, hydrostatic pressure)

The calculation of maximum resisting work WRM (see [SAL 83, SAL 02])
is given by the following expression that reflects the π function of the
Coulomb criterion:

ோܹெ ൌ ߛ ௖௅௧௔௡ఝ ቀ߯ଵ sin߰ ൅ ߯ଶ cos߰ ൅ ߱ ௅ଶቁ݄ݐ݅ݓ ܮ ൌ ௕௖௢௦ట [11.14]

Finally, the solution is given by minimizing the following inequality with
respect to ψ, ω, χ, which are the parameters describing yield kinematics:

WE< WRM [11.15]



270 Sustainable Masonry

In the case of [DEB 97], there is only one unknown load parameter,
which is λ, and by taking c=0, the calculations are simplified greatly. The
parameters ψ, ω, χ are first subjected to the conditions obtained by the
homogenization process, involving ϕ and m = a/b, aspect ratio of blocks
(Figure 11.8). The next step is the minimization of λ relative to the
parameters in this new domain from the homogenization process.

Figure 11.11 gives the results of the model which we compare to a
calculation in which masonry is considered a rigid solid. The results
corresponding to rigid bodies are represented by continued lines. Segment
AB is obtained through the equilibrium of forces and line BC, through that of
the moments. Lines ABC represent a certain yield criterion for a rigid solid
and A′B ′C ′, for a homogenized solid. A′B ′ is obtained with a yield plane
opening out on the vertex AB of the wall, Figure 11.10(a). Line B′C′ is
obtained with a yield plane opening out on the face O′A of a wall,
Figure 11.10(a). In both cases, the virtual velocity vector is a pure rotation
χ=0. For a virtual velocity vector of pure translation ω=0, we get line AB,
which is the same result as in the calculation of rigid bodies.

Figure 11.11. Comparison of yield design with and without homogenization:
case of horizontal loading volume λγ

The allowable load values are substantially reduced (Figure 11.11) by
taking into account a discrete medium through homogenization. There is a
threshold for which equality of lines AB and A′B′ is between the two
approaches (rigid or discrete medium). This case is achieved in Figure 11.12
for the values ϕ = 23 and 2m = 0.6. Beyond this, the translation limit
becomes that of rigid bodies, and that of homogenized rotation continues to
be separate from the rotation of rigid bodies.
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Figure 11.12. Comparison of yield design with and without
homogenization: border line case

Taking the heterogeneity of the masonry of blocks into account modifies
the yield threshold between the translation and rotation obtained for a rigid
solid. Yield through rotation occurs for a smaller aspect ratio in the case of
homogenized calculation.

11.4. Application to structures under plane strain

11.4.1. Retaining walls

In some structures, including drystone blocks, the assumptions for regular
geometry blocks is very strong as most walls are built with irregular stones of
all sizes. This has two consequences that will affect the mechanics. Jamming
blocks against each other is done due to the skill of the mason who places
each stone. It is less strong than perfectly parallelepiped blocks, as those
blocks can then turn locally, as shown by [VIL 04]. Furthermore, the contact
areas between each block are limited, so local yield through splitting or
bending is possible. This would involve integrating a compression limit into
yield design, corresponding to a splitting strength limit, which is about ten
times less than the simple compressive strength of stone (see Chapter 3,
section 3.1.2).

Furthermore, the number of blocks in the width of certain walls may be
less than 3, which can be regarded as insufficient to homogenize.

Despite these reservations, [COL 09] showed the applicability of the
model presented here to these problems.
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The design of a retaining wall is dependent on pressure from the soil
(Figure 11.3). In a first approach, it is possible to use the Caquot and Kerisel
pressure coefficients that have been established for walls with rigid faces. In
this case, the possibility of interaction between internal yield according to
joints within the masonry and pressure forces is not taken into account.

Consideration of the interaction between soil and masonry was rigorously
proposed by Denis Garnier and Anne-Sophie Colas [COL 08]. The two
proposed kinematics are described in Figure 11.13. The relevance of these
two kinematics has been validated in Anne-Sophie Colas’ PhD thesis
[COL 09] on scale 1 experiments.

Figure 11.14 shows the type of results obtained with these two virtual
kinematics faced with smaller models (scale 1/10) of 2D anologic materials.
The results are in accordance with this empiricism, such that when the batter
increases, the wall becomes more resistant to overturning, and thus yield is
preferably translational (Figure 11.14(a)). When the inclination of the beds
increases, the effect is the same as an increase in friction at the joints, yield
occurs through overturning.

Figure 11.13.
rigid bodies for the soil and masonry wall, and b) rotation of rigid bodies for the

masonry wall and distortion in the soil (image by Anne-Sophie Colas)

11.4.2.Masonry dams

This involves masonry dams with blocks and mortar, which are old dams
in Europe or North America, and are always constructed in particular areas.
In this case, previous developments are directly applicable, as the loads and
geometry of structures belong to Figure 11.10(b).

a) Virtual kinematics of yield in translational motion of
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Figure 11.14. Influence on kinematics of yield: a) from the inclination of beds
(equivalent to friction between blocks), b) from the results [COL 09] the lines are

given by the model, and each point (triangle) correspond to an experiment

11.4.3.Mixed rockfill and masonry dams

This type of dam, made of rockfill with a drystone revetment on the
downstream were built in the United States, Algeria, Europe (France, Italy,
Portugal), amongst other places. In France, there are a dozen dams of this
type that were built in the 1950s to produce hydroelectricity.

These dams are composed of a central part, the dam body, dumped and
therefore permeable rockfill. The upstream slope, like the downstream one, is
protected by drystone masonry, arranged by hand (thickness band e in
Figure 11.15). Waterproofness is ensured by a thin and highly waterproof
face upstream that is often made of mortar placed over the drystone layer.

To implement the developed model in the previous sections, we should
make the following assumptions:

– the size of a stone is 50 to 100 times smaller than the dam: 20 cm for
20 m, we can consider the embankment as a homogeneous granular material.
It may therefore follow Coulomb’s law with zero cohesion;

– the mortar layer ensures waterproofing and the drystone upstream
revetment is not involved in the strength of the structure to its load;

– the downstream drystone revetment is sufficiently thick (more than
three stones) so we can apply the homogenization method previously
developed.
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Figure 11.15. Example of geometry of a rockfill and drystone revetment dam and
virtual yield kinematics, vs velocity generated by shear and ω rotation of the rigid

body of the revetment (image by Hong Hanh Le [LE 13])

Parameters Units Symbols
Upstream height of the dam m H1

Downstream height of the dam m H2

Width of the crest m l
Width of the base m B

Upstream batter of the dam degrees β1
Downstream batter of the dam degrees β2
Thickness of drystone revetment m e

Height of water m hw
Unit weight of water kN/m3 γw

Water pressure on the upstream face kN/m2 pw
Additional water pressure due to earthquake kN/m2 Δpw

Unit weight of rock kN/m3 γs
Angle of internal friction of the rock degré φs
Unit weight of drystone revetment kN/m3 γ

Angle of internal friction of the drystone
revetment

degrees φ

Angle determining the yield line in the
drystone revetment

degrees ψ

Angle determining the yield line in the rock degrees ψs

Table 11.1. Definition of parameters of a dam as an example [LE 13]

In section 11.4.1, dealing with the case of a retaining wall, we saw that
we successively examine two different yield mechanisms in order to retain
the most critical cases: yield through drystone revetment translation is
associated with translation of the backfill soil and yield through overturning
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in the drystone revetment is associated with shear of the backfill soil.
Figure 11.15 shows the second kinematic with vs for the rockfill embankment
and ω in the drystone revetment.

Based on these simplifying assumptions, the calculation model of the dam
is constructed as shown in Figure 11.15. The symbols used are found in
Table 11.1.

The loading parameters are:

– the volume forces applied to the drystone revetment:

γ = σhγe1 − (1 − σv) γ e2 [11.16]

where σh and σv are seismic coefficients. This is the combination of negative
weight, so the acceleration component that reduces the weight. This is the
most critical combination, since we are in the configuration of a structure
stabilized by its own weight;

– the volume forces applied to the rockfill embankment:

γs = σhγse1 − (1 − σv) γse2 [11.17]

– hydrostatic pressure (perpendicular to the upstream face) for which
intensity is given by pw = γw.y, where y denotes the depth of the point
considered relative to the free surface of the water;

– the extra water pressure due to the seismic action may be taken as a
force that is proportional to the seismic coefficient and of parabolic
distribution along the upstream face [LED 03]. A simple model can be given
through Zanghar’s formula [LED 03] derived from that of Westergaard on
dams with a vertical upstream face:

௪݌∆ ൌ ଵଶσ௛ߛ௪݄ ቀ0,735 ൈ ଶఉభగ ቁ ൈ ቈ௬௛ ቀ2 െ ௬௛ቁ ൅ ට௬௛ ቀ2 െ ௬௛ቁ቉ [11.18]

where h is the depth of the reservoir; y is the considered depth.

Calculations were made by [LE 13] for a structure with the dimensions
given in Table 11.2.
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Parameters Units Data Values
Upstream height of the dam (H1) m 15

Downstream height of the dam (H2) m 20
Width of the crest (l) m 2

Upstream batter of the dam (β1) degrees 45
Downstream batter of the dam (β2) degrees 45
Thickness of drystone revetment(e) m 1,2

Unit weight of water (γw) kN/m3 10
Unit weight of rock (γs) kN/m3 16

Angle of internal friction of the rock (φs) degrees 37.7
Unit weight of drystone revetment(γ) kN/m3 21

Angle of internal friction of the
revetment (φ)

degrees 29

Table 11.2. Example of parameters describing a structure [LE 13]

The dam example body is made of granite stones extracted on site and
dumped. The thickness of the downstream drystone revetment is 1.2 m. It is
also assumed that the dam is located in a seismic zone between level 3
(moderate) and 4 (average). According to the seismic zoning map of France
that has been in force since 1st May 2011, σh = 0.127 and σv = 0.051.
Calculations show that the minimum thickness of drystone revetment for the
dam to be stable is 0.21 m (yield through overturning, kinematics described
in Figure 11.15). A parametric study by [LE 13] on the structure presented in
Figure 11.15 shows the crucial role of drystone revetment in the stability of
the structure.

11.5. Conclusion

We have shown the potential of the model by [DEB 97] in the qualitative
and quantitative analysis of the stability of masonry structures in 2D. This
model is relatively new and it can be further developed and extended to more
complex cases. We refer the reader to a work in progress supervised by Denis
Garnier for extending the model to masonry in 3D [LE 13].

To use this model for earth masonry, we should consider the compressive
strength of blocks and resistance, however small, of joints to tension. This
last point is already proposed in [DEB 97] through the possible existence of a
non-zero cohesion in the Coulomb criterion for joints. However, taking the
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strength of blocks into account is more complex, because it requires
rebuilding the whole homogenization process.

The methods developed in this chapter, and more generally throughout
this book may be adapted to numerical analysis in order to extend the
application to complex geometries that may describe all practical cases.

These methods will always maintain an undeniable advantage over more
complex methods such as those for finite or discrete elements; because of
their relative simplicity, they can be used for practical cases for which we
only have limited information. This is the case for many vernacular
architecture structures.

Measures or evaluations of additional parameters such as stiffness of
joints, which is necessary for the implementation of conventional numerical
methods (finite or discrete elements) are costly and delicate.
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Conclusion

This book deals with the mechanical stability of masonry using earth
materials. The earth materials described in this book are stone and earth.
Earth as considered here is what makes up masonry structures of small
elements (adobe or compressed earth blocks) or (rammed earth) layers. The
stones are cut, squared, or even used uncut. Stones can be joined using weak
earth mortar, sand and thin lime mortar (rubble stone masonry), or even
without mortar. The latter case is dry stone masonry. The common point
between these materials is that they show variability in their composition and
shape. This variability is linked to the fact that the materials are removed
from the local soil near the construction. It would be fruitless to hope to
know the behavior of each of these materials. However it is possible, through
a suitable approach, to manage, in a rigorous manner, to evaluate the
mechanical stability of these structures.

This book consists of three complementary parts, the first part dealing
with technologies and construction processes, the second with graphic statics
and finally, the third dealing with the implementation of yield design applied
to masonry structures.

After the introductory chapter, the subsequent three chapters (Part 1)
detailed elements describing the phenomenology of these materials as
masonry components, that is to say, the macroscopic behavior of stone and
earth. This information can only be obtained through measurements from
experiments on material samples large enough to accommodate the various
heterogeneities in these materials. Here, we are particularly interested in
describing the yield of materials and joints. This is the first step then, that
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allows us to be able to model, by the geometric or analytical approach, the
stability of masonry structures using yield design.

Part 2 describes the formalism of the method of graphic statics, which
provides a very suitable tool for understanding the stability of masonry
structures. This approach was historically the first one used, mainly for its
ability to provide the means for design, and is considered in a very practical
manner in Part 3. This part introduces the application of the theory of yield
design for masonry in the formal context of graphic statics and the mechanics
of continuous periodic media.

Using graphic statics, we consider the stability of curvilinear structures or
2D structures as arches. In the context of mechanics of continuous periodic
media, we describe the inclusion of joints in 2D media. The choices made in
Part 3 have the advantage of considering a simple but representative
resistance criterion for masonry. This approach is instructive and can perform
diagnostics on existing heritage and in the design of structures.

The described approaches can be supplemented with digital methods, for
example approaches with software using the discrete element method. The
first comparative results are not surprising: both methods give the same
result. However, regardless of improved speeds of computers in the future,
digital methods will encounter the difficulty of knowing all the mechanical
parameters required. The latter may only be used in practice for monumental
structures, and not for the current masonry, which today represents an
important socio-economic issue.

Research on sustainable masonry is currently experiencing increased
growth in several directions. In particular, we refer to work on the inclusion
of 3D geometry in yield design, which is considered in Chapter 11. Finally,
aside from the mechanical aspect, research is developing in two fields:
hydrothermal behavior of masonry with earth materials (as a porous media)
and the first quantification of the sustainability of these constructions.
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