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Preface

This volume contains a selection consisting of the best papers presented at the FUR
XII conference, held at LUISS in Roma, Italy, in June 2006, organized by John Hey
and Daniela Di Cagno. The objectives of the FUR (Foundations of Utility and Risk
theory) conferences have always been to bring together leading academics from
Economics, Psychology, Statistics, Operations Research, Finance, Applied Mathe-
matics, and other disciplines, to address the issues of decision-making from a gen-
uinely multi-disciplinary point of view. This twelfth conference in the series was no
exception. The early FUR conferences – like FUR I (organized by Maurice Allais
and Ole Hagen) and FUR III (organized by Bertrand Munier) – initiated the move
away from the excessively rigid and descriptively-inadequate modelling of behav-
iour under risk and uncertainty that was in vogue in conventional economics at that
time. More than twenty years later, things have changed fundamentally, and now in-
novations arising from the FUR conferences, and manifesting themselves in the new
behavioural economics, are readily accepted by the profession. Working with new
models of ambiguity, and bounded rationality, for example, behavioural decision
making is no longer considered a sign of mere non-standard intellectual diversifica-
tion. FUR XII was organised with this new spirit. In the sense that the behavioural
concerns initiated by the first FUR conferences are now part of conventional eco-
nomics, and the design and organisation of FUR XII reflects this integration, FUR
XII represents a key turning point in the FUR conference series.

The 13 papers in this volume represent a sample of the best recent work in nor-
mative and descriptive modelling of behaviour under risk and uncertainty. We have
divided the 13 papers into four broad parts (although there are obvious overlaps be-
tween the various parts): Uncertainty and information modelling; Risk modelling;
Experimental individual decision making; and Experimental Interactive decision
making.

Part I: Uncertainty and Information Modelling

There are four papers in this section. The one by Ghirardato et al. makes the fun-
damental claim that dynamic consistency – the fundamental property in dynamic
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vi Preface

choice models – is only compelling for choice situations in which acts are not af-
fected by the possible presence of ambiguity. Their approach is based on one of the
most general representations of preferences under uncertainty available up to now in
the literature. Needless to say, such an approach opens new avenues of research on
ambiguity. It also gives an edifying example of the maturity of research on decision
making under uncertainty reached when FUR XII was organised.

Cohen et al. are also concerned with dynamic decision making under uncertainty
but with exogenously given probabilities; they are interested in the role of risk per-
ception. Their paper is another example of the use of insights from psychology and
behavioural decision making in preference modelling.

Using a general framework of conditional preferences under uncertainty in the
context of sequential equilibrium and rationalisability (building on earlier work by
Asheim and Perea), Asheim shows that a conditional probability system (where each
conditional belief is a subjective probability distribution) may lead to a refinement
of a preference between two acts when new information – ruling out states at which
the two acts coincide – becomes available.

Assuming that individual choice behaviour depends on more than the alternatives
the decision maker is objectively facing, Stecher proposes an original axiomatic
setup in which agents have preferences on their private subjective conceptions of
possible alternatives. Given this axiomatic structure, the author provides conditions
under which agents can communicate with others who do not necessarily perceive
the world in the same way. The paper concludes that successful coordination needs
the communication language between agents (for trade purposes) to be sufficiently
vague. This is an important, if counter-intuitive, conclusion.

Part II: Risk Modelling

There are just three papers in this section. The first, one by Borgonovo and Peccati,
works within the expected utility framework. They tackle sensitivity analysis as an
integral part of any decision making process. Specifically, the authors answer two
questions: the first concerning the response of decision making problems to small
changes in the input (parameters); and the second relating to the problem of how the
change is apportioned to input variations. The answers are important and interesting.

The second paper in the section is by Kaivanto and addresses the question of
whether Cumulative Prospect Theory (CPT) resolves the famous St. Petersburg
Paradox. Building on Rabin’s “law of small numbers” (Rabin 2002), the author
shows that the apparent failure of CPT popular parameterizations to resolve the
paradox can be explained by the alternation bias inherent to the coin tossing process
in the St. Petersburg gamble.

The final paper, one by Fabiyi, raises an interesting issue with respect to the
form of the weighting function used in (Cumulative) Prospect Theory and in Rank
Dependent Expected Utility function. Empirically it has often been observed to be
S-shaped. Fabiyi provides a normative basis for this empirical finding.
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Part III: Experimental Individual Decision Making

There are four papers in this section, illustrating the importance of experimental
work and the amount of activity in this sector. The first is by Neugebauer who re-
ports on an experiment in which the subject has to allocate his or her investment
capital towards three assets. The experimental results confirm two main findings in
behavioural decision making and behavioural finance – that is, first, that most sub-
jects choose a dominated lottery when dominance is not transparent and, second,
that subjects are loss-averse rather than variance-averse.

Carbone’s contribution is concerned with the issue of dynamic inconsistencies
and explores the possible influence of temptation as a reason for such inconsisten-
cies. Motivated by the literature on hyperbolic discounting, she uses an innovative
experimental design to investigate whether subjects are affected by temptation.
The design involves an experiment with two treatments – one a ‘spot market’ and
the other a ‘forward market’ – which should detect the existence of hyperbolicity.
Interestingly, she finds little evidence of such behaviour.

Morone and Fiore report on an experiment in which the famous Monty Hall’s
three doors anomaly “should” go away. They deliberately adopt a design (Monty
Hall’s Three Doors for Dummies”) which does not rely on subjects being able to do
Bayesian updating. Nevertheless the anomaly does not go away – suggesting that
the reasons for the anomaly are deeper and different than previously thought.

Giardini et al. argue, on the basis of two experimental studies using a ‘visual
motion discrimination task’, that the desirability of an outcome may bias the amount
of confidence people assign to the likelihood of that outcome. The originality of the
authors’ results lies in their observation that the correlation between reward and
confidence was not linked to change in accuracy. In other words, subjects were not
more accurate in responding to the stimulus; they were just more confident in their
performance when facing a higher reward.

Part IV: Experimental Interactive Decision Making

The final section (on interactive experiments) contains three studies. That by
Eichberger et al. extends the experimental study of ambiguity from individual
decision making to interactive decision making (that is, to strategic games). The
authors consider a non-standard situation in which players lack confidence in their
equilibrium conjectures about opponents’ play. They use “grannies, game theorists
and fellow subjects” to introduce different levels of ambiguity in strategic games,
and test comparative static propositions relating to changes in equilibrium with
respect to changes in ambiguity.

Morone and Morone address the topic of guessing games with the objective of
understanding whether people play in a rational or naı̈ve way. They first develop a
generalised theory of naı̈veté (that generalises the iterative naı̈ve best replies strat-
egy), and experimentally compare the iterative best replies strategy with the iterative
elimination of dominated strategies for the generalised p-beauty contest.
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Di Cagno and Sciubba explore network formation in a laboratory experiment.
Instead of focusing on the traditional issue of convergence to a stable-network ar-
chitecture, the authors use a network formation protocol suggesting that links are not
unilateral, but have to be mutually agreed upon in order to form. The experimental
results are analyzed from both ‘macro’ and ‘micro’ perspectives.

Taken together, the papers in this volume, a small subset of the papers presented
at the 2006 FUR conference, show well what FUR is and what it does. We have
already commented on the diversity of the papers in this volume, but the volume
shows another facet of FUR – the desire and the ability to explore, both theoretically
and empirically, new models of human behaviour. More importantly, as a study of
the development of FUR over the years shows clearly, this volume manifests the
clear and strong relationship between the theoretical and empirical developments:
many of the empirical contributions would not have been possible without the ear-
lier theoretical developments, and many of the theoretical papers are motivated by
a desire to explain interesting phenomena thrown up by previous empirical papers.
FUR demonstrates a strong commitment to interaction between theory and empir-
ics. The editors of the present volume and the conference organizers are proud to
contribute to keeping the FUR tradition alive.

Mohammed Abdellaoui
Jouy en Josas, April 2008

John D. Hey
York, April 2008
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Revealed Ambiguity and Its Consequences:
Updating

P. Ghirardato(�), F. Maccheroni, and M. Marinacci

Keywords: Ambiguity · Updating

1 Introduction

Dynamic consistency is a fundamental property in dynamic choice models. It
requires that if a decision maker plans to take some action at some juncture in the
future, he should consistently take that action when finding himself at that juncture,
and vice versa if he plans to take a certain action at a certain juncture, he should take
that plan in mind when deciding what to do now.

However compelling prima facie, it is well known in the literature that there are
instances in which the presence of ambiguity might lead to behavior that reasonably
violates dynamic consistency, as the next Ellsberg example shows.1

Example 1. Consider the classical “3-color” Ellsberg problem, in which an urn con-
tains 90 balls, 30 of which are known to be red, while the remaining 60 are either
blue or green. In period 0, the decision maker only has the information described
above. Suppose that at the beginning of period 1 a ball is extracted from the urn, and
the decision maker is then told whether the ball is blue or not. The decision maker
has to choose between bets on the color of the drawn ball. Denoting by [a,b,c] an
act that pays a when a red ball is extracted, b when a green ball is extracted and c
otherwise, let

f = [1,0,0]
g = [0,1,0]

P. Ghirardato
Collegio Carlo Alberto Via Real Collegio, 30 10024 Moncalieri (Torino), Italy
e-mail: paolo.ghirardato@unito.it

M. Abdellaoui, J.D. Hey (eds.) Advances in Decision Making Under Risk and Uncertainty. 3
Theory and Decision Library C 42.
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4 P. Ghirardato et al.

f ′ = [1,0,1]

g′ = [0,1,1]

Suppose that in period 0, the decision maker, like most people in Ellsberg’s experi-
ment, displays the following preference pattern

g′ � f ′ � f � g (1)

(the middle preference being due to monotonicity). Letting A = {R,G}, it follows
immediately from consequentialism that, conditionally on Ac,

f ′ ∼Ac g′.

On the other hand, if the decision maker’s conditional preferences satisfy dynamic
consistency it must be the case that if he finds an act to be optimal conditionally
on A and also conditionally on Ac in period 1, he must find the same act optimal
in period 0. So, dynamic consistency implies that g′ �A f ′ (as otherwise we should
have f ′ � g′). That is, a dynamically consistent and consequentialist decision maker
who is told that a blue ball has not been extracted from the Ellsberg urn (i.e., is
told A) must strictly prefer to bet on a green ball having been extracted.

Yet, it seems to us that a decision maker with the ambiguity averse preferences
in (1) might still prefer to bet on a red ball being extracted, finding that event
less ambiguous than the extraction of a green ball, and that constraining him to
choose otherwise is imposing a strong constraint on the dynamics of his ambiguity
attitude.

In view of this example, we claim that dynamic consistency is a compelling prop-
erty only for comparisons of acts that are not affected by the possible presence of
ambiguity. In other words, we think that rankings of acts unaffected by ambiguity
should be dynamically consistent.

This is the starting point of this paper. We consider the preferences represented by

V ( f ) = a( f )min
P∈C

∫
u( f (s))dP+(1−a( f ))max

P∈C

∫
u( f (s))dP, (2)

where f is an act, a is a function over acts that describes the decision maker’s at-
titudes toward ambiguity, and C is a set of priors that represents the ambiguity re-
vealed by the decision maker’s behavior. We provided an axiomatic foundation for
such preferences in Ghirardato et al. (2004, henceforth GMM).2 There, we also in-
troduced a notion of unambiguous preference which is derived from the observable
preference over acts. We argued that such derived unambiguous preference only
ranks pairs of acts whose comparison is not affected by ambiguity. That is, unam-
biguous preference is a partial ordering, which is represented à la Bewley (2002) by
the set of priors C (see (3) below).
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Our main intuition is then naturally modelled by assuming that the derived unam-
biguous preference is dynamically consistent, while, in the presence of ambiguity,
the primitive preference might well not be. This natural modelling idea leads to
a simple and clean characterization of updating for the preferences we discuss in
GMM. The main result of the present paper, Theorem 1, shows that the unambigu-
ous preference is dynamically consistent if and only if all priors in C are updated
according to Bayes’ rule. This result thus characterizes prior by prior Bayesian up-
dating, a natural updating rule for the preferences represented by (2).

We also consider a stronger dynamic consistency restriction on preferences,
which can be loosely described as imposing dynamic consistency of the decision
maker’s “pessimistic self.” We show that such restriction (unlike the one considered
earlier) leads to imposing some structure on the decision maker’s ex ante perception
of ambiguity, which corresponds to the property that Epstein and Schneider (2003)
have called rectangularity. This shows, inter alia, that rectangularity is not in gen-
eral (i.e., for the preferences axiomatized in GMM) the characterization of dynamic
consistency of the primitive preference relation, but of a different dynamic property
which might even be logically unrelated to it.

We close by observing that we retain consequentialism of the primitive prefer-
ence, another classic dynamic property that requires that preferences conditional on
some event A only depend on the consequences inside A. This property has been
weakened in Hanany and Klibanoff (2004), which also offers a survey of the litera-
ture on dynamic choice under ambiguity.

2 Preliminaries

2.1 Notation

Consider a set S of states of the world, an algebra Σ of subsets of S called events,
and a set X of consequences. We denote by F the set of all the simple acts: finite-
valued Σ-measurable functions f : S → X . Given any x ∈ X , we abuse notation by
denoting x ∈ F the constant act such that x(s) = x for all s ∈ S, thus identifying
X with the subset of the constant acts in F. Given f ,g ∈ F and A ∈ Σ, we denote
by f Ag the act in F which yields f (s) for s ∈ A and g(s) for s ∈ Ac ≡ S \A. We
model the DM’s preferences on F by a binary relation �. As usual, � and ∼ denote
respectively the asymmetric and symmetric parts of �.

We let B0(Σ) denote the set of all real-valued Σ-measurable simple functions, or
equivalently the vector space generated by the indicator functions 1A of the events
A ∈ Σ. If f ∈ F and u : X → R, we denote by u( f ) the element of B0(Σ) defined by
u( f )(s) = u( f (s)) for all s ∈ S. A probability charge on (S,Σ) is function P : Σ→
[0,1] that is normalized and (finitely) additive; i.e., P(A∪B) = P(A)+P(B) for any
disjoint A,B ∈ Σ. Abusing our notation we sometimes use P(ϕ) in place of

∫
ϕ dP,

where ϕ ∈ B0(Σ).
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Given a functional I : B0(Σ)→R, we say that I is: monotonic if I(ϕ)≥ I(ψ) for
all ϕ ,ψ ∈B0(Σ) such that ϕ(s)≥ψ(s) for all s∈ S; constant additive if I(ϕ +α) =
I(ϕ)+α for all ϕ ∈ B0(Σ) and α ∈ R; positively homogeneous if I(αϕ) = αI(ϕ)
for all ϕ ∈ B0(Σ) and α ≥ 0; constant linear if it is constant additive and positively
homogeneous.

Finally, as customary, given f ∈F, we denote by Σ( f ) the algebra generated by f .

2.2 Invariant Biseparable Preferences

We next present the preference model used in the paper. We recall first the MEU
model of Gilboa and Schmeidler (1989). In this model, a decision maker is repre-
sented by a utility function u and a set of probability charges C, and she chooses ac-
cording to the rule minP∈C

∫
u(·)dP. A generalization of this model is the so-called

α-maxmin (α-MEU) model, in which the decision maker evaluates act f ∈ F ac-
cording to

α min
P∈C

∫
S

u( f (s))dP(s)+(1−α)max
P∈C

∫
S

u( f (s))dP(s).

The α-MEU model is also a generalization – to an arbitrary set of priors,
rather than the set of all possible priors on Σ – of Hurwicz’s α-pessimism decision
rule, which recommends evaluating an act by taking a convex combination (with
weight α) of the utility of its worst possible result and of the utility of its best possi-
ble result. In collaboration with Arrow and Hurwicz (1972), Hurwicz later studied a
generalization of his rule, which allows the “pessimism” weight α to vary according
to the identity of the worst and best results that the act may yield.

As it turns out, there is a similar generalization of the α-MEU model allowing
the weight α to depend on some features of the act f being evaluated. It is the model
studied by GMM (see also Nehring (2001) and Ghirardato, Maccheroni, Marinacci,
and Siniscalchi (2003)), which relaxes Gilboa and Schmeidler’s axiomatization of
MEU by not imposing their “ambiguity aversion” axiom (and is constructed in a
fully subjective setting). We present its functional characterization below, referring
the reader to the cited Ghirardato et al. (2003, 2004) for the axiomatic foundation
and further discussion. (The axioms are simply those of Gilboa and Schmeidler
(1989) minus their “uncertainty aversion” axiom.)

Definition 1. A binary relation � on F is called an invariant biseparable prefer-
ence if there exist a unique monotonic and constant linear functional I : B0(Σ)→ R
and a nonconstant convex-ranged utility u : X → R, unique up to a positive affine
transformation, such that I(u(·)) represents �; that is, for every f ,g ∈ F,

f � g⇔ I(u( f ))≥ I(u(g)).
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It is easy to see (see GMM, p. 157) that a functional I : B0(Σ) → R that satis-
fies monotonicity and constant linearity is also Lipschitz continuous of rank 1; i.e.,
|I(ϕ)− I(ψ)| ≤ ‖ϕ−ψ‖ for any ϕ,ψ ∈ B0(Σ).

In order to show how this model relates to the α-MEU model, we need to show
how to derive a set of priors and consequently the decision maker’s ambiguity
attitude.

Suppose that act f is preferred to act g. If there is ambiguity about the state
space, it is possible that such preference may not hold when we consider acts which
average the payoffs of f and g with those of a common act h. Precisely, it is possible
that a “mixed” act gλ h, which in each state s provides the average utility

u(gλ h)(s) = λu(g(s))+(1−λ )u(h(s)),

be preferred to a “mixed” act f λ h, which offers an analogous average of the payoffs
of f and h. Such would be the case, for instance, if gλ h has a utility profile which
is almost independent of the realized state – while f λ h does not – and the decision
maker is pessimistic. On the other hand, there might be pairs of acts for which these
“utility smoothing effects” are second-order. In such a case, we have “unambiguous
preference.” Precisely,

Definition 2. Let f ,g ∈ F. Then, f is unambiguously preferred to g, denoted
f �∗ g, if

f λ h � gλ h

for all λ ∈ (0,1] and all h ∈ F .

Notice that in general �∗ is a (possibly incomplete) coarsening of �, while on the
other hand for any x,y ∈ X , x �∗ y if and only if x � y.

In GMM we show that given an invariant biseparable preference there exists
a unique nonempty, convex and (weak∗) closed set C of probability charges that
represents the unambiguous preference relation �∗ in the following sense

f �∗ g⇐⇒
∫

S
u( f (s))dP(s)≥

∫
S

u(g(s))dP(s) for all P ∈ C. (3)

That is, unambiguous preference corresponds to preference according to every one
of the possible “probabilistic scenarios” included in C. The set C therefore represents
the ambiguity that is revealed by the decision maker’s behavior.

Given the representation C, the decision maker’s index of ambiguity aversion a
is then extracted from the functional I in the following natural way:

I(u( f )) = a( f )min
P∈C

∫
S

u( f (s))dP(s)+(1−a( f ))max
P∈C

∫
S

u( f (s))dP(s).

The coefficient a : F→ [0,1] is uniquely identified (GMM, Theorem 11) on the set
of acts whose expectation is nonconstant over C; i.e., those f for which it is not the
case that ∫

S
u( f (s))dP(s) =

∫
S

u( f (s))dQ(s) for every P,Q ∈ C. (4)
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Moreover, wherever uniquely defined, a also displays a significant regularity, as it
turns out that a( f ) = a(g) whenever f and g “order” identically the possible scenar-
ios in C. Formally, for all P,Q ∈ C,∫

S
u( f (s))dP(s)≥

∫
S

u( f (s))dQ(s)⇐⇒
∫

S
u(g(s))dP(s)≥

∫
S

u(g(s))dQ(s). (5)

(See GMM, Proposition 10 and Lemma 8 respectively, for behavioral equivalents of
the above conditions.) In words, the decision maker’s degree of pessimism, though
possibly variable, will not vary across acts which are symmetrically affected by am-
biguity. Notice that in our environment the Arrow–Hurwicz rule corresponds to the
case in which a decision maker’s degree of pessimism only depends on the proba-
bilities that maximize and minimize an act’s evaluation. Thus, letting the degree of
pessimism depend on all the ordering on C is a generalization of the Arrow–Hurwicz
rule. Clearly, the SEU model corresponds to the special case in which C is a single-
ton. Thus, all SEU preferences whose utility is convex-ranged are invariant bisepa-
rable preferences. Less obviously, also CEU preferences with convex-ranged utility
are invariant biseparable preferences. Hence, this model includes both α-MEU and
CEU as special cases.

Unless otherwise noted, for the remainder of the paper preferences are always
(but often tacitly) assumed to be invariant biseparable in the sense just described.

3 Some Derived Concepts

We introduce three notions which can be derived from the primitive preference rela-
tion via the unambiguous preference relation. Besides being intrinsically interesting,
such notions prove useful in presenting the main ideas of the paper.

3.1 Mixture Certainty Equivalents

For any act f ∈ F, denote by C∗( f ) the set of the consequences that are “indifferent”
to f in the following sense:

C∗( f )≡ {x ∈ X : for all y ∈ X , y �∗ f implies y �∗ x, f �∗ y implies x �∗ y}.

Intuitively, these are the constants that correspond to possible certainty equivalents
of f . The set C∗( f ) can be characterized (GMM, Proposition 18) in terms of the set
of expected utilities associated with C:

Proposition 1. For every f ∈ F,

x ∈C∗( f )⇐⇒min
P∈C

P(u( f ))≤ u(x)≤max
P∈C

P(u( f )).
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Moreover, u(C∗( f )) = [minP∈C P(u( f )), maxP∈C P(u( f ))].

It follows immediately from the proposition that x ∈C∗( f ) if and only if there is a
P ∈ C such that u(x) = P(u( f )). That is, u(C∗( f )) is the range of the mapping that
associates each prior P ∈ C with the expected utility P(u( f )).

There is another sense in which the elements of C∗( f ) are generalized certainty
equivalents of f . Consider a consequence x ∈ X that can be substituted to f as a
“payoff” in a given mixture. That is, such that for some λ ∈ (0,1] and h ∈ F,

xλ h∼ f λ h.

The following result shows that, while not all the elements of the set C∗( f ) can in
general be expressed in this fashion, each of them is infinitesimally close (in terms
of preference) to a consequence with this property.3

Proposition 2. For every f ∈ F, C∗( f ) is the preference closure of the set

{x ∈ X : ∃λ ∈ (0,1], ∃h ∈ F such that xλ h∼ f λ h}.

In light of this result, we abuse terminology somewhat and call x ∈C∗( f ) a mixture
certainty equivalent of f , and C∗( f ) the mixture certainty equivalents set of f .

3.2 Lower and Upper Envelope Preferences

Given the unambiguous preference �∗ induced by �, we can also define the follow-
ing two relations:

Definition 3. The lower envelope preference is the binary relation �↓ on F defined
as follows: for all f ,g ∈ F,

f �↓ g⇐⇒{x ∈ X : f �∗ x} ⊇ {x ∈ X : g �∗ x}.

The upper envelope preference is the binary relation �↑ on F defined as follows:
for all f ,g ∈ F,

f �↑ g⇐⇒{x ∈ X : x �∗ f} ⊆ {x ∈ X : x �∗ g}.

The relation �↓ describes a “pessimistic” evaluation rule, while �↑ an “optimistic”
evaluation rule. To see this, notice that �↓ ranks acts by the size of the set of con-
sequences that are unambiguously worse than f . In fact, it ranks f exactly as the
most valuable consequence that is unambiguously worse than f . The twin relation
�↑ does the opposite. We denote by �↓ and ∼↓ (resp. �↑ and ∼↑) the asymmetric
and symmetric components of �↓ (resp. �↑) respectively.

This is further clarified by the following result, which shows that the envelope
relations can be represented in terms of the set C derived in the previous section.
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Proposition 3. For every f ,g ∈ F, the following statements are equivalent:

(i) f �↓ g (resp. f �↑ g).
(ii) minP∈C P(u( f ))≥minP∈C P(u(g)) (resp. maxP∈C P(u( f ))≥maxP∈C P(u(g))).

It follows from this result that �↓ is a 1-MEU preference, in particular an invariant
biseparable preference, and that (�↓)∗ is represented by C. Moreover, while � and
�↓ always coincide on X , they coincide on F if and only if � is 1-MEU, so that �
and �↓ will be in general distinct. Symmetric observations hold for �↑.

The relations between �↓, �↑ and � can be better understood by recalling the
relative ambiguity aversion ranking of Ghirardato and Marinacci (2002).

Proposition 4. The preference relation �↓ is more ambiguity averse than �, which
is in turn more ambiguity averse than �↑.
Therefore, the envelope relations can be interpreted as the “ambiguity averse side”
and the “ambiguity loving side” of the DM. Indeed, �↓ is ambiguity averse in the
absolute sense of Ghirardato and Marinacci (2002), while �↑ is ambiguity loving.

4 Revealed Ambiguity and Updating

Suppose that our DM has an information structure given by some subclass Π of Σ
(say, a partition or a sub-algebra), and assume that we can observe our DM’s ex
ante preference on F, denoted interchangeably � or �S, and his preference on F
after having been informed that an event A ∈Π obtained, denoted �A. For each A ∈
Π′ ≡Π∪S, the preference �A is assumed to be invariant biseparable, and the utility
representing �A is denoted by uA. Clearly, a conditional preference �A also induces
an unambiguous preference relation �∗A, as well as mixture certainty equivalents
sets C∗A(·) and a lower envelope preference relation �↓A. Because �A is invariant
biseparable, it is possible to represent �∗A in the sense of (3) by a nonempty, weak∗
compact and convex set of probability measures CA.

We are interested in preferences conditional on events which are (ex ante) unam-
biguously non-null in the following sense:

Definition 4. We say that A ∈ Σ is unambiguously non-null if xAy �↓ y for some
(all) x� y.

That is, an event is unambiguously non-null if betting on A is unambiguously better
than getting the loss payoff y for sure (notice that this is stronger than the defini-
tion of non-null event in Ghirardato and Marinacci (2001), which just requires that
xAy� y). This property is equivalently restated in terms of the possible scenarios C
as follows: P(A) > 0 for all P ∈ C.

We next assume that conditional on being informed of A, the DM only cares
about an act’s results on A, a natural assumption that we call consequentialism:
For every A ∈Π, f ∼A f Ag for every f ,g ∈ F. Consequentialism extends immedi-
ately to the unambiguous and lower envelope preference relations, as the following
result shows:
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Lemma 1. For every A ∈Π, the following statements are equivalent4:

(i) f ∼A f Ag for every f ,g ∈ F.
(ii) f ∼∗A f Ag for every f ,g ∈ F.
(iii) f ∼↓A f Ag for every f ,g ∈ F.

For the remainder of this section we tacitly assume that all the preferences �A are
invariant biseparable and consequentialist.

An important property linking ex ante and ex post preferences is dynamic con-
sistency: For all A ∈Π and all f ,g ∈ F,

f �A g⇐⇒ f Ag � g. (6)

This property imposes two requirements. The first says that the DM should consis-
tently carry out plans made ex ante. The second says that information is valuable to
the DM, in the sense that postponing her choice to after knowing whether an event
obtained does not make her worse off (see Ghirardato (2002) for a more detailed
discussion).

As announced in Sect. 1, we now inquire the effect of requiring dynamic consis-
tency only in the absence of ambiguity; i.e., requiring (6) with � and �A replaced by
the unambiguous preference relations �∗ and �∗A respectively. We show that (for a
preference satisfying consequentialism) this is tantamount to assuming that the DM
updates all the priors in C, a procedure that we call generalized Bayesian updating:
For every A ∈Π, the “updated” perception of ambiguity is equal to

C|A≡ cow∗{PA : P ∈ C},

where PA denotes the posterior of P conditional on A, and cow∗ stands for the weak*
closure of the convex hull.

Theorem 1. Suppose that A ∈ Π is unambiguously non-null. Then the following
statements are equivalent:

(i) For every f ,g ∈ F,

f �∗A g⇐⇒ PA(u( f ))≥ PA(u(g)) for all P ∈ C. (7)

Equivalently, CA = C|A and uA = u.
(ii) The relation �∗ is dynamically consistent with respect to A. That is, for every

f ,g ∈ F:
f �∗A g⇐⇒ f Ag �∗ g. (8)

(iii) For every x,x′ ∈ X, x � x′ ⇒ x �A x′. For every f ∈ F and x ∈ X:

x ∈C∗A( f )⇐⇒ x ∈C∗( f Ax). (9)

(iv) For every f ∈ F and x ∈ X:

f �↓A x⇐⇒ f Ax �↓ x. (10)
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Alongside the promised equivalence with dynamic consistency of unambiguous
preference, this results presents two other characterizations of generalized Bayesian
updating. They are inspired by a result of Pires (2002), who shows that when the
primitive preference relations �A are 1-MEU, generalized Bayesian updating is
characterized by (a condition equivalent to)

f �A (∼A)x⇐⇒ f Ax � (∼)x (11)

for all f ∈ F and x ∈ X . Statement (iii) in the proposition departs from the indiffer-
ence part of (11) and applies its logic to the “indifference” notion that is generated
by the incomplete preference �∗. Statement (iv) is a direct generalization of Pires’s
result to preferences that are not 1-MEU. Notice that (10) is equivalent to requiring
that f �∗A x if and only if f Ax �∗ x, a weakening of (8) that under the assumptions
of the proposition is equivalent to it.

It is straightforward to show that dynamic consistency of the primitives
{�A}A∈Π′ implies condition (ii). Thus, dynamic consistency of the primitives
is a sufficient condition for generalized Bayesian updating. The following example
reprises the Ellsberg discussion in Sect. 1 to show that it is not necessary.

Example 2. Consider the (CEU and) 1-MEU preference described by (linear util-
ity and) the set C = {P : P(R) = 1/3, P(G) ∈ [1/6,1/2]}. It is clear that a deci-
sion maker with such C would display the preference pattern of (1). It follows from
Theorem 1 that her preferences will satisfy consequentialism and unambiguous dy-
namic consistency if and only if conditionally on A = {R,G} her updated set of
priors is

CA = {P : P(R) ∈ [2/5,2/3]}.
Assuming that the decision maker is also 1-MEU conditionally on A, this implies
that in period 1 she will still prefer betting on a red ball over betting on a green
ball. As discussed in Sect. 1, this cannot happen if the decision maker’s conditional
preferences satisfy dynamic consistency tout court; i.e., (6).

A different way of reinforcing the conditions of Theorem 1 is to consider im-
posing the full strength of dynamic consistency on the lower envelope preference
relations, rather than the weaker form seen in (10). We next show that this leads
to the characterization of the notion of rectangularity introduced by Epstein and
Schneider (2003).

Suppose that the class Π forms a finite partition of S; i.e., Π = {A1, . . . ,An}, with
Ai∩A j = /0 for every i �= j and S = ∪n

i=1Ai. Given a set of probabilities C such that
each Ai is unambiguously nonnull, we define

[C] =

{
P : ∃Q,P1, . . . ,Pn ∈ C such that ∀B ∈ Σ, P(B) =

n

∑
i=1

Pi(B|Ai)Q(Ai)

}
.

We say that C is Π-rectangular if C = [C].5 (We refer the reader to Epstein and
Schneider (2003) for more discussion of this concept.)
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Proposition 5. Suppose that Π is a partition of S and that every A∈Π is unambigu-
ously non-null. Then the following statements are equivalent:

(i) C is Π-rectangular, and for every A ∈Π, uA = u and CA = C|A.
(ii) For every f ,g ∈ F and A ∈Π:

f �↓A g⇐⇒ f Ag �↓ g.

The rationale for this result is straightforward: Since the preference �↓ is 1-MEU
with set of priors C, it follows from the analysis of Epstein and Schneider (2003) that
C is rectangular and that for every A ∈ Π, CA is obtained by generalized Bayesian
updating. But the sets CA are also those that represent the ambiguity perception of
the primitive relations �A, as they represent the ambiguity perception of �↓A.

We have therefore shown that the characterization of rectangularity and gener-
alized Bayesian updating of Epstein and Schneider can be extended to preferences
which do not satisfy ambiguity hedging, having taken care to require dynamic con-
sistency of the lower envelope (or equivalently of the upper envelope), rather than
of the primitive, preference relations. The relations between dynamic consistency of
the primitives {�A}A∈Π′ and of the lower envelopes {�↓A}A∈Π′ are not obvious and
are an open research question.

Appendix

We begin with a preliminary remark and two pieces of notation, that are used
throughout this appendix. First, notice that since u(X) is convex, it is w.l.o.g. to
assume that u(X)⊇ [−1,1]. Second, denote by B0(Σ,u(X)) the set of the functions
in B0(Σ) that map into u(X). Finally, given a nonempty, convex and weak* compact
set C of probability charges on (S,Σ), we denote for every ϕ ∈ B0(Σ),

C(ϕ) = min
P∈C

P(ϕ), C(ϕ) = max
P∈C

P(ϕ).

Proof of Proposition 2

Since the map from B0(Σ) to R defined by

ψ �→ I(u( f )+ψ)− I(ψ)

is continuous and B0 (Σ) is connected, the set

J = {I(u( f )+ψ)− I(ψ) : ψ ∈ B0(Σ)}
=
{

I
(

u( f )+
1−λ

λ
u(g)

)
− I
(

1−λ
λ

u(g)
)

: g ∈ F, λ ∈ (0,1]
}
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is connected. That is, it is an interval. From Lemma B.4 in GMM, it follows that

J = [C(u( f )), C(u( f ))].

Let
M( f ) = {x ∈ X : ∃λ ∈ (0,1], ∃h ∈ F such that xλ h∼ f λ h}.

We have x ∈M( f ) iff

u(x) = I
(

u( f )+
1−λ

λ
u(h)

)
− I
(

1−λ
λ

u(h)
)

iff x ∈ u−1(J). Hence, u(M( f ))⊆ J. Conversely, if t ∈ J, t ∈ [C(u( f )), C(u( f ))] and
there exists x ∈ X such that u(x) = t. Clearly, x ∈M( f ), whence u(M( f )) = J. We
conclude observing that

C∗( f ) = u−1
(

[min
P∈C

P(u( f )), max
P∈C

P(u( f ))]
)

= u−1 (J)= u−1
(

u(M( f ))
)

.

Proof of Proposition 3

To prove the statement for �↓ (that for �↑ is proved analogously), we only need to
show that

f �↓ g⇐⇒C(u( f ))≥ C(u(g)).

Applying the definition of �↓ and the representation of (3), we have that f �↓ g iff
for every x ∈ X ,

P(u(g))≥ u(x) for all P ∈ C ⇒ P(u( f ))≥ u(x) for all P ∈ C.

That is, iff for every x ∈ X ,

C(u(g))≥ u(x)⇒C(u( f ))≥ u(x).

This is equivalent to C(u( f ))≥ C(u(g)), concluding the proof.

Proof of Proposition 4

We have proved in Proposition 3 that �↓ is represented by the functional C(u(·)),
and �↑ by C(u(·)). Consider � and �↓, and notice that (GMM, Proposition 7) for
any f ∈ F, C(u( f ))≤ I(u( f ))≤ C(u( f )). It is clear that C(u( f ))≤ I(u( f )) is tanta-
mount to saying that for every x ∈ X ,

x � f ⇒ x �↓ f .

The argument for � and �↑ is analogous.



Revealed Ambiguity and Its Consequences: Updating 15

Proof of Lemma 1

(i) ⇔ (ii): Assume that, for every A ∈ Π, f ∼A f Ag for every f ,g ∈ F, hence,
for every h ∈ F [λ f +(1−λ )h] ∼A [λ f +(1−λ )h]A[λg +(1−λ )h], that is λ f +
(1−λ )h∼A λ f Ag+(1−λ )h, thus f ∼∗A f Ag. Conversely, if f ∼∗A f Ag for every
f ,g ∈ F, then in particular f ∼A f Ag for every f ,g ∈ F.

(ii)⇔ (iii): By (3), f ∼∗A f Ag iff P(uA( f )) = P(uA( f Ag)) for all P∈ CA. It imme-
diately follows that CA(uA( f )) = CA(uA( f Ag)). By Proposition 3, this is equivalent
to f ∼↓A f Ag.

Conversely, suppose that f ∼↓A f Ag for every f ,g ∈ F. Consider x �A y. Since
x∼↓A xAy, it follows from Proposition 3 that

uA(x) = min
P∈CA

[uA(x)P(A)+uA(y)(1−P(A))]

= uA(x) min
P∈CA

P(A)+uA(y)(1− min
P∈CA

P(A)).

Since uA(x) > uA(Y ), this implies that minP∈CA P(A) = 1, or equivalently, that
P(A) = 1 for all P ∈ CA. It follows that P(uA( f )) = P(uA( f Ag)) for all P ∈ CA,
which is equivalent to f ∼∗A f Ag.

Proof of Theorem 1

First, we observe that the fact that (7) implies CA = C|A is a consequence of Propo-
sition A.1 in GMM. That it implies uA = u is seen by taking f = x and g = x′ to
show that x �A x′ ⇔ x � x′. The converse is trivial.

(i) ⇔ (ii): f Ag �∗ g for all P ∈ C iff
∫

A u( f )dP +
∫

Ac u(g)dP ≥ ∫A u(g)dP +∫
Ac u(g)dP for all P ∈ C iff

∫
A u( f )dP ≥ ∫A u(g)dP for all P ∈ C iff PA(u( f )) ≥

PA(u(g)) for all P ∈ C.
(i) ⇒ (iii): Suppose that u = uA. We first observe that it follows from

Proposition 1 that for every f ∈ F and x ∈ X , with obvious notation,

x ∈C∗A( f )⇐⇒CA(u( f ))≤ u(x)≤ CA(u( f )). (12)

Next, we prove that for every f ∈ F and x ∈ X , again with obvious notation,

x ∈C∗( f Ax)⇐⇒C|A(u( f ))≤ u(x)≤ C|A(u( f )). (13)

To see this, apply again Proposition 1 to find

x ∈C∗( f Ax)⇐⇒C(u( f Ax))≤ u(x)≤ C(u( f Ax)).

That is, x ∈C∗( f Ax) iff both

min
P∈C

∫
S

u( f Ax)dP≤ u(x) (14)
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and
u(x)≤max

P∈C

∫
S

u( f Ax)dP. (15)

Denote resp. P and P the probabilities in C that attain the extrema in (14) and (15).
Then we can rewrite (14) as follows:

u(x)≥ 1
P(A)

∫
A

u( f )dP,

which is equivalent to saying that

u(x)≥min
P∈C

∫
S

u( f )dPA = C|A(u( f )).

Analogously, (15) can be rewritten as

u(x)≤ 1
P(A)

∫
A

u( f )dP,

which is equivalent to

u(x)≤max
P∈C

∫
S

u( f )dPA = C|A(u( f )).

This ends the proof of (13).
To prove (i), notice that x � x′ ⇒ x �A x′ obviously follows from the assumption

u = uA, and that, given (12) and (13), (9) follows immediately from the assump-
tion C|A = CA.

(iii)⇒ (i): First, observe that the assumption that x � x′ ⇒ x �A x′ implies u = uA
by Corollary B.3 in GMM. Hence, it follows from (12) and (13) above that (9) is
equivalent to

CA(u( f ))≤ u(x)≤ CA(u( f ))⇐⇒C|A(u( f ))≤ u(x)≤ C|A(u( f )).

In particular, this implies that for every ϕ ∈ B0(Σ,u(X)),

min
P∈C|A

P(ϕ) = min
Q∈CA

Q(ϕ) (16)

The result that C|A = CA now follows from two applications of Proposition A.1 in
GMM.

(i)⇒ (iv): By Proposition 3 and the assumption that uA = u, for every f ∈ F and
x ∈ X we have that f �↓A x iff Q(u( f ))≥ u(x) for all Q ∈ CA. Next, we show that

f Ax �↓ x⇐⇒ P(u( f ))≥ u(x) for all P ∈ C|A, (17)

so that the result follows from the assumption that C|A = CA.
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To see why (17) holds, notice that by Proposition 3, f Ax �↓ x iff P(u( f Ax)) ≥
u(x) for all P ∈ C. Equivalently, for every P ∈ C,∫

A
u( f )dP+(1−P(A))u(x)≥ u(x),

which holds iff PA(u( f )) ≥ u(x) (recall that P(A) > 0 for all P ∈ C). In turn, the
latter is equivalent to saying that P(u( f ))≥ u(x) for every P ∈ C|A.

(iv) ⇒ (i): We first show (mimicking an argument of Siniscalchi (2001)) that
(10) implies that uA = u. To see this, notice that we have uA(x)≥ uA(x′) iff x �A x′
iff xAx′ �↓ x′ iff

min
P∈C
[
u(x)P(A)+u(x′)(1−P(A))

]≥ u(x′).

Using the assumption that minP∈C P(A) > 0, the latter is equivalent to u(x)≥ u(x′),
proving that uA = u.

We now show that C|A = CA by showing that (16) holds for every ϕ ∈
B0(Σ,u(X)), so that the result follows again from Proposition A.1 in GMM. As
argued above, (10) holds for f and x iff

P(u( f ))≥ u(x) for all P ∈ C|A⇐⇒ Q(u( f ))≥ u(x) for all Q ∈ CA.

Fix ϕ ∈ B0(Σ,u(X)) and suppose that, in violation of (16), α ≡ minP∈C|A P(ϕ) >
minQ∈CA Q(ϕ)≡ β . Then there exists γ ∈ (β ,α). Let x denote the consequence such
that u(x) = γ . By the assumption we just made, we have that (if f ∈ F is such that
u( f ) = ϕ),

min
P∈C|A

P(u( f )) > u(x) and u(x) > min
Q∈CA

Q(u( f )),

which, as proved above (the proof for strict preference works mutatis mutandis as
that for weak preference, recalling that C|A is weak∗ compact), is equivalent to
f Ax�↓ x and f ≺↓A x, a contradiction. Suppose instead that α < β and let γ ∈ (α,β ).
In this case we obtain

min
P∈C|A

P(u( f )) < u(x) and u(x) < min
Q∈CA

Q(u( f )),

which is equivalent to f �↓A x and x �↓ f Ax (to see the latter, let P∗ ∈ C be
the probability whose posterior minimizes the left-hand inequality; it follows that
minP∈C P(u( f Ax))≤ P∗(u( f Ax)) < u(x)), again a contradiction. This concludes the
proof of (16).
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Number 1130, April 2002). We are grateful to Marciano Siniscalchi for many conversations on the
topic of this paper.
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Notes

1We owe this example to Denis Bouyssou, who showed it to us at the RUD 1997 conference in
Chantilly.

2The multiple priors model of Gilboa and Schmeidler (1989) corresponds to the special case
in which a( f ) = 1 for all acts f . The Choquet expected utility model of Schmeidler (1989) is also
seen to be a special case.

3In the statement by “preference closure” of a subset Y ⊆ X , we mean u−1
(

u(Y )
)

.
4In this and the remaining results of this section, we omit the equivalent statements involving

the upper envelope preference relation.
5We owe this presentation of rectangularity to Marciano Siniscalchi.
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Dynamic Decision Making When Risk
Perception Depends on Past Experience

M. Cohen(�), J. Etner, and M. Jeleva

Keywords: Dynamic decision making · Past experience · Rank dependent utility
model · Recursive model · Risk perception

1 Introduction

Decision theory under risk had for a long time focused mainly on the impact of dif-
ferent risk and wealth perceptions on the agents’ optimal decisions. In these classical
studies, risk perceptions, as well as utility functions, depend only on the considered
decision characteristics (pairs probabilities-outcomes) and thus cannot be influenced
by outside factors. However, some psychological studies (see Slovic (2000)) point
out the fact that risk perception may be strongly influenced by the context in which
the individuals are when they take their decisions. Context can take different forms:
(a) it can correspond to past experience (relevant, for instance, in insurance deci-
sions, as noticed in Kunreuther (1996) and Browne and Hoyt (2000) and in stock
markets behavior as noticed by Hirshleifer and Shumway (2003)), (b) it can also cor-
respond to anticipatory feelings about some future states (Caplin and Leahy 2001)
(c) it can be related to the decision outcomes presentation (leading then to the fram-
ing effect pointed out by Tversky and Kahneman (1986)).

In this paper, we focus on the context generated by past experience, correspond-
ing to a sequence of events occurring before the moment of the decision. This past
experience can concern different events: (a) past realizations of the decision-relevant
events (as accidents when an insurance decision is considered) or (b) past realiza-
tions of other events (such as weather conditions when a stock market behavior is
considered).
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The influence of past experience on decisions appears in particular on insurance
markets for catastrophic risk. It appears that in California, before the earthquake in
1989, 34% of the individuals consider that insurance against earthquake is useless;
after the earthquake, they are only 5% to have this opinion. Moreover, the earth-
quake occurrence increases insurance demand: 11% of the non insured individuals
subscribed an insurance contract (Kunreuther 1996). These results are confirmed
by an empirical study from Browne and Hoyt (2000) that reveals a strong positive
correlation between the number of flood insurance contracts subscribed in a year
in a given State of the US and losses due to flood in the same State the previous
year. A relation between past experience and insurance demand appears also in ex-
perimental studies when individuals are well informed about the probability of loss
realization and about the independence of losses in successive periods (McClelland,
Schulze, & Coursey 1993; Ganderton, Brookshire, McKee, Stewart, & Thurston
2000; Papon 2004). However, the results are less clear-cut: if the existence of a
strong correlation between past damages and insurance demand is well established,
its sign is less clear. Indeed, two opposite effects can be identified corresponding to
availability bias and gambler fallacy in the sense of Tversky and Kahneman (1973).
The availability bias corresponds to an overestimation of the probability of an event
that recently occurred and implies an increase in insurance demand after a natural
disaster, this demand being low after a long period without a catastrophe. The op-
posite occurs with the gambler’s fallacy effect: individuals underestimate the prob-
ability of repetition of the event that they just observed and thus buy less insurance
after a catastrophe.

When events are independent over time, behaviors that we have just described
cannot be explained in the standard expected utility model. Indeed, in this model,
past experienced losses lead only to a wealth decrease and not to a probability as-
sessment modification.

Relaxing the axiom of context independence of preferences under uncertainty
can allow the rationalization of some decisions considered as inconsistent with re-
spect to the existing criteria because reflecting unstable preferences as for instance
the modification of insurance demand against catastrophic risk after the occurrence
of a catastrophe.

The aim of the paper is to propose a preferences representation model under
risk where risk perception can be past experience dependent. A first step consists in
considering a one period decision problem where individual preferences are no more
defined only on decisions but on pairs (decision, past experience). The obtained
criterion is used in the construction of a dynamic choice model under risk.

The underlying model of decision making under risk that is used here is the
RDU (Rank Dependent Utility), proposed by Quiggin (1982) and Yaari (1987). This
model has the advantage to allow a non linear treatment of probabilities, in addition
to a non linear treatment of outcomes. When one period decisions are considered,
we adapt the RDU axiomatic system of Chateauneuf (1999) to represent preferences
on pairs (decision, past experience).

To better capture the long term impact of past experience on decisions, after the
preferences representation on a point of time, we model intertemporal decisions.
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RDU model can generate dynamic inconsistency. To rule out this problem, we use
the recursive model of Kreps and Porteus (1978). In the latter model, risk aversion is
characterized by a standard utility function and the agents’ past experience is sum-
marized by a sequence of monetary payoffs, resulting from the past decisions and
the lottery realizations. In the present paper are introduced additional aspects: (a)
probabilities treatment is non linear; (b) past experience does not reduce anymore to
the only payoffs, but is characterized by a more general sequence of events, related
or not to the decision relevant events. To achieve this preferences representation,
we assume that preferences at a point of time are represented by the “past experi-
ence dependent” RDU previously axiomatized and modify the dynamic consistency
axiom of KP in order to apply to states and not to payments.

The paper starts with the “past experience dependent” preferences representation
at a point of time. We propose an axiomatic foundation for “past experience
dependent” rank dependent utility under risk. In Section 3, we consider a dynamic
choice problem and prove a representation theorem. Section 4 contains an illustra-
tive example.

2 Behavior at a Point of Time

In this section, we consider a static problem. We propose an axiomatic representa-
tion of preferences by a rank dependent expected utility which takes into account
the agent’s past experience.

2.1 Notations and Definitions

Decision problem is characterized by a set of risky perspectives in which an agent
has to make his choice and by a set of states that characterize the agent’s past
experience.

Let Z denote a set of outcomes. We assume that Z is a non empty connected
compact and metric space and L is the set of lotteries over Z.
S is a set of realized states, assumed nonempty, compact, connected separable

topological space. An element of S×L will be called a “past experience dependent
lottery”.

� is a binary relation on S×Lwhich denotes the preference relation of a decision
maker. We denote by � the strict preference and by ∼ the indifference.

Axiom 1 � is a weak order on S ×L.

The preferences representation of � on S×L will be built in two steps. We start
with the preference relation on s×L and its representation by a Rank Dependant
Utility (RDU) model. Then, we give some additional assumptions to achieve a RDU
preferences representation on S ×L.
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2.2 Preferences on s×L and RDU

In this section we consider the restrictions of � to s×L that we denote by �s . For
a given state s, we face a standard decision problem under risk.

The RDU representation of the preference relation �s is obtained by the follow-
ing axioms, proposed in Chateauneuf (1999).

From Axiom 1, it follows directly that �s is a weak order on s×L.

Axiom 2 (Continuity) For a given s ∈ S, let Pn = (s,Ln) ,P = (s,L) ,Q = (s,L′) ∈
s×L, with Pn weakly converging to P, then ∀n,Pn �s Q ⇒ P �s Q and ∀n,Pn �s
Q⇒ P �s Q.

For a given s, it is possible to completely order the space Z . The definition
of the first order stochastic dominance (FSD) becomes L FSD L′ if and only if
PL (z ∈ Z, (s,z)�s (s,x))≥ PL′ (z ∈ Z, (s,z)�s (s,x)) ∀x ∈ Z .

The next axiom guarantees that �s preserves first order stochastic dominance.

Axiom 3 For any L,L′ ∈ L such that L FSD L′, (s,L) �s (s,L′) .

Axiom 4 (Comonotonic Sure-Thing Principle) For any s ∈ S, let lotteries P =((
s,zi
)

pi
)
,Q =

((
s,yi
)

pi
)

be such (s,zi0 ) ∼s
(
s,yi0

)
, then P �s Q implies P′ �s

Q′, for lotteries P′,Q′ obtained from lotteries P and Q by merely replacing the ith0
common pair (s,zi0 ), by a common pair (s,xi0 ) again in ith0 rank both in P′ and Q′.

Axiom 5 (Comonotonic Mixture Independance Axiom) For any s ∈ S, and for
any lotteries P =

((
s,zi
)

pi
)

and Q =
((

s,yi
)

qi
))

,
For any p ∈ [0,1] , for any a,b,c,d ∈ Z

• P1 = (1− p)
(
s,zmin

)
+ p(s,a)∼s Q1 = (1− p)

(
s,ymin

)
+ p(s,b)

and P2 = (1− p)
(
s,zmin

)
+ p(s,c)∼s Q2 = (1− p)

(
s,ymin

)
+ p(s′,d)

imply ∀α ∈ [0,1] ,αP1 +(1−α)P2 ∼s αQ1 +(1−α)Q2

• P1 = (1− p)(s,zmax)+ p(s,a)∼s Q1 = (1− p)(s,ymax)+ p(s′,b)

and P2 = (1− p)(s,zmax)+ p(s,c)∼s Q2 = (1− p)(s,ymax)+ p(s′,d)
imply ∀α ∈ [0,1] ,αP1 +(1−α)P2 ∼s αQ1 +(1−α)Q2

Theorem 1. Let the preference relation �s on s×L satisfy Axioms 1–5, then there
exist an increasing function ϕs : [0,1]→ [0,1], with ϕs (0) = 0, ϕs (1) = 1 and a
utility function, vs : Z → R, which is increasing, continuous, and unique up to an
affine transformation such that:
∀L,L′ ∈ L, (s,L) �s (s,L′) iff Vs(L)≥Vs(L′) with

Vs(L) =
n

∑
i=1

(
ϕs(

n

∑
j=i

p j)−ϕs(
n

∑
j=i+1

p j)

)
× vs(zi)
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Proof. Chateauneuf (1999). ��
We now consider the general preferences on S ×L comparing lotteries in dif-

ferent contexts. Let us notice that the preferences on S ×L induce a preference on
S ×Z but in no case a preference on S alone.

At this stage, the payoffs evaluation depends not only on z but also on s. The
objective of this paper is to emphasize the link between risk perception and indi-
vidual context. In order to isolate this feature, we assume that only risk perceptions
depend on s. This assumption needs more discussion, mainly with respect to the
state-dependant model of Karni (1985). The main feature of Karni’s model is that
the evaluation of a given amount of money may strongly depend on the state in
which the individual is when receiving this amount. Here, the states we consider
are not of the same type: they are already realized (past) states, and not future ones.
It seems then more realistic to assume that they are more likely to influence risk
perception than future monetary evaluations.

The following axiom guarantees that the payoffs evaluations do not depend on
past experience.

Axiom 6 For any s,s′ ∈ S and any z ∈ Z , (s,z)∼ (s′,z) .

Let us notice that Axioms 3 and 6 induce the existence of a preference relation
on Z independent of S. To simplify notations, we can then write z ≥ z′ instead of
(s,z)� (s,z′) for all s ∈ S.

The following preferences representation theorem can then be formulated.

Theorem 2. Under Axioms 1–6, the weak order � on S ×L is representable by a
function V : S ×L → R. For any s,s′ ∈ S and any L,L′ ∈ L, (s,L) � (s′,L′) ⇔
V (s,L)≥V (s′,L′)

where V (s,L) =
n
∑

i=1

(
ϕs(

n
∑
j=i

p j)−ϕs(
n
∑

j=i+1
p j)

)
v(zi).

Proof. The generalization of the preferences representation of the restrictions �s to
� is allowed by the uniqueness of the probability transformation function ϕs(p) and
the independence of the utility function on s. ��

We can note that a decision maker with ϕs(p)≤ p systematically underestimates
the probabilities of the favorable events and then is called pessimist under risk.
Moreover, we obtain the following result.

Corollary 1. Let s,s′ ∈ S. ϕ(s, p)≥ ϕ(s′, p) for any p ∈ [0,1] if and only V (s,L)≥
V (s′,L) for any L ∈ L.

Proof. Let L = (z1, p1;z2, p2; ...;zn, pn) with z1 ≤ ...≤ zn. Note that this axiom im-
plies that for any z,z′ ∈ Z such that z≥ z′, (s,z) �s (s,z′) .

(i) ⇒: V (s,L) − V (s′,L) =
n
∑

i=2

(
ϕs(

n
∑
j=i

p j)−ϕs′(
n
∑
j=i

p j)
)(

v(zi)− v(zi−1)
) ≥ 0

if ϕ(s, p)≥ ϕ(s′, p) for any p ∈ [0,1];
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(ii) ⇐: if there exists p0 such that ϕ(s, p0) < ϕ(s′, p0) then for L0 = (z1,1−
p0;z2, p0),V (s,L0) < V (s′,L0). ��

This result implies that if there exists a realized state that induces pessimistic risk
perception, then an individual will dislike any decision in this context, with respect
to a context where his risk perception is less pessimistic. It is possible in this case
to consider that s is preferred to s′.

When the realized state is a past realization of decision relevant event (as loss
realizations in insurance decisions), availability bias and gambler fallacy can lead
to very different relations between past experience and pessimism. More precisely,
an individual prone to the availability bias will become more pessimistic after a loss
realization than after a no loss period whereas an individual prone to gambler’s fal-
lacy will become less pessimistic after a loss realization than after a no loss period.
Then, under availability bias, a period following the occurrence of a loss will be
perceived as worst than a period following no loss and under gambler’s fallacy, a
period following the occurrence of a loss will be perceived as better than a period
following no loss.

3 Dynamic Choice

In this section, we consider a dynamic choice problem under risk where risk percep-
tion and utility of the outcomes may depend on agents’ past experience. Preferences
at a point of time are represented as in the previous section of the paper, by a past
experience dependent RDU. It is now well known (see for instance Machina (1989))
that preferences representations models that do not verify the independence axiom
cannot verify at the same time dynamic consistency, consequentialism and reduction
of compound lotteries. To preserve dynamic consistency, as in Epstein and Schnei-
der (2003), Epstein and Wang (1994), Hayashi (2005) and Klibanoff, Marinacci,
and Mukerji (2006), a recursive model is adopted here. More precisely, we modify
the Kreps and Porteus (1978) model in order to introduce both risk perception and
past experience dependence.

3.1 Some Notations and Definitions

We consider a discrete and finite sequence of times t = 1, ...,T. Zt is the set of possi-
ble payoffs at time t. To simplify, we assume that Zt = Z which is a compact interval
of R for any t from 1 to T . A payoff realized at time t is denoted by zt . Decision
maker past experience at time t is characterized by a sequence of events, relevant
for the considered decision and denoted by st . More precisely, st = (e0,e1, ...,et)
where eτ is the event that occurred at time τ with eτ ∈ Eτ , the set of all possible
events at time τ and e0 ∈ E0 the set of all possible past experiences. St is then the
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set of possible histories up to time t verifying the recursive relation: S0 = E0 and
St = St−1×Et . We denote byM(Et) the set of distributions on Et .

At period T , LT is the set of distributions on ZT endowed with the Prohorov
metric. XT , the set of risky perspectives in which agent has to make his choice,
is assumed to be the set of closed non empty subsets of LT , endowed with the
Hausdorff metric.

By recurrence, we define, Lt , the set of probability distributions on
Ct=Zt×Xt+1×M(Et+1) with Xt+1 the set of closed non empty subsets of Lt+1.
At each period, the nature chooses a probability distribution on Et+1. The agent

cannot influence this distribution. Given this distribution, the agent has to choose
a lottery in the set Lt . The assumption of compound lotteries reduction is made
between distributions on wealth and events for a fixed period. However, this as-
sumption is relaxed between two consecutive periods.

For each period t, �t denotes a binary relation on st×Lt for a given st . We denote
�t the strict preference and ∼t the indifference.

Axiom 7 (1bis) �t is a complete order on st ×Lt .

We assume that �t verifies Axioms 2–5 on st ×Lt .
Under these previous axioms, we can represent preferences at a point of time in

the similar way to Theorem 1:

Lemma 1. For any st in St , Axioms 1bis, 2–5 are necessary and sufficient for there
to exist, for each t, a bounded continuous function vt : st ×Zt ×Xt+1×Et+1 −→ R
and a continuous function ϕ t : st× [0,1]−→ [0,1] such that for Lt ,L′t ∈Lt , (st ,Lt) �t
(st ,L′t) if and only if Vt (st ,Lt)≥Vt (st ,L′t) with

Vt (st ,Lt)=
n
∑

i=1

(
ϕ t(st ,

n
∑
j=i

p j)−ϕ t(st ,
n
∑

j=i+1
p j)

)
×vt(st ,zt ,xt+1,et+1)≡RDvt (st ,Lt) .

The proof comes immediately from the previous section. Let us notice that utility
function vt depends on past experience st whereas in a static problem, v did not de-
pend on state s. This comes from the fact that in a dynamic choice, future perspective
depends on past experience. We will precise this point in the next section.

3.2 Temporal Consistency and the Representation Theorem

We adapt the KP temporal consistency axiom to our context in the following manner.

Axiom 8 (Temporal consistency) We consider the degenerate distributions, ∆et in
M(Et) and for a given distribution δ et+1 in ∆et+1 , the degenerate distributions on
Zt×Xt+1×δ et+1 . Then, for all t, st ∈ St , et+1 ∈ Et+1, zt ∈ Zt , xt+1, x′t+1 ∈ Xt+1,

(st ,zt ,xt+1,et+1) �t
(
st ,zt ,x′t+1,et+1

)
iff (st+1,xt+1) �t+1

(
st+1,x′t+1

)
with

st+1 = (st ,et+1) at period t +1.
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st

1 

1 

(zt ,xt+1,et+1)

(zt ,x’t+1,et+1)

(st,et+1)

xt+1

x’t+1

Fig. 1

Let us consider the lotteries in Fig. 1.
The temporal consistency axiom sets that if the degenerate lottery (zt ,xt+1,et+1)

is preferred to the degenerate lottery (zt ,x′t+1,et+1) for a decision maker with past
experience st , then when et+1 is realized, the decision maker will choose xt+1 be-
tween xt+1 and x′t+1. In the same way, if at time t +1, he chooses xt+1, when et+1 is
realized, then he cannot at time t, strictly prefer (zt ,x′t+1,et+1) to (zt ,xt+1,et+1).

Lemma 2. Axioms 1bis, 2–5 and 8 are necessary and sufficient for there to exist
functions vt as in previous lemma and, for fixed {vt}, unique functions

ut : {(st ,zt ,γ) ∈ St ×Zt ×R : γ = RDvt+1 (st+1,Lt+1)}→ R
which are strictly increasing in their third argument and which satisfy
vt(st ,zt ,xt+1,et+1) = ut (st ,zt ,Lt+1maxRDvt+1 (st+1,Lt+1))
for all st ∈ St , et+1 ∈ Et+1, zt ∈ Zt , xt+1 ∈ Xt+1.

Proof. Axioms 1bis-5 and 8 are hold, Lemma 3 fix Vt (st ,Lt) . Then, Vt+1 ((st ,et+1) ,
Lt+1) = Vt+1

(
(st ,et+1) ,L′t+1

)
=⇒ Vt (st ,Lt+1) = Vt

(
st ,L′t+1

)
for a given et+1 (ax-

iom TC). Consequently, ut is strictly increasing in its third argument.
(ii) If Vt and ut are given with ut is strictly increasing in its third argument, Vt

verifies Lemma 3. Then Axioms 1bis-6 hold. ut is increasing in its third argument
then Vt (st ,L)≥Vt (st ,L′)⇐⇒ ut (st ,zt ,Vt+1 (st+1,L))≥ ut (st ,zt ,Vt+1 (st+1,L′))
⇐⇒Vt+1 ((st ,et+1) ,L)≥Vt+1 ((st ,et+1) ,L′). Then Axiom 8 holds. ��
As we can see, in the dynamic problem, utility functions vt depend on past ex-

perience st . Indeed, at time T , utility function does not depend on past experience.
But, at time T − 1, the certainty equivalent of lottery, given by uT−1, depends on
past experience sT−1. Consequently, vT−1 directly depends on past experience. Re-
cursively, at each period, certainty equivalent depends on past experience and then
utility function too.

Theorem 3. Axioms 1bis, 2–5 and 8 are necessary and sufficient for there to exist a
continuous function v : ST ×ZT → R and, for t = 0, ...,T −1, continuous functions
ut : St×Zt×R→ R, strictly increasing in their third argument, so that, vT (sT ,zT ) =
v(zT ) and, recursively

vt(st ,zt ,xt+1,et+1) = Lt+1maxut (st ,zt ,RDvt+1 (st+1,Lt+1)),
then, for all st ∈ St , Lt ,L′t ∈ Lt , (st ,Lt) �t (st ,L′t) iff RDvt (st ,Lt)≥ RDvt (st ,L′t)
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with RDvt (st ,Lt) =
n
∑

i=1

(
ϕ t(st ,

n
∑
j=i

p j)−ϕ t(st ,
n
∑

j=i+1
p j)

)
× vt(st , lt).

Proof. We adapt the proof of the theorem in Kreps and Porteus. ��
Note that the preference representation requires v, the functions ut and the func-

tions ϕ t to implicitly define functions vt . As in Kreps and Porteus, it introduces the
concept of timing of resolution of uncertainty. This representation can explain some
intertemporal behaviors not explained by the standard Expected Utility model. We
propose in the next section an illustration.

4 An Insurance Demand Illustration

In this section, we study the implications of the previous model for multi-period
demand decisions on the insurance market. It appears that introducing a relation be-
tween realized damages and risk perception gives an explanation for some observed
insurance demand patterns against catastrophic risk.

We study the optimal insurance demand strategy of an individual for three peri-
ods of time (years). The individual faces a risk of loss of amount L at each period.
There exists a perfectly competitive insurance market proposing insurance contracts
at a fair premium. Insurance contracts are subscribed for one period. Consequently,
the individual has to choose an amount of coverage at each period. We assume that
for one period the estimated probability of incurring a loss is p and that losses in
successive periods are independent:

P (loss at period t/loss in period t−1) = p.
At each period, insurance contracts Ct are proposed. They are characterized by

pairs (indemnity It , premium Πt) such that It = α tL with α t ∈ [0,1] and Πt = α t pL.
At period t = 0, the agent receives a certain wealth, z0, and he is in the state s0. Past
experience is resumed by the sequences of events {damage, no damage}. We denote
by et the event “damage at period t” and by e′t the event “no damage at period t”. At
each period, individual has to choose α t . The corresponding decision tree is given
in Fig. 2.

At a point of time, the probability transformation function is assumed to be the
following:

ϕ t (p,st) = p

t
∑

τ=0
eτ

with e0 = 1
2 , et = 1

2 and e′t = 0 for t = 1,2.
In this case, the individual is optimistic at period 0 and modifies his risk percep-

tion with respect to damages, occurring or not: the occurrence of a damage modifies
his risk perception and he becomes less optimistic, if no damages occurs, his risk
perception does not change. This kind of risk perception illustrates in some sense
the previously mentioned availability bias.

To better isolate the risk perception influence, we assume that preferences at the
final period are represented by a linear utility function under certainty.
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Moreover, for simplicity, we suppose that the individual is neutral toward the
time of resolution of uncertainty (in the sense of Kreps and Porteus), so that

ut (st ,zt ,RDvt+1 (st+1,Lt+1)) = RDvt+1 (st+1,Lt+1) .

The dynamic choice problem solves in several steps. Note that, due to the linear
utility assumption, only corner solutions will prevail.

(i) For each terminal node, we have to compute v(s3,z3) = z3, with z3 the wealth
at the final period.

(ii) For each final decision node, we have to evaluate the individual utility and max-
imize it.

For example, at node L3, for a coverage rate α3, the utility writes:

V3 (s3,L3) = RDv(s3,L3) = v
(
s3,z3

)
+
[
v(s3,z3)− v

(
s3,z3

)]×ϕ3 (1− p,s3)

with z3 = z2−Π3−L + I3 = z2−L + α3L(1− p), z3 = z2−Π3 = z2−α3Lp, and

ϕ3 (1− p,s3) = (1− p)e0+e1+e2 = (1− p)
3
2 .

Then,

V3 (s3,L3) = z2−L+α3L(1− p)+L [1−α3]× (1− p)
3
2

= α3L(1− p)
[
1− (1− p)

1
2

]
+ z2−L+L(1− p)

3
2

As utility is an increasing function of the coverage rate, the optimal coverage is
the full coverage and the utility value becomes:

V3 (s3,L∗3) = z2− pL (1)
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In the same way, we obtain that V3 (s′3,L
′∗
3 ) = z2 − pL for any α ′3 ∈ [0,1],

V3 (s′′3 ,L
′′∗
3 ) = z2− pL for any α ′′3 ∈ [0,1] and V3 (s′′′3 ,L′′′∗3 ) = z2−L

(
1− (1− p)1/2

)
for α ′′′∗3 = 0.

(iii) At period 2, we have four nodes which values are:
u2
(
s2,z2,RDv3

)
= z2− pL with z2 = z1−Π2−L+ I2,

u2 (s2,z2,RDv3) = z2− pL with z2 = z1−Π2,
u2
(
s2,z′2,RDv3

)
= z′2− pL with z′2 = z1−Π′2−L+ I′2 and

u2 (s2,z′2,RDv3) = z′2−L
(

1− (1− p)1/2
)

with z′2 = z1−Π′2.

(iv) We repeat step (ii). Then, at node L2, for a coverage rate α2, the utility writes:

V2 (s2,L2) = RDv2 (s2,L2) = v2
(
s2,z2

)
+
[
v2 (s2,z2)− v2

(
s2,z2

)]×ϕ2 (1− p,s2)

with v2
(
s2,z2

)
= u2

(
s2,z2,RDv3

)
= z2 − pL = z1 − L(1+ p) + α2L(1− p) ,

v2 (s2,z2) = u2 (s2,z2,RDv3) = z2 − pL = z1 − pL− α2 pL and ϕ2 (1− p,s2) =
(1− p)e0+e1 = 1− p.

Then,
V2 (s2,L2) = z1−2Lp

for any α2 ∈ [0,1] .
At node L′2, we have to pay attention to the value of v2

(
s′2,z

′
2

)
= u2

(
s′2,z

′
2,RDv3

)
and v2 (s′2,z

′
2) = u2 (s′2,z

′
2,RDv3) since, in the RDU framework, we have to rank

utility.
In our example, v2

(
s′2,z

′
2

)
< v2 (s′2,z

′
2) . Thus, we obtain that

V2
(
s′2,L

′
2
)
= RDv2

(
s′2,L

′
2
)
= v2

(
s′2,z

′
2

)
+
[
v2
(
s′2,z

′
2
)− v2

(
s′2,z

′
2

)]
×ϕ2

(
1− p,s′2

)
with v2

(
s′2,z

′
2

)
= z′2 − pL = z1 − L(1+ p) + α ′2L(1− p) , v2 (s′2,z

′
2) =

z′2 − L
(

1− (1− p)1/2
)

= z1 − L
(

1− (1− p)1/2
)
− α ′2 pL and ϕ2 (1− p,s′2)

= (1− p)e0+e′1 = (1− p)1/2 .
Then,

V2
(
s′2,L

′
2
)

= z1 +Lp
[
(1− p)1/2−2

]
+α ′2L(1− p)1/2

[
(1− p)1/2−1

]
As utility is a decreasing function of the coverage rate, the optimal coverage is

null and the value of utility becomes

V2
(
s′2,L

′∗
2
)

= z1 +Lp
[
(1− p)1/2−2

]
(2)

(v) At period 1, we have two nodes which values are:
u1
(
s1,z1,RDv2

)
= z1−2pL with z1 = z0−Π1−L+ I1 and

u1 (s1,z1,RDv2) = z1 +Lp
[
(1− p)1/2−2

]
with z1 = z0−Π1.
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Then, at node L1, for a coverage rate α1, the utility writes:

V1 (s1,L1) = RDv1 (s1,L1) = v1
(
s1,z1

)
+
[
v1 (s1,z1)− v1

(
s1,z1

)]×ϕ1 (1− p,s1)

with v1
(
s1,z1

)
= z1−2pL = z0−Π1−L+I1−2pL = α1L(1− p)+z0−L(1+2p) ,

v1 (s1,z1) = z1 + Lp
[
(1− p)1/2−2

]
= z0 − α1 pL + Lp

[
(1− p)1/2−2

]
and

ϕ1 (1− p,s1) = (1− p)e0 = (1− p)1/2 .
Then,

V1 (s1,L1) = α1L(1− p)1/2
[
(1− p)1/2−1

]
+ z0−L(1+2p)

+L
[

p(1− p)1/2 +1
]
(1− p)1/2

As utility is a decreasing function of the coverage rate, the optimal coverage is
zero and the value of utility becomes

V1 (s1,L∗1) = z0−L(1+2p)+L
[

p(1− p)1/2 +1
]
(1− p)1/2 (3)

To summarize, the results are the following:

• α1 = 0;
• α2 = 0 if no loss at period 1;

α2 ∈ [0,1] if loss at period 1;
• α3 = 0 if no loss at periods 1 and 2;

α3 = 1 if loss at periods 1 and 2;
α3 ∈ [0,1] else.

In this illustration, the individual chooses not to buy insurance in the first pe-
riod. In the second period, he chooses not to be covered only if he had not damage.
Finally, in the third period, the two extreme insurance coverage decisions are possi-
ble: if the individual had never incurred a loss, he chooses not to buy insurance; if
he had two consecutive losses, he buys full coverage and in the intermediate cases,
he is indifferent between all the insurance levels.

This example underlines the fact that what is important for the decision maker
is not only the event occurring in the period directly preceding the moment of the
decision, but the all sequence of events, that is all the past experience.

Let us now compare the predictions of our model with those of some standard
models:

• The particular case when ϕ t (p,st) = p : this corresponds to the standard version
of a recursive expected utility model.
The results are then the following: α i ∈ [0,1] for any i = 1,2,3. The individual is
indifferent between different amounts of coverage and this, at any period and for
any experienced damage.
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• The resolute choice model proposed by McClennen (1990). In this non conse-
quentialist model, all the strategies are evaluated at the root node and compared
according to the root node preferences. We consider two cases: the case when
one-shot preferences are EU and the case when one-shot preferences are RDU.
The results are then the following:
(1) For EU preferences, α i ∈ [0,1] for any i = 1,2,3. The individual is indiffer-
ent between different amounts of coverage and this, at any period and for any
experienced damage.
(2) For RDU preferences, α i = 0 or 1 for any i.

– For ϕ (p) < p, complete coverage at any period and for any experienced loss
is preferred to a strategy consisting in buying insurance only after experiencing
a loss

– For ϕ (p) > p, no coverage at any period and for any experienced loss is
preferred to a strategy consisting in buying insurance only after experiencing a
loss

5 Concluding Remarks

The insurance demand example shows that our model allows to explain the modifi-
cations in the insurance demand behavior over time observed for catastrophic risk
and given in the introduction. It well appears that past experience have a cumula-
tive effect on decisions: an individual can maintain constant its insurance demand
after one occurrence of the loss and modify it only after two, or more consecutive
loss events. In this example, we assumed that at any period observing a loss renders
the individual more pessimistic. This explains a behavior in accordance with the
availability bias. The gambler’s fallacy attitude could be explained if the individual
becomes more and more optimistic after experiencing losses.

The comparison with other models shows that neither the recursive model alone,
nor the RDU model alone can explain all the observed pattern of behavior.

The insurance example corresponds to the particular case when past experience
(context) is composed by the decision-relevant events. Considering different events,
that do not directly influence the outcomes (as weather condition in investment de-
cisions) will make even easier to underline the new insights of the present model
because of the complete absence of these events in the preferences representations
of the standard models.
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Representation of Conditional Preferences
Under Uncertainty

G.B. Asheim

Keywords: Decision making under uncertainty · Representation results · Game
theory

1 Introduction

The purpose of this paper is to present axioms for systems of conditional prefer-
ences, and to provide representation results for various sets of such axioms. The
preferences are over acts, being functions from uncertain states to outcomes, while
the representations are in terms of beliefs over the states and utility of the outcomes.
It builds on Asheim (2006, Chap. 3) and Asheim and Perea (2005).

The central question posed by the present paper is the following: Does a prefer-
ence between two acts change when new information, ruling out states at which the
two acts lead to the same outcomes, becomes available? At first thought one may
conclude that such news are uninformative about the relative merits of the two acts
and hence should not influence the preference of the decision maker. However, by
considering Kreps and Wilson’s (1982) sequential equilibrium in game Γ1 of Fig. 1,
we are lead towards a different conclusion. Assume that both players’ payoffs are
less than one if F and f are chosen. Still, the play of F by player 1 is part of a
sequential equilibrium where 1 believes that 2 makes his rational choice of play-
ing d. This means that player 1 unconditionally considers all three of his strategies
as equally good, yielding him a payoff of one. However, if by surprise player 2 re-
sponds to F by playing f , then player 1’s preference between FT and FB will be
refined (provided that FT and FB yield different payoffs for 1 when 2 chooses f ).
Treating player 1 as the decision maker, player 2’s strategies d and f as the uncertain
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states he faces, and FT and FB as two acts, we see that 1’s preference between these
two acts change when state d is ruled out, even though FT and FB lead to the same
outcome in this state.

In Asheim and Perea (2005) we epistemically characterize sequential equilibrium
and van Damme’s (1984) quasi-perfect equilibrium, and define the corresponding
non-equilibrium concepts – sequential rationalizability and quasi-perfect rational-
izability. These characterizations require that conditional preferences be specified.

How can conditional preferences be specified? There are various ways to do so.
One possibility is to represent a system of conditional preferences by means of a
conditional probability system (CPS) where each conditional belief is a subjective
probability distribution.1 Another possibility is to apply a single sequence of sub-
jective probability distributions – a so-called lexicographic probability system (LPS)
as defined by Blume, Brandenburger, and Dekel (1991) – and derive the conditional
beliefs as the conditionals of such an LPS. Since each conditional LPS is found by
constructing a new sequence, which includes the well-defined conditional probabil-
ity distributions of the original sequence, each conditional belief is itself an LPS.

However, the analysis of Asheim and Perea (2005) shows that neither a CPS nor
a single LPS may adequately represent a system of conditional preferences.

Quasi-perfectness cannot always be modeled by a CPS since the modeling of
preference for cautious behavior may require lexicographic probabilities. To see
this, consider game Γ2 of Fig. 2. In this game, if player 1 believes that player 2
chooses rationally, then player 1 must assign probability one to player 2 choosing d.
Hence, if each (conditional) belief is associated with a subjective probability distri-
bution – as is the case with the concept of a CPS – and player 1 believes that his
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opponent chooses rationally, then player 1 is indifferent between his two strategies.
This is inconsistent with quasi-perfectness, which requires players to have prefer-
ence for cautious behavior, meaning that player 1 in Γ2 prefers D to F .

Moreover, sequentiality cannot always be modeled by means of conditionals of
a single LPS since preference for cautious behavior is induced. To see this, con-
sider a modified version of Γ2 where an additional subgame is substituted for the
(0,0)-payoff, with all payoffs in that subgame being smaller than one. If player 1’s
conditional beliefs over strategies for player 2 is derived from a single LPS, then a
well-defined belief conditional on reaching the added subgame entails that player
1 deems possible the event that player 2 chooses f , and hence, player 1 prefers D
to F . This is inconsistent with sequentiality, under which F is a rational choice.

Therefore, this paper reports on a new way of representing a system of condi-
tional preferences, by means of what Andrés Perea and I call a system of condi-
tional lexicographic probabilities (SCLP) (cf. Asheim & Perea, 2005). In contrast
to a CPS, an SCLP may induce conditional beliefs that are represented by LPSs
rather than subjective probability distributions. In contrast to the system of con-
ditionals derived from a single LPS, an SCLP need not include all levels in the
sequence of the original LPS when determining conditional beliefs. Thus, an SCLP
ensures well-defined conditional beliefs representing nontrivial conditional prefer-
ences, while allowing for flexibility w.r.t. whether to assume preference for cautious
behavior. This is accomplished by combining an LPS with a length function, spec-
ifying for each conditioning event the number of levels of the original LPS used to
represent the conditional preferences.

The analysis is based on the Anscombe–Aumann framework (Anscombe &
Aumann, 1963), where preferences are defined over functions from states to objec-
tive randomizations over outcomes. Such functions will be referred to as Anscombe–
Aumann acts (in contrast to acts in the Savage (1954), sense; i.e., functions from
states to deterministic outcomes). A strategy in a game is a function that for each
opponent strategy choice, determines an outcome. A pure strategy determines for
each opponent strategy a deterministic outcome, while a mixed strategy determines
for each opponent strategy an objective randomization over the set of outcomes.
Hence, a pure strategy is an example of an act in the sense of Savage (1954), while
a mixed strategy is an example of an act in the generalized sense of Anscombe and
Aumann (1963).

Allowing for objective randomizations and using Anscombe–Aumann acts
are convenient in game-theoretic applications for the following reason: The
Anscombe–Aumann framework allows a player’s payoff function to be a von
Neumann-Morgenstern (vNM) utility function determined from his preferences
over randomized outcomes, independently of the likelihood that he assigns to the
different strategies of his opponent. This is consistent with the way games are nor-
mally presented, where payoff functions for each player are provided independently
of the analysis of the strategic interaction.

In addition to allowing for flexibility concerning how to specify conditional pref-
erences, the Anscombe–Aumann framework will be generalized in two other ways
in this paper.
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First, I will follow Blume et al. (1991) by imposing the conditional Archimedean
property (also called conditional continuity) instead of Archimedean property (also
called continuity). This is important for modeling caution, which requires a player to
take into account the possibility that the opponent makes an irrational choice, while
assigning probability one to the event that the opponent makes a rational choice.
That is, even though any irrational choice is infinitely less likely than some rational
choice, it is not ruled out. Such discontinuous preferences are also useful when
modeling players’ preferences in extensive games.

Second, I will relax the axiom of completeness to conditional completeness.
While complete preferences will normally be represented by means of subjective
probabilities (cf. Propositions 1, 2, 3, and 5 of this paper), incomplete prefer-
ences are insufficient to determine the relative likelihood of the uncertain states.2

Subjective probabilities are not part of the most common deductive procedures in
game theory – like iterated elimination of strongly dominated strategies, the Dekel–
Fudenberg procedure, and the backward induction procedure. One can argue that,
since they make no use of subjective probabilities, one should seek to provide epis-
temic conditions for such procedures without reference to subjective probabilities
(see, e.g., Asheim, 2006, Chaps. 6 and 7). Indeed, subjective probabilities play no
role in the epistemic analysis of backward induction by Aumann (1995). Moreover,
forward induction can fruitfully be modeled by means of incomplete preferences
(cf. Asheim & Dufwenberg, 2003).

Proofs of the results reported below are contained in an appendix.

2 Axioms

Consider a decision maker under uncertainty, and let F be a finite set of states. The
decision maker is uncertain about what state in F will be realized. Let Z be a finite
set of outcomes. For each ϕ ∈ 2F\{ /0}, the decision maker is endowed with a binary
relation (preferences) over all functions that to each element of ϕ assign an objective
randomization on Z. Any such function is called an act on ϕ , and is the subject of
analysis in the decision-theoretic framework introduced by Anscombe and Aumann
(1963). Write pϕ and qϕ for acts on ϕ ∈ 2F\{ /0}. (For acts on F , write simply p
and q.) A binary relation on the set of acts on ϕ is denoted by �ϕ , where pϕ �ϕ qϕ
means that pϕ is preferred or indifferent to qϕ . As usual, let �ϕ (preferred to) and
∼ϕ (indifferent to) denote the asymmetric and symmetric parts of �ϕ .

Consider the following five axioms, where the numbering of axioms follows
Blume et al. (1991).

Axiom 1 (Order) �ϕ is complete and transitive.

Axiom 2 (Objective Independence) p′ϕ �ϕ (resp. ∼ϕ ) p′′ϕ iff γp′ϕ +(1− γ)qϕ �ϕ
(resp. ∼ϕ ) γp′′ϕ +(1− γ)qϕ , whenever 0 < γ < 1 and qϕ is arbitrary.

Axiom 3 (Nontriviality) There exist pϕ and qϕ such that pϕ �ϕ qϕ .



Representation of Conditional Preferences Under Uncertainty 37

Axiom 4 (Archimedean Property) If p′ϕ �ϕ qϕ �ϕ p′′ϕ , then ∃0 < γ < δ < 1 such
that δp′ϕ +(1−δ )p′′ϕ �ϕ qϕ �ϕ γp′ϕ +(1− γ)p′′ϕ .

Say that e ∈ F is Savage-null if p{e} ∼{e} q{e} for all acts p{e} and q{e} on {e}.
Denote by κ the non-empty set of states that are not Savage-null; i.e., the set of states
that the decision maker deems subjectively possible. Write Φ := {ϕ ∈ 2F\{ /0} | κ ∩
ϕ �= /0}. Refer to the collection {�ϕ | ϕ ∈Φ} as a system of conditional preferences
on the collection of sets of acts from subsets of F to outcomes.

Whenever /0 �= ε ⊆ ϕ , denote by pε the restriction of pϕ to ε .

Axiom 5 (Non-null State Independence) p{e} �{e} q{e} iff p{ f} �{ f} q{ f}, when-
ever e, f ∈ κ , and p{e, f} and q{e, f} satisfy p{e, f}(e) = p{e, f}( f ) and q{e, f}(e) =
q{e, f}( f ).

Define the conditional binary relation of �ϕ on ε , �ϕ|ε , by p′ϕ �ϕ|ε p′′ϕ if, for some
qϕ ,(p′ε ,qϕ\ε) �ϕ (p′′ε ,qϕ\ε), where /0 �= ε ⊆ ϕ . By Axioms 1 and 2, this defini-
tion does not depend on qϕ . Note that �ϕ|ε corresponds to the decision maker’s
preferences when having received information that the true state is in ϕ and only
considering the event that the true state is in ε ⊆ ϕ , while �ε denotes the decision
maker’s preferences when having received information that the true state is in ε . The
following axiom states that preferences over acts when having received information
that the true state is in ε equals the preferences when having received information
that the true state is in ϕ (⊇ ε) and only considering the event that the true state is
in ε .

Axiom 6 (Conditionality) pε �ε (resp. ∼ε ) qε iff pϕ �ϕ|ε (resp. ∼ϕ|ε ) qϕ , when-
ever /0 �= ε ⊆ ϕ .

It is an immediate observation that Axioms 5 and 6 imply non-null state inde-
pendence as stated in Axiom 5 of Blume et al. (1991).

Lemma 1 Assume that the system of conditional preferences {�ϕ | ϕ ∈Φ} satisfies
Axioms 5 and 6. Then, ∀ϕ ∈Φ, pϕ �ϕ|{e} qϕ iff pϕ �ϕ|{ f} qϕ whenever e, f ∈ κ∩ϕ ,
and pϕ and qϕ satisfy pϕ(e) = pϕ( f ) and qϕ(e) = qϕ( f ).

Turn now the relaxation of Axioms 1, 4, and 6, as motivated in the previous
section.

Axiom 1′ (Conditional Order) �ϕ is reflexive and transitive and, ∀e ∈ ϕ , �ϕ|{e}
is complete.

Axiom 4′ (Conditional Archimedean Property) ∀e ∈ ϕ , if p′ϕ �ϕ|{e} qϕ �ϕ|{e}
p′′ϕ , then ∃0 < γ < δ < 1 such that δp′ϕ + (1− δ )p′′ϕ �ϕ|{e} qϕ �ϕ|{e} γp′ϕ +
(1− γ)p′′ϕ .

Axiom 6′ (Dynamic Consistency) pε �ε qε whenever pϕ �ϕ|ε qϕ and /0 �= ε ⊆ ϕ .

Axiom 1′ constitutes a weakening of Axioms 1, since completeness implies re-
flexivity. This weakening is substantive since, in the terminology of Anscombe and



38 G.B. Asheim

Aumann (1963), it means that the decision maker has complete preferences over
‘roulette lotteries’ where objective probabilities are exogenously given, but not nec-
essarily complete preferences over ‘horse lotteries’ where subjective probabilities,
if determined, are endogenously derived from the preferences of the decision maker.

Axiom 4′ is the weakening of the Archimedean property (Axiom 4) introduced
by Blume et al. (1991). Blume et al. (1991) also considers an axiom in between
Axioms 4 and 4′ (with the numbering also for this axiom following their scheme).

Axiom 4′′ (Partitional Archimedean Property) There is a partition {π ′1, . . . , π ′L|ϕ}
of κ ∩ϕ such that

• ∀�∈ {1, . . . ,L|ϕ}, if p′ϕ �ϕ|π ′� qϕ �ϕ|π ′� p′′ϕ , then ∃0 < γ < δ < 1 such that δp′ϕ +
(1−δ )p′′ϕ �ϕ|π ′� qϕ �ϕ|π ′� γp′ϕ +(1− γ)p′′ϕ , and

• ∀� ∈ {1, . . . ,L|ϕ−1}, pϕ �ϕ|π ′� qϕ implies pϕ �ϕ|π ′�∪π ′�+1
qϕ .

Axiom 6′ entails that preferences over acts when having received information
that the true state is in ε refines the preferences when having received information
that the true state is in ϕ (⊇ ε) and only considering the event that the true state is
in ε .

Say that e ∈ κ is deemed infinitely more likely than f ∈ F (and write e� f ) if
p{e, f} �{e, f} q{e, f} whenever p{e} �{e} q{e}. Consider the following two auxiliary
axioms.

Axiom 11 (Partitional Priority) If e′ � e′′, then ∀ f ∈ F, e′ � f or f � e′′.

Axiom 16 (Compatibility) There exists a binary relation �∗F satisfying Axioms 1,
2, and 4′ such that p�∗F|ϕ q whenever pϕ �ϕ qϕ and /0 �= ϕ ⊆ F.

While it is straightforward that Axiom 1 implies Axiom 1′, Axiom 4 implies
Axiom 4′, and Axiom 6 implies Axiom 6′, it is less obvious that

• Axiom 1 together with Axioms 2, 4′, 5, and 6 imply Axiom 11
• Axiom 6 together with Axioms 1, 2, 4′, and 5, imply Axiom 16

This is demonstrated by the following lemma.

Lemma 2 Assume that (a) �ϕ satisfies Axioms 1, 2, and 4′ if ϕ ∈ 2F\{ /0}, and (b)
the system of conditional preferences {�ϕ | ϕ ∈ Φ} satisfies Axioms 5 and 6. Then
{�ϕ |ϕ ∈Φ} satisfies Axioms 11 and 16.

Hence, even though Axiom 16 may not express a compelling intuition and is de-
signed to ensure the existence of an underlying LPS in the representation results of
the next section (cf. Proposition 5 and Corollary 1), it is implied by the set of axioms
that Blume et al. (1991) employ.

Table 1 illustrates the relationships between the sets of axioms that we will con-
sider. The arrows indicate that one set of axioms implies another. The figure in-
dicates what kind of representations the different sets of axioms correspond to, as
reported in the next section.
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Table 1 Relationships between different sets of axioms and their representations

Complete and 1 2 3 4 5 6 → 1 2 3 4 5 6′ 16
continuous Prob. distr. CPS

↓
Complete and 1 2 3 4′′ 5 6 ↓
partitionally continuous LCPS

↓
Complete and 1 2 3 4′ 5 6 → 1 2 3 4′ 5 6′ 16
discontinuous LPS SCLP

↓
Incomplete and 1′ 11 2 3 4′ 5 6
discontinuous Dynamic

Conditionality consistency

3 Representation Results

In view of Lemma 1 and using the characterization result of Anscombe and Aumann
(1963), we obtain the following result under Axioms 1, 2, 3, 4, 5, and 6; cf. Blume
et al. (1991, Theorem 2.1).

For the statement of this and later results, denote by υ : Z → R a vNM utility
function, and abuse notation slightly by writing υ(p) = ∑z∈Z p(z)υ(z) whenever
p ∈ ∆(Z) is an objective randomization. In this and later results, υ is unique up to
positive affine transformations.

Proposition 1 (Anscombe & Aumann, 1963) The following two statements are
equivalent.

1. (a) �ϕ satisfies Axioms 1, 2, and 4 if ϕ ∈ 2F\{ /0}, and Axiom 3 if and only
if ϕ ∈ Φ, and (b) the system of conditional preferences {�ϕ | ϕ ∈ Φ} satisfies
Axioms 5 and 6.

2. There exist a vNM utility function υ : ∆(Z)→ R and a unique subjective proba-
bility distribution µ on F with support κ such that, ∀ϕ ∈Φ,

pϕ �ϕ qϕ iff ∑e∈ϕ µ|ϕ(e)υ(pϕ(e))≥∑e∈ϕ µ|ϕ(e)υ(qϕ(e)) ,

where µ|ϕ is the conditional of µ on ϕ .

In view of Lemma 1, and using Blume et al. (1991, Theorem 3.1), we obtain the
following result under Axioms 1, 2, 3, 4′, 5, and 6.

For the statement of this and later results, we need to introduce formally the
concept of a lexicographic probability system. A lexicographic probability system
(LPS) consists of L levels of subjective probability distributions: If L ≥ 1 and,
∀� ∈ {1, . . . ,L}, µ� ∈ ∆(F), then λ = (µ1, . . . ,µL) is an LPS on F . Denote by
L∆(F) the set of LPSs on F . Write suppλ := ∪L

�=1supp µ� for the support of λ .
If suppλ ∩ϕ �= /0, denote by λ |ϕ = (µ ′1, . . .µ ′L|ϕ) the conditional of λ on ϕ .3
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Furthermore, for two utility vectors v and w, denote by v ≥L w that, whenever
w� > v�, there exists k < � such that vk > wk, and let >L and =L denote the asym-
metric and symmetric parts, respectively.

Proposition 2 (Blume et al., 1991) The following two statements are equivalent.

1. (a) �ϕ satisfies Axioms 1, 2, and 4′ if ϕ ∈ 2F\{ /0}, and Axiom 3 if and only
if ϕ ∈ Φ, and (b) the system of conditional preferences {�ϕ | ϕ ∈ Φ} satisfies
Axioms 5 and 6.

2. There exist a vNM utility function υ : ∆(Z)→R and an LPS λ on F with support
κ such that, ∀ϕ ∈Φ,

pϕ �ϕ qϕ iff(
∑e∈ϕ µ ′�(e)υ(pϕ(e))

)L|ϕ
�=1
≥L

(
∑e∈ϕ µ ′�(e)υ(qϕ(e))

)L|ϕ
�=1

,

where λ |ϕ = (µ ′1, . . .µ ′L|ϕ) is the conditional of λ on ϕ .

In view of Lemma 1 and using Blume et al. (1991, Theorem 5.3), we obtain the
following result under Axioms 1, 2, 3, 4′′, 5, and 6.

For the statement of this results, we need to introduce the concept that is called
a lexicographic conditional probability system in the terminology of Blume et al.
(1991, Definition 5.2). A lexicographic conditional probability system (LCPS) con-
sists of L levels of non-overlapping subjective probability distributions: If λ =
(µ1, . . . ,µL) is an LPS on F and the supports of the µ�’s are disjoint, then λ is
an LCPS on F .

Proposition 3 (Blume et al., 1991) The following two statements are equivalent.

1. (a) �ϕ satisfies Axioms 1, 2, and 4′′ if ϕ ∈ 2F\{ /0}, and Axiom 3 if and only
if ϕ ∈ Φ, and (b) the system of conditional preferences {�ϕ | ϕ ∈ Φ} satisfies
Axioms 5 and 6.

2. There exist a vNM utility function υ : ∆(Z)→R and a unique LCPS λ on F with
support κ such that, ∀ϕ ∈Φ,

pϕ �ϕ qϕ iff(
∑e∈ϕ µ ′�(e)υ(pϕ(e))

)L|ϕ
�=1
≥L

(
∑e∈ϕ µ ′�(e)υ(qϕ(e))

)L|ϕ
�=1

,

where λ |ϕ = (µ ′1, . . .µ ′L|ϕ) is the conditional of λ on ϕ (with the LCPS λ |ϕ
satisfying, ∀� ∈ {1, . . . ,L|ϕ}, suppµ ′� = π ′� ).

Say that �ϕ is conditionally represented by a vNM utility function υ if (a) �ϕ
is non-trivial and (b) pϕ �ϕ|{e} qϕ iff υ(pϕ(e))≥ υ(qϕ(e)) whenever e is deemed
subjectively possible. Under Axioms 1′, 2, 3, 4′, 5, and 6 conditional representation
follows directly from the vNM theorem of expected utility representation.

Proposition 4 Assume that (a) �ϕ satisfies Axioms 1′, 2, and 4′ if ϕ ∈ 2F\{ /0},
and Axiom 3 if and only if ϕ ∈ Φ, and (b) the system of conditional preferences
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{�ϕ | ϕ ∈ Φ} satisfies Axioms 5 and 6. Then there exists a vNM utility function
υ : ∆(Z)→ R such that, ∀ϕ ∈ Φ, pϕ �ϕ|{e} qϕ iff υ(pϕ(e)) ≥ υ(qϕ(e)) whenever
e ∈ κ ∩ϕ .

Under Axioms 1, 2, 3, 4′, 5, 6′, and 16 we obtain the characterization result of
Asheim and Perea (2005).

For the statement of this result, we need to introduce the concept of a system of
conditional lexicographic probabilities. For this definition, if λ := (µ1, . . . ,µL) is
an LPS and � ∈ {1, . . . ,L}, then write λ � := (µ1, . . . ,µ�) for the LPS that includes
only the � top levels of the original sequence of probability distributions.

Definition 1 A system of conditional lexicographic probabilities (SCLP) (λ , �) on
F with support κ consists of

• An LPS λ = (µ1, . . . ,µL) on F with support κ
• A function � : Φ→ {1, . . . ,L} satisfying (i) suppλ �(ϕ)∩ϕ �= /0, (ii) �(ε) ≥ �(ϕ)

whenever /0 �= ε ⊆ ϕ , and (iii) �({e})≥ � whenever e ∈ supp µ�

The interpretation is that the conditional belief on ϕ is given by the conditional
on ϕ of the LPS λ �(ϕ), λ �(ϕ)|ϕ = (µ ′1, . . .µ ′�(ϕ)|ϕ). To determine preference between
acts conditional on ϕ , first calculate expected utilities by means of the top level
probability distribution, µ ′1, and then, if necessary, use the lower level probability
distributions, µ ′2, . . . ,µ ′�(ϕ)|ϕ , lexicographically to resolve ties. The length function
� thus determines, for every event ϕ , the number of levels of the original LPS λ that
can be used, provided that their supports intersect with ϕ , to resolve ties between
acts conditional on ϕ .

Condition (i) ensures well-defined conditional beliefs that represent nontrivial
conditional preferences. Condition (ii) means that the system of conditional prefer-
ences is dynamically consistent, in the sense that strict preference between two acts
would always be maintained if new information, ruling out states at which the two
acts lead to the same outcomes, became available. To motivate condition (iii), note
that if e ∈ supp µ� and �({e}) < �, then it follows from condition (ii) that µ� could
as well ignore e without changing the conditional beliefs.

Proposition 5 (Asheim and Perea, 2005) The following two statements are equi-
valent.

1. (a) �ϕ satisfies Axioms 1, 2, and 4′ if ϕ ∈ 2F\{ /0}, and Axiom 3 if and only
if ϕ ∈ Φ, and (b) the system of conditional preferences {�ϕ | ϕ ∈ Φ} satisfies
Axioms 5, 6′, and 16.

2. There exist a vNM utility function υ : ∆(Z)→ R and an SCLP (λ , �) on F with
support κ such that, ∀ϕ ∈Φ,

pϕ �ϕ qϕ iff(
∑e∈ϕ µ ′�(e)υ(pϕ(e))

)�(ϕ)|ϕ
�=1

≥L

(
∑e∈ϕ µ ′�(e)υ(qϕ(e))

)�(ϕ)|ϕ
�=1

,

where λ �(ϕ)|ϕ = (µ ′1, . . .µ ′�(ϕ)|ϕ) is the conditional of λ �(ϕ) on ϕ .
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By strengthening Axiom 4′ to Axiom 4, we get the following corollary. For the
statement of this result, we need to introduce formally the concept of a conditional
probability system. A conditional probability system (CPS) consists of a collection
of subjective probability distributions: If, for each ϕ ∈Φ, µϕ is a subjective proba-
bility distribution on ϕ , and {µϕ |ϕ ∈Φ} satisfies µε(δ ) ·µϕ(ε) = µϕ(δ ) whenever
δ ⊆ ε ⊆ ϕ and ε , ϕ ∈Φ, then {µϕ | ϕ ∈Φ} is a CPS on F with support κ .

Corollary 1 The following three statements are equivalent.

1. (a) �ϕ satisfies Axioms 1, 2, and 4 if ϕ ∈ 2F\{ /0}, and Axiom 3 if and only
if ϕ ∈ Φ, and (b) the system of conditional preferences {�ϕ | ϕ ∈ Φ} satisfies
Axioms 5, 6′, and 16.

2. There exist a vNM utility function υ : ∆(Z) → R and a unique LCPS λ =
(µ1, . . . ,µL) on F with support κ such that, ∀ϕ ∈Φ,

pϕ �ϕ qϕ iff ∑e∈ϕ µϕ(e)υ(pϕ(e))≥∑e∈ϕ µϕ(e)υ(qϕ(e)) ,

where µϕ is the conditional of µ�(ϕ) on ϕ and �(ϕ) = min{� | suppλ �∩ϕ �= /0}.
3. There exist a vNM utility function υ : ∆(Z)→R and a unique CPS {µϕ | ϕ ∈Φ}

on F with support κ such that, ∀ϕ ∈Φ,

pϕ �ϕ qϕ iff ∑e∈ϕ µϕ(e)υ(pϕ(e))≥∑e∈ϕ µϕ(e)υ(qϕ(e)) .

4 Concluding Remark

A full support SCLP (i.e., an SCLP where κ = F) combines the structural implica-
tion of a full support LPS – namely that conditional preferences are nontrivial – with
flexibility w.r.t. whether to assume the behavioral implication of any conditional of
such an LPS – namely that the conditional LPS’s full support induces preference for
cautious behavior. A full support SCLP is a generalization of both

(1) Conditional beliefs described by a single full support LPS λ = (µ1, . . . , µL)
(cf. Proposition 2): Let, for all ϕ ∈ Φ, �(ϕ) = L. With such a maximal length
function, the conditional belief on ϕ is described by the conditional of λ on
ϕ , λ |ϕ .

(2) Conditional beliefs described by a CPS (cf. Corollary 1): Let, for all ϕ ∈ Φ,
�(ϕ) = min{� | suppλ � ∩ϕ �= /0}. With such a minimal length function, it fol-
lows from conditions (ii) and (iii) of Definition 1 that the full support LPS
λ = (µ1, . . . ,µL) has non-overlapping supports – i.e., λ is an LCPS – and the
conditional belief on ϕ is described by the top level probability distribution of
the conditional of λ on ϕ . This corresponds to the isomorphism between CPS
and LCPS noted by Blume et al. (1991, p. 72) and discussed by Halpern (2005)
and Hammond (1994).4

However, a full support SCLP may describe a system of conditional beliefs that is
not covered by these special cases. The following is a simple example: Let κ = F =
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{d,e, f} and λ = (µ1,µ2), where µ1(d) = 1/2, µ1(e) = 1/2, and µ2( f ) = 1. If
�(F) = 1 and �(ϕ) = 2 for any other non-empty subset ϕ , then the resulting SCLP
falls outside cases (1) and (2).

As we have seen, a CPS may lead to a refinement of a preference between two
acts when new information, ruling out states at which the two acts lead to the same
outcomes, becomes available. It might be tempting to ascribe such refinement to
the decision maker being initially unaware of the set of states which, according to
the new information, contains the true state. However, in the context of sequential
equilibrium and rationalizability (which can be modeled by means of a CPS), such
an interpretation is inconsistent with the fact that these game-theoretic concepts
require each player to consider all information sets of the game, also those which
are assigned zero unconditional probability.

It is sometimes claimed that in game-theoretic analysis, LPSs are needed for the
analysis of strategic games, while CPSs are suited for extensive games. This pa-
per shows that CPSs are not sufficient for extensive games, for the same reasons
that subjective probability distributions do not suffice for strategic games, namely
that CPSs cannot handle preference for cautious behavior. In contrast, the concept
of SCLP as defined in Definition 1 and characterized in Proposition 5 provides the
needed flexibility to account for cautiousness, while ensuring well-defined condi-
tional preferences.

Appendix: Proofs

Proof of Lemma 2. Part 1: Axiom 11 is implied. We must show, under the given
premise, that if e′ � e′′, then, ∀ f ∈ F , e′ � f or f � e′′. Clearly, e′ � e′′ entails
e′ ∈ κ , implying that e′ � f or f � e′′ if f /∈ κ or e′′ /∈ κ . The case where f = e′
or f = e′′ is trivial. The case where f �= e′, f �= e′′, f ∈ κ and e′′ ∈ κ remains.
Assume that e′ � f does not hold, which by completeness (Axiom 1) entails the
existence of p′{e′, f} and q′{e′, f} such that p′{e′, f} �{e′, f} q′{e′, f} and p′{e′} �{e′} q′{e′}. It
suffices to show that f � e′′ is obtained; i.e., p{ f} �{ f} q{ f} implies p{e′′, f} �{e′′, f}
q{e′′, f}. Throughout we invoke Axiom 6 and Lemma 1, and choose ϕ ∈ Φ so that
{e′,e′′, f} ∈ ϕ .

Let pϕ �ϕ|{ f} qϕ . Assume w.l.o.g. that pϕ(d)= qϕ(d) for d �= f , e′′, and p′ϕ(d)=
q′ϕ(d) for d �= e′, f . By transitivity (Axiom 1), p′ϕ �ϕ|{e′, f} q′ϕ and p′ϕ �ϕ|{e′} q′ϕ
imply p′ϕ ≺ϕ|{ f} q′ϕ . However, since �ϕ satisfies Axioms 2 and 4′, ∃γ ∈ (0,1)
such that γpϕ +(1− γ)p′ϕ �ϕ|{ f} γqϕ +(1− γ)q′ϕ . Moreover, pϕ(e′) = qϕ(e′) and
p′ϕ �ϕ|{e′} q′ϕ entail that γpϕ + (1− γ)p′ϕ �ϕ|{e′} γqϕ + (1− γ)q′ϕ by Axiom 2,
which implies that γpϕ +(1−γ)p′ϕ �ϕ|{e′,e′′} γqϕ +(1−γ)q′ϕ since e′ � e′′. Hence,
by transitivity, γpϕ +(1−γ)p′ϕ �ϕ|{e′,e′′, f} γqϕ +(1−γ)q′ϕ – or equivalently, γpϕ +
(1− γ)p′ϕ � γqϕ +(1− γ)q′ϕ . Now, q′ϕ �ϕ|{e′, f} p′ϕ means that γpϕ +(1− γ)q′ϕ �
γpϕ +(1− γ)p′ϕ by Axiom 2, implying that γpϕ +(1− γ)q′ϕ � γqϕ +(1− γ)q′ϕ by
transitivity (Axiom 1), and pϕ � qϕ – or equivalently, pϕ �ϕ|{e′′, f} qϕ – by Axiom 2.
Thus, pϕ �ϕ|{ f} qϕ implies pϕ �ϕ|{e′′, f} qϕ , meaning that f � e′′.
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Part 2: Axiom 16 is implied. We must show, under the given premise, that here
exists a binary relation �∗F satisfying Axioms 1, 2, and 4′ such that p�∗F |ϕ q when-
ever pϕ �ϕ qϕ and /0 �= ϕ ⊆ F . Clearly, since Axiom 6 is satisfied, �F fulfil these
requirements. ��

Proof of Proposition 5. 1 implies 2. Since �ϕ is trivial if ϕ /∈Φ, we may w.l.o.g. as-
sume that Axiom 16 is satisfied with �∗F |ϕ being trivial for any ϕ /∈Φ.

Consider any e ∈ κ . Since �{e} satisfies Axioms 1, 2, 3, and 4′ (implying Axiom
4 since {e} has only one state), it follows from the vNM theorem of expected utility
representation that there exists a vNM utility function υ{e} : ∆(Z)→ R such that
υ{e} represents �{e}. By Axiom 5, we may choose a common vNM utility function
υ to represent �{e} for all e ∈ κ . Since Axiom 16 implies, for any e ∈ κ , �∗F |{e}
satisfies Axioms 1, 2, 3, and 4′, and furthermore, p �∗F|{e} q whenever p{e} �{e}
q{e}, we obtain that υ represents �∗F |{e} for all e∈ κ . It now follows that �∗F satisfies
Axiom 5 of Blume et al. (1991).

By Theorem 3.1 of Blume et al. (1991) �∗F is represented by υ and an LPS λ =
(µ1, . . . ,µL) on F with support κ . Consider any ϕ ∈ Φ. If pϕ �ϕ qϕ iff p �∗F|ϕ q,
then

pϕ �ϕ qϕ iff(
∑e∈ϕ µ ′�(e)υ(pϕ(e))

)L|ϕ
�=1
≥L

(
∑e∈ϕ µ ′�(e)υ(qϕ(e))

)L|ϕ
�=1

,

where λ |ϕ = (µ ′1, . . .µ ′L|ϕ) is the conditional of λ on ϕ , implying that we can set
�(ϕ) = L. Otherwise, let �(ϕ) ∈ {0, . . . ,L−1} be the maximum � for which it holds
that

pϕ �ϕ qϕ if(
∑e∈ϕ µ ′k(e)υ(pϕ(e))

)�|ϕ
k=1

>L

(
∑e∈ϕ µ ′k(e)υ(qϕ(e))

)�|ϕ
k=1

,

where the r.h.s. is never satisfied if � < min{k |suppλ k ∩ ϕ �= /0}, entailing that
the implication holds for any such �. Define a set of pairs of acts on ϕ , I, as
follows:

(pϕ ,qϕ) ∈ I iff(
∑e∈ϕ µ ′�(e)υ(pϕ(e))

)�(ϕ)|ϕ
�=1

=L

(
∑e∈ϕ µ ′�(e)υ(qϕ(e))

)�(ϕ)|ϕ
�=1

,

with (pϕ ,qϕ) ∈ I for any acts pϕ and qϕ on ϕ if �(ϕ) < min{� |suppλ � ∩ϕ �= /0}.
Note that I is a convex set. To show that υ and λ �(ϕ)|ϕ represent �ϕ , we
must establish that pϕ ∼ϕ qϕ whenever (pϕ ,qϕ) ∈ I. Hence, suppose there ex-
ists (pϕ ,qϕ) ∈ I such that pϕ �ϕ qϕ . It follows from the definition of �(ϕ)
and the completeness of �ϕ (Axiom 1) that there exists (p′ϕ ,q′ϕ) ∈ I such
that
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p′ϕ �ϕ q′ϕ and

∑e∈ϕ µ�(ϕ)+1(e)υ(p′ϕ(e)) < ∑e∈ϕ µ�(ϕ)+1(e)υ(q′ϕ(e)) .

Objective independence of �ϕ (Axiom 2) now implies that, if 0 < γ < 1,
then

γpϕ +(1− γ)p′ϕ �ϕ γqϕ +(1− γ)p′ϕ �ϕ γqϕ +(1− γ)q′ϕ ;

hence, by transitivity of �ϕ (Axiom 1),

γpϕ +(1− γ)p′ϕ �ϕ γqϕ +(1− γ)q′ϕ . (1)

However, by choosing γ sufficiently small, we have that

∑e∈ϕ µ�(ϕ)+1(e)υ(γpϕ(e)+(1− γ)p′ϕ(e))

<∑e∈ϕ µ�(ϕ)+1(e)υ(γqϕ(e)+(1− γ)q′ϕ(e)) .

Since I is convex so that (γpϕ + (1− γ)p′ϕ ,γqϕ + (1− γ)q′ϕ) ∈ I, this implies
that

γp+(1− γ)p′ ≺∗F|ϕ γq+(1− γ)q′ . (2)

Since (1) and (2) contradict Axiom 16, this shows that pϕ ∼ϕ qϕ when-
ever (pϕ ,qϕ) ∈ I. This implies in turn that �(ϕ) ≥ min{� |suppλ � ∩ϕ �= /0}
since �ϕ is nontrivial. By Axiom 6′, �(ε) ≥ �(ϕ) whenever /0 �= ε ⊆ ϕ . Fi-
nally, since, υ represents �{e} for all e ∈ κ , it follows that p{e} �{e} q{e}
iff p �∗F|{e} q. Hence, we can set �({e}) = L, implying �({e}) ≥ � whenever
e ∈ supp µ�.

2 implies 1. This follows from routine arguments. ��

Proof of Corollary 1. 1 implies 2. By Proposition 5, the system of conditional pref-
erences is represented by an SCLP (λ , �) on F with support κ . By the strengthening
Axiom 4′ to Axiom 4, it follows from the representation result of Anscombe and Au-
mann (1963) that only the top level probability distribution is needed to represent
each conditional preferences; i.e., for any ϕ ∈Φ, �(ϕ) = min{� | suppλ �∩ϕ �= /0}.
This implies that any overlapping supports in λ can be removed without changing,
for any ϕ ∈Φ, the conditional of λ �(ϕ) on ϕ , turning λ into an LCPS. Furthermore,
the LCPS thus determined is unique.

2 implies 1. This follows from routine arguments.
2 implies 3. {µϕ | ϕ ∈ Φ} is a CPS on F with support κ since µε(δ ) · µϕ(ε) =

µϕ(δ ) is satisfied whenever δ ⊆ ε ⊆ ϕ and ε , ϕ ∈ Φ. If an alternative CPS {µ̃ϕ |
ϕ ∈Φ} were to satisfy, for any ϕ ∈Φ,

pϕ �ϕ qϕ iff ∑e∈ϕ µ̃ϕ(e)υ(pϕ(e))≥∑e∈ϕ µ̃ϕ(e)υ(qϕ(e)) ,

then one could construct an alternative LCPS λ̃ = (µ̃1, . . . , µ̃L) such that, for any
ϕ ∈Φ, µ̃ϕ is the conditional of µ̃ �̃(ϕ) on ϕ , where �̃(ϕ) := min{� | suppµ̃�∩ϕ �= /0},
contradicting the uniqueness of λ .
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3 implies 2. Construct the LCPS λ = (µ1, . . . ,µL) by the following algorithm: (i)
µ1 = µF , (ii) ∀� ∈ {2, . . . ,L}, µ� = µϕ , where ϕ = F\∪�−1

k=1suppµk �= F\κ , and (iii)
∪L

k=1suppµk = κ . Then, for any ϕ ∈Φa, µϕ is the conditional of µ�(ϕ) on ϕ , where
�(ϕ) := min{� | suppµ�∩ϕ �= /0}, and λ is the only LCPS having this property. ��
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Notes

1This is the terminology introduced by Myerson (1986). In philosophical literature, related
concepts are called Popper measures. For an overview over relevant literature and analysis, see
Halpern (2005) and Hammond (1994).

2One possibility is, following Bewley (1986), to represent incomplete preferences by means of
a set of subjective probability distributions. See also Aumann (1962).

3That is, ∀� ∈ {1, . . . ,L|ϕ}, µ ′� = µk�
|ϕ , where the indices k� are given by k0 = 0, k� = min{k |

µk(ϕ) > 0 and k > k�−1} for � > 0, and {k | µk(ϕ) > 0 and k > kL|ϕ}= /0, and where µk�
|ϕ is given

by the usual definition of conditional probabilities; cf. Definition 4.2 of Blume et al. (1991).
4Hence, the isomorphism between CPS and LCPS noted by Blume et al. (1991, p. 72) and

discussed by Halpern (2005) and Hammond (1994) implicitly entails that a minimal length function
supplements the LCPS. Such a combination is a special case of an SCLP.
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Subjective Information in Decision Making
and Communication

J.D. Stecher
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Ambiguity

1 Introduction

Fifty years ago, Luce (1956) raised the following example to illustrate problems
with neoclassical utility theory:

Find a subject who prefers a cup of coffee with one cube of sugar to one with five cubes (this
should not be difficult). Now prepare 401 cups of coffee with

(
1+ i

100

)
x grams of sugar,

i = 0,1, . . . ,400, where x is the weight of one cube of sugar. It is evident that he will be
indifferent between cup i and cup i+1, for any i, but by choice he is not indifferent between
i = 0 and i = 400.

Luce’s purpose was to argue for intransitive indifference. In what follows, I pursue a
differentapproach.Rather than treating thisstudentashaving intransitive indifference,
with preferences defined over objective cups of coffee, I view the student has having
preferences defined over the coffee as he subjectively perceives it. To make this
rigorous, Iprovideanaxiomaticmodelof thestudent’sperceptions,allowingthereader
of this article to know which coffee cup the student is tasting, in order to clarify the
relationship between the subjective decision problem and the objective alternatives.

The discussion so far looks at the problem in one direction, namely, that a given
decision maker can see distinct objects as indistinguishable. The issue in the other
direction – that the way a given decision maker perceives a given object may not be
unique – is discussed in Husserl (1913), Sect. 41. In describing his view of a table
in front of him, Husserl writes

J.D. Stecher
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I close my eyes. My other senses are inactive in relation to the table. I have now no per-
ception of it. I open my eyes, and the perception returns. The perception? Let us be more
accurate. Under no circumstances does it return to me individually the same.

In modern language, Husserl asserts that perception is not a function: a single table,
viewed twice but only a blink of the eye apart, need not appear the same way to the
same person. Luce’s hypothetical student says that the inverse of perception is also
not a function. Yet there is some relation between what is objectively present and
what the agent perceives. To capture this idea, I model perceptions with two sets,
and a binary relation between them. The sets are the objective alternatives (known
only to the reader of this paper) and the agent’s private, subjective set of alternatives,
which I call the agent’s conceptions of the possible choices. I call the binary relation
perception. So conception is entirely in the agent’s mind, while perception depends
on some external stimulus.

There remains the problem of informing a decision maker about a possible
choice. When all available alternatives are present, and the decision maker can in-
spect different alternatives directly, communication about choices may be unprob-
lematic. But there are many situations where decisions are made over long distances:
people make purchases in online auctions based on how a seller describes the article
for sale. Another example is an investor deciding whether to buy stock in a publicly
traded company, where the purchase decision depends on some historical statistics
and financial reports, but is unlikely to involve a personal visit to each of the com-
pany’s factories. To have any sort of economic interaction, different decision makers
need to find some set of shared terminology.

Because different decision makers do not necessarily have the same mental con-
ceptions, any shared language necessarily has a certain amount of inherent vague-
ness: at least one agent is forced to use a language that is an imperfect copy of his
conceptions. I capture this in a way that is analogous to the model I present of per-
ceptions: a decision maker’s mental conceptions may not have a unique description
in the shared language, and the each term in the shared language may not have a
unique meaning. For each decision maker, there are two sets of interest for commu-
nication: one’s subjective mental conceptions (what one wishes to communicate),
and the shared terminology; a binary relation links the two.

The model of perception is presented formally in the next section. Section 3
models a decision maker’s use of a shared language, and gives necessary conditions
on the shared language for avoiding coordination failures. Section 4 concludes.

2 Perception

2.1 Basic Model of Perception

Throughout this paper, fix a set I of individual decision makers. The model of per-
ception consists of two sets and a binary relation between them. The first is the
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objective set of possible alternatives (real-world objects) labeled X . No decision
maker observes X ; in fact, a decision maker need not be aware that X exists. The
role of X in the model is entirely for the researcher’s convenience.

For i∈ I, there is a set Si, known only to i, called i’s subjective conceptions. When
no confusion can arise, I drop the subscript and write S. Individual i’s preferences
are defined on Si, i.e., on the world as i understands it.

A perception is something a decision maker observes when presented with a real-
world object. That is, when the stimulus is x∈ X , the decision maker perceives some
subjectively meaningful a ∈ S. A given x ∈ X need not have a unique conception
a ∈ S as the only way it can be perceived – as in the example from Husserl in
Sect. 1 – but a decision maker always has available a coarse enough conception
to make every object perceptible. This assumption, though not strictly necessary,
simply says that the agent does not make choices among objects that are invisible
to him. Conversely, not every conception a ∈ S is necessarily the perception of a
unique x ∈ X , as in Luce’s hypothetical student tasting similar cups of coffee.

To formalize this many-to-many relationship, perception is modeled as a binary
relation, written as �, between X and S.1 For x ∈ X and a ∈ S, the relation x �
a is read as, “the decision maker can perceive real-world object x as subjective
conception a.” With some technical assumptions, discussed below, the individual’s
perceptions induce a topology on X , with S as a base of this topology. This means
that the individual’s preferences, in terms of X , are defined on neighborhoods of
possible alternatives.

It is technically convenient in what follows to view the agent’s perception relation
as a correspondence:

Definition 1. The correspondence X �−→ S is given by

(∀x ∈ X) � (x) ≡ {a ∈ S |x � a}.

The inverse correspondence S �−1−→ X is given by

(∀a ∈ S) �−1 (a) ≡ {x ∈ X |x � a}.

With these definitions, one can define the way an agent perceives some set of alter-
natives. There are two possible notions of the image of some D ⊆ X along �. The
strong image gives those conceptions in S that are perceived only when the stimulus
is in D. The dual notion is the weak image, giving the conceptions in S that can be
the perception of some point in D.

Definition 2. The strong image of D⊆ X under X �−→ S is

�D≡ {a ∈ S | �−1 (a)⊆ D}.

The weak image of D under X �−→ S is

�D≡ {a ∈ S |∃x ∈�−1 (a)∩D}.



52 J.D. Stecher

The notation follows Sambin and Gebellato (1998). By analogy with modal logic,
�D consists of conceptions that are necessarily the perception of something in D,
whereas �D consists of those conceptions possibly perceived when the stimulus is
in D. But the notation is only suggestive – these are not true modal operators, and
cannot be iterated.

In an entirely analogous way, the inverse correspondence S �−1−→ X generates both
a strong and weak inverse image of any U ⊆ S. In the literature, the strong inverse
image is called the restriction of U , while the weak inverse image is the extent of
U ; see for example Negri (2002).

Definition 3. The restriction of U ⊆ S under S �−→ X is

rest U ≡ {x ∈ X | � (x)⊆U}.

The extent of U under S �−→ X is

ext U ≡ {x ∈ X |∃a ∈� (x)∩U}.

In addition to these four operators, I impose two axioms. First, as indicated above,
I require the decision maker to have some way, however coarse, of perceiving any
possible alternative:

Axiom 1 For each x ∈ X, there is some a ∈ S such that x � a.

The second axiom, which again is not strictly necessary but technically convenient,
says that the decision maker’s perceptions are in a sense consistent:

Axiom 2 For each a,a′ ∈ S, if there is some x ∈ X such that

x � a and x � a′,

then there is some a′′ ∈ S such that, for all x′ ∈ X,

x′ � a′′ iff x′ � a and x′ � a′.

This consistency condition says that a decision maker who can perceive the same
object in multiple ways has some conception of objects that can be possibly be
perceived in these ways.

2.2 The Topological Interpretation of Perception

This section shows that an individual’s perceptions induce a topology on the set of
objective choices (i.e., on the real-world objects X). The topological structure is then
used in the next section to derive conditions a shared language must have if different
individuals can use it without having coordination failures.
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The topology is constructed by composing the operations from X −→ S with
the operations S −→ X , yielding operators from X −→ X . I then show that these
operators are valid notions of interior and closure.

Intuitively, one can view the members of S as the names of open neighborhoods
in the base of a topology on X . That is, each a ∈ S is associated with

�−1 (a) = {x ∈ X |x � a},

which one can view as the neighborhood in X that a names. (Compare Valentini
(2001).) Under this interpretation, all of S becomes associated with the family

{{x ∈ X |x � a}|a ∈ S}.

Definition 4 (Vickers (1988)). Let X be a topological space with base S. A subset
D⊆ X is open iff every x ∈ D has a neighborhood N(x) ∈ S such that N(x)⊆ D.

Associating S with neighborhoods in X modifies this definition as follows: D ⊆ X
is open if and only if, for every x ∈ D, there is some a ∈ S such that x � a and
�−1 (a)⊆ D.

Definition 5. The interior operator on X induced by � is

int ≡ ext �

Thus, for D⊆ X , int D = ext�D.

Expanding this definition shows its justification: for D⊆ X ,

int D ≡ ext�D

= {x ∈ X |(∃a ∈ S)(x � a and a ∈�D)}
= {x ∈ X |(∃a ∈ S)(x � a and (∀x′ ∈ x)(x′ � a→ x′ ∈ D))}.

Noting that x � a iff x ∈�−1 (a), the last expression above for int D says that it
consists of those points belonging to a neighborhood (named by some a ∈ S) whose
points are all in D. That is, the interior of an arbitrary D⊆ X matches Definition 4.

Conversely, the following holds:

Proposition 1 (Sambin (2001)). For arbitrary D⊆ X, int(int D) = int D.

Proof. This will be shown by showing �ext� = �. The result then follows by com-
posing both sides on the left with ext.

Expanding definitions gives, for arbitrary D⊆ X ,

�ext�D = {a ∈ S|(∀x ∈ X)(x � a→ x ∈ ext�D)}

= {a ∈ S|(∀x ∈ X)(x � a→ (∃a′ ∈ S)(x � a′ and (∀x′ ∈ X)(x′ � a′ → x′ ∈ D)))}.
The last expression says that �ext�D names neighborhoods whose points have a
neighborhood a′ that is contained in D; thus, �ext�D⊆�D.
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The reverse inclusion is immediate, by choosing a′ = a. ��
Given that the interior operator matches the classical definition and has the idempo-
tent property in Proposition 1, I make the following definition:

Definition 6. A subset D of X is open in the topology induced by � iff

D = int D.

The standard definition of a closed set is one that contains all of its limit points. That
is, the closure of a set is the collection of points for which every open neighborhood
intersects the set.

This would suggest that the closure of an arbitrary D⊆ X should be defined as

{x ∈ X |(∀a ∈ S)(x � a→ (∃x′ ∈ X)(x′ � a and x′ ∈ D))}.

Thus the natural definition of closure in this context is the logical dual of interior:

Definition 7. The closure operator on X induced by � is

cl ≡ rest�

Thus, for D⊆ X , cl D = rest�D.

An analogous argument to that in the Proposition 1 shows that �ext� = �, and
hence that closure is idempotent. This justifies the following definition:

Definition 8. A subset D of X is closed in the topology induced by � iff

D = cl D.

Expanding this definition for D⊆ X gives

cl D≡ rest�D

= {x ∈ X |(∀a ∈ S)(x � a→ a ∈�D)}
= {x ∈ X |(∀a ∈ S)(x � a→ (∃x′ ∈ X)(x′ � a and x′ ∈ D))}

as desired. Intuitively, a real-world object is in the perceptual closure of D iff every
way of perceiving it is a way of perceiving something in D.

It can now be shown that an agent’s subjective perceptions induce a topology
on X .

Theorem 1 (Perceptual Topology). The open sets induced by perceptions, under
Axioms 1 and 2, form a topology.

Theorem 1 is proved in a sequence of lemmata:

Lemma 1. In the perceptual topology, ∅ is clopen.
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Proof. By definition,
int ∅ = ext�∅

= {x ∈ X |(∃a ∈ S)(x � a and (∀x′ ∈ X)(x′ � a→ x′ ∈∅))}= ∅.

Thus, ∅ is open.
Analogously,

cl ∅ = rest�∅

= {x ∈ X |(∀a ∈ S)(x � a→ (∃x′ ∈ X)(x′ � a and x′ ∈∅))}= ∅.

Thus, ∅ is closed. ��
Lemma 2. In the perceptual topology, X is clopen.

Proof. By definition,
int X = ext�X

= {x ∈ X |(∃a ∈ S)(x � a and (∀x′ ∈ X)(x′ � a→ x′ ∈ X))}
= {x ∈ X |(∃a ∈ S)x � a}.

By Axiom 1, this is all of X , so X is open.
Analogously,

cl X = rest�X

= {x ∈ X |(∀a ∈ S)(x � a→ (∃x′ ∈ X)(x′ � a and x′ ∈ X))}= X .

Thus, X is closed. ��
Lemma 3. The union of open sets in the perceptual topology is open.

Proof. By definition,⋃
α

int Dα = {x ∈ X |(∃α)(∃a ∈ S)(x � a and (∀x′ ∈ X)(x′ � a→ x′ ∈ Dα))}

⊆ {x ∈ X |(∃a ∈ S)(x � a and (∀x′ ∈ X)(x′ � a→ (∃α)(x′ ∈ Dα)))}
= int

⋃
α

int Dα .

To see the reverse inclusion, note that for any D⊆ X , if x ∈ int D, then

(∃a ∈ S)(x � a and (∀x′ ∈ S)(x′ � a→ x′ ∈ D)).

Picking x′ = x gives
x ∈ int D→ x ∈ D,

i.e., int D⊆ D. In particular,

int
⋃
α

int Dα ⊆
⋃
α

int Dα .

Combining these gives the result. ��



56 J.D. Stecher

Lemma 4. The intersection of finitely many open sets in the perceptual topology is
open.

Proof. It suffices to show that the intersection of two open sets is open, as the result
then follows by induction. For D,E ⊆ X ,

int D
⋂

int E = {x ∈ X |(∃a,b ∈ S)(x � a and x � b

and (∀x′ ∈ X)(x′ � a→ x′ ∈ D) and (∀x′′ ∈ X)(x′′ � b→ x′′ ∈ E))}.
By Axiom 2, if x � a and x � b, then there is some c ∈ S such that x � c and

(∀x′ ∈ X)(x′ � c→ x′ � a and x′ � b),

which in turn implies,

(∀x′ ∈ X)(x′ � c→ x′ ∈ D
⋂

E).

Thus, int D
⋂

int E ⊆ int (D
⋂

E).
Conversely, if x∈ int (D

⋂
E), then there is a neighborhood a∈ S of x that is con-

tained in D
⋂

E, which means that �−1 (a)⊆D and �−1 (a)⊆ E. This says that x ∈
int D

⋂
int E, which by the arbitrariness of x implies int(D

⋂
E)⊆ int D

⋂
int E.

Combining these shows that the finite intersection property holds. ��

3 Communication

3.1 Basic Reporting Model and Topological Interpretation

For two agents to communicate, and in particular to use a language for trade, they
must be able to reach some sort of understanding about what they are offering or
requesting in exchange. Trades cannot be stated in terms of X , as agents do not
observe X directly, or even have mental conceptions of what is in X . Moreover,
an agent cannot offer directly some object as perceived in Si: the nature of mental
conceptions is that they are private and subjective. A shared language offers a way
around this difficulty. The terminology in the shared language is public, so that the
agents can use the language to try to validate (by consensus) which objects are under
discussion.

A language is modeled as a set T of shared terminology, and, for each i ∈ I, a
binary relation Ri between individual i’s private conceptions Si and T . The relation
represents i’s private semantics, i.e., how i can honestly describe some a ∈ Si. For
an illustration of how the language can evolve, see Ahn (2000).

A term t ∈ T may be a valid report for more than one a ∈ Si. Conversely, the
same conception may have more than one way it can be reported. Luce’s hypothet-
ical student in Sect. 1 may thus have many cups of coffee he describes as medium
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sweet; conversely, many cups of coffee – even some that the student might be able
to distinguish – could still be ones he might characterize as medium sweet.

For (a, t) ∈ Si×T , aRi t is read as, “a can be reported as t by agent i.” In parallel
with the discussion on perceptions, there are two correspondences associated with
the agent’s reporting relation:

(∀a ∈ Si) Ri(a)≡ {t ∈ T |aRi t}

and
(∀t ∈ Si) R−1

i (t)≡ {a ∈ Si|aRi t}.
The inverse correspondence gives the agent’s interpretation of what a report means.
These two correspondences generate the operations �, ext, �, and rest. Thus, for
U ⊆ Si and W ⊆ T ,

�Ri(U)≡ {t ∈ T |∃a ∈ R−1
i (t)∩U},

�Ri(U)≡ {t ∈ T |R−1
i (t)⊆U},

extRi(W )≡ {a ∈ Si|∃t ∈ Ri(a)∩W},
and

restRi(W )≡ {a ∈ Si|Ri(a)⊆W}.
Reporting can be interpreted in terms of the topology (called the reporting topology)
on an agent’s conceptions. As in Theorem 1, I impose two axioms:

Axiom 3 For each a ∈ Si, there is a t ∈ T such that aRi t.

Axiom 4 For each t, t ′′ ∈ T , if there is an a ∈ Si such that

aRi t and aRi t ′,

then there is some t ′′ ∈ T such that, for all a′ ∈ Si,

a′Ri t ′′ iff a′Ri t and a′Ri t ′.

Axioms 3 is a non-degeneracy requirement. It says that there must be some way,
however vague, of reporting anything the agent may want to report. That is, the
language must have some sufficiently broad terms (“stuff,” for example) to cover
anything. Axiom 4 requires consistency of the language: if there are conceptions
that can be reported more than one way, there must be a way to express that there
are multiple possible reports. Thus, if a cup of coffee could accurately be described
as medium sweet or as lightly sweetened, then there must be a way to say that
the coffee is light-to-medium sweetness. As in Theorem 1, this makes it easier to
guarantee that the induced topology satisfies the finite intersection property.2

The following definitions are analogous to those under perception:
Definition 9. The reporting interior operator is

intRi ≡ extRi�Ri .
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The reporting closure operator is

clRi ≡ restRi�Ri .

A subset U of Si is open in the reporting topology if and only if U = intRi(U), and
is closed in the reporting topology if and only if U = clRi(U).

Theorem 2 (Reporting Topology). The open sets induced by the agent’s reporting
relation, under Axioms 3 and 4, form a topology.

Proof. Entirely analogous to the proof of Theorem 1. ��

3.2 Communication

The topological interpretations of perceptions and semantics make it possible to
address how agents with fundamentally different worldviews can nevertheless find
a reliable way to trade. What is essential is that something one agent offers in the
shared language must be something that a trading partner subjectively interprets as a
faithful representation of what the trading partner eventually perceives. Because this
subjective notion of a faithful representation differs from the accountant’s objective
notion FASB (1980), I refer to this idea as heterogeneous faithfulness.

As neither reports nor perceptions are in general unique, the shared language
cannot guarantee that the same agent necessarily issues the same report when faced
with the same object. The most that can be required is that one agent reports what
he or she sees in a way that a trading partner would agree is a valid possible report.

Definition 10. Let i, j ∈ I be two agents, with conceptions Si,S j, perception rela-
tions �i,� j, and reporting relations Ri,R j for a set of common terminology T . The
language is heterogeneously faithful between i and j if and only if the following
diagram commutes:

X
�i � Si

S j

� j

�

R j

� T

Ri

�

That is, the language is heterogeneously faithful if and only if

Ri◦ �i= R j◦ � j .

If this holds for every i, j∈ I, then the language is said to be heterogeneously faithful.

The following proposition shows that the direction of the definition could be re-
versed; that is, an equivalent requirement is that two agents have compatible inter-
pretations of the language.
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Proposition 2. Suppose a language is heterogeneously faithful between two agents,
i, j ∈ I. Then the interpretation of the reports is also heterogeneously faithful, i.e.,

�−1
i ◦R−1

i = �−1
j ◦R−1

j .

Proof. The heterogeneous faithfulness between i and j means that, given x ∈ X and
t ∈ T , agent i can report x as t iff agent j can do so also. For i to be able to report x
as t, there must be some a ∈ Si that is a way i can perceive x which i can report as t:

(∃a ∈ Si)(x �i a and aRi t),

which also says that i can interpret t as x, i.e., that

(∃a ∈ Si)(a ∈ R−1
i (t) and x ∈�−1

i (a)).

By an identical argument, if j can report x as t, then j can interpret t as x. Thus,
heterogeneous faithfulness between i and j means that the following square also
commutes:

X � �−1
i Si

S j

�−1
j

�

�
R−1

j

T

R−1
i

�

��
Proposition 2 says that a language is useful for speakers if and only if it is useful for
listeners. This feature depends on the fact that reporting and perception are defined
by binary relations and not necessarily by functions.

Theorems 1 and 2 show that 〈X ,Si〉 and 〈S j,T 〉 are topological spaces. Heteroge-
neous faithfulness thus requires each agent’s perceptions to induce a correspondence
that carries collections of open neighborhoods to collections of open neighborhoods,
i.e., that takes open sets to open sets. Thus, heterogeneous faithfulness is essentially
lower hemi-continuity (Berge, 1963):

Definition 11. A correspondence X �−→ S is lower hemi-continuous if, for every
U ⊆ S,

{x ∈ X |∃a ∈� (x)∩ int U}
is open.

Theorem 3. If a language is heterogeneously faithful between two agents i, j ∈ I,
then j’s perception correspondence � j (·) is a lower hemi-continuous correspon-
dence between X, endowed with i’s perceptual topology, and S j, endowed with j’s
reporting topology.
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Conversely, suppose � j (·) is a lower hemi-continuous correspondence between
the topological spaces 〈X ,Si〉 and 〈S j,T 〉. Then, nonconstructively, there exists a
reporting relation Ri(·) for i that makes the language heterogeneously faithful.

Proof. By the proof of Proposition 1, � ext � = �, and an analogous argument
shows that ext � ext = ext.

If U ⊆ S j is the extent of some W ⊆ T , then int U = int(ext(W )) =
ext � ext W = ext W = U . Conversely, if U = int U , then automatically U is

the extent of some W ⊆ T , namely �U . Thus U ⊆ S j is open in the reporting
topology if and only if it is the extent of some W ⊆ T , i.e., iff it is the inverse image
of some subset of T along R j. A similar argument holds for an open D ⊆ X in i’s
perceptual topology.

The definition of lower hemi-continuity thus says that the inverse image of any
W ⊆ T along �−1

j ◦R−1
j is the extent of some subset U ′ ⊂ Si. So if W = extRiU

′ for
some U ′ ⊆ Si, then the relation � j is lower hemi-continuous. But this just says that
the square below commutes:

X � �−1
i Si

S j

�−1
j

�

�
R−1

j

T

R−1
i

�

By Proposition 2, this is equivalent to heterogeneous faithfulness. Therefore, het-
erogeneous faithfulness implies lower hemi-continuity.

For the second part of the theorem, define the reporting relation for i by Ri ≡
R j◦ � j ◦ �−1

i . The continuity of � j means that Ri takes open neighborhoods in i’s
perceptual topology to open neighborhoods in j’s reporting topology, which is just
the definition of heterogeneous faithfulness. ��
Remark 1. The non-constructivity of the second part of Theorem 3 means that the
way agents form a heterogeneously faithful language remains an open problem.
To construct the desired reporting relation for agent i, one would need access to
Si and S j (along with the various relations that are composed). This would imply
knowledge of others’ perceptions and of X , but the phenomena being studied is that
no one has such knowledge.

Accordingly, what the latter part of Theorem 3 establishes is that the non-
existence of the desired relation is contradictory. To one who is omniscient, this
is equivalent to existence, but it is clear that the relation used in the proof could not
in practice be constructed.

There are, however, some examples of languages that are heterogeneously faithful
and could be constructed. A trivial case is the universal language, where T is a
singleton (e.g, {“stuff”}). In this case, the reporting relations are trivially faithful.
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This language is not especially helpful, as any agents who agree to trade have no
information on what they are bargaining for, and provide no information on what
they are offering; thus, any economy that uses this language is a grab bag.

4 Conclusion

This paper studies the decision-theoretic consequences of subjective information,
by modeling how an agent perceives real-world objects, and by modeling how such
an agent can nevertheless use a shared language. The framework here is then used
to study the interaction between subjective perceptions and subjective semantics,
and how these interact to put restrictions on any language that can be used without
coordination failures.

The models of perceptions and of use of a language have useful topological in-
terpretations. The connection between what an agent perceives and what an agent
reports is shown to be a form of continuity in these topological spaces. Intuitively,
the continuity condition says that an agent reports a real-world object in a way that a
trading partner, viewing the same object, could see as justified. The practical impli-
cation is that if a language enables communication that is overly precise, one agent
can bargain for something distinct to him but indistinguishable to his trading partner.

The notion of agents’ beliefs thus arises in a different sense from the usual prob-
abilistic one. One agent may observe another agent’s use of a language, and infer
the distinctions that the other agent is capable of making. Thus an extension of the
current model to a dynamic model would enable one to discuss beliefs about another
agent’s subjective understanding of the world.
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Notes

1This symbol is the forcing relation introduced by Cohen. For background and historical dis-
cussion, see Avigard (2004).

2For an approach not requiring these axioms, see Walicki, Wolter, and Stecher (2006).
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Sensitivity Analysis in Decision Making:
A Consistent Approach

E. Borgonovo(�) and L. Peccati

Keywords: Local and global sensitivity analysis · Constrained sensitivity analy-
sis · Importance measures · von Neumann–Morgenstern expected utility · Bayesian
decision theory

1 Introduction

Sensitivity analysis is “an integral part (Celemen, 1997)” of any decision-making
process accompanied by the creation of a decision-support model (see also Saltelli,
Tarantola, and Campolongo (2000)).

Several works (Insua, Ruggeri, & Martin, 1998; Wallace, 2000) show that the
use of sensitivity analysis in decision theoretic problems requires special attention
and shares distinctive features with respect to the sensitivity analysis of generic
simulation models. This becomes especially relevant when the decision-maker in-
terrogates the decision-support model to further manage the problem or to gain ad-
ditional insights during the preferred alternative implementation phase. In fact, as
a decision-support model is (or should be) developed in accordance with the un-
derlying theory, in the same way the sensitivity analysis method ought to conform
to such theory. Techniques for the problem of stability of a preferred alternative to
imprecision (Fishburn, Murhpy, & Isaacs, 1968) in the probabilities are discussed in
Evans (1984) and generalized in Ringuest (1997). Bushena and Zilberman (1999)
utilize sensitivity analysis to test von Neumann–Morgenstern (vNM) expected util-
ity violations. Pauwels, Van De Walle, Hardeman, and Soudan (2000) utilize sen-
sitivity analysis to assess the robustness of their model results to changes in “the
various model parameters”. In Bayesian statistics, we recall the seminal works of
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Berger (1984, 1990), Gustafson (1996) and Gustafson and Wasserman (1995) that
deal with the sensitivity of a posterior (distribution and expectation) to the prior.1

Samuelson (1947) defines sensitivity analysis as the problem of addressing “the
response of our system to changes in certain parameters”. At the Sensitivity Analy-
sis of Model Output conference in 2000, a more recent definition of sensitivity
analysis sounds: “the study of how the variation in the output of a model can be
apportioned to variations in the input (Tarantola, 2000)”. We note that this second
definition can be equivalently expressed as the determination of the influence or
importance of an input (Saltelli, 2002).

It is the purpose of this work to build the framework necessary to respond to
Samuelson’s and Tarantola–Saltelli’s definitions in a rigorous fashion. We state first
the elements of the problem in the context of decision-support models. Samuelson’s
system is the decision-making problem at hand. The parameters are those exoge-
nous variables that the decision-maker needs to assign in order to obtain a quantita-
tive answer from the model. The output is the value of the decision-support criterion
estimated by the model. The system response is the change in decision-support crite-
rion, which follows from a different selection of the parameter values. Then, the two
definitions of sensitivity analysis of Samuelson (1947) and Tarantola (2000)/Saltelli
(2002) turn into the following two questions:

Question 1 The determination of the response of the decision-support criterion to
changes in the parameters;

and

Question 2 The study of how the variation in the decision-support model output
can be apportioned to variations in the parameters.

We define and compare the sensitivity analysis problems faced by decision-
makers with two different states of belief in the parameter values. First, a decision-
maker who is provided with a certain (objective) value of the parameters. We refer
to this decision-maker as to a vNM decision-maker see Smith and von Winterfeld
(2004, p. 562). In fact, if a decision-maker possesses objective values of the parame-
ters, She/He is also equipped with objective values of the probabilities – in building
a decision-support model, probabilities are a subset of the parameters, in general. –
Therefore, the decision-maker needs to select alternatives developing the decision-
support model consistently with the vNM axioms (von Neumann and Morgenstern,
1947). Then, we consider the sensitivity analysis problem from the perspective of
a decision-maker who is not capable of fixing the probabilities at a certain value,
but whose state of belief allows Her/Him to assign prior distributions. We refer to
this decision-maker as to a Bayesian decision-maker (see Smith and von Winterfeld
(2004, p. 563). In this case, the decision-maker develops the model according to the
axioms of Pratt, Raiffa, and Schlaifer (1995).

We show that the answers to the two questions define completely different math-
ematical frameworks for the two decision-makers. For a vNM decision-maker one
has a local sensitivity analysis problem, as a vNM the decision-maker is equipped
with an objective value of the probabilities, (say p). The answer to Questions 1 and
2 must be studied “at p”. In this case, the answer to Question 1 is found by applying
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comparative statics (Samuelson, 1947) the answer to Question 2 is found through
the differential importance measure (Borgonovo, 2008). However, if the decision-
maker were to utilize these approaches as such, She/He could draw misleading con-
clusions. In fact, most of sensitivity analysis methods are built under the assumption
that parameters (in our case the probabilities) are free to vary. However, probabili-
ties feeding into a decision-support model are constrained, as their values must sum
to unity. Thus, to perform the sensitivity analysis of a vNM model, one needs to
extend comparative statics and the differential importance to the case of constrained
inputs. To do so, we make use of a recent result (Borgonovo, 2006b) introducing
the concept of constrained derivative. The result allows us to answer Questions 1
and 2 and derive the analytical expressions both of the comparative statics and the
importance of probabilities in vNM models.

We then consider a decision-maker who decides to gather data on inputs, as-
signs prior distributions, and updates Her/His distributions as new evidence becomes
available (see Pratt et al. (1995)). The decision-maker is now a Bayesian one, and
we assume that She/He also develops the model consistently with the subjective ex-
pected utility framework. As an immediate consequence, the techniques used to an-
swer Questions 1 and 2 for a vNM decision-maker reveal themselves unsatisfactory,
as the analysis cannot be performed “at p”. To deal with the problem we introduce
the input parameter measure space (Θ ⊆ Rn,B(Θ),µ) (see Gustafson (1996)) and
let π(·) the density with respect to µ reflecting the decision-maker state of belief in
the inputs. Question 1 is now answered by studying the sensitivity of the expected
utility to changes in π(·), i.e., the response of the model is no more studied “at p”.
To answer to Question 1 we make use of the concept of perturbation introduced in
Gustafson (1996), and, by means of Fréchet differentiation, we derive the expression
of the rate of change in the expected utility in the direction of the perturbation. We
show that to answer Question 2 in a Bayesian setting, no change in prior/posterior
is needed but the analysis must be performed with reference to the current decision-
maker state of belief. We consider the set of all conditional utilities U|θ s , given that
θ s assumes a certain value. We show that the relevance of θ s (s = 1,2, . . . ,n) on U
given the current decision-maker state of belief (i.e., without any change in prior or
posterior) can be found using:

δ s =
1
2

Eµ
[
d(U,U|θ s)

]
(1)

with d(U,U|θ s) the distance between the unconditional and conditional utility (see
Borgonovo (2006a, 2007)). We also compare the meaning of δ s to the expected
value of sample information on θ s (EV SIs).

The remainder of the paper is organized as follows. Section 2.1 presents the
mathematical framework of constrained sensitivity analysis necessary to perform
the sensitivity analysis of vNM models. Section 2.2 derives analytical results for the
answers to Questions 1 and 2 in vNM models. Section 3 deals with the conditions
that allow to extend the results obtained for a vNM decision maker to the case of
uncertainty in the parameters. Section 4 deals with the formulation of the sensitivity
analysis questions for a Bayesian decision maker. Section 5 offers a summary of the
findings and future research perspectives.
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2 Sensitivity Analysis for Decision Analysis Models
with Given Probabilities

2.1 Local Constrained Sensitivity Measures

In this section, starting with a decision analysis example, we show general results
that are going to be utilized to derive sensitivity measures for answering Questions
1 and 2 in vNM models.

In most of the applications, the initial modeling effort and time is devoted to the
identification of random events and alternatives involved in the problem. Once a
credible decision-support model has been built, analysts start gathering information
on numbers. The first model runs are usually performed with the inputs fixed at the
so called base case (reference) value (let us call it p). If one were to stop the analysis
at this moment, one would be stating that the decision-maker’s state of belief on the
inputs is reflected by a precise point of the input parameter space. Many works refer
to this fact saying that that decision-makers are not willing/able to assess probability
distributions or that “practical arguments against probability distributions” emerge
(Wallace, 2000). Van Groenendaal (1998) proposes to perform sensitivity analysis
without assessing probability distributions, since, if these distributions cannot be
precisely estimated, one would be better off not estimating them at all. However, as
(Wallace, 2000) recognizes, such arguments are of a practical nature, and not of a
theoretical one.2

In His classical work, Howard (1988) emphasizes the role of sensitivity analysis
in decision-making and introduces Tornado Diagrams (see also Eschenbach (1992)).
In the well known textbook of Celemen (1997), sensitivity analysis explicitly re-
garded as one of the main steps of the decision analysis process (Fig. 1, Chap. 1 of
Celemen (1997)).

Standard decision analysis software enables the performance of sensitivity analy-
sis mainly through a one parameter at a time approach, and subroutines displaying
Tornado diagrams or break-even analysis are available. The way such diagrams are
obtained is by fixing all the parameters, but the one of interest, at their reference
value and registering in a single shot (Tornado diagram) or step by step (break-even
analysis) the change in the value of the preferred alternative (Tornado Diagram) or
of all alternatives (break-even analysis). In addition, Tornado Diagrams are utilized
to “answer the question: what matters in this decision? (Celemen, 1997),” i.e., to
answer Question 2.

We show by means of an example that, if one were to apply Tornado diagrams
to a model with non binary events, one would not be able to carry out a sensitivity
analysis while respecting the definition of the diagrams themselves.

Example 1. Consider the oil wildcatter problem as reported in Smith (1998).

1. The decision-maker is interested in the sensitivity of the problem w.r.t. the prob-
abilities. Suppose that He/She wishes to apply one of the sensitivity analysis
schemes discussed in Chap. 5 of Celemen (1997), a Tornado diagram, say, letting
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pSoaking vary from p0
Soaking = 0.2 to p∆

Soaking = 0.3. Strictly applying the definition
of a Tornado diagram, one would have to keep pWet at 0.3 and pDry at 0.5. But in
so doing one would violate the laws of probability since pWet + pSoaking + pDry �=
1.3 To solve the problem, one can try the following. Rewrite the constraint defin-
ing pWet as a function of pDry and p∗Soaking: pWet = 1− pDry− p∆

Soaking. Substitut-
ing for p∆

Soaking = 0.3 and pDry = 0.5, one finds pWet = 0.2.
2. Suppose now that the decision-maker is interested in letting p∆

Soaking = 0.6. As in
the above example, He/She solves for pWet to get: pWet = 1− pDry− p∆

Soaking =
−0.14 which violates another law of probability, since no negative probabilities
are allowed. If, instead, the decision-maker solves for pDry, He/She would get
the answer: pDry = 1− pWet − p∆

Soaking = 1− 0.3− 0.6 = 0.1 which allows the
sensitivity to be performed.

Part 1 of Example 1 shows that the sensitivity on one of the probabilities (pSoaking
in our case) provokes a change in the other probabilities (in this case pWet moves
from 0.5 to 0.4). Numerically it is due to the fact that the probabilities must sum
to unity. Conceptually the reason lies in the fact that the measure (or probability
distribution) of all events related to the same node in the diagram changes, of the
measures of one of the events changes.

These facts make the problem of the sensitivity of decision-support models dif-
ferent from the classical Sensitivity analysis framework of Samuelson (1947) and
from the more recent framework of Tarantola (2000). In fact, such definitions con-
sider the parameters as “free” to vary. However, as our example underlines, there are
models for which parameters variations are linked by external relationships. We use
the term constrained sensitivity. Part 2 of the example shows that when parameters
are constrained, then the sensitivity depends on the way the constrained is solved.
More precisely, it depends on which of the parameters is selected as a dependent
one. In fact, in practical applications, one utilizes the probability of the last out-
come as dependent one (see, for example, Sect. 5.3 of Celemen (1997)), but there is
no reason while the first one could be selected as dependent. The above facts find
their explanation in the following Theorem (the proof can be found in Borgonovo
(2006b)).

Theorem 1. Let
Y = f (x), x∈A⊆ Rn → R (2)

Let x be partitioned in Q < n groups of parameters xq (q = 1 . . .Q) such that

xl
⋂

xm = ∅ (3)

and
Q⋃

q=1

xq = x (4)

Then let rq the number of parameters in each group (clearly ∑Q
q=1 rq = n) and each

parameter group to be constrained by:
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g(x) =

⎧⎪⎪⎨⎪⎪⎩
g1(x1,x2, . . . ,xr1) = c1

g2(xr1+1,xr1+2, . . . ,xr1+r2) = c2

....
gQ(xr1+r2+···+rQ−1+1, . . . ,xn) = cQ

∣∣∣∣∣∣∣∣ (5)

Let xkq ∈ xq denote the parameter which is chosen as dependent in each group. Then
one has5:

d f =
Q

∑
q=1

rq

∑
s=rq−1

(
fs− fkq

gq
s

gq
kq

)
dxs (6)

where fs,g
q
s , fkq ,g

q
kq

denote the partial derivatives of f ,g w.r.t. xs,xkq respectively.

Note that fs, fkq are the usual (free) partial derivatives of f (x) w.r.t. xs, xkq . We
write:

Definition 1.
fs|kq

= fs− fkq

gq
s

gq
kq

(7)

and call fs|kq
the constrained derivative of f w.r.t. xs when xkq is the dependent

parameter of constraint q.

For the purposes of this paper, it is particularly useful the following Corollary
(the proof is in Appendix 1).

Corollary 1. In the case of linear constraints, one gets:

fs|kq
= fs− fkq (8)

Theorem 1 and Corollary 1 define the rate of change of f (x) in respect of xi, in
the presence of input constraints. In terms of our work, they answer Question 1.

The answer to Question 2, namely, how the variation of a model output is appor-
tioned by the inputs, is found utilizing the following sensitivity measure (Borgonovo
& Apostolakis, 2001; Borgonovo & Peccati, 2004):

Ds(x,dx) =
d fs(x)
d f (x)

=
fs(x)dxs

∑n
j=1 f j(x)dx j

(9)

D is the ratio of the (infinitesimal) change in f caused by a change in xs over the
total change in f caused by a change in all the model parameters.

It can be shown that the following properties hold for D (Borgonovo &
Apostolakis, 2001; Borgonovo & Peccati, 2004):

Property 1 Additivity. Let
{

xi,x j, . . . ,xs
}

and S = (i, j, . . . ,k) the set of the cor-
responding indices. Then the joint sensitivity of f on contemporary changes in{

xi,x j, . . . ,xs
}

is given by:
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DS(x,dx) = ∑s∈S fs(x)dxs

∑n
j=1 f j(x)dx j

= ∑
s∈S

Ds(x,dx) (10)

Property 2 Sum to unity.
n

∑
s=1

Ds(x,dx) = 1 (11)

Property 3 Let us consider uniform changes in the parameters, i.e.,

(H1) dx j = dxk ∀ j,k = 1,2, ..,n (12)

If (12) holds, then

D1s =
fs

∑n
j=1 f j

(13)

which means that partial derivatives are proportional to D under an assumption
of uniform changes in the parameters.

This implies that using partial derivatives to determine the influence of parame-
ters on model output is equivalent to state the assumption that all parameters are
varied by the same (small) quantity. This result has the practical consequence that,
if two parameters have different dimensions, the corresponding partial derivatives
cannot be compared (Borgonovo & Apostolakis, 2001; Borgonovo & Peccati, 2004,
2006). Thus, partial derivatives cannot be utilized to answer Question 2, in general.

Property 4 Let us consider proportional relative changes in the parameters, i.e.,

(H2)
dx j

x j
=

dxk

xk
= ω ∀ j,k = 1,2, ..,n (14)

If (14) holds, then:

D2s =
fs

xs
f

∑n
j=1 f j

x j
f

=
Es

∑n
j=1 E j

(15)

where Es is the well known definition of elasticity of f w.r.t. xs. Equation (15)
implies that ranking basic events with elasticity is equivalent to rank them with
D2 (15), i.e., it is equivalent to stating the implicit assumption that all parameters
are changed by the same proportion.

Remark 1. Properties 3 and 4 have the following geometric interpretation. Let us
write dx = tv, where v is the unit vector indicating the direction of the change and t
its magnitude. Equation (9) can be rewritten as:

Ds(x,v) =
fs(x)vs

∆ f · v (16)

In (16), the denominator is the directional derivative of f , an the numerator is the
fraction of the directional derivative related to variable xs. In other words, D does
not only include the rate of change of f , but also the direction of change.
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Fig. 2 2d Geometric interpretation of (13) and (15). The 45◦ line is represented by the solid line,
the dotted line represents a line with tangent equal to ω (ω =−3 in our plot)

To offer a visual interpretation, in two dimensions, (13) is equivalent to explore
the behavior of a surface along a 45◦ line lying on the x–y plane, while (15) is
equivalent to explore the sensitivity of a surface along a line with tangent equal to
ω and lying on the x–y plane (Fig. 2).

We again note that the above definition of D does consider inputs as free. To be
able to measure the importance of inputs in the case constraints apply, one needs
to combine D, as defined by (9), and the constrained Sensitivity analysis results of
Theorem 1. One gets:

Corollary 2. The sensitivity measure for Question 2 in a constrained sensitivity is
given by:

Ds|kq
(x,v) =

d fs

d f
=

(
fs− fkq

gq
s

gq
kq

)
dxs

∑Q
q=1 ∑

rq
l=rq−1

(
fl− fkq

gq
l

gq
kq

)
dxl

(17)

The sensitivity measures for uniform and proportional changes follow straight-
forwardly and we do not report them.

The following remarks hold:

Remark 2. • Equations (7) and (17) imply that the sensitivity results depend on the
parameter which is selected as the dependent one. They provide a differential
explanation of the dependence effect registered in Example 1.

• Equation (8) implies that:
fkq|kq

(x) = 0 (18)
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what means that once a parameter is chosen as dependent, the sensitivity of any
model output on this parameter is null.

• From (18) there follows that:

Dkq|kq
(x,v) = 0 ∀v (19)

Equation (19) implies that once a parameter is chosen as dependent one, the
importance of the parameter is null, independently of the direction of change.

• Let xq denote the set of parameters that must satisfy the qth constraint. From
(10), one gets that the impact of xq is given by:

Dxq|kq
(x,v) =

d fsq

d f
=

∑
rq
s=rq−1

(
fs− fkq

gq
s

gq
kq

)
dxs

∑Q
q=1 ∑

rq
l=rq−1

(
fl− fkq

gq
l

gq
kq

)
dxl

(20)

The next section defines the application of the above results to vNM models.

2.2 Sensitivity Analysis of vNM Models

The purpose of this section is to obtain analytical results for the sensitivity analy-
sis (Questions 1 and 2) of vNM models. The section is divided into two parts. The
first part lays down the notation and derives the analytical expression of a decision-
support model output relying on vNM theory. The second part then derives analyti-
cal results by application of Theorem 1, and Corollary 2.

We try and follow the notation in Kreps (1988). In vNM models a decision-maker
is selecting between A alternatives, to each alternative there can correspond Z state
of natures, with given probability measure pz, ∑ pz = 1, and utility uz. We let P
denote the set of all measures and p an element of P. From vNM theorem, there
follows directly that the utility of alternative i is an affine function of pz:

ui= fi(p) = ∑
z

pzuz (21)

In applications (see Fig. 1 for an example), between a decision node and a state
of nature (called consequence in decision analysis model implementation (see
Celemen (1997)) there interpose several other events. We denote the generic chance
node with q, the number of nodes with Q, and the number of outcomes of each node
with rq, q = 1,2, . . . ,Q (Fig. 3). Then n = ∑Q

q=1 rq is the number of events in the
model. We denote as Es a generic event, which, in a tree or diagram, is a node out-
come. Then, letting ps, s = 1,2, . . . ,n, denote the corresponding conditional proba-
bility, at each node it holds that:
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pi=1 pi=1 pi=1
n1

i =1
Σ Σ Σ

n2

i = n1+1

nQ

i=n1+n2+nQ-1+1

….

Decision Utility1 2 Q

Fig. 3 Correspondence between the constrained sensitivity analysis problem and the VNM
expected utility sensitivity analysis problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑r1

s=1 ps = 1

∑r1+r2
s=r1+1 ps = 1

...

∑n
s=r1+r2+···+rQ−1+1 ps = 1

(22)

Let E1i
z
,E2i

z
, . . . ,EQi

z
denote the set of outcomes whose happening is necessary for

z to be reached given that alternative i is selected. We call E1i
z
,E2i

z
, . . . ,EQi

z
a condi-

tional path leading to consequence z, where the conditional here means given that
alternative i is selected. Let Li

z =
{

1i
z,2

i
z, . . . ,Q

i
z
}

the collection of the corresponding
indices. Then, by construction,

pz = P(E1i
z
,E2i

z
, . . . ,EQi

z
) = ∏

l∈Li
z

pl (23)

One can then write the expected utility of alternative i,ui, as the following affine
function of pl :

ui = fi(p) = ∑
z
(∏

l∈Li
z

pl)uz (24)

According to vNM theory, the decision-maker selects alternative i that maximizes
fi(p). Therefore the expected utility of a decision as a function of p is:

u = f (p) = max
j

f j(p) = max
j

∑
z
(∏

l∈Li
z

pl)uz (25)

f (p) is a piecewise-defined function of p as p varies in P. In particular, u = fi(p) if
alternative i is the preferred one at p. Now, let

Pi =
{

p ∈ P : i = argmax
i

fi(p)
}

(26)

denote the subset of p at which alternative i is preferred. Then, Pi ⊆ P can be called
preference region of alternative i (Borgonovo and Peccati, 2006). ∂Pi denotes the
frontier of Pi, and Pi the closure of Pi.

Now, as we stated in Sect. 1, we are interested in the properties of u = f (p) as p
varies in P. The following holds for (25) (see Appendix 1 for the proof).
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Proposition 1. u = f (p) ∈ C∞(Pi) but is at most C0(P).

In a vNM settings, the decision-maker knows exactly the point p ∈ P where
He/She has to make the decision. For vNM problems, thus, the sensitivity analy-
sis exercise is a local one, namely, one wants to appreciate the sensitivity of the
expected utility at p. We write:

Sensitivity o f
u = f (p)

with
∑r1

s=1 ps = 1
∑r1+r2

s=r1+1 ps = 1
...

∑n
s=r1+r2+···+rQ−1+1 ps = 1

(27)

The sensitivity analysis problem of (27) is represented in Fig. 3, which illustrates
the correspondence between event outcomes and sum to unity of the corresponding
conditional measures.

Exploiting (25) and Theorem 1, we can then introduce the following result (the
proof is in Appendix 1).

Theorem 2. Let p ∈ Pi, then:

1. The free partial derivative of the expected utility w.r.t. probability pt (t =
1,2, . . . ,n) is given by:

∂
∂ pt

f (p) = ∑
z∈Zt

pt−
z pt+

z uz (28)

where (see Appendix 1)

pt−
z = is the probability of the events that precede Et in the path
pt+

z = is the probability of the events that follow Et in the path (29)

2. Let Et be an outcome of node q. Let tq be the pivotal probability. Then, the con-
strained partial derivatives of the expected utility w.r.t. probability pt is:

ut|tq =
∂

∂ pt
f (p)− ∂

∂ ptq
f (p) = ∑

z∈Zt

pt−
z pt+

z uz− ∑
z∈Ztq

ptq−
z ptq+

z uz (30)

3. The importance of a probability w.r.t. an expected utility in a vNM model is
given by:

Dt|tq (p,d p) =

⎛⎝∑
z∈Zt

pt−
z pt+

z uz− ∑
z∈Ztq

ptq−
z ptq+

z uz

⎞⎠d ps

∑n
j=1

⎛⎝∑
z∈Z j

p j−
z p j+

z uz− ∑
z∈Z jq

p jq−
z p jq+

z uz

⎞⎠d p j

(31)
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Let us now state a some observations.

Remark 3. From (30), it is immediate to find back the result that, in the case all
events are binary, and Et−1 and Et belong to the same node, then

∂
∂ pt

f (p) =− ∂
∂ pt−1

f (p) (32)

i.e., sensitivity of an expected utility on a probability is the opposite to its sensitivity
to the complementary of that probability.

Remark 4. If one utilizes a normalized utility uz ∈ [0,1], then one obtains that
∂

∂ pt
f (p) ≥ 0 (28). However, to draw the conclusion that an increase in any

probability leads to an increase in expected utility would be an erroneous inter-
pretation of the results. In fact, probabilities are not free to vary, but, as stated in
(27), a change in one probability is reflected by a contemporary opposite change of
all the other probabilities in the same constraint. Such an effect is contained in (30),
which accounts for the bouncing back of the other probabilities through the term(
− ∑

z∈Ztq

ptq−
z ptq+

z uz

)
.

Remark 5. If one were interested in the joint importance of a group of probabilities,
then one would simply have to sum the importances of the probabilities in the group
thanks to the additivity property.

Remark 6. Point 2 of Theorem 2 answers Question 1 for vNM models. Question 2
is answered by point 3.

We would like to observe that (30) can be utilized to derive indication on the
model correctness. Through (30), in fact, an analyst is deriving information on
the rate of change and relevance of the probabilities on one of the alternatives. The
results can be utilized to infer, for example, information on the model correctness.
If one is expecting an increase in utility and obtains the opposite effect, then one is
lead to further investigate whether the discrepancy is due to false expectations or to
some computational error.

Finally, in virtue of Proposition 1, f (p) is not differentiable on the frontiers
of alternative preference regions. Indeed, f (p) is subdifferentiable. The one-sided
derivatives at each p ∈ ∂Pi are defined. This has the following decision-theoretic
meaning. Suppose the decision-maker is indifferent among two alternatives, i and
j (for simplicity), then ut|tq (p) changes depending on whether the sensitivity is ex-

plored in a direction that from p leads to a point p′ ∈ Pi or to a point p′′ ∈ P j.
But moving from ∂Pi to Pi or P j has the meaning of making alternative i or j the
preferred one. Thus, the answer to Questions 1 and 2 is unique provided that the
decision maker selects one of the alternatives as preferred.
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3 Sensitivity Analysis with Uncertainty: The Expected Value
Problem

In many decision analysis applications once the model is developed and some base
case values of the probabilities are assessed, the decision-maker starts questioning
His/Her state of belief of p. Furthermore, in many decision-support models, proba-
bilities are computed as functions of some uncertain parameters. Suppose that node
q in the model of Fig. 3 contains two outcomes: Et = “the equipment fails before
T ” and its complementary Et (no failure). If, as it is usually the case in the practice
(Borgonovo & Apostolakis, 2001) the failure time is modelled by an exponential
distribution. Then:

P(Et) = 1− e−θT = pt(θ) (33)

If the decision-maker utilizes a Bayesian approach to estimate θ then, letting h(θ)
denote the density of θ w.r.t. the Lebesgue measure, P(Et) has an induced density
fP(Et )(pt) = 1

T (1−pt )
h[− ln(1−pt )

T ].
Before providing the sensitivity analysis results, we study the change in model

structure, namely (24) and (25), implied by the subjective uncertainty framework.
We adopt a standard Bayesian decision theoretic setting (Berger, 1985; Insua et al.,
1998). Let θ ∈Θ⊂ Rn be the state variable, or “parameter” (Gustafson and Wasser-
man, 1995), B a σ -algebra on Θ and µ the probability measure on (Θ,B) which
reflects the current decision-maker’s state of belief on the parameters. As a function
of the parameters,6 (24) becomes:

ui = gi(θ) = ∑
z
(∏

l∈Li
z

pl(θ))uz (34)

The expected utility of alternative i is, then, (Insua et al., 1998):

Eµ [gi(θ)] =
∫

Θ
gi(θ)dµ(θ) (35)

The decision-maker selects alternative i such that:

i = arg max
j=1,2, ... ,A

Eµ [g j(θ)] (36)

Equation (36) is standard in Bayesian statistics. We would like to offer an interpre-
tation of such relation in a Anscombe and Aumann (1963) sense. Equation (36) can
be read as follows. Let Θ play the role of Ω, the state of the world in Anscombe–
Aumann’s model. A state of the world is represented by a value θ ∈ Θ. Given θ ,
the decision-maker has to compare lotteries, L j = ∑

z
(∏

t∈L j
z

pt(θ))uz. The Anscombe-

Aumann axioms, then, assure that

i� j⇐⇒ Eµ [gi(θ)]≥ Eµ [g j(θ)] (37)
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We are now ready to derive the following result (the proof is in Appendix 1).

Theorem 3. Let p= p(θ), (B,Θ,µ) a probability space with dµ(θ)=∏n
i=1 dµ i(θ i).

1.

u = f (p̂) = max
j

∑
z

⎛⎝∏
l∈Li

z

p̂l

⎞⎠uz (38)

where
p̂l = Eµ [pl(θ)] (39)

2. The rate of change the expected utility w.r.t. due to a change in the expected value
of probability pl , ut|tq , is given by:

ut|tq = ∑
z∈Zt

p̂ t−
z p̂ t+

z uz− ∑
z∈Ztq

p̂ tq−
z p̂ tq+

z uz (40)

3. The contribution of a change in probability to the expected utility change is iden-
tified by:

Dt|tq (p,d p) =

⎛⎝∑
z∈Zt

p̂ t−
z p̂ t+

z uz− ∑
z∈Ztq

p̂ tq−
z p̂ tq+

z uz

⎞⎠d ps

∑n
l=1

⎛⎝∑
z∈Zl

p̂ l−
z p̂ l+

z uz− ∑
z∈Zlq

p̂ lq−
z p̂ lq+

z uz

⎞⎠d pl

(41)

From a Bayesian viewpoint the above theorem has the following interpretation.
Suppose that some evidence happens, that causes a small deviation in the posterior
expected value of the probabilities. Then the rate of change of the utility due to
such evidence is given by (40) and the importance of the probability by (41). Note
that such equations have the same form of (30) and (31), provided that one utilizes
the expected value of the probabilities in (30) and (31). In other words, if the ref-
erence value of the probabilities in the vNM model coincides with their expected
value in the Bayesian one, under the assumption of independent parameters, then
the sensitivity analysis. Problems on small changes in the reference values of the
probabilities lead to the same answers for a vNM decision-maker and a Bayesian
one solving the expected value problem.

However, the above results hold only under the condition that the parameters are
independent. To say it using Wallace (2000) terminology, in that case uncertainty is
“absorbed” by the expected values of the parameters, and the deterministic method
still maintains some value. However, if the independency assumption does not hold,
the above results would reveal to be unsatisfactory. We discuss this problem in the
next section.
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4 Sensitivity Analysis with Uncertainty: The State of Belief
Problem

We are now left to discuss the sensitivity analysis problem of finding the parameter
that influence the decision analysis model response the most when µ is not a product
measure (no independence as opposite of the previous section).

If is clear that, to answer the above question, the local approach discussed for
vNM models is not appropriate anymore, neither is Theorem 3. A traditional sensi-
tivity measure to quantify the relevance of a parameter, say θ s, is the expected value
of sample information, defined as (see Pratt et al. (1995)):

EV SIs = Eµ(θ |θ s )[max
j

g j(θ)]− max
j=1,2,...,A

Eµ [g j(θ)]− c (42)

where µ(θ |θ s ) is the conditional measure given θ s and c is the cost of testing. As
usual, we note the exchange between the max and expectation operations in (35).
Hence, if one takes as importance measure of θ s its EV SI, one is ranking uncer-
tain parameters based on the expected gain in utility that follows from obtaining
information on the parameter. Borgonovo and Peccati (2006) discuss that under the
assumption of a square loss function, the EVSI of a parameter is proportional to
Vs

µ(θ) [max j g j(θ |θ s )], the contribution of the parameter to Vµ(θ) [max j g j(θ |θ s )],
and the decomposition of Vµ(θ) [max j g j(θ |θ s )] is obtained by means of Efron and
Stein (1981) result, together with the methodology of Sobol’ (1993).

Alternatively, one may want to measure the influence of a parameter without
relying on any of the moments of the utility function (the possibility of normalizing
and exchanging utility and probability is thoroughly discussed in Castagnoli and Li
Calzi (1996)). A sensitivity measure that does not look at any moment of g j(θ),
but considers the entire (distribution of) the utility can be built as follows. Consider
g j(θ). As θ has measure µ, then g j(θ) as a function of random variable inherits
an induced distribution µUj

. If θ s does not affect the decision-maker view of the
problem at all, then the utility is independent of θ s, and its distribution is not affected
by θ s assuming any of its values. In other words, µUj

= µUj |θ s
. However, if θ s

influences g j(θ), then µUj
�= µUj |θ s

. Then, let us define the following quantity:

Definition 2.
δ s =

1
2

Eθ s

[∫ ∣∣∣dµUj
−dµUj |θ s

∣∣∣] (43)

The interpretation of δ s becomes clearer if one allows for density fU j(u) associ-
ated with µUj

and the conditional densities fUj |θ s (u) associated with µU |θ s
. Then

one can write:

δ s =
1
2

Eθ s

[∫ ∣∣∣ fUj(u)− fUj |θ s (u)du
∣∣∣] (44)

The quantity inside the expectation operator, namely,

ς(θ s) =
∫ ∣∣∣ fUj(u)− fUj |θ s (u)

∣∣∣du (45)
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Table 1 Properties of the delta uncertainty importance measure

No. Property

1 0≤ δ s ≤ 1
2 δ s = 0 if g j(θ s) is independent of θ s
3 δ 1,2,...,n = 1
4 δ sl = δ s if g j(θ) is dependent on θ s but independent of θ l
5 δ s ≤ δ sl ≤ δ s +δ l|s

measures the shift which is provoked in the utility when θ s is fixed at one of its
possible values. Geometrically, ς(θ s) is the area between the densities fUj(u) and
fUj |θ s (u) (Borgonovo, 2006a, 2007). ς(θ s) is dependent on θ s, and, as such, ς(θ s)
is a function of random variable. Taking the expectation based on the marginal
distribution of θ s, namely Eθ s [ς(θ s)] (43), one measures the average shift in the
decision-maker utility provoked by θ s.

The definition of δ can be extended to any group of parameters, R =
(θ i1 ,θ i2 , . . . ,θ ir), as follows:

δ i1,i2,...,ir =
1
2

EµR [ς(R)] (46)

Given the definitions in (43) and (46), δ shares the properties reported in Table 1 (the
proofs can be found in Borgonovo (2006a)). One can summarize these properties as
follows. Property 1 implies that the δ of an individual parameter or of a group can
only assume values between 0 and 1. Property 2 suggests that a parameter/group
has null importance when g j(θ) is independent of that parameter/group. Property
3 states that the joint importance of all inputs equals 1. Properties 4 and 5 refer
to the joint importance of two (or more) parameters. Property 4 says that if g j(θ)
is dependent on θ s but independent of θ l then δ sl = δ s. Property 5 states that the
joint importance of two parameters is greater than the importance of an individual
parameter, but limited by the sum of such importance and the conditional term δ l|s
given by (see also Borgonovo (2006a, 2007)):

δ l|s =
1
2

Eθ sθ l

[∫ ∣∣ fU |θ s (u)− fU |θ sθ s (u)
∣∣du
]

(47)

We would like to state some observations.

Remark 7. The definitions of the δ uncertainty importance for individual parameters
(43) and for groups (46) do not require parameter independence.

Remark 8. A decision-maker utilizing EVSI or δ in a sensitivity analysis, is gaining
information on Question 2, as She/He is capable of assessing the relative influence of
the parameters. Note that, since EVSI and δ are defined in respect of the current state
of belief, both EVSI or δ do not provide information on the direction of change in
the expected utility given a change in the decision-maker state of belief (Question 2).
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The answer to Question 1 for a Bayesian decision-maker requires a different
approach. Namely, one needs to solve the problem:

Problem 1. What is the effect on Eµ [gi(θ)] given a change in the decision-maker’s
state of belief?

Note that Problem 1 is the reformulation of Question 1 in a Bayesian setting.
The answer to Problem 1 finds its statistical foundations lie in Bayesian statis-
tics for the sensitivity of posterior expectations, and in particular on the theoret-
ical framework developed in Gustafson (1996). Let π(θ) the density associated
with µ . The change in the decision-maker’s state of belief is represented by a
change in π(θ). The change in π(θ) is represented by a perturbation ε(θ) that
leads to the new state of belief density w(θ) = π(θ)+ ε(θ). The technical mean-
ing and properties of a perturbation are discussed in Gustafson (1996). The funda-
mental idea is that the density π(θ) is distorted through the new term ε(θ). Now,
consider the expected value functional Eπ [gi(θ)] , where, we have evidenced π,
the density associated with µ and representing the decision-maker’s current state
of belief. Then, it is possible to see that thanks to the linearity of Eπ [gi(θ)]
(Appendix 1),

Proposition 2. The rate of change of the expected utility in the direction of change
u is:

Dgi
π u =

∫
Θ

gi(θ)ε(θ)dµ(θ) (48)

Equation (48) expresses the sensitivity of the expected utility in alternative i,
given a change in the decision-maker’s view on θ . With this respect, it is an answer
to Question 1 and it parallels the use of (30) in the case of vNM models. However,
some remarks have to be made.

The first concerns the effect of independence. In the case the decision-maker
view of the problem is such that independence among the θ s holds, then one can
assess perturbations for each of the parameters separately. Thus, through Dgi

π u(θ s)
(48) one is indeed answering the question of what is the effect of a change in the
decision-maker’s view on each θ s. In the case correlations are present, then it is
not possible to perturb each parameter independently, but one unique perturbation
reflecting the decision-maker’s change in view must be adopted. This has the follow-
ing consequence. If the parameters of interests are probabilities, then the presence
of the constraints (22), imply that the p’s cannot be independent of each other and
therefore assessing the sensitivity of the expected utility on each ps separately is
an ill-defined problem. In fact, what is concerned by the change is not the view
on ps, but in the subjective conditional measure of all the events associated with
ps.7 This is the Bayesian equivalent of the constrained results obtained for the vNM
decision-makers in Theorem 2.

The second concerns the utilization of (48). Equation (48) provides the decision-
maker with the response of the expected utility of alternative i to a change in its
state of belief. Thus, as mentioned, it addresses a different problem than the one of
providing information on whether, in correspondence of the state of belief change, a
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change in the preferred alternative happens. Such a problem finds its answer in the
works of, among others, Evans (1984), Fishburn et al. (1968), and Ringuest (1997),
but also in Insua et al. (1998).

5 Conclusions

Ringuest (1997) maintains that “any effective decision analysis must include a thor-
ough sensitivity analysis”. Although sensitivity analysis is often regarded as an in-
tegral step of the decision-making process, many questions remain open concerning
the consistency of the sensitivity analysis method in respect of the decision problem
at hand.

We have formulated our analysis as an answer to two questions. The first is
Samuelson’s statement that has originated comparative statics. The question con-
cerns the response of a system to (small) changes in the inputs; the answer is found
through implicit differentiation and delivers the rate of change in the output given
a small change in the inputs. The second question relates to the problem of how
the change is apportioned to input variations (Tarantola, 2000; Saltelli, 2002). The
answer to the second question defines the importance of parameters (Saltelli, 2002).

We have discussed the formulation of Questions 1 and 2 in decision-making.
We have seen that, to answer these questions in a decision-theory consistent way,
two completely different mathematical approaches must be undertaken depending
on whether a decision-maker is utilizing a support model based on the vNM axioms
or a model consistent with a Bayesian subjective utility approach. Table 2 offers a
comparison of the results of this work.

We illustrate first the results that we have obtained for vNM models. We have
seen that, since the analysis takes place at p – the given value of the probabilities –
the answer to the two sensitivity analysis questions can be found by using differen-
tial techniques: partial derivatives for Question 1 – along the line of the comparative
statics tradition – and the differential importance measure (D) for Question 2. Both
measures relate to the infinitesimal change d p. However, the presence of the nor-
malization condition turns the analysis into a constrained sensitivity problem. We
have then illustrated that the solution of the problem is found by applying a recent
result introducing the concept of constrained derivative. This has allowed us to come

Table 2 Comparison of sensitivity analysis results for a VNM and a Bayesian decision-maker

Type Answer to Question 1 Answer to Question 2

vNM ut|tq = ∑
z∈Zt

pt−
z pt+

z uz− ∑
z∈Ztq

ptq−
z ptq+

z uz Dt|tq =

⎛⎝∑
z∈Zt

pt−
z pt+

z uz− ∑
z∈Ztq

p
tq−
z p

tq+
z uz

⎞⎠d ps

∑n
j=1

⎛⎜⎝∑
z∈Z j

p j−
z p j+

z uz− ∑
z∈Z jq

p
jq−
z p

jq+
z uz

⎞⎟⎠d p j

Bayesian Dgi
π u =

∫
Θ gi(θ)ε(θ)dµ(θ) EV SIs (42), δ s (43)
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to the the analytical expression of the sensitivity measures of vNM expected utility
models both for Question 1 (comparative statics) and Question 2 (differential im-
portance). We have then discuss the meaning and insights a decision-maker derives
from application of the results.

In the practice of modeling, it is customary that, if time allows it, after preforming
a sensitivity analysis at the base case, decision-makers start assessing uncertainty in
the probabilities. In so doing, they leave the vNM framework and enter the Bayesian
one. We have then analyzed how to find the answers for Questions 1 and 2 when the
decision-maker is utilizing a model consistent with a (Bayesian) subjective expected
utility approach. We have cast the sensitivity in a Bayesian framework and intro-
duced the parameter space, Θ. We have seen that the answer to Question 1 is found
by making use of a Bayesian sensitivity approach based on Fréchet differentiation
(Table 2). More in detail, the change needs to be modeled as a perturbation of the
decision-maker’s density. We have derived the rate of change of the expected utility
of an alternative as a function of the change (perturbation) in the decision-maker
state of belief. We have seen that Question 2, namely the importance of parameter
θ s, is answered by means of either the EV SIs or by δ s, if the decision-makers wants
to assess the sensitivity of the entire distribution of the utility without reference to
one of its moments (Table 2).

As a result of the work, one can conclude that, in general, a vNM decision-
maker and a Bayesian one need to use very different approaches to answer the same
sensitivity analysis questions. We have also looked for a bridge between the two
approaches, called “the expected value problem”. Namely, we have seen that sensi-
tivity analysis results of a vNM decision-maker are the same as the ones utilized by
a Bayesian decision-maker, if uncertainty is absorbed in the expected value. More
precisely, if the Bayesian decision-maker’s state of belief is such that the parameters
are independent, and if the expected value of the probabilities is utilized by a vNM
decision-maker as reference value, then, if the Bayesian decision-maker measures
sensitivity as rate of change of the expected utility w.r.t. the expected value of the
probabilities, the two decision-makers would derive the same results.

We note that the presented framework for sensitivity analysis paves the way to fu-
ture research. First of all the answer to Questions 1 and 2 when these are posed in the
context of models based on ambiguity theory and dynamic choice models. Further,
among the above mentioned methods, the last approach, namely the perturbation
approach, has not been thoroughly studied in applications. Thus, the exploration of
issues such as the selection of the appropriate perturbation (partly discussed also in
Gustafson (1996)) in the presence and absence of input correlations, is part of future
work of the authors.

Notes

1We wish to point out the difference between the stability problem and the ambiguity problem.
In the works relating to stability, one is interested in the sensitivity of a subjective expected utility
to changes in the probability distributions. In other words, one is interested in the question of
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whether selecting, say, a different prior the decision problem solution would change significantly,
but one still remains in the realm of subjective expected utility. In the theory of decision making
with ambiguity, originated by the Ellsberg paradox (Ellsberg, 1967),“models have been proposed
which extend subjective expected utility (Ghirardato, Maccheroni, & Marinacci, 2004)” theory.

2Indeed, one can observe that fixing the inputs at p0 is the same as having the decision maker
assigning a delta-Dirac measure centered at p0.

3If one tries to perform these operations on a standard software (for example DATAPRO), one
would get an error message.

4See the previous footnote.
5By convention r0 = 1.
6Nothing forbids the probabilities themselves to be directly the parameters.
7They are the events whose probabilities lie in the same constraint as ps and are usually out-

comes of the same node in the model.

Appendix 1: Proofs

Proof. of Corollary 1. Let the constraint be written as

g(x) =

⎧⎪⎪⎨⎪⎪⎩
∑r1

s=1 xs = c1

∑r1+r2
s=r1

xs = c2

....

∑n
s=r1+r2+··· .+rQ−1+1 xs = cQ

∣∣∣∣∣∣∣∣ (49)

then
gq

s (x) = gq
kq(x) = 1 ∀s,kq = 1,2, . . . ,n,∀q = 1,2, . . . ,Q (50)

and the thesis follows from substitution in (7). ��
Proof. of Remark 1. First let ∂Pi denote the frontier of an indifference region. If
p0 ∈ Pi/∂Pi (i.e., p0 is an internal point), it holds that:

u = fi(p0) (51)

Now, from (24) and (25), fi(p0) is linearly multiplicative in p0 and therefore u ∈
C∞(p0). If p0∈∂Pi, then the decision-maker is indifferent between alternatives i
and j, . . . ,k, and, by definition of indifference fi(p0) = f j(p0) = . . . = fk(p0), i.e.,
f (p0) is continuous when crossing indifference hypersurfaces. However, it easy to
verify (it suffices an example) that u is not differentiable at ∂Pi. ��
Proof. of Theorem 2. Point 1.

1. If p ∈ Pi, then from (25) and (24), we have:

u = ui(p) = ∑
z

⎛⎝∏
l∈Li

z

pl

⎞⎠uz = f (p) (52)
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The next step is to isolate the paths containing the probability of interest, pt . To
do so, it is necessary to group the paths containing event Et . Let us denote this
group as Zt . Then, (52) can be rewritten as:

f (p) = ∑
z∈Zt

⎛⎝∏
l∈Li

z

pl

⎞⎠uz + ∑
z/∈Zt

⎛⎝∏
l∈Li

z

pl

⎞⎠uz (53)

The terms ∑
z/∈Zt

⎛⎝∏
l∈Li

z

pl

⎞⎠uz do not contain pt and therefore they drop out in the

differentiation. One can then concentrate on ∑
z∈Zt

⎛⎝∏
l∈Li

z

pl

⎞⎠uz. Noting that each

summand is of the form:

∏
l∈Li

z

pluz =

⎛⎜⎜⎝∏
l<t

l∈Li
z

pl

⎞⎟⎟⎠ pt

⎛⎜⎜⎝∏
l>t

l∈Li
z

pl

⎞⎟⎟⎠ (54)

i.e., one can partition ∏
l∈Li

z

pl into three parts: 1 -

⎛⎜⎜⎝∏
l<t

l∈Li
z

pl

⎞⎟⎟⎠ is the product of the

probabilities of outcomes that precede Et , 2 - pt itself and 3 -

⎛⎜⎜⎝∏
l>t

l∈Li
z

pl

⎞⎟⎟⎠ which

is probability of events following Et in the path. Therefore:

∂u
∂ pt

= ∑
z∈Zt

⎛⎜⎜⎝∏
l<t

l∈Li
z

pl

⎞⎟⎟⎠
⎛⎜⎜⎝∏

l>t
l∈Li

z

pl

⎞⎟⎟⎠uz (55)

Now, letting pt−
z =

⎛⎜⎜⎝∏
l<t

l∈Li
z

pl

⎞⎟⎟⎠ and pt+
z =

⎛⎜⎜⎝∏
l>t

l∈Li
z

pl

⎞⎟⎟⎠, one gets:

∂u
∂ pt

= ∑
z∈Zt

pt−
z pt+

z uz (56)
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Furthermore, by construction, pt−
z is the probability of all outcomes leading to

Et , and pt+
z the conditional probability of all outcomes following Et and leading

to consequence z.
2. One needs to combine Point 1 with Theorem 1
3. Combine (30) with (17). ��
Proof. of Theorem 3. Given (34), the linearity of the expectation operator leads to:

Eµ [gi(θ)] = ∑
z

Eµ

⎡⎣∏
l∈Li

z

pl(θ)

⎤⎦uz (57)

and the assumption dµ(θ) = ∏n
i=1 dµ i(θ i) leads to:

Eµ

⎡⎣∏
l∈Li

z

pl(θ)

⎤⎦= ∏
l∈Li

z

Eµ [pl(θ)] (58)

Thus:

Eµ [gi(θ)] = ∑
z

⎛⎝∏
l∈Li

z

p̂l

⎞⎠uz (59)

which leads to

u = max
j

∑
z

(
∏
l∈Lz

p̂l

)
uz (60)

where
p̂l = Eµ [pl(θ)] (61)

Points 2 and 3 follow from the fact that (38) is of the same form as (24) and follow
from application of Theorem 2. ��
Proof. of Proposition 48. Applying the definition of Fréchet differential to pertur-
bations as in Gustafson (1996), then one has:

Dg
π u=lim

h↓0

∫
g(θ) [π(θ)+hε(θ)]dµ(θ)− ∫ g(θ) [π(θ)]dµ(θ)

h
=
∫

g(θ)ε(θ)dµ(θ)

��
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Alternation Bias and the Parameterization
of Cumulative Prospect Theory

K. Kaivanto

Keywords: Cumulative prospect theory · St. Petersburg Paradox · Local represen-
tativeness effect · Alternation bias · Law of small numbers

1 Introduction

Several authors have recently addressed the question of whether cumulative
prospect theory (CPT) resolves the St. Petersburg Paradox (Blavatskyy, 2005;
Rieger & Wang, 2006). These authors show that direct application of CPT to the
St. Petersburg gamble fails to resolve the paradox under most conventional CPT
parameterizations. They also propose a number of remedial fixes to CPT, central
among which is a constraint on the value function exponent to be smaller than the
probability weighting function exponent (α < γ). As this constraint is violated by
most experimentally determined CPT parameterizations,1 the remedy amounts to a
fundamental reparameterization of CPT.

Tversky and Kahneman’s (1992) CPT is a descriptive theory. It is consistent with
stochastic dominance and accounts for framing effects, nonlinear probability prefer-
ences,2 source dependence, risk seeking behavior,3 loss aversion,4 and uncertainty
aversion. Nowhere has it been suggested that CPT’s descriptive power extends to lo-
cal representativeness effects. As Tversky and Kahneman (1992) stress, “Theories
of choice are at best approximate and incomplete.” Like numerous other heuris-
tics, the operation of the representativeness heuristic (Tversky & Kahneman, 1974)
depends in a complex fashion not only on the structural formulation of the deci-
sion problem, but also on its context and manner of presentation. Hence, explicit
incorporation of the representativeness heuristic into the formal structure of CPT
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would limit its applicability to a narrow range of problems. Incorporation of the
binary sequence variant of the representativeness heuristic, the local representative-
ness heuristic, into the formal structure of CPT would limit its applicability still
further. Thus, in order for CPT to function as a straightforwardly implementable
general purpose descriptive theory, the local representativeness effect must remain
outside its formal structure and specification.

Nevertheless, it is evident that the coin-tossing sequence found in the St.
Petersburg gamble is precisely the sort of context where the local representativeness
effect is likely to be operative. Indeed many psychological studies of randomness
perception and the local representativeness effect in particular have utilized coin-
tossing experiments (e.g. Rapoport & Budescu, 1997; Kareev, 1995). Moreover,
these experimental studies of local representativeness have been designed in such a
fashion5 so as to allow ‘clean’ estimates of the alternation bias – i.e. estimates that
are free from the confounding of conditional probability distortion with outcome
value weighting.

Under the alternation bias, subjects perceive negatively autocorrelated sequences
as maximally random, while the runs that are characteristic of unbiased memoryless
Bernoulli processes are perceived as being excessively regular to be random. There-
fore alternation bias leads to the subjective association of a negative autocorrelation
with known memoryless and unbiased Bernoulli processes. This may be viewed as
a subjective distortion of conditional probability. As phenomena ranging from the
Gambler’s Fallacy6 to behavior in the Monty Hall problem7 attest, people without
specialist training in probability theory generally process conditional probability in-
formation differently than probability calculus intimates.

This note contends that once alternation bias is controlled for, conventional para-
meterizations of CPT do indeed succeed in resolving the St. Petersburg Paradox. The
suggestion, made by Blavatskyy (2005) and Rieger and Wang (2006), to constrain
the value function exponent to be smaller than the probability weighting function
exponent (α < γ), confounds the subjective distortion of conditional probability
with (a) the subjective distortion of unconditional probability and (b) the subjective
valuation of outcomes. Reparameterization of CPT on the basis of the St. Petersburg
Paradox is not only unnecessary, but would also disturb the theory’s internal consis-
tency and narrow its scope of applicability.

This note builds upon insights derived from Rabin (2002) on local represen-
tativeness. The following section briefly summarizes the local representativeness
effect and presents empirical estimates of fist-order and higher-order alternation
bias. Section 3 uses these estimates to show: (Sect. 3.1) that alternation bias on its
own is sufficient for the subjective (mathematical) expectation of the St. Petersburg
gamble to be rendered finite and within conventionally accepted empirical bounds;
(Sect. 3.2) that alternation bias relaxes the Blavatskyy–Rieger–Wang CPT finiteness
constraint; and (Sect. 3.3) that once alternation bias is controlled for, CPT yields a
finite willingness to pay for the St. Petersburg gamble, which moreover falls within
conventionally accepted empirical grounds. Section 4 concludes.



Alternation Bias and Parameterization of CPT 93

2 Local Representativeness Effect

That people display alternation bias in sequential randomization tasks was first hy-
pothesized by Reichenbach (1934).8 Experimental and observational evidence con-
sistent with this hypothesis amassed from the time that the hypothesis was first put
to test. The effect is known by different labels in different contexts – such as the
Gambler’s Fallacy in gambling, and the alternation bias in coin tossing – but these
are specific examples of the local representativeness effect.9

People under the influence of the local representativeness effect attribute the
salient properties of the population or generating process to short sequences. That
is, such individuals do not adequately distinguish between local features and the
properties of the whole, and they apply the latter to the former. For Bernoulli se-
quences this translates into local matching of outcome proportions with those of the
long-run process, i.e. (0.5,0.5) for unbiased coins, and excessive local irregularity,
i.e. a propensity to anticipate too many ‘reversals’ in short series.

This subjective predisposition to anticipate reversals is called the alternation
bias, which equates to a negative subjective autocorrelation whereby people expect
too few streaks in random sequences. Alternation bias effects have been docu-
mented up to sixth order (Budescu, 1987). Most empirical studies place the first-
order effect at P(H|T ) = 0.6 (see Bar-Hillel and Wagenaar (1991), Budescu (1987),
Kareev (1995)). Still, some studies have found an even stronger first-order effect
of P(H|T ) ∈ [0.7,0.8] (Gilovich, Vallone, & Tversky, 1985). Taking higher-order
effects into consideration, Rabin (2002) derives the following conditional prob-
abilities from data presented in Rapoport and Budescu (1997): P(H|T ) = 0.585,
P(H|HT ) = 0.46, P(H|HHT ) = 0.38 and P(H|HHH) = 0.298, where this last ex-
pression refers to the conditional probability of a toss turning up ‘Heads’ given that
the three immediately preceding tosses turned up ‘Heads’. After rounding we obtain
the following higher-order transition probabilities (see Table 1) with an alternation
bias that bridges, between first and third orders, the weaker and the stronger alter-
nation bias magnitudes reported in the literature.

3 Application to the St. Petersburg Gamble

In the modern variant of the St. Petersburg Paradox, a subject is offered a sto-
chastic payout of 2ñ dollars, where ñ is the index of the first toss on which a
fair, memoryless coin turns up ‘Heads’.10 The paradox arises because although

Table 1 Alternation bias estimates from the literature expressed as transition probabilities

First order

P(H|T )

0.6

Higher order

P(H|T ) P(H|T T ) P(H|T T T )

0.58 0.62 0.70
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the mathematical expectation of the gross St. Petersburg gamble payout GStP = 2ñ

is infinite, people are typically willing to pay only a small, finite amount to ob-
tain this gamble. The theoretical literature favors Willingness To Pay (WTP) esti-
mates between $2 and $4. This accords with Bernoulli’s (1738) ‘expected moral
worth’ solution which he formalized using the logarithmic function: abstract-
ing from prior wealth, the St. Petersburg gamble is evaluated as E[u(GStP)] =
∑∞

n=1 2−n log(2n) = ∑∞
n=1

n
2n log(2) = 2log(2) = log(4), giving a certainty equivalent

of $4 (Schmeidler & Wakker, 1998).11 With the exception of Bottom, Bontempo,
and Holtgrave (1989), formal experimental studies of the St. Petersburg gamble
are thin on the ground, if for no other reason than the difficulty of bankrolling po-
tentially very large (infinite in expectation) payouts. Some sources report that the
typical WTP is no more than $10 (Chernoff & Moses, 1959), while others, such as
Camerer (2005), report that people typically disclose a WTP of approximately $20.

The St. Petersburg Paradox was the earliest example of an ‘anomaly’ in choice
behavior that led to a change in theory, insofar as it caused Bernoulli to supplant the
Pascal–Fermat theory of Expected Monetary Value (EMV) with what has become
known as Expected Utility (EU). Numerous alternative solutions to the paradox
have subsequently been proposed.12 Moreover, Yaari’s (1987) dual theory of choice
under risk has shown that the concave utility function (distortion of outcomes) solu-
tion is observationally indistinguishable from a distortion of probabilities solution,
and that as such, concave utility is therefore not a necessary precondition for solving
the St. Petersburg Paradox. Yet ultimately it was the mounting evidence of experi-
mentally demonstrated EU-violating ‘anomalies’ – heuristics and biases of choice
under risk and uncertainty – that allowed CPT to emerge as an alternative to EU.
Although CPT serves as a descriptive model for a number of distinct behavioral bi-
ases and effects, alternation bias is not among them. Nevertheless, alternation bias
is particularly relevant in the context of coin tossing sequences.

The next section shows that alternation bias is sufficient on its own to induce
finite and moderate WTP for the St. Petersburg gamble. The following two sections
show in turn that by controlling for alternation bias, currently popular CPT para-
meterizations do in fact satisfy appropriately specified finiteness constraints for the
St. Petersburg gamble, and moreover they yield Certainty Equivalents (CEs) and
WTP within the accepted empirical range.

3.1 Mathematical Expectation Revisited

In the present context, alternation bias enters the formulation of subjective (mathe-
matical) expectation by distorting the subject’s perception of the probability distri-
bution of ñ, the index of the first toss on which an unbiased memoryless coin turns
up ‘Heads’.

Objectively ñ follows a geometric distribution with parameter p = 1
2 , i.e. the

objective probabilities are simply pn = 1
2 (1− 1

2 )n−1 = 2−n for n = 1,2, ... .
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Accounting for first-order alternation bias, under which P(H|T ) = 0.6 and
P(T |T ) = 0.4, the subjectively perceived probability of the coin turning up ‘Heads’
for the first time on toss n then takes the form

pf-o
n =

{
P(H) = 1

2 for n = 1
1
2 P(H|T )P(T |T )n−2 = 0.3 ·0.4n−2 for n≥ 2

, (1)

which gives a subjectively distorted mathematical expectation of

E f-o(GStP) =
∞

∑
n=1

pf-o
n 2n = 1+0.3

∞

∑
n=2

0.4n−22n = 1+
(

0.3
0.42

) ∞

∑
n=2

0.8n

= 1+
(

0.3
0.42

)[
0.8
0.2
−0.8

]
= 7.0 . (2)

So under first-order alternation bias alone, WTP is limited to $7.0.
Accounting for higher-order alternation bias (see Table 1), the subjectively per-

ceived probability of the coin turning up ‘Heads’ for the first time on toss n then
takes the form

ph-o
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P(H) = 1
2 n = 1

1
2 P(H|T ) = 1

2 ·0.58 = 0.29 n = 2
1
2 P(T |T )P(H|TT ) = 1

2 ·0.42 ·0.62 = 0.1302 n = 3
1
2 P(T |T )P(T |T T )P(H|T T T )P(T |T T T )n−4 = 1

2 ·0.42·0.38·0.7·0.3n−4

= 0.05586 ·0.3n−4
n≥ 4

(3)
which gives a subjectively distorted mathematical expectation of

Eh-o(GStP) =
3

∑
n=1

ph-o
n 2n +

∞

∑
n=4

ph-o
n 2n =

3

∑
n=1

ph-o
n 2n +

(
0.05586

34

) ∞

∑
n=4

0.6n

=
3

∑
n=1

ph-o
n 2n +

(
0.05586

34

)[
0.64

0.4

]
= 5.436 . (4)

So under third-order alternation bias alone, WTP is limited to $5.436.
Relative to the objective geometric distribution, first-order alternation bias in-

duces a higher perceived probability of the coin-tossing sequence terminating on the
second throw (p2 =0.25 < 0.3= pf-o

2 ) than on subsequent throws (pn > pf-o
n ∀n≥ 3),

while third-order alternation bias induces a higher perceived probability of the coin-
tossing sequence terminating on the second and third throws (p2=0.25 < 0.29=ph-o

2 ,
p3 =0.125 < 0.1302= ph-o

3 ) than on subsequent throws (pn > ph-o
n ∀n≥ 4).

Both the first-order (2) and higher-order (4) estimates of WTP induced by alterna-
tion bias alone fall within the generally accepted empirical range. Whereas Camerer
(2005) shows that the ‘anomalies literature’ – through loss aversion13 in particular –
provides a solution to the St. Petersburg Paradox that requires neither a nonlinear
value function nor a nonlinear (unconditional) probability weighting function, (2)
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and (4) show that the anomalies literature also gives rise to a second solution – based
on alternation bias – which similarly makes no requirement for a nonlinear value
function or a nonlinear (unconditional) probability weighting function.

3.2 CPT Finiteness Constraint Revisited

Blavatskyy (2005) and Rieger and Wang (2006) contend that conventional parame-
terizations of CPT fail to yield finite valuations for the St. Petersburg gamble, and
that in order to resolve the St. Petersburg Paradox the parameterization of CPT must
satisfy an additional constraint, namely α < γ . Yet given what has been established
above about the alternation bias – i.e. (a) that it is well-documented, (b) that it af-
fects sequence trials exemplified by coin-tossing sequences such as those found in
St. Petersburg gambles, and (c) that it has been established independently of un-
conditional probability distortion and non-linear outcome weighting – and given
that CPT has been conceived as a descriptive theory to explain numerous heuristics
and biases in choice under risk and uncertainty but exclusive of local representa-
tiveness effects, it is indeed no surprise at all that direct application of CPT to the
St. Petersburg gamble proves problematic. For these very same reasons, however, it
is neither necessary nor desirable to enforce the constraint α < γ even for the sole
purpose of analyzing the St. Petersburg gamble. This holds with even more force for
the parameterization of CPT for general use.

Incorporation of alternation bias into the analysis of the St. Petersburg gamble
proceeds by way of distortion of conditional probabilities between coin tosses. Just
as a casino player under the influence of the Gambler’s Fallacy believes that his
probability of winning this hand is higher because of a long sequence of losing
hands leading up to this hand, an individual contemplating the St. Petersburg gamble
under the influence of alternation bias believes that the probability of a particular
toss turning up ‘Heads’ is higher because of an unbroken string of preceding ‘Tails’.

As a consequence, the following two propositions may be proved using the esti-
mates for first-order and higher-order alternation bias set out in Table 1. Proofs are
collected in Appendix 1.

Proposition 1 (First-order constraint). Once first-order alternation bias is con-
trolled for, the finiteness constraint relaxes to

α <
log(5/2)
log(2)

· γ ≈ 1.32 · γ . (5)

Proposition 2 (Higher-order constraint). Once alternation bias effects up to third
order are controlled for, the finiteness constraint relaxes to

α < − log(0.3)
log(2)

· γ ≈ 1.737 · γ . (6)
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Fig. 1 Conventional parameterizations of cumulative prospect theory and the finiteness constraint
computed (a) without alternation bias, (b) with first-order alternation bias, and (c) with higher-
order alternation bias

As Fig. 1 illustrates, popular conventional parameterizations of CPT comfortably
satisfy the finiteness constraint once it is adjusted for alternation bias up to third
order.

Mathematically, the Blavatskyy–Rieger–Wang constraint without alternation
bias, illustrated as (a) in Fig. 1, is derived from the limit behavior of the gross
payout from the St. Petersburg gamble (GStP). Similarly, the constraints (5) and (6)
above, illustrated as (b) and (c) in Fig. 1, are also derived from the limit behavior of
the gross payout from the St. Petersburg gamble (GStP). Using numerical procedures
it is possible to determine the Certainty Equivalent (CE) of this gross payout for each
parameterization of CPT and for each of the three assumptions about alternation
bias. The results of this numerical implementation are presented below in Table 2.

For the single-parameter probability weighting function specification, higher-
order alternation bias brings the CE of the gross payout down to within the range
[5.64,20.39]. The distance of the parameter pair (γ,α) from the finiteness constraint
is one determinant of the magnitude of this CE, but so is its location along the length
of the finiteness constraint. Figures 2 and 3 illustrate this by way of the CE=$5,
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Table 2 Certainty equivalents of the gross payout from the St. Petersburg gamble under conven-
tional parameterizations of CPT computed (a) Without alternation bias, (b) With first-order alter-
nation bias, and (c) With higher-order alternation bias

(γ,α)14 (a) Without
alternation

bias

(b) First-order
alternation

bias

(c) Higher-order
alternation

bias
(δ ,γ,α)15

Wu and Gonzalez (1996)
1-param w+(p) (0.71, 0.52) 16.00 6.95 5.64
2-param w+(p) (0.84, 0.68, 0.52) 17.18 7.00 5.58

Camerer and Ho (1994)
1-param w+(p) (0.56, 0.37) 19.32 7.98 6.07

Abdellaoui et al. (2005)
1-param w+(p) (0.76, 0.91) ∞ 22.08 8.18
2-param w+(p) (0.98, 0.83, 0.91) ∞ 11.39 6.75

Bleichrodt and Pinto (2000)
1-param w+(p) (0.67, 0.77) ∞ 22.21 8.72
2-param w+(p) (0.82, 0.55, 0.77) ∞ ∞ 16.23

Gonzalez and Wu (1999)
1-param w+(p) (0.44, 0.49) ∞ 56.53 13.05
2-param w+(p) (0.77, 0.44, 0.49) ∞ 46.00 12.30

Tversky and Fox (1995)
1-param w+(p) (0.69, 0.88) ∞ 74.81 10.15
2-param w+(p) (0.76, 0.69, 0.88) ∞ 56.15 8.53

Tversky and Kahneman (1992)
1-param w+(p) (0.61, 0.88) ∞ ∞ 17.39

Abdellaoui (2000)
1-param w+(p) (0.60, 0.89) ∞ ∞ 20.39

CE=$10 and CE=$20 contours for the gross payoff under first-order alternation bias
and higher-order alternation bias respectively. The differences between these con-
tour maps explain for instance why the Tversky and Fox (1995) parameterization
yields a larger CE than the Gonzalez and Wu (1999) parameterization under first-
order alternation bias (74.81 > 56.53) while the reverse is true under higher-order
alternation bias (10.15 < 13.05).

3.3 WTP Under CPT Revisited

Nevertheless the above gross payout CE calculations should not be confused with
WTP for the St. Petersburg gamble under CPT. Correct calculation of WTP under
CPT must incorporate loss aversion over the shortfall between the gross payout
GStP and the up-front payment P exacted as the entry fee for participation in the
St. Petersburg coin-tossing gamble. As Camerer (2005) points out,16 attention must
be focused on the net gamble payout GStP−P, which involves an ex ante probable
loss for P > 2. For each parameterization the maximum WTP will be less than the
CE of the gross payout. Thus for any entry fee P > 2, the CPT evaluation occurs
with respect to both gains and losses



Alternation Bias and Parameterization of CPT 99

al
ph

a

gamma

•

•

•

•
•

•
Abdellaoui (2000) 

Tversky–Kahneman (1992)

•

•
Abdellaoui et al. (2005)

(b
) c

on
st
ra

in
t w

ith
 fi

rs
t-o

rd
er
 a
lte

rn
at
io
n 

bi
as

Gonzalez–Wu (1999)

Wu–Gonzalez (1996)

Tversky–Fox (1995)

 Bleichrodt–Pinto (2000)

Camerer–Ho (1994)

CE=5

CE
=1

0CE
=
20

1

.9

.8

.7

.6

.5

.4

.3

.2

.1

0
1.9.8.7.6.5.4.3.2.10

Fig. 2 The $5, $10, and $20 Certainty Equivalent contours of the gross St. Petersburg gamble
payout under first-order alternation bias

V (GStP−P) = V +((GStP−P)+)+V−((GStP−P)−) (7)

where the ‘+’ superscript refers to gains and the ‘−’ superscript refers to losses.
The maximum WTP is the entry fee P∗ that solves

V +((GStP−P∗)+)+V−((GStP−P∗)−) = 0 . (8)

For the Tversky and Kahneman (1992) parameters γgains = 0.61, αgains = 0.88, λ =
2.25, γ loss = 0.69, α loss = 0.88 and third-order alternation bias, (8) is solved by P∗ ≈
$9.95, which is a finite maximum WTP that resolves the St. Petersburg Paradox.

4 Conclusion

If it could be shown that alternation bias is not operative in the St. Petersburg gamble
setting, then present results would not diminish the case for restricting CPT para-
meterization in accordance with the Blavatskyy–Rieger–Wang finiteness constraint.
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Fig. 3 The $5, $10, and $20 Certainty Equivalent contours of the gross St. Petersburg gamble
payout under higher-order alternation bias

However, experimental studies suggest strongly that coin-flipping series are indeed
an exemplar contexts where alternation bias is operative and for which reliable and
replicated empirical estimates of alternation bias magnitude are available.

The Blavatskyy (2005) and Rieger and Wang (2006) papers expose an important
feature of conventional CPT parameterizations. Yet their elegantly straightforward
remedy, namely the Blavatskyy–Rieger–Wang finiteness constraint (α < γ) –
although mathematically unobjectionable and certainly a solution worthy of con-
sideration per se – is not without logical and theoretical consequences of its own.
It localizes the remedy to the popular and conventional parameterizations of CPT,
and these parameterizations are singled out as the effective cause of the finiteness
problem. Yet the substantial experimental literature on the alternation bias suggests
strongly that the solution to the finiteness problem may in fact lie in the subjective
distortion of conditional probabilities, rather than in the subjective distortion of
unconditional probabilities. The former (distortion of conditional probabilities),
is formally outside the scope of CPT, whereas the latter (distortion of uncondi-
tional probabilities), is a proper part and object of the analytical structure of CPT.
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To require CPT’s unconditional probability distortion parameterization to reflect
and incorporate the conditional probability distortion caused by alternation bias
induced in the St. Petersburg gamble is to introduce a ‘foreign’ element into CPT
(conditional probability distortion) and to do so in a way that confounds the mag-
nitude of conditional probability distortion with the magnitude of unconditional
probability distortion, as opposed to keeping the magnitudes of these two distinct
effects separate and individually identifiable. Moreover, imposition of this con-
straint on parameterization limits the scope of applicability of CPT, insofar as the
Blavatskyy–Rieger–Wang constraint rules out most of the widely used conventional
parameterizations, which are tuned to achieving descriptive accuracy in a variety of
settings that do not share the St. Petersburg gamble’s sequential structure.

None of these concessions are necessary, though the cost of avoiding them is to
bring more of the experimental and behavioral literature into the foreground. Recog-
nizing the role of alternation bias in the St. Petersburg coin-tossing sequence allows
the Paradox to be resolved, while preserving the distinction between conditional
and unconditional probability distortion, and moreover preserving CPT’s scope of
descriptive applicability that is embodied in its conventional parameterizations.

As CPT becomes increasingly popular and is adopted and applied ever more
widely, the question that is at the root of the divergence between the approach of
this paper and that of Blavatskyy (2005) and Rieger and Wang (2006) will re-emerge
with increasing frequency: How are we to apply, interpret and evaluate CPT? Is CPT
a self-contained portable module that can be applied across the whole spectrum of
problem settings without any need to anticipate complications, or is CPT essentially
inseparable from the wider ‘heuristics and biases’ program? The special application
studied in this paper lends weight to the latter. Although CPT has a concise, self-
contained mathematical form, it should not be applied without giving due care and
attention to the full range of behavioral effects that may arise. Some of these effects
are captured by CPT, yet others require separate accommodation.

Appendix 1: Mathematical Appendix

The St. Petersburg gamble pays out 2ñ where ñ ∈ N is the index of the first toss on
which an unbiased memoryless coin turns up ‘Heads’. Alternation bias alters the
subjective perception of the distribution of ñ.

An individual with CPT preferences evaluates the gross St. Petersburg gamble
payout GStP as

V +(GStP) =
∞

∑
n=1

u+(2n) ·
[

w+

( ∞

∑
i=n

pi

)
− w+

(
∞

∑
i=n+1

pi

)]
(9)

where
u+(x)≡ xα x≥ 0, α ∈ (0,1) (10)
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is the value function for gains (x≥ 0) and

w+(p)≡ pγ

(pγ +(1− p)γ)1/γ
γ ∈ (0,1), p ∈ [0,1] (11)

is the Tversky and Kahneman (1992) inverse S-shaped probability weighting func-
tion for gains. Blavatskyy (2005) shows that as n→ ∞ the denominator of the prob-
ability weighting function w+(p) converges to 1, and as attention may be restricted
to the limit tail behavior, the approximation w+(p)≈ pγ is valid, and thus in the case
computed without alternation bias (9) simplifies to

V +
w (GStP) = (2γ −1)

∞

∑
n=1

2(α−γ)n . (12)

In order to ensure that the geometric series in (12) is convergent so that V +
w (GStP)

remains finite, the constraint α < γ must be imposed (see finiteness constraint (a) in
Fig. 1). However as Fig. 1 illustrates, this constraint is violated by most conventional
parameterizations of CPT.

Finiteness Constraint with First-Order Alternation Bias

Consider the form of (9) with the first-order alternation bias that Kareev (1995)
reports as being a standard finding in the literature: P(H|T ) = 0.6 and P(T |T ) =
0.4. The probability of the coin turning up ‘Heads’ for the first time on toss n then
takes the form

pf-o
n =

{
P(H) = 1

2 for n = 1
1
2 P(H|T )P(T |T )n−2 = 0.3 ·0.4n−2 for n≥ 2

(13)

and ∑∞
n=1 pf-o

n = 0.5+0.3∑∞
j=0 0.4 j = 0.5+(0.3/0.6) = 1. Therefore the first term in

the outside sum of (9) is

af-o
1 = u+(21)

[
w+

( ∞

∑
i=1

pf-o
i

)
−w+

( ∞

∑
i=2

pf-o
i

)]
= u+(21)[1−w+(2−1)] = 2α [1−2−γ ]

(14)

and subsequent terms are of the form

af-o
n = u+(2n)

[
w+

((
0.3

0.420.6

)
0.4n

)
−w+

((
0.3

0.420.6

)
0.4n+1

)]
∀n≥ 2 (15)

=
(

0.3
0.420.6

)γ

2αn[0.4γn−0.4γ(n+1)] ∀n≥ 2 (16)
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giving a CPT evaluation of the gross St. Petersburg gamble payout GStP under first-
order alternation bias of

V +
f-o(GStP) = af-o

1 +
∞

∑
n=2

(
0.3

0.420.6

)γ

2αn[0.4γn−0.4γ(n+1)] (17)

= af-o
1 +

(
0.3

0.420.6

)γ [ ∞

∑
n=2

2(α+γ)n

5γn
−
(

2
5

)γ ∞

∑
n=2

2(α+γ)n

5γn

]
(18)

= af-o
1 +

(
0.3

0.420.6

)γ(
1− 2γ

5γ

) ∞

∑
n=2

(
2(α+γ)

5γ

)n

(19)

which is finite if the parameterization satisfies the constraint

2α+γ

5γ < 1 (20)

α <
log(5/2)
log(2)

· γ ≈ 1.32 · γ . (21)

This result is formalized as Proposition 1 and illustrated as finiteness constraint (b)
in Fig. 1.

Finiteness Constraint with Higher-Order Alternation Bias

Using the transition probabilities up to third order presented in Table 1, the proba-
bility of the coin turning up ‘Heads’ for the first time on toss n then takes the form

ph-o
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P(H) = 1
2 n = 1

1
2 P(H|T ) = 1

2 ·0.58 = 0.29 n = 2
1
2 P(T |T )P(H|TT ) = 1

2 ·0.42 ·0.62 = 0.1302 n = 3
1
2 P(T |T )P(T |T T )P(H|T T T )P(T |T T T )n−4 = 1

2 ·0.42·0.38·0.7·0.3n−4

= 0.05586 ·0.3n−4 n≥ 4

(22)

and ∑∞
n=1 ph-o

n = 0.5+0.29+0.1302+0.05586∑∞
j=0 0.3 j = 0.9202+ 0.05586

0.7 = 1. The
first, second and third terms in the outside sum of (9) are

ah-o
1 = u+(21)

[
w+

( ∞

∑
i=1

ph-o
i

)
−w+

( ∞

∑
i=2

ph-o
i

)]
= u+(21)[1−w+(2−1)] = 2α [1−2−γ ] ,

(23)

ah-o
2 = u+(22)

[
w+

( ∞

∑
i=2

ph-o
i

)
−w+

( ∞

∑
i=3

ph-o
i

)]
=u+(22)[w+(2−1)−w+(1−0.5−0.29)]

= 22α [2−γ −0.21γ ] , (24)
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and

ah-o
3 = u+(23)

[
w+

( ∞

∑
i=3

ph-o
i

)
−w+

( ∞

∑
i=4

ph-o
i

)]
= u+(23)[w+(0.21)

−w+(1−0.5−0.29−0.1302)] = 23α [0.21γ −0.0798γ ] . (25)

Subsequent terms (∀n≥ 4) are of the form

ah-o
n = u+(2n)

[
w+

( ∞

∑
i=n

ph-o
i

)
−w+

(
∞

∑
i=n+1

ph-o
i

)]
(26)

= u+(2n)

[
w+

(
0.05586

∞

∑
i=n

0.3i−4

)
−w+

(
0.05586

∞

∑
i=n+1

0.3i−4

)]
(27)

= u+(2n)

[
w+

(
0.05586

0.34

∞

∑
i=n

0.3i

)
−w+

(
0.05586

0.34

∞

∑
i=n+1

0.3i

)]
(28)

= u+(2n)
[

w+

(
0.05586
0.34 ·0.7

0.3n

)
−w+

(
0.05586
0.34 ·0.7

0.3n+1

)]
(29)

=
(

0.05586
0.34 ·0.7

)γ

2αn[0.3γn−0.3γ(n+1)] . (30)

Thus the CPT evaluation of the gross St. Petersburg gamble payout GStP under
higher-order alternation bias may be written as

V +
h-o(GStP) =

3

∑
n=1

ah-o
n +

∞

∑
n=4

(
0.05586
0.34 ·0.7

)γ

2αn[0.3γn−0.3γ(n+1)] (31)

=
3

∑
n=1

ah-o
n +

(
0.05586
0.34 ·0.7

)γ [ ∞

∑
n=4

(2α 0.3γ)n−0.3γ
∞

∑
n=4

(2α0.3γ)n

]
(32)

=
3

∑
n=1

ah-o
n +

(
0.05586
0.34 ·0.7

)γ

(1−0.3γ)
∞

∑
n=4

(2α 0.3γ)n (33)

which converges to a finite value if the parameterization satisfies the constraint

2α 0.3γ < 1 (34)

α < − log(0.3)
log(2)

· γ ≈ 1.737 · γ . (35)

This result is formalized as Proposition 2 and illustrated as finiteness constraint (c)
in Fig. 1.
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Notes

1For example, Abdellaoui (2000), Abdellaoui et al. (2005), Bleichrodt and Pinto (2000),
Gonzalez and Wu (1999), Tversky and Fox (1995), and Tversky and Kahneman (1992).

2The certainty effect; overweighting small probabilities, underweighting large probabilities.
3That is, the reflection effect; risk seeking in losses and risk aversion in gains; diminishing

sensitivity, whereby individuals are more sensitive to changes near their status quo than to changes
that are more remote from their status quo.

4Losses are weighed more heavily than gains.
5By not invoking or bundling monetary payoffs with ‘Heads’ or ‘Tails’ realizations.
6See e.g. Clotfelter and Cook (1993), Terrel (1994) and Croson and Sundali (2005).
7Also known as the ‘three door problem’; it is mathematically equivalent to the ‘three prisoner

problem’. Although bias is pervasive in these problems (Granberg & Brown, 1995; Granberg,
1999), nevertheless it is possible to devise schemes that allow subjects to learn how to overcome
their anomalous initial biases (Friedman, 1998; Krauss & Wang, 2003). In a market setting, the
presence of a small proportion of bias-free agents suffices to eliminate bias in prices (Kluger &
Wyatt, 2004).

8In Reichenbach’s terminology, a ‘negative recency’ effect.
9Or the ‘law of small numbers’.

10In Bernoulli’s (1738) variant of the St. Petersburg gamble, the subject’s (Paul’s) payout is 2ñ−1

ducats.
11If the payout is specified as 2ñ−1 dollars, then the certainty equivalent associated with the loga-

rithmic utility function is 2 currency units: E[u(2ñ−1)] = ∑∞
n=1 2−n log(2n−1) = ∑∞

n=1
n−1
2n log(2) =

log(2).
12Alternative solutions proposed for the St. Petersburg Paradox are too numerous to be discussed

in detail here. For reviews see Samuelson (1977), Vlek and Wagenaar (1979) and Bottom et al.
(1989).

13In conjunction with piecewise linear utility and large but finite upper ceiling on the maximum
payout.

14w+(p) = pγ/(pγ +(1− p)γ)1/γ , u+(x) = xα .
15w+(p) = δ pγ/(δ pγ +(1− p)γ), u+(x) = xα .
16Camerer (2005) uses piecewise linear utility, loss aversion, and the realistic assumption of the

existence of a finite maximum payout ceiling to show that risk aversion is not a necessary condition
for resolution of the St. Petersburg Paradox.
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Proposing a Normative Basis for the S-Shaped
Value Function

M.E. Fabiyi

Keywords: S-shaped value function · Prospect theory · Evolutionary theory ·
Fitness

1 Introduction

The S-shaped value function is pervasive in its occurrence in preference tasks and
prospect theory is based on the view that all preference tasks are comprehensively
captured by an S-shaped value function which is concave in gains and convex for
losses. In this work, we propose a normative basis for the ubiquitous S-shaped value
function of Kahneman and Tversky’s prospect theory (1979, 1992). We argue that
it is best accommodated within the paradigmatic context of evolutionary theory.
Proceeding from this paradigm, we show that the S-shaped value or utility function
must necessarily result from rational actions by the decision agent.

The value function, ν(x) for changes in wealth is normally concave above the
reference point i.e., ν ′′(x) < 0, for x > 0 and often convex below it i.e., ν ′′(x) > 0, for
x < 0 (Kahneman & Tversky, 1979). These bounds imply that the value function is
S-shaped. Kahneman and Tversky have summarized the properties of the S-Shaped
value function as being: (a) generally concave for gains and convex for losses; (b)
steeper for losses than for gains, and (c) defined on deviations from the reference
point.

Although the pervasive occurrence of the S-shaped value function has been con-
firmed in the field (Collins, Musser, & Mason, 1991; Fishburn & Kochenberger,
1979; Galanter & Pliner, 1974), there is as yet no satisfactory normative explanation
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as regards why it should be so shaped. There have of course been prior attempts
at providing a rationale for the presence of S-shaped value functions. For exam-
ple, Friedman (1989) has suggested that an S-shaped value function emerges when
agents maximize expected sensitivity at actual choice opportunities. Friedman’s ap-
proach requires that the agents are capable of making plausible assumptions about
the distribution of such opportunities. This requirement that the decision agent have
some prior knowledge of opportunity distributions does not seem to us consistent
with the reality that oftentimes, decision agents do not possess such information.
Robson (2002) has argued that a utility function emerges from natural selection
considerations framed as a principal agent problem – where nature is the principal.

This inability to ascribe a normative basis to the S-shaped value function amongst
other things, is probably responsible for the descriptive characterization of prospect
theory (Tversky & Kahneman, 1992). Yet, the ubiquitous emergence of the S-shaped
utility function in preference elicitation tasks suggests that the properties that result
in such a curve are intrinsic to the human species and probably to all organisms that
are fitness maximizers.

The following fundamental questions must bear on the minds of researchers in
the field of rational choice, these being: (a) Why is the utility curve S shaped? (b)
Why is the curve steeper in losses than it is in gains? (c) What is the normative basis
for the S-shaped utility profile? (d) What factors determine the shape of the curve
and how can they be influenced? (e) Can the utility curve be established a priori? (f)
Is the utility curve valid across temporal dimensions? (g) What is the significance
of the reference point, how is it to be located, and can it be identified a priori?

2 An Evolutionary Rationale for the S-Shaped Value Function

As we have already indicated, attempts to use evolutionary theory to provide a ra-
tionale for the S-shaped character of the value function are not new. Rust (2004)
derives a survival value function with an S-shaped profile from an evolutionary sce-
nario in which behavioral tendencies naturally select with survival, according to a
hazard model. In this model, the hazard rate requires decomposition into an internal
and external (environmental) component and choices made by the decision agent
result in adjustments to the external (environmental) hazard component. Although
the survival value function derived by Rust differs from that of prospect theory sig-
nificantly, as it has finite limits, it is nevertheless instructive that S-shaped value or
utility functions can result from applying purely evolutionary considerations to the
behavior of decision agents.

Ultimately, the evolutionary basis underlying the existence of a preference curve
stems from the fact that every behavior manifested by a decision agent in response
to a consumption stimulus has an impact on the capacity for survival. The behav-
ior manifested by a decision agent in response to a stimulus (or prospect) results in
either an enhancement of fitness, a reduction in fitness, or it might be fitness neu-
tral i.e., possessing of a null effect on fitness. Given the importance of behavior for
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survival, it is suggested that psychological adaptations would have evolved which
serve fundamentally to influence the decision making process in a manner that max-
imizes fitness. Proceeding from this premise, we posit the following:

1. The goal of all organisms is to achieve the perpetual representation of the organ-
isms’ genes in the gene pool

2. Organisms achieve this by birthing progeny, and working to assure the survival
of the progeny until sexual maturity

3. The progenitor organism seeks at all times to maximize total fitness, i.e., the
joint survival of the progeny (hereafter referred to as gene survival, Gs) and the
progenitor (hereafter referred to as self survival, Ss)

4. The survival set is comprised of two elements, these being, gene survival and self
survival

3 The Impact of Prospects and Behavior on Fitness

All stimuli or prospects serve to evince behavioral responses from the decision
agent. Following from the assumption that the survival set is comprised of two el-
ements – gene and self survival elements, we can conceive of nine (9) effects of
behavior on the fitness set. These nine goal states emerge from the reality that a
behavior can have any one of three effects on an entity, these being: (a) enhance fit-
ness, (b) diminish fitness, or (c) have no impact on fitness. We assign positive (+),
negative (−), and neutral (0) signs to these outcomes, respectively (see Table 1 for
a listing of the goal states).

In order to establish the magnitude of the goal state at any one time, the values
associated with the members of the fitness set are simply added up. To facilitate this,
we need to make the following assumptions

1. Real number weights can be assigned to the members of the fitness set
2. The valence of the members of the fitness set carry nominal values given as +1

for the positive sign, −1 for the negative sign and 0 for the neutral (zero) sign
3. The magnitudes of the members of the fitness set are given as G, and S respec-

tively for the gene and self survival members
4. A relative magnitude φ , of the weights of the members of the fitness set is de-

fined, and is given as: G
S = φ

Table 1 Goal or Motivational States
G(+) G(0) G(−)

S(+) G(+)S(+) G(0)S(+) G(−)S(+)
S(0) G(+)S(0) G(0)S(0) G(−)S(0)
S(−) G(+)S(−) G(0)S(−) G(−)S(−)

Note. The nine motivational or goal states. The sets obey commutative laws of addition thus
G(+)S(+) = S(+)G(+)
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Table 2 Derivation of fitness values from goal states. The normalized fitness values are obtained
by dividing the fitness values by the maximum fitness value obtained across all nine goal states.
For all G

S ≥ 1, the goal state G(+)S(+) will always return the highest fitness value

Goal state Fitness value Normalized fitness value

G(+)S(+) S(φ +1) S(φ+1)
S(φ+1) = 1

G(+)S(0) S(φ) S(φ)
S(φ+1) = φ

φ+1

G(+)S(−) S(φ −1) S(φ−1)
S(φ+1) = φ−1

φ+1

G(0)S(+) S S
S(φ+1) = 1

φ+1

G(0)S(0) 0 0
S(φ+1) = 0

G(0)S(−) −S −S
S(φ+1) = −1

φ+1

G(−)S(+) S(1−φ) S(1−φ)
S(φ+1) = 1−φ

φ+1

G(−)S(0) −S(φ) −S(φ)
S(φ+1) = −φ

φ+1

G(−)S(−) −S(φ +1) −S(φ+1)
S(φ+1) =−1

5. The relative magnitude of the weights of the members of the fitness set is spec-
ified within the bound −∞ ≤ G

S ≤ ∞. The maximization of fitness (assurance
of perpetual presence of genes in the gene pool) requires that G

S ≥ 1. This is
so because gene permanence is a reality that is possible only if gene survival is
assured.

Since we have defined G
S = φ , then G = Sφ . We further define the value of the

fitness set as F and for the goal state G(α)S(β ), we have that:

F = G(α)+S(β ) (1)

Substituting for G in the expression, we obtain

F = Sφ(α)+S(β ) = S(φα +β ) (2)

Recalling that α and β can take any of the values +1, 0, and −1, we can derive real
number fitness values for the various goal states (see Table 2).

4 Deriving the S-Shaped Value/Utility Function

We now proceed to develop a method for deriving utility from the goal states. From
the purview of the approach adopted in this work, the ultimate impact or value of
any stimulus is reducible to its effect on fitness (Robson, 2002). Thus, every stimulus
and the behavior that it evinces, has a consequence on fitness – serving to increase
or reduce fitness from some current value. That current value will be the reference
state around which the consequence of the stimulus will be evaluated. Since we can
determine the consequence of a stimulus from its effect on the goal state, then the
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utility or value of a stimulus is equivalent to the magnitude of its impact on survival.
We posit therefore that the motive or goal states correspond to utility states since
they are the currency by which the fitness impacts of stimuli are measured.

From an evolutionary perspective, the ultimate goal of the individual is the attain-
ment of the G(+)S(+) state,1 and at a minimum, evolutionary imperatives require the
avoidance of the G(−) and, or S(−) states2 since these latter states can potentially
yield negative (hence minimizing) values for the fitness function. We can therefore
conceive of a mapping function with which to transform the fitness values, F to
their equivalent utilities, U , i.e., we seek the transform ℜ : F →U . By defining the
normalized fitness value as x, we can specify the transform relation as:

ℜ :
{

F+ →U+ x≥ 0
F− →U− x < 0 (3)

Given the wide range of stimuli that can be presented to the decision agent, it is
best to utilize normalized quantities for the fitness values and their corresponding
utilities. We define these as x and u respectively. Since the normalized fitness values
are bounded within the range−1≤ x≤ 1 we specify additionally that the normalized
utility be bounded also within the domain −1≤ u≤ 1.

In the positive domain the transform relation is unambiguous. Since the maxi-
mum attainable goal state G(+)S(+) corresponds to x = +1, the corresponding util-
ity is u = +1. An optimized decision algorithm should indicate no utilities higher
than would correspond to the goal state G(+)S(+), since none should exist. Whereas
the transformation of fitness values to utilities on the positive dimension is intuitive,
establishing how to conceive of the transformation from fitness value to utilities in
the negative domain is not as obvious.

We assume that fitness maximization constraints require that no fitness utility is
derivable from any goal state that compromises the total survival set i.e. when x < 0
then u = −1. Thus, the transform x− → u− is minimized not at G(−)S(−), but at
any of the G(−), S(−) states that returns the first negative fitness value. Based on
these considerations, we can specify that:

u(x)=
{

umax = +1⇒ G(+)S(+) x≥ 0
umin =−1⇒Max{G(−)S(−); G(−)S(0); G(−)S(+); G(0)S(−)} x < 0

(4)

It is required that u(x) is continuous, differentiable and bounded within the domain
u(x) : ℜ→ (−1,1). Specifying this constraint necessarily limits the choice of func-
tional types suitable for the transformation. We will adopt the use of the hyperbolic
Tan (Tanh) as a transform function that satisfies the necessary conditions.3 We there-
fore have that f (x) = Tanh(x) and we reformulate the problem thus:

u(x) =
{

Tanh(α+x) x≥ 0
Tanh(α−x) x < 0 (5)

Where α+ and α− are constants, and generally α− = φα+. We now proceed to
illustrate the method for φ = 3 (see Tables 3 and 4). We first derive the value of α+
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Table 3 This table depicts the methodology for the derivation of the fitness function. For this
example φ = 3.0

Fitness (F)

G(+) = 3 G(0) = 0 G(−) =−3

S(+) = 1 = 3+1 = 4 = 0+1 = 1 =−3+1 =−2
S(0) = 0 = 3+0 = 3 = 0+0 = 0 =−3+0 =−3
S(−) =−1 = 3+−1 = 2 = 0+−1 =−1 =−3+1 =−4

Table 4 Normalized fitness values for φ = 3.0. Note that Table 4 is derived by normalizing Table 3

Normalized fitness (x)

G(+) = 3 G(0) = 0 G(−) =−3

S(+) =−1 1 0.25 −0.5
S(0) = 0 0.75 0 −0.75
S(−) =−1 0.5 −0.25 −1

Table 5 Transform relations for the normalized fitness values for φ = 3.0

φ = 3
G-S States x u

G(+)S(+) 1.00 1.0
G(+)S(0) 0.75 1.0
G(0)S(+) 0.50 0.9
G(+)S(−) 0.25 0.6
G(0)S(0) 0.00 0.0
G(−)S(+) −0.25 −1.0
G(0)S(−) −0.50 −1.0
G(−)S(0) −0.75 −1.0
G(−)S(−) −1.00 −1.0

necessary to ensure that u = (1,−1) at x = (1,−1), and we obtain α+ = 3. Hence
at this condition, we have that

u(x) =
{

Tanh(3x) x≥ 0
Tanh(3φx) x < 0 (6)

For this example, α+ and α− have the values 3 and 9. Hence, we have that for
x ≥ 0, u(x) = Tanh(3x); and for x < 0, u(x) = Tanh(9x). Using these relations, we
obtain a utility curve with the characteristic S-shape (see Tables 3–5 and Fig. 1).

By applying the same approach, we can derive utility curves for the conditions
specified by φ = 1, 9 and 0.25 (see Tables 6–8). Figures 1–4 depict the utility
function profiles for φ = 3,1,9 and 0.25 respectively. It is striking that all the profiles
are generally S-shaped, although differences exist in the character of the S-shaped
profiles that are derived.

Thus, we find that an evolutionary approach leads us, from a set of simple as-
sumptions, to a utility function that accommodates the S shaped value function of
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Fig. 1 Utility function derived from Table 5. φ = 3.0, and α+ and α− have the values 3 and 9

Table 6 Transform relations for the normalized fitness values for φ = 1.0

φ = 1
G-S States x u

G(+)S(+) 1.0 1.0
G(+)S(0) 0.5 1.0
G(0)S(+) 0.5 1.0
G(+)S(−) 0.0 0.0
G(0)S(0) 0.0 0.0
G(−)S(+) 0.0 0.0
G(0)S(−) −0.5 −1.0
G(−)S(0) −0.5 −1.0
G(−)S(−) −1.0 −1.0

Table 7 Transform relations for the normalized fitness values for φ = 9.0

φ = 9
G-S States x u

G(+)S(+) 1.0 1.0
G(+)S(0) 0.9 1.0
G(0)S(+) 0.8 1.0
G(+)S(−) 0.1 0.3
G(0)S(0) 0.0 0.0
G(−)S(+) −0.1 −1.0
G(0)S(−) −0.8 −1.0
G(−)S(0) −0.9 −1.0
G(−)S(−) −1.0 −1.0
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Table 8 Transform relations for the normalized fitness values for φ = 0.25

φ = 0.25
G-S States x u

G(+)S(+) 1 1.00
G(0)S(+) 0.8 1.00
G(−)S(+) 0.6 1.00
G(+)S(0) 0.2 1.00
G(0)S(0) 0 0.00
G(−)S(0) −0.2 −0.99
G(+)S(−) −0.6 −1.00
G(0)S(−) −0.8 −1.00
G(−)S(−) −1 −1.00

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0

x

U

−1.5

−1.0

−0.5

0.0
0.5 1.0 1.5

Fig. 2 Utility function derived from Table 6. φ = 1.0, and α+ and α− both have the value 22.2
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Fig. 3 Utility function derived from Table 7. φ = 9, and α+ and α− are 3 and 27 respectively
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Fig. 4 Utility function derived from Table 8. φ = 0.25, and α+ and α− have the values 53.2 and
13.3

prospect theory. We have suggested earlier that a necessary condition for gene per-
manence is that φ > 1. Should this hold true, we will find that for all x, α+ < α−,
implying that the value function will always be steeper in losses than in gains.4

5 Discussion

The utility function that we have derived demonstrates the properties of diminishing
sensitivity and loss aversion. Evolutionary theoretic considerations therefore lead
quite naturally to the specification for a utility function that is concave in gains and
convex in losses. This treatment, as we have shown, accommodates the S shaped
value function and provides a normative basis for its shape. That shape, we believe,
is defined by the unique fitness weights, φ , of the individual. Our approach suggests
that although the utility function of all gene fitness dominant individuals (φ > 1)
should be S-shaped, the precise slopes of the utility curve in either gains or losses
will generally vary between individuals according to differences in the parameters φ
and α+. These parameters, we expect, can be readily determined by the estimation
of a decision agent’s value function using the method of certainty equivalents.

Our work strongly suggests that the S-shaped value function proceeds naturally
from a behavioral framework that has as its objective function the maximization of
survival.

This result has significant implications for choice tasks. First, it establishes the
possibility for the a priori estimation of the value function for an individual. It is
our view that the value function established for a decision agent will be reproduced
in any elicitation task, so long as the parameters φ and α+ remain constant. We
conceive of these parameters as being invariant for any given individual. Finally,
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while we hypothesize that evolutionary imperatives would have selected for gene
fitness maximizers (φ > 1), the survival of strictly self fitness maximizers (φ < 1)
is not precluded.

Notes

1This is consistent with notions of the rational agent as a utility maximizer.
2These could be any of the states G(−)S(−), G(−)S(0), G(−)S(+) or G(0)S(−).
3Several variants of the sigmoid function could potentially also satisfy the necessary conditions

(see Rojas, 1996).
4This will always be the case on condition that the weight of the G set is higher than that of the

S set.
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Experimental Individual Decision Making



Individual Choice from a Convex Lottery Set:
Experimental Evidence

T. Neugebauer

Keywords: Individual choice under risk · First order stochastic dominance · Mod-
ern portfolio theory · Prospect theory

1 Introduction

This paper is concerned with a simple pen-and-paper experiment on individual
choice under risk, in which subjects choose a lottery from a convex set. In the re-
ported experiment subjects face a choice of two risky lotteries and a degenerated
one, and any linear combination of the three lotteries.1 The distinguishing features
of the design are as follows: The two risky lotteries perfectly negatively correlate
with each other, implying the existence of a riskless combination of these lotter-
ies. Furthermore, as this riskless combination of the risky lotteries yields a greater
payoff than the degenerated lottery, all lotteries in the interior of the convex set are
strictly dominated. Finally, the efficient frontier of the convex set includes lotteries
that involve a possible loss.

The experimental design including these features is useful for the following rea-
sons. First, we can test whether subjects make a rational choice or whether they
choose dominated lotteries in this setting. In theories on rational choice, domi-
nance is a normatively essential requirement (Levy, 1998; Luce & Marley, 2005;
Starmer, 2000 survey the literature).2 Violations of dominance have been observed
in binary choice experiments where dominance was not transparent (Tversky &
Kahneman, 1986),3 and in portfolio selection experiments.4 However, in contrast
to these studies the present one involves a riskless alternative. Since sure events
are evaluated differently from risky events, a different choice behavior than in the
reported studies can be conceivable. Second, a couple of experiments on portfolio
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selection choice show that participants do not respond to correlations between al-
ternatives when they make their investment decisions (Clemen & Reilly, 1999;
Kroll & Levy, 1992; Kroll et al., 1988a, b; Lipe, 1998; Oehler, 1995; Weber &
Camerer, 1998). The available empirical evidence for portfolio selection is also
compatible with the view that people ignore covariance risk, as negligence of co-
variance risk leads to under-diversification in financial markets.5 However, no study
involves perfect negative correlation which, again, enables the decision maker to
eliminate all risk (Elton & Gruber, 1981). Finally, most experimental studies in-
volve only gains, but the literature has provided convincing evidence that people
treat possible losses differently from gains. Hence, the choices in our experiment
may diverge from the existing evidence for several reasons.

Below I describe three classroom experiments in which highly motivated sub-
jects, who possess complete information about risk and return involved in the deci-
sion task, are asked individually to choose a linear combination of one riskless asset
and two risky assets. The two risky assets are perfectly negatively correlated, thus
allow the construction of a riskless portfolio with a greater return than the riskless
asset. Under these simplified conditions, I examine whether the actual choices from
the convex set approach efficiency, and if theoretical or psychological principles
underlie the observed behavior.

In the three experiments, each subject was asked to allocate a 100% share between
three lotteries and provide a free-form rationale for the decision. The first (Original)
and second (High Stakes) experiments are identical but the latter affects a considerably
more highly paid group of subjects. These experiments involve one decision only; no
repeated choice was considered (see the discussion on maximization of the geometric
mean in Kroll et al. 1988a). The third (Transparency) experiment features repeated
choice: the first stage is identical to the first experiment, but at a second stage subjects
are exposed to a more transparent presentation of the task. The three experiments
were designed to investigate four major issues: (1) the effects of the perfect negative
correlation between the risky alternatives, and of the existence of the riskless but
dominated lottery; (2) the possibility to choose from a convex set; (3) the effects of
higher stakes; and (4) the effects of transparent presentation of dominance.

Section 2 describes the tasks employed in both experiments. The opportunity
set and the theoretical optimal decisions are presented in Sect. 3. Section 4 de-
scribes and discusses the results of the Original and the High Stakes experiments;
Sect. 5 does the same for the Transparency Experiment. Concluding remarks are
stated briefly in Sect. 6.

2 Experimental Design

2.1 Instructions

Subjects had to write their choice on a decision sheet which included the following
instructions: “There are three assets A, B, C; assets A and B are risky, C is riskless.
The payoffs generated by these assets depend on two equiprobable states, X and Y.
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Table 1 Payoffs in the experiment

Your division of your
endowment

Asset State X State Y

A 3 −1
a:

B −3 6
b:

C 1 1
1-a-b:

Payoff
(3a−3b+1− a−b) (−a+6b+1− a−b)

Your task is to make a decision about the allocation of your investment capital to-
wards each of these assets. Please record the shares that you allocate to these assets
in the first column of the following table. The sum of the shares must yield 100%,
and each share must be non-negative.

After you have made your choice, you are asked to toss a coin to determine
the state to occur. Before you toss, you decide whether heads represents state X or
state Y. Given you choose X, state X occurs if the face on the upside of the coin
shows heads; if the coin shows tails, state Y occurs. Given you choose Y, heads and
tails imply state Y and X, respectively.

The resulting payoffs are recorded in the table. After you have allocated the
shares that composed your portfolio, please compute your payoff for both states
X and Y and record these numbers in the last row of the table. The correspond-
ing amount will be paid to you in cash after you have tossed the coin. Note: if the
outcome of the gamble is negative you will also have to pay your dues to the exper-
imenter. In fact, you do not have to take any risk. Asset C is riskless and guarantees
a sure payoff of 1 token.”

All students first made their choice, and then they were asked to briefly state the
rationale for their decision in words on the record sheet. In the last line of their sheet
corresponding to the one in Table 1, subjects wrote the payoffs they were about
to receive in the states X and Y. If the payoff in one state was negative, subjects
were prompted to put the exact amount of money on the table to show that they
were willing to execute their decision before the toss of the coin. Three students
chose an allocation that involved a negative payoff in state X or Y. One student
actually received a negative payoff and had to pay the corresponding amount to the
experimenter. When all had finished their statement, each student tossed a coin to
determine his/her own payoff according to the allocation of shares in the Table 1,
and received immediate cash payment. The task took about three quarters of an hour
to complete.

3 Theoretical Considerations

Before we discuss the experimental results we present the theoretical predictions.
Due to perfect negative correlation, a riskless combination of A and B exists. We
anticipate that most subjects choose a positive share of the degenerated lottery C.
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Payoff in
state X

C

T

V

B

A

45° sure
outcomes

Payoff in
state Y

Fig. 1 Portfolio possibility set in the experiment

This decision is dominated, because the riskless portfolio constructed from the risky
lotteries A and B at a ratio 9:4 induces a riskless return of 15/13 > 1.6 All allocations
which involve a share greater than a = 9/13 towards the lottery A are dominated. The
expected payoff of the three lotteries are {µA; µB; µC} = {1; 1.5; 1}, the standard
deviations of A and B are {σA; σB} = {2; 4.5}, the covariance (σAB = −9) and
the correlation coefficient (ρAB = −1) between the risky lotteries. In Fig. 1, the
plane included in the connecting lines of the coordinates A, B and C presents the
convex set of lotteries one chooses from. The diagram represents the payoff space;
the vertical axis measures the payoff in state X and the horizontal axis measures the
payoff in state Y. The 45◦ line represents equal payoffs in both states, X and Y.

3.1 Testable Hypothesis: Efficient Frontier

The solid line in Fig. 1 represents all efficient choices. It connects lottery B with
the riskless combination of A and B, corresponding to the coordinate (15/13; 15/13)
denoted by T. The efficient choices involve all payoff maximizing combinations
for a given amount of risk. Thus all indifference curves that maximize utility are
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tangent to this line. Note, the linear combinations that lie on the broken line which
connects lottery A and T are dominated by the lotteries on the efficient line. Also, all
choices in the interior of the set are dominated as they involve the strictly dominated
lottery C. The choice of any combination on the efficient frontier is proposed in
general by expected utility theory and in particular by mean-variance theory.7

3.2 Testable Hypothesis: Lossless Combination of Risky Lotteries

In prospect theory losses loom larger than gains. Hence, prospect theory as well
as cumulative prospect theory would predict a choice on the efficient line between
T and V for reasonable chosen loss aversion parameters. V represents the lottery
involving the payoffs (2.5; 0) in states Y and X, i.e., V maximizes expected value in
the domain of gains. In addition to these theories, other theories that weigh losses
more than gains (for instance aspiration level theory with a positive aspiration level)
would predict the positive segment of the efficient line.

3.3 Testable Hypothesis: Riskless Combination of Risky Lotteries

The riskless combination of risky lotteries, T, which generates a sure payoff of 15/13
is proposed by at least three theories: First, cumulative prospect theory involving the
parameters estimated by Tversky and Kahneman (1992) would suggests this choice.
Second, under the assumption of a perfect capital market, T would be the tangential
portfolio suggested by the separation theorem and the CAPM. Third, safety first the-
ory would also suggest this outcome, given that the safety first level is below 15/13.

4 Original and High Stake Experiment

4.1 Original Experiment

Fifteen students of the Behavioral Finance lecture in the summer term 2005 at the
University of Hannover, Germany were asked to make their decision on a record
sheet as displayed in Table 1. Subjects were no volunteers in the experiment, but
completed the task as part of the lecture. One can assume that the students un-
derstood the task, since they all correctly calculated the payoffs for states X and
Y on their record sheets. Most of them had seen the mean variance model in ear-
lier courses. Despite the arguably small payoffs (one token equaled 1 C= ), students
seemed highly motivated. Subjects were asked to imagine actually facing an honor-
able bet between millionaires.
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Table 2 Individual choices (a, b and c in percentage) and stated rationale in the Original
Experiment

ID R(Y) R(X) a b c Stated rationale explaining choice

1 0.90 1.20 30 10 60 A is less risky than B, I prefer the riskless asset
2 1.00 1.00 0 0 100 Assets A and B are very risky, I do not want to take

any risk
3 1.05 1.10 35 15 50 B’s variance is huge
4 1.33 1.00 67 33 0 perfect negative correlation, I try to estimate the op-

timal portfolio
5 1.75 0.50 25 25 50 Diversification
6 1.75 0.50 25 25 50 Payoffs are always positive
7 1.90 0.40 30 30 40
8 2.00 0.33 33 33 33
9 2.10 0.20 20 30 50 I always have a positive payoff
10 2.10 0.20 20 30 50
11 2.20 0.20 40 40 20 My payoff is always positive
12 2.50 0 50 50 0 No loss, but relatively high gain possible
13 2.50 0 50 50 0 No loss, but relatively high gain possible
14 3.00 −0.50 25 50 25 Diversification with a tendency towards the more

risky asset
15 6.00 −3.00 0 100 0 Take the risk, since little at stake. In case of higher

stakes would decide differently.

Individual Choices in the Original Experiment

The individual choices of the original experiment are recorded in Table 2; percent-
ages are rounded to the next integer and tokens are rounded to the next hundredth.
The first column assigns an identification number to subjects; the second and third
columns present the resulting returns in state X and Y, respectively. The third, fourth
and fifth columns correspond to the allocation of shares to the lotteries A, B and C;
reported numbers refer to percentages. For instance, individual #10 allocated a 30%
share to A, 10% to B and 60% to C; the corresponding payoffs for the states X and
Y were 1.20 and 0.90 tokens.

The expected payoffs among all subjects average at 1.17 tokens. This amount is
only 0.02 tokens more than the payoff of the riskless combination T. The Wilcoxon
(signed ranks) test indicates that the difference in payoff to the riskless choice is
insignificant (p > 0.5). Only four subjects chose a lottery on the efficient frontier
(#4, #12, #13, #15). Due to the students’ choices of asset C, the average loss per
subject is 0.06 tokens in expected terms; the 95% confidence interval extends from
0.03 to 0.08 tokens. The difference is significantly different from zero (p < 0.002,
Wilcoxon test). The efficiency loss can be expressed in excess risk incurred by the
students. On the efficient frontier, the risk to be incurred at an expected payoff of
1.17 tokens would be 0.26 tokens. In other words, the standard deviation which is
0.99 tokens is 0.73 tokens too large.
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In fact, it would be good to know whether subjects have any reason for such
non-rational choices. The last column of Table 2 records the stated rationale of the
subject eventually abbreviated and translated to English. Subjects #7, #8, and #10
did not provide any statement. In fact, no salient rewards were connected to these
statements. Subject #4 is the only one who states that perfectly negative correlation
is involved, thus he presumably recognized the possibility of a riskless combination
of assets A and B. All other subjects make no analogous statement, but rather refer
to possible losses or to the wish to diversify. At least the statements of five subjects
(#6, #9, #11, #12, #13) suggest that they do not want to incur any loss.

4.2 High Stake Experiment

Eighteen students of the course “Decision Making and Portfolio Choice” in the
winter term 2006 at the University Hannover were asked to make their decision
in the described experiment with tenfold payoff; i.e., each token equals 10 C= . Kroll
et al. (1988a) suggested that subjects may take the task more seriously and make
different decisions if payoffs are multiplied by ten. The experiment was run at the
end of the final lecture, 3 weeks ahead of students’ final examination; expected
utility and the mean-variance model were essential content in this course. All sub-
jects were volunteers and no subject had previously participated in a comparable
experiment.

Individual Choices in the High Stake Experiment

Corresponding to Tables 2 and 3 records subjects’ choices, rationales and payoffs
involved in the individual choices; the ID numbers are {#16, #17, . . . , #33}, thereby
taking into account the assigned IDs of the Original Experiment. The expected
payoffs among subjects in the High Stake Experiment average 1.16 tokens.8 This
amount is only 0.01 tokens more than the payoff of the riskless combination, T, and
0.01 tokens less than in the Original Experiment. According to the Wilcoxon test,
the difference in expected payoff is insignificant from the ones in T. Furthermore,
the differences in choices and the differences in payoffs as measured in tokens are
insignificant between the Original Experiment and the High Stake Experiment as the
Mann Whitney test suggests.9 In the High Stake experiment, five subjects choose a
lottery on the efficient frontier. All these subjects {#29, #30, #31, #32, #33} choose
the lossless corner lottery V. In summary, the tenfold increase in payoffs has no
statistically notable effect on subjects’ decisions. However, 13 subjects (72%) state
that they do not want to earn a negative payoff, {#17, #20, #23, #24, .. , #33}, and
no subject chooses a lottery that involves a potentially negative payoff.
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Table 3 Individual choices (a, b and c in percentage) and stated rationale in the High Stake
Experiment

ID r(Y) r(X) a b c Stated rationale explaining choice

16 0.60 1.60 70 20 10 r(Y) > r(X)
17 0.70 1.40 40 10 50 No deposit payment. I am very risk averse
18 1.00 1.00 0 0 100 Don’t invest in A, since µ = 10 = r(C). For B µ > 10,

but σ is too high
19 1.00 1.20 50 20 30 Risk relatively neutralized. In any case, I receive

more than C
20 1.40 0.80 30 20 50 I am risk averse. I do not want to lose any, but I want

a chance to earn some money
21 1.75 0.50 25 25 50 It is difficult to decide between A and B. I am risk

neutral
22 1.80 0.40 10 20 70
23 1.90 0.40 30 30 40 No Loss. Would C be greater, I would invest more in

C
24 1.90 0.40 30 30 40 Because: C is riskless. B, A involve a possibility of

loss or gain
25 2.00 0.33 33 33 33 No loss possible, asset A insures loss of B in X
26 2.10 0.20 20 30 50 No negative payoff, because budget = 0.50% chance

of having a “high” payoff
27 2.40 0 30 40 30 All or nothing, but incur no losses
28 2.40 0 30 40 30 No risk of loss, but prospect of positive gain!
29 2.50 0 50 50 0 I do not feel like losing money
30 2.50 0 50 50 0 50% chance to receive something
31 2.50 0 50 50 0 Since one-shot gamble, I do not want to make a loss.

If repeated I’d always choose B
32 2.50 0 50 50 0 In all states there is no loss
33 2.50 0 50 50 0 All or nothing

4.3 What Lottery Do Subjects Select from the Convex Set?

Since there are no significant differences between the data of the Original Exper-
iment and the High Stake Experiment, the data are pooled in this section. The re-
sulting 33 independent choices are displayed in Fig. 2 with respect to the shares a
and b allocated to the risky lotteries A and B. In the figure, a small circle represents
one observation, a double circle represents two choices, a triple circle three choices
etc. Hence, seven subjects chose the 50:50 division of endowment toward the two
risky lotteries inducing the payoffs 2.50 tokens or 0. As can be seen in the figure,
most choices are on the 45 ˚ line or close to it; 14 choices involve a = b; 8 involve
a > b; and 7 choices involve a < b; on average a = 1.03 b. The distribution around
the 45 ˚ line is approximately symmetric.10 In other words, the allocation to the
risky lotteries is divided in equal shares among A and B. Although 34% of shares
were assigned to C a glance at Fig. 2 makes it evident that it is not apt to say that the
endowment is divided equally between all three lotteries. The general choice pattern
suggested by the figure seems rather in line with the following heuristic: choose a
share of the riskless lottery and allocate the remainder to the lottery that maximizes
expected value among the lossless lotteries. In fact, this choice pattern is not rational
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Fig. 2 Risky lottery share in the experiment

as it involves a dominated lottery, but the rationale agrees with aspiration level the-
ory (Lopes, 1987) which forms the basis of behavioral portfolio theory (Shefrin &
Statman, 2000).11

5 Transparency Experiment

5.1 The Experiment

Thirteen students of the Behavioral Finance lecture in the summer term 2006 at the
University of Hannover voluntarily participated in the experiment. The experiment
was run at the end of a lecture. Only some of the 64 students who attended the course
had previous knowledge on portfolio choice and individual decision making. It is
possible that some of the subjects had participated in one of the other above reported
experiments. The participating subjects, in Table 4 identified by {#34, #35, . . . ,
#46}, were first asked to make a choice according to Table 1; in accordance with the
Original Experiment, one token equaled 1 C= in the Transparency Experiment. When
all subjects had made the first choice, they were asked to make a second choice
on another record sheet. The second sheet presented 14 lotteries including lotteries
C and V.12 The other twelve lotteries corresponded to coordinates on the line that
connects A and B in Fig. 1, dividing the line in 13 equal sized segments. Lotteries
A and B were not included in the sheet and the states X and Y were interchanged
to mask the decision problem; the two tasks in the experiment should not be easily
identified as identical.13 Hence, in the second decision task, the two riskless lotteries
C and T were both exposed to the participants, such that dominance was transparent.
Either the choice in the first task or the choice in the second task was played out for
real; subjects tossed a coin to determine the relevant task.
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Table 4 Individual choices in the Transparency Experiment

ID r(X) r(Y) r(Y) r(X)

34 1.60 0.40 → 1.15 1.15
35 1.00 1.00 → 1.15 1.15
36 1.00 1.00 → 1.15 1.15
37 1.00 1.00 → 1.15 1.15
38 1.00 1.00 → 1.88 0.58
39 0.60 1.80 → 2.23 0.23
40 0.30 2.00 → 2.23 0.23
41 −0.50 3.50 → 2.50 0
42 0 2.50 → 2.50 0
43 0 2.50 → 2.50 0
44 0 2.50 → 2.50 0
45 0 2.50 → 2.50 0
46 0 2.50 → 2.50 0

Individual Choices in the Transparency Experiment

Since independence of the data from the above experiments is not warranted and
subjects did hardly state any rationale on their sheet at the end of the second task,
this section focuses on the differences in choice between the first and the second
task in the Transparency Experiment. Table 4 records on the left side the lotteries
chosen in the first task, and the corresponding choices of the second task on the
right. While in the first task the majority of decisions involved a dominated lottery,
0% of subjects chose a dominated lottery in the second task. This result confirms
earlier experimental results of the non-dominated lottery choice where dominance
was transparent (Birnbaum, 1998a; Tversky & Kahneman 1986).

It might be conceivable that subjects who have chosen a risky lottery in the first
task may choose T when this lottery is transparently presented in the second task,
because it is the efficient riskless payoff. However, the table of the individual choices
in the Transparency Experiment reveals that subjects who chose lottery V in the
first task did repeat their choice in the second task. Between tasks, subjects chose
the same amount of risk; in the first task the average standard deviation between
payoffs in state X and Y was 1.12 tokens, in the second task it was 1.10 tokens
(p > 0.5, Mann Whitney test).

6 Summary

This paper has presented a simple individual choice experiment in a classroom set-
ting, where subjects choose a portfolio from a convex set involving dominated lot-
teries and perfect negative correlation of payoffs. Most subjects had heard about
expected utility theory and mean variance theory before, but the presentation of the
task was different than the one from their textbooks. The correlation involved in
the task allowed the construction of a riskless lottery, but hardly any subject identi-
fied the correlation. Hence, the present study shows that even under perfect negative
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correlation subjects neglect correlation. Moreover, most subjects choose a domi-
nated lottery when dominance is not transparent. The fact that all subjects choose
an efficient lottery when dominance is transparent seems to suggest that errors cause
efficiency losses.14

The data on revealed preferences and the stated rationales of subjects suggest
that subjects in the experiment choose a share risklessly and allocate the remainder
of their endowment to the most risky lottery that involves only gains. The data thus
support earlier experimental findings according to which subjects are loss averse
rather than variance averse (Duxbury & Summers, 2004; Levy & Levy, 2001). This
pattern seems to suggest that subjects want both, secure a non-negative payoff and
achieve a high expected return. Though choices are only boundedly rational since
resources are allocated to a dominated lottery, the behavior is in the spirit of aspira-
tion level theory (Lopes, 1987).

Acknowledgement I acknowledge helpful comments by Klaus Spremann and seminar partici-
pants at the FUR conference Rome 2006, in particular Guido Baltussen, Michael Birnbaum, Jerome
Busemeyer, Thierry Post, Uli Schmidt, and Stefan Traub.

Notes

1The available combinations represent mixtures of consequences at a fixed probability of one
half. This approach contrasts to the one presented in Sopher & Narramore (2000) where subjects
could mix probabilities over fixed consequences.

2Systematic dominance violations refute a large class of descriptive models including rank-
dependent utility theory (Diecidue & Wakker, 2001; Quiggin, 1985, 1993), rank and sign de-
pendent utility theory (Luce & Fishburn, 1991, 1995), cumulative prospect theory (Gonzalez &
Wu, 1999; Starmer & Sugden, 1989; Tversky & Kahneman, 1992; Tversky & Wakker, 1995;
Wakker & Tversky, 1993; Wu & Gonzalez, 1996), lottery dependent utility theory (Becker &
Sarin, 1987), aspiration level theory (Lopes, 1987; Lopes & Oden, 1999), mean-variance theory
(Lintner, 1965; Markowitz, 1952; Mossin, 1966; Sharpe, 1964; Tobin, 1968), safety first theory
(Kataoka, 1963; Roy, 1952; Telser, 1955), and generalized utility theory (Machina, 1982).

3Birnbaum and associates present recent evidence for systematic violations of first order
stochastic dominance (Birnbaum, 1997, 1999a, b, 2004a, b; Birnbaum & Martin, 2003; Birnbaum
& Navarette, 1998; Birnbaum et al. 1999). Diederich & Busemeyer (1999) report also violation of
first order stochastic dominance in a repeated setting where dominance is not transparent.

4Kroll & Levy (1992) and Kroll et al. (1988a, b) find violations of second order stochastic
dominance, and Baltussen and Post (2005) report violations of first order stochastic dominance.

5Empirical studies have documented that private investors under-diversify and frequently in-
vest only in one to two securities or they split their wealth equally over all available assets or
funds (Bernatzi, 2001; Bertaut, 1998; Blume & Friend, 1975; Blume et al., 1974; Cohn, Lewellen,
& Lease, 1975; Guiso, Japelli, & Terlizze, 1996; Heaton & Lucas, 2000; Joos & Kilka, 1999;
Kelly, 1994; Perraudin & Sorensen, 2000; Samuelson & Zeckhauser, 1988; Statman, 1987). The
latter investment approach is known as the 1/n-heuristic or naı̈ve diversification (Benartzi &
Thaler, 2001), and even financial advisors support corresponding investment decisions (Canner,
Mankiw, & Weil 1997; Elton & Gruber, 2000; Fisher & Statman, 1997a, b; Siebenmorgen, Weber,
& Weber 2001). Siebenmorgen and Weber provide a remarkable fit between a behavioral model
that assumes the negligence of covariance risk in the objective function and their own data as well
as the one of Canner et al.
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6To compute the riskless combination of lotteries A and B, equalize the payoffs in states X and
Y: 3a−3b + 1− a−b = − a + 6b + 1− a−b⇔ a/b = 9/4, where a and b denote the shares
allocated to A and B.

7Other theories predict also choices on the efficient frontier (general form of cumulative
prospect theory, prospect theory, rank-dependent utility theory, rank and sign dependent utility
theory, lottery dependent utility theory, aspiration level theory and generalized utility theory).

8The average loss in payoff is 0.06 tokens, i.e., the same as in the Original Experiment. The
difference is significantly different from zero (p = 0.001, Wilcoxon test). Efficiency is 95% in
both experiments. The standard deviation for the expected payoff of 1.16 tokens on the efficient
line would be 0.05 tokens, 0.76 tokens less than the observed standard deviation. The observed
standard deviations of the chosen lotteries are statistically undistinguishable between Original and
High Stake Experiment (p = 0.957, Mann Whitney test).

9With the Mann Whitney test I compared the allocations of shares to A, B and C (i.e., the
shares a, b and c), the payoffs in states X, Y and the expected payoffs, both in tokens. Furthermore,
I checked on the equality of the variances between the two experiments by means of the non-
parametric test of Talwar & Gentle (1977). All probability values are greater than p > 0.8.

10The Wilcoxon signed ranks test for symmetry returns a probability value of p = 0.513.
11Aspiration level theory supports also both, the purchase of insurance and the purchase of

lottery tickets.
12Although the task involved the choice of a linear combination from 14 lotteries, actually no

subject chose a combination of more than two lotteries.
13The procedure tried to avoid that students made the same choice in both tasks just on grounds

of consistency. Some subjects were debriefed after the experiment; these subjects had not noticed
that the tasks were basically identical not regarding the risky lotteries A and B.

14A couple of models study the role of errors in individual decision making (Camerer &
Ho, 1994; Harless & Camerer, 1994; Hey, 1995; Hey & Orme, 1994; Loomes & Sugden, 1995;
Schmidt & Neugebauer, 2007).
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Temptations and Dynamic Consistency

E. Carbone

Keywords: Hyperbolic discounting · Experiments · Spot markets · Forward
markets

1 Introduction

The objective of this paper is to test an implication of the quasi-hyperbolic model of
discounting by implementing an experiment on temptations. This implication is that
people choose more investment goods than temptation goods when they plan, but
choose more temptation goods than investment goods when they consume on the
spot. This effect, which has been called the immediacy effect by Read et al. (1999),
occurs when an individual behaves according to the quasi-hyperbolic discounting
model, but not when an individual behaves according to the exponential discount-
ing model.

The immediacy effect has been tested by Read et al. (1999) and by Read & Van
Leeuwen (1998) in a particular experimental setting. These authors conclude from
their experiments that the immediacy effect exists. However, the results of the ex-
periment reported in this current paper – in a different experimental setting – do
not confirm this effect. The main point of this current paper is not only to show
that the immediacy effect is not observed in our experiment, but also to compare
our results to those of Read et al., and try to understand why they are different. We
will argue that these differences are due to important and relevant differences in the
experimental design.

The paper is organised as follows. In the next section we briefly outline the ex-
ponential and quasi-hyperbolic models of discounting. We then apply these two
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theories in a particular context and show that they may lead to different predictions.
Section 3 we describe our experiment which was designed to try and distinguish
whether individuals behave according to the exponential model or according to the
quasi-hyperbolic model. Section 4 contains an analysis of the data analysis and the
final section concludes.

2 The Theory Tested

The mainstream model of intertemporal choice in the economics literature is the
Discounted Utility Model – in which the utilities of future consumption are dis-
counted to the present. The Discounted Utility Model is typically implemented with
an exponential discount function. According to this exponential discounting model,
an individual discounts the future utility of consumption using a constant discount
factor δ , so that the utility at time t of a stream of consumption ct , ct+1, . . . , cT is
given by the expression:

u(ct)+δu(ct+1)+δ 2u(ct+2)+ · · ·+δ T−t+1u(cT ) (1)

Phelps & Pollak (1968) introduced the concept of quasi-hyperbolic discounting.
This has recently been ‘re-discovered’ and extended by Laibson (1997). The quasi-
hyperbolic discounting model is built on the idea (reinforced by empirical evidence)
that consumers have a higher discount rate between the present and the following
period than between any two adjacent subsequent periods. This quasi-hyperbolic
discounting model implies that the utility at time t of a stream of consumption
ct , ct+1, . . . , cT is given by the expression:

u(ct)+β [δu(ct+1)+δ 2u(ct+2)+ · · ·+δ T−t+1u(cT )] (2)

The existence of the parameter β (if it is not equal to 1) distinguishes this model
from the exponential model. Note that, as viewed from period t, the individual dis-
counts the utility of period t + s+1 consumption relative to the utility of period t+s
consumption by δ , whereas, as viewed from period t+s, the individual discounts
the utility of period t+s+1 consumption relative to the utility of period t+s con-
sumption by βδ . Thus the relative discount rate varies according to the time of the
comparison. This implies the possibility of time inconsistency.

The hypothesis we test is an implication of the hyperbolic model combined with
the use of temptation goods or activities and investment goods or activities. Let us
define an investment good or activity as a good which has current costs and future
benefits, while a temptation good or activity is one that has current benefits and
future costs. Read et al. (1999) use the terms vices and virtues: their virtues are
our investment goods and activities; and their vices are our temptation goods and
activities. Read et al. note (p. 259), “Someone who discounts the future in a hyper-
bolic or quasi-hyperbolic manner will be likely to prefer an immediate vice over
an immediate virtue, since the vice offers a larger reward in the present. The same
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individual, however, might well take the virtue if both are delayed, since in this case
the initial reward offered will no longer receive disproportionate weight”. This is
the hypothesis that we test in our experiment.

Let us state this more formally. Suppose that in the case of a temptation good
the cost is paid a period after the benefit is received, while in the case of an invest-
ment good the benefit is received the period after the cost is paid. If an individual
with hyperbolic discounting has to choose in the present, then, if he or she chooses
the temptation (investment) good, the present benefit (cost) will not be discounted,
while the future cost (benefit) will be discounted by βδ . However, if the same in-
dividual has to decide now about what to consume in the following period, then, if
he or she chooses the temptation (investment) good, then the present benefit (cost)
will be discounted by βδ , while the future cost (benefit) will be discounted by βδ 2.
The relative discounting changes according to the time that the decision is made. To
illustrate this with a concrete example, we follow one given by Read et al. Assume
that β = 0.5 and δ = 1, and that the utility stream is (25, 200) for the virtue and
(100, 100) for the vice, where the first entry represents the utility received when the
vice or virtue is consumed and the second entry the utility in the period following.
The individual should choose according to the discounted values of the two streams.
If consumption follows immediately after the decision then the relevant discounted
utilities are 125(= 25 + 0.5× 200) for the virtue and 150(= 100 + 0.5× 100) for
the vice. The vice will be preferred. On the other hand, if the consumption can only
take place one period after the decision, then the relevant discounted utilities are
112.5(= 0 + 0.5× (25 + 200)) and 100(= 0 + 0.5× (100 + 100)). Now the virtue
will be preferred.

We now apply these ideas in a different context. Consider two different market
situations: the first in which there is a spot market; and the second in which there
is a forward market. In both markets good and activities are sold. In the spot mar-
ket participants can consume at the same time as they buy. However, in the forward
market, participants have to order the goods in advance of their consumption. The
effect described above, called by Read et al. the immediacy effect, leads to the fol-
lowing prediction concerning differences in behaviour between the spot market and
the forward market: people will chose more investment (temptation) goods or activ-
ities in the forward (spot) market than in the spot (forward) market. Of course, as
Read et al. say, the possibility of observing this prediction depends on the relative
desirability of the temptation and investment goods and activities.

3 The Experimental Design

Read et al.’s experimental setting required subjects to attend on two occasions. On
the first occasion subjects were asked what they would like to consume (from a list
of possibilities) when they returned on the second occasion. When they did actually
return on the second occasion, they were asked again what they wanted to consume
(from the same list) on that occasion. Note that the responses of the subjects on
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the first occasion were not implemented, so that subjects could well – and in fact
did – change their minds. Indeed, that was the crucial finding of the experiment: de
facto on the second occasion subjects consumed more vices than they had said (on
the first occasion) that they wanted to consume on the second occasion. Read et al.
take this as confirmation of the immediacy effect. For reasons that we discuss later,
we prefer a different experimental setting. This is described below and takes its cue
from the application of the quasi-hyperbolic model to the case of spot and forward
markets discussed at the end of the section above.

The experiment was conducted at Economia Sperimentale al Sud d’Europa
(ESSE) Lab at the University of Bari in Italy. The experiment consisted of eight
sessions; four sessions were run at the end of January 2005 and the other four at
the end of May 2005. The experiment was advertised through a leaflet distributed
by hand in the Faculty of Economics at the University of Bari or sent by e-mail to
a list of people that had participated in previous experiments. This leaflet (available
on request) informed people that the experiment would last 5 h, that the participants
could bring with them their textbooks, that during the experiment they could read
magazines, play videogames and so on, and at the end of the experiment they would
receive 50 C= less what they had spent during the experiment.

There were two separate treatments in the experiment: a spot market treatment
and a forward market treatment. Four of the sessions used the spot market treatment
and four the forward market treatment. In each treatment a range of investment
goods and activities and a range of temptation goods and activities were available
for sale (the complete list of goods and activities is in the instruction reported in
Appendix 1). In the spot market treatment the participants had 15 min to read the
instructions (simultaneously read aloud by the experimenter) and subsequently 4 h
and 45 min to buy and consume goods and activities that they wanted. In the forward
market treatment the participants had 15 min to read the instructions (simultaneously
read aloud by the experimenter) and order the goods and activities they wanted to
consume during the subsequent 4 h and 45 min; crucially no other goods or activities
could be bought after the first 15 min and the subjects were fully informed that that
would be the case. During the ensuing 4 h and 45 min the subjects were brought the
goods and activities that they previously had ordered.

In neither treatment could participants talk to each other during the experiment.
Nor could they indulge in any other activity (other than doing nothing) other than
those available in the experiment; nor could they consume any other good other
than those available in the experiment. At the end of the experiment the participants
were paid 50 C= less what they spent during the experiment; All the goods were sold
at half price of the faculty bar prices. All the activities were sold at 1 centesimo
(of euro) per minute. Goods and activities bought during the experiment, but not
consumed, could not be taken away or refunded at the end of the experiment.

At the end of the experiment participants answered a questionnaire, which al-
lowed us to elicit some demographic information. Additionally in the questionnaire
each subject had to rate each good in term of immediate pleasure and delayed bene-
fit. We used these ratings to calculate temptation indices and investment indices for
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the various goods and activities (both individual – to the subject – and aggregate –
to the participants as a whole). We shall say more about these indices shortly.

The consent form, the instructions, the debriefing questionnaire and the debrief-
ing statement are reported in Appendix 1.

4 The Data Analysis

Recall that the prediction of our model is that people with hyperbolic discount-
ing would consume more temptation goods in the spot market than in the forward
market, and consume less investment goods in the spot market than in the forward
market. We now proceed to a test of this prediction.

We describe the nature of our empirical investigation, after introducing some
notation. In this, we refer to individual goods and activity with the subscript i and
individual subjects with the subscript j. In our experiment there was a total of 24
goods and activities so i ranges from 1 to 24 and there was a total of 80 subjects so
j ranges from 1 to 80.

The variables we observed during the experiment are the following:
ei j: the expenditure on good and activity i by individual j. From these we can

derive the total expenditure on good or activity i: ei =
80
∑
j=1

ei j and the total overall

expenditure on all goods and activities of all individuals e =
24
∑

i=1
ei.

Ti j: the temptation felt by individual j with respect to good or activity i. This
was measured by the response of the individual in the questionnaire to the question
“Does this good or activity give you immediate pleasure? Is it fun, tasty or pleasur-
able”. The variable Ti j was coded 0, 1 or 2 according as the response was “none”,
“a little” or “a lot”.

Ii j: the “investability” felt by individual j with respect to good or activity i. This
was measure by the response of the individual in the questionnaire to the question
“Does this good or activity have benefits that last at least a few days? Is it healthy
or educational?”. The variable Ii j was coded 0, 1 or 2 according as the response was
“none”, “a little” or “a lot”. This measures how much investment value there was to
that individual of that good or activity.

Ti and Ii: average measures of temptation and investability of each good or activ-
ity defined as follows:

Ti =
1

80

80

∑
j=1

Ti j and Ii =
1
80

80

∑
j=1

Ii j

F : a dummy for the forward market (forward F = 1 and spot F = 0).
In addition we gathered the following demographic data: whether the subject was

a student; whether the subject was employed; the subject’s annual food expenditure;
his or her age; his or her height; his or her gender; his or her weight.
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The first equation estimated is the following:

ei j = 0.002 + 0.084Ti j + 0.1171i j + 0.174 Fj−0.0053Fj Ti j−0.147FjIi j (i=1.24, j=1.80)
(0.085) (4.962) (6.459) (6.677) (−2.395) (−6.325)

Note that the above equation implies:

Spot market (F = 0) e = 0.002+0.0084T +0.1171
Forward market (F = 1) e = 0.176+0.031T −0.0301

When we substitute in the three possible values of the temptation index and the three
possible values of the investment index we get the following table.

Spot market Forward market
T I e T I e

0 0 0.002 0 0 0.176
1 0 0.086 1 0 0.207
2 0 0.170 2 0 0.238
0 0 0.002 0 0 0.176
0 1 0.119 0 1 0.146
0 2 0.236 0 2 0.116

This table tell us that when the temptation index is positive (1 or 2) and the
investment index is zero that expenditure in the forward market is higher than the
expenditure in the spot market. This goes against the predictions of the hyperbolic
model. However, when the investment index is 1(2) and the temptation index is
zero the expenditure in the spot market is lower (higher) than the expenditure in the
forward market – so this evidence partly supports the quasi-hyperbolic prediction
and partly refutes it.

An alternative, and perhaps more direct and robust, way of analysing the data
is the following. Let us weight expenditures by their temptation and investment
content. We have the temptation/investment coefficients from the questionnaire
and depending on how we use them we can calculate weighted expenditure on
temptation and investment goods and activities. Ideally we would like to say that
expenditure on a particular good or activity is x% temptation and (100− x)% in-
vestment – with the obvious extremes 100% temptation and 100% investment. The
first of these occurs when the subject replies “a lot” to the temptation question
and “none” to the investment question, and the second when the subject replies
“none” to the temptation question and “a lot” to the investment question. Also it
is clear when the subject replies “a little” to both questions that the good or activ-
ity is 50% temptation and 50% investment. However other cases are not so clear,
and we have to decide a mapping from these answers on the questionnaires to
the temptation and investment content of the expenditure. Consider the following
mapping:
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Temptation coefficients Investment coefficients
1/2 0 1 2 0 1 2
0 0.00 0.00 0.00 0.00 0.50 1.00
1 0.50 0.50 0.50 0.00 0.50 1.00
2 1.00 1.00 1.00 0.00 0.50 1.00

We note that, with this mapping, if the temptation index is 0, 1, 2 then the expen-
diture is 0, 50, 100% temptation, irrespective of the investment index. It the invest-
ment index is 0, 1, 2 then the expenditure is 0, 50, 100% investment, irrespective of
the temptation index. However if both indexes are 2 this mapping implies that the
expenditure is allocated 100% to temptation and 100% to investment – and hence
is double counted. Clearly there is no ‘correct’ mapping, particularly if an individ-
ual regards a good or activity as providing both immediate and delayed pleasures.
However, using this mapping (at an individual level using individual responses to the
questionnaire to weight the individual expenditures) we get the following implied
weighted expenditure percentages:

Temptation Investment
Spot 58 42
Forward 59 41

This shows that the expenditure on temptation goods and activities in the forward
market is slightly higher than in the spot market, and that the expenditure on invest-
ment goods and activities is slightly higher in the spot then in the forward market.
This is the opposite of that predicted by the quasi-hyperbolic model.

Of course, we may have chosen a bad mapping, but the above result appears
robust. For the record, in Appendix 2, we include other mappings and their implied
weighted expenditures. The implications do not seem particularly sensitive to the
mapping.

5 Conclusions

The prediction of the quasi-hyperbolic model we tested in this experiment is not
confirmed by the data. This prediction is that people choose more investment goods
than temptation goods when they plan, but choose more temptation goods than in-
vestment goods when they consume on the spot.

To detect the plan that people make, and to compare that with what people
consume on the spot, we used an experimental design in which there were two
treatments: one containing a forward market and the other a spot market. We do
not observe the expenditure reversal predicted by the hyperbolic model. What is
observed, on the contrary, is that expenditure on temptation goods in the forward
market is higher than in the spot market, and that expenditure on investment goods
is lower in the forward market respect than in the spot market.

However, we should not dismiss immediately the quasi-hyperbolic discounting
model on the basis of these results. There are two features of the experiment that
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may have caused this contrary result: one feature is the delay between the moment
that people choose and the moment that people consume. One could argue that the
probability that the preference reversal happens is inversely related to the temporal
distance between the decision and the moment of consumption. In this experiment
people would implement their plan soon after having chosen (they had a quarter of
an hour to read the instruction and choose). We could, in order to put more time
between the decision and the implementation of the plan, have implemented an ex-
perimental design in which the participants in the experiment had to go away and
return on a second occasion. This would have created other problems – not least that
the participants could have prepared for the second experimental occasion by eating
and drinking in advance and coming with prepared reading.

The second problem in our experimental design is that which might be called
the commitment or insurance effect: if people are risk averse and have to decide in
advance what they are going to consume, they may choose more goods that they
really want to avoid ending up without doing anything or eating less that they would
desire. So they ordered more goods and activities they wanted – simply as insur-
ance. It is not clear how one might control for this effect. However, our design has
advantages over that of Read et al. In their design, there appear to be two problems,
both related to the decision at the second stage. First, and de facto, subjects were
allowed to change their minds on the second occasion – so that any plan that they
formulated could be changed. Second, and as a consequence of this, if the subjects
knew on the first occasion that they would be allowed to change their minds on the
second occasion, it is not clear in what sense their stated plans at the first stage were
in fact their true plans.

However, and this is still something to be explained, our experiment shows that
we do not find any confirmation of the prediction of the quasi-hyperbolic model. We
might have expected to find a modest effect, but, in fact, the movement of expendi-
ture goes in the wrong direction.

Appendix 1

The Consent Form, the Instructions and the Debriefing
Questionnaire and Statement

Consent Form

Professor Enrica Carbone of the Faculty of Economics at The University of Bari is
conducting a study on how people make decisions in real-world environments. You
may participate in this study only once.

You will receive 50 C=, which you can spend on food or activities during the ex-
periment. Whatever you don’t spend you can take home with you at the end of the
experiment. Your total participation should take around 5 h.
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The data collected in this study will be used for economics research. Though
nothing in the experiment is personally sensitive, we have taken steps to assure your
anonymity. This anonymous data will be analyzed in future research.

I have read these instructions and agree to participate in the study:
(signature and date).

I Instructions for the Experiment

This experiment lasts 5 h. During the first 15 min we will explain the instructions
and show you the goods and activities that can be purchased. During this time you
will also be able to select the goods and activities that you want to purchase. After
this, you will have 4 h and 45 min to use the goods and activities that you purchased.
Goods and activities purchased but not consumed during the course of the experi-
ment cannot be taken with you at the end of the experiment or refunded.

The selection and purchase of goods and activities can only be done from 12.30
to 12.45. To purchase a good or an activity, fill in the quantity on this page and the
next page. After 12.45 no changes can be made. During the experiment, participants
can speak only with the experimenter and her assistants. Please do not talk to other
participants.

The prices for goods and activities are listed below. If you order something (like
a cup of espressino), it will be delivered to you whenever you ask for it during the
experiment. For example, if you purchase two cups of coffee, you have purchased
the right to tell the experimenter to bring you a cup of coffee twice during the ex-
periment. Remember that goods and activities purchased but not consumed during
the course of the experiment cannot be taken with you at the end of the experiment
or refunded.

We first list food items from the bar at the Faculty of Economics. Write the
number you want (or “0”).

• Espressino coffee 24 centesimi: I agree to purchase cups of espressino.
• Espresso coffee 23 centesimi: I agree to purchase cups of espresso.
• Chocolate Snack 50 centesimi: I agree to purchase chocolate snacks.
• Focaccia 90 centesimi: I agree to purchase focaccia.
• Sandwich 90 centesimi: I agree to purchase sandwiches.
• Oransoda 40 centesimi: I agree to purchase oransodas.
• Lemosoda 40 centesimi: I agree to purchase lemonsodas.
• Chinotto 40 centesimi: I agree to purchase Chinotto.
• Crostini 35 centesimi: I agree to purchase crostini.
• Salad (lettuce, rucola, tomato, raw ham, salt and a teaspoon of oil served

with bread) 1,50 C= : I agree to purchase salads.
• Fruit 40 centesimi: I agree to purchase pieces of fruit.
• Yoghurt low fat 60 centesimi: I agree to purchase cups of yoghurt.
• Crisps 35 centesimi: I agree to purchase crisps.
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• Cucciolone 90 centesimi: I agree to purchase cucciolone
• Magnum Nuts 90 centesimi: I agree to purchase Magnum Nuts
• Cornetto 1 C= : I agree to purchase Cornetto
• Caramelle 60 centesimi: I agree to purchase caramelle.

Non-food items: you will be charged by the minute; write the total number of
minutes you want (or “0”).

• Textbook reading 1 centesimo per minute: I agree to purchase minutes of
textbook reading.

• Research on the catalogue of the departmental library 1 centesimo per
minute: I agree to purchase minutes of research on the catalogue of the
departmental library.

• Research on the electronic catalogue of the university library 1 centesimo per
minute: I agree to purchase minutes of research on the electronic catalogue
of the university library.

• Weights and gym equipment for developing pectoral muscles 1 centesimo
per minute: I agree to purchase minutes of use of the weights and gym
equipment.

• Magazines (Panorama, l’Espresso, Economy) 1 centesimo per minute: I agree
to purchase minutes of magazine reading.

• Video games 1 centesimo per minute: I agree to purchase minutes of video
game playing.

• Music on the Virgin Radio, Italian Radio web sites, and CDs 1 centesimo per
minute: I agree to purchase minutes of web music.

From 12.45 to 17.30 you will be able to use the goods and activities that you agreed
to purchase. At 17.30 you will be given a questionnaire. After completing the ques-
tionnaire, you will be paid 50 C= minus what you spent on goods and activities.

II Instructions for the Experiment

This experiment lasts 5 h. During the first 15 min we will explain the instructions
and show you the goods and activities that can be purchased. After this, you will
have 4 h and 45 min to purchase goods and activities.

To purchase a good or an activity, simply tell the experimenter that you want
something. During the experiment, participants can speak only with the experi-
menter and her assistants. Please do not talk to other participants.

The prices for goods and activities are listed below. If you order something (like
a cup of espressino), it will be delivered to you as soon as possible.

We first list food items from the bar at the Faculty of Economics.

• Espressino coffee 24 centesimi.
• Espresso coffee 23 centesimi.
• Chocolate Snack 50 centesimi.
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• Focaccia 90 centesimi.
• Sandwich 90 centesimi.
• Oransoda 40 centesimi.
• Lemosoda 40 centesimi.
• Chinotto 40 centesimi.
• Crostini 35 centesimi.
• Salad (lettuce, rucola, tomato, raw ham, salt and a teaspoon of oil served

with bread) 1,50 C=.
• Fruit 40 centesimi.
• Yoghurt low fat 60 centesimi.
• Crisps 35 centesimi.
• Cucciolone 90 centesimi.
• Magnum Nuts 90 centesimi.
• Cornetto 1 C=.
• Caramelle 60 centesimi.

Non-food items: you will be charged by the minute.

• Textbook reading 1 centesimo per minute.
• Research on the catalogue of the departmental library 1 centesimo per

minute.
• Research on the electronic catalogue of the university library 1 centesimo

per minute.
• Weights and gym equipment for developing pectoral muscles 1 centesimo per

minute.
• Magazines (Panorama, l’Espresso, Economy) 1 centesimo per minute.
• Video games on the RealArcade web site 1 centesimo per minute.
• Music on the Virgin Radio, Italian Radio web sites, and CDs 1 centesimo per

minute.

From 12.45 to 17.30 you will be able to use the goods and activities above. At 17.30
you will be given a questionnaire. After completing the questionnaire, you will be
paid 50 C= minus what you spent on goods and activities.

Debriefing Questionnaire

Please answer the following questions:
How did you hear about the experiment?

Are you a student at Bari? Yes No . If you are not a student at Bari,
what is your current employment status? .

If you are a student, what is your field of study: .
How many Euros do you spend per year on food? .
What is your age: .
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Are you married? Yes No .
What is your height: meters.
Are you male or female: Male Female .
What is your weight: kilograms.
Were any parts of the experimental instructions confusing? Yes No . If

you answered yes, please describe which part was confusing:

What do you think this experiment was about? Please explain below:

Please rate the following goods and activities. Give each good or activity two
ratings.

Rating 1: Immediate pleasure.
Does this good or activity give you immediate pleasure?

Is it fun, tasty, or pleasurable?
Circle one of three responses:

None immediate pleasure/Low immediate pleasure/High immediate pleasure
Rating 2: Delayed benefits.

Does this good or activity have benefits that last a few days?
Is it healthy or educational?
Circle one of three responses:

None delayed benefits/Low delayed benefits/High delayed benefits

Rating 1: Immediate
pleasure?

Rating 2: Long-term
benefits?

Espressino coffee: None/low/high None/low/high
Espresso coffee: None/low/high None/low/high
Chocolate snack: None/low/high None/low/high
Focaccia: None/low/high None/low/high
Sandwich: None/low/high None/low/high
Oransoda: None/low/high None/low/high
Lemonsoda: None/low/high None/low/high
Chinotto: None/low/high None/low/high
Crostini: None/low/high None/low/high
Salad: None/low/high None/low/high
Fruit: None/low/high None/low/high
Yoghurt low fat: None/low/high None/low/high
Crisps: None/low/high None/low/high
Cucciolone: None/low/high None/low/high
Magnum nuts: None/low/high None/low/high
Cornetto: None/low/high None/low/high
Caramelle: None/low/high None/low/high
Textbook reading: None/low/high None/low/high
Library research: None/low/high None/low/high
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Using gym equipment: None/low/high None/low/high
Panorama Magazine: None/low/high None/low/high
l’Espresso Magazine: None/low/high None/low/high
Economy Magazine: None/low/high None/low/high
Video games: None/low/high None/low/high
Music on the web: None/low/high None/low/high

Debriefing Statement

This was an experiment on consumer choice. We were interested in studying how
people allocate their time among different activities.

Thank you very much for participating. Please feel free to contact me at
e.carbone@dse.uniba.it at any time with questions, or if you would like to receive a
copy of the research paper that results from this study. Thanks.

Enrica Carbone

P.S. Feel free to encourage your friends to participate in this study. However, we
ask that you not tell them any details about the actual tasks involved. We want them
to come without pre-formed expectations. Thanks.

Appendix 2

The Implications of Alternative Mappings from the Indices
to the Weightings

Scenario 1: Consider the following mappings:
Temptation coefficients Investment coefficients
1/2 0 1 2 0 1 2
0 0.000 0.000 0.000 0.000 0.125 0.250
1 0.125 0.250 0.500 0.000 0.250 0.500
2 0.250 0.500 1.000 0.000 0.500 1.000
With these we get the following weighted expenditures:

Temptation Investment
Spot 58 42
Forward 59 41

Scenario 2: Consider the following mappings (note that expenditure is always allo-
cated x% to temptation and (100–x)% to investment except when the good is rated
zero on both indices):
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Temptation coefficients Investment coefficients
1/2 0 1 2 0 1 2
0 0.000 0.000 0.000 0.000 1.000 1.000
1 1.000 0.500 0.333 0.000 0.500 0.667
2 1.000 0.667 0.500 0.000 0.333 0.500

With these we get the following weighted expenditures:

Temptation Investment
Spot 62 38
Forward 65 35
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Monty Hall’s Three Doors for Dummies

A. Morone and A. Fiore(�)

Keywords: Learning; Anomaly; Individual decision making; Experiment; Status
quo bias

1 Introduction

Since its appearance in the literature, Monty Hall’s three doors “anomaly” has
attracted the attention of scientists from different fields: economists (Friedman,
1998; Nalebuff, 1987; Page, 1998; Palacios-Huerta, 2003; Slembeck & Tyran, 2004),
statisticians (Morgan, Chaganty, Dahiya & Doviak, 1991; Puza, Pitt & O’Neill, 2005),
psychologists (Granberg & Brown, 1995; Krauss & Wang, 2003) among others.
The reason for such attention may be explained by the fact that this “anomaly”
relies on a simple, even if counterintuitive, problem. There are three doors, and only
behind one of them there is a big prize. At the beginning of the game, the player
is asked to choose just one door. After that, an empty door among the not chosen
doors is opened and the player is asked to make a new decision: either to stick with
the first chosen door or to change and choose the remaining not-opened door. If
people performed the Bayes’ updating correctly, they should realise that switching
is the best strategy because it doubles the percentages of winning (as we show in
the next section). Nevertheless, the stylised fact from the American TV programme
in which this game was firstly performed, and from the controlled experiments that
replicated its basic structure (Friedman; Page; Palacios-Huerta; Slembeck & Tyran)
is that only a low percentage of people choose to switch.

The aim of this paper is to contribute to understanding the possible reasons for
which the people fail to adopt the best strategy, even in an environment in which
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they perform the task repeatedly. Our experimental results drive us to conclude that
the most common reason for this anomaly, that is, the misapplication of Bayes’ rule,
even if it contributes undoubtedly in reducing the anomaly, is not the only nor the
most important reason for it.

The paper is structured as follows. In Sects. 2 and 3, we will introduce the prob-
lem and we will present the new experimental design, respectively. In Sect. 4 our
results will be presented. In Sect. 5 some possible explanations will be proposed.
Finally, in Sect. 6, we will draw some conclusions.

2 The Problem

Monty Hall’s three doors is a particularly simple game. First, subjects are asked to
choose one of three doors, that are equally likely to hide a big prize. Consequently,
the first chosen door has a probability of one third, whereas the two left doors taken
together have a probability of two thirds hiding the prize. Moreover, if we consider
the remaining two doors, we know that with probability 1, one of them is surely
empty. Then, when one of the two left doors is opened, knowing precisely which one
is empty does not add any relevant information, and does not affect the probability
that the first chosen door hides the prize or the probability that the prize is behind
the not chosen pair. Nevertheless, it seems that the players are generally unable to
recognize this. This is one of the most crucial points in the Monty Hall’s problem,
since it is directly related to the issue in decision-making concerning the manner in
which people process new information and update beliefs. It is well-known that in
the Monty Hall game the optimal strategy is to switch. This follows from a direct
application of Bayes’ rule: let us label the three doors A, B and C and assume a
subject chooses door A. Additionally, Monty opens door B (that is an empty door,
and the subject knows the door will be opened is empty). Now we can calculate
the probability of winning by switching to C given that Monty opened B and the
probability of winning by not switching to C given that Monty opened B:

Pr(prize inC|Montyopened B) =
Pr(Montyopened B|prize inC)Pr(prize inC)

Pr(Montyopened B)

=
(1)(1/3)

(1)(1/3)+(1/2)(1/3)
=

2
3

(1)

Pr(prize inA|Montyopened B) =
Pr(Montyopened B|prize inA)Pr(prize inA)

Pr(Montyopened B)

=
(1/2)(1/3)

(1)(1/3)+(1/2)(1/3)
=

1
3

(2)

A rational subject should be able to perform this calculation and therefore he/she
should choose always to switch. Unfortunately, this is not the case, since many sub-
jects decide to stay with their first choice.
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Several possible reasons have been suggested to explain this “anomaly”, for ex-
ample: (1) subjects could make mistakes in updating the relevant probabilities, i.e.,
they do not perform the Bayes’ rule correctly; (2) they could suffer of the endow-
ment effect (Kahneman, Knetsch & Thaler, 1991; Knetsch, 1989) which captures
the overvaluation of the winning probability of the owned door and/or the status
quo bias (Samuelson & Zeckhauser, 1988) which is the preference to remain at
the current door; (3) subjects could believe erroneously that the task, in addition
to chance, entails some kinds of skill (in the psychological literature, this belief is
called illusion of control) and, therefore, they could try to “guess” somehow the
winning door using some skill as insight, and seeing one of the two remaining doors
empty is nothing but a reinforcement of their prior belief; (4) subjects could act
following as a strategy the probability matching behaviour, i.e., they could decide
to choose not the optimal strategy (always switching), but they could choose each
strategy according to their relative likelihood of success. In our case, this means that
they should choose the two strategies, switching and not switching, in proportion of
one third and two thirds, respectively.

Our experimental design enables us to discriminate better among these different
explanations. In this perspective, our approach is different, inasmuch we developed a
more radical “debiasing test” (Conlisk, 1996) compared to all previous experimen-
tal attempts, whose focus has been almost exclusively on some particular aspects
that could be able to mitigate the “anomaly” and help people to behave rationally.
These treatments were designed to endorse learning and to test other institutions
recognized sensitive to anomalous choice behaviour.

3 The New Experimental Design

When we first approached this problem, we were puzzled, and we were moved by
a simple idea: “if something is true there should be an easy way to explain it.” Ob-
viously, if it is true that “switching the door” is better than “keeping the door”, 2/3
chance of winning is better than 1/3, then there should be an easy, understandable,
and convincing way to demonstrate it. In order to determine this easy way, we mod-
ified the Monty Hall’s three doors into the Monty Hall’s three doors for dummies.
As in the basic structure, there are three doors, and only behind one of them there
is a big prize. At the start, as usual, subjects are asked to choose one of the three
doors, but then they should be asked whether they would like to change the door
they firstly chose with both the other two doors. In this way, they should readily
realize that we were trading off 2/3 change of winning for 1/3, and they should take
advantage of such opportunity promptly. As a consequence, the “anomaly” should
disappear.

Consequently, we decided to run an experiment composed of two treatments:
CONTROL, and FOR DUMMIES. In the CONTROL treatment, we substantially
replicated Friedman’ first treatment. Indeed, in this treatment participant was firstly
asked to choose a door among three. Then, an empty unchosen door was opened.
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Finally, subject was asked to stick with to the first chosen door or to switch to the
remaining unchosen door. Conversely, in the FOR DUMMIES treatment, subjects
chose a door, and then they were asked to change the chosen door with both the
remaining two doors. In this case, no empty door was revealed. In order to make our
results robust for monotonicity, we also ran a third treatment, the INTERMEDIATE
treatment. In this case, the only difference was that, after an empty door one was
opened, they were asked whether they wanted to keep the chosen door or whether
they wanted both the other two doors (one closed and one open).

At this point, it should be worth summarizing the main features and the options
available to subjects in each single treatment:

• CONTROL: once an empty door is opened, new information enters in the game
and some probabilities have to be updated. All subjects should update their belief
(i.e. the probability that the firstly chosen door hides the prize was 1/3 and it
remains 1/3; the probability that the open door hides the prize was 1/3 and it
fell to 0; the probability that the last door hides the prize was 1/3 and it rises to
2/3). In this treatment, it is easy to fail processing correctly the new information,
subjects wrongly attached to the two still closed doors a 50–50 chance to hide
the prize. In this sense, they fail the Bayesian updating

• INTERMEDIATE: once an empty door is opened, new information enters in the
game once again and some probabilities have to be updated as well. In this
treatment, since the two left doors are offered coupled, performing the correct
Bayesian updating is easier, but it is still possible to fail it and attaching to the
two closed doors a 50–50 chance to hide the prize

• FOR DUMMIES: after the first choice, no door is opened, and so there is no new
information entering the game. The Bayesian updating is not needed and so it
should be impossible to fail it

Otherwise, the three games were identical: all the relevant probabilities remained
unchanged, but if in the CONTROL treatment subjects may fail to consider the
opened and the left door as a pair, in the remaining treatments, they cannot fail
to consider them a pair, because we actually offered them in pairs.

In this way, this simple design should allow us to establish whether subjects fail
the Bayesian updating, or if they may present some psychological underpinnings
that drive them in keeping the first choice, seeming to be irrational.

4 The Experiment

This paragraph is structured as follows. Section 4.1 illustrates design and proce-
dures, while in Sect. 4.2 we present the main results. Finally, in Sect. 4.3 is provided
an econometric analysis of determinants of learning.
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4.1 Design and Procedures

The experiment was programmed using the Z-tree software (Fischbacher, 2007) and
was run at the laboratory of ESSE (Economia Sperimentale al Sud d’Europa) of the
University of Bari on January 2005.

Each treatment, lasting for about 45 min, was made up of 12 periods, 2 of which
were trial periods.1 The trial periods were necessary in order to acquaint subjects
with both the task and the computerized interface. Before the experiment was started
they got the chance to ask questions about the experiment’s instructions. We paid
particular attention in writing the instructions and in avoiding any possible misun-
derstanding and/or deception (instructions are available on request). For example, in
explaining the structure of the game, we did not refer to any among the three cards
as the opened one. This aspect is on trial in this statement: “Although, semantically,
Door 3 [. . . ] is named merely as an example (Monty Hall opens another door, say,
number 3), most participants take the opening of Door 3 for granted and base their
reasoning on this fact” (Krauss & Wang, 2003).

In each treatment, we had N = 20 subjects (between-subjects design), randomly
assigned to the three treatments, all of them sat next to a PC terminal. The subjects
could not see each other or communicate with the other subjects. Almost all of
them were undergraduate students in Economics not familiar with previous similar
experiments.

In the experiment the task was very simple: to pick on the screen a door among
three, simply pressing a button. For each period the programme established which
door hid the prize, and the subjects knew this.

This constituted the first stage of the game, the same in all the treatments. Then a
new stage began. In all the treatments, information about subject’s previous choice
was displayed. Then, the three treatments differed. In the CONTROL treatment, the
programme chose and showed an empty door to the subject and then asked him/her
whether he/she wanted to keep his/her first choice or if he/she preferred to go for the
remaining door. In the INTERMEDIATE treatment, the programme chose and showed
an empty door to the subject and then asked whether he/she wanted to keep his/her
first choice or if he/she preferred the un-chosen doors (i.e. one door is opened and
visibly empty, the other one is still closed). Finally, in the FOR DUMMIES treatment,
subjects were given the opportunity to change the chosen door with the other two
doors. In the final stage, subjects were informed about their chosen door(s), the right
option and about their pay-off. They gained 0.5 C= whenever they chose the lucky
door, and zero otherwise The average payoff, earned in half an hour, was 2.6 C=.

4.2 The Experimental Results

Figure 1 summarizes the experimental results. It reports the switch rates in the three
treatments over the ten periods. Comparing our CONTROL treatment with the ex-
periments in the previous literature, we report an overall switch rate of 41.5%,



156 A. Morone, A. Fiore

CONTROL INTERMEDIATE

FOR DUMMIES

0

.2

.4

.6

.8

1 2 3 4 5 6 7 8 9 10

Fig. 1 Switch Rates by treatment and period

higher than in Friedman (28.7%), even if in line with results in other previous ex-
perimental studies (Page, 1998; Palacios-Huerta, 2003; Slembeck & Tyran, 2004).
The overall switch rate in INTERMEDIATE and FOR DUMMIES is 45.5 and 58%,
respectively. Whereas there is no statistical difference between the CONTROL and
the INTERMEDIATE treatment (Wilcoxon rank-sum test, p-value = 0.4203), the FOR
DUMMIES treatment is statistically different from both of them (Wilcoxon rank-sum
test CONTROL/FOR DUMMIES, p-value = 0.0010; INTERMEDIATE/FOR DUMMIES,
p-value = 0.0125). Therefore, we can conjecture that the FOR DUMMIES treatment
could have turned out to be effective in shaping a different kind of behaviour,
whereas the other two treatments are statistically indistinct.

Even though we observe a higher (or, at least, not smaller) switch rate in any
single period under the FOR DUMMIES treatment, and a monotonic increasing pat-
tern across the three treatments as expected, nevertheless the switch rate in the new
framework is still too low, even in the last period (when it reaches its maximum
at 75%). Indeed, if the real reason for this problem were the misapplication of the
Bayes’ law, since the new framework did not require subjects to make any prob-
ability updating, we should have observed a switch rate not statistically different
from 100%. At this point, we could not consider the Bayesian updating failure as
the leading explanation. We should look for other plausible explanations.

Before going in to details, we show in Fig. 2 the categorization of our experi-
mental subjects according to their different switch rate during the experiment.

As can be seen, even though the percentage of completely rational subjects is
undoubtedly higher under the for dummies treatment, i.e., 35% of subjects always
switched, compared to the 5% in both other two treatments, nevertheless even in
this case a not negligible percentage of subjects never switched (3 out of 20). We
now try to list some of the possible explanations of this behavioural pattern.
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Fig. 2 Categorization of subjects according to their switch rates N = 20 in each treatment

As a first step, we test if the subjects behaved randomly. In order to test this
hypothesis, we run a one-sided binomial test under the null hypothesis whereby
switch rate is equal to 50% against the alternative hypothesis whereby the switch
rate is greater than 50%. Very interestingly, we can reject the null hypothesis only
for the FOR DUMMIES treatment (p-value = 0.0141), whereas we cannot reject the
hypothesis of completely random behaviour in the CONTROL and INTERMEDIATE
treatments (p-value = 0.9934 and p-value = 0.9105, respectively).

Given that probability matching behaviour has been invoked as a possible ex-
planation for this “anomaly”, as a second step, we investigate if the switch rate is
significantly different from 2/3. We have already underlined that, according to this
hypothesis, subjects would play strategies in relation to their likelihood of success
(and switching has 2/3 chance of winning) and not the optimal strategy (in this case,
they should always decide to switch), as the axiom of rationality would require. We
can reject the hypothesis that subjects behaved according to the probability matching
behaviour in all three treatments (CONTROL treatment, p-value = 0.0000; INTERME-
DIATE treatment, p-value = 0.0000; FOR DUMMIES treatment, p-value = 0.0083).

4.3 Econometric Analysis

In this paragraph, we will follow Friedman (1998) and Slembeck & Tyran (2004) to
estimate a simple learning model.

Following our predecessor, we have constructed a model that links the decision
of switching or not with a set of determinants, as follows. The presence of learning
is investigated by the use of the variable Time (the period number). In order to study
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reinforcement learning (or fictitious play; Erev & Roth, 1998), we use the Switch-
bonus variable (the cumulated earnings from always switching minus the earnings
from always not switching); directional learning (or Cournot behaviour; Selten &
Buchta, 1998) is studied by using the Switchwon variable (a dummy variable equal
to 1 if in the most recent period the subject switched and won). We run a probit
estimation introducing two more variables: Time2, to test for concavity of learning,
and Switchlost, another way to test directional learning (a dummy variable equal to
1 if in the most recent period the subject switched and lost). Results are reported in
Table 1.2

Table 1 Maximum likelihood probit estimation

Dep. variable:
switch

Friedman: first
treatment

Friedman: second
treatment

Slembeck–Tyran Morone–Fiore

Constant −1.090 -0.814 – –
(0.000) (0.000)

Time 0.055 0.032 0.0135 −0.0539 (0.109)
(0.000) (0.000) (0.013)

Time2 – – −0.003 0.0044 (0.141)
(0.008)

Switchbonus 0.325 0.082 0.0017 0.0632 (0.004)
0.000 (0.000) (0.003)

Switchwon 0.106 0.293 0.3323 0.3467 (0.000)
(0.344) (0.000) (0.000)

Switchlost – – −0.2149 0.2735 (0.000)
(0.000)

Fiedman’s
treatments
Intense – -0.243 – –

(0.002)
Track – 0.276 – –

(0.009)
Advice – 0.337 – –

(0.012)
Compare – 0.208 – –

(0.069)
Slembeck–Tyran’s
treatments
Competition – – 0.1435 –

(0.035)
Communication – – 0.1549 –

(0.022)
Comp*Comm – – 0.0468 –

(0.375)
Morone–Fiore’s
treatments
Intermediate – – – 0.0229 (0.661)
ForDummies – – – 0.1211 (0.022)
Log likelihood −589.9 −927.8 −956.88 −370.95
Pseudo R2 – – 0.2571 0.1073
NOBs 1.040 1.407 1.880 600
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In Table 1, we report marginal effects, since coefficients derived from models of
this sort have not the usual meaning and interpretation as in linear models, whereas
marginal effects do have. In particular, the values of the computed marginal effects
vary with the different values of the regressors. As regards the package we used in
analysing our data (STATA), it reports the marginal effects at the sample means of
the data for continuous variables, and for a discrete change from 0 to 1 for dummy
variables.

Given these differences in interpreting coefficient estimates and marginal effects,
our results are more easily comparable with those of Slembeck and Tyran (see foot-
note at Table 1). We can observe that among significant variables, Switchwon be-
haves quite exactly as in the previous analysis, whereas Switchlost has the same
magnitude, but it goes in the opposite direction. That means that we cannot con-
firm precisely directional learning theory, because our results are not unambiguous:
the variable Switchwon indicates that the probability of switching is 34.67% higher
if the subject chose to switch and won in the most recent period, as we expected,
instead Switchlost suggests that even if the subject chose to switch and lost in the
preceding period, this fact increases the probability of switching by 27.35%. As
regards the test for the other learning theory, reinforcement learning, the variable
Switchbonus shows the expected direction and is more effective than in the previous
analysis.

The negative effect for Time would suggest a downward trend to switch, on the
contrary, the positive effect for Time2 would show that we have a non linear and
convex trend over time, but both of them are not significant.

Finally, as can be observed from the table, our last treatment, ForDummies, is
significantly effective in increasing the probability of switching (by 12.11%).

In conclusion, our results are quite in line with previous ones, except for the fact
that learning is not explained by the variable Time nor by directional learning (how-
ever, also in Friedman Switchwon is never significant) and that other determinants
could contribute to explain the model. Rather, the optimal strategy is chosen only
when sufficient favourable evidence has been accumulated.

5 Discussion

In this section, we summarize our main results and present some possible explana-
tions for the behaviour observed in our experiment.

Considering the common explanations usually supported as likely candidates,
already presented in Sect. 2, we can point out that:

(1) The misapplication of Bayes’ rule is an important ingredient for this “anomaly”,
but we showed that it is not the driving explanation for this. Indeed, if it were
the real motivation for this “anomaly”, since in our FOR DUMMIES treatment
no application of this rule was required, we should have observed no irrational
behaviour under this treatment. Clearly, the sharp decline in the number of sub-
jects that made an irrational choice across the three treatments may be attributed
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to the fact that in the last experimental set up the game was simpler. Therefore,
for a certain percentage of population, the problem lies in an incorrect probabil-
ity updating. However, even in the last period, still 25% of people did not make
the rational choice. This fact drives us to look for further explanations;

(2) Conversely, the status quo bias seems to have a not negligible role in under-
standing such a behaviour, at least for that fraction of people that never chose
to switch. People seem to attach a higher value to their previous chosen door
and, consequently, they seem to consider their already chosen door as their en-
dowment. Indeed, very interestingly, even in the FOR DUMMIES treatment, at
least 15% of subjects never decided to switch;

(3) The illusion of control, if on the one hand it could represent an explanation
for the case in which subjects first face the game or when they undergo the
game without repetition, it seems implausible in repeated experiments in which
people have to opportunity to realize that actually the strategy of switching has
a greater chance of winning with respect to the strategy of remaining (over all
our treatments, only 38.71% of the choices of remaining were winners, whereas
65% of the choices of switching won);

(4) Finally, as regards the probability matching behaviour, we have already tested
for this hypothesis, but our data reject it.

Additionally to the reason cited above, as a likely explanation, we can mention a
kind of intertemporal inconsistency, i.e., subjects’ decisions at the different decision
nodes as if related to different “selves”. Anyway, it is quite unlikely that people do
the same “mistake” repeatedly over the ten periods: at the end, in our new treat-
ment, they should realise that they are given the double chance of winning after the
first stage.

6 Conclusion and a Final Remark

The main goal of our experiment has been to create a simple experimental set up
that preserved all the basic features of the so called Monty Hall’s problem, but such
that subjects were not required to apply the Bayes’ rule. This experimental design
enabled us to discriminate among the most cited explanations for this kind of this
problem.

Our main results have been clear: the misapplication of Bayesian updating is im-
portant in reducing the “anomaly”, as we can derive from the monotonic increase
of switch rate across the three treatments (the control that replicated exactly the
structure of the game as in the TV programme and in the previous experiments, the
second designed to test for monotonicity, but that is resulted not statistically dis-
tinct from the control, the new treatment in which subjects were simply required
to choose between one door or two doors), but still, it does not appear as the lead-
ing explanation. In this sense, Monty Hall’s three doors problem has proved to be
stronger than commonly thought.
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Having discarded some other common suggested explanations (the illusion of
control, the probability matching behaviour), now we can affirm that this “anom-
aly”, even if attenuated by design conditions, it is not a weak effect, but rather a
systematic behavioural regularity. It could rely on some psychological underpin-
nings, such as the status quo bias. In this sense, a future line of research could be
test for this effect. For example, a ‘super for dummies’ treatment could be imple-
mented, in which subjects play only one stage in which they are required to choose
among the possibility of one door or the possibility of two doors. In this case, the
endowment effect would play no role. It is important to note that loss aversion, along
with status quo bias, has proved to explain some other important phenomenon, such
as the equity premium puzzle (for a review, see Camerer & Loewenstein, 2003).
Moreover, our data suggest that also some learning models could be helpful in un-
derstanding such phenomena (indeed, our data support the reinforcement learning,
so that switching would be chosen only when sufficient favourable evidence has
been accumulated).

Finally, these results could contribute to dismiss the idea that people actually
use probabilities at all in making some kinds of decisions. In this perspective, even
the term “anomaly” may be not correct referred to the Monty Hall’s problem and
to other similar ones. Indeed, as we know, the neoclassical approach to economic
science has on its own basis some rationality assumptions, and in particular, for
handling probabilities, rational agents are assumed to use Bayes’ rule, among other
things. Consequently, whenever a behaviour is empirically found to depart from
these rationality assumptions, the behaviour itself is labelled as “anomalous” (liter-
ally: “different, irregular”, from ancient Greek: a- = no, homalòs = equal, regular)
and on these anomalies a wide literature has flourished (for a survey, Thaler, 1991
and Camerer, 1995). However, if we find sufficient evidence that seems to challenge
the rationality assumptions themselves, we should also revise our idea of what may
be classified as an anomalous behaviour.

Notes

1We also run a regression to test whether trial periods have any significant effect in shaping
behaviour in the following periods. We can provide details on request.

2The dependent variable is 1 in periods in which the subjects chose to switch and 0 otherwise.
Friedman reports the coefficient estimates, considering a panel structure, whereas Slembeck and
Tyran, and Morone and Fiore report the marginal effects after the probit estimation and they do not
consider a panel structure.
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Overconfidence in Predictions as an Effect
of Desirability Bias
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1 Introduction

Most people hold unrealistic positive beliefs about their personal skills, their
knowledge (Fischoff, Slovic, & Lichtenstein, 1977), and their possibilities to
overcome the performance of other individuals (Weinstein, 1980). This general
tendency, called overconfidence, is a stable and pervasive finding both in many
real-life domains and in several experimental settings. People are overconfident
about their driving skills (Svenson, 1981), about their ability as basketball play-
ers (McGraw, Mellers, & Ritov, 2004), about their competence in financial and
managerial problems (Camerer & Lovallo, 1999; Mahajan, 1992), and about their
general knowledge (Juslin, 1994; Harvey, 1997). This systematic overestimation
of one’s own capabilities and probabilities of success can have important conse-
quences, and sometimes results in suboptimal decisions.

While the existence of overconfidence is uncontroversial, its sources and de-
terminants are still open to debate (Ayton & McClelland, 1997; Klayaman, Soll,
Gonzalez-Vallejo, & Barlas, 1999).

In this study we contribute to this debate by demonstrating that overconfidence
in predictions is related to the desirability of the predicted outcome. When people
are required to forecast possible future events, they tend to be more confident in
the occurrence of favourable events, with little or no regard for their objective
likelihood.
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We claim that forecasts are related to the desirability of the evaluated/predicted
event, i.e. the more desirable the event, the stronger the belief that this event will
happen. By manipulating the level of reward for the correct answer in a visual per-
ceptual task we were able to highlight the presence and the principal characteristics
of a desirability bias, which affects people’s confidence. In our experiments we
found a general increase in subjects’ confidence levels under a reward versus a no-
reward condition. Furthermore, the outcome desirability in terms of relative reward
value biased subjects’ confidence, leading them to believe that they were more ac-
curate than they actually were.

In what follows we present two studies showing how a desirable result, i.e. a
monetary reward, can bias people’s confidence judgements in their perceptual accu-
racy, inducing them to be overconfident. Calibration studies have long investigated
people’s ability to match their judgements of the relative frequency of an event to the
actual likelihood of that event. Perfect calibration occurs when average confidence
is equal to the actual frequency of that event, and people are said to be “well cal-
ibrated”. Unfortunately, this happens quite rarely. Several studies have shown that
people are usually poorly calibrated, exhibiting either under- or overconfidence.

Overconfidence is the positive difference between mean reported confidence in
the chosen answer and the percentage of correct answers (CONF – % correct an-
swers >0). This phenomenon is preponderant in general knowledge or cognitive
tasks (Brenner, Koheler, Liberman, & Tversky, 1996; Fischoff et al., 1977; Klayman
et al., 1999; Koriat, Lichtenstein, & Fischhoff, 1980). The inverse phenomenon is
underconfidence (CONF – % correct answers <0), which is more frequent in per-
ceptual or in very easy cognitive tasks (Bjorkman, Juslin, & Winman, 1993; Juslin
& Olsson, 1997; Keren, 1988).

Therefore, people usually overestimate their ability or knowledge in cognitive
tasks, and underestimate the accuracy of their perceptions in sensory tasks.

1.1 Overview

This paper explores the effects of a desirable outcome on people’s accuracy and
confidence in a visual perceptual task. Effects of motivation on perception, judgement
and decision making are well documented, but these effects usually refer to probability
evaluation. For instance, the possibility of gaining money induces people to neglect
or underestimate the base rate probabilities of events (Bar-Hillel, 1980; Kahneman
& Tversky, 1996). Thus the perceived probability of a given event increases as
a function of reward, even though the probabilities of success (base rates) are
unchanged. A study by Ginossar & Trope (1987) suggested that goals may affect the
use of base rate information, and there is some general evidence that motivation may
affect the use of statistical heuristics. Generally speaking, the effects of goals and
desires on reasoning, forecasting and memory are well documented (for a review, see
Kunda, 1990), but less is known about how desirability affects people’s confidence.
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Here, we will investigate the effect of reward on people’s confidence, that is, the
degree of belief in a given hypothesis, judgement, or prediction. We claim that a
desirable result makes people feel more confident in the possibility of getting it,
compared with a neutral outcome, which is neither beneficial nor harmful to them.
We call this phenomenon the desirability bias and we predict that it will induce
individuals to be more confident when the possible reward is higher, all other things
being equal. The desirability bias is a motivational effect working on the belief
people hold about the likelihood of a certain outcome, and it should be independent
from other effects, such as the difficulty of the task.

In Study 1 we tested the effect of three reward levels on confidence judgements
in a perceptual task with fixed difficulty. In Study 2 we investigated how confidence
judgements vary as a function of reward (low or high) for three levels of difficulty
of the task. Manipulating the complexity of the task we induced three levels of ac-
curacy: Difficult (Accuracy≤ 0.5), Intermediate (0.5 < Accuracy < 0.75) and Easy
(Accuracy >0.75). Along with the reward groups we also tested one (Study 1) and
three (Study 2) Control Groups, which performed the same task, with the same diffi-
culty levels, but with no monetary incentives during the experiment. Control groups
allow us to set base rate confidence and accuracy levels that are then compared with
reward conditions.

We used a perceptual task in order to isolate the effect of motivation, and to
exclude other possible explanations for overconfidence, such as failure to think of
reasons why one might be wrong (Koriat et al., 1980) or individual’s failure to as-
sess the credibility or weight of the evidence (Griffin & Tversky, 1992). The task we
implemented has three main characteristics. First, it is divided in two independent
parts: the first part is constituted by a low-level perceptual task, requiring no reason-
ing and cognitive processing, while the second part requires an inferential process
to evaluate the reward and to assess the confidence in the performance. Second, it
makes it possible to directly correlate subjects’ performance, i.e. accuracy of their
responses, to reward and to variations in confidence, excluding any sort of other
motivational effect, since the reward is displayed only when the perceptual part is
over. Finally, the absence of feedback and the controlled number of trials allow us
to rule out any kind of learning during the experiment.

2 Study 1

2.1 Participants

Twenty-seven undergraduate students (15 female and 12 male) were recruited to
take part in a study at the Experimental Economics Laboratory (LabSi) of the Uni-
versity of Siena. All subjects were naı̈ve with respect to the nature and aims of the
experiment. Mean age of participants was 22 years (s.d. = 1.83).
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2.2 Stimuli

We used a visual motion discrimination task typically used in neuro-physiological
studies with monkeys (Britten, Shadlen, Newsome, & Movshon, 1992; Celebrini
& Newsome, 1994). The stimulus display consisted of one white circle on a black
background, containing 2000 black dots jiggling toward the right and the left side
of the screen, with a fixed percentage of them coherently shifting toward either the
left or the right (see Fig. 1).

The difficulty level was determined as the ratio between the velocity of the jig-
gling movement of the dots in the background and that of the linear movement to-
ward one direction of the set that participants had to identify. We assessed this level
in a previous pilot study, where we singled out a level of accuracy (i.e. percentage
of correct answers) around 70%.

The background movement consisted of some dots jiggling in a random manner
toward the right and some others toward the left, whereas the coherent set consisted
of a fixed percentage of dots moving coherently toward only one direction.

Subjects had to identify the “coherent direction” of the dots, separating the coher-
ently moving dots from the background movement. Each of the two directions was
equally probable. The stimulus difficulty was set at the beginning of the experiment
and then it was kept constant throughout the experimental session. Each stimulus
was presented for 2 s.
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Fig. 1 Time course of the experiment in Study 1: fixation point (1 s), stimulus presentation (2 s),
direction selection (left or right; self-paced), reward information (1, 5, or 15 C= ), and confidence
scale (self-paced)
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2.3 Procedure

Two groups of subjects were tested in two separate sessions. One group of eighteen
subjects participated in a reward condition and the second group of nine subjects
(control) took part in a no-reward condition. Participants had to discriminate the
direction of moving dots showed on a computer screen placed in front of each of
them.

Each trial began with a fixation point lasting 1 s. which directed the subject’s
attention toward the centre of the screen, where the stimulus was going to appear.
The fixation point was followed by the stimulus presentation (2 s). At the end of
the stimulus presentation, the participants saw on the screen the following question:
“What was the dots’ direction?”, and below “Left or Right”. They chose (self-paced
choice) by pressing the corresponding arrow on the PC keyboard. Once one of the
two arrows was pressed they could not modify their choice.

This was followed by a blank screen and then both the reward amount and a
confidence scale appeared. All three amounts of reward (1, 5 and 15 C= ) were equally
probable, and subjects were instructed that the computer program randomly paired
rewards with stimuli. The uncertainty level for the stimulus recognition was always
the same and no correlation existed among reward amounts and stimuli. This was
explicitly stated in the Instructions and reminded to the subjects at the beginning of
the experimental session.

The reward was showed in the upper part of the monitor (If you detected the
correct direction you could be rewarded with . . . Euro), while in the lower part ap-
peared the question about the degree of confidence (How confident do you feel you
detected the correct direction?). Confidence was measured on a 4-points confidence
scale ranging from 1. “Not sure at all” to 4. “Really sure”, with two intermediate
values (2. “Not so sure” and 3. “Sure enough”). Subjects used left and right arrows
on the keyboard to state their confidence and they could modify their choice until
they pressed “Enter” to confirm it. There was no time limit for reporting confidence
level.

Once they reported their confidence they pressed “Enter” to go to the next trial
(Fig. 1). No feedback was provided to subjects, neither about the correct direc-
tion nor about their winnings. To summarize, the time course of the task was:
[fixation point → stimulus → direction choice → possible reward → confidence
judgement]→ [fixation point→ (. . . )].

Subjects performed 57 trials, 9 of which were training trials aimed to get them
familiarized with the task, while the remaining 48 were experimental trials. There
was no time limit for completing the task. At the end of the session the subjects in the
reward condition were paid accordingly to their performance in one trial randomly
drawn by the computer out of the 48 trials (the 9 training trials were excluded).
If their response in the drawn trial was correct they were paid accordingly to the
reward shown during that trial, otherwise they only received the participation fee
(3 C= ). These features of the experiment were properly explained in the Instructions
subjects read before starting the session.
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In a separate session, a Control Group, recruited following the usual procedure
of the LabSi, was assigned (randomly) to the no-reward condition and performed
an identical task (9 training trials and 48 experimental trials) except for the reward,
which was neither mentioned nor displayed. Subjects in this condition were sim-
ply asked to individuate the direction and to assess their confidence on the 4-points
scale, and received a participation fee of 3 C=. Each experimental session lasted ap-
proximately 30 min.

2.4 Results

We found that confidence judgements of the correct answer vary with the amount of
monetary reward (data from reward condition; repeated measures ANOVA, F(2,17) =
6.74, P = 0.0034). Confidence increased as reward increased (as shown in Fig. 2),
with significant differences between 1 and 15 C= (Wilcoxon signed-rank test z =
−2.268, P = 0.0233), and between 5 and 15 C= (signed-rank test z = −2.686, P =
0.0072). No statistically significant difference was found between 1 and 5 C= (signed-
rank test z =−0.982, P = 0.362).

Regression analysis (Order Probit model, Table 1) can help us to understand
where and how the reward enters the process.

We considered confidence (as reported in the confidence scale, i.e. takes values
1–4) as a function of reaction time (RT, equal to the response time of subject’s
choice of the direction of the moving dots), accuracy (A, equal to 1 if correct and
0 if incorrect), and reward level ($, only in reward condition, i.e. takes values of
1, 5 or 15). In the control group, which did not receive any reward, confidence
level was a function of accuracy (A) and Reaction Time (RT). The time taken to
respond as well as the accuracy of the responses determined subjects’ confidence
judgements when they did not have the possibility of getting any monetary reward
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Fig. 2 Mean confidence (+standard errors) for the three different reward levels. Confidence was
significantly higher for 15 compared with 1 and 5 C=
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Table 1 Study 1 regression analysis. Confidence levels as a function of Accuracy, reward level
(only in reward condition) and reaction time. Regression analysis (Order Probit). The dependent
variable Confidence takes values of 1–4; A = accuracy, equal to 1 if correct and 0 if incorrect; $ =
reward level (i.e. 1, 5, or 15); RT = reaction time

Regression analysis order probit: dependent variable is “CONFIDENCE”

a. Data from experimental sessions ($)

Variable Coeff. Std. error Z P > |z|
A 0.133 0.082 1.64 0.102
$ 0.035 0.006 5.51 0.000
RT −0.0003 0.000 −7.67 0.000
Number of obs = 864
Log likelihood = -997.39701
Prob > Chi2 = 0.0000

b. Data from control sessions (no $)

Variable Coeff. Std. error Z P > |z|
A 0.336 0.118 2.84 0.004
RT −0.0002 0.000 −3.77 0.000
Number of obs = 432
Log likelihood = −500.13509 Prob > Chi2 = 0.0000
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Fig. 3 Mean reaction time (RT; data collapsed over reward and no-reward conditions) for each
level of confidence judgement of correct answer (with 1 – “Not sure at all” and 4 – “Really sure”).
RT was inversely correlated with Confidence level

for a correct answer. By contrast, in the experimental condition, reward ($) and RT
were significantly correlated with the confidence level, whereas accuracy was not.
The inverse relationship between RT and confidence present in both conditions is
shown in Fig. 3. The mean accuracy was not significantly different between the
reward (Mean = 0.71) and the no-reward (Mean = 0.73) conditions (two-sample
Wilcoxon rank-sum test z =−0.258, P = 0.79).

Thus, the presence of a monetary reward biases individuals’ confidence, no mat-
ter how accurate they have been. That is, the possibility of receiving a large reward
induced them to feel more confident.
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The overall level of accuracy was constant in both conditions and during the
whole experiment, thus this increase in confidence cannot be accounted for by a
parallel increase in accuracy. Moreover, subjects were accurate in approximately
70% of the cases both in the experimental and in the control condition, with no
appreciable changes in confidence for 1 and for 5 C= , but with a significant increase
in confidence for 15 C= in reward trials.

In our analysis we considered actual accuracy as a proxy of the event probability
of correctly performing the experimental task. Measuring over- and underconfidence
we found a significant difference between results with the lower rewards and results
obtained with the highest one (1 vs. 15 C= , signed-rank test z =−2.267,P = 0.0234;
1 vs. 5 C= , signed-rank test z = −0.937,P = 0.35; 5 vs. 15 C= , signed-rank test z =
−2.68,P = 0.0073).

Figure 4 shows over- and underconfidence for the three different reward levels.
Overconfidence (CONF – % correct answers >0) appeared only with the highest re-
ward (15 C= ), whereas underconfidence (CONF – % correct answers <0) was found
for the two lowest rewards. Underconfidence was found also in the control group,
in line with the results about confidence judgements in perceptual tasks reported in
the literature (for a review, see Baranski & Petrusic, 1994).

Regarding the control group, we found an accuracy level (73% of correct
responses) in line with the average difficulty of the task, and we also found un-
derconfidence (CONF – % correct answers = −0.04), as predicted by theories of
underconfidence in perceptual tasks.

These findings confirm our prediction that there exists a desirability bias, which
overcomes accuracy and induces people to rely on a possible reward more than on
actual accuracy.

Moreover, these results show the effect of relative reward on confidence judge-
ments.
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Fig. 4 Confidence (CONF/4) – Accuracy (%correct) for the three reward amounts. Results show
underconfidence for 1 and 5 C= and overconfidence for 15 C=
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3 Study

In this study, we investigated whether reward effect and desirability bias are present
for other intervals of uncertainty. We tested subjects for three different difficulty
levels (Easy, Intermediate and Difficult) and two rewards (2 and 10 C= ). We reduced
the number of rewards, since in Study 1 we did not find any significant differences
between the two lower rewards.

3.1 Participants

One hundred twenty-three undergraduate students (58 female and 65 male) from
the University of Siena were recruited and randomly assigned to one of six groups.
Three groups of subjects participated in reward conditions (25 for each condition,
Easy $, Intermediate $ and Difficult $) and the others three groups took part in no-
reward conditions (16 control subjects for each condition, Easy no$, Intermediate
no$ and Difficult no$). All subjects were naı̈ve with respect to the nature and aims
of the experiment. Mean age of participants was 21.90 years (s.d. = 2.0096).

3.2 Stimuli

As in Study 1, we used a visual motion discrimination task (see Fig. 5). Three dif-
ferent difficulty levels were set in order to obtain three different levels of accuracy
(in terms of percentage of correct responses). For subjects in the Easy condition we
expected average accuracy to be higher than 0.75, for the Intermediate difficulty we
expected results in the interval between 0.5 and 0.75, and for the Difficult condition
we expected average accuracy to be lower than 0.50.

We assessed these conditions in a previous pilot study, where we singled out three
levels of accuracy (i.e. percentage of correct answers) by manipulating the ratio
between the velocity of the jiggling movement of the dots in the background, and
that of the linear movement toward one out of four directions that participants had
to identify (as it is in Study 1). The dots moved jiggling in a random manner toward
one of four directions (right, left, up or down), whereas a fixed percentage of them
moved coherently toward only one direction. We introduced two more directions
(up and down) in order to increase the difficulty level.

Participants in the experiment had to identify the “coherent direction”, individ-
uating the coherently moving dots out of the background movement. The stimulus
difficulty was set at the beginning of the experiment for each condition and then it
was kept constant throughout the experiment. Each stimulus was presented for 2 s.
The stimulus direction was randomized and controlled by the computer program,
thus each of the four directions were equally probable and their single probability
of occurrence was 25%.
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Fig. 5 Time course of the experiment in Study 2: fixation point (1 s), stimulus presentation (2 s),
direction selection (up, down, left or right; self-paced), reward information (2 or 10 C= ), and confi-
dence scale (self-paced)

3.3 Procedure

The sequence of events and the time course of the study was the same as in Study 1,
thus [fixation point → stimulus → direction choice → possible reward → confi-
dence judgement]→ [fixation point→ (. . . )].

The subjects were tested during six separate sessions and each and every subject
participated in only one session.

Each trial began with a 1 s fixation point followed by the stimulus (2 s). After the
stimulus presentation ended, participants saw on the screen the following question:
“What was the direction of the dots? Left – Right – Up – Down”. They responded
by pressing the corresponding arrow on the PC keyboard (self-paced choice). Then,
the screen was cleared and the reward and confidence scales appeared.

In the reward conditions, 2 and 10 C= were equally probable, and subjects were
instructed that the computer program randomly paired rewards with stimuli. The
difficulty level for the stimulus recognition was always the same during the ex-
periment and no correlation existed among reward amounts and stimuli. In order to
avoid learning effects, no feedback was provided to participants. Subjects performed
72 trials (8 training and 64 experimental trials).

At the end of the session the subjects in the three reward conditions ($) completed
a questionnaire and then they were paid accordingly to their performance in one trial
randomly drawn by the computer out of the 64 trials (the eight training trials were
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excluded). If their response in the drawn trial was correct they were paid according
to the reward showed during that trial, otherwise they received only the participation
fee (3 C= ).

In three separate sessions, three control groups performed an identical task (8
training trials and 64 experimental trials) with the same three difficulty levels, except
for the reward, which was neither mentioned nor displayed. These subjects were
simply requested to individuate the direction and to assess their confidence on the
4-point scale (described above). At the end of the experiment they were asked to
complete a questionnaire. Participants in the control groups received a show-up fee
of 3 C=. Each session lasted approximately 30 min.

3.4 Questionnaires

In this study we introduced a questionnaire to investigate the perceived difficulty
and the determinants of subjects’ confidence both in the reward and in the no-
reward condition. In the former case the questionnaire was presented before subjects
were informed about their winning, in order to avoid any kind of motivational or
affective effects.

The questionnaire consisted of three questions regarding: difficulty (Question
one: “According to you, the task was: (1) very easy; (2) fairly easy; (3) fairly diffi-
cult; (4) very difficult; (5) impossible”), accuracy (Question two: “According to you,
what was the percentage of correct responses you gave?”, subjects responded by cir-
cling the chosen percentage on a ten-point scale); and confidence (Question three:
“According to you, which of these elements determined your confidence judge-
ment?” – “(a) the perception of the stimulus; (b) the time required to make your
choice; (c) the amount of the possible win; d. the perception of the stimulus and the
amount of the possible win”). The questionnaire for the control groups was identi-
cal except for Question three, where any reference to reward was excluded (Ques-
tion three: “According to you, which of these elements determined your confidence
judgement?” – “(a) the perception of the stimulus; (b) the time required to make
your choice”).

The rationale for introducing questionnaires was the need to compare the ‘trial by
trial’ evaluation (significantly and unequivocally affected by the displayed rewards),
with the global estimate of difficulty, perceived accuracy and confidence. In other
words, we were interested in assessing whether the participants, at least at the end
of the task, were aware of the desirability bias. Moreover, questionnaires provided
a subjective evaluation of the objective accuracy participants achieved.

3.5 Results

This study confirmed the results of Study 1, showing that the confidence level for a
correct response varied with different reward levels (2 or 10 C= ) (data from reward
condition; repeated measures ANOVA, F(1, 74) = 50.15, P<0.00001).
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Fig. 6 Mean confidence level (+standard errors) as a function of the possible reward (2 or 10 C= )
for each condition (easy, intermediate, and difficult). Confidence increased as reward increased in
each of the three conditions

Figure 6 shows how confidence was significantly higher for 10 C= with respect
to 2 C= , in each condition (Easy, Wilcoxon signed-rank test z = 3.396, P = 0.0007;
Intermediate, signed-rank test z = 4.315, P<0.0001; and Difficult, signed-rank test
z = 4.112, P<0.0001).

The mean accuracy level was 0.84 (SD = 0.055), 0.61 (SD = 0.068) and 0.38 (SD
= 0.073), for easy, intermediate and difficult condition, respectively. Thus, accuracy
was significantly different for the three different difficulty levels (Kruskal–Wallis
Chi2(2) = 63.563, P = 0.0001, data from reward condition; and Kruskal–Wallis
Chi2(2) = 24.239, P = 0.0001, data from no-reward condition). However, there was
no significant difference between accuracy in reward and control conditions for each
level of difficulty of the task (two-sample Wilcoxon rank-sum test z = 0.866, P =
0.38, for easy; z = −0.414, P = 0.68, for intermediate; and z = 0.161, P = 0.87, for
difficult). We found again a significant inverse correlation between RT and confi-
dence level (Fig. 7 data from all conditions).

The Regression analyses using the data from the reward conditions (Order Probit
model, Table 2) show that for the easy and difficult conditions the confidence was
a function of the accuracy, reward level, and reaction time (inversely related). The
results from the intermediate condition show that confidence judgements depended
only on reward level and on reaction time (inversely related).

Thus in this condition we found, as in Study 1, that rewards by-passed the ef-
fect of the actual accuracy and biased subjects’ confidence level. Results from the
control conditions confirm that without the presence of rewards the determinants of
confidence judgements are always accuracy and reaction time (inversely related).
Furthermore, this study demonstrated that the desirability bias remains stable for
different levels of difficulty of the task.

Figure 8 shows the pattern of over and under-confidence for different levels of
difficulty of the task. In the Easy condition we found underconfidence (CONF –
% correct answers <0) for both levels of rewards (2 and 10 C= ); in the difficult
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Fig. 7 Mean reaction time (RT; data collapsed over reward and no-reward conditions) for each
level of confidence judgement of correct answer (with 1 – “Not sure at all” and 4 – “Really sure”).
RT was inversely correlated with Confidence level, as in Study 1

Table 2 Study 2 regression analysis. Confidence levels as a function of Accuracy, reward level
(only in reward condition) and reaction time. Regression analysis (Order Probit). The dependent
variable Confidence takes values of 1–4. A = accuracy, equal to 1 if correct and 0 if incorrect; $ =
reward level (2 or 10); RT reaction time

Regression analysis order probit: dependent variable is “CONFIDENCE”

a. Data from experimental sessions with rewards for the three levels of difficulty (easy, intermediate, and
difficult)

Easy Intermediate Difficult

Variable Coeff. Std
error

Z P >
|z|

Coeff. Std
error

Z P >
|z|

Coeff. Std
error

Z P >
|z|

A 0.2300 0.0646 3.56 0 0.0482 0.0501 0.96 0.336 0.1350 0.0552 2.44 0.015
$ 0.0435 0.0069 6.3 0 0.0603 0.0063 9.62 0 0.0569 0.0068 8.33 0
RT −0.0002 0.00002 −8.5 0 −0.0001 0.00001−9.4 0 −0.0001 0.00002−7.0 0

b. Data from control sessions with no reward for the three levels of difficulty (easy, intermediate, and
difficult)

Easy Intermediate Difficult

Variable Coeff. Std
error

Z P >
|z|

Coeff. Std
error

Z P >
|z|

Coeff. Std
error

Z P >
|z|

A 0.6687 0.0778 8.59 0 0.3388 0.0690 4.91 0 0.2749 0.0718 3.83 0
RT −0.0004 0.00003 −10.7 0 −0.0001 0.00002 −4.9 0 −0.0002 0.00003 −8.7 0

condition the result was inverted, thus subjects were always overconfident (CONF –
% correct answers >0); whereas in the intermediate condition we found overconfi-
dence when the reward was 10 C= , and approximately calibrated judgements for the
cases in which the reward was 2 C= . Note that the average accuracy in the intermedi-
ate condition was slightly lower (61%) compared to the average accuracy observed
in Study 1 (71%). We observe (Fig. 9) underconfidence for the lowest reward (2 C= )
and overconfidence for the highest reward (10 C= ) for level of accuracy equal to 65%.



176 F. Giardini et al.

0.5

0.4
0.3

0.2

0.1

0

C
o

n
f 

- 
A

cc

−0.1

−0.2
−0.3

−0.4

−0.5

2_
ea

sy

10
_e

as
y

2_
In

t

10
_I

nt

2_
dif

f

10
_d

iff

Fig. 8 Confidence (CONF/4) – Accuracy (%correct) for each difficulty level (easy, intermediate,
and difficult) and for the two reward amounts (2 and 10 C= )
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Fig. 9 Confidence (CONF/4) – Accuracy (%correct) for level of accuracy equal to 65%. As in
study 1, we found overconfidence for the highest reward (10 C= ) and underconfidence for the lowest
reward (2 C= )

The analysis of the questionnaires allowed us to compare the trial-by-trial
performances of subjects with their overall evaluation of their own choices. We
were interested in checking whether subjects were aware or not of the role of re-
ward and of the stimulus difficulty. On average, subjects considered the task quite
difficult (mean difficulty evaluation = 3.43, SD = 0.94), with a significant difference
in the relative frequencies of the responses (ranging from 1-very easy to 5-very
difficult) for the three conditions (Question 1, Chi2(8) = 10.60, P = 0.22). Figure 10
and b shows the discrepancy between Experimental Accuracy (the percentage
of correct responses people gave) and the Reported Accuracy (the percentage of
correct responses they thought they gave), in reward (Wilcoxon signed-rank test,
z = 7.526, P < 0.0001) and no-reward conditions (Wilcoxon signed-rank test,
z = 5.56, P < 0.0001) (Question 2). The difference between Experimental and
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Fig. 10 a Comparison between Experimental Accuracy (percentage of correct responses during
the task) and Reported Accuracy (estimated percentage of correct responses at the end of the task)
shows that people underestimated their performances in all conditions. b Comparison between
Experimental Accuracy (percentage of correct responses during the task) and Reported Accuracy
(estimated percentage of correct responses at the end of the task) shows that people also underesti-
mated their performances in the control condition, but this underestimation is absent in the difficult
condition, where we instead found overestimation
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Reported accuracy could be explained by the absence of immediate reward in the
Reported Accuracy, so that people underestimated their performances, as usually
happens in perceptual tasks.

The relative frequency of different reasons for confidence (Question 3: a, b, c, d)
strictly depended on the difficulty level (difficult, intermediate, easy; Chi2(6) =
9.21, P = 0.16). Almost all subjects (88%) in the Easy condition attributed their
confidence to the stimulus perception, but this percentage decreases as uncertainty
increased (66% intermediate, and 46% difficult). Moreover, around 30% of the sub-
jects in the Difficult condition attributed their confidence to both the perception and
the reward. This (ex-post) awareness did not prevent them from being biased by
reward, as showed in Fig. 6. On the contrary, the control groups in all the three
conditions attributed their confidence mainly to the stimulus perception (50% easy,
57% intermediate, 47% difficult).

4 Summary and Conclusions

People are often inaccurate in predicting their performances or their rates of success
in many different domains, and many different explanations have been put forward.
We suggest a general mechanism, which could work in a wide variety of domains
and situations. Our findings indicate that people become relatively more confident
about the occurrence of events associated with high rewards, compared with neutral
events. These findings are in line with the theory of anticipatory representations by
Miceli & Castelfranchi (2002), who proposed a theoretical account of expectations
as a class of goal-driven anticipations.

We assume that the desirability of an outcome directly affects confidence in the
occurrence of that outcome, inducing people to be more confident in it, when com-
pared with a neutral or negative result. This assumption has been experimentally
tested, and the results confirmed our hypothesis. Although the reward was merely
possible, participants showed significant increases in their average confidence when
a higher reward was presented. The correlation between reward and confidence was
not linked to any appreciable change in accuracy, so we can reasonably conclude
that the only factor modifying individuals’ confidence in their choices was the re-
ward. This means that people were not more accurate or faster in responding to
the stimulus, they were just more confident in their performance when the possible
reward was higher, compared to trials where the reward was lower.

Other studies (Bar-Hillel & Budescu, 1995; Irwin, 1953) tried to demonstrate the
effect of a rewarding outcome on confidence levels, but motivation was not isolated
from other variables, such as accuracy, so that they failed to detect any relationship
between confidence and a desirable result.

By the contrary, our findings support the general hypothesis that the presence
and the amount of a desirable outcome can affect people’s confidence in their pre-
dictions. The pattern of confidence changes becomes especially striking when it
turns into overconfidence for the highest reward in Study 1, and in the intermediate
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condition of Study 2 (when accuracy equal 65%). We assume that when the actual
probability of the event to be predicted is extremely low or extremely high, the moti-
vational aspects are less important in determining people’s confidence judgements.
Instead, when uncertainty is higher than chance but lower than certainty, judge-
ments are desirability driven. This may happen because in this range participants
were more sensitive to external (such as reward) or internal motivational cues that
might drive their judgements. Considering the results of the questionnaire at the end
of Study 2, we suggest that this phenomenon works at an unconscious level. Indeed,
subjects indicated the perception of the stimulus as the main determinant of their
confidence judgements, whereas they did not recognize the actual effect of reward.

The desirability bias affects people’s confidence, inducing them to be more con-
fident in the occurrence of a positive outcome, compared with a neutral one. Similar
results have been reported in the psychological literature regarding “positive illu-
sions” (Taylor & Brown, 1988), i.e. unrealistic positive beliefs about the self and
one’s own possibility of success and well-being. These illusions seem to be quite
pervasive in human life. However, their causes are not entirely clear and the main
question is whether they exert a positive or a negative influence on people’s choices,
behaviours and lives.

We predict that the desirability bias is a general phenomenon which could play
a role in explaining optimistic overconfidence in predictions. People overestimate
their possibility of achieving positive results because the “desirability bias” af-
fects their confidence, causing them to believe that the desired result is more easily
achievable. In other words, people do not simply expect events, but they actively
desire positive outcomes, thus feeling more confident in the possibility of achieving
the desired result.

This can be true also when the reward is not materially but psychologically rele-
vant, such as self-esteem, social approval, and even cognitive dissonance reduction
or avoidance (Blanton, Pelham, DeHart, & Carvallo, 2001; Festinger, 1957). This
result is not trivial, and it could help preventing lots of mistakes due to overwhelm-
ing confidence in one’s own capabilities and possibilities of success.
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Granny Versus Game Theorist: Ambiguity
in Experimental Games

J. Eichberger(�), D. Kelsey, and B.C. Schipper

Keywords: Knightian uncertainty · Choquet expected utility · Equilibrium under
ambiguity · Strategic uncertainty · Experiments

1 Introduction

In standard game theory, strategic uncertainty in games is resolved in Nash
equilibrium, at least for games with a unique Nash equilibrium. Given a player’s
equilibrium conjecture about opponents’ play, she chooses a best response that
conforms to the opponents’ equilibrium conjecture about her play. What if players
lack confidence in their equilibrium conjectures about opponents’ play? This is
plausible especially if the game is one-shot and players lack previous experience
with the same opponents. Lack of confidence in probability judgements is modelled
formally by the literature on ambiguity or Knightian uncertainty (Schmeidler, 1989;
Gilboa & Schmeidler, 1989; Bewley, 1986). Recently, such approaches have been
applied to strategic games (Dow & da Costa Werlang, 1994; Eichberger & Kelsey,
2000; Marinacci, 2000).1 Results on the comparative statics of equilibrium under
ambiguity have been derived that should at least in principle be testable (Eichberger
& Kelsey, 2002, 2005; Eichberger, Kelsey, & Schipper, 2006).

To our knowledge, we present a first attempt to analyze strategic ambiguity ex-
perimentally. We design an experiment with two-player games, in which we try to
introduce ambiguity by varying the identity of the subjects’ opponent. Depending
on the treatment, subjects have to make choices against a granny, a game theorist or
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against some fellow subjects. We find more ambiguity averse behavior when sub-
jects face the grandmother compared to the game theorist. However, there does not
seem to be a significant difference between behavior against other subjects and be-
havior against the grandmother.

The main goal of the experiment is a test of results on the comparative statics of
equilibrium with respect to changes in ambiguity. In games with strategic comple-
ments and positive externalities, equilibrium actions decrease when there is more
ambiguity. The same holds for games with strategic substitutes and negative exter-
nalities. The intuition is straight forward. As example of the latter class of games,
consider a two-person bargaining game. Players face ambiguity over the share of the
pie which the opponent will claim. An ambiguity-averse player puts a high weight
on bad outcomes, i.e., the event that the opponent demands a large share. As a result,
her best-response is to claim a low share. If ambiguity increases, the best-response
demand decreases.

In experiments, it is difficult to control for a subject’s ambiguity. We vary, there-
fore, cardinal payoffs of a game monotonically keeping the ordinal payoff structure
constant. In this way we make games increasingly sensitive to ambiguity-averse
behavior. We assume that a decision maker facing ambiguity evaluates an action
by the Choquet expect payoff, i.e., she forms expectations with respect to possibly
non-additive beliefs. By changing the relative size of cardinal payoffs in a suit-
able way we can manipulate Choquet expected payoffs such that a given degree
of ambiguity has a larger effect on behavior. With this procedure we find that our
experimental results are in line with the theoretical predictions for the games we
analyze.2

The paper is organized as follows: The next section introduces briefly the concept
of strategic ambiguity behind our study. Section 3 describes the design of the exper-
iment, followed in Sect. 4 by a formal statement of hypotheses and the experimental
results. Appendix 1 contains a translation of the instructions.

2 Ambiguity in Strategic Games

Consider a finite two-player strategic game Γ = 〈(Ai)i=1,2,(ui)i=1,2〉 where Ai is
player i’s finite set of actions and ui : Ai×A−i −→ R is player i’s payoff function.
Each player’s ambiguity over the opponent’s choice of actions is interpreted as a lack
of confidence in a probability assessment over opponent’s actions. We assume that
each player is a Choquet expected utility maximizer. More precise, a player’s beliefs
are represented by a capacity on A−i, i.e., a real-valued function ν i : 2A−i −→ R that
satisfies monotonicity, for E,F ⊆ A−i, E ⊆ F implies ν i(E) ≤ ν i(F), and normal-
ization, ν i( /0) = 0 and ν i(A−i) = 1.

In order to compute the Choquet expected payoff given a capacity ν i, we or-
der the payoffs of each action ai from highest to lowest, u1

i (ai) > ... > uk
i (ai) >

... > uK
i (ai). Moreover, we denote by Ak

−i(ai) := {a−i ∈ A−i : ui(ai,a−i) ≥ uk
i (ai)}
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the set of actions of the opponent which yield better payoffs than uk
i (ai) with the

convention A0
−i := /0. Player i’s Choquet expected payoff from action ai given her

capacity ν i is the Choquet integral (for details on Choquet expected utility theory,
see Schmeidler (1989)),

Ui(ai,ν i) :=
K

∑
k=1

uk
i (ai)[ν i(Ak

−i(ai))−ν i(Ak−1
i (ai))].

Let the support of a capacity supp ν i be defined as in Dow and da Costa Werlang
(1994) and Eichberger and Kelsey (2000, 2002). More formally, supp ν i is defined
as the set E ⊆ A−i such that ν i(A−i \ E) = 0 and ν i(F) > 0 for all F such that
A−i \E � F . There are several notions of support of a capacity used in the litera-
ture.3 We use this notion here in order to be comparable with the literature cited
above.

An equilibrium under ambiguity of a finite two-player strategic game Γ is a tuple
of capacities (ν∗i )i=1,2 such that for i = 1,2 there exists a non-empty support supp ν∗i
for which

supp ν∗i ⊆ arg max
a−i∈A−i

U−i(a−i,ν∗−i).

This definition is due to Dow and da Costa Werlang (1994). In equilibrium un-
der ambiguity, the support of each player’s equilibrium capacity is a subset of the
opponent’s best responses given the opponent’s equilibrium capacity. In two-player
games, if beliefs are additive, then an equilibrium under ambiguity coincides with a
Nash equilibrium.

Capacities can be partially ordered by their ambiguity (see Eichberger and Kelsey
(2002) and Marinacci (2000)).4 A game has strategic complements (respectively
strategic substitutes) if there exists an order on the action sets such that each player’s
best-responses are increasing (respectively decreasing) in the opponent’s action a−i
on A−i. A game has positive (respectively negative) externalities if there exists an
order on the action sets such that ui(ai,a−i) is increasing (respectively decreasing) in
a−i on A−i for all ai ∈ Ai and all players. For games with both properties, we require
that those properties use the same order on the action sets. Eichberger and Kelsey
(2002, 2005) and Eichberger et al. (2006) have shown the following results on the
comparative statics of equilibrium with respect to ambiguity for players who are
ambiguity averse.5 If a game has strategic complements and positive (respectively
negative) externalities, then equilibria under ambiguity are decreasing (respectively,
increasing) in ambiguity. The same holds for games with strategic substitutes and
negative (respectively, positive) externalities. Moreover, in games with strategic
complements and multiple equilibria, sufficient ambiguity selects among equilib-
ria. Rather than reproducing these results formally, we will illustrate them by an
example of the class of 3×3 games which we also use in the experiment.
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Example Consider the class of 3×3 games

X Y Z
A c,b c,c c,0
B 0,b e,c e,0
C a,d d,c d,e

with 0 < a < b < c < d < e. This asymmetric game has a unique pure Nash equi-
librium, (B,Y ). If we define an order A < B < C and X < Y < Z, then it is easy to
verify that this asymmetric game has strategic complements and positive external-
ities. Given a capacity ν , compute the Choquet expected payoffs of the row player
for her three actions:

U(A,ν) = c

U(B,ν) = eν({Y,Z})
U(C,ν) = a+(d−a)ν({Y,Z}).

Suppose ν is such that U(A,ν) < U(B,ν). Then there exists a more ambiguous
capacity ν ′ with ν ′({Y,Z}) < ν({Y,Z}) such that U(A,ν ′) > U(B,ν ′). This is the
case if and only if ν({Y,Z}) > c

e > ν ′({Y,Z}. So, best-responses are decreasing in
ambiguity.

In the experiments we try to manipulate the ambiguity for the same strategic
game by letting subjects play against different opponents. There is no theory that
tells us how to tie ambiguity to the identity of an opponent. In order to elicit how a
given player, faced with the same opponent, responds to more ambiguity, we manip-
ulate the cardinal payoffs of games keeping the ordinal payoff structure fixed such
that the choice becomes more sensitive to ambiguity. This can be done by manipu-
lating e and c such that c

e changes relative to ν({Y,Z}). The more ambiguity-averse
a subject is, the more likely she will choose A rather than B as the ratio c

e falls.6 �

In the experiment, subjects face three classes of strategic games: Firstly, games
with strategic complements, positive externalities and a unique pure Nash equi-
librium, henceforth “strategic complements”, secondly, games with strategic sub-
stitutes, negative externalities and a unique pure Nash equilibrium, henceforth
“strategic substitutes”, and thirdly, games with strategic complements and multiple
equilibria, henceforth “multiple equilibria”. There are four 3×3 versions of each
class of games for which cardinal payoffs vary monotonically keeping the ordinal
payoff structure constant (see Table 1).

The identification numbers of the games are in the top left corner of each game
matrix. Games 1–4 in Table 1 are games with strategic complements and positive
externalities if we fix the order A < B < C and X < Y < Z. They have a unique
pure Nash equilibrium, (B,Y ). In these games, A is the equilibrium action under
ambiguity if ambiguity is sufficiently high, i.e., ν({Y,Z}) is less than the critical
value c

e . Notice that the ratio c
e increases from game 1 to game 4. The effect of

ambiguity on these games has been discussed in the Example.
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Table 1 Experimental games

Strategic complements Strategic substitutes Multiple equilibria

1. X Y Z

A 25,23 25,25 25,0

B 0,23 100,25 100,0

C 3,27 27,25 27,100

5. X Y Z

A 3,3 3,0 27,25

B 0,3 100,100 100,25

C 25,27 25,100 25,25

9. X Y Z

A 25,25 25,0 25,0

B 0,25 23,25 27,0

C 0,25 0,27 100,100

2. X Y Z

A 71,69 71,71 71,0

B 0,69 100,71 100,0

C 3,73 73,71 73,100

6. X Y Z

A 3,3 3,0 72,70

B 0,3 100,100 100,70

C 70,72 70,100 70,70

10. X Y Z

A 70,70 70,0 70,0

B 0,70 68,70 72,0

C 0,72 0,72 100,100

3. X Y Z

A 86,84 86,86 86,0

B 0,84 100,86 100,0

C 3,88 88,86 88,100

7. X Y Z

A 3,3 3,0 88,86

B 0,3 100,100 100,86

C 86,88 86,100 86,86

11. X Y Z

A 86,86 86,0 86,0

B 0,86 84,86 88,0

C 0,88 0,88 100,100

4. X Y Z

A 97,95 97,97 97,0

B 0,96 100,97 100,0

C 3,99 99,97 99,100

8. X Y Z

A 3,3 3,0 99,97

B 0,3 100,100 100,97

C 97,99 97,100 97,97

12. X Y Z

A 97,97 97,0 97,0

B 0,97 95,97 99,0

C 0,97 0,99 100,100

Games 5–8 are games with strategic substitutes and negative externalities if we
fix the order A > B > C and X > Y > Z. They also have a unique pure Nash equilib-
rium, (B,Y ). For high ambiguity, C is the only equilibrium action under ambiguity.
The more ambiguity-averse a subject is, the more likely she will choose C in these
games. Since the critical value increases from game 5 to 8, we should observe more
subjects choosing C in this order of the games.

Finally, Games 9–12 are games with strategic complements, positive externalities
and multiple equilibria if we fix the order A < B < C and X < Y < Z. The pure-
strategy Nash equilibria of these games are (A,X) and (C,Z). For a sufficiently
high degree of ambiguity, however, only (A,X) is an equilibrium under ambiguity.
Notice that this equilibrium under ambiguity coincides with the Pareto-dominated
Nash equilibrium. As one moves from game 9 to 12 the critical value for the choice
of the ambiguity-averse action increases.
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Table 2 Sensitivity to ambiguity

Choice Capacity Games

Strategic complements
1 2 3 4

A ν({Y,Z}) < 0.27 0.72 0.86 0.97

Strategic substitutes
5 6 7 8

C ν({Y,Z}) < 0.27 0.70 0.86 0.94∗

Multiple equilibria
9 10 11 12

A ν({Y,Z}) < 0.27∗ 0.71∗ 0.86∗ 0.97∗

Table 2 provides the critical values for which ambiguity changes the equilibrium
behavior in the twelve games considered.7

3 Design

The experiment was computerized using z-tree8. In each treatment, subjects played
the twelve games described in the previous section. For each game, they had to make
a choice of action and indicate their belief about the opponent’s action. They did not
receive any feedback about the opponent’s choice of action after each game. We
distinguish three treatments:

Treatment gt

In this treatment subjects were asked in each game to make choices of an action
twice in the row player’s position, one against a grandmother and one against a
game theorist.9 Both, the granny and the game theorist, were real people.10 Their
choices were recorded prior to the experiment with a paper-based questionnaire. The
subjects knew that. Both, the granny and the game theorist took the column player’s
position. They knew that they were playing against subjects from subject-pool of
the Bonn Laboratory for Experimental Economics (mostly students). Until the very
end of the experiment, subjects did not know either the choices of the game theorist
or the granny.

In addition to making choices, each subject was asked to state which actions of
the respective opponent she did “take into consideration for her choice”. The an-
swers to this question provided us with information about the strategies of the oppo-
nent, which subjects believed to be relevant for their choice. We take these “stated
beliefs” as a proxy for the support of the subjects’ beliefs about their opponents’
behavior.



Granny Versus Game Theorist: Ambiguity in Experimental Games 189

Treatment g

In this treatment subjects played only against the grandmother. Hence, they had to
make only one choice of action in each game. Otherwise this treatment is identical
to Treatment gt.

Treatment s

In Treatment s subjects were playing against each other. An equal number of sub-
jects was selected for the row player position and the column player position. In
each game, each subject made a single choice of action against another subject.
Subjects did not know the identity of the opponent. For computing payoffs, play-
ers were matched randomly with an opponent. In all other respects this treatment is
identical to the Treatments gt and g.

For our method of testing ambiguity, we need to assume that ambiguity does not
change during the experiment. Hence, special efforts were undertaken in order to
avoid learning effects. First, we provided no feedback about the opponent’s choices
between games. Second, we made comparisons between games difficult. We feared
that if similarities of ordinal payoffs are recognized, subjects analyze the games
only a few times and then “log in” to a particular default action. Subjects could not
compare the games by clicking back and forward. They faced the games in a random
order.11 Moreover, the games’ payoff structure was disguised by adding a randomly
chosen small positive constant to each player’s payoff.12 These constants perturb
the cardinal payoffs slightly, they make the games asymmetric but keep the ordinal
payoffs constant. In addition, subjects had to solve a payoff-irrelevant memory task
between games. For this task, they had to memorize a couple of digits displayed for
5 s and repeat them on the next screen. There is evidence in experimental cognitive
psychology (Miller, 1956) that humans’ short-term memory span is limited to a few
digits only. With this memory task we wanted to erase the short-memory of previous
games, thus making comparisons more difficult.

Prior to the experiment, subjects received written instructions in German in
which the experimental setting was explained in detail (see Appendix 1 for a trans-
lation). According to the instructions, subjects knew that they were to make choices
in 12 games against a granny, a game theorist, or other subjects, respectively. Sub-
jects were, however, not informed about the types of games which they were to
play. In order to be convincing in our claim that the grandmother and the game
theorist were indeed real people we provided subjects with additional information
about their background. E.g., we informed subjects that the granny is old, raised
eight children, and lives in a village in East-Germany and that the game theorist is a
successful professor.

The instructions contained also an example of a game which did not belong to
the classes of games which they would face in the experiment. With this example
we tested prior to the experiment whether subjects understood how payoffs in a
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game are derived given the choices of the players. The instructions contained also
the exchange rate, for which payoffs where exchanged into EURO at the end of the
experiment.

At the end of the experiment, subjects had to fill in a brief questionnaire at the
computer. The questionnaire contained questions about profession, gender, prior
knowledge of game theory or economics, as well as how ambiguous they felt about
opponents’ choices. Subjects did not know the questions of the questionnaire when
they played the games.

Once all the information was collected, three games were randomly selected,
their outcomes were computed, converted into EUROS, and paid to the subjects
immediately after the experiment. The same holds for the granny and the game
theorist, except that they received their payoffs several days after their choices. The
subjects’ answers to our questions were not rewarded. The experiment lasted for
approximately half an hour and subjects earned on average EUR 10.50.

The participants of our experiment were 54 subjects from the subject-pool of
the Bonn Laboratory for Experimental Economics, a grandmother and a game theo-
rist. All, but one, subjects of the Bonn Laboratory reported that they were students.
About 36% were students of economics or mathematics. Approximately 24% had
participated in a course on game theory. Of the students, 36% were female.

The granny and the game theorist were approached directly by the experimenter.
We collected the data from the granny and the game theorist a couple of days prior
to the experiment. The students’ experiment was conducted in the Bonn Laboratory
for Experimental Economics in June 2004.

We had 18 subjects for each treatment. Since choices were not revealed until the
very end of the experiment, we have 18 independent observations for each treat-
ment. Because the games are not symmetric, however, only the 9 observations of
the row players in Treatment s are comparable with the observations from the other
treatments.

4 Hypotheses and Results

Ambiguity about the behavior of the opponent as modelled by the Choquet expected
utility approach described in Sect. 2 induces predictable behavior in games. Our first
set of hypotheses and results concern the question whether there are any measurable
effects of ambiguity about the opponent’s behavior. Our second set of hypotheses
and results deals with these comparative statics predictions.

We know from previous experiments on ambiguity in single person decision
problems (Camerer & Weber, 1992) that the majority of subjects behave in an
ambiguity-averse manner. Hence, we maintain the assumption that subjects behave
ambiguity-averse throughout this experiment.
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4.1 Is There Ambiguity?

Our motivation for treatments with a grandmother and a game theorist comes from
the fact that behavior of subjects may in general not be ambiguous enough to pro-
duce observable effects. A priori it is not clear why the behavior of a grandmother
should be more ambiguous than that of a game theorist. Given the subject pool of
students at the University of Bonn, however, who in some cases have had some ex-
perience with game theory, our presumption was that these students would feel less
ambiguous about the behavior of an expert game theorist than about the behavior of
the grandmother, obviously an non-specialist opponent. We tried to re-enforce this
“non-specialist” feature of the grandmother by explicitly mentioning in the instruc-
tions that the granny, in contrast to the game theorist, had difficulties in understand-
ing the experimental set up.

Based on this assumption we expect that subjects felt more ambiguity playing
against the granny than playing against the game theorist in Treatment gt, the only
treatment where such a direct comparison is possible. Our experimental results pro-
vide us both with a subject’s self-assessed feeling of ambiguity and with her actual
choice of action. This design motivates the following two hypotheses.

Firstly, we consider ambiguity associated with the player. We predict that sub-
jects will report more ambiguity when playing against the granny. Secondly, we
look at ambiguity about the opponent’s choice of action. We predict that the higher
ambiguity regarding the granny’s choice is reflected in the stated beliefs about the
set of the opponent’s actions which a subject considers possible. The more actions
of the opponent a player takes into account, the more ambiguity she experiences.
Hence, beliefs about the grandmother’s choice should be more coarse than beliefs
about the game theorist’s choice.

Hypothesis 1 In Treatment gt,

(i) subjects report more ambiguity about the behavior of the granny than about the
behavior of the game theorist,

(ii) stated beliefs about the grandmother’s choice of actions are coarser as the
stated beliefs about the game theorist’s actions.

Secondly, regarding actual behavior, we predict that more subjects choose the
more ambiguity-averse action if they face the grandmother. For games with strategic
complements (Games 1–4), A is an equilibrium action under ambiguity and, for
games with strategic substitutes (Games 5–8), C is an equilibrium action under am-
biguity, while B is the unique Nash equilibrium in both cases. In games with multiple
equilibria (Games 9–12), actions A and C are Nash equilibrium actions. For high am-
biguity, however, only A remains an equilibrium action under ambiguity. We should,
therefore, expect that the equilibrium actions under ambiguity, A in Games 1–4 and
C in Games 5–8, will be chosen more often against the granny than against the game
theorist. Moreover, we would expect to see the unique Nash equilibrium strategy B
in Games 1–8 and the Pareto-dominant Nash equilibrium strategy C in Games 9–12
more often played against the game theorist than against the granny.
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Hypothesis 2 In Treatment gt, we expect to observe the following behavior:

(i) In games with strategic complements (Games 1–4), more (respectively, less)
often action A (respectively, B) is chosen against the granny than against the
game theorist.

(ii) In games with strategic substitutes (Games 5–8), more (respectively, less) often
action C (respectively, B) is chosen against the granny than against the game
theorist.

(iii) In games with multiple equilibria (Games 9–12), more (respectively, less) often
action A (respectively, C) is chosen against the granny than against the game
theorist.

Turning to our results. In the questionnaire of Treatment gt we asked subjects the
questions listed in Table 3. These questions relate to the ambiguity associated with
the opponent’s identity. Table 3 shows that 72% of the subjects feel they can predict
the behavior of the game theorist better than that of the grandmother. Consistent with
this assessment, 72% of the subjects report that they prefer to play against the game
theorist. We can reject the hypothesis that subjects can guess the granny’s behavior
better than the game theorist’s behavior (resp. prefer to play against the granny than
against the game theorist) at the 0.05 confidence level using a Binomial test. For the
third question, the degree of certainty was measured on an integer scale ranging from
0 to 5, with complete uncertainty at 0 and complete certainty at 5. Table 3 reveals
that, on average, subjects were more certain about the game theorist’s behavior with
3.3 than about the grandmother’s behavior with 1.6. These averages rather hide the
actual extent of the uncertainty, since 10 of 18 subjects were certain or completely
certain (4 or 5) about the behavior of the game theorist and just 2 subjects felt
uncertain or very uncertain (0 or 1). Even stronger is the rating of the granny, where
only one subject was certain or completely certain (4 or 5) about the behavior of the
granny and 10 subjects felt uncertain or very uncertain (0 or 1). Using a Wilcoxon
Signed Ranks test, we can reject the hypothesis that subjects can guess the behavior
of both opponents equally well at the 0.03 confidence level.

To see which of the opponent’s strategies subjects considered as important for
their choice, we turn to Fig. 1. This figure shows how often subjects reported a
non-singleton belief about the opponent’s actions. Clearly, stated beliefs differ by
opponents. Subjects in Treatment gt state more often a non-singleton belief13 when
playing against the grandmother (50%) than when playing against the game theorist
(40%). This provides some support for our hypothesis that subjects feel more certain
about the behavior of the game theorist. We can reject the hypothesis that subjects

Table 3 Perceived ambiguity

Question Game theorist Granny

1. Whose behavior can you guess better? 72% 28%
2. Whom would you prefer to play against? 72% 28%
3. How certain are you about the behavior of...? 3.3 1.6
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Fig. 1 Non-singleton support of stated beliefs

stated equally often a coarse belief (i.e., two or more actions) for the game theorist
and for the granny at a 0.05 confidence level using a Wilcoxon Signed Rank test.

We summarize these results in Observation 1.

Observation 1 In Treatment gt, we can not reject Hypothesis 1:

(i) Subjects reported significantly more ambiguity about the behavior of the granny
than about the behavior of the game theorist.

(ii) Stated beliefs about the grandmother’s choice are significantly more often
coarser than stated beliefs about the game theorist’s choice.

Figure 2 provides information on Hypothesis 2. In the games with strategic com-
plements, in the upper diagram of Fig. 2, 36% of subjects chose the equilibrium
action under ambiguity A against the grandmother, while only 21% chose this ac-
tion against the game theorist. This difference is significant at a 0.11 level using
a Wilcoxon Sign Rank test. This observation is consistent with Hypothesis 2 (i).
However, also the unique Nash equilibrium action B is chosen more often against
the grandmother (by 39% of the subjects) than against the game theorist (by 35%
of the subjects), which is contrary to Hypothesis 2(i). This difference though is in-
significant (0.38 level).14 It is surprising how often action C, which is neither a Nash
equilibrium action nor an equilibrium action under ambiguity, was chosen against
the game theorist (by 44% of the subjects) in this sequence of games.15

In the games with strategic substitutes in the middle diagram of Fig. 2, action C
is chosen more often against the grandmother (by 28% of subjects) than against the
game theorist (by 18% of subjects), which is significant at a 0.10 level. Strategy C
is the only equilibrium action under sufficiently large ambiguity. The unique Nash
equilibrium action B is chosen less often against the grandmother (by 68% of sub-
jects) than against the game theorist (by 78% of subjects). This difference is only
significant at a 0.12 level. Both observations are consistent with Hypothesis 2(ii).
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Finally, in the games with multiple equilibria in the lower diagram of Fig. 2, 55%
of the subjects chose action A against the grandmother, while only 33% of the sub-
jects chose this strategy against the game theorist. This is significant at a 0.08 level.
In contrast, action C is chosen less often against the grandmother (by 47% of the
subjects) than against the game theorist (by 58% of the subjects). This difference is
not significant (0.24 level). For low ambiguity, both actions are Nash equilibrium ac-
tions and actions in an equilibrium under ambiguity, but if ambiguity is sufficiently
large then action A becomes the unique equilibrium action under ambiguity. Both
observations are consistent with Hypothesis 2(iii).

Observation 2 summarizes these findings.

Observation 2 In Treatment gt, there is mixed evidence for Hypothesis 2(i), but we
cannot reject Hypothesis 2(ii) and Hypothesis 2 (iii):

(i) In Games 1–4 (strategic complements), subjects chose significantly (resp. in-
significantly) more often the ambiguity averse action (resp. the Nash equilib-
rium action) against the grandmother than against the game theorist.

(ii) In Games 5–8 (strategic substitutes), subjects chose significantly more (resp.
less) often the ambiguity averse (resp. Nash equilibrium) action against the
grandmother than against the game theorist.

(iii) In Games 9–12 (multiple equilibria), subjects chose significantly more (resp.
insignificantly less) often the ambiguity averse action (resp. the Pareto-
dominant Nash equilibrium) against the grandmother than against the game
theorist.

Treatment gt provides the opportunity to compare the behavior of subjects play-
ing games against two opponents with identical payoffs but clearly distinguished by
personal characteristics. The two other treatments, Treatment g and Treatment s,
serve as control treatments. Our a priori hypothesis was that behavior when play-
ing against other subjects should create less ambiguity than playing against the
granny, but more ambiguity than playing against the game theorist. Comparing
firstly Treatments g and s, these considerations can be expressed by the following
two hypotheses. The first two hypotheses compare stated beliefs and actual behavior
in Treatment g and in Treatment s. Hypothesis 3 is analogous to Hypothesis 1. We
assume that the higher ambiguity against the granny compared to the other subjects
is reflected in the subjects’ statements.

Hypothesis 3 In comparing Treatment g and Treatment s, stated beliefs about the
grandmother’s choice are more coarse compared to stated beliefs about other sub-
jects.

Hypothesis 4 parallels Hypothesis 2. We predict that the equilibrium action under
ambiguity will be chosen more often against the granny than against other subjects,
while the Nash equilibrium action will be more often against other subjects.

Hypothesis 4 In comparing Treatment g and Treatment s, we expect the following
facts:
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(i) In games with strategic complements (Games 1–4), more (respectively, less)
often action A (respectively, B) is chosen against the granny than against other
subjects.

(ii) In games with strategic substitutes (Games 5–8), more (respectively, less) of-
ten action C (respectively, B) is chosen against the granny than against other
subjects.

(iii) In games with multiple equilibria (Games 9–12), more (respectively, less) of-
ten action A (respectively, C) is chosen against the granny than against other
subjects.

The answers to the questionnaire at the end of the experiment hint a first answer
to Hypothesis 3. In Treatments g and s, we asked each subject to rate on a scale
from 0 (complete uncertainty) to 5 (complete certainty) how certain he or she was
about the behavior of the grandmother or the other subject, respectively. The av-
erage reports are very similar in both treatments, 2.6 for Treatment g and 2.7 for
Treatment s.

A similar conclusion can be drawn when looking at stated beliefs in Fig. 1. In
fact, there was more ambiguity reported about the choices of the other subject than
about those of the granny. However, the difference is not significant (0.27 level using
a Wilcoxon–Mann–Whitney test). Observation 3 states this result.

Observation 3 We can reject Hypothesis 3: Stated beliefs about the grandmother’s
choice in Treatment g are less coarse than stated beliefs about other subject’s choice
in Treatment s.

Examining Fig. 2 shows that also the choices of actions were almost identical in
both treatments. In the case of strategic complements (Games 1–4), the equilibrium
action under ambiguity was chosen even slightly more often against the other subject
than against the granny and the Nash equilibrium action was chosen more often
against the granny. The difference between the joint distributions of actions is not
significant (0.9 level for strategic complements and substitutes and 0.5 for multiple
equilibria using a X 2 test).

Observation 4 In comparing Treatments g and s, we can reject Hypothesis 4:

(i) In games with strategic complements (Games 1–4), insignificantly more (resp.
less) often action B (resp. A) is chosen against the granny than against other
subjects.

(ii) In games with strategic substitutes (Games 5–8), insignificantly more (resp.
less) often action C (resp. B) is chosen against the granny than against other
subjects.

(iii) In games with multiple equilibria (Games 9–12), insignificantly more (resp.
less) often action A (resp. C) is chosen against the granny than against other
subjects.

Observations 3 and 4 suggest that the perceived ambiguity as well as the ac-
tual behavior were similar in Treatment g and Treatment s. It is important to keep
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in mind, however, that, for Treatment s, this comparison rests on a much smaller
number of observations, since only the behavior of the nine row players are used.

Finally, comparing Treatment gt and g, our ex-ante presumption was that one
would find the same perceived ambiguity and the same behavior under ambiguity in
regard to the granny in both treatments.

Hypothesis 5 Choices and stated beliefs when playing against the grandmother in
Treatment gt do not differ from Treatment g.

In fact, Fig. 1 shows quite clearly that subjects were considering significantly
more often non-singleton beliefs when facing the grandmother in Treatment g than
in Treatment gt. This difference is significant at a 0.03 level using a Wilcoxon–
Mann–Whitney test. Similarly, Fig. 2 reveals that the ambiguity-related actions,
A in Games 1–4, C in Games 5–8, and A in Games 9–12, were chosen more
often in Treatment g than in Treatment gt. The difference between the joint
distributions of actions is significant at a 0.05 (resp. 0.02) level for strategic
complements (resp. multiple equilibria) but insignificant for strategic substi-
tutes (0.5 level with a X 2 test). To sum up, it appears that subjects felt more
ambiguity when playing against the grandmother in Treatment g than in Treat-
ment gt.

Observation 5 In comparing Treatments gt and g, we can reject Hypothesis 5:

(i) Stated beliefs about the grandmother’s choice are significantly more often
coarser when playing against the grandmother in Treatment g than in Treat-
ment gt.

(ii) Play against the granny in Treatment gt differed significantly from Treatment g.
In particular, the ambiguity-related actions (resp. Nash equilibrium actions)
were more (resp. less) often chosen in Treatment g than in Treatment gt.

Observation 5 records stronger ambiguity effects in Treatment g than in
Treatment gt. Though we did expect that playing against the grandmother would
create some ambiguity, we were surprised to find this ambiguity to be substantially
smaller in the Treatment gt where subjects face both the granny and the game the-
orist. We speculate that this finding is due to a presentation effect. Treatment gt is
likely to lead subjects towards a comparative judgement between the game theorist
and the granny. Such comparative analysis may lead to different judgements of the
granny when the granny is the only opponent to judge as in Treatment g.

4.2 How Do Subjects React to Ambiguity?

The core hypotheses of this article concern the comparative statics analysis of be-
havior under ambiguity. As explained in Sect. 2, we constructed the sequence of
games in each of the three variants, strategic complements, strategic substitutes
and multiple equilibria, such that the critical level for changing behavior towards
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the equilibrium action under ambiguity rose with the number of the game. Table 2
contains these critical levels. In each group of games the sensitivity to ambiguity
increased with the number of the games. Hence, we advance the following hypoth-
esis.

Hypothesis 6 For all treatments, we expect to observe following comparative
statics:

(i) In games with strategic complements, choices of action A (respectively, B) in-
crease (respectively, decrease) from Game 1 to 4.

(ii) In games with strategic substitutes, choices of action C (respectively, B) in-
crease (respectively, decrease) from Game 5 to 8.

(iii) In games with multiple equilibria, choices of action A (respectively, C) increase
(respectively, decrease) from Game 9 to 12.

Turning now to our results, the left diagrams of Fig. 3 show how the frequency
of the equilibrium action under ambiguity changes in all treatments and against all
opponents. With the exception of Treatment gt, we find for each class of games
that the equilibrium action under ambiguity increases as the games become more
ambiguity-sensitive, i.e., from the lower to the higher game number. The exception
is play against the game theorist in games with strategic complements and against
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the granny in games with strategic substitutes, where in Games 3, 8 and 10 a decline
has to be noted.

The right diagrams in Fig. 3 show the frequency of choice for the unique Nash
equilibrium action B in response to increasingly ambiguity-sensitive games. With
the exception of Games 3, 8, and 11 we observe a decrease in all treatments and
against all opponents.16

We test the results on the comparative statics by comparing each subject’s choices
in Game 1 versus Game 4 (and similarly Game 5 vs. Game 8 and Game 9 vs.
Game 12). We exclude all observations of actions that are neither an equilibrium
action under ambiguity nor a Nash equilibrium. We test as the null-hypothesis that
switches from the Nash equilibrium to the ambiguity-averse action and vice versa
are equally likely. We can reject this hypothesis except for play against the game
theorist in games with strategic complements and in games multiple equilibria in
Treatment gt.17 Summarizing these results, we obtain Observation 6.

Observation 6 We can not reject Hypothesis 6, except for play against the game
theorist in games with strategic complements and multiple equilibria (Treatment gt).

5 Concluding Discussion

In experiments on single-person decision problems, ambiguity plays a role as many
studies of the Ellsberg-paradox show. Camerer and Weber (1992) provide a sur-
vey of these results. Strategic problems are usually even more complex, so it ap-
pears reasonable to assume that ambiguity plays an even bigger role in strategic
games. Camerer and Karjalainen (1994) report experiments on strategic versions of
Ellsberg’s two and three color experiments which seems to confirm this presump-
tion. In their experiments ambiguity concerns the payoffs of the opponents. They
find evidence that a substantial fraction of behavior is inconsistent with the assump-
tion of additive beliefs over opponents’ types.

To our knowledge, we present a first attempt to analyze strategic ambiguity ex-
perimentally. By varying the identity of the opponent, we try to introduce different
levels of ambiguity in strategic games. Moreover, by varying the cardinal payoffs
but keeping the ordinal payoff structure constant, we make games more or less sen-
sitive to the given amount of ambiguity in the experiment. We find that both varying
opponents and varying the payoff structure have effects predicted by the theory on
ambiguity in games.

In Treatments gt and g, we used “loaded” instructions in the sense that we de-
scribed the background of the granny and the game theorist in order to be con-
vincing in our claim that these opponents were indeed real persons. It is therefore
justified to ask whether social motives could have brought about the observed dif-
ference in choices against the granny and the game theorist. A preliminary check
suggests that social motives such as altruism or inequity aversion will induce be-
havior which is opposed to the one predicted by ambiguity aversion. Thus, they
may in fact strengthen our comparative statics results.
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Appendix 1: Example of Instructions: Treatment gt (Translation)

Welcome to the Experiment

You participate in an experiment on decision making. You can earn some money.
Your earnings depend on your decisions as well as the decisions of a grandmother and
a game theorist. Latter decisions we recorded already prior to the experiment today.

The Grandmother

The grandmother is 84 years old. She lives beside a forest in a village in Saxony.
She comes from a farmer’s family and raised eight children. She likes to take care
of her large garden, to solve crossword puzzles, and to watch TV. She faced some
difficulties with understanding today’s experiment.

The Game Theorist

Game theory is a mathematical theory of strategic decision making such as to-
day’s experiment on decision making. The game theorist is Professor of Economic
Theory at the University of Bonn. Previously, he worked at Stanford University and
Humboldt University, Berlin. He earned a diploma in mathematics and a Ph.D. in
economic theory. He published quite a number of articles on game theory in in-
ternational journals such as the Journal of Economic Theory. He didn’t face any
difficulties with understanding today’s experiment.

Your Decision

Your goal is to maximize your earnings through your choice. You will face decision
problems like in the following example (Fig. 4):

You have three actions (A, B, and C), which are marked as rows in above table.
The other participant (the grandmother or the game theorist) has three actions as
well (X , Y , and Z) (the columns in above table). The numbers in the cells of the
table indicate the possible payoffs, whereby your payoff is always the first number
in front of the semicolon (;) of each cell, whereas the second payoff belongs to the
other participant. For example, if you choose A and the other participant chooses Y ,
then you receive 56 Taler and the other participant 99 Taler.18

Under the table to the left you are supposed to choose your action: One action
against the grandmother and one against the game theorist. Prior to your decision,
we naturally do not inform you, how the grandmother and the game theorist chose
against you. Your payoff depends as indicated in above table on your choice and the
choice by the grandmother and the game theorist.
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Fig. 4 Screen-shot

Under the table to the right you are supposed to mark the actions that you can not
rule out for the grandmother and the game theorist. These are the actions for which
you assume that they could be eventually chosen by the grandmother or the game
theorist. Here it is possible to mark several actions.

After you made your selection, click “O.K.”, and the experiment is continued
with a memory task on a new screen. The memory task does not influence your pay-
off but serves just as an intermediate step between the decision making situations.
A sequence of numbers is displayed to you for 5 s, which you should try to remem-
ber. After 5 s you are asked on a new screen to reproduce the sequence. After the
memory task a new screen appears with a new decision making situation analogous
to above. In total there are 12 decision making situations.

Your Earnings

After the decision making situations follows a brief questionnaire. Then you will be
informed about your total earnings. To calculate your total earnings, three decision
making situations are selected randomly. For each of these three decision making
situations the payoff depends on your decisions and the decision of the grandmother
and the game theorist as described above. Your total earnings is the sum of payoffs
from the three decision making situations against the grandmother as well as the
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three decision making situations against the game theorist. Your total earnings are
exchanged with an exchange rate of 40 Taler = 1 EUR. This amount will be paid to
you immediately after the experiment in cash.

In each cabin is a exercise-sheet, which should be completed before the experi-
ment, and which will collected by the experimenter. Only then the experiment will
be started. If you have questions now or during the experiment, please quietly con-
tact the experimenter.

Thank you for your participation.
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Notes

1See also Epstein (1997); Groes, Jacobson, Sloth, and Tranæ (1998); Haller (2000); Klibanoff
(1996); Lo (1996, 1999); Mukerji (1997), and Ryan (2002).

2Apart from studying ambiguity, our results may be of independent interest for analyzing ex-
perimentally to what extent the opponent’s identity has a systematic effect on subjects’ play in
strategic games.

3For different support notions of capacities compare Haller (2000); Marinacci (2000) and Ryan
(2002).

4Formally, a capacity ν ′′i is reflects more ambiguity than a capacity ν ′i if for all nonempty
E � A−i, ν ′′i (E)+ν ′′i (A−i \E) < ν ′i(E)+ν ′i(A−i \E).

5Ambiguity aversion is modelled by the Choquet integral of a convex capacity. Formally, a
capacity is convex if, for all E,F ⊆ A−i, ν i(E)+ν i(F)≤ ν i(E ∪F)+ν i(E ∩F).

6For the class of games considered above, there is one caveat. We strongly prefer games in
which no action is weakly dominated by another (note that ambiguity respects dominance). Thus
we also need to increase d whenever we increase c. This influences the evaluation of action C in
comparison to action B. However, action A will be preferred to action C.

7Numbers with ∗ are just sufficient conditions. For the computations, we took into account the
small random constants added (see Note 12).

8We are grateful to Urs Fischbacher for making the experimental software available to the
profession (Fischbacher, 1999).

9For a screen-shot of this treatment see Fig. 4 in Appendix 1.
10We want to emphasize that our experiment did not involve any deception of subjects. All the

information about the granny and the game theorist provided to the subjects were true.
11The games were presented in the following order: 2, 7, 9, 4, 6, 1, 11, 8, 12, 3, 5, 10.
12 The following table contains the constants which were added.

Game
Player 1 2 3 4 5 6 7 8 9 10 11 12
Row 3 2 1 0 3 1 2 1 3 2 1 0

Column 1 1 0 1 1 2 1 3 0 1 2 1

13These averages are calculated for all subjects who stated a belief. In 4% of the cases subjects
did not state a belief at all.

14We have to note a caveat: Since Treatment gt concerns a one sample treatment with dependent
variables, we could not test for the difference of the joint distributions of As and Bs.
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15We suspect that this obviously “irrational” behavior against the game theorist may be a con-
sequence of the random order of games, since the choice of C was most pronounced in games
following a multi-equilibria game where C was the equilibrium action of the Pareto-dominant
Nash equilibrium.

16Notice that the exceptions seem to occur in the same games.
17The significance levels using a Sign Test are given by

Treatment Strategic complements Strategic substitutes Multiple equilibria
gt granny 0.03 0.02 0.01
gt game theorist 0.25 0.11 0.23
g 0.01 0.01 0.01
s 0.03 0.12 0.03

18Note that Fig. 4 contains a translated screen-shot in which numbers do not correspond to the
translation of the instruction. This is not the case in the German original.
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Guessing Games and People Behaviours: What
Can We Learn?

A. Morone and P. Morone(�)

Keywords: Guessing game · p-Beauty contest · Individual behaviour

1 Introduction

In the last decade a growing effort has been devoted to explore the p-beauty contest
game (Camerer, Ho and Weigelt, 1998; Duffy and Nagel, 1997; Nagel, 1995; Weber,
2003). The game itself is well known and extremely simple: players are asked to
choose a number from a closed interval. The winning player will be the one that gets
closer to a target number G. Such target is defined as the average of all guesses plus
a constant, multiplied by a real number known to all players. Formally, we can write

the target as: G = p
(

1
n

n
∑

i=1
gi +d

)
. In its simplest form the game parameterisation is

set as follows: 0≤ p < 1, n is the number of players in the contest, gi ∈ [0,100]⊂R
is subject i’s guess and d is a constant set equal to 0.

Under such definition of G the game-theoretical solution is a unique Nash equi-
librium where all players choose 0.1 In fact, playing 0 is the only strategy that sur-
vives the procedure of iterated elimination of dominated strategies (IEDS). Let us
assume that in the first iteration all players play the highest possible number (100
in our case); here we can immediately observe that the winning number will be
g = p100. Now, a rational agent should know this and hence play p100. However, if
all players are rational, the target will shift to g = p (p100) or to g = p2100. Hence,
rational players will now play p2100. This process goes on until the only possible
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equilibrium is reached, i.e. g = p∞100 = 0. Of course, this solution requires that
players constantly behave rationally (i.e. for all the infinite iterations of the game)
and that everybody knows that everybody else also behaves always rationally. Note
that the IEDS suggests what should not be played, and after an infinite number of
iterations, the Nash equilibrium is reached.

Nagel, in her seminal paper, suggested “that the ‘reference point’ or starting point
for the reasoning process is 50 and not 100. The process is driven by iterative, naı̈ve
best replies rather than by an elimination of dominated strategies” (1995, p. 1325).
The iterative naı̈ve best replies (INBR) strategy assumes that, at each level, every
player believes that he/she is exactly one level of reasoning deeper than all other
players.2 A Level-0 player chooses a number randomly in the given interval [0, 100],
with the mean being 50. Therefore, a Level-1 player gives best reply to the belief that
everybody else is Level-0 and thus chooses p50. Following this line of reasoning,
a Level-2 player chooses p250, a Level-k player chooses pk50, and so on. A player
who takes infinite steps of reasoning, and believes that all players take (infinite-1)
steps, chooses 0, the Nash equilibrium. This interpretation of the converging pattern
towards the equilibrium implies that different subjects are characterised by different
cognitive levels.

Bosch-Domènech, Montalvo, Nagel and Nagel (2002) analysed ‘newspaper and
lab beauty-contest experiments’ and categorised subjects according to their depth of
reasoning. The authors recognised that subjects were actually clustered at Level-1,
Level-2, Level-3 and Level-infinity as assumed by Rosemary Nagel.

All these results apply to the standard p-beauty contest game. Under such a stan-
dard parameterisation of the game – i.e. gi ∈ [0,100], p < 1, and d = 0 – both the
iterative naı̈ve best replies and the iterated elimination of dominated strategies re-
quire the same number of iterations in order to solve the game. The picture changes
if we set d �= 0; in this case the game might well exhibit an interior equilibrium
(i.e. different from 0 or 100) and, for specific values of p, the solution of the game
obtained, using the two different strategies, involves different numbers of iterations
needed to reach the equilibrium.

Güth et al. (2002) proposed a game where d was initially set equal to 0 and sub-
sequently equal to 50. This allowed them to analyse the p-beauty contest from a
different perspective, comparing, among other things, interior and boundary equi-
libria. They showed that the convergence toward the equilibrium is faster when the
equilibrium is interior.

In this paper we aim at generalising the iterative naı̈ve best replies strategy to
the wider class of games with interior equilibria; analyse Güth et al.’s results con-
cerning the properties of interior equilibria in a more general setting; and compare
the iterative naı̈ve best replies strategy with the iterative elimination of dominated
strategies for the generalised p-beauty contest. We shall do this by means of a labo-
ratory experiment.
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2 A Generalisation of the INBR Strategy to a Game
with Interior Equilibria

Let n (>2) be the number of subjects in the game. Each of them has to choose a
number gi ∈ [L,H], where L,H ∈ R. Their pay-off function is:

u(gi) = C− c

∣∣∣∣∣gi− p

(
1
n

n

∑
j=1

g j +d

)∣∣∣∣∣ ,
where C is a positive (monetary) endowment, c (>0) is a fine subject i has to pay
for every unit of deviation between his/her guess gi and the target number G.3 Then,
for all d ∈ R and p ∈ [0,1) there is a unique Nash equilibrium, which is given by:

max

(
L, lim

n→∞
Lpn +

n

∑
i=1

d pi

)
< g∗< min

(
H, lim

n→∞
H pn +

n

∑
i=1

d pi

)
.

If we want to solve this generalised p-beauty contest game with the iterative naı̈ve
best replies strategy we need to redefine it. Since the guessing interval is [L, H], the

focal point4 should be
H +L

2
. The equilibrium using the iterative naı̈ve best reply

strategy is given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i f p < 1 gi = max

(
L, lim

n→∞

H +L
2

pn +
n

∑
i=1

d pi

)

i f p > 1 gi = min

(
H, lim

n→∞

H +L
2

pn +
n

∑
i=1

d pi

)
.

Now we have defined a generalised theory of naı̈veté which can be applied both to
boundary solutions (as it was originally defined by Nagel, 1995) as well as to inte-
rior equilibria; this simple generalisation will help us comparing it with rationality
theory.5

2.1 Rationality Versus Naivety: Posing Our Research Questions

As already discussed, a p-beauty contest game exhibits a unique boundary Nash

equilibrium if the target number is G = p

(
1
n

n
∑
j=1

g j +d

)
and d = 0. Under the

assumption of rationality, such converging dynamics takes, theoretically, infinite
steps. The situation changes if we consider d values which are greater than 0. In
this case the converging equilibrium could be boundary as well as interior.

Güth et al. (2002) carried out an experiment aiming at testing the diverse converg-
ing equilibria generated, assigning different values to the parameter d. The authors
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observed in the lab different converging speeds for different model parameterisa-
tions; specifically, they compared two treatments characterised by the following pa-
rameters: p = 1/2, g ∈ [0,100],d = 0 and p = 1/2,g ∈ [0,100], d = 50. Conducting
a laboratory experiment, the authors observed that the latter treatment converged to-
wards its Nash equilibrium faster than the former. This result counters the fact that
the two treatments had the same degree of complexity. Such apparent contradic-
tion was justified by the authors arguing that the observed difference in converging
speeds was due to the fact that in the first case (i.e. d = 0) the steady state was a
boundary equilibrium (i.e. 0), whereas in the second case (i.e. d = 50) the system
converged towards an interior equilibrium (i.e. 50). Hence, they concluded that “in-
terior equilibria trigger more equilibrium-like behaviour than boundary equilibria”
(2002, p. 223).

Although it seems appealing, this explanation might be misleading. In fact, drop-
ping the assumption of perfect rationality and applying the theory of naı̈veté gener-
alised in the section above, we can theoretically calculate the converging dynamics
and the equilibria obtainable, using Güth et al. (2002) parameterisation and then
compare these results to those obtained applying rationality.

We report these results in Table 1 below. Under the assumption of rationality
(i.e. repeated elimination of strictly dominated strategies), an infinite number of
iterations is required independently of the value assigned to d, hence suggesting
that the problems have an identical degree of complexity. The picture changes under
bounded rationality assumption (i.e. INBR): in this case an infinity-order belief is
required to reach the Nash equilibrium when d = 0, and only a zero-order belief
when d = 50. In fact, when d = 50, subjects immediately play the Nash equilibrium
(which in this case is 50) irrespectively to their sophistication level.6

This finding suggest that, if we buy Nagel’s idea of bounded rationality and apply
the generalised theory of naı̈veté previously derived, Güth et al. (2002) experimental
results could be explained by the fact that the two treatments have a different degree
of complexity rather than by the intrinsic capacity of triggering equilibrium-like
behaviours of interior equilibria.

In short, we are posing here the problem of understanding what the true reason
behind the observed difference in converging dynamics is. In what follows we shall
attempt to test the robustness of Güth et al. (2002) results by replicating the p-beauty

Table 1 Güth et al. (2002) treatments – IEDS versus INBR

Step p = 1/2, d = 0, L = 0, H = 100 p = 1/2, d = 50, L = 0, H = 100

IEDS INBR IEDS INBR

1 0 < g < 50 g = 25 25 < g < 75 g = 50
2 0 < g < 25 g = 12.5 37.5 < g < 62.5 g = 50
3 0 < g < 12.5 g = 6.25 43.74 < g < 56.25 g = 50
4 0 < g < 6.25 g = 3.13 46.87 < g < 53.12 g = 50
...

...
...

...
...

Infinity g = 0 g = 0 g = 50 g = 50



Guessing Games and People Behaviours: What Can We Learn? 209

experiment using different parameterisations. Subsequently, we shall focus our at-
tention on Nagel’s theory of naı̈veté, attempting to understand if it holds also for
games which display interior equilibria.

3 Aim and Setting of the Experiment

As discussed above, a preliminary target of our experiment is testing the robustness
of the hypothesis according to which “[a]n interior equilibrium [. . . ] is supposed
to yield smaller deviations of the guesses from the game-theoretic equilibrium than
a boundary equilibrium, since participants often try to avoid extreme choices . . . ”
(Güth et al., 2002, pp. 221–222). In order to test for the validity of such hypoth-
esis we will consider a new set of problems’ characterisation defined by different
parameterisations of the game. Specifically, we shall compare the original parame-
terisation adopted by Güth et al. with a similar setting where we vary the value of
p (set equal to 2/3) and the value of d (set equal to 25 and 50). It is worth noting
that, like in the original experimental setting, this new parameterisation produces an
interior game-theoretical equilibrium and a boundary one (when the value of d is
respectively 25 and 50). If Güth et al.’s result is robust to different model parameter-
isations, we would expect to observe a faster convergence in the game with interior
equilibrium; otherwise, we shall confute the validity of their results for problems’
parameterisations different from those originally selected by the authors.

Once addressed this point, we will move on to consider Nagel’s theory of naı̈veté
in the case of games with interior equilibria. In doing so, we will study the first-
period choices in two games characterised as above (i.e. p = 2/3 and d = 25 or 50)
and in a new game parameterisation where we will vary the interval [L,H], assign-
ing different values to the upper and lower bound. This will allow us to verify the
occurrence of Nagel’s naı̈veté also in games with interior equilibria.

3.1 The Design of the Experiment

In each treatment of the experiment there are n = 32 subjects divided into eight
groups, each of four subjects. In each group subjects have to guess a number in
the real interval [L,H]. The closer their guess is to the target the higher is the
pay-off. As discussed above, the general form of the pay-off function is: u(gi) =

C− c

∣∣∣∣∣gi− p

(
1
n

n
∑
j=1

g j +d

)∣∣∣∣∣.
The experiments were run in October 2005 at the Max Planck Institute of

Jena. The software of the computerised experiment was developed in z-Tree
(Fischbacher, 1998). Jena University students who participated at the exper-
iment were recruited using the ORSEE software (Greiner, 2004). The age of
players ranged from 21 to 31 years, the average pay-off paid amounted to 11.95 C=
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(sd = 1.76), the duration of each treatment was 40 min. Groups were formed ran-
domly at the beginning of the experiment and were kept invariant over the whole
experiment (i.e. 40 periods).

4 Results and Interpretation

4.1 Studying Converging Dynamics

In this section we will analyse the results obtained in our experiments. However,
before moving to present our findings we shall recall results obtained by Güth
et al. (2002) which will serve as a reference point to our study. Schematically we
summarise Güth et al. results in Table 2.

As we can see, the authors presented two comparable cases and showed how
the treatment where the game-theoretical equilibrium is interior, displayed a higher
speed of convergence. We shall now present our results and compare them to those
obtained by Güth et al.

In Figs. 1 and 2 we report the average guesses in each group for our first and
second treatments. These results appear to confute the findings of Güth et al. (2002),

Table 2 Güth et al. (2002) summary of results

Parameterisation Game-theoretical equilibrium Speed of con-
vergence

Güth et al. p = 1/2, d = 0, Convergence toward a Slower
Treatment 1 L = 0, H = 100 boundary equilibrium (g = 0)
Güth et al. p = 1/2, d = 50, Convergence toward an Faster
Treatment 2 L = 0, H = 100 interior equilibrium (g = 50)
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Fig. 1 Treatment 1 – group averages (p = 2/3; d = 25)
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Fig. 2 Treatment 2 – group averages (p = 2/3; d = 50)

as guesses converge steadily towards the equilibrium, while the interior equilibria
treatment converges in a slower pace.

In fact, in treatment 2 the system reaches a steady boundary equilibrium in less
than 25 iterations. This result is consistent for each of the eight groups considered
in our experiment, a fact which gives a certain degree of robustness to it. On the
contrary, not all groups considered in treatment 1 reach a steady equilibrium within
the time frame considered (i.e. 40 periods). Moreover, the converging dynamic to-
wards the interior equilibrium is on average statistically significantly slower; more
precisely we tested the hypothesis that the two distributions have the same variance.
We used the Freund–Ansari–Bradley test. In periods 1, 4, and 6 we rejected the
null hypothesis at a significance level of 10% and in periods 2 and 3 we rejected
the null hypothesis at a significance level of 5%, in favour of the alternative hypoth-
esis that the variance in treatment 2 is smaller. Hence we can infer that convergence
towards equilibrium is faster in treatment 2.

Note that this finding confutes also the generalised version of Nagel’s theory of
naı̈veté as also in this case an infinity-order belief is required to reach the equilib-
rium when d = 50, and only a zero-order belief is required when d = 25. As is shown
in Table 3, following the generalised naı̈veté theory when d = 25, subjects should
immediately play the Nash equilibrium irrespectively to their sophistication level.
However, this does not happen in the lab.

All in all, this first set of results would suggest a rejection of both Güth
et al. (2002) account of convergence (i.e. that interior equilibria trigger more
equilibrium-like behaviour than boundary equilibria) as well as our generalisation
of Nagel (1995) theory of naı̈veté, as they proved to be not robust to our new model
parameterisation.

This could also imply that Nagel’s game-theoretical result cannot be generalised
to interior equilibria as it holds solely for boundary equilibria. In what follows, we
shall concentrate our attention on first-period choices in order to investigate whether
this last hypothesis is actually confirmed by different model parameterisations.
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Table 3 Treatments 1 and 2 – IEDS versus INBR
Step Treatment 1 p = 2/3,

d = 25, L = 0,
H = 100

Treatment 2 p = 2/3,
d = 50, L = 0,
H = 100

IEDS INBR IEDS INBR

1 16.67 < g < 83.33 g = 50 33.33 < g < 100 g = 66.67
2 27.78 < g < 72.22 g = 50 55.56 < g < 100 g = 77.78
3 35.18 < g < 64.81 g = 50 70.37 < g < 100 g = 85.19
4 43.41 < g < 56.58 g = 50 80.24 < g < 100 g = 90.12
...

...
...

...
...

Infinity g = 50 g = 50 g = 100 g = 100

4.2 Studying First-Period Choices

Figure 3 displays first choices frequencies for both treatment 1 and treatment 2 de-
scribed in the section above. As we can immediately observe, in Fig. 3a almost half
of the subjects immediately played the (interior) Nash equilibrium. This might sug-
gest that agents are behaving rationally, as they are instantly able to solve the game
applying the iterated elimination of dominated strategies. However, we should note
that in this very specific case the Nash equilibrium coincides with the salient number
calculated following Nagel’s definition of a player strategic of degree 0. Moreover,
as showed in Table 3, it coincides also with the choice of a person strategic of degree
n∈N (i.e. invariantly of the sophistication level, a person playing the iterative naı̈ve
best replies always chooses 50).

This implies that, by simply looking at this data, we cannot distinguish among
subjects playing 50 as they could be rationally applying the IEDS strategy or they
could be as well behaving naively and following an INBR strategy.

We now turn to look at the second treatment. In this case the Nash equilibrium
was boundary and equal to 100 and was played in the first period by almost 30%
of the players. Note that a person playing strategic of degree 1 would play 66.67;
a person strategic of degree 2 would play 77.78, and so on (as reported in the last
column of Table 3 above). Not many subjects played strategic of degree 1, 2, 3,
. . . , as can be easily detected in Fig. 3b. However, almost 30% of them might have
played strategic of degree infinite or, alternatively, might have rationally applied the
IEDS strategy. Interestingly, almost 20% of the subjects (i.e. 6 out of 32) played 50,
which in this case was not a focal point in the sense of being the expected choice
of a player who chooses randomly from a symmetric distribution, but was probably
perceived as a salient number being the mean of the interval [0, 100]. This fact leads
us to believe that when the focal point à la Nagel coincides with a salient number
(like the mean of the interval) we might observe players guessing that number for
reasons other than playing strategic of degree 0, as suggested by Nagel (1995).

In other words, we shall maintain that Nagel’s results might be affected by the
specific parameterisation of the model. In order to test this hypothesis we ran two
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Fig. 3 Choices in the first period – Treatments 1 and 2

Table 4 Treatments 3 and 4 – IEDS versus INBR
Step Treatment 3 p = 2/3,

d = 25, L = 13,
H = 129

Treatment 4 p = 2/3,
d = 50, L = 13,
H = 129

IEDS INBR IEDS INBR

1 25.33 < g < 102.67 g = 64.00 42 < g < 119.33 g = 80.67
2 33.56 < g < 85.11 g = 59.33 61.33 < g < 112.89 g = 87.11
3 39.03 < g < 73.41 g = 56.22 74.22 < g < 108.60 g = 91.41
4 42.69 < g < 65.60 g = 54.15 82.81 < g < 105.73 g = 94.27
...

...
...

...
...

Infinity g = 50 g = 50 g = 100 g = 100

new treatments where the interval boundaries were shifted to the right and were
selected as odd integers. Specifically we selected the following interval: [13, 129].
All other parameters were left unaltered. The Nash equilibrium and its converging
dynamic are reported in Table 4 for both strategies.

Note that treatments 1 and 3 and treatments 2 and 4 share the same parameters
(p and d) and converge to the same Nash equilibrium (in treatment 4, though, the
Nash equilibrium is interior whereas in treatment 2 it is boundary). We tested the
hypothesis that (T1and T3) and (T2 and T4) come from the same distribution using
the Wilcoxon Signed Ranks Test; we can reject the null hypothesis respectively at
the 0.0001 and at the 0.001 level. This result suggests that many players do not
choose numbers at random but instead are influenced by the value of the boundaries
L and H of the game.

In treatments 3 and 4 the game-theoretical Nash equilibrium is always interior
and requires an infinity-order belief to be reached independently of the strategy
adopted. Looking at Figs. 4a and b we can easily observe that guesses are much
less clustered if compared to treatments 1 and 2; further, the number of subjects
playing immediately the Nash equilibrium is lower than that observed in Figs. 1
and 2. Specifically, in treatment 3 only 15% of subjects played immediately Nash,
and in treatment 4 this share raised slightly to 22%.
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Fig. 4 Choices in the first period – Treatments 3 and 4

As in both treatments there is a very low level of clustering around any focal
point, it is hard to believe that agents have been following an iterative naı̈ve best
replies strategy.7 However, we shall try to verify if data actually clusters around
those iteration levels. In order to test this hypothesis we follow the methodology
proposed by Nagel (1995); specifically, we define neighbourhood 8 of Step i, where
i ∈ [0, 1, 2, 3, 4].

Intervals between two neighbourhood intervals of Step i and Step i + 1 are called
interim intervals. In Fig. 5 we show the relative frequency of each of these neigh-
bourhoods and interim intervals for the respective treatment. Note that we cannot
define neighbourhoods for treatment 1 as the iterative naı̈ve best replies strategy
leads to the Nash equilibrium at each and every iteration step. Hence, all neighbour-
hoods would overlap around the game-theoretical equilibrium.

Looking at Fig. 5 we can easily observe that there is not much clustering around
iteration levels. The relative frequency is never higher than 15.6%, being on average
lower than 6%. Not surprisingly, most of the frequencies are clustered in the upper
and lower interim interval. This is certainly due to the fact that these are broader
intervals; however, confronting these charts with those reported in Figs. 3 and 4, we
can maintain that people tend to cluster initially around round numbers which they
perceive as salient (like 100, 50 or even 60 and 70 when the guessing space was set
as [13, 129]). These findings confirm our assumption that subjects tend to play the
focal point when it coincides with other salient numbers of the distribution.

5 Conclusions

In this paper we have addressed the topic of guessing games with the aim of under-
standing if people play in a rational or naı̈ve way. Two sets of results of the relevant
literature triggered our interest. First, Nagel showed how in the first period players
deviate strongly from game-theoretic solution. Hence, she proposed a “theory of
boundedly rational behaviour in which the ‘depth of reasoning’ are of importance”
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Fig. 5 Relative frequencies of choices in the first period according to the interval classification
with reference point (H + L)/2 + d
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(1995, p. 1325). The author showed that starting from a reference point X (where X
was set equal to 50) iteration steps 1 and 2 play a significant role, that is, most of the
observations are in the corresponding neighbourhoods. Second, Güth et al. (2002)
studied people’s behaviour in four different types of experimental beauty-contests.
Under the assumption of rational behaviour they found faster convergence to the
equilibrium when the equilibrium was interior.

By developing a generalised theory of naı̈veté (which accounted for interior equi-
libria) we showed how Güth et al.’s result was compatible with Nagel’s theory of
boundedly rational behaviour. However, we also wanted to test the sensitivity of
both results to different model parameterisations. By conducting a new series of ex-
periments we countered both results showing how, under new parameters, neither
the convergence towards interior equilibria was always faster, nor starting from a
reference point X (which in our case was different from 50), iteration steps 1 and 2
played any significant role.

We conclude that the results of Güth et al. (2002) and Nagel (1995), however in-
teresting, are severely affected by the ad hoc parameterisation chosen for the game.
Far from providing conclusive evidence on the issue of guessing games and people
behaviours, this paper aims at raising questions: what are the true driving forces
behind subjects decision in a p-beauty contest game? Further, do subject in the lab
behave rationally or do they follow naı̈ve strategies? Can we really define a unifying
theory of behaviour applicable to all subjects?

Acknowledgements The authors are grateful to Werner Güth and Matthias Sutter for the helpful
discussion provided in different stages of the work, and all participants to the FUR 2006. Authors
would like to thanks the Max Planck Institute of Jena for funding the experiment reported in this
paper. The usual disclaimers apply.

Notes

1Note that “[f]or p=1 and more than two players, the game is a coordination game, and there
are infinitely many equilibrium points in which all players chose the same number”. For p>1 and
2p< n “all choosing 0 and all choosing 100 are the only equilibrium points. Note that for p>1
there are no dominated strategies” (Nagel, 1995, p. 1314).

2Please note that in what follows we shall use Level, Step and Degree interchangeably.
3Note that this pay-off function was first used in Güth et al. (2002). We prefer it over the

standard “winner takes it all” pay-off function as it prevents subjects’ income polarisation.
4We are borrowing this term from Nagel (1995) where the focal point was ad-hoc set

equal to 50.
5In what follows, when talking of ‘theory of naı̈veté’, we refer explicitly to Nagel’s iterative

naı̈ve best replies strategy and to the iterative elimination of dominated when talking of ‘rationality
theory’.

6This can be easily proved numerically. Note that in this very specific case the Nash equilib-
rium coincides with the “expected choice of a player who chooses randomly from a symmetric
distribution” as well as to “a salient number à la Shelling” (Nagel, 1995, p. 1315).

7That is, taking (H + L)/2 + d as an initial reference point and considering several iteration steps
from this point (Step 0→ p [(H + L)/2 + d]; Step 1→ p (Step 0 + d); . . . ; Step i→ p(Step i-1 + d)).
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8In general the neighbourhood interval of Step i has the boundaries (Step i)ph and (Step i)p−h,
where h is the smallest integer such that two neighbourhood intervals do not overlap. Follow-
ing Nagel (1995), we rounded intervals upper and lower boundaries to the nearest integers, since
mostly integers were observed.
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Güth, W., Kocher, M., & Sutter, M. (2002). Experimental ‘beauty contest’ with homogeneous
and heterogeneous players and with interior and boundary equilibria. Economic Letters, 74,
219–228

Nagel, R. (1995). Unraveling in guessing games: An experimental study. The American Economic
Review, 85(5), 1313–1326

Weber, R. A. (2003). Learning with no feedback in a competitive guessing game. Games and
Economic Behavior, 44, 134–144



The Determinants of Individual Behaviour
in Network Formation: Some Experimental
Evidence

Keywords: Network formation· Experiments· Social interaction

1 Introduction

The role of social networks in shaping economic outcomes has received increasing
attention in recent years. Network externalities have been extensively studied both
in industrial organisations and, more recently, within the theory of social capital and
development economics. Most of this literature however takes the structure of the
social network as given and analyses the consequences of network externalities on
outcomes.1

In this paper we take the view that social linkages are often voluntarily formed
and hence the architecture and membership of social networks are part of the eco-
nomic outcome that one aims to explain. The theoretical literature on endogenous
network formation stems from two seminal contributions by Bala and Goyal (2000)
and Jackson and Wolinsky (1996). Both papers follow a game-theoretic approach
to the formation of social ties where the main idea is that players earn benefits
from being connected both directly and indirectly to other players and bear costs for
maintaining direct links.

The process of forming a network is extremely complex. The main difference
between a network and a series of bilateral links lies in the value that accrues to
agents though indirect connections: any two economic agents who have to decide
whether to establish a social tie take into account not only their own characteristics
and the characteristics of the prospective partner, but also their (and the prospective
partner’s) position in the social network.

D. Di Cagno
LUISS Guido Carli, Viale Pola 12, 00198 Roma, Italy
e-mail: ddicagno@luiss.it

M. Abdellaoui, J.D. Hey (eds.) Advances in Decision Making Under Risk and Uncertainty. 219
Theory and Decision Library C 42.
c© Springer-Verlag Berlin Heidelberg 2008

D. Di Cagno and E. Sciubba( )�



220 D. Di Cagno, E. Sciubba

Given that the process of network formation is so complex, predicted outcomes
are typically not unique. Even for those cases where the stable network architecture
is unique (for example, the star network in information communication models à la
Bala and Goyal or Jackson and Wolinsky), the coordination problem of which agent
occupies which position in the network still remains.

There is a lively experimental literature on this topic which has mainly focussed
on the issue of convergence to a stable network architecture as predicted by the
theory. In presence of multiplicity of equilibria and coordination problems, it is
hardly surprising that most experimental contributions on this topic have highlighted
the difficulty in obtaining convergence. More in detail, while convergence may be
more easily achieved in settings where the stable network architecture is the wheel
(for positive results see Callander and Plott (2005) and Falk and Kosfeld (2003); for a
negative result seeBernasconiandGalizzi (2005)), convergence isalwaysproblematic
in frameworks where the prediction for the stable network is the center-sponsored
star (Berninghaus, Ott, & Vogt, 2004 and Falk & Kosfeld, 2003). Berninghaus et al.
(2004) and Falk and Kosfeld (2003) highlight the role of complexity and inequality
aversion in preventing convergence to network architectures that are not “fairness
compatible” and argue that a network architecture, such as the star network, which
results in an uneven distribution of payoffs is less likely to be observed in the lab.
Deck and Johnson (2004) avoid coordination failures by introducing heterogeneity
among agents and by constructing a framework where the stable network is indeed
unique. Vanin (2002) attempts to facilitate coordination by allowing cooperation
and by preventing renegotiation among (skilled) subjects: he finds that, even under
such favourable conditions, coordination is not achieved in all cases.

Even in absence of coordination, the observed network structures are ultimately
the outcome of individual linking decisions. For this reason, in this paper we
mainly focus, rather than on convergence, on the possible determinants of individual
behaviour.

We run a computerised experiment of network formation, where all connec-
tions are beneficial and only direct links are costly. The network formation protocol
that we adopt, unlike the one used by most of the experimental literature that has
focussed on convergence (see Bernasconi and Galizzi (2005), Berninghaus et al.
(2004), Callander and Plott (2005), Falk and Kosfeld (2003), and Goeree, Riedl, &
Ule (2005)), requires that links are not unilateral, but have to be mutually agreed in
order to form. In particular, players simultaneously submit link proposals and a con-
nection is made only when both players involved agree.2 Although mainly focusing
on individual linking decisions, we provide an analysis both at the macro and the
micro level. From a macro perspective, in accordance with the existing literature,
we find that convergence to a stable network architecture is made problematic by
the presence of multiple equilibria, despite the fact that in our setting links have
to be mutually agreed and mutually sponsored. By analysing network formation
over time, we nevertheless detect a tendency towards efficient network architectures
where all subjects are included and with the minimum number of costly links. At the
level of the individual, we estimate the probability of a link through a probit model
that includes both best-response and behavioural variables. We find strong evidence
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that both play a role in network formation. In particular we consider several pos-
sible determinants of agents’ linking decisions, including best-response behaviour
and inertia. We identify two major drives to network formation: optimising best-
response behaviour and the attempt to coordinate on the efficient network structure,
often through reciprocal and inertial behaviour.

The paper is developed as follows. Section 2 describes the experimental de-
sign: the model and the experimental procedure. Section 3 presents the results and
Section 4 concludes the paper. The instructions (in their English translation) can be
found in Appendix 1. The software3 utilised for the experiment is available from the
authors upon request.

2 The Experimental Design

2.1 The Model

We model network formation as a non-cooperative simultaneous move game. As in
Goyal and Joshi (2006) we assume that players’ strategies are vectors of intended
links and that links are only formed when they are mutually agreed, i.e. desired by
both parties involved. There are positive network externalities in that both direct and
indirect connections are beneficial; however direct links are costly.

Consider a set N of n≥ 3 players, indexed by i = 1,2, . . . ,n. Each player i submits
a vector of intended links:

si = (si1,si2, . . . ,sin)

An intended link is si j = 0,1 where si j = 1 means that player i intends to link to
player j, while si j = 0 means that player i does not intend to link to player j. A link
between i and j is formed if and only if si j = s ji = 1. We denote the formed link
by gi j = g ji = 1, while we represent the fact that there is no mutually agreed link
between i and j by setting gi j = g ji = 0. A strategy profile for all players

s = (s1,s2, . . . ,sn)

induces an (undirected) network of links g =
{

gi j
}

i, j∈N , where players are nodes
and links are the edges between them. We say that i and j are connected in the graph
g if there exists a path of adjoining nodes k1,k2, . . . ,km such that gik1 = gk1k2 = . . . =
gkm−1km = gkm j = 1.

Denote by nd
i the number of direct neighbours of player i, and by ni the number

of his direct and indirect connections. More in detail, denote by nd
i the number of

elements of the set Nd
i = { j | gi j = 1} and by ni the number of elements of the set

Ni = { j | there is a path in g from i to j}. Notice that if i and j are directly linked,
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then there is a path between them (of length 1): hence necessarily ni ≥ nd
i . Player i’s

payoff, given his position in the network g, is assumed to be equal to:

π i (g) = b ·ni− c ·nd
i

where b and c are non-negative constants that represent respectively the unitary
benefit from (direct and indirect) connections and the unitary cost of direct links.

Players aim at maximising their payoffs and can rationally form new links or
sever existing ones to this aim. Goyal and Joshi (2006) characterise equilibrium
networks by introducing the notion of pairwise stable networks. A pairwise stable
network is such that there exists a Nash equilibrium strategy profile that induces
the network (so that no agent has any incentive to deviate from his current vector of
intended links) and such that no pair of agents have any incentive to form a new link.
More in detail, for any two agents who are not linked in a pairwise stable network, if
one of the two gains by establishing a new link, it must be the case the other player
involved is made strictly worse off by the new link. Formally:

Definition: A network g is a pairwise stable network if the following conditions
hold:

1. There is a Nash equilibrium strategy profile (s∗i ,s∗−i) that induces g;
2. For gi j = 0, if π i(g+gi j)−π i(g) > c then π j(g+gi j)−π j(g) > c

Goyal and Joshi show that all Nash networks are minimal. A minimal graph is
such that there is at most one path connecting any two agents: there are no redundant
links. The intuition why this has to hold is that if there are redundant links then there
are agents that can be reached both directly and indirectly. Players could obtain
higher payoffs by deleting their (costly) direct links to all those nodes that they are
able to reach indirectly through others.

When b > c, then all pairwise stable networks are both minimal and connected
(or minimally connected), i.e. there is one and only one path connecting any two
agents. The intuition of why this is so is that if there is any isolated node, given that
the benefit from an extra connection is higher than the cost of a direct link (b > c),
then there are incentives for a new link to be formed between the isolated player and
at least another node in the graph.

When b < c, the only pairwise stable network (and the only Nash network) is the
empty graph.

The complete network, where every node is directly connected to every other, is
an example of connected graph. The complete network is clearly not minimal, as
there are many redundant links. Examples of minimally connected graphs are the
star and the chain.

When the unitary benefit from indirect connections b is lower than the unitary
cost of direct links c, but not very much lower, we have a case of conflict between
individual incentives to network formation and social optimum. Individual rational-
ity leads to an empty Nash network. However aggregate profits may be higher in a
minimally connected network than in the empty graph. More in detail, the aggregate
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profits in an empty graph are always zero, while it is easy to check that the aggre-
gate profits in a star network, for example, are strictly positive as long as b > 2c

n .
Given that by assumption n≥ 3, this condition can be met for a large enough n even
when b < c.

2.2 The Experimental Procedure

The experimental sessions were conducted in Spring 2006 at LUISS University in
Rome. Subjects were first year Economics students and in total we had 84 partici-
pants: 28 women and 56 men, coming from the North (6%), the Center (60%) and
the South (34%) of Italy. Each subject participated in only one session and none
had previously participated in a similar experiment. We run 14 computerised ex-
perimental sessions, with six participants each. Each experimental session lasted
between 30 and 45 min. Subjects total earnings were determined by the sum of the
profits in each round and were paid using a conversion rate of 100 points per euro.
Participant earned approximately 35 C= on average.

We implemented two different treatments: sessions 1–7 (treatment 1) involved
a lower cost of link formation; sessions 8–14 (treatment 2) involved a higher cost
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of link formation. Initial endowment and unitary benefit were kept constant across
treatments. In more detail, parameters for both treatments are presented in the table
below:

Participants Initial endowment Cost Benefit
Treatment 1 (sessions 1–7) 6 500 90 100
Treatment 2 (sessions 8–14) 6 500 120 100

Under treatment 1 parameters are such that participants cannot run into losses.
Under treatment 2 losses were avoided by the fact that the computer would not
accept link proposals exceeding the budget constraint. All relevant parameters were
equal across participants and displayed on the screen at any time throughout the
experiment.

At the beginning of a session subjects were told the rules of conduct and provided
with detailed written instructions, which were read aloud by the experimenters. At
the end of each session, participants completed a brief questionnaire with basic de-
mographic information.

Sessions consisted of a minimum of 15 rounds, with a random stopping rule
determining the end of the experiment.4 In each round subjects were asked to submit
(anonymously and independently) a vector of intended links. The initial screen for
each participant is shown in Fig. 1a.

Participants are represented on the screen by different symbols which we consid-
ered neutral in that they do not provide subjects any particular clue when deciding
to establish a link with another player in the group.5 Subjects do not know their

Fig. 1a The initial screen
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Fig. 1b The participants’ screen at the end of round 4

symbol (or the other participants’ symbols) in advance and can identify themselves
on the screen because their symbol is circled in red. The screen also displays the
relevant parameters for the session at play. After all subjects have confirmed their
choice of network partners, the computer checks which links are mutually desired
and activates them. At the end of each round payoffs are computed and displayed on
the screen. Great care was put in making sure that all information available to exper-
imental subjects was provided in a user-friendly way. For this reason the graphical
interface was designed so that actual links are visualised on the screen as a graph,
rather than as a list of activated ties, or as a matrix of 0/1 connections.

As an example, Fig. 1b shows the participants’ screen at the end of round num-
ber 4. It displays the graph of all active links, total revenues, costs and profits in
the round. It also provides information on unmatched proposals: each subject is in-
formed of those players who have proposed a link to them but whom they have not
reciprocated. At any time during the experiment participants have access to a great
deal of information on past history: by clicking on the bar corresponding to each
round they are able to visualise the graph of active links and the profits obtained in
that round.

3 Results

In presenting our results, we distinguish between two different levels of analysis:
macro and micro aspects. In the macro analysis we mainly look at the overall re-
sulting network of established links, and at its evolution over time. The number of
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potential network configurations with six agents is very large: in our macro analysis
we focus on whether there is any particular network architecture, among the very
many that are possible, that emerges as stable in our experimental sessions and, if
it does, on how it compares with the one predicted by the theory. When we move
to consider the micro aspects we mainly focus on the analysis of the determinants
of individual behaviour for the proposals of new links. In particular we estimate
through a probit model the likelihood of link proposals as a function of best re-
sponse determinants and other behavioural factors.

3.1 Macro Aspects

Under treatment 1 any minimally connected graph is a pairwise stable network.
Minimally connected graphs are also efficient in that they maximise aggregate prof-
its. Under treatment 2 the only Nash network (and pairwise stable network) is the
empty graph. However any minimally connected graph is efficient.

As an example of treatment 1 (sessions 1–7), we show below the macro outcome
of experimental session 5. In all sessions under treatment 1 we do not find a definite
convergence to a particular network architecture, however we notice that there is
a tendency towards connectedness and inclusion. After the first few rounds, it is
unlikely to observe isolated nodes. For example, in session 5, for 5 out of 16 rounds
(rounds 7, 8, 12, 13, 14) the network formed was connected, with no agent excluded
from the network of links. Moreover, there is a tendency to eliminate redundant
links: for 7 out of 16 rounds the network was minimal (rounds 1, 2, 3, 8, 10, 11, 16),
i.e. any two agents who are connected are reached through a single path. Finally in
round 8 the resulting graph is minimally connected and hence it corresponds to a
pairwise stable network as predicted by the theory.

As an example of treatment 2, we show below the network formation process
for session 9. As far as minimality is concerned, under treatment 2 the outcome
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is marginally better than under treatment 1: direct links are expensive, and this is
reflected by the fact that there are fewer redundant connections. As one may expect
with these parameters, there is less connectedness and the number of isolated nodes
is higher than under treatment 1.
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We believe that convergence to a minimally connected graph is made very diffi-
cult by two main factors. First of all, as it has been remarked by the literature (see
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Kosfeld (2004)), the game that agents play has multiple equilibria and players find
it very difficult to coordinate on the same Nash equilibrium (clearly communication
was prevented during the experiment). Secondly, subjects display some aversion to
inertia and, whenever a minimally connected graph is reached in early rounds, it is
often abandoned later (in same cases to be reached again) by subjects who cannot
resist to the experimentation of new strategies.

Table 1 shows the average number of direct links, indirect connections and failed
links by round in each of the two treatments. On average experimental subjects have
established 1.64 direct links and 1.52 indirect connections per round in sessions 1–7
and 1.41 direct links and 1.44 indirect connections per round in sessions 8–14.

We also compute the ratio between indirect connections and direct links. Such a
ratio captures an important feature of the network architecture: the larger its value,
the larger the number of agents that the experimental subject has managed to reach
indirectly. The smallest value for this ratio is 0 (no other agent is accessed indirectly:
the subject has to bear the entire cost of his/her connections); the largest value for
this ratio is 4 (the subject is connected to five others, through a single direct link).

Table 1 Links and connections by round

Sessions 1 - 7 Sessions 8 - 14
Direct Indirect Failed Accpt/Prop Ind/Dir Direct Indirect Failed Accpt/Prop Ind/Dir

1 0.43 0.29 0.93 0.32 0.67 1.29 1.48 0.86 0.60 1.15
2 0.71 0.24 1.17 0.38 0.33 1.24 1.38 1.02 0.55 1.12
3 1.29 1.10 1.07 0.55 0.85 1.43 1.05 1.10 0.57 0.73
4 1.10 1.14 0.52 0.88 1.62 0.95 0.601.43 1.13
5 1.19 0.90 1.24 0.49

1.24
0.76 1.38 1.00 1.12 0.55 0.72

6 1.62 1.67 1.14 0.59 1.03 1.33 1.62 1.14 0.54 1.21
7 2.00 1.95 0.93 0.68 0.98 1.33 0.81 1.21 0.52 0.61
8 1.57 1.52 1.19 0.57 0.97 1.57 1.81 0.88 0.64 1.15
9 1.76 1.48 1.10 0.62 0.84 1.48 1.52 1.02 0.59 1.03
10 1.67 1.43 1.17 0.59 0.86 1.43 1.19 1.07 0.57 0.83
11 1.95 2.14 0.95 0.67 1.10 1.52 2.05 0.95 0.62 1.34
12 1.86 2.05 1.12 0.62 1.10 1.29 1.24 1.02 0.56 0.96
13 2.05 2.00 0.95 0.68 0.98 1.48 1.52 0.95 0.61 1.03
14 2.14 2.00 0.76 0.74 0.93 1.57 1.86 0.88 0.64 1.18
15 1.95 1.76 1.00 0.66 0.90 0.95 0.67 1.31 0.42 0.70
16 2.06 1.61 0.94 0.69 0.78 1.27 0.80 0.97 0.57 0.63
17 2.11 2.33 0.94 0.69 1.11 1.44 1.11 0.94 0.60 0.77
18 2.22 1.22 0.78 0.74 0.55 1.44 1.78 0.72 0.67 1.23
19 1.33 2.00 1.17 0.53 1.50 1.33 1.33 0.78 0.63 1.00
20 2.00 3.00 0.50 0.80 1.50
avg 1.64 1.52 1.04 0.60 0.90 1.41 1.44 0.97 0.59 1.00
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Here we find that, while there are fewer direct links under treatment 1 than under
treatment 2, the number of indirect connections that each experimental subject has
managed to secure on average through each of his direct links is higher in the high
cost treatment than in the low cost treatment. More in detail, each direct neighbour
brings 0.9 indirect connections in sessions 1–7 and 1 indirect connection in sessions
8–14. Moreover there are fewer failed links under treatment 2 (0.97 per round on
average), than under treatment 1 (1.04 per round on average). Finally the ratio of ac-
cepted links to proposed links is similar under both treatments: only approximately
60% of proposals are reciprocated and result in active links.

Figures 2,3 and 4 show the average number of direct links, indirect connections
and failed proposals over time. The number of direct links increases over time, and
more so for the low cost treatment, where the average number of links goes from
a minimum of 0.43 in round 1, to a maximum of 2.22 in round 18. There are not
substantial differences across the two cost treatments as far as the evolution over
time of both indirect connections and failed proposals is concerned. The number of
failed links declines over rounds, suggesting that experimental subjects learn over
time which are the nodes that are likely to reciprocate their proposals.

Table 2 shows the actual number of redundant links by session and by round. We
find that the average number of redundant links is much lower under treatment 2
(0.60) than under treatment 1 (1.18). The difference between the two treatments
becomes even more stark if we look at the average number of redundant links in
the last five rounds of each sessions, when the experimental subjects have clearly
acquired more experience of the network formation game. Figure 5 shows how the
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number of redundant links evolves over time: rather than decreasing, it increases for
sessions 1–7 and it stays stable between values of 0.5 and 1 for sessions 8–14.

Table 3 shows the actual number of isolated nodes by session and by round.
While the average number of isolated nodes does not differ greatly across treat-
ments, we do find significant differences when we focus on the average number of
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Table 2 Redundant links by session and by round
Redundant Links

1 0 0 0 0 0 1 0 0.14 0 2 1 0 0 0 0 0.43
2 0 0 0 1 0 0 0 0.14 0 2 0 0 1 0 0 0.43
3 3 0 0 1 0 0 0 0.57 3 1 1 0 0 0 0 0.71
4 1 0 0 1 1 0 0 0.43 0 1 1 0 1 0 1 0.57
5 1 0 0 0 1 0 1 0.43 0 4 0 0 0 0 1 0.71
6 4 0 0 1 1 1 0 1.00 1 0 0 1 0 1 0 0.43
7 4 0 1 3 2 0 1 1.57 0 1 1 0 1 0 1 0.57
8 4 0 0 3 0 0 1 1.14 1 2 1 0 0 0 0 0.57
9 4 0 0 1 3 1 1 1.43 0 1 1 0 0 0 1 0.43
10 2 3 0 0 0 0 4 1.29 0 2 1 0 0 0 3 0.86
11 2 2 0 3 0 0 3 1.43 2 0 0 1 0 0 0 0.43
12 2 1 0 1 2 0 1 1.00 2 1 0 0 0 1 0 0.57
13 5 3 0 1 3 0 0 1.71 1 2 0 0 0 0 3 0.86
14 4 4 0 4 2 0 0 2.00 0 2 0 0 1 0 1 0.57
15 5 4 0 0 2 0 1 1.71 0 0 1 0 0 0 0 0.14
16 5 4 2 0 0 0 1.83 1 0 0 0 3 0.80
17 4 0 1 1.67 0 0 3 1.00
18 5 2 1 2.67 0 0 1 0.33
19 0 0.00 0 0 2 0.67
20 1 1.00

avg 2.88 1.67 0.28 1.25 1.06 0.26 0.87 1.18 0.67 1.38 0.53 0.11 0.25 0.11 1.05 0.60
last 5 4.2 4.2 0.8 1.2 1.8 0.4 1 1.94 1 1.2 0.2 0 0.2 0 2 0.66
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isolated nodes over the last five rounds of each session. Here the low cost treatment
results in much more inclusive networks, where only 0.5 nodes are isolated on aver-
age. In the high cost treatment the number of isolated nodes does not decrease much
over time and equals an average of 1.37 in the last five round. Figure 6 shows the
evolution of the number of isolated nodes over time for both treatments.

Efficient networks in our setting are both connected and minimally connected: ef-
ficiency requires no isolated nodes and no redundant links. In the network formation
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Table 3 Isolated nodes by session and by round
Isolated Nodes

1 2 3 4 5 6 7 avg 8 9 10 11 12 13 14 avg
1 6 2 6 6 3 2 6 4.43 0 0 0 2 2 6 1 1.57
2 4 4 3 1 1 2 4 2.71 1 0 1 2 1 6 1 1.71
3 1 3 1 0 2 1 2 1.43 0 1 1 0 1 2 2 1.00
4 0 4 0 1 1 1 2 1.29 2 0 0 1 0 2 3 1.14
5 1 2 1 1 0 4 2 1.57 0 0 0 1 2 3 3 1.29
6 0 1 1 0 2 3 1 1.14 0 1 1 0 3 3 2 1.43
7 0 0 1 0 0 2 0 0.43 1 1 1 0 2 1 1 1.00
8 0 3 1 0 0 4 2 1.43 0 0 1 1 1 1 0 0.57
9 0 2 2 0 1 2 1 1.14 0 0 0 0 0 3 1 0.57
10 0 1 2 0 1 2 0 0.86 1 0 2 4 1 3 1 1.71
11 0 0 2 0 1 1 0 0.57 0 1 2 0 0 1 1 0.71
12 1 0 2 0 0 0 0 0.43 1 1 1 4 2 2 1 1.71
13 0 0 2 0 0 0 1 0.43 0 1 4 1 0 1 1 1.14
14 0 0 2 0 0 2 0 0.57 0 0 0 2 1 1 0 0.57
15 1 0 1 0 1 3 0 0.86 4 0 1 2 2 4 0 1.86
16 0 0 1 0 0 1 0.33 2 2 3 2 1 2.00
17 0 0 1 0.33 1 3 1 1.67
18 0 2 1 1.00 0 1 1 0.67
19 1 1.00 2 3 0 1.67
20 0 0.00

avg 0.88 1.22 1.67 0.56 0.81 1.74 1.40 1.18 0.67 0.50 1.00 1.32 1.31 2.53 1.05 1.20
last 5 0.4 0 1.2 0.2 0.2 1.4 0.2 0.51 1 0.8 1.6 1.4 1.6 2.6 0.6 1.37
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process there is clearly a trade-off between these two objectives: when experimental
subjects propose many links it is more likely that there are fewer isolated nodes, but
it is also more likely that some of the established links are redundant because they
link directly and costly to nodes to which they are already indirectly connected. On
the other hand, when the network is more sparse and there are fewer direct connec-
tions, there are possibly fewer redundant links, while the number of isolated nodes is
likely to be higher. A network is more efficient when it obtains higher connectivity
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(i.e. it minimises the number of isolated nodes) by the smallest number of redundant
links. Figure 7 shows this trade-off for each of the sessions. We find that the net-
work formation process leads to more efficient networks in the high cost treatment:
in sessions 8–14 (unitary cost of direct links equal to 120) the experimental subjects
managed to form networks with a smaller number of redundant links and a smaller
number of isolated nodes, than in sessions 1–7 (unitary cost of direct links equal
to 90).

Table 4 shows the average total profit made by experimental subjects in the two
treatments. It is not surprising to find that the average profit in sessions 1–7 (171.93)
is higher than in sessions 8–14 (115.96). We also compare the actual profits obtained
in the experimental sessions to what would have been obtained by the six partici-
pants on average if they had formed minimally connected networks such as the star
or the chain. In sessions 1–7, if participants had linked up as a star the average per
round profit would have been equal to:

(500−450)+5(500−90)
6

= 350

where (500−450) = 50 is the profit of the hub, and (500−90) = 410 is the profit
of each of the five spokes.6 Similarly, in sessions 8–14 the average payoff for a star
network is equal to:

(500−600)+5(500−120)
6

= 300
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Table 4 Average profits by round

Sessions 1 − 7 Sessions 8 −14
Profit % Profit Profit % Profit

wrt chain or star wrt chain or star
1 32.86 0.09
2 32.86 0.09
3 124.29 0.36
4 123.81 0.35
5 103.33 0.30
6 185.71 0.53
7 219.05 0.63

121.90 0.41
113.33 0.38
76.19 0.25

133.33 0.44
72.38 0.24

135.24 0.45
54.29 0.18

8 171.90 0.49 149.52 0.50
9 168.10 0.48 122.86 0.41
10 161.43 0.46 90.48 0.30
11 236.67 0.68 174.29 0.58
12 225.24 0.64 98.10 0.33
13 223.33 0.64 122.86 0.41
14 225.24 0.64 154.29 0.51
15 198.57 0.57 47.62 0.16
16 222.00 0.63 54.67 0.18
17 254.44 0.73 82.22 0.27
18 144.44 0.41 148.89 0.50
19 213.33 0.61 106.67 0.36
20 260.00 0.87

avg 171.93 0.49 115.96 0.39

We find that while in the low cost treatment participants on average managed to
secure profits equal to 50% of the profits obtainable in a minimally connected net-
work, in the high cost treatment profits were equal to less than 40% of those that par-
ticipants could have achieved if they had for example formed a chain. The networks
that were formed in the high cost treatment were less profitable on average, despite
being more efficient, in that they presented a superior trade-off of redundant links
versus isolated nodes compared to networks formed in the low cost treatment (see
Fig. 8). This is mostly due to the lower levels of connectivity obtained in sessions
8–14, i.e. to the larger number of isolated nodes that one observes when the cost
of direct links is higher, especially towards the end of each experimental session.
Figure 8 shows the evolution of average profits over time: they tend to increase, but
at a higher rate for sessions 1–7 than for sessions 8–14.

3.2 Micro Aspects

We move next to a micro analysis of the determinants of individual behaviour in
link formation. Such an analysis is particularly valid in this context where because
of coordination problems, macro convergence is difficult to observe. In fact, even in
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presence of mis-coordination, we still ought to be able to determine whether at the
individual level subjects are behaving as the theory predicts and what are the main
drives to link formation.

Through a probit model we estimate the probability of each subject i proposing a
link to each other subject j as a function of the position of i and j in the network of
links that were activated in the previous round and that are represented graphically
on the subjects’ screens. More in detail we estimate the probability of proposing
a link as a function of: number of links of the proponent in the previous round;
number of links of the recipient in the previous round and cost of link formation.
Moreover we include as regressors several binary variables that denote whether the
proponent and recipient were already linked in the previous round; whether propo-
nent and recipient were indirectly linked through other agents in the previous round;
whether the proponent attempted to establish a link with the recipient in the previ-
ous round but failed, finally whether the recipient attempted to establish a link with
the recipient in the previous round but failed.7

We identify two main drives to link formation: best response behaviour and at-
tempt to coordinate on an efficient architecture. Rationality requires agents to re-
spond to the present network by establishing direct links to those who have a larger
number of connections and not to propose a direct link to those that they can other-
wise reach through indirect connections. Our estimates show that the likelihood of
proposing a link is significantly affected by the number of links that the recipient has
in the previous round. Moreover we find strong evidence of the fact that whenever
the proponent and the recipient are indirectly linked in the previous round, a link
proposal is less likely. Hence costly link formation is indeed directed to increase
the profits that accrue to agents when they establish connections to those nodes that
they are not able to reach otherwise.
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The second drive to link formation is in the attempt to coordinate on an efficient
architecture: participants try to avoid unmatched proposals by using the information
that they have about subjects that have proposed to them in previous rounds and by
relying on repeated interaction. The likelihood of i proposing a link to j increases
when i and j were linked in the previous round, it increases when j has proposed
a link to i and has failed the connection in the previous round. Subjects are also
more likely to propose again to recipients that did not reciprocate in the past. As a
result agents with many links are also more likely to propose links in the future. Not
surprisingly we find that agents are less likely to propose links when the cost of link
formation is higher.

Tables 5c and 5d present the results for our probit model respectively without
and with demographic variables. The regression with demographics shows that the
gender of experimental subjects does not affect the likelihood of link proposals. On
the other hand, our regional dummies are significant with subjects from the south of
Italy being less likely to form connections.

Table 5c Determinants of Individual Behaviour. Random effects probit model

Dependent Variable: i proposes a link to j 

Coefficient Std. Error P-Value

unitary cost of link
constant
Number of observations: 6720
Log-likelihood: −4181.4676

links of j in (t-1)
links of I in (t-1)
i and j linked in (t-1)
j failed with i in (t-1)
i failed with j in (t-1)
i and j indirectly linked in (t-1)

0.01
0.02
0.07
0.05
0.05
0.06
0.00
0.22

0.000
0.000
0.004
0.000
0.000
0.006
0.009
0.62

−0.17
−0.05

0.07
0.10
0.21
0.39
0.26

0.11

Table 5d Determinants of Individual Behaviour. Random effects probit model with demographics

Dependent Variable: i proposes a link to j  

links of j in (t-1)  0.000
links of I in (t-1)  0.000
i and j linked in (t-1) 0.003
j failed with i in (t-1) 0.000
i failed with j in (t-1) 0.000
i and j indirectly linked in (t-1) 0.007
unitary cost of link  0.015
constant 0.970
Female 0.709
North and Centre 0.002
Number of observations: 6720
Log-likelihood: −4178.8907 

0.06
0.10
0.21
0.39
0.26
−0.17
−0.01
−0.01
0.03
0.15

0.01
0.02
0.07
0.05
0.05
0.06
0.00
0.24
0.07
0.07

Coefficient Std. Error P-Value
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4 Conclusions

In this paper we explore network formation behaviour in a laboratory experiment.
Interesting insights stem from both a micro and a macro level analysis.

We present two treatments. In the first one (low cost), any minimally connected
network is both pairwise stable and efficient. In the second one (high cost), the the-
oretical prediction for a stable architecture is indeed unique (the empty graph) but
inefficient: any minimally connected graph yields higher aggregate payoffs than the
empty graph. For the low cost treatment, in accordance with the existing literature,
we find that convergence to a stable network architecture is problematic because
of the coordination problem caused by the multiplicity of equilibria. Quite inter-
estingly, we also find lack of convergence in the high cost treatment, despite the
fact that the equilibrium here is unique and does not require much coordination. We
attribute this finding to the fact that subjects aimed at the efficient network, which
is – again – not unique.

Despite lack of convergence, we detect a tendency to inclusion in the low cost
treatment: the number of isolated nodes in the network of social ties decreases
rapidly over time. In the low cost treatment this happens at the cost of greater redun-
dancy: the number of redundant links increases over time. In the high cost treatment,
we detect a tendency to minimality: the number of redundant links decreases over
time. Symmetrically, this occurs at the cost of lower inclusion: the number of iso-
lated nodes does not seem to decrease here as in the case of the low cost treatment.

The most commonly observed deviations from stable networks are: overconnect-
edness and the fact that minimally connected graph reached earlier on in the session
are later departed from. A possible explanation for overconnectedness is that, due to
multiplicity of equilibria, subjects try to cope with strategic uncertainty by forming
redundant links as a form of insurance. Some aversion to inertia may explain the
latter phenomenon.

From a micro perspective, we detect two main drives to link formation: best-
response behaviour and attempt to coordinate on an efficient architecture. We find
that, as predicted by a rational best-response behaviour, subjects are more likely to
propose links to those who have a larger number of connections and are less likely
to propose a link to those that they expect to be able to reach indirectly through the
ties established by others. At the same time participants attempt to avoid miscoordi-
nation by proposing to those whose proposals they have received in the past and by
relying on inertia and repeated interaction.

Appendix 1: Instructions (English Translation)

Welcome
This is an experiment on the formation of links among different subjects. If you

make good choices you will be able to earn a sum of money that will be paid to you
in cash immediately at the end of this session.
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You are one of the six participants to this experiment; at the very beginning the
computer will randomly assign you an initial budget (equal across participants).
Also, the computer will randomly assign you an icon (Dropper, Radio, Cube,
Floppy, Hand lens, Hour glass) that will to identify you throughout the experi-
ment and will assign you an initial budget (equal across participants). The icon that
identifies you is circled in red on your screen.

The experiment consists of a random number of rounds: there will be at least 15
rounds, after which a lottery administered by the computer will determine whether
there is any further round or the experiment is over.

Each participant to this experiment represents a node. At the beginning of the
experiment all nodes are isolated. In each round the computer will ask you whether
you want to propose any link and to whom. You can propose 0, 1 or more links. The
computer will collect the proposals from all participants and will activate only the
links which are desired by both subjects involved (reciprocated proposals).

Your screen will show the graph of active links. The box at the bottom right of
your screen will show you who has proposed you a link in the previous round and
whom you have not reciprocated.

Each link that you manage to activate has a cost (equal across participants) that is
indicated on the screen. At each round the computer may reject your link proposals
if they entail an expenditure that is higher than your budget for that round.

Your revenues in each round are automatically computed and are given by the
product by the revenue per node (equal across subjects and indicated on your screen)
and the number of nodes that you manage to reach both through your direct links
and the links activated by other participants.

Computing costs and revenues

Example: subject Radio is directly linked to Floppy and Dropper and indirectly,
that is through Dropper, to Hand lens.

 
The profit of Radio is: 

 
total revenues– total costs

total revenues = number of nodes reached (directly and indirectly) x revenue per node = 3 x 10 = 30
total costs = direct connections x cost of each connection = 2 x 3 = 6

profit = 24 

Unitary revenue:  10 
Cost of each connection: 3 

In each round the computer will work out your profit and will display it on your
screen. The overall profit from the experiment is given by the sum of your profits
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in all rounds. At the end of the experiment you will be paid in cash an amount
equivalent to the 10% of your total profit.

More in detail

At the beginning of the experiment please wait for instructions from the experi-
menters without touching any key.

When the experimenter will ask you to do so, please double-click only once on
the “Network Client” icon on your desktop.

The following screen will appear:

The screen gives you all the information regarding the round that you are about
to play.

Be careful: each round has a maximum time duration given by the number of
seconds indicated in red at the top-right of your screen. If you have not managed to
make your choice by then, the computer will immediately proceed to the next round.

Your screen shows all data relative to the current round (available budget, costs
and revenues) as well as the results that you have obtained from each of the previous
rounds.

At the end of each round, the graph will show the links which have been acti-
vated by you and the other participants (as shown above). Moreover the table that
summarises your performance in the current round will be updated. You will have
the possibility to review the situation of previous rounds by clicking on the corre-
sponding bar in the same table. The table at the bottom right of your screen gives
you additional information on proposals that you have received but not matched in
the previous rounds.

When the message “Round is now active” appears at the bottom of your screen,
you can make your choice by ticking the boxes corresponding to the icons that you
want to propose a link to. When you are done, press “Confirm”. When all partici-
pants have confirmed their choices, the computer will show the results of the round
on the screen.
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You will be advised of the beginning of a new round by a “New Round” message.
Be careful: after the 15th round, red and green lights will flash on the screen. If the
lights stop as green, you will play another round; if they stop as red, the experiment
is over.

It is very important that you make choices independently and that you do not
communicate with other participants during the experimental session.

At the end of the last round the experiment is over and you will be paid in cash
for a sum corresponding to your profit during the course of the whole experiment.

For any problem, please contact the experimenters.
Enjoy.
May 2006
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Notes

1The effect of network membership and architecture on outcomes has also been studied through
laboratory experiments. See for example, Cassar (2007) for an experimental study on network ef-
fects on cooperation and coordination, and Cassar, Crowley, and Wydick (2007) for a field exper-
iment on social network effects on trust. For a thorough review on experiments with exogenous
networks, see Kosfeld (2004).
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2We believe that such network formation protocol is not only more realistic, but also that it
may address some of the concerns on lack of convergence to an efficient architecture because of
inequality aversion expressed by the literature (see, for example, Falk and Kosfeld (2003)).

3The software utilised for the experiment has been developed by InformaRoma. A special
thanks goes to Andrea Lombardo.

4At the end of round 15 (and of each additional round after that), a lottery administered by the
computer decided if an additional round had to be played. The probability of new rounds was fixed
at 50%. The lottery was visualised on participants’ screens as two flashing buttons, one red (with a
NO sign) and one green (with a YES sign).

5In this setting we want to avoid any salient coordination device that induces coordination on a
particular network. In the pilot for this experiment (see Di Cagno and Sciubba (2005)) we labeled
participants with A, B, C, D, E, F and we found that the alphabetical ordering was explaining most
of the networking decisions. See also Bernasconi and Galizzi (2005) and Falk and Kosfeld (2003).

6It is easy to check that average profits for the chain are also equal to 350.
7Recall that in our setting each subject is informed about those players who have made link

proposals to them in previous rounds and have not been reciprocated.
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