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Introduction—Quantitative Risk Assessment (QRA) for Natural 
Hazards 

 
This introduction and executive summary covers the origins of this monograph as a 
sequel to the five previous monographs generated by ASCE CDRM members and 
other volunteers as well as a brief synopses of the papers included in this monograph. 

The Monograph as a Sequel 

This monograph, produced by the Council on Disaster Risk management (CDRM), is 
a sequel to  five previous monographs, Acceptable Risk Processes: Lifelines and 
Natural Hazards (2002) and ASCE CDRM Monograph No. 1, Infrastructure Risk 
Management Processes: Natural, Accidental and Deliberate Hazards (2006), both 
edited by Craig Taylor and Erik VanMarcke; Disaster Risk Assessment and 
Mitigation (2008) edited by Nasim Uddin and Alfredo Ang; Multihazard Issues in the 
Central United States (2008), edited by James Beavers; and Windstorm and Strom 
Surge Mitigation (2009) edited by Nasim Uddin.  

Genesis of This Monograph  

Recent events throughout the world have drawn attention to the vulnerability of 
infrastructure to natural hazards. Moreover, a risk analysis of any asset is not 
complete unless natural hazards are considered. Natural hazards include, at a 
minimum, the effects of earthquake, hurricane, tornado, and flood. Each of these 
events can be considered for any particular asset by determining the expected 
frequency of the event and estimating the consequences. The vulnerability of the asset 
is dependent upon the type of structure and how it will be affected by the initiating 
event. Additional natural hazards, such as ice storms, extreme cold weather, wildfire, 
avalanche, tsunami, landslide, mud slide, and others, should be included if the 
probability of occurrence and the consequences are higher than the four natural 
hazards mentioned above. This monograph is based on the ASCE tutorial and 
workshop organized by Prof. Alfredo Ang of the University of California at Irvine 
titled “Engineering Application of QRA” held during the fourth Civil Engineering 
Conference in the Asia region (4th CECAR, June 25-27, Taipei, 2007). The QRA 
program included a morning session and an afternoon session. 
 
In the morning session, Prof. Ang presented a tutorial titled “Introduction to 
Fundamentals for Quantitative Risk Assessment.” The first paper of the monograph is 
based on the tutorial and titled “An Application of Quantitative Risk Assessment in 
Infrastructures Engineering,” which summarized the practical aspect of quantitative 
risk assessment (QRA) highlighting engineering decision-making with emphasis on 
the design of civil infrastructures. Besides the estimation of the expected risk 
measure, the distribution of the risk resulting from the uncertainty in the calculated 
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risk is equally important; the latter provides more complete information and permits 
the decision-maker the option of selecting a risk-averse measure to minimize the error 
(or increase the confidence) in making the right decision. Quantitative risk is also of 
significance for developing risk-based optimal design of infrastructures for mitigating 
risks from natural hazards. The process is illustrated numerically with a hypothetical 
example of the risk assessment (including risk reduction) and of retrofitting the levee 
system in New Orleans assuming that an assessment is performed in 1990—15 years 
prior to the occurrence of Katrina in 2005. The practical implementation of QRA is 
also emphasized. 
 
The next six papers on the monograph are based on the six full papers presented in 
the afternoon session. 
 
In the monograph’s second paper titled Quantitative Risk Analysis Applied to Dams, 
Prof. Erik Vanmarcke explored the value and use of probabilistic risk assessment, 
with a focus on an action-oriented approach to decision-making applicable to 
(systems of) dams, in which the engineer estimates dam failure risks and their 
consequences and quantifies the effectiveness and economic benefits of alternative 
strategies aimed at risk reduction. The methodology presented in his paper provides a 
format for summarizing and accounting for (in the case of dams) data about past dam 
failures, the relative frequency of various causes of failure, the consequences of 
failure, and the effectiveness of different risk mitigation measures. It facilitates 
communication about risk and the costs and benefits of reducing risk among 
stakeholders in decision situations involving mitigation of hazards. Most importantly, 
it enables quantifying the benefits of actions aimed primarily at risk reduction. In this 
broad and varied context, the concepts and tools of quantitative risk analysis appear 
essential to advancing the art and practice of civil engineering.  
 

In the third paper, Risk Assessment for Wind Hazards, Prof. Nasim Uddin discussed 
current wind-related quantitative risk assessment methodologies with examples. 
Recent research developments on modeling wind speed extremes associated with 
tropical cyclones and tornadoes are also briefly summarized in the paper.  
  
Prof. Anne Kiremidjian, with co-authors Evangelos Stergiou and Renee Lee in their 
paper titled Quantitative Earthquake Risk Assessment, presented a brief summary of 
earthquake risk assessment methods. The method considers ground motion, 
liquefaction, and landslide hazards as well as the contribution of direct physical loss 
and functional loss, and can be applied either to a single structure or to group of 
structures that are spatially distributed in a region exposed to earthquakes. 
Furthermore, lifeline systems, such as water, power, communications, and 
transportation systems, can be analyzed with the consideration of the network flow 
through the system. For either a single structure or a distributed system, the risk can 
be due to direct damage or to loss of functionality. An example demonstrates the 
application of the method to a transportation network system within the San Francisco 
Bay Region. 
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In their paper Risk Assessment for Bridge Decision-Making, Prof. Dan M. Frangopol 
and Thomas B. Messervey investigate how the inclusion of risk can enhance the 
design, assessment, and management of bridge structures. The effect of obtaining 
more precise information is modeled through the reduction of the standard deviation 
of random variables within performance functions used to model a structure’s 
performance over time within a reliability analysis. Similarities are investigated 
between the risk-based decision-making process and reliability-based life-cycle 
management (LCM) methods with the intent of combining synergistic benefits from 
each approach. A pre-posterior analysis in a Bayesian framework is conducted to 
demonstrate how life-cycle cost analysis can be utilized to facilitate the design of 
monitoring solutions by establishing cost/benefit benchmarks for consideration by 
bridge managers.  
 
Prof. Bilal M. Ayyub and William L. Mcgill in their paper, An All-Hazards 
Methodology for Critical Asset and Portfolio Risk Analysis, develop a quantitative 
all-hazards methodology for critical asset and portfolio risk analysis (CAPRA) that 
considers both natural and human-caused hazards. The data requirements for CAPRA 
include both historical information and expert opinions, and uncertainty is 
accommodated as appropriate using standard techniques for uncertainty propagation 
and representation. A general formula for all-hazards risk analysis is obtained that 
resembles the traditional model based on the notional product of consequence, 
vulnerability, and threat, though with clear meanings assigned to each parameter. The 
methodology is briefly introduced and demonstrated using several illustrative 
examples based on notional information. 
 
In the final paper of the monograph, A Methodology for the Risk Analysis and 
Management of Protected Hurricane-Prone Regions, Prof. Ayyub introduces a 
quantitative risk analysis methodology for hurricane prone areas protected by a 
hurricane protection system. The methodology is intended to assist decision-makers 
and policy-makers, and has the characteristics of being analytic, quantitative, and 
probabilistic. Quantifying risk using a probabilistic framework produces hazard 
(elevation) and loss-exceedance rates based on a spectrum of hurricanes according the 
joint probability distribution of the characteristic parameters that define hurricane 
intensity and the resulting surges, waves, and precipitation. The hazard is quantified 
using a probabilistic framework to obtain hazard profiles as elevation-exceedance 
rates, and the risk is quantified in the form of loss-exceedance rates based on a 
spectrum of hurricanes determined using a joint probability distribution of the 
parameters that define hurricane intensity. The proposed methodology will enable 
decision-makers to evaluate alternatives for managing risk, such as providing 
increased hurricane protection, increasing evacuation effectiveness, changing land use 
policy, enhancing hurricane protection system operations, and enhancing 
preparedness.  
 
In conclusion, the monograph should appeal to all those concerned with safeguarding 
infrastructures from the effects of natural hazards. With its team of expert 
contributors, who reflect many years of specialized experience, including the private, 
governmental, and academic perspectives, the monograph will be a standard reference 
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in many fields of engineering including risk assessment, disaster management, 
engineering mechanics, and structural engineering. It can serve as the reference text 
of risk assessment for disaster management course on homeland security.  
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Chapter 1: An Application of Quantitative Risk Assessment in 
Infrastructures Engineering 

By A. H-S. Ang, University of California, Irvine 

Abstract 

The practical aspect of quantitative risk assessment (QRA) is highlighted for 
engineering decision-making with emphasis on the design of civil infrastructures. 
Besides the estimation of the expected risk measure, the distribution of the risk 
resulting from the uncertainty in the calculated risk is equally important; the latter 
(the distribution) provides more complete information and permits the decision-maker 
the option of selecting a risk-averse measure to minimize the error (or increase the 
confidence) in making the right decision. Quantitative risk is also of significance for 
developing risk-based optimal design of infrastructures for mitigating risks from 
natural hazards. The process is illustrated numerically with a hypothetical example of 
the risk assessment (including risk reduction) and of retrofitting the levee system in 
New Orleans assuming that an assessment is performed in 1990, 15 years prior to the 
occurrence of Katrina in 2005. The practical implementation of QRA is emphasized. 

Introduction 

Engineers deal with risks all the time; however, these risks are seldom in quantitative 
terms. They are generally in qualitative terms and are dealt with intuitively based on 
engineering judgments. For example, major designs are performed through the use of 
factors of safety. Such factors are required to cover uncertainties inherent in materials, 
in the specified loadings, and in the calculational models, and are intended to 
minimize the risk underlying a design. The use of such safety factors is proper and 
serves to greatly simplify the design process; however, the proper values of these 
factors ought to be consistent with an acceptable or tolerable risk underlying a design. 
For this latter purpose, quantitative evaluations of the risk and of its uncertainty are 
relevant and are needed in order to make the proper risk-informed decisions in the 
determination of the appropriate factors of safety.  
 
In the case of natural hazards, risk is most meaningful when expressed in terms of 
potential human sufferings and/or economic losses. Besides the probability of 
occurrence of a hazard, risk must include the potential adverse consequences that can 
result from the hazard event. The risk associated with natural hazards are very real, 
such as from strong earthquakes and associated tsunamis, high hurricanes (or 
typhoons), tornadoes, floods, and massive landslides. The forces created or induced 
by such natural hazards are usually extremely high and can cause severe damages and 
failures of engineered systems. Engineers, however, must still plan and design such 
structures and infrastructures in spite of the extreme forces produced by one or more 
of these natural hazards. How safe should these infrastructures or facilities be for 
resisting the forces of natural hazards, of course, depends on the capital investments 
that stakeholders, such as a government entity responsible for funding, are willing to 
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make (for safety and reliability) to prepare and protect against or reduce any 
impending risk to future hazards. To make the proper decisions on needed or optimal 
investments, information on risk and associated risk reduction accruable from 
additional investment are clearly pertinent; this technical information must be 
provided to the decision-makers. 
 
In formulating engineering decisions, such as for the design of infrastructures against 
the forces of natural hazards, the significance of calculated risks in terms of potential 
damage and other adverse consequences cannot be over-emphasized. However, the 
uncertainty (of epistemic type) in a calculated risk is equally significant and relevant. In 
this regard, it is the engineer’s primary responsibility to provide the proper technical 
information to the decision-makers and stakeholders in the construction of protective 
infrastructure systems for mitigating a hazard. For this latter purpose, quantitative risk 
assessment methodology provides the tools needed. The fundamentals of QRA are 
summarized below with an example illustrating the numerical process of assessing risk 
for natural hazard mitigation and of estimating related risk reduction. The same 
example also illustrates the application of QRA in formulating optimal design based on 
whole life cost consideration. Although the application to infrastructures for natural 
hazard mitigation is emphasized and illustrated, the same QRA concepts apply equally 
to other applications in civil engineering.  

Quantitative Risk-Assessment Methodology 

Information on risk is often presented in qualitative terms, for example, as high, 
medium, or low. More often than not, information in this form is ambiguous and 
difficult to interpret; moreover, it is not possible to perform risk-benefit trade off 
analysis, which is often needed for formulating optimal decisions. For this latter 
purpose, risk needs to be expressed in quantitative terms, such as potential number of 
fatalities and injuries, and/or potential economic losses in the case of natural hazards. 
Similarly, quantitative risk information is needed to assess the benefit of investment in 
risk reduction from which the benefit associated with a reduction in risk can be made 
transparent and meaningful and provide the basis for a proper benefit-risk study. QRA 
is relevant also in the development of optimal designs for minimum life-cycle cost.  

Uncertainty in Estimated Risk 

In assessing risk, especially relative to natural hazards, significant uncertainties can 
be expected. The occurrence of a given hazard within a given time window, such as a 
strong-motion earthquake in a particular region of the world, is unpredictable; 
moreover, the damaging effects of the earthquake are highly variable and difficult to 
estimate with precision. Also, the human casualties and sufferings as well as the 
financial and economic losses that are possible consequences following the 
earthquake are often difficult to quantify and, therefore, may only be assessed 
judgmentally. It is, thus, easy to recognize that there is considerable uncertainty in the 
quantitative assessment of risk associated with natural hazards or similar extreme 
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events. Such uncertainties, however, are important and the evaluation of their 
significance is the essence of a quantitative risk assessment.  
 
Uncertainties may be classified into two broad types (see e.g., Ang and Tang, 
2007)—namely, the aleatory and the epistemic types. The aleatory type is data-based 
and is associated with the natural randomness or inherent variability of a 
phenomenon; whereas, the epistemic type is knowledge-based due to our insufficient 
knowledge for predicting the phenomenon and in estimating the associated effects 
and consequences. In this regard, the aleatory uncertainty would give rise to a 
calculated risk, whereas the epistemic uncertainty would define the range or 
distribution of possible risk measures (representing the uncertainty in the calculated 
risk). Both the calculated risk and its uncertainty are equally important. It is, 
therefore, important to clearly differentiate the two types of uncertainty and properly 
delineate their respective effects. Irrespective of the type of uncertainty, however, the 
basic tools for its modeling and the analysis of the respective effects require the same 
principles of probability and statistics.  

Probability Models in QRA  

Probability models, therefore, are the basic tools for quantitative risk assessment. 
However, risk is more than just probability; it must include the potential 
consequences from the occurrence of an adverse event. In the case of natural hazards, 
the occurrence of a particular hazard in time and location is invariably unpredictable, 
and its destructive effects on structures and infrastructures are highly variable. 
Finally, the resulting consequences of the destructive effects invariably contain 
significant uncertainty. Therefore, for quantitative considerations, each of these 
aspects may be modeled and evaluated using probability models as outlined below 
(see also Ang 2006a). 
 
QRA will generally consist of three components, which may be defined, respectively, 
as follows: 
1. hazard analysis—the determination of the probability of occurrence of an adverse 

event within a given time window;  
2. vulnerability analysis—the estimation of the extent and severity of damage to 

made-made and protective systems, and  
3. consequence analysis—the estimation of the potential consequences caused by 

the   occurrence of the adverse event. 
 

The product of the above three components constitutes the estimated risk, R; that is 
 

 z u qR H V C    (1-1) 

 
where:  Hz = the result of a probabilistic hazard analysis; 
 Vu = the result of a vulnerability analysis; may be in terms of the probability 

or fraction of damage to existing infrastructures; 
 Cq= the estimated potential consequences resulting from the occurrence of 

the adverse event. 
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As there are epistemic uncertainties in estimating or calculating each of the 
components in Eq. 1-1, the calculated risk will also contain uncertainty leading to a 
range (or distribution) of the possible risk measures. It might be pointed out that the 
aleatory and epistemic uncertainties may be combined into a total uncertainty; in such 
a case, however, the resulting calculated risk will represent only the mean (or “best 
estimate”) value of R. 

Analysis of Hazard or Adverse Event 

The determination of the occurrence probability of an adverse event, such as a natural 
hazard, will obviously depend on the particular hazard. For example, in the case of 
earthquake hazards, probabilistic models for seismic hazard analysis are well 
established (e.g., Cornell 1968; Der Kiureghian and Ang 1977); such models and 
associated recent refinements (e.g., Harmsen 2005) are now widely employed in 
practice. Similarly, models for the hazard analysis of tornado strikes have been 
developed by Wen and Chu (1973); whereas, for wind storms and hurricanes and 
riverine floods, the respective occurrence probabilities at a given location over a 
specified period may be estimated from appropriate local or regional statistical data, 
modeled by extreme-value distributions (e.g., Gumbel 1954) as appropriate.  

Vulnerability Analysis  

Given the occurrence of a particular hazard, there is some chance that facilities or 
infrastructures within the affected zone will be severely damaged or collapsed. This 
probability, of course, will depend on the distribution of the maximum force from the 
hazard relative to the capacities of the existing infrastructure systems for resisting 
such forces. As the maximum forces and the capacities will both contain variability 
and uncertainty, each may be represented with a probability model. That is, the 
maximum forces and capacities can be represented with respective random variables 
and associated probability distributions. A vulnerability analysis may then be 
performed and should yield the fraction of damage or failure to existing infrastructure 
systems in a city or regional area 

Analysis of Consequences  

The adverse consequences caused by an extreme event may be very severe, such as 
large magnitude earthquakes, high category hurricanes (or typhoons), or massive 
landslides and mudflows. These may often involve large numbers of fatalities and 
injuries, high economic and financial losses, major disruptions of utilities and 
transportation facilities, and related indirect consequences caused by ripple effects. 
The estimation of the consequences associated with the occurrence of a given event is 
often difficult and may have to be based largely on judgments, that is, relying on 
judgments from experts with knowledge gained through experience from similar 
events. Even then, the estimated consequences would contain significant uncertainties 
(of epistemic type) and may be expressed only as respective ranges of possible losses. 
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Role of QRA in Optimal Design of Infrastructure Systems 

Optimal design of engineering facilities or infrastructures may be based on 
minimizing the expected life-cycle cost, E(LCC). On this basis, the same optimal 
design would be obtained when other percentile values of the LCC are used in the 
optimization process; this has been verified by Ang and De Leon (2005). However, 
for risk-informed decisions, higher percentile values (such as the 75 percent or 90 
percent value) rather than the mean or median value, of the LCC may be selected or 
specified in order to minimize the chance of under estimating the actual life-cycle 
cost for the optimal design (Ang 2006b). 

A Numerical Illustration 

An (hypothetical) example is described numerically below to illustrate the conceptual 
process of QRA as outlined above. In order to clarify the steps in the QRA process, 
the problem is necessarily idealized, although the assumptions are reasonably 
realistic. For this purpose, suppose that an analysis of the hurricane risk for New 
Orleans (for a period of 20 years) was performed 15 years (say in 1990) before the 
occurrence of Katrina, a Category 4 hurricane, in August 2005. In this illustrative 
example, the numerical values used are hypothetical and may not be completely 
accurate (as they are pre-Katrina). Nevertheless, they serve to illustrate the 
quantitative process of assessing the underlying risks and associated uncertainties1 for 
the purpose of providing the essential quantitative information for making risk-
informed decisions for mitigating a future hazard. 
 
Assume that upon careful examination of the recorded data on hurricanes in the Gulf Coast 
region of the United States, the return period of a Category 4 hurricane striking the vicinity 
of New Orleans is determined to be around 100 years; this means that there is a 1 percent 
average probability each year, and approximately a 20 percent probability over a 20-year 
period, that a Category 4 hurricane can be expected to hit the city of New Orleans and its 
vicinity. A 20 percent probability of occurrence over a period of 20 years (which is not 
particularly long) is a significant probability. 
 
A Category 4 hurricane, with a maximum sustained wind speed of 200-233 kph (125-
145 mph) is bound to cause massive damages to ordinary dwellings and severe 
damages to some of the engineered infrastructures. Also, as the elevation of the city 
of New Orleans is 1.8 to 2.1 m (6 to 7 ft.) below sea level, the city is protected by the 
levees and floodwalls that kept the water of the surrounding lakes (such as 
Pontchartrain) and the Mississippi River from inundating the city. It has been widely 
reported that the levees were designed and constructed with an average height of 
around 2.44 m (8 ft.) for protection against hurricanes of Category 2 or 3. Suppose 
that the actual levee height varies with a symmetric triangular distribution between 7 
and 9 ft. (2.1 and 2.7 m) and that the surges from the lake caused by a Category 4 

                                                 
1 All the calculations in the example were performed through Monte Carlo simulations using MATLAB software with the 
accompanying Statistics Toolbox.  
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hurricane can be modeled with a lognormal random variable with an estimated 
median height of 10 ft. (3.1 m) and a c.o.v. of 30 percent. Therefore, under a 
Category 4 hurricane there is a high probability that the levees will be breached 
causing massive inundation of the city; with these assumptions, this probability can 
be calculated to be as follows: P(levee breached) = 0.78 
 
Furthermore, the vulnerability of much of the houses in New Orleans and vicinity 
against the hurricane winds would also be very high. Assume that the distribution of 
sustained wind speed in a Category 4 hurricane is modeled with a Type I extreme-
value distribution with a mean speed of 209 kph (130 mph) and a c.o.v. of 40 percent 
and that the wind speed resistance of houses and other structures is a lognormal 
random variable with a median of 85 mph (137 kph) and a c.o.v. of 30 percent. On 
these bases, the vulnerability of the building stock and other facilities in the city to the 
hurricane winds would be extremely high, as follows: Vulnerability of structures = 
0.785 
 
The consequences of the destructive effects of a Category 4 hurricane to the city of 
New Orleans, therefore, must include those caused directly by the high winds as well 
as by the surges from the lakes. Assuming that up to 90 percent of the population 
(approximately 600,000) in New Orleans will be evacuated before the storm, the 
potential fatalities may be assumed to range from 1,800 to 3,000 (that is, 3 percent to 
5 percent of those who did not evacuate) and serious injuries between 5,000 and 
10,000, with respective mean values of 2,400 fatalities and 7,500 injuries; whereas, 
the economic loss could range between $75 billion and $150 billion with a mean loss 
of $112.5 billion. It may be reasonable to assume (prior to the occurrence of Katrina) 
that the fatalities and injuries will be caused equally by the extreme wind and by the 
inundation of the city; whereas, the economic loss will largely be caused by the 
failure of the levee system and subsequent inundation of the city. These losses would 
largely be judgmental estimates (based on past experience with similar disasters when 
available).  
 
On the basis of the above postulated information, the best estimate of the risks to the 
city of New Orleans can be summarized as follows (based on respective mean 
values): 
 
Fatality risk = 0.5[0.20(0.785)(2400)] +  
            0.5[0.20(0.78)(2400)] = 376 
 
Risk of serious injuries = 0.5[0.20(0.785)(7500)]  
            + 0.5[0.20(0.78)(7500)] = 1,174 
 
Risk of economic loss (in dollars) =  
          0.20(0.78)(112.5) = $17.55 billion 
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On Risk Reduction 

The results of a quantitative risk assessment will permit also a quantitative analysis of 
the reductions in the respective risks that can accrue from an investment in strategies 
to mitigate the effects of a future hazard. A clear example would be the risk 
reductions accruing from strengthening and raising the height of the levees around 
New Orleans for protection against a Category 4 hurricane. Suppose that (in 1990) the 
cost to improve the levee system is estimated to be $1 billion to ensure against or 
mitigate any inundation of the city. This may require raising the height from the 
existing average height of 2.44 m (8 ft.) to a uniform height of 3.66 m (12 ft.) plus 
any needed strengthening of the levees and floodwalls. With 3.66-m (12-ft.) levees, 
the probability of breaching from a Category 4 hurricane will be reduced to the 
following: P(levee breached) = 0.27; and the respective best estimate reduced risks 
would be as follows:  
 

Reduced economic risk = 0.20(0.27)(112.5) = 
$6.08 billion  

 
Reduced fatality risk = 0.5[0.20(0.27)(2400)] + 

0.5[0.20(0.785)(2400)] = 253 
 

Reduced injury risk = 0.5[0.20(0.27)(7500)] + 
0.5[0.20(0.785)(7500)] = 791 

 
Therefore, with the investment of $1.0 billion to improve the levee system, the best 
estimate net reductions in the respective risks would be as follows: 

Reduction in economic risk = (17.55 – 6.08 –1.00) = $10.47 billion; 

Reduction in fatality risk = (376 – 253) = 123; and 

Reduction in injury risk = (1174 – 791) = 383, 
 
which are significant reductions in the respective risks accruable from the $1.0 billion 
investment for improving the levee system.  

Distributions of Estimated Risks 

The risks calculated above are based on the estimated mean (or median) values of the 
respective components in Eq. 1-1, yielding the best-estimate risk measures. Clearly, 
there are (epistemic) uncertainties in each of the estimated mean (or median) values 
in Eq. 1-1; these uncertainties may be represented by realistic ranges (or distributions) 
of the respective estimated mean (or median) values. These will lead also to 
corresponding distributions of the estimated risk measures, which are equally as 
important as the calculated mean risks. In the present example, these epistemic 
uncertainties would include specifically the following:  
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1. The estimated return period of 100 years for a Category 4 hurricane occurring in 
New Orleans may actually be between 50 to 150 years. In such a case, the annual 
occurrence probability would range between 0.7 percent and 2 percent (in 20 
years would be 14 percent to 40 percent); the underlying uncertainty may then be 
represented by a c.o.v. of 29 percent, and may be modeled with a lognormal 
distribution with a median of 1.0 and a c.o.v. (coefficient of variation) of 0.29, i.e. 
LN(1.0, 0.29).  

 
2. Because the specified estimated median surge height of 3.05 m (10 ft.) in the 

surrounding lakes may not be accurate, the actual median surge could vary 
between 2.44 and 3.66 m (8 ft. and 12 ft.). This is equivalent to a c.o.v. of 12 
percent in the median surge height, which may be represented by a lognormal 
distribution of LN(1.0, 0.12). Therefore, the probability of breaching the levees 
would become a random variable and can be described by the histogram shown in 
Figure 1.1, which has a mean value of 0.75.  

 
3. The mean wind speed of 130 mph (209 kph) in a Category 4 hurricane may 

actually be between 110 and 150 mph (177 and 241 kph). This is equivalent to a 
c.o.v. of 9 percent in the estimated mean wind speed. In this light, the 
vulnerability of structures and facilities in the region would also be a random 
variable.  

 
4. Finally, the uncertainties in the estimated consequences (as indicated earlier) may 

be postulated as follows:  
 the economic loss ranging from $75 billion to $150 billion, assumed to be 

uniformly distributed within the indicated range;  
 the fatalities ranging from 1,800 to 3,000, assumed to be uniformly distributed 

within this range; and  
 the injuries ranging from 5,000 to 10,000, also assumed to be uniformly 

distributed within this range.  
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 Fig. 1.1. Histogram of Probability of  Breaching Levees, pB 
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  Fig. 1.2. Histogram of Economic Risk, Re 
 
To take account of the above uncertainties, the resulting economic risk can be 
evaluated as 
 

 Re = 0.20NH(pB)(CE) (1-2) 
 
Eq. 1-2 is actually a convolution integral, in which  
  pB = probability of breaching the levees; the histogram of Figure 1.1 contains the  
      uncertainty in the estimation of the median surge height; 
 NH = uncertainty in the estimated mean hazard (i.e., return period), prescribed as  
LN(1.0, 0.29); 
 CE = economic loss from inundation of city, assumed to be uniformly distributed  
      between $75 and $150 billion. 
 
In light of the above uncertainties, the economic risk, Re, of Eq. 1-2 would also be a 
random variable. By Monte Carlo simulation (with 1,000 repetitions), we generate the 
corresponding histogram as shown in Figure 1.2 with a mean value of $17.4 billion.  
 
Of particular interest for decision making are the following percentile values of Re: 

50 percent value = $16.4 billion;  
75 percent value = $20.9 billion;  
90 percent value = $26.5 billion. 
 

For example for a risk averse (conservative) decision, the 90 percent value may be 
selected or used; in which case, the economic risk from inundation caused by a 
Category 4 hurricane would be specified as $26.5 billion instead of the best estimate 
value (or mean value) of $17.5 billion. This 90 percent value would imply a possible 
error of 10 percent in contrast to an approximately 50 percent error in the best 
estimate value of the economic risk.  
 
Similarly, because of the uncertainty in the estimated mean wind speed as well as in 
the occurrence probability of a Category 4 hurricane and in the expected number of 
fatalities, the fatality risk is also a random variable with the histogram shown in 
Figure 1.3 with a mean value of 385 fatalities. 
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   Fig. 1.3. Histogram of Fatality Risk, Rf 
 
The following percentile fatality risk values may be of special interest for decision-
making.  
 50 percent Rf = 363;  

75 percent Rf = 474;  
90 percent Rf = 593 
 

For a risk averse (or conservative) decision, the 90 percent value of 593 fatalities may 
be specified. 
 
Similarly, the distribution of the injury risk is shown in Figure 1.4 with a mean of 
1,203 injuries. Again, the following percentile values of the injury risk would be of 
special interest in decision-making:  

50 percent Rj = 1,135;  
75 percent Rj = 1,477;  
90 percent Rj = 1,864  
 

in which the 90 percent value of 1,864 injuries would be a conservative risk value. 
 
Finally, it is important to emphasize that by specifying a conservative or risk-averse 
value (such as the 90 percent value), the effects of uncertainty (of the epistemic type) 

in the calculated risk is reduced or can be minimized.  
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    Fig. 1.4. Histogram of Injury Risk, Rj  
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Optimal Design Height of Levee System 

Clearly, New Orleans will need a reliable levee system for retaining the water from 
the surrounding lakes and the Mississippi River as well as for protection of the city 
against serious flooding caused by future hurricanes. The cost to improve or retrofit 
the levee system will depend largely on the design height of the levees. Inversely of 
course, the economic risk will decrease with the levee height.  
 
Suppose that the projected cost for improving the levee system will vary with the 
design height of the levees as shown in the first two columns of Table 1.1 below. 
 

Table 1.1: Risk and E(LCC) for Different Levee Heights 

 
 
 
 
 
 
 
 
 
 
 
 

 
Suppose that (in 1990) the levee system was to be retrofitted to protect against future 
Category 4 hurricanes. Then over a 20-year period, the expected probabilities of 
breaching for the respective levee heights are shown in the third column of Table 1.1, 
and the corresponding expected economic risks are given in Column 4. The 
respective expected life-cycle costs, E(LCC), are therefore the costs of the levee 
system plus the expected economic risks (that is, Column 2 + Column 4), which are 
those shown in Column 5 of Table 1.1. Plotting the E(LCC) against the respective 
levee heights yields the graphic results shown in Figure 1.5.  
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       Fig. 1.5. E(LCC) vs Levee Height 

Height of Levee,  
     ft. (m) 

  Cost of Levee,  
  US$billion P(breaching) E(Econ. Risk) 

E(LCC), 
$billion  

     8 (2.44)    0.10     0.78 $17.60 billion   17.7 
     9 (2.75)    0.25     0.64 $14.40 billion   14.65 
    10 (3.05)    0.40     0.52 $11.70 billion   12.10 
    11 (3.36)    0.60     0.38  $8.55 billion    9.15 
    12 (3.66)    1.00     0.28  $6.30 billion    7.30 
    13 (3.97)    2.75     0.21  $4.73 billion    7.48 
    14 (4.27)    5.00     0.12  $2.70 billion    7.70 
    15 (4.58)    6.50     0.09  $2.03 billion    8.53 
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Fig. 1.6. Histogram of 20-year probability of breaching 12 ft. levees, pB 
 

From Figure 1.5, it can be observed that the design height with the minimum E(LCC) 
would be 3.66 m (12 ft.) with an E(LCC) of $7.30 billion. However, there are 
(epistemic) uncertainties in this estimated expected LCC; in particular, several 
underlying epistemic uncertainties would lead to the uncertainty (and thus a distribution) in the 
estimated LCC; these uncertainties would include specifically those that were identified 
earlier in assessing the respective risks. Specifically, because the estimated median 
surge height of 10 ft. in the surrounding lakes is uncertain, the actual median surge 
could vary between 2.44 m and 3.66 m (8 ft. and 12 ft.). The resulting probability of 
breaching the 12 ft. levees in 20 years would also become a random variable with the 
distribution (histogram) shown in Figure 1.6 which has a mean value of 0.280, and 
the following percentile values: 
 50 percent pB = 0.272 
 75 percent pB = 0.366 
 90 percent pB = 0.452 
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Finally, to take account of the epistemic uncertainties enumerated earlier, the 
resulting LCC can be evaluated as 
 

 LCC = CI + 0.20NH(pB)(CE) (1-3) 
 
in which the second term on the right hand side is a convolution integral, where  
  CI = the initial cost of re-constructing or retrofitting the levee system; 
  pB = probability of breaching the levees;  histogram of Figure 1.6 contains the 

uncertainty in the estimation of the median surge height; 
  NH = uncertainty in the estimated mean hazard (i.e., return period), prescribed as 

LN(1.0, 0.29); 
 CE = economic loss from inundation of city assumed to be uniformly distributed 

between $75 billion and $150 billion. 
 
In light of the above uncertainties, the LCC would also be a random variable. By 
Monte Carlo simulation (with 1,000 repetitions), we generate the corresponding 
histogram as shown in Figure 1.7 with a mean value of $7.79 billion.  

Safety Index for Structural Design of Levees 

Finally, we observe from Figure 1.6 that the median probability of breaching the 12-ft. 
levee is 0.28 in 20 years, or an annual probability of 0.014 with a corresponding safety 
index of around 0.59. Because of the epistemic uncertainties underlying the calculated 
probability of breaching, the distribution (or histogram) of the corresponding annual 
probability can be similarly obtained. From the histogram of the annual probability of 
breaching, the corresponding histogram of the safety index can also be generated as 
shown in Figure 1.8 in which the 90 percent value of the safety index is 1.28.  
 
We might point out that by selecting the 90 percent value of the safety index for the 
structural design of the levee system, there is reasonably high confidence (so to 
speak) that the retrofitted 12-ft. levees can withstand the forces of a Category 4 
hurricane. Observe that the corresponding median (50 percent) value of the safety 
index would only be 0.59, which would clearly be too low. 

Information and Advice for Decision-Makers 

Technical information obtained or generated from a QRA should be presented to the 
relevant stakeholders or decision makers, in terms of the quantitative risk measures 
obtained as illustrated above, as well as of the benefit that can accrue from a given 
investment to reduce each of the respective risks. It is essential that this information 
be presented to decision-makers who are responsible for allocating resources for 
minimizing risks. In the case of a natural hazard, the most important risk measures 
would include the fatality and injury risks, and the risk of economic losses, with the 
respective uncertainties as represented by the corresponding distributions. From these 
distributions, the respective risk-averse measures may also be presented to allow the 
decision-maker the opportunity or option to select appropriate measures depending on 
his/her personal risk averseness.  
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 Fig. 1.8. Histogram of safety index, beta 
 
Information and advice presented in quantitative terms, based on the expertise of 
engineers, should generally be more complete and meaningful to decision-makers. 
These may be in terms of the best estimate value of the pertinent risk or the complete 
range (with distribution) of all possible risk measures associated with its epistemic 
uncertainty. From this distribution risk-averse values may be specified to reduce the 
effects of the uncertainties underlying the estimated risks. As with other technical 
information developed for engineering purposes, which are invariably in quantitative 
terms, risk measures should and can also be developed in the same terms. Society 
would generally expect such information (that is, supported by quantitative analyses) 
from the expertise of the engineering community.  

Summary and Concluding Remarks 

This chapter summarizes the fundamentals for the systematic and quantitative 
assessment of risk in engineering, with particular emphasis for hazard mitigation. 
Besides the assessment of the best estimate measure of a pertinent risk, the 
assessment of the complete range (or distribution) of the possible risk measures is 
equally important. These are illustrated with a quantitative assessment of the risks 
(for a 20-year period) associated with the occurrence of a Category 4 hurricane in 
New Orleans on the assumption that the assessment was performed in 1990 (15 years 
prior to the occurrence of Katrina in 2005).  
 
The fundamentals of QRA, as summarized and illustrated here, show that QRA is a 
valuable and practical tool available for engineers to generate quantitative technical 
information on risk and its associated uncertainty. A conservative (or risk-averse) 
measure of risk may be specified to reduce the effect of the underlying (epistemic) 
uncertainty.  
 
QRA can also be used to assess the benefit in risk reduction accruable from an 
incremental investment and, thus, provide a quantitative basis for risk-benefit study 
that may be essential and useful for making risk-informed optimal decisions. 
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QRA is useful and relevant also for developing optimal designs of civil infrastructure 
systems, including the development of designs based on whole life cost consideration.  
 
Civil engineers, in particular, have the primary responsibility for the design and 
planning of civil infrastructures, including protective systems to minimize losses of 
lives and economies during extreme hazard events. In this light, there is every reason 
that practicing civil engineers should be equipped with the tools of QRA, especially 
when dealing with problems involving extreme hazards, natural or man-made.  
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Chapter 2: Quantitative Risk Analysis Applied to Dams  

By Erik Vanmarcke, Princeton University 

Abstract 

The value and use of probabilistic risk assessment are explored, with a focus on an 
action-oriented approach to decision-making applicable to (systems of) dams, in which 
the engineer estimates dam failure risks and their consequences and quantifies the 
effectiveness and economic benefits of alternative strategies aimed at risk reduction.  

Risk-Based Decision Analysis 

Risk-based decision analysis applied to civil infrastructure systems provides a 
framework for engineers to identify the kinds and degrees of risk involved in a system 
or project and the consequences should failure occur. It also and evaluates the 
effectiveness of alternative actions (for example, in site exploration, design, 
construction, or monitoring) aimed at controlling or reducing risk. The references 
cited give examples, involving groups of bridges (Erickson et al. 1989; Cesare et al. 
1993, 1994) and dams (Bohnenblust and Vanmarcke 1982 a & b) of the methodology 
outlined in this chapter. In the case of dams, in particular, the failure event is 
uncontrolled loss of reservoir contents.  

Elements in the Analysis 

Relative (or Fractional) Risks 

Consider an existing dam whose annual failure risk, p, is expressed as a sum of 
contributions due to each of the causative hazards (or failure modes), j = 1, 2, … 
 

 p =  pj  (2-1) 
 
where pj denotes the annual risk of failure due to hazard j. All possible failure modes 
must be represented in the summation; this is achievable by lumping all unknown or 
unidentified causes of failure into a single category labeled “miscellaneous hazards.” 
The summation of probabilities implies that hazards must be defined so as to be 
mutually exclusive; simultaneously occurring hazards need to be defined as a separate 
category. (Note: In fault tree theory, Eq. 2-1 can be interpreted in terms of “minimal 
cut sets.”)  
 
Note that the relative (or fractional) risks pj/p (where j = 1, 2, …) sum to one; each 
value pj/p is the likelihood that failure, if it occurs, will be caused by hazard j. The 
basis for estimating these relative risks may be a combination of data on past failures 
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or incidents, professional judgment, and project-specific information (for example, 
inspection reports). 
  
For instance, in the case of an existing earth dam (Vanmarcke 1974), system failure—
sudden release of the contents of the reservoir—may be caused by overtopping, 
piping (or internal erosion), sliding (not earthquake-related), earthquake-induced 
sliding, and miscellaneous hazards, for a total of five hazard categories, j = 1, 2, …, 5. 
The relative risks should be similar for older, non-engineered earthen dams located in 
a region with moderate earthquake activity. 

Reference Alternative, Consequences, and Risk Cost  

In analyzing the benefits of actions aimed at risk reduction, it is useful to express both 
costs and risks in relation to an existing “as is” (status quo) condition; this reference 
“do nothing” alternative involves some (often poorly known) annual occurrence 
probability, p. Let Cm denote the expected monetary loss if failure occurs; the product 
Cmp is the annual “risk cost,” that is, the expected annual loss due to (possible) 
failure. It makes sense, in some cases, to assume that Cm is the same regardless of 
which hazard causes the failure and that protective actions will affect only p, not Cm. 
For an existing dam, Cm is the estimated economic loss (at the dam site and 
downstream) in the event of dam failure. 

Effectiveness of Mitigating Actions 

Engineers have little experience with quantifying the benefits of added protection as 
these take the form of reduced failure risk and reduced potential losses. Denoting the 
failure probability (per year) with and without added protection by p* and p, 
respectively, we can define the “risk reduction effectiveness” r by means of the 
relationship  
 

 p* = p(1- r)  (2-2) 
 
where r is the fraction of the reference-action risk p that is eliminated by the 
mitigating action. In particular, r = 0 means the action is totally ineffective, as it 
implies p* = p; there is no change in the risk. The value r = 1 indicates 100% 
effectiveness; the risk is eliminated (p* = 0). An action for which r = 0.9 reduces the 
risk by an order of magnitude. A negative value of r implies p* > p; the action 
increases the level of risk. 
 
Specific mitigating actions often aim at limiting the risk posed by a specific hazard, 
for instance, raising the crest of a dam reduces the overtopping risk, while adding a 
protective berm aims at reducing the probability of embankment sliding. The 
implication is that the effectiveness of mitigating actions is most easily and 
understandably quantified for specific types of hazards. To capitalize on this, it is 
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useful to express the new risk p*, like p itself, as a sum of contributions due to all the 
failure causes j = 1, 2, …, as follows: 
 

 p* = j pj* = j pj (1- rj)  (2-3) 
 
where pj* denotes the (estimated) risk due to hazard j if the mitigating action is taken, 
and rj is the action’s effectiveness in reducing the risk due to causative hazard j. (By 
definition, r = rj = 0 for the “do nothing” action). The overall effectiveness index r 
can then be expressed as a weighted combination of the rj values and the relative risks 
pj/p: 
 

 r = j (pj/p) rj. (2-4) 
 
To achieve higher overall risk reduction effectiveness r, available funds should be 
spent on mitigation of hazards for which fractional risks pj/p are high, and on actions 
yielding high corresponding effectiveness indices rj. Estimating those values (for both 
pj/p and rj) will generally require a combination of professional experience and 
judgment, data from historic failures and near-failures (attributable to the different 
hazards), and perhaps also support from classical reliability analysis. Specific actions 
may be highly effective with respect to a target hazard i, (so that ri may be close to 
one), but ineffective with respect to all the other hazards (rj  0 for j  i). The 
miscellaneous hazards category, for which any action may be regarded as (most 
likely) ineffective, then produces an upper bound, which can be evaluated by means 
of Eq. 2-4 on the overall effectiveness r.  
 
The approach is particularly valuable in case negative values of rj are involved; that 
is, when a particular action has negative impact on one or more of the contributions to 
the overall risk. For instance, raising the crest of an existing earth dam, which a 
hydrologist may recommend, reduces the risk of overtopping but increases the risk of 
sliding. Whether this action is justifiable, regardless of cost, will depend on the 
relative risks of overtopping and sliding and the values of the corresponding 
effectiveness indices (rj). More specifically, heightening the crest of a dam (without 
also adding a berm) protects against overtopping (r1 > 0) but worsens the dam’s 
stability (r2 < 0). If the two relative risks are judged to be the same, p1/p = p2/p, and 
there happen to be no other significant contributions to the overall risk of failure, then 
the overall effectiveness r will be negative in case r1 < - r2. For instance, raising the 
crest might reduce the hydrologic risk by 90%, but if it doubles the risk of sliding, 
overall risk reduction effectiveness r will be negative. 
 
The analysis clearly invites interdisciplinary communication between hydrologists 
and geo-engineers in the case just mentioned in the interest of balanced hazard 
mitigation. The common way of pursuing safety, based on discipline-specific 
guidelines, however well intended, may lead to wasteful spending and 
underachievement in risk reduction.  
 

22



Expected Benefit  

The average annual monetary losses with and without added protection are Cmp* and 
Cmp, respectively, and their difference is the annual average economic benefit of the 
risk mitigation strategy.  
 

 b = Cmp - Cmp* = Cmpr (2-5) 
 
In words, b is the product of the status quo risk p, the hazard potential Cm, and the 
strategy’s overall effectiveness index r. 

Added Cost for Mitigation 

The last element in the analysis—the one probably most familiar to decision 
makers—is the cost of providing added protection. Each action or strategy is 
characterized by an added-cost-per-year c. (Given a discount rate and a time 
horizon, capital expenditures can also be expressed as an annual disbursement c, 
like a mortgage payment.)  

Basic Format of the Analysis 

The effectiveness index r and the annualized added cost c (or some equivalent cost 
index) must be evaluated for each action/strategy. A simple (fractional effectiveness) 
matrix whose elements are the measures of fractional or hazard-specific effectiveness 
rjk of each mitigating action k in reducing the risk due to hazard j can be constructed. 
The matrix has one column for each hazard (j = 1, 2, …); these are listed on top of 
each column, along with the corresponding relative risk (pj/p). These quantities must, 
of course sum, to 1: j(pj/p) = 1. 
 
For each (new) mitigating action, one row is added to the matrix. Using Eq. 2-4, the 
overall effectiveness r  rk can be obtained for each alternative k. The best action, on 
an expected cost basis, is that which maximizes the expected net benefit [b - c]k. 
Also, any action for which [b - c]k is positive, is preferable to the do nothing 
alternative. It is further useful to plot the quantities bk, ck, and [b - c]k (for each 
action k) against the action’s overall effectiveness rk and take note of the value of rk 
that maximizes [b - c]k.  
 
The do nothing alternative costs nothing initially (c = 0) but also brings no (annual 
expected) benefit (b = 0, since r = 0); it may have high annual future expected cost 
(Cmp* = Cmp). On the opposite side of the effectiveness scale, achieving a value such 
as r = 0.99 may be prohibitively expensive, or in case there are unknown/miscellaneous 
cause risks for which pj/p > 0.01, impossible (given the state of knowledge). As 
mentioned earlier, if an action’s overall effectiveness r, evaluated by means of Eq. 2-4, 
is negative, then that action should not be taken, regardless of cost.  

23



Important Extensions of the Basic Format  

 “Risk Cost” Format  

In general, failure consequences may depend on the (type of) hazard j and may change 
as a result of mitigating actions taken. Instead of doing the analysis in terms of 
probabilities pj and p, it is then more productive to replace the latter by the “risk costs,” 
respectively qj  pj Cm,j , the risk cost for hazard j, and q, defined as the sum (over all j) 
of all these hazard-specific values. The risk-cost ratios, qj/q, whose sum is 1, now play 
the same role as the relative risks (and become identical to them if Cm,j = Cm for all j). 
All indices of effectiveness now reflect the impact on risk costs, but the analysis format 
remains the same: the p’s are all replaced by q’s in Eq. 2-1 through Eq. 2-4. 

Non-Monetary Consequences  

The methodology can also be used to quantify benefits of hazard mitigation measures 
in terms of lives saved (or injuries prevented); the monetary consequences of failure, 
Cm, are replaced by the life loss potential Cl (expected number of fatalities if failure 
occurs). A warning system at a dam or levee site, for instance, will be aimed mainly 
at preventing life loss (by providing timely warning); hence, its effectiveness in 
reducing life loss may be close to 1, while its effectiveness in reducing property loss 
is close to 0. 

Risk-Based Design Decisions  

The methodology, in the format presented, applies to risk-based decision-making not 
only for existing dams but also for new dams. In a design situation, an appropriate 
reference alternative may be a “standard design” or a “preliminary” or “trial” design. 
Next design changes are considered—actions that differ from the reference 
alternative—and their impact on (initial) cost and on risk and consequences of failure 
are evaluated.  

Optimizing Risk Reduction Programs Involving a System of Existing Dams 

The methodology can be used to help make risk-informed decisions about prioritizing 
inspection (or maintenance or repair) of a group of dams subjected to a multiplicity of 
hazards. In what follows, we use the subscript i to refer to a specific dam in the group. 
The total expected annual economic benefits of a dam safety program can be 
evaluated by summing the (annual expected) benefits associated with each dam. (The 
probable annual number of lives saved can be evaluated similarly).  
 
In such cases, it may be reasonable to adopt a (default) value for the average annual 
risk of failure of a dam—any dam in the group. More generally, based on 
examination of available performance/failure statistics, probability analysis and 
engineering judgment, you might refine the estimate by allowing it to depend on 
structural type, age, and design criteria. For each category of structures for which a 
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set of relative risks is developed, you would then attempt to construct a matrix of 
values the effectiveness index rij for every alternative inspection/monitoring/repair 
strategy considered for that structural category. These values, typically between 0 and 
1, indicate the fractional amounts by which the analyst expects risks to be reduced 
following implementation of the particular inspection scheme. Most rij values will be 
close to 0 (implying the procedure has little impact on the risk) or close to 1 
(implying a risk reduction by an order of magnitude or higher).  
 
Given a fixed annual budget for a safety program covering many dams of different 
types and sizes, a reasonable objective in designing the program, that is, in choosing 
the mix of mitigating actions to be taken, is to maximize total expected monetary 
benefits. In the case of dams, however, a sensible alternative is to focus on 
minimizing overall life-loss potential; better yet, you might attempt multi-objective 
decision analysis, in which both economic and life-loss consequences are given 
weight, along with environmental factors. 

Conclusions 

Risk-based decision-making applied to civil infrastructure systems, such as (groups 
of) existing dams, seeks to put socio-economic and technical issues into proper focus 
by organizing information about risks, costs, and potential future losses, both 
monetary and non-monetary. The methodology presented provides a format for 
summarizing and accounting for (in the case of dams) data about past dam failures, 
the relative frequency of various causes of failure, the consequences of failure, and 
the effectiveness of different risk mitigation measures. It facilitates communication 
about risk and the costs and benefits of reducing risk among stakeholders in decision 
situations involving mitigation of hazards; most important, it enables quantifying the 
benefits of actions aimed primarily at risk reduction. In this broad and varied context, 
the concepts and tools of quantitative risk analysis appear essential to advancing the 
art and practice of civil engineering. 
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Chapter 3: Risk Assessment for Wind Hazards 

By Nasim Uddin, F.ASCE, Professor, University of Alabama at Birmingham, 
Alabama, USA 

Abstract 

Current wind-related quantitative risk assessment methodologies are discussed with 
examples. Recent research developments on modeling wind speed extremes 
associated with tropical cyclones and tornadoes are also briefly summarized.  

Introduction 

Wind is defined as the motion of air relative to the earth’s surface. The horizontal 
component of three-dimensional flow and the near-surface wind phenomenon are the 
most significant aspects of the hazard. Extreme windstorm events are associated with 
extratropical and tropical cyclones, winter cyclones, and severe thunderstorms and 
accompanying mesoscale offspring such as tornados and downbursts. Winds vary 
from zero at ground level to 200 mph 989 m/s) in the upper atmospheric jet stream at 
10 to 13 km (6 to 8 mi.) above the earth’s surface. The damaging effects of 
windstorms associated with hurricanes may extend for distances in excess of 160 km 
(100 mi.) from the center of storm activity. Isolated wind phenomena in the 
mountainous western regions have more localized effects. It is difficult to separate the 
various wind components that cause damage during a windstorm. For example, 
hurricanes have high wind rotating around the eye of the storm, spawn numerous 
tornados, and generate severe thunderstorm producing strong, localized down drafts 
(downbursts and microbursts). 
 
Of all the cyclonic storms that rage across the earth’s surface, hurricanes are the most 
damaging because they bring tremendous amounts of rainfall and extremely high 
winds covering a wide area. Tornadoes, on the other hand, are the most devastating in 
terms of intensity or extent of destruction of buildings or other man-made structures. 
Property damage and loss of life from windstorms are increasing due to a variety of 
factors. Use of manufactured housing is on upward trend, and this type of structure 
provides less resistance to wind than conventional construction. Because of continued 
growth of the population in the coastal areas susceptible to high winds from tropical 
cyclones, the deteriorating condition of older homes, and the increased use of 
aluminum-clad mobile homes, the impacts of wind hazards will likely continue to 
increase. The general design and construction of buildings in many high wind zones 
do not fully consider wind resistance and its importance to survival.  
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Quantitative Risk Assessment Methodology 

Quantitative risk assessment (QRA) will generally consist of three components: (1) 
hazard analysis, (2) vulnerability analysis, and (3) consequence analysis. The product 
of the above three components constitutes the estimated risk, R; that is  
 

 R=Hz x Vu X Cq (3-1)  
 

where H
z 

= the result of a probabilistic hazard analysis; V
u 

= the result of a 

vulnerability analysis; may be in terms of the probability or fraction of damage to a 
city; Cq= the estimated potential consequence resulting from the occurrence of the 
hazard. As there are epistemic uncertainties in estimating or calculating each of the 
components in Eq. 1, the calculated risk will also contain uncertainty leading to a 
range (or distribution) of the possible risk measures.  

Analysis of Wind Hazard  

Hazard analysis involves the determination of the probability of occurrence of a given 
hazard within a given time window. The following provides a brief summary based 
on the excerpts from Vanmarcke and Chen (2005). 

Estimation of Largest Wind Speeds in Non-Hurricane-Prone Regions 

Normal wind gives rise to one of the main loading conditions that structural designers 
need to consider. For most low-rise buildings, load effects due to normal wind are 
generally small compared to those caused by earthquakes. However, wind effects 
often dominate for high-rise structures, which possess relatively large fundamental 
periods of vibration. Normal wind speed is often seen as the sum of two 
components—the slowly varying mean wind speed and a rapidly fluctuating 
(turbulent) component. Since in the design of most regular structures the effects of the 
mean wind load dominate, it is of practical importance to engineers to predict the 
annual maximum “mean wind speed.” The annual exceedance probability p of a 
given value (of mean wind speed) xp is p = Prob(X > xp) = 1 – F(xp), where F(xp) 
denotes the cumulative distribution function (CDF) of annual maximum mean wind 
speed. The basic design wind speed (xp) corresponds to a specified value p of annual 
exceedance probability. Normal wind with mean speed corresponding to an N-year 
mean recurrence interval is commonly referred to as “the N-year wind” (Simiu and 
Scanlan 1996). Clearly, the upper tail of the probability distribution of annual 
maximum wind speeds is critical to the estimation of the basic design wind speed. 
 
Over the years, several types of probability distributions have been proposed to model 
extreme wind behavior. The three classical extreme distributions are the Type I 
(Gumbel) distribution, the Type II (Fréchet) distribution, and the inverse (negative) 
Weibull distribution. The Fréchet distribution was adopted in the design codes of 
several countries, including the United States in 1972 (see American National 
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Standard ANSI A58.1 1972), because it is regarded as best fitting non-tornado 
extreme wind speeds blowing in any direction in regions not subjected to mature 
hurricane winds. Simiu et al. (1978) suggested, however, based on extensive 
investigation, that the Gumbel distribution may be a more appropriate model. 
 
A fundamental assumption underlying the classical extreme value distributions is that 
a large number of observed values are (or can be thought of as) realizations of 
independent and identical distributed random variables with a common but unknown 
probability distribution (Galambos 1987; Resnick 1987). It is likely, however, that an 
array of physical phenomena produces varying levels of these observed values of 
(annual maximum) wind speed. So, all the observations in combination can hardly be 
expected to fit a single distribution that accurately predicts future extremes. Also, the 
classical method of statistics of extremes uses only one datum per period, typically 
the largest value in each data set covering a single year, so that, say, a 30-year record 
yields only 30 data points (Dougherty et al. 2003). Clearly, such an amount of the 
data is not sufficient to estimate the distribution’s upper tail reliably. An important 
defect of the classical (extreme value statistics) methodology is the extrapolation to 
long-term recurrence, say, a 100-year or 500-year return period wind speed estimated 
based on short-term data, yielding notably unreliable estimates. The degree of 
conservatism is reduced as the mean recurrence interval grows (Simiu and Heckert 
1998). The insufficient amount of data, according to Simiu and Heckert (1996), 
provides an argument for adopting the reverse Weibull distribution to fit the data on 
largest daily wind speeds by the peak over threshold method (Dekkers and de Haan 
1989). The basic idea behind this method is that values below the threshold likely do 
not belong to, or originate from, the same distribution as that describing the highest 
values, so that the inclusion of the lower values distorts the sought-after peak 
distribution. Only values high enough so they can be assumed to arise from 
circumstances that generate extreme conditions should be counted.  

Estimation of Wind Speeds During Tornadoes 

Tornadoes are observed as funnel-shaped clouds consisting of a vortex of air with 
maximum tangential speeds ranging between 250km/hr. and 800km/hr. Contrasted to 
the characteristics of hurricanes, those of tornadoes involve small affected regions, high 
tangential velocities, short lifetimes, straight propagation paths, and much lower 
frequencies of occurrence at any given location (Ying & Chang 1970; Fujita 1973). 
Since Fujita developed the F-Scale in 1971 at the University of Chicago, it has become 
a widely used and practical way of rating the intensity of a tornado based on the 
observed damage it has caused, ignoring the width and length of the tornado’s path (or 
other physical characteristics). Allen Pearson, director of the National Weather 
Service’s National Severe Storms Forecast Center, added descriptors to the width and 
length of a tornado path; the resulting scale is known as the Fujita-Pearson Scale. 
 
Let P(S) denote the risk of a tornado striking a particular location in one year; it is 
proportional to the regional mean frequency of tornadoes and the mean area of a 
tornado’s land-falling path. In certain applications, it is of interest to estimate the 
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annual probability of occurrence of a tornado with maximum wind speed above a 
given value v0 at a location, P(S, v0) = P(S) P(v0), where P(v0) denotes the probability 
that the maximum wind speed in a tornado exceeds v0. Since the F-Scale is also 
associated with a range of wind speeds, P(v0) can be used to express relative 
frequencies of tornadoes with different values on the F-Scale. Weibull distributions 
have been used to fit sets of data of tornado wind speeds (Rutch et al. 1992). It 
deserves mention that the F-Scale-based wind speeds cannot be used or interpreted 
literally. The wind speed numbers in F-Scale are mere guesses and have not been 
scientifically verified. Engineering assessments of tornado damage by Minor et al. 
(1977) questioned the accuracy of the F-Scale-based wind speeds. Marshall (1983) 
utilized load and resistance statistics to demonstrate how uncertainties in assessing 
building damage can lead to large errors in assigning F-Scale ratings, especially in the 
upper ranges of the F-Scale. One of the sources of uncertainty discussed by Rutch et 
al. (1992) is that only a small portion of the damage area will experience F5 wind 
speeds, while the rest of the tornado-stricken area presumably experiences something 
less than F5 speed. 
 
In design against tornadic wind, the first thing a design engineer might want to know is the 
so-called design wind speed. A good probabilistic model should be able to provide this 
information, and also reflect the following facts: (1) The geographic proneness of tornado 
strikes, that is, it is more likely to have a tornado in Tornado Alley than elsewhere, (2) the 
path area and the maximum wind speed vary among tornadoes, thus they have bearing on 
the chance of a tornado striking a given point and the maximum wind load it induces, and 
(3) a large tornado (with a large path area) usually brings a higher wind speed or, in 
probability terminology, these two variables are correlated.  

Estimation of Wind Speeds in Hurricane-Prone Regions 

Windstorms, hurricanes in particular, constitute one of the costliest natural hazards in 
the United States, in recent decades far outpacing earthquakes in total damage 
(Landsea et al. 1999). For the purpose of assessment of damage and losses due to 
hurricanes, the mathematical simulation of hurricanes is the most widely accepted 
approach for estimating wind speeds. The Monte Carlo simulation approach, based on 
the climatological and physical models, was first described by Russell (1968, 1971). 
Since that pioneering study, many others have expanded and improved the modeling 
technique. The basic approach in all these studies is similar: Site-specific statistics of key 
hurricane parameters are obtained, including the central pressure deficit, radius to 
maximum winds, heading, translation speed, and coast-crossing position or distance of 
closest approach. Most studies ignore the details of the non-straight path the hurricane 
actually follows, and the major differences are associated with the specific physical 
models used, including the filling rate models and wind field models. Other differences 
include the size of the region over which the hurricane climatology can be considered 
uniform (that is, the extent of the area surrounding the site of interest for which the 
statistical distributions are derived or estimated) and the use of a coast segment crossing 
approach (Russell 1971; Batts et al. 1980), or a circular sub-region approach (Georgiou et 
al. 1983, 1985; Neumann 1991; and Vickery and Twisdale 1995b). Once the statistical 
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distributions of these key hurricane parameters are known or assumed, a Monte-Carlo 
approach is used to sample from each distribution, a mathematical representation of a 
hurricane is passed along the straight-line path in a way that is consistent with the 
sampled data, and the simulated wind speeds are recorded. Vickery and Twisdale (2000a 
& b) developed a new method to model the entire track of the hurricane or tropical storm, 
beginning with its initiation over the ocean and ending with its final dissipation. In this 
model, the central pressure is modeled as a function of sea-surface temperature, and the 
storm heading, translation speed, and such are updated at each 6-hr. point in the storm’s 
history. Linear interpolation is used between the 6-hr. points. This approach allows the 
storms to curve and to change speed and intensity as they move, and it is able to 
reproduce the continuously varying statistics associated with central pressure, heading, 
and such along the U.S. coastline. 

Vulnerability Analysis   

Vulnerability analysis can be defined as the estimation of the extent and severity of 
damage to man-made and protective systems. The following vulnerability evaluation 
demonstrates this using a tornado model based on Wen et al (1973). 
 
Suppose the design wind speed for a structure is set at Vo, that is, if this wind speed is 
exceeded, the structure will suffer some degree of damage, which may range from 
unserviceability to collapse, depending on the value of Vo. The task, then, is to find the 
probability or risk level of a tornado striking the point where the structure is located 
with a maximum wind speed exceeding, Vo, during the entire service life of structure. 
 
Based on the field observations and pioneering works on tornado intensity, Wen et al. 
derived the following expression for Pn (Vo), which is the probability of tornado 
striking a given point with a maximum wind speed exceeding Vo during a period of n 
years.  
 

 )(')( oon VnRVP   (3-2) 
 
The value of  is the average rate of occurrence of tornadoes and is given in the 
number of occurrences per square mile-year;   varies from location to location. Term 
R′(Vo) is a function determined by the tornado characteristics and their variability; 
thus R′(Vo) is generally insensitive to change of location. Since R′(Vo) represents the 
effective area exposed to the wind with a speed higher than Vo during a tornado 
strike, it is refereed to as tornado speed area function. The curve in Figure 3.1 is fitted 
by the following equation: 
 

 4/3511 )104.01(
65.1)('

oVxoVR 
  for Vo < 290 mph (467 km/hr.) (3-3a) 

 )014.0exp(4.17)(' oo VVR  for Vo.290 mph (3-3b) 
 
Note also that the first derivative of R′(Vo) is continuous at V0 = 290 mph. Thus using 
the above equation, one can obtain a continuous probability density function of Vo. 
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Fig. 3.1. Tornado Speed Area Function, R(Vo) 

 
 
The results derived from the analytical model can be applied to design. Suppose a 
structure to be built at a certain location Site A. It is desirable to find the design wind 
speed for a prescribed recurrence interval (or risk level, since probability of a certain 
wind speed being exceeded in a given year is the reciprocal of recurrence interval) or 
conversely, the risks of damage to or failure of structure based on a certain design 
criteria. The procedure can be described by introducing a chart shown in Figure 3.2. 
The abscissa is annual maximum wind velocity. The vertical scale on the left refers to 
the probability of such wind speed being exceeded and the scale on the right denotes 
recurrence interval in years. The dashed straight line is the probability distribution of 
extreme, nontornadic wind. The analytical expression for this distribution is given by 
the Frechet distribution 

 ])(exp[1)(
2




 V
oVF   (3-4) 

 
in which and the scale and shape parameters;  found to be close to 9.0 for 
extratropical storms, which are assumed to prevail in Site A. Using =9.0, = 50.6 
mph (81.5 km/hr.) gives an 85-mph (140 km/hr.) wind corresponding to a 100-year 
recurrence interval. The dashed curve represents the probability of Site A being 
struck by tornado in a given year with a maximum wind speed exceeding the abscissa 
value (including both rotational and translational speed of the tornado). The combined 
distribution (solid line) is approximately equal to the sum of the two distributions.  
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(Note that the probability of union of two events, in this case the combined 
distribution, is approximately equal to the sum of the probability of the individual 
events, if the probability of their intersection is small).  

 
Suppose the design criterion is that the structure resist a 100-year wind (nontornadic) 
based on a working stress design. We want to investigate the risk involved in this 
design and the effects of tornado being taken into consideration. The detailed 
description of the analyses can be found elsewhere (Gurfinkel and Walser 1972). The 
maximum net tensile stress caused by a 100-year wind, according to ASCE lateral 
wind pressure distribution, is found to be the meriodional at El. 120 ft. (37 m) 
Nφ=35.3 kips/ft. (52,400 kg/m) (due to wind) – 16.3 kips/ft. (24,000 kg/m) (due to 
self weight) = 19.0 kips/ft. (28,400 kg/m). The meriodional stress due to wind 
necessary to cause the tower yield is Nφ= 19.0x2.5+16.3=63.8 kips/ft. (94,600 kg/m) 
in which the factor 2.5 is the ratio of yield stress [60 ksi (42.1 kg/m2)] to allowable 
working stress [24 ksi (17 kg/m2)]. The corresponding wind speed to produce the 
tensile stress to such a level is 111 mph. Referring to Figure 3.2, the probability of 
maximum wind speed exceeding 111 mph is 0.002 in a given year (500-year 
recurrence interval). In other words, risk is that one out of every 500 cooling towers 
subjected to the identical meteorological conditions will at least yield due to wind 

Fig. 3.2. Extreme Wind Distribution (Wen et al. 1973) 
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load in a given year. Were the possibility of tornado strikes neglected (Fig. 3.2), the 
probability corresponding to a 111 mph wind being exceeded would be 0.00084 
(1,200-year recurrence interval).  
 
The example is based on the design wind approach; stress analysis is that of static and 
material properties, which and are assumed to be deterministic. A more realistic 
analysis should examine effects of uncertainties in structural resistance, dynamic 
response, and the need for a more comprehensive reliability study as shown in the 
following section.  

Consequence Analysis 

Consequence analysis is the estimation of the potential consequences caused by the 
occurrence of the hazard. Near-surface winds and associated pressure effects, 
positive, negative, and internal, external pressure on structural walls, doors, windows, 
and roofs, causing the structural components to fail. Positive wind pressure is a direct 
and frontal assault on a structure, pushing walls, doors, and windows inward. 
Negative pressure affects the sides and roof where passing currents create lift and 
suction forces that act to pull building components and surfaces outward. The effects 
of winds are magnified in the upper level of multi-storied structures. Just as positive 
and negative forces impact and remove a windward protective building envelop 
(doors, windows, walls), internal pressures rise and result in roof or leeward building 
component failures and considerable structural damage or collapse. Debris carried 
along by extreme winds can directly contribute to loss of life and indirectly to the 
failure of protective building envelope components. Upon impact, wind-driven debris 
can rupture a building, allowing more significant positive and internal pressures. 
Despite its economic prosperity, depth of research enterprise, and breadth of societal 
infrastructure, windstorm and hurricane-related losses in the United States have 
escalated to a record $35.8 billion in annual losses during the last five years (NSB 
2006). This trend is expected to continue, owing largely to projections of population 
and housing growth in hurricane-prone regions and recurring above-average seasonal 
hurricane activity that is expected to occur for the next 10 to 40 years. As an example, 
from June 1975 to May 1995, 193 federal disaster declarations involved wind-
induced natural hazards: 106 for tornados, 40 for hurricanes and tropical storms, 25 
for typhoons, and 22 for high winds.  
 
To illustrate consequence analysis a brief, simplified example (e.g., ignoring the time-
value of money and assuming hypothetical a New Orleans Category 4 hurricane with 
a 20 percent probability over a 20-year period), based on Ang (2007), is presented as 
follows: 
 
Given the occurrence of a particular hazard, there is some chance that structures or 
infrastructures within the affected zone will be severely damaged or collapsed. This 
probability, of course, will depend on the distribution of the maximum force from the 
hazard relative to the capacity of the structures for resisting such forces. As the 
maximum forces and the structural capacities will both contain variability and 
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uncertainty, each may be represented with a probability model. That is, the maximum 
forces and structural capacities can be represented with respective random variables 
and associated probability distributions. For example, we may model the maximum 
wind speed during a hurricane with a random variable, V, and its probability 
distribution as a Type I extreme-value distribution shown in Figure 3.3. With the 
assumption that this is the distribution of the maximum hurricane wind speeds 
throughout a city or region, the wind resistances of the structures in the city will also 
vary widely; some can withstand the highest possible speed depicted in Figure 3.3, 
whereas others could fail under the low end of the speed spectrum of Figure 3.3. We 
may also postulate that the wind resistances of the structures in the city may be 
modeled with the lognormal probability distribution of Figure 3.4. On the bases of the 
probability density functions (PDF’s) of Fig. 3.3 and 3.4, we can calculate the 
probability of failure, pF, of structures (e.g., through Monte Carlo simulation) in the 
city. The resulting failure probability, pF, may be interpreted as the proportion of 
structures and infrastructures (buildings, bridges, water tanks, etc) in the city that will 
suffer serious damage or collapse; in essence, the vulnerability of the city when 
subjected to a Category i hurricane. An (hypothetical) example is described 
numerically below to illustrate the conceptual process of QRA as outlined above. In 
order to clarify the steps in the QRA process, the problem is necessarily idealized, 
although the assumptions are reasonably realistic. For this purpose, suppose that an 
analysis of the hurricane risk for New Orleans (for a period of 20 years) was 
performed 15 years (say in 1990) before the occurrence of Katrina, a Category 4 
hurricane, in August 2005. In this illustrative example, the numerical values used are 
hypothetical and may not be accurate (as they are pre-Katrina). Nevertheless, they 
serve to illustrate the quantitative process of assessing the underlying risks and 
associated uncertainties for the purpose of providing the essential quantitative 
information for making risk-informed decisions for mitigating a future hazard. 
Assume that upon careful examination of the recorded data on hurricanes in the gulf 
coast region, the return period of a Category 4 hurricane striking the vicinity of New 
Orleans is determined to be around 100 years; this means that there is a 1% 
probability each year, and a 20% probability over a 20-year period, that a Category 4 
hurricane can be expected to hit the city of New Orleans and its vicinity. A 20% 
probability of occurrence over a period of 20 years (which is not particularly long) is 
a significant probability. A Category 4 hurricane, with a maximum sustained wind 
speed of 125-145 mph is bound to cause massive damages to ordinary dwellings and 
severe damages to some of the engineered infrastructures. Except for the engineered 
infrastructures of reinforced concrete and steel constructions, the ordinary houses 
would likely be destroyed by sustained wind speeds in excess of 100 mph. Also, as 
the elevation of the city of New Orleans is 6 to 7 ft. below sea level, the city is 
protected by the levees and floodwalls that kept the water of the surrounding lakes 
(such as Pontchartrain) and the Mississippi River from inundating the city. It has been 
widely reported that the levees were designed and constructed with an average height 
of around 8 ft for protection against hurricanes of Category 2 or 3. Suppose that the 
actual levee heights has a symmetric triangular distribution between 7 and 9 ft and 
that the surges from the lake caused by a Category 4 hurricane can be modeled with a 
lognormal random variable with an estimated median height of 10 ft and a c.o.v. of 
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30%. Therefore, under a Category 4 hurricane there is a high probability that the 
levees will be breached causing massive inundation of the city; with the above 
assumptions, this probability can be calculated to be as follows: P(levee breached) = 
0.78. Furthermore, the vulnerability of much of the houses in New Orleans and 
vicinity against the hurricane winds would also be very high. Assume that the 
distribution of sustained wind speed in a Category 4 hurricane is modeled with a Type 
I extreme-value distribution with a mean speed of 130 mph and a c.o.v. of 40% as 
portrayed in Figure 3.1, and that the wind speed resistance of houses and other 
structures is a lognormal random variable with a median of 85 mph and a c.o.v. of 
30% as portrayed in Fig. 2. On these bases, the vulnerability of the building stock and 
other structures in the city to the hurricane winds would be (evaluated through Monte 
Carlo simulation): Vulnerability of structures = 0.785. 
 

 
Fig. 3.3. Maximum Hurricane Wind Speed, V 

 

 
Fig. 3.4. Wind resistance of Buildings, R 
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The consequences of the destructive effects of a Category 4 hurricane to the city of 
New Orleans, therefore, must include those caused directly by the high winds as well 
as by the surges from the lakes. Assuming that up to 90% of the population 
(approximately 600,000) in New Orleans will be evacuated before the storm, the 
potential fatalities may be assumed to range from 1,800 to 3,000 (i.e., 3% to 5% of 
those who did not evacuate) and serious injuries between 5,000 and 10,000, with 
respective mean values of 2400 fatalities and 7500 injuries; whereas, the economic 
loss could range between 75 and 150 billion dollars with a mean loss of $112.5 
billion. It may be reasonable to assume (prior to the occurrence of Katrina) that the 
fatalities and injuries will be caused equally by the extreme wind and by the 
inundation of the city; whereas the economic loss will largely be caused by the failure 
of the levee system and subsequent inundation of the city. On the basis of the above 
postulated information, the “best estimate” of the risks to the city of New Orleans can 
be summarized as follows (based on respective mean values): Fatality risk = 
0.5[0.20(0.785)(2400)] + 0.5[0.20(0.78)(2400)] = 376; Risk of serious injuries = 
0.5[0.20(0.785)(7500)] + 0.5[0.20(0.78)(7500)] = 1,174; Risk of economic loss (in 
dollar) = 0.20(0.78)(112.5) = $17.55 billion. 
 
The results of a quantitative risk assessment will permit also a quantitative analysis of 
the reductions in the respective risks that can accrue from an investment in strategies 
to mitigate the effects of a future natural hazard. A clear example is the risk 
reductions accruing from strengthening and raising the height of the levees around 
New Orleans for protection against a Category 4 hurricane. Suppose that the cost to 
improve the levee system will be $1.00 billion to insure against or mitigate any 
inundation of the city. This may require raising the height from the existing average 
height of 8 ft to a uniform height of 12 ft plus any needed strengthening of the levees 
and floodwalls. With 12-foot levees, the probability of breaching from a Category 4 
hurricane will be reduced to the following: P(levee breached) = 0.27 and the “best 
estimate” reduced economic risk from inundation would be Reduced economic risk = 
0.20(0.27)(112.5) = 6.08 billion dollars The reduced fatality risk would become 
Reduced fatality risk = 0.5[0.20(0.27)(2400)] + 0.5[0.20(0.785)(2400)] = 253 and the 
corresponding reduced risk to injuries would be Reduced injury risk = 
0.5[0.20(0.27)(7500)] + 0.5[0.20(0.785)(7500)] = 791. Therefore, with the investment 
of $1.0 billion to improve the levee system, the “best estimate” net reductions in the 
respective risks would be as follows: reduction in economic risk = (17.55 – 6.08- 
1.00) = $10.47 billion; reduction in fatality risk = (376 – 253) = 123; and reduction in 
injury risk = (1174 – 791) = 383, which are significant reductions in the respective 
risks accruable from the $1.0 billion investment for improving the levee system. 

Summary and Conclusions   

The insurance industry spent nearly $23 billion on wind-related catastrophic events 
from 1981 to 1990 (NRC, 1993). Of the three primary sources, hurricanes and 
tropical storms, severe thunderstorms, and winter storms, severe local windstorms 
accounted for 51.3 percent of expenditures. Although a number of property loss 
projection models have been developed, most of them use post-disaster investigations 
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(FEMA, 1993) or available claim data to fit damage versus peak wind speed 
‘vulnerability curves’. As pointed out by Pinelli, Simiu, et al. (2004), the most 
reasonable approach may be to combine the (relatively recent) probabilistic approach 
to structural damage estimation and the wind field model. Examination of insurance 
claim files from hurricane Hugo and Andrew revealed that most wind damage to 
houses is restricted to the envelope of the building. The risk of death and injury from 
hurricanes is very low, so the main criteria for minimizing insurance company and 
homeowner losses are economic, i.e., reducing damage to buildings and their 
contents, instead of related to life-safety. These investigations seek to define damage 
modes for different types of construction and building materials. Indeed, there are 
better prospects for sorting damage modes of structures during hurricanes, 
considering the envelope character of the damage, compared to the more complex 
patterns of damage and failure of structures during severe earthquakes. Of course, the 
combined effects of wind and earthquakes are also of great interest to engineers. 
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Chapter 4: Quantitative Earthquake Risk Assessment 

By Anne Kiremidjian1, Stanford University, Stanford, CA; Evangelos Stergio, Guy 
Carpenter Inc., New York, NY; and Renee Lee, Arup, San Francisco, CA  

Abstract 

A brief summary of earthquake risk assessment methods is presented. The method is 
general and can be applied either to a single structure or to a group of structures that 
are spatially distributed in a region exposed to earthquakes. Furthermore, lifeline 
systems, such as water, power, communications, and transportation system, can be 
analyzed with the method presented here but with consideration of the network flow 
through the system. For either a single structure or a distributed system, the risk can 
be due to direct damage or to loss of functionality. The application of this method to a 
transportation network system within the San Francisco Bay Region is demonstrated 
by an example. 

Introduction 

Recent earthquakes, such as the 1994 Northridge, California, and the 1995 Kobe, 
Japan events, showed that damage to structures can result in large losses to individual 
owners and to a community. The significance of functionality losses, resulting from 
the closure of building, facilities, or lifeline systems, was also amply demonstrated. 
Both of these types of losses point to the need for a detailed and systematic risk 
assessment approach. In this paper, a general framework for earthquake risk analysis 
of individual structures or lifeline systems is presented with specific consideration of 
direct damage and down time. Results from a recent project supported by the Pacific 
Earthquake Engineering Research Center (PEER) on transpiration systems are 
presented to illustrate the method. 

Earthquake Risk Assessment Overview  

Structure Risk Assessment 

Seismic risk assessment methods have been developed over the past 30 years and are 
now reaching a level of acceptance by the general engineering community as viable 
method for design and decision-making. In this paper we follow the formulation 
proposed by PEER. For individual structures (and these can be components of a 
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lifeline system) the risk is measured in terms of a decision variable, DV. The risk to a 
structure is given by  

      
 

IMEDP|IMDM|EDPDV|DM dFdFdFdFdvDVP  (4-1) 

where 

DV = the decision variable 

DM = the damage measure 

EDP = the engineering demand parameter 

IM = the intensity measure 

F = the cumulative distribution of the random variable. 

IM in Eq. 4-1 can be either a single variable or a vector of variables. It can represent 
ground motion at the site of a network component or a ground deformation measure. 
The most commonly used ground motion IMs are peak ground acceleration and 
spectral acceleration. Ground deformation IMs represent the amount of lateral 
spreading and/or settlement at a site. IMs are obtained through conventional 
probabilistic seismic hazard analysis expressed as the annual probability of 
exceedence of the IM at a location. To account for ground motion and ground 
deformation, the following formulation is developed (Kiremidjian et al. 2006): 
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A =  ground motion severity  

SH = horizontal ground displacement due to either liquefaction or landslides or to 
differential fault displacement  

SV = vertical ground displacement due to either liquefaction or landslides or 
differential fault displacement. 

It is assumed in this formulation that either liquefaction, landslides, or differential 
fault displacement from fault rupture occur at a site but none simultaneously. 
Similarly, if there is either liquefaction or landslide or fault displacement, they govern 
the damage and any damage due to ground shaking alone is considered to be already 
included in the ground deformation analysis.  

Given the IM, the engineering demand parameter (EDP) is evaluated in terms of 
structural response measures such as deformations, accelerations, induced forces, or 
other appropriate quantities. Relationships between EDP and IM are obtained through 
inelastic simulations, implementing structural, geotechnical, and nonstructural 
damage models. The EDPs are then related to damage measures (DM), which 
describe the physical damage. The DMs include descriptions of damage to structural 
elements, non-structural elements, and contents, in order to quantify the necessary 
repairs along with functional or life safety implications of the damage. Specifically 
for building or bridges, DM describes the damage to their structural elements or the 
structural system. The final step in the assessment is to calculate the decision 
variables, DV, in terms of mean annual probabilities of exceedance, ν(DV). In 
general, the DVs relate to one of the three decision metrics that include direct dollar 
losses, downtime (or restoration time), and casualties. The DVs are determined by 
integrating the conditional probabilities of DV given DM, p[DV=dv|DM], with the 
mean annual DM probability of exceedance, ν[DM].  

Lifeline Network Risk Assessment 

The PEER methodology is limited to estimating the risk to components of a lifeline 
system. In this section we present the network risk estimation method as it pertains to 
transportation systems. Damage to the components of the network often results in the 
closure of specific links until these components are repaired. This action increases the 
level of traffic congestion and travel time or reduces the number of trips taken. For 
other networks, such as water systems, closure of a component will result in reduced 
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flow to a terminal point. Trip or flow reduction is very difficult to predict; however, 
logical estimates can be made given the socio-economic profile of the area of study.  

The increase in travel time can be found with respect to a baseline scenario. Travel 
time delay, however, is highly correlated to the number of trips that are lost. The 
problem of the risk assessment of a transportation network becomes more complex 
under this approach because the indirect loss has two components, the cost of the 
delays and the cost of the lost trips.  

To develop a network risk assessment model, it is necessary first to formulate a 
network flow model. For transportation networks, a traffic assignment model 
allocates the traffic within the network components based on the supply and the 
demand for trips. For other flow networks, the volume and pressure of the flow needs 
to be specified for each link. The results of such an analysis are the flow (for 
example, number of cars or flow volume and pressure) and the time needed to travel 
through each component. Traffic flow models were utilized by Cho, Fan, and Moore 
(2003) and are summarized in the highway demonstration project (Kiremidjian et al. 
2006) and will be used in the illustration that follows in this paper. 

Estimation of Total Risk 

The risk can be expressed as the expected loss or the probability of exceeding a loss 
level. For spatially distributed systems, estimation of the probability of exceeding loss 
level can be particularly challenging because components of the system are subjected 
to different ground motions with each earthquake event. Most frequently, a 
simulation approach is used to estimate the loss to a system where component and 
functionality loss is evaluated for each event and then the contribution of loss from all 
events is combined for a total risk formulation. In the following subsections, we first 
address the estimation of expected loss and the uncertainty of that loss, referred to as 
point estimates of loss and then discuss the total risk curve analysis. 

1.1 General formulation of point estimates of loss 

The total expected loss for a given event is given by the following equation: 

   nn|QLnss|QLs |Q)dl(lfl|Q)dl(lflQLE
ns

)|(  (4-5) 

where  

Ls = the structural loss of the components 

Q = the scenario event 

Ln = the loss due to network disruption  

F = the probability density function of the random variable 

E(L|Q = the expected value of loss L given the event Q 
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In Eq. 4-5 the decision variable DV has been expressed in terms of monetary loss L. 
The event Q is defined by its magnitude, rupture length and location, rupture depth, 
and dip angle of fault. With these specifications, the IM is estimated for events with 
rate i at all bridge sites. The structural loss is evaluated based on the PEER 
methodology discussed in the previous section. The operational loss in the same 
equation requires a network analysis model with traffic assignments for the region 
presented in the preceding section. It implies that traffic delays D on various links of 
the system are first computed and then the losses Ln are estimated as function of the 
operational losses due to that time delay D.  

The annualized risk for the system from all possible events that occur with rate νi is 
expressed in the following equation:  
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where  

Ls  = the structural loss of the components 

Q  = the scenario event 

Ln  = the loss due to network disruption  

fX(x) = the probability density function of the random variable 

ν = the annual rate of occurrence of an event or the rate of DV = total loss L  

Eq. 4-6 cannot be expressed in closed form and is evaluated numerically or through 
simulation. For large networks, the analytical complexity can be challenging and 
computational run-times can be excessive. Several methods have been proposed for 
efficient computation of the multiple integrals of Eq. 4-1 and 4-2, which are 
implicitly contained in Eq. 4-6. Also implicit in this equation is the aggregation of 
loss from all network components. This aggregation is further discussed in the next 
section. 

Point Estimates of the Structural Loss for Multiple Sites and Single Event 

For network systems the risk estimates are applicable to multiple components to make 
decisions for retrofitting strategies or planning new links. In this section, we will 
generalize the two methods to estimate the loss at a single site and apply them to a set 
of components. In the development that follows, the dependence on the event Q is 
dropped to simplify the notation.  

45



The loss from n components in a network is the sum of n random variables. 
According to probability theory, the sum of the expected values of the loss of all the 
components will be equal to the expected value of the total loss. The variance of the 
total loss is equal to the sum of the variances, under the assumption that the damage 
of the components is uncorrelated. The equations follow: 
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where 

E(li)  = the expected value of the loss at a single site 

σi  = the variance of the loss at a single site 

If the losses, however, are correlated, the variance is given by 

    



n

i
itotal LELE

1

 (4-8a) 

 

















  
 




n

i

n

i

n

ij
j

LLLLLL jijiitotal
1 1 1

22 

 (4-8b) 

where ij is the correlation between loss Li at site i and loss Lj at site j within the 
system.  

The challenge in evaluating Eq. 4-8b is in estimating the correlations ij. Recent 
research by Lee and Kiremidjian (2006) has demonstrated that the losses at pairs of 
bridge sites are correlated through ground motion and bridge damage. 

Probability Distributions of the Structural Loss for Multiple Sites and Single 
Event 

In general, the first terms in Eq. 4-5 and 4-6 can be expanded to explicitly show the 
damage measure DM, engineering demand parameter EDP and intensity measure IM 
conditional probability density functions. The challenge is in evaluating the 
probability density function (PDF) of loss for all bridges in the network system for a 
given event. The challenge is further increased when all possible events are 
considered. In this section we develop the aggregated loss from structural damage for 
a single event.  
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For a given event Qj, j =1,2,…N, the total loss resulting from damage to components 
(bridges) of the network is the sum of all the losses. Since the loss of each component 
is a random variable with its own distribution, the sum of the losses is a convolution 
of the individual probability density functions. That is,  

 n321total L...LLL  L   (4-9) 

 
n321total LLLLL f...ffff   (4-10) 

where  

Ltotal  = the total loss for a set of n bridges 

Li  = the loss for bridge i, i=1,2,…n for a given event Qj 

fX(x)  = the PDF of a random variable X 

  = the symbol for convolution 

In the preceding equations, the subscript referring to the event j is dropped for 
simplicity of notation. Using the well known property that the convolution in the time 
domain becomes multiplication in the frequency domain, we can compute the 
probability density of Ltotal by transforming the network component PDFs of loss, 
fL(l), into the frequency domain, multiplying them in the same domain, and then apply 
the inverse transformations to obtain the probability density in the time domain. To 
reduce the error in transformation, two PDFs are transformed successively until the 
variables are exhausted and the total loss PDF is estimated. It is recalled that Eq. 4-9 
and 10 are for a given event and the distributions are conditional on that event.  

Evaluation of the Network Functionality Loss 

Undoubtedly, the network performance drops after an earthquake event because of its 
decrease in capacity or component closures. To quantify this reduction in 
functionality we first estimate the expected value of the operational loss of the 
network relative to a baseline performance, which is the performance prior to the 
earthquake. Then the uncertainty on that loss can be computed considering various 
sources of variability in the system.  

Expected Value of Network Functionality Loss 

Damage to network components defines the reduction in flow capacity. For example, 
a bridge with 20% damage will have to reduce its traffic by the same percentage to 
meet its demand. When the damage exceeds 40%, we assume that the bridge is closed 
and passengers have to make a detour. 
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Travel time delays are estimated by subtracting baseline travel times from the travel 
times in the network with reduced capacity. It is possible to convert this delay to 
monetary units, if we know the value of time and the number of passengers.  

Component repair duration will depend on the damage level of the bridge and will 
vary for each bridge type. In order to have a realistic assessment of the total 
operational loss, estimates for restoration times are obtained for the different damage 
states. Network performance analyses are conducted immediately after the event and 
again after 1, 3, 7, 14, 30, 180 and 365 days. The total indirect loss is then the integral 
of this curve and must be added to the structural loss in order to estimate the total loss 
of the scenario. This operation represents the expected value of functionality loss for 
the lifeline network.  

Transportation Network Risk Curve from Monte Carlo Simulation with 
Importance Sampling 

Evaluation of Eq. 4-6, which leads to the total risk curve, is computationally very 
expensive. In general, there are three methods to compute Eq. 4-6: (1) numerical 
integration, (2) conventional Monte Carlo simulations, and (3) Monte Carlo 
simulation with importance sampling. Numerical integration considers the full 
assessment of the equations describing the risk model. Monte Carlo simulation is an 
approximate method that randomly selects scenarios over time and evaluates the loss 
rate curve. It must be repeated many times to obtain stable results or it needs to be run 
over long forecast periods to capture all possible events. Importance sampling is 
again a simulation-based approach that selects a combination of scenario events in the 
region in such a way that the mean and higher order moments of the risk rate curve 
are preserved with the minimum number of scenarios. 

Considering the nature of the transportation network problem, analytical methods 
cannot be used for risk assessment. Thus, we choose the importance sampling method 
because it minimizes the analyses while preserving important components of the risk 
curve such as the mean and at least the second order moment (variance) of the loss 
rate. Then the losses from each scenario are combined as follows.  

Earthquake events are assumed independent and follow a Poisson process. It is 
recalled that an event is defined by its magnitude, rupture length, rupture location, 
rupture depth, dip angle, and annual rate of occurrence. We denote the probability of 
a scenario event to be P[Qj], j = 1,2, …N, where Qj is the jth event that is identified as 
being important for the risk curve computation and N is the total number of events. If 
the loss for each scenario Qj is Lj, j = 1,2,3…N, we order the losses in decreasing 
order.  

  L...L...LL 1k1nn    (4-11) 
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Then the probability of exceeding the loss rate in a year is obtained by  

 
 ][11]P[Lk j

n

kj
QPl 

  (4-12) 

In Eq. 4-12, the assumptions are made that (1) individual losses are independent, (2) 
the system is fully restored after each event, and (3) only one event occurs at a time. 
While this equation is a simplification, it is computationally tractable and provides 
additional information over expected value loss estimates as will be demonstrated in 
the application section of this paper. 

Application to the San Francisco Bay Bridge Loss Estimation 

This paper presents a brief example of computation of losses to a set of bridge in the 
San Francisco Bay Area. More detailed discussion of network loss analysis and 
assessment are provided in Stergiou (2006). Damage and loss estimates were obtained 
for 1,125 bridges that are part of the transportation network system in the region. The 
bridges were classified in generic structural classes according to the definitions in 
HAZUS (1999) and fragility functions from the same document were used for 
estimating the damage to several scenario earthquakes.  

The seismicity in the San Francisco Bay Area is dominated by the San Andreas and 
Hayward faults. Magnitudes, their frequency of occurrence and rupture locations are 
well documented in a recent report by USGS (2003). For the purposes of our 
application, earthquakes of moment magnitude, Mw =6.75 are considered to be 
appropriate lower threshold. The upper threshold values are 8.0 and 7.5 for the San 
Andreas and Hayward faults, respectively (USGS 2003). Considering various rupture 
locations along each fault, a total of 56 scenario events are identified and used in the 
risk assessment. The reader is referred to Stergiou and Kiremidjian (2006) for further 
detail.  

Boore, Joyner, and Fumal’s (1997) ground motion attenuation model is used to 
predict site ground motions. For that purpose the local soil conditions are assessed 
according to the California Geological Survey (CGS). Ground motions are estimated 
at each bridge site in the network system with corresponding annual rate of 
occurrence (that is, an IM value with a rate IM).  

Information on liquefaction susceptibility is obtained from the U.S. Geological 
Survey Open File Report 00-444 (USGS 2000) and the methodology for liquefaction 
and landslide analysis provided in HAZUS (1999) is used to estimate liquefaction and 
landslide ground deformations at bridge locations. 
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Structural Loss from the San Andreas Fault 
Rupture by Hazard 
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Fig. 4.1. Loss from structural damage to pre-retrofitted bridges  

The loss from damage to bridges from each scenario event is estimated by 
multiplying the expected damage state of a bridge by its replacement value. Figure 
4.1 shows the loss from damage to bridges due to ground shaking, liquefaction, and 
landslides resulting from the potential occurrence of events on the San Andreas Fault. 
From that figure, the highest losses are from the magnitude 8.0 event on the San 
Andreas Fault, as expected. The contribution of losses due to liquefaction appears to 
be twice as large as those due to direct ground shaking. The loss from landslides is 
small in comparison to ground shaking and liquefaction. 

The total replacement cost for the 1,125 bridges considered in this study is estimated 
to $2,891 million. The total expected value of structural loss reaches a maximum of 
$1.18 billion for the San Andreas Fault scenarios.  

Conclusion 

A general formulation for earthquake risk assessment is presented that considers 
ground motion, liquefaction, and landslide hazards as well as the contribution of 
direct physical loss and functional loss. Application of the methodology to the San 
Francisco Bay Area shows that the direct physical loss can be significant. Findings 
show that liquefaction has the highest influence of all the hazards, but additional 
research to develop more robust methods of analysis is recommended.  
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Chapter 5: Risk Assessment for Bridge Decision-Making 

By Dan M. Frangopol, Lehigh University, Bethlehem, PA, and Thomas B. Messervey, 
United States Military Academy at West Point, NY  

Abstract 

This paper investigates how the inclusion of risk can enhance the design, assessment, 
and management of bridge structures. Similarities are investigated between the risk-
based decision-making process and reliability-based life-cycle management (LCM) 
methods with the intent of combining synergistic benefits from each approach. A pre-
posterior analysis in a Bayesian framework is conducted to demonstrate how life-
cycle cost analysis can be used to help design monitoring solutions by establishing 
cost/benefit benchmarks for consideration by bridge managers.  

Introduction 

The challenge of addressing the increasingly urgent need to maintain, repair, and 
manage ageing civil infrastructure is well documented and widespread across many 
nations. The issue is of importance as the quality, quantity, and readiness of civil 
infrastructure directly impacts the economic and social well being of a society 
(Frangopol and Liu 2007). To address this problem, infrastructure managers urgently 
need methodologies and technologies to cost-effectively allocate limited budgets that 
optimally balance lifetime structure performance and life-cycle maintenance costs. 

Researchers and engineers around the world have been developing and implementing 
different management programs to maintain satisfactory infrastructure performance 
from a long-term economic point of view. One problem facing such programs is that 
visual inspection-based condition states are often used to determine infrastructure 
performance. In such approaches, the actual infrastructure safety level is not adequately 
accounted for and maintenance actions may not be cost effective. For example, it is 
possible that a structure with satisfactory visual condition states may contain invisible 
flaws such as the debonding of rebar in a reinforced concrete structure due to corrosion, 
thus resulting in a serious safety concern. On the contrary, it is also possible that a 
structure with a poor visual condition state may be structurally sound with only minor 
repairs needed. In such a case, visual defects may result in unnecessary repair actions 
and a non-optimal allocation of scarce resources. Another significant problem facing 
infrastructure managers is that in many cases identified deficiencies are greater than 
those that can be addressed within available budgets. In such cases, managers must 
accept solutions that achieve the highest level of performance within budgetary 
constraints. Conversely, if resources are available, managers have the option to 
maintain structures at a higher level of performance than previously prescribed for 
developing the minimum life-cycle cost solution (Frangopol and Liu 2007).  
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In response to the above concerns, several recent research efforts have focused on 
management programs that simultaneously consider the performance objectives of 
condition, safety, and cost for the development of maintenance actions in a life-cycle 
context. Such methods utilize multi-objective optimization to develop a list of 
alternative solutions that allow a bridge manager to actively select the most desirable 
balance between conflicting objectives (Liu and Frangopol 2006). Each solution, 
termed Pareto optimal, is one such that there does not exist another solution that can 
improve one objective of the optimized solution without sacrificing at least one of the 
other objectives. Such management systems provide the flexibility for bridge 
managers to explore the feasibility of different maintenance actions to satisfy 
specified requirements within provided budget constraints.  

Paramount to the success of any management program is an accurate modeling of the 
problem and the accuracy of the information fed into that model. This is particularly 
difficult in a life-cycle analysis due to the amount of uncertainty that must be properly 
accounted for over the useful lifespan of a structure. In addition to the uncertainties 
associated with a point-in-time analysis, which include member geometries, material 
properties, loads and their effects, a life-cycle analysis must consider how each of 
these change over time due to deterioration, changes in the functionality or use of the 
structure, or unanticipated load demands. One challenging, yet very promising area of 
research to help reduce some of these uncertainties and improve the modeling process 
is the integration of structural health monitoring (SHM) into infrastructure 
management systems (IMS). Using advanced sensing/information technology and 
structural modeling/identification schemes, SHM obtains real-time, structure-specific 
information. SHM applications include structural condition evaluation, parameter 
identification, model development and updating, and real-time monitoring (Susoy et 
al, 2007). Although most commonly used to update finite element models (FEM), 
SHM technologies have the potential to greatly improve existing bridge management 
systems through more accurately modelling random variable input parameters. This is 
of benefit because the use and acceptance of reliability-based life-cycle management 
(LCM) methods is limited by the fact that even after a structure is modeled, slight 
variations in the input parameters can produce radically different results, thus 
decreasing the confidence and perceived value of the process (Estes 1997).  

Although SHM technologies have the potential to significantly enhance the amount 
and quality of information utilized in IMS, this information comes with a cost that 
must be considered in a life-cycle context—the cost of monitoring should include 
initial design/construction, operational, inspection, repair, and maintenance expenses. 
As such, it would be expected (unless code driven) that a bridge manager would not 
employ the use of SHM unless the cost/benefit of the information obtained 
outweighed the costs of using SHM. As such, it is necessary to develop the metrics 
for quantifying the costs and benefits associated with monitoring solutions. 
Furthermore, the design with consideration of different monitoring possibilities then 
becomes an optimization problem to obtain the most benefit at the least cost. 
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A change in risk at a point in time or a change in the risk profile over time is a key 
metric in quantifying the benefit of a monitoring solution. Although the initial and life-
cycle costs associated with SHM may be more immediately identified, monitoring has 
the capacity to reduce life-cycle costs by assisting in correctly scheduling maintenance 
and inspections, conducting the correct structural repairs when repairs are needed, and 
by reducing the likelihood of failure. Qualitatively, it is appropriate to associate SHM 
with the ability to provide warning when critical thresholds are surpassed or to state 
that a structure is safer with an on-board monitoring system. However, this is 
unfortunately of limited use to a bridge manager operating in a resource constrained 
environment unless a dollar amount can be specified. The inclusion of risk in existing 
management methodologies provides the ability to quantify, assess, and accurately 
capture the potential cost savings, or utility, associated with SHM.   

Risk-Based Decision-Making and Reliability-Based Life-Cycle Management: A 
Synergistic Approach  

The considerations and procedural steps for risk-based decision-making and reliability-
based life-cycle management are similar and complimentary in nature as shown in 
Figure 5.1. They are similar in that both use a probabilistic formulation of a problem to 
deal with uncertainty. Once modeled, a system is assessed and consequences or benefits 
of different possible decisions can be evaluated. Once a particular decision is chosen, 
the model can then be updated and the system reevaluated in terms of consequence, 
safety, performance, cost, or condition at a future time interval. Both approaches are 
complimentary in nature as each uses a subset of the other within its framework. For 
infrastructure management systems, risk-based decision-making often utilizes a 
reliability analysis to obtain the probability of failure for each outcome within the risk 
assessment. For reliability life-cycle cost analysis, risk is typically utilized to identify 
and consider the appropriate life-cycle costs associated with the cost of failure.  

 

 

 

 

 

 

 

 

Fig.5.1. Decision-making frameworks 
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It should be noted that both approaches provide a natural and flexible decision-making 
methodology in the presence of uncertainty. Using either provides the capability to assess 
multiple courses of action, allows new information to be introduced into the models, and 
provides managers the ability to include their preferences or experience. As such, one 
approach will not supersede the other. Instead, the approaches can be utilized in parallel or 
the strengths of each can be leveraged in a combined approach.  

Quantifying Utility for Monitoring Systems on Bridge Structures  

SHM Design Approach 

A combined approach that leverages risk-based decision-making and reliability-based 
life-cycle management is of particular interest in the design and analysis of 
monitoring systems. In evaluating the cost or benefit of monitoring, two methods are 
likely. One could first select a monitoring system and subsequently project the costs 
and estimated benefit in a life-cycle context, or one could first quantify the 
performance needed from SHM to achieve a utility benchmark and subsequently 
design a monitoring solution to obtain the required performance. Because identified 
repair and maintenance needs are currently greater than available budgets to address 
the problem, it is likely that the adoption of SHM for bridge structures will be 
incremental in nature. Furthermore, because the actual benefit of any monitoring 
system will ultimately depend on the actual information collected, the design and 
initial assessment of such systems must be based on anticipated information, or a pre-
posterior analysis. For these reasons, the second approach to the design and 
assessment of SHM is desirable. By investigating structural models, it is possible to 
quantify the value of reducing uncertainty through the collection of structure specific 
information. As such, bridge managers are more likely to view SHM as an investment 
rather than a sunk cost. Additionally, such an investigation provides focus to the 
design of a SHM system and helps to answer the questions of what, where, when, and 
how to monitor. This is of particular interest in a risk-based decision-making 
approach where one of the main challenges in modeling a complex system is 
controlling the number of events, or possible outcomes, which can become extremely 
large.    

Quantifying the Costs and Benefits of SHM 

The minimum expected life-cycle cost with respect to lifetime performance is the most 
widely used criterion for design optimization of a new structural system. The general form 
of the expected life-cycle cost can be calculated as (Frangopol et al. 1997): 

 FREPINSPMTET CCCCCC      (5-1) 

where CET = expected total cost, CT = initial design/construction cost, CPM = expected 
cost of routine maintenance, CINS = expect cost of performing inspections, CREP = 
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expected cost of repairs and CF = expected cost of failure. Inclusion of monitoring 
into this general form results in: 

 MONFREPINSPMTET CCCCCCC  000000    (5-2) 

where ,0
TC ,0

PMC ,0
INSC ,0

REPC 0
FC  have the same meaning as CT, CPM, CINS, CREP, CF, 

respectively, but are associated with the case of monitoring. CMON is the expected cost 
of monitoring which is: 

 REPINSOPTMON MMMMC      (5-3) 

where MT = expected initial design/construction cost of the monitoring system, MOP = 
expected operational cost of the monitoring system, MINS = expected inspection cost 
of the monitoring system, and MREP = expected repair cost of the monitoring system. 
The operational cost of the monitoring system would include the cost of power 
(battery or electricity), as well as the costs associated with data processing and data 
management. The benefit of the monitoring system, BMON, is then captured through a 
comparison of the expected life-cycle total cost with and without monitoring by 
subtracting Eq. 5-2 from Eq. 5-1 (Frangopol and Messervey 2007a):  

 0
ETETMON CCB     (5-4) 

Inclusion and Quantification of Risk 

Risk, or the expected cost of failure CF in the above equations, can be captured as the 
product of the likelihood of an event, pf, and the associated consequences in monetary 
terms, C, given the event occurs as 

 Risk = R = CF = pf C    (5-5) 

The risk R is typically utilized in risk-based approaches and the cost of failure CF is 
typically utilized in LCM methods.  

As written, Eq. 5-5 is limited to a point in time analysis. In order to account for the 
life-cycle costs as noted in Eq. 5-1 to 5-4, a time-dependent reliability analysis must 
be conducted. One time-dependent reliability approach, the point-in-time approach, 
calculates the pf at different points in time as the structure ages. The reliability of the 
structure can then be expressed in terms of a hazard function H(t), which expresses 
the instantaneous likelihood of failure in a time interval given that failure has not 
already occurred. A discount rate of money is then assumed, and the net present value  
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Fig. 5.2. Typical simply supported highway bridge 
 

of the costs detailed in Eq. 5-1 to 5-5 can be calculated for a comparison of 
monitoring alternatives. 

Example Problem 

This study builds upon a simple example reported in (Messervey et al. 2006) in which 
the reliability of a short span, simply supported W690 × 125 steel beam bridge is 
investigated as the structure ages.  
 
The bridge is subjected to the HS-20 truckload as the steel beams corrode over time. 
Reliability is calculated with respect to flexure as indicated in the performance 
function  

 
 LLDLy MMSfg 

 (5-6) 

where fy is the yield stress, S the section modulus, and MDL and MLL are the dead and 
live load moment demands, respectively.  

Herein, the objective is to quantify the potential benefit of reducing the uncertainty 
associated with the resistance portion of Eq. 5-6. A sensitivity analysis yields that the 
uncertainty associated with the resistance is dominated by corrosion induced section 
loss. Therefore, reducing this uncertainty through the use of SHM is of potential 
benefit. This potential benefit can be estimated and visualized by repeating a 
reliability analysis with decremented values of the standard deviation for the section 
modulus random variable. The result of such an analysis is shown in Figure 5.3. As 
anticipated, the reliability profile trends higher as more precise information is 
obtained. The benefit of monitoring increases as the structure ages because the 
uncertainty associated with the corrosion induced section loss increases as the 
analysis projects further in time.  
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Fig. 5.3. Reliability profile with varying uncertainty associated with  
the section modulus 

 
Although Figure 5.3 depicts the standard deviation of the section modulus ranging 
from unchanged (no monitoring) to zero where the section modulus is treated 
deterministically (perfect information), it is acknowledged that perfect information is 
unattainable due to the inherent randomness associated with phenomenon itself 
(aleatory uncertainty) (Ang and de Leon 2005).  

To continue, a comparison is made between no monitoring and a monitoring solution 
that obtains a 50 percent reduction in the standard deviation of the section modulus (a 
feasible alternative). A minimum required reliability index of 2.0 is established to 
determine when maintenance actions are required. In this example, the only 
maintenance action considered is a replacement of the steel beams at a cost of 
$100,000, which returns the section modulus to its original state and corrosion, is 
again initiated. The reliability profiles for this scenario are shown in Figure 5.4.    

 

 

 

 

 

 

 

Fig. 5.4. Reliability profile with maintenance actions and a  
minimum reliability threshold 
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The life-cycle cost for each option can now be determined to investigate the utility of 
monitoring. Beginning with the expected costs of repairs, the net present values can 
be calculated using  

    (5-7) 

 
where FV is the future value at year n and r represents the discount rate of money. 
Assuming a discount rate of 4% the associated costs of repairs for the two options are  

    (5-8) 

 

   (5-9) 

Next, it is desirable to quantify the risk, or cost of failure, associated with each 
reliability profile. A point in time calculation can be conducted at any specified year 
as the product of the probability of failure and the consequence of failure. Assuming a 
consequence of failure of $2,000,000 for clean up, design and reconstruction of a new 
bridge as well as liability costs, for this example at year 20 the associated costs of 
failure are  

   747,25$000,000,201287.020 FC    (5-10) 

   860,10$000,000,200543.0200 FC    (5-11) 

However, this same calculation conducted at year 30 would result in the monitoring 
approach having a higher cost of failure due to the repairs conducted at year 25 for 
the no monitoring approach as shown in Figure 5.4. This is one reason a point-in-time 
calculation is not suitable for a life-cycle analysis. A second problem with such an 
approach is that it fails to account for previous structural performance. A better and 
more appropriate method is to utilize a hazard function. The conditional probability 
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of failure in time (t, t+dt) given no failure in (0, t) involves the hazard function. This 
function represents the instantaneous rate of failure given that failure has not already 
occurred as 

   (5-12) 

where ps(t) is the probability that an element is safe at any time t, which is also 
referred to as the survivor function S(t). Table 5.1 shows the calculation of the hazard 
function, or failure rate H(t), and the associated annual risk in dollars for the no 
monitoring approach for the time period between 20 and 25 years. 

 

 

Table 5.1. Development of the Hazard Function and Annualized Risk 

Y
r 

Probabilit
y of 
Survival, 
ps 

Derivat
ive 
dps/dt 

Hazard 
Function, 
H(t) 

Annual 
Risk 

2,000,00
0 H(t) 

20 0.9871 - - - 

21 0.9849 -0.0022 0.0022 4478.78 

22 0.9824 -0.0025 0.0026 5136.07 

23 0.9795 -0.0029 0.0029 5869.38 

24 0.9763 -0.0033 0.0033 6684.38 

25 0.9726 -0.0037 0.0038 7586.76 

 

Repeating this process for the monitoring approach and expanding the calculations to 
encompass the entire life cycle being considered, the hazard functions can be created 
and observed as shown in Figure 5.5.  
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Fig 5.5. Hazard functions with and without monitoring 
 

Eq. 5-7 is then used to calculate the net present value of each annual expected cost of 
failure (Annual Risk) from Table 5.1. A summation over the life of the structure 
provides the total expected cost of failure and can be used as a metric to compare the 
two approaches. In this example these summations result in: 

    (5-13) 
    (5-14) 

Temporarily setting aside the life-cycle costs associated with monitoring as identified 
in Eq. 5-2 and 5-3, the expected utility BMON of employing SHM can be calculated 
using Eq. 5-4. For this example, these calculations capture the present value of all 
expected repair and failure costs for each option and provide the difference as a 
metric in terms of utility as 

     (5-15) 

 

This value can be utilized as a benchmark for the design and consideration of a 
monitoring system. For a bridge manager, a potential cost savings of $46,123 is 
attainable through the collection of more precise information for the section modulus 
over time. For the engineer designing a monitoring system, it can now be concluded 
that the system will be cost beneficial as long as the life-cycle cost does not exceed 
$46,123 and the system can indeed provide a 50 percent reduction of the section 
modulus standard deviation over time. 
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It is important to highlight that this analysis did not account for the fact that the data 
obtained from monitoring could result in a change of the mean value for the section 
modulus, which is to say that a particular bridge could perform better or worse than 
predicted. In addition, this analysis did not account for any reduction in the 
probability of a sudden catastrophic failure through the notion of critical threshold 
values of the monitored data. This concept is of value and is left as a topic for future 
research. 

Conclusions 

This paper presents an investigation of how to quantify the value of obtaining more 
precise information in the life-cycle management of structural systems with the 
motivation of obtaining design benchmarks for structural health monitoring systems. 
The effect of obtaining more precise information is modeled through the reduction of 
the standard deviation of random variables within performance functions used to 
model a structure’s performance over time within a reliability analysis. In a 
probabilistic analysis, more precise information leads to increased structural 
reliability, decreased risk, and more appropriate maintenance actions which all result 
in lower life-cycle costs. However, more precise information cannot be obtained 
without incurring the initial and life-cycle costs of utilizing SHM. Determining if the 
value of the expected information is worth the cost is similar to pre-posterior analyses 
often utilized in Bayesian risk-based decision-making. However, the process needs to 
be appropriately modified for use in a life-cycle context. This paper demonstrates 
such a procedure and establishes a metric to quantify the potential utility of a 
monitoring system. This metric can be utilized as a decision-making tool for a bridge 
manager and can also be utilized as a benchmark in the design of a monitoring 
solution. The next appropriate steps for the development of this approach are to 
include more complex maintenance actions, to employ multi-objective optimization, 
and to expand the concept of utility to include the structure in the context of a larger 
bridge network.  
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Additional Resources 

Estes, A. C., and Frangopol, D. M., 2005. “Life-cycle evaluation and condition 
assessment of structures,” Chapter 36 in Structural Engineering Handbook, 2nd 
Edition, W-F. Chen and E. M. Lui, eds., CRC Press, 36-1 to 36-51. 
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Chapter 6: An All-Hazards Methodology for Critical Asset 
and Portfolio Risk Analysis 

By Bilal M. Ayyub, Ph.D., P.E., and William L. McGill, P.E.,  Center for Technology 
and Systems Management, Department of Civil and Environmental Engineering, 
University of Maryland College Park, MD, USA 

Abstract 

This paper develops a quantitative all-hazards methodology for critical asset and 
portfolio risk analysis (CAPRA) that considers both natural and human-caused 
hazards. A general formula for all-hazards risk analysis is obtained that resembles the 
traditional model based on the notional product of consequence, vulnerability, and 
threat, though with clear meanings assigned to each parameter. The methodology is 
briefly introduced and demonstrated using several illustrative examples based on 
notional information. 

Background 

In recent years, decision-makers charged with protecting critical assets have taken an 
all-hazards approach to risk management by focusing on both natural and human-
caused hazards (Waugh 2005), where each individual hazard type is physically 
unique and presents its own set challenges with its characterization and assessment. 
However, in contrast to natural hazards that are indiscriminate and without malicious 
intent, a unique challenge with assessing risks due to the deliberate actions of 
intelligent human adversaries is their ability to innovate and adapt to a changing 
environment. Although historical data can be relied upon to estimate annual 
occurrence rates for natural hazards affecting a region given that the timescale of 
geological and meteorological change is much greater than the planning horizon for 
most homeland security decisions, assets in this same region are always plausible 
targets for adversaries despite a lack of past incidents. 

This paper describes a general process for quantitatively assessing risks to critical 
assets and portfolios considering both natural and human-caused hazards that builds 
on previously published ideas on security effectiveness assessment, terrorism risk 
analysis, natural hazards risk analysis, infrastructure risk analysis and 
interdependency analysis, and systems risk and reliability analysis. The primary 
objectives of this paper are to present a general equation for all-hazards risk 
assessment, develop a simple model for portfolio interdependency analysis, and 
demonstrate the application. 
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Fig. 6.1. A methodology for critical asset and portfolio risk analysis. 

 

Asset Analysis 

A five-phase process for asset level analysis is adopted as shown in Figure 6.1. Since 
all portfolios, whether defined by a particular function or comprised of otherwise 
unrelated elements, are defined by their assets, asset level analysis provides the basic 
information needed to assess risk at higher levels of abstraction. The five steps are 
based on preliminary work described in Ayyub et al. (2007) and McGill et al. (2007), 
with slight modification to accommodate new thinking. Each phase is briefly 
discussed in the following sections. 

Scenario Identification 

The scenario identification phase constructs an exhaustive set of hazard and threat 
scenarios that are relevant to a given asset based on its inherent susceptibilities of its 
key elements to a wide range of natural and human-caused initiating threat events. In 
the context of the proposed method, a key element is one that contributes directly to 
one or more missions associated with an asset, and a hazard or threat scenario is the 
pairing of a specific hazard or threat type with a susceptible key element. 
Susceptibility is treated as a binary variable, where a value of one indicates the key 
element can be damaged by a specific hazard or threat type. Once a complete set of 
hazard and threat scenarios is obtained, selected scenarios can be filtered out from 
additional analysis either if the rate of occurrence is perceived to be sufficiently low 
relative to the adverse affects or if the effects are not significant enough to warrant 
attention. 

Consequence and Criticality Assessment 

The consequence and criticality assessment phase assesses the loss associated with a 
given hazard or threat scenario as a function of degree of damage resulting from the 
damage-inducing mechanisms associated with a hazard or successful attack. The 
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following gives the probability of a specified degree of loss L given adversary success 
at achieving damage D, PL|D, following the occurrence of a hazard or threat scenario: 

 PL|D = (1 – II)(1 – IR) (6-1) 

where II characterizes the intrinsic resistance to loss given damage (one minus the 
probability of an unmitigated loss of a specified degree), IR is the effectiveness of 
response and recovery interventions (measured as one minus the probability of 
realizing the specified loss L given a level of unmitigated loss), and the summation is 
taken over all possible values for unmitigated loss. In general, Eq. 6-1 is used to 
assess the loss for a variety of consequence dimensions, including casualties, 
economic loss, environmental damage, and recuperation time. 

Protective Vulnerability Assessment 

With regards to human-caused threats, the protective vulnerability assessment phase 
assesses the probability of damage for a variety of alternative attack profiles for each 
threat scenario. An attack profile is the pairing of a specific threat delivery system 
(such as a vehicle for an explosive attack) with a relevant intrusion path (such as “via 
main access road”). The effectiveness of measures to detect, delay, respond to, and 
defeat are considered to arrive at an overall measure of effectiveness, or reliability, of 
the security or protection apparatus for each attack profile. The probability of 
damage, PD, can be obtained as: 

 PD = (1 – IS)(1 – IA)(1 – IH) (6-2) 

where IS is the measure of security system effectiveness or reliability (one minus the 
probability of adversary success), IA is the measure of effectiveness for denial 
interventions (one minus the probability of exposing the target to the threat’s damage 
inducing mechanisms), and IH is the effectiveness of hardness interventions (one 
minus the fragility of the target with respect to the intensity of the threat). The model 
in Eq. 6-2 was developed based on previous work by Martz and Johnson (1987), 
Dessent (1987), and Hicks et al. (1999). For natural hazards, PD = (1 – IH). 

Threat Likelihood Assessment 

For human-caused threats, the threat likelihood assessment phase estimates the annual 
rate of occurrence for each attack profile based on the perceived attractiveness of 
each the asset, threat scenarios, and attack profiles. Assuming rational adversaries 
(Hoffman 1998) that seek to maximize expected utility with respect to their own 
perceptions of risk and reward (Pate-Cornell and Guikema 2002), the relative 
attractiveness, AP, of an attack profile can be obtained as: 

 AP = PVPUP /  PVPUP (6-3) 
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where PVP is the probability that the profile (intrusion path) is visible to the adversary, 
UP is the expected utility of an attack profile as perceived by the adversary, and the 
summation in the denominator of Eq. 6-3 is taken over all attack profiles. This model 
basically assumes that the probability of attack for a given attack profile is 
proportional to its attractiveness, and can be thus called the proportional 
attractiveness method. The choice of utility model for the adversary depends on the 
specific preferences, motivations, risk attitudes, and such. Yager (2007) suggests 
multiple prototypical adversaries be considered, including those that seek to 
maximize potential gain, maximize probability of success, or maximize return on 
investment. Moreover, if one conservatively assumes that the adversary has perfect 
knowledge of consequences and vulnerabilities, the parameters used to estimate 
utility based on gain and probability of success can be pegged to defender 
information obtained during the consequence and criticality assessment and 
protective vulnerability assessment phases. 
 
Analogous to profile attractiveness, estimates of scenario attractiveness and asset 
attractiveness can be obtained as 

 AS = PVSUS /  PVSUS (6-4) 

 AA = PVAUA /  PVAUA (6-5) 

where US can be taken as the maximum utility among all attack profiles associated 
with a given threat scenario (or some other functional), and UA is the maximum utility 
among all threat scenarios associated with a given asset (or some other functional). 
The summation in the denominators of Eq. 6-4 and 6-5 are taken over all threat 
scenarios and assets, respectively. This model assumes that the overall utility for a 
scenario (asset) is completely a function of the utilities assigned to the associated 
attack profiles (scenarios). 
 

The annual rate of occurrence, , for an attack profile can be obtained as 

  =0AAASAP (6-6) 

where 0 is an estimated baseline annual rate of occurrence for a given hazard or 
threat type. The asset attractiveness, threat scenario attractiveness, and attack profile 
attractiveness are taken to be surrogates for the probability of attack at a given asset 
with a given threat type, probability of realizing a certain threat scenario given attack, 
and the probability of the attack via a certain attack profile given a threat scenario. 
For natural hazards, the annual rate of occurrence is simply the estimated frequency 
of occurrence from past data and expert opinion. 
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Risk Assessment 

From Eq. 6-1, 6-2, and 6-6, the total annual risk expressed as the probability 
distribution over a continuum of losses L for an asset with respect to a given threat 
type can be expressed as 

        
S P

ASPSAHIRL AAAIIIIIP 11111  (6-7) 

where the summations are taken over all threat scenarios S and associated attack 
profiles P. 
 
In an effort to provide actionable risk information to decision-makers, the risk results 
determined from Eq. 6-7 should be accompanied by knowledge of how sensitive 
these results are to small favorable changes in each of the model parameters. 
Actionable risk assessments not only communicate risk but also offer guidance on 
what aspects of risk contribute most to the problem. Such information can be used to 
guide decision-makers toward cost-effect risk mitigation solutions. A simple formula 
for the relative sensitivity, S, of risk to changes in each model parameter is given as 

 S = (pR/R)/p (6-8) 

where pR is the change in risk due to a favorable fractional change, p, in a given 
model parameter. The percentage p appears in the denominator in Eq. 6-9 so that the 
relative sensitivity S communicates how much of an improvement is realized relative 
to improvement in the model parameters (for example, S = 4 means a 1 percent 
favorable change in a model parameter resulting in a 4 percent reduction in risk). For 
example, the sensitivity of risk to security system effectiveness would look at how 
risk changes due to, say, a favorable 1 percent (p = 0.01) change in the value for this 
parameter (in the directed toward 1). Again, knowledge of the risk obtained from Eq. 
6-7 in conjunction with the sensitivities from Eq. 6-8 provides guidance to decision-
makers on which variables offer the greatest potential for cost-effective risk 
reduction. 

Benefit-Cost Analysis 

Benefit-cost analysis determines the cost-effectiveness of proposed countermeasures 
and consequence mitigation strategies for reducing the risk associated with an asset or 
portfolio of assets. The benefit-to-cost ratio for a given investment alternative can be 
calculated as (Ayyub 2003): 

 Benefit-to-Cost Ratio = B / C (6-9) 
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where the benefit B is the difference between the risk before and after 
implementation, and the cost C is the equivalent annual cost to implement and sustain 
the risk mitigation action over a specified time horizon. The probability that a target 
benefit-to-cost ratio, , will be realized can be determined as (Ayyub 2003) 

 Pr(B/C > ) = 1 – Pr(B – C  0) (6-10) 

Portfolio Analysis 

The overall process for portfolio level risk assessment is similar to the asset level 
analysis described in the previous section and shown in Figure 6.1, the main 
differences being that multiple assets are considered according to the definition of the 
portfolio and that all losses are assessed from a portfolio perspective. In the context of 
the proposed method, a portfolio is a set or collection of assets of similar attributes, 
such as membership in a geographic region, jurisdiction, or infrastructure sector.  

The primary difference between asset- and portfolio-level risk analysis concerns the 
assessment of loss. Whereas asset-level analysis estimates loss with respect to the 
asset, in general portfolio-level analysis considers both direct asset losses and indirect 
portfolio or system losses arising from physical geographic, cyber, and logical 
interdependencies. Furthermore, interdependencies can be internal to the portfolio, or 
arise from external interactions between portfolio assets at the external world. 

The expression for total portfolio economic loss, LP, for a given hazard or threat can 
be written as 

 LP = LD + LI (6-11) 

where LD is the direct economic loss (or aggregate loss as appropriate) to the asset 
calculated from Eq. 6-1 assessed from the perspective of the decision-maker charged 
with protecting the portfolio, and LI gives the loss due to interdependency effects. A 
simple model for estimating the loss due to interdependency effects can be expressed 
as 

 LI = (cTKu)LT (6-12) 

where LT is the time to recuperate lost function following the occurrence a hazard or 
threat scenario, c is a vector that assigns a cost per unit time of disruption for each 
asset in a given portfolio, K is the portfolio interdependency matrix where elements 
kij given the percentage degree of disruption to an asset i due to complete loss of asset 
j (kij = 0 for i = j), and u is a disruption vector whose elements corresponds to the 
degree of disruption of an attacked asset. Note that the model in Eq. 6-12 considers 
only first-order interdependencies, assumes proportional interdependency 
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relationships between assets, neglects substitution, and assumes a proportional 
relationship between economic loss and degree of disruption per unit time. 

Illustrative Examples 

High-Level Asset Analysis 

This example demonstrates a high-level application of the proposed methodology to 
assess the economic risks to an asset with respect to a full suite of natural and man-
made hazards. More details on asset-level examples can be found in the papers by 
Ayyub et al. (2007) and McGill et al. (2007). Note that notional results are used. This 
example directly assesses values for each of the parameters in Eq. 6-10, such as 
would be the case if limited resources were available for analysis and data was 
available primarily in the form of expert judgment. Table 6.1 provides an assessment 
of each parameter and associated coefficient of variation in parentheses. Table 6.2 
gives the contribution to total annual risk from each hazard scenario and the overall 
sensitivity of risk to a 1 percent fractional favorable change in the vulnerability (Note 
that coefficients of variation are given in parentheses adjacent to the mean values). 
From these results, the total annual risk is 10.4 with a coefficient of variation of 0.22, 
and improvements in the vulnerability of the region to tornados should be targeted for 
cost-effective risk reduction. Moreover, the results from this analysis can be used to 
construct a family of loss-exceedance curves such as those shown for mean 
exceedance rate in Figure 6.2 (Ayyub 2003). 

 

Table 6.1. Parameter Values for Risk Assessment 

Hazard / Threat 
Maximum 

Credible Loss 
(Millions of Dollars) 

Vulnerability 
Annual Rate of 

Occurrence 

Hurricane 100 0.2 (0.25) 0.2 (0.2) 
Tornado 10 0.3 (0.25) 2 (0.2) 

Drought 1 0.2 (0.25) 0.1 (0.2) 

Winter Storm 10 0.01 (0.25) 3 (0.2) 

Nuclear Attack 500 0.8 (0.25) 1E-06 (0.3) 

Explosive Attack 3 0.3 (0.25) 0.05 (0.3) 

Airplane as 
Projectile 

0.5 0.1 (0.25) 0.01 (0.3) 

Biological Attack 100 0.2 (0.25) 1E-04 (0.3) 

Industrial Accident 2.5 0.01 (0.25) 0.2 (0.3) 
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Table 6.2. Risk Assessment Results 

Hazard / Threat 
Economic Risk 

(Millions of Dollars per Year)

Sensitivity to 
Changes in 

Vulnerability 
Hurricane 4 (0.32) 0.39 
Tornado 6 (0.32) 0.58 

Drought 0.02 (0.32) 0.002 

Winter Storm 0.3 (0.32) 0.03 

Nuclear Attack 0.0004 (0.39) 3.9E-5 

Explosive Attack 0.045 (0.39) 0.004 

Airplane as 
Projectile 

0.0005 (0.39) 4.8E-5 

Biological Attack 0.002 (0.39) 1.9E-4 

Industrial Accident 0.005 (0.39) 4.8E-4 
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Fig. 6.2. Loss-exceedance curves for the asset-level example 

Threat Assessment 

This example demonstrates how the discussed approach to threat assessment captures 
adversary tendencies to shift preferences in response to changes in the security 
environment. Consider a set of attack profiles for an exhaustive set of two explosive 
threat scenarios (one against a chemical tank, another against an office building) with 
conditional casualty risks (UP = PDL, where L is the expected loss to the defender / 
gain to the adversary) and relative attack profile and scenario attractiveness (from Eq. 
6-3 and 6-4) as shown in Table 6.3. Values for attack profile attractiveness were 
determined based on the assumption of perfect visibility and perfect adversary 
knowledge of key elements and intrusion paths. For simplicity, assume A = 0AA = 1; 
when used to obtain total annual risk, this assumption yields the total risk given the 
occurrence of an explosive attack on the asset. From the information in Table 6.3, the 
expected total risk given an explosive attack at the asset is about 290 fatalities. 

Now consider the implementation of security measures that significantly decrease the 
probability of adversary success for attack profiles via the access road as described in 
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Table 6.4. The expected total risk following implementation of these security 
measures without considering any adjustment in adversary preferences is about 101 
fatalities, yielding a reduction in risk of 189 fatalities. With consideration of shifting 
adversary preferences, the expected total risk following implementation is 131 
fatalities, yielding a reduction in risk of 159 fatalities. Thus, according to the 
proposed model for threat likelihood assessment that captures adversary behavior for 
this example, the net benefit due to implementation of security measures is less than 
what would be determined without accounting for shifting adversary preferences. 

 
Table 6.3. Asset Threat Assessment Before Implementation of Security 

Improvements 

Threat 
Scenario 

Attack Profile 
Conditional 

Risk 
(fatalities) 

Relative Profile 
Attractiveness

Relative 
Scenario 

Attractiveness

Explosive 
attack against 

chemical 
tank 

Hand emplaced 
via main gate 

10 0.06 

0.18 

Hand emplaced 
via access road 

20 0.12 

Vehicle bomb 
via main gate 

40 0.24 

Vehicle bomb 
via access road

100 0.59 

Explosive 
attack against 

building 

Hand emplaced 
via main gate 

25 0.03 

0.82 

Hand emplaced 
via access road 

50 0.07 

Vehicle bomb 
via main gate 

200 0.28 

Vehicle bomb 
via access road

450 0.62 

 
Table 6.4. Asset Threat Assessment After Implementation of Security 

Improvements 

Threat 
Scenario 

Attack Profile 
Conditional 

Risk 
(fatalities) 

Relative Profile 
Attractiveness

Relative 
Scenario 

Attractiveness

Explosive 
attack against 

chemical 
tank 

Hand emplaced 
via main gate 

10 0.13 

0.17 

Hand emplaced 
via access road 

5 0.07 

Vehicle bomb 
via main gate 

40 0.53 

Vehicle bomb 
via access road

20 0.27 

Explosive 
attack against 

building 

Hand emplaced 
via main gate 

25 0.07 

0.83 

Hand emplaced 
via access road 

10 0.03 

Vehicle bomb 
via main gate 

200 0.60 

Vehicle bomb 
via access road

100 0.30 
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Portfolio Interdependency Analysis 

This example illustrates the assessment of interdependency losses associated with 
portfolio level consequence and criticality assessment. Consider a portfolio of three 
assets—Asset X, Asset Y, and Asset Z—with interdependency matrix K and loss 
vector c shown in Table 6.5. Furthermore, consider a single-hazard type affecting this 
portfolio, and assume point estimates for the degree of functional degradation and 
recuperation time for each asset following each hazard event (hazard afflicting an 
asset) are given in Table 6.6. From Eq. 6-12 and the data from Tables 6.5 and 6.6, the 
total interdependency loss for each hazard event was calculated as shown in last 
column of Table 6.6. 

Table 6.5. Portfolio Interdependency Matrix and Daily Cost of Disruption 

Asset 
Percent Disruption due to Loss of 

Asset 
Cost per Day of 

Disruption 
(Dollars) X Y Z 

X NA 0.8 0.3 3,750,000 

Y 0.4 NA 0.6 2,500,000 

Z 0.9 0.3 NA 1,250,000 

 
 

Table 6.6. Resulting Interdependency-Related Loss 

Asset 
Service Disruption

(%/Event) 

Recuperation 
Time 

(Days/Event) 

Interdependency Loss 
(Dollars/Event) 

X 0.6 3 3,825,000 

Y 0.2 5 3,375,000 

Z 0.5 7 9,187,500 

 

Conclusions 

This paper described a quantitative all-hazards framework for critical asset and 
portfolio risk analysis (CAPRA). The data requirements for CAPRA include both 
historical information and expert opinions, and uncertainty is accommodated as 
appropriate using standard techniques for uncertainty propagation and representation 
(Ayyub and Klir 2006). Recent work suggests data from previous risk and 
vulnerability assessments, assessments of similar facilities or regions, and expert 
opinion to construct parameter distributions can be aggregated using evidence theory-
based techniques (McGill and Ayyub 2007). Future work will seek to demonstrate 
that the CAPRA framework can effectively capture and propagate uncertainty in a 
variety of practical forms. 
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Chapter 7: A Methodology for the Risk Analysis and Management of 
Protected Hurricane-Prone Regions 

By Bilal M. Ayyub, Ph.D., P.E., Professor and Director, Center for Technology and 
Systems Management, Department of Civil and Environmental Engineering, 
University of Maryland  

Abstract 

This paper introduces a quantitative risk analysis methodology for hurricane prone 
areas protected by a hurricane protection system. The methodology is intended to 
assist decision and policy makers and has the characteristics of being analytic, 
quantitative, and probabilistic. The hazard is quantified using a probabilistic 
framework to obtain hazard profiles as elevation-exceedance rates, and the risk is 
quantified in the form of loss-exceedance rates that are based on a spectrum of 
hurricanes determined using a joint probability distribution of the parameters that 
define hurricane intensity. The proposed methodology will enable decision makers to 
evaluate alternatives for managing risk, such as providing increased hurricane 
protection, increasing evacuation effectiveness, changing land-use policy, enhancing 
hurricane protection system operations, and enhancing preparedness.  

Risk Analysis Methodology 

In the engineering community, risk is generally defined as the potential of losses for a 
system resulting from an uncertain exposure to a hazard or as a result of an uncertain 
event (Ayyub 2003). Risk should be based on identified risk events or event 
scenarios. Risk is quantified as the rate (measured in events per unit time, such as a 
year) that lives, economic, environmental, and social/cultural losses will occur due to 
the non-performance of an engineered system or component. The non-performance of 
the system or component can be quantified as the probability that specific loads (or 
demands) exceed respective strengths (or capacities) causing the system or 
component to fail, and losses are defined as the adverse impacts of that failure if it 
occurs. Risk can be viewed to be a multi-dimensional quantity that includes event-
occurrence rate (or probability), event-occurrence consequences, consequence 
significance, and the population at risk; however, it is commonly measured as a pair 
of the rate (or probability) of occurrence of an event, and the outcomes or 
consequences associated with the event’s occurrence that account for system 
weakness, that is, vulnerabilities. Another common representation of risk is in the 
form of an exceedance rate (or probability) function of consequences. In a simplified 
notional (or Cartesian) product, it is commonly expressed as 

 Risk=Event rate ¥ Vulnerability ¥ Consequences (7-1) 
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This equation not only defines risk but also offers strategies to control or manage risk 
by making the system more reliable through vulnerability reduction or by reducing 
the potential losses resulting from a failure. The probability of failure part of the 
equation can be influenced by engineers by strengthening of existing structures or by 
adding additional protection; however, the consequence part is highly dependent upon 
the actions and decisions made by residents, government, and local officials, 
including first-response and evacuation plans and practices. In densely populated 
areas, simply increasing the reliability of a hurricane protection system may not 
reduce risks to acceptable levels and increasing consequences through continued 
flood plain development can offset any risk reductions. 

Risk Analysis Methodology 

Probabilistic risk analysis as described by Ayyub (2003), Kumamoto and Henley 
(1996), and Modarres et al. (1999) was used to develop the overall risk analysis 
methodology of a protected hurricane-prone region as presented in Figure 7.1. 
Subsequent sections describe individual parts of the methodology.  

Risk associated with a hurricane protection system (HPS) is quantified through a 
regional hurricane rate () and the probability P(C > c) with which a consequence 
measure (C) exceeds different levels (c). The loss-exceedance probability per event is 
evaluated as 

 ( ) ( ) ( | ) ( | , )i j i i j
i j

P C c P h P S h P C c h S    (7-2) 

An annual loss-exceedance rate can be estimated as follows. 

 ( ) ( ) ( | ) ( | , )i j i i j
i j

C c P h P S h P C c h S      (7-3) 

where P(hi) is the probability of hurricane events of type i, P(Sj|hi) is the probability 
that the system is left in state j from the occurrence of hi, and P(C>c|hi,Sj) is the 
probability that the consequence C exceeds c under (hi,Sj). Summation is over all 
hurricane types i and all system states j in a suitable discretization. Simulation studies 
of hurricanes for risk analysis require the use of representative combinations of 
hurricane parameters and their respective probabilities. The outcome of this process is 
a set of hurricane simulation cases and their respective conditional rates P(hi). 
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Fig. 7.1. A Methodology for hurricane protection systems. 
 

Fig. 7.2. A probability and risk tree for a protected hurricane-prone region. 




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Evaluation of the regional hurricane rate  and the probability P(hi), the conditional 
probabilities P(Sj|hi), and the conditional probabilities P(C>c|hi,Sj) is the main 
objective of the hurricane model, the system model, and the consequence model, 
respectively. The probability P(Sj|hi) covers the states of the components of the HPS, 
such as closure structure and operations, precipitation levels, electric power 
availability, failures modes of levees and floodwalls, and pumping station reliability. 
To assess the state of the HPS given a hurricane event requires an evaluation of the 
reliability of individual structures, systems and components (for example, levees, 
floodwalls, pump systems) when they are exposed to the loads and effects of the 
hurricane (for example, the peak surge, wave action) and the relationship of these 
elements to the overall function of the system to prevent flooding in protected areas. 

The probability and risk tree of Figure 7.2 was based on an influence diagram that is 
not provided in the paper and simplified to determine the rate of flooding elevations 
and displaying the results as inundation contours within the basins (see USACE 
2006). The processes of transforming inundation to consequences is simplified by 
grouping communication, warning decision and public execution into an exposure 
factor parameter applied to lives and property at risk, and grouping power and 
pumping availability into one event. The events of the tree are defined in Table 7.1. 

Risk Quantification 

The hurricane protection system was defined in terms of reaches as illustrated in 
Figure 7.3. Surge and wave hydrographs were simulated using a set of storms 
representative of all storms with associated rates. Example surge and wave 
hydrographs are provided in Figure 7.4. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7.3. Hurricane protection system definition using reaches. 
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Fig. 7.4. Surge and wave hydrographs. 
 

Table 7.1. Summary of the Event Tree Top Events 

Top Event Description 

Hurricane 
initiating 
event 

The hurricane initiating event is mapping of hydrographs of the peak flood surge with waves in the 
study area with a hurricane rate λ. This event was denoted, hi(x,y), and has a probability of 
occurrence, P(hi(x,y)) and a rate of occurrence of λP(hi(x,y)). 

Closure 
structure and 
operations 
(C) 

This event models whether the hurricane protection system closures, i.e., gates, have been sealed 
prior to the hurricane. This event depends on a number of factors as illustrated in the influence 
diagram of Figure 7.3. The closure structures are treated in groups in terms of probability of being 
closed in preparation for the arrival of a hurricane. This event was used to account for variations in 
local practices and effectiveness relating to closures and their operations. 

Precipitation 
inflow (Q) 

This event corresponds to the rainfall that occurs during a hurricane event. The precipitation inflow 
per subbasin is treated as a random variable. 

Drainage, 
pumping and 
power (P) 

This event models the availability of power (normal) power for the pump systems. This event is 
modeled in the event tree to represent a common mode of failure for the pump systems, and is 
included in developing a model for drainage and pumping efficiency or lack thereof including 
backflow through pumps. The event also models the availability of the pump system and its ability 
to handle a particular floodwater volume. This event is treated in aggregate with drainage 
effectiveness and power reliability including backflow through pumps. 

Overtopping 
(O) 

This event models the failure of the enclosure/protection system due to overtopping, given that 
failure has not occurred by some other (non-overtopping) failure mode. If failure (breach) does not 
occur, flooding due to overtopping could still result. 

Breach (B) This event models the failure of the enclosure/protection system (e.g., levees/floodwalls, closures) 
during the hurricane, exclusive of overtopping failures). This event includes all other failures and it 
models all ‘independent’ levee/floodwall sections. This event is treated using conditional 
probabilities as provided in Figure 7.6. 
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Fig. 7.5. An example fragility curve for a reach or transition 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.6. Stage storage for subbasins (1 acre-ft = 43,560 ft3) 
 

 

Fragility curves were used for all the reaches and transitions as illustrated in Figure 
7.5. Overtopping, gate, and breach water volumes were computed using the Weir 
equation from hydraulic engineering (Daugherty et al. 1985). Water volumes were 
added to rainfall water volumes and pumping effects were accounted for to produce 
net water volumes. These water volumes were used in each subbasin to computer 
water elevation based on respective stage-storage relationships for the subbasins as 
illustrated in Figure 7.6.  
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Fig. 7.7. An example elevation exceedance profile 

 

 

 
 
 
 
 
 

 

 
 

 
 

Fig. 7.8. An example economic loss profile 
 

Interflow logic was used to determine final water elevation in each subbasin and 
compute hazard profiles as elevation-exceedance curves. Figure 7.7 illustrates such a 
curve. These curves were then combined with loss-elevation curves to produce loss-
exceedance curves as illustrated in Figures 7.8 and 7.9. Figure 7.10 shows an example 
inundation map that can be produced from Figure 7.7.  
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Fig. 7.9. An example life loss profile 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.10. An example inundation map 
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Benefit-Cost Analysis 

Given baseline risk information for an HPS, benefit-cost analysis can be used to 
assess the cost-effectiveness of alternative risk mitigation strategies. In the context of 
protecting a region against floods resulting from post-hurricane surges, risk 
mitigation options include strengthening levees, increasing the span and depth of the 
levees, relocating residential and commercial centers, and enhancing emergency 
response procedures. The benefit of a risk mitigation action is the difference between 
the total annual risk before and after its implementation (Ayyub 2003). The benefit-
to-cost ratio is given by 

 Benefit-to-Cost Ratio (B/C) =
C
B   (7-4) 

where higher-valued ratios indicate better risk mitigation actions from a cost-
effectiveness standpoint. The probability that a target benefit-to-cost ratio, , will be 
realized can be determined as (Ayyub 2003) 

  0Pr1Pr 





  CB

C
B   (7-5) 

In addition to the results of Eq. 7-9, selection of a suitable risk mitigation action must 
also consider the affordability of each alternative and whether it achieves risk 
reduction objectives (McGill et al. 2007). 

Conclusions 

Quantifying risk using a probabilistic framework produces hazard (elevation) and 
loss-exceedance rates based on a spectrum of hurricanes according the joint 
probability distribution of the characteristic parameters that define hurricane intensity 
and the resulting surges, waves, and precipitation. The methodology provides a 
process for evaluating the performance of a hurricane protection system consisting of 
levees, floodwalls, transitions, closure gates, drainage systems and pumping stations, 
and measures population and property at risk by considering the stage-storage 
relationships of subbasins. The quantification of risk will enable decision-makers to 
consider various alternatives to manage risk through the enhancement of the 
hurricane protection systems, controlling land use, improving evacuation 
effectiveness, and improving system operations. 
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