


PHILOSOPHY OF MATHEMATICS

In his long-awaited new edition of Philosophy of Mathematics, James Robert
Brown tackles important new as well as enduring questions in the mathematical
sciences. Can pictures go beyond being merely suggestive and actually prove
anything? Are mathematical results certain? Are experiments of any real value?

This clear and engaging book takes a unique approach, encompassing non-
standard topics such as the role of visual reasoning, the importance of notation,
and the place of computers in mathematics, as well as traditional topics such
as formalism, Platonism, and constructivism. The combination of topics and
clarity of presentation make it suitable for beginners and experts alike. The
revised and updated second edition of Philosophy of Mathematics contains
more examples, suggestions for further reading, and expanded material on sev-
eral topics including a novel approach to the continuum hypothesis.

Praise for the first edition:

‘This book is a breath of fresh air for undergraduate philosophy of mathematics.
Very accessible and even entertaining, Brown explains most of the issues without
technicalities.’

Janet Folina, Macalester College

‘a wonderful introduction to the philosophy of mathematics. It’s lively, accessible,
and, above all, a terrific read. It would make an ideal text for an undergraduate
course on the philosophy of mathematics; indeed, I recommend it to anyone inter-
ested in the philosophy of mathematics – even specialists in the area can learn
from this book.’

Mark Colyvan, University of Sydney

James Robert Brown is Professor of Philosophy at the University of Toronto,
Canada.



Routledge Contemporary Introductions to Philosophy
Series editor: Paul K Moser

Loyola University of Chicago

This innovative, well-structured series is for students who have already done an
introductory course in philosophy. Each book introduces a core general subject in
contemporary philosophy and offers students an accessible but substantial transi-
tion from introductory to higher-level college work in that subject. The series is
accessible to non-specialists and each book clearly motivates and expounds the
problems and positions introduced. An orientating chapter briefly introduces its
topic and reminds readers of any crucial material they need to have retained from
a typical introductory course. Considerable attention is given to explaining the
central philosophical problems of a subject and the main competing solutions and
arguments for those solutions. The primary aim is to educate students in the main
problems, positions and arguments of contemporary philosophy rather than to
convince students of a single position.

Classical Philosophy
Christopher Shields

Epistemology
Second Edition
Robert Audi

Ethics
Harry Gensler

Metaphysics
Second Edition
Michael J. Loux

Philosophy of Art
Noël Carroll

Philosophy of Language
Willam G. Lycan

Philosophy of Mathematics:
A Contemporary Introduction to
the World of Proofs and Pictures
Second Edition
James R. Brown

Philosophy of Mind
Second Edition
John Heil

Philosophy of Religion
Keith E. Yandell

Philosophy of Science
Alex Rosenberg

Social and Political Philosophy
John Christman

Philosophy of Psychology
José Bermudez

Classical Modern Philosophy
Jeffrey Tlumak

Philosophy of Biology
Alex Rosenberg and Daniel
W. McShea



PHILOSOPHY OF
MATHEMATICS

A Contemporary Introduction to the World
of Proofs and Pictures

Second Edition

James Robert Brown



First edition published 1999
by Routledge

This edition first published 2008
by Routledge

270 Madison Ave, New York, NY 10016

Simultaneously published in the UK
by Routledge

2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Routledge is an imprint of the Taylor & Francis Group,
an informa business

First edition © 1999 James Robert Brown

Second edition © 2008 Taylor & Francis

All rights reserved. No part of this book may be reprinted or reproduced
or utilised in any form or by any electronic, mechanical, or other means,

now known or hereafter invented, including photocopying and
recording, or in any information storage or retrieval system,

without permission in writing from the publishers.

Trademark Notice: Product or corporate names may be
trademarks or registered trademarks, and are used only

for identification and explanation without intent to infringe.

Library of Congress Cataloging in Publication Data
Brown, James Robert.

Philosophy of mathematics: a contemporary introduction to the world 
of proofs and pictures / James Robert Brown. -- 2nd ed.

p. cm.
Includes bibliographical references and index.

ISBN 978-0-415-96048-9 (hardback : alk. paper) --
ISBN 978-0-415-96047-2 (pbk. : alk. paper) --

ISBN 978-0-203-93296-4 (ebook)
1. Mathematics--Philosophy. I. Title.

QA8.4.B76 2008
510.1--dc22
2007042483

ISBN10: 0–415–96048–7 (hbk)
ISBN10: 0–415–96047–9 (pbk)
ISBN10: 0–203–93296–X (ebk)

ISBN13: 978–0–415–96048–9 (hbk)
ISBN13: 978–0–415–96047–2 (pbk)
ISBN13: 978–0–203–93296–4 (ebk)

This edition published in the Taylor & Francis e-Library, 2007.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

ISBN 0-203-93296-X Master e-book ISBN



For Elizabeth and Stephen





Contents

Preface and Acknowledgements xi

Chapter 1: Introduction: The Mathematical Image 1

Further Reading 8

Chapter 2: Platonism 9

The Original Platonist 9
Some Recent Views 10
What is Platonism? 12
The Problem of Access 16
The Problem of Certainty 19
Platonism and its Rivals 24
Further Reading 25

Chapter 3: Picture-proofs and Platonism 26

Bolzano’s ‘Purely Analytic Proof’ 26
What Did Bolzano Do? 29
Different Theorems, Different Concepts? 30
Inductive Mathematics 31
Special and General Cases 34
Instructive Examples 35
Representation 38
Seeing Induction? 40
Three Analogies 44
Are Pictures Explanatory? 46



So Why Worry? 47
Further Reading 47
Appendix 47

Chapter 4: What is Applied Mathematics? 51

Representations 52
Artifacts 54
Bogus Applications 56
Does Science Need Mathematics? 57
Representation vs. Description 60
Structuralism 62
Further Reading 66

Chapter 5: Hilbert and Gödel 67

The Nominalistic Instinct 67
Early Formalism 68
Hilbert’s Formalism 69
Hilbert’s Programme 73
Small Problems 75
Gödel’s Theorem 76
Gödel’s Second Theorem 80
The Upshot for Hilbert’s Programme 82
The Aftermath 82
Further Reading 83

Chapter 6: Knots and Notation 84

Knots 86
The Dowker Notation 88
The Conway Notation 89
Polynomials 91
Creation or Revelation? 93
Sense, Reference and Something Else 97
Further Reading 98

Chapter 7: What is a Definition? 99

The Official View 99
The Frege–Hilbert Debate 100
Reductionism 107
Graph Theory 108

viii C O N T E N T S



Lakatos 113
Concluding Remarks 117
Further Reading 117

Chapter 8: Constructive Approaches 118

From Kant to Brouwer 119
Brouwer’s Intuitionism 120
Bishop’s Constructivism 122
Dummett’s Anti-realism 123
Logic 125
Problems 127
Further Reading 135

Chapter 9: Proofs, Pictures and Procedures
in Wittgenstein 136

A Picture and a Problem 136
Following a Rule 138
Platonism 142
Algorithms 144
Dispositions 144
Knowing Our Own Intentions 145
Brouwer’s Beetle 145
Radical Conventionalism 146
Bizarre Examples 147
Naturalism 148
The Sceptical Solution 150
Modus Ponens or Modus Tollens? 151
What is a Rule? 152
Grasping a Sense 153
Platonism versus Realism 155
Surveyability 157
The Sense of a Picture 158
Further Reading 159

Chapter 10: Computation, Proof and Conjecture 160

The Four Colour Theorem 160
Fallibility 161
Surveyability 163
Inductive Mathematics 164

C O N T E N T S ix



Perfect Numbers 165
Computation 168
Is π Normal? 170
Fermat’s Last Theorem 171
The Riemann Hypothesis 172
Clusters of Conjectures 173
Polya and Putnam 174
Conjectures and Axioms 175
Further Reading 177

Chapter 11: How to Refute the Continuum Hypothesis 178

What is the Continuum Hypothesis? 179
How Could We Determine the Truth of CH? 183
Kreisel’s Analogy 185
Freiling’s Refutation of CH 186
What Might the Continuum Be? 191
Two Objections 192
What Did the Thought Experiment Contribute? 195
Two Morals 196
Appendix: Freiling’s Version 196
Further Reading 197

Chapter 12: Calling the Bluff 198

Calling the Bluff 205
Math Wars: A Report from the Front 207
Once More: The Mathematical Image 217
Further Reading 219

Notes 220

Bibliography 226

Index 236

x C O N T E N T S



Preface and Acknowledgements

A philosopher who has nothing to do with geometry is only half a
philosopher, and a mathematician with no element of philosophy in
him is only half a mathematician. These disciplines have estranged
themselves from one another to the detriment of both.

Frege

A heavy warning used to be given that pictures are not rigorous; this
has never had its bluff called and has permanently frightened its vic-
tims into playing for safety.  Some pictures, of course, are not rigorous,
but I should say most are (and I use them whenever possible myself).

Littlewood

There are a number of ways in which this book could fail. It has several goals,
some of them pedagogical. One of these goals is to introduce readers to the
philosophy of mathematics. In my attempt to avoid failure here I’ve included
chapters on traditional points of view, such as formalism and constructivism, as
well as Platonism. And since I’m aiming at a broad audience, I’ve taken pains
to explain philosophical notions that many readers may encounter for the first
time. I’ve also given lots of detailed mathematical examples for the sake of
those who lack a technical background. It’s been my experience that there is
a huge number of students who come to philosophy from a humanities back-
ground wanting to know a bit about the sciences, and when they are properly
introduced they find that their appetites for mathematics become insatiable. I’d
be delighted to stimulate a few readers in this way. 

If we taught philosophy today in a way that reflected its history, the current
curriculum would be overwhelmed with the philosophy of mathematics. Think
of these great philosophers and how important mathematics is to their thought:
Plato, Descartes, Leibniz, Kant, Frege, Russell, Wittgenstein, Quine, Putnam,
and so many others. And interest in the nature of mathematics is not confined to



the so-called analytic stream of philosophy; it also looms large in the work of
Husserl and Lonergin, central figures in, respectively, the continental and
Thomistic philosophical traditions. Anyone sincerely interested in philosophy
must be interested in the nature of mathematics, and I hope to show why. As for
those who persist in thinking otherwise – let them burn in hell.

This book could also fail in a second, more important aim, which is to intro-
duce some of the newer issues in the philosophy of mathematics, namely those
associated with computers, ‘experimentation’, and especially with visualization.
Traditional issues remain fascinating and unresolved; philosophers and math-
ematicians alike continue to work on them. (Even logicism, the view that
mathematics is really just logic, is making a partial comeback.) But if there are
living philosophical issues for working mathematicians, they have to do with
the role of computers and computer graphics and the role of physics within
mathematics. Some consider the use of computers a glorious revolution – others
think it a fraud. Some are thrilled at the new relations with physics – others fear
the fate of rigour. Current battles are just as lively as those between Russell and
Poincaré early in the twentieth century or between Hilbert and Brouwer in the
1920s and 1930s. And philosophers should know about them. This book would
be a failure if something of the content of the issues and the spirit of current
debates is not conveyed.

Finally, I could fail in my attempt to argue for Platonism, in general, and,
for a Platonistic account of how (some) pictures work, in particular.
Mathematicians are instinctively realists; but when forced to think about the
details of this realism, they often become uneasy. Philosophers, aware of the
bizarreness of abstract objects, are already wary of mathematical realism. But
still, most people are somewhat sympathetic to Platonism in mathematics, tol-
erant to an extent that they wouldn’t tolerate, say, Platonism in physics or in
ethics. My case for Platonism will meet with at least mild resistance, but this is
nothing compared with the hostility that will greet my account of how picture-
proofs work. On this last point I expect to fail completely in winning over
readers.  But I will be somewhat mollified if it is generally admitted that the
problems this work raises and addresses are truly wonderful, worthy of wide
attention.

I’ve had a great deal of help from a great many people in a great many ways.
Some are long-time colleagues with whom I’ve been arguing these issues longer
than we care to remember. Some are students subjected to earlier drafts. Some
listened to an argument. Some read a chapter. Some worked carefully through
the whole of an earlier draft. For their help in whatever form, enormous thanks
go to: Peter Apostoli, Michael Ashooh, John Bell, Gordon Belot, Alexander
Bird, Elizabeth East, Danny Goldstick, Ian Hacking, Michael Hallett, Sarah
Hoffman, Andrew Irvine, Loki Jorgenson, Bernard Katz, Margery Konan, Hugh
Lehman, Mary Leng, Dennis Lomas, Ken Manders, James McAllister, Patrick
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Moran, Margaret Morrison, Joshua Mozersky, Bill Newton-Smith, Calvin
Normore, John Norton, Kathleen Okruhlik, David Papineau, Fred Portoraro, Bill
Seager, Zvonimir Šikić, Spas Spassov, Mary Tiles, Jacek Urbaniec, Alasdair
Urquhart, and Katherine Van Uum. I’ve read chapters at various conferences
and to various philosophy departments, and in every case I’ve much benefited
from audience comments though, more often than not, I don’t know whom to
thank. Some of the material was presented as the Matchette Lectures at Purdue
University; I’m especially grateful to Martin and Pat Curd and their Philosophy
Department for arranging what was for me a great week. 

Chapters 3, 4 and 7 are revised from earlier articles. I thank Oxford
University Press and Kluwer Academic Publishers for their kind permission to
use this material.

Finally, I’m very grateful to SSHRC for its support.

Preface to the Second Edition

This edition differs from the first in several respects. I have made numerous
minor modifications and corrections throughout. I’m very grateful to all those
who pointed out mistakes or unclear passages. In a few places I have over-
hauled whole paragraphs. And I have added a brief ‘Further Reading’ section to
the end of each chapter.

The biggest change comes in the form a new chapter on the continuum
hypothesis (Chapter 11). This has been one of the great problems of mathemat-
ics for more than a century. It was shown by Gödel and Cohen to be indepen-
dent, hence neither provable nor refutable, given the other axioms of set theory.
Realists claim it has a truth-value, nevertheless. Could we ever come to know
what that truth value is? Christopher Freiling may have refuted it by means of
a thought experiment. This is certainly not the usual way of doing mathematics,
but if it works – and I’m inclined to think it does – then it wonderfully illus-
trates the power of new techniques, such as visual reasoning.

I expect this new chapter to be controversial – indeed, I hope it is. Even if it
fails as a refutation of the continuum hypothesis, I’ll be gratified if it provokes
deeper reflection on the cluster of issues associated with the continuum hypoth-
esis and with visual thinking in mathematics, in general. That remains a main
aim throughout the whole book.

I’m very pleased with the reception of the first edition. The reviewers were
overly generous (a fault I’m happy to pardon). Students seemed to get some-
thing out of it and even enjoyed doing so. Experts found things to contest.
I couldn’t reasonably ask for more – but I will. If I had any disappointment, it
would concern the more esoteric topics. For instance, reviewers often remarked
enthusiastically on the potential interest and importance of topics such as
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notation. But as far as I know, the theme has not been further explored. I suppose
all I can do is once again urge others to take up the matter. The old topics such
as constructivism and formalism remain interesting, and so are the newer ones
such as indispensability and structuralism. But there is a goldmine waiting
for us all in the issues of visualization, notation, computer simulation, and
mathematical thought experimentation. That’s where the future lies.

A number of people need to be thanked. I reiterate my thanks to those who
helped with the first edition. Some of these and some others were very helpful this
time, as well. In particular, thanks go to Ken Manders and Louis Levin for find-
ing mistakes and typos, to Zvonimir Šikić for critical comments on graphs, and
Chris Freiling for comments on my account of his work on the continuum. I also
learned a great deal from reviewers of the first edition. A list of these can be found
at http://www.chass.utoronto.ca/~jrbrown/NOTES.Philosophy_of_Mathematics.
Any additional comments, corrections, and reviews of this second edition will
also be listed there.



CHAPTER 1
Introduction: The Mathematical
Image

Let’s begin with a nice example, the proof that there are infinitely many
prime numbers. If asked for a typical bit of real mathematics, your
friendly neighbourhood mathematician is as likely to give this example

as any. First, we need to know that some numbers, called ‘composite’, can be
divided without remainder or broken into factors (e.g. 6 � 2 � 3, 561 � 3 � 11
� 17), while other numbers, called ‘prime’, cannot (e.g. 2, 3, 5, 7, 11, 13, 17,
. . .). Now we can ask: How many primes are there? The answer is at least as old
as Euclid and is contained in the following.

Theorem: There are infinitely many prime numbers.

Proof: Suppose, contrary to the theorem, that there is only a finite num-
ber of primes. Thus, there will be a largest which we can call p. Now
define a number n as 1 plus the product of all the primes:

Is n itself prime or composite? If it is prime then our original supposi-
tion is false, since n is larger than the supposed largest prime p. So now
let’s consider it composite. This means that it must be divisible (with-
out remainder) by prime numbers. However, none of the primes up to p
will divide n (since we would always have remainder 1), so any num-
ber which does divide n must be greater than p. This means that there
is a prime number greater than p after all. Thus, whether n is prime or
composite, our supposition that there is a largest prime number is false.
Therefore, the set of prime numbers is infinite.

 n  2 3 5 7 11 . . . p ������ ( ) 1 ��



The proof is elegant and the result profound. Still, it is typical mathematics; so,
it’s a good example to reflect upon. In doing so, we will begin to see the elements
of the mathematical image, the standard conception of what mathematics is. Let’s
begin a list of some commonly accepted aspects. By ‘commonly accepted’ I mean
that they would be accepted by most working mathematicians, by most educated
people, and probably by most philosophers of mathematics, as well. In listing
them as part of the common mathematical image we need not endorse them. Later
we may even come to reject some of them – I certainly will. With this caution in
mind, let’s begin to outline the standard conception of mathematics.

Certainty The theorem proving the infinitude of primes seems established
beyond a doubt. The natural sciences can’t give us anything like this. In spite of
its wonderful accomplishments, Newtonian physics has been overturned in
favour of quantum mechanics and relativity. And no one today would bet too
heavily on the longevity of current theories. Mathematics, by contrast, seems
the one and only place where we humans can be absolutely sure we got it right.

Objectivity Whoever first thought of this theorem and its proof made a great
discovery. There are other things we might be certain of, but they aren’t discov-
eries: ‘Bishops move diagonally.’ This is a chess rule; it wasn’t discovered; it
was invented. It is certain, but its certainty stems from our resolution to play the
game of chess that way. Another way of describing the situation is by saying
that our theorem is an objective truth, not a convention. Yet a third way of mak-
ing the same point is by saying that Martian mathematics is like ours, while
their games might be quite different.

Proof is essential With a proof, the result is certain; without it, belief should
be suspended. That might be putting it a bit too strongly. Sometimes math-
ematicians believe mathematical propositions even though they lack a proof.
Perhaps we should say that without a proof a mathematical proposition is not
justified and should not be used to derive other mathematical propositions.
Goldbach’s conjecture is an example. It says that every even number is the sum
of two primes. And there is lots of evidence for it, e.g. 4 � 2 � 2, 6 � 3 � 3, 8 �

3 � 5, 10 � 5 � 5, 12 � 7 � 5, and so on. It’s been checked into the billions
without a counter-example. Biologists don’t hesitate to conclude that all ravens
are black based on this sort of evidence; but mathematicians (while they might
believe that Goldbach’s conjecture is true) won’t call it a theorem and won’t use
it to establish other theorems – not  without a proof.

Let’s look at a second example, another classic, the Pythagorean theorem.
The proof below is modern, not Euclid’s.

Theorem: In any right-angled triangle, the square of the hypotenuse is
equal to the sum of the squares on the other two sides.
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Proof: Consider two square figures, the smaller placed in the larger,
making four copies of a right-angled triangle �abc (Figure 1.1). We
want to prove that c2

� a2
� b2.

The area of the outer square � (a � b)2
� c2

� 4 � (area of �abc) �

c2
� 2ab, since the area of each copy of �abc is �� ab. From

algebra we have (a � b)2
� a2

� 2ab � b2. Subtracting 2ab from
each, we conclude c2

� a2
� b2.

This brings out another feature of the received view of mathematics.

Diagrams There are no illustrations or pictures in the proofs of most
theorems. In some there are, but these are merely a psychological aide. The dia-
gram helps us to understand the theorem and to follow the proof – nothing
more. The proof of the Pythagorean theorem or any other is the verbal/symbolic
argument. Pictures can never play the role of a real proof.

Remember, in saying this I’m not endorsing these elements of the mathemat-
ical image, but merely exhibiting them. Some of these I think right, others,
including this one about pictures, quite wrong. Readers might like to form their
own tentative opinions as we look at these examples.

Misleading diagrams Pictures, at best, are mere psychological aids; at worst
they mislead us – often badly. Consider the infinite series

which we can illustrate with a picture (Figure 1.2):
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∞
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---- 1
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---- 1
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------ . . . � � � ��
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The sum of this series is π2/6 � 1.6449 . . . In the picture, the sum is equal
to the shaded area. Let’s suppose we paint the area and that this takes one can
of paint.

Next consider the so-called harmonic series

Here’s the corresponding picture (Figure 1.3):

The steps keep getting smaller and smaller, just as in the earlier case, though not
quite so fast. How big is the shaded area? Or rather, how much paint will be
required to cover the shaded area? Comparing the two pictures, one would be
tempted to say that it should require only slightly more – perhaps two or three
cans of paint at most. Alas, such a guess couldn’t be further off the mark. In fact,
there isn’t enough paint in the entire universe to cover the shaded area – it’s infi-
nite. The proof goes as follows.As we write out the series, we can group the terms:

 
1
1
---- 1

2
---- 1

3
----  �  

1
4
---- 1

5
---- 1

6
---- 1

7
----  � � �  

1
8
---- 1

9
---- . . . � �� � �

{ ⎧ ⎨ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
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The size of the first group is obviously 1. In the second group the terms are
between  �� and  �� , so the size is between 2 � �� and 2 � �� , that is, between  �� and
1. In the next grouping of four, all terms are bigger than 1/8, so the sum is again
between  �� and 1. The same holds for the next group of 8 terms; it, too, has a sum
between  �� and 1. Clearly, there are infinitely many such groupings, each with
a sum greater than  �� . When we add them all together, the total size is infinite.
It would take more paint than the universe contains to cover it all. Yet, the picture
doesn’t give us an inkling of this startling result.

One of the most famous results of antiquity still amazes; it is the proof of the
irrationality of the square root of 2. A rational number is a ratio, a fraction, such
as 3/4 or 6937/528, which is composed of whole numbers. √9 � 3 is rational
and so is √(9/16) � 3/4; but √2 is not rational as the following theorem shows.

Theorem: The square root of 2 is not a rational number.

Proof: Suppose, contrary to the theorem, that  √2 is rational, i.e. suppose
that there are integers p and q such that √2 � p/q. Or equivalently, 2 �
(p/q)2

� p2/q2. Let us further assume that p/q is in lowest terms. (Note
that 3/4 � 9/12 � 21/28, but only the first expression is in lowest terms.)

Rearranging the above expression, we have p2
� 2q2. Thus, p2 is

even (because 2 is a factor of the right side). Hence, p is even (since the
square of an odd number is odd). So it follows that p � 2r, for some
number r. From this we get 2q2

� p2
� (2r)2

� 4r2. Thus, q2
� 2r2,

which implies that q2 is even, and hence that q is even.
Now we have the result that both p and q are even, hence both divis-

ible by 2, and so, not in lowest terms as was earlier supposed. Thus, we
have arrived at the absurdity that p/q both is and is not in lowest terms.
Therefore, our initial assumption that √2 is a rational number is false.

Classical logic Notice the structure of the proof of the irrationality of √2. We
made a supposition. We derived a contradiction from this, showing the supposi-
tion is false. Then we concluded that the negation of the supposition is true. The
logical principles behind this are: first, no proposition is both true and false
(non-contradiction) and second, if a proposition is false, then its negation is true
(excluded middle). Classical logic is a working tool of mathematics. Without
this tool, much of traditional mathematics would crumble.

Strictly speaking, the proof of the irrationality of √2 is acceptable to con-
structive mathematicians, even though they deny the general legitimacy of clas-
sical logic. The issue will come up in more detail in a later chapter. The proof
just given nicely illustrates reduction ad absurdum reasoning. It is also one of
the all time great results, which everyone should know as a matter of general
culture, just as everyone should know Hamlet. This is my excuse for using an
imperfect example to make the point about classical logic.
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Sense experience All measurement in the physical world works perfectly well
with rational numbers. Letting the standard metre stick be our unit, we can
measure any length with whatever desired accuracy our technical abilities will
allow; but the accuracy will always be to some rational number (some fraction
of a metre). In other words, we could not discover irrational numbers or incom-
mensurable segments (i.e. lengths which are not ratios of integers) by physical
measurement. It is sometimes said that we learn 2 � 2 � 4 by counting apples
and the like. Perhaps experience plays a role in grasping the elements of the nat-
ural numbers. But the discovery of the irrationality of √2 was an intellectual
achievement, not at all connected to sense experience.

Cumulative history The natural sciences have revolutions. Cherished beliefs
get tossed out. But a mathematical result, once proven, lasts forever. There are
mathematical revolutions in the sense of spectacular results which yield new
methods to work with and which focus attention in a new field – but no theorem
is ever overturned. The mathematical examples I have so far discussed all pre-
date Ptolemaic astronomy, Newtonian mechanics, Christianity and capitalism;
and no doubt they will outlive them all. They are permanent additions to
humanity’s collection of glorious accomplishments.

Computer proofs Computers have recently played a dramatic role in math-
ematics. One of the most celebrated results has to do with map colouring. How
many colours are needed to insure that no adjacent countries are the same colour?

Theorem: Every map is four-colourable.

I won’t even try to sketch the proof of this theorem. Suffice it to say that a com-
puter was set the task of checking a very large number of cases. After a great
many hours of work, it concluded that there are no counter-examples to the the-
orem: every map can be coloured with four colours. Thus, the theorem was
established.

It’s commonplace to use a hand calculator to do grades or determine our
finances. We could do any of these by hand. The little gadget is a big time
saver and often vastly more accurate than our efforts. Otherwise, there’s really
nothing new going on. Similarly, when a supercomputer tackles a big problem
and spends hours on its solution, there is nothing new going on there either.
Computers do what we do, only faster and perhaps more accurately. Mathematics
hasn’t changed because of the introduction of computers. A proof is still a proof,
and that’s the one and only thing that matters.

Solving problems There are lots of things we might ask, but have little chance
of answering: ‘Does God exist?’ ‘Who makes the best pizza?’ These seem per-
fectly meaningful questions, but the chances of finding answers seems hopeless.
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By contrast, it seems that every mathematical question can be answered and
every problem solved. Is every even number (greater than 2) equal to the sum of
two primes? We don’t know now, but that’s because we’ve been too stupid so
far. Yet we are not condemned to ignorance about Goldbach’s conjecture the
way we are about the home of the best pizza. It’s the sort of question that we
should be able to answer, and in the long run we will.

Having said this, a major qualification is in order. In fact, we may have to
withdraw the claim. So far, in listing the elements of the mathematical image
we’ve made no distinction among mathematicians, philosophers and the
general public. But at this point we may need to distinguish. Recent results
such as Gödel’s incompleteness theorem, the independence of the continuum
hypothesis and others have led many mathematicians and philosophers of
mathematics to believe that there are problems which are unsolvable in
principle. The pessimistic principle would seem to be part of the mathemati-
cal image.

Well, enough of this. We’ve looked at several notions that are very widely
shared and, whether we endorse them or not, they seem part of the common
conception of mathematics. In sum, these are a few of the ingredients in the
mathematical image:

(1) Mathematical results are certain
(2) Mathematics is objective
(3) Proofs are essential
(4) Diagrams are psychologically useful, but prove nothing
(5) Diagrams can even be misleading
(6) Mathematics is wedded to classical logic
(7) Mathematics is independent of sense experience
(8) The history of mathematics is cumulative
(9) Computer proofs are merely long and complicated regular proofs

(10) Some mathematical problems are unsolvable in principle

More could be added, but this is grist enough for our mill. Here we have the
standard conception of mathematics shared by most mathematicians and non-
mathematicians, including most philosophers. Yet not everyone accepts this pic-
ture. Each of these points has its several critics. Some deny that mathematics
was ever certain and others say that, given the modern computer, we ought to
abandon the ideal of certainty in favour of much more experimental math-
ematics. Some deny the objectivity of mathematics, claiming that it is a human
invention after all, adding that though it’s a game like chess, it is the greatest
game ever played. Some deny that classical logic is indeed the right tool for
mathematical inference, claiming that there are indeterminate (neither true nor
false) mathematical propositions. And, finally, some would claim great virtues
for pictures as proofs, far beyond their present lowly status.
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We’ll look at a number of issues in the philosophy of mathematics, some tra-
ditional, some current, and we’ll see how much of the mathematical image
endures this scrutiny. Don’t be surprised should you come to abandon at least
some of it. I will.

Further Reading

Many come to the philosophy of mathematics before a serious encounter with
mathematics itself. If you’re looking for a good place to get your feet wet, try
an old classic, by Courant, Robins, and Stewart, What is Mathematics? If you’re
trying to teach yourself mathematics using standard textbooks, then I strongly
urge reading popular books, as well. Rough analogies, anecdotes, and even
gossip are an important part of any mathematical education. Biographies are
important, too. For a collection of brief biographies of several contemporaries,
try Albers and Alexanderson (eds) Mathematical People. There are several
introductory books in the philosophy of mathematics. Shapiro, Talking About
Mathematics is particularly nice; it covers traditional topics and Shapiro’s own
‘structuralism’.
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CHAPTER 2
Platonism

What’s the greatest discovery in the history of thought? Of course, it’s
a silly question – but it won’t stop me from suggesting an answer.
It’s Plato’s discovery of abstract objects. Most scientists, and indeed

most philosophers, would scoff at this. Philosophers admire Plato as one of the
greats, but think of his doctrine of the heavenly forms as belonging in a
museum. Mathematicians, on the other hand, are at least slightly sympathetic.
Working day-in and day-out with primes, polynomials and principal fibre
bundles, they have come to think of these entities as having a life of their own.
Could this be only a visceral reaction to an illusion? Perhaps, but I doubt it. The
case for Platonism, however, needs to made carefully. Let’s begin with a glance
at the past.

The Original Platonist

We notice a similarity among various apples and casually say, ‘There is some-
thing they have in common.’ But what could this something they have in com-
mon be? Should we even take such a question literally? Plato did and said the
common thing is the form of an apple. The form is a perfect apple, or perhaps a
kind of blueprint. The actual apples we encounter are copies of the form; some
are better copies than others. A dog is a dog in so far as it ‘participates’ in the
form of a dog, and an action is morally just in so far as it participates in the form
of justice.

How do we know about the forms? Our immortal souls once resided in
heaven and in this earlier life gazed directly upon the forms. But being born
into this world was hard on our memories; we forgot everything. Thus,
according to Plato, what we call learning is actually recollection. And so, the
proper way to teach is the so-called Socratic method of questioning, which



does not simply state the facts to us, but instead helps us to remember what
we already know.

The example of the slave-boy in the Meno dramatically illustrates Plato’s
point. After being assured that the slave-boy has had no mathematical training,
Socrates, through a clever sequence of questions, gets him to double the square,
which, for a novice, is a rather challenging geometric construction. Not only
does the slave-boy do it but, after a false start, he recognizes that he has finally
done it correctly. Plato’s moral is that the slave-boy already knew how to
double the square, and Socrates, the self-described ‘mid-wife’, simply helped
him in bringing out what was already there.

Plato’s theory is both wonderful and preposterous. It’s wonderful because of
its tremendous scope. It explains what all apples have in common, what makes a
moral act moral, how we acquire knowledge and, above all, it tells us what math-
ematics is. This last feature especially rings true – even if nothing else about
Platonism does. When we talk about circles, for example, we don’t seem to be
talking about any particular figure on the blackboard. Those are only approxi-
mations. We’re talking about a perfect circle, something which exists nowhere in
the physical world. At this point it’s completely natural to feel drawn towards
Plato’s realm of eternal forms. And many find the tug irresistible.1

But the theory is also preposterous. What possible sense can we make of
abstract entities? Immortal souls? Recollection? Philosophers who think Plato’s
forms belong in a museum are, for the most part, right. However, contemporary
Platonism needn’t embrace all of this. The essential ingredient is the existence
and accessibility of the forms themselves, in particular the mathematical forms,
if not the others such as tallness and justice. That’s all that current mathemat-
ical Platonism is concerned with. But even this is a huge assumption. Spelling
it out and making it plausible is no easy task.

Some Recent Views

Many of the greatest mathematicians and logicians have been gung-ho
Platonists. Let’s sample some views, starting with Gottlob Frege, arguably the
greatest logician and (after Plato) the greatest philosopher of mathematics of all
time. My aim in citing Frege and other luminaries is twofold: in part to get a
feel for Platonism and in part to appeal shamelessly to authority – if these smart
guys believe it, we should at least take it seriously.

Frege distinguishes among our ideas (which are psychological entities),
thoughts, as he calls them (which are the content of our ideas), and the sen-
tences we use to express them (which, as he says, are things of the outer world,
physical entities such as trees, electrons, ink marks or sound waves). Frege’s
thoughts are Platonic entities.
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So the result seems to be: thoughts are neither things of the outer world
nor ideas.

A third realm must be recognized. What belongs to this corresponds
with ideas, in that it cannot be perceived by the senses, but with things,
in that it needs no bearer to the contents of whose consciousness to
belong. Thus the thought, for example, which we express in the
Pythagorean theorem is timelessly true, true independently of whether
anyone takes it to be true. It needs no bearer. It is not true for the first
time when it is discovered, but is like a planet which, already before
anyone has seen it, has been in interaction with other planets.

(Frege 1918: 523)

G.H. Hardy was one of the century’s great mathematicians, famous, among
other things, for his collaborations with Littlewood and with Ramanujan. His
classic essay, ‘Mathematical Proof’, contains such Platonistic pronouncements
as these:

It seems to me that no philosophy can possibly be sympathetic to the
mathematician which does not admit, in one manner or another, the
immutable and unconditional validity of mathematical truth.
Mathematical theorems are true or false; their truth or falsity is
absolute and independent of our knowledge of them. In some sense,
mathematical truth is part of objective reality. 

(Hardy 1929: 4)

I have myself always thought of a mathematician as in the first instance
an observer, a man who gazes at a distant range of mountains and notes
down his observations. His object is simply to distinguish clearly and
notify to others as many different peaks as he can. There are some
peaks which he can distinguish easily, while others are less clear. He
sees A sharply, while of B he can obtain only transitory glimpses. At
last he makes out a ridge which leads from A, and following it to its
end he discovers that it culminates in B. B is now fixed in his vision,
and from this point he can proceed to further discoveries. In other cases
perhaps he can distinguish a ridge which vanishes in the distance, and
conjectures that it leads to a peak in the clouds or below the horizon.
But when he sees a peak he believes that it is there simply because he
sees it. If he wishes someone else to see it, he points to it, either
directly or through the chain of summits which led him to recognize it
himself. When his pupil also sees it, the research, the argument, the
proof is finished. The analogy is a rough one, but I am sure that it is not
altogether misleading. If we were to push it to its extreme we should be
led to a rather paradoxical conclusion; that there is, strictly, no such
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thing as mathematical proof; that we can, in the last analysis, do noth-
ing but point; that proofs are what Littlewood and I call gas, rhetorical
flourishes designed to affect psychology, pictures on the board in the
lecture, devices to stimulate the imagination of pupils.

(Hardy 1929: 18)

Kurt Gödel, who achieved some of the most spectacular results in the founda-
tions of mathematics, was also the most famous and influential Platonist of
recent times. He declares that ‘classes and concepts may . . . be conceived as
real objects . . . existing independently of our definitions and constructions’. He
draws an analogy between mathematics and physics:

the assumption of such objects is quite as legitimate as the assumption
of physical bodies and there is quite as much reason to believe in their
existence. They are in the same sense necessary to obtain a satisfactory
system of mathematics as physical bodies are necessary for a satisfac-
tory theory of our sense perceptions.

(Gödel 1944: 456f.)

despite their remoteness from sense experience, we do have something
like a perception also of the objects of set theory, as is seen from the
fact that the axioms force themselves upon us as being true. I don’t see
any reason why we should have any less confidence in this kind of
perception, i.e. in mathematical intuition, than in sense perception.

(Gödel 1947: 484)

What is Platonism?

There are several points we can glean from the above remarks and from other
writings of various Platonists. They form the core of Platonism.

(1) Mathematical objects are perfectly real and exist independently of us
Mathematical objects are no different than everyday objects (pine trees) or the
exotic entities of science (positrons). We don’t in any way create them; we dis-
cover them. And our theorems try to correctly describe them. Any well-formed
sentence of mathematics is true or is false, and what makes it so are the objects
to which the sentence refers. The truth of these propositions has nothing to do
with us; it does not rest on the structure of our minds, nor on the way we use
language, nor on the way we verify our conjectures. 

This outlook gives Platonism a great advantage over its rivals who must do
lots of fancy footwork to account for mathematical truth. Formalism (as we’ll
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see in a later chapter) identifies truth with proof, but, as a result of Gödel’s theo-
rem, runs into apparent truths that cannot be formally proven. Thus the identifi-
cation of truth with proof is broken. And constructivists (as we’ll also see
below) link truth with constructive proof, but necessarily lack constructions for
many highly desirable results of classical mathematics, making their account of
mathematical truth rather implausible.

Platonism and standard semantics (as it is often called), go hand-in-hand.
Standard semantics is just what you think it is. Let us suppose the sentence
‘Mary loves ice cream’ is true. What makes it so? In answering such a question,
we’d say ‘Mary’ refers to the person Mary, ‘ice cream’ to the substance, and
‘loves’ refers to a particular relation which holds between Mary and ice cream.
It follows rather trivially from this that Mary exists. If she didn’t, then ‘Mary
loves ice cream’ couldn’t be true, any more than ‘Phlogiston is released on
burning’ could be true when phlogiston does not exist.

The same semantical considerations imply Platonism. Consider the following
true sentences: ‘7 � 5 � 12’ and ‘7 � 3’. Both of these require the number 7 to
exist, otherwise the sentences would be false. In standard semantics the objects
denoted by singular terms in true sentences (‘Mary’, ‘7’) exist. Consequently,
mathematical objects do exist.2

(2) Mathematical objects are outside of space and time The typical subject
matter of natural science consists of physical objects in space and time. For pine
trees, positrons and pussy-cats, we can always say where and when; not so for
primes, π, or polynomials. The standard metre is kept in a special place in
Paris; not so the number 27 which is to be found nowhere in space and time,
though it is just as real as the Rock of Gibraltar. Some commentators like to say
that numbers ‘exist’, but they don’t ‘subsist’. If this just means that they are not
physical, but still perfectly real, fine. If it means something else, then it’s
probably just confused nonsense.3

(3) Mathematical entities are abstract in one sense, but not in another The
term ‘abstract’ has come to have two distinct meanings. The older sense per-
tains to universals and particulars. A universal, say redness, is abstracted from
particular red apples, red blood, red socks, and so on; it is the one associated
with the many. The notions of group, or vector space perhaps fit this pattern.
Numbers, by contrast, are not abstract in this sense, since each of the integers is
a unique individual, a particular, not a universal.4

On the other hand, in more current usage ‘abstract’ simply means outside
space and time, not concrete, not physical. In this sense all mathematical
objects are abstract. A simple argument makes this clear: There are infinitely
many numbers, but only a finite number of physical entities; so most math-
ematical entities must be non-physical. It would seem rather unlikely that, say,
the first n numbers are physical while from n � 1 on they are abstract. So, the
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reasonable conclusion is that all numbers, and indeed all mathematical objects,
are abstract.5

(4) We can intuit mathematical objects and grasp mathematical truths
Mathematical entities can be ‘seen’ or ‘grasped’ with ‘the mind’s eye’. These
terms are, of course, metaphors, but I’m not sure we can do better. The main
idea is that we have a kind of access to the mathematical realm that is some-
thing like our perceptual access to the physical realm. This doesn’t mean that
we have direct access to everything; the mathematical realm may be like the
physical where we see some things, such as white streaks in bubble chambers,
but we don’t see others, such as positrons.

This provides another great advantage of Platonism over some of its rivals,
especially over conventionalist accounts. It explains the psychological fact that
people feel the compulsion to believe that, say, 5 � 7 � 12. It’s like the com-
pulsion to believe that grass is green. In each case we see the relevant objects.
Conventionalists make mathematics out to be like a game in which we could play
with different rules.Yet ‘5 � 7 � 12’has a completely different feel from ‘Bishops
move diagonally.’ Platonism does much justice to these psychological facts.

(5) Mathematics is a priori, not empirical Empirical knowledge is based
(largely, if not exclusively) on sensory experience, that is, based on input from
the usual physical senses: seeing, hearing, tasting, smelling, touching. Seeing
with the mind’s eye is not included on this list. It is a kind of experience that is
independent of the physical senses and, to that extent, a priori.

There are profoundly different ways of being a priori. Conventionalist, for-
malist and intuitionist accounts of mathematics are all a priori, so this property
does not differentiate them from Platonism until we look at the details – some-
thing I will do below shortly. Naturalism, however, is an exception; it’s quite
anti-a priori. Some recent accounts (Quine, Kitcher, and in some respects
Maddy) want to assimilate mathematics to the natural sciences. One relevant
fact in assessing this is that in the history of the various sciences, there has been
much interaction among various branches. A revolution in physics can cause a
subsequent revolution in chemistry or biology. Yet never in the entire history of
mathematics has a result elsewhere (in the non-mathematical sciences) had any
impact on our evaluation of mathematics. That is, no mathematical belief was
ever overthrown by a discovery made in the natural sciences. I distinguish a
logical conflict from suggestive interaction. Clearly, there has been a long and
fruitful history of mutual stimulation. The discovery of non-Euclidean geo-
metry, for example, did not entail any particular physics, though it did allow
physicists to entertain a possibility that hadn’t previously been considered.
Notice the profound difference between that and the impact that quantum
mechanics had on pre-quantum chemistry. (The mathematics–science relation
is the subject of Chapter 4.)
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(6) Even though mathematics is a priori, it need not be certain These are
quite distinct concepts. The mind’s eye is subject to illusions and the vicissi-
tudes of concept formation just as the empirical senses are. And axioms are
often conjectures, not self-evident truths, proposed to capture what is intuitively
grasped. Conjecturing in mathematics is just as fallible as it is elsewhere. 

Not all versions of Platonism embrace fallibilism. Self-evidence and certainty
have often been emphasized in the past. I’ll take up this theme later in this
chapter and show that the case for fallibility is quite favourable.

(7) Platonism, more than any other account of mathematics, is open to the
possibility of an endless variety of investigative techniques Proving theorems
in a traditional way is certainly one method of establishing new mathematical
truths, but it needn’t be the only way, and Platonism does not stress it. In the nat-
ural sciences one might start from, say, the first principles of quantum mechan-
ics and derive a new result. In this fashion we would come to know something
new. But, of course, there are numerous other ways of learning new things about
the physical world, including: direct observation, hypothesizing and testing the
observable consequences, analogical reasoning, thought experimenting, and so
on. Platonism can be similarly liberating for mathematical research.

There is no consideration, on a Platonistic account, that might lead us to
doubt the existence and effectiveness of non-standard means for learning about
the mathematical realm. But what other means might there be? What about con-
jectures that ‘explain’ several already known results? What about generaliza-
tions drawn from a large number of computer-generated instances? And
especially, what about diagrams and pictures? Besides traditional proofs, these
non-standard techniques may also bear much fruit. At the very least, these
deserve a hearing. One of the chief aims of this volume is to explore such
non-standard ways of investigating the mathematical realm.

Platonism does great justice to the mathematical image, as sketched in the
introductory chapter. Not perfect justice, though. As I’ve outlined it,
Platonism’s fallibility is at odds with the traditional conception of mathematical
certainty; and though it does not reject proofs, Platonism may not always
require them. These differences may turn out to be big departures from the
common view. In spite of these tensions, however, Platonism is remarkably
close to the standard picture. And as we consider various accounts of the nature
of mathematics, it will be apparent that Platonism is indeed much closer to
traditional and common-sense views of mathematics than any of its rivals.
Therefore it’s no wonder that it has had an illustrious history and that working
mathematicians are naturally sympathetic. 

However, there are serious misgivings on the part of many with this view of
mathematics. All would be happy in Plato’s heaven were it not for a small
cluster of problems connected with this question: If mathematical objects exist
independent from us, outside space and time, then how could they be in any
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way accessible? and how could we come to know anything about them? I’ll
take up additional problems as we go along, but this is the big one.

The Problem of Access

The problem of access to the Platonic realm can be expressed in several differ-
ent ways. Let’s look at a couple of versions of this objection.6

We have a good understanding of the mechanism of normal perception,
but no idea at all of the workings of ‘the mind’s eye’, so postulating
this sort of perception is dubious, perhaps even nonsensical.

When it comes to ordinary perception, what exactly is understood? I see a
coffee cup on my table. Photons come from the cup, enter my eye, interact with
the rods and cones inside; a signal is send down the optical nerve into the visual
cortex, and so on. This much – the physiological part of the process – is
understood very well. But what about my sensation of the cup and my belief
that there is a cup on the table? No one has the foggiest idea how these sensa-
tions and beliefs are formed. This is the mind–body problem – and it’s utterly
unsolved. There are lots of proposals – some ingenious and promising – but no
one should be tempted to say that the mental part in this process (unlike the
physiological part) is well understood. How the physical process brings about
the belief is a very great mystery. It is just as great a mystery as how math-
ematical entities bring about mathematical beliefs. Of course, it would be won-
derful to understand both, but our ignorance in the mathematical case is no
worse than our ignorance in the case of everyday objects. 

As an objection to Platonism, the claim that physical perception is well under-
stood – even if completely right – seems off the mark. What, after all, is the
Platonist claim? Crudely, this: We have mathematical knowledge and we need
to explain it; the best explanation is that there are mathematical objects and that
we can ‘see’ them. This is parallel to the following argument which is widely
urged, for example, against Berkeley: We know the cup is on the table and we
need to explain how this knowledge arose; the best explanation is that there
really is a cup there and that we can see it – the cup causes our perception. Now
consider: Do we need a detailed theory of perception for this argument to be per-
suasive? People rationally accepted this type of argument against Berkeley long
before photons were discovered. The fact that Platonists have nothing to offer in
the way of an explicit mechanism for seeing with the mind’s eye does not in the
least undermine the cogency of the Platonist claim. I hope no one was expecting
an explanation in terms of little platons entering the mind’s eye.

Let’s turn to a related, but somewhat more specific objection.
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To know anything at all, there must be some sort of causal connection
between the object known and the knower. Abstract objects, being out-
side of space and time, are causally inert; so, we cannot possibly inter-
act with them. Consequently, even if they exist, we could not know
them. Since Platonism is committed to our knowing abstract entities, it
is hopelessly wrong.

In recent years the causal theory of knowledge has been popular with episte-
mologists, especially naturalists. The basic idea is very plausible. When we
consider how we come to know various things, we invariably seem to find some
sort of causal chain between the objects of knowledge and ourselves. If I know
that Mary is wearing a red shirt, it is because I am in causal contact: photons
from Mary enter my eyes, and so on. Even my knowledge of the past and future
is causally grounded. I know Brutus stabbed Caesar, because those in direct
causal contact recorded their experiences, and a chain of further recordings
leads to the printed page before me; then photons from that page enter my eye,
and so on. Moreover, even the future is in causal contact. I know, for example,
that it will snow tomorrow. The cloud formation I see now will shortly cause
snow. In this indirect way, I am causally connected to tomorrow’s event. In rou-
tine cases – past, present or future – we seem able to pick out a causal chain
between ourselves and the object or event that we know about. What’s more, if
this causal connection did not exist, it seems safe to say that we simply would
not have the knowledge in question.

These simple considerations make the causal theory of knowledge appear very
plausible. And when applied to abstract objects, it would seem that any causal
connection is completely lacking; so, according to this naturalistic account, we
cannot actually know anything about abstract entities after all, even if they do
exist. Our mathematical knowledge cannot be about abstract objects, but must
be understood in some quite different, non-Platonistic, way. This argument has
been used repeatedly in recent years7 and it would seem that Platonists can only
retreat, reflect and be wretched. 

But no, the argument is flawed. The best way to show that the causal theory of
knowledge is wrong is to show that – surprisingly – there is a case within the
physical realm where it fails miserably. If we can show that we have knowl-
edge of some physical event, but that we cannot be in causal contact with that
event, then we will have shown that a causal connection is not necessary for
knowledge.

The case I have in mind comes from one of the bizarre situations which arise
in quantum mechanics. In an EPR-type set-up (from the thought experiment of
Einstein, Podolsky, and Rosen) a decay process gives rise to two photons mov-
ing in opposite directions towards detectors at either end of a room (Figure 2.1).
The detectors include polaroid filters which can determine whether the incom-
ing photons have the so-called property spin-up or spin-down. Both theory and



experience tell us that the two outcomes are always correlated: one photon is up
and the other down. But we can never determine in advance which will arrive at
either side – we seem to have complete randomness.

The interesting part is the perfect correlation, one up, the other down. Why
does it occur? One possibility is that the measurement on one wing of the mea-
suring apparatus causes the outcome at the other. However, we can rule this out
by assuming with special relativity that no causal influences travel faster than
light. The two measurements (made simultaneously in the frame of the labora-
tory) are outside of each other’s light cones; so neither measurement causally
affects the other. The second possibility is to assume that there must be something
at the origin (at the time of the creation of the pair of photons) that is responsible
for their correlated properties. (This was the EPR conclusion; such a common
cause is known as a hidden variable.) Unfortunately, this common cause turns out
to be impossible, too. The so-called Bell results show that such a common cause
(i.e. a so-called local hidden variable) predicts a different measurement outcome
than either quantum mechanics predicts or experience determines.8

The implications for the causal theory of knowledge are straightforward – it’s
false. Suppose I am at one wing of the measuring apparatus and get the result:
spin-up. Then I can immediately infer that you at the other wing have the result:
spin-down. I know the distant outcome without being causally connected to the
remote wing. A direct causal connection would have to be faster than light,
something ruled out by special relativity, and a common cause in the past
grounding my knowledge would amount to a local hidden variable, something
ruled out by the Bell results. 

So the causal theory is simply refuted by this example. We can have knowl-
edge even without a causal connection.

Of course, arguments like this are problematic. It relies on significant
assumptions about the physical world. Perhaps special relativity is false; maybe
some signals do go faster than light. This would make a direct causal connec-
tion possible after all. Perhaps the complex analysis of the situation involved in
ruling out local hidden variables is flawed, making a common cause possible
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after all. These are indeed possibilities, but the assumptions that go into the
physics of this situation are at least as plausible, or even more plausible, than
the assumptions involved in the causal theory of knowledge. It seems perfectly
sensible to dump the latter.9

Once the causal theory is rejected, there is no objection to our knowing about
abstract entities without being causally related to them. The problem of access is
a pseudo-problem; resistence to Platonism is motivated by misplaced scruples.

The Problem of Certainty

Philip Kitcher (1983) rejects Platonism for a number of reasons, one of which
is the impossibility, as he sees it, of a priori knowledge.10 His argument is
simple: Consider a very long proof, so long that it would take a skilled math-
ematician months to work through it. Is there not some reasonable chance of an
error? Of course there is. Consequently, one cannot be certain that the proof is
right; the theorem is thrown into some measure of doubt. Thus, it cannot be
known a priori.

Of course, this shows at most that some theorems (those with very long
proofs) cannot be known a priori, but (as Kitcher allows), this leaves the rest
untouched. So Platonism might still be a correct partial account. But even this
is conceding too much to Kitcher. His argument only works by making the
assumption that being a priori means being certain. There is no reason in the
world to make that assumption – even though it has often been made in the past.

There are, of course, accounts of the a priori which lead rather naturally to its
identification with certainty, so Kitcher is in good company. Formalists and pos-
itivists held that the source of a priori knowledge is to be found in language or
in convention. ‘Bishops move diagonally’ and ‘Bachelors are unmarried males’
are true because we stipulate them to be so. That’s how we play chess and how
we speak English. Truths such as these are known a priori because they are
based on decisions, not discoveries. And they are completely certain for the
same reason – our saying makes them so. To this extent Kitcher is right: math-
ematics is not a priori in this sense. But this is not the only view of the a priori.

A Platonic realist holds that mathematics is not stipulative, but descriptive. A
priori knowledge of mathematics then is knowledge which is not based essen-
tially on empirical evidence. Seeing with the mind’s eye is perhaps a kind of
experience, but it is definitely not sense experience. So, in this way, it is a priori,
not empirical. On the other hand, seeing with the mind’s eye is fallible, just as
normal sense experience is; so it does not result in knowledge which is certain.
Fallible and a priori are perfectly compatible notions.

Another source of fallibilism is that mentioned by Gödel. He takes axioms to
be conjectures, tested by means of intuitive consequences. In this regard it is
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similar to, say, physics. We conjecture a theory, then draw out some conse-
quences that can be checked in the lab. If the consequences turn out to be true,
our faith in the theory is increased; if the consequences are false, we consider
the theory refuted. Of course, this is extremely simplistic – testing is a subtle
business. But the main point holds: A false theory can have true consequences
as well as false ones, and we might be unlucky enough not to notice.

The history of set theory powerfully illustrates this point. In early versions
(now often called ‘naive set theory’), the axiom of comprehension assumed that
for any condition there is a set of objects satisfying that condition. This means,
symbolically, P(x) ↔ x � {x: P(x)}. This axiom seemed extremely plausible: ‘x
is red’ is equivalent to ‘x is a member of the set of red things’. Alas, this prin-
ciple leads directly to Russell’s paradox when we let the condition be is not a
member of itself, i.e. P(x) � x � x.

The set of abstract objects A is itself an abstract object, so A � A. The set B
of bananas is not itself a banana, so B � B. Some sets are members of them-
selves and some are not. So far, so good. Now let’s form a set of all sets like B
that are not members of themselves. We’ll call it R in honour of Russell and
define it as follows: R � {x: x � x}. Clearly, B � R and A � R. What about R?
Is it a member of itself or not?

When we ask does R � R?, we find that if we assume Yes, R � R, then we
have R � {x: x � x}; therefore, R� R. And if we assume No, R � R, then we
have R � {x: x � x}; therefore R � R. A contradiction. The way this is dealt
with in current set theory is to say the condition can only be defined on already
existing sets: For any set A and condition defined on the members of A, there is
a set of objects satisfying that condition. So the Russell set can no longer be
defined. The closest we can come is R � {x: x � A & x � x}, but this won’t
lead to a paradox (at least, not as far as we know).

Imre Lakatos (1976) cheerfully combines fallibilism and Platonism (of a
sort). Lakatos is famous for his vigorous defence of ‘empiricism’ in mathemat-
ics; but this ‘empiricism’ is really just fallibilism. Nowhere does Lakatos say
mathematics is based on sensory input. Above, I gave a long list of ingredients
of Platonism similar to, but not identical with, the standard view of mathemat-
ics. Lakatos, I suspect, would accept all of these Platonistic ingredients. His
view is quite compatible with a fallibilistic version of Platonism and, indeed,
provides some of the best arguments for characterizing mathematics that way.

Lakatos focuses on the notion of a proof, which is the central device in the
method of proofs and refutations, as he calls it. It is at once a method both
descriptive and prescriptive, an account of the best mathematics of the past and
a guide to future research. The method is Lakatos’s general heuristic guide to
mathematical discovery. In his eyes, proofs have more important things to do
than to justify theorems.

In his account, we start with a primitive conjecture, such as, that
V � E � F � 2 holds for any polyhedron (i.e. the number of vertices, V, minus



the number of edges, E, plus the number of faces, F, equals 2). The conjecture
stems, perhaps, from noticing a pattern in several examples (Figure 2.2).

Next, a proof is given, and this is usually some sort of argument or, as
Lakatos likes to call it, a thought-experiment. Often the proof takes the form of
breaking things up into lemmas or subconjectures (which are tentatively
accepted), and then of showing that these lemmas imply the initial conjecture.

TEACHER: I have [a proof]. It consists of the following thought-experiment.
Step 1: Let us imagine the polyhedron to be hollow, with a surface made of
thin rubber. If we cut out one of the faces we can stretch the remaining sur-
face flat on the blackboard, without tearing it. The faces and edges will be
deformed, the edges may become curved, but V and E will not alter, so that
if and only if V � E � F � 2 for the original polyhedron, V � E � F � 1
for this flat network – remember that we have removed one face. [Figure
2.3 shows the flat network for the case of the cube.] Step 2: We now tri-
angulate our map – it does indeed look like a geographical map. We draw
(possibly curvilinear) diagonals in those (possibly curvilinear) polygons
which are not already (possibly curvilinear) triangles. By drawing each
diagonal we increase both E and F by 1, so that the total V � E � F will
not be altered [Figure 2.4]. Step 3: From the triangulated network we now
remove the triangles one by one. To remove a triangle we either remove an
edge – upon which one face and one edge disappear [Figure 2.5(a)], or we
remove two edges and a vertex – upon which one face, two edges and one
vertex disappear (Figure 2.5(b)]. Thus if V � E � F � 1 before a triangle
is removed, it remains so after the triangle is removed. At the end of this
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procedure we get a single triangle. For this V � E � F � 1 holds true. Thus
we have proved our conjecture.

DELTA: You should call it a theorem. There is nothing conjectural about it any
more.

ALPHA: I wonder. I see that this experiment can be performed for a cube or for
a tetrahedron, but how am I to know that it can be performed for any poly-
hedron? For instance, are you sure, Sir, that any polyhedron, after having a
face removed, can be stretched flat on the blackboard? I am dubious about
your first step.

BETA: Are you sure that in triangulating the map one will always get a new
face for any new edge? I am dubious about your second step.

GAMMA: Are you sure that there are only two alternatives – the disappearance
of one edge or else of two edges and a vertex – when one drops the tri-
angles one by one? Are you sure that one is left with a single triangle at the
end of this process? I am dubious about your third step.

TEACHER: Of course I am not sure.
ALPHA: But then we are worse off than before! Instead of one conjecture we

now have at least three! You call this a ‘proof’! 
(Lakatos 1976: 7f)

Lakatos requires the mathematician to do two seemingly contradictory things:
to prove the conjecture and to refute it. This does not mean to look for a proof, and
failing that to seek a counter-example. Rather it means to give a proof and to give
a counter-example, as well. The reason this apparently absurd dictum can actu-
ally be carried out is that, according to Lakatos, proofs do not incontrovertibly
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prove, nor do counter-examples absolutely refute. (Figure 2.6 gives some counter-
examples to the theorem. Readers can check this for themselves by simply count-
ing the edges, faces and vertices and seeing if they satisfy V � E � F � 2. These
examples will be discussed again in a later chapter.)

If proofs don’t prove, and counter-examples don’t refute, then just what do
they do? Usually philosophers have been concerned with how theories come
to be rationally accepted. On the other hand, how theories were thought of
initially, is a question relegated to psychology. This is Reichenbach’s (1938)
widely known and accepted distinction between the ‘context of discovery’ and
‘context of justification’. The latter can be successfully analysed by philoso-
phers, but the former, claims Reichenbach, admits of no rational discussion –
there can’t be a rational method of having good ideas. But the method of proofs
and refutations flies in the face of this. Not only do proofs justify (fallibly, of
course), but they are the principle device in the generation of new concepts and
theorems. In this fashion, discovery and justification become intimately con-
nected. ‘Proofs, even though they may not prove, certainly do help to improve
our conjecture. . . . Our method improves by proving. This intrinsic unity
between the ‘logic of discovery’ and the ‘logic of justification’ is the most
important aspect of the method’ (Lakatos 1976: 37). 

In a nutshell, proofs are tools for concept formation. This is the key to under-
standing the kind of fallibilism that Lakatos is concerned with. He is not in the
least worried about making computational mistakes, but rather with the fact that
we are likely working with concepts of polyhedron, continuity, tangent space,
fibre bundle, differential form, limit ordinal, and so on which are not quite right
and will never be known to be right. Our concepts of electron, gene and subcon-
scious have evolved considerably over the years. Mathematical concepts are
similarly revisable, and therein lies a major source of fallibility in mathematics –
perhaps the most interesting.

Russell’s paradox, as I noted above, brought about a revision of an axiom (or at
least an implicit axiom; the paradox was discovered before set theory was offi-
cially axiomatized). But it did more than that. It also led to the revision of the con-
cept of a set. Cantor famously said that a set is ‘any collection into a whole M
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of definite, distinct objects m . . . of our intuition or thought’ (1895: 85). This
clearly won’t do as a conception of set, since it leads to the Russell set and on to
the paradoxes. Currently, the reigning idea is the ‘iterative conception of set’. We
start with the empty set, � (or perhaps with individuals which are not sets), then
use various set-forming operations (characterized by the axioms) to build up ever
more complex sets. These operations are legitimate only when applied to already
existing sets. The thought ‘set of all things which are not members of them-
selves’, while legitimate on Cantor’s conception of a set, is ruled out on the itera-
tive conception. Contemporary set theorists are still up in the air over the proper
conception of a set.11

This is a clear case of conceptual change. The fallibilism involved is that of
having the wrong concept, not the fallibilism of having the wrong beliefs about
the right concept.

I’ve sketched three sources of fallibilism in mathematics. There are mistakes
stemming from the incorrect application of accepted principles (e.g. calculation
errors). There are possibly false conjectures which have so far not been detected
(e.g. our current set theory axioms might simply be false just as earlier versions
were). And finally, there is the possible use of wrong or naive concepts (e.g.
early concepts of polyhedron and set). Does any of this hurt Platonism? Not
at all. Fallibilism ties in naturally with any sort of mathematical realism.
Traditionally, Platonism has been linked to the epistemology of certainty. But
the view of Platonism I’ve sketched here involves a methodology which is a lot
more like the methodology of the natural sciences, one that involves a kind of
perception – empirical observation in natural science, intuition in mathematics.
And in each case it involves conjecture tested by observable or intuitive conse-
quences, conceptual revision, and much more. How much more we’ll see in the
following chapters.

Platonism and its Rivals

No theory can be evaluated by a simple comparison with reality. Among other
things, testing involves a comparison with rivals. So when thinking about
Platonism, we must have an eye on formalism, constructivism, naturalism, and so
on. This seems to be a general truth about intellectual life, but the situation in phi-
losophy of mathematics is even more complicated. Some might concede that
Platonism does an excellent job of accounting for everything in mathematics, yet
still reject it. Why? It’s because they hold a general philosophical outlook in which
there is no room for Platonism. For example, a naturalist tries to account for things
exclusively in terms of the natural sciences. This tends to be a reductionistic pro-
gramme in which minds, morals, and mathematics are all to be explained, reduced
to, or somehow understood in terms of the methods and ontology of the natural
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sciences. A naturalist might admit that Platonism is a better account of mathemat-
ics than naturalism when we confine our attention narrowly to the mathematical
realm, but that naturalism, nevertheless, is to be preferred because it is globally a
better account of things. When it comes to mathematics, then, a naturalist would
claim to need only a workable account, not the best.

I have much sympathy with this general line of reasoning – not with natural-
ism, but with the idea that the total picture counts. Of course, I can’t meet rivals
head-on at a global level; that would require a book very much longer than this
one which gives an account of how physics works, how linguistics works, how
ethics works, and so on. But one should keep in mind that there are Platonistic
accounts in these and other areas. For example, Platonistic accounts of ethics,
of linguistics, of laws of nature, of thought experiments are all fairly promising
in their own right.12 Mathematics has always been Platonism’s strong suit; but,
as a general outlook, Platonism, I’m glad to say, is not faring badly at all.

Further Reading

Though Platonists have come a long way from Plato, it’s always good to read
the greatest philosopher who ever lived. The Meno and the Republic (Book IV)
are the main sources for his views on mathematics. The leading Platonist of
modern times is Gödel. His essays, ‘Russell’s Mathematical Logic’ and ‘What
is Cantor’s Continuum Hypothesis’, are central.

Many books on the philosophy of mathematics have a chapter on Platonism,
often critical. Here are a few that are worth reading and not just for their discus-
sions of Platonism: Balaguer, Platonism and Anti-Platonism in Mathematics;
Colyvan, The Indispensibility of Mathematics; Dummett, Frege’s Philosophy of
Mathematics; Frege, Foundations of Arithmetic; Hale, Abstract Objects; Irvine
(ed.), Physicalism in Mathematics; Maddy, Realism in Mathematics; Potter,
Reason’s Nearest Kin; Russell, Introduction to Mathematical Philosophy; Resnik,
Mathematics as a Science of Patterns; Shaprio, Philosophy of Mathematics.

This is but a handful from a much larger group of excellent books. Articles in
the philosophy of mathematics can be found in many journals, especially those
devoted to the philosophy of science. There is one excellent journal wholly
devoted to the topic, Philosophia Mathematica.
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CHAPTER 3
Picture-proofs and Platonism

Mathematicians, like the rest of us, cherish clever ideas; in particular
they delight in an ingenious picture. But this appreciation does not
overwhelm a prevailing scepticism. After all, a diagram is – at best –

just a special case and so can’t establish a general theorem. Even worse, it can
be downright misleading. Though not universal, the prevailing attitude is that
pictures are really no more than heuristic devices; they are psychologically
suggestive and pedagogically important – but they prove nothing. I want to
oppose this view and to make a case for pictures having a legitimate role to
play as evidence and justification – a role well beyond the heuristic. In short,
pictures can prove theorems.1

Bolzano’s ‘Purely Analytic Proof’

Bernard Bolzano proved the intermediate value theorem. This was early in the
nineteenth century, and commentators since typically say two things: first, that
Bolzano’s work was initially unappreciated and only later brought to light or
rediscovered by others such as Cauchy and Weierstrass; second, that thanks to
Bolzano and the others, we now have a rigorous proof of the theorem, whereas
before we only had a good hunch based on a geometrical diagram. 

Typical advocates of this view are the historians Boyer (1949) and Kline
(1972) who, respectively, discuss Bolzano in chapters called: ‘The Rigorous
Formulation’ and ‘The Instillation of Rigor’. It’s easy to guess from these titles
where their hearts lie and how appreciative their view of Bolzano’s efforts
might be. Mathematicians hold a similar outlook. Most calculus and analysis
texts contain a proof of the intermediate value theorem, and often they have a
few casual comments about its significance. Apostol, for example, remarks:
‘Bolzano . . . was one of the first to recognize that many “obvious” statements



about continuous functions require proof’ (1967: 143). Courant and Robbins, in
praising Bolzano, say ‘Here for the first time it was recognized that many
apparently obvious statements concerning continuous functions can and must
be proved if they are to be used in full generality’ (1941: 312).

The common attitude towards Bolzano reflects the generally accepted attitude
towards proofs and pictures. On this view only proofs give us mathematical knowl-
edge; moreover, proofs are derivations; they are verbal/symbolic entities. Pictures,
on the other hand, are psychologically useful, often suggestive, and sometimes
downright charming – but they do not provide evidence. When this attitude is
brought to bear on the intermediate value theorem, it’s perfectly natural to con-
clude that – until Bolzano – we couldn’t really be sure the theorem was true.

Let’s look at one of three related theorems (sometimes called the intermedi-
ate zero theorem) due to Bolzano (1817).

Theorem: If f is continuous on the interval [a,b] and f changes sign
from negative to positive (or vice versa), then there is a c between a
and b such that f(c) � 0.

Here is a proof which, while not exactly Bolzano’s, is in the modern spirit
which he created.2

Proof: Assume (with no loss of generality) that f(a) � 0 � f(b). Let
S � {x: a � x � b & f(x) � 0}. This set is not empty, since a is in it;
and it is bounded above by b, so it has a least upper bound, c. There are
three possibilities.

(1) f(c) � 0. If this is true there is an open interval around c, i.e.
(c � 	, c � 	), in which f(x) � 0, for all x in the interval including
those greater than c. This contradicts the assumption that c is an
upper bound.

(2) f(c) � 0. If this is true there is an open interval around c, i.e.
(c � 	, c � 	), in which f(x) � 0, for all x in the interval, even
those less than c. But that’s impossible since c is the least of all
the upper bounds, so that f(x) � 0 for all x less than c.

(3) f(c) � 0. The other two possibilities being ruled out, this one
remains. And so, the theorem is proved.

Consider now visual evidence for the theorem. Just look at the picture
(Figure 3.1). We have a continuous line running from below to above the x-axis.
Clearly, it must cross that axis in doing so. Thus understood, it is indeed a
‘trivial’ and ‘obvious’ truth.

A simple generalization of this theorem leads to what is now known as the
intermediate value theorem, also proved by Bolzano.
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Theorem: If f is continuous on the interval [a,b] and there is a C between
f(a) and f(b), then there is a c between a and b such that f(c) � C.

I won’t bother to give a proof in the Bolzano style, but I will provide another
picture (Figure 3.2). 

Bolzano also gives a third theorem, again, a generalization from the others.

Theorem: If f and g are both continuous on the interval [a,b] and f(a)
� g(a) and f(b) � g(b), then there is a c between a and b such that
f(c) � g(c).

Once we have the hang of the first theorem, we can easily extend the result to the
second and third using the same techniques. Again, I’ll forgo the analytic proof,
but not the visualization. However, this time I’ll call on your imagination; like
Shakespeare’s Prologue on a stage serving as the imagined battlefield of
Agincourt, I’ll urge you to ‘Work your thoughts!’ Consider this little problem:
A mountain climber starts at the base of a mountain at noon and reaches the top at
6 p.m. She sleeps the night there, then at noon the next day, returns to the bottom
following the same path. Question: Is there a time at which she was at the same
point on the mountain path both days? The answer, surprisingly, is Yes, in spite
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Figure 3.1 The intermediate zero theorem

Figure 3.2 The intermediate value theorem
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of how fast she may go up or down the hill. Here is how to solve the problem:
Consider an equivalent situation in which we have two hikers, one at the top
heading down, the other at the bottom heading up, both setting out at noon on the
same day. Obviously, they eventually meet somewhere on the path. And when
they do, that is the common time. The solution to the riddle perfectly illustrates
the third theorem. It also proves it. Bolzano, of course, gave a ‘purely analytic
proof’, as he called it, not a visualization.

What Did Bolzano Do?

There is a spectrum of ways to understand Bolzano’s achievement. The first of
these is the common view I mentioned above.

(1) Bolzano firmly established a theorem that was not known to be true until
his proof. The diagram, on this account, perhaps played an important heuristic
role, but nothing more. Not only is this a common view of the matter, but some
of Bolzano’s own remarks about the fallibility of geometric intuition strongly
suggest that this is how he viewed things.3 But, of course, this is absurd. The
geometric picture gives us a very powerful reason for believing the result quite
independently of the analytic proof. Using the picture alone, we can be certain
of this result – if we can be certain of anything.

Quite aside from the virtues or vices of pictures, we ought to have a some-
what more humble attitude towards our understanding of verbal/symbolic
reasoning. First-order logic may be well understood, but what passes for
acceptable proof in mathematics includes much more than that. Higher-order
logic is commonplace, but is far from being house-broken. Moreover, proofs are
almost never given in full; they are just sketches which give ample scope for
committing some of the well-known informal fallacies. Pictures can sometimes
even expose verbal fallacies. As for Bolzano in particular, the principles that he
used included naive set theory, now known to be profoundly inconsistent. A
dose of humility seems called for. 

Consider now a second view of what was achieved.
(2) Bolzano’s proof explained the theorem. Imre Lakatos (1976) often talks

this way about mathematics in general, and would, perhaps, endorse such a
view of Bolzano. Philip Kitcher (1975, 1983) holds it explicitly and to some
extent so does Alberto Coffa (1991). The verbal/symbolic proof may well
explain the theorem, but the picture explains it, too – at least it explains why the
continuous function cuts the x-axis (i.e. at y � 0) somewhere or other. The fact
that the analytic proof explains the theorem does not set it apart from the
picture. (This is explained in more detail below.) Now a third possibility:

(3) The theorem confirms Bolzano’s proof. Bolzano is generally considered
the ‘father of arithmetization’, as Felix Klein called him. The arithmetization
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programme of the nineteenth century sought to found all of analysis on the con-
cepts of arithmetic and to eliminate geometrical notions entirely. (The logicism
of Frege and Russell carried this a step further in trying to reduce arithmetical
notions to logic.) Proving something independently known to be true was then a
feather in the cap of this programme. This method has many champions. Gödel,
for example, thought new axioms for set theory should be accepted on the basis
of their ‘fruitfulness’, that is, their good consequences, not their self-evidence.
Russell, too, expressed the view clearly: ‘we tend to believe the premises
because we can see that their consequences are true, instead of believing the
consequences because we know the premises to be true’ (1907: 273f.).

It is pretty clear, that of our three options, the final one is the best. (The
second option, explanation, is compatible with the third, confirmation, but can’t
be the whole story.) The consequence of adopting (3) is highly significant for
our view of pictures. We can draw the moral quickly: Pictures are crucial. They
provide the independently-known-to-be-true consequences that we use for test-
ing the hypothesis of arithmetization.4 Trying to get along without them would
be like trying to do theoretical physics without the benefit of experiments to test
conjectures.

Different Theorems, Different Concepts?

A pair of objections to all this is possible. One objection is that we have two
different proofs of the same result, each with its own strengths and weaknesses.
This I think is quite true – but it is not really an objection. I could rephrase (3) as
saying: the two proof techniques arrive at the same result. One of these (the pic-
ture) is prima facie reliable. The other (the analytic proof) is questionable, but our
confidence in it as a technique is greatly enhanced by the fact that it agrees with
the reliable method.

I should add that the way the picture works is much like a direct perception;
it is not some sort of encoded argument. However, the boundary between these
two ways of understanding the pictures may not be very sharp, since even in
fairly simple direct perceptions some ‘interpreting’ goes on. Ultimately, it may
not matter which way we construe the picture, so long as the encoded argument
(if there is one) is not the same argument as that given by the verbal/symbolic
proof. For, either way, the picture serves as independent evidence for Bolzano’s
arithmetization programme.

The second possible objection is that we actually have different concepts of
continuity at work: one is the ε-δ concept, which is more or less Bolzano’s; the
other is so-called pencil continuity, a geometric notion. To some extent this point
seems right; we do have different conceptions of continuity. However, it would
be a mistake to infer that the results of the two proofs are incommensurable. For
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one thing, if they are totally unrelated concepts then it would make no sense even
to illustrate Bolzano’s theorems with the diagrams, nor would it make any sense
to apply Bolzano’s result to situations in geometry or mechanics, as is commonly
done. If we did take the attitude that these are two quite distinct conceptions of
continuity, then we would be very hard pressed to account for a significant
amount of mathematical practice. Even if the picture merely does psychological
work, that in itself could only be explicable by assuming that ε-δ continuity and
pencil continuity are somehow deeply related. If they are completely unrelated,
then what is the picture doing there? It would be like a dictionary giving a verbal
description of apples but illustrating the definition with a picture of a banana.

Perhaps a better understanding of what has historically transpired would be
similar to our understanding of what happens in physics or biology. Theories in
the natural sciences are tested by observations; however, those very observa-
tions are theory-laden. In the act of theorizing about some phenomenon we
transform the description of the phenomenon itself (ducks to rabbits). However,
the phenomenon – now under a different description – is still relevant for test-
ing. In the case of Bolzano, perhaps the same thing has happened. The concept
of continuity has changed, but the diagram is still relevant for testing purposes.

Inductive Mathematics

It’s an uncontentious fact that mathematical reasoning is broader than merely
proving theorems. We sometimes forget this when emphasizing the great
achievements of mathematics and the ingenious proofs that have established our
most treasured results. But obviously there is more. After all, why work on this
problem rather than that one? Why fund this line of research rather than some
other? Mathematicians and the mathematical community make all sorts of deci-
sions which are not based on solid analytic proofs. A certain line of research on
the Riemann hypothesis is financially supported – not because it’s known to be
correct, but because it seems promising. Another is rejected as a dead end.
Where do these judgements come from? What grounds them? What is the basis
of these attitudes which are so crucial to mathematical activity?

Let us call any evidence which falls short of an actual traditional proof
‘inductive evidence’. Mathematical achievements may rest entirely on deduc-
tive evidence, but mathematical practice is based squarely on the inductive
kind. Let’s now look briefly at some types. (I’ll look at some of these again in
later chapters.)

Enumerative induction Goldbach’s conjecture says that every even number
(greater than 2) is the sum of two primes. Check some examples: 4 � 2 � 2,
6 � 3 � 3, 8 � 5 � 3, 10 � 5 � 5, 12 � 5 � 7, and so on. Computers have
been used to check this well into the billions. No counter-examples have been
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found so far. Mathematicians tend to believe that Goldbach’s conjecture is true.
They don’t have a proof, but they do have strong inductive evidence.

Analogy Euler found a way to sum an infinite series that is not ‘rigorous’ by
any stretch of the imagination. He argued from analogy that 

.

Polya (1954: 17ff.) celebrated Euler’s accomplishment, and Putnam (1975)
endorsed it, too. Euler’s reasoning was ingenious and persuasive, but not a proof.
(This example is discussed in more detail in Chapter 10.)

Broad experience Pose a problem; attack it from every conceivable angle; if
all plausible approaches lead nowhere, it’s time to think the initial conjecture
false. The question, Is it true that P � NP?, was first posed about thirty-five
years ago. This is the central problem for those working on computational com-
plexity. The issue concerns how fast computational problems grow with size of
input. There is now a broad consensus in the field that P 
 NP. Of course, there
is no proof, but a grant proposal which hoped to produce a positive result would
be turned down flat.5

These kinds of inductive considerations are central to mathematical activ-
ity. Of course, someone could cheerfully grant this sort of thing and then
appeal to the traditional distinction between ‘discovery’ and ‘justification’.
Inductive evidence, one might claim, plays a role in thinking up theorems,
but proofs (and only proofs) give us real justification. (The only difference
between this and the distinction philosophers champion is that the distinc-
tion here allows the existence of a ‘logic of discovery’ which philosophers
often deny.)

But when we turn back to the subject of proofs, we quickly encounter a prob-
lem. Analytic proofs, after all, aren’t constructed ex nihilo; they are based on
axioms or first principles. But where do these first principles come from? Why
do we believe these axioms? Once ‘self-evidence’ was an acceptable answer,
but no more. I mentioned Gödel and Russell above. The Russell passage
deserves quoting in full:

we tend to believe the premises because we can see that their conse-
quences are true, instead of believing the consequences because we know
the premises to be true. But the inferring of premises from consequences
is the essence of induction; thus the method of investigating the principles
of mathematics is really an inductive method, and is substantially the
same as the method of discovering general laws in any other science. 

(Russell 1907: 273–74)
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Gödel shares Russell’s consequentialist outlook; that is to say, he, too, holds
that first principles are believed because they have the right consequences, not
because they themselves are evident.6 But, of course, this view only works
because at least some of the consequences are evident. Mathematical intuition,
as it is often called, must play a role. There are some mathematical truths that
are obvious. Gödel and Russell argue that arriving at first principles or axioms
in mathematics is similar to science. Mathematical intuitions are like empirical
observations in physics. A system of axioms, say for set theory, is postulated
just as a theory, say quantum mechanics, is postulated in physics. The theory (in
either case) is tested by deriving consequences from it, and is supported by
consequences which are intuitive or observational truths, while intuitive or
observational falsehoods would refute the theory.

The intuitive truths of mathematics need not be certainties any more than
ordinary empirical observations must be incorrigible to be confidently used by
scientists. The parallel postulate need not be embraced in spite of its intuitive
character. And Russell’s paradox (which was explained in the last chapter)
shows us that some things which seem highly evident (i.e. that sets exactly
correspond to properties) are, in fact, downright false. Still, we can use these
intuitions, just as we can use our ordinary eyesight when doing physics, even
though we sometimes suffer massive illusions.

The relation for Gödel between a general theory (such as the axioms of set
theory) and individual intuitive truths is one of reflective equilibrium, to use a
notion introduced by Goodman and made famous by Rawls. That is, we try to
construct a theory which is maximally powerful, simple, etc. and which does
maximal justice to the intuitive truths. But we allow the possibility that a great
mathematical theory will overrule a mathematical intuition, just as a great
scientific theory will sometimes overrule an experimental result. The axiom
of choice, for example, is widely accepted today, in spite of some bizarre
consequences such as the Tarski–Banach paradox.

Even though such famous logicians as Russell and Gödel advocate this view,
it has been relatively uninvestigated. Just what is the relation between axioms
and intuitions? Should we characterize it as simple H-D? Or perhaps Bayesian?
Is Popper’s conjectures and refutations model the right one? Should the intu-
itive truths be ‘novel’, or can they be already known? These questions have
gone largely unexplored, though Lakatos (1976) is a notable exception.

However, it’s not this, but something else in Gödel’s account that I want to
focus on, namely the ‘perception’of mathematical truths. Observational evidence
in physics tends to consist in singular space-time observations: ‘This object,
here-now, has property such and such.’ Mathematical intuitions are similar;
they are relatively concrete and tend to be singular rather than general (e.g.
‘5 � 7 � 12’), though this is certainly not invariable. One thing that pictures in
particular might do is greatly enlarge the pool of intuitive truths and perhaps
even vary their character by adding ones that are relatively more general.



Special and General Cases

We learn early on not to confuse the special case with the general. Yet there are
remarkable examples where the special is equivalent to the general. (And not
just in trivial cases where the domain has only a single member, thus forcing
∀xFx ↔ ∃xFx.) The following is an example stressed by Polya (1954). First,
consider the Pythagorean theorem which says that the square on the hypotenuse
is equal to the sum of the squares on the other two sides, c2

� a2
� b2. Next

consider a generalization of this, rc2
� ra2

� rb2, which says (see Figure 3.3)
that for similar figures described on a right-angled triangle, the area on the
hypotenuse is equal to the sum of areas on the other two sides. Clearly, the
Pythagorean theorem is a special case of the more general theorem, arrived
at by letting r � 1. We can move back and forth from special case to general
case with ease.

But now comes a more interesting example. The right-angled triangle is itself
a special case of the more general theorem. We divide the triangle into two,
making three similar right-angled triangles. Think of each as an area con-
structed on its own hypotenuse, but lying inside the main triangle. Clearly the
area of the whole triangle equals the area of the other two. The special case
leads to the general case which in turn implies the Pythagorean theorem. Thus,
we have a proof that is at root quite obvious – a simple observation.

There are two things I want to get out of this example. One thing is just to
provide another illustration of a picture-proof. But more important is a second
feature, the equivalence of the special case with the general case. Polya remarks
that the example shows something ‘surprising to the beginner, or the philo-
sopher who takes himself for advanced, that the general case can be logically
equivalent to a special case’ (1954: 17). We can overlook the slight to philo-
sophy, but not the remark that they are ‘logically equivalent’. They are not.
Rather they are mathematically equivalent in the sense that given certain
mathematical assumptions about the distribution of r over � and about the
geometry of similar figures, the various cases are equivalent. (Symbolically,
instead of � S ↔ G, we have Γ � S ↔ G.) However, I do not want to blunt Polya’s
significant point. There is something very important about the equivalence of
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Figure 3.3 The special and the general cases are equivalent



the special and the general cases when they do occur, even if powerful
assumptions are at work in the background. Often these background assump-
tions are not articulated until well after the equivalence has been established,
perhaps they even arise only in order to explain the surprising nature of the
equivalence. At any rate, an important principle of inference is at work here.
And, of course, pictures play a crucial role in it.

Instructive Examples

I’ll give some example theorems from number theory and infinite series –
places where one would least expect to find instructive pictures. In each case
the proof will be a diagram. The things to look for are these: Is the diagram
convincing? Is it a special case (i.e. for some particular n)? And does it estab-
lish complete generality (i.e. for every n)? Would a standard verbal/symbolic
proof of the theorem, say, by mathematical induction, be more convincing?

Theorem: 1 � 3 � 5 � . . . � (2n � 1) � n2

Proof:

This picture-proof should be contrasted with a traditional proof by mathemat-
ical induction which would run as follows:

Proof (traditional): We must show first, that the formula of the theorem
holds for 1 (the basis step), and second, that if it holds for n then it also
holds for n � 1 (the inductive step).
Basis: ((2 � 1) � 1) � 1 � 12

Inductive: Suppose 1 � 3 � 5 � . . . � (2n � 1) � n2 holds as far as
n. Now we add the next term in the series, 2(n � 1) � 1, to each side:

 1 3 5  …  2  n  1  )  �  2  n  1  )  �  1  �  (  �  (  � � � �  n  
2  2  n  1 ) � 1 �  (  ��
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Simplifying the right-hand side, we get:

This last term has exactly the form we want. And so the theorem is
proven.

Theorem:

Proof:

Again, for the sake of a contrast, here is a traditional proof.

Proof (traditional):

Basis:

Inductive:
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Proof:

For the sake of a contrast, here is a standard proof using ε-δ techniques:

Proof (traditional): First we note that an infinite series converges to the
sum S whenever the sequence of partial sums {sn} converges to S. In
this case, the sequence of partial sums is:

The values of these partial sums are:

.

This infinite sequence has the limit 1, provided that for any number ε � 0, no
matter how small, there is a number N(ε), such that whenever n � N, the differ-
ence between the general term

of the sequence and 1 is less than ε. Symbolically,

A bit of algebra gives us the following:
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Thus we may let N(ε)

Hence,

And so, we have proved that the sum of the series is 1.
The next example is particularly nice.

Theorem:

Proof:

More examples of picture proofs are included in the Appendix to this chapter.

Representation

It’s probably true that anything can stand for anything. But it’s not true that any-
thing can stand pictorially for anything. Something special is needed. But what
is it about a picture of X that makes it a picture of X? The problem is related to
the problem of intentionality in language and mind: How do words or thoughts
get to be about things? How do they represent? Similarly, how do pictures
represent the things they are pictures of? 

There is a wide spectrum of views involved in a full answer to these ques-
tions, issues involving intentionality, conventions, and so on. I won’t take up
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these issues but instead simply focus on a view of pictures which seems highly
plausible, at lest initially.

In the Tractatus, Wittgenstein made a few cryptic remarks about the
relation between pictures and what they picture. ‘For a picture to work there
must be something in common with what it pictures – “pictorial form”’
(Tractatus, 2.161). ‘The minimal commonality between pictorial form and
object is logical form’ (Tractatus, 2.18). What this suggests is a kind of
structural similarity, a notion which is captured by the concept of an
isomorphism. Barwise and Etchemendy (who are among the very few
sympathetic to the use of pictures in inference) explicitly adopt such a view.
They hold that ‘a good diagram is isomorphic, or at least homomorphic, to
the situation it represents’ (1991: 22). Hammer (1995) explicitly adopts
this account.

Let me take a moment to explain these notions. Isomorphism and homo-
morphism are usually defined for the particular case at hand, i.e. ‘group-
homomorphism’, ‘ring-isomorphism’, or ‘isomorphism of Boolean algebras’,
and so on. But there’s a common idea involved. Two structures are isomorphic
when (a) they have the same number of elements or objects, and (b) the rela-
tions among the elements of one structure have the same pattern as the rela-
tions among the elements of the other. Suppose three people, A, B and C are
sitting around a table playing cards. A is to the left of B, B is to the left of C,
and C is to the left of A. So the structure, call it S, consists of three objects
and the relation ‘is to the left of’. Now imagine another structure, S�, with
three elements, X, Y and Z, my family pets, a dog, a bird and a hamster,
respectively. They terrify one another in the following order: the dog frightens
the hamster, the hamster frightens the bird, and the bird frightens the dog.
We set up the following correspondence: A ↔ X, B ↔ Y, C ↔ Z, and we
note that when A is to the left of B, then X frightens Y, and so on. Thus, we
can conclude that S and S� are isomorphic. A homomorphism is a weaker
notion. It requires the second condition, but not the first; homomorphic struc-
tures may have different numbers of elements. Now back to the proposal of
Barwise and Etchemendy and of Hammer.

In a wide variety of cases, the proposal seems exactly right. Arguably, it holds,
for instance, in the case of the two infinite series examples given above. But in
general this is not so. Consider again the picture-proof of the number theory
result which was given above. Notice, however, that it is just a picture (in the
normal sense) of the n � 7 case; and so we can claim an isomorphism to some
number structure with that cardinality. It is certainly not, however, isomorphic to
all the numbers. True, it is homomorphic to the whole number structure. But
note that a homomorphism to a larger structure is (at least in the case at hand) an
isomorphism to a part. The picture (on the Barwise–Etchemendy and Hammer
account) tells us about the isomorphic part, but sheds no light on the rest. For
example, our picture (Figure 3.8(a)) is homomorphic to Figure 3.8(b). But we
can’t make inferences from the picture (3.8(a)) to the non-isomorphic part
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(in 3.8(b)) at all. There is, I claim, no useful homomorphism from our picture to
all the natural numbers and no isomorphism at all. But still the diagram works.
It does much more than establish the formula for n � 7; it establishes the result
for all numbers. 

Consequently, I want to suggest something quite different. My bold conjec-
ture (to use Popper’s terminology) is this: Some ‘pictures’ are not really pic-
tures, but rather are windows to Plato’s heaven. The number theory diagram is
certainly a representation for the n � 7 case, but it is not for all generality. For
the latter, it works in a different way, more like an instrument. This, of course,
is a realist view of mathematics, but not a realist view of pictures. As telescopes
help the unaided eye, so some diagrams are instruments (rather than represen-
tations) which help the unaided mind’s eye.

Seeing Induction?

Let me quickly try to deal with a potential objection. The diagram (Figure 3.4
or 3.8(a)) that provided the proof of the theorem could be interpreted in a
kind of Kantian way. The claim is this: one sees in the picture the possibility
of a reiteration; the diagram can be extended to any number; that’s why it
works. The objection is anti-Platonistic in that it makes a Kantian point about
constructability.

A curious fact about the diagram is that it strikes people in two distinct ways.
Some see mathematical induction in it, others don’t. I’m in the latter group.
Whenever I have shown the example to philosophical or to mathematical
audiences, there is a split into two roughly equal camps. Some mathematicians
(and similarly some philosophers) are often quite adamant that induction
definitely is or that it definitely is not encoded into the diagram. The common
claim of some who see induction in the picture is that the picture is indeed legit-
imate as a proof, but it is so because of induction, not because of some Platonic
reason. Others say that the picture is really a heuristic device that suggests
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mathematical induction, and that it is induction itself that is the genuine and
legitimate proof of the theorem. These are interesting objections and I’ll say
three things in reply.

First, my view about pictures is two-fold: that they can play an essential role in
proofs and that there is a Platonistic explanation for this. One version of the
Kantian objection (or the it-is-really-just-induction objection) is only in opposition
to the second, Platonistic, aspect. Pictures, and seeing the possibility of construc-
tions, can still be a legitimate form of mathematical proof. Indeed, the legitimacy
of pictures is upheld by the objection.

Second, the different interpretations of how the picture works are related to
the distinction between potential and actual infinities. Both see the formula as
holding for �n � . But the Kantian iteration account sees  as a potential
infinity only; the Platonistic account sees  as an actual or completed infinity.
Of course, the proper understanding of infinity is an unsettled question, but
classical mathematics (especially set theory) seems committed to actual infini-
ties. So I see my Platonistic interpretation of how the picture works as being
favoured for that reason over the Kantian one.

Third, we might well wonder: What has the perceived possibility of con-
structing a diagram of any size got to do with numbers? I certainly don’t deny
that we can see the possibility of indefinite iterations of the diagram, but the
Kantian objection seems to assume that we know the number theory result
because we see the possibility of iteration. I don’t know of any argument for
this. We could just as well claim that we see the possibility of iteration because
we have the prior perception of the number theory result.

Charles Chihara, takes up the induction theme (as he found it in the first edi-
tion of this book) and explains it as follows.

Suppose that it is now said: ‘Yes, I can see that the formula will tell one
the number of squares in row n for each of the rows in the diagram
(up to, that is, n � 7). But how do you know it will work no matter
what n is?’ Here let us consider how one could continue expanding the
diagram to obtain the above result for n � 8, 9, 10, . . . To go from the
nth case to the n � 1st case, one merely adds a row to the diagram. In
particular, to get the n � 1st row, just copy the nth row directly below
and then add one more square to the right end of the row (and darken
the triangular area that lies to the upper right of the diagonal, as was
done in the others). Thus, in order to obtain a diagram of the n � 1st
case, one will just add a row consisting of exactly n � 1 squares. So
the number of squares in row n � 1 will be n � 1. By an intuitive ver-
sion of mathematical induction, we see that the formula for how many
squares that are in row n works for all the natural numbers.

Thus, to calculate the number (1 � 2 � 3 � . . . � n), one need only to
calculate the total number of squares in the diagram which has n rows.
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But this will be n2/2 (the number of squares in the isosceles triangle whose
side is n) plus n/2 (the number of squares which the darkened triangles in
the diagram make up). The diagramatic proof is completely convincing.

(Chihara 2004, 302f)

Chihara concludes that there is no need to accept my Platonistic account
of how the diagram works, since his inductive version is perfectly adequate. He
also could have added that his way of accounting for the picture is close to how
a standard proof would go, a bonus for his account. In short, there’s much to be
said for Chihara’s account, if the picture proof works as he says it does.

For now, I will accept his claim (but only for the sake of the argument) that
induction is somehow suggested in the diagram. Nevertheless, I will argue that
a Platonistic account is still required.

The diagram is for the specific number n � 7. If we see induction in that dia-
gram, it can only be that we know how to extend it to n � 8. So far, so good.
But that only gives us a statement of the form: S(7) : S(7+1); i.e. if the picture
proof holds for the number 7, then it holds for the number 7 � 1. What possible
grounds could one have for further claiming that if any diagram illustrated the
case of an arbitrary number n, then that same diagram could be extended to the
case of n � 1? I don’t doubt that this is true, but one would be making a fantas-
tic leap, since there are infinitely many n involved. It is certainly not something
that is perceived with the senses.

We pass from a single finite case to a conclusion involving infinitely many
numbers. How is the leap possible? We could try to explain it in terms of the
earlier theory of pictures that I described above. That is, we could say the pic-
ture and its object have a similar structure and we could try to make this precise
with the notions of isomorphism or homomorphism. But we shall run into the
same problems as before. Cardinality considerations once again rule out an iso-
morphism. And, just as we saw previously, there are too many homomorphisms.
Why is it that we seem to grasp the right infinite structure?

We might even liberalize the diagram a bit, using standard conventions
involving dots, ‘ . . .’ (Figure 3.9). Still, the same considerations arise. We can
see (in the literal physical sense) a finite case, but somehow end up seeing (in
the ‘mind’s eye’ sense) the infinite case.

Figure 3.9
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At this point, the only conclusion to draw seems to be this: If we see mathe-
matical induction in the diagram, it is because the diagram is not actually a pic-
torial representation of induction, but rather, it is an instrument (like a
telescope) for acquiring intuitions involving induction. It helps us see into
Plato’s heaven and perceive the right structure. That’s putting is rather bluntly
and, of course, metaphorically. Perhaps, calling it a form of non-sensory cogni-
tion sounds appropriately more tentative.

In Chihara’s account, which I quoted above, he uses an interesting expres-
sion: ‘an intuitive version of mathematical induction’. What could an ‘intuitive’
version be? The account Chihara gives implicitly assumes that we already
understand mathematical induction when we gaze upon the diagram, otherwise
we would not be able to see induction in it. This suggests that people who have
not yet learned induction should be less receptive to the diagram as a proof of
the theorem. In my experience with humanities undergraduates, this has not
been the case. People with no particular training in mathematical induction
grasp the picture proof with no difficulty.

Perhaps a careful experiment could shed light on this. In the meantime, it’s
interesting to consider how we teach induction in the first place. Like many
others, when I teach I use a simple thought experiment involving dominos to
convey the principle of mathematical induction. Imagine that I have put a
series of dominos on edge, close enough to one another so that if any one
should tip over, it will knock over the next one in the series. Now imagine that
the first domino in the series is knocked over. What do you think happens to
the other dominos? The answer is immediately obvious to everyone: All the
dominos tip over.

The thought experiment might involve a pair of important idealizations: that
the series of dominos goes on for ever and that it takes no time for one domino
to knock over the next. I sometimes mention these idealizations when present-
ing the example, but it is seldom necessary. Almost everyone gets the idea
immediately and goes on to apply the principle of mathematical induction with
ease (at least in simple cases). And the distinction between the basis step
(domino 1 is tipped over) and the inductive step (if domino n is tipped over,
then domino n � 1 is tipped over) is completely clear, even to those who loath
mathematics and have avoided it since the early stages of their educations when
it ceased to be mandatory.

Perhaps the dominos example involves ‘intuitive’ mathematical induction. In
any case, since it teaches induction, it cannot be that someone who is actually
learning about induction for the first time from the dominos example recognizes
induction in it, or finds induction to be ‘suggested’ by it. Something else must
be going on. I’m inclined to say that the answer involves directing the mind to
the abstract realm, but this Platonistic explanation will, of course, be as con-
tentious as my account of the number theory diagram. Chihara and others who
claim to see induction in the number theory diagram owe us an explanation of



how it is that the dominos example can teach mathematical induction without
presupposing it.

In sum, I’m disinclined to think we see induction in the number theory dia-
gram. But it is not too important, one way or the other. There are two points that
are important and I wanted to stress them both. One is that the diagram is indeed
a genuine proof. Chihara, I’m glad to say, completely agrees. The second point –
the one on which we disagree – is that the right account of how the picture works
involves some sort of intellectual grasp of abstract entities. And that point stands
up, whether the diagram suggests mathematical induction or not.

Three Analogies

My main claim – that some pictures are not really representations, but are rather
windows to Plato’s heaven – will seem highly implausible to most readers. So,
beside the discussion so far, I’d like to add three analogies to make things seems
a bit more plausible and palatable.

(1) From Aesthetics Some with an interest in art and psychology distinguish
between a ‘pictorial’ and a ‘symbolic’ aspect of a representation (e.g.
Arnheim 1969). Consider a painting such as David’s ‘Napoleon’. (It depicts
Napoleon; he’s in a billowing cape, on a spirited white horse, he’s pointing
ahead.) As a ‘picture’ (in Arnheim’s terminology), it represents Napoleon; as
a ‘symbol’ it represents leadership, courage, adventure. The painting simulta-
neously manages to be about something concrete and something abstract. It is
a wonder that artists can do this, but there is no question that they often do –
sometimes brilliantly. (By contrast, my snapshots and doodles are lucky to be
pictures.)

What I would like to suggest is that something like this happens with our
number theory diagram. It is a picture of the special case, n � 7, but a symbol
for every n. Just as we can see courage and adventure depicted in David’s paint-
ing, so we can see every natural number in the diagram. It’s a metaphorical
‘seeing’, to be sure, but it’s a similar sort of perception in each case. If artists
can do it, so can mathematicians.

(2) From Modern Differential Geometry In modern presentations of differen-
tial geometry and general relativity, geometric objects such as events, vectors
pointing from one event to another, tangent vectors, the metric tensor and so
on can be characterized independently of any particular coordinate system.
Indeed, it is usually easier and more elegant to do so. But these entities can
also be given an explicit coordinate representation, and in practice this is often
required. The distance between two events in space-time, for example, is an
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invariant, an objective feature of the geometry; yet its expression in terms of
the location of these events can vary greatly, depending on the coordinate sys-
tem used.

If we consider a surface, the intrinsic features are those which characterize
the surface independently of any particular coordinatization. By contrast, the
extrinsic features depend on particular coordinate systems, and change with a
change of coordinates. The connection between them is this: an intrinsic feature
corresponds to the existence of a coordinate system with specific appropriate
extrinsic features.7

The distinction suggests something objective about the intrinsic aspects of
a surface, and something less so in the extrinsic, due to the arbitrariness of
the various forms of representation. Some concerned with space-time (e.g.
Friedman 1983) argue that this distinction corresponds to a distinction between
the factual and the conventional; the intrinsic features of space-time (curvature,
metric tensor, etc.) are objectively real while extrinsic features are mere arti-
facts of the form of representation.

The analogy with picture-proofs that I want to suggest is this: Any represen-
tation of a surface, say, displaying its curvature, will always be in some partic-
ular coordinate system. Analogously, a picture of a numerical relation will
always be with some particular number, n. But an intrinsic feature, such as
Gaussian curvature, is independent of any particular coordinate system.
Similarly, the evidential relation in the number theory diagram is independent
of any particular n-element picture. To calculate the Gaussian curvature, how-
ever, some particular coordinate system is required. And when we have calcu-
lated it in one, we know it in all. Similarly, to grasp the pictorial evidential
relation some particular n-element picture is needed. But again, understanding
it in one is to understand it for all.

Because of this analogy I’m tempted to call number theory diagrams ‘extrin-
sic pictures’, since they are particular representations like particular coordinate
systems. Is there such a thing as an intrinsic number theory diagram? Of course.
It’s the one seen by the mind’s eye – and it has no particular number of elements
in it. That’s the one we ultimately grasp as evidence for the theorem.

(3) From ‘natural kind’ reasoning One sort of inductive inference is ‘enu-
merative’. We notice that all of a very large number of observed ravens are
black; so we infer that all ravens are black. This is a commonplace but, often in
science, powerful inferences are made from a single case. In high-energy
physics, for instance, a single event (sometimes called a ‘golden event’) cap-
tured in a bubble chamber photo will sometimes be sufficient evidence for a
powerful general conclusion. One positron is sufficient to generalize about the
mass of all positrons. One sample of water is sufficient to establish that all
water is H2O. The form of inference seems based on a principle that runs like
this: If X is a natural kind and has essential property P, then all instances of the
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kind have property P. The assumption at work would then be that positrons or
water are natural kinds and that their mass or chemical composition are essen-
tial properties. In principle, only one instance is needed to allow us to draw the
general conclusion about all positrons or all water. In practice, a few more than
one instance are likely to be necessary, simply to build confidence that no mis-
takes were made in measuring the mass or analysing the composition of the
sample. Even so, the power of natural kind inference is remarkable.

Something analogous to natural kind inference is going on in the number the-
ory picture-proof. We can take the diagram n � 7 to be an instance of a natural
kind; and we further take the formula n2/2 � n/2 � 1 � 2 � 3 � . . . � n to be
analogous to an essential property of numbers. Since it holds for the particular
number n � 7, it holds for every n.

The fly in the ointment is this: Water is essentially H2O, but only accidentally
thirst-quenching. Mathematical objects would seem to have only essential prop-
erties, and it would be a terrible inference to pass from ‘7 is prime’, to ‘all
numbers are prime’. So I’m reluctant to see the inference from pictures to all
generality as a clear case of natural kind inference; but it is interestingly similar.8

Are Pictures Explanatory?

Mathematicians look for two things in a proof – evidence and insight.
Traditionally, a proof must firmly establish the theorem. That, for just about
everyone except Lakatos, is a sine qua non for any proof. But a good proof
also helps us to understand what’s going on. Insight, understanding, explana-
tion are somewhat nebulous, but highly desirable. Proofs needn’t have them, but
are cherished when they do. 

Are picture-proofs rich in insight? Many commentators suggest as much;
they even play evidence and insight off against one another, suggesting that
what we lose in rigour we make up in understanding. (Polya is perhaps the best
example of this.) However, this seems slightly misguided. And I would be
seriously misunderstood, if it were thought that I am suggesting it is worth
giving up some rigour in exchange for insight. This is doubly wrong. I don’t see
any abandoning of rigour by allowing the legitimacy of picture-proofs. And
second, greater insight isn’t always to be found in pictures.

In the two number theory cases above, a proof by induction is probably more
insightful and explanatory than the picture-proofs. I suspect that induction – the
passage from n to n � 1 – more than any other feature, best characterizes the nat-
ural numbers. That’s why a standard proof by induction is in many ways better. 

To be sure, some insight is garnered from the diagrams which prove the two
infinite series examples. From looking at them, we understand why the series
have the sums that they do. Pictures often yield insight, but that is not essential.
The examples I have given are mainly a form of evidence – a different form, to
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be sure, than verbal/symbolic proofs; but they have the same ability to provide
justification, sometimes with and sometimes without the bonus of insight and
understanding.

So Why Worry?

Philosophers and mathematicians have long worried about diagrams in math-
ematical reasoning – and rightly so. They can indeed be highly misleading.
Anyone who has studied mathematics in the usual way has seen lots of examples
that fly in the face of reasonable expectations. I’ve painted a rosy picture so
far, but I’m well aware of pitfalls. Some of these I’ll take up in the final chapter.

I realize that talk of ‘the mind’s eye’ and ‘seeing mathematical entities’ is
highly metaphorical. This is to be regretted – but not repented. Picture-proofs
are obviously too effective to be dismissed and they are potentially too power-
ful to be ignored. Making sympathetic sense of them is what is required of us.

Further Reading

There is remarkably little written on this topic. Barwise, J. and J. Etchemendy,
‘Visual Information and Valid Reasoning’ and And Hammer’s Logic and Visual
Information are good places to start. Also important are various papers of
Marcus Giaquinto (see Bibliography). Giaquinto’s forthcoming book, Visual
Thinking in Mathematics: An Epistemological Study will be a major contribu-
tion. Mancosu, Jorgensen and Pedersen (eds), Visualization, Explanation and
Reasoning Styles in Mathematics contains a number of papers addressing visu-
alization. The two books by Nelson, Proofs Without Words (vols. I and II), are
an excellent source of examples.

Mathematical books now have more and better pictures than ever before. This
is largely, though not entirely, due to the marvellous computer graphics which
have become available in recent years. This is reflected in three books that I’ve
enjoyed reading: Binmore and Davies, Calculus, Needham, Visual Complex
Analysis, and Francis, A Topological Picture Book.

Appendix

Here are some more examples. I’ve been collecting them for a while, but recently
the job was made very easy by Roger Nelsen, whose two books Proofs Without
Words (vol. I 1993, vol. II 2000) contain a great many gems. Some of the ones
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above as well as those that follow can be found in his books, which I warmly rec-
ommend. In each case, I’ll just state the result and present the picture-proof, leav-
ing it to the reader to figure out how the picture works. Remember, pictures may
make a result ‘obvious’, but obvious and immediate need not be the same thing.
Often you will have to work at it for a while.

Given two numbers, a and b, the arithmetic mean is (a � b)/2 and the geo-
metric mean is √(ab). They are related by an important inequality: (a � b)/2
� √(ab). Figure 3.10 gives a proof. There is a bit of algebra that goes with it.
Can you also tell from the diagram when equality holds?

Here’s a second picture-proof of the same inequality (Figure 3.11).

Early in one’s algebra training, usually before learning the formula for solv-
ing quadratic equations, the method of ‘completing the square’ is taught.
Here’s the algebra: x2

� ax � (x � a/2)2
� (a/2)2. Now here’s the proof

(Figure 3.12):
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As is well known, an arbitrary angle cannot be trisected using only a
straight edge and a compass. But it can be trisected by other means. Here’s a
picture (Figure 3.13) of a mechanical device that will do the trick, as can be
seen in a flash.

The impossibility of trisecting an angle by straight edge and compass is
really an impossibility in a finite number of steps. What if you could perform
infinitely many operations? Suppose you took one minute for the first operation,
then half a minute for the second, then a quarter-minute for the third, and so on.
You could carry out infinitely many operations in just two minutes. Could you
trisect the angle then? You need to know the following fact about infinite series:
�� � �� � �� � �� � �� � . . . Now the picture can answer the question.
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Fibonacci numbers are defined as follows: the first is 1, the second is also 1,
then each successive Fibonacci number is equal to the two predecessors; so, the
third is 1 � 1 � 2, the fourth is 1 � 3 � 4, the fifth is 3 � 4 � 7, and so on.
More formally, F1 � 1, F2 � 1, Fn � 2 � Fn � 1 � Fn. Here is an interesting theo-
rem about the squares of Fibonacci numbers. F1

2
� F2

2
� . . . � Fn

2
� FnFn � 1.

Here is the proof.
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CHAPTER 4
What is Applied Mathematics?

We count apples and divide a cake so that each guest gets an equal
piece; we weigh galaxies and use Hilbert spaces to make correct
predictions about spectral lines. It would seem we have no difficulty

in applying mathematics to the world; yet the precise role of mathematics in its
various applications is surprisingly elusive. How does it work? Eugene Wigner
has gone so far as to say that ‘the enormous usefulness of mathematics in the
natural sciences is something bordering on the mysterious and that there is no
rational explanation for it’ (1960: 223). Could he be right? 

Some of the issues which arise here are not much discussed under the head-
ing ‘Philosophy of Mathematics’, much less under the heading ‘Philosophy of
Applied Mathematics’, yet they are pivotal to several philosophical debates.
Three rather general questions are central:

(1) Just how does mathematics ‘hook onto’ the world? This is the main
concern of a rather technical branch of philosophy of science known
as measurement theory. 

(2) Are some of the objects referred to in various theories merely math-
ematical objects or do they have some other status? This problem
often comes up in the philosophy of the special sciences. For example,
do space-time and the quantum state exist in their own right, sepa-
rate from their mathematical representations, or are they nothing but
mathematical entities?

(3) Is mathematics essential for science? Since Quine and Putnam first
said Yes, and were followed by Field who said No, this has become
a focal point in the debate between realists and nominalists in the
philosophy of mathematics. The debate turns on how mathematics is
applied.



Representations

Let’s begin by asking how mathematics is applied. The common view in mea-
surement theory begins by assuming two distinct realms: one is a mathematical
realm which is rich enough to represent the other, a distinct non-mathematical
realm. We pick out some part or aspect of the world and find a similar math-
ematical structure to represent it. For example, weight is represented on a
numerical scale. The main physical relations among objects that have weight
(determined, say, by a balance beam) are that some have more weight than
others and that when combined their joint weight is greater than either of their
individual weights. Weight can then be represented by any mathematical struc-
ture (such as the positive real numbers) in which there is a greater than relation
matching the physical greater than relation and an addition relation matching
the physical addition or combination relation.

More generally, a mathematical representation of a non-mathematical realm
occurs when there is a homomorphism between a relational system P and a
mathematical system M. P will consist of a domain D and relations R1, R2, . . .
defined on that domain; M similarly consists of a domain D* and relations
R*1, R*2, . . . on its domain. A homomorphism is a mapping from D to D* that
preserves the structure in the appropriate way.

To make this a bit more precise, consider a simplified example. Let D be a set
of bodies with weight, let D* � �, the set of real numbers; furthermore, let �
and � be the relations of physically weighs the same or less than and physical
addition. The relations � and � are the usual relations on real numbers of
equal or less than and addition. The two systems, then, are P � �D, �, �� and
M � ��, �, ��. Numbers are then associated with the bodies (a,b, . . . in D) by
the homomorphism �: D → � which satisfies the two conditions:

(1) a � b → �(a) � �(b)
(2) �(a � b) � �(a) � �(b).

In plain English, (1) says that if a weighs the same or less than b, then the real
number associated with a is equal or less than the number associated with b,
and (2) says that the number associated with the weight of the combined object
a � b is equal to the sum of the numbers associated with the objects separately.
In other words, the relations that hold among physical bodies get encoded into
the mathematical realm and are there represented by relations among real num-
bers. One of the objects can be singled out arbitrarily to serve as the unit
weight, u, so that �(u) � 1.

I must add a caveat to the assumption of two distinct realms, mathematical and
non-mathematical. Since they are linked by the embedding homomorphism, �,
which is a function defined on D, there must be sets of non-mathematical
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objects as well as pure sets. This means we start with the usual set theory
including urelementen or individuals. Among urelementen are physical objects,
of course, but also abstract and fictional objects (faith, hope and charity are
three virtues; Santa’s sleigh is pulled by eight flying reindeer). Having sets, sets
of sets, etc. of urelementen is just a start. The difficult part in setting up or dis-
covering an association between the physical system P and some mathematical
system M usually consists in finding the right set of physical relations. Much of
the focus of current measurement theory is in psychology and the social sci-
ences where attempts to quantify such concepts as utility, desirability, IQ,
degree of belief, intensity of pain, etc. are exceptionally difficult – and in some
cases, foolish.

It must be said – and I’m happy to say it – that this characterization of math-
ematics heavily favours Platonism, since we are implicitly endorsing the existence
of a distinct mathematical realm with which we represent the natural world. Of
course, nominalists will reply that we represent with numerals, not numbers, so the
point does not conclusively favour Platonism. Still, the naturalness of Platonism in
applied mathematics, just as in pure mathematics, is manifestly obvious.

Measurement theory often classifies different types of scale; ordinal measure-
ments are the simplest. The Mohs scale of hardness, for example, uses the num-
bers 1 to 10 in ranking the physical relation of ‘scratches’; talc is 1 and diamond
is 10. Addition plays no role; the only property of the numbers used is their order,
which, by the way, is a strict linear order; each thing scratches or is scratched by
each other thing, and nothing scratches itself – at least not in public. By contrast,
addition is crucial in extensive measurements, such as measurements of weight.
(In this case the physical combination of two bodies is represented by the addition
of two real numbers. But the embedding homomorphism isn’t always so simple
as it is in the everyday case of weight; the relativistic addition of two velocities,
for example, is constrained by an upper limit on their joint velocity.) An interval
measurement uses the greater than relation between real numbers, but does not
employ addition. (Temperature and (perhaps) subjective probability are examples.
Two bodies at 50� each do not combine to make one at 100�.)

In passing, it should be noted that the mathematical representation of the
world need not be with numbers. From the Greeks to Galileo and after, geo-
metrical objects did the representing. The increasing speed of a falling body, for
example, was represented by Galileo by a sequence of increasing areas of geo-
metrical figures. Newton’s Principia was written in this geometrical style, but
thereafter the tremendous power of the calculus has made analysis dominant
and pushed geometry into the background. The geometric spirit, however, is far
from dead. (See, for example, the ‘visual’ book by Abraham and Shaw (1983).)
Graphs are geometrical, of course, but they tend to depict numerical results; that
is, they are representations of representations of the world.

Colour, beauty and other such things are not readily mathematizable. But the
alleged subjectivity of these properties has nothing to do with it; felt warmth
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and pain intensity are subjective, but have the appropriate structure to be math-
ematized. The reason for the non-mathematizability of colour may have more to
do with its internal features; it does not have the same structure as mass, length,
temperature or other so-called extensive magnitudes which would make it easy
to associate with the real numbers.

So far I have spoken loosely of numbers hooking onto objects. Perhaps,
instead of objects, numbers are associated with properties of objects. From a
practical point of view, there isn’t much difference, but philosophically the
divergence is considerable. The former view is strongly empiricist and domi-
nant today (Nagel 1932, Krantz et al. 1971); the later is somewhat Platonistic
and has had notable support, too (Russell 1903/1937, Campbell 1920, Mundy
1987, Swoyer 1987). Here I don’t mean ‘empiricist’ or ‘Platonist’ about num-
bers, but about the physical world itself. The natural languages for these
accounts are first- and second-order logic, respectively. To say that the weight
of a and b combined is such and such is to say, according to the first-order theory
of measurement, that there is an object c which equals the weight of a and b
combined (understood in a somewhat operationalist way with c balancing a and
b on a scale). This is physically unrealistic, and at best an idealization; it makes
‘the mass of the universe’, for example, a very problematic notion. However, it
is not a problem for the second-order theory, since it is not objects, but proper-
ties that are assigned numbers. The property weight is postulated to be continu-
ous and unbounded; there needn’t be exemplars of any particular weight in
order to talk meaningfully about it.

These two accounts of measurement tie into rival accounts of laws of nature.
The relations that hold in the (non-mathematical) relational structure are some-
times, presumably, laws of nature. The empiricist-motivated regularity theory
fits harmoniously with the first-order theory. The more realist account of some
philosophers which takes a law of nature to be a relation between universals
(i.e. properties) fits very naturally with the second-order version.1 So the ques-
tion, Does mathematics hook onto objects or onto properties of objects?, may
have a bearing on the metaphysical issue of the nature of scientific laws. I won’t
pursue this issue further. I raise it only to whet appetites. The main point I have
tried to establish concerns the representational character of applied math-
ematics: Mathematics hooks onto the world by providing representations in the
form of structurally similar models.

Artifacts

The second concern with the role of mathematics in the sciences involves the
possible presence of mathematical artifacts. Measurement theory is somewhat
far-fetched in assuming we can first discern relations among non-mathematical
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objects, then later pick out mathematical structures to represent them. In reality,
of course, mathematics plays an enormous role right from the start in theory
construction.2 Because of this, it is sometimes difficult to distinguish the math-
ematics proper from its physical counterparts. For example, the average family
has 2.4 children. Of course, there is no family with that many children; the
‘average family’ is a mathematical artifact. No one is likely to be fooled by this
example, but many of the things physicists regularly talk about have a con-
tentious status: Are they physically real, merely mathematical, or what?

I should mention that the expressions ‘mere’ and ‘nothing but’ are not meant
to be as deflating as they sound. Being a mere mathematical entity is not some
second-rate status. I would take great pride in being an integer – if that made
any sense.

When Maxwell introduced classical electrodynamics, his electrodynamic
field was thought by many to be just a mathematical entity. In terms of mea-
surement theory, this is to say that the domain of the physical theory consisted
of charged particles, but no fields. This relational structure would then be
embedded within a mathematical structure of a vector field. So the only ‘field’
is the mathematical one. The following argument tipped things the other way:
Consider two separated charged particles. If one is wiggled, the other jiggles at
a later time. During the distinct motions of the two particles all energy can be
located in the particles themselves, but not at intermediate times. Energy is con-
served and must be located somewhere. Thus, it must be in the field; so the field
is physically real. (Note that this argument would not apply to the gravitational
field of Newton; action is instantaneous in that theory, so energy can always be
located in particles.) The consequence of this is that the electromagnetic field,
though it is represented by a mathematical vector field which is isomorphic to
it, is a distinct, physically real entity, not a mere mathematical artifact.

Similar problems about how to interpret the mathematical apparatus arise in
quantum mechanics and in space and time. Quantum mechanics makes heavy
use of a notion of state, represented by a vector, Ψ, in a Hilbert space. The
mathematics of Ψ is reasonably well understood; the same cannot be said about
the state. One view says that there is nothing to the state other than the math-
ematical vector, Ψ, itself. (Physics texts use the same symbol for both, making
this seem natural.) At the other extreme Ψ might be a real field (e.g. Bohm’s
quantum potential). So much (but certainly not all) of the problem of interpret-
ing quantum mechanics amounts to determining how mathematics hooks onto a
quantum system: Is the mathematical vector, Ψ, associated with the electron or
with the state of the electron?

The modern debate between absolutists and relationalists in space-time con-
cerns the status of the space-time manifold (Friedman 1983). Undisputed is the
reality of events. Absolutists hold that actual events are the occupied points of a
larger space-time manifold, which is taken to be physically real. (Some prefer to
think of space-time points as abstract entities. Whether physical or abstract,
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however, the main claim is that they are real and distinct from their mathematical
representation.) The space-time manifold is then associated with the mathemati-
cal structure, �

4. By contrast, relationalists hold that the set of events is directly
associated with �

4 (bypassing the manifold). So, once again, a major philosophical
issue turns on the question of how mathematics is applied to the world.

There is no general principle or even rule of thumb which will guide us to the
right answer when asked: Is this real or is it a mathematical artifact? Each case will
have to be made on its own. It is up to the physicists and philosophers of physics
to decide, as best they can, which view is correct. The philosophy of math-
ematics can clarify things in general terms by pointing out the general form of
applied mathematics, but it can’t hope to pronounce in any particular case on what
is and what is not physically real rather than being an artifact of the mathematics.

Bogus Applications

There is a different, but loosely related issue that should be briefly mentioned –
the abuse of mathematics, especially in the social sciences. The Bell Curve:
Intelligence and Class Structure in American Life by Herrnstein and Murray
(1996) claims deep connections between intelligence and race and class. To the
untutored it may appear a careful, judicious, and – above all – a mathematically
rigorous work which makes its case. In reality, it’s a vile work fraught with
statistical hocus-pocus.3

When thinking about cases like this, it’s tempting to think: if only people
were mathematically better educated – as a condition of citizenship – we’d be
protected from this nonsense. But this may be a Utopian hope; perhaps we’d
just become susceptible to more subtle fallacies. Often the issues can be very
complex and sorted out only by true experts. A recent debate between Herbert
Simon and Neil Koblitz is interesting and instructive.4

Simon is a very distinguished polymath, famous for work in psychology and
computer science, philosophy of science, a leader in artificial intelligence, and
a Nobel Prize winner in Economics (1978). Koblitz is a younger, though very
prominent, number theorist who has very strong interests in development and
mathematical education in the Third World. In short, two heavyweights.

In the 1970s a prominent American political scientist, Samuel Huntington,
presented some equations that were intended to characterize various political
features such as modernization. 

social mobilization
� social frustration

economic development

social frustration
� political participation

mobility opportunities
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political participation
� political instability

political institutionalization

When applied to various societies, Huntington concluded, for example, that the
Philippines was stable while France wasn’t and – most shockingly – that South
Africa (then living under apartheid) was a ‘satisfied society’. The whole thing
smacked of pseudo-science to Koblitz and another mathematician, Serge Lang.
The latter raised serious objections to Huntington’s nomination to the National
Academy of Sciences. And upon Huntington’s defeat, the right-wing popular
press was outraged. George Will, for example, called on the United States gov-
ernment to withhold NAS funds until the Huntington decision was reversed.

Simon came to the defence of Huntington with ‘Some Trivial But Useful
Mathematics’. And Koblitz replied at length in The Mathematical Intelligencer
in an opinion piece called ‘A Tale of Three Equations; Or The Emperors Have No
Clothes’ (1988). It was followed by a reply by Simon, and subsequent replies by
both and other mathematicians in the next two issues. The debate turned on
several questions, including Simon’s characterization of key concepts such as
‘monotonic’, ‘continuity’ and so on. Koblitz summed up the work of Huntington
and Simon, saying: ‘Mathematical verbiage is being used like a witch doctor’s
incantation, to instill a sense of awe and reverence in the gullible or poorly
educated’ (Koblitz 1988: 10). And further, ‘as the South African example shows,
the type of pseudo-quantitative methodology promulgated by Huntington and
Simon can be as pernicious as it is scientifically vacuous’ (ibid.: 16).

Though Simon would not admit defeat, it was clear to most mathematically
sophisticated readers that game, set and match went to Koblitz. The example is
instructive in two ways. It illustrates the bogus use of mathematics in pseudo-
science. But it also shows how difficult things can get. Clearly we would all be
better off if everyone were mathematically better educated. Then we could
defend ourselves from parapsychologists, IQ-hucksters, advertisers and
unscrupulous politicians. But the amount of mathematics needed to protect one-
self from Huntington’s bogus equations and their elaboration and defence by
Simon is extensive. There is probably no hope for us here but to rely on experts.
Professional mathematicians have a civic duty – however distasteful they may
find applied mathematics – to become involved.

By the way, more recently Huntington published the best seller, The Clash of
Civilizations. This time the mistakes are not mathematical.

Does Science Need Mathematics?

Let’s now take up the third question: Is mathematics necessary for science? The
answer may be Yes, but it is not obviously so. The statement ‘There are two



apples in the basket’ seems to make essential use of numbers; yet we can cap-
ture its content without any appeal to mathematics at all by recasting it as:
∃x∃y∀z(Ax & Ay & x ≠ y & (Az → z � x ∨ z � y)), where ‘A’ means ‘is an apple
in the basket’. Hartry Field (1980) maintains that all of science can be done – in
principle – in the spirit of this simple example without the use of numbers. Of
course, there’s no denying that mathematics is heuristically powerful and per-
haps even psychologically essential for doing the physics that has been done to
date, but, according to Field, it is not necessary in any deep ontological sense.

Field is mainly interested in combating a view of Quine and Putnam. They
claim that since mathematics is essential for science, it must be true; and since
it’s true, there must exist such objects as sets, functions, numbers, etc.

[Q]uantification over mathematical entities is indispensable for science
. . . therefore we should accept such quantification; but this commits us
to accepting the existence of the mathematical entities in question. This
type of argument stems, of course, from Quine, who has for years
stressed both the indispensability of quantification over mathematical
entities and the intellectual dishonesty of denying the existence of what
one daily presupposes.

(Putnam 1971: 57)

The term ‘quantify over’ means to assert the existence of, as in ‘There are
apples in the basket’ or ‘There is an even prime number’. Quine’s criterion,
which Putnam endorses, says that if we hold such statements true and there is
no way to paraphrase away such expressions, then we are committed to the
existence of (in this case) apples and prime numbers. The upshot for Putnam is
that there is no paraphrasing away of number talk – mathematics is essential for
science. Thus, honesty demands that we acknowledge that numbers and other
mathematical entities really do exist.

Against this Platonism Field upholds a brand of nominalism, claiming that
mathematics is not essential, but only provides an extremely useful short cut.5

Field claims, in particular, that the role played by mathematics is quite different
from that played by other theoretical entities such as electrons. Field is surely
right about this last point: mathematics works, as we argued above, by provid-
ing models in which the world (or some part of it) is represented. (But this, of
course, does not mean Field is right in his nominalism. There are many other –
much better – reasons for mathematical realism than the one he attacks.) 

In this representing capacity, says Field, mathematics is conservative. His
principle result is this: If A is a consequence of T � S (where T is a nominalist-
ically acceptable theory and S is a mathematical theory), then A is a conse-
quence of T alone. (Schematically, see Figure 4.1.) The conservatism claim is
then used by Field to justify his view that mathematics is not essential for sci-
ence, since the consequences of the theory exist independently of mathematics.
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Field’s commentators have been largely sceptical (e.g. Hale (1987), Irvine
(1990), Malament (1982), Shapiro (1983a, 1983b), Tiles (1984), Urquhart
(1990) and, most recently, Colyvan (2001)). Among the objections have been
these: The notion of logical consequence that is needed is that of second-order
logic. But second-order logic is not recursively axiomatizable, which means that
the notion of consequence must be semantical. Syntactical consequence (i.e. a
derivation) is perhaps nominalistically acceptable (arguably being just a string of
symbols), but surely not semantical consequence, since this involves the idea of
being true in all models, a set-theoretic idea if ever there was one. (Quine (1970)
famously holds that second-order logic is really just set theory in disguise.) 

It would seem, moreover, that we need mathematics to make sense of some
crucial notions like determinism. In doing physics we talk not only about how
things are, but about what is or isn’t possible. For example, determinism can be
defined as follows: A theory is deterministic if all of its models with the same
initial conditions have the same final conditions; it is indeterministic when two
of its models with the same initial conditions have different final conditions.
Obviously, for this we need the notion of a model, and typically that is the kind
of abstract entity provided by set theory that seems to give the nominalist
indigestion.

Perhaps concern with determinism is not really part of science proper but is
instead a purely philosophical issue. In that case, mathematics would seem to
be essential for metaphysics – an amusing thought.

Related to this sort of consideration, though less precise, is the role of math-
ematics in methodology. Empiricists in the past have often maintained that the
meaning of a theoretical term (electron, gene) must be given via observation
terms. Most philosophers today have abandoned this view, leaving it something
of a mystery how we do manage to understand highly theoretical notions.
Mathematics may provide the answer since it would seem to provide a frame-
work for thinking about the world. Highly theoretical concepts (symmetry, res-
onance, isospin, etc. in particle physics) which have no hope of being tied
directly to empirical concepts, can often be easily explicated and understood
via mathematical models. This would seem to make mathematics not just
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heuristically useful in drawing consequences from our scientific theories (as
Field readily grants), but methodologically essential in the very creation and
comprehension of those theories – it’s crucial for concept formation.

Finally, though this is a tangential point, it may be a mistake to think that the-
ories are nominalistically acceptable, independently of the mathematics. The
example that Field develops in detail is Newtonian gravitation theory. This
involves massive bodies and space-time points. These are probably acceptable
for a nominalist, though some critics have objected that even space-time points
might be abstract. (The issue is complicated, since space-time points are neither
clearly inside nor outside space-time.) However, some theories employ abstract
entities right from the start. As mentioned above, the quantum state, Ψ, for
instance, is arguably not just a mathematical entity, but a real (though abstract)
object with something like causal powers of its own.6 And if the best account of
laws of nature involves the postulation of relations among properties (univer-
sals), then nominalism is hopeless, anyway.

Representation vs. Description

At the outset I made the assumption that there are two, quite distinct realms: the
mathematical and the non-mathematical, and that in applications the former
represents the latter. This isn’t the only way to view the situation. Perhaps
mathematics describes the world. The Pythagoreans, for example, thought that
the world is mathematical. And John Stuart Mill held that numbers are a kind of
very general property that objects possess. A four-legged, blue, wooden chair
has the property four just as it has the properties blue and wooden. Philip
Kitcher (1983) has proposed an updated version of Mill. Elementary arithmetic,
for example, stems from our ordinary experience; such statements as 2 � 3 � 5
are not truths about a separate mathematical realm, but are rather general truths
about the physical world. More sophisticated mathematics is created by an
‘ideal agent’ who can carry out infinitely many operations. The application of
mathematics to the world is, consequently, no more mysterious than is the
applicability of such high-level generalizations as ‘Red and yellow mixed
together make orange’. 

Like Mill, Kitcher goes far in explaining how mathematics is applied to
the world. To be fair, though, many of the sophisticated uses of mathematics don’t
seem to fit this view. The properties of quantum systems, for example, are associ-
ated with the eigenvalues of linear operators defined on a Hilbert space. It is
wholly implausible to see this as an extension from everyday experience exempli-
fied by counting bananas. Perhaps the greatest weakness for Kitcher, as it was for
Mill, is in doing justice to pure mathematics. Kitcher posits an ‘ideal agent’, for
example, who makes indefinitely complicated calculations. This idea – interesting
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though it is – has been repeatedly criticized for being an assumption just as strong
as any made by Platonism, and a good deal more obscure. 

Looking back on the debate, Field versus Quine and Putnam, we can see it as
an implicit debate about whether mathematics represents (Field) or describes
(Putnam and Quine). I think of Field as being on the representational side since
he has explicitly used the results of measurement theory as done in the repre-
sentational way. My reason for saying Quine and Putnam see mathematics as
describing the world stems from their various remarks about the possibility of
revising mathematics and logic in the face of experience. On the representa-
tionalist (or modelling) view of applied mathematics, this would be absurd,
since an empirical upset would simply make us look for a different math-
ematical model to represent things; it would not lead us to change our
mathematical theories themselves. 

To see this in a simple case, consider the addition of velocities. Imagine a ball
thrown with velocity W inside an airplane which is flying at velocity V with
respect to the ground. We associate real numbers with these velocities: �(W) �
w and �(V) � v. In classical physics the composition of velocities, �, takes a
simple form: �(W � V) � �(W) � �(V) � w � v. However, in relativistic
physics the composition of velocities is more complicated: �(W � V) � (�(W)
� �(V))/(1 � (�(W) � �(V))/c2) � (w � v)/(1 � (wv)/c2).

Obviously, this was not an overthrow of our previous beliefs about math-
ematical addition. Indeed, the old mathematical ‘�’ plays a role in the new
formula – it’s still addition. Rather, we have simply picked out a different math-
ematical structure on which to model the physical composition of velocities.

It must be said that the entire history of mathematics very strongly supports
the autonomy of mathematics and hence strongly supports the representational-
ist account. Mathematical results have been overthrown, but always by other
bits of mathematics. Results in one part of physics have sometimes led to a
revolution in other parts, even to revolutions elsewhere, such as in chemistry.
But never has a result in physics led to the overthrow of any result in the math-
ematical realm. The discovery of non-Euclidean geometry, for example, was a
mathematical discovery. Once the existence of such geometries was recognized,
it allowed the possibility of new ways to represent or model the physical world.
The success of such new representations (i.e. General Relativity) stimulated in
turn further work in differential geometry. But the connection between the
mathematical theory and the physical theory is psychological – not logical;
developments in one provoke an interest in the other. On the other hand, the
older chemical views were logically refuted by quantum mechanics. Nothing
like that has ever happened in mathematics. This epistemic autonomy argues
rather decisively for ontological autonomy, and hence for the representational
rather than descriptive nature of applied mathematics.

Let’s turn now to another descriptivist view that’s been gaining popularity in
recent years.
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Structuralism

In the campaign for the affection of realists, Platonism’s chief rival is struc-
turalism. Both are realist views in that they take mathematical statements to
have a truth value that is in no way dependent on us, but a truth value that is
nevertheless discoverable. The principal difference is how each views math-
ematical objects. Platonists think of mathematical statements as describing
mathematical objects, just as the statements of science describes the objects of
the natural world. (And, as I have argued above, they think of mathematical
statements as representing, but not describing, the objects of the natural world.)
Mathematical structures are built up out of these objects just as houses are built
out of bricks. Structuralists turn this around: for them, structures are primary;
mathematical objects are nothing but places in a structure. 

Anti-realists will hardly notice a difference between structuralists and tradi-
tional Platonists. Indeed, one structuralist (Resnik) explicitly calls himself a
Platonist. Nevertheless, the differences are important and interesting, so the ter-
minology – Platonism versus structuralism – will be maintained in the following
discussion. In terms of applied mathematics the difference is simple: structural-
ists hold that mathematics applies directly to the physical world, something like
a description; it is not transcendent and representational as the Platonist would
have it.

The main champions are Michael Resnik (1981, 1982, 1988, 1997), and
Stewart Shapiro (1983a, 1983b, 1989, 1997).7 A modal version has been
proposed by Hellman (1989). They trace their lineage to a paper by Benacerraf
(1965), and pay ultimate homage to Dedekind (1888). Naturally, there are sub-
tle differences among them, but the core idea is nicely expressed by Resnik:

In mathematics, I claim, we do not have objects with an ‘internal’ com-
position arranged in structures, we have only structures. The objects of
mathematics, that is, the entities which our mathematical constants and
quantifiers denote, are structureless points or positions in structures. As
positions in structures, they have no identity or features outside of a
structure.

(Resnik 1981: 530)

On this view, there are underlying structures which may be common both to the
physical world and to mathematical systems. An infinite string of stars, for
example, has the same underlying structure as an infinite sequence of moments
of time, or as an infinite string of strokes, | | | | | | | . . . . It is easy to see why on
this view mathematics is applicable to the non-mathematical realm: math-
ematics describes the structure or pattern, and the structure is present in the
physical system itself. 
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An object is just a place in a structure; a star, a temporal moment, or a stroke
could exemplify the number 27 just by being at the appropriate place. There is
no number 27 over and above that specific place in some appropriate structure.
Like traditional Platonism, structuralism is a realist view of mathematics. But
the difference, to repeat, when it comes to applied mathematics is that struc-
turalism sees structures right in the non-mathematical world itself, making
mathematics descriptive, while Platonism sees the mathematical world as tran-
scendent, making mathematics representative.

There seem to be three motivations for the structuralist account of math-
ematics. One has to do with the ontology of mathematics. There are many ways,
for example, of characterizing the natural numbers (Benacerraf 1965). One way
is to follow Zermelo, defining the natural numbers:

Another way is to follow von Neumann:

Which is the right way? This turns out to be very likely an unanswerable ques-
tion, so the natural response is to say that both are, and more generally that any-
thing with the right structure could be the natural numbers, or rather, is an
instance of the natural numbers.

The other two motivations for structuralism are related to each other and
focus on the epistemology of mathematics: How is mathematics applied to
reality?, and How do we come to know mathematical truths? The difficulty, as
structuralists see it, stems from taking Platonism’s abstract objects to be tran-
scendent, hence inaccessible, hence unknowable. Shapiro remarks:

[T]o hold that mathematics is about a non-physical universe, to empha-
size the independence of this universe from the material world, and to
leave it at that is to ignore and even to obscure one of the most impor-
tant aspects of mathematics, its importance in scientifically under-
standing the non-mathematical world. . . . the main advantage of
structuralism is that it provides a more holistic view of mathematics
and science, and this accounts for the rich interplay between the fields. 

(Shapiro 1983b: 532, 541)

Since this chapter is about how the transcendent mathematical realm hooks
onto the non-mathematical realm, it does in fact answer Shapiro’s don’t-just-
leave-it-at-that criticism. And as for the ‘rich interplay’, as I mentioned briefly
above, one has to be quite careful about what counts as part of the interplay
between mathematics and science. Since they do not interact the way physics
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and chemistry interact, we should be rather guarded in proposing a more
‘holistic’ account.

Epistemology is a big worry for structuralists. Since I dealt with the
unknowability-in-principle-of-abstract-objects objection in Chapter 2, I am not
inclined to take this type of motivation for structuralism seriously here. But it
would be useful to spend some time on structuralist views on this issue.

We see arrangements of physical objects. By means of this sense perception,
say structuralists, we are able to know elementary patterns. Of course, one
might wonder whether we grasp the pattern by seeing it in the physical objects
or instead independently grasp the pattern and impose it on the physical world.
The duck/rabbit outline exists independently of us, but it is the mind that
imposes one pattern or the other on the outline.

As for much more complicated patterns that are not perceptually evident (e.g.
infinite structures), structuralists say these might be conjectured, then accepted
on the basis of having the right consequences. This is an appealing idea; Gödel,
as I mentioned in an earlier chapter, claimed that this is the reason we accept
many axioms of set theory. It would seem to be analogous to something that
happens regularly in physics and elsewhere. Unobservable quarks are first pos-
tulated; then the theory is tested and ultimately accepted on the basis of having
the right observable consequences. But notice that before proposing the quark
theory, the concept of quark is first conceived. If structuralists are right, this
cannot be what is going on in the case of mathematics. A particular conjecture
could be that X has structure S. But to make such a conjecture we must already
have conceived the idea of the structure S, itself. We cannot be discovering
structures by conjecturing them. We can only discover that something has that
particular structure, just as we discover that the world actually has instances of
the concept quark.

With this in mind, we can readily see the difference between this proposal
and that of Gödel. Gödel is merely conjecturing new propositions, not new con-
cepts (or, if you prefer, he is conjecturing that a concept has instances). The
axioms of set theory all use just two primitive concepts, set and member.

Shapiro has made a somewhat different proposal for coming to grips with the
epistemic difficulty. He suggests that structures and language are intimately
connected; we grasp a particular structure by understanding the language. To be
fair, he readily admits this is only a sketch. But even in sketchy form, I think
there is a serious objection to it based on mathematical practice.

We often understand words (especially in vague or ungrammatical sentences)
because we have independent access (e.g. sense perception) to that which the
words refer. Example: Suppose I’m told ‘The Englishman in the corner with a
beer is a friend of Mary’s.’ Actually, he’s Irish, he’s not in the corner, but more
towards the middle of the room, and he’s drinking lemonade. Nevertheless,
the inaccurate description still allows me to approach this fellow and enquire
about our mutual friend Mary. The independent sense perception, however, is
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obviously crucial. It works in conjunction with the (faulty) description. Real
working mathematical language is very informal. Our grasp of a particular
structure cannot depend entirely on this language. It would seem that we have
some independent grasp of the structure – either (a) by ‘seeing’ the structure
directly, or (b) by ‘seeing’ the (mathematical) objects which give rise to this
structure. In either case, structuralism is certainly not better off than traditional
Platonism from an epistemic point of view. 

Let’s turn away from epistemic considerations to some ontic problems.
Shapiro remarks ‘A structure is the abstract form of a system, focussing on the
interrelationships among the objects, and ignoring any features of them that do
not affect how they relate to other objects in the system’ (1989: 146). This is
very natural when one considers examples such as the baseball infield. We pay
attention to the number of players, to where they typically stand, to what they
wear in the way of gloves, and so on. We ignore their eye colour, batting aver-
age and other things which seem strictly inessential to playing defence. The dis-
tinction between essential and the accidental properties springs readily to mind;
but such a distinction is not available in mathematics where all properties are
essential, if any are. (See the discussion, with caveats, of this issue in the previ-
ous chapter.) In the set-theoretic definition of the natural numbers, which prop-
erties can we ignore as not essential, even in an intuitive sense of this notion?
Shapiro suggests ‘ignoring any features of [the objects in question] that do not
affect how they relate to other objects in the system’. But in the set-theoretic
definition of numbers the membership relation explicitly holds or fails to hold
between every pair of numbers. Thus in Zermelo’s definition we have 2 � 3
(i.e. {{�}} � {{{�}}}), while 2 � 4. In von Neumann’s definition we have
any number is a member of every larger number; so, for example, 2 � 4 (i.e.
{�, {�}} � {�, {�}, {�, {�}}, {�, {�}, {�,{�}}}). 

The membership relation is well defined over all these sets; that is, it is some-
thing that relates every set to every other in the structure. Thus, it cannot be
ignored or abstracted from. And there’s no denying that membership is impor-
tant in set theory – it’s as basic as anything can be. The membership relation is
different in the Zermelo structure from what it is in the von Neumann structure.
It would seem, therefore, that they are different structures, after all.

Yet another problem stems from what appears to be an obvious mathematical
truth: Every mathematical structure has at least one instantiation. In the physi-
cal realm this needn’t be true. Imagine the game ‘super-duper baseball’ which is
played on a field much larger than the surface of the earth with 100 billion
players on each team. The infield is properly characterized in a very complicated
way, so complicated that there isn’t enough paper for me on which to write it all
down. Here is a structure which, it seems safe to say, will never be instantiated;
no one will ever play super-duper baseball. Yet we still make perfectly good
sense of such a structure. Why? Because the structure is an abstract entity; it
needn’t be physically real. But in mathematics, we can’t have an uninstantiated
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theory. If a particular (alleged) mathematical structure has no instantiation, then
it is because its description is actually inconsistent.

One last problem. Set theory is at the very heart of mathematics; it may even
be all there is to mathematics. The notion of set, however, seems quite contrary
to the spirit of structuralism. A set is a collection of objects. The complete iden-
tity of any set is tied up with is members and with nothing else. In group theory,
by contrast, the notion of group has some sort of priority over particular
instances of groups. Groups very nicely fit the structuralist account. But sets
don’t seem like this at all. The members (objects) have a kind of priority over
the sets (structures) that they constitute. If a set was just a structure, then chan-
ging its members would not effect it any more than changing the first baseman
changes the structure of the infield. But a set’s identity is wholly dependent
on its members – change the member and you change the set. Structuralism
doesn’t do justice to this basic fact about set theory (see Parsons 1990).

The real upshot of all this is that the support for a descriptive view of math-
ematics offered by structuralism cannot be upheld and the implicit challenge to
the representational account can’t be sustained. Platonism still has the upper
hand.

In conclusion, let me return to Wigner. ‘The miracle of the appropriateness of
the language of mathematics for the formulation of the laws of physics is a
wonderful gift’, he says, ‘which we neither understand nor deserve’ (Wigner
1960: 237; see also Steiner 1989). This seems very far from the truth. We may
not grasp it fully, but we’re well on the way; and what remains unexplained is
well within the scope of Platonism’s representational account.

Further Reading

To develop a feel for this topic, it would be wise to read widely in the sciences
that make significant use of mathematics: physics, of course, but also many oth-
ers as diverse as economics, linguistics, social statistics, and so on. For those
who would like to see more of measurement theory, the chief reference is the
three volume work by Krantz et al., Foundations of Measurement Theory.

Philosophers have focussed on the topic of indispensability. The debate was
started by Quine and Putnam; Field replied. The subsequent literature is vast.
Colyvan’s The Indispensability of Mathematics is an excellent recent work on
the topic and contains a full bibliography. Wigner’s famous remark about the
miracle of applied mathematics has been addressed (with religious overtones)
by Steiner, The Applicability of Mathematics as a Philosophical Problem.

Though it is seldom explicit, Philosophical work on models in science is
often about the nature of applied mathematics.
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CHAPTER 5
Hilbert and Gödel

The Nominalistic Instinct

Of course, there are red things, but is there redness itself? Some people
are wise, but does wisdom exist in its own right? Many think the
answer to these questions obvious: No, such wierd entities do not exist.

Those who dismiss them are the nominalists at heart. Abstract terms, according
to nominalists, are not the names of abstract objects. Redness and wisdom are
just words and nothing more – hence ‘nominalism’. As for mathematics, the
instinctive nominalist holds that there are no numbers, only numerals. Platonists
think that the numeral ‘2’ is the name of the number two, just as ‘Jim’ names
me. But, for the nominalist, there are no numbers; the real subject matter of math-
ematics is numerals, symbols, and words, all of them strictly meaningless – not
in the sense of gibberish, but in the sense that there is nothing that they mean,
or name, or to which they refer.

Quite aside from philosophical sensibilities of a nominalist sort, the history
of mathematics over the last century and a half might incline one towards
conventionalism and formalism. Great advances in geometry, for example, came
from looking into the deductive relations among the postulates. By reinter-
preting terms such as ‘plane’, ‘straight line’, etc. non-Euclidean geometries
(which deny the parallel postulate) were shown to be consistent. The rise of
abstract algebra (groups, rings, Boolean algebras, etc.) early in this century
further re-enforced this practice. Naturally enough, the striking successes of
this approach might lead one to think that mathematics is nothing but the study
of uninterpreted systems – just symbol manipulation. 

Nominalist scruples are mainly negative – they rule out abstract entities.
There is still a diverse spectrum of possible views which are compatible with
nominalism; some of the more prominent are lumped together in this chapter.
Perhaps the most prominent and influential nominalist today is Hartry Field,



whose views were examined briefly in the last chapter. Other accounts of
mathematics which are akin to nominalism and formalism include: linguistic
conventionalism and Wittgenstein’s radical conventionalism. But we won’t stop
to examine these now; instead we will save most of our energy in this chapter
for the most brilliant formalist of all, David Hilbert. But first, a very quick look
at pre-Hilbert formalism.

Early Formalism

Chess and other board games consist of symbols or tokens and of rules for
moving them around. No one would take the chess pieces as denoting anything.
Formalists love the analogy: mathematics is just a game; mathematical objects
are like chess pieces and mathematical rules are like the arbitrary rules of a
game. With a grand flourish they might add that mathematics is the greatest
game ever played, but it is just a game, nevertheless.

Consider a simple system, which I’ll call S.

Primitives of S: Individuals: ♣,♥; 
Primitives of S: Properties: ♦,♠

Axioms of S: (1) ∀x(♦x→♠x)
Axioms of S: (2) (∃x♠x)→♦♣
Axioms of S: (3) ♠♥

Rules of inference: MP (modus ponens), UI (universal instantiation),
EG (existential generalization).

Theorem: ♠♣
Proof: ♠♥ (Axiom 3)

∴ ∃x♠x (By EG)
∴ ♦♣ (By axiom 2 and MP)
∴ ♦♣→♠♣ (By axiom 1 and UI)
∴ ♠♣ (By MP)

The symbols ♥, ♦, ♠, and ♣ are perfectly meaningless. The axioms are not
‘true’, but are rather stipulations, implicit rules for manipulating the symbols.
Except for the fact that it is vastly more complicated and sophisticated, all of
mathematics is just like this, according to formalists; it’s a game played with
ink, chalk and (since we also talk mathematics) sound waves.

Influential nineteenth-century formalists included the mathematicians
Thomae and Heine who developed the view extensively. The logician Schröder
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contributed to the view as well, sometimes amusingly. Since mathematics is
about symbols, Schröder felt obliged explicitly to postulate that when his book
was closed, the ink marks didn’t rearrange themselves into different symbols.

The whole school of (early or pre-Hilbert) formalism was crushed by Frege
(1884). I’ll only mention two of Frege’s points. First, mathematics couldn’t
possibly be about individual symbols (tokens) but must instead be about classes
of symbols (types). The string: ♠♠♠♠♠ consists of five distinct tokens all of
the same type. Tokens are concrete individuals, but types are abstract. The
tokens may themselves be meaningless symbols, the very thing that nominalists
hanker after, but types will give them heartburn. If we’re going to have abstract
objects anyway, we might as well hang for an eggplant as an okra.

Second, the meta-theory of games can be meaningful mathematics. (This,
perhaps, was Frege’s strongest point.) For example, consider: ‘The proof of the
(above) theorem is five steps long.’ ‘The king and two knights cannot force
mate.’ These are meta-theorems about games – and they are meaningful. The
game of chess and the formal system S are perhaps meaningless games in the
very sense that formalists claim. But the meta-claims about those meaningless
games are themselves not meaningless. They are mathematical and they have an
objective truth-value.

Hilbert’s Formalism

David Hilbert (1862–1943) was a brilliant German mathematician, one of the
greatest ever, and along with Poincaré, the dominating figure of the late nine-
teenth and early twentieth centuries. He made spectacular contributions to
number theory, analysis, geometry and theoretical physics, as well as to philo-
sophy and foundations of mathematics. Having been born and raised in
Königsberg, he became quite familiar with Kant’s views through osmosis as
well as explicit study.1 The Kantian element of Hilbert’s view is what separates
his formalism from earlier, implausible accounts. 

The Kantian background will loom large in constructive accounts of math-
ematics discussed in a later chapter; here I’ll only sketch the main features.
According to Kant, objects and events are not ‘out there’ in space and time
waiting for us to experience them. Rather, space and time are contributions from
within; they are the forms of our perceptions. We experience objects as being in
space and time, but space and time do not objectively exist, independently from
us – we, in some sense, create them. Geometry is associated with our intuitions
of space, and arithmetic with our intuitions of time – numbers are successive
like a sequence of events in time.

Kant’s view is inherently finitistic in the sense that we obviously cannot
experience infinitely many events or move about infinitely far in space. Of
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course, there is no upper bound on what we can do: no matter how far we move,
we can always move a step further, and no matter how many events we have
experienced, we can always experience one more. But at any point we will
have acquired only a finite amount of experience and have taken only a finite
number of steps. Thus, for Kant, the only legitimate infinity is the so-called
potential infinity, not the actual infinity. And, because space and time (or geo-
metry and arithmetic) are our creations, we can know their properties a priori. So,
a Kantian like Hilbert would say that finitistic mathematical truths, intimately
bound up with perception, can be known with complete certainty.

Hilbert adopted this Kantian framework. His innovation was to apply it to the
symbols of mathematics themselves, considered as objects of experience.
Consider successions of perceptual objects, such as: ⎜⎜⎜⎜⎜. It is perceptually
evident that the series ⎜⎜⎜and the series ⎜⎜when put into concatenation yield the
series ⎜⎜⎜⎜⎜. We can abbreviate this by writing 3 � 2 � 5. It is a certain truth – not
a linguistic one, nor a truth about an independent Platonic realm. It is a perceptual
truth – not a particular one, such as the perception that the grass on my lawn is
green – but an a priori truth about the very structure of any possible perception.

If we were content with finitistic mathematics, then this could be the end of
the matter. Hilbert, relying on Kant, would have explained and justified all of
mathematics. But he wanted very much more than this – and rightly so. He
wanted to preserve all of classical mathematics with its infinite totalities. This
includes transfinite set theory, about which Hilbert famously declared: ‘No one
shall drive us out of the paradise that Cantor has created for us’ (1925: 191).

Consider the natural numbers, 0, 1, 2, 3, . . . . Often we say that there are
infinitely many of them, meaning: no matter how far we count, we can always
count one more. But set theory actually says something much stronger than
this; it says that the set of natural numbers, ω � {0, 1, 2, 3, . . .} is an actual
infinite set. This is necessary, for example, in order to make sense of the power-
set axiom which says that the set of all subsets of ω also exists, and to make
sense of the theorem which declares that the power-set is larger than its under-
lying set. Thus, the cardinality of ℘ω � {0, ω, {0}, {1}, . . . {0,1}, {0,2}, . . .} is
greater than the cardinality of ω � {0, 1, 2, . . .}. Platonists, of course, have no
trouble with actual infinities while constructivists such as Kant and others (as
we shall see in a later chapter) reject them outright, allowing only potential
infinities.

Historically, paradoxes and conceptual problems of mathematics have usually
stemmed from the infinite. This includes, for example, Zeno’s paradoxes in
Greek times, infinitesimals in the seventeenth century, and the paradoxes of set
theory in the late nineteenth and early twentieth centuries. In every case the
problem stemmed from trying to reason with infinite quantities.2

Hilbert surveyed the physical realm, but, of course, found no actual infinite
totalities there. Given the correctness of atomism, there are no infinitely small
things, no infinite divisibility. And given General Relativity, the universe is only
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finitely large, so there aren’t, for instance, infinitely many stars. Thus, the
infinite can never be part of our perceptual experience. Hilbert’s problem, as he
saw it, lies in how infinite mathematics can be incorporated into the finite
Kantian framework. We want to keep the extraordinary beauty, power, and util-
ity of classical mathematics, but we also want to incorporate it in such a way
that we can have full confidence that no more paradoxes will arise. ‘The goal
of my theory’, says Hilbert, ‘is to establish once and for all the certitude of
mathematical methods’ (1925: 184).

Ultimately, it proved unworkable; nevertheless, Hilbert’s solution is
ingenious. He, in effect, divides all of mathematics into two parts. The finitistic
part is true and meaningful (for the Kantian reasons mentioned above). The
infinitistic part is strictly meaningless, lacking any truth-value. Thus, ‘3 � 5’ is
true (and ‘5 � 3’ is false) while ‘ω � 2ω’ is strictly neither true nor false. In
spite of their meaninglessness, statements involving the infinite can be added to
meaningful, finite, true mathematics as supplements to make things run more
smoothly or to derive new finite results. In short they are adopted for their
instrumental value.

Hilbert thought of these as ‘ideal elements’. In projective geometry, for
example, there are a lot of almost-theorems: almost every pair of lines intersect
at a point; the exceptions are parallel lines. However, with the introduction of a
point at infinity, even parallel lines can intersect. The inclusion of this ideal
element, a point at infinity, eliminates the need to state exceptions to theorems.
In general, it simplifies theorems and proofs to such an extent that ideal elements
are a standard part of projective geometry.3 Points at infinity are taken to be
mere fictions, justified by their enormous power and utility.

Of course, we can’t go around introducing ideal elements wherever we like.
‘There is’, Hilbert declares, ‘one condition, albeit an absolutely necessary one,
connected with the method of ideal elements. That condition is a proof of
consistency, for the extension of a domain by the addition of ideal elements is
legitimate only if the extension does not cause contradictions’ (1925: 199).

Hilbert thought of complex numbers and infinite sets as further examples of
ideal elements, both profoundly useful because of how they streamline math-
ematics: ‘we conceive of mathematics to be a stock of two kinds of formulas:
first, those to which the meaningful communications of finitary statements cor-
respond; and secondly, other formulas which signify nothing and which are the
ideal structures of our theory’ (1925: 196). In short, he held that classical math-
ematics � finite mathematics � ideal elements.

There is a popular account of natural science which is similar to Hilbert’s
outlook. The analogy is worth considering. Instrumentalists (e.g. Duhem 1906)
hold that the statements of, say, physics are of two kinds – observable and
theoretical. ‘There is a white streak in the cloud chamber’ is an observation
sentence that can be directly confirmed by experience. On the other hand,
‘Electrons are deflected by a magnetic field’ is theoretical and is said by the
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typical instrumentalist to be neither true nor false. We adopt the electron
theory, on this account, not because it is true, but because it is extremely useful
in organizing and predicting observation sentences. In general, theories are not
attempts to describe the world truly; they are mere instruments for predicting
observations. (By contrast, so-called scientific realists say that theories are
attempts to give true descriptions of reality.) Hilbert, then, is like the instru-
mentalist: finite, meaningful mathematical statements are like the observation
statements of natural science, while the infinite parts (the ideal elements) of
mathematics work like theoretical entities understood as useful fictions.

Continuing the analogy, we can now see how Hilbert’s central problem
arises. Suppose we have two theories, a theory of heat, H, and a theory of light,
L. A scientific realist takes evidence for H and evidence for L to be evidence
that they are each true. Given the truth of H and L separately, belief in the truth
of the conjunction H & L follows on naturally. But the instrumentalist cannot be
so sanguine, since evidence is understood merely as evidence that a theory is a
good instrument. Thus, evidence that H is a good instrument and evidence that
L is a good instrument need not be evidence that H & L is also a good instru-
ment. For even though H and L are individually consistent (a precondition of
being a good instrument), their conjunction need not be. What Hilbert needs to
do is to show that the various parts of infinite mathematics will fit with one
another and with finite mathematics in such a way that no inconsistency can be
derived. 

But what is involved in deriving things? Indeed, what is involved in math-
ematical reasoning in general? Hilbert fixes on the symbols themselves.

Does material logical deduction somehow deceive us or leave us in the
lurch when we apply it to real things or events? No! Material logical
deduction is indispensable. It deceives us only when we form arbitrary
abstract definitions, especially those which involve infinitely many
objects. In such cases we have illegitimately used material logical
deduction; i.e. we have not paid sufficient attention to the precon-
ditions necessary for its valid use. In recognizing that there are such
preconditions that must be taken into account, we find ourselves in
agreement with the philosophers, notably Kant. Kant taught – and it
is an integral part of his doctrine – that mathematics treats a subject
matter which is given independently of logic. . . .

As a further precondition for using logical deduction and carrying
out logical operations, something must be given in conception, viz.,
certain extralogical concrete objects which are intuited as directly
experienced prior to all thinking. For logical deduction to be certain,
we must be able to see every aspect of these objects, and their proper-
ties, differences, sequences, and contiguities must be given, together
with the objects themselves, as something which cannot be reduced to
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something else and which requires no reduction. . . . The subject matter
of mathematics is, in accordance with this theory, the concrete symbols
themselves whose structure is immediately clear and recognizable. 

(Hilbert 1925: 191–92, my italics)

Here is the core idea of formalism: mathematics is about symbols. But Hilbert’s
Kantian idea is now to study these symbols mathematically. What kind of math-
ematics is used? Not the questionable infinite stuff, but rather finite, meaningful
mathematics, intimately linked to the perception of concrete objects, to the
perception of the (finitely many)concrete symbols of classical mathematics itself.

Hilbert’s Programme

The study of mathematics can itself be mathematical. But the mathematics used
must be true, meaningful, finite mathematics. If we are worried about the con-
sistency of, say, transfinite set theory, we can hardly use that very set theory to
check its own consistency. But we might be able to establish its consistency
using the utterly reliable techniques of finite mathematics. How would this be
done? Not by showing that there really are infinite sets which are correctly
described by the theory. Rather, we should focus on the concrete, perceivable
symbols of set theory. Since a proof, according to Hilbert, is just a sequence of
symbols manipulated according to the rules, we need to show that there is no
sequence of symbols that results in, say, the expression ‘ω ≠ ω’ or ‘0 � 1’. (Any
absurdity will do. Since an inconsistent theory implies everything, showing that
it doesn’t imply some particular absurdity will in effect show that it implies
none.)

There are actually a number of different ways to show consistency. In the
nineteenth century non-Euclidean geometries were shown to be consistent by
constructing Euclidean models of them. These are known as ‘relative consis-
tency proofs’, since the consistency of non-Euclidean geometry rests on the
assumed consistency of Euclidean geometry. Hilbert himself in his work on the
foundations of geometry (Hilbert 1899) gave a further consistency proof of
Euclidean geometry, again a relative consistency proof, using the real numbers
as the model. But what about the reals themselves? And can we do better than
merely providing relative consistency proofs? What about an absolute proof of
consistency?

Sometimes a theory can be shown to be consistent simply by exhibiting a
concrete model. The proof of consistency comes through visual inspection of
the model. This could count as an absolute proof. Here is a simple example,
which I’ll call the theory T:
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Primitives of T: some objects: ponk, lonk, and a relation: zonks.
Axioms of T: (1) For any two lonks, at most one ponk zonks both.

(2) For any two ponks, exactly one lonk zonks both.
(3) There are at least three ponks which zonk each lonk.

Of course, this sounds like meaningless gibberish – indeed, it is. But we might
want to know whether it is consistent gibberish or not. Perhaps we can derive
something like: ‘There is a lonk with exactly one ponk which zonks it’ which
contradicts the third axiom. The following concrete model (Figure 5.1) shows
that T is actually a consistent theory.

The model is sometimes called the seven-point geometry. There are exactly
seven points (the indicated vertices) and exactly seven lines (the circle is taken
to be a line). We interpret ‘ponk’ to be one of the seven points, ‘lonk’ to be one
of the seven lines, and ‘zonks’ to be the relation, lies on or connects. So under-
stood, the axioms are true. To see this, examine each pair of lines and notice
that they have exactly one point in common. This shows that the first axiom is
true under this interpretation. Similar considerations show the other axioms
true. And since logical inference preserves truth, no falsehood can be derived
from these axioms; hence no contradiction can arise. T is a consistent theory.

In proving the consistency of T we have focused on the concretely visual;
the mathematics involved is strictly finite (i.e. counting lines, etc.). The
meaning of terms such as ‘ponk’ (aside from the interpretation) play no role
whatsoever in establishing the consistency of T.

No serious theory, of course, will be so easily tackled. No simple concrete
model of, say, set theory or complex analysis showing at a glance its consis-
tency is forthcoming. Real ingenuity will be required. But even with all the
ingenuity in the world, as we shall see, it still won’t work, not even for lowly
arithmetic.

Hilbert’s programme called for a number of things. First, all existing theories
would have to be formalized. Classical mathematics (as found in typical texts
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and research papers) is rather informal, a mix of symbols and natural language.
It would all have to be recast into precise and exact symbolic notation. Much of
this sort of work, Hilbert was happy to note, had already been carried out, for
example, in Whitehead and Russell’s Principia Mathematica (1910). Second,
the notion of ‘finite method’ would have to be made perfectly precise. An intu-
itive distinction between finite and non-finite techniques was available, but a
much sharper notion was needed. Finally, these finite methods would be applied
to the formalized versions of classical mathematics to uncover some of their
properties and, above all, to show them consistent.

Hilbert’s programme was brilliantly conceived and (partially) executed. The
original ideas for the plan of attack and the extent of the achievements are
stunning. Some of the most brilliant mathematicians/philosophers of the cen-
tury worked on the programme, including: Ackermann, Bernays, von Neumann,
and many others, besides the amazing Hilbert himself. It is now generally
thought that Gödel’s incompleteness theorems dashed all hope for the pro-
gramme. This will be explained below. But even if the main programme failed,
the by-products boggle the mind: axiomatics, model theory, recursive function
theory, theory of algorithms and computation, and much, much more. The bril-
liance of Hilbert and his co-workers in the foundations and philosophy of
mathematics should not be diminished – this cluster of accomplishments is one
of the intellectual highlights of the twentieth century.

Small Problems

Needless to say, there have been lots of objections to Hilbert’s formalism, big
and small. The big one, which is utterly devastating, stems from Gödel’s
famous results. I’ll come to that in a moment. First, I’ll take up some of the
smaller problems, concerning complex finitistic reasoning.

Hilbert associates trustworthy reasoning with the finite. But, clearly our grip
on a finite entity lessens as the entity become larger and more complex. We can
multiply two small numbers together and be confident of the answer. But what
about the product of two finite numbers each over a billion digits long. It cer-
tainly does not correspond to any object of perception in the Kantian sense. The
chances of making a computational error are considerable. I, for one, would be
much happier betting on the truth of a transfinite proposition such as 2ω

� ω,
than on an enormously complex finite example. Certainty cannot be simply
identified with the finite; at best it can be linked to the rather small. But if we
confine ourselves to this, we won’t have anything close to the classical math-
ematics we want and need.

Moreover, as Hilbert correctly noted, the universe is finite. So for some large
but still finite number, there cannot be any appropriate perceptual experience

H I L B E R T  A N D  G Ö D E L 75



(i.e. there aren’t enough ⎜⎜⎜⎜⎜⎜. . .). Thus, even large finite numbers will have
to be classified along with transfinite entities as fictions or ideal elements.

On the other hand, perhaps these objections needn’t be seen as problems in
principle with Hilbert’s programme. It might turn out that the consistency
proofs that are required to justify classical mathematics all happen to be short
and manageable. Of course, this is a moot point, since there are no such
proofs – long or short.

Gödel’s Theorem

Gödel’s theorem, which shows the incompleteness of any attempt to system-
atize arithmetic, is perhaps the single most famous and important result in logic
in this or any century. It is also one of the most difficult to understand. Recently,
however, George Boolos has found a much simpler proof of the incompleteness
theorem. The proofs of Gödel and Boolos are each modelled on famous, but dif-
ferent, paradoxes. Gödel makes use of the Liar Paradox (What I am now saying
is false – a paradox because if true then it’s false, and if false then it’s true.) He
formulates a sentence of arithmetic which says something like ‘I am not prov-
able’, and sure enough it turns out to be unprovable, so it would seem to be a
true but unprovable sentence of arithmetic, making the system of axioms
incomplete. Boolos’s proof is modelled on the Berry Paradox (The least integer
not namable in fewer than nineteen syllables – a paradox because I just named
that integer in eighteen syllables.) Even though his proof is much simpler than
Gödel’s, it still requires a fair bit of work.

A Formal System Of Arithmetic

The statements in the language, L, of formal arithmetic are built out of the fol-
lowing symbols:

� addition
� multiplication
0 zero
s successor (i.e. plus one)
� equals
~ not
∨ or
& and
→ if . . . then . . .
↔ if and only if
( left parenthesis
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) right parenthesis
∀ all
∃ some
x, x�, x�, . . . variables (infinitely many, but only two symbols: x and �; 

for ease of reading we will often use y, z, and w in place of 
the primed variables, x�, x�, x�.)

The symbols 1, 2, 3, . . . are not part of this formal language, but they have
counterparts which are: s0, ss0, sss0, . . . The variables x, x�, x�, . . . have these
numbers as their values.

Truth

The intended interpretation of this formal arithmetic is just the ordinary natural
numbers, and statements of the formal system are true or false just in case their
intended interpretations are true or false. For example:

● ‘∀x∃y(y � sx)’ is true (in the intended interpretation) because each
number has a successor, namely, the next bigger number.

● ‘∀x∃y(x � sy)’ is false because 0 is not a successor of any number.
● ‘ss0 � sss0 � sssss0’ is true since 2 � 3 � 5.
● ‘ss0 � sss0 � ssssssss0’ is false because 2 � 3 ≠ 8
● ‘∀x∃y(x � (y � y) ∨ x � s(y � y))’ is true since every number is odd

or even.

Axiomatization

From this point there are a number of ways we could proceed. One way is to set
up an algorithm. This would be a computational procedure (performed by a
computer, for example) which generates a certain output. A correct algorithm
for formal arithmetic would be an algorithm that generated all the truths of
arithmetic and none of the falsehoods. A second way to proceed would be to
specify a set of axioms (such as the Peano axioms) and then consider the set of
logical consequences of those axioms. An axiomatization of formal arithmetic
is consistent and complete if and only if it implies all the truths of arithmetic
and none of the falsehoods.

Here is a particular axiomatization, PA, based on the Peano axioms:

(1) ∀x∀y(sx � sy → x � y)
(2) ∀x~(0 � sx)
(3) ∀x∃y(~(x � 0) → x � sy)
(4) ∀x(x � 0 � x)
(5) ∀x∀y(x � sy � s(x � y))
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(6) ∀x(x � 0 � 0)
(7) ∀x∀y(x � sy � (x � y) � x)
(8) For any sentence S(x), (S(0) & ∀x(S(x) → S(sx)) → ∀x(S(x))

The last axiom expresses the principle of mathematical induction. It is known
as an axiom schema, since it is really infinitely many axioms (one for each
different sentence S). From these axioms one could prove such things as
ss0 � ss0 � ssss0 (i.e. 2 � 2 � 4) or any of the examples cited above. Here’s
a simple illustration.

� ss0 � ss0 � ssss0:

(1) ∀x∀y(x � sy � s(x � y)) Axiom (5)
(2) ∀y(ss0 � sy � s(ss0 � y) (1) Universal instantiation
(3) ss0 � s0 � s(ss0 � 0) (2) Universal instantiation
(4) ∀x(x � 0 � x) Axiom (4)
(5) ss0 � 0 � ss0 (4) Universal instantiation
(6) ss0 � s0 � s(ss0) (3), (5), (6) Equality
(7) ss0 � ss0 � s(s(ss0)) (2), (6) Equality
(8) ss0 � ss0 � ssss0 (7) Brackets removed.

Care to test your strength? As an exercise show that the following can be
derived using the above axioms: (a) � ∀x(~(x � sx)), (b) � ∀x∀y(x � y � y � x),
(c) � ssx � sssx � sssssx. The answer to (a) is given on p. 222.4

The interesting question, however, is whether this axiomatization or any
other can capture all the truths of arithmetic and none of the falsehoods. The
answer is No. This was first shown by Gödel (1931). His proof or variants of it
can be found in almost any text on the subject.5 The proof below is due to
Boolos (1989).

The Boolos Proof

Theorem: No consistent algorithm/axiomatization of formal arithmetic
is complete.

The proof works as follows: we will assume there is an algorithm or axiomati-
zation, A, which generates truths of arithmetic, but no falsehoods; we will show
that no matter what A is, there will always be some truth of arithmetic that A
fails to generate. Thus, A is not complete. The system PA is a special case of A,
so PA, in particular, is incomplete.

Let [n] be the expression consisting of 0 with n successor symbols in front.
Thus, [5] is the expression sssss0 (and so [5] stands for 5).
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Definition: The formula F(x) names the natural number n if the follow-
ing statement is generated by A: ∀x(F(x) ↔ x � [n]).

Here’s an example: PA generates ∀x(x � x � ssss0 ↔ x � ss0) that is, proves
it as a theorem; so the formula x � x � ssss0 names the number 2.

The formula F(x) has some crucial properties. First, it can name only one natural
number (though other formulae might also name the same number). Second, for
each number i, there are only a finite number of formulae that contain i symbols.
This means that there are only finitely many numbers named by formulae contain-
ing i symbols. Third (which follows from the second point), for any number j,
there are only finitely many numbers named by formulae containing fewer than j
symbols. Fourth (which follows from the third), there must be a least such number.

For those who like to prove things, have a go at the first remark, i.e. prove
that no formula can name two different numbers. Answer on p. 222.6 If you’re
still keen, prove the first part of the second remark, i.e. for each number i, there
are only a finite number of formulae containing i symbols. Hint: there are only
16 primitive symbols in the formal system. Answer on p. 222.7

For the next stage in the proof we need the idea:

x is named by a formula containing z symbols

So we posit a formula C(x,z) in the language L which says this. The example
above illustrates the point: the formula x � x � ssss0 names the number 2 and
it has 9 symbols; thus, C(2,9). The existence of such a formula C(x,z) may seem
fairly plausible, but actually showing that for any algorithm/axiomatization, A,
such a C(x,z) exists is rather difficult and tedious. Among other things we would
have to show that a process of coding, such as Gödel numbering, leads to cer-
tain properties which allow statements about numbers to be represented in the
system of formal arithmetic. We shall take this to be established, and hence that
there will always be such a formula C(x,z) expressed in the formal language L.

The next concept we need is:

x is a number which is named by a formula which has fewer than y
symbols

We can express this in L by B(x,y) which is defined to be the formula
∃z(z � y & C(x,z)). (Note that the new symbol � can be defined in L as follows:
x � y ↔ ∃z (z 
 0 & x � z � y).)

We need one more concept to be able to specify an analogue of the Berry
Paradox:

x is the least number that is not named by any formula containing
fewer than y symbols
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To formalize this in L, let A(x,y) be the formula ~B(x,y) & ∀w(w � x → B(w,y)).
What A(x,y) says is precisely what we want. 

We’ll let k be the number of symbols in A(x,y); note that k � 3. (We’ll need
this fact later.)

Next we’ll let F(x) be the formula ∃y(y � ([10] � [k]) & A(x,y)). F(x) says
that x is the least number not named by any formula containing fewer than 10k
symbols. Does F(x) pick out a number? Obviously, Yes. F(x) specifies some
number n which is indeed the least number not named by any formula contain-
ing fewer than 10k symbols.

Here’s an easy quiz to keep you on your toes. How many symbols does [10]
contain? More generally, how many symbols does [n] contain? Answer on
p. 222.8

We can easily calculate how many symbols F(x) contains:

(1) [10] contains 11 symbols
(2) [k] k � 1
(3) A(x,y) k
(4) others 12 (i.e. ∃, x,�,(, x,�,(, � ,�,),&,))
(5) TOTAL 2k � 24

Notice that 2k � 24 � 10k for any allowable value of k, since it was noted above
that k � 3. Also above it was shown that for any number j, there is a least number
not named by any formula containing fewer than j symbols. Set j � 10k where n is
the least such number for this j. Thus, n is not named by the formula F(x), since, if
it were, it would be named in fewer than 10k symbols. This means that A (if it is
consistent) does not generate ∀x(F(x) ↔ x � [n]). However, this is a true state-
ment since, as mentioned above, n is indeed the least number not named by
any formula containing fewer than 10k symbols. Therefore, A is incomplete.

Gödel’s Second Theorem

The famous incompleteness result actually consists of two parts. One is the
incompleteness result just presented, the other is the theorem which says that
there can be no finitistic proof of the consistency of a system of arithmetic
within that system. This second theorem is actually the more devastating of the
two for Hilbert’s programme. I will follow (or at least adapt) a recent, clever
version of the proof given, yet again, by George Boolos (1994).

We can prove all sorts of things in the system A, such as that 5 � 7 � 12; and
we can prove that we can prove it, and so on. And we can prove that other
things are not true, such as that 5 � 7 ≠ 13. Moreover, we can prove that we can
prove that. The consistency worry is that we might be able to prove too much.
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If A is not consistent, then we can prove everything, including that 0 � 1 (i.e.
� 0 � s0). If we could prove that there is no proof of this, then we’d know that
A is consistent. Of course, the proof will have to pass Hilbert’s finitistic stan-
dards, otherwise it might be question-begging.

Amazingly, it turns out that we cannot prove A (or any other such system)
consistent. This is Gödel’s second theorem and it delivered a knockout blow to
Hilbert’s hopes.

I’ll use the notation ∃�(p) to mean there is a proof of p (or, more exactly,
there is an x such that x is a proof of [p], where [p] is the appropriate represen-
tation of p in A, say by a Gödel number). Using this notation we can now define
the consistency of A very simply as ~∃�(0 � s0), and the proof of consistency
will be ∃�~∃�(0 � s0). Gödel’s second theorem can now be easily stated.

Theorem: If A (or any other system of arithmetic) is consistent, then there is
no proof in A of the consistency of A; that is, if ~∃�(0 � s0) then
~∃�~∃�(0 � s0).

Before getting to the proof, we will adopt the following special rules (known as the
Hilbert–Bernays–Löb derivability conditions), as well as the usual rules of logic:

Rule I if � p then � ∃�p (parenthesis around p dropped when obvious)
Rule II � (∃�(p → q) → (∃�p → ∃�q)
Rule III � (∃�p → ∃�∃�p)

These rules have the consequence

Rule IV if � (p → q) then � (∃�p → ∃�q)

Try your hand at deriving the fourth rule from the other three. Answer on p. 222.9

Now we can get on with the proof.
Proof of Gödel’s second theorem: In the theorem above showing incomplete-

ness we established the existence of a sentence of A (call it g in honour of
Gödel) that is equivalent to its own unprovability; this is our starting point here:

(1) � g ↔ ~∃�g from the first 
incompleteness theorem

(2) � g → ~∃�g (1)
(3) � ∃�g → ∃�~∃�g (2), Rule IV
(4) � ∃�g → ∃�∃�g Rule III
(5) � ~∃�g → (∃�g → (0 � s0)) tautology
(6) � ∃�~∃�g → ∃�(∃�g → (0 � s0)) (5), Rule IV
(7) � ∃�(∃�g → (0 � s0) → Rule II

(∃�∃�g → ∃�(0 � s0))
(8) � ∃�g → ∃�(0 � s0) (3), (6), (7), (4)
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(9) � ~∃�(0 � s0) → g (1), (8)
(10) � ∃�~∃�(0 � s0) → ∃�g (9), Rule IV
(11) � ~∃�(0 � s0) → ~∃�~∃�(0 � s0) (8), (10)

The last line is our theorem, namely, if A is consistent then there is no proof
of consistency in A. To see this clearly, suppose we could prove consistency,
that is prove � ~∃�(0 � s0). Then from (11), by modus ponens, we would
have � ~∃�~∃�(0 � s0). But by Rule II we would also have � ∃�~∃�(0 � s0).
A contradiction. Thus, assuming consistency of A, there can be no proof of it.

The Upshot for Hilbert’s Programme

The consequence of Gödel’s two theorems are manifestly clear and generally
acknowledged. First of all, the formalist hope of identifying truth with prov-
ability flounders on the first incompleteness theorem, since in any consistent
theory there will always be true but unprovable sentences. Since this applies to
any theory strong enough to contain arithmetic, it applies in effect to all of
classical mathematics. Second, the impossibility of a consistency proof is even
more destructive. Hilbert’s hopes of giving a (finitistically acceptable) proof of
the consistency of classical mathematics are completely dashed. 

I should note in passing that Gödel’s original proof of the incompleteness
theorem is constructive, and therefore intuitionistically valid. (More on these
notions in Chapter 8.) Boolos’s proof is not constructive. Those who demand an
intuitionistically valid proof in order to consider a theorem legitimate will have
to stick with the original, constructive version of the proof.10 In so far as
Hilbert’s Programme was undermined by Gödel’s original proof, it is still hurt
by this one. Non-constructive methods cannot be used in support of Hilbert’s
programme, since that would be question-begging; but negative results, such
as this one, can use non-constructive methods in a non-circular way. (As a final
exercise for this chapter explain and justify this last remark.)

The Aftermath

It is almost universally agreed that Gödel’s results destroyed Hilbert’s pro-
gramme, but there are hold-outs. Abraham Robinson (one of the creators of non-
standard analysis) claimed that in spite of the incompleteness theorems we should
be formalists anyway (Robinson 1964). More recently Detlefsen (1986, 1992a)
has claimed that much of Hilbert is left undamaged by Gödel. Robinson’s claims
are stunning, given all that he concedes. Detlefsen more carefully argues his case.
However, I won’t pursue these attempts to keep the Hilbert programme alive.



More controversial have been the possible implications of Gödel’s results for
the mind and for Platonism, in particular that the human mind cannot be a
machine and that Platonism must be correct. Gödel himself suggested this, and
Lucas, in a famous article argued explicitly that that mechanism is wrong
(Lucas 1961). Most recently Roger Penrose (1989, 1994) has argued at great
length for both theses, claiming that the Gödel results show that the whole
programme of artificial intelligence is wrong, that creative mathematicians do
not think in a mechanistic way, but that they often have a kind of insight into the
Platonic realm which exists independently from us.

I won’t pursue the consequences of Gödel’s results other than their impact on
Hilbert’s programme. I mention the work of Penrose and others only to inform the
reader who might not be aware of its existence and relevance to the philosophy of
mathematics. But one brief comment is in order before moving on to other things.
I am largely persuaded of Penrose’s conclusions concerning mathematics. The
real question concerns his argument for those conclusions. It is bold and subtle. It
may be wrong, but it is plausible. And I suspect that it certainly deserves a better
hearing than suggested by Hilary Putnam who ‘regards its appearance as a sad
episode in our current intellectual life’ (1994: 1). It’s a common failing of philoso-
phers to ignore people’s claims based on special experiences. Ethics, for example,
is needlessly impoverished by ignoring, say, the daily life of mothers raising chil-
dren under difficult circumstances; it would be much improved by paying closer
attention. Roger Penrose – modesty forbids him saying it of himself – has
enjoyed some of the most profound mathematical experiences of recent times. If
he has nothing more than a mere hunch that he is glimpsing into the Platonic
realm, that in itself is something for us all to ponder.

Further Reading

Hilbert’s main works can be found in translation in various anthologies, such as
Benacerraf and Putnam (eds.), Readings in the Philosophy of Mathematics;
Ewald (ed.), From Kant to Hilbert; Mancosu (ed.), From Brouwer to Hilbert.
Reid’s biography, Hilbert, is interesting and informative on his whole life as
well as his work on foundations. The chapter on formalism in Shapiro’s
Thinking About Mathematics is very clear. Various essays by Hallett and by
Seig (see bibliography) are exemplary historical studies. Web’s Mechanism,
Mentalism, and Mathematics covers lots of relevant material. Some work on
formalism can be found in various discussions of Godel’s theorem. Formalism
is largely rejected today, but Detlefsen, Hilbert’s Program, an Essay on
Mathematical Instrumentalism, tries to rescue much of Hilbert’s programme.
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CHAPTER 6
Knots and Notation

Formalists have glummed onto something fundamental. Their great
insight is in noticing just how important notation can be. Of course, the
identification of mathematics with its symbols – the very essence of for-

malism – is a mistake. But the realization that notation means more to math-
ematics than the corresponding special symbols of other sciences means to
them, seems to me profoundly correct. 

In one regard, mathematics is like poetry. Every discipline from auto
mechanics to zoology uses its own system of representation, a specialized
vocabulary and system of symbols that helps to convey the old facts and new
speculations in the field. But poets go beyond this. They fix on the form of rep-
resentation itself, then exploit it in highly creative and beautiful ways. Perhaps
every discipline does this to some extent, but only mathematics matches poetry
in tying innovation to notation.1

To remind ourselves of how clever poetry can be in this regard, let’s consider
a few lines from Pope’s ingenious Essay on Criticism, in which he exemplifies
the interplay of form and content while explaining it.

’Tis not enough no harshness gives offence,
The sound must seem an echo to the sense.
Soft is the strain when Zephyr gently blows,
And the smooth stream in smoother numbers flows;
But when loud surges lash the sounding shore,
The hoarse, rough verse should like a torrent roar.
When Ajax strives, some rock’s vast weight to throw,
The line too labours, and the words move slow;
No so, when swift Camilla scours the plain,
Flies o’er th’unbending corn, and skims along the main.



Not all notational cleverness leads to good results. Milton sometimes relied on
‘eye rhymes’, in which spellings fit, not sounds, for example, in On the
University Carrier:

He’s here stuck in a slough, and overthrown.
’Twas such a shifter, that if truth were known
Death was half glad when he had got him down . . .

The rule: seen and not heard, is bad for children, terrible for rhymes. And this
latter example shows that in poetry the principal notation (if I may speak that
way), is the sound, not the written word; ideas and feelings (the content) are
conveyed by means of sounds (the form); the written symbols are representa-
tions of the sounds. Milton departed from this; others have, too; for example,
e.e. cummings often made a poem take a particular physical shape on the page.
None of this has ever been very successful, although Chinese poetry, because
the written form of Chinese is character-based and lends itself to beautiful and
suggestive calligraphy, often plays very successfully on the clever mixing of
content with both sound and writing.

Whatever the ins and outs of poetry, one thing is clear: the manner of expres-
sion – notation – is fundamental. It is the same with mathematics – not in the
aesthetic sense that the beauty of mathematics is tied up with how it is
expressed – but in the sense that mathematical truths are revealed, exploited and
developed by various notational innovations.

Perhaps the greatest notational invention of all time is the Arabic numerals.
Though these numerals name infinitely many distinct numbers, we can easily get
the hang of this notational system and figure out the name of any particular
number. I can’t remember the names of all my students, but I have no trouble
with the name of any natural number. Line up a few strokes: | | | | | . . . and any
child can rattle off the names of the associated numbers with ease. Many of the
key properties of numbers are built right into their names. For example, we need
only look at the names ‘123’ and ‘23’ to realize the first of these refers to a big-
ger number than the second. And a mere glance at ‘6137594’ tells us that it
names a composite number. By contrast, we may study the names ‘proton’ and
‘electron’, with no hope of ever learning that protons are heaver than electrons.

This may seem a trivial point, but it is only because we are so used to the
phenomena. Often it is noted that the Arabic notation is vastly superior to the
Roman. True, but even the oft-ridiculed Roman system of numerals is ingenious
when compared to the possibility that each number is given its own distinct
name. Instead of 1, 2, 3, 4, . . . or I, II, III, IV, . . . try working with numbers
which have names like George, Mary, Bill, Ann, . . . . We’d have theorems such
as: George � Mary � Bill, but imagine trying to prove them. The crucial fea-
ture that is built into both Roman and Arabic numerals is their recursiveness –
there is an algorithm for employing them.2 The recursive properties of the
natural numbers are mirrored in the notation. 

K N O T S  A N D  N O T A T I O N 85



Clever notations do not come out of the blue. Developing a notation and
learning about the objects named often go hand-in-hand. But one thing is sure:
we could not have first invented a system like Arabic numerals and then later
discovered that the natural numbers form a recursive set. In some sense, this
must have already been realized, however dimly.

When we reflect on an example like the recursive Arabic numerals, we can
readily see the powerful attraction of formalism as a philosophy of math-
ematics. It is not the formalist claims about mathematics being about ink marks
on paper – a silly view inspired by a nominalistic hostility to abstract entities.
Rather the source of the attraction of formalism stems from the evident power
of notations themselves. The crucial thing about the natural numbers is their
recursiveness. But this key property is also in the notation itself. So why bother
with numbers, the would-be formalist wonders, when the numerals themselves
possess all the characteristics we care about?

There is no denying the attractiveness of such a view. Ultimately, though, it is
untenable. Quite aside from special difficulties such as those which arise with
Gödel’s theorem, the problem with this view is that it puts the cart before the
horse. As I mentioned already, the recursive Arabic numerals could only be
invented after recognizing the recursiveness of the natural numbers themselves.
There is a sense in which the notation of number theory is an application of
number theory. There is no understanding of that notation without a prior
understanding of the objects named. This is certainly not true of all names, but
it is often the case, as with an ingenious notation like the Arabic numerals. This
is the mathematical equivalent of poetry’s onomatopoeia.

Knots

Knot theory provides an exceedingly rich example of how different notations –
different forms of representation – bring out different aspects of the common
subject matter. We are naturally familiar with knots from daily life. In math-
ematics a knot is defined as a closed, non-intersecting curve in space. They can
be twisted and tangled, and generally transformed in various ways, and still
remain the same knot, so long as they are not cut. Properties which hold
through such deformations are known as invariants. The fundamental problems
of knot theory involve finding ways to distinguish and classify different knots.
The theory got its impetus long ago from physics. Lord Kelvin in the 1880s
conjectured that atoms are knotted vortices in the aether, with different chemi-
cal properties due to different knots. This leads quite naturally to a classification
of knots, undertaken by Kelvin’s longtime co-worker P.G. Tait. Interest in knots
declined when this account of atoms was rejected and has remained at a low level
for most of the twentieth century. Recent years, however, have seen an
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enormous growth of interest due to some stunning results and amazing connec-
tions to physics.

Two knots are equivalent when one curve can be deformed into the same
shape as the other without either cutting the curve or allowing a self-
intersection during the transformation. We might represent a knot with a partic-
ular piece of string joined together at the ends, or an electrical extension cord
with the ends plugged in. These are knots in space. A more common representa-
tion is a drawing on the page, known as a projection. Figure 6.1 gives some
examples.

The allowable moves in any transformation (of a projection of a knot) are
known as Reidemeister moves. There are three of them. The first of these allows
us to put a twist in the knot, or to remove one, while the rest of the knot remains
unchanged. The other two moves will be similarly obvious from Figure 6.2.

Reidemeister proved that for any two projections of the same knot, there is a
sequence of Reidemeister moves which will transform one projection into the
other. This is one way of showing them to be equivalent. In Figure 6.3 we have
a tangled mess transformed by a sequence of Reidemeister moves into the
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The unknot, the trefoil, and a tangled mess which is equivalent to the unknot

Three different projections of the figure-eight knot

Figure 6.1

I

II

III

Figure 6.2 The three Reidemeister moves



unknot, thereby showing them equivalent. There is, however, no known algo-
rithm for applying Reidemeister moves; it’s just trial and error. It’s not even
known whether there are any upper bounds. Is there, for example, a number k
such that in transforming one knot with n crossings into another, all inter-
mediate knots have fewer than n + k crossings? This is one of a great many
open problems in knot theory.

The Dowker Notation

We begin by choosing an orientation; that is, we put an arrowhead on some
strand of the knot. Then we pick a crossing and label it 1. Next, move along the
understrand in the direction of the arrow until we reach the next crossing, which
should be given the label 2. If an even number assigned to any crossing is an
overstrand it should be considered a positive number; but if it is an understrand,
then it is negative. The odd numbers are positive, regardless. We continue on in
this way until we are back where we started. Each crossing will have two num-
bers associated with it, one even and one odd. (As an exercise, think about it for
a moment and you will see why. Answer on p. 222.3)

The knot in Figure 6.4 can then be described in the Dowker notation as a set
of ordered pairs: {�1,4�, �3,�6�, �5,10�, �7,�2�, �9,8�}. Since the first member
of each pair is odd and contains no information about � or �, we can express
this quite economically as a sequence of even numbers: �4,�6,10,�2,8�. The
process is obviously reversible: given a sequence, we can construct the knot
projection. All the information we need is in the Dowker sequence: it tells us
how many crossings there are, how they are connected, and which strands are
over or under.
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Figure 6.3 A sequence of Reidemeister moves resulting in the unknot



I said the process is reversible, but this is not completely true. The Dowker
notation does not completely determine what are called composite knots and
mirror images. (I won’t go into these except to say that composite knots are
composed out of prime knots – think of them as constructed out of two or more
simpler knots. And the mirror image of a knot is just what you would think it to
be.)

The Dowker notation, because it uses a simple sequence of numbers, lends
itself to computer programming rather nicely. It has been used for the tabulation
of all prime knots up to thirteen crossings, of which there are 9988. No one
knows how many there are at fourteen crossings, but finding a suitable notation
for tackling the problem is half the battle. Another interesting feature of the
Dowker notation is that it readily shows some of the crossings to be trivial in
the light of Reidemiester moves. The crossing �8,9�, for example, can be
eliminated by a Reidemeister I move. This will always be the case when a
crossing is labelled by two successive numbers. Type II moves are also captured
by this notation.

The Conway Notation

A tangle is any region of the projection plane which is surrounded by a circle in
such a way that the knot crosses the circle exactly four times. And, as you might
expect, two tangles are equivalent when one can be transformed into the other
by a series of Reidemeister moves (with the condition that the four strings lead-
ing out of the circle remain fixed and that the tangle remains wholly within the
circle).

K N O T S  A N D  N O T A T I O N 89

9

8
7

–2

–6

1

4 5
10

3

Figure 6.4 A knot labelled with the Dowker notation

Figure 6.5 A tangle



Here in Figure 6.6 are some special cases. A pair of uncrossed vertical lines is
called the ∞ tangle; a pair of uncrossed horizontal lines is the 0 tangle; a pair
of lines crossed three times is the 3 tangle. If they had been twisted the other
way (i.e. a right-handed twist instead of a left-handed twist), it would be the
�3 tangle. Looking from left to right, if the slope of the overline is up, then the
twist is left-handed and positive; if the overline is headed down, then it is a
right-hand twist and negative.

We can use this notation to characterize more complex tangles. For instance, in
Figure 6.7 we start with a 3 tangle (Figure 6.7(a)). After a mirror reflection, we
have Figure 6.7(b). We then twist the two right strands. The resulting tangle
(Figure 6.7(c)) is denoted 3 2. We then do another mirror reflection (Figure
6.7(d)). (Notice that we are always working towards the right.) This is followed
by twisting the two right strands, this time giving them a negative twist four
times (Figure 6.7(e)). The result expressed in the Conway notation is 3 2 �4.

We can use these numbers to construct a continued fraction. Working this
time from right to left, the continued fraction associated with 3 2 �4 is

 4  �  
1

2
1
3
----

 

�

 --------------- �
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∞ tangle 0 tangle 3 tangle

Figure 6.6 Tangles with Conway notation

(a) (b) (c)

(d) (e)

Figure 6.7 The construction of a 3 2 �4 tangle
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Simplified, it is equal to �25/7.
Amazingly, we have the following theorem: Two tangles are equivalent if

their associated continued fractions are equal. What starts out as a mere
labelling device quickly turns into a powerful computational tool for investigat-
ing the properties of knots. Imagine being able to determine Joe’s height,
weight, and other characteristics just by studying his name.

For example, Figures 6.8(a) and 6.8(b) are denoted �2 3 2 and 3 �2 3, respec-
tively. Their continued fractions are:

To convince yourself of this theorem (at least for the case at hand), transform
one tangle into the other by a sequence of Reidemeister moves.

Polynomials

Another exceedingly interesting representation of knots is by means of poly-
nomials. This particular notation was discovered by Alexander early in this cen-
tury; in the past decade several other forms have been discovered leading to
some quite spectacular results. I’ll briefly describe one of the simpler of these,
the bracket polynomial and, unfortunately, ignore others such as the Jones poly-
nomial (which started the new wave in 1984), the HOMFLY polynomial (an
acronym derived from several simultaneous discoverers), and the amazing con-
nections to physics which have shed even more light on knot theory (see Jones
1990 and Witten 1989).

The first rule says that the polynomial for the unknot is just the number 1.

Rule 1: �a� � 1

 2
1

3
1
2

 

�

 
--------

 
�

 -------------------  �  3
1

2
 

�
 1

3
----�

---------------------�
12
5

------� �

–2 3 2 3 –2 3

(a) (b)

Figure 6.8 Conway notation applied to equivalent tangles



The next rule says that given a crossing, split it into the sum of two projections,
each with one fewer crossing, and a coefficient, so far undetermined.

Rule 2: �b � � A �c � � A�1 �d �

Notice the polynomial to be constructed is a Laurent polynomial, which has
both positive and negative exponents. The third rule extends the discussion to
links as well as knots. A link is a set of knots tangled together.

Rule 3: �L � a� � (�A2
� A�2)�L�

We can now easily calculate the polynomial for the unlink:

�a �a � � (�A2
� A�2)�a�

� �A2
� A�2 (since �a� � 1)

The Hopf link is slightly more challenging.

�e� � A �f� � A�1 �h�
� A(A �g� � A�1 �i�) � A�1(A �j� � A�1 �aa�)
� A(A(�(A2

� A�2)) � A�1(1)) � A�1(A(1) � A�1(�(A2
� A�2)))

� �A4
� A�4

Why are these polynomials interesting or important? The key is in realizing
that they are invariant under Reidemeister moves. (There is an important quali-
fication to be made with respect to type I moves, but I won’t go into that here.)
When we calculate a type II move, for instance, we get:

�q� � A �l� � A�1 �n�
� A �m� � A�1 �o�
� �p�
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The Unlink of
two components

The Hopf link

Borromean ringsThe Whitehead link

Figure 6.9 Examples of links
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Since equivalent knots can be transformed into one another by Reidemeister
moves, they must also, in consequence, have the same associated polynomial.
On the other hand, knots with different polynomials must be distinct knots.

Note the curious way these calculations have been carried out. Though obvi-
ous, I want to stress it anyway, since it’s so philosophically important. We wrote
down things that look like equations. Indeed they were. But pictures occurred in
these equations. This notation, which is widely used and which is extremely
efficient in calculating polynomials, is certainly not like other verbal/symbolic
statements; it is more like hieroglyphics, a form of picture writing. As calcula-
tions, these are picture-proofs.

Creation or Revelation?

Mathematicians and historians often mention the importance of a good nota-
tion. But serious analyses have so far been scarce. Ken Manders, however, has
recently put his finger on several key points and developed some interesting
claims.

‘Mathematical practices’, he says, ‘pursue their aims by engaging their
representations.’ By ‘representation’ he means physical representation, and
typically this will be discursive text, diagrams, or algebraic displays which are
different ‘representational types’. By ‘engagement’ Manders means generation
and acceptance of these physical representations (following normal standards
for them, of course). Contrary to the received wisdom which holds that dia-
grams are a potential source of error, Manders upholds the inferential practices
involved in each of these different representational types, including making
inferences based on geometric diagrams.

A diagram, a text, and an equation can all be about the same thing, yet can
be decomposed in strikingly different ways. Different representations can bring
out different aspects. These differences involve ‘representational granularity’,
as Manders calls it. For example, a diagram showing the perpendicular to a
base of a triangle must show that perpendicular either inside or outside the
base. An equation describing that triangle with a perpendicular ignores whether
it falls inside or outside. Thus, as Manders puts it, the diagram has a larger
grain size than the equation. (However, this is only relative to the linkage
between diagram and equation; without some suitable linkage representational
types are simply non-comparable.) In traditional geometry, discursive text has
smaller grain size than a diagram, and so will support much richer inferences.
The exact length of a line, for instance, is not discernible from a diagram, but is
easily captured in words. On the other hand, inferences based on, say,
part/whole relations in a diagram are just as cogent as any piece of discursive
reasoning. The ‘control of representational grain size’ is crucial, says Manders,



to understanding many intellectual activities, but most especially to understand-
ing mathematics. 

Here’s an interesting question: Does a particular notation create or merely
reveal the properties of objects? Consider the example (mentioned by Manders)
of a geometric figure, say a parabola, presented traditionally with a diagram or
by means of an equation (see Figure 6.10). Does this curve have a degree? The
idea would have made no sense at all to geometers before Descartes. But any-
one trained in analytic geometry would say, Yes, it’s a second-degree curve
(because the equation describing a parabola, y = ax2, has the number 2 for an
exponent).

For the formalist-minded, who think that mathematical properties are essen-
tially properties of notation, the property of ‘degree’ can only be strictly associ-
ated with the equation, not the diagram. Formalists may be happy to say the
diagram of a parabola has degree 2, but that is because of the prior conventional
association of the equation with the diagram. However, if analytic geometry had
never been created, then the diagram would simply not have any degree at all.

A Platonist, on the other hand, instinctively says, Yes, the diagram itself does
have a degree. The degree of a parabola only became manifest at the time of the
creation of analytic geometry with its depiction of a parabola by means of a
second-degree equation, but the relevant property was there all along.

It would seem that the Platonist has the upper hand, since formalists are in
the embarrassing position of having to explain what it is about the diagram that
made it possible to invent the notation of analytic geometry in such a way that
this particular diagram turns out to have degree 2. In other words, formalists are
going to have to postulate some objective property of the curve to explain why
it is that analytic geometry works the way it does. In short, notations reveal
properties, they do not create them.

This was an easy victory for Platonism over formalism. A much more inter-
esting challenge comes from this question: Are there properties that can only be
discovered using a particular notation? We might well grant that a notation does
not create anything, it merely reveals what is already present, but we still won-
der whether a specific notation was essential for making a particular discovery.
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Figure 6.10 A parabola



The degree of a curve was not created by analytic geometry, but could the prop-
erty of degree have been discovered without Descartes’ form of representation?
I suspect that the answer is No; particular types of notation are indeed essential
for the discovery of certain properties. Microscopes did not create microbes, but
may have been necessary for revealing them.

There is a theoretical reason for thinking that different notations would cap-
ture different truths. For many mathematical objects of interest there will be
uncountably many relevant facts. Any reasonable notation for describing these
facts would consist of a countable number of basic elements (e.g. an alphabet)
and only allow countable combinations of these in constructing statements to
represent the facts. So there could only be a countable infinity of these repre-
sentations. Consequently, many facts would have to go unrepresented in that
notation. This doesn’t mean that some facts are unrepresentable in principle. A
particular fact need only go unrepresented in a particular notation – it might
well be captured by another. Indeed, for any fact, there is some possible nota-
tion in which it is represented. This sketchy argument suggests that different
notations are indeed necessary to reveal different mathematical facts. But the
argument is no more than a sketch. It would be much better to stick to real
working examples; so let’s return to knot theory.

What are the different forms of representation used in knot theory?
(1) Pieces of string, rope, etc. joined at the end. One might think: These are not
representations of knots; these are knots. Not so. The knots of knot theory
don’t, for instance, have any definite length; they can have arbitrarily many
knottings with arbitrarily many twists in an arbitrarily short strand. These are
characteristics that no physical piece of string can have. Of course, actual pieces
of rope are excellent representations of knots and, clearly, working with ropes
and cords and threads suggested knot theory in the first place. Also, many
important results have been attained by manipulating pieces of string. But the
knots of knot theory are abstract entities. Similarly, numbers are not bananas,
though fruit fondling may be a good way to learn elementary arithmetic. 
(2) Projections. The diagrams that we typically use are projections of knots
onto the plane. We’ve only looked at projections onto the Euclidean plane;
others are possible. Much interesting work stems from investigating projections
onto the surface of a sphere or a torus, and so on. Projections make crossings
manifest, and this is the key to most significant results in knot theory.
Projections allow us to define crossings, crossing numbers and, most import-
antly, they allow us to define Reidemeister moves.
(3) The Dowker and Conway notations. I’ll lump these together, since they are
both connected to knot projections. In each case the crossings are labelled, then
the labels are manipulated to achieve striking results. At this point one might
think that these notations are not really forms of representation, but are rather
applications of number theory to knots. In particular, Conway’s notation for
knots (with its remarkable use of continued fractions) is an application of

K N O T S  A N D  N O T A T I O N 95



already known properties of numbers to knots. I don’t think this distinction can
be as altogether clear as it would seem to be. As I mentioned above, in the case
of the Arabic positional notation for the natural numbers, brilliant notations do
not come ex cathedra. Developing a notation and learning about the objects
named goes hand in hand. In the case of the natural numbers, their recursive
properties are mirrored in the notation. And it is certain that no one first
invented the Arabic numerals and then later discovered that the natural numbers
form a recursive set. I suspect that the right answer in the case of knot theory is
both – the natural numbers are both a notation, a labelling device, and they are
being applied.
(4) Polynomials. These are also defined on knot projections. It is not known
whether polynomials of knots can be defined directly on knots or only on the
planar projections (see Lickorish and Millett 1988). If the later turns out to be
the case, then, interestingly, this means that one form of representation is
dependent upon another. 

Above, I mentioned the curious way calculations of knot polynomials are
carried out. We wrote down things that look like equations – indeed they are
equations. But note also that pictures occur in these equations. For instance,
�b� � A �c� � A�1 �d�. This notation – so commonly used because it is
so efficient in calculating polynomials – is certainly not like other verbal
symbolic notations. It seems more like hieroglyphics or picture writing. We’d
be hard pressed, for instance, sharply to separate syntax from semantics, since
the knot projection that the equation represents appears right in the equation
itself.

There are a few morals that can be drawn from these simple observations.
Notice that an object might be described in, say, Cartesian or spherical coordi-
nates. There is an easy way of transforming the description from one to the
other. Solving an equation might be easier in one than the other, but they are
representationally equivalent. The same cannot be said for the different forms
of representation in knot theory. Each picks out different things. Of course,
they overlap to some extent, but there are properties that one notation can
describe that others cannot.

One of the most important morals to be drawn from knot theory is perhaps to
admit a very deep kind of incompleteness in any form of representation.
Mathematics is so rich that no form of representation can hope to capture all of
it. Curves actually have the property of degree, which we stumbled upon only
by inventing the algebraic notation of analytic geometry. Knots – though you’d
never know it from playing with bits of string – have properties associated with
continued fractions and polynomials. And we discover these properties only by
inventing new notations which make them manifest. Spinoza thought that
God/nature has infinitely many different properties, but that we are only aware
of two, thought and extension. The moral to be drawn from knot theory is that
knots (and all other mathematical entities) are like this: they, too, have indefinitely
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many different kinds of attributes, and sometimes we only uncover them as we
find new ways of representing them.

There’s one final moral to draw about how language works.

Sense, Reference and Something Else

Frege famously declared that meaningful expressions have a sense and a ref-
erence (1892). ‘The morning star’ and ‘the evening star’ both have the same
reference (Venus), but they differ greatly in sense, their ‘mode of presentation’,
as Frege put it. We need not worry about the problems of this theory, nor about
its serious rivals. I want only to note that it misses something important, an
ingredient that ought to be present in any theory of mathematical language.

In addition to the sense and the reference of a term, there is something else
which I’ll call ‘computational role’. The name ‘2’ has a sense (i.e. the natural
number which is the successor of one), and it has a reference (i.e. the number
two). But it also plays a computational role in the Arabic notation. The role it
plays is built right into the recursive notation itself. It is very easy to miss this
aspect of a meaningful expression, since most philosophy of language is built
on examples like ‘the morning star’, ‘the present king of France’, ‘water’ and
‘gold’. We don’t calculate with any of these terms; they play no role in system-
atic computation. But when we reflect on the amazing power of the Arabic
numerals and spend some time playing with the various ingenious notations
invented for knot theory, something like computational power becomes evident.

It is often suggested that Frege’s sense is a method or procedure for deter-
mining the reference. Dummett (1978a) holds such a view, for example, and so
does Moschovakis (1990) who has developed this view at great length. Fregean
sense, according to him, should be seen as an algorithm (and reference as value,
output). Some connection should be apparent among Dummett’s procedure,
Moschovakis’s algorithm, and what I’m calling computational role. But they
cannot be the same thing. To see this, note that the sense of the term ‘2’ and the
sense of the term ‘two’ are the same; anyone who didn’t know ‘2 � two’ would
simply be ignorant of English. As Frege noted, someone might not know ‘the
morning star � the evening star’. This latter truth reflects a great astronomical
discovery; the terms have the same reference, but quite different senses, unlike
‘2’ and ‘two’. By contrast, ‘the even prime number’ has a different sense from
‘2’ and ‘two’, though all three terms have the same reference. Any procedure or
algorithm (connected to sense à la Dummett or Moschovakis) involving ‘2’ is
the same as that involving ‘two’. However, we obviously cannot calculate with
‘two’ in the same way as we calculate with ‘2’ or even with the Roman ‘II’. The
first of these has little or no computational power; ‘II’ is quite a bit better, and
‘2’ is truly a marvel.
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The notions of sense and reference are simply not enough to do full justice to
the computational brilliance of a clever notation. Computational role must be
included along with them as an objective feature of language, especially math-
ematical language. Of course, I’ve done little more than point out the impor-
tance of this feature of notation; a full development awaits.

The point of this chapter has been to make clear some of the features of
mathematical notation and to remind ourselves of how important and how bril-
liant a good notation can be. There is nothing new in this. Mathematicians have
always appreciated clever notations; but symbolism is usually seen as a tool –
it’s what the tool does that we really care about. Fair enough. But if we want a
richer appreciation of mathematics, we should focus some of our energy on this
remarkable tool – notation. Besides mathematics (and may be Chemistry),
poetry alone works wonders with it.

Further Reading

There is virtually nothing written on this topic. Cajori’s A History of
Mathematical Notations might be useful, but it is best to simply look at mathe-
matics at work. Chemistry also makes good use of its notation, so a look at any
chemistry text might be helpful, as well. For good introductions to knot theory,
see Adams, The Knot Book or Livingston, Knot Theory.
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CHAPTER 7
What is a Definition?

It’s hard to imagine a subject more likely than definitions to bring yawns to
the reader. Yet, it’s a topic packed full of interesting and important issues,
many of them central to how we understand mathematics. The nature of

definition is not much discussed today for the simple reason that there is an
official view which is completely dominant and apparently unproblematic. 

The Official View

This can be found, for example, in Principia Mathematica:

A definition is a declaration that a certain newly-introduced symbol or
combination of symbols is to mean the same as a certain other combi-
nation of symbols of which the meaning is already known.

It is to be observed that a definition is, strictly speaking, no part of
the subject in which it occurs. For a definition is concerned wholly
with symbols, not with what they symbolize. Moreover, it is not true or
false, being an expression of a volition, not a proposition.

(Whitehead and Russell 1927: 11)

The same view is sometimes expressed by saying that a definition must satisfy
the two criteria of eliminability and non-creativity. We begin with undefined
terms, called primitives; then we must always be able to replace any defined
term in favour of primitive ones (eliminability) and no new theorems should be
proven with the help of definitions that could not be proven without them (non-
creativity).1
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Set theory, for instance, has two primitives, set and is a member of. All other
concepts are defined using these. (Logical terms are taken as already under-
stood.) Subset, for instance, is defined this way:

Instead of using the short and simple subset notation (on the left), we could
always resort to the longer form in primitives (on the right). There is a theorem
of set theory that says the empty set is a subset of every set: (∀S)� � S. We
could express this theorem using primitives as: (∀S)(∀x)(x � � → x � S).
Thus, the symbol ‘�’ can be eliminated in favour of primitives with no loss of
ability in expressing the content of any theorem. Its utility as an abbreviation is
evident, but the content of the theorem can be expressed without it.

Mathematicians often introduce concepts in a sloppy way – sloppy, that is,
according to the official view. Typical is the introduction of the empty set
through a definition: � � def{x: x 
 x}. A textbook author who does this then
goes on to prove the theorem that the empty set is a subset of every set. The rea-
son this is (rightly) considered sloppy is that it is a creative definition. In such a
presentation, the theorem could not be proved without the definition. The proper
way to do things on the official view is to introduce the empty set by means of a
definition and to assert its existence separately in an axiom. These are logically
quite distinct. The definition of the empty set by itself does not guarantee its
existence any more than a definition of a unicorn guarantees that there is one.

There is much to be said for the official view. It imposes a great deal of
clarity and order on mathematics. But it was hard won, and has only become
orthodoxy in this century.

The Frege–Hilbert Debate

The official view of definitions with its insistence on eliminability and non-
creativity did not fall out of the sky. It largely resulted from a debate almost a
century ago when the giants fought over these issues. The debate followed on
Hilbert’s publication of Foundations of Geometry (1899). Hilbert remarked that
key terms were being defined contextually by the axioms; Frege objected to
this. In the exchange the official view emerged.

Hilbert opened his Foundations of Geometry with a ‘definition’ as he calls it:

Consider three distinct sets of objects. Let the objects of the first set be
called points and be denoted by A, B, C, . . .; let the objects of the sec-
ond set be called lines and be denoted by a, b, c, . . .; let the objects of
the third set be called planes and be denoted by α, β, γ, . . .

(Hilbert 1899: 3) 

 A B ↔ def x ∀( ) x A x B � → � ( ) �



This seems like no definition at all, but rather a picking out of primitives, point,
line and plane, and fixing a notation for each.

Hilbert presents his axioms in distinct groups; there are eight Axioms of
Incidence, four Axioms of Order, five of Congruence, one of Parallels, and two
of Continuity. To convey a feel for Hilbert’s mode of presentation, I’ll repro-
duce part of the section on Axioms of Order. Note especially the beginning
remarks on definition.

§3. Axiom Group II: Axioms of Order
The axioms of this group define the concept ‘between’ and by means of
this concept the ordering of points on a line, in a plane, and in space is
made possible.

DEFINITION. The points of a line stand in a certain relation to each
other and for its description the word ‘between’ will be specifically
used.

II, 1. If a point B lies between a point A and a point C then the points
A, B, C are three distinct points of a line, and B then also lies between
C and A.

II, 2. For two distinct points A and C, there always exists at least one
point B on the line AC such that C lies between A and B.

II, 3. Of any three points on a line there exists no more than one that
lies between the other two.

(Hilbert 1899: 4f.)

There followed a series of letters between Hilbert and Frege, then two articles
by Frege on the foundations of geometry (Frege 1971); he returned to the issue
again a few years later in unpublished papers (Frege 1979). Many topics were
discussed, but the nature of definitions and closely related matters was the prin-
ciple focus of their exchange. Frege took issue with several claims and assump-
tions made by Hilbert. Among the specific topics are: definition versus
explanation, contextual definition and the role of axioms, consistency and exis-
tence, independence proofs, and defining new versus old terms. Let’s look at
each of these.

Definition vs. Explication

We start with primitives or undefined terms. ‘Every definition’, says Frege,
‘contains a sign (expression, word) which previously had no reference and

A C B

A B C
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which is given a reference only through this definition’ (1971: 7). Axioms are
expressed with primitives or defined terms. But axioms and definitions are not
the whole of it. ‘We may assume that there are propositions of yet a third kind:
the explicatory propositions, which however, I should not like to consider as
belonging to mathematics itself but instead should like to relegate to the pre-
amble, to the propaedeutic’ (ibid.: 8).

In any presentation of, say, set theory, ‘set’ and ‘membership’ are the primi-
tives. Though undefined, they are much described. A textbook on set theory will
typically say that a flock of birds or a pack of wolves is a set. If it’s wise, it will
further add that neither a flock of birds nor a pack of wolves is strictly a set,
since a flock can fly south and a pack can be on the prowl, whereas sets go
nowhere and menace no one (except the odd undergraduate). By means of such
illustrative examples and informal discussion we explicate the concept of a set.
Frege’s point is that such an explication is part of the preamble, not part of
mathematics proper.

After his exchange with Hilbert, Frege further clarified his view, giving a
simple formulation of what is now the standard account: ‘all [a definition] does
in fact is to effect an alteration of expression. . . . it is not possible to prove
something new from a definition alone that would be unprovable without it. . . .
In fact considered from a logical point of view it stands out as something
wholly inessential and dispensable’ (1979: 208). As Frege notes, though, being
without logical significance does not imply being without psychological signi-
ficance. Definitions are very likely essential from a practical, human point of
view.

Contextual Definition

Hilbert championed so-called contextual definitions. Terms are not explicitly
and independently defined, but rather pick up their meaning by figuring in the
axioms. Frege was dead set against this.

It is absolutely essential for the rigour of mathematical investigations
that the difference between definitions and all other propositions be
maintained throughout in all its sharpness. The other propositions
(axioms, principles, theorems) must contain no word (sign) whose
sense and reference or (in the case of form-words, letters in formulae)
whose contribution to the expression of the thought is not already com-
pletely settled, so there is no doubt about the sense of the proposition –
about the thought expressed in it.

(Frege 1971: 8)

The problem as Frege saw it was that if a term did not already have a sense
before the statement of the axiom, then the axiom couldn’t express a thought.
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This didn’t trouble Hilbert in the least. On the contrary, he saw it as a virtue. A
formal theory applies to anything which satisfies the framework, not just the
intended interpretation.

[E]very theory is merely a framework or schema of concepts together
with their necessary relations to one another, and that the basic ele-
ments can be construed as one pleases. If I think of my points as some
system or other of things, e.g. the system of love, of law, or of chimney
sweeps . . . and then conceive of all my axioms as relations between
these things, then my theorems, e.g. the Pythagorean one, will hold of
these things as well.

(Hilbert in Frege 1971: 13)

Hilbert’s notion of contextual definitions is intimately tied to a more general
theory of meaning which has been highly influential and which led to the in-
famous incommensurability of Kuhn, Feyerabend, and others. The doctrine of
incommensurability says that as we change our beliefs (i.e. change our theory,
axioms) we change the very meaning of the terms involved. Meaning and belief
are intimately interconnected. As Hilbert puts it:

[E]ach axiom contributes something to the definition, and therefore
each new axiom alters the concept. ‘Point’ is always something differ-
ent in Euclidean, non-Euclidean, Archimedean, and non-Archimedean
geometry respectively.

(Hilbert in Frege 1971: 13)

Interestingly, the same outlook has been proposed by prominent physicists in
Gravitation, a very influential textbook on general relativity.

[T]hat view is out of date which used to say ‘define your terms before
you proceed’. All the laws and theories of physics . . . have this deep
and subtle character, that they both define the concepts they use . . . and
make statements about these concepts. Contrariwise, the absence of
some body of theory, law, and principle deprives one of the means
properly to define or even use concepts. Any forward step in human
knowledge is truly creative in this sense: that theory, concept, law, and
method of measurement – forever inseparable – are born into the world
in union.

(Misner et al. 1973: 71)

Contextual definition and incommensurability go hand-in-hand.
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Defining Old Terms

In setting up a formal system we often use terms which already have a well-
established meaning. How should a definition of ‘number’ or ‘addition’, for
instance, be understood? Since they have a sense already, it would appear that
the notion of arbitrary stipulation is out of place. After his debate with Hilbert,
Frege expressly worried about this problem (1979: 210–11). If we can give a
correct analysis (using the primitives of the theory), so that both the old term
and the new analysing expression have exactly the same sense, then the prob-
lem is solved. But we can never, of course, be sure that the two senses are the
same. On the other hand, we might introduce a new term, say, ‘knumber’
(sounds like ‘number’), which is defined by stipulation. And if this new term
turns out to be completely adequate for all the purposes we could want the
concept for, then we may simply forget about the old term ‘number’, since it is
completely unnecessary. (This is often called eliminative reduction.) Again,
problem solved. Either way, the difficulty presented by old terms is overcome;
all definitions can indeed follow the pattern that we have been calling the
official view. 

Frege adds a crucial remark about analysing an old concept: ‘The effect of
the logical analysis of which we spoke will then be precisely this – to articulate
the sense clearly. Work of this sort is very useful; it does not, however, form
part of the construction of the system, but must take place beforehand’ (1979:
211). In other words, the work that goes into this analysis is part of the pre-
amble, the explication of the term; it is not part of mathematics proper.

Frege’s account would seem to be completely unworkable in the light of
Lakatos’s example (which we shall look at below). The main point coming
from Lakatos is that concepts are ‘proof-generated’, as he puts it. There is no
old, pre-analytic concept of a polyhedron that is correctly analysed and defined
in primitive terms, nor is there a new concept of polyhedron that can be so
defined once and for all at the outset. Lakatos’s point is that the concept of poly-
hedron changes as we theorize about it. On Frege’s view, it must be fixed at the
start. But this would seem to be impossible if Lakatos is remotely right.

Some of the greatest mathematical achievements would be judged ‘pre-
mathematical’, by Frege’s lights. Dedekind’s theory of real numbers, for
instance, would have to count as not mathematics proper. But then, what sort of
activity is it? It is certainly not physics, nor is it literary criticism. It might
conceivably be called philosophy, since it is concerned with foundational
issues. But it seems absurd not also to call it mathematics.

The official view could only be maintained as some sort of regulative ideal –
at the end of all mathematical theorizing. Then we can formulate the final sys-
tem with definitions fixed at the outset. But this has nothing to do with actual
mathematical activity, and any serious philosophy of mathematics must
account, at least in broad outline, for how things are actually done.
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Consistency and Existence

One of Hilbert’s main aims was to show the consistency of his presentation of
geometry. Frege failed to see the need of separate consistency proofs: ‘From the
fact that axioms are true, it follows that they do not contradict one another’
(1971: 9). Hilbert couldn’t be more opposed: rather than truth implying consis-
tency, it’s the other way round: ‘If the arbitrarily posited axioms together with
all their consequences do not contradict one another, then they are true and the
things defined by these axioms exist. For me, this is the criterion of truth and
existence’ (Hilbert in Frege 1971: 12).

This is a very curious view, and Frege raised the obvious objection (1971:
18ff.): The notion of an all-powerful, all-loving, all-knowing being is (we may
presume) a consistent concept. By Hilbert’s lights we then have a proof of the
existence of God, which seems preposterous. 

Hilbert was not alone in holding this amazing view. Poincaré, too, held that
consistency and existence go together. No sensible person thinks that the con-
sistency of ghosts, goblins and the Loch Ness Monster (with everything else we
know to be true) implies that these things exist. Yet, the analogous view in
mathematics is maintained by some of the greatest mathematicians.

Poincaré’s espousal of this principle seems something of a mystery. His
philosophical sympathies run along constructivist or intuitionist lines, so one
would expect him to link mathematical existence with constructability, not mere
consistency. Hilbert is less surprising, if we think of him as a formalist. Then,
mathematical existence is not taken in any serious literal sense. For example,
suppose we are working with the real numbers and the statement ‘every equa-
tion has a root’ is consistent with everything else we maintain. Then it is true,
and the roots exist, according to Hilbert. Thus, the equation x2

� 1 � 0 has a
solution, x � √�1. This entity, √�1, though previously unencountered and not
itself a real number, is then taken to exist. Years later, when he became a for-
malist in full flight, Hilbert declared that we can add ‘ideal elements’ (points at
infinity, imaginary numbers, transfinite numbers) to finite mathematics to make
a smoother system. Hilbert’s notion of existence is thus seen to be innocuous;
it’s a kind of fictional existence. It is certainly not the same sense we normally
employ.

For Frege the Platonist, asserting mathematical existence is just as serious as
asserting the existence of anything in the physical realm. And given the analogy
that Platonists think holds between the mathematical and the physical, it is not
surprising that he should dismiss Hilbert’s linking of truth and existence with
consistency. 

But, perhaps Frege is too wedded to the analogy. At this point, the simi-
larity between the physical and the abstract seems to me to break down.
In the mathematical realm, it is plausible to think that possibility and actu-
ality go hand-in-hand. Suppose all of known mathematics is captured by set

W H A T  I S  A  D E F I N I T I O N ? 105



theory. Now imagine that we posit some new sort of abstract entity, zonks,
and we develop some intuitions about them, formulate axioms, prove some
interesting theorems (including some with new consequences for set theory
that we already know to be true), pose some interesting open problems
about zonks, and so on. Assume, further, that all of this is shown to be inde-
pendent of the axioms of set theory. It would be hard to deny that this, too,
is legitimate mathematics. The axioms of zonk theory are just as likely to be
true as set theory and zonks are just as likely to exist as sets. In short, if
there is logical room for zonks, then they do exist. In the physical realm,
Occam’s razor is the battle cry; but in the Platonic realm: the more the
merrier.

If this principle is right, then the official view’s prohibition against so-
called creative definitions is undermined. The interesting way in which it is
violated comes (as in the graph theory examples which we will examine
shortly) from alternative forms of representation. We introduce new con-
cepts (face, unlabelled graph) and immediately start proving new results
based on these concepts. It may be that these terms can be defined by the set
theory primitives that graph theory adopts, but not in any feasible sense.
They are, however, intuitively or antecedently understood – usually in terms
of the diagram. We seem to have non-eliminable, creative definitions, and
they play a major role in achieving some of graph theory’s most important
results.

Independence Proofs

One of Hilbert’s main concerns in Foundations of Geometry was with show-
ing that the axioms are independent of one another. He did this by construct-
ing models which, first, make all the axioms but one, true, then, another
model making all but that one axiom false. The isolated axiom is thereby
shown to be independent of the others. Frege pounced on this. If terms are
being defined by the axioms, then taking an axiom to be true in one setting
and false in another changes the very meaning of any terms involved. As
Hilbert earlier put it, the very meaning of ‘point’ differs in Euclidean and non-
Euclidean geometry. So the parallel axiom is not one and the same thing
which is being asserted one time and denied another in any proof of indepen-
dence; the very meaning has changed. Thus, Hilbert’s technique of showing
independence won’t work.

Elsewhere Frege remarks that ‘What we prove is not a sentence, but a
thought’ (1979: 206). Thoughts (i.e. propositions) are perfectly definite, unam-
biguous things; Hilbert’s axioms, which only contextually define key terms,
allow an ambiguity which shows they cannot really be thoughts, the true subject
matter of mathematics. Hilbert’s way of providing independence proofs (i.e.
reinterpretation of the axioms) brings this out fully.
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Reductionism

The standard view of definitions does not impose reductionism upon us, but it
certainly makes reduction easy and natural. In number theory, for example, we
have several important concepts: number, successor, prime, composite, perfect,
square, even, odd, and so on. However, all of these can be reduced to two: num-
ber and successor. In set theory, as I mentioned above, set and is a member of
are the undefined terms; all other concepts, such as: cardinal, ordinal, function,
union, intersection, finite, infinite, are defined by those two primitives. The stan-
dard view of definitions requires that all mathematical theories be presented in
this way. Indeed, it requires that every theory in any intellectually respectable
field be so formulated. There is no justification for taking hydrogen atom as
something over and above what can be defined using the prior concepts: proton,
electron, central force, etc. Within any theory there should be as few primitives
as possible. But what about the relations among different theories? 

It has long been an article of faith that all of mathematics can be reduced to
set theory. This reduction involves two ingredients: First, all the concepts of
theory T (say number theory) can be defined in terms of set theory concepts.
This means that terms like number and successor which are primitives in num-
ber theory become defined terms in set theory. (For example, as mentioned
earlier, one of the proposed definitions of particular numbers goes like this:
0 � �, 1 � {�}, 2 � {�,{�}}, . . . .) The second ingredient of the reduction
says: all of the theorems of T are theorems of set theory. That is, when the
theorems of number theory are expressed in set theory terms, they can be
proven from set theory axioms.

Logicists (Frege, Russell) hoped to carry out a further reduction of set theory
to logic. This has generally been thought to be a failure, though much recent
activity suggests that a significant chunk of the programme might succeed.2

Regardless of the fate of logicism, the apparent reduction to set theory is a
remarkable achievement. The reduction, such as it is, is not a concrete result sit-
ting on the library shelf, something we can point to and say: There it is! To a
large extent, it is a matter of faith. Much is done in, for example, Russell and
Whitehead’s Principia Mathematica. But much remains undone. The faith that
it all can be reduced is not irrational dogma; when pushed, mathematicians usu-
ally do come up with set theory definitions of some new object that they wish to
investigate. But a measure of scepticism, as we shall see, is not wholly out of
place.

There are three attitudes we could adopt towards this alleged reduction of
mathematics to set theory. First, it’s true; all of mathematics really does reduce
to set theory. Second, all of mathematics can be represented in set theory, but
we should not think that mathematics � set theory. Functions, for example, can
be represented as ordered pairs, but perhaps that is not what functions really
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are, and numbers have the same structure as the sequence of sets: �, {�},
{�,{�}}, . . ., but that need not be what numbers really are. The claim may be
analogous to one we sometimes encounter in discussions of the mind–body
problem: the mental and the physical are correlated, but they are not identical.
Third, there is simply no reduction at all; either some of the concepts of T can-
not be plausibly defined by set theory concepts, or (even if they can) some of
the theorems of T cannot be derived from the axioms of set theory.

As we continue to discuss definitions, we shall keep in mind this larger issue
of reductionism.

Graph Theory

Graphs are defined as follows: A graph, G, is an ordered pair �V,E� such that the
set E (of ‘edges’) is a subset of the unordered pairs of the set V (of ‘vertices’).
It is often added that V and E are finite. For example, G � �{a,b,c}, {{a,b},
{b,c}, {c,a}}� is a graph with three vertices and three edges. G� � �{a,b,c,d,e},
{{a,b}, {b,c}, {b,d}}� has five vertices and three edges. Note that the basic def-
inition of a graph is given completely in set theory terms.3

No sooner are such definitions and examples given, than the typical text on
graph theory says that it would be natural to show a picture of the graphs. Our
two examples, G and G�, look like this:

Looking at both the set theory definition and at the diagram, it is little wonder
that working mathematicians (as well as the rest of us onlookers) have a strong
preference for the picture. Nevertheless, the set theory definition proves to be
very useful, for example, in letting us know that Figure 7.2 is a picture of the
same graph as Figure 7.1(b), in spite of their very different appearances.

A planar graph is one which can be drawn with no edges crossing. The graph
(known as K4) in Figure 7.3(a) can be redrawn as in Figure 7.3(b). (K4 is called
a complete graph because each vertex is joined to every other vertex.) The
so-called utility graph (Figure 7.4) is not a planar graph. (Try redrawing it
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Figure 7.1 The graphs G (left) and G� (right)



without any crossing lines; you will quickly become convinced that it cannot be
done.)

There are different ways of proving a graph non-planar. One way uses the
Jordan Curve Theorem which says that any simple closed curve divides the
plane into two regions and that any continuous line from inside to outside cuts
the boundary. The ideas of crossings, being planar, and the use of the Jordan
Curve Theorem, etc. all make essential use of the diagrammatic representation
of graphs. 

A fundamental theorem in graph theory is Euler’s theorem which we saw
earlier in connection with polyhedra (and will see again below). In this setting
it says: V � E � F � 2 for any planar, connected graph (where V, E and F are
the number of vertices, edges and faces, respectively; the region outside the
graph is considered a face; connected means no vertex is isolated as, for
example, e is an isolated vertex in Figure 7.1(b)). Figure 7.5 illustrates the Euler
relation.

‘Vertex’ and ‘edge’ were defined set theoretically. The notion of a ‘face’ can
be, too – but not readily. It is obviously a geometric notion, and Euler’s theorem
is completely geometric in spirit. 

Two graphs are isomorphic when there is a one–one correspondence between
their vertex sets, a correspondence which preserves adjacency. Thus, in Figure.
7.6, the graphs G and G� are isomorphic.
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Figure 7.3 Figure 7.4

Figures 7.3 and 7.4 The graph 7.3(a) is planar since it can be redrawn as 7.3(b); 7.4 is
not planar



It is common to identify isomorphic graphs and simply say that G � G�. If
we look at the diagrams, this identification is perfectly natural. Given the set-
theoretic definition of graphs, however, we must say that strictly speaking G
and G� are members of the same equivalence class (the isomorphism providing
the equivalence). This seems a straightforward matter and quite unproblematic
until we consider the notion of an unlabelled graph. Notice that in the figures
above, some of the graphs had labels (names attached to the vertices) and some
did not. Given the set-theoretic definition of a graph, what could an unlabelled
graph possibly be? Graph theory books and research papers are full of
unlabelled graphs, but they are nowhere defined.4

The most natural possibility that springs to mind runs something like this: An
unlabelled graph diagram is a picture of an equivalence class of all labelled
graphs which are isomorphic to some particular labelled graph. This definition
begins to look implausible, however, when we consider the automorphisms of
an unlabelled graph. (An automorphism is an isomorphism of the graph to
itself.) Consider first, the automorphisms of the labelled graph in Figure 7.7(a).
One is trivial, the identity map where everything stays the same. Another corre-
sponds to a rotation of  �� π radians. Yet another corresponds to a reflection where
a and c change places. These are easy to characterize set-theoretically. The
identity transformation is: a � a, b � b, c � c. In the rotation we have a � b,
b � c, c � a, the set of edges is unchanged. In the reflection example, a � c,
c � a, b � b; the set of edges is again unchanged.

Now consider the unlabelled graph pictured in Figure 7.7(b). The three auto-
morphisms I mentioned in Figure 7.7(a) (identity, rotation, reflection) are easily
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  E � 11

   F � 5

V � E� F � 2

Figure 7.5 An illustration of the Euler relation
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Figure 7.6 Isomorphic graphs
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grasped here as well. These automorphisms are intuitively straightforward ideas
when applied to the picture of the unlabelled graph. But how should they be
characterized in terms of set theory? We might wonder: can’t we just assume
there are labels on the vertices, labels which are defined by the equivalence
class of isomorphic graphs? This seems an obvious solution to our problem, so
let’s try it. Consider the set of graphs equivalent to G, and note that G has the
vertex set {a,b,c}; let’s call the equivalence class �G� and say that the unlabelled
graph has the ‘hidden’ labels �a�, �b�, and �c�. Initially this looks attractive, but
since any rotation is isomorphic to the initial graph, it follows that �a� � �b� �

�c�, so we lose our distinct vertices. The ‘obvious’ solution will not work.
I dare say there is an appropriate set-theoretic definition of automorphism for

unlabelled graphs, but it will prove no easy matter coming up with something. I
doubt that any definition which could be constructed in accord with the official
view will be either natural or useful. It is no surprise that graph theory books do
not provide one. Rather they all rely on a concept of unlabelled graph which is
clearly taken from graph diagrams. The unlabelled graph – which, I stress, is a
picturable geometric entity – would seem to be the primary concept. A labelled
graph is then understood to be an unlabelled graph with labels attached. This is
exactly the reverse of what is implied by defining graphs set-theoretically. In the
official way of doing things, we start from labelled graphs, then abstract from
them to arrive at the unlabelled ones.

I hope this doesn’t seem like a simple confusion of objects with their names.
Such a confusion would be to fail to distinguish the object, a, from it’s name, ‘a’.
In calling a graph unlabelled I mean to say more than a vertex has no name. I mean
also to say there is no object there. Of course, for some graphs the set of vertices
might be people, {Alice, Bob, and Carol}, or a set of events, {E, F, G}. By unla-
belled graph I mean to abstract away not only the names ‘Alice’ or ‘E’, and so on,
but also from the objects Alice and E, and so on. You might think of the graph the
way structuralists think of mathematical objects in general – they are structures
and the vertices are mere placeholders; there is nothing else there. Though I do not
find structuralism in the philosophy of mathematics generally appealing, some-
thing like it seems quite right in making sense of an unlabelled graph.

b

a c

(a) (b)

Figure 7.7 Labelled and unlabelled graphs



In thinking about this I’ve drawn heavily on conversations with Alasdair
Urquhart who remarks: ‘There is a mismatch between intuitive combinatorial
mathematics and set theory. The set theory universe imposes a label on every-
thing, so the labelled objects are primary by fiat. But this makes even elemen-
tary combinatorial mathematics clumsy. So it seems to me that such
considerations throw some doubt on the “mathematics � set theory” equation.’

In principle there may be a set theoretic characterization of everything that
goes on in graph theory – but providing such definitions and working with them
is in no way feasible. For the most part graph theorists do not use set theory to
make discoveries, nor to construct proofs, nor to make presentations of their
results for all the world to see.

Having said this, I must now state a significant caveat, but one which re-
inforces the main point. When graph problems are set up for computers, the
geometric notions must be defined in set theory terms. This would seem to support
the underlying primacy of set theory. However – and this is the crucial point –
mathematicians do not work with these definitions; they are only for machine
computation. The working definition is based on the picture, the diagram.

On the other hand, the set-theoretic characterization is not a useless, artificial
encumbrance – it is what makes different pictures representations of the same
graph, and it plays a major role in proofs of some highly important theorems.
The main results of Ramsey theory and random graphs, for example, are almost
wholly in set-theoretic terms. Given a collection of any six people, at least three
of them will be mutual acquaintances or complete strangers. That’s a special
case of Ramsey’s theorem. The situation can be captured in graph theory terms
by letting the people be vertices and the acquaintance relation and the stranger
relation be distinguished edges. The proof of the theorem is carried out in set
theory. A picture of the graph helps us to see what’s at issue, but does not show
that the theorem is true or give any hint as to its proof. The theory of random
graphs, as you might imagine, makes heavy use of probability theory which, of
course, is a branch of set theory. In browsing through graph theory textbooks,
it’s striking to notice the sudden drop-off of diagrams when random graphs are
discussed. Bollobás (1979), for example, has not a single picture in his chapter
on random graphs. Up to that point he was averaging almost one per page.

The problems that graph theory presents for the standard account of defini-
tions stem from the fact that graph theory makes heavy use of two distinct rep-
resentations of graphs – the set-theoretic and the pictorial. Basic concepts such
as vertex and edge are readily captured in both representations. Others, such as
unlabelled graph and face are natural in the pictorial representation, but forced
in the set-theoretic; Ramsey number, on the other hand, is naturally set-theoretic
and only artificially characterized pictorially.

Before drawing morals in any detail, let’s consider a different source of diffi-
culty for the official view of definitions, this time from Lakatos’s account of the
development of mathematics.
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Lakatos

The standard account of definitions is totally foreign to the mathematical world
of Imre Lakatos. In his wonderful Proofs and Refutations (1976) Lakatos, as I
mentioned earlier, retraces the history of a theorem, the Descartes–Euler claim
that for any polyhedron V � E � F � 2. As far as examples go, it’s just a co-
incidence that this theorem was mentioned above in my discussion of graph
theory and again with polyhedra. But it is not really such a coincidence when
you consider the type of examples involved – those with both algebraic and
geometric features prominent.

Recall that Proofs and Refutations is a dialogue in which various characters
stand in for historical figures. As the story unfolds, the theorem is proven, but
counter-examples arise; definitions are proposed and revised, and so on. Let us
enter Lakatos’s dialogue in the middle, at a point where a counter-example has
been given to the initial conjecture that V � E � F � 2 (which, at this point in
the story, has already been ‘proven’). The counter-example is a pair of nested
cubes (Figure 7.8), in which V � E � F � 4.

DELTA: But why accept the counter-example? We proved our conjecture – now
it is a theorem. I admit that it clashes with this so-called ‘counter-example’.
One of them has to give way. But why should the theorem give way, when
it has been proved? It is the ‘criticism’ that should retreat. It is fake
criticism. This pair of nested cubes is not a counter-example at all. It is a
monster, a pathological case, not a counter-example.

GAMMA: Why not? A polyhedron is a solid whose surface consists of polygonal
faces. And my counter-example is a solid bounded by polygonal faces.

TEACHER: Let us call this Def. 1.
DELTA: Your definition is incorrect. A polyhedron must be a surface: it has

faces, edges, vertices, it can be deformed, stretched out on a blackboard,
and has nothing to do with the concept of ‘solid’. A polyhedron is a surface
consisting of a system of polygons.
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Figure 7.8
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TEACHER: Call this Def. 2.
DELTA: So really you showed us two polyhedra - two surfaces, one completely

inside the other. A woman with a child in her womb is not a counter-example
to the thesis that human beings have one head.

ALPHA: So! My counter-example has bred a new concept of polyhedron. Or do
you dare to assert that by polyhedron you always meant surface?

TEACHER: For the moment let us accept Delta’s Def. 2. Can you refute our con-
jecture now if by polyhedron we meant a surface?

ALPHA: Certainly. Take two tetrahedra which have an edge in common (Figure

7.9(a)). Or, take two tetrahedra which have a vertex in common (Figure
7.9(b)). Both these twins are connected, both constitute one single surface.
And, you may check that for both V � E � F � 3.

TEACHER: Counter-examples 2a and 2b.
DELTA: I admire your perverted imagination, but of course I did not mean that

any system of polygons is a polyhedron. By polyhedron I meant a system of
polygons arranged in such a way that (1) exactly two polygons meet at
every edge and (2) it is possible to get from the inside of any polygon to the
inside of any other polygon by a route which never crosses any edge at a
vertex. Your first twins will be excluded by the first criterion in my defini-
tion, your second twins by the second criterion.

TEACHER: Def. 3.
(Lakatos 1976: 14–15)

Such activity is typical in the history of mathematics and Lakatos (with qualifi-
cations) endorses it. In this he may be extreme, but he is not entirely alone.
Many proponents of the standard account of definition say that not only should
a definition satisfy the above criteria of eliminability and non-creativity, but a
definition should also (where appropriate) be an adequate explication of an
intuitive or pre-analytic idea. The issue came up in the Hilbert–Frege debate.
According to Whitehead and Russell’s Principia Mathematica:

(a) (b)

Figure 7.9



In spite of the fact that definitions are theoretically superfluous, it is
nevertheless true that they often convey more important information
than is contained in the propositions in which they are used. [For exam-
ple, as] when what is defined is (as often occurs) something already
familiar, such as cardinal or ordinal numbers, the definition contains an
analysis of a common idea, and may therefore express a notable
advance.

(Whitehead and Russell 1927: 11–12)

The debate above over the proper definition of polyhedron is a quarrel over
the right explication of the pre-analytic or intuitive idea of a polyhedron.
Champions of the standard view could well accept this sort of activity. They
(with Frege) might think of it as laying the groundwork for the development
and presentation of a formalized theory. However, the implicit view is that once
the pre-analytic concept has been nailed down, then the theory may be cast in
canonical form with all terms defined by means of the primitives; the conditions
of eliminability and non-creativity would then be satisfied thereafter. Standing
outside the system, we can pass judgement and say that a particular definition
does or does not capture the intuitive, pre-analytic concept.

The account sounds plausible, but it does not begin to touch Lakatos’s prin-
ciple point. As an activity, analysing pre-analytic concepts in order to recast
them in a precise or canonical form is essentially conservative. He has a much
more radical account of concept formation. According to Lakatos, the best way
to get better definitions is through proofs. He is something of an essentialist in
that he adopts an Aristotelian view involving ‘real’ definitions, definitions
which are not merely ‘nominal’ or stipulative, but are actually true or false. On
the other hand, his definitions are not required to capture our pre-analytic, intu-
itive notions (which makes him quite un-Aristotelian). Lakatos’s position is
rather novel: definitions are theoretical.

One reason we keep modifying them is simply that the definitions we pro-
pose are fallible attempts to capture our intuitive concepts. That’s the more con-
servative enterprise, the one that can be incorporated into the standard account
of definitions. But, says Lakatos, there is a second, more important reason: the-
orizing actually changes our concepts. No concept is static; we shall always
have to modify our existing definitions, as he sees it, since conceptual change is
an inevitable by-product of theorizing.

PI: Proof-generated concepts are neither ‘specifications’ nor ‘general-
izations’ of naive concepts. The impact of proofs and refutations on
naive concepts is much more revolutionary than that: they erase the
crucial naive concepts completely and replace them by proof-generated
concepts. . . . In the different proof-generated theorems we have noth-
ing of the naive concept. That disappeared without a trace. . . . The old
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problem disappeared, new ones emerged. After Columbus one should
not be surprised if one does not solve the problem one has set out to
solve.

(Lakatos 1976: 89–90)

Definitions are conjectures. They are declarative sentences, which – if correct –
assert matters of fact. They are also subject to revision as a result of future
theorizing, either because the initial formulation was wrong or because the con-
cept itself has changed in the meantime. Since mathematics does not have a
foundation, according to Lakatos, there are no primitive terms (terms properly
singled out as undefined), and so defined expressions cannot be ‘eliminated’
(unpacked into a preferred set of primitives). Further, the definitions are obvi-
ously ‘creative’ since we can now derive things with the help of a definition
which we could not derive otherwise. Neither of the standard criteria for defini-
tions is satisfied in the Lakatosian way of doing mathematics, which is to say, the
way things have often actually been done and the way Lakatos thinks they
should be done. 

The distinction between definitions and theorems is blurred. Logically, they
are on a par – both have a truth value and both could be overthrown in the light
of further evidence. The difference is methodological – only theorems are
proved. Such is the lesson of history, according to Lakatos, and if we want
better mathematics, we had better start letting proofs generate the definitions for
us; we should abandon the strict insistence on nominal definitions.

Lakatos makes his case in a convincing way using the early history of poly-
hedra. Perhaps we should distinguish between young and mature theories, and
say that the standard criteria of eliminability and non-creativity hold for mature
theories. Lakatos, it must be admitted, has an ambivalent attitude towards this.
At times he distinguishes between the two and qualifies the heuristic method of
proofs and refutations as being applicable only to growing theories (1976: 42),
to what he calls ‘informal, quasi-empirical mathematics’ (1976: 5). But at other
times he points out that even mature theories can be rejuvenated. This (rightly)
suggests that the distinction between growing and mature theories, if it exists at
all, is blurred.

Not too much should be made of the fact that Lakatos’s example is a highly
intuitive, geometric one. Similar things can be said about several other branches
of mathematics. Recall, for instance, what was said earlier about the notion of a
set. Current axiomatizations of set theory have set and membership as primi-
tives, but set theory, nevertheless, tries to capture the correct idea of a set.
Cantor expressed his original conception as follows: ‘By a “set” we understand
every collection to a whole M of definite, well-differentiated objects m of our
intuition or our thought’ (Cantor 1895: 282). This conception is more or less
destroyed by Russell’s Paradox (since there is no set of objects corresponding to
the thought ‘is not a member of itself’) and by the Axiom of Choice (since there
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are sets corresponding to no intuition or thought). The current conception of set
is based on the so-called cumulative hierarchy. We start with the empty set, then
build up the hierarchy with arbitrary applications of the axiom of unions, the
power set axiom, etc. While current set theory is very impressive, most set
theorists who work on foundations claim that the concept of set is really not
well understood. And they think that only with a great deal of further research
into so-called large cardinals and other exotica, will a better understanding
come. The concept of set could well change again as a result of further research. 

The moral from set theory is the same as the moral from polyhedra: There is
no pre-analytic concept that we can first fix and then from that perfectly secure
point proceed to do proper mathematics. Theorizing has changed the concept of
set radically and could do so again. (Over the past 100 years the concept of
electron has similarly evolved as a result of theorizing.) This is a process which
happens after the pre-analytic concept has been incorporated either as an
undefined primitive or as a defined notion in accordance with the criteria of the
official account of definitions. There is no reason to think that there is ever a
time when a concept is finally stabilized.

Concluding Remarks

The official view of definitions has much to recommend it. It clarified an enor-
mous number of confusions and its imposition on working mathematics was a
real advance. But it cannot be completely right. Some concepts (polyhedron)
have a history and some theories (graph theory) have multiple representations
(set-theoretic and pictorial). The official view cannot cope well with either of
these. A quite different approach to mathematical definitions is needed. The
question in the title – what is a definition? – remains. It is a wide-open problem.

Further Reading

An old, but useful book on the nature of definition in general is Robinson,
Definition. The standard account of definition within mathematics is nicely pre-
sented in Chapter 8 of Suppes, Introduction to Logic. Bollobas, Graph Theory
is a standard work on that topic. Lakatos, Proofs and Refutations has much to
say of great interest on a number of topics, including definitions.
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CHAPTER 8
Constructive Approaches

Let’s define a number p as follows:

3, if Goldbach’s conjecture is true
p � �5, if Goldbach’s conjecture is not true

Now here’s a simple question: Is p a prime number? The obvious and natural
thing to say is Yes. And the proof is utterly trivial. The numbers 3 and 5 are both
prime, and Goldbach’s conjecture is either true or false, so either way p is a
prime. QED.

Amazingly, constructivists would not accept this. We cannot assert something
unless we have a proof – a constructive proof. If p is indeed a prime, then it is
some particular prime. If it is 3, then we need a proof of this. But we could only
produce a proof that p � 3 by producing a proof of Goldbach’s conjecture, some-
thing that we cannot now do. Nor can we now refute Goldbach’s conjecture, so
we can’t prove that p � 5, either.

You may find this absurd – I do. The natural response is to say that if con-
structive approaches lead to this sort of thing then let’s chuck them out. But not
everyone finds this absurd. As someone once said in a different context: ‘That’s
not a problem – that’s my theory.’

Let’s focus on a quite different kind of example, one which will likely promote
a measure of sympathy for constructivism.

In one of Shakespeare’s greatest creations, Hamlet, we learn that the Prince of
Denmark was a young man, that he was upset with his father’s death, horrified
with his mother’s remarriage, in love with Ophelia, a friend of Horatio, good with
a sword, and many other things. We can ask questions about Hamlet such as, Was
he indecisive? The standard answer is Yes, and various facts mentioned in the play
are cited in support. But what about questions concerning Hamlet’s great-grand-
father? Did he have blue eyes? Was he indecisive, too? Our instinctive answer is
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that these are meaningless questions. Shakespeare didn’t mention such a charac-
ter in the play, so there seems to be no fact of the matter about the eye colour
or anything else having to do with Hamlet’s great-grandfather. 

There’s a sharp contrast between the case of Hamlet’s great-grandfather’s eye
colour and my great-grandfather’s eye colour. The latter actually existed. I have
a drawing of him, but it’s in charcoal, so the eye colour is not revealed. No living
member of the family knows the colour and it’s not mentioned in any surviving
letter, etc. Nevertheless, there would seem to be a fact of the matter about his eye
colour, though I may never know what it is. But as for Hamlet’s great-grandfa-
ther’s eye colour, there simply isn’t a fact to be known. An omniscient being
would know the eye colour of my great-grandfather, but not of Hamlet’s.

With this example in mind, let’s redefine our number p as follows:

3, if Hamlet’s great-grandfather has blue eyes
p � �5, if Hamlet’s great-grandfather does not have blue eyes

In this case, it does not seem so preposterous to say that p is not defined. So
resisting the question, Is p a prime?, isn’t altogether nutty, after all.

There’s a long tradition of thinking of mathematical objects as mental enti-
ties. They are created by the mind, just as Hamlet and other fictional charac-
ters are. If the mind has not got around to creating them, then, like the eye
colour of Hamlet’s great-grandfather, there is nothing to be known. The anal-
ogy is far from perfect, but it will greatly help in coming to understand many
of the peculiarities of constructivism in mathematics.

From Kant to Brouwer

The grandfather of modern constructive mathematics is Immanuel Kant. One of
Kant’s central doctrines is that we do not experience things as they are inde-
pendently of us, but rather that the mind provides much of the framework of
experience. Space, time and causal relations, for instance, are supplied by us.
They are not part of an independent, objective reality – something which Kant
and his followers find utterly inconceivable. We experience objects as having a
location in space and events as happening in time, but that’s because space and
time are the mind’s contribution to experience – they are the form of experi-
ence. Kant’s view of mathematics is based on this. Our a priori knowledge of
geometric truths stems from the fact that space is our own creation. And arith-
metic, according to Kant, is connected to our perception of time. The crucial
element is the perception of succession. And so our a priori knowledge of
numerical truths stems from the fact that time is our own mental creation.



120 P H I L O S O P H Y  O F  M A T H E M A T I C S

L.E.J. Brouwer took Kant to be profoundly right about arithmetic (and more
generally, to be right about algebra and analysis, which he believed to be based
on arithmetic). Interestingly, he thought the development of non-Euclidean
geometry showed that Kant’s account of geometry was wrong.

Let me digress a moment. It’s interesting to see the strong relation to Kant
had by most of the main players in the philosophy of mathematics. Hilbert, the
formalist, was a thoroughgoing Kantian about finite arithmetic, to which he
added ‘ideal elements’ to recover all of classical mathematics; Frege, the
logicist and Platonist, rejected Kant’s account of arithmetic, but completely
accepted Kant’s view of geometry; Brouwer, the constructivist, reversed this,
embracing Kant’s view of arithmetic, but rejecting his account of geometry.
Even Russell characterized some of his views with respect to Kant. There is one
passage which never fails to shock me. In his early logicist days (when he first
adopted the view that mathematics � logic), Russell said, ‘Kant never doubted
that the propositions of logic are analytic, whereas he rightly perceived that
those of mathematics are synthetic. It has since appeared that logic is just as
synthetic as all other kinds of truth’ (Russell 1903: 457). One could, I suspect,
reconstruct a great deal of the philosophy of mathematics simply in terms of
attitudes and reactions to Kant. 

If Kant was the grandfather, then Brouwer is the father of modern construc-
tive mathematics. Current constructivism has a greater debt to his intuitionism
than to anything else, so let’s now have a look at it. Needless to say, since there
are many construtivists, there are many versions of constructivism. I will try to
give the general idea, ignoring subtle differences.

Brouwer’s Intuitionism

In fine Kantian fashion, Brouwer

considers the falling apart of moments of life into qualitatively differ-
ent parts, to be reunited only while remaining separated by time, as the
fundamental phenomenon of the human intellect, passing by abstract-
ing from its emotional content into the fundamental phenomenon of
mathematical thinking, the intuition of the bare two-oneness. 

(Brouwer 1913: 80) 

Continuing in the same vein, Brouwer writes:

This intuition of two-oneness, the basal intuition of mathematics,
creates not only the numbers one and two, but also all finite ordinal
numbers, inasmuch as one of the elements of the two-oneness may be



thought of as a new two-oneness, which process may be repeated
indefinitely; this gives rise still further to the smallest infinite ordinal
number ω. Finally this basal intuition of mathematics, in which the
connected and the separate, the continuous and the discrete are united,
gives rise immediately to the intuition of the linear continuum, i.e. of
the ‘between’, which is not exhaustible by the interposition of new
units and which therefore can never be thought of as a mere collection
of units. 

(ibid.: 80)

This is pretty obscure stuff. It was written early in his career. Alas, four decades
later it got no better. The ‘first act of intuitionism’, says Brouwer

completely separates mathematics from mathematical language, in
particular from the phenomena of language which are described by
theoretical logic, and recognizes that intuitionist mathematics is an
essentially languageless activity of the mind having its origin in the
perception of a move of time, i.e. of the falling apart of a life moment
into two distinct things, one of which gives way to the other, but is
retained in memory. If the two-ity thus born is divested of all quality,
there remains the empty form of the common substratum of all two-
ities. It is this common substratum, this empty form, which is the basic
intuition of mathematics. 

(Brouwer 1952: 141–42)

There is also a ‘second act of intuitionism’ according to Brouwer, ‘which
recognizes the possibility of generating new mathematical entities’,

firstly, in the form of infinitely proceeding sequences p1, p2, . . ., whose
terms are chosen more or less freely from mathematical entities previ-
ously acquired . . .;

secondly in the form of mathematical species, i.e. properties suppos-
able for mathematical entities previously acquired, and satisfying the
condition that, if they hold for a certain mathematical entity, they also
hold for all mathematical entities which have been defined to be equal
to it. 

(ibid.: 142)

Mathematics, for Brouwer, is first and foremost an activity. Mathematicians
do not discover pre-existing things, as the Platonist holds and they do not
manipulate symbols, as the formalist holds. Instead, mathematicians make
things. It is a languageless activity, just as is doing physics or eating lunch.
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Brouwer stresses this, since formalism is essentially about symbols, language.
Perhaps the best analogy is with baking a cake. If I’m successful, I can describe
my non-linguistic activities of mixing the ingredients, setting the oven temper-
ature, etc. in the form of a recipe, which, of course, is a linguistic entity. But the
recipe is not the activity of baking a cake; it is merely an aide to others who
might want to bake a similar cake for themselves.

Bishop’s Constructivism

I’ll do no more than cite a few key passages from Errett Bishop whose main
contribution is in the mathematical details. His Foundations of Constructive
Analysis, originally published in 1967, is a technical tour de force. After
his death Douglas Bridges brought out a revised and re-named edition,
Constructive Analysis (1985), with the same ‘Manifesto’ from which I’ll quote.

The primary concern of mathematics is number, and this means the
positive integers. . . . Mathematics belongs to man, not God. We are not
interested in properties of the positive integers that have no descriptive
meaning for finite man. When a man proves a positive integer exists, he
should show how to find it. If God has mathematics of his own that
needs to be done, let him do it himself. 

(Bishop and Bridges 1985, 4–5) 

Building on the positive integers, weaving a web of ever more sets
and more functions, we get the basis structures of mathematics . . .
Everything attaches itself to number, and every mathematical statement
ultimately expresses the fact that if we perform certain computations
within the set of integers, we shall get certain results. . . . even the most
abstract mathematical statement has a computational basis. 

(ibid.: 6–7)

The transcendence of mathematics demands that it should not be
confined to computations that I can perform, or you can perform, or
100 men working 100 years with 100 digital computers can perform.
Any computation that can be performed by a finite intelligence – any
computation that has a finite number of steps – is permissible. 

(ibid.: 6)

In sum, to be meaningful, according to Bishop, mathematics must be accessible
to humans, and this in turn means computable in a finite number of steps with a
result expressing a relation among numbers. On the side of liberality, Bishop

122 P H I L O S O P H Y  O F  M A T H E M A T I C S



allows that this need only be in principle; questions of what is practically com-
putable are of no concern.

Dummett’s Anti-realism

Brouwer and Bishop have been the mathematicians most prominent in advocat-
ing constructivism. Michael Dummett is the philosopher who has done most to
promote this approach. He is also, unquestionably, the leading Frege scholar
and one of the most influential philosophers of mathematics today.

Dummett’s views on logic and language, metaphysics and mathematics form
a seamless whole. Semantic anti-realism is Dummett’s doctrine that we need
not take every well-formed statement as having a determinate truth-value.
Realism, by contrast, asserts that every statement is true or false, and this truth
or falsity is independent of us and how we might go about checking this truth-
value. Dummett’s views are quite general; they stem from considerations in
several diverse fields, including statements about the past, counter-factuals, and,
of course, mathematics. 

Dummett asks us to imagine a man, Jones, now dead, who in life never
encountered any danger. Consider the sentence: ‘Jones was brave.’ Does it
have a truth-value (of which we may be forever ignorant)? If Yes, then there
must be facts about Jones which would make the following counter-factual
sentence true (or make it false): ‘If Jones was in a dangerous situation, he
would have acted bravely.’ But suppose there are no facts about his character,
his brain structure, and so on that we could single out which determine the
truth of the counter-factual. Dummett remarks:

[I]f such a statement as ‘Jones was brave’ is true, it must be true in
virtue of the sort of fact we have been taught to regard as justifying
us in asserting it. It cannot be true in virtue of a fact of some quite
different sort of which we have no direct knowledge, for otherwise
the statement ‘Jones was brave’ would not have the meaning that we
have given it.’

(Dummett 1959a: 16) 

In accepting this, says Dummett, we make ‘a small retreat from realism; [we]
abandon a realist view of character’ (ibid.). In doing so, we abandon bivalence;
the statement ‘Jones was brave or Jones was not brave’ cannot be asserted come
what may.

Dummett talks about ‘the meaning we have given it’. This is a
Wittgensteinian idea – meaning and use are linked. How we learn certain con-
cepts is central, and it has deep implications for how we do (or at least ought to
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do), mathematics. The commonly accepted account is that the meaning of some
particular sentence, S, is grasped by knowing its truth-conditions, that is, by
knowing how things would be in order for S to be true. Thus, we understand
‘Raven 1 is black’ when we know how the world must be in order for this
sentence to be true. Similarly, to understand the meaning of ‘Raven 2 is red’ or
‘Raven 3 is studying for a logic test’ we would have to know how things must
be in order for these to be true. Compound sentences are built out of previously
understood components: thus, ‘Raven 1 is black and raven 2 is red.’ Similarly,
quantified sentences should be no problem: thus, ‘All ravens are black.’ As long
as we comprehend the components or instances in terms of their particular
truth-conditions, we understand the more complex statements. However,
Dummett emphatically opposes this commonplace view. He says we learn
about, say, the universal quantifier by learning how to use it. ‘We learn to assert
“For all n, Fn” when we can assert “F(0)” and “F(1)” and . . .’ Consequently,
Dummett holds, meaning is not given by truth conditions. ‘We no longer
explain the sense of a statement by stipulating its truth-value in terms of the
truth-values of its constituents, but by stipulating when it may be asserted in
terms of the conditions under which its constituents may be asserted’ (1959a:
18, his italics).

What goes for Jones’s character goes for mathematics.

The sense of, e.g., the existential quantifier is determined by considering
what sort of fact makes an existential statement true, and this means:
the sort of fact which we have been taught to regard as justifying us in
asserting an existential statement. What would make the statement that
there exists an odd perfect number true would be some particular
number’s being both odd and perfect; 

(Dummett 1959a: 17)

This seems quite right. But Dummett then goes on to state what certainly looks
like a non sequitur:

hence the assertion of the existential statement must be taken as a claim
to be able to assert some one of the singular statements. We are thus
justified in asserting that there is a number with a certain property
only if we have a method for finding a particular number with that
property.

(ibid.)

He continues further and draws the moral for bivalence.

Now what if someone insists that either the statement ‘There is an odd
perfect number’ is true, or else every perfect number is even? He is
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justified if he knows of a procedure which will lead him in a finite time
either to the determination of a particular odd perfect number or to a
general proof that a number assumed to be perfect is even. But if he
knows of no such procedure, then he is trying to attach to the statement
‘Every perfect number is even’ a meaning which lies beyond that pro-
vided by the training we are given in the use of universal statements; he
wants to say [as one might say of] ‘Jones was brave’, that its truth may
lie in a region directly accessible only to God, which human beings can
never survey. 

(ibid.)

Brouwer’s intuitionism is based on a Kantian view of our intuition of time
while Dummett’s is based on a Wittgensteinian account of meaning which leads
him to a kind of verificationism. The sources of their respective constructive
mathematics are quite different, but the result is the same. We can only assert
what we can actually prove by providing explicit examples. Classical logic is
not part of our legitimate tool box.

Logic

There are a variety of attitudes towards logic, but most logicians and mathe-
maticians see it as prior to and normative for mathematics. Logic is a tool for
developing mathematics; an instrument for drawing correct inferences. Given
any mathematical statement, the rules of logic can be used to make manifest the
logical consequences. But in drawing inferences we do not create new truths;
we merely reveal those that already exist. The constructivist attitude is com-
pletely different: logic is not prior to mathematics, but comes after; it is not
normative, but descriptive. Mathematical constructions can be described in
language, and the resulting statements will have a logical structure, but it need
not be the structure of classical logic. Let’s look at intuitionistic logic in a bit of
detail. (Here to some extent I follow Heyting (1956) and use his symbols for the
connectives.) 

� P means P has been proven (i.e. there is a construction which
justifies asserting P).

� P ∨ Q means P has been proven or Q has been proven.
� P ∧ Q means P has been proven and Q has been proven.
� ¬P means there is a construction which deduces a contradiction

from the supposed proof of P.
� P → Q means there is a construction which when added to the

construction of P automatically gives Q.
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We can now look at a number of theorems and non-theorems. To show that
something is not a theorem we need a counter-example. I’ll provide some, but I
stress that all the counter-examples to be given are intuitionistic examples; they
would not be accepted as genuine counter-examples by anyone who accepts
classical logic. An intuitionist, for example, thinks there is no fact of the matter
about the existence of a sequence of seven consecutive 7s in the infinite
expansion of π. Counter-examples typically play on this sort of consideration. A
classical logician would, of course, say that either there is or there is not such a
sequence in π; we merely don’t know which.

All the propositions to follow are classically valid. Those marked* are not
intuitionistically valid.

� ¬¬(P ∨ ¬P)
� P ∨ ¬P*

Counter-example: Define the number n as equal to 1, if there is a sequence of
seven 7s in the infinite expansion of π, and equal to 0, if there is no such
sequence. Now consider the statement n � 1 or n 
 1. In order for this to be
true, we need a proof of the existence of seven 7s for n � 1, or a proof that there
is no such sequence for n 
 1. We have a proof of neither, so we cannot assert
the statement n � 1 or n 
 1; that is, we cannot assert P ∨ ¬P.

� ¬(P ∨ Q) → ¬P ∧ ¬ Q 
� ¬(P ∧ Q) → ¬P ∨ ¬Q*

Counter-example: Exercise for the reader. 

� (P → Q) → (¬Q → ¬P)
� (¬Q → ¬P) → (P → Q)*

Counter-example: Exercise for the reader.

� P → ¬¬ P
� ¬¬P → P*

Counter-example: Define the number r as follows: r � 0.3, if there is a sequence
of seven consecutive 7s in the infinite expansion of π; r � 0.333 . . . if there is
no such sequence. Now assume that r is not a rational number (i.e. assume ¬P).
Therefore, r 
 0.3 (since 3/10 is certainly a rational number). Thus, there is no
sequence of seven 7s in π. Therefore, r � 0.333 . . . � 1/3. But this contradicts
the assumption that r is not rational. Thus, the assumption that r is not rational,
i.e. ¬P, is false, and so we have ¬¬P. Can we infer P from this? No, since to
assert P is to assert that r is rational, and we can only do this when we have a
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proof. To prove that r is rational we need to find integers p and q such that
r � p/q. But to do this we would need a proof that there is a sequence of seven
7s in π or a proof that there is no such sequence. No proof exists. So we cannot
assert P, even though we can assert ¬¬P.

Intuitionistic logic has become an interesting subject in its own right, with
important relations to category theory, to forcing in set theory, to computer sci-
ence, and to many other fields (see Bell and Machover 1977). This brief taste
must suffice, however, to bring us to our next topic, the consideration of some
problems for the constructive approach to the philosophy of mathematics.

Problems

I’ll touch on only a few of the general difficulties of constructive mathematics.
One of the most important and effective criticisms of constructive mathematics,
especially Brouwer’s intuitionism, would focus on its highly problematic view
of introspection and the excessively private view of the mind. The heavy
emphasis on introspection borders on idealism. In the next chapter I’ll turn to
this problem briefly, but here I’ll avoid further discussion of this difficulty, since
it takes us into general issues in philosophy and psychology and away from
mathematics.

The finite but very large

The crucial divide for constructivists is between the finite and the infinite; they
limit meaningful mathematics to the former. Searching through a finite set is
something we can do – in principle. Not so an infinite set. Without a proof, the
assertion that all even numbers (greater than two) are equal to the sum of two
primes (i.e. Goldbach’s conjecture) is neither true nor false, according to
Brouwer and company; there is no fact of the matter to be known. The Platonist,
by contrast, declares that there is a fact, but pleads ignorance as to which it is.
If we restrict Goldbach’s conjecture to a finite set, then any constructivist is
happy to assert meaningfulness, even if ignorant of what the truth is. Thus, ‘All
even numbers less than 102 are equal to the sum of two primes’ is perfectly
meaningful. And, of course, it’s easy to see why. We can inspect each even
number (there are only 50) in the set and determine whether they all are equal
to some pair of primes. But what about even numbers less than 101,000,000,000? The
same procedure for determining the answer works here, too, but only in prin-
ciple. There is no hope of checking each case even if all humans worked all
their lives with all the supercomputers for the entire history of the universe.
Nevertheless, it is constructively acceptable.
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Brouwer and others don’t hesitate to talk about infinite sets, but it is always
the ‘potential infinite’ that they have in mind. A realist typically thinks of the
set of numbers as an actual infinite; the numbers are already there and there
are infinitely many of them. Champions of the potential infinite say that the
set of numbers is infinite only in the sense that however far we count, we can
always continue. The numbers aren’t already there, but are being created as
we count. At any stage in counting, we have only created a finite number.
Calling it infinite is simply a way of saying that we won’t suddenly be unable
to go on.

The distinction between potential and actual infinities was perhaps created by
Aristotle in his attempt to overcome Zeno’s paradoxes. Suppose I draw a line.
How many points are there on it? You’re likely to say, An infinite number of
points. But Aristotle would say, None. However, Aristotle maintained, if I make
a cut mark in the line, I create a point. Now it has one point. I can do this over
and over again, creating many points. But, two things must be noted: first, at
any stage in this process I have created only a finite number of points on the
line, and second, no matter how many points I have created, I can always create
more. Thus, says Aristotle, the points on the line are a potential infinity, not an
actual infinity.1

However, no constructivist wants to stop at the small finite number of things
we have actually created. Any finite system, however large, is fair game. Recall
the Bishop passage quoted above (p. 117):

The transcendence of mathematics demands that it should not be
confined to computations that I can perform, or you can perform, or
100 men working 100 years with 100 digital computers can perform.
Any computation that can be performed by a finite intelligence – any
computation that has a finite number of steps – is permissible. 

(loc. cit.)

But why should it be? Is the infinite any more inaccessible than the very large
finite? We might as well hang for a sheep as a lamb – or shouldn’t we? I doubt
that there is any straightforward answer to this. The situation is similar to one in
debates over scientific realism. Van Fraassen (1980), for example, holds that
legitimate scientific belief should be confined to the observable; to accept a
theory is to believe that it is empirically adequate. This empirical adequacy
stretches over all space and time, far beyond anything humans could hope
to check. Thus, science goes well beyond actual human experience. However,
says Van Fraassen, we should not extend our beliefs to include theoretical
statements. Beliefs about the observable, like the finite, are something we can
and must accept even though it eludes our grasp in many cases. Beliefs about
the unobservable, like the infinite, are, according to Van Fraassen, simply not
admissible. There are many important disanalogies between Van Fraassen
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and the constructivists, but this one holds. In the case of Van Fraassen vs. the
scientific realists, the debate, in the eyes of many, is at a stand-off; neither side
has the advantage on this point. Given the similarity between the two cases,
neither the constructivists nor their realist opponents are likely to gain a clear
upper hand in the parallel question. 

The recent solution of the so-called n-body problem provides an interesting
example for constructivists. The previous example of Goldbach’s conjecture
is from pure mathematics; this one is intimately connected to physics. The
n-body problem arose in Newtonian celestial mechanics. Given the positions
and momenta of n bodies interacting under Newton’s laws (but not colliding),
what are their positions and momenta after any given temporal interval?
(Given the positions, velocities, and masses of the sun and the planets today,
for instance, what will they be in a hundred years?) The special case of two
bodies was solved long ago by one of the Bernoullis. The general problem
was set by Mittag-Leffler, Hermite and Weierstrass in a famous prize compe-
tition in the 1890s. They were looking for a convergent power-series solution.
Poincaré (the winner of the contest) gave an impossibility proof, of a sort;
but that was confined to a specific method of solving the problem. It still left
open the possibility of finding a solution, and that was recently done (Q. Wang
1991).

The solution is indeed a series solution which meets all the expectations of
the original posers of the problem. And yet, remarkable though the achievement
is, there is a sense in which nothing has changed. The problem is that the series
converges very slowly. One has to compute millions of terms in the series before
getting a reasonable approximation to the actual value for even a very short
time ahead. From either a practical or a theoretical point of view the series
solution is of no value – though it fully satisfies Brouwer’s or Bishop’s or
Dummett’s demands for an existence proof.

If I may be allowed an autobiographical remark, I find this sort of objection
much more convincing now than I did a few years ago, and I suspect that I’m
not alone. The difference comes, I think, from experience with a PC. Like
anyone with a computer, it matters little to me what my machine can do in
principle. I care about what it can do quickly and I have become sensitive to
the efficiency of various different software programmes and the relative diffi-
culty of the problems that I set. I know that Maple or Mathematica can factor
‘small’ numbers quickly, but if I give it something with, say, 100 digits, then
my PC will be working on it for longer than I care to wait around. The ‘in
principle’ consideration plays no part in my practical life. This feasibility
problem is simply not an issue for constructivists, for whom the main
dichotomy is finite–infinite. They are insensitive to the real dichotomy for
working mathematicians or PC users: feasible vs. infeasible. One wants to cry
out: Give us the power of Platonism or give us computational practicality.
Constructivists give us neither.
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Applied mathematics

The n-body problem arises in physics, but can be considered from a pure math-
ematics point of view. The role of applied mathematics per se is not much dis-
cussed by constructivists; the philosophical debate has focused on pure
mathematics almost exclusively. Herman Weyl went through a constructive (or
rather ‘semi-intuitionist’) phase (Weyl 1918), but later in his career he found
that applied mathematics decided the issue: if constructive mathematics can’t
do justice to the sciences, then it should be tossed out and classical mathematics
should be retained (Weyl 1949).

Most applied mathematics is not only constructive, it is finite. Even when we
use infinite mathematics in physics, it is not the physics that forces it upon us.
We use real numbers, for example, to measure distances. But we can never mea-
sure with perfect accuracy; our measures are all to some distance, � a bit. This
means that rational numbers are perfectly adequate for measuring. However,
applied mathematics is often much fancier than this.

In an earlier chapter I discussed Hartry Field’s view that science without
mathematics is possible. He holds this view in opposition to Quine and Putnam
who say mathematics is indispensable to science. Let us not worry about who is
right in this debate, but only ask the more restricted question: Is all the math-
ematics that science actually does use constructive? It turns out that the answer
is very likely No.

The mathematics used by quantum mechanics consists of Hilbert spaces,
which are linear or vector spaces of (possibly) infinite dimension. States (e.g.
the state of an electron) are represented by a vector ψ in the Hilbert space and
properties (e.g. position, momentum, spin, or energy of the electron) by linear
operators. These are functions with special properties that are defined on vec-
tors such as ψ. Recent interest in chaos and complexity, etc. has led to some
significant research into the properties of linear operators. Pour-El and Richards
(1983) have proven that a class of linear operators which includes some typi-
cally used in quantum mechanics do not preserve certain computability condi-
tions. This means that they are non-constructive functions. From a constructive
point of view they are simply not legitimate. But they are crucial for the Hilbert
space apparatus of standard quantum mechanics. 

A second example is Gleason’s theorem which concerns measures on the
closed subspaces of a Hilbert space. It is of central importance to the founda-
tions of quantum mechanics since it rules out a wide class of hidden variable
theories; so, the theorem is central to our understanding of how nature works.
However, no constructive proof of this theorem is possible.

These examples are too complicated to be described here, but the moral is
important. As Hellman2 and others have pointed out, the conclusion seems
inevitable: constructive mathematics is not rich enough to serve the needs of
science.
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Most participants in the debate over constructive mathematics agree on this: If
science needs classical mathematics, then that effectively torpedoes construc-
tive approaches. What they disagree on is whether there is any science that can’t
be properly served by constructive mathematics. The claims and counter-claims
have turned on sophisticated examples. It seems to me, however, that the short-
comings of constructive mathematics can be displayed easily with less esoteric
cases, which is what I now aim to do. Consider the intermediate value theorem
(described in Chapter 3):

If f is continuous on the interval [a, b] and there is a C between f(a) and
f(b), then there is a c between a and b such that f(c) � C.

This is a classical theorem, of central importance in analysis, but not construc-
tively valid. Its proof relies on the law of trichotomy (i.e. for every x and y in R:
x � y, or x � y, or x � y), and the existence of a least upper bound (i.e. any set
of real numbers with an upper bound has a least upper bound), neither of which
is constructively provable.

I’ll set up a simple case in physics that requires the theorem. Let us suppose
a substance changes its temperature continuously (though perhaps not monoto-
nically) from T1 at time t1 to T2 at time t2. Let us further suppose that there is a
temperature sensitive device inserted in the substance such that if it registers
exactly temperature T, where T1 � T � T2, it will send a signal to a remote loca-
tion that will detonate a bomb.

A physicist using classical mathematics will make the following inference:
Since the substance changed temperature continuously from T1 to T2 and T is
between these two values, there was a time t between t1 and t2 when the tem-
perature was T. Thus the remote bomb exploded.

A physicist using constructive mathematics cannot make this inference.
She cannot infer that there was a time t when the temperature was T, and so
she cannot conclude that the remote bomb did indeed explode. The
explosion is an independent fact that will have to be empirically checked on
its own.

Measuring the temperature exactly is crucial, since a constructive version
of the theorem allows us to approach the intermediate value with arbitrary
closeness, though never achieve it. A device that is sensitive to an exact tem-
perature is an idealized case, like a frictionless plane. There may be no such
device in the world, but physics still deals with them in thought experiments
and mathematics must apply to them, as well. The history of physics without
imaginary examples is unthinkable, and a mathematical theory that cannot
do justice to thought experiments is as problematic as one that cannot do jus-
tice to real experiments. (For more on thought experiments in the natural sci-
ences, see Brown 1991.) Of course, we cannot run actual experiments to see
if the predicted explosions actually happen, because we cannot set up
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devices sensitive to exact temperatures. Nevertheless, the cost of abandoning
classical mathematics is apparent. The crucial difference has to do with orga-
nizational ability. Constructive mathematics allows less systematization and
predictive power in science than does its classical rival. The inability of a
physicist using constructive mathematics to draw relevant inferences if only
in thought experiments must be seen as a sizeable obstacle to taking con-
structive mathematics seriously in general.

Negation

What sense can we make of negation in constructive mathematics? This is a
special problem for intuitionism, since Brouwer emphasizes that it is a lan-
guageless activity. Heyting characterizes a negative proposition this way: ‘� ¬P
can be asserted if and only if we possess a construction which from the suppo-
sition that a construction P were carried out, leads to a contradiction’ (1956:
102). His larger gloss is worth quoting at length:

Every mathematical assertion can be expressed in the form: ‘I have
effected the construction A in my mind.’ The mathematical negation of
this assertion can be expressed as ‘I have effected in my mind a con-
struction B, which deduces a contradiction from the supposition that
the construction A were brought to an end’, which is again of the same
form. On the contrary, the factual negation of the first assertion is: ‘I
have not effected the construction A in my mind’; this statement has
not the form of a mathematical assertion. 

(Heyting 1956: 19)

So, ¬P is not the claim that P isn’t constructed; but rather, is supposed to
describe a construction itself. Yet, what sort of construction could ¬P be? And
what is ‘the supposition that a construction P were carried out’, if it is not a lin-
guistic entity? Since P is absurd, it can’t be an actual construction, but it could
be a proposition (sentence, statement) that P has been constructed. And finally,
what is the ‘contradiction’ that Heyting refers to, if not a linguistic entity? (For
intuitionist purposes, proposition, statement and sentence would all be part of
language.) I can say in words that I’ve baked a cake that is both round and
square, but it is certainly not an actual cake.

If we are to take the languageless nature of mathematics seriously, as
Brouwer would urge us to do, then the notion of negation may have to go.
Suppositions and contradictions are in language – not in reality, whether math-
ematical reality is constructed or not. Intuitionism is thought already to abandon
too much of classical mathematics. Without negation, even more will go out the
window, leaving a very impoverished residue.
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Arithmetic versus geometry

Brouwer, as I mentioned above, accepts the Kantian account of arithmetic,
based on the perception of time. Geometry is a completely different matter for
him. Unlike synthetic a priori arithmetic, Brouwer holds the anti-Kantian view
that geometry is analytic. Given these two quite distinct attitudes to the two
different branches of mathematics, some sort of tension must seem inevitable
when we consider those mathematical theories such as knot theory or graph
theory which make essential use of different forms of representation. (Recall the
discussion of this point in the previous two chapters.) Graph theory, for example,
uses both a (finite) set-theoretic representation and a diagrammatic represen-
tation. These are, respectively, synthetic a priori and analytic, for Brouwer. At
best constructivist claims hold for the set-theoretic aspects of graph theory; those
that stem from graph diagrams do not reduce to computations with numbers.

Exhibiting an instance

A standard constructivist claim is this: A legitimate proof gives a method of
constructing explicit instances. Recall Bishop’s injunction: ‘When a man proves
a positive integer exists, he should show how to find it’ (loc. cit.). Dummett
asserted the same point: ‘We are thus justified in asserting that there is a num-
ber with a certain property only if we have a method for finding a particular
number with that property’ (loc. cit.). This is somewhat problematic, perhaps
even false. There may well be constructively acceptable proofs that don’t give
us an example. 

Consider the question: Is 53,461 prime or composite? (Remember, a com-
posite number is the product of primes.) There is a constructively valid theorem
of Fermat that says: Any prime of the form 4n � 1 can be expressed as the sum
of two perfect squares in one and only one way (e.g. 13 � 4(3) � 1 � 9 � 4 �
32

� 22). Examining 53,461 we see

53,461 � 4(13,365) � 1 � 102
� 2312

� 1052
� 2062

Thus, it has the form 4n � 1 and yet it can be written as the sum of two squares
in two different ways. So, by Fermat’s theorem it cannot be prime, but must
instead be composite. 

However, in spite of constructively proving that it is composite, no actual fac-
tors are given. And no way of finding them is indicated by the proof. Of course,
there is a different constructive method (known as the Sieve of Erathosenes)
which – in principle – would reveal the prime factors; but it’s not practical and
– most importantly – it does not stem from the constructive proof presented
here that the number is composite. The example given was a bit contrived
(Dunham 1994), but for a truly huge number, we might establish its composite



nature by means of Fermat’s conditions, without any humanly practical hope of
ever finding prime factors. Thus, we would have a constructively valid proof
that prime factors exist, without being able actually to exhibit any.3

It’s an alleged virtue, often repeated, that constructive proofs give us
more information – they give us actual methods of producing instances.
This is not always true. We have seen this fail in two ways. Above, the
series solution of the n-body problem provided a constructive proof, but
the convergence of the series is so slow that, from a practical point of view,
we really don’t have any instance at all; there is nothing here that we can
point to and use. In the example just given concerning composite num-
bers, we have a constructive proof and we can – in principle – find prime
factors. But the constructive proof does not provide those prime factors.
It is a different, very impractical technique that must be used to find the
actual instances.

The loss of many classical results

The biggest complaint against constructive mathematics is that accepting this
way of doing things would result in the loss of much of classical mathematics.
I’ll illustrate with an example, the Bolzano–Weierstrass theorem which says:
Every bounded infinite set S has at least one cluster point. (A point x is a clus-
ter point, or a limit point, if and only if every neighbourhood of x has members
in S; otherwise x is an isolated point.) Pictures (Figure 8.1) are a help here (but
only as an aide, not as a proof).

To prove this theorem we assume that S is a bounded set with infinitely many
points (Figure 8.1(a)). To keep things simple, we will assume that the points are
all on the plane. Since S is bounded, it can be contained in a square, Q0, which
has sides of length L (Figure 8.1(b)).
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Figure 8.1 The Bolzano–Weierstrass theorem
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Now we divide Q0 into quarters. At least one of these smaller squares, say Q1,
will have infinitely many points of S. Next, we divide Q1 into four, and again,
one of these, say Q2, will have infinitely many points of S. We continue in this
way forming the sequence: Q0, Q1, Q2, . . ., which is an infinite sequence of
subsets: . . . ⊂ Q3 ⊂ Q2 ⊂ Q1 ⊂ Q0. Each has infinitely many points of S. By the
nested set property, there is at least one point, p, common to them all.

Consider next an arbitrary neighbourhood around p (Figure 8.1(c)). By making
the number of divisions large enough, the square Qn, with sides of length L/2n

will be contained within the radius ε. Thus, p is a cluster point. This ends the proof.
The Bolzano–Weierstrass theorem is central to classical analysis. Current real

and complex analysis, current topology, and many other areas of contemporary
mathematics would be much diminished without it. But it is not constructively
legitimate, since it proves the existence of the cluster point p, but gives no
method whatsoever for actually finding or constructing p. This is the sort of the-
orem that would be lost, if constructive mathematics came to prevail – a price
too high for most to pay.

Further Reading

Many of the Brouwer’s influential works can be found in translation in various
anthologies, such as Benacerraf and Putnam (eds), Readings in the Philosophy
of Mathematics; Ewald (ed.), From Kant to Hilbert; and Mancosu (ed.), From
Brouwer to Hilbert. Heyting’s Intuitionism: An Introduction is a good place to
start and so is Dummett’s Introduction to Intuitionism. For mathematically
advanced readers, Bishop and Bridges, Constructive Mathematics is the best
source. It begins with Bishop’s famous ‘Manifesto’, a clear statement of his
philosophical views on the nature of mathematics.
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CHAPTER 9
Proofs, Pictures and Procedures in
Wittgenstein

A Picture and a Problem

It’s a curious fact about pictures that most philosophers never use them.
Browse through the works of the great philosophers and you will find
almost no pictures at all. Wittgenstein is an exception; his works are filled

with little sketches and rough diagrams. Descartes is another, though his dia-
grams are mostly connected with the scientific aspects of his work. If we leave
Descartes aside, it’s probably no exaggeration to say that there are as many pic-
tures in Wittgenstein’s published works as there are in all the other great
philosophers combined. And what he has to say about pictures, diagrams and
illustrations is interesting and important – though often only implicit in his
remarks. Wittgenstein in later years may have abandoned his ‘picture theory of
meaning’, but not his fondness for pictures.

Wittgenstein often cites some picture as proving this or that result. And at one
point in the Remarks on the Foundations of Mathematics he declares, ‘math-
ematics is a motley of techniques of proof’ (RFM, III-46). The suggestion is that
there are not only verbal/symbolic proofs in mathematics, but there are picture-
proofs, too. This seems to me to be exactly right. In fact, I’m tempted to say fur-
ther that mathematics is so rich that there are indefinitely many ways to prove
anything – verbal/symbolic derivations and pictures are just two. At any rate,
Wittgenstein certainly thought that pictures are included in the ‘motley’ and this
is the topic that I want to explore. Here (Figure 9.1) is one of his examples
along with his discussion:

Consider a mechanism. For example this one:



While the point A describes a circle, B describes a figure eight. Now we
write this down as a proposition of kinematics.

When I work the mechanism its movement proves the proposition to
me; as would a construction on paper. The proposition corresponds e.g.
to a picture of the mechanism with the paths of the points A and B
drawn in. Thus it is in a certain respect a picture of that movement. It
holds fast what the proof shews me. Or – what it persuades me of.

If the proof registers the procedure according to the rule, then by
doing this it produces a new concept.

In producing a new concept it convinces me of something. For it is
essential to this conviction that the procedure according to these rules
must always produce the same configuration. (‘Same’, that is, by our
ordinary rules of comparison and copying.)

With this is connected the fact that we can say that proof must shew
the existence of an internal relation. For the internal relation is the
operation producing one structure from another, seen as equivalent to
the picture of the transition itself – so that now the transition according
to this series of configurations is eo ipso a transition according to those
rules for operating.

In producing a concept, the proof convinces me of something: what
it convinces me of is expressed in the proposition that it has proved. . . .

The picture (proof-picture) is an instrument producing conviction.
(RFM, VII-72)

Wittgenstein’s picture does indeed convince us of the truth of this
proposition:

As the point A moves in a circle, the point B moves in a figure eight.

Wittgenstein is quite right to lay such stress on diagrams, often in the face of
conventional mathematical wisdom. However, there is something remarkable
about this particular diagram, something quite instructive. It’s faulty. Yet it
works perfectly well at helping us grasp what’s going on.

The diagram is mis-drawn in two key respects. (You might try to detect them
before reading on.) 
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For one thing, A is midway between its leftmost and its rightmost positions.
So B should be midway as well. Instead of being drawn at its rightmost posi-
tion, B should be drawn in the middle of the mechanism through which it slides.
Second, the axis of symmetry of the dotted figure-eight should be horizontal,
not drawn as lying along the moving rod. 

These are serious flaws in the diagram. And yet it doesn’t matter. We are con-
vinced of the proposition anyway. But what we are probably convinced of is
that the motion of B is a figure eight, not that it is precisely the figure eight as
drawn. Here is the diagram drawn properly (Figure 9.2).

Let me digress for a moment and talk about the origin of the faulty picture.
G.H. von Wright, one of the editors of Wittgenstein’s posthumous Remarks on
the Foundations of Mathematics, tells me (in a private communication) that the
published drawing was provided by the editors, and was based on
Wittgenstein’s own rough drawing in the ms. Von Wright agrees that both mis-
takes are in the published version. In Wittgenstein’s own (a photocopy of which
von Wright kindly sent me) things are not so clear. Von Wright thinks one mis-
take is definite (the incorrect position of B) but that the figure eight is correctly
oriented. I’m less confident, and think that the artist who copied Wittgenstein’s
rough picture could quite reasonably assume Wittgenstein intended the figure
eight oriented along the rod instead of horizontally.

Of course, it doesn’t really matter what the origin of the mistake is. The
philosophical problem arises, regardless. Our problem (and Wittgenstein’s) is
this: Why does the diagram work, in spite of its flaws? I will try to answer this
question as part of an exposition and critical response to some main themes in
Wittgenstein’s philosophy of mathematics.

Following a Rule

People use mathematics. This is an important fact never to be lost sight of,
though it may seem a trivial observation. Most accounts of mathematics focus
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Figure. 9.2 Wittgenstein’s picture correctly drawn: the figure eight is horizontal and B
is at the centre of the sliding mechanism
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on mathematics itself. Only as a kind of afterthought is the fact taken up that
people apply mathematics in a variety of everyday situations. This attitude is
perfectly understandable, especially if we think of mathematical results as a
body of truths. After all, our account of the physical sciences is unaffected by
the fact that people do use in a practical way some of those sciences (such as
mechanics), but don’t use others at all (e.g. astrophysics). Usability seems
largely irrelevant to believability. Platonism is an extreme example of this
attitude. It includes a well-developed and, arguably, a highly successful account
of the nature of mathematics. Its (alleged) problems stem from the apparent
complete disconnection of embodied creatures such as we are from the math-
ematical realm; so, it’s a mystery how we are able to use it.

Wittgenstein reverses this. He focuses on how people use mathematics, espe-
cially in simple situations of counting and measuring. It is only after sorting
through this and resolving a sceptical paradox of his own making that he then
comes (in some sense) to general conclusions about the nature of mathematics.
I insert the caveat ‘in some sense’ because Wittgenstein repeatedly claimed to
be not proposing any theories. In some respects this is an importantly true self-
description. But the plain fact is that he often did, so I shall not be too con-
cerned with his infamous claim not to be theorizing.

One of Wittgenstein’s main concerns is with the idea of following a rule.
How do we know someone is indeed obeying a particular rule? Joe Blow drives
at 100 k.p.h. in a 50-k.p.h. zone. The police officer who pulls him over scoffs at
hearing that his speed was quite within the rules of the road and gives him a
ticket. Mary Doe earns a large salary, has no legitimate deductions, yet she pays
not a penny in tax. The revenue people ridicule her claim that she has scrupu-
lously obeyed the tax laws, and they impose a steep penalty. Tommy Twaddle
adds 2,000 to 3,000 and gets 23,000,000 for the answer; he claims to be fol-
lowing the rule for addition. Should we scoff and send him back to remedial
arithmetic?

Of course, rules can be vague – but not here. We feel perfectly secure in say-
ing that the traffic rules, the tax rules and the mathematical rules were each
flagrantly violated. But should we be so sure? Wittgenstein would not join us in
thinking things quite so obvious. The very idea of ‘following a rule’ is, he
thinks, highly problematic. It is one of the central preoccupations of his later
philosophical work, with implications for language and mind as well as for our
understanding of mathematics.

Suppose a teacher (she) lists a few numbers in sequence and asks a student
(he) to continue:

1, 4, 9, 16, . . .

What is the next number in the sequence? The student will likely answer 25.
Why? Probably he will reason that the sequence obeys the rule of taking each
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number in turn and squaring it, i.e. 12, 22, 32, 42, and so on; the next number in
the sequence would then be 52 which is 25.

But what if he answered 27? Would this be wrong? His reasoning might be as
follows: The sequence is growing by adding successive odd prime numbers to
the elements of the sequence. The odd primes are: 3, 5, 7, 11, 13, 17, . . . Thus
the sequence is:

1
4 � 1 � 3
9 � 4 � 5

16 � 9 � 7
�

And so the next number in the sequence is 16 � 11 which equals 27. 
Is either answer right? Perhaps a better question is: In what sense could an

answer be wrong? Both answers were based on grasping a rule, then continuing
that particular rule correctly. Both rules are compatible with the first four num-
bers in the sequence and, of course, compatible with each other to that extent.
(Indeed, there are infinitely many different sequences which overlap at any
finite number of initial elements.) Neither answer can be faulted in either of
these two regards. There is nothing intrinsic to the answers which make either
of them wrong.

The only sense in which an answer could be wrong has to do with the ques-
tioner’s intentions. If the teacher had intended the sequence based on squares
rather than on adding primes, then 27 is the wrong answer, 25 is right. We can
assume that both teacher and student readily understand the difference between
these two sequences, which are generated by different rules, and that both have
often in the past calculated such numbers as the square of 5 and the sum of 16
and 11. So there is no problem about what would be the next number in each of
these respective sequences. Moreover, there seems to be no problem about the
notion of the questioner’s intentions; had he known which sequence she
intended, he could have given the right answer.

Now let us suppose that the questioner did indeed have the sequence in mind
which is generated by the rule of squaring the successive numbers and is in the
process of teaching the student the operation of squaring a number. The teacher
lists a few numbers in the sequence: 1, 4, 9, 16, 25, . . .; she shows how these
come from the operation of squaring, then she asks the student to ‘go on in the
same way.’ He continues the sequence: . . ., 36, 49, 64, . . ., and she is quite
happy with his progress.

At this point we will further suppose that in all of human history no one has
ever squared a number greater than 100. (For some much larger, but still finite
number, this will be true; but a small number will, of course, illustrate more
easily.) The student continues:
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�

982
� 9,604

992
� 9,801

1002
� 10,000

1012
� 11

1022
� 12

�

The teacher balks at this; she says that the answers after the square of 100 are
wrong, and she claims that he has not followed the rule properly. The great
majority of us would agree with her.1 (At least we would likely agree after cal-
culating; remember we are squaring numbers this size for the first time in
human history.) In response the student recalculates several times, always get-
ting the same answers as he got earlier, so he becomes convinced that no com-
putational mistake was made. He also claims to have followed the rule that was
given by the teacher and to have carried on as instructed, ‘in the same way’.

So, why is the student’s answer wrong? And are we even sure that it is
wrong? Perhaps it isn’t. To make matters worse, we may suppose that our stu-
dent is an emissary from a postmodern literary department. His car sports the
bumper sticker ‘Everything is text’, to which he cheerfully adds ‘And an
author’s intentions are just more text’. In the light of this he might maintain that
his answer is right, that is, his answer is just as correct as any other. In partic-
ular, he denies that there is anything that the teacher said, or did, or had in mind,
that determines what the ‘true’ answer is. 

The argument would seem to be time-symmetric. Suppose, to change the
example slightly, I am teaching myself. I tell myself on Tuesday to ‘go on in the
same way’. Then, on Wednesday, I raise sceptical doubts about what I could
have meant on the previous day. If I can claim today that I didn’t know what I
meant by such and such yesterday, then tomorrow when I attempt to ‘go on in
the same way’, I will be able to say I didn’t know what I meant today.
Consequently, right now, though I am trying my best, I don’t know what I mean
by such and such. 

Is there anything that the teacher might do to justify her answer as the correct
one and any other answer as false? Is there any response to this extreme scepti-
cism – a scepticism that Kripke (1982) calls the most profound in all philo-
sophy to date?

Let’s canvass some explanations. In looking at these we’ll begin to see the
depth of Wittgenstein’s problem and why there is some plausibility to this
extreme scepticism. There are three things to be interested in here: first,
Wittgenstein’s actual account of the matter; second, the account he ought to
have offered, given his other views and general framework; and third, the
right account. They might not be the same – indeed, it would be surprising if
they were. Of these three, it is the second – what Wittgenstein ought to have



said given his other views – that I will mainly focus on. There is a large and dif-
ficult literature devoted to figuring out just what Wittgenstein actually thinks.
(In large part the problem is due to the obscurity of Wittgenstein’s presenta-
tion.) So far, less has been written on what the absolutely right answer might be
and virtually nothing at all has been said about what the right answer within a
Wittgenstein framework should be. Kripke (1982), for example, contents him-
self with saying what Wittgenstein’s argument actually is. (The expository parts
of this chapter have been much influenced by Kripke’s work.) The depth of
Wittgenstein’s rule-following problem for any approach to the philosophy of
mathematics has only gradually become apparent. So even if we reject
Wittgenstein’s particular solution, the problem remains to be dealt with.

Platonism

Recall the Platonism of Frege, who distinguishes between (i) our ideas (which
are psychological entities); (ii) ‘thoughts’, as he calls them (which are the con-
tent of our ideas); and (iii) the sentences we use to express them (which are
‘things of the outer world’, physical entities such as ink marks or sound waves).

Thus the thought, for example, which we express in the Pythagorean
theorem is timelessly true, true independently of whether anyone takes
it to be true. It needs no bearer. It is not true for the first time when it is
discovered, but is like a planet which, already before anyone has seen
it, has been in interaction with other planets.

(Frege 1918: 523)

In keeping with this sentiment, we can return to our sequence and take it (or
any function) to be an independently existing entity, a set containing infinitely
many ordered pairs: S � {�1,1�, �2,4�, �3,9�, . . ., �99,9801�, �100,10000�,
�101,10201�, �102,10404�, . . .}. The ordered pairs �101,11� and �102,12� are
not members of this set. And that, very simply, is why the student’s answer was
wrong.

The crucial assumption in this account – both natural and plausible – is that
there are mathematical facts just waiting for us to discover. Those who grasp
the squaring function answer correctly, even when faced with particular ex-
amples they have never before encountered. The student simply didn’t grasp the
function, or perhaps grasped some other.

Platonism was just one of Wittgenstein’s many targets. He was quite dismis-
sive, of course, but it seemed to him rather obviously wrong and hardly in need
of detailed refutation. Typical of his dismissive remarks is the rhetorical ques-
tion, ‘Is it already mathematical alchemy, that mathematical propositions are
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regarded as statements about mathematical objects, – and mathematics as the
exploration of objects?’ (RFM, V-16). When Wittgenstein needed an example of
the view he so disliked, he often chose G.H. Hardy, his Cambridge colleague,
whom I mentioned earlier. Wittgenstein often refers to Hardy’s classic essay,
‘Mathematical Proof’, which contains such Platonistic pronouncements as this:
‘I have myself always thought of a mathematician as in the first instance an
observer, a man who gazes at a distant range of mountains and notes down his
observations’ (Hardy 1929: 18).

In response to this type of view, Wittgenstein asserts: ‘The mathematician is
an inventor, not a discoverer’ (RFM, I-168). But rather than try to meet
Platonists such as Hardy head-on, he remarks ‘All that I can do, is shew an easy
escape from this obscurity and this glitter of the concepts’ (RFM, V-16).

Clearly, Wittgenstein will have neither truck nor trade with Platonism. But
should we join him? We may be compelled. Let’s think again about the
sequence discussed above and about the question, What is the next number?
Even if the Platonistic account is right about the independent existence of the
squaring function with its infinitely many ordered pairs, this still may not help
us to understand why one answer is right and all others wrong. Let us assume
that the sequence determined by the squaring function actually exists in the
Platonic sense. We can still wonder if that is what the teacher had intended.
There are, after all, infinitely many functions with the same initial members.
Did the teacher intend

S � {�1,1�, �2,4�, �3,9�, . . ., �99,9801�, �100,10000�, �101,10201�, . . .}

or did she intend

S� � {�1,1�, �2,4�, �3,9�, . . ., �99,9801�, �100,10000�, �101,11�, . . . }?

The problem does not turn on the independent existence of S and S�, but rather
on the intention: Was it S, or was it S�, or yet some other sequence that the
teacher had meant? The teacher teaches by giving examples; but the examples
cited are exactly the same for the different sequences. Note that this does not
involve scepticism about the mathematical entities themselves – the square of
101 really is 10201 – but rather scepticism about which sequence the questioner
had in mind. Remember, both teacher and student are computing 1012 for the
first time in human history, so it’s not a question of the teacher already having
the answer 10201 in mind. The problem is this: Is there anything that the
teacher said, did or intended, that determines that the right answer is 10201?
Our sceptical student claims No. Even if various sequences exist independently
of us, just as Platonists claim, still there might be nothing the teacher said, or
did, or had in mind, that will pick out a unique sequence. Even if Platonism is
true (which Wittgenstein would hotly deny), there is still the problem of
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knowing if there even is a right answer to the question, What’s the next element
of the sequence?

Algorithms 

We might think that no one learns how to compute by merely seeing a few
examples. Instead, one learns an algorithm. And the algorithm covers all infin-
itely many cases, not just the few used to illustrate it. So instead of teaching the
operation of squaring with a finite number of instances, why not just state the
algorithm explicitly and be done with it?

Unfortunately, this proposal simply pushes the problem back a step. In stating
an algorithm, various rules, functions and operations are employed. The initial
scepticism about whether S or S� is intended, can be extended to the rules, func-
tions and operations within the algorithm itself. We are no better off.

Dispositions

Perhaps the teacher had a disposition to give 10201 as the next element in the
sequence. It’s the disposition that makes this the right answer. (The student, of
course, had a different disposition, one which would give 11 as the next ele-
ment.) Thus, it is not a matter of anything the teacher said, did or intended that
determined a unique answer – it was a disposition. The teacher was in a specific
dispositional state. Different dispositions would pick out different sequences.
And there is an objective matter of fact as to what the disposition was; so there
is an objective answer to the question, What is the next number?

There are at least three problems with this attempt to overcome the sceptical
student’s challenge. For one thing, we would need to have infinitely many dis-
positions to cover the infinitely many elements of each of the infinitely many
different sequences. This seems highly implausible. 

Second, dispositional facts seem to rest on categorical facts. Glass, for
example, has the disposition to break if hit sharply by a rock. But there is a
reason for this, having to do with the molecular structure of glass. Thus the
disposition-to-break facts rest on the non-dispositional facts about molecular
structure. Similarly, mathematical dispositions would rest on categorical facts
about what is said, done, intended, and so on, the very kind of thing that is
being challenged by the sceptical student.2

Finally, even if one did have a disposition to say ‘10201’, why does this make
it the right answer? Having a disposition is not the same as having a justifica-
tion. The teacher claims that 10201 is the right way to continue the sequence;
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but having a disposition to say ‘10201’ does not in the least show that 10201 is
correct. Meaning and intention have a normative ingredient which tells us how
we ought to act. Dispositions (as naturalistic entities) do not capture this at all.
(See Kripke (1982) for a development of this important point.) I suspect that the
problem here with dispositions is but a special case of the general problem of
attempting a naturalistic account of norms.

Knowing Our Own Intentions

Perhaps the teacher is having trouble conveying which function she means,
but at least she knows which one she intends. Perhaps nothing she has said
nor any action she has taken in the past will help us to pick out a unique
sequence; but, she herself knows which one she means, because she knows
her own mind. 

Wittgenstein’s explicit response to this seems right on target. ‘But in this case
[she has] no criterion of correctness. One would like to say: whatever is going
to seem right [to her] is right. And that only means that here we can’t talk about
“right”’ (PI §258). 

This suggests a comparison with the intuitionists.

Brouwer’s Beetle

Wittgenstein has much in common with Brouwer and the intuitionists, espe-
cially a finitistic attitude. But on one point they couldn’t be further apart.
Brouwer’s mental constructions are as private as anything could be; indeed,
they are almost solipsistic. Wittgenstein, on the other hand, holds that math-
ematical calculations are essentially public, based on a social practice. He
almost identifies the finite with the overtly public: ‘Finitism and Behaviourism
are quite similar trends. Both say, but surely, all we have here is . . . Both deny
the existence of something, both with a view to escaping from a confusion’
(RFM, II-62). In a particularly striking passage, Wittgenstein says:

Suppose everyone had a box with something in it: we call it a ‘beetle’.
No one can look into anyone else’s box, and everyone says he knows
what a beetle is only by looking at his beetle. – Here it would be quite
possible for everyone to have something different in his box. One
might even imagine such a thing constantly changing. – But suppose
the word ‘beetle’ had a use in these people’s language? – If so it would
not be used as the name of a thing. The thing in the box has no place in
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the language-game at all; not even as a something: for the box might
even be empty.

(PI §293)

There is no room for Brouwer’s private mental constructions in Wittgenstein’s
very public account of mathematical activity.

Radical Conventionalism

Many truths rest on linguistic conventions. ‘Bachelors are unmarried males’,
for example, rests on the meanings of the words involved, while the truth of
‘John is a bachelor’ depends on non-linguistic facts, facts concerning John and
whether or not he has been through a marriage ceremony. These are often
called, respectively, analytic and synthetic sentences. A one-time popular view
had the truths of mathematics and logic rest on such linguistic conventions. The
truth of ‘5 � 7 � 12’, according to A.J. Ayer (1936), rests on our conventions
concerning the terms ‘5’, ‘�’, ‘�’, and so on. And when mathematicians
make new discoveries, they are merely uncovering the consequences of earlier
stipulations.

Perhaps the greatest problem with conventionalism of this sort concerns the
notion of ‘consequence’ (see Quine 1936). Often consequences are quite un-
expected. They cannot be laid down as explicit conventions in advance, since
there are infinitely many of them. So it would seem that conventionalism has to
make the kind of Platonistic assumptions about consequences that it so desper-
ately wants to avoid – the consequences are ‘already there’ just waiting to be
discovered.

Wittgenstein has often been read as a conventionalist, but of a radical sort in
which even the consequences of our conventions are themselves more conven-
tions. Thus, ‘going on in the same way’ is not the following of a predetermined
pattern; it is not merely the unpacking of the existing consequences, but is
instead the laying down of more new conventions. ‘However queer it sounds’,
says Wittgenstein, ‘the further expansion of an irrational number is a further
expansion of mathematics’ (RFM, V-9).

In terms of our earlier example, the student is thus laying down a new rule. He
is not applying an old rule in a new case, but actually creating a new procedure.
The disagreement with the teacher is a fight over which new convention to adopt.

By being a complete conventionalist, Wittgenstein gets around the problem of
independently existing consequences. It’s one of those not altogether rare cases
where the extreme view is more coherent and plausible than the moderate one.

Nevertheless, it may still be wrong. Road builders, for example, might fight
over whether to extend the road to the east or to the west. Neither is ‘correct’,
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though one way might be more useful than the other. However – and this is the
crucial point – it is possible to actually do both, that is, to build two extensions
in different directions. They can happily coexist. Why can’t mathematics – if
it’s just a body of conventions – be developed, similarly, in different directions
simultaneously? There would seem to be no objection on Wittgensteinian
grounds. And yet it is not done. There is only one ‘addition’, only one ‘multi-
plication’, etc. They are unique. Wittgenstein would need to explain this
uniqueness in mathematics that does not exist in road building. Is uniqueness in
mathematics itself just another convention? The kinds of analogies that spring
to mind to explain radical conventionalism tend to dissolve when inspected
more closely.

Dummett finds it not credible that someone could understand all the concepts
in a proof yet still reject that proof. He notes that while Wittgenstein claims this
could happen, he offers no plausible instances. ‘The examples given in
Wittgenstein’s book are – amazingly for him – thin and unconvincing. I think
that this is a fairly sure sign that there is something wrong with Wittgenstein’s
account’ (Dummett 1959a: 430).

Bizarre Examples

Wittgenstein often discusses bizarre behaviours and talks about them in terms
of different ‘forms of life’. These problems should not be confused with our
problem, though commentators, and even Wittgenstein himself, often run these
things together.

In one of his examples, Wittgenstein has us imagine people who buy and sell
lumber in odd ways. The price is fixed, say, by the area that a pile of lumber
covers. Spread the pile out and the price goes up. We might try to teach them
that this is silly by making the pile higher on a much smaller base. But in
response they just say that now the cost is much less, and so on. This is indeed
odd behaviour, but it has nothing to do with mathematics, even though elaborate
computations might be made to set a price for the lumber. I will use Platonistic
language to argue this because it is, first of all, easier to do so and, second, it
will show how untouched Platonism is by these sorts of bizarre examples.

The mathematical realm contains all possible structures. Any way the world
could be is isomorphic (or at least homomorphic) to some mathematical struc-
ture. Different ways of applying mathematics to the world amount to associat-
ing the world (or some relevant part of the world) with different mathematical
structures (see Chapter 4).

Wittgenstein’s fictitious examples are no more bizarre than some real ex-
amples chosen from modern physics. Consider a simple case like the addition
of velocities. A person at the back of a plane flying at 800 k.p.h. throws a ball
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forward at 100 k.p.h. What is the speed of the ball with respect to the ground?
Common sense and classical physics both say 900 k.p.h. But those who have
adopted special relativity would say this is not so, that the correct answer is
actually a bit less.

They disagree, but do they have different ideas of mathematical addition?
Not at all. The classical view associates the addition of velocities (call this
physical addition) with the simple addition of the associated real numbers, that
is (V1, V2) → v1 � v2. The champion of relativity adds velocities according to
(V1, V2) → (v1 � v2)/(1 � v1v2/c

2). (In our low-velocity example, this gives a
value of 899.99. . . k.p.h. At much higher velocities the discrepancy between
the two ways of calculating can become quite dramatic.) In each case ‘�’
means the same thing. It is not the mathematical concept of addition, but rather
the physical concept that has changed.

At first blush there are lots of bizarre things about the relativistic way of
adding velocities, things which would puzzle us greatly if we, holding the clas-
sical view, encountered it for the first time in some exotic society. For instance,
we can add velocities without a limit on how fast things can go. But on the rela-
tivistic view, no matter how many velocities we pile on other velocities, there is
an upper limit of c. People selling lumber at different prices according to the
shape of the pile – one of Wittgenstein’s favourite examples – is certainly no
more bizarre than that. And it would be sensible for us to attribute all
bizarreness found to their views of nature, not to their views of mathematics.

An interesting sceptical problem can be raised here – though a different one
from ours. The two ways of calculating the addition of velocities agree at low
speeds (at least if relativistic calculators only bother with a few significant deci-
mal places). We could not tell from actual calculations at low velocities which
method of calculating is being used. This looks similar to our earlier example
where teacher and student seem initially to be doing the same thing but then
diverge as they further develop the sequence. However, the two problems are
quite different. Our main problem is one concerning the understanding of
mathematical rules. Scepticism in the other case is about physics – which phys-
ical theory do they hold?

Naturalism

Barry Stroud (1965) agrees with Dummett that radical conventionalism is a
hopeless view of mathematics. But he disagrees with attributing radical con-
ventionalism to Wittgenstein. It’s true that we cannot imagine forms of infer-
ence radically different from our own, so it’s not surprising that Wittgenstein’s
examples are ‘thin and unconvincing’ as Dummett puts it. Moreover, this is a
good reason for thinking that radical conventionalism is false, otherwise we



would have no trouble spelling out different possibilities. Nevertheless, we can
imagine that such people exist, says Stroud, and this is enough to make plaus-
ible Wittgenstein’s point that different ways of doing things are indeed possible.

I already mentioned above that these bizarre examples may be based on rival
physical theories rather than different ways of doing mathematics. This could
be developed in a way that undermines Stroud. However, I will ignore this point
here, and instead focus on another.

Stroud remarks that ‘it is a “fact of our natural history” in Wittgenstein’s sense
that we agree in finding certain steps in following a rule “doing the same”. In
some cases we all naturally go on in the same way from steps which have
already been taken. This is what makes it possible for us to follow any rules at
all’ (1965: 494). 

Is there any explanation for this? Apparently not. As Wittgenstein put it: ‘The
danger here, I believe, is one of giving a justification of our procedure when
there is no such thing as a justification and we ought simply to have said: that’s
how we do it’ (RFM, III-74). ‘What has to be accepted, the given, is – so one
could say – forms of life’ (PI: 226). 

This may seem a shaky business, but Stroud thinks it is quite stable and
reliable.

Logical necessity is not like rails that stretch to infinity and compel us
always to go in one and only one way; but neither is it the case that we
are not compelled at all. Rather, there are the rails we have already
travelled, and we can extend them beyond the present point only by
depending on those that already exist. In order for the rails to be navig-
able they must be extended in smooth and natural ways; how they are
to be continued is to that extent determined by the route of those rails
which are already there.

(Stroud 1965: 496)

Those who reject Platonism, but still want a kind of objectivity about math-
ematics will find this picture attractive – but only initially. On reflection, I don’t
see how it could be either the truth about mathematics or even the right way to
understand Wittgenstein. The idea of a ‘smooth and natural way’ to extend
some mathematical operation seems contrary to everything Wittgenstein holds.
If there were such a thing as a ‘smooth and natural way’, it would be just as
mysterious as any Platonic entity. So rather than say of a sequence that it exists
only as far as we have calculated, but that there is a ‘smooth and natural’ con-
tinuation, we might as well simply say that the series already exists infinitely
far. 

Consider Stroud’s analogy of the railway for a moment. Why is one family of
extensions of the existing rails ‘smooth and natural’ while another extension is
not? The answer has to do with laws of nature. Inertia, for instance, is such that
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if a bend in the tracks is too sharp, then the train will fall off. These laws, which
are utterly objective, non-conventional, facts of nature, are the constraints that
make some extensions smooth and natural. For Stroud’s analogy to work, there
would have to be a mathematical counterpart to these laws of nature – a
Platonic assumption, if ever there was one.

As for Wittgenstein, his sceptic denies that there is anything about the series
so far, or anything the questioner has said, done or intended that determines the
next element of the sequence. If there were a ‘smooth and natural way’ then this
would be a fact which determines (if only with some probability) what the next
element is. This completely flies in the face of Wittgenstein’s sceptical point.

The Sceptical Solution

Kripke remarks that ‘Wittgenstein has invented a new form of scepticism.’ And
he regards it as ‘the most radical and original sceptical problem that philosophy
has seen to date’ (1982: 60). Much of Kripke’s discussion is modelled on Hume
whose scepticism concerned causation and induction. Is there anything in past
events (such as a causal nexus), which determines future events? And is there
anything in our knowledge of the past that allows us to make correct inferences to
the future? These are related problems. Hume’s answer to both is No, and herein
lies his scepticism. But Hume also offered a sort of solution which he called
‘sceptical’: Causation is just regularity – nothing more; our inferences about the
future are based on custom and habit – nothing more. Kripke notes the analogy
between Wittgenstein and Hume and likewise calls Wittgenstein’s approach a
‘sceptical solution’, since it allows us to carry on with our normal practices even
though it concedes the seriousness of the problem. (This is in contrast to a
‘straight solution’ which tries to refute or in some way reject the sceptical prob-
lem.) In summary, Kripke’s reconstruction of Wittgenstein runs as follows:

● There is no fact of the matter about whether the teacher/questioner
meant one sequence rather than another.

● The only way to solve the problem is to abandon the view (found
among realists such as Frege and in Wittgenstein’s earlier Tractatus),
that meaningful sentences purport to correspond to facts. Language
does not work by being representational.

● However, this is not to abandon language. There are many useful
things that various ‘language games’ can do.

● The conditions for the use of any language game involve reference to
a community, all of whom play the same game.

● Ultimately, we act without hesitation, without justification; but this is
not to act wrongly. In following a rule we simply do what we think is
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right. There is nothing deeper. But it is not enough to do merely what
we think is right. ‘To think one is obeying a rule is not to obey a rule.
Hence it is not possible to obey a rule “privately”; otherwise thinking
one was obeying a rule would be the same thing as obeying it’ (PI
§202).

● We are trained by others, and we are judged to be following a rule cor-
rectly when we give the same answers as other members of the com-
munity. There is a strong tendency for all members of the community
to give the same answers – a shared ‘form of life’. This is just a brute
fact, like Hume’s regularities in nature. There is no explanation for
this, no hidden cause: ‘What has to be accepted, the given, is – so one
could say – forms of life’ (PI §226). 

● Our answers are (in some loose sense) in accord with the rule; but they
are not caused by it. We do not grasp a rule which then determines our
behaviour; we do not agree in expanding a sequence because we share
a common conception of some mathematical function. Rather, we say
that we share a common conception because we agree in our answers,
we agree in how we go on expanding the sequence.

As mentioned at the outset, there are three concerns: What is Wittgenstein’s
view? What should he have said, given his other views? And, is either of these
true? Kripke’s analysis is one of the interesting reconstructions of
Wittgenstein’s actual view. It has been repeatedly criticized, often with force.3

But it has not been replaced with a more plausible alternative account. Let’s
accept it (at least tentatively) as the right way to understand Wittgenstein’s
actual view, so we can now get on to the other two questions.

Modus Ponens or Modus Tollens?

Philosophers are fond of paraphrasing an old saw: One person’s modus ponens
is another’s modus tollens. Wittgenstein started from anti-Platonistic assump-
tions, developed a sceptical position, then inferred (modus ponens) the remark-
able conclusion that there is no explanation for why we tend to agree in our
answers; it’s just a brute fact that we do. 

Others – and I include myself – will find this conclusion wholly absurd and
think it ridiculous to say that it is only an amazing coincidence that we all agree
in developing a sequence in the same way. They will infer (modus tollens) that
something is wrong with the premisses of any argument that leads to this absurd
outcome, and so conclude that there are, after all, independently existing math-
ematical entities and we can grasp them, just as the Platonists have been claim-
ing all along.
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When Hume claimed that we cannot make rational inductive inferences about
the future, he put his finger on an interesting problem. But no sensible person
should accept his sceptical conclusion. At most, Hume’s discovery is an induce-
ment to re-examine the premisses of his argument. The proper response to
Wittgenstein’s argument is similarly clear. However, Wittgenstein might not be
claiming there is nothing more than a remarkable coincidence in our answers;
he may really be up to something else. It’s time to speculate.

What is a Rule?

So far we have not said what a rule is; we have relied on an intuitive under-
standing. Let’s spell things out in a bit of detail. The following seem to be
necessary (though probably not sufficient) conditions for being a rule:

(1) A rule must apply to an indefinite number of situations. An order
should be distinguished from a rule, though both can be ‘followed’.
An order is typically a one-time only thing: ‘Close the window.’ A
rule covers indefinitely many instances: ‘When it’s cold out and the
room is draughty, close the window.’

(2) A rule must be something that finite creatures like us can grasp in
spite of the fact that they apply to infinitely many different cases.

(3) A rule is capable of guiding our actions; in some sense a rule causes
our behaviour. Having grasped the rule and wanting to comply with
it, we are typically able to do so. (This is a fallible process and quite
compatible with making the occasional mistake in applying the rule.)

(4) It is possible to act in accord with a rule without following it. I
might, for example, make some random noises which turn out to be
a grammatically correct sentence of some language I’ve never heard
of. In doing so I act in accord with the grammatical rules of that lan-
guage, but I do not follow them. Again to adopt the causal idiom, to
follow a rule is to have our action caused by that rule, and not to be
merely in accidental accord.

When we reflect on these conditions, it becomes pretty clear that the ‘sceptical
solution’ is rather unsatisfactory. In effect it denies that there are any rules.
Wittgenstein’s solution is not a surprising claim about the detailed nature of
rules, but rather a highly implausible assertion that rules don’t even exist. (The
parallel with Hume is still intact, since Hume, in effect, claimed that there are,
after all, no causes and no laws of nature. And that’s why there are no rational
inferences about the future.) Clearly, a different account is needed, one which
takes rules to exist.
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There is a fairly elegant way to account for rules, as characterized above,
using Frege’s distinction between sense and reference, identifying the grasping
of a rule with the grasping of a Fregean sense. A term (a word, a sequence of
symbols) has a reference, the object that it names. The reference of ‘the famous
Austrian philosopher who worked in Cambridge and wrote the Tractatus’
Wittgenstein. The reference of ‘the sequence n2’ is a set of ordered pairs with
infinitely many members. These terms also have a sense ‘wherein the mode of
presentation is contained’ (Frege 1892: 57). The terms ‘the morning star’ and
‘the evening star’ have distinct senses even though they have the same refer-
ence, namely Venus. The terms ‘leprechaun’ and ‘tooth fairy’ have the same
reference, namely nothing at all, but clearly have a different sense. For Frege,
senses are perfectly objective, something that anyone can in principle grasp.
They exist quite independently of us; a type of Platonic entity. (Besides Frege,
others have attempted a roughly similar distinction using the terminology:
intension/extension or connotation/denotation. The word ‘meaning’ is often
used ambiguously among these.)

Now consider a rule, mathematical or other. We may take it to have a refer-
ence, say, an infinite set of ordered pairs. We may also take it to have a sense.
The claim now should be readily clear: Grasping a rule is grasping its sense.
True, a rule covers infinitely many cases, but it is the reference of the rule that
has infinitely many instances. That our limited minds cannot behold. But we
can grasp the sense of the rule, and that is all we need to grasp in order to under-
stand it and to apply it to new cases.

Is this a Platonistic account of rules and rule following? Certainly. Is it
opposed to everything Wittgenstein stands for? Not as much as one might think.
In fact, there is a way of taking this that is surprisingly Wittgensteinian in spirit.

Grasping a Sense

Postulating a sense of a rule as well as its reference or extension solves a prob-
lem, but raises others. One problem that I won’t take up is how we might get in
touch with this wierd abstract entity. That’s a general problem for any sort of
Platonism, but it was dealt with earlier (in Chapter 2). For our purposes here, I
will simply assume that we can somehow or other grasp the sense of a rule. 

The problem that I want to focus on has to do with the complexity of a sense.
Discussions of these issues tend to assume either that we can or that we cannot
grasp a sense, as a matter of principle. It’s all or nothing. But, in reality, things
are likely to be much more complicated. We seem to have no trouble grasping
the sense of a simple rule, say the rule that tells us to continue a sequence by
squaring the successive integers. (Several years of study with gifted tutors seem
necessary to work up scepticism for this sort of example.) But what about much
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more complicated rules? There is really no upper bound on how complicated a
rule can get. As rules become increasingly complex, their sense becomes
increasingly difficult to grasp. At some point it will become humanly impossi-
ble to grasp the sense of a particular rule.

This is not a mere philosophical contrivance conjured up for the purpose at
hand. The notion of ‘complexity of a rule’ is crucial to some mathematical
concepts. Consider the idea of a random sequence of zeros and ones, say, some-
thing like this:

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, . . .

We think such a random sequence is lawless, not governed by a rule. Yet this is
not so. For any such sequence there is a rule that covers it. Because of this, it
has proven very difficult to give a characterization of randomness. One clever
idea which is now quite popular is to characterize a random sequence in terms
of the complexity of the rule which generates the sequence. Intuitively, the idea
is this: a sequence is random when the rule which generates the sequence con-
tains more bits of information than the sequence itself. For example, suppose
we have a sequence of zeros and ones that has 1,000 terms. We could just write
out the sequence. Or we could write out the rule that generates it. If the rule is
as long or longer than the sequence itself, then the sequence is random. (The
idea allows ‘degrees of randomness’ as well.)

If a 1,000-member sequence looks like this:

0,1,0,1,0,1, . . ., 0, 1

a simple, short rule will generate it.

(1) Write a 0
(2) Write a 1
(3) Repeat 1 and 2 500 times.
(4) Stop

But if the sequence looks like this:

0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, . . . 0, 1

the rule would be:

(1) Write a 0
(2) Write a 1
(3) Write a 1
(4) Write a 0
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(1000) Write a 1
(1001) Stop.

The rule is longer than the sequence itself.
Normally we have a good grip on the sense of the terms we use, say, ‘tree’ or

‘the sequence n2’. It’s the reference or extension of these terms that eludes us.
We can exhibit a finite number of instances of n2, but not all of them; and we
can admire or chop down some trees, but not all past, present and future trees to
which the term refers. In the case of random sequences it’s the other way round;
we have a better grip on the reference than on the sense of the rule. In the case
of an infinite random sequence, we have a full grasp of neither – a partial grasp
at best.

Let’s agree then that rules are of varying complexity and that, consequently,
the senses of these rules can be grasped with varying degrees of difficulty –
some perhaps not at all.

Wittgenstein tried to make his case with examples like ‘adding two’. His
scepticism seems bogus and implausible. And it seemed so both initially and
after detailed consideration of Wittgenstein’s position. However, the plausibility
of his case would be much greater if he had focused on complex examples. For
instance, contrast expanding the sequence n2 with expanding a sequence
according to some rule based on, say, the computations involved in the proof of
the four-colour theorem, with each successive element of the sequence requir-
ing a much greater mastery of the four-colour proof. The rule for calculating
successive terms of the sequence would become absurdly complex.

If we assume that rules can be indefinitely complex and only partially grasped,
then the application of such rules to new cases will almost certainly lead to
ambiguities. If the sense of a highly complex rule is only partially grasped, then
at some point it will be certainly true that the holder of the rule had nothing in
mind that determines ‘the next member of the sequence’. This would hold even
though both the sense and the reference of the rule each have an independent
existence.

So, we can generate a Wittgensteinian problem about rule-following even in
a highly Platonistic setting. But what about the Platonism itself? Just how un-
Wittgenstein is it?

Platonism versus Realism

Platonism and realism are usually run together. This is perfectly natural, but the
doctrines are actually distinct. Platonism asserts the existence of abstract enti-
ties; it says that numbers, functions, rules and so on are just as real as trees and
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electrons, though they are not physical entities located in space and time.
Realism, on the other hand, is the doctrine that statements about numbers, rules,
trees, and electrons are true (or false) independently of our beliefs, our evi-
dence, our conceptual structure, our biology, our ways of testing.

In recent years, realism, as I’ve just characterized it, has come to be called
metaphysical realism or external realism. It is commonly distinguished from,
say, scientific realism or internal realism, which says that the theoretical entities
of science (electrons, genes) have the same ontological status as observable
entities (trees and cloud chambers). The observable/theoretical distinction
might be epistemically important but, according to scientific realism, it is onto-
logically irrelevant – electrons are just as real as trees.

Verificationism is opposed to metaphysical realism; it need not be opposed to
scientific realism, or to Platonism. One might say that any true statement is ulti-
mately true in virtue of how we come to believe it. ‘True’ means confirmed
under ideal epistemic circumstances or rationally believed at the end of inquiry.
Thus the likes of Kant, Pierce and Putnam would have no trouble with believ-
ing in electrons. They are just as real as trees, provided that the electron theory
is confirmed under ideal circumstances. But neither electrons nor trees are part
of the ‘noumena’, neither are metaphysically real, neither are ‘really’ there
completely independent from us, their knowers.

Exactly the same could be said of abstract entities. Numbers, functions and
rules are just as real as trees and electrons, though not metaphysically real. To
say they are real is just to say that under ideal conditions theories involving
abstract entities are confirmed in the same way any other theory is confirmed.
Thus Platonism is like scientific realism. Both can be taken in the internal real-
ist way and be sharply distinguished from metaphysical realism.

Historically, I think Pierce held such a view. On the one hand, he identified
truth with what is held at the end of inquiry – truth and evidence are linked. On
the other, he was at pains to stress the existence of something he called ‘third-
ness’, an abstract principle which has causal powers, but is certainly not in
space and time (see, e.g., Pierce 1957). Perhaps Crispin Wright also holds
something like this. He has clear verificationist sympathies (Wright 1993) yet,
at the same time, he embraces Frege’s Platonism in number theory (Wright
1983). 

Whether there are historical precedents is of no matter. The point is that there
is a distinction to be made between realism and Platonism. And this can be
applied to Wittgenstein. It’s true he often said that he rejected Platonism, but in
the light of the distinction, it’s actually metaphysical realism about abstract
entities that is being rejected, not abstract entities themselves.

One could consistently adopt Platonism and reject realism, but I should stress
that I do not advocate such a view myself, though the distinction is real. I
remain convinced of the truth of both. I am only trying to foist this view on
Wittgenstein.
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Surveyability

Wittgenstein repeatedly stressed the importance of ‘surveyability’, a crucial
notion for him. A proof is surveyable when we can grasp it, we can take it in as
a whole. The notion is not easily defined, but it is readily understood in an intu-
itive way and we have no trouble applying it to various examples. The standard
proofs of the Pythagorean theorem or the proof of the irrationality of √2 are
surveyable, but the computer proof of the four-colour theorem is not. 

This is exactly the notion we need for our account of a rule’s sense. The sense
of some rules is surveyable while others are too complex. Graspable and sur-
veyable amount to the same thing. Here is a natural place for Wittgenstein’s
anti-realism to come into play. There are no rules with a transcendent sense; the
only legitimate sense – Platonic entity though it is – is a surveyable sense.

In keeping with typical verificationist notions, by surveyable I mean some-
thing like surveyable under ideal conditions. Someone may have only a partial
grasp of the sequence n2, nevertheless, there is a definite infinite sequence of
terms which are determined by this rule. But a sequence governed by a rule so
complicated that no one could grasp it under any circumstances, however ideal,
simply does not have its terms already determined and existing independently
of us. In short, real � verifiable � surveyable. For example, there is a short
(hence surveyable) rule for calculating the value of π to any decimal place.
Thus the infinite expansion is perfectly real and already exists independently of
our actually carrying out the calculation. By contrast, there is no rule for locat-
ing the twin primes – we simply have to work out the instances. Thus, by this
criterion, there is no fact of the matter about twin primes, though there is about
the expansion of π.

This quasi-Wittgensteinian account seems to me a great improvement over
Wittgenstein’s initial view. It has the virtues of allowing a kind of objectivity
demanded by common sense in the expansion of a sequence, yet, at the same
time, it recognizes real human cognitive limitations. It has the drawback of
countenancing abstract entities, and for many commentators this will be enough
to scuttle the view. Perhaps Wittgenstein himself would dismiss it for this
reason as well, in spite of the distinction I drew between realism and Platonism.
But there is no Wittgensteinian reason for doing so. Wittgenstein would
certainly not allow philosophers qua philosophers to say that electrons or other
unobservable entities of science do or do not exist in principle. So why should
he, on philosophical grounds, dismiss abstract entities? Anti-realism is certainly
part of his core theory. But it does not follow from this that the only things we
meaningfully talk about must be material objects in space and time. There is
room in his view for abstract entities, too.

There are passages in the Remarks that express a kind of wistful ambition: ‘I
should like to be able to describe how it comes about that mathematics appears



to us now as the natural history of the domain of numbers, now again as a col-
lection of rules’ (RFM, IV-13). Perhaps this type of (anti-realist) Platonism does
the trick.

The Sense of a Picture

How do we come to grasp the sense of a rule? Children somehow manage to
grasp addition, multiplication and so on through examples: adding apples, mak-
ing change, memorizing the multiplication table. These activities seem to trig-
ger a grasp of the appropriate rule. One of the more interesting ways in which
we often grasp a rule is by means of a picture. This is hardly ever taken up in
discussions in the philosophy of mathematics, yet Wittgenstein dwells on it to a
considerable extent, as I mentioned at the outset.

Our initial problem, recall, was to make sense of the flawed picture: How is
it possible to grasp correctly what is going on when the pictorial representation
is flawed?

Once again, here is the (incorrectly drawn) diagram (Figure 9.3) together
with some of Wittgenstein’s remarks.

While the point A describes a circle, B describes a figure eight. Now we
write this down as a proposition of kinematics . . . we can say that
proof must shew the existence of an internal relation . . . The picture
(proof-picture) is an instrument producing conviction.

(RFM, VII-72)

When we consider examples like this, one thing seems clear: pictures, like
rules, have a sense, or, at least, they enable us to grasp the sense of some asso-
ciated proposition (in this case, the proposition that when A moves in a circle, B
moves in a figure eight). But before we have the full solution we need one more
important ingredient.

Recall a distinction made in Chapter 3. Those in aesthetics and perceptual
psychology sometimes distinguish between two types of representation: a ‘pic-
ture’ and a ‘symbol’ (Arnheim 1969). A painting such as David’s Napoleon is a
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representation, a picture, of Napoleon, but it is also a representation, a symbol,
of more abstract things, such as: courage, leadership, glory, adventure. With this
distinction in mind, it is easy to see that a particular representation might be a
poor picture but a good symbol, or vice versa. Our particular drawing is thus a
poor picture in that it is a mis-drawing of an actual mechanism. But it is a good
symbol in that it represents the important abstract feature; it ‘shews the exis-
tence of an internal relation’, as Wittgenstein put it. In this latter respect it is
quite successful, indeed.

And that, very simply, is the solution to the problem. The picture, flawed
though it is, is simply an aid to the understanding; it triggers the grasping of the
sense. Thus, as a picture it need not be accurate; it need only lead to the sense,
the Platonic entity.

There is a bonus with this solution. Recall that I conceded above that some
rules might be so complex that we could not fully grasp their sense. Perhaps we
need not make this concession. If we allow ourselves the possibility of grasping
senses via pictures as well as via the usual linguistic means, then it is far from
clear how to draw the line between the surveyable and the non-surveyable. That
is, we can grant that a rule does not have a determinate extension unless it has
a (in principle) surveyable sense, but we need not grant that there are unsur-
veyable senses, since there is no known limit on the ‘motley of techniques’ that
could in principle be available to us. Human ingenuity could perhaps always
find a way of grasping even the most complicated rule’s sense – any rule can be
followed.

Further Reading

Wittgenstein’s writings on mathematics can be found in several places, but
Remarks on the Foundation of Mathematics is the most important. Wright’s
Wittgenstein’s Philosophy of Mathematics discusses it in great detail. There is a
huge literature on Wittgenstein, much of it on his mathematical views. A recent
general anthology is Sluga and Stern, The Cambridge Companion to
Wittgenstein. Kripke’s Wittgenstein on Rules and Private Language is of central
importance. An excellent biography is Monk, Ludwig Wittgenstein: The Duties
of Genius.
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CHAPTER 10
Computation, Proof and Conjecture

The Four Colour Theorem

How many colours does it take to do a map so that adjacent countries are
different colours? The answer is so well known that hardly more than
a sentence or two is needed to remind us of what it says. There are a

few conditions: the map must be on a plane or sphere; the number of countries
is finite; they must be connected (the USA, for example, isn’t since Alaska and
Hawaii are separate from the other states); and countries meeting only at a ver-
tex may be the same colour. This has long been a popular problem, and those
who tried their hand at it were usually convinced by experience that four
colours suffice. In 1976 Appel and Haken proved what was widely suspected;
their celebrated result is now known as the four colour theorem (4CT). Its fame
rests partly on the fact that it solved an outstanding problem; but even more, its
celebrity resides in the way the theorem was established – a computer played an
essential role in the proof.1

One of the first and most influential commentaries was provided by Thomas
Tymoczko (1979) who claimed that we here have a new way of doing math-
ematics. According to Tymoczko, computer proofs, such as that of the 4CT, are
not a priori, are not certain, are not surveyable, and are not open to double-
checking by other mathematicians. This makes computer proofs quite different
from the traditional kind. They are, Tymoczko stresses, perfectly legitimate
proofs, but their effect is to make mathematics more like the empirical and
fallible natural sciences. Let’s look briefly at each of his points.

Traditional proofs are a priori, says Tymoczko, in the sense that they do not
rely on empirical evidence. But this is not so in the case of computer proofs.
We need to know how the hardware works and that it’s reliable; how the soft-
ware works and that it’s not buggy. This is empirical knowledge of the non-
mathematical realm and it is unheard of in traditional mathematics. But as soon



as we admit we need this, we must inevitably admit further that certainty has
been abandoned. We may have a very high degree of confidence in the results,
but resting as they do on our experience-based beliefs about the hardware and
software, we must concede fallibility.

Tymoczko’s claims about the non-surveyablity of the 4CT are perhaps his
most controversial. Surveyability is an important, though fuzzy notion. (It was
discussed in the last chapter.) We can survey a proof when it’s short and easy to
grasp. But when a proof is much longer and more complex, we lose our grip;
it ceases to be surveyable. All traditional proofs are surveyable – perhaps not
by everyone, but at least by those with the appropriate skill and training.
However, in the case of the 4CT, the proof is so long and complex that no
human can grasp it. It goes without saying, therefore, that no human could
double-check the proof to see if it is mistake-free. Putting these points together,
Tymoczko concludes that computer proofs are something new on the mathe-
matical landscape. It’s a new way of doing mathematics, a way that makes
mathematics empirical, probabilistic, and generally more like the inductive nat-
ural sciences.

Fallibility

Of course, mistakes in calculation are commonplace. Some mathematicians
even take pride in being poor at simple arithmetic, just as some writers brag
about their inability to spell. But this sort of mistake is not what Tymoczko has
in mind. Ptolemy was wrong, and so was Newton, but not because they made
calculation errors. Their mistakes are the mistakes of empirical science – false
hypotheses. The fallibility of computer proofs stems from this source. We
hypothesize certain things about a computer and about the software that it’s
running. And this hypothesis may be wrong. Greater use of the machine in a
variety of circumstances and greater testing of the software (or fragments of it)
can lead to greater confidence, but it will never leave us with anything better
than a well-confirmed scientific theory.

In the striking result of Lam et al. (1989) there is an explicitly probabilistic
argument as part of the proof. They used several thousand hours of CRAY
supercomputer time to prove the non-existence of finite projective planes of
order ten. (It’s not important to know what this is, but the seven-point geometry
example cited in Chapter 5 is an example of a projective plane of order two.2)
The computation required the examination of 1014 cases, which allowed plenty
of scope for problems. In their paper, Lam et al. note the possibility of error.
Interestingly, they note several types. One source of error stems from human
mistakes in entering data. This is, perhaps, akin to regular calculation mistakes
that are often made. 
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A second source stems from software problems. As we all know from regular
commercial software, eliminating bugs is no easy matter. In writing a pro-
gramme there are many levels of software to worry about: the operating system
such as DOS or UNIX, the programming language such as PASCAL or
FORTRAN, a compiler, and, of course, the particular software created to do the
speciality computation. There are numerous opportunities for problems to enter.
And with so few users, speciality software, in contrast to popular commercial
programmes, has fewer opportunities to have its problems revealed.3

Third, one of the most interesting sources of error stems from hardware prob-
lems. In normal PC use hardware problems are glaring – a power failure, for
instance. But some mistakes are random and possibly undetectable. In the case
of CRAYs, mistakes are made on average about once per thousand hours. These
are quite random, perhaps due to cosmic rays.4 What Lam et al. do is (in brief)
note the frequency of this type of error, the total time elapsed in a computation,
and the number of cases that had to be examined; they then calculate the chance
that an error was made when the computer was examining a case that was actu-
ally an instance of a projective plane of order 10. They conclude that this prob-
ability is very small, and when some special considerations concerning the
nature of the search are considered, the probability of a misleading error is
‘infinitesimal’ (Lam et al. 1989: 1122).

In describing what he takes to be the philosophical upshot of this work, Lam
at one point says he is tempted to ‘avoid using the word “proof” and prefer[s] to
use the phrase “computed result” instead’ (1990: 8). In the end he draws the
same conclusion as Tymoczko: ‘As physicists have learned to live with uncer-
tainty, so we [mathematicians] should learn to live with an “uncertain” proof’
(ibid.: 12).

The problem – if it is a problem – has been recently exacerbated by DNA
computing. Typical computing is based on the silicon chip. But Leonard
Adleman (1994) managed to solve a problem in graph theory by manipulating
strands of DNA.5 The required background assumptions are extensive, in the
form of a great deal of biology and biochemistry. Probabilistic assumptions are
entering at many levels.

What are we to make of this? For one thing, Tymoczko’s conclusion seems
perfectly correct. That is, empirical, fallible and probabilistic elements are part
of mathematics. But it is not quite so new as Tymoczko claims. It’s hard to see
his point except as being on a continuum. We make simple mistakes of adding
or multiplying. In longer inferences, we make logical mistakes. In a great many
proofs that count as traditional mathematics, mistakes have been made –
ironically, in the four colour case itself. In the nineteenth century Arthur Kempe
‘proved’ the result, and more than a decade passed before the subtle flaw was
discovered. Most recently, Andrew Wiles’s first go at Fermat’s Last Theorem
was not correct. Now, his revised proof is thought to be right; but is anyone
willing to bet heavily on it? 
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Surveyability

Much of the probabilistic nature of the 4CT comes, according to Tymoczko,
from the fact that it is not surveyable. A number of questions arise? Is it true
that the 4CT is not surveyable? Are all regular proofs that are typically found in
the journals surveyable? What is the distinction between surveyable and non-
surveyable proofs, and it is epistemically important? As I mentioned above, the
notion of being surveyable is vague. Here’s Tymoczko’s gloss:

A proof is a construction that can be looked over, reviewed, verified by
a rational agent. We often say that a proof must be perspicuous, or
capable of being checked by hand. It is an exhibition, a derivation of
the conclusion, and it needs nothing outside itself to be convincing.
The Mathematician surveys the proof in its entirety and thereby comes
to know the conclusion.

(Tymoczko 1979: 59)

Must a proof be surveyable (in Tymoczko’s sense)? What do we want from a
proof? It cannot merely be a relation that exists between first principles and the
theorem. It is first and foremost a piece of evidence that the theorem is indeed a
theorem. Evidence is evidence for us humans. ‘Us’ might be restricted to trained
mathematicians. Proofs must at least be convincing to them. Persuading an
omniscient being isn’t good enough. On the other hand, proofs don’t have to
convince my pet dog. If proofs are logical relations between premisses and con-
clusions, then it must be a logical relation that we humans can grasp. If proofs
are pictures, then the pictures in question must, for example, be visible to
humans. All realists are happy to say that it is perfectly possible for a proposi-
tion p to be true even though no one knows or even could know that it is true.
But evidence is not like this: evidence which is incomprehensible to us is
simply not evidence.

Surveyability is much like observability. In the natural sciences there is a com-
monly drawn, but rough, distinction between what is observable, i.e. can be seen
with the unaided eye (trees, streaks in a cloud chamber) and what is theoretical,
i.e. cannot be directly experienced (atoms, genes). It is, perhaps, natural to extend
‘seeing’ to include atoms and genes when they are ‘seen’ with a powerful micro-
scope. However, some theoretical entities (neutrinos, quarks) cannot be seen
even in this extended sense. We detect them and come to know their properties
only indirectly by means of other (already accepted) theories about how they
interact with other observable entities. If the analogy with surveyability holds,
then we would have, first, simple proofs that are surveyable, second, more
complicated proofs that are surveyable in an extended sense, and third, proofs
which simply aren’t surveyable, and hence arguably aren’t proofs at all.
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The first kind needs no comment. The second is well illustrated by longer
proofs where we can follow any given step, even though we have trouble grasp-
ing the whole. It would seem that the 4CT falls into this second category. 

Long and complex computer proofs are not the only source of difficulty. One
of the most interesting achievements in recent years is the classification of all
simple finite groups.6 The proof was carried out over many years, by a very
large number of mathematicians. The number of journal pages is estimated at
about 15,000. It became clear to Daniel Gorenstein (1979) that so much work
had been done on simple finite groups that quite possibly a complete classifica-
tion had been, or was very nearly, achieved. This is now a completely accepted
result (see Gorenstein et al. 1994). Clearly, the result is not surveyable in the
first sense, but would seem to be in the second.

Tymoczko mentions Lakatos with approval in connection with fallible math-
ematics. But there is an important distinction. The key to fallibility, according
to Lakatos, stems from conceptual change. This is different from any type of
‘mistake’ discussed by Tymoczko. The concept of polyhedron changes with
mathematical theorizing – earlier conceptions are tossed out. This is neither a
calculation error nor a logical mistake, nor does the problem stem from an
inability to survey the proof. Lakatos’s is one more source of fallibility, but it is
different from Tymoczko’s.

Inductive Mathematics

Computer proofs may not lead to a revised view of mathematical evidence, just
to a change in how we acquire some of that evidence. But there are other ways
in which computers have come to play a major role in mathematical practice. In
the next chapter I’ll discuss some of the debates surrounding these issues. In the
balance of this chapter, I’ll take up the issue of computer-generated data and
how we might consider it.

Mathematical rationality is based on much more than proof – whatever we
think proof is. Mathematicians wonder about which problems to work on (or to
give their students), and what techniques are most likely to succeed. They sit on
grant-giving committees that evaluate the plausibility of various proposals, and
they fund those thought sufficiently promising. As a body of accomplishments,
mathematics may rest exclusively on proof (though this is highly questionable),
but as an activity, mathematics depends heavily on hunch, plausibility and con-
jecture. We need only observe how mathematicians react to unsolicited manu-
scripts offering a ‘proof’ of a famous problem. Confident of them being flawed,
usually they are put in the garbage. One of the more creative responses we some-
times hear of is to ask the author to put up a considerable sum of money on the
condition that if the reader finds a flaw in the proof, she keeps the money; if she
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doesn’t, she returns the money and publicly sings the author’s praises. Is this arro-
gant dogmatism? I doubt it. Life is short while these ‘proofs’ are invariably long.
‘Had we world enough and time . . .’ it might be a different story, but in the real
world of mathematics, inductive evidence can and must play an important role.

First of all, a distinction: an open problem is a proposition that so far has no
proof. (Let us not worry about the nature of proofs for now; for the sake of the
argument we can adopt the traditional conception.) Of course, we can make a
guess, but a rational conjecture (or simply, a conjecture) is a statement of the open
problem for which there is convincing evidence, convincing in the sense that a rea-
sonable person would be inclined to believe a rational conjecture in the mathemat-
ical realm just as she would believe a similarly well-established theory in physics.

The distinction between rational conjecture and a mere guess is somewhat
fuzzy, I admit, and the terminology is also a slight departure from normal
usage (though Shanks (1993) notes a similar difference). So let me explain a
bit further.

Normally, anybody can conjecture anything, in the sense of guessing – evi-
dence has nothing to do with it. (Popper’s whole philosophy of science is built
on this.) But I want to mark an important distinction – vague though it is – and
to tie rational conjecture to available, though partial, evidence in some objective
way. It may be helpful to posit an ideal mathematician who, having all the avail-
able evidence (but not a proof), is rationally inclined to believe p, and thus con-
jectures it. If there is no evidence at all for or against p, then it’s an open
problem. Obviously, there is no natural boundary in the series: zero evidence,
very weak evidence, mild evidence, strong evidence, and so on. And, of course,
the availability of new evidence may push a rational conjecture p into an open
problem or even into the rational conjecture ~p.

So, the problem is now: What are the characteristics of mathematical evidence
(other than proof)? What role does the computation of instances play? What other
types of evidence besides computation could there be? What makes a mathemat-
ical conjecture a good one? What sorts of grounds could there be for accepting it?

Most topics in the philosophy of mathematics have a well-developed litera-
ture that serves as a point of departure for future reflection. But not here.
Writings on this subject are sparse and quite underdeveloped. Consequently,
I think it’s a good idea to look at lots of examples. (Of course, it’s always good
to look at lots of examples, but here even more so than normally.)

Perfect Numbers

A perfect number is one which is equal to the sum of its positive divisors
(other than itself). Thus, 6 is a perfect number since it is divisible without
remainder by 1, by 2, and by 3, and 1 � 2 � 3 � 6. The second perfect
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number is 28 � 1 � 2 � 4 � 7 � 14. The Greeks knew the first 4; today about
45 are known.7 Much mysticism has been associated with them; Augustine, for
instance, thought that God took six days to make the world, as this signified
the perfection of creation. Here are the first nine perfect numbers:

6
28
496

8,128
33,550,336

8,589,869,056
137,438,691,328

2,305,843,008,139,952,128
2,658,455,991,569,831,744,654,692,615,953,842,176

I won’t list more since the size grows so quickly; the largest so far discovered
has millions of digits. 

Knowing only what the ancient Greeks knew (i.e. the first four perfect num-
bers on the list), one might conjecture (as was done in the middle ages) that the
nth perfect number is n digits long, and that the list alternates between numbers
ending in 6 and 8. But these conjectures were dashed by later discoveries. From
a glance at the list, two other questions naturally arise: Are there infinitely many
perfect numbers? Is there an odd perfect number? I’ll focus on these questions,
as they nicely illustrate the distinction between open problem and rational
conjecture.

First, let’s ask about the existence of odd perfect numbers. Are there any?
(See Wagon (1985), Shanks (1993).) All known perfect numbers are even. But
if there are infinitely many, this is a pretty meagre sample. Descartes thought
there should be an odd perfect number, but he searched in vain. It is now known
that if an odd perfect number exists, it must have more than 1050 digits and at
least eight prime factors, one of which is greater than 300,000. So it’s not too
surprising that no odd perfect number has been found so far. Does the fact that
there can’t be any ‘small’ odd perfect numbers lend support to a conjecture that
there are none at all? This, too, is doubtful. Perfect numbers tend to be ‘large’
anyway; from the tenth on they are all greater than 1050 (which is why I cut off
my list at nine entries). In short, there is really no evidence at all to say that
there is or is not an odd perfect number. There are no grounds for a rational con-
jecture here; this is an open problem.

Let’s now turn to the question of how many perfect numbers there are. To do
so, we must first look at Mersenne numbers which have the form 2p

� 1 (where
p is a prime). When 2p

� 1 is itself a prime, it is called a Mersenne prime. The
first few examples of Mersenne numbers are also Mersenne primes: 3 � 22

� 1,
7 � 23

� 1, 31 � 25
� 1, 127 � 27

� 1. It looks like they are growing in a reg-
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ular and predictable way. But the next Mersenne number, 2047 � 211
� 1, is not

a prime. Nevertheless, the next Mersenne number, 8191 � 213
� 1, is a prime,

hence, a Mersenne prime.
Notice something remarkable: When we multiply a Mersenne prime by the

next lower power of 2, we get a perfect number:

In fact, it is generally true (a theorem) that if 2p
� 1 is a Mersenne prime then

2p � 1(2p
� 1) is a perfect number. What’s more, every even perfect number has

this form. Thus, the existence of perfect numbers is tied to the existence of
Mersenne primes. And, as you would expect, 45 are presently known to exist.8

This means that we can focus our attention here when searching for evidence
about the infinity of perfect numbers. And it is rewarding to do so, since looking
at the list of perfect numbers we see little or no pattern, but the regularities in the
Mersenne primes are striking. For example, look at the graph (Figure 10.1) of the
base-two logarithms of the values of p which lead to Mersenne primes.9

The pattern is almost linear. It can be used to predict roughly where the next
Mersenne prime will be located. It also suggests the existence of infinitely
many such numbers. This, in turn, implies the existence of infinitely many
perfect numbers.

Of course, this may just be a coincidence; at higher values of p the pattern
may change abruptly. But it is the kind of consideration that mathematicians
find plausible – and rightly so. Thus, the existence of infinitely many perfect
numbers counts as a rational conjecture. Our belief is supported by some
reasonably solid evidence. We do not have a proof, but our belief is rational,
none the less.
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Computation

Computation plays a huge role in the search for Mersenne primes. Computers are
set to factor very large numbers, to see if they are primes or composites. Many
took several hours of CRAY time to show that they are prime. Computation of this
sort, however, is usually thought to be part of a normal proof. More interesting is
computation which does not result in a proof. Goldbach’s conjecture (and yes, it is
a rational conjecture) says that every even number greater than 2 is equal to the sum
of two primes: 4 � 2 � 2, 6 � 3 � 3, 8 � 5 � 3, . . ., 1328 � 941 � 387, . . . .
This has been checked well into the several millions, and holds invariably. It is
widely believed. The huge number of examples seems to convince people.

But a huge number of instances is neither necessary nor sufficient, as a
famous example of Littlewood’s shows. Let π(x) denote the number of primes
equal to or less than x, e.g. π(10) � 4 since there are four primes, 2, 3, 5 and 7,
equal to or less than 10. Then the integral 

approximates π(x). Littlewood proved that

changes sign infinitely many times (thus, as an approximation, the integral alter-
nates between overshooting and undershooting infinitely often). Yet when
checked numerically, the integral is greater than π(x) for every x � 1012. The
available numerical evidence was highly misleading. But we don’t need fancy ex-
amples to begin to really appreciate the problem. Here’s a strikingly simple one.

Consider the following polynomial:

f(n) � n7
� 28n6

� 322n5
� 1960n4

� 6769n3
� 13132n2

� 13069n � 5040

When we test it, we see a definite pattern: f(1) � 1, f(2) � 2, f(3) � 3, and so
on. It certainly looks as if f(n) � n, for every n. Yet the pattern breaks down at
eight where f(8) � 5048, and never again does f(n) � n. The counter-example
here could be found quite easily; we needed to examine only the first eight
numbers. But it is interesting to see how the polynomial was constructed.10 It
was devised by simply multiplying out and collecting the terms in

f(n) � n � [(n�1)(n�2)(n�3)(n�4)(n�5)(n�6)(n�7)]
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Each of the values of n up to 7 will, in turn, make one of the terms (n � m)
equal to zero, and so the result is due exclusively to the isolated term n. But
when we exceed 7, this no longer happens. What is also clear is that 7 is quite
arbitrary; there are indefinitely many different (though similarly devised) poly-
nomials in which f(n) � n as far as some arbitrary m and does not equal n there-
after. Thus, no matter how far we search, no matter how many millennia a
CRAY works on the problem, there will be a polynomial that satisfies f(n) � n
up to the point we have examined, but diverges thereafter. Numerical evidence,
then, is really no help at all in cases like this.

Those with a taste for Goodman’s ‘Grue’ should find this sort of example
intriguing. Let me explain. There is a temptation to think that inductive (or
ampliative) inference is the same in mathematics as it is in science. But this is
highly doubtful. Consider a function defined on the natural numbers. We may
study this function for a very large number of arguments and claim to see a pat-
tern in its values. However, for any f there is an f � which has exactly the same
values for the examined input, yet diverges wildly for all input so far not con-
sidered. On the basis of the limited input and output examined, there is no way
to say that the function in question is f rather than f �. There is no analogue of
this in the physical realm. There does not exist, for example, a second species
which looks black just like the raven in all cases which have been seen, while
unseen ones are orange. (Of course, one could be sceptical about this, too.) It’s
a logical possibility, of course, but nature does not realize all logical possibili-
ties – the Platonic realm does; it’s as full as it can be. The assumed ‘uniformity
of nature’ is often said to be a necessary assumption in inductive inference. This
may be so, but I suspect that the sparsity of nature plays just as crucial a role.

Overlapping species may not exist the way infinitely many overlapping func-
tions do, but there is a problem of induction raised by Goodman (1965) that has
some surprising affinities – the infamous problem of grue. Emeralds are green;
close observation over a very long time tells us this. At least, this is what we’ve
inferred. But they might actually be grue instead of green. The colour grue is
defined as looks green up to some time t, then looks blue thereafter. (Time t
could be any future time, say, 1 January 2001, which some who can count claim
is the first day of the new millennium.) All the empirical evidence we have so
far accumulated about emeralds is compatible with them being either green or
grue. And given this, we can’t make rational predictions about the future
appearance of emeralds, for if they are indeed grue then, after time t, they will
look blue rather than green. (This, by the way, is perfectly compatible with the
uniformity of nature; emeralds would be constantly and invariably grue.)

The problem of grue seems highly artificial. Perhaps it’s of philosophical
interest, but hardly a practical problem for working scientists. Surprisingly, it
may turn out to have a genuinely interesting application in inductive mathemat-
ical inference.
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Is π Normal?

Perhaps the most important and intriguing number in all of mathematics is π,
usually defined as the ratio of the circumference of a circle to its diameter.
Among its important properties is that it is irrational and even transcendental
(i.e. unlike √2, it is not the solution of an algebraic equation). What is not
known about π is this: is it normal? The intuitive idea behind normality is ran-
domness; do the numbers in the expansion of π occur in a random way? But this
is only a rough characterization; normal and random are different concepts. A
real number is normal (in base b) if and only if in its representation all digits
occur (in the limit) equally often, and strings of length n (for every n) occur
equally often. Thus, if π is normal, then every digit must occur infinitely many
times, and if the three-string 456 occurs n times (or infinitely many times), then
every other three-string must occur exactly as often.

The first 50 digits of π suggest normality, since there seems to be no pattern
at all:

3.14159265358979323846264338327950288419716939937511 . . .

But patterns can be more than a little deceptive here. The number
0.12345678910111213 . . . is normal (in base 10) in spite of exhibiting a very
clear and predictable pattern. Nevertheless, seeing the expansion of π at much
greater length would obviously be a help.

Computing π has long been a problem.As late as 1706 its expansion was known
only to the first 100 digits (using the formula π � 16 arctan 1/5 � 4 arctan
1/239). And the ENIAC computer of 1949 still managed only 2037 digits after
70 hours. With faster hardware and a better formula11 we can now do as well in
the twinkle of an eye. Current expansions are now well into the billions. Most
real numbers are normal (in the sense that the set of non-normal numbers is of
measure zero), yet not a single example is known. (Even the example cited
above is not known to be normal in any other base than 10.) So, what is the evi-
dence that π is normal?

A statistical analysis on the first 10 million digits tells us something interesting.
The frequencies for each of the ten digits are: 999,440 zeros; 999,333 ones;
1,000,306 twos; 999,964 threes; 1,001,093 fours; 1,000,466 fives; 999,337 sixes;
1,000,207 sevens; 999,814 eights; and 1,000,040 nines. All are very close to the
expected one million. Perhaps even more impressive is the rate at which each
digit is closing in on being 10% of the total. Consider the number 7, for example:
It’s 0% of the first 10 digits, 8% of the first 100, 9.5% of the first 1000, 9.7% of
the first 10,000, 10% of the first 100,000, 9.98% of the first 1,000,000, and
10.002% of the first 10,000,000 digits. The speed of convergence to 10% is also
at the rate predicted by probability theory (i.e. a rate proportional to 1/√n).
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These kinds of consideration lead one reasonably to expect that π is normal.
Computation plays a crucial role; it provides essential data. But computation is
not the end of the matter. It’s the statistical analysis of the computed results that
really provides the convincing evidence.12

Fermat’s Last Theorem

Are there whole numbers, x, y, z, and n � 3, such that xn
� yn

� zn? When n �

2, the equation is just the Pythagorean relation which is satisfied by lots of
instances, such as {3,4,5}, i.e. 32

� 42
� 52. But when n � 3, there are no known

examples. In fact, Fermat thought he had actually proved that there were none.
In his copy of a number theory book he wrote that he had a proof, but that the
margin was too small for him to write it down. No one has been able to recon-
struct what Fermat might have had in mind, and it is now generally agreed that
he very likely had no proof at all. Nevertheless, Fermat’s claim has been widely
believed as a conjecture, if not a theorem (in spite of the fact that it goes by the
name Fermat’s Last Theorem, or FLT). Recently, events have taken a dramatic
turn. In 1993 Andrew Wiles announced that he had proved the conjecture. Then
it turned out that there was a significant gap in his proof. A year and a half later,
the consensus was and remains that he (and a co-worker) have patched things
up, and we do indeed have a proof of the theorem, hereafter likely to be known
as the Fermat–Wiles theorem. It’s worthy of inclusion in our discussion here
since it was a famous conjecture that turns out to be right. (Below I’ll look at
one that didn’t have a happy outcome.) Why did mathematicians believe FLT
before having a proof?

Some special cases were proved early on. Fermat himself showed that FLT
holds for n � 4; a century later Euler established that it held for n � 3; and
about 75 years after that Legrendre and Dirichlet proved it for n � 5. Euler
noted that his proof was so different from Fermat’s that a method for attacking
the general problem couldn’t be extracted from them. The first significant
breakthrough came in the mid-nineteenth century when Kummer (using his
notion of regular primes) established FLT up to n � 100. 

A different approach by Inkeri established that when n is a prime number, p,
then, if there is a counter-example, {x,y,z}, to FLT, then x will have to be greater
than ((2p3

� p)/log 3p)p. The latest computer-generated results on the size of n
said that FLT holds at least as far as n � 1,000,000. This means that in any
counter-example, x will be at least 17 million digits long.

As impressive as some of these considerations may be, they pale beside Gerd
Faltings’ results in 1983 (along with his proof of the Mordell conjecture) show-
ing that there are at most finitely many solutions to the Fermat equation (i.e. at
most finitely many counter-examples to FLT). Of course, that’s compatible with
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there being billions of counter-examples; but his work is crucial for a different
reason. Faltings’ result shows that the case n � 3 is completely unlike the
Pythagorean case where n � 2. The latter has infinitely many solutions. In this
regard, there is no other number which is like 2.

Though Euler could not prove FLT, he did contribute greatly to it and to
related problems. In fact, he conjectured a generalization of FLT that was also
long thought to be true. The generalization said that if n � 3, then fewer than n
nth powers cannot sum to an nth power. As a special case, this means that there
are no solutions {w,x,y,z} to the equation w4

� x4
� y4

� z4. The conjecture was
well tested by examples, and for about two centuries was as widely believed as
FLT. However, counter-examples have been found recently. For example,
2,682,4404

� 15,365,6394
� 18,796,7604

� 20,615,6734.
The process of discovering this counter-example is of some interest. Brute-

force computation would be hopeless with numbers this size. It came instead,
via algebraic geometry, where the equation is associated with an elliptic curve.
Certain properties of the curve suggest the existence of a counter-example, so a
computer search is then unleashed, but only in the vicinity of numbers associ-
ated with specific points on the curve. This resulted in a manageable computer
search, and the counter-examples were found. (Elliptic curves and their connec-
tion to modular forms play a central role in Wiles’ proof of FLT.)

The Riemann Hypothesis

Now that the conjecture known as Fermat’s Last Theorem is definitely a theorem
(thanks to Wiles), the Riemann hypothesis must be the most famous conjecture in
all of mathematics. It is surely the most important. In 1859 Riemann published
his outline of a proof of the prime number theorem, which says that the number
of primes less than or equal to the number x is roughly equal to x/log x. There
were lots of gaps (of which he was aware), and the final proof (by Hadamard and
by de la Vallée-Poussin, independently) didn’t come until the end of the century.

Riemann’s method is based on the zeta function,

The number s is a complex number, hence of the form (a,b), and often written
as a � ib, where a is the ‘real’ part and b is the ‘imaginary’ part of the complex
number. The roots of ζ(s) are the values of s for which ζ(s) � 0. (Equivalently,
the values of (a,b) for which ζ((a,b)) � 0.) 

The prime number theorem turns out to be equivalent to the assertion that
there is no root (a,b) with a � 1. What is not known, but very widely believed,
is the conjecture known as the Riemann hypothesis: all the complex roots of
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ζ(s) have the form ( �� ,b), that is, the real part of the complex number always has
the value  �� . Among the relevant facts are these: There are infinitely many solu-
tions of the form ( �� ,b). (But, of course, there might also be some that aren’t of
this form.) The first 1,500,000,001 complex zeros of ζ(s) all have real part equal
to  �� , and so do all the zeros after the first 1020 up to the first 1029 zeros. But there
have also been some ‘close calls’ where ζ is almost 0 and the real part of s is
not  �� . Some of these near misses have ‘shaken’ believers in the conjecture. I
won’t pursue the Riemann hypothesis further since examining the evidence
requires too many advanced technicalities. I mention it here because it is the
most famous and important conjecture in mathematics today. (For much more
detail see Edwards (1974).)

Clusters of Conjectures

Often conjectures come in clusters. There may be evidence for each individu-
ally, but the fact that they are related to one another seems to lead to an addi-
tional kind of mutual support. The following cluster comes from number theory
and among other things is related to odd perfect numbers, which were discussed
above (see Ribenboim (1988) and Shanks (1993)).

(1) There are infinitely many Mersenne primes.
(2) There are infinitely many Mersenne composites (i.e. composites of

the form 2p
� 1, where p is a prime).

Conjectures (1) and (2) can’t both be wrong; but they could both be right and
indeed both are thought to be.

(3) There are infinitely many primes p � 4m � 3 such that q � 2p � 1
is also a prime.

There are lots of examples of this, including instances of p which are quite
large, e.g. p � 16188302111. This conjecture implies a weaker one:

(4) There are infinitely many primes p such that q � 2p � 1 is also a
prime.

This in turn seems closely related to the famous twin primes conjecture:

(5) There are infinitely many numbers p such that p and p � 2 are both
primes.

There is a simple and quite convincing argument for (5). Primes seem to be dis-
tributed randomly, and there are infinitely many of them. So we should expect
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them to pop up over and over again spaced arbitrary distances apart, including
being spaced two numbers apart. Thus, there are infinitely many twin primes.
There is a stronger version of this conjecture which relates the distribution of
twin primes in a way similar to the prime number theorem. It, in turn, is related
in a rather complicated way to Goldbach’s conjecture, which is, perhaps, the
favourite example of most philosophers.

(6) Every even number (greater than 2) is the sum of two primes.

Thus, 4 � 2 � 2, 6 � 5 � 1, 8 � 5 � 3, . . ., 968 � 727 � 241, . . . It’s been
tested by computer up to 108.

Polya and Putnam 

Euler discovered that the sum of the series 1/n2 is equal to π
2/6. His argument was

as questionable as it was ingenious. It’s one of the few examples other than
Goldbach’s conjecture that has been discussed by philosophers. Hilary Putnam
approvingly saw it as a wonderful example of ‘quasi-empirical’methods at work.

Euler, of course, was perfectly well aware that this was not a proof. But
by the time one had calculated the sum of 1/n2 to thirty or so decimal
places and it agreed with π2/6, no mathematician doubted that the sum
of 1/n2 was π2/6, even though it was another twenty years before Euler
had a proof. The similarity of this kind of argument to a hypothetico-
deductive argument in empirical science should be apparent: intuitively
plausible though not certain analogies lead to results which are then
checked ‘empirically.’ Successful outcomes of these checks then rein-
force one’s confidence in the analogy in question.

(Putnam 1975: 68)

Putnam follows Polya, both in the details of Euler’s argument and in the morals
to be drawn. Here’s the chain of reasoning, according to Polya.

First, we note a fact (a theorem) about polynomials that Euler used.

where ri are the roots of the polynomial (i.e. the values of x that make the poly-
nomial equal to zero). Next, Euler examined the Taylor series expansion of
sin x, setting this to zero.

 x  sin  x x  
3  3!  ��  x  
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The series has infinitely many terms, so if we think of it as analogous to a poly-
nomial it should have infinitely many roots. And, of course, it’s already known
to have them, 0, π, �π, 2π, �2π, 3π, �3π, . . . which tends to support the anal-
ogy. Euler tossed out the zero root, and divided the series by x (this would be the
linear factor which corresponds to the zero root). Now we have the new series,

with roots: π, �π, 2π, �2π, 3π, �3π, . . .. Consequently,

which, by analogy with the normal polynomial case, equals

A bit of ordinary algebra yields

Another use of the analogy plus a bit more algebra gives us

From this Euler derives the famous result

Polya then goes on to note that Euler calculated and found perfect agreement as
far as he went. Moreover, he used the same style of reasoning to derive other
results, such as Leibniz’s series for π/4. These are the considerations that
Putnam celebrates in saying ‘intuitively plausible though not certain analo-
gies lead to results which are then checked “empirically”’. Polya sums up his
discussion, saying, ‘Euler seems to think the same way as reasonable people,
scientists or non-scientists, usually think. He seems to accept certain principles:
A conjecture becomes more plausible by the verification of any new conse-
quence. And: A conjecture becomes more credible if an analogous conjecture
becomes more credible’ (1954: 22).

Conjectures and Axioms

In broad outline, there are three different views one could adopt concerning
axioms. First, that they are self-evident truths. This is a view commonly associated
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with the history of Euclidean geometry. Second, that axioms are arbitrary stip-
ulations. Conventionalism and formalism hold this view and say that we have
complete freedom in postulating whatever we want (provided we uphold consis-
tency). Third, that axioms are fallible attempts to describe how things are. Gödel
and Russell held versions of this third view, a view I defended in Chapter 2. Like
the first option, it is a realist view, but claims no certainty. Axioms are conjectured
and, like scientific theories, tested by their consequences. Let’s focus on this third
view and its relation to testing conjectures.

The axioms of set theory are conjectured and so is the Riemann hypothesis,
but there seems a world of difference between them. What’s the difference? The
way evidence is marshalled for each is similar, so we cannot easily appeal to an
epistemic difference in their status. Instead, consider an analogous situation in
physics. Newton’s laws of motion and the law of universal gravitation were
conjectured. So also was the existence of the planet Neptune. It was conjectured
by Adams and Leverier to explain the motion of Uranus. What’s the difference
between these conjectures? I suspect that the answer is rather simple: The latter
conjecture presupposes the truth of the former. Adams and Leverier assumed
that Newton was right, and they then tried to fill in a detail or correct an anom-
aly. Their conjecture might even be seen as conditional: If Newton is right, then
there is a hitherto hidden planet located at such and such a place, etc. In other
words, the Adams and Leverier conjecture is within a framework, while
Newton’s conjecture is the very framework itself.

The axioms for Euclidean geometry, or for set theory, are similarly conjec-
tured frameworks, while the Riemann hypothesis is a conjecture within.
Goldbach’s conjecture should be seen as being a conditional: Given the right-
ness of the Peano axioms, every even number (greater than two) is the sum of
two primes. Of course, real life is messy. Goldbach made his conjecture two
centuries before the Peano axioms were formulated. Nevertheless, it seems safe
to say he had similar arithmetic principles in mind, even if they were not made
explicit in his day.

But this can’t be the whole story. Let’s for a moment ask, How would the
Riemann hypothesis stand, if it were shown to be independent of the axioms of
set theory? Realists, of course, still would want to know whether it is true or
false (and much of the current evidence would likely remain relevant), but a sig-
nificant number of mathematicians would lose interest in the problem alto-
gether (or, perhaps more likely, develop a different kind of interest in it). What
such a reaction shows is that our interest in conjectures which are not axioms is
twofold: we want to know if they are true; but we also want to know if they are
derivable. This, I think, is the key difference between ordinary conjectures and
conjectured axioms.

Aside from proofs, the notion of mathematical inference is a largely unex-
plored field. It is certainly not in the same stage of development as, say, rational
inference and methodology in the natural sciences. There are some exceptions,
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however. Penelope Maddy has thrown considerable light on the processes
involved in coming to accept axioms in set theory (see Maddy 1990: especially
ch. 4). This is similar to what I called framework conjectures. As for conjec-
tures within a framework, Daniel Shanks (1993) is one of the very few to dis-
cuss what generally makes for good ones, though his attention is confined to
number theory. I hope that raising these issues here will stimulate readers, fol-
lowing the lead of Polya, Putnam, Maddy and Shanks, to think seriously about
the various forms of mathematical evidence.

Further Reading

Polya’s various writings on heuristic reasoning are always interesting and full
of insight. Start with Mathematics and Plausible Reasoning (2 vols.). Maddy’s
Realism in Mathematics has lots to say about conjectures in set theory. Shanks’s
Solved and Unsolved Problems in Number Theory is very good on that particu-
lar topic. New Directions in the Philosophy of Mathematics (ed. Tymoczko)
contains several papers related to this topic.
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CHAPTER 11
How to Refute the Continuum
Hypothesis

New mathematical intuitions leading to a decision of such problems
as Cantor’s continuum hypothesis are perfectly possible.

Gödel

CH is obviously false.
Cohen

Cantor’s continuum hypothesis (CH) is one of the great outstanding problems
of modern mathematics. Hilbert made it number one on his famous list of prob-
lems in 1900. After decades of trying, it turned out to be a hopeless task. Gödel
and Cohen showed it to be independent of the other axioms of set theory. And
yet, the question of its truth remains open. It may have been settled in the neg-
ative by Chris Freiling, but his ‘refutation’ has gone largely unnoticed, perhaps
because it was by means of a remarkable thought experiment, a method that is
far removed from common approaches, but one that would get a sympathetic
hearing from those who like picture proofs. By fleshing out some of the details,
perhaps we can show it in a favourable light. This might in turn generate some
serious interest in the result itself and in the unusual method used to achieve it.
After a few more introductory remarks, I will explain the result in detail.

If Freiling’s approach works, it will be a huge vindication of visual methods
in mathematics. But even if it is a failure – and it may well be – it still sheds
considerable light on CH and on the potential power of visual reasoning. His
method of argument is alien even to those working in foundations. Looking for
new axioms is a commonplace among foundational mathematicians, but the
method of doing so is akin to Gödel’s recommended consequentialism; that is,
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they posit a new axiom, then check its logical consequences. New axioms are
supported by the fact that they are, as Gödel put it, ‘abundant in their verifiable
consequences, shedding so much light upon a whole field, and yielding such
powerful methods for solving problems . . .’ (1947/64, 477). This is a much
more liberal attitude to the discovery of mathematical truths than that held by
most working mathematicians, but it is still wedded to derivations as the one
and only way to establish verifiable consequences. Liberal though this view
may be, it is not so liberal as to include thought experiments involving proba-
bilistic outcomes as a legitimate method of justifying mathematical proposi-
tions. This, I suspect, is why even those who work on the foundations of set
theory ignored Freiling’s proof. Admittedly, these are rather speculative expla-
nations for the rejection of Freiling’s work.

David Mumford is a notable exception. Mumford is one of the great mathe-
maticians of recent times. His early work was in algebraic geometry, for which
he won a Fields Medal in 1974. More recently, he has become interested in sto-
chastic mathematics. It was this that led him to Freiling’s work, which he
claims is as important as Gödel’s. Mumford is quite ambitious in his plans for
mathematics, wanting to reformulate set theory extensively. He would like to
see CH tossed out and set theory recast as ‘stochastic set theory’, as he puts it.
The notion of a random variable needs to be included in the fundamentals of
the revised theory, not a notion defined in measure theory terms, as it currently
is. Among other things, he would eliminate the power set axiom: ‘What mathe-
matics really needs, for each set X, is not the huge set 2X but the set of
sequences X� in X’ (Mumford 2000: 208).

It’s easy to see why Mumford might be interested in Freiling’s work – it
highlights randomness. He calls the darts ‘real random variables’ and sharply
distinguishes them from the standard mathematical notion. His interests are
far from the mainstream of mathematics, including mainstream foundational
work in set theory. The upshot is that most people will remain uninterested in
Freiling’s refutation of CH, unless they can be convinced that thought experi-
ments involving random dart tosses can actually yield striking mathematical
results that are both original and reliable.

But first, we need to backup considerably and set the stage properly.

What is the Continuum Hypothesis?

The continuum hypothesis was number one on Hilbert’s famous list of prob-
lems, most of which have now been settled. There are three ways of resolving a
problem such as CH: prove it true; prove it false; prove it undecidable. CH,
unfortunately, is the last of these. Before dealing with undecidability, let’s
quickly review developments in set theory up to that point.



The natural numbers, also known as the counting numbers, are in the set
N � {0, 1, 2, 3, . . . }. The size of this set, its cardinality, is infinite.
Symbolically, �N� � ℵ0. What about other infinite sets, such as the set of even
numbers, E? How big is it? Two sets have the same cardinality if and only if
there is a one–one, onto function between them. Such a map exists between E
and N. For instance: 1 4 2, 2 4 4, 3 4 6, 4 4 8, . . . , n 4 2n, . . . Thus, �E� �

�N�. The set of rational numbers, the fractions, Q, turns out to be the same size,
as well. So, we have �E� � �N� � �Q� � ℵ0. We might be tempted to think that all
infinite sets are the same size, but this famously turned out to be not so. The set
of real numbers, R, also known as the continuum, the set of points on the line, is
larger. This was proven by Cantor and is surely one of the greatest mathematical
results of all time.

To prove that �R� � ℵ0, we need to show two things. First, we need to show
that �R� is at least as big as �N�. This is easy, since N is a proper subset of R. So
there must be at least as many members of R as of N. The second thing to show
is that there is no one–one mapping between N and R. That would show that
they can’t be the same size. Putting these two facts together gives us Cantor’s
spectacular result that the real numbers are more numerous than the natural
numbers.

Cantor’s proof that there is no one–one correspondence is the appropriately
named diagonal argument. We begin by assuming that there is a one–one, onto
map between N and R. In fact, we can even focus on just the points in the inter-
val [0, 1]. Perhaps the one–one correspondence looks something like this:

0 4 .88491625 . . .
1 4 .12548179 . . .
2 4 .39271254 . . .
3 4 .56469848 . . .
�

Now let’s construct a number r according to the following rule: Pick the first
number in the first decimal place and change it, say by lowering the digit by 1.
Thus, r � .7 . . . so far. Now take the second number in the second decimal
place and change it in the same way. Then the third number in the third place,
and so on. Thus, we have r � .7015 . . .

Since r is a real number in the set [0, 1], it should be on the list, because the
list was assumed to contain all real numbers between zero and one. However, r
cannot be on the list. It cannot be the first number on the list, since it differs in
at least one decimal place, namely, the first. Similarly, it cannot be the second
number on the list, since it differs in at least the second decimal place. In gen-
eral, it cannot be the nth number on the list, since it differs in the nth decimal
place. Thus, r is not anywhere on the list. No matter what mapping we choose
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between N and [0, 1], there will always be some number defined in the same
diagonal way that r is defined, so there will always be something left off the list.
There are more real numbers, or equivalently, points on a line, than there are
counting numbers, which is why sets the size of R or greater are called
uncountable. Thus, there can’t be a one–one, onto function between R and N,
so �R� must be larger than �N�.

The proof just presented is a special case of Cantor’s theorem. It may be use-
ful to present the full version.

Cantor’s theorem: For any set, S, the cardinality of the power set, ℘(S)
(the set of all subsets of S), is greater than the cardinality of S. In sym-
bols, �S� � �℘(S)�.

Proof. There is a natural one–one mapping from S into ℘(S), namely,
each x maps onto its singleton, {x}. This shows that the power set is at
least as big, and possibly bigger. The next step is to show that they
can’t be the same size, which we will do by means of a reductio ad
absurdum argument.

Assume that there is a function f that is a one–one, onto map from S
to ℘(S). Let A be defined as the set of elements in S that are not mem-
bers of the corresponding set in ℘(S). In symbols, A � {x � S: x �

f(x)}. For example, if f(a) � {a}, then a � f(a), so a � A. On the other
hand, if f(b) � {c}, then b � f(b), so b � A.

Now consider the set A itself. It is a subset of S, so A � ℘(S). Since
f is one–one, onto, there must be some element, x, of S that is associ-
ated with A, that is, f(x) � A. Consider the element x. Is it an element
of A? If it is, then, by the definition of A, it is not. But if it is not, then
by the definition of A, it is. Symbolically, x � A 4 x � A. This is a
contradiction. So the assumption that f is a one–one onto function from
S to ℘(S) is false.

Power sets are bigger, but how much bigger? It’s useful to have Cantor’s the-
orem in mind, but we can revert to the special case of the real numbers when
considering the question. R is an infinite set that is larger than N. But how big is
it? Since each real number is an infinite decimal expansion, the set of real num-
bers is an infinite set of infinite numbers. This means that its cardinality is 2ℵ0. In
general, the cardinality of the power set of S is 2�S�. Cantor’s theorem establishes
a hierarchy of sets with infinite cardinalities: ℵ0 � 2ℵ0 � 22ℵ0

� . . . . The
interesting question he faced concerns the place of R, the continuum, in the hier-
archy: 0 � 1 � 2 � . . . � ℵ0 � ℵ1 � ℵ2 � ℵ3 . . . Does 2ℵ0 � ℵ1? Or does it
equal ℵ2? Or perhaps ℵ3? Cantor’s continuum hypothesis is the claim that �R� �

ℵ1, or equivalently, that 2ℵ0 � ℵ1. The so-called ‘generalized continuum
hypothesis’ is the claim that 2ℵn � ℵn � 1. If CH is false, then �R� might equal ℵ2,
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or ℵ374, or perhaps it might be larger than ℵn, for any finite n. Then again, it
could be wrong because the whole of transfinite set theory is utter rubbish. All
possibilities should be kept in mind.

Though the continuum hypothesis is usually expressed in terms of transfinite
cardinal numbers, these concepts are not essential to the problem. It actually
arises in a very simple way in standard analysis. CH is equivalent to the claim
that every set of real numbers is equivalent (i.e., there is a one–one correspon-
dence) to a countable set of natural numbers or to the set of all real numbers.

The early twentieth century saw lots of failed attempts to prove or to refute CH.
The first significant advance came in 1938 when Gödel proved that CH is consis-
tent with the rest of set theory. He did this by providing a model based on the so-
called ‘constructable sets’, in which all the axioms of ZFC (Zermelo–Frankel set
theory with the Axiom of Choice) are true and CH is true as well. This means, of
course, that CH cannot be refuted in the normal way, that is, by proving ~CH via
a derivation from the axioms of ZFC.

Full independence was established in 1963 by Paul Cohen. He introduced
a powerful new technique called forcing that allowed him to construct a model of
set theory in which ZFC is true but CH is not. The Gödel and Cohen results
together establish undecidability. CH is independent of ZFC; it cannot be proven
and it cannot be refuted – at least, not in the usual way. This is how things stand.

At this point we face an interesting philosophical problem. In everyday math-
ematics we are happy to link truth with proof. Two philosophical camps make
this explicit, formalists and constructivists, though their motivations for doing so
are quite different. Since constructivists will have neither truck nor trade with
Cantor’s infinite sets, we will ignore them here. Formalists, on the other hand,
happily embrace set theory. They typically hold the view that CH, since it has
been shown to be independent, simply has no truth value — it is neither true nor
false. The underlying reason for this attitude is the conviction that mathematics
is a body of axioms that we accept for various reasons, but being objectively true
is not one of them. To say that a mathematical proposition P is true is only to say
that P can be logically derived from the accepted axioms. And to say that P is
false is to say that ~P can be derived from those axioms. Neither is possible for
CH, so, to the formalist-minded, it lacks any truth-value whatsoever.

Platonists, by contrast, assert that truth is distinct from proof. A proof of P does
not make P true; rather it is evidence that P is true. The lack of a derivation from
first principles only means that we might be forever ignorant of the truth-value of
P, but P has a truth-value all the same. The instincts of any Platonist are the same
as the instincts most of us have about statements in the natural sciences. We will
never have evidence one way or the other that there was a T-Rex standing on the
very spot I am standing exactly 75 million years ago to the second. Nevertheless,
most of us believe that the claim is true or it is false. Being able to prove or refute,
it has nothing to do with its truth or falsity. The Platonist attitude to CH is the
same. It really is true, or it really is false, even if we cannot prove which.
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Besides the general considerations stemming from Platonism, there are addi-
tional reasons for thinking CH has a definite truth-value, reasons which are
motivated by considerations drawn from the details of set theory. Here (for
those with some familiarity with set theory, others may ignore it) is one that is
interesting, even if of only limited plausibility. Imagine working one’s way
through the ordinals. Each time you pass an ordinal �, pick out a real number r
to associate with it, r�. Since the set of real numbers, R, is just a set while the
ordinals, Ord, is a proper class, we will certainly run out of reals before we run
out of ordinals.1 Thus, for some ordinal �, {r�: � � �} will exhaust R. It seems
then that �R� is the least � that can be listed as {r�: � � �}. This means that �
is some cardinal number a, so we can conclude that the continuum has some
cardinal number, ℵa. Of course, if a � 1, then CH is true; if a � 1, then CH is
false. But it must be one or the other; it does have a truth value.

I include this argument for those who might find it interesting. It is not, of
course, a proof, merely a suggestive consideration proposed by some set theo-
rists. I doubt that it has the same plausibility as the vastly more plausible
Platonist claim that every proposition has a truth value, whether known or not,
in virtue of the independently existing realm of sets.

Though Platonists distinguish between proof and truth, they are also more
inclined to entertain other types of evidence. In fact, the two go together. Since
proof is not a criterion of truth, but merely a form of evidence of truth, there is a
natural inclination to entertain other forms of justification. After all, the axioms
themselves can’t be derived, but must be thought true for some other reason. As
the rest of this book attests, I take a liberal Platonist attitude here and consider
mathematics to be like the natural sciences where some of the most important dis-
coveries, such as the microscope, for instance, initiated new methods of generat-
ing evidence. Consequently, a thought experiment involving dart throwing might,
at least in principle, provide evidence for the truth or the falsity of CH.

How Could We Determine the Truth of CH?

Kurt Gödel likened the epistemology of mathematics to the epistemology of the
natural sciences in two important respects. First, we have intuitions or mathe-
matical perceptions. These are the counterpart of sense perceptions of the phys-
ical world. We see that the sky is blue and that the white streak in a cloud
chamber has such and such a shape. We similarly see that 2 � 3 � 5 and that
the set of even numbers is a proper subset of the natural numbers. Speaking
metaphorically, we see some things with the mind’s eye.

Second, we evaluate (some) mathematical axioms on the basis of their conse-
quences, especially the consequences that we can intuit, just as we evaluate theo-
ries in physics or biology on the basis of their empirical consequences. No one
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can see atoms or subatomic particles, but we do see line spectra and streaks in
a cloud chamber. No one can see species evolve, but we can see fossils and the
geographical distribution of species with differing characteristics. What we can
see is evidence for theories about things we can’t see. Similarly, says Gödel, intu-
itions are indirect evidence for axioms in mathematics.

On Gödel’s view, mathematics is fallible for a number of reasons. We can
have faulty intuitions, just as we can make mistakes in our sense perceptions.
Moreover, false premisses can have true consequences, so the testing of axioms
is not foolproof either. Many people dislike the idea of giving up certainty in
mathematics; perhaps they expect axioms to be ‘self-evident’ truths. Others will
utterly oppose the idea of intuitions, fallible or not. In what are perhaps the
three most famous and most often quoted passages in all of Gödel’s works, he
asserts the two key ingredients of Platonism: the ontology of realism and the
epistemology of intuitions. He also notes the possibility of discovering new
axioms that could settle old questions, such as CH. I quoted this passage before,
but it is worth repeating.

. . . despite their remoteness from sense experience, we do have some-
thing like a perception also of the objects of set theory, as is seen from
the fact that the axioms force themselves upon us as being true. I don’t
see any reason why we should have any less confidence in this kind of
perception, i.e., in mathematical intuition, than in sense perception,
which induces us to build up physical theories and to expect that future
sense perceptions will agree with them and, moreover, to believe that a
question not decidable now has meaning and may be decided in the
future. The set-theoretical paradoxes are hardly more troublesome for
mathematics than deceptions of the senses are for physics . . . [N]ew
mathematical intuitions leading to a decision of such problems as
Cantor’s continuum hypothesis are perfectly possible . . .

(Gödel 1947/64: 484)

I take Gödel’s various remarks to assert a number of important things, including:
mathematical objects exist independently from us; we can perceive or intuit some
of them (though not all); our perceptions or intuitions are fallible (similar to our
fallible sense perception of physical objects); we conjecture mathematical theo-
ries or adopt axioms on the basis of suggestive intuitions (as physical theories are
conjectured on the basis of suggestive sense perception); these theories typically
go well beyond the intuitions themselves, but are tested by them (just as physical
theories go beyond empirical observations but are tested by them); and in the
future we might have striking new intuitions that could lead to new axioms that
would settle some of today’s outstanding questions. Though sketchy, these are the
typical ingredients of modern mathematical Platonism. The only one I want to
focus on is perception, intuition, or seeing with the mind’s eye.
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Gödel, as I just mentioned, took intuitions to be the counterparts of ordinary
sense perception. Just as we can see some physical objects (trees, dogs, rocks, the
moon), so we can intuit some mathematical entities. And just as we can see that
grass is green and the moon is full, so we can intuit that some mathematical propo-
sitions are true. These perceptual facts will play a big role in deciding which propo-
sitions to accept or reject when they cannot be directly evaluated perceptually.

Kreisel’s Analogy

George Kreisel (1967, 1971) shed considerable light on CH by rejecting a popu-
lar analogy that had sprung up. Following the Gödel–Cohen independence proof,
it was sometimes said that CH is similar to the parallel postulate of Euclidean
geometry and that there could be alternative set theories in the same way there
are non-Euclidean geometries (Cohen and Hersh, ‘Non-Cantorian Set Theory’,
1967). Kreisel pointed out a crucial difference between the two cases. CH is only
independent when we restrict ourselves to first-order set theory. It is decidable in
second-order set theory. The parallel postulate, by contrast, is absolutely indepen-
dent of the other postulates. This, of course, is happy news for any Platonist, for
it means that CH has a definite truth value, though we still don’t know what it is.

Kreisel offered a much better analogy. He took the proof of independence
of CH to be like the proof that one cannot trisect an arbitrary angle with
straight edge and compass. Of course, an arbitrary angle has three equal parts,
but we cannot determine what they are with the impoverished method of
straight edge and compass. We might, however, be able to trisect some other
way. At this point, I want to underscore Kreisel’s analogy with a pair of pic-
ture proofs that will make the construction of trisections perfectly evident.

In the first of these, imagine that we confine ourselves to straight edge and
compass, but we allow ourselves infinitely many operations. Then we could
construct a trisection. (If Figure 11.1 alone is not evident, note the infinite series
that accompanies it on p. 49, where I first used this diagram and the next.)
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In Figure 11.2, it’s even more obvious. (In case you’re tempted to think that
mechanical devices such as this can’t be accurate and so it can’t really be a tri-
sector, just remember that a real straight edge is in fact a bit wobbly, a compass
gives a bit under pressure, pencil lines have some finite thickness, and so on.
Theorems involving these techniques are all idealizations.)
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The two morals I want to draw from Kreisel’s analogy will be obvious. First,
CH does indeed have a truth value, and second, we might be able to determine
it with a picture or thought experiment. I hope this is sufficient groundwork that
we can now turn back to the refutation of CH. The assumptions of a rather gen-
eral and philosophical nature we will chiefly rely upon are:

1. CH has a truth-value, even though it is independent of the rest of set
theory.

2. Potential axioms and other mathematical propositions, such as CH
and ~CH, could be justified in ways that are quite different from tra-
ditional proofs.

3. Thought experiments and pictorial reasoning could justify mathe-
matical propositions by generating new intuitions.

Now to Frieling’s remarkable argument.

Freiling’s Refutation of CH

I’ll breakdown the argument into several steps.

ZFC and well ordering

We shall take ZFC for granted as well as an important consequence of it, the so-
called ‘well ordering principle’. It says that any set can be well ordered, that is,
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can be ordered in such a way that every subset has a first element. The usual
ordering, �, on the natural numbers is also a well ordering of the natural num-
bers. Pick any subset, say, {63972, 47, 36, 82}; it has a first element, namely 36.
But unlike the natural numbers, the usual ordering on the real numbers, �, is
not a well ordering. The subset (0, 1) � {x: 0 � x � 1}, for instance, does not
have a first element. Nevertheless, the well ordering principle guarantees that
the real numbers can be well ordered by some relation, �, even though no one
has yet found such a well ordering.

Darts, points, real numbers

Freiling’s thought experiment involves throwing darts at a line to select real
numbers. There are important assumptions involved in this. One of these is
that the line consists of pre-existing points. Aristotle, by contrast, thought
that points could be constructed, say, by throwing darts, but those points
do not already exist on the line. If Aristotle is right, then Freiling’s argument
would certainly not work; so the assumption of pre-existing points is crucial.
And so is the assumption that points correspond exactly to real numbers.
These are assumptions that almost everyone would make today, thanks,
no doubt, to the success of Descartes’s analytic geometry and all that rests
upon it.

In addition, there are idealizations galore. Any physical line is certainly not
continuous. The world is discrete in a number of respects, possibly even space
itself. So it’s some kind of idealized line at which we’re throwing darts.
Moreover, no one believes for a moment that we could identify specific real
number with a dart’s location. That, too, is idealized. All of which go to show
that this is essentially a thought experiment.

The thought experiment

Now to the visual part of the thought experiment. Imagine throwing darts at the
real line, specifically at the interval [0,1]. Two darts are thrown and they are
independent of one another. The purpose is to select two random numbers, p

0 1

Figure 11.3



and q. If you fear the darts thrown one after the other might not be independent,
then imagine two dart throwers who are screened off from one another and who
both throw at the target line on the count of ‘one, two, three, go’, or separate
them and have them toss at different copies of [0,1].

There are three important things to notice in the thought experiment: a pair of
real numbers are selected (1) randomly, (2) independently, and (3) symmetri-
cally. Let’s flesh these out a bit.

Random variables, independence, and symmetry

The concept of random variable at work here is not the mathematical concept
found in measure theory. Standard mathematical definitions of random variables
go something like this: A random variable is a measurable function from a prob-
ability space into a measurable space. It’s easy to understand by means of an
example. Imagine rolling two dice. We can number each roll: roll 1, roll 2, roll 3,
and so on. The outcome of a roll will be some number between 2 and 12. You can
think of a roll as an experiment and the number that turns up on the dice as the
result. The random variable is the function X with domain {roll 1, roll 2, . . . }
and range {2, 3, . . . , 12}. Tossing a dart is thus a random variable with outcome
in [0,1]. These are ‘real random variables’, says Mumford (2000).

The two real numbers are picked independently. This is obvious, since the
two dart throws have no influence on one another. This means that a prediction
based on either throw cannot be dismissed in the way we might dismiss some-
one who said of a licence number on a passing car: ‘Wow, there was only a one
in a million chance of that happening.’ We’re rightly impressed only if the num-
ber is fixed independently of the outcome (i.e. predicted before the result is
known). The independence and randomness of the darts guarantees the sym-
metry of the throws. Consequently, either dart could be considered the first
throw that fixes the set of real numbers that are earlier in the well ordering.

Cardinals, ordinals, and initial segments

There’s an important fact from set theory that we shall use in the following argu-
ment. I’ll explain it now. The ordinal numbers are ordered (indeed, well ordered):
0 � 1 � 2 � . . . �  �  � 1 �  � 2 � . . . � 2 � 2 � 1 � . . . � 3 �

. . . � 
2

� . . . � 


� . . . � �0 . . . Ordinal numbers have the very important
property that any two are isomorphic or that one is isomorphic to an initial segment
of the other. An initial segment of an ordered set is simply a proper subset. If S is an
initial segment of a well-ordered set W, then there is an a � W such that S � {x: x � a}.
Thus, the number 3 � {0, 1, 2} is an initial segment of the ordinal number 4 (and
also of 5, and 6, and 7, . . . ). For any number n, the set {0, 1, 2, . . . , n} is an initial
segment of , the ordinal number that is the set of all the natural numbers. An impor-
tant theorem states: No well-ordered set is isomorphic to one of its initial segments.
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Cardinal numbers are defined in terms of ordinals. In the finite case, they are
simply identified. Thus the ordinal 27 is the same as the cardinal 27.2 In the infi-
nite case, things are a bit more complicated. There are many ordinals that are
the same size in the sense of there being a one–one mapping between them. For
instance, ,  � 1,  � 2, . . . , 2, 2 � 1, 2 � 2, . . . , 3, 3 � 1, . . . , 

2,


2
� 1, . . . can all be put in one–one correspondence with each other. However,

there is a rather natural definition: a cardinal number is the least of a set of
equivalent ordinals. Thus, ℵ0 is identified with .

There is a consequence of this that you may have noticed. Since any initial
segment of an ordinal will be smaller than the ordinal itself and since a cardinal
number is identified with the least equivalent ordinal, it follows that the cardi-
nality of an initial segment must be smaller than the cardinality of the set we
start with. In some cases this is quite intuitive. If we start with the set  and
pick any initial segment, then we will have picked a set with only finitely many
members. It’s obvious in this example, but it holds in general. Consequently, if
we started with a set of cardinality ℵ1 and picked an initial segment, the cardi-
nality of the initial segment would be countable, that is, it would be ℵ0 or finite.
We will use this fact in the argument below.

Measure and probability

In any finite case the concept of probability is readily understood. The infinite
case is tricky. If we throw a pair of dice, there are 36 possible results.
Representing these as a pair (first die, second die), we have a so-called ‘probabil-
ity space’, {(1,1), (1,2), (2,1), . . . , (6,6)}, with 36 distinct outcomes. Assuming
these are fair dice, then each outcome is as likely as any other. The probability of
getting the result 2 is 1/36, since there is only one way this could happen, namely,
by rolling (1,1). There are three ways of getting the outcome 4, namely, (1,3),
(3,1), and (2,2). Thus, the probability of getting the result 4 is 3/36 � 1/12. The
probability of getting a result that is an even number is one half, of getting a result
between 2 and 12 is one, and of getting the result 13 is zero. This is all perfectly
straight forward, but things are not so easy in the infinite case.

Toss a dart at the line segment [0,1]. You might hit 1/5, 2/�, or e/3, and so on.
But what is the chance of hitting any one of these? One chance in infinitely many,
which means the probability is zero. Surprisingly, events with a zero chance of
happing can nevertheless actually happen. This is weird, but not logically absurd.
One might think making sense of the infinite case is hopeless to manage, but not
so. A branch of analysis known as measure theory has come to the rescue.

Measure theory, or more specifically, the theory of Lebesgue measures, gives
us a way of assigning a measure to a huge number of different sets. The measure
of a set of points that is an interval is simply its length. Thus, the length of the
line between segment between 7 and 13 is equal to 13 � 7 � 6. Symbolically,
�([7,13]) � 6 (where � is the Greek letter mu, commonly used for this purpose).
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Obviously, �([0,1]) � 1. The second principle of measure theory says that if a
set S equals the union of a countable number of disjoint subsets, that is, S � s1

� s2 � s3 � . . . , each of which is measurable, then �(S) � �(s1) � �(s2) �

�(s3) � . . . . To take a simple case, if S is the set consisting in the segments [0,
1/2], [3/4, 7/8], [9/10, 1], then �(S) � 1/2 � 1/4 � 1/10 � 17/20.

Probability is easily understood in these terms. In throwing a dart at the line
[0,1], the chance of hitting the segment [0,1/2] is clearly 1/2, and so on. Thus,
the probability of landing in S is equal to the measure of S. So far, so good. But
what about the probability of hitting a rational number? What is the measure of
the set of fractions in [0,1]? This is a set of points that is distributed throughout
[0,1], but is certainly not an interval. I’ll use Q1, R1, and I1 to be the set of ratio-
nal, real, and irrational points in [0,1].

The measure of any singleton set is zero; that is, a single point, a, has no
length, so �({a}) � 0. As we already know, Q1 is countable. A theorem of mea-
sure theory says the following: If S is the countable union of sets of measure
zero, then S is also of measure zero. Since Q1 is the union of countably many
sets of single points, each having measure zero, it follows by the theorem that
Q1 also has measure zero. What about the irrational points? We already know
that I1 is uncountable, so the theorem does not apply to it. We can, however, eas-
ily determine its measure. Since R1 � Q1 � I1, it follows that �(R1) � �(I1) �

�(Q1). And since �(R1) � 1 and �(Q1) � 0, it follows that �(I1) � 1. The real
line is overwhelmingly dominated by the irrational numbers. In terms of proba-
bility, the chance of hitting an irrational number with a dart is one.

Measure theory allows us to talk about the measure of some pretty strange sets, not
just rational and irrational ones. We’ll encounter one of these strange sets momentar-
ily. The crucial thing to remember is that the measure of any countable subset of [0,1]
is zero and hence, the probability of hitting any member of that set is also zero.

The argument

1. We assume ZFC and we further assume (with the aim of generating
an absurdity) that CH is true.

2. We toss two darts at the real interval [0,1] in order to pick out two
real numbers.

3. The points on the line can be well ordered so that for each q � [0, 1],
the set {p � [0, 1]: p � q} is countable. (Note that � is the well
ordering relation, not the usual less than,�,.) The well ordering is
guaranteed by ZFC. The fact that the set is countable stems from
the nature of a well ordering of any set that has cardinality ℵ1, as
was explained above. To repeat, a cardinal number is defined as the
least of all the equivalent ordinals, so the initial segment defined by
q must be a smaller cardinal than the cardinal number of [0,1],
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which, given our assumption CH, is ℵ1, the first uncountable num-
ber. Thus, {p � [0, 1]: p � q} must be countable.

4. We shall call the set of elements that are earlier than the point p in the
well ordering Sp. Suppose the first throw hits point p and the second
hits q. Either p � q, or vice versa; we’ll assume the first. Thus, p � Sq.
Note that, for the reason stated immediately above, Sq is a countable.

5. Since the two throws are independent of one another, we can say the
throw landing on q defines or fixes the set Sq in a way that is inde-
pendent of the throw that picks out p.

6. The measure of any countable set is zero, thus, �(Sq) � 0. So the
probability of landing on a point in Sq is also zero.

7. By the same line of reasoning, we can define a set Sp of points that
precede p in the well ordering and that also has measure �(Sp) � 0.

8. One of the two darts must land in a set defined by the other dart, even
though the probability of doing so is zero. While logically possible,
this sort of thing is almost never the case. Yet it will happen every
time there is a pair of darts thrown at the real line. This is absurd.

Conclusion: We should therefore abandon the initial assumption, CH, since it
leads to this absurdity. Thus, CH is refuted and so the number of points on the
line is greater than ℵ1.

What Might the Continuum Be?

If the cardinality of the continuum is ℵ2 or greater, the argument (at least as set
out here so far) would not work, since the set of points Sq earlier in the well
ordering need not be countable, and so would not automatically lead to a zero
probability of hitting a point in it.

A large number of set theorists, including Gödel, Cohen, Woodin, and others
already believe that CH is false. Cohen is particularly adamant.

A point of view which the author feels may eventually come to be
accepted is that CH is obviously false. The main reason one accepts the
Axiom of Infinity is probably that we feel absurd to think that the
process of adding only one set at the time can exhaust the entire uni-
verse. Similarly with the higher axioms of infinity. Now ℵ1 is the set of
countable ordinals and this is merely a special and the simplest way of
generating a higher cardinal. The set ℘() is, in contrast, generated by
a totally new and more powerful principle, namely the Power Set
Axiom. It is unreasonable to expect that any description of a larger
cardinal which attempts to build up that cardinal from ideas deriving
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from the Replacement Axiom could ever reach ℘(). Thus ℘() is
greater than ℵn, ℵ, ℵ, etc. This point of view regards ℘() as an
incredibly rich set given to us by one bold new axiom, which can never
be approached by any piecemeal process of construction.

(Cohen 1966: 151)

Many today hold the view that �R� � ℵ2, so the argument here harmonizes with
this.3 However, Freiling extends the initial thought experiment, plausibly arguing
that the continuum is not ℵ2, nor ℵ3, nor ℵ4, and so on. If we throw a third dart,
we are unlikely to land in either set defined by the first two darts. This yields
another axiom similar to the symmetry axiom described in the appendix, which
in turn leads to the theorem that the continuum must be greater than ℵ2. A fourth
dart justifies another symmetry axiom and the consequent theorem that the con-
tinuum must be greater than ℵ3. Continuing in this manner, we can show that the
continuum is greater than any finite aleph, that is, 2ℵ0 � ℵn, for any finite n.

Freiling uses the dart method to argue for a number of other results that I won’t
describe here. For instance, he casts doubt on the Axiom of Choice, the Well-
ordering theorem, Martin’s Axiom, and many others. I won’t try to evaluate these
additional arguments, but instead direct readers to his paper (Freiling 1986).

Two Objections

The refutation of CH made use of a principle to the effect that when picking out
an initial segment, we end up with a set of lower cardinality. We can use this fact
to get apparently paradoxical results from smaller well-ordered sets. For instance,
pick a pair of natural numbers at random. Let them be m and n. Suppose m is cho-
sen at random. What is the probability that n is less than m? It’s zero. Similarly,
the probability that n is less than m is also zero. Does this refute the view that the
cardinality of the natural numbers is ℵ0? The answer is No, but we should reject
the claim that this argument is parallel to the Freiling’s.

The conclusion this argument actually justifies is that we cannot talk about
the probability of picking natural numbers at random. We can pick them at ran-
dom out of the bounded set {0, 1, 2, . . . , n}, but not out of the set N. This is
where the dart throwing thought experiment plays a crucial role. We cannot
throw darts at the natural numbers in the same way we can throw them at the
reals between [0,1]. We could crowd the natural numbers onto the interval
[0, 1], but the chance of hitting any one of them would be zero. Or we might try
the suggestion that the dart picks out the nearest natural number. This would be
a kind of randomness, but another problem arises. It turns out that how we
locate the natural numbers on the real line matters. We might put the number 1
at the point 1/2, the number 2 at the point 3/4, 3 at the point 7/8, and so on. Now
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the probability of hitting a real number close to the associated natural number 1
will be much greater than hitting one close to 10.

In short, while the thought experiment allows us to pick random real num-
bers, there is, I strongly suspect, no such process for picking natural numbers at
random out of N. If we stay completely within the mathematical realm, the idea
of picking numbers at random can lead to paradox. But when we move to the
dart-throwing thought experiment we introduce something genuinely new. This
shows, I think, that the thought experiment is essential to the argument. It is not
a mere heuristic device that could, in principle, be eliminated.

A second objection concerns the reliability of the intuitions in the thought
experiment. I said at the outset that Freiling’s work was ignored. This isn’t com-
pletely true. Every now and then there is a flurry of activity on the Internet. A
discussion on FOM (a Foundations of Mathematics discussion list) was largely
critical of Freiling for the simple reason that intuitions are untrustworthy. The
sentiments of two discussants are typical.

Freiling’s argument depends on assuming that the concept of random-
ness/probability/measure applies to certain ‘weird’ sets associated with
a well-ordering of the reals. We’ve all been indoctrinated in school
about how the axiom of choice lets us construct non-measurable sets,
so I don’t see why we should believe that the particular weird sets in
Freiling’s argument should be measurable.

(Timothy Chow)

We are importing our intuitions about ordinary physical objects into a
context where they make no sense. Partitioning a ball (as in the
Banach-Tarski ‘paradox’) has nothing to do with ‘cutting a ball into
pieces’ in the ordinary physical sense. In the case of Freiling’s argu-
ment, what sense does it make to say ‘I threw a dart at the wall, and hit
a point with rational coordinates.’ None whatsoever!

(Alasdair Urquhart)4

Intuitions can indeed lead us astray. Thought experiments are fallible. However,
ordinary experience is also mistaken from time to time, but we would be fools
to toss out observation as a source of knowledge simply because we sometimes
suffer illusions. The advance of science includes a better understanding of the
process of observation itself. We have learned some of the optical properties of
the atmosphere leading us to distinguish the true position of Mars from its
apparent position. We have learned and we continue to learn about how obser-
vation in a microscope works, allowing us to distinguish what is ‘really’ there
from what is an artifact of the observing process, such as damage done by stain-
ing. We should take the same attitude towards mathematical intuitions. Accept
them in principle, but proceed cautiously and critically.



The Banach–Tarski paradox, for instance, is very counter-intuitive. It tells us
that we can decompose a basketball, for example, into a finite number of parts
and re-compose it to make another ball the size of the earth. Needless to say,
‘decompose’ and ‘re-compose’ are not physical operations in any sense. Even
so, it is quite bizarre. If we knew nothing about the Axiom of Choice except that
it had this consequence, we would almost certainly toss it out. But the axiom is
known to solve many outstanding problems that couldn’t be solved otherwise;
it is extremely fruitful, in Gödel’s important sense of unification and problem
solving. The axiom, in the infinite case, is supported by analogy with the obvi-
ously true finite case. Moreover, if one is already a Platonist, then the idea of
arbitrary functions and arbitrary sets (which is essential to the axiom) is com-
pletely natural. These considerations have lead us to accept the axiom as a part
of standard set theory. Today, there is little or no concern with the Axiom of
Choice and almost everyone cheerfully uses it. The moral drawn is that we
should accept the Banach–Tarski result and overrule our intuitions in that spe-
cific case, just as we have accepted Copernicanism and come to believe that the
earth moves, not the sun, in spite of appearances to the contrary. Our working
rule should be to accept an intuition, unless it’s shown to be faulty. The degree
of acceptance should be linked to the strength of the intuition and to its integra-
tion into our whole system of beliefs. So, a powerful intuition that refuted CH
should be accepted, unless there is some reason to think the intuition is tainted
or unreliable. Is there such a reason?

Timothy Chow, in the passage quoted above, says Freiling’s example might
involve non-measurable sets, and we know from Banach–Tarski type examples
that our intuitions of non-measurable sets are not to be trusted. But, as a matter
of fact, we do not know that non-measurable sets are involved in this case. On
the contrary, the opposite view seems justified. The set Sq is countable, and any
such set has measure zero. So, the set we care about is indeed measurable. Until
demonstrated otherwise, I see no reason for Chow’s scepticism.

Alasdair Urquhart says throwing darts has nothing to do with picking out num-
bers and that we are fooled by the physical analogy. In further private discussion
he remarks: “My point is that by dressing up mathematical propositions [e.g.,
CH] in ‘physical’ language, you can make them sound completely implausible.
For example, it wouldn’t be hard to take a perfectly ordinary theorem of ZF and
make it sound completely implausible by making up some ‘physical’ story.”

No doubt, he’s right. Imagine a simple example: the infinite sequence of
alternating positive and negative ones: 1, �1, 1, �1, 1, �1, . . . This sequence
does not converge. But we can think of it as a physical sequence of turning on
(�1) and off (�1) a light switch. Imagine doing it at the rate of one second for
the fist switch from on to off, then half a second for the next switch, and so on.
In two seconds we would have switched it infinitely many times. That in itself
is very unphysical, but there’s worse to come. After two seconds we have
finished running through the series. The light should be on or off, which means
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the series does converge after all. The imagined physical process seems to (mis-
takenly) overthrow the mathematical theorem.

The moral I would like to draw from this, however, is not the same as Urquhart
draws. He implicitly suggests that thought experiments of any sort, whether they
involve darts or light switches or whatever, should be barred. He’s right to be
concerned, but goes too far and eliminates too much. If he were right, the same
evaluation would have to be made of a great many thought experiments in physics.
Think how unphysical they often are: Einstein chasing a light beam, Maxwell’s
demon, Newton’s bucket in an otherwise empty universe, and so on. Calling them
unphysical is probably understating things; they are anti-physical in that they actu-
ally contradict known physical principles. These thought experiments are far
removed from the actual physical world, just as picking out real numbers with a
dart is far removed from the physical world. However, the crucial thing about
thought experiments — in physics or in mathematics –– is that they clarify and
illuminate conceptual matters. This is what Einstein, Maxwell, and Newton did, in
spite of being highly unphysical. And this, I think, is what Freiling has done.5

Of course, thought experiments are fallible and further analysis can show any
one of them to be faulty. This has been the fate of many of the great ones in the
past and it may be the fate of Freiling’s. But for now it seems a fair bet and
there is no good reason to resist it, except for the normal prudence with which
we sensibly approach something far from the ordinary.

What Did the Thought Experiment Contribute?

Freiling’s dart thought experiment (TE) is essential to the argument, but it is far
from clear just what TE actually contributed. Nevertheless, it certainly con-
tributed something. The argument for this is simple and straightforward. ZFC
does not imply ~CH; however, ZFC � TE does imply ~CH. Thus, TE is essen-
tial to the argument, not a mere heuristic aide.

The standard mathematical concepts of a random variable, independence, and
so on are concepts that are defined (or definable) inside set theory. Since CH is
independent of set theory, at least some of the concepts and principles involving
them that are being used in Freiling’s argument must be different from anything
in standard mathematics. This is a very important matter. The thought experi-
ment is not a mere heuristic device that helps the imagination but is eliminable
in principle. In fact, it is essential to the result.6

The thought experiment is actually providing something new. But what is it?
The obvious answer as far as mathematics is concerned is Freiling’s Symmetry
Axiom: (∀f: R : Rℵ0

)(�x)(�y) y � f(x) & x � f(y) (see appendix for a discus-
sion). But now the question becomes: How does it justify that? My answer is
Platonistic. The thought experiment provides an access to the abstract realm
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where we can ‘see’ with the mind’s eye. It does this by generating concepts of
randomness, symmetry, and independence that are different from existing ver-
sions of those concepts. And these new concepts, together with existing princi-
ples, allow us to derive the new result.

Two Morals

The first moral, of course, is that CH is false. Naturally, we shouldn’t be as con-
fident of this as we would be of any simple theorem proved in the standard way.
Nevertheless, the result seems as solid as many of the things we believe about
the physical world.

The second moral may, in the long run, prove the more important. Picture proofs
and thought experiments are a potential source of mathematical knowledge that is
largely untapped. They ought to be explored and exploited. This is a resource that
has hitherto been confined to the role of heuristic device and a psychological aide,
but nothing more. On the contrary, as I have been arguing throughout this book, a
great deal more is possible. Only the hopelessly unimaginative will accept the view
that some mathematical problems are truly unsolvable. They may be unsolvable by
existing methods, but there is no reason to tie out hands with such impoverished
tools. I doubt that thought experiments will solve all problems, but they might
solve a few that cannot be solved otherwise. Neither God nor Gauss has forbidden
their use. And even if they had, we should thumb our noses and sail on.

Appendix: Freiling’s Version

Freiling (1986) is slightly different than the version I have given above.
I’ll reproduce his actual argument here. He assumes the following four ‘self-
evident philosophical principles’:

1. Choosing reals at random is a physical reality, or at least an intuition
mathematics should embrace to the extent possible.

2. A fixed Lebesgue measure zero set predictably will not be hit by a
random dart.

3. If an accurate Yes–No prediction can always be made after a prelimi-
nary event takes place (e.g., the first dart is thrown) and, no matter what
the outcome of that event, the prediction is always the same, then the
prediction is also in some sense accurate before the preliminary event.

4. The real number line cannot tell the order of the darts.
(Freiling 1986, 199)
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Freiling’s argument runs as follows: We throw two darts, one after the other, at
the real line [0,1]. Let f: R : Rℵ0

be a function that assigns a countable set of
real numbers to each real. The number hit by the second dart will (with proba-
bility one) not be in the countable set assigned to the number hit by the first
dart. The situation is symmetrical; the order of throwing is irrelevant. Thus, we
can say that the number hit by the first dart will not be in the set assigned to the
second. This leads to the following intuitive principle that I’ll call Freiling’s
Symmetry Axiom (FSA): (∀f: R : Rℵ0

)(�x)(�y) y � f(x) & x � f(y)

Theorem (of ZFC): FSA ⇔ ~CH

Proof: (Q): Assume FSA and let � be a well ordering of R. The exis-
tence of a well ordering follows from the axiom of choice which we
have assumed as part of ZFC. We will further assume CH which
implies that the length of the well ordering is ℵ1. Now let f(x) � {y: y
� x}. Thus, f: R : Rℵ0

. The way cardinal numbers are defined implies
that we are always bumped down a cardinality when picking a set of
earlier points in a well ordering. Moreover, a well ordering is total, so
if some particular y � {y: y � x}, then x � y. Consequently, by FSA,
(�x)(�y) x � y & y � x, which is a contradiction. Therefore, ~CH.

(P): Assume that CH is false, i.e., 2ℵ0� ℵ1. Let x1, x2, x3, . . . be an
ℵ1-sequence of distinct real numbers and let f: R : Rℵ0

. Now consider
the set A � {x: (�� � ℵ1) x � f(x�)}, which is the ℵ1-union of count-
able sets. Thus, the cardinality of A is ℵ1. Since 2ℵ0 � ℵ1, �y � A.
Thus, (∀� � ℵ1) y � f(x�). Since f(y) is countable, we have (�� � ℵ1)
x� � f(y). Therefore, y � f(x�) & x� � f(y).

Further Reading

Set Theory, including the standard results on infinite sets, is found in numerous
excellent texts. Enderton, Elements of Set Theory, is one among many. The inde-
pendence of CH is shown in Bell, Boolean-Valued Models and Independence
Proofs in Set Theory, and in Kunen, Set Theory. Of course, the articles by
Freiling and Mumford are essential.

Maddy, Naturalism in Mathematics, especially Part I, contains a wealth of
material on justifying new axioms in set theory. Tiles, The Philosophy of Set
Theory, presents an extensive treatment that is quite accessible. For advanced
readers, Woodin, ‘The Continuum Hypothesis, Parts I and II’, presents current
work, including his own, on CH.
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CHAPTER 12
Calling the Bluff

Jean Dieudonné is one of the more prominent members of the Bourbaki
group1, a highly influential collection of French mathematicians who
stress axiomatics and rigour in the development and presentation of math-

ematics. In the preface to his Foundations of Modern Analysis (1969),
Dieudonné urges a ‘strict adherence to axiomatic methods, with no appeal
whatsoever to “geometric intuition”, at least in the formal proofs: a necessity
which we have emphasized by deliberately abstaining from introducing any
diagram in the book’ (1969: ix Preface, my italics). 

This attitude towards pictures, illustrations, and diagrams in mathematics is
widespread and long-standing. Two centuries earlier, Dieudonné’s countryman,
Joseph-Louis Lagrange, one of the greatest mathematicians of all time,
remarked in his Mécanique Analytic (1788), ‘No figures will be found in this
work. The methods that I set forth require neither constructions nor geometrical
or mechanical arguments, but only algebraic operations, subject to a regular and
uniform procedure’ (1788 Pref.).

And sure enough, there isn’t a picture to be found in either book. 
The fact that there aren’t any diagrams makes it look as if their point is

clearly made: rigorous mathematics can and should be done without pictures.
But as Dieudonné himself puts it in describing the background required of
his readers: ‘students must have a good working knowledge of classical analy-
sis before approaching this course’ (1969: x Pref.). And where do they get
that? No doubt they typically get it from lectures with lots of diagrams and a
more elementary text with lots of pictures. What this means is that Lagrange
and Dieudonné and so many like-minded others – though they may not real-
ize it – can count on their readers being already familiar with the typical
diagrams that go along with the various theorems. No one is learning the
intermediate value theorem, for example, completely from scratch without a
visual illustration.



One of the biggest claims I’ve made in this book (back in Chapter 3) is
that pictures in some cases can serve as perfectly rigorous evidence. I’m not
claiming that this is always so, or that pictures are necessary in any particular
case. But we should keep in mind that high-powered, sophisticated mathemat-
ics books which have no diagrams in them are read by people who earlier read
many books which did contain pictures – and those readers haven’t suddenly
forgotten what they learned earlier.

Pierre Cartier, a member of the Bourbaki group, was asked why the lack of
visual representation in the Bourbaki books. ‘The Bourbaki were Puritans’, he
answered, ‘and Puritans are strongly opposed to pictorial representations of truths
of their faith’ (Senechal 1998: 27). Cartier’s amusing speculation, presumably, is
tongue-in-cheek. Let’s look briefly at some of the more earnest reasons that have
been offered for taking a dim view of pictures. One of these regards rigour. Every
now and then mathematics becomes especially concerned with the security of its
foundations. In the nineteenth century rigour and the arithmetization of analysis
went hand in hand. Set theory was developed in connection with this, but led to
many paradoxes. The most famous of these was Russell’s concerning the set of all
sets which are not members of themselves. So, in the early part of this century
rigour was again of great concern; consequently, visual reasoning once again took
a tumble. But when we consider one of the reasons for the obsession with rigour,
namely the paradoxes,2 we notice that not a single problem arose from visual rea-
soning. The paradoxes (Russell’s Paradox, the Burali–Forti Paradox concerning
the set of all ordinals, Cantor’s Paradox concerning the set of all cardinals, and
other related paradoxes) all stem from verbal/symbolic reasoning. That is what
led us astray – not pictures. The same can be said of other great crises in the his-
tory of mathematics concerning infinitesimals in the seventeenth century or
incommensurable measures in Greek times. Pictures were not to blame.

Formalists and linguistic conventionalists see mathematical truth (such as it is)
residing in the very language or notation of mathematics. A.J. Ayer (1936/1971),
in particular, held a version of this in which all mathematical truths stem from
the way we use language. ‘5 � 7 � 12’ is true for the same reasons that ‘All
bachelors are unmarried males’ is true – that’s the way we use those terms. ‘We
see, then’, says Ayer,

that there is nothing mysterious about the apodictic certainty of logic
and mathematics. Our knowledge that no observation can ever confute
the proposition ‘7 � 5 � 12’ depends simply on the fact that the sym-
bolic expression ‘7 � 5’ is synonymous with ‘12’, just as our knowl-
edge that every oculist is an eye-doctor depends on the fact that the
symbol ‘eye-doctor’ is synonymous with ‘oculist’. And the same expla-
nation holds good for every other sort of a priori truth.’

(Ayer 1936/1971, 113) 
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Ayer also had it in for pictures. He expressed his view in connection with
geometry which he took to be, like arithmetic, a body of analytic truths.

It might be objected that the use of diagrams in geometrical treatises
shows that geometrical reasoning is not purely abstract and logical, but
depends on our intuition [i.e. visualization] of the properties of figures.
In fact, however, the use of diagrams is not essential to completely
rigorous geometry. The diagrams are introduced as an aid to our
reasoning. . . . It shows merely that our intellects are unequal to the
task of carrying out very abstract processes of reasoning without the
assistance of intuition. . . . Moreover, the appeal to intuition, though
generally of psychological value, is also a source of danger to the
geometer. 

(ibid.: 111)

Aside from being a source of error, Ayer does not give us an argument for
rejecting diagrams as anything more that psychological aids. However, there
may be a reason implicit in his remarks that we can ferret out. If mathematical
truths rest on linguistic facts, then mathematical evidence should be related to
the source of its truth, namely, to language itself, to facts about verbal/symbolic
usage. Thus, considerations of language are the only source of rigorous evi-
dence (i.e. only verbal/symbolic proofs are legitimate) and pictures are properly
ruled out. 

The crucial thing wrong with this argument is the premiss that mathematical
truth rests uniquely on verbal/symbolic facts. If, as Platonism maintains, there
is more to mathematical reality than mathematical language (which is merely
an instrument to represent non-linguistic mathematical reality), then pictures
might be another way to represent that reality. This doesn’t establish the legiti-
macy of pictures, but it certainly undermines a potentially effective argument
against them.

One of the most powerful objections to taking pictures seriously is that the
intuition which goes along with visual reasoning gets in the way of great break-
throughs in mathematics. Hans Hahn, in an influential article called ‘The Crisis
in Intuition’ (1956) made this case long ago using some very nice examples.
Hahn’s official target in this paper is Kant’s doctrine of intuition but, in fact, he
is also aiming at both visualization and intuitive in the more common-sense
meaning of ‘immediately obvious’. He contrasts intuition in all of these senses
with ‘analytical’ and ‘logical’ reasoning, which he takes to be the one and only
way to proceed correctly. 

Hahn attempts to make his case with a number of striking examples. One of
these is a celebrated result of Brouwer.3 Imagine a map with three countries. At
most of the boundary points two countries touch, but at some points all three
touch (Figure 12.1). 
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Pictures and common-sense intuition tell us that the special points where all
three countries touch are special indeed, and that they must all be isolated
points. Brouwer, however, showed how to construct a map in which every
boundary point touches all three countries. Figure 12.2(a–d) gives the idea of
how the construction works.

Imagine country A pushing out its boundary into the (white) unclaimed land.
It takes a year to do this. Then B, not wanting to be outflanked, pushes out,
too. This takes half a year. Then C pushes out, taking one quarter year. Next,
it’s A’s turn again, and so on. After two years (a finite time) we have a situation

C A L L I N G  T H E  B L U F F 201

Figure 12.1 Most boundary points touch only two countries, but a and b touch all three

Figure 12.2 First stages in a construction in which every boundary point is common to
each country

a

b

(a) (b)

(c) (d)



in which every boundary point is a point at which A, B and C meet. The pic-
tures help the imagination in getting a grip on what’s happening in the proof
but, as Hahn rightly notes, there is no hope of being able to visualize the final
construction in which every boundary point is common to all three countries.
It is the analytic proof (which I won’t duplicate here) that establishes the
result.

Another of Hahn’s examples is the class of ‘space-filling curves’. Imagine a
square. You may start with your pencil at any point on the square and move as
fast as you like (though still with finite speed) for a finite time. Can you cover
every point on the square? In other words, could any curve in the square fill the
whole square?

Hilbert’s space-filling curve is generated recursively. The sequence of pic-
tures in Figure 12.3 show the first six iterations of the construction. Imagine
drawing these, each picture in half the time it took to do the previous one. If the
first takes a minute, we can be done drawing infinitely many pictures in two
minutes. Thus, the final curve is drawn in finite time; it is continuous, and it fills
the whole square. Of course, no actual picture captures this; the sequence
shown here is at best suggestive. Only the analytic proof truly establishes the
result.4

Pictures played an important role in both Brouwer’s topological result and
Hilbert’s space-filling curve. But the role played is the role that traditional
attitudes have long assigned to pictures: psychological and heuristic – not
evidential. In neither case do pictures provide a proof of the result; only the
verbal/symbolic proof does that.

The point that Hahn makes so well with his well-chosen examples is similar
to one that Descartes made long ago. If we try to imagine a 1000-sided figure
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Figure 12.3 The first six iterations of Hilbert’s space-filling curve
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and a 1001-sided figure, we can’t see the difference, at least not in the imagina-
tion. But the intellect has no trouble at all distinguishing. A picture may be
worth a thousand words, but here a (number) words can distinguish among
thousands of pictures.

Any reply to Hahn’s argument must concede a great deal – pictures can
indeed lead us astray. But his argument is not general; only some intuitions are
misleading – not all. The case that Hahn raises against pictures is perhaps the
most powerful that could be made. His examples seem to show an in-principle
limitation to visual reasoning. In some cases, this is so. Nevertheless, this point
should not be generalized, since lots of other pictures work very well. But even
though these are very powerful examples, they have not been the most effective
elements in the historic campaign against visual thinking. Hahn’s examples
mislead in not giving us the right result – as opposed to convincing us of an out-
right falsehood. I suspect that pictures have suffered more from the fact that
they have led people into explicitly false beliefs than from any other reason.

The kind of thing I mean is well illustrated by a popular puzzle. Consider a
square with sides of length 13 (Figure 12.4(a)). Divide it into four sections as
indicated, then rearrange as in Figure 12.4(b). The area of the first square is
13 � 13 � 169, but the area of the second is 8 � 21 � 168. What went wrong?
Where is the missing area? (As a final exercise, you might try to figure it out.
Answer on p. 000)

Here’s another example, less well known, but quite striking.
Draw four circles in the plane, centred at (�1, �1), each with radius 1

(Figure 12.5(a)). Draw a fifth circle, this time at the origin, so that it touches
each of the four circles. Draw a box around the four circles. It will have sides
stretching from �2 to �2. Obviously, the inner circle is completely contained
within the box. Do the same in three-dimensional space, this time drawing eight
spheres centred at (�1, �1, �1) and a ninth sphere at the origin touching the
other eight. Now draw a box around the eight spheres. Once again, the central
sphere is completely contained within the box (Figure 12.5(b)).
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Figure 12.4 Do they have the same area?
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Reflecting on these pictures, it would be perfectly reasonable to jump to
the ‘obvious’ conclusion that the result holds in higher dimensions. Amazingly,
this is not so. At ten dimensions or higher, the central sphere breaks through
the n-dimensional box. Here’s why: The distance from the origin to the centre
of any sphere is √((�1)2

�. . .� (�1)2) � √n. But each sphere has radius 1;
thus, the radius of the central sphere is √n � 1. For n � 10, we have √n � 1 � 2.
Thus, the central sphere will break through the sides of the n-dimensional
box – a profound shock to intuition.

What is the moral to be drawn from examples such as this? The all-
too-common response is to relegate pictures to heuristic only status and to say
that they are not to be trusted as mathematical evidence. But as I repeatedly
pointed out above, verbal/symbolic proofs can mislead, too. Pictures are no
worse, and can even correct faulty symbolic derivations. It would be much
better to consider the evidence acquired from pictures to be like the empirical
evidence acquired from microscopes, bubble chambers, and other instruments
of observation. These instruments can be highly misleading, too. Optical prop-
erties and staining techniques which were not understood have led microscope
users to ‘observe’ things that are not real, but were mere artifacts of the obser-
vation process. Students of biology and astronomy spend considerable time
learning about the potential pitfalls associated with optical instruments. Math-
ematics students could be given similar training in connection with diagrams.

It would be silly to tell people: Just be careful. We have to learn how micro-
scopes and spark chambers, etc. work. It’s no easy task. But as we learn, the
quality of our observations improves. Learning about the instruments and learn-
ing about nature go hand in hand. The same can be said about pictures in math-
ematics. The fact that many mislead is no reason to reject them in principle as a
source of evidence. We simply have to learn how to use them, just as we must
continue to learn more about microscopes so that we can continue to do better
biology. This is a process which will never end.
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Figure 12.5 Will the small central sphere stay contained in the box?
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I realize that Platonistic talk of ‘the mind’s eye’ and ‘seeing mathematical
entities’, is highly metaphorical. This is to be regretted – but not repented.
Picture-proofs are obviously too effective to be dismissed and they are poten-
tially too powerful to be ignored. Making sympathetic sense of them is what’s
required of us.

Calling the Bluff

J.E. Littlewood, a very fine British mathematician, writing at mid-century,
remarks: ‘My pupils will not use pictures, even unofficially and when there is
no question of expense. This practice is increasing; I have lately discovered that
it has existed for 30 years or more, and also why. A heavy warning used to be
given that pictures are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety. Some pictures, of
course, are not rigorous, but I should say most are (and I use them whenever
possible myself)’ (1953/1986: 54). 

Littlewood goes on to illustrate with a nice example.

One of the best pictorial arguments is a proof of the ‘fixed point
theorem’ in one dimension: Let f(x) be continuous and increasing in
0 � x � 1, with values satisfying 0 � f(x) � 1, and let f2(x) � f{f(x)},
fn(x) � f{fn�1(x)}. Then under iteration of f every point is either a fixed
point, or else converges to a fixed point.

For the professional the only proof needed is [Figure 12.6]. 
(Littlewood 1953/1986: 55)
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This example is completely convincing. Perhaps it should embolden us to
greater ambition. There’s no reason for not generalizing even more from
Littlewood’s bluff-calling injunction. He tells us to use regular proofs and
picture proofs, as well. But why should that be the end of it? There are good
reasons to think we already have several distinct ways of acquiring math-
ematical knowledge. Here are some of them:

(1) Proofs. Traditional verbal/symbolic derivations.
(2) Intuition. In the immediate sense that some proposition is true, e.g.

2 � 2 � 4.
(3) Induction. Computing examples, especially if they are the ‘right

kind’ and in sufficient number, can provide evidence of the truth of
some mathematical proposition.

(4) H-D. I’ll use the term hypothetico-deductivism to cover a multitude
of variations. But the idea in each case is that we test a mathematical
proposition by seeing if its consequences are true. The consequences
themselves might, for example, be tested by intuition or by induction,
or they might already be known to be true. This, presumably, is how
axioms that are not directly intuitive (i.e. not self-evident) come to
be accepted.

(5) Pictures. This can be a prod to intuition, but can also establish very
general theorems. In some cases they are just as rigorous as any tra-
ditional verbal/symbolic proof.

(6) Diagonalization. Gödel proved the existence of an undecidable sen-
tence; but, as a result of the proof, we can see that the sentence is
true. This seems unlike the other ways of establishing mathematical
results and may be a distinct source of mathematical evidence.

(7) Thought Experiments. Some idealized physical situations might cor-
respond to mathematical situations, and a thought experiment
involving the former could solve a problem involving the latter.
Freiling’s darts and the continuum hypothesis are, arguably, an
instance.

These are not wholly distinct types of evidence. Pictures, thought experiments,
and diagonalization, for instance, might be special cases of intuition. And, of
course, they are not all rigorous. Traditional proofs are. Let’s grant that for the
sake of the argument. Remember, however, traditional proofs are derivations
from first principles – but where do these come from? We don’t have traditional
proofs of the axioms, so we accept them for some other reason – intuition,
perhaps, or H-D. Rigorous derivations can transmit to the consequences the
confidence we have in first principles, but they can’t increase it. So we’ll never
do better than the evidence we have for axioms. Pictures (at least some of them)
stand up well to this comparison. Does anyone really have greater confidence

206 P H I L O S O P H Y  O F  M A T H E M A T I C S



in, say, the axioms of set theory than in the visual proofs I gave in Chapter 3?
The same could be said about proofs by diagonalization.

The moral is simply this: there are many different ways to establish math-
ematical truths. We know a handful; there may be indefinitely many more.
Mathematical research since Gödel has been under something of a cloud. The
richness of mathematics has been seen as grounds for pessimism – at least in
some quarters where it may be argued that even arithmetic is so rich that we
cannot hope to capture it. But I see things quite the other way: mathematics is
so rich that it offers us techniques for solving any problem. In his famous ‘On
the Infinite’, Hilbert wrote stirringly that ‘every mathematical problem is
solvable . . . we always hear the cry within us: There is the problem, find the
answer; you can find it just by thinking, for there is no ignorabimus in math-
ematics’ (1925: 200). If we confine ourselves to finitistic methods, or to deriva-
tions in first-order logic, or to any other specific set of allowed verbal/symbolic
techniques, we shall likely not succeed. But if we allow ourselves all the
resources that mathematics offers us (intuitions, pictures, derivations, and other
techniques yet undreamed of) then Hilbert, I’m sure, is absolutely right: we will
not remain ignorant – any problem can and will be solved.

Math Wars: A Report from the Front

The expression ‘Math Wars’ could reasonably be taken in several different
ways. One is to refer to the nasty debates over calculus reform, especially in the
USA. Both sides despair test results of American students (as compared with
non-Americans) and the general lack of interest in or knowledge of math-
ematics. One side wants to re-emphasize skills and rigour; the other looks to
innovative ways of teaching mathematics. Terms like ‘elitist’ and ‘flake’ are
commonplace in this debate about mathematical education.6

Another sense of ‘math wars’ is connected to the ‘science wars’, the battle
raging over social constructivism. Do scientists make discoveries, or do they
‘construct’ nature in a way that reflects social factors and serves various non-
cognitive interests? The debate was brought to a head when Alan Sokal wrote a
hoax paper using the worst postmodern jargon. It was unwittingly accepted by
the journal Social Text. He later exposed his hoax to an uproar that made front-
page news. Mathematics has largely gone unnoticed in these debates, but not
completely. David Bloor (who anchors the naturalistic wing of social construc-
tivism, which is far removed from the more nihilistic postmodern wing) has
attempted a sociological account of mathematics (Bloor 1991). If construc-
tivism continues to flourish, then it will no doubt make incursions here as well.7

I’m not interested in either of these math wars, but I mention them to indicate
that mathematics lends itself just as readily as anything else to ideological fracas.
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And a fracas is just what we have when it comes to ‘experimental mathematics’.
This is the sense of ‘math wars’ I now want to take up. Occasionally I’ll adopt
the stance of the opinionated columnist, but for the most part in this section I will
assume the role of the intrepid reporter bringing back news from the front lines.

A story has to begin somewhere – I’ll start with a book review. James Gleick (a
science journalist) published a very successful book called Chaos: Making a New
Science (1987). It described the mathematics of ‘chaos’ in completely non-
technical terms, reproduced lots of pictures, described the personalities of some
of the major players. And it did all this in a readable and even romantically enter-
taining way, becoming a best seller. Working mathematicians had mixed opinions
of the book, some were quite uneasy. Chaos was reviewed very critically in The
Mathematical Intelligencer by John Franks (1989), a professional mathematician.
The Mathematical Intelligencer is an entertaining, non-research journal for pro-
fessional mathematicians; it is filled with expository articles, history, philosophy,
biography, reviews, gossip and opinion. It is widely read and quite influential.

Franks finds much to praise in Gleick’s work, but on a few essential points
he is unsparing: ‘One could read this book and come away with the view
that mathematical proofs are an obstacle to the pursuit of truth – a sort of
self-imposed mental straitjacket worn by stodgy old pedants’ (1989: 68).

Alas, Franks goes on to say ‘Mathematics has a methodology unique among
all the sciences. It is the only discipline in which deductive logic is the sole
arbiter of truth’ (ibid.). I hope that no reader who has read this far gives that
claim any credence whatsoever. Franks continues, ‘I would contend that an
important criterion for judging a scientific discipline is the half-life of its truths’
(ibid.). Really? Big-bang astronomy hasn’t been around for that long, and is
currently undergoing ‘inflationary’ modifications. Before that it was the
expanding, steady-state theory, and before that. . . . In short, the beliefs in this
realm are not very stable. The accepted truths of astrology, by contrast, haven’t
changed in aeons; it prides itself on being the repository of ancient wisdom.

Franks likens the hype surrounding chaos and non-linear dynamics to the
hype surrounding catastrophe theory a decade earlier – in both cases, he says,
it is quite unwarranted. Much of the problem stems from questionable appli-
cations, according to Franks. Models must explain. ‘It is not enough to find a
mathematical system that exhibits similar behavior to a physical experiment,
but has no apparent connection with it’ (ibid.). (This seems a most unlikely
doctrine if taken at face value. The main argument of my Chapter 4 on applied
mathematics was to the effect that mathematical models explain nothing in the
non-mathematical realm. Franks may actually only be complaining that model-
ling is rather slipshod. He would be right in this – at least much of the time.)

Another prominent mathematician, Morris Hirsch, followed Franks in a later
issue of the Intelligencer with an opinion piece which praised Gleick’s book,
but found ‘one great defect: It doesn’t do justice to the rigorous mathematics
underlying a great deal of research in nonlinear dynamical systems’ (Hirsch
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1989: 6). Whereas Franks thinks that Gleick ‘has greatly overestimated the
achievements of chaos theorists’ (Franks 1989: 69), Hirsch thinks that Gleick
has failed to appreciate the rigorous character of their work:

[T]he earliest and most influential examples [of chaos] were first iden-
tified and explored not by computer simulation, and not by physical
experiment, but by mathematical proof (Poincaré, Birkoff, Levinson,
Smale, Anosov, Kolmogorov, Arnold, Moser . . .). These and many
other mathematicians achieved by rigorous mathematical analysis cru-
cial insights into what is now called chaos. It is difficult to imagine that
what they discovered could have been found through any kind of
experimentation any more than the existence of irrational numbers –
which was even more astonishing when it occurred – could have been
discovered by computation. 

(Hirsch 1989: 6)

Gleick replied testily:

[T]his seems a bitter pill for some of you [mathematicians] to swallow –
there are times when mathematical proof (essential though it is!) comes,
historically, as an afterthought. Lorenz’s work had its greatest influence
before anyone even could say with certainty that his attractor was
chaotic. Langford’s proof of Feigenbaum was ingenious and admirable,
but it did little, really, to validate Feigenbaum’s breakthrough –
experiments accomplished that. Those mathematicians who choose to
look only at the documented genealogy of published proofs do their
discipline a disservice, I think. It’s no wonder they find it awkward or
unpleasant to assess Benoit Mandelbrot’s place: here is a nominal math-
ematician who, ostentatiously not proving much, has concretely changed
the working lives of many thousands of scientists. You [mathematicians]
should not doubt Mandelbrot’s powerful originality and importance in
the science of our time – though I know some of you still do. 

(Gleick 1989b: 9)

Speaking of Mandelbrot (who coined the term ‘fractal’ and is by far and away
the leading public figure in the field), he, too, jumped into the fray. Dismissing
Franks’s critical remarks on Gleick (of whose book he much approves),
Mandelbrot makes a useful distinction between ‘top-down’ and ‘bottom-up’ math-
ematics. The Bourbaki approach is paradigmatic of the top-down method. Start
with precise definitions and axioms and then proceed step by rigorous step from
there. But Mandelbrot sees himself as working in a messy, open-ended, bottom-
up way.8 Lakatos would be sympathetic. Mandelbrot’s hero – ‘God on Earth’ – is
Poincaré, of whom Hermite often complained that he couldn’t finish his proofs.
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Hot on the heals of the Gleick-Franks-Hirsch-Mandelbrot exchange came
another in the same journal, this time between Steven Krantz, a prominent
analyst, and Mandelbrot. It started with Krantz reviewing two books on frac-
tals for the Bulletin of the American Mathematical Society. The review was
initially accepted for publication, but then later rejected as too controversial.
However, the Mathematical Intelligencer, which ‘welcomes controversy’, gladly
published it along with Mandelbrot’s reply.

Krantz criticizes much. First, there is no accepted definition of ‘fractal’. He
mockingly adds, ‘It seems that if one does not prove theorems (as, evidently,
fractal geometers do not), then one does not need definitions’ (1989: 13–14).
Second, Fractals have sometimes been called an intellectual advance compar-
able with calculus. Krantz scoffs at this: ‘One notable difference between frac-
tal geometry and calculus is that fractal geometry has not solved any problems’
(ibid.). Third, the most that fractal geometers can come up with is vague and
suggestive ideas. ‘The trouble with any subject that relies on more computer
output than on theory is that one has to think of something to say about it. The
result is that much of the writing turns out to be anecdotal’ (ibid.). Fourth, the
fractal industry is plagued with excessive hype. ‘I do not accept the assertion
that the Mandelbrot set [Figure 12.7] “is considered to be the most complex
object mathematics has ever seen.” This type of hyperbole may appeal to
readers of popular magazines but rings untrue to the trained mathematician’
(ibid.: 15). Finally, Krantz allows that computer-generated pictures can be a
wonderful tool for investigating mathematical questions. But something has
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gone wrong when the pictures become an end in themselves. ‘In fractal geome-
try one uses some mathematics to generate a picture, then asks questions about
the picture – which generates more pictures. Then one asks more questions
about the new pictures. And so on. One rarely, if ever, sees a return to the orig-
inal mathematics’ (ibid.: 16). In sum, Krantz thinks fractal geometry is not a
new science, nor likely to provide the tools for a new analysis of nature. In
short, as he puts it, ‘the emperor has no clothes’ (ibid.).

Mandelbrot replied to this, but the focus of his remarks concerns priority.
Krantz had suggested that such things as the ‘Mandelbrot set’ and the ‘Mandelbrot
function’ were actually developed earlier by others (Julia and Weierstrass, respec-
tively). Needless to say, Mandelbrot took umbrage. But the main point – the
legitimacy of this type of mathematics – went largely undefended.

Two distinct issues arise in the field of non-linear dynamics, fractals and chaos:
First, what are the standards of rigour in this field, and what should they be?
Second, how do we know that a particular application to nature is a legitimate
one? Concerning the first point, fractals, etc. seem on fairly solid ground. It’s true
that some key concepts (including ‘fractal’ itself) have gone undefined, but that
does not separate it from other examples of wonderful mathematical theories,
especially in their early days. Riemann, for example, didn’t define ‘manifold’and
a proper definition was rather slow in coming, yet no one would say his work
was seriously unrigorous. The crucial idea behind fractals and chaos – iterated
mappings – is not in the least problematic. Commentators such as Hirsch are
quite right to insist that the highest standards of rigour have been met.

It is the second point, applications, where eyebrows should be raised. In any
fractals presentation, claims are made – often quite wild – that such and such a
natural phenomena is a fractal or is chaotic. Computer-generated pictures are
sometimes highly suggestive of, for example, landscapes, or plants, or coast-
lines, etc. (See Figure 12.8, a fern, and Figure 12.9, the first few iterations of the
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Koch snowflake, a model for a coastline.) But aside from a superficial
appearance, there is no evidence or argument that the phenomenon in question
is rightly modelled by a fractal. 

A favourite example is the coastline of Britain. How long is it? It turns out
that we first have to choose a scale. We might start out ignoring inlets and bays;
but, at a smaller scale of measure, we would include these, and at a still smaller
scale we would include tiny little wiggles. The finer our measuring, the longer
the coast. This is how it is with fractals. But is the British coast a fractal?
Certainly not. There’s a smallest scale – at the subatomic level. And when we
measure the boundary particles, quark to quark to quark9 around the edge, we
end up with the longest – but still finite – length. This is not a fractal curve. 

The situation here is not unlike the situation a few years ago with Catastrophe
Theory. The pure mathematics of Catastrophe Theory is very solid. The dis-
credited hype concerned applications to animal aggression, to games of strat-
egy, to international politics, and so on. In both cases people would do well to
reflect on some of the elementary considerations (reviewed in Chapter 4) of
how mathematics gets applied to the world.

Two popular, but quite influential, general science magazines got into the act
and further fanned the flames of the math wars. William Bowen discussed
‘New-wave Mathematics’ in The New Scientist (1991) and John Horgan
announced ‘The Death of Proof’ in Scientific American (1993). Both were sub-
sequently deluged with outraged letters. Each cited a number of the main
players, including: Krantz, who is quoted by Bowman as calling research in
fractals ‘easy, flashy, and . . . pointless’; Mandelbrot, who, of course, defends
his own work; and David Epstein, who ‘wants experiments to come out of the
closet’. Epstein is the editor of a new journal, Experimental Mathematics,
sometimes derisively called ‘The Journal of Unproved Theorems’. Among the
most prominent mathematicians to approve of experimental work are John
Milnor and William Thurston, both Fields Medal10 winners for work which
would pass traditional muster. Needless to say, they speak with great authority.
And, finally, in making their cases for experimentation, both Bowman and
Horgan prominently cite the now famous video ‘Not Knot’ which gives a visual
proof of a famous result by Thurston.11

The inauguration (in 1992) of the journal Experimental Mathematics marks
something of a watershed. The first issue included a brief manifesto in which the
editors quote Gauss as saying that he discovered mathematical truths ‘through
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systematic experimentation’. But they also declare that they will ‘not depart
from the established view that a result can only become part of mathematical
knowledge once it is supported by a logical proof’ (Epstein et al. 1992: 1),
thereby pleasing everyone – or no one. Their attitude is a bit like George Polya’s.
He has done as much as anyone to promote heuristic reasoning (with pictures,
induction, analogy, etc.) Nevertheless, says Polya, ‘We secure our mathematical
knowledge by demonstrative reasoning. Demonstrative reasoning has rigid
standards, codified and clarified by logic (formal or demonstrative logic), which
is the theory of demonstrative reasoning’ (1954: v). But it is not the stated
aims of Experimental Mathematics which are so important as the mere presence
of the journal. Its very existence encourages and legitimizes ‘experimental’
mathematics.12

By far and away, the most important and influential debate in the math wars
is that which took place in the Bulletin of the American Mathematical Society.
Arthur Jaffe and Frank Quinn began with their article on ‘theoretical’ vs.
‘rigorous’ mathematics (1993). They start by noting that rigour is double-edged.
It has ‘brought to mathematics a clarity and reliability unmatched by any other
science. But it also makes mathematics slow and difficult’ (ibid.: 1). They offer
the following picture of mathematical work, a picture which would be widely
accepted by working mathematicians: ‘Typically, information about math-
ematical structures is achieved in two stages. First, intuitive insights are devel-
oped, conjectures are made, and speculative outlines of justifications are
suggested. Then the conjectures and speculations are corrected; they are made
reliable by proving them’ (ibid.). They use the terms ‘theoretical’ for the first
stage and ‘rigorous’ for the second.

‘Rigorous’ evidently means properly derived via correct logical principles.
But derived from what? The axioms or first principles that are used in any proof
are themselves not proven, so what is their status in the rigorous vs. theoretical
taxonomy? They would have to count as theoretical, but anything that rests on
theoretical premisses will have to be considered theoretical itself, so it is diffi-
cult to recognize that anything could count as rigorous by their lights. Of
course, we might take anything derived from axioms as really saying: If the
Axioms are true then so is the Theorem. But this just trivializes mathematical
activity into establishing logical truths. Making a worthwhile distinction
between ‘theoretical’ and ‘rigorous’ is going to be difficult to say the least.

Moreover, purportedly rigorous proofs are not transparently obvious. The
recent episode of Andrew Wiles’s proof of Fermat’s Last Theorem shows that
dramatically. As I mentioned earlier, his first go at it was, after initial accep-
tance, considered by those in the field to be incomplete and flawed. After a great
deal of extra work the revised proof is now thought to be correct; but how much
faith should anyone put in it?

Logical proofs do two things. One of these is epistemic: they provide evi-
dence that a proposition is true. They may do this well or poorly. (We should
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always keep in mind that when proofs serve as evidence, it is evidence for us.)
The other thing that proofs do is establish connections between propositions,
and they can be greatly cherished for this. So, even when we have no particular
reason to believe some set of axioms, we might still try to establish connections
among them and other propositions, simply to see how the whole structure
hangs together. This means that even where we have perfectly rigorous proofs
of all theorems, there are still no grounds for believing a single one. The sharp
dichotomy with speculation or conjecture is simply false. Of course, a
dichotomy is possible, but it is not simple and straightforward.

Jaffe and Quinn cite many cases where speculations and conjectures have been
highly stimulating and have benefited mathematics greatly. But they also point to
several where things have not gone so well. And with the growing influence of
‘theoretical’ work, they fear the worst. What are the problems? As they see it:

(1) Theoretical work, if taken too far, goes astray because it lacks the
feedback and corrections provided by rigorous proof.

(2) Further work is discouraged and confused by uncertainty about
which parts are reliable.

(3) A dead area is often created when full credit is claimed by vigorous
theorisers: there is little incentive for cleaning up the debris that
blocks further progress.

(4) Students and young researchers are misled. 
(Jaffe and Quinn 1993: 8)

Jaffe and Quinn suggest the following prescription for what ails experimental
mathematics. They want ‘theoretical’ work explicitly called such, and when
someone later finds a rigorous proof, the credit for the result must be appropri-
ately shared. They want terms like ‘conjecture’ used instead of ‘theorem’ and
‘supporting argument’ instead of ‘proof’. Ideally, titles would include ‘theoreti-
cal’ or ‘speculative’ so that readers clearly understand their status. It is, they
suggest, ‘mathematically unethical not to maintain the distinctions between
casual reasoning and proof’ (1993: 12).

Jaffe and Quinn seem like the sweet voice of reason, perhaps even good old-
fashioned mathematical common sense. After all, everyone distinguishes
between the Pythagorean theorem and the Riemann hypothesis, between the
Prime Number theorem and Goldbach’s conjecture. How could anyone object? 

Yet object they did. In a subsequent issue of the Bulletin a large number of
mathematicians, including several very prominent Fields Medal winners, took
on Jaffe and Quinn and their theoretical/rigorous distinction (Atiyah et al.
1994). Michael Atiyah complained that Jaffe and Quinn ‘present a sanitized
view of mathematics which condemns the subject to an arthritic old age’
(Atiyah et al. 1994: 178). René Thom linked ‘rigour’ with ‘rigor mortis’ (ibid.:
204). Armand Borel objected that ‘what mathematics needs least are pundits
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who issue prescriptions or guideline for presumably less enlightened mortals’
(ibid.: 180). Mandelbrot regretted that Jaffe and Quinn had taken up ‘tribal and
territorial issues’ and found what they had to say ‘appalling’ (ibid.: 193). Karen
Uhlenbeck accused them of a ‘too narrow perspective’ (ibid.: 201), as did
Edward Witten who believed they had a ‘rather limited idea’ of how math-
ematics and physics interact (ibid.: 205). 

In a separate and much longer article, but still part of the rejoinders to Jaffe
and Quinn, William Thurston objected to the ‘one-dimensional scale (specula-
tion vs. rigour)’ (Thurston 1994: 161), and raised a number of interesting points
while defending the more ‘experimental’ activities of himself and others.

We could characterize mathematicians as theorem provers and ask how they
do it. But Thurston thinks this is the wrong way to go about things. Instead,
mathematicians should be seen as people who ‘advance human understanding
of mathematics’ (ibid.: 162), and the interesting question is: How do they do
that? Thurston’s emphasis throughout is on human understanding, ‘which does
not work on a single track, like a computer with a single central processing
unit’ (ibid.: 164). Proof seems central, but what is it? Thurston notes the usual
problems with incomplete or downright false proofs. But he thinks that
recorded, correct proofs are not all that important, because ‘Mathematical
knowledge and understanding were embedded in the minds and in the social
fabric of the community of people thinking about a particular topic. This
knowledge was supported by written documents, but the written documents
were not really primary’ (ibid.: 169). The point is that people in the field have a
grip on the structure, and through conversation, diagrams, a few coded expres-
sions, etc. can quickly convince others in the field of the correctness of any par-
ticular claim. Published, correct proofs mean little to the life of any particular
mathematical field according to Thurston.

Who are these people objecting to the Jaffe–Quinn view which is an expres-
sion of orthodoxy? William Thurston, Fields Medal 1982, Director of
Mathematical Sciences Research Institute, Berkeley, is a leading geometer.
Edward Witten, Fields Medal 1990, a champion of string theory in physics, is
often said to be the most brilliant physicist working today. René Thom, Fields
Medal 1958, is the creator of ‘catastrophe theory’. Michael Atiyah, Fields
Medal 1966, Master of Trinity College and Director of the Mathematical
Institute at Cambridge, is one of the most prominent and influential mathemati-
cians of recent times. I mention who they are to show something important
about the debate. The ‘rebels’ are not young turks from the fringe; they are
pillars of the mathematical community. I’ll turn now to offering a few brief
remarks on some details of the debate in the math wars.

One false assumption running throughout these discussions is this: if
mathematics is done more like physics, then there will be a loss of certainty.
For some aspects of experimental mathematics this will be true. But not all, and
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it’s important to get a better idea of how physics sometimes works. Thought-
experiments offer a clear counter-example to this claim.

Let’s look at one of the finest examples: Galileo’s wonderful argument in the
Discoursi to show that all bodies, regardless of their weight, fall at the same
speed. It begins by noting Aristotle’s view that heavier bodies fall faster than
light ones (H � L). We are then asked to imagine that a heavy cannon ball is
attached to a light musket ball. What would happen if they were released
together? (Figure 12.10).

Reasoning in the Aristotelian manner leads to an absurd conclusion. First, the
light ball will slow up the heavy one (acting as a kind of drag), so the speed of
the combined system would be slower than the speed of the heavy ball falling
alone (H � H � L). On the other hand, the combined system is heavier than the
heavy ball alone, so it should fall faster (H � L � H). We now have the absurd
consequence that the heavy ball is both faster and slower than the even heavier
combined system. Thus, the Aristotelian theory of falling bodies is destroyed.

But the question remains, ‘Which falls faster?’ The right answer is now plain
as day. The paradox is resolved by making them equal; they all fall at the same
speed (H � L � H � L).13

Much science is based on inductive leaps from a limited body of data. But not
all. Galileo’s thought-experiment is just as rigorous as any proof found in any
mathematical journal. We have little to fear if mathematical reasoning becomes
like that supreme example of human ingenuity in the natural sciences.

The question of just what counts as rigour is actually not settled in the
debates I have been describing. Back in Chapter 3 I claimed some of the picture-
proofs found there are rigorous. If this is correct (though I suspect Jaffe
and Quinn would only count logical derivations as rigorous), then there is
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considerable scope for compromise. Much experimental mathematics is visual.
As such it is often dismissed as merely ‘heuristic.’ It may well be both heuristic
and rigorous. The trade-off – assumed to some extent by all in this exchange –
between rigour and understanding is simple-minded. 

Once More: The Mathematical Image

In the opening chapter I listed a number of ingredients of the mathematical
image, features that the vast majority of working mathematicians, philosophers,
and ordinary people would endorse as characteristic of mathematics (repro-
duced below in italics). How have these points stood up? A word or two in con-
nection with each should suffice.

(1) Mathematical results are certain
(2) The history of mathematics is cumulative

Not a hope for either of these. Mathematics is certainly fallible; no theorem is
immune from overthrow. The history of mathematics is filled with revisions,
most often in the form of conceptual change, redefinition of key terms.

(3) Mathematics is objective

Happily accepted, and the objectivity is as Platonism characterizes it.

(4) Proofs are essential

Not if proof means logical derivation from first principles. The scope of math-
ematical evidence is very much wider than that. There are picture-proofs and
more.

(5) Diagrams are psychologically useful, but prove nothing
(6) Diagrams can even be misleading

Diagrams can certainly mislead; the trick is to find ways of anticipating this. In
any case, pictures are often very much more than psychological aids – they can
be rigorous proofs.

(7) Mathematics is wedded to classical logic

‘One god, one flag, one logic’, said Whitehead. Well, he was at least right about
logic, and it is classical.
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(8) Mathematics is independent of sense experience

Right again. This is the sense in which mathematics is a priori. It is not infal-
lible, however. Experimental mathematics, it must be stressed, should not be
confused with mathematics based on sensory evidence – there’s no such thing. 

(9) Computer proofs are merely long and complicated regular proofs

This is probably more of an open question than the others. But the point is
likely right, if we take computers to be tools that extend our mathematical abil-
ity, as telescopes extend our vision. Both, of course, are fallible.

(10) Some problems are unsolvable in principle

Though the issue is vague, I’m convinced that this principle is false. The reason
for thinking there are unsolvable problems – a moral often drawn in the light of
various undecidability results – is based on assuming specific tools for problem
solving, such as first-order logic. But if we allow that there are tools for prob-
lem solving not yet discovered, then all pessimism is undermined. I have no
grounds for thinking some clever picture will prove the Reimann hypothesis –
but I have no reason to deny it, either. Optimism about this or that has often
been unjustified, but optimism never gets in the way of progress. Let’s take the
leap with Hilbert: In mathematics there is no ignoramibus.

I’ll belabour things only a moment more. Readers convinced of the case made here
for Platonism will uphold the objectivity of mathematics, the link to classical
logic, and its independence from sense experience. On the other hand, Platonism
(as I’ve characterized it, especially in Chapter 2) means that mathematics is quite
fallible, so certainty and a cumulative history of mathematics must be aban-
doned. Because of this (at least in part) it is easy to accept the fallibilism of very
long computations and still say they are nevertheless regular proofs. The biggest
departure, no doubt, from the standard picture of mathematics pertains to
pictures and thought experiments. Of course, they can be misleading. But they
can provide solid evidence, too, evidence which is as rigorous as any traditional
verbal/symbolic proof.

Mathematics is one of humanity’s nobler activities. Trying to make sense of
it is an enormously difficult undertaking, yet filled with the potential of great
rewards. Traditional issues are still with us and still important. Platonism,
formalism, constructivism and so on have all contributed much to the under-
standing of mathematics and will surely contribute more. But the real action
today – the living philosophical issues for working mathematicians – cluster
around visualization and experimentation. The clarification of this cluster of
problems presents us with our greatest challenge. If our philosophical duty lies
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anywhere it is here, after the elimination of war and poverty which, of course,
must be the first duty of all.

Further Reading

Tymoczko (ed.), New Directions in the Philosophy of Mathematics contains
several papers recommending new and diverse approaches to mathematics. In
general there is little written on this that is at all systematic, but given its
‘newness’, we shouldn’t expect it. Aside from chatting with working mathe-
maticians (who are often happy to gossip about trends), the best place to find
things is in the Letters sections and among the more informal submissions to
professional journals such as Bulletin of the American Mathematical Society,
Mathematical Intelligencer, or in Internet discussion groups who often have
interesting debates.
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Notes

Chapter 2

1 For a study of the historical Plato and Platonism, see Moravcsik (1992). Plato’s
Meno and Republic (especially Book IV) are the best introduction to the mathemat-
ical aspects of Plato’s thought.

2 See Hale (1987) for a very thorough discussion of this issue. I should note that some
like Hale and Wright call themselves Platonists, but would not accept all the prin-
ciples listed here.

3 Not all realists are sanguine about this point. Maddy and some structuralists (Resnik
and Shapiro) have considerable sympathy with Platonism, but would qualify the
claim that all mathematical objects are outside space and time. Their respective
views will be taken up in later chapters.

4 There are, however, some echos of the earlier notion in some definitions of number.
Russell, for example, defined two as the set of all sets having two members. This
suggests a universal.

5 Alexander Bird points out that this needs fine tuning. Games like chess are abstract
entities, yet have a history (rule changes, etc.), so that would seem to put them in
time.

6 See, for example, Chihara (1973) and Benacerraf (1973). Maddy (1990) takes the
problem seriously and looks for a naturalistic way around it which is still compatible
with realism.

7 This sort of argument goes back at least to Sextus Empiricus; current versions stem
from Benacerraf (1973); others include Kitcher (1983) and Field (1980).

8 For an elementary exposition of EPR and the Bell results see Albert (1992).
9 This example is developed in a bit more detail in Brown (1990, 1991).

10 Kitcher’s other arguments against Platonism are of the no-access sort dealt with
above.

11 A spectrum of views can be found in the articles by Boolos, Parsons, and Wang in
Benacerraf and Putnam (1983).

12 See, for example, Brown (1991, 1994) for more on laws of nature and thought
experiments.



Chapter 3

1 Some other recent authors have taken a positive view of pictures. For example, see
Barwise and Etchemendy (1991), Shin (1994), Giaquinto (1994) and Hammer (1995).

2 Bolzano uses concepts like least upper bound and greatest lower bound which he
employs in the following theorem: If a property M does not hold of all values of a
variable quantity x but holds of all those which are less than a certain quantity u, then
there is always a quantity U, which is the largest of those quantities y which are such
that every x � y has property M.

3 Years later in his autobiographical sketch he remarked that he had ‘found a way to
derive from concepts many geometric truths that were known before only on the basis
of mere visual appearance’ (1969–87: vol. 12, 68).

4 Giaquinto (1994) raises objections based on examples of continuous but nowhere
differentiable functions, since they cannot be visualized. This is an important point.
However, I’m not persuaded of its seriousness, since I see no need to visualize each
and every continuous function in order to justify the theorem. After seeing a single
example, we can grasp the general point. It holds for smooth and non-smooth,
algebraic and transcendental, and so on.

5 See Gary and Johnson (1978) for the standard, yet still accessible, work on this topic.
6 For more on Russell see Irvine (1989).
7 Excellent discussions can be found in Aleksandrov (1963) and Friedman (1983).
8 A great deal more needs to be said about this. For one thing, someone might say ‘9

has the property of being the number of the planets’ and then note that this is hardly
an essential property of 9, so numbers have accidental properties, too. Perhaps we can
get around this by distinguishing between intrinsic and extrinsic properties. My
weight is an intrinsic property of me. Suppose I have the property of having the same
weight as Bob. If he goes on a diet I lose that property; but in a perfectly reasonable
sense I have not changed, and that’s because an extrinsic property has changed, not an
intrinsic one. So, being the number of the planets, we could say, is an extrinsic prop-
erty of 9, but being a composite number is intrinsic. If something like this works, then
take what I said about all mathematical properties being essential as being a claim
about intrinsic mathematical properties. I should admit that I’m not at all sanguine
about this point or related ones made earlier. I’m grateful to Alexander Bird, Bill
Newton-Smith and Mary Tiles for critical discussions.

Chapter 4

1 For more on laws of nature see Brown (1994: chs 6, 7 and 8).
2 To see this phenomenon at work in a particularly interesting and controversial way,

consider the interaction between quantum field theory and knot theory in the work of
Witten (1989).

3 See Devlin et al. (1997) for a good collection of articles which picks The Bell Curve
apart and makes its pseudo-scientific status evident.

4 The Koblitz and Simon series of articles are in the 1988 volume of The Mathematical
Intelligencer. Further references can be found there.

5 See Papineau (1993) for a ‘fictionalist’ variant of this view.
6 The type of cause would not be efficient, to use Aristotle’s terminology, but rather

would be formal.
7 The recent books, Resnik (1997) and Shapiro (1997) appeared too late for me to do

justice to them. The main features of their views seems unchanged from their earlier
accounts.
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Chapter 5

1 See Reid (1970) for a biographical account.
2 For a history of the infinite see A.W. Moore (1990). For an account of set theory

which is more constructive in spirit and less sympathetic to actual infinities, see
Tiles (1989).

3 See Coxeter (1974) or Courant and Robbins (1941).
4 (a) (1) ∀x(~(0 � sx)) Axiom (2)

(2) ~(a � sa) Assumption
(3) ∀x∀y(sx � sy → x � y) Axiom (1)
(4) ∀y(sa � ssy → a � sy) (3) Universal instantiation
(5) (sa � ssa → a � sa) (4) Universal instantiation
(6) ~(sa � ssa) (2), (5) Modus tollens
(7) ~(a � sa) → ~(sa � ssa) (2), (6) Conditional proof
(8) ∀x(~(x � sx) → ~(sx � ssx)) (7) Universal generalization
(9) (∀x(~(0 � sx)) & ∀x(~(x � sx) → Axiom (8)

~(sx � ssx))) → ∀x(~(x � sx)) 
(10) ∀x(~(x � sx)) (1), (8), (9) Modus ponens

5 Some typical texts with good expositions are: Mendelson (1987) or Boolos and
Jeffrey (1989). The second of these presents Gödel’s theorem via Turing machines.

6 Suppose F(x) names both n and m. Thus, we have ∀x(F(x) → x � [n]) and
∀x(F(x) → x � [m]). Therefore, ∀x(F(x) → (x � [n] & x � [m])); hence [n] � [m];
and so, n � m.

7 There are only 16 primitive symbols in the formal system, so there can only be at
most 16i formulae containing i symbols. Hence there can only be at most 16i num-
bers named by formulae containing i symbols. And this, of course, is a finite
number.

8 Recall that [10] is the expression ssssssssss0 which has 11 symbols. In general, [n]
will be the expression containing n successor symbols and a 0; hence, [n] will con-
tain n � 1 symbols.

9 Suppose � (p → q), then � ∃�(p → q) follows by Rule I; then � ∃�(p → q) →
(∃�p → ∃�q) follows by Rule II; finally we get ∃�p → ∃�q by modus ponens. And
so we have our result, if � (p → q) then � (∃�p → ∃�q).

10 See Vesley (forthcoming).

Chapter 6

1 Chemistry is a serious contender. We can tell a lot about a molecule, say, water or
ethanol, just by looking at its chemical name: H2O or C2H5OH, respectively. 

2 More accurately and more generally, it is ‘base n’ notation that is clever rather than
the Arabic numerals specifically.

3 Since each crossing has two numbers, there must be in total an even number of odd
and even labels. If we start with any crossing labelled n, then move along the curve,
we must cross strands an even number of times, say 2k, in order to get back to the
initial crossing, since each time we go ‘out’ we must cross back to get ‘in’.  The sec-
ond label at our starting crossing, m, must be of the form n � 2k � 1. If n is odd, then
m is even, and vice versa.
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Chapter 7

1 See, for example, Suppes (1957) for an extensive discussion.
2 See Demopoulos (1995). This is a collection of important recent papers which focus

on what did and what did not work in Frege’s original logicism. See also Apostoli
(forthcoming).

3 For an introduction to graph theory see Trudeau (1976). A good, advanced work is
Bollobás (1979).

4 I’m especially grateful to my Toronto colleague Alasdair Urquhart for pointing out
several interesting features of graph theory.

Chapter 8

1 For a history of the infinite which is sympathetic to constructivist views, see Moore
(1990).

2 For a discussion of the technical results and their consequences for constructivism,
see Hellman (1993a, 1993b, 1993c).

3 Indeed, current computer algorithms used in cryptanalysis for establishing primality
do not generally yield explicit factors for composite numbers.

Chapter 9

1 It is hard to find an example which makes the student look anything but silly. In this
case (as Mary Tiles reminds me) the properties of squares of numbers (i.e. n2 is bigger
than n) seem to be violated. This could be used to justify saying that the student is
wrong.

2 An important qualification, stemming from quantum mechanics is needed. A radio-
active atom has a disposition to decay. But underlying categorical facts associated
with this would amount to hidden variables, something which is greeted with much
scepticism in many quarters. By analogy, the mind might have dispositions without
underlying categorical facts. Needless to say, this is all quite controversial.

3 See for example Goldfarb (1985), Collins (1992), McDowell (1992), and many
others.

Chapter 10

1 This was the result of several hundred hours on an IBM 370-160A, a state-of-the-art
computer in 1976.

2 For those who want the definition, here it is: A finite projective plane of order n
(where n � 0) is a set of n2

� n � 1 lines and the same number of points, such that:
(1) every line contains n � 1 points, (2) every point lies on n � 1 lines, (3) any two
distinct lines intersect at exactly one point, and (4) any two distinct points lie on
exactly one line. The seven-point geometry is a projective plane of order 2 because
it meets these conditions, i.e. it has 22

� 2 � 1 � 7 lines, etc.
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3 Leading word-processing programmes, for example, will have thousands of so-
called beta testers.

4 This clearly undermines Paul Teller’s point in his argument against Tymoczko: ‘If
one repeats a proof of a fact about numbers, unlike a measurement of the charge of
the electron, one has to get the same result as before, again on the assumption that
one does not use a mistaken method of proof and as long as one makes no mistake
in applying the method of proof’ (Teller 1980: 802). In the case of the CRAY, the
same hardware running the same software, with the same input can give different
results on different occasions. Perhaps Teller would reply that interference by a cos-
mic ray meant that the assumption of no mistake in applying the method of proof
was violated. But if he adopts this position, it is hard to see how anyone could, for
example, ever get different values for the measured charge of an electron – on the
assumption that no mistakes in measuring were made.

5 See Kari (1997) or Fallis (1996) for expositions, and Fallis (1997) for a philo-
sophical discussion.

6 A group is a set of objects with operations defined on them. It’s finite when there are
only a finite number of elements in the group, and it’s simple when it doesn’t have
normal subgroups. Isomorphic groups are taken to be just a single group. A good
elementary discussion can be found in Davis and Hersh (1981).

7 Thanks to powerful computers and intense interest, this number has become very
unstable. A short while ago (1995) only 31 were known. While writing successive
drafts of this chapter, I’ve had to change this number three times. It’s sure to be out of
date soon. (That’s what I said in the first edition. Now (2007) the number is up to 45.)

8 If you have a PC, access to the Internet, and a taste for such things, you can join
‘The Great Internet Mersenne Prime Search’ at http://ourworld.compuserv.
com/homepages/justforfun/prime.htm

9 For those who have forgotten, logarithms are characterized as follows: loga b � c if
and only if ac

� b. Thus, for example, log2 5 � 2.32 . . . because 22.32 . . .
� 5. In

Figure 10.1 the numbers on the horizontal axis represent the nth Mersenne prime.
The p in log2 is the prime in 2p

� 1, so p � 7, and log2 7 � 2.8.
10 The example comes from Dunham (1994: 117).
11 The commonly used foumula currently is due to Chudnovsky and Chudnovsky,

12 See various articles by J. Borwein, P. Borwein et al. for more examples of this sort
and for discussions of relevant statistical analyses of computer-generated data.

Chapter 11

1 Proper classes contain members, just as sets do, but they are not themselves members
of other sets. They are sometimes said to be ‘too big’ to be sets. If we tried to form a
set of all ordinals, it would have led to a contradiction, so such a set cannot exist. The
proper class of all ordinals does not lead to this absurdity.

2 Mathematical usage differs from ordinary usage, where 27th would be called the ordi-
nal. But the underlying idea is the same, since ordinal signifies order in both cases.

3 Gödel’s views are found in his work (1948/64). For a discussion of recent research on
CH, see Woodin (2001).

4 These quotes are from the FOM discussions on Freiling over several days in August
and September, 2004. They can be found in the FOM archive which is located at
http://www.cs.nyu.edu/pipermail/fom/
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5 I will amplify a bit by proposing the following rule: Accept a physical version of a
mathematical proposition unless it is explicitly known to be misleading. This is just
like the common sense principle: Accept the evidence of the senses in any situation
unless the situation is one in which illusions, etc. are known to happen. The upshot is
simple: Freiling’s dart example wins by default. The onus is on the nay-sayers to
show it to be misleading.

6 By calling it essential, I mean only that ZFC need something in addition to prove
~CH. There are, of course, other possibilities besides the dart thought experiment that
will lead to this conclusion.

Chapter 12

1 Nicholas Bourbaki is the fictional character used by a group of outstanding French
mathematicians, including: Artin, Cartan, Cartier, Dieudonné, Serre, Weil, and
others. Over the years, several texts have been published under the Bourbaki nom de
plume, always upholding the highest standards of rigour, each devoid of diagrams,
and generally agreed to be pedagogically hopeless.

2 The paradoxes were only one reason for the interest in rigour. Perhaps even more
important was the status of the Axiom of Choice and Zermelo’s proof that every set
could be well-ordered. See Moore (1982).

3 This is the same Brouwer of constructivist fame; he was also a brilliant topologist.
His later commitment to constructivism made him repudiate some of his earlier
results.

4 For more on the wonderful topic of space-filling curves, see Sagan (1994).
5 Figure 12.4(b) conceals an overlap of some of the pieces. That’s where the missing

area is. To grasp the problem, compute the ratio of height to base of the two tri-
angles, the smaller with base 13 and height 5, the larger with base 21 and height 8.
They will be exactly the same for similar triangles, but these aren’t. The ‘diagonal’
in the rectangle isn’t a diagonal after all – it’s not a straight line.

6 The ongoing debate can be found in almost any journal that serves the general needs
and interests of mathematicians, for example Notices of the American Mathematical
Society or The Mathematical Intelligencer.

7 I won’t take up the issue of social construction here. For more detail see Brown
(1989 and forthcoming).

8 Mandelbrot has often complained about the oppressive Bourbaki influence on
French mathematics and reports that he left France to escape it.

9 I’ll ignore the difficulties quantum mechanics presents in locating elementary
particles. Addressing this problem would not help the case for fractals.

10 Fields Medals (usually four) are presented at the International Congress of Math-
ematics, a huge conference which is held every four years. In the mathematical
community Fields Medals are taken to be equivalent in status to a Nobel Prize.

11 University libraries with a video collection might well have a copy of this popular
video. A glimpse of it (and many other interesting things as well) can be seen at
the website maintained by the Geometry Center at the University of Minnesota:
www.geom.umn.edu

12 Surprisingly, given his impatience with non-traditionalists, Steven Krantz co-
authored a contribution to the first issue.

13 For more on thought-experiments see Brown (1991).
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