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Foreword

This volume, “Seasonality in Human Mortality: A Demographic Approach”
by Dr. Roland Rau, is the third book of a series of Demographic Research
Monographs published by Springer Verlag. Dr. Rau is now a research scientist
at the Duke University Population Research Institute (DuPRI), but at the
time of his writing the book he was a research scientist at the Max Planck
Institute for Demographic Research. The book is a slightly-revised version
of his doctoral dissertation, which he completed at the Max Planck Institute
and submitted to the University of Rostock. He was awarded highest honors,
summa cum laude, for his dissertation and he was later awarded the Otto
Hahn Medal of the Max Planck Society for his contribution. Rau’s research
has three exceptional strengths.

First, the book is meticulously researched. This is a superb example of
careful reading and assessment of the corpus of relevant literature. More than
400 references are listed in the bibliography. Existing knowledge is judiciously
evaluated, cogently organized and lucidly described. Rau presents all the rel-
evant findings, pointing out when they are contradictory and when caution is
needed. The result is a balanced, nuanced, comprehensive account of the state
of current knowledge. Rau is clearly a dedicated, diligent scholar interested
in pursuing the truth, rather than a story-teller or an advocate pushing some
theory.

Second, the book includes important original contributions to knowledge.
Rau has not only assessed current knowledge, he has also substantially ad-
vanced it. In particular:

• His critical appraisal of existing methods for measuring seasonality is much
more than a review: it provides new insights into the comparative advan-
tages and disadvantages of the various methods.

• Based on his understanding of the deficiencies of existing methods, Rau de-
velops a novel approach to incorporate “changes in the trend, the seasonal
component and unobserved heterogeneity.”
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• His analysis of data for the United States provides interesting findings for
an important country that has been neglected in research on seasonality
in mortality.

• His study of the data for Denmark is based on exceptionally accurate and
complete information, analyzed using sophisticated statistical methods.

• Socio-economic status and marital status are known to have major im-
pacts on mortality. Rau presents the first careful study of their impacts on
seasonal mortality. Using U.S. data, he finds no significant effect of marital
status, but he does find a social gradient by education in seasonal mortal-
ity. This, he notes, “is an effect which has not been discovered elsewhere”.

• Using Danish data, Rau uncovered another significant finding: people liv-
ing alone have higher relative mortality risks in winter than people living
with someone else.

• Another important contribution to knowledge is Rau’s estimate of the gain
in life expectancy if seasonal increases in mortality could be eliminated.
The gain, based on U.S. data for 1998, would be about 0.8 years for women
and 1 year for men. Although seemingly modest, such a gain would have
a large absolute impact on national well-being.

• Based on his new findings and on his careful review of previous findings,
Rau is able to make the convincing recommendation that public health
policies should focus on three groups that are especially vulnerable to cold-
related mortality: “old people, people who are living alone and people of
lower socio-economic status”.

The third exceptional strength of this book is its single, clear focus—
seasonality in mortality. Rau appropriately addresses this issue from various
perspectives, but always with the single, clear underlying focus.

Rau starts with discussion of the causal chain linking seasonal fluctuations
with mortality, emphasizing the importance of social as well as biological fac-
tors. He reviews the history of seasonal mortality, with a fascinating account
of the modern elimination of the summer peak. He then turns to an analysis of
alternative measures of seasonality, including an innovative comparative eval-
uation of different approaches. The next two chapters analyze U.S. data and
Danish data. Finally, there is an interesting “outlook” chapter. Lengthy ap-
pendices that provide supplemental material for various chapters are available
in the online edition of the book.

Many doctoral dissertations present a bouquet of research flowers, loosely
bound together. Rau’s work has a unitary theme; it is indeed a monograph.
The cumulative impact is impressive. By concentrating on a single topic, by
carefully and comprehensively assessing existing knowledge about it, and by
adding important new knowledge, Rau has written a magisterial work that
will become a key book on the subject. Rau notes that the last monograph
on seasonal mortality was published more than 25 years ago (in 1977). This
monograph may be the major work on the topic for the next quarter century.
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The series of Demographic Research Monographs is under the editorial su-
pervision of the Max Planck Institute for Demographic Research. Prof. James
W. Vaupel, Founding Director of the Institute, is Editor-in-Chief. He is ad-
vised by an Editorial Board that currently consists of Prof. Elisabetta Barbi
(Messina University, Italy), Prof. Gabriele Doblhammer (Rostock University,
Germny), Dr. Jutta Gampe (Max Planck Institute), Prof. Jan M. Hoem (Max
Planck Institute), and Prof. Bernard Jeune (University of Southern Denmark).
Additional members of the Editorial Board will be appointed as needed to re-
view manuscripts submitted for possible publication. The current manuscript
was reviewed and accepted by James Vaupel, Gabriele Doblhammer and Jutta
Gampe, based on advice from a group of referees.

The Demographic Research Monographs series can be considered the suc-
cessor to the series called Odense Monographs on Population Aging, edited
by Bernard Jeune and James Vaupel. The volumes in this now-terminated
series were first published as hardcover books by an academic publisher,
the Odense University Press, and subsequently made available online at
www.demogr.mpg.de/books/odense. The nine Odense Monographs on Pop-
ulation Aging include two collections of research articles that focus on specific
subjects on the frontier of demographic research, three volumes by senior re-
searchers that present path-breaking findings, a review of research on a topic
of emerging interest, a presentation of a new method for analysis of demo-
graphic data, an out-standing doctoral dissertation, and a unique collection
of important demographic data on non-human species.

The new series of Demographic Research Monographs will continue this
mix, with books that are often under 200 pages in length, that have a clear fo-
cus, and that significantly advance demographic knowledge. Research related
to population aging will continue to be a prime focus on the new series, but not
the only one. The new series will embrace all of demography, broadly defined.
As indicated by the first volume, an important subject will be historical de-
mography. We also plan to highlight research on fertility and family dynamics,
especially in Europe. Mathematical demography is the core of the population
sciences and we will strive to foster monographs that use mathematics and
statistics to further develop the theories and methods of demography. Biode-
mography is a small but rapidly growing and particularly innovative branch
of demography: we will seize opportunities to publish monographs at the in-
tersection of biology and demography, pertaining both to human and other
species, and including demographic research with ties to such fields as epi-
demiology, genetics, evolutionary biology, life-history biology, experimental
demography, and paleodemography.

Each volume in the Demographic Research Monograph series will have a
substantial link to the Max Planck Institute for Demographic Research. As
well as being published as hardcover books by Springer-Verlag, the volumes
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of the Max Planck series of Demographic Research Monographs will subse-
quently be available at www.demogr.mpg.de/books/drm. The online version
may include color graphs, supplemental analyses, databases and other ancil-
lary or enhanced material. Parallel publication online and in print is a signif-
icant innovation that will make the monograph series particularly useful to
scholars and students around the world.

James W. Vaupel
Editor-in-Chief
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especially from James W. Vaupel and Gabriele Doblhammer. Gabriele Dobl-
hammer initiated my interest in the seasonal pattern of mortality. I would
like to thank her for the advice and support she provided over the past few
years while supervising the progress of my dissertation. I am equally grateful
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1

Introduction

“Whoever wishes to investigate medicine properly,
should proceed thus: in the first place to consider
the seasons of the year, and what effects each of

them produces for they are not at all alike, but differ
much from themselves in regard to their changes.”

— Hippocrates in “On Airs, Waters, and Places”, ∼ 400BC

Seasonal mortality was a hot topic in the media in the summer of 2003
when more than 10,000 people died of the heatwave in France in August
[55, 157]. Nevertheless, the real “grim reaper” [172] in most countries is win-
ter. Periodically, winter excess mortality emerges in the popular media es-
pecially in countries such as the UK where cold related deaths are a serious
public health issue. Headlines like “Cold killed 20,000 elderly people last win-
ter, says charity” [362], “Cold kills ’thousands’ in a week” [25] and “Britain
is a rich nation; its old people should not be dying of the cold” [363] are
reflected in official statistics. The national statistical office of the UK (ONS)
estimates that during the last ten years between 23,000 (1997/98) and 48,000
(1999/2000) more people died annually during winter than would be expected
from death rates at other times of the year [266].

Seasonality in morbidity and mortality has been of interest to scholars for
a long time. At least since Hippocrates’ seminal work “On Air, Waters and
Places” written almost 2500 years ago, people are aware of the impact of the
seasons throughout the year on diseases.1 The first modern investigations into
seasonal mortality have been conducted in the middle of the 19th century by
British statisticians [eg. 368].

1 Sometimes Wong Tai is credited to be the first to mention the variation of diseases
with the seasons about 4700 years ago [237].
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Nowadays, seasonal effects in demographic variables are rarely the center
of attention in population studies2 — although most basic indicators such
as births, deaths, marriages,. . . are subject to annual fluctuations. The last
monograph on seasonality in mortality has been published more than 25 years
ago [324]. The multi-disciplinary approach taken in this dissertation is typi-
cal for demographic analyses. Demography is based on a solid foundation of
methods derived from mathematics and statistics. It takes biological as well as
social forces into account to arrive at conclusions which could be transmitted
as policy recommendations into the political arena [cf. 202, 379]. This disser-
tation incorporates all of these aspects in its chapters. It focuses, nevertheless,
on social strains of explanations using modern statistical methods.

The current state of knowledge of seasonal mortality will be presented after
this introduction in Chapter 2 (starting at page 5). First, the biomedical causes
of increased mortality risks during cold weather conditions are outlined. Such
an approach would not be sufficient to take the differential in winter excess
mortality between various countries into account. In a second step, social and
cultural forces need to be included to obtain a more complete picture. This
description of a causal chain of events is followed by a historical literature
review which describes the seasonal mortality pattern from the past up until
the present. Special attention is given to the influences of social and cultural
factors in mediating the amplitude in seasonality of mortality.

To make any meaningful quantitative analysis of a phenomenon of inter-
est, one has to be able to have a valid measurement of this phenomenon.
The subsequent chapter (Chapter 3, starting at page 39) is therefore more
methodological: On the one hand, various indices and tests for seasonality
will be described, discussed and tested with hypothetical data as well as with
real data. The chapter gives recommendations for which index one should use
to describe seasonality, and which statistic should be employed to test for sea-
sonality in data. On the other hand, several standard time-series methods will
be evaluated whether they are suitable to analyze demographic data which
often come as count data with variable trends, a changing seasonal figure and
overdispersion.

The potential impact of social and cultural factors on seasonal fluctua-
tions in deaths and mortality in current populations are analyzed in the two
subsequent chapters. The study of seasonality in deaths in the United States
in Chapter 4 (page 83) covers the years 1959–98. The wealth of data, large
social differences, the wide variability in climatic conditions, and the lack of
research for this country make the US an important case study. In addition,
a new method for the time-series analysis of seasonal count data will be in-
troduced, as previous methods did not yield satisfactory results. With the
analysis of Denmark in Chapter 5 (page 125), a more homogenuous country is

2 A recent exception is the second monograph in Springer’s “Demographic Re-
search Monographs” series “The late life legacy of very early life” by Gabriele
Doblhammer-Reiter where month of birth is the key factor [70].
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presented. The base of these data, the population registers, is the main reason
for the demographers’ widespread interest in Scandinavian data. These regis-
ters allow the availability of information for almost any given point in time,
and are of unmatched quality.

Before the dissertation is concluded, a small chapter (Chapter 6, page
169) gives an outlook how much gain in life expectancy could theoretically be
expected if people did not have to experience adverse environmental conditions
during winter, yet rather faced summer mortality conditions throughout their
lives.

Despite this wide scope it should be pointed out that this dissertation is
specialized in two dimensions:

• The analysis does not cover the entire age range; it focuses on seasonal
mortality among adults — especially at advanced ages. Due to its com-
pletely different causality, seasonality in infant and child mortality has
been deliberately left out.

• Developing countries often display a seasonality pattern which is reminis-
cent of European countries of about 150 years ago. As this dissertation
intends to focus on the latest developments in combatting seasonal mor-
tality, it only takes developed countries into account.
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Literature Review

2.1 Introduction

This literature review is divided into two major parts. First, a causal chain
is constructed which outlines how a change in temperature triggers certain
biomedical reactions in the body, which may lead to morbidity and ultimately
to mortality, and how social factors can mediate this impact. Secondly, an
overview of the development of seasonal mortality over time is given. It starts
with studies on Roman Egypt, and presents results from the 16th to the 19th

century, based on family reconstitution data. Results are shown from the first
studies based on census data in the middle of the 19th century and, finally,
points at recent development in Western countries. The Appendix starting
on page 177 gives a sketch on how the literature review has been conducted
methodologically.

2.2 Causal Chain

2.2.1 Introduction

The influence of the seasons on human mortality has been known since Hip-
pocrates’ seminal essay “On Airs, Waters, and Places” written more than
2000 years ago. Surprisingly, misconceptions are still commonplace. For ex-
ample, in the summer of 2003, excess mortality from heat was heavily covered
in the media. While the number of cold-related deaths typically receives less
attention, although the latter far outnumbers the former in many countries
in almost every year. It has been noted, for instance, that in Great Britain
40,000 cold-related deaths occur annually [16]. Also noteworthy is the often
predicted risk of an increase of heat-related mortality due to global warm-
ing during the following decades is unlikely. “Populations in Europe [. . . ] can
be expected to adjust to global warming predicted for the next half century
with little sustained increase in heat related mortality.” [190, p. 670]. On the
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contrary, the number of excess deaths can even be expected to shrink. In the
words of Keatinge et al: “Our data suggest that any increases in mortality due
to increased temperatures would be outweighted by much larger short term
declines in cold related mortalities” [190, p. 672].

Besides the timing of deaths, mistaken ideas also prevail about the causes
of deaths. It is a widespread belief in the general public that deaths peak
in winter because of the high suicide rate. This assumption is wrong for two
reasons: suicides only make a small contribution to the overall death pattern:
between one and two percent of all deaths are attributable to that cause.1

This contribution is not enough to cause the observed differences between the
seasons. Secondly, Durkheim’s well-known studies in the 19th century show
that suicides do not peak (late) in winter but in late spring and early summer.
Another cause of death often put forward to explain seasonal mortality are
deaths from influenza. This might have been true for long periods of time.2

In Western countries in recent decades, however, the influence of influenza
on cold-related mortality is highly overestimated. Donaldson and Keatinge
calculated that only 2.4% of all excess winter deaths during the last 10 years
were directly or indirectly due to influenza [78].

This section should therefore outline which causes of deaths are responsible
for the observed pattern, which biomedical reactions are happening in the
body and what we do know so far to fight the annual cold-related death toll.

2.2.2 A Simple Chain of Causality for Seasonal Mortality:
Biomedical Factors

A relatively naive approach would assume a very short chain of causality:
the cold decreases the body temperature under a certain level below which
the body ceases functioning and then dies of hypothermia. Only a very small
proportion of all cold-related deaths are induced by hypothermia, though. In
the year 1998, more than 2.34 million people died in the US aged 50 years
or older. Only in 316 cases the stated cause of death was hypothermia. This
makes it an even less likely cause of death than dying of breast cancer for
men.

A view which is a bit more elaborated takes only natural/biological forces
and their consequences into account. This causal chain, where climate (and
most notably cold temperatures) triggers a biomedical reaction in the body
which may lead to an elevated mortality risk and, ultimately, to death, is out-
lined in Figure 2.1. Although the detrimental influence of cold on the body is
known for ages, the actual underlying mechanism is not yet fully understood.
As pointed out by Bull and Morton: “The studies to this point have not estab-
lished a clear chain of events leading from a change in external temperature to
1 All results are based on own calculations if no explicit reference is given.
2 See, for example, Vaupel et al. (1997) where the effect of the Spanish Flu in

various countries in the years 1918 and 1919 is easily visible on Lexis surface
maps [388].
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death. Nevertheless, it remains very likely that changes in external tempera-
tures cause changes in death rates especially in the elderly” [37, p. 223]. More
than 20 years have passed since this assessment and many studies on seasonal
mortality have been conducted in the meantime. Yet, James Mercer and Sig-
urd Sparr come to the unsatisfying conclusion in their editorial to a special
issue of the “International Journal of Circumpolar Health” dedicated to un-
derstanding excess winter mortality in the elderly: “The mechanisms by which
seemingly mild exposure to cold ambient conditions can increase the risk of
death does not seem to be much clearer today than when Bull & Morten were
investigating the problem in 1978” [258, p. 152].3 Thus, the exact mechanism
can not be described here, but only the current state of knowledge.�
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Fig. 2.1. A Simple Chain of Causality for Seasonality in Mortality

Many studies confirm the provocative judgement of Kunst et al. [209,
p. 338]: “Man is a tropical animal”. Lowest mortality is usually recorded when
the ambient temperature is between 18◦ and 20◦C. Despite dependencies on
the geographic location (“Europe”: 18◦C [98], Germany: 20◦C [220], South-
east England 18◦C [77], Netherlands, nursing home patients: 15-19◦C [232],
Barcelona, Spain: 21◦C [322], England and Wales [37]), the “optimal” temper-
ature is also determined by humidity [322] and by the age of the people [57].
The World Health Organization, for example, mentions that sedentary elderly
face lowest mortality risks if the temperature is 2–3◦C higher. If the tempera-
ture drops below or rises above this optimal level, death becomes more likely.
This increase in mortality is well-documented [e.g. 209]. The most thorough
investigation in this direction is the so-called “Eurowinter” study headed by
William Keatinge. Table 2.1 shows how mortality increases in percent for each
1◦C fall from 18◦C. Mortality in this model is lowest at 18◦C, yet, there is still
3 In this article, the name “Morten” (instead of Morton) has been misspelled in

the source document.
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considerable variation concerning the proportional increase in mortality with
a drop in temperature.The most moderate increase in mortality is observed
in southern Finland where mortality rises 0.27% for each drop of 1◦C in tem-
perature below 18◦C. The steepest increase is recorded in Athens (increase
higher than 2%). It should be mentioned, however, that this phenomenon can
not be applied universally. In Yekaterinburg, Russia, mortality increased only
at temperatures below 0◦C [81], in Yakutsk (Russia), the world’s coldest city,
mortality was completely independent in the temperature range of 10.2◦C to
−48.2◦C [76, 185].

Table 2.1. Increase of Mortality by Fall in Temperature in Selected European
Regions

Region Deaths per Percent Increase in
106 Population Mortality for Each

(per day at 18◦C) 1◦C Fall from 18◦C
North Finland 42.8 0.29
South Finland 43.0 0.27
Baden-Württemberg 31.0 0.60
Netherlands 36.5 0.59
London 40.3 1.37
North Italy 34.3 0.51
Athens 34.4 2.15
Palermo — 1.54

Source: Eurowinter Study 1997 [98, p. 1343]

It has already been mentioned that the often associated causes of death,
influenza and suicides, play only a negligible or no role at all for the increase in
mortality late in winter. The causes of deaths which are of crucial importance
to explain the mortality peak in winter are cardiovascular, cerebrovascular
and respiratory diseases. The latter group has the strongest seasonal pattern
among all major groups of causes of death [102, 148, 319]. Aubenque et al., for
example, standardized mean annual mortality in France for the years 1968–72
to an index of 100 [13]. All cause mortality varied between 120 (January) and
87 (August) whereas deaths from respiratory diseases showed a peak of 172
(January and February) and a trough of 51 in August. However, respiratory
diseases are not the leading cause of death in Western developed countries
[e.g. 264]. Thus, they do not the largest share to the number of excess winter
deaths — despite their highly seasonal pattern. About half of the cold-related
mortality can be attributed to ischaemic heart disease and cerebrovascular
diseases [82, 98, 376]. If all cardiovascular diseases are included, the share of
circulatory diseases increases to about 2/3 of the whole cold-related mortality
based on estimates for the Netherlands in the years 1979–1987/88 [208, 235].
Consequently, research on seasonal mortality mainly focused on cardiovascu-
lar, cerebrovascular and respiratory diseases. Deaths from circulatory diseases
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peak usually one or two days after the peak of a cold spell; respiratory deaths
rise more slowly, peaking about ten days after the peak of cold period [37, 185].
Section A.2.1 in the Appendix gives an overview which study analyzed which
disease/cause of death.4

So far, the first and the last box in Figure 2.1 have been discussed, namely
the change in temperature and the elevated mortality risks for various causes
of death. The following paragraphs explain the biomedical reactions in the
body caused by detrimental environmental conditions, resulting in a higher
chance of dying from those aforementioned diseases. It is probably best to
differentiate between the triggering effects for cardio- and cerebrovascular dis-
eases on the one hand and for respiratory diseases on the other hand.

If respiratory diseases lead to death during winter, two effects are usually
mentioned [eg. 97, 98, 169]: On the one hand, low temperatures facilitate
the survival of bacteria in droplets. On the other hand, cold has adverse
effects on the immune system’s resistance against respiratory infections. As
a result from breathing cold air, the risk for a pulmonary infection rises due
to bronchoconstriction [169]. “Bronchospasm precipitated by breathing cold
air is now well recognised, and the finding of inflammatory cells in sputum
after breathing cold air has raised the possibility that cold air breathing might
induce this by causing inflammatory changes in the airways” [97, p. 155].

Deaths due to circulatory diseases is a large group consisting of cardio-
vascular diseases on the one hand and cerebrovascular diseases on the other
hand. Cold stress acts on the body in two ways: either on the blood vessels
(“vasoconstriction” [e.g. 97, 169]) or on the composition of the blood (“haemo-
concentration” [e.g. 76, 81, 98, 169, 187]). Several indicators which cause these
changes in blood viscosity have been singled out: an increase in white blood
cells and red blood cells [97, 169, 188], hypertension [187, 199, 322, 340, 412],
platelet [97, 188], plasma fibrinogen [16, 81, 97, 169, 199, 411], and plasma
cholesterol [169, 188, 322, 340] — and especially high density lipoproteins
[413].

2.2.3 A More Advanced Chain of Causality for Seasonal
Mortality: Social and Biological Factors

The causal model, so far, is still too simple. At this point it would be logical
permitted to conclude: if cold temperatures determine excess winter deaths,
then countries where a colder climate prevails have to face higher seasonal
fluctuations in mortality. The opposite is true, though. Figure 2.2 shows a
scatterplot based on results of the study by McKee [252]. Similar findings have
been also described in [135] or [147]. On the x-axis, the minimum monthly

4 For sure, the literature mentioned there is not a complete bibliography on cause-
specific seasonal mortality among adults in developed countries during recent
decades. It provides, nevertheless, a good starting point on cause-specific studies
on winter excess deaths.
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temperature is plotted, and the y-axis displays “Excess Winter Deaths”. This
“[e]xcess winter mortality was defined as the percentage by which observed
deaths exceeded those which would be expected if the death rate during June
to September pertained throughout the year” [252, p. 179]. A country specific
scatterplot shows the paired values of the two variables for 18 Western and
Central European countries for the years 1976–1984.5 What could be observed
in this graph is seemingly a seasonality paradox: the higher the minimum
monthly temperature, the larger the extent in cold-related deaths as indicated
by the gray dashed linear regression line.6 Countries with relatively warm
or moderate climate like Spain, Portugal, and Italy or the UK and Ireland
experience much larger excess winter mortality than countries with harsh
climatic conditions during winter such as Finland and Norway.

This leads to a more advanced chain of causality which is outlined in Figure
2.3. The three elements of Figure 2.1 have been preserved. Still, the triggering
event is the fall in temperature; also the increased mortality risk is, finally,
caused by some biomedical reactions to the cold in the body. Intervening social
factors, however, play a crucial role in mediating the effects of the cold on the
body — otherwise this “seasonality paradox” as depicted in Figure 2.2 would
not have been possible. As Gemmell et al. [121] point out in their analysis of
Scotland: “[. . . ] the strength of this [seasonal mortality] relationship is a result
of the population being unable to protect themselves adequately from the
effects of temperature rather than the effects of temperature itself “ (p. 274).

These intermediate factors can be alternatively also described as “man-
made” influences. Most of them can be modified on the individual level. The
only true exception is tackling the detrimental effects of air pollution.7 The
amount of literature giving evidence for the impact of air pollution on mor-
tality is overwhelming as reflected in the two review essays by Teńıas Burillo
et al. [361] and Holland et al. [152]. The pollutant most often analyzed is
particulate matter (PM) [e.g. 8, 33, 42, 137, 175, 191, 206, 282, 327, 328, 337,
364, 365, 366, 397]. Especially “fine suspended particulates, smoke and fume”
(diameter of matter < 10µm) are of interest to researchers, as their “settling
velocity in circulation of ambient air is negligible and [they] can be inhaled”
[152, p. 534]. Sulfur dioxide (SO2) [e.g. 42, 152, 175, 217, 327, 364, 365], nitro-
gen dioxide (NO2) [e.g. 42, 361], carbon monoxide (CO) [e.g. 361, 364, 365],
and ozone (O3) [e.g. 8, 42, 329, 361] were the pollutants most frequently ana-
lyzed besides particulate matter. While high ozone concentrations are rather

5 A more recent cross-country analysis for the years 1988–1997 is given by [147]
but it has the disadvantage that fewer countries are covered and that the excess
mortality measurement is more complicated. Nevertheless, the same trends are
covered in both publications.

6 Results from the linear regression of Minimum Monthly Temperature (MMT) on
Excess Winter Deaths (EWD): EWD = α + β MMT are α = 7.72, β = 0.67,
pβ < 0.0014, r2 = 0.4502.

7 Another exception is the impact of “space proton flux” in seasonal mortality [359].
This effect is considered by me (R.R.) to be only of marginal importance if at all.
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Fig. 2.2. Excess Winter Mortality in Several European Countries
Data Source: McKee 1989 [252, p. 179]

common during summer, the other substances can be labeled “winter type”
air pollution [365, p. 547]. As nicely presented in Touloumi et al. [364] for SO2,
smoke and CO2, the emission of these pollutants peaks typically in winter.
The main reason for these peaks is the extensive usage of fossil fuels during the
cold season for heating. The two causes of deaths which are most often associ-
ated with air pollution are also the two main causes of winter excess mortality:
respiratory diseases [e.g. 33, 92, 93, 94, 137, 175, 206, 282, 328, 338, 364] and
cardiovascular diseases [e.g. 33, 92, 94, 137, 175, 206, 328, 338]. The effects
that “[s]mall particles penetrate deeply into sensitive parts of the lungs and
can cause or worsen respiratory disease, such as emphysema and bronchitis,
and aggravate existing heart disease” [92, p. 2] is questionable, though. Keat-
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Fig. 2.3. A More Advanced Chain of Causality for Seasonality in Mortality

ing and Donaldson, arguably the two most prominent reseachers on seasonal
mortality, point out in their study “Mortality Related to Cold and Air Pollu-
tion in London After Allowance for Effects of Associated Weather Patterns”
that an “analysis on our data confirmed that the large, delayed increase in
mortality after low temperature is specifically associated with cold and is not
due to associated patterns of wind, rain, humidity, sunshine, SO2, CO, or
smoke” [189, p. 214]. Of course, it depends on the subjective point of view
to decide whether an increase in mortality is due to cold or due to higher
concentrations of air pollutants that have been emitted to heat houses and
flats during exceptional cold spells.

Less controversially discussed is the impact of influenza vaccinations on
seasonal mortality [235]. It has been shown that “vaccination against influenza
is associated with reductions in the risk of hospitalization for heart disease,
cerebrovascular disease, and pneumonia or influenza as well as the risk of
death from all causes during influenza seasons” [273, p. 1322]. As these vac-
cinations are effective and cost effective to reduce influenza deaths [68], it is
not surprising that an important part is attributed to them for the decreasing
incidence of influenza during recent decades [e.g. 75, 78].

The remaining social factors influencing seasonal mortality can be sum-
marized as avoiding indoor as well as outdoor cold. Various factors have been
associated with a positive influence on reducing the annual cold-related death
toll. Some researchers remained relatively general about the exact causes.
Kunst et al. argue “that a fundamental role is played by factors closely re-
lated to socioeconomic progress” [208, p. 971]. This point of view is reiterated
by Gemmell et at. [120]. Most other studies have focussed on factors asso-
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ciated with housing conditions [e.g. 18, 54]. The spread of central heating is
argued to be the main cause for the decline in seasonality of mortality dur-
ing recent decades [e.g. 16, 75, 77, 188, 251, 324, 325, 340]. District heating
schemes as common in Russia [253] where heating is provided for a fixed an-
nual sum might serve as an explanation for the small fluctuations in mortality
in Russia.8 With a heating system where your apartment can be heated as
much as wanted irrespective of the costs, would avoid the often cited “fuel
poverty” (=a household has to spend more than 10% of its disposable income
to keep the home heated) in the UK [121, 178, 280].9 People suffering from
fuel poverty often find themselves in a vicious circle. They tend to live in
houses of lower quality with poor insulation which means that they have to
invest proportionally more in fuel for heating than higher quality apartments.
The risk of dying during winter is further increased as dampness, condensa-
tion and mould in those apartments are more likely [121, 245, 404]. Fighting
fuel poverty including poor housing conditions might not be enough, though.
The behavioral component of the people should not be neglected. As shown
by Keatinge for elderly people with unrestricted home heating, mortality rose
for them during winter in the same manner as for individuals without this
possibility — due probably to the “residents’ preference for open windows
and no heating at night” [187, p. 732].

But “warm housing is not enough” [186, p. 166]. It is equally important to
avoid exposure to outdoor cold as its impact is independent of indoor cold [98].
From a public policy perspective, this can be performed by building windproof
bus shelters and in extreme cases heated waiting rooms [186]. On the individ-
ual level, increased car ownership has probably also influenced the decrease
in seasonal mortality fluctuations over time [75, 77, 188]. The most influential
component on the individual level is adequate clothing worn outdoors. Several
articles give evidence that people in colder regions wear warmer clothes when
they leave the house during winter than their counterparts in warmer regions
[76, 80, 81, 97, 98, 186]. In addition, on extremely cold days, the mortality
risk is lowered if the time spent outdoors is reduced [76].10

Surprisingly, there is not much literature in the field of seasonal mortality
on the “classical” social mortality determinants such as income, deprivation,
wealth, marital status, education, occupation, . . . [e.g. 124, 168, 195, 210,
234, 314]. To my knowledge no study at all so far has addressed the question
whether married people experience smaller annual fluctuations in mortality

8 I would like to thank Arseniy Karkach for explaining to me the Russian system
of heating. Another reason for the minor differences between winter and summer
mortality in Russia is, unfortunately, the relatively high summer mortality due
to accidents [253].

9 The British government started a programme that by 2010 “no vulnerable house-
hold [. . . ] need to risk ill health, or worse, because of a cold home” [178, p. 510].

10 Again, British people present divergent behavior: the study of Goodwin et al.
[127] showed that the duration of outside excursions of younger as well as elderly
people did not differ between summer and winter.
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than divorced, widowed or single individuals, an association which could be
expected from previous studies on mortality in general [e.g. 125, 129, 163]. The
analyses in Chapters 4 and 5 include besides other factors also marital status.
They represent therefore a novel approach in seasonal mortality research.

While the negative social gradient is well known for mortality in general,
the impact of economic factors such as deprivation, income, wealth, social
class, etc. is still discussed ambiguously [16, 79, 147, 213, 214, 215, 342, 376].
Surprisingly most of these analyses — regardless of whether they support or
oppose an effect — studied the same country (UK) using similar methods
based on ecological data.

Literature on the influence of nutrition on seasonal mortality is sparse.
Woodhouse and Khaw hypothesize that low Vitamin C intakes during the
cold season may increase cardiovascular risk by raising fibrinogen levels in
the blood [194, 411]. As pointed out in the review article of Ness and Powles
[272, p. 1], “[a]lthough null findings may be underreported the results are
consistent with a strong protective effect of fruit and vegetables for stroke
and a weaker protective effect on coronary heart disease.” Thus, the seasonal
consumption of fruits and vegetables (lower in winter than in summer) may
also play an important role for seasonal mortality [60]. The other side of the
coin is highlighted by Kloner et al [199]. They assume that “overindulgence”
in food, salt and alcohol consumption during the Christmas period might
contribute to excess winter mortality.

2.2.4 Summary

The influence of seasonal factors on mortality has been well-known for more
than 2000 years. Surprisingly, the exact mechanism of how a change in ambient
temperature increases mortality is not yet full understood. Only a negligible
proportion of these excess winter deaths is actually caused by hypothermia.
The causes of death that contribute most to the seasonal mortality pattern
are cardiovascular, cerebrovascular, and respiratory diseases. Contradicting
intuition, the often cited influenza (which belongs, of course, to respiratory
diseases) causes less than two percent of excess winter deaths either directly
or indirectly. The major biomedical reactions to cold temperature in the body
which have been singled out so far are increased risks for blood clotting via
higher haemoconcentration (⇒ cardiovascular and cerebrovascular diseases)
and for infections of the airways (⇒ respiratory diseases). This approach,
however, could not explain the “seasonality paradox”: countries with rela-
tively cold winter temperatures (e.g. Sweden, Canada) experience consistently
lower excess winter mortality than countries with warm or moderate climate
(e.g. Portugal or the UK). Therefore, social factors have be referred to. In-
fluenza vaccinations may have helped to reduce seasonal mortality over time.
But as this cause of death is only of borderline significance nowadays and
inoculations are available all over Europe, this can not be used as an argu-
ment to explain the observed large differences within Europe in the 1990s.
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Also the impact of air pollution is questioned. If there is any agreement at
all in the literature on seasonal mortality, it is the positive impact of a warm
indoor climate in connection with central heating and a high standard in the
quality of housing. This constitutes a “conditio sine qua non” as no scientist
in this field denies the importance. It is usually supplemented by the advice
to also avoid cold stress outdoors by wearing adequate clothing, reduced time
spent outdoors and using bus shelters or possibly a car. The impact of socio-
economic factors measured, for example, as social class or deprivation, finds
support as well as opposing opinions in the literature on cold-related mortal-
ity. Other factors, such as lack of exercise, smoking [246], or the amount of
public spending on health care [147] have not been investigated in detail so
far. The impact of marital status has not been investigated so far at all. The
question whether people who are living alone face higher excess mortality risks
during winter has only been addressed once so far — without any significant
finding [405]. Although many studies have been completed up to this point,
further research is required in order to reduce the annual number of excess
winter deaths — a figure, which outnumbers heat-related deaths considerably.

2.3 Seasonal Mortality from a Historical Perspective

2.3.1 Introduction

The following sections review the literature on seasonal mortality from a his-
torical perspective. The main results are briefly presented over time and by
age. Special attention is given to the potential impact of social factors already
in historical times. The division of sub-chapters is driven by the origins of
data:

Seasonal Mortality before 1400. No written records are available for the
time before 1400. Therefore, mainly archaeological studies exist.

Seasonal Mortality between 1400 and 1800. Most studies using parish
register data to disclose the annual fluctuations in mortality start in the
15th or 16th century.

Seasonal Mortality from 1800 until the Present. With the introduction
of modern censuses, the quality of the data improved greatly. Therefore,
it was useful to make another distinction for the turn of the 19thcentury.
Since the middle of the 20th century, these aggregate level government
statistics have been gradually supplemented and or substituted with ret-
rospective surveys, prospective follow-up studies, register data, etc. Both
kinds of data sources have greatly improved our understanding of seasonal
mortality.
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2.3.2 Seasonal Mortality before 1400

Introduction, Data & Methods

The main problem researchers face when analyzing (seasonal) mortality pat-
terns for this period is the lack of written death records. Two data sources,
which have been extensively studied by Walter Scheidel [330, 331, 332, 333,
334] provide, nevertheless, a sound basis for the analysis of seasonal mortality:
for Roman Egypt, information can be derived from mummy labels or from fu-
nery inscriptions. Several samples have been collected there covering between
109 and 172 individuals. Data from the ancient city of Rome provide the best
data-source for the analysis of antique seasonal mortality: Below the streets,
thousands of inscriptions were found in the Chrisian catacombs, where the
early Christians buried the deceased in niches.The trustworthiness of these
data stem on the hand from the large sample-size: depending on the study
between 568 and 3,725 inscriptions originating from the 3rd to the 6th cen-
tury were analyzed [331, 343]. On the other hand, the reported dates of death
and/or burial are expected to be considerably accurate. As Scheidel points
out “[T]hese early Christians were anxious to record precise days of death
and/or burial of the deceased since the moment of death was considered the
beginning of true life in eternity” [331, p. 139]. These early Christians did
not only report date of burial, they also frequently denoted the approximate
length of life. Therefore a rough analysis by age-group can be performed as
well.

In contrast to these studies set in countries with a warm, Mediterranean
climate, Fichter and Volk analyzed a population with harsher environmental
conditions in a region which would now be part of South-West Germany and
France [106].

Results

We can see in Figure 2.4 that Roman Egypt, as well as the ancient city of
Rome, both exhibit a summer peak. The one in Ancient Rome (Figure 2.4)
is mainly generated by infectious diseases. It has been argued before and is
now verified by modern biomolecular methods that the single most important
cause of death in Rome was endemic falciparian malaria [326, 330, 333]. In
addition to the relatively high temperatures in the Mediterranean climate,
the spread of these diseases was facilitated by the poor sanitary standards in
conjunction with a high population density [339].

The earlier peak in Egypt as shown in Figure 2.4 is misleading. At a first
glance, it would suggest that the same infectious diseases of Rome — which
are dependent on stable high temperatures — “would have spread, killed,
and run out of steam earlier in the year than in Italy” [331, p. 153]. There
is little doubt that the population in Egypt also had to suffer from high
mortality in summer. However, we now know that the peak was even earlier
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Fig. 2.4. Seasonal Distribution of Deaths: Rome and Egypt
Source: Scheidel 1996 [331, p. 155]

than Figure 2.4 suggests: While the date of death has been recorded in the
Roman catacombs, the dates on the mummy labels in Egypt usually indicate
the end of the mummification process [332]. This means that the actual death
occurred about 70 days before the given date, implying a peak in mortality not
in summer but in April/May. One can only speculate about the main causes
of death: dysentery, typhoid, and tuberculosis. The main “killer” in Rome -
malaria - seems to be unlikely as Walter Scheidel pointed out [334]: The annual
onset of Malaria usually coincided with the fall of the Nile which happened
in the fall and not in sping. However, we are far from being able to generalize
that this peak is a general population pattern: adult ages are over-represented
while children and elderly people are hardly among the mummies.11

With the presence of some information on age, we are able to further in-
vestigate the seasonal pattern, at least for Ancient Rome. Figure 2.5 shows
the seasonal distribution of deaths for 20–49 year old people in the upper
picture and in the lower picture for people above age 50 and 60, respectively.
Elderly people still exhibit a peak in summer. However, the extent is less pro-
nounced than at younger ages (cf. Fig. 2.5: 20–49years: 180; 50+years: 140).
The risks for the elderly lurk in other months: While their younger counter-
parts show a below-par mortality in winter, mortality is elevated for people
above age 50 during that period. Brent Shaw attributes this rise in winter to
the higher susceptibility of elderly people to “winter” diseases such as respi-

11 I would like to thank Prof. Walter Scheidel, now at Stanford University, for the
valuable information he gave in our e-mail correspondence.
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Upper Graph: Ages 20–49 (N=857);
Lower Graph: Ages 50+, 60+ (N=313);

Fig. 2.5. Seasonal Mortality in Ancient Rome by Age
Source: Shaw 1996 [343, p. 120]

ratory infections [343]. It is interesting to note that the differences between
men and women have been fairly small. Figure 2.6 shows that both sexes have
highest mortality late in summer. With the exception of the months August
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to October, mortality is evenly distributed throughout the year.12 The only
difference we have observed is that women’s susceptibility towards the envi-
ronmental hazards of summer begins earlier and is not as excessively high as
men’s fluctuations.

N=3,725;

Fig. 2.6. Seasonal Mortality in Ancient Rome by Sex
Source: Shaw 1996 [343, p. 117]

The study of Fichter and Volk of the cemeteries in Sasbach-Behans and
Bischof-fingen-Bigärten had to be conducted carefully 13 and resulted in a
peak in winter. More specifically, the mortality maximum was reached “in the
last phase of winter and in the portions of spring and autumn closest to winter”
[106, p. 57]. Similar to the Roman findings, no significant differences could
be detected for women and men.14 The authors suggested that the peak in
winter was probably caused by infectious diseases. However, their reasoning is
founded on a vague basis: especially bones with a “winter orientation” showed
malformations which are typical of severe anemia. “This blood disease causes
a deficiency of those components which convey in the blood the vital oxygen
12 The less stable pattern of women may be explained by a smaller sample size. A

separate number of women and men in addition to the whole sample size is not
given in the literature.

13 They had to overcome several methodological problems since the date of death
has been derived from the angle people have been buried. According to Fichter
and Volk [106], people in that region during that era were buried in the direction
where the sun rose in the morning on the day of the interment. Consequently,
people could have been buried in the same direction although the burial seasons
were different. The maximum difference is 6 months, when person A died on 21
March and person B on 21 September.

14 Also children showed the same pattern.
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to the tissues. The chronic oxygen deficiency in the tissues leads to a severly
increased susceptibility to infection as a consequence of lowered resistance”
[106, p. 56].

Problematic Studies

Besides these studies with relatively large sample sizes, there are several,
mainly archaeological, approaches using indirect methods to estimate the sea-
sonal distribution of deaths in pre-historic populations.

The study for the period that is probably the longest time ago is the
analysis by Klevezal and Shislina of cementum annual layers in teeth from
human skeletons [198]. They analyzed five skeletons from the Bronze Age
found in Kalmyckia. Two out of them had no cementum layers. The remain-
ing three individuals are supposed to have died in spring/early summer (2)
and in late winter (1). This approach can be questioned in several perspec-
tives. Obviously, a sample of three does not allow to for any conclusions to
be drawn about the general seasonal pattern in a population. One may also
doubt the methodological approach. This so-called Tooth Cementum Annu-
lation (TCA) Method allows to estimate the age of the subject better than
previous morphological methods [409, 410]. As shown in Figure 2.7,15 teeth
display similar patterns as trees. The biological basis for these rings is still
questioned. According to Lieberman [222] it is related to seasonal variation in
diet and growth. Consequently, Klevezal and Shislina tried to use this method
to assess the season of death of humans, as done successfully before for several
mammalian species [100]. The opinion of experts on the TCA method for hu-
man seasonal mortality studies [100, 408] and the fact that only one study has
been conducted so far raises serious doubts about the validity of the method.

Another indirect approach has been performed by Christine White in 1993
[401]. She analyzed the hair of 15 mummies found in the Nubian desert (part
of The Sudan) dating from AD 350–1300. The rationale of the study is the
differential carbon composition of C3- and of C4-plants which are seasonally
cultivated and consumed.16 These C3 and C4 diets have a strong influence
on the δ13C content of hair. Analyzing the δ13C of hair near the root and
the skin of these mummies reflects relatively accurately the diet at about the
time of death [401]. “The point in the seasonal cycle when the individual
died is determined by how the δ13C value closest to the scalp relates to values
representing previous months. An individual whose δ13C becomes increasingly
lighter from the first to the fourth segments must have died well into the
season when more C4 plants were consumed” [401, p.664]. Christine White’s

15 I would like to thank Prof. Dr. Ursula Wittwer-Backofen, Dr. Alexander Fabig
and Uta Cleven from the Tooth Laboratory at the Max Planck Institute for
Demographic Research for the picture.

16 C3 such as wheat, barley as well as most fruits and vegetables are eaten in winter;
C4-plants such as sorghum and millet are part of the summer diet.
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Fig. 2.7. Human Tooth Cementum under the Light Microscope

results echo the previous results for Rome and Roman Egypt, though on a
less statistical foundation due to the small sample size. First, 11 out of 15
mummies died in summer indicating a peak in mortality during the warm
season. Secondly, no substantial differences between women and men could
be detected.

Summary

The available evidence lets us conclude that during these early historical times,
there were two opposing seasonal mortality regimes: In rather warm regions
(Roman Egypt, Rome, The Sudan) mortality peaked during the warm sea-
son. This peak was probably caused by infectious diseases such as falciparian
malaria. Higher temperatures caused an earlier spread of diseases and, con-
sequently, hotter regions experienced the peak earlier in the summer. Cold
regions, contrastingly, showed maximum mortality in winter. The season with
the least number of deaths was spring and early summer.

Demographic phenomena can be explained by three mechanisms: bad data
(Level-0), direct effect (Level-1) and compositional effects (Level-2) [382, 383].
One must be very careful to avoid Level-0 and Level-2 effects when interpret-
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ing and, especially, generalizing the results of the archaeological studies. There
are too many potential trapdoors for an unrepresentative sample [155]: First,
samples with less than 100 analyzable individuals are unlikely to yield satis-
factory interpretations of mortality patterns. Secondly, does the sample really
resemble the population in its age-structure? As we have seen briefly (ancient
Rome), people at different ages show different seasonal patterns. Thirdly, is
the sample representative for the whole period? Maybe it was a special burial
site for people with certain characteristics? “Given that most samples will
be subject, differentially, to biases at a variety of levels, comparative studies
based on palaeodemographic data cannot realistically be considered reliable
without careful control for those biases.” [155, page 151, emphasis in
original document].

2.3.3 Seasonal Mortality Between 1400 and 1800

Introduction

The first modern census has been conducted in Sweden in 1748 [360]. Most
European countries did not follow until the beginning or the middle of the
19th century. Statistical analyzes of seasonal mortality, however, did not have
to rely on archaeological data and methods any longer to study (seasonal)
mortality between (about) 1400 and 1800. The introduction of parish reg-
isters enabled researchers to investigate historical population patterns. Two
approaches have been used since: First, parish registrations have been aggre-
gated to give weekly figures for vital events. These counts have been published
in England as Bills of Mortality [154, p. 145]. The scientific value of these num-
bers had been recognized as early as 1662, when John Graunt first published
Natural and Political Observations Mentioned in a Following Index and Made
Upon the Bills of Mortality [130], which displays “all of the characteristics
of modern, empirical research” [406, p. 5]17. These bills of mortality did not
only include the number of deaths but also the cause of death.The second
approach started after World War II, when “French scholars began to apply a
new technique to nominative records of the période préstatistique, i.e. the pe-
riod for which government statistics were not readily available” [323, p. 537].
The most prominent among these researchers was Louis Henry. His method
of applying the method of family reconstitution to parish registers has been
named after him, the Henry method [318]. Even the critics [320] acknowledge
that the approach to reconstruct the population history by using parish regis-
ters provides valuable results [146]. Depending on the country and region one
could estimate the seasonal variation in mortality starting in about 1400.

17 Peter Laslett actually wrote “To the trained reader Graunt writes statistical
music”[212].
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Seasonal Mortality over Time

Figure 2.8 shows the results of seasonal mortality over time in England be-
tween 1580 and 1837 by [415]. Each line — with the exception of the first
and last interval — represents 50 years of pooled data. The first thing we can
recognize is the relative stable pattern over time where we observe a winter
peak and a summer trough. Mortality usually peaks late in winter and reaches
a trough around July/August. Similar results have been reported for medieval
times for Westminster Abbey by Harvey and Oeppen [144]. This basic pattern
— with relatively high winter and relatively low summer mortality — is not
only stable over time but also across different geographic locations as studies
from Canada, Estonia, Finland, and France suggest [27, 45, 182, 216, 298].
The stability of seasonal mortality is even more surprising when one keeps
in mind the general mortality pattern during the ancien régime: First, death
rates were relatively high during that period reflected by a low level of the
parameter e0 of about 35 years. Secondly, these high levels of mortality were
subject to immense annual fluctuations [109, 143, 161] caused by “Epidem-
ical Diseases” superimposing “Chronic Diseases” as already pointed out by
Graunt [130].

Fig. 2.8. The Seasonality of Deaths by Half-Century Periods
Source: Wrigley et al. 1997 [415, p. 325]
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By comparing this modern pattern, with a peak in winter and trough in
summer, to results from Italy [331], Spain [353] and parts of France [27], we
detect that the following finding of Dobson for south-east England can not
be attributed to being a universal phenomenon. She wrote: “The seasonal
rise and fall of burials worked in the opposite direction of the movement of
the thermometer — an inverse relationship that was maintained throughout
the seventeenth and eighteenth centuries” [73, p. 203]. These more southern
countries displayed a seasonal pattern similar to the one found in Rome 1500
years earlier: highest mortality in summer and lowest mortality in winter.
Although this might lead one to assume that the main influence was the
Mediterranean climate, it should be stressed that social factors were also of
crucial importance in that period. By looking at Philadelphia’s (Table 2.2)
differences in seasonal mortality between blacks and whites, we can see that
climate could not possibly shape two totally different patterns for the same
time and place [197].

Table 2.2. Seasonal Mortality Ratios for Blacks and Whites in Philadelphia, 1722
and 1730

Standardized Standardized
Numbers Ratio

White Black White Black

Winter 81 22 86 166
Spring 75 10 86 75
Summer 122 7 130 53
Fall 98 14 104 106

Source: Klepp 1994 [197, p. 479]

While blacks seem to suffer from the highest mortality during the cold
season (standardized ratio in winter and fall 166 and 106, respectively), whites
experience the largest risk of death during summer (standardized ratio in
summer: 130).

Two causal explanations come to mind:

• The relatively low summer mortality among blacks might by linked to a
selection effect: Many blacks were brought to the US as slaves and have
already survived some contagious diseases which typically occur during
summer. As a consequence, they were immune to them.

• It can be expected that a larger proportion of this seasonal mortality
differential can be explained by social factors: Keeping in mind the poor
socio-economic conditions blacks had to suffer from during that period,
one can easily imagine that blacks had insufficient protection against the
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cold in winter: they were more likely to work outside and to have bad or
no heating at all in their homes compared to whites.18

The importance of other factors other than climate on seasonal mortality
during that period is also supported by other sources. As Bideau et al. showed
in Dupâquier’s monograph series Histoire de la population française [27],
France varied largely in its seasonal mortality fluctuations geographically.
However, the major cleavage was not between north and south but between
urban and rural areas.

Fig. 2.9. Urban vs. Rural Seasonal Mortality Patterns in France 1740–89
Source: Bideau et al. 1988 [27, p. 240]

Rural areas in France showed a relatively modern pattern with maxi-
mum mortality during the colder half of the year and minimum mortality
in summer. “Pour la France urbaine au contraire, les indices de saison froide
dépassent à peine de moyenne, le creux d’été est moins marqué, mais la pointe
de septembre est exceptionellement forte, sans doute parce que la conservation
des ailments est encore pire en ville qu’à la campagne” [27, p. 242].19

This pattern and its causal explanation is not exclusively present in France.
Studies from the United Kingdom point in the same direction as well: The
studies from the “Cambridge Group for the History of Population and So-
cial Structure”, which focussed on the countryside of England, show a shape
similar to France rurale [416, p. 294], whereas Landers’ analysis of London re-
sembles, rather, France urbaine with its summer peak until the middle of the
18 Theresa Singleton’s review article gives an overview of historical living conditions

of blacks in the United States [348].
19 Author’s translation: “In urban France, on the contrary, the indices of the cold

season were above the average, the summer trough is less pronounced, but the
peak in September is exceptionally strong, without any doubt because the con-
servation of food was even worse in towns and cities than on the countryside”.
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eighteenth century [211, p. 206]. As indicated by Bideau’s quotation above,
we can recognize that the higher temperatures during summer were not the
actual cause of death for the people. The hot weather only provided the basis
for certain bacteria to develop. Only in conjunction with social factors such
as high population density and bad hygienic and sanitary conditions, diseases
could spread among humans and actually wipe out considerable proportions of
the population. For example, during the epidemic of 1665–66, 70,594 individ-
uals died of plague in London [12], a typical summer disease [353] transmitted
by rats and flies. By the end of the 1670s, the plague was almost non-existent
in London. Slack gives three possible explanations for this [350]:

• Rats, as the main carrier of the disease, became immune to the bacterium
Pasteurella Pestis. But he considers this to be rather unlikely. He favors
two other explanations:

• On the one hand, improvements had been made in the housing and living
conditions such as building brick houses instead of wooden houses. There,
rats had more problems spreading. But also on the individual level, major
improvements had been made such as the increased usage of soap and
changing bed linen more frequently.

• On the other hand, public health policies were — as surprising as it may
sound — also in effect. For example, in Edinburgh 1664 restrictions were
imposed on ships coming from infected ports. Almost simultaneously, the
number of plague deaths diminished remarkably [350].

The erosion of the summer peak in urban areas can be nicely illustrated by
the example of London. Fig. 2.10 shows the development of seasonal mortality
in the capital of the British Empire between 1670 and 1779 by 25-year-periods.
In the first period 1670–99 (solid black line), maximum mortality was reached
in September. During the next century this peak gradually transformed into a
local maximum. By the end of the eighteenth century, excess mortality during
summer was almost non-existent. It is quite likely that this development can
also be traced back to improvements in living conditions (hygiene, public
health policies, etc.).

Seasonal Mortality by Age

Besides the development over time, it is also worthwhile to investigate the
trend in seasonal mortality in various age-groups. Unfortunately, not many
studies have analyzed death by month and age. In addition, it is seriously
doubted whether adult mortality can be accurately estimated from the exist-
ing data. Finlay, for example, assumes that this is not possible for parts of the
London Parish Registers [107]. Nevertheless, I would like to present a short
analysis by age as most studies showed relatively congruent results.

Figure 2.11 presents selected age-groups from [415]. One can easily recog-
nize two features:
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Fig. 2.10. Monthly Burial Indices in London 1670–1779 Based on Weekly Bills of
Mortality

Data Source: Landers 1993 [211, p. 206]

• The older people become, the larger the differences between winter and
summer.

• Except for the oldest people we can see an intermediary summer peak.

This is in accordance with Dobson who stated that the elderly were par-
ticularly susceptible to cold winter conditions [73, p. 216]. Similar results have
been found for France and Canada [27, 45, 216]. The higher susceptibility of
the elderly is reflected by the actual causes of death: As shown by [153] for
plague mortality rates by age, younger people have a higher propensity to-
wards summer diseases than elderly people. Whereas the proportion of plague
deaths from all deaths was probably over 50 percent for children, the percent-
age was less than 10 percent for people aged 60 years and more [153]. The
latter, however, were more affected by typical air-borne winter diseases such
as tuberculosis [114, 211]. Typical diseases of winter were influenza, whoop-
ing cough, typhus, and respiratory tuberculosis. These diseases, which were
mainly responsible for the winter peak, were harder to combat than just using
better sanitary conditions. Duncan et al. conclude that the evolution of the
whooping cough epidemics in London are directly related to two factors: pop-
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Fig. 2.11. Seasonality of Deaths by Age, England, 1580–1837
Data Source: Wrigley et al. 1997 [415, p. 326]

ulation density and malnutrition [83, p. 450]. Malnutrition is often especially
singled out as one of the main causes of mortality during those times [e.g.
116, 218].20 Richards [307], for example, estimates that the price of wheat
was more important to determine mortality than winter or summer temper-
ature. Livi-Bacci [225] also ascribes the nutritional level a clear influence on
tuberculosis, whooping cough and respiratory diseases in general. This causal
linkage between malnutrition, infectious diseases and high mortality has been
documented well for populations during that historical period [43, 254, 399].
“Malnutrition progressively enhances infection in an individual, and [. . . ] in-
fection often causes further malnutrition. An ill person does not eat well, even
though his metabolic needs are greater. Similarly, poorly nourished individ-
uals rapidly exhaust protein and caloric reserves in the process of fighting
infection” [43, p. 249]. It can be assumed that this mechanism did not only
work during crisis years with especially poor harvest but also seasonally each
year when late in winter the possibility of malnutrition was highest.

20 Vladimir Shkolnikov re-iterated this assumption in a discussion during the work-
shop “Seasonality in Mortality”, Duke University, NC, 07–08 March 2002.



2.3 Seasonal Mortality from a Historical Perspective 29

Summary

The major advantage of studies examining seasonal mortality patterns be-
tween 1400 and 1800 is the basis of the data: Researchers no longer had to
rely on archaeological methods to make inferences about population histories.
French and British researchers (most notably Louis Henry and the “Cam-
bridge Group for the History of Population and Social Structure”) used parish
registers to reconstruct demographic events of populations.

The general pattern observed for seasonal mortality in many countries
resembles modern findings rather closely: deaths peak late in winter and hit
a trough around July/August. English data suggest that seasonality was not
equal across all age-groups. The older the people the higher the differences
between winter and summer mortality.

The modern pattern with a peak in winter and a trough in summer is
not found everywhere, though. Several examples show that within the same
climatic region, different seasonality regimes persist which could not be ex-
plained, consequently, by climatic variation but rather by social factors: socio-
economic differences may be the root for the differential in seasonal mortality
between blacks and whites in 18th century Philadelphia. Poor hygienic sit-
uations allowed a summer peak in urban regions of France and the UK (∼
London). Malnutrition is the most likely cause for excess mortality during
winter for the elderly.

2.3.4 Seasonal Mortality from 1800 until Present Times

Introduction

The beginning of the 19thcentury was chosen — similar to the previous cut-
off point 1400 — rather for methodological reasons rather than for a general
change in seasonal mortality regimes. Sweden started to collect demographic
data resembling the first modern census [360] in 1748.21. Many other Euro-
pean countries followed in subsequent decades, so researchers no longer had
to rely on archaeological methods or on parish reconsitution data to construct
demographic patterns. In addition to retrospective articles using those newly
available country-wide official data written during recent decades, some orig-
inal articles written at that time were already analyzing seasonal mortality.

With the new wealth of available data in the 19thcentury, scientific knowl-
edge expanded rapidly. It is worth adding that this time period was also heav-
ily influenced by “back to nature” ideas exemplified by Thoreau’s “Walden”
[24]. It comes, thus, as no surprise that scientists became interested in the
impact of nature on human health [156]. A typical example is the article “An
Attempt to Determine the Influence of the Seasons and Weather on Sickness
and Mortality” by Guy and Cantab in 1843 [136] or the analysis of mortality
21 The population count of Quebec in 1666 can merely be called a prototype of a

census [9]
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in “Remote Corners of the World” by Westergaard in 1880 [400] as he called
the Faroe Island and Greenland.

Since the middle of the 20th century, new data collection methods have
become widespread. The introduction of retrospective surveys, prospective
cohort follow-ups,. . . allowed to investigate phenomena in more detail. One
major dimension is the analysis of individual level data. While previously,
data were typically aggregated, the usage of individual level data allowed
relating the phenomenon of interest with covariates without the problem of
the ecological fallacy [311]. The other major dimension is the time-horizon:
data have typically been cross-sectional. By following cohorts over time or
by asking retrospective questions in surveys, it was possible to reconstruct
individuals’ life-courses which makes it easier to find out which variables (e.g.
long-time smoker) change the risk for an individual to experience a certain
event (e.g. death). Typical examples in the field of seasonal mortality are van
Rossum et al. [376] for a cohort follow up and Donaldson et al. [81] for a
retrospective survey. The various (social) factors which have been associated
with excess winter mortality have been discussed in Section 2.2.

Seasonal Mortality over Time

The analysis of seasonal mortality by period exhibits two patterns and one
unconfirmed recent pattern:

Pattern 1: Loss of Summer Peak An intermediary summer peak disappeared
over time if it existed at the beginning of the observation period. European
countries with colonies were especially prone to such a sudden increase
in mortality during the hot season. McKeown and Record (1962) [255]
suggest for England that typical summer epidemics such as cholera were
brought to Europe from India. An illustrative example is shown in Fig-
ure 2.12. The gray dashed line displays the seasonality pattern observed
for the urban French population in the middle of the 19th century. It is
reminiscent of Figure 2.9 (page 25) which plotted the pattern of France
observed less than one hundred years earlier: a bimodal pattern is exhib-
ited with a minor peak in February and a maximum in September. This
kind of pattern with relatively high summer mortality has been reported
for London and other parts of England [11, 221, 304], too. Roughly sixty
years later, summer excess mortality was no longer persistent in France
as indicated by the solid black line. The highest number of deaths was
observed in February, whereas September has been transformed from the
month with highest mortality to minimum mortality. This shift, of course,
can not be the outcome of a climatic change during such a short period
of time. Clearly, social factors have to be attributed to this development.
The cause for this loss of the summer peak is most likely a considerable
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improvement in hygiene which almost completely eradicated intestinal
diseases, the major reason for excess summer mortality [26, p. 283].22
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Fig. 2.12. Seasonality of Deaths in Urban France 1855–57 and 1912–13
Data Source: Bideau et al. (1988, p. 285) [26]

Pattern 2: Decline in Seasonality In 1912, March [240] noted that no Euro-
pean country he had analyzed showed a local summer peak.23 Highest
mortality was found between January and March, minimum mortality
typically occured late in summer. One consequence of the disappear-
ance of the summer peak was an increase in the differences between
winter and summer deaths. During the following decades the annual
mortality amplitude remained relatively stable. Only by the middle of
the 20thcentury did seasonal fluctuations decrease. This development has
been reported for various countries such as Japan, the United States,
Spain, the Netherlands, Germany, the GDR, Northern Italy, Finland . . .
[17, 99, 119, 208, 220, 224, 231, 241, 242, 268, 269, 319, 325]. The decrease

22 “Le point essentiel, c’est la disparition, pour tous les ensembles considérés et pour
tous le groupes d’âges [. . . ], de la surmortalité d’août-septembre : l’hygiene est
venue presque à bout des maladies intestinales” [26, p. 283].

23 Those countries were: Austria, Belgium, Denmark, Finland, France, Germany,
Hungary, Italy, Norway, Scotland, Spain, Sweden.
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over time did not start, however, simultaneously in all countries. Figure
2.13 displays this by giving two examples. Both panels show a measure-
ment of seasonality where winter mortality is related to summer mortality.
Because those methods differed, one can not directly compare the results
in the left panel for the United Kingdom with the right panel for Finland.
This nordic country shows a decreasing trend since the 1930s whereas the
differences between winter and summer mortality in the UK started to
become smaller only in the 1970s [63, 251].
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Fig. 2.13. Seasonal Mortality in the UK and Finland over Time
Coefficients for the UK and Finland are not directly comparable.

Data Source for UK: McDowall 1981 [251, p. 16]
Data Source for Finland: Näyhä 1980 [268, p. 44]

The general trend towards de-seasonalization was related to the changing
composition of causes of death over time — most notably the reduction
of diseases of the respiratory tract [2, 255]. Various arguments are pro-
posed in the literature as causal factors that have influenced this decline
in respiratory-related mortality. On the one hand, public health measures
such as influenza vaccinations are mentioned. It is argued, though, that
the remarkable declines in mortality do not coincide with the introduction
of any public health measures [402]. It can be assumed, rather, that the
general trend towards improved diagnosis [115] and better living condi-
tions, especially the spread of central heating, for instance, is more likely
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to be the cause of this change [208, 220]. Also the possibility of less air
pollution over time has been attributed to the decline in seasonality over
time [e.g. 251]. Nevertheless, this decrease in seasonality did not result in
a uniform distribution of mortality during the year. With the exception of
Iceland, considerable differences still exist between mortality during the
hot and cold season in all countries [135, 147, 252].24

Unconfirmed recent development: Recently, a new trend has been observed
for the United States: Feinstein [102] reports an increase in seasonality of
mortality for the elderly since the mid-1970s, a finding for which Seretakis
et al. [340] found some indications as well in their analysis of seasonal
mortality from coronary heart disease. It is argued that this is not caused
by an increase of mortality during winter but by an accelerated decrease
of mortality during summer: “If the reversal is real, then it could reflect
the increase in use of air-conditioning” [340, p. 1014].

Seasonal Mortality by Age

The first detailed analysis of seasonal mortality by age was conducted for
Belgium by Adolphe Quetelet [300] in his study: “De l’influence des saisons sur
la mortalité aux différens ages dans la Belgique”.25 Data from the Appendix of
his monograph were taken to produce the two panels in Figure 2.3.4. Results
are shown in the left part of the figure for women and in the right part
for men. A dashed gray line indicates the value for a uniform distribution
( 1
12 = 8.3%). In both cases the relative contribution of the numbers of death

from each month have been calculated, standardizing each month to the same
length. The general trend is easily visible: seasonal fluctuations become bigger
with increasing age. The youngest age-group shown here still displays a slight
secondary peak during summer. Nevertheless this sudden rise is still below
average mortality (=lower than the dashed gray line). At more advanced ages,
this peak is non existent. Excess mortality during winter is steadily increasing
with age. Although January and February make up only one sixth of the whole
year, their contribution to all deaths for women as well as for men above age
90 (gray dashed line) is about one quarter of all deaths for each sex.

During recent decades, studies of seasonality in mortality have rarely fo-
cused on the influence of age — despite its paramount influence on mortal-

24 The lack of differences in mortality between winter and summer in Iceland has
been attributed to the widespread availability of low cost geothermal energy which
makes it easy to keep a warm indoor climate [252].

25 It is worth mentioning a few highlights of Adolphe Quetelet’s biography [cf. 177]:
Among his professors were Poisson and Laplace; the Quetelet Index was invented
by him, nowadays often called Body-Mass-Index (BMI); while he is mostly re-
membered for his work as a social statistician, he started as a mathematician,
changed to physics where he specialized in astronomy; this brought him to me-
teorology. The study of climate was the stepping stone for him to analyze the
influence of the seasons on mortality.
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Fig. 2.14. Seasonal Distribution of Deaths, Belgium, 1830s
Data Source: Quetelet 1838 [300, p. 37–38]

ity in general [cf. 314]. Sometimes no age distinction was made at all [e.g.
13, 21, 319, 367] which turns out to be especially problematic if compar-
isons are made over time or across countries. If any age-effect exists, such
comparisons may lead to erronenous conclusions because of the varying age-
composition in the analyzed populations. Many other studies controlled for
age or performed analyses for separate age-groups. Unfortunately, the highest
included age or the beginning of the last, open-ended, age-category is chosen
at an age after which most deaths in a population occur. For instance, Huynen
et al. [169] uses a category “≥ 65 years of age”, the maximum age-category
in the “Eurowinter Study” was “65–74 years” [98]; at those ages, however,
most people are still alive in Western populations at present [cf. 165]. The
conclusions drawn from those studies are not necessarily wrong, but they may
simplify or blur the relationship between age and seasonal fluctuations in mor-
tality. Only a few studies investigated seasonal mortality into advanced ages
[102, 232, 251, 262, 268]. One study [309] even analyzed seasonal mortality
among centenarians and supercentenarians (110 years and older).

According to Robine, demographers assume that “mortality measures es-
sentially the current conditions: the quality of the ecological and social envi-
ronment. For biologists, mortality measures mainly the ageing process” [310,
p. 911]. If we combine these two assumptions, we could postulate that during
winter, when environmental conditions are especially challenging, mortality is



2.3 Seasonal Mortality from a Historical Perspective 35

45−
49

50−
54

55−
59

60−
64

65−
69

70−
74

75−
79

80−
84

85−
89

90−
94

95−
99

100−
104

105−
109

Agegroups

F
ei

ns
te

in
’s

 S
ea

so
na

lit
y 

C
oe

ff
ic

ie
nt

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

United States, 1994−1998

45−
54

45−
54

55−
64

55−
64

65−
74

65−
74

74−
84

74−
84 85+ 85+

Agegroups

M
cD

ow
al

l’s
 S

ea
so

na
lit

y 
R

at
io

10
0

10
5

11
0

11
5

12
0

12
5

Men
Women

England and Wales, by Sex, 1970−72

Fig. 2.15. Seasonal Mortality by Age in the United States, 1994–98, and by Age
and Sex in England & Wales, 1970–72

Data Source for the Unites States: Feinstein 2002 [102, p. 472]
Data Source for England & Wales: McDowall 1981 [251, p. 17]



36 2 Literature Review

higher than in summer. In addition to the increasing mortality at higher ages,
we can assume that seasonal mortality fluctuations increase with age. This
hypothesis finds support in most studies which incorporated age. In Figure
2.15, results are plotted by age for the United States for the years 1994–
1998 in the upper panel based on the study by Feinstein [102]. The lower
panel shows data from McDowall [251] covering England and Wales during
the years 1970–1972 for women (gray) and men (black). Feinstein’s [102] study
has been chosen as an example as it contains detailed results until 109 years
of age. These estimates are based on Social Security data and are therefore
considered to be very reliable. We can see that seasonality gradually increases
with age. With the exception of people 100–104 years old, every age-group
seems to be more susceptible to seasonal effects than women and men five
years younger. By looking at the lower panel with the results for England
and Wales, we can recognize that the pattern observed over age in the United
States is not obfuscated by a sex effect. Still, an increase of seasonality with
age is detected with women and men showing relatively similar results. This
sounds puzzling to mortality researchers as women and men vary consider-
ably throughout their whole life course in their age-specific mortality rates.
Thus, one could assume that women are less susceptible to environmental ef-
fects than men and should, consequently, display smaller differences between
winter and summer mortality. The lack of any significant sex differences with
regard to seasonal mortality is, however, a common finding in many studies
[e.g. 98, 121, 262, 419].

Summary

With the introduction of the census, it was possible to obtain more reliable
information than previously with indirect methods. Starting in the middle of
the 20th century, new data collection methods became commonplace like co-
hort follow-ups and retrospective surveys. This enabled researches to conduct
longitudinal analyses based on individual level data.

Over time two major developments can be outlined. If a summer peak
still existed in the 19th century, it disappeared until the beginning of the
20th century. The decline of this intermediary rise in mortality can be most
likely attributed to less incidences of intestinal diseases due to improvements
in hygiene. The following decades were marked by a decreases in the win-
ter/summer mortality differences. Most articles, as already pointed out in
Section 2.2, traced this development back to the widespread introduction of
central heating or general improvements in living conditions. This develop-
ment did not lead to an evening out of differences between mortality in winter
and summer. With the exception of Iceland, remarkable differences still exist
between the cold and the hot season with respect to mortality. Recent analy-
ses for the US found an increase in seasonality again which is probably caused
by an accelerated decrease of mortality during summer with the increased use
of air-conditioning.
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The first detailed study on the effect of the season in mortality which
took the factor age explicitly into account was conducted by Quetelet in 1838
[300]. His findings are still in accordance with modern studies: With increasing
age, seasonal fluctuations in mortality are gradually becoming larger. This is
in accordance with the theory that mortality measures the aging process of
the body as well as the subjective environmental conditions for the individual.
Common sense suggests that women should have smaller seasonal fluctuations
than men as their lower age-specific mortality rates throughout their whole
life-course reflect less susceptibility to environmental hazards. Surprisingly,
many studies could not detect any significant differences between the seasonal
fluctuations in mortality of women and men.



3

Measuring Seasonality

3.1 Introduction

Public health measures aim to improve the health of the people. For that pur-
pose, it is an absolute necessity to discover the origins of diseases. If diseases,
and ultimately mortality, occur seasonally, “an environmental factor has to
be considered in the etiology of that disease” [244, p. 275]. An enormous
diversity of causes of death has been related to seasonal incidence: cardiovas-
cular diseases [420], asthma [40], infectious diseases [260], diarrhea and cholera
[31, 391], suicide [139], and congenital malformations [90, 184] to name only
a few.

The aim of this chapter is to present the methods that have been sug-
gested and/or employed in the literature and to discuss their advantages and
disadvantages by using hypothetical and real data. From a methodological
point of view, one can basically distinguish between two categories of studies.
On the one hand, studies that test for the existence of seasonal trends and,
on the other hand, studies that examine whether certain covariates are cor-
related with seasonal fluctuations in mortality. The latter group has already
been briefly presented in [139]. A thorough discussion of all methods is not
the scope of the present study: it is almost unfeasible to inspect all methods
such as correlation analysis, regression analysis (linear, logistic, Poisson, . . . ),
analysis of variance (ANOVA), etc., which have been employed for studies of
seasonality.

This chapter is only concerned with the first group, i.e. statistical ap-
proaches to detect, measure and test seasonality. Thus, we remained in a
univariate framework by not including any covariates apart from time or age.
Within the methods analyzed, we can make a further distinction into three
subdivisions:

• Indices to Measure the Extent of Seasonality
• Statistical Tests for Seasonality
• Time-series Methods for Seasonality
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The rationale behind these methods will be introduced and is followed by
a discussion of the their respective pros and cons. The three groups will then
be faced with hypothetical and real data to evaluate how sensitive they are to
various sample sizes and different distributions. The last part of this chapter
will summarize the findings and give recommendations which method should
be applied in which situation.

The presented and evaluated time-series methods have already been im-
plemented by various statistical computer packages. Apart from one test (χ2-
Goodness-of-Fit test), no ready-to-use software was available for any of the
indices or tests. Therefore, these indices and tests have been implemented in
the R-language [170, 301]. The actual code can be obtained from the author.

3.2 Seasonality Indices

3.2.1 Introduction

Most researchers did not perform any statistical test to analyze if a seasonal
pattern is present in a population or not. Instead, they used some descriptive
tools to characterize the pattern they found in their data. The simplest repre-
sentations are monthly death counts. This method was especially widespread
among scientists of the 19th century, as they did not have any sophisticated
methods or computers at their disposal. Tulloch’s analysis, for example, ex-
amined the seasonality in mortality among the British Troops in the West
Indies by revealing monthly death counts [368].

However, even some early researchers used some descriptive tools that
are still common nowadays. In 1912, Lucien March calculated an index for
which he standardized the annual number of deaths to 1,000 [240]. Thus,
values above 83 1

3 indicated above average mortality; values below 83 1
3 stood

for mortality less than what could be expected from a uniform distribution of
deaths across the twelve months. Many recent studies used by and large the
same standardization. But instead of a radix of 1,000, the preferred choice is
1,200. Thus, the expected number for each month in a uniform distribution
is 100 which makes it more apprehensible for users of the decimal system to
detect above- and below-par mortality.

For example, the “Cambridge Group for the History of Population and So-
cial Structure” used this index in their explorations of English population his-
tory [415, 416]. Studies on contemporary mortality also use this “100-Index”
[e.g. 101] which is easy to calculate and interpret.

Besides writing a table with the number of counts or the values of monthly
mortality rates, there are also other possibilities to make the seasonal distri-
bution of deaths comparable over time and/or across populations. The easiest
way is a barplot with 12 categories representing the months on the x-axis and
the usage of bars or lines to represent the actual monthly values (see Figure
3.1 as an example).
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3.2.2 Winter/Summer Ratio

However, a mere graphical description fails to satisfy a researcher as the judg-
ment in comparing two populations (or one across time) depends largely on
eyesight. Thus, statisticians have employed countless indices to describe data
with one number (e.g. the median as measure of central tendency for an or-
dinal variable). An uncomplicated index for seasonality is a mortality ratio
where winter mortality is divided either by summer mortality or by the aver-
age mortality during the year. With the index ϕ1 in Equation 3.1, we opted
to divide the number of deaths in winter by the number of deaths in summer.

ϕ1 =

MAR∑
i=JAN

Deathsi

SEP∑
j=JUL

Deathsj

(3.1)

Such an index has several desired properties. For example, it is easy to
interpret. “1” would indicate that there is no difference between summer and
winter deaths. Values above one correspond to more winter than summer
deaths (and vice versa). A value of 1.24 would indicate that the number of
deaths is 24 percent higher in winter than in summer. Thus, it gives a mea-
surement of the differential between winter and summer deaths but does not
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take into account what happens in other months. In addition, the choice for
the basis of the numerator and the denominator is somehow arbitrary.

3.2.3 Concentration/Dissimilarity Indices

Most other seasonality indices can be interpreted as a measurement of concen-
tration or of dissimilarity. Two central concepts in that area are the Lorenz-
Curve and the Gini-Coefficient. The construction and the interpretation of the
Lorenz-Curve is straightforward. Assume we have a population with a certain
characteristic, e.g. income (which is the typical example in textbooks). The
first step is to order the population by this characteristic and give each indi-
vidual a rank. For each rank, one calculates the proportion of all people whose
rank is smaller or equal to that rank. Simultaneously, you also compute for
each rank the relative frequency of income earned by people whose rank is
smaller or equal to the specific rank [4]. If you plot these two cumulative rel-
ative frequencies, the result will be a Lorenz-Curve, as shown in Figure 3.2.
If the variable of interest is uniformly distributed, the result would be the
solid black curve connecting the points (0, 0) and (1, 1) with a straight line. If
the variable of interest is unequally distributed, the curve still starts at (0, 0)
and ends at (1, 1). But it will bend and, by definition (because of the sorting
procedure), must be convex to the x-axis [192] as shown by the dotted line in
black in Figure 3.2.

Several indices try to express the degree of inequality in a certain popu-
lation based on the Lorenz-Curve. Among them, the Gini-Coefficient is the
“best known and most widely used measure of divergence [. . . ]. It is defined
as an area between the diagonal and the Lorenz Curve, divided by the whole
area below the diagonal” [346, p. 310]. Despite its intuitive appeal, the Gini-
Coefficient has some important drawbacks for analyzing seasonality in deaths:
it is defined for continuous data. Our data, however, are usually given in dis-
crete units i.e. months. This shortcoming is not too problematic. It has been
shown before for other discrete data, that the Gini-coefficient can be adapted
to this situation [e.g. 346]. More important is the following dilemma:

• Either the monthly values are ordered according to their rank as intended
by this procedure. It would then be almost certain that the original order
of the months is not preserved and we could only answer the question
whether our data deviate from a uniform distribution or not. We cannot
make any claims about the shape of the deviation.

• The other approach one could follow is not ordering the data (i.e. the first
category is January, the second category is February, . . . ). In that case
we cannot exclude the possibility that the Lorenz-Curve is crossing the
diagonal and the Gini-Coefficient would be not defined for that situation.
The solid gray line in Figure 3.2 indicates this: A typical seasonal distribu-
tion in an unordered way would not only cover an area in the lower right
triangle for which the Gini-coefficient is defined.
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Fig. 3.2. The Lorenz Curve — Hypothetical Examples

In his study of seasonal mortality in Sweden, John Wilmoth [407] did not
use the real Gini-Coefficient but a related measurement (ϕ2) derived from the
analysis of residential segregation [403]:

ϕ2 =
1
2

12∑
i=1

|pi − qi|, (3.2)

where pi is the observed proportion of deaths in month i, qi is the expected

proportion of deaths in month i.
12∑

i=1

pi =
12∑

i=1

qi = 1; in our case of a uniform

hypothetical distribution q1 = q2 = . . . = q12 = 1
12 .

As long as we use relative frequencies and a uniform hypothetical distri-
bution, the value of ϕ2 ranges from 0 in the case of equal counts in all months
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to 0.91666 (= 1
2

(
11 × ∣∣0 − 1

12

∣∣ + 1 × ∣∣1 − 1
12

∣∣)) in the case when events only
occur in one month. Although this approach seems to be fruitful at first sight,
it has a major disadvantage. For real data, the value of ϕ2 does not exceed
0.1. Most emipirical distributions of deaths have a value around 0.03. Another
drawback is its insensitivity to the ordering of the months. It does not take
into account if a peak is followed by a trough by a peak by a trough, etc. or
if there is only one peak and one trough.

Closely related to dissimilarity indices are measurements of concentration.
They can also serve as an index for seasonality. The best known is entropy.
This concept has been developed in information technology and measures the
degree of uncertainty. It was introduced to demography in the mid 1970s by
Lloyd Demetrius [65]. In popular terms, entropy tells you how safe a guess is
when you do not know anything about the exact distribution of the variable of
interest. In the case of a uniform distribution, your guess would be very unsafe
as each category would be equally probable. Entropy, in this case, would reach
its maximum value. If one uses a standardized index, entropy would be 1. If the
distribution is getting closer to a monopolistic situation, entropy approaches
zero. A relative entropy index (ϕ3) with a defined maximum of 1 serves as
our seasonality index [392, p. 22f]:

ϕ3 =
H(A)

H(A)max
=

log2(n) − 1
n

12∑
i=1

n
i
log2(ni)

log2 k
=

log2(n) − 1
n

12∑
i=1

n
i
log2(ni)

log2 12
,

(3.3)

where ni is the number of events in month i and
k(=12)∑

i=1

ni = n; log2 is the

logarithmus dualis, the logarithm to the base 2.

3.3 Tests for Seasonality

Besides these descriptive measurements, several statistics have been proposed
to test for seasonality. They can be broken down into three groups: the χ2-
Goodness-of-Fit test and the “Kolmogorov-Smirnov-Type-Statistic” belong
both to the group of Goodness-of-Fit-Tests; harmonic analyses based on Ed-
wards’ contribution [84] are members of the Edwards’ Family. The third group
consists of Nonparametric Tests.

3.3.1 Goodness-of-Fit-Tests

The χ2-Goodness-of-Fit Test

The χ2-Goodness-of-Fit Test is relatively popular for detecting seasonality
because of its simple mathematical theory, which makes it easy to calculate
and understand [139]. Pearson introduced the concept in 1900 [286] which can
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be applied to a variety of statistical problems [20]. Generally speaking, this
test can be employed whenever the research question is: “In the underlying
population represented by a sample are the observed cell frequencies differ-
ent from the expected cell frequencies?” [344, p. 95] Thus, we test whether
our empirical data can be a sample of a certain distribution with sampling
error as the only source of variability [256]. Usually, this hypothetical dis-
tribution is a uniform distribution. However, there is no restriction on the
underlying distribution. This test requires a sample from a population with
an unknown distribution function F (x) and a certain theoretical distribution
function F0(x). The χ2-Goodness-of-Fit Test examines the Null-Hypothesis
H0 : F (x) = F0(x) against the alternative hypothesis HA : F (x) �= F0(x).
The test-statistic T is calculated as follows:

T =
k∑

i=1

[
(Oi − Ei)

2

Ei

]
(3.4)

where i = 1, . . . , k are the groups in the sample. For seasonality studies,
the value of k is usually 12. Oi and Ei are the observed and expected cell
frequencies of the ith class, respectively. If F0(x) is a uniform distribution,
then E1 = E2 = . . . = Ek.

T is under H0 asymptotically (for n → ∞) χ2-distributed with ν = k − 1
degrees of freedom [158, 321]. The χ2-Goodness-of-Fit Test has been recently
used, for instance, for the analysis of seasonality in suicide, myocardial in-
farction, diarrhea, pneumonia and overall mortality [110, 149, 207, 308, 345,
369, 391]. The major problem of the test is that the value of T is not asymp-
totically χ2 distributed for small sample sizes. “In this case, the χ2 statistic
has positive bias, that is, it tends to be larger than the theoretical chi-square
value it is supposed to estimate” [158, p. 239]. Various rules of thumb have
been proposed for when the approximation is acceptable.1

The typical data on seasonality do not violate any of these restrictions
of the use of the χ2-Goodness-of-Fit Test. For seasonality studies, usually
ν = 11 and more than the suggested 5, 10, etc. cell frequencies are observed.
In addition, the result of this test does not depend on the starting point
(e.g. January, February, or any other month) as does the following test in its
original version [278].

1 For instance:

• Ei has to be ≥ 5 for each cell [344].

• Only if ν ≥ 8 and n =
kP

i=1

Oi ≥ 40 it is allowed to have expected frequencies of

1 in some classes [321].
• k > 2 and nπ0

i ≥ 10 for all i [392].
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A Kolmogorov-Smirnov-Type-Statistic

The original Kolmogorov-Smirnov-Goodness-of-Fit Test (KS-Test) is compa-
rable to the χ2-Goodness-of-Fit Test in several ways. Both approaches are
designed to test if a sample drawn from a population fits a specified distribu-
tion. In addition, the tests are not restricted to a certain class of distributions.
Unlike the χ2-Goodness-of-Fit Test, the KS-Test does not compare observed
and expected frequencies for single classes, but rather the cumulative distri-
bution functions between the ordered observed and expected values. This test
was introduced in 1933 by Kolmogoroff.2 Six years later Smirnoff provided a
more elementary proof of it [204].3 Generally speaking, the KS-Goodness-of-
Fit Test has greater power than the χ2-Goodness-of-Fit test and “is especially
useful with small samples” [354, p. 708]. As for the χ2-Goodness-of-Fit test,
the Null-Hypothesis H0 : F (x) = F0(x) for all x ∈ R is tested against the
Alternative Hypothesis HA : F (x) �= F0(x) for at least one x ∈ R. However,
the ordinary Kolmogorov-Smirnov test contains some disadvantages. The first
problem we face is that this test relies on ungrouped data from continuous
distributions [393]. Also the modified method by Kuiper in 1962 is no longer
valid “once the values [. . . ] have been grouped into months” [113]. Another
problem is the choice of the starting point. Although January is usually taken,
it is somehow arbitrary. But — as pointed out in several articles — the result
and its interpretation depends on the starting point [e.g. 250]. If one has to
choose between (the described Pearson’s) Goodness-of-Fit χ2-test and the or-
dinary KS-Test, Slakter advises to use the χ2-test as it is more valid than the
Kolmogorov Test — even for small sample sizes and a uniform hypothetical
distribution [351]. Freedman proposed an improved version, which eradicates
both drawbacks: the problem of the starting point and of the grouping of
data [113]. The hypothetical cumulative distribution (in our case a uniform
distribution) is denoted by F (t) = t

12 , where t equals the rank of each month
of the year (January=1, February=2, . . . , December=12). The sample cumu-
lative distribution is denoted by FN (t) = j

N , where j is the number of events
(e.g. deaths) that have happened during all months ≤ t. The test-statistic T
is [113, 305]:

T = VN

√
N =

√
N

[
max

1≤t≤12
(FN (t) − F (t)) +

∣∣∣∣ min
1≤t≤12

(FN (t) − F (t))
∣∣∣∣
]

. (3.5)

The distribution of T does not follow any specified distribution (e.g. χ2;
N(µ, σ2), . . . ). Therefore this distribution has been empirically determined by
performing Monte Carlo simulations and is tabulated in Freedman’s article

2 Spelling of Russian names (especially -ov vs. -off) differs not only in this disser-
tation but also in the original papers. Therefore, I opted to use the spelling in
each case from the respective source document.

3 In this article, Kolmogoroff refers to the articles [203] and [352].
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[113]. Freedman’s modified KS-Type Test has been used for the study of birth
seasonality [e.g. 390].

3.3.2 Edwards’ Family

The first statistical test especially designed for seasonality — or more generally
speaking for cyclic trends — is Edwards’ Test published in 1961 [84]. It is “the
most cited and the benchmark against which other tests are evaluated” [394,
p. 817]. Several others modified this test in order to be valid for small sample
sizes or to allow for a different alternative hypothesis. These extensions will
be presented after the discussion of the original contribution. All of them use
sine- and cosine-waves to approximate the observed pattern, and therefore
they are methods which belong to harmonic analysis [142, p. 641].

Edwards’ Test

The underlying idea of the original test [84] is relatively straightforward and
based on a geometrical framework [263]. Given a circle whose circumference
is divided into k equally long parts. In the case of months per year, k = 12.
Thus, each month’s contribution to the surface of the circle is a sector of 30
degrees: January from 0◦ to 30◦, February from 30◦ to 60◦, . . . and finally
December from 330◦ to 360◦. This is shown in Figure 3.3 (page 48).

A weight, Ni, is attached to the center of each segment (i.e. for January
at 15◦, for February at 45◦, . . . ). Ni is the number of events in month i.
If events were uniformly distributed, the center of gravity of this “wheel”
would be the geometrical center of the whole circle as indicated by the small
black circle in Figure 3.3. If, however, there is a considerable “pulse” or an
underlying sinusoidal pattern, the center of gravity shifts away from the geo-
metrical center. The small gray circle could be an example of a concentration
of events in winter and, more precisely, the middle of January. If one is testing
such a cyclical hypothesis against a uniform distribution, Edwards’ Test has a
higher power than the χ2-Test [358]. Walter and Elwood extended Edwards’
approach by allowing unequal expected numbers in each category [396]. In its
original version, the Null-Hypothesis assumes to have equally spaced sectors
with the same frequencies in each division. The allegation that the assumption
of twelve equally spaced time intervals may cause problems in practice [139]
can easily be refuted. One simply has to standardize the number of incidences
according to the specific length of month. The test statistic T = 1

2a2N is
calculated as shown in Equation 3.6 (multi-line notation of T is taken from
the original article [84]):
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Fig. 3.3. Graphical Representation of Edwards’ Test for Seasonality

S =
∑√

Ni sin Θi (3.6)
C =

∑√
Ni cosΘi

W =
∑√

Ni

d =
√

(S2+C2)

W

a = 4d

Ni corresponds to the number of events (e.g. deaths) in month i and
k(=12)∑

i=1

Ni = N . The parameter Θi indicates the position of the weight of

each month on the wheel. Thus, Θi equals 15◦for January, 45◦for February,
. . . , and 345◦for December. 1

2a2N is under H0 asymptotically χ2-distributed
with two degrees of freedom [84]. Edwards’ method has been employed in the
study of coronary heart disease [340], myocardial infarction [131], and overall
mortality [148, 268].
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Roger’s Test

As pointed out by Roger [312], Edwards’ test does not yield satisfactory results
for small and medium-sized samples. “This has the effect of making the type I
errors in the test too large and hence leading to too many spurious significant
results” [312, p. 153]. Roger tried to tackle the shortcoming of Edwards’ Test
for small sample sizes and proposed the following test statistic T [312]:

T =

2

⎡
⎣{

k(=12)∑
i=1

Ni sin
(

2πi
k

)}2

+

{
k(=12)∑

i=1

Ni cos
(

2πi
k

)}2
⎤
⎦

n
(3.7)

Ni represents the number of events in month i, and n =
12∑

i=1

Ni. T is

under H0 approximately χ2-distributed with n = 2 degrees of freedom [244].
According to Roger, his test and Edwards’ original test are equivalent for large
samples. Roger’s extension provided a useful tool for the analysis of “seasonal
variations in variceal bleeding mortality and hospitalization in France” [30].

Pocock’s Method

Pocock’s [291] analysis of seasonal variations in sickness absence belongs also
to the group of tests using harmonic analysis like [84] and [312]. While Roger-
son [312] extended Edward’s approach for small sample sizes, Pocock relaxed
the assumption of a sinusoidal underlying pattern and “allows the alterna-
tive hypothesis of a seasonal pattern of arbitrary shape” [139, p. 49].The test
statistic T , which was originally designed for weekly values for spells of sick-
ness absence, has been slightly adapted for our approach of monthly death
counts. It tests “the seasonal sum of squares” for deviations from the Null-
Hypothesis that deaths occur randomly in time.

T = k

k
2∑

j=1

(
a2

j + b2
j

)
2A

, (3.8)

where k represents the number of intervals (12 months) and j = 1, 2, . . . , k
2 . A

is the mean of the monthly number of deaths Ai in month i = 1, 2, ..., 12(= k).

aj =
2
k

k∑
i=1

Ai cos
2πij

k

bj =
2
k

k∑
i=1

Ai sin
2πij

k

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

j = 1, . . . ,
k

2

T is under H0 approximately χ2 distributed with ν = 11 degrees of
freedeom.
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Cave and Freedman’s Method

Cave and Freedman proposed another modification of Edwards’ test [44]. In-
stead of a sinusoidal curve with only one peak and one trough per year, they
allowed two maxima and two minima. Their test-statistic is, thus, relatively
similar to [84]. The difference is the implementation of the Θ-parameter: while
for Edwards’ test [84] it is required to calculate sin

(
2πΘi

360

)
,4 one proceeds for

the method of Cave and Freedman [44] by computing sin
(

2πΘi

180

)
, thus stan-

dardizing 2π to 180◦.

3.3.3 Nonparametric Tests

Hewitt’s Test and Rogerson’s Extension

Edwards [84] mentioned that his test was only one approach to measure sea-
sonality. He explicitly considers also a nonparametric alternative whose con-
struction is relatively similar to a simple Run-Test [393]. Based on that brief
suggestion — two paragraphs in Edwards’ original article — Hewitt et al.
elaborated a nonparametric test based on rank-sums [150]. While Edwards
suggested “to consider the ranking order of the events which are above or
below the median number” [84, p. 83], Hewitt et al. [150] propose to use “all
the ranking information rather than a simple dichotomy” [150, p. 175]. Ac-
cording to them, the monthly frequencies are ranked. The month with most
occurrences (e.g. deaths) will have the value “12” assigned. Consequently, “1”
indicates the month having the least events. Keeping the original order of
the months (e.g. starting with January and ending with December), we can
calculate the rank-sums of six consecutive months (January–June, February–
July, . . . , December–May). The test statistic T is the maximum value that
one of the rank-sums attains. T can range from 21(=1+2+3+4+5+6) to
57(=12+11+10+9+8+7) and is symmetrically distributed. The authors sug-
gest referring to the upper tail of the cumulative distribution for significance
testing which they tabulated in their article based on 5,000 Monte-Carlo trials.
Not surprisingly, their empirical results correspond closely to Walter’s exact
significance levels for Hewitt’s test calculated nine years later [395]. Using
such a test based on ranks has the advantage that one “avoids the problem of
specifying a particular algebraic version” [113, p. 225] of what is meant by sea-
sonal fluctuation. However, it lacks power for small and moderate sample sizes
[113]. Besides, this test cannot be applied — as Reijneveld [305] points out —
if there are ties. For our analysis of mortality with relatively large samples,
though, ties seem to be quite unlikely. Of more relevance are the objections
of Rogerson [315], Wallenstein [394] and Marrero [244] to “the assumption
that the year is split into two equally wide intervals of 6 months each” [315,
p. 644]. While Wallenstein and Marrero take a “one-pulse model” also into

4 this applies obviously also to cos
`

2πΘi
360

´
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consideration, Rogerson develops a generalization of Hewitt’s Test for peak
periods of 3-, 4-, and 5-months [315]. Similar to taking the maximum rank
sum of all possible combinations of six consecutive months, Rogerson uses
the maximum rank sum of any consecutive three, four, or five month period,
respectively. Because of its relative simplicity to calculate, Hewitt’s Test has
enjoyed widespread use [315]. However for the analysis of seasonal mortality
it has not been employed as often as Edwards’ Test or the χ2-Goodness-of-Fit
Test. To my knowledge, Akslen’s and Hartveit’s application to seasonal vari-
ation in melanoma deaths has been the only application of it so far [1]. Apart
from Walter’s exact specification of significance levels for Hewitt’s test [395],
the distributions of the respective test statistics were based on relatively few
randomly generated sequences of data. The appendix (Section B.1, page 181)
shows results from my own simulations.

David-Newell-Test

Another nonparametric alternative was proposed by David and Newell [64].
Their suggestions, however, have not received much attention. In contrast to
Hewitt’s non-parametric test for seasonality, one does not use the ranking
information but the actual number of events.

T = max
i

∣∣∣∣Mi − Mi+6√
N

∣∣∣∣ (3.9)

where Nj is the number of events in month j and M =
j+5∑

j

Nj ; N =
12∑

j=1

Nj .

The test statistic T does not follow any standard distribution. Therefore the
critical values for two significance levels (α0.01, α0.05) are given in their paper
[64].

3.4 Time-Series Methods

3.4.1 Introduction

The previous sections have focused on indices and statistical tests to describe
seasonality and test for seasonality in data grouped into one year. Contrast-
ingly, the following sections deal with the analysis of seasonal time-series.
Typically, these data are either count data or rates over time.

Most analyses of seasonal time-series data have the opposite aim than
our approach: conventionally, researchers try to “seasonally adjust” the time-
series. This means that one wanted to get rid of the seasonal “distortions” to
identify the “true effect”. We, however, are interested in seasonality itself: How
does the seasonal pattern change over time? Despite these two antagonistic
theoretical starting points, the actual analyses can be carried out with the
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same methods because both approaches need to model the exact seasonal
signal from the data.

Basically, there are two approaches for seasonal time-series-analysis: either
one decomposes the time-series into several components, or one models all of
these aspects simultaneously [389]. In reality, methods for analyzing seasonal
time-series cannot always be clearly assigned to one of the groups as they
are using methodology from both strains. In the following paragraphs, I want
to briefly outline what is meant by decomposition methods and simultane-
ous modelling. Subsequently, I will discuss several of the methods which are
actually used and also implemented in various software packages.

3.4.2 Decomposition Methods

It is argued that decomposing time-series started in the 1920s at the National
Bureau of Economic Research (NBER) [417] of the United States. Starting
with the first “monthly means method” and the “ratio to moving average
method” [270] to modern methods, decomposition methods are based on the
assumption that the observed data contain four components [335]:

Trend: The trend is the long-term change in the time-series. In the analysis
of seasonal mortality two thrusts can be imagined to influence the trend
over time: First, a change in the variable of interest: death rates are falling
rapidly for people above age 70 at least for the last 30 years [378]. Secondly,
a compositional change can either increase the effect of the variable of
interest or it can be counteracted. The latter is more probable for the
analysis of death counts as more and more people attain very high ages
because of improved survival conditions [383].

Cycle: The cyclic component captures a fluctuation with a frequency of more
than one year [335]. While they are an important part of economic analy-
sis, e.g. the Kondratieff long economic cycles [205], they play only minor
role in mortality research.5 The cyclic component is sometimes not ex-
tracted on its own but rather as a part of the trend component.

Season: The seasonal component is an annually repeating pattern observed
in the time-series, and is the feature of the data which is our main fo-
cus. While it is beyond doubt that climate shapes the basic pattern of
seasonal mortality fluctuations, a large body of literature shows that the
impact of climate can be mediated and alleviated. Consequently, we want
to analyze how seasonal fluctuations are changing over time, which mea-
sures indirectly the influence of improvements in public health and general
living conditions.

Irregular: The remainder between the aforementioned components and the
observed data is summarized in the irregular component.

5 I consider the analysis of Stoupel et al. [359] concerning the impact of “space
proton flux” on the temporal distribution of cardiovascular deaths as negligible.
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Basically, there are two approaches on how these components constitute
the observed time-series: In an additive model, one assumes that the trend
component yt

t (includes the cyclic component), the seasonal component ys
t and

the irregular component yres
t are working independently. Thus, the resulting

model would be:
yt = yt

t + ys
t + yres

t (3.10)

In the majority of real-world applications, however, independent effects are
rather the exception rather than the rule. Thus, a multiplicative combination
of the trend and the seasonal components

yt = yt
t × ys

t + yres
t (3.11)

is often preferable.

3.4.3 Simultaneous Modelling

In contrast to the decompositon approach, the time-series data can also be
modelled simultaneously. This is done by so-called seasonal ARIMA-Models.
This approach follows the Box-Jenkins methodology [32] of identifying parsi-
monious models for the data under scrutiny. A seasonal ARIMA-Model is an
extended ARIMA-Model. An ARIMA-Model is an extended ARMA-Model.
Thus, I want to start with the basic model: An ARMA-Model consists of an
autoregressive (AR) and of a moving average (MA) part. As explained in [95],
“an AR(p) process is specified by a weighted average of past observations go-
ing back p periods, together with a random disturbance in the current period
[ . . . ], an MA(q) process is specified by a weighted average of past random
disturbances going back q periods, together with a random disturbance in the
current period.”6 The aim of ARMA modeling is a parsimonious model. This
means in the words of its creators to “employ the smallest possible number
of parameters for adequate representations” [32, p. 16]. Typical diagnostics
to check for pickung the best model are, for example, the Akaike Information
Criterion (AIC) or the Schwarz Bayesian Criterion. However, ARMA Mod-
elling requires a stationary time-series. If the data are non-stationary which
is rather the rule than the exception, the ARMA(p, q) Model is extended to
an ARIMA(p, d, q) Model (ARIMA=Auto Regressive Integrated Moving Av-
erage). In such an ARIMA-Model, the time-series is first differenced finite d
times until a stationary process is obtained. Seasonal ARIMA-Models repre-
sent a further extension. The general form of such a SARIMA Model is:

ARIMA(p, d, q)(P, D, Q)12.

6 Mathematically, the specifications may be written as given by Box et al. [32,
p. 52]:

AR(p) : z̃t = φ1z̃t−1 + φ2z̃t−2 + . . . + φpz̃t−p + at

MA(q) : z̃t = at − θ1at−1 − θ2at−2 − . . . − θqat−q
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In addition to the previously explained parameters p, d, q, SARIMA con-
tains the parameters P, D, Q indicating autoregressive (P ) and moving aver-
age (Q) components differenced D times at a seasonal lag. In the case of an
annual seasonal pattern with monthly values, the respective lag is 12 months.

3.4.4 Seasonal Time-Series Methods

The “Classical” Decomposition Method

The “classical” decomposition method uses moving averages as outlined in
Brockwell and Davis [34] or Hartung [142]. The first step is an estimation of
the trend “by applying a moving average filter specially chosen to eliminate the
seasonal component and to dampen the noise”[34, p. 30]. The seasonal com-
ponent is then estimated by computing the average deviation of the monthly
values from the estimated trend. This method is, however, irrelevant for the
rest of this chapter, as it contains a constant seasonal component. The aim of
this research is, though, exactly the analysis of this seasonal component over
time (or age).

X-11

Still the most widely used method is the so-called “X-11, Census II” method.
Its development can be traced back to the “ratio to moving average method”
from the 1920s. The various revisions have been labeled “X-” followed by the
version number. X-11 was developed at the U.S. Bureau of the Census in 1965
by Julius Shishkin [417].
The estimation is performed in several steps [cf. 417]. Ghysels and Osborn
[122] and Yaffee [417] give an overview how these steps are performed. We are
following the overview given by Fischer [108] for the X-11 ARIMA variant:7

1. First estimate of the seasonal and the irregular component using a 12 term
moving average.

2. Preliminary estimate of the seasonal factors using a 5-term moving aver-
age.

3. A 12-term moving average is applied to the preliminary factors found in
the previous step.

4. The seasonal factor estimates are divided by the seasonal irregular ratio
to obtain an estimate of the irregular component.

5. Detection of outliers
6. Adjustment for the beginning and the end of the time-series (necessary

since symmetric filters are used).

7 X-11 uses moving averages for the estimates. Since these weights are symmetric,
problems arise in the beginning and in the end of the time-series. To remedy
this drawback, Statistics Canada introduced the so-called X-11-ARIMA/88 to
improve the fore- and back-casting possibilities of X-11 [cf. 417, 55–56].
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7. Estimation of preliminary seasonal factors by applying a weighted 5-term
moving average to the SI (ratio of the seasonal and irregular component)
ratios with replacement of extreme values (detected two steps earlier).

8. Step 3 is repeated and applied to the factors in step 7.
9. Division of the original data by the result from the previous step to obtain

a preliminary seasonally adjusted time-series.
10. The original series is divided by the result of applying a moving average

to the seasonally adjusted series.
11. Applying a weighted 7-term moving average to each month’s SI ratio

separately. This results in a second estimate of the seasonal component.
12. Step 3 is repeated.
13. The original series is divided by the result from step 11 to obtain a sea-

sonally adjusted time-series.

Fischer [108, p. 15] gives a flow-chart to display graphically this procedure.
Despite its popularity, several serious drawbacks of X-11 have been pointed
out [14, 53, 303]:

• Using X-11 can imply that a non-seasonal cycle can be wrongly specified
as seasonal.

• X-11 is not very robust in the case of a sudden change in the trend. This
might sound unimportant as natural processes typically do not change all
of a sudden. However, in the analysis of seasonal mortality of a specific
cause of death across time, relatively abrupt changes in the trend can
happen after an ICD-Revision8 — no matter how careful the preparation
of the time-series.

• In the case of zero-value observations ( �=missing values), neither an addi-
tive nor a multiplicative X-11 approach is applicable. Zero events might
happen in certain age-groups for diseases with a highly seasonal pattern
like deaths from influenza.

• X-11 may over- or under-estimate the seasonal component (non-idem-
potency). The lack of this property is a serious shortcoming for the analysis
of seasonal changes over time.

• The values for the seasonal factors depend on the beginning of the time-
series. As pointed out by Raveh [303], X-11 yields different seasonal esti-
mates for the same original values if the series is shifted forward for half
a year, for instance.

• X-11 is over-sensitive to outliers. This problem of the original variant,
though, seems to be eradicated by X-12.

Despite these disadvantages, X-11 is still a popular choice. The original version
has been employed for the analysis of seasonal mortality in an early 20th

century population [21] and more recently for examining seasonal deaths in
the United States [102]. An example for X-11-ARIMA is Richard Trudeau’s

8 ICD is the abbreviation for “International Statistical Classification of Diseases”.
See http://www.who.int/whosis/icd10/ .
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study on “monthly and daily patterns of death” in Canada [367]. For our
analysis, we used X-12-ARIMA which is the successor to X-11-ARIMA “to
handle additive outliers and level shifts” [35, p. 1]. The estimates should be at
least as good as X-11 since it improves the detection and correction of outliers
and estimates automatically the ARIMA-Models [108, p. 16].

SABL

William S. Cleveland and his colleagues did not only pin-point the weaknesses
of X-11, they also suggested alternative procedures. Their first suggestion was
the so-called SABL [50, 51].9. This procedure works basically in four steps
[51]:

1. A power transformation of your time-series
The power transformation is carried out as follows [52, p. 53]:

x(p) =

⎧⎪⎨
⎪⎩

xp if p > 0
loge x if p = 0
−xp if p < 0

(3.12)

The value of the power p should be chosen to minimize the interaction
between the trend and the seasonal component. Fortunately, the program
Splus picks the best p-value — provided a vector of possible values has
been given before.

2. Additive decomposition of the transformed time-series into trend, sea-
sonal, and irregular component. The details of this decomposition are
described in [p. 15–16 51]:10

a) “A combination of smoothers, which involve moving medians for ro-
bustness, is used to get initial estimates of the trend and the seasonal.
Moving medians are similar to moving averages except that means are
replaced by medians.

b) The irregular, which is the series minus the trend and seasonal, is
computed.

c) Robustness weights are computed using the irregular values. Irregular
values large in absolute value receive small or zero weight.

d) Updated estimates of the trend and seasonal are computed using
smoothers that are doubly-weighted moving averages. The two sets of
weights are those computed in step (c) and the usual kind of weights
in moving averages.

e) Steps (b) to (d) are repeated using the updated estimates of trend
and seasonal. The trend and seasonal component in step (d) on the
second pass are the final trend and seasonal.”

9 SABL is the abbreviation for Seasonal Adjustment at Bell Laboratories
10 Alternatively, one can also consult the flowchart given in [108, p. 12].
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3. Seasonal Adjustment. This step is not required in our estimations since
we are interested in the final seasonal component obtained in the previous
step.

4. In its original version, SABL printed tables and plotted graphs. We do
not need this option since we are using modern statistical software which
allows for printing the results and plotting the graphs in a user-defined
way.

STL

The seasonal decomposition STL was also invented by Cleveland and his col-
leagues [48]. As usual, the data are decomposed into three components: a
trend, a seasonal part and a remainder. Among other criteria, the authors
wanted to develop a procedure which has a simple design, its use is straight-
forward, does not have problems with missing values, has a robust trend and
seasonal component, and is easily and quickly implemented on a computer.
The core of the procedure are smoothing operations based on locally-weighted
regression (loess). As written by Cleveland et al. [48, p. 6]: “STL consists of
two recursive procedures: an inner loop nested inside an outer loop. In each
of the passes through the inner loop, the seasonal and trend components are
updated once; [. . . ] Each pass of the outer loop consists of the inner loop
followed by a computation of robustness weights; these weights are used in
the next run of the inner loop to reduce the influence of transient, aberrant
behavior in the trend and seasonal components.” The inner loop consists of
the following steps [48, p. 7–8]:

1. Detrending
2. Smoothing of the Cycle Subseries
3. Filtering of the Smoothed Cycle-Subseries (obtained from pervious step)
4. De-trending of Smoothed Cycle-Subseries
5. De-seasonalizing
6. Trend Smoothing

BV4

BV4 is the abbreviation of the fourth revision of the so-called “Berliner Ver-
fahren”. It is the official seasonal adjustment method of the Statistisches Bun-
desamt (Federal Statistical Office) in Germany. It was developed by Martin
Nourney and is described in detail in [275, 276, 277]. Currently the Statistis-
ches Bundesamt is replacing BV4 with an updated version called BV4.1 which
can handle calendar effects and outliers better. According to Speth [357] three
of the main advantageous characteristics of BV4.1 are:

• Low cost benefit ratio because high-quality analysis can be performed
without expert knowledge and without much experience for time-series
decomposition methods.
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• Results are independent from the user.
• High efficiency of the seasonal adjustment which can incorporate even

rapid changes in the seasonal component.

BV4.1 assumes (after a possible transformation of the data, e.g. a log-
transform) an additive decomposition of the time-series of the form [104, 105]:

Yt = G(t) + S(t) + εt. (3.13)

G(t) denotes the trend-cycle component (“Glatte Komponente”) which is ap-
proximated by a third-order polynomial: G(t) = ŷt

t = a0 + a1t + a2t
2 + a3t

3.
The seasonal component S(t) is approximated by 11 trigonometric functions
[see also 108]:

ys
t =

5∑
i=1

(bi cosλit + ci sin λit) + b6 cosλ6t.

The irregular component εt is an independently, identically distributed
random variable with mean 0 and a constant variance σ2. The actual fitting
procedure is performed by locally weighted least squares.

TRAMO/SEATS

TRAMO/SEATS has been developed by Victor Gómez and Agust́ın Mar-
avall.11 Their work is based on “seasonal adjustment by signal extraction” by
Burman [39]. A detailed, technical description of TRAMO/SEATS is given in
[239]. Fischer [108] summarizes the six steps of the TRAMO/SEATS proce-
dure as follows (a flow-chart with more details is given on page 18 of [108]):

• TRAMO identifies automatically an ARIMA Model
• Simultaneously, outliers are detected
• TRAMO passes its results to SEATS
• “In SEATS, first the spectral density function of the estimated model is

decomposed into the spectral density function of the unobserved compo-
nents, which are assumed to be orthogonal” [108, p. 17]

• Then, the trend-cycle and the seasonal component are estimated
• In the last step, outliers are re-introduced.

3.5 Evaluation of Seasonality Indices and Tests Using
Hypothetical and Real Data

3.5.1 Description of Datasets

We distinguish between real and hypothetical data. If real data were taken
from publications which introduced a measurement for seasonality, the data
11 TRAMO stands for Time Series Regression with ARIMA Noise, Missing values

and Outliers. SEATS stands for Signal Extraction in ARIMA Time Series.
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were used to check the correct implementation of the underlying algorithm.
Otherwise real data from other sources were used to analyze how the various
indices and tests behave in typical situations of seasonal mortality analyses.
They are briefly described in the next section and are plotted in Figure 3.4.
Hypothetical data served only experimental purposes. For example, we think
that any measurement should test positively if a pronounced sine wave is
present. Random numbers and a uniform distribution should, conversely, not
detect seasonality at all. For the hypothetical data, I have always created two
data-sets: one with a small sample size and one with a larger sample size as
described below. For each category, only the data based on the larger sample
is plotted in Figure 3.5.

Real Data

Wrigley: These data consist of 75,398 deaths from the British parish register
data between 1580–1837. These data represent standardized death counts
where 100 indicates the mean number of monthly deaths. Wrigley et al.
[415] provide more details.

Nuns and Monks: Marc Luy kindly provided death counts from his data col-
lection on Bavarian nunneries and monasteries [229]. A detailed descrip-
tion can be found in [228]. The nuns’ data-set consists of 3,919 individuals
who have died during the 20th century in the analyzed nunneries. In the
other data-set all 349 male deaths are included which occured in the re-
spective monasteries during the 19th century.

Union Army: These data are taken from the Public Use Tape on the Aging
of the Veterans of the Union Army [111]. It consists of 24,610 individuals
who died between January 1862 and December 1937. Each death has
been recorded by month and year of death. Thus, the aggregated data-set
contains 912 records. For our analysis we only used deaths starting in 1866
to avoid distorting effects due to the Civil War.

Danish Register Data: All Danes are included who were alive on 1 April 1968
and 50 years or older and died by August 1998. The data from which these
1,176,383 deaths have been derived are explained in more detail in [72].

Respiratory Diseases: The data-set includes 25,272.56 men who have between
January 1959 and December 1998 from respiratory diseases in the United
States being between 80 (inclusive) and 90 (exclusive) years of age. The
reason for the non-integer number of deaths is that monthly deaths have
already been adjusted to the same length. The data were taken from the
public use files of the Centers for Disease Control and Intervention (CDC).
These data are described in more detail in Chapter 4.

Anencephalics: The monthly distribution of 176 cases of anencephalics that
have occurred in Birmingham between 1940 and 1947 are given in [84].

Lymphoma: The monthly distribution of 133 cases of Burkitt’s lymphoma
from the West Nile district of Uganda between 1966 and 1973 are given
in [113].
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Fig. 3.4. Graphical Representation of Real Data-Sets

Suicides: The monthly distribution of adolescent suicides (3474 cases) in the
United States, 1978–79, is given in [315].

Leukemia: The monthly distribution of the onset of acute lymphatic leukemia
between 1946 and 1960 (506 cases) is taken from the British National
Cancer Registration Scheme as reported in [64].



3.5 Evaluation of Seasonality Indices and Tests 61

Crohn’s Disease: Cave and Freedman [44] give a bar-plot displaying the
monthly distribution of the onset of Crohn’s disease for 211 patients in
three British hospitals between 1945 and 1974. More details about the
data can be found in the original article.

Hypothetical Data

Uniform Distribution: Two vectors with 12 elements — each of the 12 ele-
ments representing the numbers of death in a month —are given consisting
of either 5 or 5000 cases in each month.

Sine Wave: Again, we have two vectors with 1 entry for each month. The
“small” sine wave has a maximum value of 12 in January and 8 in July,
whereas the large sample’s extreme values are 120 and 80 in the same
months.

Cosine Wave: The Cosine Waves are equivalent to the two Sine Waves with
a forward shift of 3

2π. One should expect the same results as for the Sine
Wave data as we basically face the same pattern. Testing the measure-
ments with the Cosine data can help to evaluate whether certain indices
or tests are restricted to the Northern Hemisphere with a peak in the first
(few) months of the year.

Local Summer Peak: The literature on seasonal mortality sometimes also
refers to a second peak in summer. The data-sets are the same as the
Sine Wave data apart from the minimum. Instead of values of 8 and 80
respectively in July, we have values of 10 and 100.

One-Pulse Pattern: Some causes of death do not have a sinusoidal but a “one-
pulse”-pattern. This means that deaths are uniformly distributed through-
out the year with the exception of some months where deaths rise rapidly.
Our data have 10 (small sample) and 100 (large sample) deaths in each
month. In winter, however, deaths suddenly increase, reaching a peak in
January and February of 13 and 130 deaths, respectively.

Random Pattern: Randomly distributed numbers should (in general) not re-
sult in significant test results for seasonality. The random numbers are de-
rived from the “true” random number generator at http://www.random.
org. Integers were generated between 900 and 1100 for the larger sample;
for a smaller sample we used the same numbers but divided each of them
by 10.

3.5.2 Results and Discussion for Indices and Tests

Results and Discussion for Indices

Table 3.1 shows the results for the three descriptive indices ϕ1, ϕ2, ϕ3. The
upper section refers to hypothetical data, in the lower section we faced the
indices with real data. In our synthetically generated data only one value is
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Fig. 3.5. Graphical Representation of Hypothetical Data-Sets

given for each pattern (uniform distribution, sine wave, . . . ) as all indices are
inelastic with regard to sample size.

As mentioned in their description above, seasonality indices are closely
related to measures of inequality. Goodwin and Vaupel [126] suggested several
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Table 3.1. Sample Sizes and Results for Descriptive Indices ϕ1 (Winter/Summer),
ϕ2 (Dissimilarity), and ϕ3 (Entropy) for Seasonality of Hypothetical and Real Data

Hypothetical Data Sample Size N ϕ1 ϕ2 ϕ3

Uniform 60 / 60,000 1.000 0.000 1.000
Sine Wave 120 / 1,200 1.375 0.062 0.996
Cosine Wave 120 / 1,200 0.833 0.062 0.996
Local Summer Peak 123.73 / 12,373.32 1.274 0.048 0.997
One-Pulse Pattern 129.5 / 1,295 1.267 0.049 0.998
Random Pattern 122.2 / 1,222 1.094 0.029 0.999

Real Data Sample Size N ϕ1 ϕ2 ϕ3

Wrigley 1,199 1.165 0.032 0.999
Nuns† 3,919 1.266 0.038 0.998
Monks† 349 1.656 0.100 0.989
Union Army Veterans† 24,610 1.191 0.034 0.999
Danish Register Data† 1,176,383 1.161 0.028 0.999
Respiratory Diseases 25,272.56 1.781 0.102 0.989
Anencephalics† 176 1.605 0.139 0.978
Lymphoma† 133 0.627 0.167 0.969
Suicides† 3,474 1.191 0.034 0.999
Leukemia† 506 0.749 0.087 0.992
Crohn’s Disease† 211 1.113 0.132 0.982

† Monthly values have been adjusted to equal weights

desirable properties for “Measures of Evenness”. Most of them can also be
applied to the field of seasonality:12

The Relativity Principle: The relativity principle refers to sample size. Ac-
cording to the principle, it is a desirable property for any index that it
should be independent from the sample size, as long as the proportions of
each category remain the same. An index which fulfills this condition will
return the identical value for a data-set of 100 individuals and 100 million
individuals if the corresponding subgroups in each population contribute
the same share. All our three indices fulfill this condition. To produce the
upper part of Table 3.1, we used data with the same basic distribution
and only varied the sample size. When we analyzed the data, ϕ1, ϕ2 as
well as ϕ3 gave exactly the same results.

The Transfer Principle: According to this principle, a diversity measure should
increase if there are any transfers from a “poor” individual to a “rich” in-
dividual. Applied to the case of seasonality in mortality, any good index

12 The so-called Anonymity Principle, for instance, is not included. This principles
states that an index should be anonymous in the sense that it does not matter
which element of the underlying population has a certain trait. It is less useful
for the analysis of seasonality because a seasonality index should actually take
into account whether January or September shows higher mortality values.
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should increase if there is a transfer from a low mortality month such as
June to a high mortality month like December.13 All indices fulfill this
property as well. For instance, if a certain number of deaths occur less in
summer but more in winter, the winter/summer ratio ϕ1 would increase,
likewise ϕ2, the dissimilarity index. As entropy ϕ3 is measuring concentra-
tion it decreases, consequently. It has to be mentioned, though, that not
all possible transfers affect ϕ1. If there are any transfers between spring
and autumn months, this winter/summer ratio will remain constant.

Standardization: Standardizing an index to a certain interval, say [0; 1], facili-
tates describing population across time or across countries. The dissimilar-
ity index ϕ2 fulfills this condition. In the case of a uniform distribution, its
value is 0. If deaths occur only in one month, it reaches its maximum value
(for the case of 12 possible event times) 0.91666. In the same scenario, en-
tropy (ϕ3) would be bounded by 1 (uniform distribution = “minimum
safeness of a guess”) and would approach 0 in the case where deaths are
only possible in one month. The winter/summer index is only bounded
on one side. If death is equally probable in each month, ϕ1 would be 1.
If deaths only occurred in summer, ϕ1 would approach 0; on the other
extreme if deaths exclusively happened in winter, ϕ1 → ∞.

Intelligibility: “Ideally, a measure should be easy to comprehend, intuitively
meaningful, simple to explain to others, and naturally relevant to the
problems addressed” [126, p. 11]. The winter/summer ratio is the only in-
dex which fulfills all these conditions, especially the explanation to other
people of the dissimilarity index or of entropy is considerably more com-
plicated for ϕ2 and ϕ3 than for ϕ1. It also seems to be more meaningful
intuitively. For example, a value of 1.26 from ϕ1 (real data: nuns) can
be read as: among nuns in the respective data-set, 26% more died dur-
ing winter than during summer. The corresponding values of ϕ2 = 0.038
and ϕ3 = 0.998 can contribute only little to the understanding of the
underlying phenomenon.

Based on these criteria, it is difficult to make a decision for which index is
best suited for seasonality studies. It can be argued that the winter/summer
ratio ϕ1 is preferable because of its better intelligibility and because ϕ2 and
ϕ3 are unfavorable due to the following reasons:

• Standardized entropy (ϕ3) does not seem to be a useful index because
we observed only values between 0.996 and 1 for hypothetical data and
between 0.969 and 0.999 for real data in our analysis. As this index is
standardized to have a value range of (0; 1], ϕ3 uses only roughly 3% of its
potential range. The dissimilarity index ϕ2 performs only slightly better
than ϕ3 in that respect (18% of the value range is used).

13 This, of course, holds only for measurements of unevenness. If we measure con-
centration, the opposite direction should be true.
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• Neither index can distinguish between two patterns where one has its peak
in winter and the other one has its maximum value in summer (i.e. ϕ2 and
ϕ3 would give the same results in both situations).

• A related problem is the order of the months: The indices ϕ2 and ϕ3 do
not take the ordering of the months into account: It does not matter, for
instance, for ϕ2 or for ϕ3 whether the values appear as in a sine wave
or in any other order. Clearly, an unfavorable property of any index for
seasonality.

Results and Discussion for Seasonality Tests

Figures 3.6 and 3.7 (pages 66, 68) show the results of our analysis of the
tests described in section 3.3. The tests are ordered according to which group
they belong to: Goodness-of-Fit tests, the “Edwards’ family” or nonparamet-
ric tests. All of them are faced with the data-sets outlined in section 3.5.1.
Hypothetical as well as real data were tested for two levels of significance:
α1 = 0.95; α2 = 0.99. In the case of hypothetical data, we tested both sample
sizes as indicated by “small” and “large”. To facilitate recognizing the out-
comes of these tests, they were labeled with a dark gray square and a “−”-sign
in case of insignificant results at the given level. A light gray square and a
“+”-sign were used for significant values.

All tests passed a minimum requirement: as displayed in Figure 3.6, none
of the tests detects seasonality for a uniform distribution nor for the random
pattern — regardless of the sample size. The tests developed by Cave and
Freedman [44] and by Pocock [291] will be excluded from further analysis, as
they did not evaluate any of the hypothetical data-sets to be seasonal [44] or
only the sine/cosine-data based on a large sample [291].
An advantage of all tests presented here is that they show exactly the same
results for a sine and a cosine wave if the sample size is the same in both
instances. This implies that all of them can be applied on both hemispheres
giving the same results. While this requirement sounds obvious, the most
widely-used seasonal time-series method, X-11, does not produce the same
results if data start in January or in June [303]. Nevertheless, it is quite sur-
prising that neither any Goodness-of-Fit-test nor any test from the “Edwards’
Family” tests positively for seasonality for the sine- and cosine curves when
the sample size is small. Only the non-parametric tests yield significant values.
Because of their definition (using ranks instead of the actual counts or rates),
Hewitt’s tests and its generalization by Rogerson output the same values for
small and large sample sizes. For the data-sets with a local summer peak or
displaying only one pulse, we again detect the sample-size dependency for the
Goodness-of-Fit tests and for the “Edwards’ Family”: no seasonality for small
samples, significant ρ-values for large samples. The nonparametric tests for
peak periods of 3 and 4 months behave as expected by returning significant
results for the hypothetical data with one-pulse.
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Hypothetical Data (Part A)           Uniform       Sine Curve      Cosine Curve

small large small large small large

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - - - - - + - - - + -

1.2 Kolmogorov-Smirnov-Type-Statistic - - - - - - + + - - + +

2. Edwards’ Family

2.1 Edwards’ Test - - - - - - - - - - - -

2.2 Roger’s Extension of Edwards’ Test - - - - - - - - - - - -

2.3 Pocock’s Method - - - - - - + - - - + -

2.4 Cave and Freedman - - - - - - - - - - - -

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

- - - - + - + - + - + -

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

- - - - + + + + + + + +

3.2.2 a 4-months peak 
1

- n.a. - n.a. + n.a. + n.a. + n.a. + n.a.

3.2.3 a 3-months peak 
1

- n.a. - n.a. + n.a. + n.a. + n.a. + n.a.

3.3 David-Newell-Test - - - - - - + + - - + +

Hypothetical Data (Part B)  Local Summer Peak One Pulse Pattern      Random Pattern

small large small large small large

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - - - - - - - - - - -

1.2 Kolmogorov-Smirnov-Type-Statistic - - + + - - + + - - - -

2. Edwards’ Family

2.1 Edwards’ Test - - + + - - + + - - - -

2.2 Roger’s Extension of Edwards’ Test - - + + - - + + - - - -

2.3 Pocock’s Method - - - - - - - - - - - -

2.4 Cave and Freedman - - - - - - - - - - - -

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

+ - + - - - - - - - - -

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

+ + + + - - - - - - - -

3.2.2 a 4-months peak 
1

+ n.a. + n.a. + n.a. + n.a. - n.a. - n.a.

3.2.3 a 3-months peak 
1

+ n.a. + n.a. + n.a. + n.a. - n.a. - n.a.

3.3 David-Newell-Test - - + + - - + - - - - -

1) The actual levels of significance for the non-parametric tests are:

Levels of Significance       0.05       0.01

Hewitt    0.0483     0.0130

Rogerson 5 months peak    0.0562     0.0152

Rogerson 4 months peak    0.0470       n.a. (Max. Ranksum=42; p
42

=0.0267)

Rogerson 3 months peak    0.0545       n.a. (Max. Ranksum=33; p
33

=0.0545)

Fig. 3.6. Results for Seasonality Tests: Hypothetical Data

Switching to the evaluation of the tests using real data in Figure 3.7, the
first impression is that significant results are the rule rather than the exception
(as in Figure 3.6). This indicates that most of our hypothetical data fulfilled
one of their requirements: They represented rather extreme cases one is usually
not faced with in reality.
All tests produced significant results on the α1 = 0.95; α2 = 0.99 levels for
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the Danish Register Data and for Respiratory Diseases. As both data-sets
show a pronounced sinusoidal pattern, it is obvious that the nonparametric
tests yield this result. The significant values for the Goodness-of-Fit tests and
the “Edwards’ Family” when evaluating the Danish register data underlines
their sample size dependency: If one were taking simply the relative monthly
frequencies, the Danish data would show less fluctuation than the hypothetical
sine wave which was tested negatively for small sample size. The χ2-Goodness-
of-Fit-Test, especially, seems to be extremely sensitive to sample size. It does
not yield significant results for the monks data at all, while the nuns data are
highly significant. When looking at the histograms of both data (Figure 3.4 b
and c), the eye would assign the tag “seasonal” to the monks’ rather than to
the nuns’ monthly distribution of deaths. For the five data-sets shown in the
lower part of Figure 3.4, the nonparametric tests show only rarely significant
results. This is probably due to the sparse data of some data-sets such as
Lymphoma (Figure 3.4 h) or Leukemia (Figure 3.4 j) where assigning ranks
might not be the best option.

Most of the desired properties for inequality indices do not narrow down
the choice for a “best” seasonality test. Tests which are based on ranks like
the nonparametric tests presented here fulfill the “relativity principle”. Ac-
cording to that principle, the outcome should be dependent on the relative
contribution of each group — regardless of the sample size. On the contrary,
the nonparametric tests cannot pass the “transfer principle”. If deaths were
“shifted” from months with low mortality to months with high mortality, the
non-parametric tests would not necessarily result in more significant ρ-values.
This would, however, be the case for the Goodness-of-Fit tests and the “Ed-
wards Family”. “Standardization” poses no problem for any of these tests.
They are, by definition, designed to return values between 0 and 1 for ρ. All
tests are relatively “easy to comprehend, intuitively meaningful and easy to ex-
plain to others” [126, p. 11] (Intelligibility): the Goodness-of-Fit tests analyze
if an observed distribution deviates too much from a hypothetical distribution
which cannot be explained by chance. The tests based on Edwards’ contri-
bution have some kind of geometrical framework, where the deviation from a
uniform distribution is tested. The nonparametric tests examine whether the
observed data show a peak-period of either 6, 5, 4, or 3 months, respectively.
The favorable properties of Sensitivity and Robustness [126] have not been
introduced before. If data are described with one statistic, the first choice is
often a measurement of the central tendency. Typical examples are the mean
and the median. While the mean is often the preferred description, one has to
be aware that it is not very robust when the data contain outliers. Likewise,
some seasonality tests could be also prone to be too sensitive when faced with
some outliers. Nevertheless, seasonality indices should also not be too robust:
If there is one extreme outlier, for example caused by an influenza epidemic, a
reasonable test should not treat this as similar to another value which might
be just slightly higher than values in any other month. Thus, a seasonality
index based purely on ranks is too robust. “Sensititivity” and “Robustness”
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Real Data (Part A)

Wrigley Nuns Monks Union Danish Resp.

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - + + - - + + + + + +

1.2 Kolmogorov-Smirnov-Type-Statistic - - + + + + + + + + + +

2. Edwards’ Family

2.1 Edwards’ Test - - + + + + + + + + + +

2.2 Roger’s Extension of Edwards’ Test - - + + + + + + + + + +

2.3 Pocock’s Method - - + + + - + + + + + +

2.4 Cave and Freedman - - - - - - - - + + + +

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

+ - + + + + + + + + + +

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

+ + + + + + + + + + + +

3.2.2 a 4-months peak 
1

+ n.a. + n.a. + n.a. + n.a. + n.a. + n.a.

3.2.3 a 3-months peak 
1

+ n.a. + n.a. - n.a. + n.a. + n.a. + n.a.

3.3 David-Newell-Test - - + + + + + + + + + +

Real Data (Part B)

Anenc. Lymph. Suicides Leukem. Crohn’s

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - + - + - + - - -

1.2 Kolmogorov-Smirnov-Type-Statistic + - + - + + + - - -

2. Edwards’ Family

2.1 Edwards’ Test + - + - + + + + - -

2.2 Roger’s Extension of Edwards’ Test + - + - + + + + - -

2.3 Pocock’s Method + - + - + + + + - -

2.4 Cave and Freedman - - - - - - - - + +

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

- - - - - - - - - -

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

- - - - + - - - - -

3.2.2 a 4-months peak 
1

- n.a. - n.a. - n.a. - n.a. - n.a.

3.2.3 a 3-months peak 
1

- n.a. - n.a. + n.a. + n.a. - n.a.

3.3 David-Newell-Test + - + - + - + - - -

1) The actual levels of significance for the non-parametric tests are:

Levels of Significance       0.05       0.01

Hewitt    0.0483     0.0130

Rogerson 5 months peak    0.0562     0.0152

Rogerson 4 months peak    0.0470       n.a. (Max. Ranksum=42; p
42

=0.0267)

Rogerson 3 months peak    0.0545       n.a. (Max. Ranksum=33; p
33

=0.0545)

Fig. 3.7. Results for Seasonality Tests: Real Data

are excluding principles. The nonparametric tests are very robust against out-
liers. Consequently, they cannot be too sensitive for sudden, abrupt changes
in the distribution. The other two groups of tests behave exactly the other
way around.

Our analysis does not yield “the best seasonality test”. Depending on
data and the relevant research question, different tests are useful. One should
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always keep in mind that some tests are quite sensitive to sample size. Another
important feature is the distribution of the underlying data: Do we have a
relatively smooth pattern or do the data look rather erratic? Last but not
least, the test should be also aimed at the research question: Do we assume
that the underlying data have a bimodal pattern? Only in that case, the test
developed by Cave and Freedman [44] can be recommended. If it is expected
that the disease/cause of death has a rather sudden prevalence throughout
the year for a relatively short period of time, Rogerson’s generalization of
Hewitt’s test for 3, 4 or 5 months should be used. In the case of smooth data
structure across the twelve months, it is probably best to use Hewitt’s test. As
it is based on ranks, it would be probably best to use it in conjunction with
a seasonality index such as ϕ1 to give an indication of the extent of seasonal
fluctuations. Goodness-of-Fit tests and “Edwards’s Family” should only be
used if the data do not show a smooth pattern.

3.6 Evaluation of Time-Series Methods Using
Hypothetical Data

3.6.1 Introduction

Evaluating time-series methods aims at a different angle than the discussion
of indices and tests discussed above. A general applicable tool should be able
to fit a model to data with characteristics one typically observes for seasonal
mortality studies [117]. One major part is the correct estimation of the trend
component. It is more common in studies of seasonal mortality to have pure
count data available than rates of the variable of interest. Thus, a correct
estimation of the trend should be flexible enough to incorporate on the one
hand changes in the variable of interest. For example, it can be expected that
the overall trend in mortality is decreasing over time. On the other hand,
compositional changes can push the trend in the other direction. Due to the
increased survival chances, for instance, more and more old people are alive
which implies an increase in death counts in absolute terms. It should be also
obvious that it is necessary for a seasonal analysis of time-series that the sea-
sonal component is not constant over time.
Not all time-series methods discussed before have been analyzed. The “classi-
cal decompostion” has been omitted as it assumes a constant seasonal compo-
nent over time. Instead of X-11 and X-11-ARIMA the latest version, X-12, has
been used since it should yield better estimates than the previous version due
to improved outlier detection and automatic estimation of ARIMA-Models.

There are not any software package available that contain all remaining
time-series methods. Therefore, we had to rely on several packages to investi-
gate the various approaches. Table 3.2 gives an overview which software has
been used for which particular method. Besides R [170, 301], we also used
Splus, EViews and BV4 [38].
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Table 3.2. Software for Implementation of Time-Series Methods

Method Software Version

X12 EViews 4
SABL Splus 2000
STL R 1.8.1
TRAMO/SEATS EViews 4
BV4 BV4 4.1

3.6.2 Description of Data-Sets

In contrast to seasonality indices and tests we analyzed time-series methods
only with hypothetical data. Real data are used in Chapter 4.

We used seven synthetically generated data-sets with an increasing level
of complexity. The construction of these data is briefly outlined in Table 3.3.
Seasonal rates are rarely available. This is why we wanted to reflect this fact
in our hypothetical data by constructing them as count data. We started
with a simple model being constant in the trend and the seasonal component.
No residuals are put into the data (Model I). It should be expected from
any seasonal decomposition/adjustment procedure to extract the trend and
the seasonal component correctly. For any subsequent model (Models II–VII)
we introduced a third-order polynomial to obtain a monotonously increas-
ing trend. Starting with Model IV we modeled a linearly increasing seasonal
component. The last models’ seasonal components employ also a second, semi-
annual wave in the data. This should test whether the seasonal procedures are
also able to detect heat-related deaths during summer. We chose three dis-
tributions from which the data are drawn: (1) none for Models I, II, and IV;
having no residual component at all is very unlikely in reality; (2) therefore
models III, V, and VI followed a Poisson distribution; however, the Poisson
distribution is sometimes inappropriate. This can be easily seen if the require-
ment of the Poisson distribution of E(x) = µ(x) = Var(x) is not met. One
often encounters so-called overdispersion (Var(x) > E(x)). This can be typi-
cally caused by unobserved heterogeneity. As we use only time as a covariate
it can be assumed that this proxy is unable to catch all significant influences
and, as a consequence, we are faced with unmeasured factors. A pure Poisson
process is therefore the exception rather than the rule. Thus, (3) we opted to
use a Negative Binomial distribution [22, 41, 292].14

3.6.3 Results and Discussion

There are different approaches to evaluate statistical methods. We decided to
base our judgment on visual inspections of the decomposition process. While
14 While a Poisson distribution requires E(x) = Var(x) = µ, the negative bino-

mial distribution relaxes the assumption about the variance with E(x) = µ and

Var(x) = µ + µ2

θ
[389]. In our application, we set θ to 100.
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Table 3.3. Hypothetical Time-Series Data

Model Trend Seasonal Component Errors
I. constant constant —
II. monotonously —”— —

increasing
III. —”— —”— Poisson
IV. —”— increasing —
V. —”— —”— Poisson
VI. —”— increasing —”—

“heat-related mortality”
VII. —”— —”— Neg. Binom.

a theoretical statistician may criticize this, the major advantage is that one
can immediately recognize whether a specific method caught the important
characteristics of the underlying data. The following Figures 3.8–3.14 show
the results for the Models I–VII described before. For all our calculations we
did not use the default settings but tried to adapt the methods as closely as
possible to the actual data. In the case of X-12, for example, we linked the
components multiplicatively or log-additively according to our initial assem-
bling of the data. In real world applications, one does not have that back-
ground knowledge. Therefore, the results for X-12 might show better results
for our hypothetical data than for real world data. TRAMO/SEATS did not
pose any problems for the implementation, nor did SABL or the Berliner Ver-
fahren. Applying STL was less straightforward: As pointed out in the original
paper [48], there are 6 parameters to be entered into the model. Five of them
can be found automatically (e.g. number of observations), for one parameter,
however, there is no straightforward solution. Unfortunately, it is a crucial
parameter for our purposes: the smoothing parameter for the seasonal com-
ponent. We followed Cleveland et al.’s suggestion to visually inspect various
parameter values [48]. Our analysis resulted in an optimal value of approxi-
mately 7 for all our models. Lower values made the seasonal component change
too quickly, higher values resulted in seasonality being too smooth. 15

The column on the left in each figure represents the “real” data (i.e. the
input). Combining the trend (f) with the seasonal component (k) and the
residuals (p) resulted in the “real data” (a). Those “real data” were used
as input for the four different seasonal decomposition methods X-12, SABL,
STL, and TRAMO/SEATS and the Berliner Verfahren (“BV4”). Perfectly
working methods should decompose the input data in exactly the components
we used for the composition initially. We can see the outcome of these methods
in columns 2–6 in each graph for X-12 (column 2), SABL (column 3), STL
(column 4), TRAMO/SEATS (column 5) and BV4 (column 6).

15 Cleveland et al. advise to use odd numbers ≥ 7 [48]. We actually searched values
from 1 until 50 wheres the original authors looked only from 7 until 35.
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Fig. 3.8. Seasonal Decomposition of Time-Series — Model I
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Fig. 3.9. Seasonal Decomposition of Time-Series — Model II
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Fig. 3.10. Seasonal Decomposition of Time-Series — Model III
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Fig. 3.11. Seasonal Decomposition of Time-Series — Model IV
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Fig. 3.12. Seasonal Decomposition of Time-Series — Model V
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Fig. 3.13. Seasonal Decomposition of Time-Series — Model VI
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Fig. 3.14. Seasonal Decomposition of Time-Series — Model VII



3.6 Evaluation of Time-Series Methods 79

For Model I (Figure 3.8), BV4 works perfectly; the methods X-12, SABL
and STL perform almost as well as the procedure from the German Statis-
tical Office. This close fit should be expected anyway, as a constant trend
and a constant seasonal pattern represents the easiest seasonal pattern. The
implementation of TRAMO/SEATS in EViews 4.1 did not work for Models
I–III. Surprisingly the failure of this method is highly correlated with a con-
stant seasonal pattern. Due to the lack of detailed information [299], it was
impossible to determine the reason for the program’s crashes.

With the exception of TRAMO/SEATS, the four other methods performed
again very well for Model II. Solely STL’s extraction of the residuals was
slightly problematic: While no residuals should appear, STL, nevertheless ex-
tracted residuals. In addition, those residuals are highly auto-correlated, in-
dicating that important characteristics of the data are misspecified into the
irregular component. However, this is only a minor drawback: for reason of
simplicity, no numbers have been put on the scales. The mean value of the
trend is 400 and the amplitude of the seasonal component is 54. The residuals’
mean amplitude height is 0.40 and their maximum value amounts only to 1.92.
This misspecification of the irregular component is, thus, rather negligible.

Seasonal decomposition by standard methods becomes tricky when artifi-
cial noise is added to the data, as shown in Model III when the data are drawn
from a Poisson distribution (Figure 3.10). All procedures contain a somehow
wiggly trend. Only SABL seems to extract the seasonal component very well.
X-12 shows a decline in seasonality; STL’s algorithm produces a fairly shaky
result. The seasonal component of the Berliner Verfahren is the least stable.

Model IV (Figure 3.11) is the first model for which TRAMO/SEATS was
working. STL, TRAMO/SEATS and BV4 reproduced the trend almost identi-
cally to the input data. X-12’s of the underlying third-order polynomial is only
slightly worse, whereas SABL’s trend is smooth but estimated wrong.16 All
methods performed remarkably well for the extraction of the seasonal signal.

The quality of the four decomposition methods declines rapidly, starting
with Model V (Figure 3.12). Besides a monotonously increasing trend and
seasonal component we allowed the data again (Model III) to be derived from
a Poisson distribution. SABL still faces the same problems when plotting the
trend as in Model IV. But the other methods (X-12, STL, TRAMO/SEATS,
BV4) also do not show a clear signal extraction for the trend; it becomes rather
wiggly. None of the decomposition methods is able to mirror the seasonal
component exactly into the data. Although all four methods show somehow
an increase in seasonality, only STL and BV4 fit the seasonality part relatively
well. The results from TRAMO/SEATS, SABL and X-12 are not satisfactory.

So far we have only used one sine and one cosine term to model annual
fluctuations in mortality. Model VI (Figure 3.13) introduces a more elaborated
seasonal component with a sine and a cosine component of frequency of six

16 The wrong estimation is not caused by using a log-transform initially and forget-
ting about re-transforming in the end.
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months. This allows to incorporate heat-related mortality (summer excess
deaths) into our models. As Model VI is equivalent to Model V with this
exception, it should be no surprise that none of the four methods performs
better than previously.

Model VII (Figure 3.14) is the most complicated pattern we faced our
data with. In addition to a monotonously increasing trend, an annual and a
semi-annual (“heat-related mortality”) seasonal swing, we input unobserved
heterogeneity by drawing our data from a Negative Binomial Distribution
with a relatively low value of the dispersion parameter Θ.17 None of the five
methods is able to capture the trend or the seasonal component even re-
motely. All trend estimates show a wiggly upward tendency but neither X-12,
SABL, STL, TRAMO/SEATS, nor BV4 mirror the underlying third-order
polynomial correctly. Furthermore, the seasonal component is not extracted
properly by any of the standard methods: X-12, SABL, TRAMO/SEATS and
BV4 seem to be inadequate. The general approach of STL seems to work well
for seasonality. Its estimate of this component is, nevertheless, too shaky to
be declared satisfactory.

Thus, evaluating time-series methods with hypothetical data did not result
in one procedure which can unanimously be recommended. For simple data
patterns, the standard methods yield satisfactory results. If these approaches
are, however, faced with data structures one can typically encounter in de-
mography (i.e. variable trend, changing seasonality, overdispersion), none of
them extracts the entered components well enough. We rather suggest, there-
fore, the method outlined in Chapter 4 which is especially tailored for those
situations and returns the trend as well as the seasonal component almost
identical to the simulation input.

3.7 Summary

The aim of this chapter was to present and critically evaluate indices, tests and
time-series methods for seasonality. For that purpose various methods which
are used in the literature have been presented, discussed and evaluated with
hypothetical (indices, tests, time-series methods) and with empirical (indices,
tests) data.

Three indices were presented: a winter/summer ratio, a dissimilarity index
and a measurement based on entropy. Among them, the winter/summer ratio
seems to be the best choice, mainly because of its easy interpretability and
that it takes the ordering of the months into account.

Recommending a test for seasonality is less straightforward. Several tests
have been presented and discussed which can be categorized in three classes:
Goodness-of-Fit tests, the “Edwards’ family”, and nonparametric tests. Choos-
ing an appropriate test should be guided by the underlying research question
17 The lower the dispersion parameter Θ, the larger the variance of the data:

Var(Y ) = µ + µ2

Θ
[cf. 389].
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and by the nature of the data. For the “normal” application, i.e. a smooth
pattern with one peak during the year, Hewitt’s test is probably best [150].
Because this test is purely based on ranks, it should be used in conjunction
with the winter/summer-ratio to have a measurement also of the height of the
seasonal fluctuations. Generalizations of Hewitt’s test [315] can be employed if
one assumes sudden outbreaks of certain diseases throughout the year which
last only a limited amount of time. If two peaks during the year are expected
such as for Crohn’s disease, the test proposed by Cave and Freedman seems
to be appropriate [44]. If the data are rather erratic, one should use either one
of the Goodness-of-Fit tests or one from the “Edwards’ family” [e.g. 84].

Five common time-series methods (X-12, SABL, STL, TRAMO/SEATS,
BV4) have been evaluated using seven models of simulated data with in-
creasing complexity. The general outcome is not convincing: If any of those
methods are faced with complicated data, the decomposition of the trend and
the seasonal component does not return the input data. For relatively simple
simulated data, the signal extraction in all methods works well. The trend
and the season in the given data, and after the decomposition process, are
almost identical. Sudden changes in the trend does not pose any problems.
Problems arise on the one hand if the seasonal pattern is not constant over
time. Methods which are unable to handle this, can not be applied as changes
in the seasonal component over time (or age) is often the main interest in
seasonality studies. On the other hand, the evaluated time-series methods fail
to return the entered signals if the data are derived from a Poisson distri-
bution or from a Negative Binomial distribution. In practice, especially the
latter distribution appears to be the rule rather than an exception if data are
not rates but counts and if relevant factors are unmeasured. It is difficult to
point at the exact estimation problem of these standard methods as they are
quite complicated due to the filters employed and the various iterative steps
involved.
Due to these shortcomings, a new method has been developed which is able
to incorporate changes in the trend, the seasonal component and unobserved
heterogeneity. This novel approach is presented, evaluated and applied to real
data in Chapter 4 (page 83).



4

Seasonal Analysis of Death Counts in the
United States

4.1 Introduction

Demographers — as probably most other empirical researchers — prefer work-
ing with rates rather than with pure counts: growth rates, birth rates, death
rates, transition rates, etc. The advantage is obvious: While count models
rely only on the actual event of interest, rate models take also the units into
account which are exposed to this event (e.g. person-years lived). Unfortu-
nately, exposures are often not available. For example in the case of historical
demography, the number of deaths by age and sex is regularly available. What
is frequently absent, however, is the number of people who were alive (and
therefore exposed to the risk of dying) in that particular age and sex. Also
for the analysis of seasonal mortality, we are often faced with the situation to
have death counts available but no exposures.

One way to avoid this problem is to estimate the exposures. Donaldson
and Keatinge [77], for example, obtained the daily population in their study
of winter excess mortality in southeast England “by linear interextrapolation
from the 1981 and 1991 censuses”. Also Kunst et al. [209] used linear interpo-
lation for population estimates in their time-series analysis on the influence of
outdoor air temperature on mortality in The Netherlands. Another solution in
the case of absent exposures is to use only events. For those count models, it
is not necessary to estimate any exposures. Typically, those studies assume an
underlying Poisson process in the data like the analyses of seasonal variation
in mortality in Scotland and in The Netherlands [121, 235].

The latter approach is clearly less desirable if exact exposures are available.
If this is not the case, it is open to discussion whether an estimated population
at risk is more favorable than pure counts. Especially in the case of season-
ality studies, there are many problems associated with estimating seasonal
populations (=exposures), as pointed out by Happel and Hogan [140].1

1 It should be noted that Neale [271] already mentioned the problem of estimating
monthly population counts in 1923.
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This chapter presents an analysis of seasonality based on pure death counts
in the United States from 1959 to 1998. Vaupel [381] once remarked that de-
mographers should use the best possible data to study a certain phenomenon.
Working with death counts as the best possible data seems to be contra-
dictory at first sight as Scandinavian population registers, for example, offer
exact event counts and precise exposure times. The quality of the data is,
however, only one side of the coin of best data: it is equally important to take
care of the content of the data. Small, egalitarian countries such as Denmark
and Sweden with one common climate are less desirable than the US when
one’s aim is to study the impact of social factors on seasonal mortality. Thus,
the “Multiple Cause of Death”-Public-Use-Files we used for the United States
provide such a data-source: every individual death since 1959 is publicly avail-
able, broken down by various characteristics. The wealth of having almost 80
Mio. individual records available makes it possible to study selected causes of
death for the whole period since the late 1950s across a wide age-range. More
details of the data are explained in Section 4.3.

Besides the sheer amount of information, the lack of research on seasonal
mortality in the United States during the last 25 years has been another
reason to choose this country. Studies on seasonal mortality focused on Euro-
pean countries during the last 25 years. For the US, this topic has not been
investigated since the late 1970s [231, 316, 319, 324, 325]. The only exception
being regional studies (e.g. 199, 285) and one study on deaths from coronary
heart disease by Seretakis et al. [340]. Solely, Feinstein [102] examined over-
all mortality in the United States recently. One important finding was that
the “seasonalities of deaths have been increasing over the years [. . . ] for older
people and decreasing for younger people”[102, p. 485].

This was quite surprising. With the improved chances of people attaining
high ages since the 1970s [378], we would have expected that elderly people
were also better able to withstand environmental stress (i.e. cold in winter)
with improvements in general living conditions.

4.2 Research Questions

There is ambivalent evidence for differences in seasonality of mortality for
women and men. Some studies surprisingly found no differences for seasonality
for this main determinant of mortality while others discovered remarkable
differences between women and men in their seasonal mortality patterns with
men showing larger seasonal fluctuations than women [98, 121, 262, 302, 419].
Therefore we decided to conduct all subsequent analyses for women and men
separately.

• Period & Cause of Death. Do we find support for Feinstein’s result
of increasing seasonality for the elderly over time? Is it possible to detect
different patterns for all cause mortality and selected groups of causes of
death?
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• Age & Cause. Previous studies have shown an increase in seasonality
with age for various countries [251, 268, 302]. Can these findings be repli-
cated in the US for all cause mortality and for selected causes of death?

• Region & Period. It is argued in the literature that socio-economic
progress in general and the widespread use of central heating and air con-
ditioning decreased seasonal fluctuations in deaths [188, 251]. We expect
decreasing seasonality over time. However, regions with a high differen-
tial between winter and summer temperatures should have benefited more
than regions with a moderate climate.

• Region & Age. How important is the region where you are living for
the development of seasonal mortality? Is an assumed increase with age in
seasonality of deaths larger in regions where one faces higher environmental
stress than in other regions?

• Education, Age & Cause of Death. The question how socio-economic
status — a major general mortality determinant [374] — affects seasonality
in deaths is still unanswered. Few studies argue that lower social groups
are disadvantaged [e.g. 79, 147]; most others found no social gradient [214,
215, 342]. Our analysis focuses on the question whether people with higher
education face lower seasonality in deaths.

• Marital Status & Age. Another major factor in mortality research is
marital status, usually showing that married people have lowest (overall)
mortality. Typically, married people have lower mortality risks throughout
their life courses than single, widowed or divorced persons. Men’s differ-
ences are larger than women’s [129, 163, 223]. These differential mortality
risks are usually explained either by a protection effect or by a selection
effect [125, 223]. In the case of seasonal mortality, a protection effect can
be imagined in several directions: people who are married can pool their
financial resources and have therefore not only better access to medical
care, but can also afford a higher quality of housing which is a major
determinant in avoiding cold-related mortality as previous studies have
shown [e.g. 245]. While this causal pathway could be also captured by
education as a proxy for socio-economic status, marital status may also
work in another direction: in comparison to single, widowed and divorced
people, married women and men are most likely not living alone. In the
case of an emergency, the spouse is usually present to organize help. Nev-
ertheless, no research has been published so far on the potential impact of
marital status on seasonal mortality.

4.3 Data

Our analysis uses the “Multiple Cause of Death”-Public-Use-Files for the
years 1959–1998 published by the “US Centers for Disease Control and
Prevention” (CDC). We downloaded the data from 1968–1998 from the
“Inter-university Consortium for Political and Social Research” (ICPSR) at
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http://www.icpsr.umich.edu/. Data for previous years have been kindly
provided by the “Program on Population, Policy and Aging” at the Terry
Sanford Institute for Public Policy at Duke University, NC.

We included only deaths at ages 50 and higher, because we wanted to focus
on adult mortality. At younger adult ages, the number of deaths in certain
age-groups for selected causes of deaths are too few to obtain robust estimates.
The data consist of more than 77 Mio. individual death records. Each of the
records contains information on the sex of the individual, month and year of
death, age at death. For our analysis, we also extracted information on the
cause of death, state of residence and state of occurence, and several social
variables. Figure 4.1 gives an overview on the availability of these variables
in our data over time. The following subsections explain how we divided and
coded the data for our analysis.

4.3.1 Cause of Death

Table 4.1 outlines which ICD codes we used to extract the information for our
selected causes of death. ICD is the abbreviation for “International Statisti-
cal Classification of Diseases and Related Health Problems” from the World
Health Organization (WHO). This coding scheme gives mandatory instruc-
tions how the cause of death has to be coded. During its existence, the ICD
underwent several revisions. While ICD-10 is the current revision, ICD-7,
ICD-8, and ICD-9 were in use in the United States during our observation
period. ICD-7 was used until 1967; between 1968 and 1978 ICD-8 was the
valid coding scheme; from 1979 until 1998 deaths in the United States were
coded according to ICD-9.

Table 4.2 gives an overview about the actual number of deaths for each
cause. In addition, we have given information about the contribution of each
cause to all deaths for the whole time-series, for the first five years, and the
last five years to highlight vaguely any time trends. In the column “Win-
ter/Summer Ratio” we divided winter deaths (January–March) by summer
deaths (July–September) to find out whether our selected causes show a con-
siderable seasonal difference in mortality. We did not give an extra-column
for a test for seasonality. All causes of death presented here have passed He-
witt’s nonparametric test for seasonality with significant values (ρ = 0.0130)
[150, 395]. This indicates that all causes examined show a pattern where the
six highest values of a year and the six lowest values of a year are not mixed
but appear in separate halves of the year. Most people died of cardiovascu-
lar diseases during our observation period, with almost 32 Mio. deaths. In
conjunction with neoplasms, cerebrovascular and respiratory diseases almost
80% of deaths are covered. Despite the regularities in the ordering of the
months (i.e. significant results for Hewitt’s test), the extent of seasonality dif-
fers remarkably: On average (=All Causes), the number of summer deaths is
exceeded by winter deaths by roughly 16%. Neoplasms, not surprisingly, show
relatively small fluctuations (1.6%), whereas respiratory diseases have 62%
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Fig. 4.1. Availability of Variables in Our Data-Set over Time

more deaths in winter than in summer. The leader in that respect is influenza
with a value of 27.762 (i.e. almost an excess of 2,700%).

Although the most remarkable changes in the cause of death structure over
time are usually associated with the “epidemiological transition” [281] and the
vanishing of tuberculosis [402] in the 20thcentury, the proportions of the lead-
ing causes of death have not remained constant during recent decades either.
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Table 4.1. Coding Scheme for Selected Causes of Death

Cause of Death ICD-Codes
ICD-7 ICD-8 ICD-9

Cardiovascular Diseases 400–468 390–429 390–429
440–459

440–458 557
IHD — 410–414 410–414

Neoplasms 140–239 140–239 140–239
Cerebrovascular Diseases 330–334 430–438 430–438
Respiratory Diseases 240; 241 460–519 460–519

470–527
Asthma 241 493 493
Influenza 480–483 470-474 487
Pneumonia 490–493 480–485 480–483

486
Bronchitits 500–502 490–491 490–491

Diabetes Mellitus 260 250 250
Infect. & Parasit. Dis. 001–138 001–136 001–139

Tuberculosis 001-019 010–019 010–019
Liver Cirrhosis 581 571 571

With the exception of IHD (1968–98), all causes of death
are covered for the period 1959–1998.

Figure 4.2 gives an overview of how seven major causes have changed during
our observation period. For “both sexes”, “women”, and “men” there are two
columns each, showing the cause-of-death spectrum for the first (1959–63)
and last (1994–1998) five years, respectively, covered in our dataset. Cardio-
vascular diseases remain the leading cause of death (see also Table 4.2) —
although the contribution shrunk for both sexes from 45% to 35%. Similarly,
also cerebrovascular diseases lost in relevance between the late 1950s and the
late 1990s. Almost 12% of all people died from that group of diseases between
1959–63, whereas in the years 1994–98 only 7% died of it. Net “winners” in
this respect are mainly malignant neoplasms (17% → 22%) and respiratory
diseases (7% → 9%). Diabetes Mellitus and “Infectious and Parasitic Dis-
eases” also gained in relevance, however their overall share is comparatively
small (Diabetes Mellitus: 1.84% → 2.66%; Infectious and Parasitic Diseases:
1.24% → 2.80%). It is interesting to note that influenza and hypothermia —
two causes of death which are often associated with winter excess mortality
— make up only a negligible part of all deaths (influenza: 0.04%; hypother-
mia: 0.02%). These small proportions, however, might mask the real impact
of these diseases. For example, it is well-known that “[i]nfluenza epidemics
cause deaths additional to those registered as being due to influenza, such as
deaths caused by arterial thrombosis”[78, p. 90].
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Fig. 4.2. Changes in the Cause of Death Composition of Adult Deaths in the United
States Between 1959–63 and 1994–98 by Sex

4.3.2 Education

The variable education has been included since 1989. The original data are
given as a two-digit code indicating years of education. We followed the re-
coding advice in the coding manual with one exception: we included two
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additional categories which indicate whether a person has finished elemen-
tary school (8 years of education), dropped out of elementary school (less
than 8 years) or has received no formal education at all (0 years). All other
categories remained the same and have been given meaningful labels. The
categories, their labels and the corresponding numbers of death broken down
by sex are given in Table 4.3.

Table 4.3. Number of Deaths Broken Down by Sex and Level of Education

Code Meaning Deaths
Women Men

Counts % Counts %

0 No formal education 105,462 1.0 108,348 1.0
1 Elementary School Dropout 846,138 7.9 975,483 8.7
2 Finished Elementary School 1,390,687 12.9 1,229,727 10.9
3 High School Dropout 1,197,240 11.1 1,229,727 10.9
4 Finished High School 3,746,633 34.8 3,594,343 31.9
5 College Attendance 1,120,953 10.4 1,147,500 10.2
6 College Degree or more 857,895 8.0 1,264,765 11.2
7 Not Stated 1,502,673 14.0 1,549,632 13.8

Σ 10,767,681 100.0 11,249,981 100.0

Finishing high school was the most common level of education achieved
by both sexes (women: 34.8%; men: 31.9%). Although our decomposition in
7 categories is relatively detailed, enough people remain even in the smallest
group “no formal education” with more than 100,000 deaths for each sex.

4.3.3 Marital Status

Data on marital status are available since 1979. To make comparable analy-
ses on the impact of social factors by age, we restricted our analysis to the
years 1989–98, the same period as for education. In the official codebooks six
categories are given which have been converted to five: never married / sin-
gle, married, widowed, and divorced remained the same. The category “not
stated on certificate” has been merged together with “not stated”. This resid-
ual category comprises less than one percent of each sex (♀: 0.3%, ♂: 0.7%). In
contrast with the variable “education”, the cell frequencies differ remarkably
between women and men. Most notable are the differences for married and
widowed women and men. This is the result of the higher life expectancy of
women. It is more likely for women at the end of their lives to be widowed
than for men.
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Table 4.4. Number of Deaths Broken Down by Sex and Marital Status

Code Marital Status Deaths
Women Men

Counts % Counts %

1 Never Married, Single 935,504 8.7 1,536,393 13.7
2 Married 2,820,570 26.2 6,487,584 57.7
3 Widowed 6,102,184 56.7 2,011,515 17.9
4 Divorced 879,450 8.2 1,136,594 10.1
9 Not Stated 29,973 0.3 77,895 0.7

Σ 10,767,681 100.0 11,249,981 100.0

4.3.4 Region

Various studies have shown that countries with relatively harsh climatic condi-
tions and cold winters (e.g. Canada, Sweden) show less winter excess mortality
than countries with warm or moderate climate such as Portugal, Spain or the
UK [135, 147, 252]. It is argued that people in colder regions are better able
to protect themselves against adverse environmental conditions. One disad-
vantage of previous studies was that these results were based on cross country
analyses. The data from the United States provide an excellent framework
to analyze seasonal mortality in different climatic regions within one country.
For our regional analysis we followed the state groupings given in the orig-
inal coding manuals which resemble different climatic regions. Our slightly
adapted division of states is presented in Table 4.5. In its original version the
states Alaska and Hawaii belonged to the group “Pacific”. In our analysis,
these two states have been examined separately. Figure 4.3 makes it easier to
locate the coding of the regions geographically. This classification resembles
in most cases the “Köppen Climate Classification”. In some cases, however,
the regional classification does not describe states with similar meteorological
conditions. For example, Arizona and Montana in the “Mountain-Group” dif-
fer considerably in their climate. Special care should therefore be taken for the
interpretation if estimations from the “Mountain” and from the “Midwest”
show exotic results.

We refer to the actual “state of occurrence”, i.e. the state/region where the
death has happened. “State of residence” is given in the data as well. In our
analyses by region we only included those deaths where state of residence and
state of occurrence were in the same regional division excluding the impact of
“snowbirds” [140].2 The loss of data is relatively minor. More than 98% of all
deaths happened in the same region as the place of residence of the deceased.

2 People who are seasonally migrating — usually to warmer regions during the cold
season — are sometimes labeled “snowbirds” in the literature.
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Table 4.5. Coding of Regions by State

Code Region States

1 New England Connecticut Maine Massachusetts
New Hampshire Rhode Island Vermont

2 Middle Atlantic New Jersey New York Pennsylvania

3 Midwest Illinois Indiana Iowa
Kansas Michigan Minnesota
Missouri Nebraska North Dakota
Ohio South Dakota Wisconsin

4 South Atlantic Delaware D.C. Florida
Georgia Maryland North Carolina
South Carolina Virginia West Virginia

5 South Central Alabama Arkansas Kentucky
Louisiana Mississippi Oklahoma
Tennessee Texas

6 Mountain Arizona Colorado Idaho
Montana Nevada New Mexico
Utah Wyoming

7 Pacific California Oregon Washington

8 Alaska Alaska

9 Hawaii Hawaii

4.3.5 Known Data Problems

Generally speaking, the “US Multiple Cause of Death”-Public-Use-Files pro-
vide a very good basis for research. Nevertheless, there are some real and some
potential pitfalls in the data which will be briefly outlined here as well as the
approaches used to tackle them.

ICD Revisions: During our observation period, three revisions of the ICD
were in practice in the US (ICD-7, ICD-8, ICD-9). If one is not careful,
the introduction of a new revision is prone to result in sudden shifts in the
number of deaths. An illustrative example is Asthma. While ICD-7 was
used, this disease (ICD-7 code: 241) belonged to the group of “Allergic,
endocrine system, metabolic and nutritional diseases” (ICD-7 Codes: 240–
289). Since the eighth revision, Asthma (ICD-8 code: 493) is one of the
“diseases of the respiratory system” (ICD-8: 460–519). Therefore particu-
lar care was taken in reconstructing the time-series. Besides consulting the
original coding schemes, the following procedures have been undertaken
to obtain time-series with a maximum of quality:
• The first step was to plot the data to discover any breaks or other-

wise strangely behaving characteristics in the data. As pointed out by
Cleveland: “Data display is critical to data analysis. Graphs allow us
to explore data to see the overall pattern and to see detailed behaviour;
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no other approach can compete in revealing the structure of the data
so thoroughly” [49, p. 5].

• Articles and monographs by Jacques Vallin and France Meslé were con-
sulted (e.g. [259, 375]) who are probably the experts on reconstructing
time series of causes of death.

• Several articles on seasonal mortality give details about the ICD codes
they used for a particular cause [e.g. 98, 209]. This was valuable in
finding “hidden” causes such as asthma mentioned before. The scope
of some articles covered more than one ICD coding scheme. Marshall et
al. [246], for example, give the ICD codes for Coronary Heart Disease
for ICD-8 and ICD-9. Articles like this facilitated the transition from
one ICD revision to the next.

• The statistical software package Stata with its search facilities for ICD
codings (icd9 search and icd9 lookup) allowed to find all possibil-
ities for a certain disease which would otherwise remain undetected.

• Vladimir Shkolnikov, Michael Bubenheim, Sigrid Gellers-Barkmann,
Rembrandt Scholz and Markéta Pechholdová from the “Laboratory
for Demographic Data” at the Max Planck Institute for Demographic
Research in Rostock, Germany, have given valuable advice and sug-
gestions for the reconstruction of the time-series.

The Year 1972: In the year 1972, the Multiple Cause of Death Public Use
File contained only a 50% sample of all deaths. We simply multiplied all
deaths by a factor of 2 to circumvent this problem.

The Years 1987 & 1988: We discovered a sudden drop in death counts by
plotting annual deaths for selected causes for the years 1987 and 1988.
After checking several possibilities as a cause, we found out that only the
first 44 US states (in alphabetical order) had been included for those two
years. Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin,
and Wyoming were missing. We tackled this problem by estimating the
contribution of those states for the year 1986 and 1989 for our respective
analysis (e.g. for sex, age group and educational level). With those two
values we made a linear interpolation of what we would expect for the
years 1987 & 1988. We then multiplied the actual counts for those states
with a factor to obtain the expected number of deaths. Of course, this
does not solve the problem perfectly. Nevertheless, we believe that this
approach yields more satisfactory results than, for example, leaving out
these 7 seven states for all analyses.

4.4 Methods

4.4.1 Model Requirements

The data used in this project have specific features that we need to take into
account when selecting the appropriate models for analysis: the employed
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methods should allow for the count character of the data, without requiring
information on the corresponding exposures. Covering a period of four decades
of remarkable changes in mortality, especially at older ages, the data show
considerable variation in the overall trend, both between different causes of
death but also between different age-groups within the same cause. Thus,
appropriate models have to allow for a flexible specification of these different
trend features. We do not know how the trend and the seasonal component
changes with age and/or over time. Therefore we do not want to impose any
specific parametric model upon our data but rather use data-driven, non-
parametric techniques to estimate our components. Last but not least, we
would like to allow for overdispersion in our models as this “is the norm in
practice and nominal dispersion the exception” [249, p. 124–125]. As shown
in Chapter 3 (Measuring Seasonality), previously existing methods such as
X-11, STL, . . . were unable to extract the exact trend and the exact seasonal
component. Therefore, a new method has been developed which is presented
in the following sections to fulfill these requirements.

4.4.2 The Model

Basic Model Specification

Let t denote the underlying time variable which can represent calendar-time
or age. For matters of convenience in this explanation, t represents calendar-
time. The corresponding number of deaths, corrected for the different lengths
of months, is denoted yt. Our model resembles several characteristics from the
well known field of generalized linear models (GLMs):

Distribution: We assumed that the yt follow a Poisson distribution with pa-
rameter µt. Thus E(yt) = Var(yt) = µt. The Poisson distribution is usually
regarded as “the benchmark model for count data”[41, p. 3].

Link Function: Similar to the setting of GLMs, we relate µt, which are the ex-
pected values of yt to a stimulus matrix via a link function. In our case, the
stimulus matrix is time (or age) and transformations of it. While other link
functions are also possible for Poisson distributed data (for example, the
square-root- or the identity-link, see [389]), we use the canonical/default
choice of a log-link.

The model we are estimating is:3

lnµt = f(t) +
L∑

l=1

{
f1l(t) sin

(
2π l

12
t

)
+ f2l(t) cos

(
2π l

12
t

)}
. (4.1)

3 It should be pointed out that the development of this model is based on an idea of
Dr. Jutta Gampe. The model was implemented in strong collaboration between
her and the author.
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The model is estimated in a similar manner as a GLM. The main deviation
are the parameters which are estimated. In the GLM setting, one parameter
is estimated for each column in the covariate matrix. In our model, these
scalars are replaced by functions. These functions are indicated by f(t), f1l(t)
and f2l(t) in Equation 4.1. The component f(t) describes the varying trend
in the level of counts — due to changing exposures and overall changes in
mortality. The seasonal fluctuations are modeled with the latter two terms
in the equation. In the most simple case with L = 1, two seasonal functions
f11(t) and f21(t) are estimated, resulting in one(!) smoothly changing annual
fluctuation. If L = 2, a semi-annual swing is added. Theoretically, it is possible
to add higher frequencies. It is doubtful it will make sense, though, if L ≥
3. These kinds of models have been termed varying coefficient models by
Hastie and Tibshirani [145]. “In contrast to the GLM, where the regression
coefficients [. . . ] are assumed to be constant, [. . . ] this model accommodates
situations in which one or more of the coefficients are allowed to vary smoothly
(interact) over [. . . ] time or space”[89, p. 760].

Technical Digression: Nonparametric Estimation of Smooth
Trends Varying Coefficients

The following section, until page 101, represents a technical digression.4 The
aim is to show how a function like f(t), f1l(t) or f2l is actually estimated.
The equations in this section (Equations 4.2 and 4.3) are not directly linked
to Equation 4.1.

We assumed that f(t), f1l(t) and f2l are smoothly changing over time (or
age). In a recent paper, Eilers and Marx [89] showed that such models, which
they termed GLASS (Generalized Linear Additive Smooth Structures), can
be estimated via P -Spline smoothing. This technique belongs to the family of
nonparametric smoothers. P -Splines are cubic B-Splines being used as regres-
sion bases with a roughness penalty on their regression coefficients. B-Splines
are made of polynomial pieces connected with knots. Please see Figure 4.4
for a graphical explanation.5 In our case of cubic (degree q = 3) B-Splines,
each B-Spline consists of q+1 = 4 polynomial pieces, as indicated by the four
segments in gray. Each of these polynomial pieces is of degree q = 3. These
polynomial pieces are connected at q = 3 inner knots (t2, t3, t4). At those
knots, the spline function as well as the q − 1 = 2 derivatives of the neighbor-
ing polynomial pieces are continuous. The B-Splines are positive on a domain
of q + 2 = 5 knots. This corresponds in Figure 4.4 to the range from t1 to t5
on the time-axis; everywhere else they are zero [87, 132]. These B-Splines are
bell-shaped and resemble a Gaussian density (=density of a Normal distribu-
tion) [89] without the smoothing problems when regression bases are derived
4 As this approach is novel, it is appropriate to include it in the main text instead

of putting it into the appendix.
5 An extensive discussion of B-Splines (definition, basic properties, . . . is given in

[67].
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from a normal distribution. For example, Gaussian smoothers cannot fit a
straight line as they are not locally defined but from [−∞;∞] resulting in a
“Gaussian ripple” [86]). Such an example is given in Apppendix C on page
183.

Time

t1 t2 t3 t4 t5

0.
0

0.
2

0.
4

0.
6
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8

Adapted from Eilers and Marx [86].

Fig. 4.4. Construction of One B-Spline

With these cubic B-Splines as regression bases, we are working in the well
known area of linear regression. The smoothed function is found by minimiz-
ing S in Formula (4.2) via the traditional OLS-fitting. In this equation, y
represents the response vector, B the matrix of covariates (=our B-Splines)
and α their respective regression coefficients.

S = |y − Bα|2 (4.2)

Figure 4.5 shows cubic B-Splines “in action” to smooth artificial data.6

In the lower part of each of the four panels, you see cubic B-Splines which
are close to normal densities as postulated. From left to right and from top
to bottom, the number of B-Splines is increasing. The upper part of each

6 It might be interesting to note that the use of cubic B-Splines is relatively
widespread: For example, the software to design the letters of this text (META-
FONT) used some cubic B-Splines to have smooth and visually appealing shapes
[200].
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panel shows scatterplot of the data and a line. This line is the result of the
smoothing using the cubic B-Splines as regression bases.

One can easily see:

• The higher the number of B-Splines, the closer (and “wigglier”) the
smoothed curve is to the data.

• The lower the number of B-Splines, the smoother is the curve.

The problem one faces now is to find an optimally smoothed curve. If the
curve is too smooth, important characteristics of the data are not caught. If
the curve is too wiggly, the data are overfitted, i.e. we include more complexity
into the model than what is actually desirable. There is no golden standard
for choosing the optimal number of B-Splines and therefore of regression pa-
rameters.7 One could follow a subjective approach to determine the optimal
number of parameters. Although it may sound repulsive to the “objective”
scientist, “[i]t may well be that such a subjective approach is in reality the
most useful one” [132, p. 29]. We are following another approach outlined
by Eilers and Marx [87] as no all-purpose scheme existed to choose the opti-
mal number of splines automatically. The idea is simple: Building on works
of O’Sullivan [283] and Reinsch [306], they proposed to choose a relatively
large number of cubic B-Splines which would normally result in over-fitting.
To prevent this fallacy, a penalty is put on the regression coefficients. More
specifically, a penalizing constant is multiplied with the second derivative of
the regression coefficients.8 The previous optimization problem (in Formula
4.2) changes to Formula 4.3:

S∗ = |y − Bα|2 + λ |D2α|2 , where D2α = ∆2α (4.3)

The iterative procedure to optimize S∗ has been described in [89]. Figure
4.6 shows the impact of how a change in the penalizing parameter λ affects the
smoothness of the curve. In all of the nine panels we see the same artificial data
as in Figure 4.5. The number of cubic B-Splines has been set to a relatively
high level, which would result in over-fitting if the regression coefficients were
not penalized. With a λ-value of 0.01 in the upper-left panel, the weight of
the penalty-term is relatively negligible, resulting in the expected overfitted,
wiggly curve. The higher the λ-values (from left to right and up / down),
the smoother the curve gets. While the upper two graphs are definitely too
close to the data, the last curves are — without any doubt — too smooth

7 As we are actually using regression parameters, the term “non-parametric mod-
els” might be misleading. Eilers and Marx [87] pointed out that “anonymous
models” is preferrable as parameters are estimated. They simply have no scien-
tific interpretation.

8 Eilers and Marx note that the second derivative has been used since “the seminal
work on smoothing splines by Reinsch (1967)”, however, “[t]here is nothing special
about the second derivative; in fact, lower or higher orders might be used as well”
[87, p. 91].
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Fig. 4.5. Smoothing of Artificial Data Using Different Numbers of Cubic B-Splines
as Regression Basis
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with the outcome that important characteristics of the data are not captured.
Ultimately, the smoothed curve tends to become a horizontal line for λ → ∞.

There are several strategies to find the optimal value of λ, for example
cross-validation. We followed the path of Eilers and Marx [87] and used the
Akaike Information Criterion (AIC). Put in a nutshell, the AIC corrects the fit
of the model for the number of parameters involved in the model’s estimation.

P -Splines have several useful properties which makes Eilers and Marx [87,
p. 98] “believe that P -splines come near to being the ideal smoother.” For
example, their foundation in linear regression and the generalized linear model
makes them easy to understand and use. Also the lack of unwanted boundary
effects favors P -Spline smoothers instead of other smoothing methods.9 An
exhaustive comparison of various smoothing methods, their properties and
their respective pros and cons are found in [88].

Overdispersion & Smoothing Parameter Selection

After initial experiments, we discovered that our data violated one of the
key assumptions of the Poisson distribution which we were using; As stated
in Formula 4.4, the mean and the variance are characterized by the same
parameter (we denoted the parameter by µ as the standard choice; λ is already
in use for the smoothing penalty parameter).

E(yt) = Var(yt) = µt (4.4)

As mentioned before, this assumption of nominal dispersion is relatively
strong. Regularly, one observes overdispersion in practical applications. Over-
dispersion is defined as E(yt) = µt < Var(yt). This case, where the variance
exceeds the mean, can arise for various reasons [22]:

• if the rate µt is not constant within a chosen time unit t (time dependence
in the rate)

• if the number of events in a time-interval depends on the number of pre-
vious events (contagion).10

• in the case of unobserved heterogeneity, i.e. there are covariates not entered
into the model which affect the number of counts.

All of them are likely for our analysis of death count data — especially un-
observed heterogeneity. We can certainly expect two sources of unobserved

9 In the case of smoothing with a polynomial, it can not be excluded that some
values are estimated at the boundaries which do not make sense. For example, if
a quadratic curve is used for smoothing, the fitted line points on both ends go
either up or down although it is possible that the resulting values do not have
any theoretical meaning (e.g. lifetimes smaller than zero).

10 It should be noted that already Greenwood and Yule stated in 1929 [133, p. 276]
“the problem of the distribution arising when the chance of a happening is affected
by antecedent success or failure”.
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Fig. 4.6. The Impact of Changing λ-Parameters on the Smoothness of the Curve
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heterogeneity in our data: one is due to the fact that the month of death is
only a proxy-variable for the actual factors (e.g. temperature) which mod-
ulate the expected number of deaths µt seasonally. There is individual but
unobserved heterogeneity in the risk of death for specific months across years.
Secondly, even if we restrict the analysis to one sex, narrow age-groups, . . . ,
people in these groups are heterogeneous with respect to other characteristics
not included in the analysis.

Although we do not know what the actual reason of overdispersion is, there
is a way to control for it. The typical approach still follows the suggestion of
Greendwood and Yule [133] of assuming that the data follow a Poisson distri-
bution, “but there is gamma-distributed unobserved individuals heterogeneity
reflecting the fact that the true mean is not perfectly observed” [41, p. 71].
This modeling of a random effect for the mean with a gamma distribution
leads to the Negative Binomial Distribution for the count [41, 160, 292].

The Negative Binomial Distribution is closely related to the Poisson Dis-
tribution as the following tabulation shows:

Distribution Expected Variance
Value

Poisson µt µt

Negative Binomial µt µt + µ2
t

θ

The estimator for the expected value remains the same: µt. Using this
parameterization of the variance as shown by Venables and Ripley [389], we
can easily recognize that the Negative Binomial distribution depends simply
on one more parameter called θ. One could argue that the Negative Binomial
Distribution is a generalization of the Poisson distribution by relaxing the
term for the variance. We can model the Poisson case of nominal dispersion
by letting θ → ∞. The other extreme of large overdispersion can be modelled
by letting θ → 0.

The problem that arises is now: which θ-value is to be chosen, as this
parameter has to be entered into our model? The solution is found in the
properties of the so-called Pearson Residuals in the Generalized Linear Model.
They are defined as [see 249, p. 37]:

rP =
y − µ√
V(µ)

and in our case and notation: rPt =
yt − µ̂t√
µ̂t + µ̂t

θλ

,

where yt denotes the number of deaths at time t (for the analysis by period),
µ̂t represents the estimated value at time t and Var is the estimated variance.
This standardization of the raw residuals (yt−µ̂t) results for an optimal model
in large samples in E(rPt) = 0 and Var(rPt) = 1 [41, p. 141].

Our strategy for choosing the optimal model proceeds in the following
steps.
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1. We assume a grid of possible overdispersion parameters θ.
2. For each given θ:

• we estimated all possible models with the given grid of all λ-per-
mutations. In the simplest case when L = 1 in Equation 4.1, three
separate λs were estimated.11

• we estimated the AIC from all models estimated in the previous step
and chose the one with the minimum AIC value.

3. We iterated the previous step for all values of θ.12

4. The outcome of the previous step was one “conditional optimal model”
for each given θ. Then, we calculated the Pearson Residuals for these
“conditional optimal models”. The one model where the variance of the
Pearson Residuals was closest to 1 was then chosen to be the optimal
model.13

Using simulated data, we compared our final model which incorporates
overdispersion with a model which assumed data following a poisson distribu-
tion. This approach has the advantage that we know the various components
that are entered into the model and can therefore check whether the two de-
composition approaches return the same components we have entered into our
simulated data. Figure 4.7 shows such a simulated example in a 3 × 4 panel.
The left column displays the simulated data. The trend component (Figure
4.7 d) has been constructed by using a third-order polynomial. The seasonal
component is linearly increasing (Fig. 4.7 g). We assumed a value of 10 for
θ in the Negative Binomial Distribution which results in high overdispersion.
This is reflected in the residuals as shown in Figure 4.7 j. Apart from the
linear increase in the seasonal component, this model is equivalent to Model
VII in Chapter 3 presented on page 78.

The middle column represents the optimal model, which has been esti-
mated using our approach which incorporates unobserved heterogeneity. Fig-
ure 4.7 b shows the entered time-series which is equivalent to Figure 4.7 a.
It can be clearly seen that the extraction of the trend (Fig. 4.7 e) and of the
seasonal component (Fig. 4.7 h) mirrors the input data almost perfectly. As
demanded from our model, the variance of the Pearson residuals should be 1
for the optimal model. Figure 4.7 k shows that our estimation is reasonably
close enough with a value of 1.04. The right column exemplifies a mis-specified
model. Although we used a Negative Binomial Model in the middle column

11 If we had given 5 values for λTrend which estimates the trend function f(t), and
also 5 values each for the penalty coefficient for the seasonal functions f1l(t) and
f1l(t), we would have had to estimate 5 × 5 × 5 = 125 models.

12 If we had also given 5 possible values for θ, 125 × 5 = 625 models would be
required to be estimated.

13 If the variance of the Pearson Residuals was not close enough to 1, we started
again with step 1 with an increased grid. “Close enough to 1” for the variance of
the Pearson Residuals was defined as: 0.99 < Var(rPt) < 1.01.
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Fig. 4.7. Simulated Data, “Optimal” Model and a Mis-specified Model

as well, we have chosen a value for θ (= 9000), which approximates a Pois-
son Distribution. Without taking unobserved heterogeneity into account our
model is helpless in estimating the trend (Fig. 4.7 f) and the seasonal com-
ponent (Fig. 4.7 i). Not surprisingly, the variance of the Pearson Residuals in
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the mis-specified model (Fig. 4.7 l) is far too high (21.282) for an expected
value of 1.
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Fig. 4.8. Seasonal Component from Figure 4.7 and Its Amplitude

Based on this simulation study,14 we concluded that our approach meets
our requirements that an appropriate method should be able to work with
overdispersed data having a flexible trend and a changing seasonal component.

The following section presents the results of our analysis for which we used
the decomposition method outlined here. We are, however, only interested in
a small part of the three components: the change in the amplitude of the
seasonality over time (or age). This corresponds in mathematical notation
to the smooth amplitude-modifying functions of the seasonal components in
Equation 4.1 (page 96) [118]:

al(t) =
(
f1l(t)2 + f2l(t)2

) 1
2 (4.5)

We use the resulting function al(t) from Equation 4.5 and plot eal(t). Figure
4.8 explains this graphically. In the left panel our extracted seasonal compo-
nent for an optimal parameter selection from Figure 4.7h is displayed. The
difference between the left and the right panel is that in the latter we added
the amplitude over time(eal(t)) of the seasonal fluctuations using a bold line.

14 Of course, more simulation studies have been conducted. The one presented here
should only serve as an example.
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This line is used as indicator of the change in seasonality over time or age in
the subsequent sections. A value of 1 corresponds, thus, to the case when no
seasonality is present. These seasonality values should not be confused with
the exponentiated regression coefficients known from event-history models and
understood as relative risks. Values apart from 1 have no direct interpretation.

4.5 Results & Discussion

4.5.1 Seasonality by Period & Cause of Death

All Cause Mortality

Figure 4.9 shows the change in the amplitude for seasonality in deaths from
all causes by 10-year-age-groups for the whole observation period from Jan-
uary 1959 until December 1998. The left panel illustrates results for women,
whereas the right panel deals with men. For both sexes we see the same general
trends: the older the people (=the darker the lines), the higher is the seasonal
amplitude. Changes over age will be examined in subsequent parts of this sec-
tion. Right now the focus is on changes over time. What we discover is some
preliminary support for Feinstein’s finding: Younger age-groups seem to have
a constant or slightly decreasing trend as indicated by the dotted and dashed
gray lines — especially for men. People who died at an age above 80 (dotted,
dashed and solid lines), however, have to suffer from higher fluctuations in
seasonality towards the end of the observation period.

With the progress made in survival chances — especially for older people
— we would have suspected that people are better able to withstand envi-
ronmental stress in recent times. A solution for this surprising finding is not
straightforward. One has to keep in mind that “Seasonality for All Cause
Mortality over Time, by Age-Group” is an aggregated outcome over several
variables. Between 1959 and 1998 mean age at death, measured by e0, rose
from 73.24 years to 79.31 years for women (♂ 1959: 66.80 years; 1998: 73.53
years) in the United States [166]. Consequently, also the distribution of deaths
within one 10-year-age-group shifted upwards. Among octogenarians, for ex-
ample, the arithmetic mean for age at death increased from 83.68 years to
84.01 years for men (♀ 1959: 83.94 years; 1998: 84.54 years). This composi-
tional effect might blur the “true” effect of changes in seasonality over time.
We checked this problem by estimating seasonality for all cause mortality over
time by single ages. The results (not shown here) resembled our findings for
10 year-age-groups: at least since the late 1970s, seasonalities are increasing
for the elderly.

Selected Causes of Death

After ruling out the impact of the age composition, we decomposed the ag-
gregated picture into selected causes of death and analyzed them separately
for women and men by age-group as shown in Figure 4.10.
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Fig. 4.9. Seasonality of All Cause Mortality over Time by Sex and Age-Group

Deaths from cardiovascular diseases are shown in the upper left panel for
women and in the upper right panel for men. As this was and still is the
leading group of cause of death, the fact that the two diagrams resemble the
results for all cause mortality rather closely is not too surprising. Cerebrovas-
cular diseases, as illustrated in the two panels in the middle row, are similar
to the previous pictures for deaths from all causes as well as from cardiovas-
cular diseases. The increasing trend for the elderly is even more obvious for
this cause of death category. Apart from women who have died between 50
and 59 years of age from that cause (dotted gray lines), all seasonalities are
increasing at least since the middle of the 1970s.15

If data problems can be excluded, there are always two strains of explanation
which can be referred to when interpreting changes in populations [383]. First,
there is a real difference in the variable of interest (seasonal susceptibility).
In our context, this explanation would imply that people have become more
susceptible to environmental stress over the years. One has to be careful with
this interpretation, though: by looking at the changes in the amplitude we
are using a relative measurement. An increase in the amplitude can either be

15 The dashed gray line on the left, denoting deaths of women aged 60-69 years,
represents an outlier. So far, it has been impossible to track down the source for
this problem since several checks have been already conducted such as plotting
the time series, looking for sudden changes in the number of deaths, etc. Also a
completely new approach for estimation resulted in the same outcome.
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caused by a real increase in winter mortality or by a decrease in winter mortal-
ity over time with decreases in summer mortality at an even faster pace. The
results would be the same: a larger seasonal amplitude in deaths/mortality
by the end of the observation period than in the beginning. This conjecture
finds support in the article of Seretakis et al. [340], who also found a decrease
in deaths from coronary heart disease until the 1970s followed by a slight
increase: “If the reversal is real, then it could reflect the increase in use of air-
conditioning, which would have blunted the effects of occasional heat waves
on coronary mortality” [340, p. 1014].
Secondly, however, there is the possibility that the change is influenced by a
compositional difference. In the context of seasonal mortality fluctuations, it
is possible that current progress against old-age mortality has the side-effect
that nowadays even frail people can become relatively old. While in the past,
frail individuals died early and left a relatively robust cohort of survivors who
were coping well with environmental hazards in winter, frail people today may
become older and are more susceptible in winter. This explanation could be,
however, only applied to people at relatively advanced ages.

Not all causes of death show the same pattern over time. The two panels on
the bottom of Figure 4.10 contain the development of seasonality over time for
respiratory diseases. For both sexes we observe a decline in seasonality. While
the decrease is almost linear for women at advanced ages, men’s and “younger”
women’s seasonality shrank until the late 1970’s, and has stalled since. Please
note the different scale on the y-axis in comparison to cerebro- and cardio-
vascular diseases: seasonality for respiratory diseases was much higher in the
past and still is. Although this gap has become smaller, the amplitudes in
seasonal death fluctuations from respiratory diseases remain higher in com-
parable age-groups.
In univariate analysis of time-series it is always difficult to determine causal
influences of external variables. It is, however, quite likely that improvements
in housing conditions played a major part. While in the US in 1960 only half
of all households were heated by gas or electricity, this proportion reached 82
percent in 1990 [372]. With these improved chances to heat the house prop-
erly, chances are decreasing for people to “catch a cold”. The different pattern
for women and men cannot be explained by this, though.

4.5.2 Seasonality by Age & Cause of Death

Of prime interest for demographers are not only death patterns for women
and men over time but — maybe even more important — with age. Previous
articles state that seasonality is increasing with age. However, the data used
in many studies appear to be problematic [cf. 302, p. 199]: “In several stud-
ies, no distinction by age was made at all [13, 21, 319, 367]. If the factor age
was taken into account, the highest included age or the beginning of the last,
open-ended, age category was chosen at an age after which most deaths in a
population occur [37, 62, 76, 97, 98, 164, 169, 188, 253, 369]. The oldest people
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in the “Eurowinter”-study, for example, were 74 years old. Bull and Morton
[37] merely made a binary distinction: younger than 60 years; 60 years and
older. Thus, results from these studies may simplify or blur the relationship
between age and seasonal fluctuations in mortality ” [302, p. 199]. So far,
there are only a few studies that have investigated seasonality in mortality or
deaths into very high ages [251, 268, 302]. The highest ages that have been
analyzed were centenarians and supercentenarians (110 years and older) in
the study of Robine and Vaupel [309]. Regardless whether they calculated
seasonality indices and ratios or log-odds, the typical outcome were higher
seasonal fluctuations by the end of the lifespan than at middle ages. Even su-
percentenarians show higher excess winter mortality than centenarians, which
indicates that also at those ages, the resistance against environmental hazards
is decreasing [309].

All Cause Mortality

Figure 4.11 gives a first impression how seasonality in deaths changes with
age. The left panel shows seasonality for deaths from all causes for women
where each solid line indicates a 10-year-calendar period. The right panel
shows results from the respective analysis for men.
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Fig. 4.11. Seasonality of All Cause Mortality by Sex and 10-Year-Calendar-Pperiod
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The general trend for both sexes shows — as expected — higher seasonality
with age. The increase is far from linear. We could make a distinction for
women as well as for men by grouping the first three decades together (dotted
gray: 1959–68; solid gray: 1969–78; dotted black: 1979-88) and contrast them
with the last 10 years (1989–98 in solid black): Until age 80 the increase
is relatively moderate. Then, at the highest ages, seasonality bends sharply
upwards. The black solid line in both panels represents changes with age for
the most recent decade in the analysis (1989–98). One can differentiate three
stages: Compared to previous decades, seasonality is relatively low at age 50
and increases until age 60 where it is roughly on level terms. Between 60 and
75/80 years seasonality remains relatively constant. After age 80, seasonality
in deaths from all causes is increasing, and shows higher values than in the
past for the same ages.

Selected Causes of Death

To gain further insights, we decomposed the pattern for all causes again into
the three major seasonal diseases. The results are shown in Figure 4.12 for
cardiovascular (upper left & upper right panel), cerebrovascular (middle left
& middle right panel), and respiratory diseases (lower left & right panel).
As we have seen previously for the analysis by calendar-time, seasonality of

cardiovascular diseases matches seasonality from all causes almost perfectly.
Especially for men during the most recent decade analyzed (1989–98), we
recognize again the development of seasonality in three stages. While the
age-range 60–65 marks also here the bending point from an increase in sea-
sonality to a constant pattern, the age when the slope becomes steeper again
is shifted to the right. Seasonality for cardiovascular deaths shows a strong up-
ward tendency after ages 90–95. This three-stage-process is also repeated for
cerebrovascular diseases with only slightly changing ages as turning-points. I
would like to stress that the puzzling pattern is not the outcome of our model.
If we had chosen a polynomial for our estimation procedure those unwanted
boundary effects could have been implicit in the model as mentioned briefly
in the end of Section 4.4.2. Using the P -Spline approach, though, has the
advantage that “[b]oundary effects do not occur if the domain of the data is
properly specified” [87, p. 98]. Excluding, thus, data problems, we propose an
interaction between “real” changes in susceptibility and compositional changes
due to mortality selection. Following the mortality model proposed by Robine
[310], increasing mortality reflects vanishing resistance towards environmental
hazards. The same should hold for seasonality: with increasing age, seasonal
fluctuations should become larger as the human body becomes more and more
susceptible to the detrimental effects of winter. At the same time, we observe
a selection effect in mortality: “All populations are heterogeneous. [. . . ] Some
individuals are frailer than others, innately or because of acquired weaknesses.
The frail tend to suffer high mortality, leaving a select subset of survivors. [. . . ]
As a result of compositional change, death rates increase more slowly with age
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than they would in a homogeneous population.” [384, p. 858]. This might also
have a decreasing effect on the magnitude of seasonality in deaths. In our
case we can argue that this selection effect is relatively weak before age 65,
as not many people have died out of the population. At subsequent ages the
push-factor for the seasonal amplitude (higher susceptibility) is balanced out
by the pull-factor (mortality selection). This effect can be easily simulated
following the concepts of Vaupel and Yashin [386]. Figure 4.13 shows one of
the “ruses” selection effects can play: Our population consists simply of two
sub-populations. The frail sub-population is getting seasonally more suscep-
tible in a linear fashion (dotted, gray line). The more robust sub-population
— as shown by the dashed, gray line — is relatively immune to stressful en-
vironmental conditions during winter into their late 80’s. During the last few
years of their lives, seasonality increases at a faster pace. We do not know who
belongs to the robust group and who to the frail group. What we observe is
the population level illustrated by the solid, black line.16

By this simple simulation with two subpopulations we can easily see that
our observed outcome in Figures 4.11 and 4.12(upper 4 panels) could be gen-
erated by such a process. Further support can be drawn from these graphs
by looking at the development over calendar time: the depressing impact of
the selection effect is getting smaller over time. This could reflect the fact
that in the past there were only relatively robust survivors in those higher
age-groups, whereas nowadays people are reaching those ages who would not
have been able to do so only 20 years earlier.

The lower two panels in Figure 4.12 show the change in seasonality with
age for deaths from respiratory deaths. For this cause of death, we have not
discovered a pattern as for the two previous causes. After a slight decrease for
women as well as for men until age 65, seasonality increases steadily with age.
The two panels also give support for the previous finding in Figure 4.10 (page
109): Over the course of the observation period, seasonal fluctuations have
become smaller in more recent decades as indicated by the four plotted lines.
Thus, improvements in general living conditions seemed to help in reducing
the annual cold-related death toll due to infections of the respiratory tract
— especially for the elderly. Our results indicate, for example, that seasonal
fluctuations were smaller during the last observed time period (1989–1998) for
female as well as for male nonagenarians than for anyone during the period
1959–1968.

16 The data were simulated as follows: N frail
50 = 5×N robust

50 ; qfrail
x = 0.06+0.0008×age,

qrobust
x =

(
0.06 + 0.0002 × age , if age ≤ 87.5

(0.06 + 0.0002 × 87.5) + 0.0018 × age , else.
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Fig. 4.13. Simulating the Impact of a Selection Effect on the Seasonal Amplitude

4.5.3 Seasonality by Region & Age

Figure 4.14 shows the development of seasonal mortality by age and region in
the US for women and men for the last observed decade, 1989–1998. Because
no reliable estimates turned out for Alaska and Hawaii, the two states have
been omitted. No differences can actually be detected between the seven re-
maining regions. Also the possible mis-specification of some states from the
group “Mountain” did not result in an estimation which differs from the other
categories. One can see the aforementioned (cf. Figures 4.11 and 4.12) non-
linear increase of seasonality with age. All regions follow this pattern rather
closely. These results are unexpected: Previous studies usually indicated that
regions with a warm or moderate climate (e.g. the UK, Ireland, Portugal,
Spain, Greece) tend to have higher seasonal fluctuations in mortality and
deaths than colder regions such as Russia, Canada or Scandinavian countries
[97, 98, 135, 147, 252]. This has usually been attributed to the fact that people
in colder regions have higher indoor temperatures and avoid exposure to out-
door cold. If those findings could have been converted to the United States,
one would assume that the regions “South Atlantic” and “East/West South
Central” should show higher seasonality than other regions. According to the
“Köppen Climate Classification”, all states covered in these two regions be-
long to the “Humid Subtropical Climate”. Surprisingly, they do not deviate in
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Fig. 4.14. Seasonality of All Cause Mortality by Age, Sex and Region, 1989–1998

any way from the other regions in the United States which are less humid and
cooler. This underlines that social and cultural factors are important forces
in shaping the seasonal pattern of deaths, as climate appears to be negligi-
ble. It has to be mentioned, though, that “region” in the United States is
not only correlated with climate but also with socio-economic status and life
expectancy. Residents in New England spent on average more time in school
than women and men in the regions “South Atlantic” or “South Central”.17

At the same time, life expectancy is also lower in those regions [290]. This
could suggest also an alternative explanation: there are two opposing forces
which cancel each other out. On the one hand, the regional differences do ex-
ist as in Europe between warm and cold regions. That would imply that the
southern states show higher seasonality than the states in the northeast. On
the other hand, this differential is counteracted by a selection effect. Mortality
is higher in the south of the United States. Due to these higher death rates,
frail people tend to die at younger ages than in the North, which should have
a rather depressing effect on seasonality. We consider the first explanation
(no regional differences) to be more likely than the balanced outcome of two
opposing forces. If the latter were true, it would require a social gradient by
education: Due to a selection effect, people with low education should also

17 Based on our own calculations using the number of years spent in school of de-
ceased women and men. The results were similar for all ages above 50 as well as
for people being 80 years old.
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show lower amplitudes in their mortality fluctuations. As will be shown later
in this chapter (page 118), a social gradient is observable — with the oppo-
site direction, though: people with an academic degree have generally lower
seasonality than people with only a few years spent in formal education.

4.5.4 Seasonality by Region & Period
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Fig. 4.15. Seasonality of All Cause Mortality by Region and Sex, 1959–1998

Figure 4.15 portrays how seasonal death fluctuations have changed over
time in various regions of the United States. For reasons of clarity, only results
for the age-group 80-89 years have been plotted. Due to numerical optimiza-
tion problems,18 it was possible to display only six regions for men (missing:
“Alaska”, “Mountain” and “East/West South Central”) and seven for women
(missing: “Alaska” and “East/West South Central”). Despite this unfortunate
loss of information, several interesting features can be observed: The decrease
in seasonality discovered in Figure 4.9 (page 108) did not occur in the US as a
whole. Rather, three regions were responsible for this development for women
and for men likewise: Middle Atlantic, South Atlantic and the Midwest. They

18 While none of the λ-parameters reached one of their limits, no values for θ were
possible to be input to lower the variance of the Pearson residuals anywhere close
to 1.
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showed decreasing seasonality for the first decade observed. All other regions
already showed an increase during that period. With the exception of Hawaii
(thick, solid, black line) trends have converged for the remaining regions since
the late 1960s. This suggests that the existing climatic differences have become
less and less relevant over time, as social circumstances and living conditions
have become more alike in all regions. Hawaii represents an outlier — espe-
cially for women. One could either argue that seasonality in Hawaii is smaller
than in other regions because of the predominant tropical climate. There,
less precautions are required to avoid cold-related mortality during certain
seasons as the temperature varies there less than in other (climatic) regions
of the United States. It could also be, however, a statistical artifact due to
the small number of deaths in Hawaii compared to the other analyzed re-
gions. This latter hypothesis receives support from the study by Seto et al.
[341] . They found differences of 22% between winter and summer mortality
from coronary artery disease mortality . This shows that seasonal mortality
in Hawaii does not differ from the United States as a whole, since we found
roughly the same results in our description of winter/summer differences for
cardiovascular diseases (Winter/Summer Ratio 1.206, cf. Table 4.2 on page
89).

4.5.5 Seasonality by Education & Age

Educational level serves as an indicator for socioeconomic status. How this
variable affects seasonal fluctuations in deaths over age for women and men
during the period 1989–98 is portrayed in Figure 4.16. For women and men
alike, seasonal fluctuations are the highest for the category “not stated” given
by the thin, dashed gray line. Apart from that residual category, a clear social
gradient in seasonal mortality is observable until age 90. The biggest differ-
ence is to be seen between people who have earned a college degree or more
(black solid line) and who have received no formal education at all (gray solid
line). Persons who belong to the highest educational group have the lowest
seasonal amplitude and vice versa. Again, it is remarkable how little women
and men differ from each other in terms of seasonal fluctuations. The social
gradient diminishes with age and vanishes completely for both sexes at about
age 90. The path to convergence is interesting: People with highest completed
education show a relatively steep slope whereas the pattern of people without
any formal education is rather constant over time. One could therefore argue
that people with relatively poor education face seasonal fluctuations in deaths
throughout large parts of their adult lives which highly educated people only
have to face at very advanced ages. Our estimates show that education does
not matter for seasonal mortality when people are 90 years old. It is hard
to make any inferences about the last years in our age span until the 100th

birthday. It seems as if people with the least formal education (“elementary
school or less” depicted in the gray , solid line) do not become more suscepti-
ble to stressful environmental living conditions. Whether a direct effect or an
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indirect (compositional) effect, or both, cause this stationary pattern is hard
to answer. A direct effect would assume that people with low education are so
weak in general that they die regardless of the current season. Contrastingly,
a selection effect is also imaginable: As people with lower education tend to
die at younger ages [374], only a highly selected subgroup is still alive at ages
above 90. It is possible, that those people are especially strong in withstand-
ing environmental stress during winter. This latter hypothesis receives further
support when the development after age 90 is investigated for the other edu-
cational groups. A social gradient is still observable but the other way round.
However, the ones facing higher seasonal fluctuations are highly educated peo-
ple, whereas people with less education display smaller seasonal amplitudes.
This pattern is possibly a reflection of a compositional effect as people with
higher education are less selected than people with lower education.
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Fig. 4.16. Seasonality of All Cause Mortality by Age, Sex and Educational Status,
1989–1998

We investigated the influence of socio-economic status on seasonal mor-
tality further by analyzing not only mortality from all causes but also from
selected causes. The results for cardiovascular mortality are shown in the up-
per two panels of Figure 4.17, respiratory mortality is plotted in the lower
two panels. Women’s results are in the left column, men’s seasonal fluctu-
ations by age are displayed on the right. In all four panels we detect the
aforementioned (Fig. 4.16) social gradient: The more years spent in formal
education, the lower the seasonal fluctuations. One important difference is,
though, that the relative differences for respiratory diseases are smaller than
for cardiovascular diseases. Both causes of death are known to have a social
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gradient [69, 210]. For mortality in general, however, the extent of the slope is
larger for respiratory diseases than for cardiovascular diseases. This suggests
that an inverse relationship of the social gradient exists across causes of death
between general susceptibility and seasonal susceptibility.
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Fig. 4.17. Seasonality of Mortality from Cardiovascular and Respiratory Diseases
by Sex and Educational Status, 1959–1998

4.5.6 Seasonality by Marital Status & Age

Seasonal differences in deaths by marital status are shown in Figure 4.18 by
sex and age. Although the numbers of deaths by marital status vary con-
siderably by marital status for women and men (cf. Table 4.4, page 92), the
estimates for both sexes are again very similar. While the variable “education”
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provided a clearly visible social gradient, “marital status” does not show such
a clear-cut picture. Nevertheless, married people appear to have lower am-
plitudes in seasonal mortality across their life-course than widowed or never
married people. This supports the idea of a protective effect of marriage also
for seasonal mortality. Two possible causal pathways are: Married people can
share their financial resources and are therefore able to have higher quality
in housing and access to better medical care. It could also be the presence
of another person in the household who is able to provide help in an emer-
gency (e.g. calling an ambulance in case of a possible stroke). The lack of
these factors is possibly reflected in the higher seasonality of never married
and widowed people. Most likely these people live alone and don’t have ac-
cess to two sources of income. From mortality research in general it is known
that divorced people are showing higher death rates than married people. In
the case of seasonality, however, they are rather indistinguishable from mar-
ried women and men. One could hypothesize for the US, therefore, that the
presence of a partner is less important than the access to economic resources:
divorced people are also likely to live alone. If this were decisive they should
show similar seasonality as never married and widowed people. What makes
them different is that they don’t lose their financial resources.
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Fig. 4.18. Seasonality of All Cause Mortality by Age, Sex and Marital Status,
1989–1998

We note indications for a selection effect. At about age 90, the amplitudes
in seasonality are converging among the analyzed marital status groups, sug-
gesting even a crossover. This converging trend is also observed in studies
on mortality in general [e.g. 125]. It can be argued that people who were
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never married have typically a higher mortality rate throughout their life.
Consequently, only a selected subgroup survives to those high ages, while
the married are still more heterogenous in their composition with respect to
frailty.

4.6 Summary

Seasonal fluctuations in deaths in the United States between 1959 and 1998
have been analyzed in this chapter. While models using information on the
actual events (=deaths) and on the exposed population are preferable, some-
times only data on deaths are available — without any information on the
individuals at risk. This analysis represents such an approach relying only
on death counts. These data are derived from annual Public-Use-Files from
the Centers for Disease Control and Prevention (CDC) in the United States.
The time span covers the period 1959–98. Although deaths at all ages are
included, our analysis restricts itself to the age-range 50–99 years. Almost 80
Mio. individuals died during that period in the given ages. They formed the
basis of our analysis.

We developed a new method specifically designed to meet our needs in
the presence of overdispersed count data. This analysis represents the first
extensive application of this new method. We used a log-linear model where
additive terms for the trend (one term) and for the season (at least two terms)
were related to the mean of the observed deaths at a certain time or age via a
log-link. These components are allowed to vary smoothly over time (or age).
We fit this varying-coefficient model by using P -Splines which are the well-
known B-Splines with a penalty on their respective regression coefficients.
Thus, we did not impose any parametric form on either the trend or on the
seasonal component but rather estimated changes over time (or age) data-
driven. It has been shown with simulated data, that our new approach fits
data with the given structure very well and much better than the standard
methods.

Our analysis over calendar-time resulted in a slightly upward moving trend
since the early 1970s for seasonal mortality from all causes as well as from
cardiovascular and cerebrovascular diseases. This could reflect on the one
hand that the differences between summer and winter mortality have become
bigger on the individual level. The introduction of air conditioning and the
widespread usage of central heating can serve as an explanation. It would im-
ply that the former decreased summer mortality faster than the latter shrunk
cold-related mortality. On the other hand, one can argue that compositional
changes caused this increase over time. Because of the progress made in sur-
vival in general, relatively frail people attain high ages who would have died
in the past at younger ages. They are most likely the ones who are more sus-
ceptible. In the case of respiratory disease we observed a decrease over time
which could be attributed to the spread of central heating.
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Seasonality of deaths is increasing with age. This increase is, however,
neither linear nor monotonous. We observed, rather, a development in three
stages: After an initial increase between ages 50 to 60/65, seasonality remains
relatively constant for about twenty years after which they start increasing
again. This puzzling pattern — especially for cerebrovascular diseases — may
hint at an interaction between “real” changes in susceptibility (=increasing
trend) and compositional changes due to mortality selection (=depressing
effect).

In European countries large variations in seasonality have been observed
between countries with warm, moderate, and cold climate. This pattern has
not been reflected in our regional analysis of the US. The examination by
age showed the expected trajectory of an increase as people are getting older.
Nevertheless, the slope does not differ if people are living in a rather warm
or cold state. Our analysis over period shows a converging trend over time
which is probably caused by a tendency towards similar social circumstances
and living conditions in all regions of the United States.

Seasonality in deaths by educational status has not been investigated pre-
viously. Our decomposition approach resulted in a clear social gradient. The
lower the educational status, the larger are the differences between winter and
summer. This effect can be observed until about age 90 when all educational
groups display more or less the same seasonality. Beyond age 90, we observed
a crossover which might have been caused by a selection effect: while frail
people with low education are most likely already dead, frail people with a
college degree are still alive and are more likely to die in winter than the
rather healthy, homogeneous group with lower education.

Our explorative approach into the question whether marital status is as
important for seasonal mortality as for mortality in general was not as suc-
cessful as the investigation into educational status. Married women and men
appear to have lowest seasonal fluctuations over age, while never married and
widowed people have higher seasonality. Unfortunately, the trajectories of the
four analyzed marital status groups are partly overlapping. This implies that
a straightforward distinction as for mortality in general is not possible.

This analysis of seasonality in deaths in the United States found sup-
port for the surprising finding of previous studies of increasing seasonality
over time. Cardiovascular and cerebrovascular diseases follow this trend rather
closely, whereas respiratory diseases showed a decreasing trend. Our “three-
stage-increase” of seasonality with age showed that a statement like “season-
ality increases with age” is too simple. The most important findings from our
study are:

• We found no differences in seasonality by region — neither over time nor
by age — as we could have expected from previous literature on Europe.
This underlines the importance of social factors compared to climate.

• In a pilot approach of analyzing the importance of education on seasonal
mortality, we detected a strong social gradient. The higher the educational
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status, the lower is the seasonal fluctuation in death for most of the adult
life.

• The most important finding is probably the lack of differences of seasonal
fluctuations in seasonal mortality for women and men. While women face
throughout their entire life course lower mortality than men, the relative
differences between winter and summer seem to be negligible.
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The Impact of Social Factors on Excess Winter
Mortality in Denmark

5.1 Introduction

5.1.1 The Data of Denmark

This chapter analyzes the impact of social factors on seasonality in mortality
in Denmark, focusing on winter excess mortality. Denmark has been chosen
deliberately. No other country in the world has collected more data on its
population [112]. Information on almost every aspect of life is computerized
and stored in several hundred administrative, official statistical and in research
registers. For example, these registers contain information on vital events as
well as on tax records, medical records, etc. [7, 96]. These individual-level
registers can be linked via a 10-digit unique person identifier [349]. This allows
for reconstructing the life-course of every Danish individual for all registered
events. The prime tool for demographers is the Danish Demographic Database
[287] which already contains the most often used demographic variables such
as birth date, sex, education, date of death, cause of death (if applicable), etc.
This database starts on 01 January 1980 and is updated regularly.

5.1.2 (Seasonality in) Mortality in Denmark

Besides the unchallenged data-quality, Denmark is appealing to mortality re-
searchers also because it does not follow the mortality patterns of its neighbor-
ing countries. The linear increase observed in record life expectancy through-
out the world for women as well as for men suggests an annual increase of 0.246
(women) and 0.222 (men) years [279]. In Denmark, however, life expectancy
at birth rose slower than in most other OECD countries since the 1970s [74].
Chenet et al. [46] calculated an increase for the 11 year-period between 1979
and 1980 of 0.9 years for men whereas 2.442 could have been expected from
the study of Oeppel and Vaupel [279]. Sweden, which neighbors Denmark,
exhibited an increase of 2.6 years. The lag in the development of female life
expectancy is even more alarming: In contrast to the 2.673 years suggested
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by record life expectancy, Danish women could only expect to live 0.35 years
longer in 1990 than in 1979 [46]. The causes of death contributing most to
the differential development of life expectancy in Denmark and Sweden were
malignant neoplasms — especially respiratory cancer — and cerebrovascular
diseases [46]. This previous study which compared Denmark and Sweden sug-
gested that “mortality rates are sensitive to even minor differences in social
and cultural factors across countries”. There has been much debate which “so-
cial and cultural” factors are to be blamed. As Jacobsen et al. [173] discovered,
the observed decelerated mortality rates are explained better by cohort than
period effects: women born between the two World Wars constitute the most
unfortunate birth cohort. The lack of the same effect for men rejects the intu-
itive hypothesis that early life conditions are mainly responsible. The generally
accepted explanation is the high smoking prevalence of women born during
these years. In the beginning of the 1990s the proportion of smoking women
was higher in Denmark than in any of the other 86 countries analyzed. Simul-
taneously, smoking-related causes of death increased since the 1950s, whereas
the number of people dying from “non-smoking causes” steadily declined in
Denmark during the same period [181].1 Other factors such as the relatively
high alcohol consumption can also play a major role in the lagging behind of
survival improvements in Denmark [10].

Less is known about seasonal mortality and the impact of social factors.
So far, only one study investigated seasonal mortality exclusively in Denmark
[302]. There are, however, two major drawbacks: The analysis was based on
a random sample of the Danish population. This shortcoming is relatively
minor as the sample size of 46,293 individuals was still relatively large. The
major problem was the lack of any variables apart from sex, age, and cohort.
Three other studies examined seasonal mortality in Denmark briefly in con-
junction with other European countries [62, 147, 252]. Compared to the UK,
this number of publications is very small.

Overall, seasonal mortality in Denmark is on the European average. Nev-
ertheless, differences between winter and summer mortality are higher there
than in other Scandinavian countries or in neighboring Germany [147, 252].
The only study which investigated the impact of social factors on seasonal
mortality so far which used Danish data is Healy’s study [147]. Unfortunately,
his analysis was not based on individual-level data but rather on cross-country
comparisons using ecological data. Hence, his conclusions can only be applied
in the form of “countries with high housing quality experience low excess
winter mortality”, not permitting statements on the influence of social fac-
tors within a country. This topic remains, thus, an uncharted territory for
Denmark.

1 It should be noted that the high smoking prevalence of Danish women has se-
riously been tried to be explained by the bad role model effect of the Danish
queen — a well known smoker [193]. Others, however, have heavily criticized this
suggestion on methodological grounds as well as on common sense [174, 236].
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5.1.3 Research Questions

As a consequence of the lack of research on seasonal mortality in Denmark,
we analyzed whether the findings from other countries can be applied to Den-
mark, too. In addition, we also tested hypotheses which have not been put
forward previously in the field of seasonal mortality at all. Our research ques-
tions were:

• Age. As individuals grow older, their mortality increases. Various bio-
logical theories offer explanations (“error catastrophe”, “Hayflick limit”,
“free radical damage” . . . . For an overview, please consult: [247, 398].) The
result is a shrinking resistance against a given environment. The environ-
ment, however, is not constant. The seasonal mortality pattern with its
peak during winter shows also that certain periods of the year are more
stressful than others for the human body. If susceptibility of the individual
is increasing and the adverse effects of the environment are also seasonally
changing, we should anticipate an increase in seasonal mortality with age.
This expectation has been met by most of the studies of seasonal mortality
by age — starting with the pioneering analysis of Quetelet [300] for Bel-
gium in 1838. However, the basis of the data in many previous studies was
questionable in drawing conclusions on the relationship between seasonal
mortality and age as shown by Rau and Doblhammer [302, p.199].2

• Sex. Sex, beside age, is the most important determinant in mortality
differentials. At least since the middle of the 18thcentury [e.g. 66] it is
well known that women live longer on average. The survival advantage of
women is founded biologically as well as behaviorally [227, 229]. As envi-
ronmental hazards are seasonally oscillating we can raise the conjecture
that men face higher excess mortality in winter due to lower biological
resistance to adverse effects of nature. In addition, their behavior such as
a higher smoking rate at higher ages, for instance, increases their chances
to die of typical seasonal illnesses like cardiovascular diseases, too [421].
Results of many previous studies were surprising: If a differentiation by sex
has been performed in the analysis, typically no significant differences were
found [98, 121, 262, 419]. Rau and Doblhammer [302] found slightly larger
seasonal mortality fluctuations for men than for women. This tendency,
however, was not statistically significant.

• Wealth. Income, education and occupational status are regarded as the
most influential factors in determining socioeconomic mortality differen-
tials [371]. In the present study “wealth” was used as an indicator for
socioeconomic status. It is a composite index on the household level, tak-
ing any monetary transfer into account. As we analyzed almost exclusively
only retired people (age 65+), wealth seems to be a good proxy for measur-
ing income as well as occupational status. Since the classic study of Kita-
gawa and Hauser [195], an inverse relationship has been regularly found

2 See also Section 4.5.2 on page 110.
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between income and occupational class on the one hand, and mortality on
the other hand [e.g. 210].3 Higher socioeconomic status reduces the risk of
many diseases via lower occupational risks, lower stress, better diets, more
exercise as well as more information and better access to health care [314].
The literature is divided whether socioeconomic status matters with
respect to seasonal mortality. Various studies found no support that
lower socioeconomic groups face higher excess mortality during winter
[121, 214, 215, 342]. Contradictory evidence has been discovered as well
in several studies [79, 147, 251]. Donaldon and Keatinge [79], for example,
point out that “[c]old related mortality in the retired (65–74) age group
was generally higher in men of class 5 (unskilled) than class 1 (profes-
sional), or other classes, with little difference between men, and women or
housewives” [79, p. 790].
Most of these findings can be criticized methodologically as their analyses
are based on ecological data on the electoral ward level [e.g. 214, 342], or
even on the national level [147]. Neglecting the cross-country comparison,
the divergence of the outcomes is surprising as all of the studies were based
on data from the UK. This chapter can thus expand the present knowl-
edge in two ways: First, it is based on data from a whole population on
the individual level; secondly, with the use of Danish data, a country is
analyzed which has not been studied before.

• Education. Another indicator which is often used to measure socioeco-
nomic differences in mortality is educational attainment [e.g. 103, 124,
195, 210, 219, 296, 374]. This variable has several desirable characteristics
[cf. 374]. For example, education is better suited than occupation-related
indicators as it stays constant even in retirement. Typically an inverse
relationship is found: the lower the educational level, the higher are the
mortality risks.
Apart from the analysis in Chapter 4, studying the impact of education on
seasonal mortality fluctuations represents a novel approach. We assume to
find a similar finding as in the United States where people with a college
degree showed lower excess winter mortality than people with relatively
little formal education.

• Housing Quality. The quality of housing is closely related to socioeco-
nomic status. Its pre-dominant position in the field of seasonal mortality
does not allow it to be subsumed under this category, though. Marsh et
al. [245] reviewed the impact of housing conditions on health. A shortened
and slightly modified version of their overview is given in Table 5.1.
It clearly shows that most housing problems increase mortality risks —
especially for diseases which are highly seasonal such as respiratory dis-
eases, ischaemic heart diseases and strokes. The most important factor is

3 Following Rogers et al. [314], already Friedrich Engels observed in his publication
“Die Lage der arbeitenden Klasse in England”, written in 1844, that factory
workers in Manchester had relatively high mortality.
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Table 5.1. Housing Problems and their Health Consequences

Housing Deficiency Health Consequence

Overcrowding • increased risk of infectious disease
• increased risk of respiratory disease

Damp and Mould • respiratory problems
• asthma

Indoor pollutants and infestation • asthma

Cold • diminished resistance to
respiratory infection
• hypothermia
• bronchospasm
• ischaemic heart disease, myocardial
infarction and strokes

Source: Marsh et al. [245, p. 6], shortened and slightly modified

probably cold as “man is a tropical animal”[209, p. 338]: mortality is at a
minimum between 18 and 20 ◦C [37, 79, 98]. Consequently it is not surpris-
ing that central heating is a focal point in avoiding cold-related mortality
and that the decrease in seasonal mortality fluctuations over time is at-
tributed to its widespread use [16, 54, 57, 76, 77, 81, 98, 147, 187, 220,
251, 252, 253, 280, 340, 404]. Only Kunst et al. [208] doubt whether the
increasing use of central heating is that important. They assume that so-
cioeconomic progress in general is responsible for the decrease in winter
excess mortality.

• Car Ownership. Nevertheless, “Warm housing is not enough” [186]. Don-
aldson and Keatinge [78, p. 90] point out that “outdoor cold stress has
been independently associated with high excess winter mortality.” They
argue that the best protection from indoor cold is useless if people face
stress from cold outdoors. It is a recurrent finding that people in colder
regions show less excess winter mortality [e.g. 135, 147, 252]. The larger
proportion of people wearing several layers of clothes in conjunction with
avoiding time spent outdoors in those countries explains a large propor-
tion of this reduced cold-related death toll [81, 97, 98]. For example, in
Yakutsk — the coldest city in the world with an average temperature of
−26.6◦C between October and March — people are not experiencing ex-
cess winter mortality, an outcome of wearing very warm clothing outdoors
and spending as much time as possible indoors [76]. As suggested by Don-
aldson and Keatinge [77], increased car ownership in southeast England
helped in reducing the number of excess winter deaths as people spent
less time outdoors. Thus, we used the information, whether people own
a car or not, as an indicator whether avoiding outdoor cold stress is of
importance for seasonal mortality in Denmark.
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• Marital Status. Marital status is another important factor in differen-
tial mortality research. Comparable to the results by age, sex, wealth, and
housing quality, mortality differentials by marital status are known for
more than 150 years with Farr’s observations on the “Influence of Mar-
riage on the Mortality of the French People” published in 1858 [125]. It is
unanimously accepted that married people live longer than widowed, di-
vorced or never married people [223]. The differences are much bigger for
men than for women [129]. Among the three unmarried groups, divorced
people face the highest mortality risks [163].
Typically two potential causal pathways (being not exclusive of each other)
are offered on how marital status affects mortality [see for an overview:
125, 223]: The first explains the lower death rates of married people by
a protection effect. Married people are less prone for risky, unhealthy be-
havior; they suffer less from stress-related diseases and are helped by their
respective partner when ill. From an economical perspective, marriage cor-
relates with better general living conditions by pooling financial resources.
The second explanation proposes a selection effect into marriage. In the
words of Lillard and Panis [223, p. 314]: “The argument is straightforward:
Persons with observably poor health, and those with chronic conditions or
dangerous or unhealthy lifestyles [. . . ], may find it more difficult to attract
a spouse than do healthy, relatively settled individuals [. . . ]. By a similar
argument, those in good health may be better able to maintain a marital
relationship and thus have lower dissolution rates.”
Despite this wealth of literature on the impact of marital status on mortal-
ity and its consistent findings, no study so far has addressed the question
whether marital status also matters for annual fluctuations in mortality.
Without predecessors, our study presents an exploratory first step. We hy-
pothesize that married people show less vulnerability to cold stress. Two
reasons can be given to support this idea: First, married people are more
robust on average than others due to the selection effect into marriage. Sec-
ondly, the protective effects of marriage by avoiding unhealthy behaviors
should give them a survival advantage during winter.

• Living Alone. There is evidence in the literature that people who are
living alone tend to have higher mortality [201]. This variable is often
treated as a sub-factor of marital status (usually it is assumed that married
people are not living alone). Rogers et al. [314], for example, calculated
that the mortality risk of US adults who are not married and are living
alone is roughly 50% higher than for married people who live with their
spouse and two children.4 Also Rogers [313] discovered elevated mortality
for people who live alone — regardless of whether they were previously
married or not.
In a society like the Danish, however, one can not generalize that being
married automatically means not living alone and being not married means

4 This study controlled, of course, for other factors such as sex, age, race, income.
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living alone. As a consequence, we treated this binary variable extra and
controlled simultaneously for marital status. Only one recent study exists
which investigates the question whether people who are living alone have
an excess risk of dying in winter as compared to people who share their
household with at least one more person [405]. They were, however, not
able to detect any significant differences.

5.1.4 Summary

Danish data provide a rich data-source for the analysis of mortality in general
and of seasonal mortality in particular. Thanks to the availability of linkable
person-registers, individual life-courses can be reconstructed on almost any
relevant aspect of life with unmatched precision on the timing of the event as
well as on the quality of the data.
Denmark shows different mortality patterns than most other Western Euro-
pean countries. Especially the slow increase of life expectancy during the last
thirty years has been of concern for epidemiologists and politicians. The rel-
atively high smoking prevalence among Danish women born between the two
World Wars is quite likely the root cause. Not much is known on seasonal
mortality in Denmark. Compared to other European countries, Danish sea-
sonal mortality is “mid-table”. It fares, however, worse than its neighboring
countries. Not much is known so far about the impact of social factors on
cold-related mortality.
Our study asks the following questions:

• How does seasonal mortality change with age?
• Can we find different susceptibility to cold stress for women and men?
• Can we shed more light on the ambiguously discussed topic of the impact

of socioeconomic status on seasonal mortality? We use wealth (on the
household level) and highest attained education (on the individual level)
as indicators for socioeconomic status.

• Do people who own a car face less cold stress outdoors and have conse-
quently lower seasonal mortality fluctuations?

• Are the typical mortality differentials by marital status also mirrored in
the seasonal mortality pattern?

• Are individuals who are living alone more vulnerable to the environmental
hazards during winter than people who share the household with at least
one other person?

5.2 Data and Methods

5.2.1 Data Description

The base population are all people who were 65 years or older in Denmark
between 01 January 1980 and 31 December 1998. If we bind the age-axis at a
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certain point, our base population is a rectangle in the Lexis diagram. There
are three ways of entering our data-set:

• people were 65 years or older on 01 January 1980
• people become 65 years old between 02 January 1980 and 31 December

1980
• people immigrated into Denmark between 01 January 1980 and 31 Decem-

ber 1998 being 65 years or older

Likewise there were also three possibilities to exit the data-set:

• people who died between 01 January 1980 and 31 December 1998 being
65 years or older

• people who were 65 years or older and alive on 31 December 1998
• people who emigrated out of Denmark between 01 January 1980 and 31

December 1998 being 65 years or older

As already mentioned in the introduction of this chapter, Denmark’s pop-
ulation registers are unique in the world concerning quantity and quality of
the information provided. The focal point is a unique person-identifier called
“CPR”. In its original version it consists of a ten-digit number. The first six
numbers indicate the birth date. The remaining four digits contain a serial
number, sex of the individual (♀: even number; ♂: odd number) and some
controls [349]. While it is true that one CPR refers uniquely to one person, it
is possible under rare circumstances that one person has more than one CPR
[289]. As pointed out by Petersen [289], the person-number (“PNR”) used in
the Danish Demographic Database [288] eradicated this problem: one person
corresponds to one person-number and exactly vice-versa.

Table 5.2. Population Registers used in Our Analysis

Register-Name Time-Span Key-Variables
Covered

idperson 1980–98 birth data, sex

mortality 1980–98 date of death, cause of death

bil 1992–98 car ownership

dwelling 1991–98 housing information: installations
size per person; age of house

education 1980–98 highest educational level attained

household 1980–98 number of people living
in the same household

maristat 1980–98 marital status

wealth 1980–96 wealth quartile on family
level based on all kinds of
of income (pension, rent, . . . )
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Table 5.2 shows the population registers used in our analysis: The data-set
idperson consisting of 1,842,377 individuals serves as our base population.
Out of them 999,605 died during the observation period and are contained
in the data-set mortality. For 93% of them at least one cause of death was
available (931,526).5 These mortality data reflect nicely the high-quality of the
population registers in Denmark: Only three individuals from this million had
values outside the possible range of 01 January 1980 – 31 December 1998. One
particular problem was the changing coding scheme for causes of death. Until
the end of 1993, Danish authorities used ICD-8 for coding causes of death.
Afterwards they switched directly to ICD-10. This step induced problems.
First, conversion tables are usually only available from one revision to the next.
Secondly, and more importantly, ICD-10 introduced an alphanumeric coding
scheme whereas previous revisions were purely numerical. The problematic
task of producing comparable time-series for causes of death was impeded
even further. Fortunately, it was possible to reconstruct comparable data for
the three causes which are high-risk diseases for seasonal mortality, and which
have been used in the most in-depth analysis of winter excess mortality so
far [98]: Ischaemic Heart Disease, Cerebrovascular Diseases and Respiratory
Diseases. The following table (Table 5.3) shows the coding for these three
causes by coding scheme (ICD-8 vs. ICD-10):

Table 5.3. Coding of Causes of Death in Denmark by Coding Scheme

Cause of Death ICD-8 ICD-10

Ischaemic Heart Disease 410–410 I20–I25
Cerebrovascular Diseases 430–438 I60–I69
Respiratory Diseases 460–519 J00–J98

Starting in 1992, a car register (data-set bil) was installed. Each record
in this database gives information about the registration, the de-registration
(if applicable) the kind of car and the person who registers for every car in
Denmark. We simplified this data by ignoring changes from one vehicle to an-
other one. We coded a dummy variable which only indicates whether a person
owns a car at a certain point of time or not. Out of the 1,8 Mio. people in the
base population, 502,455 individuals were coded to be car-owners following
this coding convention. Surprisingly, it happened that people were registered
for a car for some time after their deaths. Rather than excluding those illog-
ical cases from the analysis completely, we rather assumed that the relatives
de-registered the car simply awhile later.
The dwelling register (started in 1991) contains various information about
the size of the dwelling, its age and its installations. In contrast to most other

5 The Danish Demographic Database contains information on primary, secondary,
and tertiary cause of death.
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databases in the Danish registers, housing information is annually available,
and not on a daily or monthly basis. As previous seasonal mortality literature
is mainly concerned about the housing quality, we relied on the information
given for installations. Denmark is a relatively homogeneous country with rel-
atively similar living standards. Therefore we only made a distinction between
people who have the maximum number of installations (toilet, central heat-
ing, bath) versus the rest (versus not stated). 91.92% of the apartments of the
individuals had the maximum number of installations, 6.52% had less than
the maximum and 1.56% were not possible to be assigned.

Education (data-set education) measures the highest educational level
attained by any individual and is available for the whole time period (1980–
1998). Education is coded using eight digits to reflect any possible combination
of educational pathways. Coordinating with Jørn Korsbo Peterson — he is
the maintainer of the Danish Demographic Database — this abundance of
information6 was grouped into three categories which is the typical approach
taken by researchers using Danish register data.

Table 5.4. Educational Categories

Code Danish Description English Description ISCED Code† Share

1 Almenuddanelse Lower Secondary 0–2 61.42%
Education or less

2 Gymnasie og (Upper) Secondary 3–4 27.75%
erhvervsgaglige Education, post secondary
uddannelser non tertiary education,

skilled manual worker

3 Videregȧende Tertiary education 5–6 10.83%
og ph.d. or higher

† ISCED is the International Standard Classification of Education [370].

Table 5.4 describes which categories were used for the coding of educa-
tion, how large their proportion is and to which ISCED categories [370] the
present classification corresponds. People who attended primary school only
or in conjunction with lower secondary school were assigned to category 1
(“lower education”). 61.42% of the people belonged to this group. Roughly
28% of the people have an intermediate level of education (Code 2, “middle”).
They attended upper secondary education and/or are skilled manual workers.
People with an academic degree, regardless of whether it a Bachelor, a Master
or a Ph.D., are members of the highest educational group. About 11% of all
individuals in the data-set are in this third category (“high”).

The data-set household, which is updated annually, contains informa-
tion on the number of people having the same household identification

6 The actual number of possible education levels was 436.
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number. This was used to assess how many people are living in the same
flat/apartment/house. Although the actual number of people is known, we
used a binary variable to indicate whether a person is living alone or not. At
the time of death (or censoring) 53.55% were living alone, for the remaining
46.45% at least one more person was living in the same household.

In the data-set maristat, the marital status of the population is recorded.
Every person at any point of time is assigned to exclusively one of the follow-
ing categories: Married, divorced, widowed, unmarried, registered partnership,
revoked registered partnership and “longestliving of two partners”. The last
three categories constitute combined less than 0.03% of all cases and have
been excluded from any further analysis.

The data-set wealth is a special measure of socioeconomic status. It in-
cludes not only the salary measured in income but also other kinds of revenue.
A typical example is receiving rent from a house one owns. Finally, the com-
plete income is annually measured in Danish Krones. One important advan-
tage of this variable is that it is measured on the family level. This implies,
for instance, that a woman who has no income of her own but is married to a
millionaire is not classified as poor. Wealth has already been transformed into
four categories by Statistics Denmark. Those four groups represent quartiles
of wealth (0–25%, 25–50%, 50–75%, 75–100%). This variable was available
only for the time period 1980 until 1996. Any analysis involving this variable
was, thus, restricted to the first 17 years of our observation period.

5.2.2 Method

Introduction: Why Logistic Regression?

Event-history analysis represents the appropriate framework to study the
time-to-failure distribution of events of individuals over their life course. In
demographic applications “Failure” can not only be death but also transition
to the first child, re-entry into the labor-market, etc. Traditional approaches
like the linear OLS model are not appropriate for these kind of data for several
reasons. For example, lifetimes are (necessarily) positive, the assumption of a
normal distribution for the error term in the OLS model does not hold because
the normal distribution is defined from −∞ to ∞.7 The problem of censoring
is more serious. This appears when the event of interest has not happened until
the last moment of observation (e.g. if a person survived until a certain point
of time which marks the end of the study period) [56]. Event-history models,
sometimes also coined survival models, are able to incorporate these special
data characteristics. While most event-history models are designed for contin-
uous time, we have decided to employ a logistic regression model which can be
considered as a survival model for discrete time [cf. 85]. Various reasons can
be brought up to support such an approach [cf. 5, 6, 418]. The decisive ones

7 This drawback could be mediated by taking the log of the lifetime.
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for our analysis were: first, it allows to incorporate time-varying covariates
easily. Secondly, an important “consideration concerns the number of ties in
the data. Events are tied when two or more subjects in the sample have events
at the same time” [418, p. 16]. In our application it is, of course, possible that
individuals die during the same month at a certain age. “The presence of
ties can lead to serious bias in parameter estimates when using Cox’s method
for proportional hazards models [. . . ]. On the other hand, discrete-time mod-
els can handle ties without introducing bias in parameter estimates” [418,
p. 16–17]. The third reason is especially important for our huge data set: The
calculation takes considerably less time with logistic regression than with the
Cox-Model which appears to be the default choice in most applications. In
practice, the results between the methods differ only marginally. A compari-
son between a continuous and a discrete time model in the appendix of Rau
and Doblhammer [302] shows almost indistinguishable regression coefficients
for a seasonal mortality analysis. The major practical difference between the
two approaches is found in modeling the duration dependency. For example in
the common proportional hazards regression, a baseline hazard is estimated
(non-parametrically in the case of a Cox-Model) and the effect of the covari-
ates shifts this baseline duration dependency proportionally up or down.8 In
the case of logistic regression, this time dependency has to be entered as a
covariate (or as covariates) into the model.

The Model

The logistic regression we used is outlined in Equation 5.1:

log
(

Pit

1 − Pit

)
=α + βWinterx1;ti + βSpringx2;ti + βFallx3;ti+

+
∑
age

γagexage;ti +
∑

period

δperiodxperiod;ti + further covariates

(5.1)

where:

x1 =

{
1 if current month is Dec, Jan or Feb
0 otherwise.

x2 =

{
1 if current month is Mar, Apr or May
0 otherwise.

8 Also in the other common approach, the accelerated failure time models (AFT),
a baseline hazard is estimated. The main difference to the proportional hazards
model (PH) is the effect of the covariates which does not work on the hazard
function but on the failure time [141].
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x3 =

{
1 if current month is Sep, Oct or Nov
0 otherwise.

The log of the odds-ratio (which is the probability that individual i expe-
riences death at time t divided by one minus this probability) is related to an
intercept denoted by α and a set of time-fixed and time-varying covariates.
The coefficients βWinter, βSpring and βFall are of primary interest in our anal-
ysis as they correspond to the influence of the covariates x1, x2, and x3 which
indicate as binary variables the seasons Winter, Spring, and Fall. The ob-
tained estimates have to be interpreted therefore in relation to the reference
group summer which has been left out.
The effect of age on mortality is captured in the set of regression coefficients
denoted by γage. The age-groups corresponding to the set of dummy-variables∑
age

xage are (in years): 65–69 (Reference Group), 70–74, 75–79, 80–84, 85–89,

90–94, 95–99, 100 and older.
Possible period effects are accounted for by the set of dummy-variables δperiod

which measure the influence of the period dummies denoted by
∑

period

xperiod.

The dummies for the periods were the following calendar years: 1980–84, 1985–
90, 1991–93 (Reference Group), 1994–96, 1997–98.9

Controlling for other effects has been denoted in Equation 5.1 above by “fur-
ther covariates”. That means, for example, that in a model where the influ-
ence of living arrangements (living alone yes/no) has been investigated, we
controlled for education, marital status and wealth in addition to season, age,
and period. The actual variables belonging to “further covariates” are given
in every estimated model presented in latter parts of this chapter.

Interpreting Results from the Applied Logistic Regression Model

• Odds-Ratios vs. Relative Risks
Strictly speaking, the exponentiated regression coefficients (e.g. eβWinter)
have to be interpreted as odds-ratios. If the probability of the event is
rather small, however, these odds-ratios are close to the relative risks
known from standard event-history models and can be interpreted as such
[28, 159, 257, 414]. This approximate equality of odds-ratios and relative
risks in the case of events which are relatively rare is explained in the fol-
lowing example.
In our data we have roughly 1 Mio. deaths but more than 180. Mio person-
months lived. This situation is shown in Table 5.5 in a simplified manner.
With these data, we want to calculate the relative risk as well as the odds-
ratio for death among women in relation to men.

9 The unequally spaced distinction across the periods has been chosen as these
years (apart from 1984/85) reflect changes in the availability of data (cf. Section
5.2.1 starting on page 131).
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Table 5.5. Hypothetical Example: Survival Status by Sex

Survived?

Yes No
P

Women 100 × 106 0.5 × 106 100.5 × 106

Men 80 × 106 0.5 × 106 80.5 × 106P
180 × 106 1.0 × 106 181.0 × 106

Following Woodward [414], a risk is defined by the number of cases who
experienced a certain event divided by the number of cases at risk. The
relative risk (RR) of death of women compared to men is therefore:

RR =
0.5×106

100.5×106

0.5×106

80.5×106

=
0.004975
0.006211

= 0.800998 (5.2)

In contrast, the odds are defined as the number of cases who experienced
a certain event divided by the number of cases who did not experience the
event [414]. The odds-ratio (OR) is therefore:

OR =
0.5×106

100×106

0.5×106

80×106

=
0.005

0.00625
= 0.8 (5.3)

The relative risk RR in this example is 0.800998. The odds-ratio OR is
0.8. We can therefore conclude for our application where events are rel-
atively rare, that odds-ratios are approximating relative risks very closely.

• Interpreting Our Models
The regression coefficient which is used mainly in our results is βWinter. Due
to the size of the data-set we estimated separate models for the different
groups of interest. Therefore, the point and confidence estimates given (or
plotted) have to be interpreted always in relation to the specific reference
group which is summer. An example might clarify this: Given that we want
to analyze the effect of education which is measured in three levels (low,
middle, high), we estimated a separate model for each educational group.
Let’s assume we have a point estimate for people with high education of
0.2 and a standard error for this coefficient of 0.02. The 95% confidence
interval for this coefficient is therefore: 0.2± 1.96× 0.02 = 0.2± 0.0392. If
we exponentiate these estimates, we obtain a point estimate for the odds-
ratio/relative risk of e0.2 = 1.2214 and confidence estimate of e0.2−0.0392;
e0.2+0.0392 = 1.1745; 1.27023.

A valid interpretation is:
– For people with high education, the relative risk of dying in winter is

significantly higher than during summer because the confidence interval
does not include 0 (or 1 in the case of eβWinter).
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– The regression results indicate a relative risk of dying which is 22%
higher during winter than during summer for people with high educa-
tion.

Given we have parameter estimates for people with middle education of
1.30 (lower 95% CI), 1.325 (point estimate), and 1.35 (upper 95% CI),
we can not make any inferences whether the excess risk during winter
is significantly higher for people with middle education than with high
education. This drawback is less serious than it may appear at first sight:
Because of the size of our data-set, it is quite likely that even the smallest
differences between two parameters turn out to be significant. But even if
a difference, for example, between 1.23 and 1.24 turns out to be significant,
one has to question whether this significant difference is of actual practical
relevance. Sachs [321] distinguishes, therefore, in his textbook between
statistical significance and practical significance.10

5.2.3 Problems of the Data Analysis

Timevarying Covariates

It should be pointed out that age, period, and current month have been coded
properly as time-varying covariates. Other covariates have been assumed to be
time-constant despite their inherent time-varying nature. The main reasons
are computational resources. In typical applications there is no problem to
represent time-varying covariates adequately, as they change rarely and/or
the number of individuals covered in the data-set is of manageable quantity.
In our application however, every person-month lived is a new record. Our
1.8 million subjects in the base population survived roughly 100 months on
average. Consequently, the data-set contains 180 million person-months lived
and the same number of records.11 To obtain a final data set with all the
(time-varying) information, one needs to calculate data-sets with these 180
Mio. records for each variable separately, as they are all given in single data-
sets linkable via the PNR. Even if the base population is broken down by sex
and into 5 year birth cohorts, the data-sets are too large to be sorted and
merged together.12 The actual approach was to use time-constant covariates
instead of time-varying covariates by taking the last observed realization of
the covariate for each individual. The question is then, of course: How much
does this simplification reduce the quality of the analysis? In most cases the
loss of information is of minor importance for several reasons:
10 “Weiter sei noch auf den zuweilen nicht beachteten Unterschied zwischen

statistischer Signifikanz und “praktischer” Signifikanz hingewiesen: prak-
tisch bedeutsame Unterschiede müssen schon mit nicht zu umfangreichen Stich-
proben erfaßt werden können” [321, p. 187; boldface in source document].

11 There are precisely 186,271,440 person months lived. 106,322,677 person-months
were lived by women and 79,948,763 by men.

12 A trial dataset for one sex and five birth years resulted in a file, which was larger
than 3GB.
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• At advanced ages, variables like wealth (measured in quartiles on the fam-
ily level), education, and housing quality are changing their values only
very rarely. Thus, an approach where these variables are coded as time-
constant on the one hand, and as time-varying on the other hand, should
both give approximately the same results because neither the number of
exposures nor the number of occurrences change.

• Some variables like housing quality or wealth are only available on an
annual basis. Thus, in some cases it would not even be possible at all to
code the change into the month when it actually happened.13

• The annually measured variables are only available if the person has sur-
vived until the end of the year. Consequently, nothing is known at the mo-
ment of death about those covariates. The closest information one could
obtain is the one from the previous year which we used in our approach.

• For the variable of car ownership the validity can be doubted, as it mea-
sures only the registration of the car but not its use. In many cases the
car got de-registered several months after the death of the person. While
it is impossible for the deceased to use a car after her/his death, one can
neither assume that the person used the car during the month(s) preceding
death.

The two remaining variables which are intrinsically time-varying even at
those advanced ages are “marital status” and “living alone yes/no”. Our ap-
proach used the last information available, which means that the number
of events is correct. The exposure time, however, is biased. For the variable
“living alone yes/no”, people who were alone at the end of their lives have
probably not lived throughout the whole observation period alone. Thus, the
exposure time for this category in our models is too large and regression esti-
mates would result in even higher values for those people if the variable was
coded as time-varying. Reciprocally, the exposure time for people who were
not alone is too large which should result in lower mortality estimates if the
variable was coded more precisely. Marital status is more problematic. The
number of events in our models for each category is entered correctly. The
exposure time is exact only for the group “never married / single”. The cat-
egories “widowed” and “divorced” contain too many exposures, while “mar-
ried” contains less exposure time (It is likely that the people who are widowed
and/or divorced in our data have spent some time during the follow-up being
married). As a consequence, the mortality estimates for the categories “di-
vorced” and “widowed” should be higher than in our results and the ones for
“married” should be lower.

Summing it up, using time-constant covariates instead of time-varying
covariates, because of technical resource problems, appears less of a problem
than it first suggests. Many variables are approximately time-constant anyway

13 Typical approaches would assume that the changes take place either in the middle
or in the end of the year. Those implementations are arbitrary and would influence
our model estimates severely as we are interested in the actual month of death.
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at ages over 65. The impact of variables like “marital status” and “living alone
yes/no” is also manageable if the results are carefully interpreted. This view
gains some support from a paper recently published in the British Medical
Journal. In their study “Vulnerability to winter mortality in elderly people in
Britain: population based study”, Wilkinson et al. use exclusively time-fixed
covariates — also for the question whether somebody was living alone or not
[405].

Competing Risks

We analyzed mortality for various causes of death. It can be assumed that the
risk of dying from one cause is not independent from the risk of dying from
another cause in the case of human mortality [61]. Therefore it appears to
be most natural to estimate a competing risks model. We are, however, faced
with a dilemma: [196, p. 51–52, emphasis in source document]:

“In competing-risks modeling we often need to make some assump-
tions about the dependence structure between the potential failure
times. Given that we can only observe the failure time and cause and
not the potential failure times these assumptions are not testable with
only competing risks data. This is called the identifiability dilemma.
[ . . . ] This means that given what we actually see, (T, δ), we can
never distinguish a pair of dependent competing risks from a pair of
independent competing risks.”14

As pointed out by Allison [6], not much can be done about this dilemma.
Although it is “possible to formulate models that incorporate dependence
among event types but, for any such model, there’s an independence model
that does an equally good job of fitting the data” [6, p. 209].

If independence (or quasi-independence [cf. 61]) is assumed, one can fol-
low either one of the following two approaches: either one is estimating a
model with all causes simultaneously, or one is estimating a model for each
cause of death separately. Both approaches are statistically equivalent. It has
been shown, for example in Prentice et al. [293], Kalbfleisch and Prentice
[183] and Allison [6], that the likelihood function for all causes together (i.e.
simultaeoeusly for j causes of death) can be factored into separate likelihood
functions for each of the j causes of death. The only advantage of a simulta-
neous estimation therefore is “to reduce the number of statements needed to
specify the models” [6, p. 188]. On the contrary, there are some advantages
of estimating models separately: First, one does not have to specify the same
functional form and not the same set of covariates for all causes of death.
Secondly, “a further implication is that you don’t need to estimate models

14 In the quotation above, T indicates the duration (e.g. age); δ denotes the last
observed status of the subject (e.g. alive/censored, death from cause a, death
from cause b, . . . ).
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for all event types unless you really want to. If you’re only interested in the
effects of covariates on deaths from heart disease, then just estimate a single
model for heart disease, treating all other death types as censoring. Besides
reducing the amount of computation, this fact also makes it unnecessary to
do an exhaustive classification of death types. You only need to distinguish
the event type of interest from all other types of events” [6, p. 188]. These
advantages, in conjunction with the identifiability dilemma, let us choose to
run models separately.

5.3 Results

5.3.1 Descriptive Results

The upper panel in Figure 5.1 gives an overview about the distribution of
deaths during the observation period from 1980 until 1998 for both sexes.
Each gray vertical bar represents the monthly number of deaths (adjusted to
a standard length of 30 days) in Denmark at ages 65 and higher. Clearly, a
distinct seasonal pattern can be observed. Each January is marked by a black
triangle, whereas August is illustrated by a black square. With a few excep-
tions, these two months represent typically the maximum and the minimum
in numbers of deaths in every year. With regard to the heavy media cover-
age after the summer of 2003 on heat-related mortality, it should be stressed
that deaths during summer were always below the average number of deaths
during the whole observation period of 19 years.

The seasonal pattern for the whole time period can be described by the
“Winter / Summer-Ratio”, which has been discussed in Chapter 3 as sea-
sonality index ϕ1 (see page 41). This index results in a value of 1.17, which
means that 17% more people are dying during winter than during summer. In
contrast to the initial description in Chapter 3, the months which served as
nominator and as denominator have been slightly changed: December, Jan-
uary and February are the months with the highest numbers of death as shown
in the two lower panels of Figure 5.1. To have a year whose seasons are di-
vided into four consecutive parts of equal length, summer was defined for the
months June, July, August.
The two lower panels in Figure 5.1 show the same data aggregated into one
year, separated by sex and converted into monthly contributions given in per-
centages; women’s seasonality of deaths is displayed in the lower left panel
with a gray barplot, the lower right panel depicts the corresponding pattern
for men in black. For clarification, in both panels a horizontal line has been
drawn at 8.3% to indicate the value of a uniform distribution.
The differences in the Winter/Summer Ratio (ϕ1) are relatively small among
the two sexes. Women’s seasonality measured by ϕ1 is 1.18, men’s ϕ1 = 1.17.
For both sexes the six months with the highest number of deaths is followed
by the six months of lowest deaths. Consequently, Hewitt’s test for seasonality
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Fig. 5.1. Monthly Distribution of Deaths Above Age 65 in Denmark, 1980–1998
and Its Aggregation into Twelve Months by Sex (standardized for length of month)

resulted in a maximum rank sum of 57 which corresponds to significance on
the ρ = 0.013 level which is the lowest possible value for this nonparametric
test (cf. Chapter 3 (page 39), 150, 395).15

5.3.2 Absolute Level of Mortality

Using our discrete-time event-history approach, we are mainly presenting rel-
ative mortality risks.16 To get an overview about the absolute differences be-
tween winter and summer mortality, a seasonal life-table has been calculated.
To estimate a life-table, two inputs and one assumption are required:

Occurrences: The occurrences in our application are deaths at a certain (in-
teger) age in a specific month for either women or men.

Exposures: In our case, the exposures are women and men who are at risk of
dying during a certain (integer) age in a specific month.

15 Also, any other test, which was presented in Chapter 3, resulted in highly signif-
icant values for these Danish data.

16 To be precise, we will present odds-ratios. But as pointed out before and also
shown, for example, by Woodward [414], odds-ratios are often a good approxima-
tion to the relative risk. Since the number of events in our application is relatively
rare to the number of exposures, we can safely use this approximation.
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Assumption: The function a(x) usually specifies the “mean number of person-
years lived in the interval by those dying in the interval” [297, p. 43]. In
our case, we give a value of 0.5 as the mean number of person-months
lived in the interval (a month) by those dying in the interval in an integer
age. This value of 0.5 corresponds to the assumption that deaths occur in
the middle of the month.

We picked the death rates — usually denoted by mx — as our life table
function of choice. These standard rates for mortality from all causes have
been plotted by age in Figure 5.2 on page 146 in the upper left panel for
women (gray) and men (black). The other three panels show the results from
ischaemic heart disease (upper right), cerebrovascular diseases (lower left),
and respiratory diseases (lower right). The death rates for these three causes
have been estimated using a multiple decrement lifetable approach as outlined
in Preston et al. [297] on pages 71ff. Accordingly, the rates mmi

x at age x in
month m for cause-of-death i are:

mmi
x = mdi

x

mLx
. (5.4)

The number of people dying at age x in month m from cause i is denoted
by mdi

x. The people who are exposed to the risk of dying are denoted by mLx.
We plotted the resulting death rates (m(x)) by age in Figure 5.2 on page

146. The upper left panel shows results for mortality from all causes. The
remaining three panels contain information on the seasonal pattern for the
selected causes of death: ischaemic heart disease (upper right), cerebrovascular
(lower left) diseases and respiratory diseases (lower right). Several interesting
features can be discovered in the four panels:

• All four causes of death show a distinct difference between summer and
winter mortality. Albeit on a lower overall level, these differences are larger
for respiratory diseases than for ischaemic heart disease and cerebrovascu-
lar diseases.

• On the plotted log-scale, we observe for mortality from all causes, from is-
chaemic heart disease and from cerebrovascular diseases, a linear increase
in mortality with age. This corresponds to an exponential increase in mor-
tality.

• For all-cause-mortality, three reference lines have been plotted to give an
impression on how much winter mortality is exceeding summer mortality.
Winter mortality for women at age 80 can be seen at the intersection of
the gray dashed vertical line and the gray dashed horizontal line. The
equivalent for men is shown at the intersection of the gray dashed vertical
line and the black dashed horizontal line. Following the horizontal reference
lines to the right, we can see that summer mortality reaches the level of
winter mortality two years later for women and three years later for men.

• At first glance it is surprising that the mortality curves for women and
men are converging (all-cause-mortality, ischaemic heart disease) or even
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are crossing over. This does not reflect what is observed in reality. It is an
outcome of pooling data for the years 1980 to 1998. Since mortality is lower
for females than for males, the average (calendar) time was earlier when
women died at those high ages where converging mortality is displayed.
Due to the progress in survival chances, men are catching up. In any graph
which is aggregating mortality information over several units of time, the
plotted gap between female and male mortality is therefore smaller than
the one measured at one unit of time.

The following sections present the results of our discrete-time event-history
analysis. To condense the information, the regression coefficients are given in
a figure and in a table only for the first analysis. For the remaining analyzed
variables, only the graphs are included in the main text. The corresponding
tables can be obtained from the author.

5.3.3 Seasonal Mortality by Sex and Cause of Death

In a first step, seasonal mortality has been analyzed by sex and cause of
death. Separate logistic regressions have been conducted for men and women
for mortality from all causes, ischaemic heart disease mortality, cerebrovascu-
lar diseases and respiratory diseases.
The odds-ratios and the 95% confidence intervals for the parameter estimates
from this discrete-time event-history analysis are shown in four panels in Fig-
ure 5.3. By looking at Figure 5.3 a), one can recognize that the differences
between women and men for seasonal mortality from all causes are rather neg-
ligible. Although we can detect that the excess in mortality during winter is
higher for women than for men, the differences are relatively small. Women’s
relative mortality risk (RMR) in winter is 18 percent higher than in summer.
Men’s excess is 16 percent. Excess mortality from Ischaemic Heart Disease
(Figure 5.3 b) is slightly higher for both sexes than from all causes. Again,
women’s RMR is higher than men’s (eβWinter♀ : 1.235; eβWinter♂ : 1.204). Male
cold-related excess mortality surpasses women’s only for cerebrovascular dis-
eases in all seasons (Figure 5.3c). Similarly important for high winter excess
mortality are respiratory diseases. Although the share of ischaemic heart dis-
ease combined with cerebrovascular diseases among all diseases is larger (IHD
& Cerebrovascular Diseases: ≈ 40%; Respiratory Diseases: ≈ 7%), the excess
from respiratory diseases is considerably higher (see Figure 5.3d). Men’s risk
of dying from respiratory diseases is 36.5% higher in winter than in summer.
Women’s risk is elevated by more than 55%. It should be emphasized, how-
ever, that we are using relative mortality measurements. Therefore it is not
possible to filter out whether winter mortality is extremely high or summer
mortality is extremely low.

Relatively similar results for winter excess mortality for both sexes with
a slight “advantage” for women have been reported previously for all-cause
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mortality [37, 98, 121, 419], as well as for heart diseases [246].17 Our results
are contradictory to findings from mortality research in general where women
typically have lower mortality rates at all ages. These results should be inter-
preted with care for two reasons:

• If the analysis does not correct for age, those differentials might be the
outcome of an age effect: due to higher life-expectancy of women, the mean
age in a female population should be higher than in the corresponding
male population. In conjunction with the increase of seasonality with age
as previous articles stated [e.g. 102, 251, 300], women’s seasonality could
simply be larger because of their higher susceptibility to cold climate at
advanced ages. Our analysis, however, controlled for possible confounding
with age.

• A possible solution for this surprising finding might be the specific Dan-
ish situation: As already outlined in the introduction to this chapter, life
expectancy in Denmark rose slower than anywhere else in comparable
countries — especially for women. The main reason for the decelerated in-
crease in life expectancy was the high smoking prevalence among females
in Denmark. This reasoning might also apply to seasonal mortality in our
analysis. When looking at the results from respiratory diseases (Fig. 5.3
d), it can be easily detected that women and men both display substan-
tial excess mortality during winter. Women’s relative risk of dying during
the cold season is even higher than that of men. This might be traced
back to the cohort of heavily smoking women who were born between
the two World Wars and which is strongly represented in our data. But
not only this compositional effect of a large proportion of smoking women
in Denmark can be brought up to explain the higher excess mortality of
women than of men in Denmark. There are also indications for a direct
sex-effect of smoking between women and men. Although “it is too early to
conclude that women may be more sensitive than men to some of the dele-
terious effects of smoking” [238, p. 787], several articles from Prescott et al.
point into the direction that smoking has more severe effects on health for
women than for men [e.g. 294, 295]. In one of her studies which is based
on data from Denmark, Prescott et al. [295] show that this differential
among women and men was visible in particular for the relevant seasonal
diseases (cardiovascular, cerebrovascular and respiratory diseases) but not
for cancer [295].

5.3.4 Winter Excess Mortality by Age, Sex, and Cause of Death

Age is the most important single determinant of mortality. Therefore, we
calculated seasonal mortality for five-year age-groups in a second step. To fa-

17 This finding of larger seasonal variations of coronary heart disease in New Zealand
by Marshall et al. [246] only applied to the Non-Maori population.
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Fig. 5.3. Seasonal Mortality by Sex and Cause of Death (Odds-Ratios and 95%
Confidence Intervals)

cilitate interpretation, only the estimated winter odds-ratios have been plot-
ted in Figure 5.4. The results for winter excess mortality from all causes
are shown in Fig. 5.4 a) for women and men. For women as well as for
men, seasonal mortality increases with age. Between ages 65 and 69 the
risk of dying in winter is about 10% higher for women as well as for men
(eβWinter♀ : 1.102; eβWinter♂ : 1.095). Winter excess mortality is increasing with
age. Danish people face excess winter mortality of about 15% in their mid 70s
(eβWinter♀ : 1.146; eβWinter♂ : 1.149). When Danish people survive until 90 years of
age, women’s risk of dying is about 23% higher in winter than in summer; for
men, the risks are slightly higher (90–94 years: 26.2% ; 95–99 years: 28.0% ).
Although the Danish data are of high quality, results for centenarians should
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Table 5.6. Regression Results, Seasonal Mortality by Sex and All Cause Mortality

Women
Covariate β eβ s.e. ρ

Intercept (α) -6.618 0.007 <.0001
Winter 0.165 1.180 0.004 <.0001
Spring 0.095 1.100 0.004 <.0001
Summer (RG) - - - -
Fall 0.022 1.022 0.004 <.0001
Age (in Years) 65-69 (RG) - - - -

70-74 0.444 1.558 0.006 <.0001
75-79 0.931 2.536 0.006 <.0001
80-84 1.473 4.363 0.006 <.0001
85-89 2.016 7.511 0.006 <.0001
90-94 2.529 12.537 0.007 <.0001
95-99 2.918 18.499 0.009 <.0001
100+ 2.815 16.695 0.021 <.0001

Period 1980-84 0.033 1.034 0.005 <.0001
1985-90 -0.004 0.996 0.005 0.377
1991-93 (RG) - - - -
1994-96 -0.007 0.993 0.005 0.149
1997-98 -0.066 0.936 0.006 <.0001

Men

Covariate β eβ s.e. ρ

Intercept (α) -6.102 0.006 <.0001
Winter 0.146 1.157 0.004 <.0001
Spring 0.090 1.095 0.004 <.0001
Summer (RG) - - - -
Fall 0.027 1.028 0.005 <.0001
Age (in Years) 65-69 (RG) - - - -

70-74 0.443 1.557 0.005 <.0001
75-79 0.893 2.441 0.005 <.0001
80-84 1.298 3.662 0.005 <.0001
85-89 1.679 5.361 0.006 <.0001
90-94 1.997 7.365 0.007 <.0001
95-99 2.026 7.586 0.013 <.0001
100+ 1.004 2.729 0.036 <.0001

Period 1980-84 0.107 1.113 0.005 <.0001
1985-90 0.041 1.042 0.005 <.0001
1991-93 (RG) - - - -
1994-96 -0.030 0.971 0.005 <.0001
1997-98 -0.105 0.900 0.006 <.0001
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Table 5.7. Regression Results, Seasonal Mortality by Sex and Ischaemic Heart
Disease

Women

Covariate β eβ s.e. ρ

Intercept (α) -8.448 0.014 <.0001
Winter 0.211 1.235 0.008 <.0001
Spring 0.138 1.148 0.008 <.0001
Summer (RG) - - - -
Fall 0.040 1.040 0.009 <.0001
Age (in Years) 65-69 (RG) - - - -

70-74 0.647 1.910 0.014 <.0001
75-79 1.285 3.615 0.013 <.0001
80-84 1.927 6.870 0.013 <.0001
85-89 2.522 12.458 0.013 <.0001
90-94 3.068 21.492 0.014 <.0001
95-99 3.466 31.992 0.018 <.0001
100+ 3.309 27.347 0.041 <.0001

Period 1980-84 0.299 1.348 0.009 <.0001
1985-90 0.168 1.183 0.009 <.0001
1991-93 (RG) - - - -
1994-96 -0.200 0.819 0.011 <.0001
1997-98 -0.382 0.682 0.013 <.0001

Men

Covariate β eβ s.e. ρ

Intercept (α) -7.449 0.011 <.0001
Winter 0.186 1.204 0.008 <.0001
Spring 0.131 1.140 0.008 <.0001
Summer (RG) - - - -
Fall 0.056 1.057 0.008 <.0001
Age (in Years) 65-69 (RG) - - - -

70-74 0.470 1.599 0.010 <.0001
75-79 0.942 2.564 0.009 <.0001
80-84 1.352 3.866 0.010 <.0001
85-89 1.753 5.769 0.011 <.0001
90-94 2.092 8.103 0.014 <.0001
95-99 2.174 8.792 0.024 <.0001
100+ 1.116 3.052 0.069 <.0001

Period 1980-84 0.323 1.381 0.009 <.0001
1985-90 0.171 1.186 0.009 <.0001
1991-93 (RG) - - - -
1994-96 -0.214 0.807 0.011 <.0001
1997-98 -0.392 0.676 0.013 <.0001
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Table 5.8. Regression Results, Seasonal Mortality by Sex and Cerebrovascular
Diseases

Women

Covariate β eβ s.e. ρ

Intercept (α) -9.346 0.023 <.0001
Winter 0.154 1.166 0.013 <.0001
Spring 0.095 1.099 0.013 <.0001
Summer (RG) - - - -
Fall 0.023 1.023 0.013 0.077
Age (in Years) 65-69 (RG) - - - -

70-74 0.766 2.152 0.024 <.0001
75-79 1.506 4.507 0.022 <.0001
80-84 2.226 9.261 0.021 <.0001
85-89 2.800 16.438 0.021 <.0001
90-94 3.220 25.023 0.023 <.0001
95-99 3.385 29.518 0.031 <.0001
100+ 2.998 20.053 0.078 <.0001

Period 1980-84 0.090 1.094 0.014 <.0001
1985-90 -0.004 0.996 0.013 0.776
1991-93 (RG) - - - -
1994-96 -0.167 0.846 0.015 <.0001
1997-98 -0.306 0.736 0.018 <.0001

Men

Covariate β eβ s.e. ρ

Intercept (α) -8.945 0.023 <.0001
Winter 0.190 1.209 0.015 <.0001
Spring 0.127 1.135 0.015 <.0001
Summer (RG) - - - -
Fall 0.040 1.041 0.016 0.010
Age (in Years) 65-69 (RG) - - - -

70-74 0.679 1.973 0.021 <.0001
75-79 1.352 3.866 0.020 <.0001
80-84 1.896 6.662 0.020 <.0001
85-89 2.293 9.903 0.021 <.0001
90-94 2.562 12.960 0.026 <.0001
95-99 2.440 11.471 0.046 <.0001
100+ 1.157 3.181 0.147 <.0001

Period 1980-84 0.134 1.144 0.016 <.0001
1985-90 -0.001 0.999 0.016 0.946
1991-93 (RG) - - - -
1994-96 -0.236 0.790 0.019 <.0001
1997-98 -3868.000 0.000 0.022 <.0001
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Table 5.9. Regression Results, Seasonal Mortality by Sex and Respiratory Diseases

Women
Covariate β eβ s.e. ρ

Intercept (α) -9.077 0.025 <.0001
Winter 0.441 1.554 0.019 <.0001
Spring 0.234 1.264 0.020 <.0001
Summer (RG) - - - -
Fall 0.098 1.103 0.020
Age (in Years) 65-69 (RG) - - - -

70-74 0.355 1.426 0.023 <.0001
75-79 0.633 1.882 0.023 <.0001
80-84 0.953 2.595 0.023 <.0001
85-89 1.310 3.706 0.024 <.0001
90-94 1.750 5.755 0.028 <.0001
95-99 2.188 8.920 0.042 <.0001
100+ 2.014 7.495 0.106 <.0001

Period 1980-84 -0.443 0.642 0.021 <.0001
1985-90 -0.244 0.784 0.019 < .0001
1991-93 (RG) - - - -
1994-96 -0.222 0.801 0.021 <.0001
1997-98 -0.081 0.922 0.023 0.000

Men

Covariate β eβ s.e. ρ

Intercept (α) -8.750 <.0001
Winter 0.311 1.365 0.016 <.0001
Spring 0.151 1.163 0.017 <.0001
Summer (RG) - - - -
Fall 0.014 0.017 0.413
Age (in Years) 65-69 (RG) - - - -

70-74 0.548 1.730 0.020 <.0001
75-79 1.077 2.936 0.019 <.0001
80-84 1.431 4.183 0.020 <.0001
85-89 1.729 5.632 0.022 <.0001
90-94 1.941 6.969 0.029 <.0001
95-99 1.854 6.383 0.054 <.0001
100+ 0.979 2.661 0.139 <.0001

Period 1980-84 -0.096 0.909 0.018 <.0001
1985-90 -0.023 0.977 0.017 0.163
1991-93 (RG) - - - -
1994-96 -0.220 0.803 0.020 <.0001
1997-98 -0.137 0.872 0.022 <.0001
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be interpreted with great care: As indicated by the large confidence intervals,
not many people belong to this category. Consequently, just a few erroneous
cases of people who died after their 100th birthday, may have a large impact
on the estimated regression coefficients.

Further insights can be gained by investigating the patterns for the three
selected causes of death: ischaemic heart disease, cerebrovascular diseases and
respiratory diseases (Fig. 5.4 b,c,d). The relatively close resemblance of mor-
tality from ischaemic heart disease with mortality from all causes should not
be surprising as this cause of death alone contributes about 30% to all deaths.
Also cerebrovascular diseases which contribute about 10% display an increase
with age, albeit the slope is less smooth than for Figures 5.4 a) and b). While
the relative risks of dying from ischaemic heart disease during winter is higher
for women, men’s relative risks are higher for cerebrovascular diseases. This
is in contrast with the susceptibility to these diseases for mortality in general:
Men’s mortality rate from ischaemic heart disease is typically higher than
women’s, whereas the chance of dying from stroke (cerebrovascular disease)
is greater for women.18

Winter excess mortality caused by respiratory diseases (cf. Fig. 5.4 d) does
also increase with age for women. The development for men does not show
any clear trend. Although the relative risk of dying from respiratory diseases
is higher for men when they are 85–89 years old than for men 65–69 years
(eβWinter♂65−69y

: 1.283; eβWinter♂85−89y
: 1.504;), the odds-ratio decreases for men in their

late 90s eβWinter♂85−89y
: 1.263;). Due to the large 95% confidence interval for this

estimate, one should be careful with its interpretation.
Generally speaking, our analysis supports the results from previous re-

search. We obtained a general trend which has been observed by Quetelet
from as early as 1838 [300]: the seasonal amplitudes in mortality are in-
creasing with age. This has been also regularly found in former studies [eg.
102, 121, 251, 268, 302]. One could argue that with increasing age, the suscep-
tibility towards adverse environmental conditions gains in relevance. Public
health policies aiming to reduce the annual number of cold-related deaths
should therefore be aimed at the most vulnerable group: the very old. The
general advice to keep a warm indoor climate, avoid exposure to cold outdoors,
. . . is particularly important to people at advanced ages.

Our analysis can not answer the question conclusively whether the pre-
viously discovered higher excess winter mortality for women than for men
(cf. Fig. 5.3) can be generalized. The differential age-composition of women
and men in the population can not be the reason as shown in Fig. 5.4 a).
In most age-groups women and men differ only marginally in the extent of
winter excess mortality. It can be assumed that female excess winter mortality
is caused by factors which are specific for Denmark. Respiratory diseases con-

18 Information about mortality in general has been derived from own calculations
based on the WHO database located at http://www.who.int/whosis. Data were
taken for Denmark for the year 1998.
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Fig. 5.4. Winter Excess Mortality by Sex and Age and Cause of Death (Odds-Ratios
and 95% Confidence Intervals)
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tribute only about 6–7% to all deaths. Nevertheless the differences between
women and men with respect to winter excess mortality is especially large for
that cause of death. The high smoking prevalence among Danish women in
general can be offered as an explanation. This line of argumentation wins fur-
ther support when one considers that the only significant differences in winter
excess mortality from all causes is among people between 70 and 74 years of
age. This is also the age-group with the largest differences between women
and men in any age-group for ischaemic heart disease, and the only age-group
where women exceed men in winter excess mortality from cerebrovascular dis-
eases. Both causes of death are associated with smoking [3, 248, 294]. It has
been analyzed previously that women born between the two World Wars show
a high mortality most likely caused by a high smoking prevalence [173]. It can
be therefore assumed that we observe rather a cohort effect than an age effect
because these women constitute an important part in our data-set.

5.3.5 Seasonal Mortality by Sex, Wealth and Cause of Death

Socio-economic factors, besides age and sex, are important determinants of
mortality differentials. The first indicator we analyzed was wealth which was
measured on the household level and categorized into quartiles. In our model
we controlled for age and period, marital status, education and the question
whether somebody was living alone or with at least one more person. The
coding was performed as outlined in section 5.2.1 starting on page 131.19 The
estimates for winter excess mortality for this variable are plotted in Figure 5.5
with summer serving as reference category. The four panels show the results
for all-cause mortality (upper left panel), ischaemic heart disease (upper right
panel), cerebrovascular diseases (lower left panel), and respiratory diseases
(lower right panel) for women (left side in each panel) and men (right side in
each panel). The poorest people are plotted in dark gray, people richer than
25% but poorer than 50% of the population are indicated by shaded bars
in dark gray. The wealth quartile 50% –75% is shown in light gray and the
richest 25% are in shaded light gray. Results for the poorest people should
be interpreted with great care. Not many old people belong to this category
(∼3.4%), hence the relatively large confidence intervals.

The general finding is that a social gradient is not observable. It is hard to
track down visually any differences among the four social groups, for exam-
ple, for winter excess mortality for female all-cause mortality (Figure 5.5a))
shows that the point estimates differ only marginally with a range from 1.181
(Quartile 1) to 1.202 (Quartile 4). Unfortunately, the statistical software used
for the analysis (SAS) had problems with the estimation of seasonal mor-
tality from all causes for men (Figure 5.5b). The results should therefore be

19 The reference groups for the respective covariate-groups were: 65–69 Years
(Age); 1991–93 (Period); Married (Marital Status); Alone (Living Alone Yes/No);
Medium Education (Education).
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interpreted with care. Nevertheless, the same tendency can be observed as
for women: differences in excess winter mortality between the richest and the
poorest people are rather negligible ( eβWinter

Q1 : 1.171; eβWinter
Q4 : 1.187).

For the remainder of this section, results for the poorest quartile are not
taken into account anymore as the number of deaths from ischaemic heart
disease, cerebrovascular diseases and respiratory diseases in that social group
is relatively small.

Figure 5.5 c) and d) portrays the seasonal nature of ischaemic heart disease
for women (left) and men (right). Basically one can observe the same pattern
as for all-cause-mortality: the risk of dying in winter is elevated by roughly
the same amount across the three wealth quartiles. Men’s risk of dying in
winter rather than in summer is 27% higher in Quartile 25%–50% and 26%
higher among the wealthiest. Women show a slight trend with an unexpected
gradient where the richest face a relative risk of 28% in winter and women
belonging to Quartile 25%–50% only of 21%. This tendency is, however, not
statistically significant as the 95% confidence intervals overlap.

Results for the analysis of winter excess mortality for cerebrovascular dis-
eases are displayed in Figure 5.5 e) and f). Not surprisingly, deaths from cere-
brovascular diseases show a very similar pattern to deaths from ischaemic
heart disease: Again, no significant (95%-level) differences have been es-
timated. From an overall perspective, the estimated values are somewhat
smaller for cerebrovascular diseases than for ischaemic heart disease. While
the relative risk of dying was 25.9% higher for the latter cause of death among
men in the richest wealth quartile, it was only elevated 23.3% for the cere-
brovascular diseases. It is interesting to note that the ordering of the wealth
quartiles by winter excess mortality is the same for both causes of death: If we
can speak of any social gradient for women at all, the slope is in the opposite
direction than what would be expected. The wealthiest women face again a
higher relative risk than women from poorer social strata.

The results for deaths from respiratory diseases are illustrated in Figure
5.5 g) and h). The first impression reiterates the finding from Figure 5.3d.
Women’s excess winter mortality is considerably higher than men’s. But again
there is no social gradient present.

Socio-economic factors have been established as an important determi-
nant in mortality differentials [195, 210, 314]. Indeed, in many countries those
differences are even increasing over time [e.g. 29, 71, 243, 284] — also in
Denmark [233]. The lack of an effect of wealth on seasonal mortality is not
surprising, though. It is rather a common finding that there is “no clear evi-
dence of a relationship between socioeconomic status and seasonal mortality”
[121, p. 274]. Several of those studies are, however, based on ecological data
on the ward level [cf. 214]. This lack of correlation on the aggregated level
must not necessarily correspond to a lack of correlation on the individual level
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Fig. 5.5. Winter Excess Mortality by Sex, Wealth, and Cause of Death (Odds-
Ratios and 95% Confidence Intervals)
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[311].20 If studied with individual level data, there are some first indications
that socio-economic status does actually matter for seasonal mortality. Don-
aldson and Keatinge found that “cold related mortality in the retired (65–74)
age group was generally higher in men of class 5 (unskilled) than class 1 (pro-
fessional), or other classes, with little differences between men, and women or
housewives” [79, p. 790]. The question which arises then is: why did we not
find any impact of wealth in Denmark despite the high-quality of the Danish
data on the individual level?
It is likely that the lack of any evidence is associated with the specific situa-
tion of Denmark. For example, the health system is tax-financed and open to
everyone for free [171, 336].21 Consequently, access to health care is indepen-
dent of income and wealth which might be particularly important in the case
of seasonal mortality. Despite the aspect of access to health care via economic
resources, there is also a behavioral aspect for the relation between socio-
economic status and mortality: “poor people behave poorly” [230, p. 809]
with higher rates of smoking, less physical activity, poorer nutritional habits
. . . . The amount of poor people in Denmark is, however, lower than anywhere
else in Europe. Only 3.9% of the people in Denmark earn less than half of
the mean income [162].22 This implies that the absolute differences between
the four wealth quartiles in Denmark are relatively small. Consequently, the
socio-economic differences measured by wealth in the population which could
be important for cold-related mortality [cf. 79] are rather negligible in the
Danish context. Wealth (or income) is, however, only one approach to measure
socio-economic status. Since we have shown in the previous chapter that an
educational gradient exists in seasonal mortality in the United States, we will
investigate the impact of formal school education on winter excess mortality
in Denmark in the following section.

5.3.6 Winter Excess Mortality by Sex, Education and Cause of
Death

Another approach to measure socio-economic status is by education. While
weakening health can influence the income and wealth of a person, the highest
educational level achieved remains unaffected. In addition, it is almost con-
stant in the age-range analyzed here and it is better suited than measurements

20 It should be mentioned that not all recent studies which discovered no impact
of socio-economic factors on seasonal mortality used aggregate level data. For
example, the analysis of van Rossum et al. [376] used individual level data. Their
analysis was however aimed at a relatively homogeneous population: male civil
servants.

21 As pointed out by the Danish “Indenrigs- og Sundhedsministeriet” [171], this is
not perfectly correct. Private expenditures for health care have to be given for
some medicinal products, dentistry, and physiotherapy.

22 Other European countries show much larger values. E.g. Portugal 24.5% , France
14.7%, UK 14.8%.
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derived from occupational status, as the study population is 65 years or older
and therefore most of them are no longer actively working anymore and are
retired [374]. In addition, education is less related to financial aspects (like
wealth), yet it is rather linked to behavioral aspects of health.

Figure 5.6 shows the results from the logistic regression analyzing the
impact of education on winter excess mortality from all causes. The estimated
odds-ratios for women are displayed on the left side (Fig. 5.6 a), winter excess
mortality for men on the right side (Fig. 5.6 b). The results by cause of death
are plotted in the Appendix in Figure D.1 on page 185. In this approach we
controlled for age, period, marital status and wealth (we used the highest
wealth quartile as the reference group).
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Fig. 5.6. Winter Excess Mortality by Sex, Education, All Cause Mortality (Odds-
Ratios and 95% Confidence Intervals)

The results for winter excess mortality by educational attainment iterate
the findings from the analysis of socio-economic status measured via wealth:
no clear social gradient is observable neither for women nor for men. The
relative risk of dying during winter is elevated by about 16% for females
of the lowest educational group and roughly 15% for females of the highest
educational group. This lack of a tendency can be also observed for men
with slightly lower values (low: 1.120, high: 1.130). Although the problems
of the software to estimate standard errors for women and men with the
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lowest education should lead to careful interpretations, the results for causes
of death such as ischaemic heart disease and respiratory diseases (Fig. D.1,
185) support the view of a lack of a social gradient.

No previous literature exists so far which analyzed the impact of educa-
tional level on seasonal mortality. Only the analysis in the previous chapter
(Chapter 4, page 83) touched this subject. In the analysis in the previous
chapter using data from the United States, we have found an apparent social
gradient: Generally speaking, people with higher education showed lower sea-
sonal fluctuations in mortality. A lack of a differential of mortality in general
by educational group can not be offered as an explanation. Actually, educa-
tional differentials in adult mortality do not only persist but even increase in
both countries [103, 233, 296]. Errors in the coding of education in the data-set
should not be the explanation either, Typically, an educational gradient was
found when controlling for education in other analyses. For example, the re-
gression model which resulted in Figure 5.5 a) for the richest women (shaded,
light gray bar) controlled for age, period, marital status, living alone yes/no
and education. Intermediate level of education served as reference category.
People with lower education showed higher mortality (odds-ratio: 1.117) and
vice versa (odds-ratio: 0.900). One can therefore conclude that education is
not well-suited as a good proxy variable in a homogeneous country to de-
termine seasonal mortality differences. This implies that behavior which is
known to increase the risk of dying (for example, wearing not appropriate
clothes outdoors) [80] is in Denmark independent from the knowledge people
have acquired in school.

5.3.7 Winter Excess by Cause of Death and Housing Conditions

Housing conditions are closely related to socio-economic status. Omitting an
analysis by housing quality after not finding any results for wealth and educa-
tion would not be appropriate because of the crucial role housing conditions
play. Poor housing conditions are a major health risk [245] — especially for
typical seasonal diseases such as cardiovascular, cerebrovascular, and respira-
tory diseases [54, 121, 404]. Therefore a separate analysis has been conducted
which examined whether housing conditions are of major relevance also in
Denmark.

The results for winter excess mortality from all causes, ischaemic heart
disease, respiratory diseases, and from cerebrovascular diseases, are plotted
clockwise in Figure 5.7 starting in the upper left panel. In each panel, the left
side shows the estimated odds-ratios for women, the right side for men. The
dark gray color indicates bad housing conditions and barplots in light gray
good housing conditions. We controlled for age, period, marital status, living
alone and education. The influence of wealth has not been included because
the data on housing conditions started only in 1991 and the availability of
information on wealth finished in 1996.
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Fig. 5.7. Winter Excess by Sex, Cause of Death and Housing Conditions (Odds-
Ratios and 95% Confidence Intervals)

The differences in winter excess mortality from all causes are rather small
between people living in good housing conditions on the one hand and people
living in less favorable houses and apartments on the other hand. The risk
of dying during winter is elevated by 21% in poor housing conditions for fe-
males. Women who live in better houses and apartments have a lower relative
risk; the differential is, nevertheless, relatively small (19%). A difference of
two percentage points is also observed among men. Surprisingly, the direc-
tion is in the opposite direction: While men in poor housing face a relative
risk of 16%, people in better housing show slightly higher odds-ratios (1.18).
These differences are, however, not statistically significant on a 95% level.
Cerebrovascular diseases show the same tendency, whereas the differences for
ischaemic heart disease are even more minor: the odds-ratios are 1.266 for
women during winter in poor housing and 1.250 in good housing conditions.
For men, the corresponding values are 1.258 and 1.256. Albeit not statisti-
cally significant either, the only cause of death where good housing conditions
appear to favor both sexes are respiratory diseases. The relative risk of dying
for women during winter is 64% higher during winter than during summer if
they live in relatively poor housing. In good housing conditions, the risk is
only elevated by about 55%.

Although “warm housing is not enough” [186], it has often been singled
out as a major determinant to avoid winter excess mortality [e.g. 16, 54].
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It is therefore surprising that we did not find conclusive evidence for such
a housing effect on winter excess mortality in Denmark. The key to answer
this question lies probably again in the remarkable homogeneity of the Danish
population on a high absolute level. “97–99 percent of those aged 70+ who live
in ordinary housing are in houses with kitchen, toilets, central heating, and hot
water ” [128, p. 26]. Almost no apartments exist in Denmark without central
heating, whose absence has often been described as the main factor triggering
cold-related mortality [e.g. 16, 75, 77, 188, 251, 324, 325, 340]. Contrastingly,
elderly people in the United Kingdom, the country in which most of these
previous studies have been conducted, face severe housing problems [47]. For
example, the 2001 census showed that more than 10% of all households in
England still do not have central heating.23 We can therefore not conclude
that housing conditions are of minor importance for winter excess mortality. If
the population is, however, rather homogeneous and on a high level in housing
terms like in Denmark, the amount of excess mortality attributable to poor
standards in houses and apartments is rather negligible.

5.3.8 Winter Excess Mortality by Cause of Death and Car
Ownership

Whether one owns a car can be interpreted as another measurement of socio-
economic status. We employ this indicator in our analysis following the sugges-
tion of Donaldson and Keatinge [77]. They argue that increased car ownership
reduced the annual amplitude in mortality by exposing less and less people
to the cold outdoors. Consequently, one should assume that people with a car
should show less winter excess mortality than the ones without.

The results for women and men are shown in Figure 5.8 for all-cause
mortality as well as for ischaemic heart disease, cerebrovascular diseases and
respiratory diseases. We controlled for age, period, marital status, living alone
and education.24

For mortality from all causes, risks are elevated by 20% during winter for
women if they did not own a car. In case of a car the risk was 22%. Men showed
a similar value in the absence of a car (20%); their risk decreased if they owned
a car. The same pattern can be observed for both sexes for cerebrovascular
diseases: an increase for women and a decrease for men in the presence of a
car. For ischaemic heart disease, almost no change was detectable (odds-ratio
for women without car: 1.268, with car: 1.254; odds-ratio for men without car:
1.267, with car: 1.243). Respiratory diseases showed even a slight increase in
winter excess mortality if a car was present. But none of these results was
significant.
23 Result based on own calculation derived from data available online at the Statis-

tical Office of the United Kingdom [265]
24 Like in the analysis for housing conditions, we excluded the variable wealth from

our analysis for similar reasons: the car register provided data starting in 1992
and wealth was only available until 1996.



5.3 Results 163

No Car
Car

O
dd

s−
R

at
io

s

0.
9

1
1.

1
1.

2
1.

3
1.

4

All−Cause Mortality

Women Men

a) b)

O
dd

s−
R

at
io

s

0.
9

1
1.

1
1.

2
1.

3
1.

4

Ischaemic Heart Diseases

Women Men

c) d)

O
dd

s−
R

at
io

s

0.
9

1
1.

1
1.

2
1.

3
1.

4

Cerebrovascular Diseases

Women Men

e) f)

O
dd

s−
R

at
io

s

0.
9

1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8

Respiratory Diseases

Women Men

g) h)

Fig. 5.8. Winter Excess Mortality by Sex, Cause of Death and Car Ownership
(Odds-Ratios and 95% Confidence Intervals)

The suggestion whether increased car ownership decreased the amount of
cold-related deaths during winter has never been analyzed so far in an em-
pirical investigation. Our results indicate that the question whether one owns
a car or not is rather irrelevant for the relative risks of dying in winter in
Denmark. This could either mean that the availability of a car is of minor im-
portance for excess winter mortality or another explanation could be that the
system of public transportation in Denmark is of high quality. Buses operating
on a regular basis and windproof bus shelters, as suggested by Keatinge and
Donaldson [186], help in reducing exposure to outdoor cold. Consequently,
being owner of a car or not is less important for seasonal mortality.

5.3.9 Winter Excess Mortality by Sex, Marital Status and Cause
of Death

The impact of marital status on seasonal mortality is examined in Figure 5.9.
The four panels show the results for all-cause mortality (upper left), ischaemic
heart disease (upper right), cerebrovascular diseases (lower left), and respira-
tory diseases (lower right). Each of the four panels is divided into a left part
for women and into a right part for men. In these subpanels the exponen-
tiated regression coefficients are plotted for widowed (dark gray), divorced
(dark gray, shaded), married (light gray), never married / single (light gray,
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shaded) people. The respective reference season in each case is summer. In
this analysis we controlled for age, period, being alone, education, and wealth.

At a first glance no consistent pattern giving a straightforward interpreta-
tion is present. None of the four presented marital statuses shows consistently
higher or lower values of winter excess mortality than the other ones. For
“All-Cause Mortality” the odds-ratios for winter excess mortality for women
vary between 1.157 for “divorced” and 1.205 for “widowed”. The estimates
for men are in a similar range (divorced: 1.127; never married: 1.203). Almost
non-observable differences exist for mortality from ischaemic heart disease
for women and especially for men (odds-ratios for women: widowed 1.243,
divorced 1.210, married 1.226, never married 1.245; odds-ratios for men: wid-
owed 1.243, divorced 1.260, married 1.257, never married 1.257). Larger dif-
ferences do exist for cerebrovascular diseases and in particular for respiratory
diseases.

Marital status is a well established factor to determine mortality differ-
entials. International comparisons [e.g. 163] have shown that married women
and men have lowest age-specific mortality rates compared to people in any
other marital status. Typically divorced people face the highest mortality
risks. It is a common finding that men benefit more from being married than
women [129]. Two strains of causal explanation are usually given: selection
effects and protection effects. A selection effect postulates that mentally and
physically healthier persons are more likely to marry. Among other factors, a
protection effect hypothesizes that married people have more emotional and
social support, have better access to medical information and health services
due to a higher income per person and it also reduces risk taking behavior,
encouraging healthier lifestyles. [124].

Our study could not detect any advantage for married women and men in
terms of winter excess mortality. While it is usually not the category show-
ing highest winter excess mortality, it is neither displaying consistently lower
cold-related mortality. We should be, however, careful with the interpretation
of these variables as there is a bias towards not enough exposure time for
married people and too many exposures for widowed and divorced people.
If our results were true, an explanation could be that better access to medical
care via a higher income per head is irrelevant in Denmark where medical
services are open for everyone. Another reason could be that in this analysis
by marital status we controlled — among other factors such as age, period,
wealth, and education — also for the question whether somebody was living
alone or not. If marital status operated for excess winter mortality via emo-
tional and social support and fast help in case of an emergency, it was unlikely
that this analysis yielded any significant results. Therefore we analyzed in a
final step the question whether living arrangements matter for cold-related
mortality.
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Fig. 5.9. Winter Excess Mortality by Sex, Marital Status, and Cause of Death
(Odds-Ratios and 95% Confidence Intervals)



166 5 The Impact of Social Factors on Excess Winter Mortality in Denmark

5.3.10 Winter Excess Mortality by Cause of Death and Living
Alone

In Figure 5.10 the odds-ratios are plotted for winter excess mortality for people
who either lived alone or not. Starting in the upper left panel in a clockwise
direction the results are shown for mortality from all causes, ischaemic heart
disease, respiratory diseases and cerebrovascular diseases. We controlled for
age, period, marital status, wealth and education.
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Fig. 5.10. Winter Excess Mortality by Sex, Cause of Death and Living Alone
(Odds-Ratios and 95% Confidence Intervals)

For mortality from all causes, the relative risk of dying is 21% higher in
winter than in summer for women as well as for men who are living alone.
If men had at least one more person present in the household, the relative
risk of dying during winter is 14.5% which is significantly lower (95% confi-
dence level).25 Also the differences are not significant for the selected causes of
death. The same tendency can be detected for ischaemic heart disease, cere-
brovascular diseases as well as for respiratory diseases: People who live alone
are more prone to dying during winter than people who do not live alone.26

25 The results for women should be interpreted with care as the software had prob-
lems with convergence. The value of 1.027 is probably too low.

26 It should be noted that the smaller differences for ischaemic heart disease than
for cerebrovascular diseases reflect the fact that in case of stroke it is much more
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Respiratory diseases display the largest slope of all of these causes. If women
live alone their relative risk of dying during winter is 58.4% higher than during
summer; in presence of a partner, the risk was only 41.4% higher than during
summer. For men, the differences in the odds-ratios is even larger (odds-ratio
alone: 1.499; odds-ratio not alone: 1.265).

The empirical evidence in the literature suggests that there is a strong
positive effect on mortality if people live alone rather than with a partner [15,
23, 123, 180, 226]. In the case of seasonal mortality, two studies exist measuring
the impact on seasonal mortality. The one which investigated the effect on
winter excess mortality could not detect any significant differences [405]. One
study analyzed the question for heat-related mortality during extreme heat
waves [267]. Their paper reflected also our finding: If people are living alone
during periods of adverse environmental conditions, it is better not to live
alone but together with a partner to avoid mortality. The possible linkage is
probably via emotional and social support. Also the possibility that somebody
is present in the case of an emergency to provide first aid and call for an
ambulance can have a considerable influence.

5.4 Summary

The aim of this chapter was to analyze the determinants of excess winter
mortality in Denmark. Denmark was chosen mainly because of its data. No
other country in the world has as much information available about the whole
population in a longitudinal dimension as Denmark. These population register
data have been analyzed using a discrete time event-history approach. In our
analysis several findings from the literature were tested for the first time in
a longitudinal perspective for an entire population on the individual level. As
the data were available as individual life course histories, we used a discrete-
time event-history model for our analysis.

Denmark follows the typical pattern of developed countries in the Northern
hemisphere with the highest annual numbers of death in December and a mini-
mum in August. Winter deaths exceed summer deaths by about 17%. We have
shown that winter excess mortality becomes more pronounced with increasing
age. The oldest people tend to be the most vulnerable group not only in terms
of overall mortality but also in their amount of cold-related deaths. Women
seem to have higher fluctuations between winter- and summer-mortality than
men. Previous literature suggested that there are no sex-related differences in
excess winter mortality. Our finding could be caused by the specific situation
in Denmark with a relatively high prevalence of smoking among women which
has an impact on typical seasonal diseases. Especially for respiratory diseases
we detected considerably higher winter excess mortality for women than for

important to have quick help available than in the case of myocardial infarction
[347].
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men.
The lack of impact of socio-economic status on cold-related mortality has been
reported previously in the literature. Neither wealth nor education seems to be
correlated with excess winter mortality. Again, this could be caused by the ho-
mogeneity of the Danish population where the differences between relatively
poor and relatively rich people are smaller in absolute terms than in other
countries. Also housing conditions are less problematic for an increased risk
of dying during the cold season in Denmark than in the UK, which was most
often the country of analysis in previous studies. In socio-economic terms,
Denmark is not only homogeneous. This homogeneity is, in addition, also at
a very high level. Really poor housing conditions are hard to find; more than
90% of all households have the maximum number of installations which are
recorded in the housing.
We did not find any association between car ownership and excess winter mor-
tality. This means that car ownership is either not a good proxy to measure
exposure to outdoor cold during winter or that there are only marginal dif-
ferences in time spent outdoors for old people who own a car and who don’t
(maybe due to high standard of public transportation). Despite its impor-
tance for mortality analysis in general, we could not find any effect of marital
status on excess winter mortality. More crucial are the living arrangements:
If somebody is living alone, the relative risk of dying during winter is much
higher for him or her than people who share the apartment with at least one
more person.

Many studies as well as our results point in the direction that socio-
economic conditions do not have an impact of excess winter mortality. This
does not imply that they do not differ in general. Many previous studies
used aggregate level data which do not allow to make inferences on the in-
dividual level. And, indeed, when looking at the individual level, it has been
observed that people of lower socio-economic status face higher mortality risks
during winter than in summer compared to people from higher social strata
(cf. Chapter 4, page 83 or Donaldson and Keatinge [79]). The lack of find-
ings for Denmark for socio-economic status can probably be attributed to the
homogeneous character of the country at a relatively high level. Or as Pe-
ter Høeg observed in his novel: “Seen from my perspective, Denmark’s entire
population is middle-class. The truly poor and the truly rich are so few as to
be almost exotic” [151, p. 25].
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Outlook: The Impact of Reducing
Cold-Related Mortality

6.1 Introduction

While the previous two chapters dealt with factors which influence the ex-
tent of seasonal mortality fluctuations, this small chapter wants to answer the
question: If we are able to eliminate or at least diminish the seasonal fluctua-
tions in mortality, what is the public health benefit? We answer this question
by investigating how much life expectancy would increase if people did not
have to face the adverse environmental conditions during winter, but were
actually exposed to summer conditions for their whole life. Thus, we compare
“real” mortality conditions and the corresponding remaining life expectancy
with “summer” mortality conditions.

6.2 Data, Methods, and Results

Our aim is to calculate a seasonal life-table. To obtain it, we extend the
standard construction of the life-table. Two data sets are usually required —
the number of people alive in a certain age and the number of people who
have died at that age. Our approach is similar, but we use more information
for a given calendar year.

• The number of people alive in a certain month at a certain (integer) age.
• The number of people who died during a certain month at a certain (in-

teger) age.

These data are provided in two data-sources.

• Monthly death counts by age were obtained from the Multiple Cause of
Death Public Use Files as described in Chapter 4. The year 1998, the last
year which was analyzed in the chapter on US death counts, was chosen
for the current analysis.
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• Monthly population counts for the year 1998 by sex were obtained from
the US Bureau of the Census [373].

One additional item of information is needed, usually denoted as a(x) in
life-table notation: the mean number of person-years (or in our application:
person-months) lived in the interval by those dying in the interval. We as-
sumed that people die on average in the middle of each month, thus assigning
the value 0.5 to all ages. In our analysis, we restricted ourselves to a range
from 50 to 100 years of age.

Using this information we were able to calculate all life-table functions. To
ascertain that our approach worked, we compared remaining life expectancy
at age 50 from our calculations with life-table calculations from the Human
Life Table Database (HLD) [167]. The HLD calculations resulted in values
of e50 of 31.63 years for women and 27.29 years for men. We considered our
approach satisfactory, as these “official” results correspond closely to our es-
timations for age 50 in April for women (our result: 31.629 years) and for age
50 between June and July for men (June: 27.339, July: 27.269).

We estimated “summer” mortality by fitting a straight line to the natu-
ral logarithm of the yearly minimum probabilities of dying (qx-values). This
approach is shown in Figure 6.1. The solid lines represent the observed, real,
age-specific probabilities of dying on a log-scale in light gray for women and
in dark gray for men. The dotted lines show our fitted values from linear re-
gression. The legend in the lower right corner of the figure shows that this
linear approach fitted our data remarkably well. We obtained adjusted values
for r2 of 0.997 for women and 0.999 for men.

Table 6.1 shows the results from the comparison of real mortality with
summer mortality. For that purpose we calculated remaining life expectancy
in both ways for every five years starting from age 50 until age 95 for women
as well as for men. We can see that remaining life expectancy at age 50
could be increased by 0.83 years for women and by 1.08 years for men if
summer mortality conditions prevailed for the rest of their lives rather than
the observed mortality conditions. The absolute gain in years decreases at
more advanced ages. The proportional benefit, however, increases. At age 90,
remaining life expectancy of women as well as of men could be increased by
13% (women: 12.95%; men: 13.43%).

6.3 Discussion

Our analysis has shown that the differences between the observable remaining
life expectancy at age 50 is increased by 0.83 years for women and 1.08 years
for men. It should be pointed out that these gains at a particular age do not
apply only to the “rescued” people, but to all women and all men. Although
such an increase in life expectancy seems to be only moderate, an economic
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Table 6.1. Gains in Life Expectancy from Reducing Annual Cold-Related Mortality

Women Men

Age x ereal
x eSummer

x Gains in ex
Gain
ereal

x
% ereal

x eSummer
x Gains in ex

Gain
ereal

x
%

50.00 31.85 32.68 0.83 2.59 27.70 28.77 1.08 3.90
55.00 27.42 28.20 0.78 2.86 23.51 24.59 1.08 4.60
60.00 23.19 23.91 0.72 3.13 19.59 20.66 1.07 5.45
65.00 19.22 19.87 0.65 3.38 16.01 17.02 1.01 6.33
70.00 15.52 16.13 0.61 3.90 12.77 13.72 0.95 7.46
75.00 12.16 12.75 0.59 4.82 9.93 10.80 0.87 8.76
80.00 9.12 9.78 0.66 7.22 7.44 8.28 0.84 11.31
85.00 6.53 7.22 0.69 10.53 5.42 6.16 0.74 13.66
90.00 4.47 5.05 0.58 12.95 3.87 4.39 0.52 13.43
95.00 2.73 3.06 0.33 12.00 2.54 2.77 0.23 8.98

perspective could emphasize the relevance of this additional life year won.
Recent studies conducted at the University of Chicago and at Yale estimated
the impact of health and life expectancy improvements on national wealth
[261, 274]. Murphy and Topel estimate “that improvements in life expectancy
alone added approximately $ 2.8 trillion per year (in constant 1992 dollars)
to national wealth between 1970 and 1990” [261, p. 2–3]. During those two
decades remaining life expectancy at age 50 rose a bit more than five years
for women as well as for men. The potential gain from reducing cold-related
mortality is, in comparison, relatively small (0.8 years for women and about
1 year for men). Nevertheless, national wealth could benefit from such a re-
duction in considerable sums as well.

It should be stressed, however, that these gains outlined in Table 6.1
present a theoretical maximum for several reasons. For example:

• Period life-tables do not describe the mortality experience of a real cohort
but of a synthetic cohort. This applies even more to the case of a seasonal
lifetable. The results are only correct if the current rates would prevail.1

• If a life has been saved in winter, it does not imply that the “rescued”
person has the same probabilities of dying for her/his remaining life as
the rest of the cohort. Typically, people who would have died without the
saving are frailer and, thus, more susceptible to death than their peers
[385, 387]. “More generally, individuals of the same age may differ from
differ from each other in their ‘frailty’ or relative risk of death” [377, p. 154].

1 Life expectancy at current rates is different from life expectancy at current con-
ditions as shown by Vaupel [380].
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Concluding Chapter: Summary of Findings

The impact of seasonal effects on diseases and mortality has been known
for more than 2000 years. Surprisingly little is, however, known about its
determinants. To understand and tackle a phenomenon, it is of importance
to have the current state of knowledge about it. The literature review pre-
sented in Chapter 2 showed that biomedical approaches could explain the
basic annual pattern observed in seasonal mortality with a peak in winter
and a trough in summer, but not the “seasonality paradox”: Cold regions
show consistently smaller differences between summer and winter mortality
than countries where a warm or moderate climate prevails. Thus, social and
cultural influences play an integral part in mediating seasonal fluctuations
in mortality and, consequently, also in reducing the annual number of cold-
related deaths. The historical literature review has shown the importance of
those non-biological factors already in the past. The literature claims that,
nowadays, avoiding indoor as well as outdoor cold by having a warm indoor
climate, and reduced time spent outdoors during cold spells, plays a crucial
role for minimizing the risk of dying during winter.

Chapter 3 reviewed indices, tests, and time-series methods for seasonality
to indicate which methods are suited best to analyze seasonal data. For “nor-
mal” applications with a smooth annual pattern with one peak and one trough,
Hewitt’s test [150] is suited best to test for seasonality. This test should be
used in conjunction with a descriptive index like the “Winter/Summer-Ratio”
to have also a measurement of the extent of differences between winter and
summer since Hewitt’s test is a nonparametric test based on ranks.
None of the standard methods we analyzed for seasonal time-series fulfilled
our requirements. It can be generally stated that the methods X-12, SABL,
STL, TRAMO/SEATS and BV4 performed well on relatively simple data pat-
terns. For situations with a variable trend, a changing seasonal component and
overdispersion, a situation which is rather common in real data, all of these
approaches fail to produce satisfactory results as we have shown in simulation
studies.
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For our analysis of seasonality in US death counts between 1959 and 1998
(Chapter 4, page 83), we developed a new method which returned a correct
estimation of the trend and the seasonal component for the same models for
which the standard methods (X12, BV4, . . . ) failed in Chapter 3. In our model,
we allowed the trend and the seasonal component to vary smoothly over time
(or age). We estimated these models in a data-driven approach (thus, we did
not impose any parametric form on these components) by fitting a varying-
coefficients model using P -Splines.
Our most important findings from the analysis were: cold-related mortality
increases with age which supports previous findings in the literature. Seasonal
mortality over time increased slightly since the 1970. This reflects probably
the widespread introduction of air conditioning which makes summer mortal-
ity decrease at a faster pace than mortality is decreasing during any other
season of the year.
We discovered that women and men do not differ considerably with respect to
seasonal fluctuations in mortality. This has been found in previous analyses.
Nevertheless, the question remains how it is possible that women face lower
mortality risks than men throughout their life course — which corresponds
to lower susceptibility to adverse environmental conditions — but show the
same relative response to seasonal effects as men do.
It should have been assumed from comparative European studies that warmer
regions in the US show larger fluctuations in seasonality than colder regions.
We found, however, no differences. Especially the trend over time shows a
slightly converging pattern which could reflect a tendency towards similar liv-
ing conditions in all regions of the United States.
Our investigation pursued a novel approach by analyzing the effect of edu-
cation as a proxy for socio-economic status and marital status on seasonal
mortality. Both constitute important determinants for differential mortality
in the United States and elsewhere. We did not find support that marital sta-
tus has an important influence on seasonal mortality. We discovered, however,
a social gradient by education in seasonal mortality. The less years spent in
formal education, the higher are the annual fluctuations in mortality. This is
an effect which has not been discovered elsewhere.

Besides the analysis of death counts in the US American data over time and
age, we investigated the determinants of excess winter mortality in Denmark
using an event-history approach. This country represents the “El Dorado”
of all countries with respect to the quality and wealth of data: Denmark’s
person registers allow to follow life courses on the individual level in a longi-
tudinal perspective on almost any phenomenon of interest. Similar to the case
of the analysis of US death counts, we found an increase with age for all-cause
mortality as well as for ischaemic heart disease, cerebrovascular diseases and
respiratory diseases.
While many studies as well as our analysis of deaths in the United States
(Chapter 4) found no differences between seasonal mortality of women and
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men, we discovered that women’s excess mortality surpasses the one of men
in Denmark. Most likely the explanation is specific for Denmark: Women
have a higher smoking prevalence there than in most other countries. This
behavioral characteristic affects typical seasonal diseases like cardiovascular
and cerebrovascular diseases but in particular respiratory diseases. Women
with the highest smoking prevalence in Denmark were born between the two
World Wars and constitute a major part of the female population in our data.
Despite our findings for the United States, we could not detect any effect of
socio-economic status on seasonal mortality in Denmark. This could be ex-
plained by the homogeneity of the Danish population being on a relatively
high level rather than by a general absence of an effect of socio-economic
conditions on seasonal mortality. More importantly, concerning the amount
of excess winter mortality in Denmark is the question whether somebody is
living alone or not, rather than socioeconomic status or marital status. If peo-
ple are living alone they have higher relative mortality risks in winter than
women and men who share an apartment with at least one more person.

Our analysis has shown that the most vulnerable groups are old people,
people who are living alone and people of lower socio-economic status. Public
health policies which aim to reduce the annual number of cold-related deaths
in a country should therefore focus on these groups. In Chapter 6 we used
US data for the year 1998 to estimate the maximum theoretical gains in life
expectancy if those public policies were successful. We calculated that at age
50 about 0.8 years of life years could be won for women and about 1 year of
life for men. Although these gains sound only moderate in size, they may have
a huge economic impact on national wealth in absolute numbers.
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Appendix for Literature Review

A.1 Methodological Aspects of the Literature Review

In 1994, the British Medical Journal published an article named “The scandal
of poor medical research: Sloppy use of literature often to blame” [179]. In
the case of seasonal mortality, there is a considerable risk for “sloppy use” as
scientists from various disciplines are working on that subject. Consequently,
it is likely that researchers from one discipline are not aware of important
findings from another area. An exhaustive search for literature is therefore
indispensable. For this purpose, bibliographic reference indices (e.g. OVID,
Population Index) have been searched as well as databases which give online
access to articles (e.g. JSTOR, ScienceDirect). Relying only on databases
for literature reviews may include various problems such as incompleteness
[59]. However, querying several databases in conjunction with the archives of
journals and using cross-references, it is fairly certain that no seminal paper
on seasonal mortality has been left out. More details on the indices, databases,
and journals searched are given in Table A.1.

Table A.1. Databases Used for Literature Search

• Population Index • ScienceDirect
• JSTOR • Springer LINK Search
• OVID • EBSCO
• British Medical Journal (BMJ) • Ingenta
• The Lancet • New England Journal
• Journal of Epidemiology of Medicine (NEJM)

and Community Health (JECH)

One possible shortcoming has to be pointed out anyway: There might
be a “Tower of Babel Bias” in this review [134]. This phenomenon refers to
the problem that the inclusion of English as the only language in literature
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searches may lead to different findings than in multilingual approaches. Includ-
ing studies in German and French besides English moderates the possibility
of a “Tower of Babel—Bias”, however, this drawback can not be completely
eradicated.

Population Index. The Population Index is the main database for demo-
graphic and population literature published between 1986 and 2000. Its
range of about 400 journals covers not only demography but also biology,
economics, geography, and sociology. While the emphasis is on European
languages, relevant literature in Asian languages is also included.
The site is available online at: http://popindex.princeton.edu

JSTOR. JSTOR is an online article archive of the most prominent journals
in almost every academic discipline. Articles are usually provided start-
ing with Volume 1 of each journal. That implies to have a vast resource
available — especially for historical articles which would be very hard to
obtain otherwise.
The site is available online at: http://www.jstor.org

OVID. OVID is probably the largest of the databases presented here. It
is a reference database run by the Max Planck Society. With the vari-
ous databases it covers such as Medline, Sociofile, EconLit, Dissertation
Abstracts, etc. and its broad temporal perspective (while most databases
start in the 1960s, the collection for data from PSYCINFO began in 1887)
the primary literature on seasonal mortality should be identifiable.
The site is available online at: http://http://ovid.gwdg.de

ScienceDirect, Springer LINK Search, EBSCO, Ingenta ScienceDirect,
Springer LINK Search, EBSCO, and Ingenta are bibliographic databases.
The majority of the articles are available online, otherwise the biblio-
graphic information is given for ordering. The URLs for their homepages
and the number of available online journals according to themselves is
given here:

Database Journals Homepage
ScienceDirect 1800+ http://www.sciencedirect.com

Springer LINK 500+ http://link.springer.de

EBSCO “thousands” http://www.ebsco.com

Ingenta 6000+ http://www.ingenta.com

BMJ, NEJM, The Lancet, JECH. Medicine and Epidemiology are the
disciplines which publish most of the research on seasonal mortality. The
choice for these four journals was made because they are leading in their
field and, especially the British Medical Journal and the Journal of Epi-
demiology and Community Health, have published findings on winter ex-
cess deaths regularly.
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A.2 Appendix for Literature Review

A.2.1 Studies on Seasonal Mortality of Cardiovascular,
Cerebrovascular and Respiratory Disease

Cardiovascular Diseases

• In General: [18] [19] [82] [91] [208] [235] [411]
• (Acute) Myocardial Infarction: [36] [37] [138] [199] [345] [356]
• Coronary Thrombosis: [187]
• Coronary Heart Disease: [246] [340]
• Coronary Artery Disease: [341]
• Arterial Thrombosis: [97] [188]
• Ischaemic Heart Disease [58] [76] [77] [81] [98] [176] [253] [269] [317]

[322] [355] [376]
• Heart Attack [57]
• Hypertension [58]

Cerebrovascular Diseases

• In General: [19] [58] [76] [77] [81] [82] [98] [253] [376]
• Stroke: [37] [57] [269] [345]
• Cerebral Infarction: [36]
• Cerebral Thrombosis: [187]

Respiratory Diseases

• In General: [18] [19] [36] [58] [76] [77] [81] [82] [98] [97] [187] [188] [208]
[235] [246] [269] [319] [376]

• Pneumonia: [37] [319]
• Influenza: [63] [319]
• Bronchitis: [319]
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Appendix for Measuring Seasonality

B.1 Empirical Distributions for Hewitt’s & Rogerson’s
Tests

The articles for Hewitt’s test [150] and its generalization by Rogerson [315] for
peak period of 3,4, and 5 months printed significance values for the respec-
tive distributions of their test statistics based on Monte-Carlo simulations.
Exact significance levels have only been calculated for Hewitt’s test by Walter
[395]. In the original contributions, the distributions have been determined by
Monte-Carlo simulations. In my opinion, the number of runs (Hewitt’s Test:
5000; Rogerson’s Extension: 20,000 for each peak period) is relatively small.
Therefore I programmed functions which allow you to make your own Monte-
Carlo simulations. Table B.1 shows for peak periods of 6 (Hewitt), 5, 4, and 3
months (Rogerson) the significance values from the original papers (column:
“Orig. Values”) and also the exact values for Hewitt’s test (column: “Exact
Values”). The last seven columns are taken from my own simulations where I
generated between 101 and 107 random sequences of ranks from 1 to 12.1 For
Hewitt’s test we can see that our simulated results are converging towards
the exact values. The orignal (simulated) values give the correct results for
two decimals. If further exactness is required I recommend to take the orignal
values. As no exact values are given for Rogerson’s test, I suggest to use my
results from 10,000,000 randomly generated sequences. I have basically used
the same algorithm for Rogerson’s tests as for Hewitt’s test. Thus, we can
expect that our results are converging towards the exact values also for the
tests for a peak period of 3, 4, and 5 months. The code to simulate the four
distribution functions is given below.

1 A sample of size taken 12 was taken from the twelve integers 1, 2, . . . , 12 without
replacement.
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Table B.1. Comparison of Significance Values for Hewitt’s Test and Rogerson’s
Extensions: Orignal Simulations vs. Own Simulations

Length Rank Orig. Exact Values of Own Simulations

of Peak Sum Values† Values‡ (by number of randomly generated sequences)

101 102 103 104 105 106 107

Hewitt

6 57 0.0134 0.0130 0.0 0.02 0.009 0.1110 0.01206 0.012922 0.0129574
56 0.0248 0.0253 0.0 0.02 0.017 0.0226 0.2410 0.025032 0.0251664
55 0.0464 0.0483 0.0 0.04 0.033 0.0439 0.04770 0.047849 0.0482275
54 0.0766 0.0805 0.0 0.09 0.067 0.0794 0.07919 0.079921 0.0804839
53 0.1260 0.1299 0.1 0.19 0.139 0.1262 0.12687 0.129554 0.1298305

Rogerson

5 50 0.0152 - 0.0 0.00 0.014 0.0165 0.01528 0.014965 0.0150873
49 0.0294 - 0.0 0.01 0.024 0.0282 0.02949 0.029402 0.0293668
48 0.0573 - 0.0 0.04 0.051 0.0561 0.05719 0.056105 0.0561672
47 0.0949 - 0.2 0.11 0.086 0.0924 0.09360 0.093477 0.0934898
46 0.1499 - 0.3 0.18 0.152 0.1474 0.14992 0.150608 0.1505676

4 42 0.0267 - 0.0 0.03 0.021 0.0234 0.02392 0.024418 0.0241888
41 0.0509 - 0.0 0.04 0.052 0.0469 0.04677 0.047279 0.0469308
40 0.0927 - 0.0 0.10 0.095 0.0914 0.08954 0.089382 0.0891868
39 0.1540 - 0.2 0.14 0.153 0.1549 0.14844 0.147507 0.1475288
38 0.2398 - 0.3 0.22 0.247 0.2409 0.23686 0.235546 0.2356594

3 33 0.0543 - 0.2 0.05 0.047 0.0552 0.05399 0.054786 0.0546313
32 0.1056 - 0.3 0.10 0.084 0.1055 0.10441 0.105131 0.1052277
31 0.1975 - 0.3 0.17 0.194 0.1994 0.19716 0.197245 0.1977746
30 0.3220 - 0.4 0.34 0.347 0.3234 0.32170 0.322490 0.3223236
29 0.4711 - 0.5 0.43 0.482 0.4717 0.46931 0.469512 0.4696976

† Sources: Hewitt et al. [150] and Rogerson [315]
‡ Source: Walter [395]
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Problems of Gaussian Densities to Smooth a
Straight Line

As described in Section 4.4.2 (page 97ff), B-Splines are similar to Gaussian
densities without the problematic characteristics of the latter. For example,
with Gaussian densities, it is not possible to fit a straight line properly, because
of its defintion from [−∞;∞]. Figure C.1 shows the typical result from such
an approach: the so-called “Gaussian ripple” [86]).
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Fig. C.1. “Gaussian Ripple”: The Problem of Normal (“Gaussian”) Densities to
Smooth a Straight Line
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Appendix for Danish Register Analysis

D.1 Seasonal Mortality by Sex, Education and Cause of
Death
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Fig. D.1. Winter Excess Mortality by Sex, Education, and Cause of Death (Odds-
Ratios and 95% Confidence Intervals)
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Journal of Human Evolution, 9:49–59, 1980.

[107] R.A.P. Finlay. The Accuracy of the London Parish Registers, 1580–
1653. Population Studies, 32:95–112, 1978.

[108] Björn Fischer. Decompositions of Time Series. Comparing Different
Methods in Theory and Practice. Available online at:
http://europa.eu.int/en/comm/eurostat/research/noris4/
documents/decomp.%pdf, Eurostat - VIROS (Virtual Institute for
Research in Official Statistics), Luxembourg, 1995.

[109] Michael W. Flinn. The European Demographic System, 1500–1820. The
Johns Hopkins University Press, Baltimore, MD, 1981.

[110] A.J. Flisher, C.D.H. Parry, D. Bradshaw, and J.M. Juritz. Seasonal
variation of suicide in South Africa. Biological Psychiatry, 39:522–523,
1996.

[111] Robert Fogel. Public Use Tape on the Aging of Veterans of the Union
Army: Military, Pension, and Medical Records, 1860-1940. Center
for Population Economics, University of Chicago Graduate School of
Business, and Department of Economics, Brigham Young University,
Chicago, IL, 2000.

[112] Lone Frank. When an entire country is a cohort. Science, 287:2398–
2399, 2000.

[113] L.S. Freedman. The use of a Kolmogorov-Smirnov type statistic in tes-
ting hypotheses about seasonal variation. Journal of Epidemiology and
Community Health, 33:223–228, 1979.

[114] Wade Hampton Frost. The Age Selection of Mortality from Tubercu-
losis in Sucessive Decades (first published: 1939). American Journal of
Epidemiology, 141:4–9, 1995.

[115] Timothy B. Gage. The Decline of Mortality in England and Wales 1861
to 1964: Decomposition by Cause of Death and Component of Mortality.
Population Studies, 47:47–66., 1993.

[116] Patrick R. Galloway. Basic Patterns in Annual Variations in Fertility,
Nuptiality, Mortality, and Prices in Pre-industrial Europe. Population
Studies, 42:275–302, 1988.

[117] Jutta Gampe and Roland Rau. Trends in saisonalen Mortalitäts-
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tions from Väinö Kannisto and Danmarks Statistik, accessible online
at: http://www.lifetable.de, April 2003.

[165] Human Life-Table Database. Data by country. Accessible online at:
http://www.lifetable.de, July 2004.

[166] Human Life-Table Database. Data by Country: United States of Amer-
ica. Felicitie C. Bell and Michael L. Miller. Life Tables for the United
States Social Security Area 1900-2100. Actuarial Study No. 116, acces-
sible online at: http://www.lifetable.de, February 2004.

[167] Human Life-Table Database. Data by Country: United States of Amer-
ica. Accessible online at: http://www.lifetable.de, August 2004.

[168] Robert A. Hummer, Richard G. Rogers, and Isaac W. Eberstein. So-
ciodemographic Differentials in Adult Mortality: A Review of Analytic
Approaches. Population and Development Review, 24:553–578, 1998.

[169] Maud M.T.E. Huynen, Pim Martens, Dieneke Schram, Matty P. Wei-
jenberg, and Anton E. Kunst. The impact of heat waves and cold spells
on mortality rates in the Dutch population. Environmental Health Per-
spectives, 109:463–470, 2001.

[170] Ross Ihaka and Robert Gentleman. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299–
314, 1996.

[171] Indenrigs- og Sundhedsministeriet. Health care in denmark. Avail-
able online at: http://www.im.dk/publikationer/healthcare_in_
dk/all.htm (accessed 17 August, 2004), 2002.

[172] Kim Iskyan. The killer season. this summer was deadly, but winter could
be even worse. Available online at: http://slate.msn.com, 2004.

[173] R. Jacobsen, N. Keiding, and E. Lynge. Long term mortality trends
behind low life expectancy of Danish women. Journal of Epidemiology
and Community Health, 56:205–208, 2002.

[174] Rune Jacobsen, Allan Jensen, Niels Keiding, and Elsebeth Lynge. Queen
Margrethe II and mortality in Danish women. The Lancet, 358:75, 2001.
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[352] N. Smirnoff. Sur les écarts de la courbe de distribution empirique. Re-
cueil. Math. de Moscou, 6:3–26, 1939.

[353] Robert S. Smith. Barcelona “Bills of Mortality” and Population 1457–
1590. The Journal of Political Economy, New Series, 34:469–476, 1986.

[354] Robert R. Sokal and F. James Rohlf. Biometry. The Principles and
Practice of Statistics in Biological Research. W.H. Freeman and Com-
pany, New York, N.Y., 3rd edition, 2000.

[355] Sigurd Sparr. Cold and ischaemic heart disease in the elderly. Interna-
tional Journal of Circumpolar Health, 59(3–4):192–194, 2000.

[356] Frederick A. Spencer, Robert J. Goldberg, Becker Richard C., and
Joel M. Gore. Seasonal distribution of acute myocardial infarction in
the second national registry of myocardial infarction. Journal of the
American College of Cardiology, 31:1226–1233, 1998.

[357] Hans-Theo Speth. Komponentenzerlegung und Saisonbereinigung öko-
nomischer Zeitreihen mit dem Verfahren BV4.1. Methodenberichte,
Heft 3, 2004, Statistisches Bundesamt, Wiesbaden, D, 2004.

[358] A.S. St Leger. Comparison of two tests for seasonality in epidemiological
data. Applied Statistics, 25:280–286, 1976.

[359] E. Stoupel, J. Abramson, S. Domarkiene, M. Shimshoni, and J. Sulkes.
Space proton flux and the temporal distribution of cardiovascular
deaths. International Journal of Biometeorology, 40:113–116, 1997.

[360] Gustav Sundbärg. Bevölkerungsstatistik Schwedens 1750–1900. Nation-
al Central Bureau of Statistics, Skriftserie utgiven av statistika central-
byrän, Urval Nummer 3, 1970.

[361] José M. Teńıas Burillo, Ferran Ballester Dı́ez, Sylvia Medina, and Anto-
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