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"Common sense is the most equally shared thing in the world." 

DESCARTES 



FOREWORD 

"Writing a foreword is a formidable honour." These words come 
from one of my friends who, in 1988, began in this manner his preface 
that he had kindly written for one of my books. It is only today that I 
truly realise the complete accuracy of his sentiments. 

It is without a doubt an honour, and I definitely feel this way 
about it, for this is an excellent work and its author is strongly 
captivating. 

A mathematician who graduated with highest honours from the 
University of Ottawa, Pierre Lavallee conquered the lofty goal of a 
Masters in Science (mathematics and statistics option) at Carleton 
University. For more than fifteen years, he has held the position of 
senior survey methodologist at Statistics Canada, where he could 
supplement his existing theoretical training with solid experience in 
one of the most outstanding official organisations in the field of 
surveys. It was therefore with a great deal of enthusiasm that I 
supervised hi's doctoral thesis that he brilliantly defended in June 200 I 
at the Universite Libre de Bruxefles and from which this book 
evolved. 

During the second half of the 20th century, we saw more and 
more books on survey theory, a movement that continues at the start 
of this new millennium. Many of them are good, and even very good. 
This is the case, for example, with the book written by Carl-Erik 
Sarndal, Bengt Swensson and Jan Wretman (1992) that some consider 
- a justifiable title by the way - as the reference book of the end of 
the 20th century for all scientists working in this domain. How, under 
these conditions, can we still propose a written work that keeps this 
attention of the public if it does not reach new means, expanding the 
facets that we generally find in these works, granting the privilege of 
an educational presentation from a book? 



VIII Foreword 

In a text entitled « Dans queUe direction vont fa theorie et la 
pratique des sondages ? » ("In which direction are the theory and 
practice of sampling headed?"), which the reader can refer to in the 
book that I edited for Dunod with Ludovic Lebart in 2001 (p. 20), 
Carl-Erik Sarndal insists on the fact that in scientific literature, 
"survey methodology and sampling theory are certainly two different 
things." Very few people can boast that they possess the recognised 
competence in the domains of both sampling theory and survey 
practice. Pierre Lavallee is part of a small, fortunate group that 
concurrently holds these qualities and who, in fact, can only enrich the 
disciplines in which he works. 

Furthermore, the discourse is new. Up to now, the majority of 
proposed sampling methods looked to estimate parameters of a 
population by taking a sample selected directly from a sampling frame 
consisting of units from that population. The idea defended by Pierre 
Lavallee goes further since it proposes to estimate these parameters by 
sampling not the population concerned, but another population having 
connections with the first one. Look for information about children by 
selecting parents or obtain information on subsidiaries of companies 
through the parent companies, all while conserving the statistical 
properties of the estimators so constructed; these depict examples of 
actual concrete problems for which the proposed approach offers 
elegant solutions. We must be indebted to Pierre Lavallee for having 
detailed this issue and for presenting it to us with the pedagogical 
qualities that are so familiar to us all. 

Before concluding, I asked myself if this preface sufficiently 
and clearly conveyed all of the goodness that I thought of this book 
and of its author if the reader read it from beginning to end, but I am 
half reassured by calling to mind what was said by Luc de Clapiers, 
marquis de Vauvenargues, in his thoughts: "I have never seen a boring 
preface leading into a good book." 

May this work have all the success that it merits. 

Jean-Jacques Droesbeke 

Universite Libre de BruxeUes 

April 2002 



PREFACE 

Among all books written on sampling theory, there was no 
existing one devoted to indirect sampling. In 2002, I published in 
French the book "Le sondage indirect, ou fa methode generalisee du 
partage des poids" at the Editions de I 'Universite de Bruxelles 
(Belgium) and the Editions Ellipse (France). The present book on 
indirect sampling is a translated version of this book, with some 
sections added to reflect the new developments that have occurred 
since 2002. For the readers that are familiar with the content of the 
previous book, the new developments are with respect to obtaining 
optimal weighted links (section 4.6.3), the treatment of the problem of 
links identification (section 8.7), and some recent applications 
(chapter 10). 

As we know, sampling may be performed by drawing samples 
of people, businesses, or other things that we survey in order to obtain 
the desired information. According to classical sampling theory, the 
selection of samples is done by selecting at random from lists called 
sampling frames. These sampling frames are supposed to represent the 
set of people or businesses for which we are looking to produce 
information; this is what constitutes the target population. 

When the statistician has a sampling frame representing the 
desired target population, the drawing of samples can be made 
according to the well-established techniques of classical sampling 
theory, which we could also call direct sampling, as opposed to 
indirect sampling. The techniques of classical theory depend on a 
random selection of samples so that we can establish the probability of 
drawing some sample or other. This is what we call probability 
sampling. The knowledge of the selection probability ensures that we 
can establish the precision and reliability of the information produced 
by the survey. For example, we can establish if the results produced 
can contain a bias and in which interval we can hope to find the "true" 
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response. Moreover, the selection probabilities are directly used in the 
calculations of the results in obtaining precise estimates. 

In certain situations, the survey statistician does not have at his 
or her disposal any sampling frame and he or she must then manage to 
construct the samples needed in order to obtain the desired 
information. For opinion polls, for example, it is not rare that the 
sample of respondents be obtained by surveying the opinion of people 
chosen at random in a shopping centre. Since we do not have a list of 
customers at the shopping centre, there is then an absence of a 
sampling frame. This absence ensures that we cannot establish the 
probability of obtaining the sample, which makes the calculation of 
sampling precision impossible. This type of sampling is described as 
non-probability sampling. 

In other situations, the survey statistician has access to 
sampling frames, but none of which correspond directly to the desired 
target population. To carry out the survey, the statistician can then 
choose a sampling frame that is indirectly related to it. For example, 
for a survey about children, the statistician can make use of a 
sampling frame of adults whose children are chosen to be surveyed. In 
this case, the statistician first selects a sample of adults from the 
sampling frame which he or she has. For each adult in the sample, the 
statistician then identifies the children of the selected adult and finally 
surveys on behalf of all of the children identified. This is in the end 
what we mean by indirect sampling. Let us note that since there is the 
usage of a sampling frame, indirect sampling is a form of probability 
sampling. 

Indirect sampling finds its application in social surveys, as seen 
previously, but also in economic surveys. For example, for a survey 
about businesses, the survey statistician can consider the possibility of 
using, by way of a sampling frame, a list of businessmen or 
businesswomen registered at a chamber of commerce. Indirect 
sampling becomes complicated here when a businessperson owns 
more than one business, or when a business is the property of more 
than one businessperson. 

One sampling technique that can be as often employed in the 
context of a classical sampling, as it is in indirect sampling, is cluster 
sampling. This sampling technique is not used for the sample selection 
of units (people, businesses, or others), but instead for samples of 
groups of units called clusters. In social surveys, clusters most often 
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correspond to households or dwellings. In fact, a dwelling consists of 
a cluster of persons living in it. In economic surveys, clusters are 
generally enterprises that own establishments. 

When indirect sampling is used jointly with cluster sampling, 
many complications stand out for the survey statistician. One of these 
complications lies in the calculation of the selection probabilities of 
surveyed units at the time of the survey. As was mentioned 
previously, the knowledge of the selection probabilities allows for the 
establishment of the precision and reliability of the information 
produced by the survey. Furthermore, these are directly used in the 
calculation of the results derived from the survey. The knowledge of 
the selection probabilities is therefore considered as vital for the 
survey statistician. 

In the absence of selection probabilities, it is possible to 
calculate values that can substitute for the selection probabilities and 
can produce survey results that are entirely as valid for the survey 
statistician as for users of the results (governments, company 
directors, sociologists, etc.). This is possible under the generalised 
weight share method (GWSM). In sampling theory, weights are 
generally associated with the inverse of the selection probabilities. 
The GWSM in part uses the selection probabilities in a relatively 
simple calculation focused on the relationship between units from the 
sampling frame and those from the target population. In the context of 
indirect sampling, let us recall that the sampling frame and the target 
population are distinct. 

The use of the GWSM proves to be crucial in the context of 
indirect sampling, and in particular in the indirect sampling of 
clusters. The production of estimates of simple totals or means can 
often become almost insurmountable without this method. The G WSM 
in fact allows for the solution of problems, both theoretical and 
practical, that up to now gave nightmares to survey statisticians. 

The development of indirect sampling and the GWSM is the 
fruit of many years of reflection from the solution of practical 
problems occurring in the application of classical sampling theory. 
The lack of a sampling frame for a target population unfortunately 
constitutes a very common situation, even in national statistical 
institutes. This is what brought me to the publication of this book. I 
hope that survey statisticians will find in it answers to their questions 



XII Preface 

and that they will be able to put into practice the different 
developments presented about indirect sampling and the GWSM. 

In closing, I would like to greatly thank Jean-Jacques 
Droesbeke of the Universite Libre de Bruxelles (ULB), who patiently 
encouraged me to write this book, to whom I also express my 
gratitude. I would also like to thank Jean-Claude Deville of the Ecole 
Nationale de la Statistique et de I 'Analyse de l'Information (ENSAI) 
for his invaluable advice and especially for the spark behind the 
generalisation of the weight share method. My thanks go also to Carl 
Sarndal, who pertinently gave me advice in the formulation of certain 
theoretical results. My gratitude also goes to my colleague Pierre 
Caron of Statistics Canada, who carried out the simulations, and to my 
other colleague Michel Hidiroglou of Statistics Canada, who is a daily 
source of inspiration. Also, I would like to thank the late Bernard 
Gailly of the Centre d'Etudes des Populations, de la Pauvrete et des 
Politiques Socio-economiques (CEPS) in Luxembourg, with whom the 
numerous discussions were always fruitful. I should surely not forget 
Pambu Kita-Phambu from the ULB who helped in the layout of this 
book, and also my colleague Leon Jang who translated it from French 
to English. Finally, I wish to thank my wife Marie-Claude, who 
encouraged and supported me in the writing of this book. 
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CHAPTER 1 

INTRODUCTION 

Sample surveys today make up a varied and often 
indispensable source of information. Whether at the level of 
governments, company managers, sociologists, economists, or 
ordinary citizens, surveys allow the informational needs necessary in 
taking a decision to be met. For example, to establish their policies 
concerning certain economic sectors, governments must have a picture 
of the situation before taking decisions concerning these sectors. 

1.1 REVIEW OF SAMPLING THEORY AND 
WEIGHTING 

Sample surveys are carried out by selecting samples of persons, 
businesses or other items (called units) that we survey in order to get 
the desired information. Sample selection is often done by randomly 
selecting certain units from a list that we call a sampling frame. This 
list, or sampling frame, is supposed to represent the set of units for 
which we are looking to produce information; this is what makes up 
the target population. The sample size can be determined prior to the 
selection (fixed size sampling) or at the time of the sampling itself 
(random size sampling). In this book, we will restrict ourselves to 
fixed size sampling which is, in practice, the most widespread. 

Strictly speaking, fixed size sampling is described as follows. 

Consider Yu = (YI'''''YN) , the vector containing the values Yk for a 

population U of size N. For a survey on tobacco use, for example, the 
variable of interest Y k of Yu can be the number of cigarettes smoked by 

individual k during a given day. In general, we want to know the value for 

instance of the total Y = L~=IYk ,or otherwise the mean Y = Y / N. If the 
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size N of population U is known, the problem in detennining the total Yor 
the mean Y is the same. Going back to the previous example on tobacco, 
the total Y represents the total number of cigarettes smoked during the day, 

while the mean Y represents the average number of cigarettes smoked by 
an individual. 

To estimate the total Y (or the mean Y) of population U, we 
select a sample s of size n. A sampling design p is a function p(s) of 

the set E of all samples s selected from U such that p(s):?: 0 and 

LIE:::P(S) = 1. The function pes) is in fact the probability of selecting 

sample s among all samples of E. We assume that p(s) is known for 

the set E ; this is what we call probability sampling. A well-known 
sampling design is simple random sampling (without replacement) 
where all possible samples of E have the same chance of being 
selected. We have in fact pes) = n!(N - n)!/ N!. By dividing the 

population U into subpopulations Uh called strata, where U = UhUh , 

we define stratified simple random sampling that consists of selecting 
a simple random sample in each of the h strata. 

We define the selection probability (or inclusion probability) 
of unit k from population U by 

Jrk = LP(s), (l.l) 
ok 

where the sum of (1.1) is carried out over all the samples of s from the 
set E that contains unit k. We assume that Jrk > 0 for all units k of 

population U, i.e., all units have a non-zero chance of being selected. For 
example, with simple random sampling, we get Jrk = n / N , for k= 1, ... ,N. 

For each unit k of s, we measure the value of the variable of 
interest Y k' We can estimate the total Y with the following Horvitz-

Thompson estimator: 

yHT = t~, 
k~l Jrk 

(1.2) 

where the sum of (l.2) is carried out over all units k of sample s 

(Horvitz and Thompson, 1952).1 We can show that the estimator ylfT is 

I In this book, the sums will be based on a re-indexing of units. For example, for a 
sum over the population of size N and another over the sample of size n selected 
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unbiased for Y with respect to the sampling design, i.e., that if r;HT 
represents the value of yHT obtained for sample s, we have: 

(1.3) 

The mean of the values of yHT weighted by the selection 
probability of sample s then corresponds to the true value of the 
total Y. 

Consider tk , an indicator variable where tk = 1 if k E s , and 0 

otherwise. With this variable, we can rewrite the estimator yHT under 
the form 

(1.4) 

Moreover, we note that 

E(tk)=lxP(kEs)+OxP(k~s)=P(kEs)=1Ck' (1.5) 

From (1.4) and (1.5), we can prove the unbiasedness of the 
Horvitz-Thompson estimator in the following way: 

E(yHT) = E[f ~ Yk 1 = f E(tk ) Yk 
k~1 1Ck k~1 1Ck 

( 1.6) 

The formula for the variance of the estimator yHT, with respect 
to the sampling design, is given by 

(1.7a) 

or, in an equivalent manner, by 

v N [:2 'lIT l' Yk Yk' Var(Y )=--II(1Ckk ,-1Ck 1Ck,) ---
2 k~1 k'~1 1Ck 1Ck' 

(1.7b) 

from the population, we will respectively use 2:,~, and 2::_1' This notation has 
been used in several books on sampling theory such as, among others, Cochran 
(1977) and Morin (1993). 
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where 7rkk , represents the joint selection probability of units k and 

k' . For the details in the proofs of (1. 7 a) and (1. 7b), we can consult 
Siirndal, Swensson and Wretman (1992). 

We can also write the estimator 91fT given by (1.2) as a 
function of the sampling weight dk = 1/ trk . We then have 

(1.8) 

In sampling theory, the sampling weight is the inverse of the 
selection probability trk of unit k from sample s. The sampling weight 

of unit k corresponds to the expected number of units from population 
U represented by this unit. For example, if an individual has one 
chance out of four (7rk = 1/4) of being part of the sample, it will have 

a sampling weight of 4; we then say that this individual in the sample 
represents on average four individuals within the population. Let us 
note that the sampling weight dk may possibly not be an integer. 

It is possible to define in a general wayan estimation weight 
wk that we associate to unit k of sample s. This weight leads to the 

estimator 

(1.9) 

The properties (bias and variance, for example) of this 
estimator depend upon the construction of the estimation weight Wk' 

In this book, we will focus on an estimation weight obtained by the 
generalisation of a method called weight share. 

To learn more about sampling theory, the reader can consult 
books such as Cochran (1977), Grosbras (1986), Siirndal, Swensson and 
Wretman (1992), Morin (1993), Ardilly (2006), and Lohr (1999). 

1.2 CLUSTER SAMPLING 

It often happens that sample surveys are performed in clusters. 
Cluster sampling is in fact a sampling design commonly used in 
practice. This technique of sampling is not suitable for the drawing of 
samples of units, but rather the selection of groups of units called 
clusters [or primary sampling units (PSU)]. The units in the clusters 
are called secondary sampling units (SSU). In cluster sampling, 
we survey for all the SSU belonging to the selected PSu. When we 
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survey only for a subsample of the SSU, within the selected PSU, 
we are instead speaking of two-stage sampling. 

F or social studies, several surveys are built in such a way that 
we sample households in order to survey for the set of individuals 
from these households. The households thus form clusters of 
individuals. This is particularly the case for the Labour Force Survey 
conducted by Statistics Canada (Singh et at., 1990). For economic 
surveys, the sampling of enterprises is often done with the goal of 
obtaining information on their components, for instance, the 
establishments or the local units. Enterprises are therefore composed 
of clusters of establishments, or local units, which we survey in order 
to provide economic statistics, in particular for national accounts. 

With cluster sampling, the survey statistician can hope for 
reductions in collection costs. Indeed, surveying for entire households, 
for example, allows the interviewer to considerably reduce his number 
of trips compared to sampling for the same number of persons, but in 
different households. Cluster sampling also allows for the production 
of results at the cluster level itself, on top of the units. For example, 
we can calculate the average income of the households. 

Cluster sampling is presented in most books that deal with 
sampling theory. We assume that the population U consists of N 
clusters where each cluster i contains M; units. This is illustrated in 

Figure l.l. We select a sample s containing n clusters in population U 
according to a certain sampling design. We assume that Jr; represents 

U k 

I i 

i 

I 
B 

Figure 1.1: Cluster sampling 
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the selection probability of cluster i, where ffi > 0 for all clusters 

i E U . As each cluster i of population U contains Mi units, we have 

in total M = I;~l Mi units in the population. We survey all units of 

clusters i for sample s. Each unit k of cluster i therefore has the same 
selection probability as the cluster, i.e., ffik = ffi • 

With cluster sampling, we are looking to estimate the total 

y = I;~II~IYik for a characteristic y. Considering the Horvitz-

Thompson estimator (1.2), we can use the estimator YCLUS.!!T given by 

(LlO) 

where Y; = I~IYik' The superscript CLUS refers to the term cluster 

sampling. The variance of yCLUS,HT is given by 
N N 

Var(yCLUS,HT) = LL (ffii' - ffiff;,) Y;Y;,. 
i~1 i'~1 ffiffi, 

We can rewrite estimator (1.10) in the following manner: 

yeWS,HT =:t ~ IYik 

i=l ffi k=l 

where dik = 1 / ffik . 

(1.11) 

(1.12) 

Estimator (1. 10) can then be written as a function of units k for 
clusters i of sample s with sampling weight dik . In a general way, we 

can construct an estimation weight Wi~LUS and define an estimator of 

the form 
n Afl 

yCWS = "" CLCS L.... L.... Wik Yik' (1.13) 
i=l k=l 

The properties of this estimator depend upon the construction 

of the estimation weight Wi~LUS . 
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1.3 INDIRECT SAMPLING 

To select in a probabilistic way the necessary samples for 
social or economic surveys, it is useful to have available sampling 
frames, i.e., lists of units meant to represent the target populations. 
Unfortunately, it may happen that no available sampling frame 
corresponds directly to the desired target population. We can then 
choose a sampling frame that is indirectly related to this target 

population. We can thus speak of two populations U A and U B that 

are related to one another. We wish to produce an estimate for U B but 

unfortunately, we only have a sampling frame for U A • We can then 

imagine the selection of a sample from U A and produce an estimate 

for U B using the existing links between the two populations. This is 
what we can refer to as indirect sampling. 

For example, consider the situation where the estimate is 
concerned with young children (units) belonging to families (clusters) 
but the only sampling frame we have is a list of parents' names. The 
target population is that of the children, but we must first select a 
sample of parents before we can select the sample of children. Note 
that the children of a particular family can be selected through the 
father or the mother. 

This is illustrated by Figure 1.2. In this example, the families 
are represented by the rectangles and we note that the children can 
come from different unions. 

Another example of an application of indirect sampling is the 
situation where we wish to conduct a survey of enterprises (clusters) 
when we only have an incomplete sampling frame of establishments 
of these enterprises. For each establishment selected from the 
sampling frame, we want to sample the set of establishments (units) 
belonging to the same enterprise. The establishments that are not 
represented in the frame must be represented by those that are part of 
this frame (Lavallee, 1998b). 

This example can be represented by Figure 1.3. Here we see 
that establishments a, b, c, d, and e are part of the sampling frame 
whereas establishments f and g are not part of it. 

A third example is one where we are looking to conduct a 
survey on people (units) who live in dwellings (clusters). We have for 
this case a sampling frame of dwellings, but which is unfortunately 
not up-to-date. This sampling frame does not contain, among others, 
renovations affecting the division of buildings into apartments. 
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An example of this type of renovation is illustrated in Figure 
l.4a. We note that dwellings a, b, C, d, and e have been transformed to 
get dwellings a', b', c', and d'. By selecting a sample of dwellings 
from the sampling frame, we then go to new dwellings using the 
correspondence between the old and new dwellings. This 
correspondence is illustrated in Figure l.4b. 

Figure 1.2: Indirect sampling o!,children 
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Figure 1.4a: Indirect sampling of dwellings 
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Figure l.4b: Indirect sampling of dwellings 
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1.4 GENERALISED WEIGHT SHARE METHOD 

The estimation of a total (or a mean) of a target population U B 

of clusters using a sample selected from another population U A that is 
related in a certain manner to the first can be a major challenge, in 
particular if the links between the units of the two populations are not 
one-to-one. The problem comes especially from the difficulty of 
associating a selection probability, or an estimation weight, to the 
surveyed units in the target population. 

If we consider the example of families in Figure 1.2, it can be 
very difficult to associate a selection probability to each child of a 
selected family (or cluster). Indeed, we could have selected a family 
through one or more of the parents but, unfortunately, to know the 
selection probability of the family, and consequently of the children, 
we must know the selection probability of each parent, whether 
selected or not. In practice, this is not always the case, particularly if 
we used, for the selection of parents, a multi-stage design. In the 
example of selecting enterprises (or clusters of establishments) from 
the establishments (Figure 1.3), the problem is above all to associate 
an estimation weight to the new establishments (f and g) of the target 
population. In order to solve this type of estimation problem, we 
developed the generalised weight share method (GWSM). 

The GWSM produces an estimation weight for each surveyed 
unit from the target population U B • This estimation weight basically 

constitutes an average of the sampling weights of the population U A 

from which the sample is selected. Lavallee (1995) presented for the 
first time the GWSM within the context of the problem of cross­
sectional weighting for longitudinal household surveys. The GWSM is 
a generalisation of the weight share method described by Ernst (1989). 
We can also consider the GWSM as a generalisation of network 
sampling as well as adaptive cluster sampling. These two sampling 
methods are described by Thompson (1992) and by Thompson and 
Seber (1996). 

This book is meant to be a detailed document on the GWSM 
encompassing the different developments carried out by the author on 
this method. The theory dealing with the GWSM is presented, in 
addition to different possible applications that bring out the appeal of 
this. In Chapter 2, we present a formal description of the GWSM and 
we describe its use. In Chapter 3, we give a literature review where we 
associate the GWSM with different sampling methods appearing in 
literature. We will see that the GWSM is a generalisation of methods 
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such as the fair share method and adaptive cluster sampling. In 
Chapter 4, we present theoretical results on the GWSM, for instance 
the unbiasedness of the method and the variance of estimates resulting 
from it. In Chapter 5, we examine other possible generalisations of the 
GWSM. For example, we describe how to extend indirect sampling 
from one stage to two stages. In Chapter 6, we look at one of the main 
applications of the GWSM, being that related to longitudinal surveys. 
In Chapter 7, we describe how we can try to improve the precision of 
estimates coming from the GWSM by using calibration. In Chapter 8, 
we deal with the practical case where non-response occurs during data 
collection. We see that we can correct the weights coming from the 
GWSM by calculating a response probability associated with the 
responding units. In Chapter 9, we discuss the case where the links 

between populations U A and U B were established from a process of 
probabilistic linkage. We then see that it is possible to modify the 
GWSM in order to adapt it to the situation where the links between 
the two populations are not deterministic. Finally, we end the book 
with a conclusion that emphasises new applications of the indirect 
sampling. 



CHAPTER 2 

DESCRIPTION AND USE OF THE GWSM 

As mentioned in the introduction, the GWSM was first described 
by Lavallee (1995). It produces an estimation weight for each unit 

surveyed in the target population U B • This estimation weight basically 
constitutes an average of the sampling weights of the 

population U A from which the sample is selected. We first present in 
this chapter a formal description of the GWSM. Second, we describe the 
use of the method. 

2.1 DESCRIPTION 

We select a sample SA containing rnA units from the 

population U A containing MA units according to a certain sampling 

design. Suppose that Jr1 represents the selection probability ofunitj. We 

assume that Jr1 > 0 for all j E U A. On the other hand, the target 

population U B contains MB units. This population is divided into N 

clusters, 1 where cluster i contains M f units. 

We assume there exists a relationship between units j of 

population U A and units k of clusters i of the population UB • This 
relationship is identified by an indicator variable I j,ik , where lj,ik = 1 if 

there exists a link between unit j E U A and unit ik E U B , and 0 

otherwise. Note that there might be some cases where no links exist 

1 We will use later the notation N B (instead of N) to indicate the clusters of U B as the 
population U A itself will be divided into clusters. When we write N (and n) without 
superscripts, we will take for granted that it is a matter of the clusters of U B 
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between a unit} of population U A and units k of clusters i of 

population U B , which comes back to saying that LJ = I;~II~~ li,ik = O. 
Moreover, there can be zero, one or more links for any unit k of a cluster 

i of population U B , i.e., that it is possible to have L! = I~; li,ik = 0 , 

L! = 1, or even L! > I for all units ik E U B • To use the GWSM, 

however, we must satisfy the following constraint. 

Constraint 2.1 Each cluster i of uB must have at least one link 

with a unit} of U A , i.e., 

We will see that this constraint is essential to ensure the 
unbiasedness of the GWSM. 

For each unit} selected in SA, we identify the units ik of U B that 

have a non-zero link with}, i.e., li,ik = I. If L~ = 0 for a unit} of SA, 

there are simply no units of U B identified by this unit}, which affects the 

efficiency of the sample SA but does not introduce any bias. For each 

unit ik identified, we assume that we can set up the list of MiB units of 

cluster i containing this unit. Each cluster i then represents, within itself, 
B B N B B a population U i where U = Ui~1 U i • Let n be the set of n clusters 

identified by the units} E SA , i.e., n B = {i E U B 13} E s A and Lj'; > O} 
ME 

where L . . =" 'l··k' 
j,t ~k~l j,t 

We survey all the units k of clusters i E OB where we measure a 

certain variable of interest Yik and the number of links L! = I';~: lj,ik 

between unit ik of U B and the population U A • An important constraint 
to which the survey process ( or measurement) is subjected is thus to 
consider all units within the same cluster. That is, if a unit is selected in 
the sample then every unit of the cluster containing the selected unit will 
be surveyed. 

This constraint is one that often arises in surveys for two reasons: 
(i) cost reductions and (ii) the need for producing estimates on clusters. 
As an example, for social surveys, there is normally only a small 
marginal cost for interviewing all persons within the household. On the 
other hand, household estimates are often of special interest for those 

who are looking to measure poverty, for example. 
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Different cases oflinks are shown in Figure 2.1. Looking at it, we 

see that there is no unit j of U A that does not have a link with U B • 

Constraint 2.1 ofthe GWSM is satisfied here since all clusters i of U B 

are linked to at least one unit j of U 1 • This constraint is necessary to 
make the GWSM unbiased. We can indeed see that if a cluster does not 

have a link with U A , it results in an underestimation of a total or mean of 

U B since this cluster has no chance of being surveyed. As shown by unit 

7 of U B in Figure 2.1, it is possible for there to be no links for a given 
unit of a cluster i provided, however, that at least one unit of the cluster 

has a link with U A , as claimed by Constraint 2.1. 

For the target population U B , we look to estimate the total 

yB = I~lI;;r~Yik . By using the GWSM, we want to assign an estimation 

weight Wik to each unit k of a surveyed cluster i. To estimate the total yB 

belonging to the target population U B , we can then use the estimator 
nAIr 

fB = LLWikYik 
i~1 k~1 

(2.1) 

where n is the number of surveyed clusters and Wik , the weight assigned 

to unit k of cluster i. With the GWSM, the estimation method is based on 

the sample SA, together with the existing links between U A and UB to 

estimate the total yB. The links are in fact used as a bridge to go between 

the populations U A and U B • 

Figure 2.1: Example orlinks 
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The GWSM provides to each sampled unit a final weight 
calculated according to a weighted method within each cluster i entering 

into fB. We first calculate an initial weight that corresponds to the 

inverse of the selection probability of units} of SA that have a non-zero 

link with unit k of cluster i of fB . An initial weight of zero is assigned to 
the units not having a link. The final weight is obtained by calculating the 
ratio of the sum of the initial weights for the cluster over the total number 
of links for that cluster. This final weight is finally assigned to all units 
within the cluster. Note that the fact of allocating the same estimation 
weight to all units has the considerable advantage of ensuring 
consistency of estimates for units and clusters. 

Steps of the GWSM 

Step 1: F or each unit k of cluster i of nB , we calculate the initial weight 
w:k , as follows: 

(2.2) 

where tj = I if } E SA , and 0 otherwise. Note that a unit ik having no 

link with any unit} of U A automatically has an initial weight ofzero. 

Step 2: For each unit k of cluster i of QB , we get the total number of 

links L~: 

. .v A 

LBk = "lk . 
I L...J j,1 

(2.3) 
j=i 

The quantity L~ represents the number oflinks between the units of U A 

and the unit k of cluster i of the population U B . The quantity 

L~ = It;;~L~ then corresponds to the total number of links present in 

cluster i. 

Step 3: We calculate the final weight Wi: 

(2.4) 

Step 4: Finally, we assign Wik = Wi for all k E VB . 
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have 

By following steps 1 to 4, we deduce the following result. 

Result 2.1 For the units ik of the target population U B , we 

IMA t. L. 
) ),1 

Wik = -A LB ' 
i~1 1(j i 

Proof 

17 

(2,5) 

• 
To estimate the total yB, we use equation (2.1). Because the 

estimation weights coming from the GWSM are the same for the set of 

MiB units of each cluster i, the estimator (2.1) can be written as a 

function of only clusters. Thus we have 

We will formally show in Chapter 4 that if Constraint 2.1 is 

respected, the estimator yB proves to be unbiased. Moreover, we can 

obtain a variance formula to calculate the precision of yB . 
Example 2.1 

As an example, take the case illustrated in Figure 2, l. We are 

here looking to estimate the total yB linked to the target population U B . 

Suppose that we select from U A the unitj=1 and the unitj=2. 

Before applying the GWSM, we are going to re-index the units of U B in 

accordance to the notation used in Figure 2.l. We thus obtain: 
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Units of if from 
Fig. 2.1 

k 

1 2 

1 

2 

3 

2 

4 

2 

2 

5 

2 

3 
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6 

3 

7 

3 

2 

By selecting the unit j= 1, we survey the units of cluster i= I. 
Likewise, by selecting the unit j=2, we survey the units of clusters i= 1 

and i=2. We therefore have OB = {1,2} . For each unit k of clusters i of 

OS , we calculate the initial weight W;k ,the number of links L~, and 

the final weight Wi' which gives us the table below. 

k 
, 

Wik L~ Wi 

A 
Jrl 1[ ;IA + ;; 1 

2 A 
Jr2 

1 [Ill '2 JrIA + Jr; 

2 o (because t3 = 0 ) ~[0+_1 +0]=_1_ 
3 Jr;4 3Jr; 

1 1 
2 2 -A +O=-A 2 3Jr;4 Jr2 Jr2 

2 3 o (because 1/,23 = 0 for all 0 3Jr: 
j) 

The estimator fB given by (2.1) is finally written 

2.2 USE 

The GWSM derives its use in practical situations taking place in 
problems of sampling. It offers a simple solution to sampling problems 
and to complex weighting. Note that in simple problems concerning 
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classical sampling theory, the GWSM in general gives the same 
results as classical theory. We will in particular verity this observation in 
section 4.2 for the case of cluster sampling. 

In the world of surveys, it is often useful to have different 
relatively simple processes so as to minimise the possibility of errors that 
may arise during processing. With its simplicity, the GWSM offers an 
interesting solution that could be chosen, even though it could tum out 
that the GWSM is not the most precise (i.e., of minimal variance) 
compared to another more complex estimation method. This is 
particularly the case with the application of the GWSM in the Program to 
Improve Provincial Economic Statistics (PIPES) where the GWSM was 
used as the basis for calculating the variance of estimates. For more 
details, we can consult Girard and Simard (2000). 

Here we present the four principal reasons to use the GWSM. 

2.2.1 Indirect sampling for rare populations 

In practice rare populations are often difficult to target for 
surveying purposes. Most of the time, we do not have any adequate 
sampling frames and we must therefore use a different but somewhat 
related sampling frame to reach the rare target population. An indirect 
sampling is thus performed. For example, to target people having some 
infectious disease in a large city, we can use lists of dwellings as 
sampling frames, which subsequently causes us to survey the families of 
the selected dwellings. 

Fortunately for the statistician, it turns out that rare populations 
are often found in clusters. This is often the case, for example, with 
infectious diseases (Thompson, 1992). By surveying the complete 
clusters, we then see considerable reductions in costs since a large part of 
the costs are related to the identification of these rare populations. 
Therefore, in the end, we get data for the clusters of surveyed units 
through indirect sampling. 

The problem for the statistician is finally to weight the survey data 
so that we can produce unbiased estimates for the characteristics of the 
rare target population. The GWSM provides a simple way of obtaining 
this weighting. 
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2.2.2 Weighting using only the selection probabilities 
of the selected units 

The GWSM needs selection probabilities ": only for the selected 

units} in the sample SA. This is a major simplification compared to other 
weighting methods such as the one based on the exact calculation of 
selection probabilities of surveyed units. Take, for example, unit 2 of the 

population U B from Figure 2.1. This unit is surveyed if we select the 

unit}= 1, the unit }=2, or both, in sample SA. Thus, we can in theory 
calculate the probability of surveying unit 2 that is approximately given 
by 

P(surveying unit 2) = P((j = 1 E SA) U (j = 2 E SA)) 

~1-[l-P(j=IEsA)] [1-P(j=2ESA)] 

=1-[1-Jr;4] [1-Jr24]. (2.7) 

Unfortunately, in practice, such a probability can be very difficult, 

if not impossible, to get. This is the case, for example, if sample SA is 
selected from a multi-stage sampling design. With such a design, if we 
selected unit}= 1 in the sample but not unit }=2, it is uncertain that we 

know the selection probability Jr;4 (and vice versa), in particular if the 

two units}= 1 and j=2 are not part of the same PSu. In this case, we 
cannot calculate probability (2.7) and we cannot then weight unit 2 from 
its probability of being surveyed. By only using the probabilities of 
selected units in sample SA , the GWSM gives a simple solution that is 
applicable in all cases where we know the selection probabilities of units 
} in sample SA. 

2.2.3 Weighting of populations related by complex 
links 

When we perform an indirect sampling, it often turns out that the 

links between the population U A from which the sample is selected and 

the target population U B are complex, that is to say, the links between 

U A and US are of the type "many-to-many." For example, we can take 
the situation of the sampling of children of blended families illustrated in 
Figure 1.2. In this example, we select a sample of parents with the 
intention of surveying the children who belong to the families (clusters). 
If the two parents lived together with their children, we would be in a 
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relatively simple case of conventional cluster sampling. However, in a 
case of blended families where the children living together are not 
necessarily brothers and sisters and where the parents do not necessarily 
live together, we find ourselves in a much more complex situation. To 
get an estimation weight for each child of the surveyed families, the 
GWSM then turns out to be very useful. 

2.2.4 Weighting of unlinked units 

Since here we are surveying the set of units from the clusters, it 

can happen that we must calculate an estimation weight for a unit of U B 

that is surveyed but that is not linked to the population U A from which 
the sample is selected. Such a situation is illustrated in Figure 2.1 by 
units 5 and 7. 

A typical example of this type of situation comes from 
longitudinal surveys of individuals belonging to households. In this type 

of survey, we select a sample SA of individuals from a population U A . 

We then follow these individuals over time. During a second survey 
wave, following changes in the population (movements into and out of 
the population, modifications to the composition of households ), we are 

faced with a new population U B • The links between populations U A and 

U B here are associated to the individuals. The individuals of SA can now 

belong to households that have individuals of U A who have not been 

selected in SA, or who are new (births or immigrants) to the population. 
Note that by definition, those who are new to the population do not have 
any links with U A. Since we are surveying all individuals of the 

households having individuals from SA, we thus get data for the new 
individuals. The problem is then to get an estimation weight for these 
units so that we can produce unbiased estimates, including the data from 
the new individuals. This problem, however, is not obvious to solve since 

the new individuals in the population were not selected at the time of SA , 

but they are surveyed simply because they are part of households 
containing the individuals of SA. Obtaining of an estimation weight for 
the new individuals in the population is, among others, discussed in 
Chapter 6. We will see that the GWSM allows for the finding of an 
elegant and unbiased solution for this problem. 



CHAPTER 3 

LITERATURE REVIEW 

The GWSM turns out to be useful in the most diverse 
applications where we must obtain an estimate of a total for a 
population of clusters when meanwhile the sample comes from 
another population related to the first. 

The first "official" application of the GWSM is that written by 
Lavallee (1995) where it was used to perform cross-sectional 
weighting for Statistics Canada's Survey of Labour and Income 
Dynamics (SLID). SLID is a longitudinal survey of individuals 
belonging to households (or clusters) where we must also produce 
cross-sectional estimates on top of longitudinal estimates. Owing to its 
importance, this example will be described in details in Chapter 6. 

3.1 FIRST STEPS 

Before its application in SLID, the foundations of the GWSM 
were already used to solve complex estimation problems. For 
example, the tax data program at Statistics Canada has used for many 
years a partner correction factor (PCF) to correct estimates in order to 
account for partners in a single business. These partners are in fact the 
tax filers who produce identical income tax reports for the same 
enterprise where they are in partnership as owners. 

For the tax data program, a sample is selected from the file of 

tax filers (population U A ) to produce an estimate of gross income for 

the population of businesses (population U B ). Note that a tax filer can 
own many businesses and, in the case of partners, many tax filers can 
own the same business. If we consider the businesses as clusters, we 
are therefore, because of the "one-to-many" and "many-to-one" type 
of links, in a relatively complex case of estimation. 
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The PCF turns out to be a factor associated to the measured 
variables of the partners that reduces the value of these variables 
proportionally to the profits of the partners owning the business. For 
example, if a business has two owners and each partner earns 50% of 
the business profits, the measured variables of each partner, whether 
or not he is selected in the sample of tax filers, will be divided by two. 

This case appears in the possible applications of the GWSM. 
We will expand this idea in section 4.5. Bankier (1983) showed that 
the PCF allowed for unbiased estimates to be produced. 

3.2 FAIR SHARE METHOD 

The fair share method can be considered as one of the 
precursors to the GWSM. This method was presented by Huang 
(1984), Judkins et al. (1984), Ernst, Hubble and Judkins (1984), and 
Ernst (1989), in the context of longitudinal surveys. These authors 
used the fair share method in order to solve theoretical and operation 
problems relative to the Survey of Income and Program Participation 
(SIPP) conducted in the United States for the Income Survey 
Development Program. SIPP is a longitudinal survey of persons and 
households. It is in fact similar to Statistics Canada's SUD that is 
described in details in Chapter 6 in the context of the application of 
the GWSM to longitudinal surveys. 

Huang (1984) presented the fair share method with a method 
called multiplicity approach to solve the problem of cross-sectional 
weighting for longitudinal surveys of households. The problem is the 
following. In Wave I, a sample of households containing persons is 
selected, and these persons are followed over time for SIPP. These 
persons are considered longitudinal. In a subsequent wave (say, Wave 
2), the composition of households containing the longitudinal persons 
may have changed following departures, moves, marriages, births, etc. 
In each wave, all persons belonging to households containing 
longitudinal persons are surveyed. We again encounter the problem of 
surveying clusters of units (here persons) from the choice of one or 
more units of the cluster. The problem is then to associate to each 
household surveyed in Wave 2 an estimation weight so that we can 
produce unbiased estimates for the cross-sectional population of Wave 
2. This problem is illustrated in Figure 3.1. 

If we use the notation relative to the GWSM, we can formally 
describe the fair share method in the following manner. As we can see 
in Figure 3.1, waves I and 2 correspond, respectively, to the 
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populations U A and U B • The population U A is divided into N A 

households (or clusters), where household 1 contains M; persons (or 

units). Each household 1 then represents, in itself, a population U,A 

Wave 1 Wave 2 

k l 
I 
i 

Figure 3.1: Example of links in longitudinal surveys 

According to Huang (1984), a sample SA of nA households is 

selected among N A from the population U A following a certain 

sampling design. The sample contains in total m A persons while the 

population U A contains M A persons. Let 7[,A be the selection 

probability of household 1 from U A • Each person j of household 1 

has the same selection probability as its household. We assume that 
7[; > 0 for all households lEU A. The target population U B 

corresponds to the same population as U A , plus the persons who are 
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added between waves and 2. This population is divided into N B 

households, where household i contains Mf persons. 

In this context, the links between populations U A and U B are 
one-to-one for longitudinal persons and non-existent for persons who 
were added to the households (Figure 3.1). Huang (1984) noticed that 

there can be in practice households of U B made up uniquely of 

persons added to the population U A. In this case, the fair share 
method presented by Huang (1984) will produce an underestimate of 
the latter that is assumed to be negligible. 

For the population U B , Huang (1984) was interested in the 

estimation of the total yB = I;~lI;~~Yik for the variable of interest y. 

To do this, he calculated an estimation weight Wi associated with the 

surveyed household i of the population U B that will be used in the 
following estimator: 

(3.1 ) 

where nB is the number of clusters surveyed from U Band 

~ = I~: Yik is the total of the variable of interest Y for household i. 

With the fair share method, the estimation weight Wi of 
household i is given by 

(3.2) 

where L'oi = I)~; I~l; l'l.ik and L~ = I;~l' L,.i . The quantity Ll.i is the 

number of links between household 1 of U A and household i of U B • 

Because the links are one-to-one, L,,i corresponds to the number of 

persons from household i of Wave 2 coming from household I of 

Wave 1. In a similar manner, the quantity L~ corresponds to the 

number of persons from Wave 1 belonging to household i of Wave 2. 

We can show that the fair share method is only a particular 
case of the GWSM. Indeed, since we select entire households from 

Wave 1, we have 7r,~ = <1 for all j E V;4 . Likewise, we have til = II 

for all j E V,A. The initial weight w:k' given by (2.2) then takes the 

form: 
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"II 

= ~ ~L (3.3) L... A ,,ik' 
,~1 1[, 

From (2.4), the final weight Wi is given by 

(3.4) 

The estimation weight Wi obtained by the GWSM therefore 

corresponds exactly to that of the fair share method. 

The method presented by Huang (1984) was named the fair 
share method because the estimation weight Wi given by (3.2) divides 
the value Yi among the households of Wave I having contributed to 
household i of Wave 2, proportionally to the number of persons from 
the households involved. Indeed, by combining equations (3.1) and 

(3.2), we can rewrite the estimator yB in the following manner: 

We thus see that the value Yi is divided according to the 
proportion of persons from household i of U B coming from 

household 1 of U A with respect to the total number of persons from 

household i of U B • 

Huang (1984) presented, on top of the fair share method, the 
multiplicity approach that is, as a matter of fact, another approach to 
divide the value of Yi• With this latest approach, the value of Yi is 
divided according to the number of households 17i from Wave I 

having contributed (in terms of persons) to household i from Wave 2. 
The resulting estimator of yB is given by 

(3.6) 

where 5,.i = I if L,) > 0, and 0 otherwise. The indicator variable 5,.i 

denotes whether or not household I of U A contributed to household i 

of U B • Note that 17i = I~: 5,.i . 

Huang (1984) proved that the fair share method and the 
multiplicity approach are both unbiased for the estimate of the total 



28 Indirect Sampling 

yB. Note that the unbiasedness of the fair share method also directly 
follows from the fact that this is an application of the GWSM, whose 
unbiasedness will be shown in Chapter 4. 

From an operational point of view, Huang (1984) mentioned 
that the fair share method is more appealing than the multiplicity 

approach because the quantities LI,i and L~ going into (3.2) are easier 

to obtain than the quantities 61,i and 17; going into (3.6). Indeed, after 

many waves, it can be difficult to know how many different 
households from Wave 1 contributed to a given household i of the 
current wave. However, it is relatively easy to know how many 
persons from Wave 1 contributed to household i of the current wave 
because the persons (and not the households) are followed over time. 
Note that the two approaches are identical if we assume that the 
households I of U A are of size I. 

In addition to the operational aspect, the fair share method also 
seems to have an advantage in the precision of the estimate of r. 
Under certain hypotheses, Huang (1984) gave a heuristic proof that 
the fair share method is of minimal variance compared to any other 
method for dividing the value of Yi. This speaks in favour of the 
GWSM as the fair share method is only a particular case of the 
GWSM. 

3.3 CONTRIBUTION OF ERNST (1989) 

Ernst (1989) presented a form of generalisation of the fair share 
method of Huang (1984). This method, based on the calculation of an 
average of weights for the cross-sectional weighting of individuals 
belonging to households, can be called the weight share method 
(WSM). The WSM differs notably from the fair share method in that 
the calculation of the estimation weights is centred on the individuals 
rather than the households. Note, however, that in the majority of 
applications, the two methods give identical results. The article by 
Ernst (1989) as a matter of fact acted as a basis for the GWSM. 

The formal description of the WSM is written in the same 
context as that of Huang's fair share method (1984). Waves 1 and 2 
correspond to the populations U A and U B from Figure 3.1. The 

population U A is divided into N A households (or clusters), where 

household I contains M~ persons (or units). We select a sample SA 

of nA households among the N A from population U A according to a 
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certain sampling design. This sample contains in total rnA persons 

whereas population U A contains MA persons. Let tr,A be the 

selection probability of household I from U A where we assume that 

tr~ > 0 for all households lEU A • Each person} of household I has 

the same selection probability as the household and thus tr,~ = tr,A for 

all units} of household I. The population U B corresponds to the same 

population as U A , plus the persons who are added between waves 1 

and 2. In this way, the links between populations U A and U B are one­

to-one (Figure 3.1). The population U B is divided into N B 

households, where household i contains Mf persons. We assume that 

sample SA led to a survey of nB households within the target 

population U B • 

By applying the WSM, we want to assign an estimation weight 

w~PP to each unit k of a surveyed cluster i. To estimate the total yB of 

the target population U B , we can then use 

(3.7) 

where Wi~SM is the weight assigned to unit k of cluster i. This weight is 

o for the N B - nB clusters i of U B that are not surveyed. 

Ernst (1989) mentioned that in the classical approach of a 
cross-sectional survey, the estimation weight Wi~SM for the surveyed 

units corresponds to the inverse of the selection probability of unit ik. 
We then produce unbiased estimates for the total yB. In the context of 
longitudinal surveys, the selection probability of surveyed units (or 
persons) can be difficult, indeed impossible, to obtain. This problem 
arises for persons who are surveyed simply because they live in 
households having persons from sample SA (see Chapter 6). 

Judkins et at. (1984), Ernst, Hubble and Judkins (1984), and 
Ernst (1989) noted that to produce unbiased estimates of the total yB, 
it is not necessary to know all the selection probabilities of the units ik 
going into (3.7). A necessary condition is simply to have 

E(wi~sM)=1 (3.8) 

for all MB units of U B . Indeed, if E(W;;SM) = 1, we have 
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i~1 k~1 i~1 k~1 

The WSM allows us to get estimation weights that satisfy 
equation (3.8). We now show the steps given by Ernst (1989) for 
obtaining these weights. 

Steps of the WSM 

Step 1: For each unit k of cluster i, calculate the initial weight W:k
wSM , 

that is: 

W,WSM = {I / ,,;: for units selected in SA 

Ik 0 otherwise 
(3.10) 

Step 2: Define constants aik , i= I , ... ,NB and k= 1 , ... , MiB • These 

constants are independent of the initial weights W;;SM and we have: 

(3.11) 

Step 3: Calculate the final weight W~SM : 

(3.12) 

Step 4: Set Wj~'M = wjWSM for all units k of clusters i. 

The constants a ik form a sort of generalisation of the fair share 

method of Huang (1984). By assigning certain aik to zero, we can 

exclude some people from the calculation of the final weights given 
by (3.12). For example, we can decide to exclude from the weighting 

people less than 16 years of age by assigning them a ik = O. Ernst 

(1989) gave different possible choices for the aik for the cross­

sectional weighting of longitudinal surveys for individuals belonging 
to households. Ernst (1989), among other things, noticed that the most 

common choice for the constants aik is that where these constants 

correspond to the inverse of the number of persons MiAB from 

household i who belong to the two populations U A and U B • 
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We can see that the GWSM can constitute a generalisation of 
the WSM. The GWSM in fact elaborates beyond the context of 
longitudinal surveys since it allows the use of links that are not 

necessarily one-to-one between the populations U A and U B • In the 

context of the GWSM, since the links between populations U A and 

UB here are one-to-one for the longitudinal persons, we have ljoik = 1 

if person j of U A corresponds to person k of cluster i from U B , and 0 
otherwise. The indices j and ik are thus interchangeable for persons 
belonging to the two populations. The initial weight (2.2) is then 

M' t t , = '"'I. _i _~_ ,WSM 
W ik L.J i.ik A - A - W ik • 

i~1 7[i 7[ik 

(3.13) 

Likewise, 
M( 
" LE = LE = MAE 
~ Ik I ,. (3.14) 
k=1 

If we concentrate on the choice aik = 1/ MiAB , by replacing the 

quantities (3.13) and (3.14) in expression (2.4) for the final weight of 
the GWSM, we directly obtain 

B 
"Mi ,WSM Mi" 

~k=l W ik " ,WSM WSM 
Wi = MAE = ~aikwik =Wi . 

I k=1 

(3.15) 

Kahon and Brick (1995) as well as Lavallee and Deville (2002) 
studied the determination of optimal values for the constants a ik • 

Because the problem turns out to be relatively complex to solve, 
Kahon and Brick particularly concentrated on the case where two 

households of U A form a new household (or cluster) i of U B • They 
drew the following conclusion: "in the two-household case, the equal 
household weighting scheme minimizes the variance of the household 
weights around the inverse selection probability weight when the 
initial sample is an epsem one". Minimising the variance of the 
household weights corresponds here to minimising the variance of the 
estimate of yE. What Kahon and Brick called the equal household 
weighting scheme is in fact the multiplicity approach described by 
Huang (1984) and presented in Section 3.2. Recall that with this 
approach, the weighting is calculated by dividing according to the 
number of households of U A having contributed (in terms of persons) 

to household i of U B • They add that "in the case of an approximately 
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epsem1 sample, the equal household weighting scheme should be 
close to the optimal, at least for the case where the members of the 
household at time t come from one or two households at the initial 
wave." These conclusions do not directly support the WSM (and 
consequently the GWSM) since this latter conclusion is quite similar 
to an equal person weighting scheme. Indeed, with the WSM, the 
weighting is calculated by dividing according to the number of 

persons MiAB from UA having contributed to household i of UB • 

Note however that if i is a sample of persons, considering the fact 
that the persons represent households of size 1, the equal weighting of 
households and the equal weighting of persons are equivalent. More 
recently, Deville and Lavallee (2006) obtained the necessary and 
sufficient conditions to obtain optimal weights for the GWSM. Their 
results are presented in details in Section 4.6.3. 

Like Huang (1984), Kalton and Brick (1995) recognised that 
the WSM is more interesting in practice than the equal household 
weighting scheme (or the multiplicity approach). With the multiplicity 

approach, we need to know the number of households of U A that 

provided the persons of a household i from U B , which is sometimes 
difficult to establish. Thus, it can be difficult to know if two people 
from a household i of U B live in the same household l of U A • So, 
although it might not be completely optimal, the GWSM offers an 
interesting solution, especially from the practical point of view, for the 
case of longitudinal surveys. 

3.4 NETWORK SAMPLING 

Network sampling is a survey method often used in social 
surveys. It proves to be particularly useful, for example, in defining 
populations that are rare or difficult to identify. In this type of 
sampling, the notion of network often corresponds to a range or set of 
contacts. We select units called enumeration units and we ask them to 
mention persons that they know corresponding to the desired criteria. 
We can illustrate the use of network sampling from an application by 
Sanders and Kalsbeek (1990). They used network sampling for a 
survey of pregnant women taken from a list of telephone numbers. 
The procedure consisted of contacting by telephone a certain number 
of persons selected by random digit dialling. They were then asked to 
mention if they knew any pregnant women among their family or 

I equal-probability-of-selection method 
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friends. Sanders and Kalsbeek (1990) tested different options for the 
set of contacts (children, brothers and sisters; brothers, sisters, uncles 
and aunts; brothers, sisters and cousins, etc.) and it turned out that 
none of the options was really better than the others. 

Enumeration units Target units 

3 

4 f------------lr71 

Figure 3.2: Example of links in network sampling 

For business surveys, network sampling finds an interesting 
application. It is used to select enterprises through their 
establishments, or local units. A sample of establishments is selected 
and subsequently, enterprises having the selected establishments are 
surveyed. This example is illustrated by Figure 3.2. This method is 
used in particular at Statistics Canada within the Project to Improve 
Provincial Economic Statistics (PIPES). For more details, we can refer 
to Girard and Simard (2000). 

One of the problems with the application of network sampling 
for social surveys is the difficulty of defining the network itself, i.e., 
the desired set of contacts. In the case of family relationships, this set 
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is clearly defined, though its definition remains relatively arbitrary. 
Indeed, we can decide, for example, to include or exclude the 
grandparents from the family set. As mentioned by Sirken and Levy 
(1974), the definition of the network influences the selection 
probability of the target units, and thus affects the precision of the 
resulting estimates. In certain cases, the network itself is misspecified. 
For example, if we ask the selected people to "mention the people that 
they know," the set becomes relatively vague. Granovetter (1976) 
proposed a solution to this problem in the context of a study looking 
to measure the average number of relationships (or acquaintances) in a 
population. He proposed to select a sample of persons (enumeration 
units) and to ask each person ifhe or she knows, one after another, the 
other members of the list of selected persons. Although interesting, 
this solution becomes impossible to put into practice as soon as the 
sample reaches about a hundred people. 

Network sampling seems to emerge under several forms in the 
literature. Indeed, according to what we are looking to measure, the 
notion of the network takes different forms. For example, the 
"networks" for Granovetter (1976) is restricted only to the 
enumeration units selected in the sample because these units can only 
mention people who are part of this sample. In general, however, the 
enumeration units can mention people apart from the selected persons, 
as is the case for Sanders and Kalsbeek (1990). The form of network 
sampling that appears most commonly in literature is that coming 
from Birnbaum and Sirken (1965) as well as Sirken (1970). 

Birnbaum and Sirken (1965) and Sirken (1970) gave a formal 
statistical framework about network sampling by developing 
multiplicity estimation. This form of estimation takes into account the 
number of times a targeted person was mentioned by the enumeration 
units. Sirken (1970), Sirken (1972), Sirken and Levy (1974), and Levy 
(1977) used this estimation to evaluate the number (or the proportion) 
of persons in the population meeting the given criteria. Note that 
multiplicity estimation was not used by these authors to estimate the 
totals of quantitative variables. Multiplicity estimation certainly 
contributed to inspire the multiplicity approach described by 
Huang (1984). 

Following the notation used for the GWSM, we can describe in 
a formal manner multiplicity estimation, and, in the process, network 
sampling. As seen in Figure 3.2, the enumeration units form the 
population U A whereas the target units - those which have the 

desired characteristics - form the population U R. Note that Sirken 
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(1970) assumed that the population U A is a population of households, 

i.e., that each enumeration unit} of U A corresponds to a household. 

Although the GWSM generally considers the units of U A as being 
simple units (people, local units, etc.), this does not change anything 
in the theory presented. 

According to Sirken (1970), a simple random sample i of mA 

enumeration units is selected from the population U A containing MA 

units. Each enumeration unit} therefore has the same selection 
probability ffA = mA / MA • The population U B corresponds to that of 

J 

the target units, i.e., the units that have the desired characteristics. The 

population U B has MB target units. 

As for the GWSM, Sirken (J 970) used an indicator variable I to 

denote the link between enumeration units of U A and target units of 

U B • Therefore, we have I j,k = 1 if enumeration unit } E U A identifies 

target unit k E U B , and 0 otherwise. We see here that the links are 

often many-to-one between U A and U B • 

Sirken (1970) was interested in the estimation of the population 

count MB of the target population U B . For example, we can think of 
the estimation of the total number of pregnant women in a given 
region, as in the application of Sanders and Kalsbeek (1990). To do 
this, he calculated the following multiplicity weight OJ j , associated to 

each unit} selected in i: 

(3.16) 

where L~ = Ii~:': li,k . The multiplicity weight OJ i is so named because 

it keeps count of the number of times L~ that target unit k can be 

mentioned by the different enumeration units of U A • 

The multiplicity estimator MNtJ,B of ME is finally given by: 

(3.17) 

where the superscript "NET" refers to network sampling. 

It is relatively simple to show that multiplicity estimation, and 
thus network sampling, is a particular case of the GWSM. Although 
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the target population U B does not contain clusters as such, we can 

assume that the target units k of U B in fact belong to clusters of size 
1. In the context of the GWSM, we can then ignore the index i. Since 
we are interested here in the estimation of a population count, the 
variable of interest y here simply takes the value 1. The initial weight 

W;k given by (2.2) takes the form: 

(3.18) 

From (2.4), the final weight wk is given by 

w' I M' t. 
_ k "I) 

Wk - LE = LE L. ).k -A . 
k k )=1 7r j 

(3.19) 

To estimate ME , estimator (2.1) can then be written as 

yB = ~w = ~_l ~l l= ~_1 ~l).ktj 
L. k L. LE L. ).k A L. A L. LE . 
k=1 k=1 k )=1 7r j j=1 7r) k=1 k 

(3.20) 

Following the survey process, the mE target units are surveyed 

if and only if there is a link between unit) of U A and k of U B , and 

tj = 1 (unit) of U A is selected in i). In other words, the target unit k 

is surveyed if and only if we have lUtj #- O. The mE surveyed units 

have therefore /. kt . / L~ #- 0 , and the ME - mE unsurveyed units have 
J, .I 

[j,klj / L~ = 0 .2 Thus, 

(3.21) 

Sirken (1972) extended multiplicity estimation in the case where 

the sample SA is no longer a simple random sample but rather a 
stratified sample. Owing to the generality of the GWSM, it is simple to 
show again that multiplicity estimation is just an application of the 
GWSM. 

Sirken (1970) and Sirken (1972) showed that multiplicity 
estimation is unbiased. With respect to the precision of estimates, 

2 Note that a similar argument will be used in Chapter 4 in the proof of Theorem 4.1. 
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network sampling seems to have an advantage compared to 
conventional sampling where each enumeration unit only reports for 
itself. Indeed, under certain conditions, Sirken (1970) showed that 
multiplicity estimation, and thus network sampling, can give inferior 
variances to those coming from estimators used in conventional 
surveys. Again, this speaks in favour of the GWSM since we showed 
that multiplicity estimation is nothing more than a particular case of 
the GWSM. 

3.5 ADAPTIVE CLUSTER SAMPLING 

Thompson (1992) and Thompson (2002) discussed sampling 
methods to use for populations that are difficult to reach because there 
is no sampling frame or because these populations are migratory or 
elusive. We can think, for example, of the problem of counting 
populations of fish in a lake, the assessment of the number of trees in 
a forest, or even the estimation of the number of people belonging to 
certain target groups (a particular ethnic origin or a socioprofessional 
category, for example) in a city. To solve this type of problem, 
Thompson (1990) proposed adaptive cluster sampling. 

Adaptive cluster sampling is similar to network sampling and 
is particularly used to produce estimates for populations that are 
difficult to reach. Suppose, for example, that we are looking to 
estimate the number of people in a city, having income greater than 
$200,000. First of all, note that it is strongly possible that people with 
similar income live in the same neighbourhoods. To estimate this 
population count, we first select a small number of units (for example, 
houses) and we measure the income (left table of Figure 3.3). Ifa unit 
has income greater than $200,000, we then go to see the contiguous 
neighbours of this unit and also measure their income. For the new 
units where we found income greater than $200,000, we go to see 
their neighbors, and so on until we find no more neighbours with 
$200,000 in income (right table of Figure 3.3). We can thus obtain a 
considerable sample with, a priori, very little information about the 
units of the target population. Note that the sample is modified (or 
adapted) as the interviews progress. 

With adaptive cluster sampling, the final clusters containing 
the target units are not distinct. This is due to the edge units that are 
units adjacent to the clusters of target units but are not part of them. 
Let us come back to the example of the measurement of income 
greater than $200,000, and assume that a house a neighbouring a 
targeted house b does not have income greater than $200,000. Ifhouse 
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a is selected, the process of adaptive cluster sampling will stop there 
because unit a does not belong to the target population. On the other 
hand, by selecting unit b, the survey process will continue and unit a 
will be surveyed because it is adjacent to b. The edge unit a can thus 
be surveyed in two clusters. Nevertheless, note that it will not 
contribute to the estimates because it is not part of the target 
population. Thompson (1990) bypasses this problem by defining 
networks that are in fact the final clusters, excluding edge units. These 
latter cases form the networks of size 1. 

Figure 3.3: Example (~ladaptive cluster sampling 

The networks are mutually exclusive and exhaustive. 
Whichever units are selected in the starting sample, we will have the 
same composition of networks at the end of the survey process. This 
comes from the fact that the established procedure to identify the 
"neighbours" of the selected units is independent from the selection 
process. Adaptive cluster sampling is therefore only a form of cluster 
sampling where the clusters here are networks selected from their 
component units. This type of sampling is often employed in practice. 
For example, in social surveys, it happens that people are selected 
from a list and subsequently all the people from their households are 
surveyed (Lavallee, 1995). At the business survey level, we often 
decide to select a sample of establishments (or local units) to then go 
up to the enterprise level to finally survey all establishments of this 
enterprise. Such a procedure is described, among others, In 

Lavallee (1998a). 

Adaptive cluster sampling was described in details by 
Thompson (1990), Thompson (l991a), Thompson (l991b), Thompson 
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(1992), Thompson and Seber (1996), and Thompson (2002). We now 
present in a formal manner adaptive cluster sampling following the 
notation used for the GWSM. In this type of sampling, the populations 

U A and U B in fact correspond to the same population; the difference 

being that population U B is formed by networks (or clusters, if we 
ignore the edge units). This is illustrated in Figure 3.4. We note that 
the subscripts j and k refer to the same units. 

--- --Ii - ----1 
u ' 
k I 

f. 'k I J.I I 

~t-- ~ 
3f-------~ 

01------
0----~--~~~~ 

0----~--­

(!)------IhI 

Figure 3.4: Example of links in adaptive cluster sampling 

According to Thompson (1990), a sample SA is selected 

containing mA units in the population U A containing MA units using 

a certain sampling design. Assume that Jr1 represents the selection 

probability of unit j and that :r; > 0 for all j E U A • The target 

population U B contains MB units, where MA = MB. This 

population is divided into N networks, where network i contains M~ 

units. 
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Once the sample SA is selected, the units) of SA are surveyed. 
As shown in Figure 3.4, this corresponds to surveying the units k of 

U B associated to the units) of SA. The process of adaptive cluster 
sampling then requires going to survey the "neighbours" of the 
selected units. Let us again take the example of selecting enterprises 
through its establishments and assume that establishment 6 from 
Figure 3.4 was selected. Here, the neighbours are establishments 5 and 
7. By surveying establishment 5, we realise that it is not part of the 
same enterprise as establishment 6, and it is therefore not considered 
as being part of the network. The survey process is then terminated for 
this establishment. Establishment 7 is part of the same enterprise as 
establishment 6 and therefore it is part of the network. Following the 
process of adaptive cluster sampling, we then restart the survey 
process for the neighbours of establishment 7 to finally complete the 
network, i.e., all establishments of the enterprise having establishment 
6 selected at the start from SA. 

Thompson (1990) was interested in the estimation of the mean 

yB = (1/ MB)I;:JI~~Yik of the target population U B, which is in fact 

the same problem as estimating the total yB = I;~/I~Yik' To 

estimate yB, he calculated, for each selected unit) of SA and linked to 

network i, the variable J1 j defined by 

I M j" Y 
/lj = MB LYik = ~B ' 

I k~l I 

(3.22) 

where r; = I~~ Yik . The estimation of the total yB was then given by 

mA 

rADAP,B = " .!!L 
~ A' 
j~l 1Cj 

(3.23) 

where the superscript "ADAP" refers to adaptive cluster sampling. 

We can show that adaptive cluster sampling is just a particular 
case of the GWSM. First of all, recall that each unit) of U A 

corresponds to a unit k from the network (or cluster) i of U B . 

Consequently, lj,ik = 1 for )=ik, and 0 otherwise. We can thus 

interchange the indices) and ik. Furthermore, L! = I;~: lj,ik = 1. 

For each unit k of the cluster i going into yB , the initial weight 
(2.2) here is given by: 
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(3.24) 

Here, the final weight Wi given by (2.4) takes the form: 

(3.25) 

From we substitute the 

definition of Wi in yB to obtain 

(3.26) 

Following the survey process of adaptive cluster sampling, the 

MiB units of network i are surveyed if tik = tj = I (unit j of U A 

linked to unit ik of U B is selected in SA) for at least one k E U;B . The 

\1" A n surveyed networks have thus Ik~1 tik / IT;k 7:- 0, and the N-n 

unsurveyed networks have I~~ I;k / IT~ = 0 . SO, 

'B ~ Y (~tk J y =~_l_ ~_l_ 
;~l M;B k~l IT;~ 

=fl(I~J ;~l M;B k~l IT;~ 
(3.27) 

Since each unit j of U A corresponds to a unit k of a network i 

of U B , the double sum over the population U B can also be written 

using a sum over the population U A • Thus, 

(3.28) 

Therefore, we have YADAP.B = yB. Thompson (1990) proved that 
adaptive cluster sampling is unbiased. For the precision of estimates, 
this type of sampling seems to be worthwhile in comparison to 
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conventional sampling when the target population forms clusters. This 
remark supports the use of the GWSM since this turns out to be a 
generalisation of adaptive cluster sampling. 

3.6 SNOWBALL SAMPLING 

In the context where we are looking to survey clusters of 
individuals by selecting at the start one or many elements of the 
clusters, Goodman (1961) suggested snowball sampling. This is 
similar to the type of sampling that concerns us, i.e., surveying entire 

clusters from the target population U B • However, the sizes of the 
clusters are not fixed in advance, but rather by the selection 
parameters. 

A snowball sample with r phases3 and K names can be 
described in the following way. A random sample s of n individuals is 
selected from a population of size N where each individual k is 
selected with a probability lrk > o. The sampling design used here to 

select this sample does not matter much in the survey process. At the 
first phase, each of the n individuals selected in s is asked to name K 

names of individuals belonging to the same population. The way in 
which the names of the individuals are chosen must be specified in the 
survey process. For example, we can ask an individual to name K 

people from his or her immediate family, or K people of the same 
nationality. The individuals named by the individuals selected in s, 
and who are not part of s, form the first phase of the survey. Note that 
we create here clusters of size K + 1 that can however be overlapping. 
At the second phase, we ask each individual from the first phase to in 
tum name K individuals. In a similar way, the new individuals named 
by the individuals from the first phase, and who are neither part of the 
first phase nor of s, form the second phase of the survey. This process 
continues until we have completed r phases. 

Goodman (1961) was interested in this type of sampling not to 
estimate some total of a variable of interest y, but rather to estimate 
the number of relationships between individuals. A mutual 
relationship (or of type (1,1)) exists when an individual k names an 
individual k' , and vice versa. A relationship of type (r + 1, 1) exists 

3 The sense of the term "phase" used here by Goodman (1961) differs from that 
commonly used in sampling theory, namely a design where each phase represents a 
level of sampling where the second-phase units are selected within the units 
selected at the first phase, and so on. 
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when an individual k from s named another individual at the first 
phase of sampling, who then named another individual, and so on 
until the individual from phase T names the first individual k. This 
relationship containing r + I individuals is called circular. Goodman 
(1961) also studied the estimation of the number of relationships of 
type ( T , K ), that is, relationships where, counting all the K 

individuals named by a given individual k from s, all the individuals 
named by the K individuals corning from the previous K individuals, 
and so on for the T phases, we have exactly T + K individuals. It is 
again interesting to note that the relationships studied by Goodman 
(1961) are nothing but clusters. 

Snowball sampling can be similar to the survey process studied 
here with indirect sampling and the GWSM. Recall that the survey 
constraint associated with indirect sampling is that all units of the 

clusters selected from the target population U B must be surveyed. 
This in fact corresponds to snowball sampling with K = 1 phase and 

T = 00 names. Indeed, by selecting the sample SA and by surveying 

the corresponding units in U B , we have, so to speak, the selection of 

units in UB • Now, the process looking to survey the rest of the 
individuals of the cluster corresponds to the survey process where we 

ask each individual k from cluster i to name all the MiB individuals 

contained in the cluster, whatever the number they are. 

Snowball sampling can also be similar to the adaptive cluster 
sampling of Thompson (1990). If we refer to Figure 3.3, we then have 
snowball sampling with K = 00 phases and four names. Here, we are 
looking to survey individuals having some characteristic. We then 
randomly choose a sample of quadrilaterals (i.e., small squares) of 
individuals and we identify the quadrilaterals where we found 
individuals having the desired characteristic. In the identified 
quadrilaterals, we are then going to see the four adjacent quadrilaterals 
(north, south, east, and west) to identify other individuals having the 
desired characteristic. We proceed in this manner until we find no 
more adjacent quadrilaterals having the characteristic. The process of 
naming individuals in snowball sampling corresponds here to 
identifying an adjacent quadrilateral having the desired characteristic. 
We thus "name" all the quadrilaterals during a sufficient number of 
phases (not specified in advance), until all the "named" quadrilaterals 
systematically bring us back to quadrilaterals already named. 



CHAPTER 4 

PROPERTIES 

In this chapter, we present properties of the GWSM. We will 
first show that the GWSM is unbiased for the estimation of the total 
yB of the target population U B • We will then give the variance 

formula of the estimator yB, and we will discuss the estimation of this 
variance. Afterwards, we will show that, in the case where the indirect 
sampling carried out is conventional cluster sampling, the GWSM 
gives the same results as the classical theory. We will then deal with 
the case where we do a census of the population U A and where we do 

a census of the target population VB. We will also look at the use of 

weighted links. Finally, we will look to improve the estimator yB by 
reducing its variance. For this, we will first be using sufficient 
statistics, and next we will find optimum weights for the links. 

4.1 BIAS AND VARIANCE 

In order to be able to calculate the bias and the variance of the 

estimator yB, we first prove the following Theorem 4.1. 

Theorem 4.1: Duality of the form of yB with respect to 
VA and U B 

Let Zik = Yi /L~ where ~ = I~: h and L~ = I~~ L! for all 

k E Ui
B. The estimator yB, given by (2.1). can then also be written 

under the form 
"4 A 

~B I" t Y = -'-L Z 
A J 

(4.l) 
i~l ;rr i 
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N Mi" 

where Zj= IZ)j,ikZik (4.2) 
i~1 k~1 

Proof: 

From we substitute the 

definition of Wi in yB to obtain 

yB=I~ 

1,4" 

IW:ki 
k~1 

Mf 
(4.3) 

i=1 IL: 
k=1 

Let Zik = Y/L~ for all ik E UB • Note that this quantity IS 

defined if and only if L~ > 0 for all clusters i of U B , that is, if and 

only if constraint 2.1 is satisfied. From (4.3), we obtain 

(4.4) 

By replacing w:k with its definition (2.2), we get 

, II M," (MA t, J 1/ M,B MA Z 

yB = II I" Ij,ik~ Zik = IIIlj'iktj~,: . 
1=1 k~1 /=1 lr j 1=1 k=1 )=1 lr j 

(4.5) 

Following the survey process, the MiB units of cluster i are 

surveyed if and only if lj,ik *0 (there is a link between units) of U A 

and ik of UB) for at least one kEUi
B, and tj =1 (unit) of U A is 

selected in SA), or in other words, if and only if /, 'kt ' * 0 for at least 
/,1 J 

one k E Ui
B • 1 Therefore, cluster i is surveyed if and only if, for all 

Zik / lr: ' we have lj,iktjzik / lrj4 * 0 for at least one k E Ui
B ; which 

d t h . '" M," '" M" I t / A -+ 0 Th correspon s 0 avmg CfJi = L..k=1 L..j=1 j,ik jZik lr j -r-. e n 

1 In the present context, since the variable I, 'k is dichotomous, writing I; ik * 0 is /,; , 

equivalent to writing li.ik = I , This condition will be relaxed, particularly in Section 

4.5 and Chapter 9 on record linkage, where we will allow a non-negative real value 

for li,ik • 
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surveyed clusters thus have fPi 7:- 0, and the N-n unsurveyed clusters 

have fPi = O. Thus, 

and finally, 
A MA t. N ME I>r' t. 
yS = I ~IIlj.ikzik = I ~Zj' 

i~1 trj i~1 k~1 j~1 7rj 

(4.7) 

The estimator yS can therefore be written as a function of 

units ik from Us, or as a function of units} from U A • • 

The estimator yS is in fact only a Horvitz-Thompson estimator 
where the variable of interest is the variable 0. This observation leads 
us to many results that then become relatively simple to prove. Note 
that Deville (1998a) obtained estimator (4.1) by using matrix notation. 

Example 4.1 

As an example, we return to the case illustrated in Figure 2.1. 

Units of US 
from Fig. 2.1 

1 

2 

3 2 

4 2 

5 2 

6 3 

7 3 

k 

2 

2 

3 

2 

Yll + Yl2 

2 

Yl1 + Y12 
2 

Y21 + Y22 + Y23 
3 

Y21 + Y22 + Y23 
3 

Y21 + Y22 + Yn 
3 
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Yll + YI2 
2 

Indirect Sampling 

YII + YI2 + Y21 + Y22 + Y23 
2 3 

Suppose that we select from U A unit j=1 and unit j=2. The 

estimator yB given by (4.1) is then written: 

yB = ~(YII + YI21 +~(YII + YI2 + Y2I + Y22 + Y231 
Jr l 2) Jr2 2 3) 

1 [Ill 1 [1 1] Y2I Y22 Y23 =- -A +-A YII +- -A +-A YI2 +--A +--A +--A· 
2 Jrl Jr2 2 Jrl Jr2 3Jr2 3Jr2 3Jr2 

We get the same estimator as the illustrative example from 
Chapter 2 where this was derived from (2.1). 

AB 
Corollary 4.1: Bias of Y 

AB B 
The estimator Y is unbiased for estimating Y , with respect 

to the sampling design. 

Proof: 

We take the expected value of (4.1) with respect to the sampling 
design 

MA E(l ) MA 

E(yB) == "-j Z ==" Z == Z 
~ A J ~ J 
}~I Jr} j~1 

(4.8) 

as E(l}) == 1[: . 
It is then sufficient to prove that Z== yB . First we have 

MA MA lv' MIB 

Z == IZj == IIIlj,ikzik 
(4.9) 

Since Z ik = Y /L: , we therefore have 
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(4.10) 

• 
The unbiasedness of the GWSM can also be shown with the 

help of a similar method as that presented by Ernst (1989). 

Corollary 4.2: Variance of yB 

The formula for the variance of the estimator yB, with respect 
to the sampling design, is given by: 

~IA ~r' (A A A) 
Var(yB) = ~ ~ ffJj' - ffj ffj' Z z. 

~~ A A J /' 
j~Ij'~1 ffjffj' . 

(4.l1a) 

or, equivalently, by 

( :

2 
I M'~ z Z 

'B A A A j j' Var(Y )=--""(ff .. -ff.ff.) ---. 
2 ~~ Jj' J j' A A ' 

j~1 j'~1 ffj ff( 

(4.l1b) 

where we denote by ff~' the joint probability of the selection of units 

j and)'. 

Proof: 

To obtain a variance formula for yB, we start from equation 

(4.1). Since it turns out that yB is nothing more than a Horvitz­

Thompson estimator of the total Z, the variance of yB follows 
directly. For details of the proof, see Sarndal, Swensson and Wretman 
(1992). • 

For the calculation of ffA, under various sampling designs, one 
JJ 

can look at Sarndal, Swensson and Wretman (1992). 

In practice, equations (4.lla) and (4.llb) are easy to set up. It 
is sufficient at first to calculate Z ik = Y /L~ for each unit k of each 

surveyed cluster i. We then calculate the total Zj = I;~II~~~ lj,ikzik • 

All that remains is to substitute each Zj in the variance equation of 

the Horvitz-Thompson estimator. 

The variance Var(yB) can be estimated without bias using the 
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following equation: 

m A rnA (A A A) 
, 'B II Jr' - Jr Jr' V. r(Y ) = 1/ I I Z Z' a A A A I I (4.12) 

J~Ii'~l Jrjj'Jrj Jr j' 

(Sarndal, Swensson and Wretman, 1992). 

We can also draw up another variance estimator of Var(yB) 

inspired from Yates and Grundy (1953). This estimator is given by 

, 1 m A 
In j (A A A) [ Z z]2 

, , B " ". Jr Ij' - .Jrj Jrj' .J .i' Var(Y )=--2Ld... A -A --A 

J~l i'~l Jr jj' Jr j Jr j' 

(4.13 ) 

Other variance estimators are proposed in the scientific 
literature, such as Jackknife and Bootstrap estimators. We will present 
in Chapter 6 a Jackknife variance estimator used within the context of 
SLID. For more information, we can consult Wolter (1985) and 
Sarndal, Swensson and Wretman (1992). 

4.2 PARTICULAR CASE 1: 
CLUSTER SAMPLING 

We saw that the GWSM allows for the calculation of 
estimation weights in the case of indirect sampling where the target 
population U B consists of clusters. In the context of conventional 
cluster sampling, the question is then to know if the GWSM gives the 
same results as classical theory. 

Cluster sampling was presented in section 1.2. We recall that 
this type of sampling consists of first selecting primary sampling units 
(PSU) that contain secondary sampling units (SSU). Finally, we survey 
all the SSU belonging to the selected PSU. 

In the context of indirect sampling, we can illustrate cluster 
sampling with the help of Figure 4.1. 

Using the notation relative to the GWSM, we select a sample 
SA containing rnA PSU in the population U A containing MA PSU 

according to a certain sampling design. We assume that Jr1 represents 

the selection probability of PSU j, where Jr; > 0 for all j E U A • The 

target population U B contains MB units. This population is divided 

into N clusters, where cluster i contains M f units. Each cluster i of 
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,----------------------------, 

L---______________ ._. ______ ~ 

Figure 4.1: Example of links in cluster sampling 

US is linked to a PSU j of U A • The links I between populations U A 

and US are thus made between PSU j and SSU k of the clusters i. 

Note here that the two indices j and i represent the clusters and thus, 
these two indices are interchangeable. 

With cluster sampling, we are looking to estimate the total 

yS = I:II~Yik for a characteristic y. To do this, the classical theory 

suggests using the estimator yCWS,S given by 

4 
In y 

yCLUs,s=L~ (4.14) 
j~1 ITj 

where Yj = 1'; = I~~ Yik for j=i (Samdal, Swensson and Wretman, 

1992). The variance of yCWS,S is given by 



52 Indirect Sampling 

'W'MA( A A A) 
'CLUS,B = "" ff;(-ff;ff( Var(Y ) L-L- A A Y jYt . (4.15) 

i~It~l ffj ff j' 

Before verifying if the application of the GWSM gives the same 
results as equations (4.14) and (4.15) obtained by the classical theory, it 
is useful to prove the following Corollary 4.3 ensumg from 
Theorem 4.1. 

Corollary 4.3: Alternativeform of the estimator yH 
The estimator yB given by (2.1) and (4.1) can also be written 

under the form 

(4.16) 

MB 
where L . = :L-'l I ·k • .1,1 - j,1 

Proof: 

From equations (4.1) and (4.2), we have 

(4.17) 

By replacing Zik with its definition, we then get 

(4.18) 

• 
Note that the form of estimator (4.16) reminds the multiplicity 

approach described in section 3.2 and presented by Huang (1984). In 
fact, estimator (4.16) is a generalisation of the multiplicity approach. 

We can now check if the application of the GWSM gives the 
same results as equations (4.14) and (4.15) obtained by the classical 
theory. First of all, since the indices j and i are interchangeable, we 
have 
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Mt {LB if} = i 
L j ,; = ~lj'ik = ~ otherwise, (4.19) 

The ratio L .. / LB is thus equal to 1 whenj'=i, and 0 otherwise. 
j,l I 

For a given PSU}, we then have the following result: 

(4.20) 

From (4.14) and (4.20), we can then rewrite the estimator 
coming from the GWSM in the following way: 

MA t A Y 
yB = "_J_. Y = ~_j = yCLUS,B 

L..;AJ L..;A . 
j~1 1rj j~1 1rJ 

(4.21 ) 

The variance formula (4.15) follows directly from this result. 

Thus, in the case of conventional cluster sampling, the GWSM 
gives the same results as the classical theory. This suggests that in 
simple estimation cases where the GWSM possibly would not have 
been essential, the results obtained would be comparable to those 
coming from a more classical theory. 

4.3 PARTICULAR CASE 2: 
CENSUS OF POPULATION U A 

In Chapter 2, the GWSM was presented in the context where a 
sample SA containing rnA units was selected from the population U A 

containing MA units according to a certain sampling design. Using 
the links between population U A and the target population U B , we 

then looked to estimate the total yB using the sample SA. 

We can now ask ourselves what happens to the precision of the 

estimator yB if we perform a census of U A instead of selecting a 
sample. 

In the case of a census of U A , we have 1r: = 1 and tj = 1 for 

all units} E U A , and thus SA = U A • From Theorem 4.1, we then have 

yB=I~:Zj =Z. From (4.10), we have Z=yB and thus, we get 

directly yB = yB . 

By performing a census of U A , the total yB can then be 
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estimated with certainty. Note that the inverse reasoning is not always 

true. Indeed, if we perform a census of the population U B , the 

estimator fB will not necessarily have zero variance. This situation is 
discussed in the following section. 

We will also see in section 5.3 that in setting up for U B a 

single cluster of size MB (which, following the survey process, will 

be completely surveyed), the estimator fB in general does not have a 
variance equal to zero. 

4.4 PARTICULAR CASE 3: 
CENSUS OF POPULATION U B 

With indirect sampling, it is possible for the selection of certain 
samples SA of U A to lead to a census of the target population U B • If 

this occurs for a subset of all the possible samples selected from U A , 

we cannot expect to get zero variance for the estimator fB. 

Unfortunately, such is also the case even if all the possible 

samples SA of U A lead to a census of U B • In other words, if the 
number of surveyed clusters n corresponds to the total number N of 

clusters from U B, the variance of fB is not necessarily zero. 

The small example that we present in Figure 4.2 on the census 
of population U B , perfectly illustrates this situation. 

Let there exist populations U A and U B represented in Figure 

4.2. The population U A contains three units with two units selected 
using simple random sampling without replacement. The target 
population U B contains two clusters of size 1. Using the links 

between the population U A and the target population U B , we look to 

estimate the total yB from the sample SA using the estimator fB 
given by (4.1). To use this estimator, we must first calculate the values 
of the derived variables Zj given by (4.2). 
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j k 

2 

Figure 4.2: Example of census of uB 

fu+fu= YII + Y2I 

2 2 2 

There are three possible samples SA: 

{1,2}, {2,3}, and {l,3}. 

For each sample, we always survey the two clusters of U B . 

Thus, n=N and we then have a census of the target population U B for 

all possible samples selected from U A . For each possible sample SA, 

we now calculate the value of the estimator yB, which, in this 
example, leads to the results contained in the following table. 
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Samples SA 

{1,2} 

{1,3 } 

{2,3} 

Looking at this table, we notice that the values of yB differ 

according to the chosen sample SA. Thus, the variance of the 

estimator yB is not zero, even though we perform a census of UB . 
Note that this result is interesting simply from an academic 

point of view. In practice, immediately after noticing that the variable 
y is measured for all units k of the N clusters i of the target population 

UB, the estimator yB could be directly replaced by the measured 

value of the total yB. We would no longer be faced with indirect 

sampling, but rather a direct census of U B • 

4.5 USE OF WEIGHTED LINKS 

With indirect sampling, we assume that a link (or a 

relationship) existed between units} of population U A and units ik of 

population U B • In chapter 2, this link is identified by an indicator 

variable li.ik, where l/,ik = I if a link exists between unit } E U A and 

unit ik E U B , and a otherwise. The variable l/.ik simply indicates that 

there is or not a link between units} and ik from populations U A and 

U B • It does not, however, indicate the relative importance that certain 
links can have compared to others. 

Take the case of a survey of enterprises where we have a unit} 

from the sampling frame U A that is linked to two establishments k=l 

and k=2 of enterprise i of the target population U B • Suppose that 
establishment k= I has 1 million euros in assets and establishment k=2 
100 million euros. In the construction of an economic indicator, we 
could then want to give a larger weight to establishment k=2 
compared to establishment k= 1. In the context of the GWSM, this 
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could happen by replacing the indicator variable li,ik with a 

quantitative variable Bj,ik representing the assets of the establish­

ments, 

In a more general context, it is possible to replace the indicator 
variable li,ik with any quantitative variable Bi,ik representing the 

importance that we want to give to the link I j,ik' It indeed turns out 

that there is no problem with generalising the indicator variable I 
defined on {O,l} with a quantitative variable B defined on [0,+00[, 

the set of non-negative real numbers, The theory developed around the 
GWSM remains quite valid, 

Remember that a value of Bi,ik = 0 for two units} of U A and ik 

of U B amounts to a link li,ik = 0, In order for the GWSM to remain 

unbiased, it is always necessary to respect the following constraint 

Constraint 4.1 

For each cluster i of u B , we must have 

BB = "M' "MiB B . >0 
i L.J~1 L.k~1 j,/k ' 

With the use of a quantitative variable Bj,ik instead of the 

indicator variable I j,ik, we can explain why the PCF described in 

section 3,1 appears in the possible applications of the GWSM, Recall 
that the PCF is a factor associated with variables measuring partners 
and which decreases the value of these variables proportionally to the 
profits of the partners owning the enterprise, Let us go back to the 
example of the enterprise that has two partners, where each partner 
earns 50% of the profits of the enterprise, This corresponds, let's say, 
to having a cluster i= 1 (the enterprise) of U B having only a single unit 
k= I and where this unit k= I is linked to two units}= I and }=2 (the 
partners) of U A , 

Now, consider the estimator yB under the form given by 
Theorem 4, L From (4.2), for}= 1, 2, the value of Zi is given here by 

Zi = 1; /2. If we replace in (4.2) the indicator variable li,ik by a 

quantitative variable Bj,ik representing the profits of partner } in 
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establishment k= 1 of enterprise i= 1, the variable Zj is then given by 

Zi = Bj,l1'; / BIB where Bj,1 = Bj,11 since enterprise i= I only has a single 

establishment k= 1, and where BIB = BLII + B2J1 . Here, the PCF is given 

by Bo / BIB and it effectively decreases the value of the variable of 

interest 1'; measured for the enterprise, proportionally to the profits of 

the partners owning the enterprise . 

. ()~ () I()B h BB 111' Ai,iJ B Settmg j,ik = j,ik i were i = Ij~1 Ik~1 j,ik' we get a 

direct generalisation to the WSM described in section 3.3. Note that 

we then have I':11 I:~ ei.ik = I. This generalisation leads to a 

version ofthe GWSM constructed with the constants () 'k • 
J ,1 

Steps for the GWSM with weighted links 

Step 1: For each unit k of clusters i of n/' , we calculate the initial 
. h 18 h . welg t W ik ,t at IS: 

where ti = 1 if j E SA, and 0 otherwise. 

Step 2: The final weight w: is given by 

\48 MfJ .\4,1 

8 ~ 18 ~~ ~ ti 
Wi = L. W ik = L. L. ()j,ik A' 

k=1 k=! j=1 7r j 

Step 3: Finally, we set w~ = Wi
8 for all k E ut . 

In section 4.6.3, we will seek for optimal values for the 

weighted links Bi,ik (or ()j,ik)' In Chapter 9, we will go into greater 

depth on the use of the quantitative variable B, particularly in the case 
where B is the linkage weight coming from a probabilistic record 
linkage. 
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4.6 IMPROVEMENT OF THE ESTIMATOR 

The GWSM, as we have seen, offers a simple solution of 
obtaining an estimation weight W ik for each unit k of the surveyed 

clusters i. However, the resulting estimator yB given by (2.1) is not 
always the one that has the smallest variance. 

It is in fact possible to improve the estimator yB using a 
conditional approach, or sufficient statistics. It is also possible to 

improve it by determining optimal weights for the links (}j,ik 

presented in section 4.5. The estimators obtained by these approaches 

have a variance less than or equal to that of the original estimator yB. 

4.6.1 Conditional approach 

The conditional approach consists of improving the estimator 

yB by obtaining a new estimator yCOiVD,B based on the conditional 

expectation of yB, given a certain statistic S, The new estimator 

yCOND,B is thus defined from 

yCOND,B = E(yB IS) . (4.22) 

The conditional approach is in fact based on the following 
identity: 

(4.23) 

where Es(.) and Vars(.) are calculated with respect to all possible 

values of the statistic S, We note that Es[Var(yB I S)] ~ 0 and 

therefore Var(yCOND,B) = Vars[ E(yB IS)] :::; Var(YB). The variance of 

the estimator yCOND,B is thus less than or equal to the variance of the 

estimator yB. 

With the GWSM, it proves to be useful to condition on the set 
OB of n clusters identified by the units} of the sample SA. Recall that 

we perform the selection of the sample SA of rnA units in the 

population U A • For each unit} selected in SA, we then identify the 

units ik of U B that have a non-zero link with}, i.e., I j,ik = 1. For each 

unit ik identified, we measure the variable Yik for all MiB units of the 

cluster i containing this unit. By looking at the sampling design from 
the point of view of the population U B , we can see this as cluster 
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sampling where we obtained a sample OB of n clusters selected 
among the N clusters of population VB. The selection of each unit} of 

SA therefore leads to the selection of a cluster i from VB and we 

notice that there can be many samples SA leading to a set OB of given 
clusters. 

Starting from estimator (4.l6), the new estimator YCOND.B IS 

given by 

(4.24) 

Since we have 

E(tj 10B)=lxP(tj =110B)+OxP(tj =OIOB)=P(tj =110B ), 

we can consequently write: 

yCOND,B = ~ P(tj = 11 OB) f y L j ,; 

L. A L.ILB 
j=1 li j ;=1 ; 

(4.25) 

The probability P(tj = II OB) in fact corresponds to the 

probability of having selected unit} from V A , considering that the n 
clusters i of OB had been surveyed. We note that, for a given unit}, if 
Lj,i = 0 for all the n clusters i E OB , we must have P(tj = 11 OB) = O. 

Still for a given unit}, for the N-n clusters i ~ OB, we also have 

P(tj = 11 OB) = O. Indeed, by way of the survey process, the selection 

of each unit} must lead to the survey of clusters forming OB. 
Therefore, we get 

yCOND,B = ~~ P(tj = 11 OB) L . . 2L. 
L.L. A j,1 LB 
j=1 ;=1 li j I 

11 y; Al' P(tj = 11 OB) 
= L LB L li A Lj ,;. 

1=1 I j=1 j 

(4.26) 



Chapter 4: Properties 61 

The probabilities P(tj = 1\ OB) ::j:. 0 depend upon the links 

lj,ik = I linking unit} of U A to the units k from clusters i of UB • With 

complex links, this probability is difficult to set up. Nevertheless, 
smce P(t.=I\OB)=P(t.=I,OB)IP(Q,B) and p(Q,B) is the 

J J 

probability of surveying the n clusters of Q,B , it is clear that it is a 
function of the selection probabilities of all the units} having non-zero 
links with these n clusters of Q,B , 

Unfortunately, although through identity (4.23) the estimator 

yCOND,B has a variance smaller than or equal to that of yB, the 

estimator yCOND,B here only has a theoretical interest. Indeed, we saw 

in section 2.2 that one of the major uses of the GWSM is to be able to 
get a weighting using only the selection probabilities ITA of the units 

J 

selected in SA. Unfortunately, P(tj = 1\ Q,B) is a function of the 

selection probabilities of all units} having non-zero links with the n 

clusters of Q,B, whether these units have been selected or not. As 
already mentioned, there exist many situations where the probabilities 

IT: are unknown for the units } \l SA. In these cases, it is then 

impossible to use the estimator yCOND,B, and the only estimator yB 

obtained by the GWSM remains as one of the sole recourses, 

Example 4.2 

Suppose that the population U B has two clusters where each 
of the clusters has only one unit. This is illustrated in Figure 4.3. Unit 
k= I of cluster i= 1 is linked to two units j= 1 and j=2 of U A , and unit 

k=1 of cluster i=2 is linked to a single unitj=3 of U'I . We select a 

sample SA of size I. Suppose that we selected unit j=2. Then, we 

survey cluster i= 1 in order to measure the variable of interest Yik for 

i=1 and k=l. 
The probability p(nB) here comes down to the probability of 

surveying cluster i= 1 of nB. This probability is equal to the 
probability of selecting unit j= I, unit j=2 or the two units j= I and j=2 
of U A . Therefore, we have p(nB) = 1[(1 + 1[: - 1[\'~ where 1[\; is the 

selection probability of the two units j= 1 and j=2. On the other hand, 

for this example, P(tj = 1 , nB) = P(tj = 1) = 1[~4 for j=1 andj=2, and 

P(t3 = 1 , nB) = 0 as cluster i=2 is not part of nB . Therefore, we 
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Figure 4.3: Example o/populations/or the 
improvement of estimator yB 

ultimately get P(t j = 11 nB) = 7[;1 1(7[IA + 7[; - 7[1;) for j= 1 and j=2, 

and P(t3 = 11 nB) = 0 . 

From (4.16), the estimator yB obtaining by the G WSM is here 

'B Y. 
given by Y = _1~4 . 

27[2 

On the other hand, the estimator (4.26) obtained by the 
conditional approach is given by 

YCOND.8 = ~ ~ 1 = 1'; 
2 ~(A A A) (A A A)· 

j~1 7[i + 7[2 - 7[12 7[i + 7[2 - 7[12 

By comparing these two estimators, we notice that the 
. 'COND B . hId f hI· estimator Y . reqUIres t e know e ge 0 t e se ectlOn 

probabilities 7[IA, 7[24 and 7[1;' while the estimator yB only requires 

us to know the selection probability of unit j=2 that was selected 

in SA. It is worth noting that since p(nB) = 7[(1 + 7[24 - 7[1;' the 
estimator YCOND.B here corresponds to the Horvitz-Thompson 
estimator. 
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4.6.2 Use of sufficient statistics 

Sufficient statistics playa key role in mathematical statistics. 
We will verifY this in the present subsection. By the Rao-Blackwell 
theorem, sufficient statistics allow for the improvement of an existing 
estimator by producing a new estimator whose mean squared error is 
less than or equal to that of the starting estimator. Note that this form 
of improvement was used, among others, by Thompson (1990) in the 
context of adaptive cluster sampling. 

The theory presented here on sufficient statistics comes 
primarily from Cassel, Samdal and Wretman (1977). Note that 
Thompson and Seber (1996) also gave a similar presentation. 

Let yT = (Yp"" Yv) be the vector containing the values Yk 

for a population of size N. Recall that a sample design P is a function 
p( s) on the set :a: of all samples s such that p( s) 2 0 and 

LSE:::P(S)=1. We define D={(k'Yk)lkEs}, the set of indices k 

and the measured variables Yk for the sample s. 

A statistic u(D) is called sufficient for the parameter Y if and 

only if the conditional distribution of D, given u(D), does not depend 

on Y, provided that this conditional probability is well-defined. 

The statistic u(D) is in fact sufficient if and only if we have 

the following result: 

p(D, Y) = p(u(D), Y) x h(D) (4.27) 

where h(D) > 0 does not depend on Y. For the proof ofthis result, we 

can consult Bickel and Doksum (1977). 

We now present a version of the Rao-Blackwell theorem 
adapted for finite populations. The Rao-Blackwell theorem was 
developed independently by Rao (1945) and Blackwell (1947). The 
first use of this theorem in the context of finite populations was in 
Basu (1958). 

Theorem 4.2 (Rao-Blackwell) 

Let Y = Y(D) be an estimator (not necessarily unbiased) of 

Y = L~=1 h based on the set D, and let u(D) be a sufficient statistic. 
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.~ . 
We define a new estimator Y given by the expectation of Y 
conditional on u(D), i.e., 

yRB = E(Y I u(D)) (4.28) 

We then have, 

(a) ECyRB) = E(Y) 

(b) EQM(9) = EQMCyRB) + E[(Y _ yRB)2] 

(c) EQM (yRB) ::; EQM (9). 

For the proof of this theorem, we can consult Cassel, Samdal 
and Wretman (1977). 

Let p(SA I VB) be the sample design associated with the 

selection of the sample SA for the measurement of certain values of the 

vector yT,B = (YP""YN) for the target population UB. Let 

D j = {(i, Y;) I Lj,i * O} be the set of indices i and the measured 

variables ~ from the clusters of U B that have at least one link with 

unit } of U A. We note that the sets Di are not exclusive for 

} = 1, ... ,MA • By Corollary 4.3, we notice that the sampling of each 

unit} from SA leads to the selection of each cluster i of U B that have 

Lj,i -=1= O. We thus define DA = {(j, D j ) I j E SA} to be the set of the 

indices} of SA and the values ~ of the clusters surveyed through each 

} E SA. The set of surveyed clusters QB is thus a function of the 

sample SA. Now, let DB = {(t, Y;) I j E QB} be the set of indices i 

and the measured variables ~ from clusters i E OB . As the sampling 

of each unit} of SA leads to the selection of at least one cluster i of 

U B, the set DB is a function of the set DA, that is DB = U(DA) . 

Furthermore, we have p(DA I VB) = p(DA, DB I yB). 

Using the conditional probabilities, we obtain 

Because the set of surveyed clusters OB is a function of the 
sample SA, the selection of sample SA, given by the set QB , does not 
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depend upon yT,B = (YP""YN)' Consequently, we get 

p(DA I DB, VB) = p(DA I DB). We thus finally get the following 

result: 

p(DA I VB) = p(DB I VB) X p(DA I DB) 

=p(u(DA)lyB)xp(DA IDB) 
(4.29) 

By comparing (4.27) and (4.29), we then get that the set 

DB = {(i, Y;) liE OB} of indices i and measured variables 1; from 

clusters i E OB is a sufficient statistic for Y B • 

From Corollary 4.3, we have yB = yB (DA) . By Theorem 4.2 

(Rao-Blackwell), we can then get a new estimator yRB,B with the 

sufficient statistic DB = u(DA) whose mean squared error will be less 

than or equal to that of yB. Using expression (4.28), this estimator is 
given by 

yRB,B = E(yB I u(DA)) 

= E(yB I DB). 
(4.30) 

Because the measurement of 1; for each cluster i is directly 

related to OB, we have ECyB I DB) = ECyB lOR). By comparing 

(4.24) and (4.30), we see that the estimator yRB,B here is the same as 

the estimator yCOND,B obtained by the conditional approach. 

Once again, although through Theorem 4.2 (Rao-Blackwell) the 
~ RB B estimator Y , has a mean squared error less than or equal to that of 

yB, the estimator yRB,B here only has a theoretical interest. It is 
indeed a function of selection probabilities for all units j having non­
zero links with the n clusters of OB , whether these units were selected 
or not. This is contrary to one of the uses of the GWSM, which is to 

be able to get a weighting using only the selection probabilities JrJ of 

the units selected in SA. 

4.6.3 Obtaining optimal weighted links 

As mentioned before, it is possible to improve yB by 
determining optimal weights for the links presented in section 4.5. 
This problem has been solved by Lavallee and Deville (2002). The 
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goal is to obtain an estimator that has a variance less than or equal to 

that of the original estimator yB. 
In the present section, we will assume that each cluster i of if 

contains only one unit. This is done without loss of generality since 

following (2.4), the weights W ik are first computed at the cluster 

level i. As well, the fact that a unit} of UA can have a link with more 
than one unit k in the same cluster i can directly be handled by making 

the weighted links Bi .i proportional to the original number of links 

L .. = "Mi" / . . k . For example, considering Figure 2.1, we see that 
i.1 L..k~1 i,1 

unit}=2 leads to unit k=4 of if, and that unit}=3 leads to units k=3 

and k=4. Therefore, we have L~ = 3 for the identified cluster, rather 

than L~ = 2 that we would have if this cluster had contained only one 

consolidated unit (i.e., adding together units k=3, k=4 and k=5). If one 
go with one consolidated unit per cluster, we can then make the 

weighted link Bj'; proportional to 2 for }=3, and Bj,; proportional to 1 

for}=2. 

For obtaining optimal weighted links, it is convenient to use 
matrix notation, as done by Lavallee and Deville (2002). Let the 
correspondence between the two populations UA and if be 

represented by the link matrix eAB = [B:~] of size N A X N B where 

each element BAB is greater than or equal to zero? That is, unit} of U4 
i.1 

is related to unit i of if provided that BAB >0, otherwise the two units 
.1,1 

are not related to each other. For the example of Figure 1.2, the link 
matrix is given by 

BAB 
1,1 

BAB 
1,2 0 0 0 0 0 0 

BAB 
2,1 

BAB 
2,2 0 0 0 0 0 0 

e AB = 
0 0 BAB BAB 0 0 0 0 3,3 3,4 

0 0 BAB BAB BAB 0 0 0 4,3 4,4 4,5 

0 0 0 0 BAB 
5,5 

BAB 
5,6 0 0 

0 0 0 0 0 0 BAB 
6,7 

BAB 
6,8 

2 For the present section, we add the superscript "AB" to the weighted links as we will 
need to differentiate between links from three populations: U\ UB, and if. 
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Obtaining the link matrix e AB = [B;~:] is a critical issue in 

indirect sampling. It influences the precision of the estimates. Now, as 

we saw before, in several applications, the values of BAB >0 for the 
.1,1 

linked units are simply set to 1. Since the choice of BAB >0 for two 
.1,1 

linked units j and i can affect the precision of the estimates, it is 

natural to seek for those BAB values that will minimise the variance of 
.1,1 

the estimates. This optimisation problem is solved in the present 
section. 

In matrix notation, the total yB of the target population UB is 

written as yB = IT,ByB where IB is the column vector of l's of size 
~ B 

NB. 3 Setting Bk = Bk / B as in section 4.5, we have .1,1 .1,1 I 

eeAB = {BlAB , ... , B,~:}. We then define the standardised link matrix 

e AB = e AB [diag(I T,Ae AB )rl, where diag(v) is the square matrix 

obtained by putting the elements of the row-vector (or column-vector) 
v in the diagonal, and 0 elsewhere. Note that in order for the matrix 

e AB to be well defined, [diag(IT,Ae AB )rl must exist, which is the 

case if and only if BiAB > 0 for all i = 1, ... , N B • Note that this 

corresponds to Constraint 2.1. 

Theorem 4.3 

The link matrix eAB is a standardised link matrix if and only if 

(4.31 ) 

Proof: 

By definition, eT,AB 1 A = [diag(1 T,A e AB )r1 eT,AB 1 A is a 

I f · ,,13 N etJ, AB I A OAB {B AB BAB} L co umn vector 0 SIze lY. ow, ~ = + = 1 , ... , N B • et 

bi be the lh element of e T ,AB 1 A obtained by the product of line i of 

the matrix diag(O:Br l and the vector O:B. We have bi =OXBI
AB 

(B AB)-l BAB 0 BAB 1 + ... + i X i + ... + X Nt = . 

3 Note that we use for simplification the notation 1 B instead of 1 N B 
• 
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• 
Using Theorem 4.3, we directly obtain Corollary 4.4 that can 

also be found in Deville (1998a): 

Corollary 4.4 

NA NB (JAB (4.32) 
= IT,AeAByB = II j~B Yi 

j=1 i=1 (Ji 

~ AB B 
Let us define the column vector Z = <"> Y of size NA . 

Considering each line of Z, the variable zJ. = "NB (jAB Y is defined ~'=1 Jl 1 

for each unit j of the population UA and measured for each unit 
. A 

) E S 

Let WT = {Wp ... , WIVE} where Wi is the estimation weight of 

unit i of OB, with Wi = 0 for i ~ OB. For estimating yB, the 

estimator (2.1) can be rewritten as 

yB = WTyB . (4.33) 

In matrix notation, the GWSM can be formulated as follows. 

Let 1tA = {JrI
A , ... ,Jr~A}' and let nA = diag(1tA) be the diagonal 

matrix of size N A X N A containing the selection probabilities used 

for the selection of sample i. Accordingly, let e = {t1
A , ••• ,t~A}' 

where tf = 1 if j E SA, and 0 otherwise. Let TA = diag(e) be the 

diagonal matrix of size N A X N A containing the indicator 
. bl AS' .I:: yB IT Ai.5. AB yB ITAZ h . vana es t.. tartmg lrom =' '"" =', t e estimator 

J 

(4.1) translates to 

(4.34) 

Using the fact that Z = eAByB, we have 

yB = IT,ATA(nArleAByB and therefore we can define the column 

vector W of weights obtained by the GWSM as 

w=eT,ABTA(nArl1A. (4.35) 
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The vector W is of size ff and for each i = 1, ... , N B , we 

I NA A~ AB A 
have w = t e / 1[ . 

I j=1 J ./,1 ./ 

By construction, because the estimator (4.34) is a Horvitz­
Thompson estimator, the GWSM produces unbiased estimates. We 
can, in addition, have the following theorem: 

Theorem 4.4 

The vector of weights W given by (4.35) provides unbiased 

estimates if and only if the matrix eAB is a standardised link matrix. 

Proof: 
Starting from (4.35), we have 

E(W) =eT,ABIA. (4.36) 

Using Theorem 4.3, we directly get E(W) = 1 B and therefore 

we have unbiased estimates. Now, assume that E(W) = 1 B. From 
~ TAB A B ~ AB 

(4.36), we must have 0' 1 = 1 and therefore, 0 IS a 
standardised link matrix. _ 

The variance (4 .11 a) of Y B is here expressed as 

Var(yB) = ZT A AZ 
(4.37) 

where A A = [(1[11, - 1[JA 1[~) / 1[A 1[~]1 ,., is a non-negative definite 
J . J J J NxN 

matrix of size N A x N A and where 1[;, is the joint selection 

probability of units } and j' from UA and where , 
/)"B = eT,AB A Ae AB . 

As shown in Theorem 4.4, the estimator yB obtained by the 

GWSM will provide unbiased estimates provided that the matrix eAB 

is a standardised link matrix. Now, given that the variance (4.37) of 
this estimator depends on this matrix, there should be at least one 

matrix eAB,opt such that the variance of the estimator yB will be 

minimal. That is, for the eAB that are greater than 0, we are interested 
J,I 

in finding the values that these eAB should have to obtain the most 
./,1 

precise estimator yB. 
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This optimality problem was first assessed by Kalton and Brick 
(1995). They obtained results based on the simplified situation where 
NA=2 and with i obtained through equal probability sampling. Their 

conclusions suggested the use of e:B,opt = 1 when e:B > 0, and 

e:B,opt = 0 when e:B = 0 . Lavallee (2002) and Lavallee and Caron 

(2001) obtained results along the same lines by the use of simulations. 

In order to find the optimal weighted links eAB,opt, we need to 
./,1 

first factorise the standardised link matrix @AB. Factorisation 
consists in finding a population if and standardised link matrices 
~ AG ~ GB ~ 4B ~ 4G ~ GB . e and e such that e' = e e . We consIder the 

population if containing as many units as there are links starting 
from the units} of UA• The population size rf is then given by the 

number of e/~ from e AB that are greater than O. Each unit g of if 
can be seen as the extremity of an "arrow" starting from some unit} of 

UA. From this graph, there is only one link matrix e AG of size 
A G AG AG N X N keeping unbiasedness, namely e = [e ] where j.g 

e:~ = 1 if there is a link (or an "arrow") leaving unit} of UA to unit g 

from if, and e:~ = 0 otherwise. Note that by construction, each unit 

g from if is linked to at most one unit} from UA and therefore 
@AG =eAG. 

Considering the graph from if to UB, we can construct 

the link matrix e GB of size N G x N B as follows. Because 
of the definition of the population if, each unit g of if is 

1· k d 1 .. fUB L a GB aGB[d' (lTGaGB)]-1 III e to exact y one umt I 0 . et "" = "" zag . "" 

be the standardised link matrix obtained from e GB . We have 

diag(lT,Ge GB ) = diag(lT,Ae AB ), and therefor eGB =0GB [diag. 

(IT,A0 AB )rJ 

Now, 
~ AG ~ GB AG ~ GB e e =e e 

= eAGeGB[diag(lT,AeAB)r' 

= eAB[diag(lT,AeAB)r' 

=@AB 

(4.38) 
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Therefore, using this construction, the standardised link matrix 

SAB from UA to if can always be factorised into SAG and SGB . 

Using the factorisation (4.38), we have 

Var(yB) = yLBST,AB A. ASAByB 

= yT,BST,CBST,AG A. ASAGSCByB 

= yT,BSLCB A. CSCByB 

h 4. C i.5.T,AC 4. Ai.5.AC were L1 = \"I L1 \"I . 

(4.39) 

For any standardised link matrix SAB, the factorisation (4.38) 
~ AC 

always produces the same first factor 0 . Therefore, if we seek 

some optima/link matrix SAB,oPt that minimises the variance (4.37), it 

is sufficient to optimise the second factor SCB. We would also like 

the optimal matrix SAB,OPt to produce unbiased estimates. 

Let U j
C be the subpopulation of if containing the Ni

C links 

to unit i of if. Note that the subpopulations Ui
C are disjoint. Thus, 

without loss of generality, we can order the links from UA to if so 
that, for every i, the links to unit i in UB are indexed consecutively. 

N I ~O· CB b h ·th I f h . i.5. CB . 1 NB ow, et i e tel co umn vector 0 t e matnx \"I ,z= , ... , . 

By construction, the vector 8i
GB contains non null elements only for 

the N;G links to unit i of if. Hence, letting 8i
cB be a column vector 

C .~ 

of size Ni containing the non null elements of 0; ,we have 

. CB r~~BJ 'c 0; = o~ . Similarly, let 1; be the column vector of size ~ 

containing 1 's for N;G elements and O's elsewhere. Letting 17 be a 

C 'c C 

rOJ column vector of size Ni containing 1 's, we have Ii = 1~ . Now, 

for the GWSM from if to if to be unbiased, we need to have 
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~T GB G • T GB . G 
9;' 1; = 1 for all i, or equivalently 9;' 1; = 1 . All this together 
leads to the following optimisation problem: 

~ ~ 

FIND A MATRIX 9 GB ,opt = {9 I
GB ,oPt '''., 9~~,oPt} SATISFYING 

• T GB' G . 
9;' 1; = 1 FOR ALL 1=1 '" .,~, AND MINIMISING THE 

QUADRATIC FORM Var(yB) = yT,B9 T,GB A G9 GB yB. 

This problem turns out to be nothing more than the 
minimisation of a positive quadratic form under linear constraints. 
This is a relatively standard and simple problem to solve. It is well 
known that a solution always exists and is unique if the form (4.39) is 

positive definite or if the null subspace of 9GB is not included in the 

null-space of A G • 

The above optimisation problem can be rewritten in a different 

form. Let A~, be the submatrix of A G corresponding to the elements 

in positions g and g' if g has a link with unit i and g' has a link 

with unit i'. These matrices form a partition of A G. Note that the 
. ... G ... d fi . d'" T G ... G W' h matnces u;; are symmetnc, posItIve e !nIte, an u;i" = un' It 

these notations, the optimisation problem can be written as: 

MINIMISE 

(4.40) 
i=1 ;'=1 

UNDER THE CONSTRAINTS a/,GBI? = 1 FOR ALL i=1 , ... ,~. 

Minimisation is achieved for vectors O;GB,OPt satisfYing 

(4.41) 

for all i=I,,,.~ and where A; are the Lagrange multipliers entering 

into the constrained minimisation of (4.40). As we can see from 

(4.41), the optimal choice OiGB,oPt (and therefore 9 GB ,oPt) will depend, 
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III general, explicitly on the vector Y B, which is not useful in 

practice. Notice that the set of Ai depends also on the variable yB. 

This is the reason why we should seek, instead of a strong 
optimisation, a weaker form of optimality that will lead to the 

existence of an "optimal" solution eGB,opt (and eAB,opt) not 

depending on y B • 

Equations (4.41) must be valid for any vector yB . A necessary 

condition is to have them hold a particular variable of interest, such as 

Yi = 1 for a unit i of if and Yi' = 0 for all other units i' of if 
(i' :f:. i). This leads to the necessary conditions (one for each of those 

particular variables) A~8iGB,oPt = A)~. Assuming that A~ IS 

invertible, we then have 8i
GB ,oPt = Ai(A~rl1~. It can be shown that 

h· . I ffi . d' . N b ~9TGBoPtlG 1 t IS IS a so a su IClent con Ihon. ow, ecause i" i = ,we 

have Ai = 1I1;,G(A~rl1~. Therefore, a necessary and sufficient 

condition for equation (4.41) to be satisfied is when 

8GB ,opt = (A~rl1~ 
i tT,G A-1.t G . 

I G,ll I 

(4.42) 

This result corresponds to weak optimality as it holds for a 
particular variable of interest. 

Weak optimality is a necessary condition for strong optimality 
independent of the vector yB for a variable of interest. It provides the 

necessary form for the vectors 8i
GB ,oPI in (4.41). To get sufficient 

conditions for strong optimality independent of yB, we go back to 
equations (4.41). These equations need to be satisfied for all vectors 
yB and they must therefore be satisfied for a particular variable of 

interest such as Yi = 1 for a unit i of if, Y,. = 1 for another unit i' of 

if, and Y;, = 0 for all other units i" of if (i" :f:. i' :f:. i). In that case, 

to satisfy equations (4.41), it is necessary to have the following 
relations for any i and i' : 
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(4.43) 

As we must necessarily have weak optimality, we have 

A~OiGB,oPt = Ai 1 ~ . Considering the first line of (4.43), we then get 

A G,O ?B,opt = (Ali' _ A)1 G 
fl 1 / 1 I 

(4.44) 

Multiplying both sides of (4.44) by 0iT,GB,OPt, we obtain 

= <Pi;' 

since O;,GB,oPtl~ = l. Let <I> be the matrix with elements <Pi;' off the 

diagonal and <P ii = Ai on the diagonal. Using again (4.39), it can be 

shown that the optimal variance (whenever it exists) has the 
. yT BlhyB expresslOn ''JJ' . 

Let us show that this set of conditions is also sufficient. 
Assume that (4.44) holds. Note that for i = i', condition (4.44) is 
nothing more than (4.42) which gives the necessary values for the 

0iGB,oPt. It is now straightforward to verify that (4.41) holds, whatever 

the value of yB, and that we have obtained strong optimality. Now, 
B ~ B 

the values of Ai depend on Y ,as well as the variance Var(Y ), 

but we have that equations (4.41) always have the same solution 

(4.42) that does not depend on yB. We therefore have the following 
theorem: 

Theorem 4.5: Strong optimisation independent of yB 

The conditions A~,Oi?B,oPt = <P ii' 1~ are necessary and 

sufficient for the existence of a standardised link matrix SGB,OPt, or 

equivalently SAB,opt, that achieves strong optimality independent of 

the vector y B for the variable of interest. The values in the columns 
of this strong optimal matrix are given by (4.42), which are the 

vectors 0iGB,oPt obtained from weak optimality. 
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or 

Since A~((GB,oPt = A)~, (4.44) can be written equivalently as 

(4.45a) 

(4.45b) 

where and 

(OT,GB,OPt A?'O?B,OPt) (lr.,G (A~,)-'l~). In some situations, these 
I II 1 I If I 

can proved to be easier to use than the expresssion (6.7) stated in 
Theorem 4.5. 

We now present an example that illustrates the preceding 

theory on weak optimality and strong optimality independent of Y B . 

Example 4.3 

Let us suppose that the sample i is selected using simple 

random sampling. In that case, the N A X N A matrix AA is given by 

AA = n IA __ _ N A (N A - A) l l AI T ,A 1 
nA (N A -I) N A 

where I A is the identity matrix 

of size N A X N A. Considering the factorisation (4.38), we have 

4.46) 

where lA is a square matrix of size N A ,with N A being the number 
II J J 

of links (or "arrows") starting from unit j of UA. From A c, we extract 
G G 

the submatrices A;;. Each submatrix A ii IS gIven by 

c=NA(NA-nA)x[c_l(lrCl' G Au A A I; 4' WhIch IS of SIze N; . Then, 
n (N -1) N 

usmg a matrix result that can be found in lazwinski (1970), we get 
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(A?)-1 = (N A -1) n A X[IG + 1 IGIT,G] Now, 
II (NA _nA) NA I (NA -N?) I I ' 

~G 1, 
from (4.42), we directly obtain the optimal values 0 B,opt = -G-IG that 

I N I 

I 

minimise Var(1~ B), in the weak sense, i = 1, ... , N B . These values are 

used to construct the vectors O· T,GB,opt d th 
i ,an en the matrix 

~ ~ 

Q - {o· GB,opt o· GB,opt} . 11 ft . h . 
UGB,opt - 1 '''., NB . Fma y, a er computmg t e optimal 

. a. AB opt aAGa. GB opt b' h . I . h W opt matnx ~ , = ~ ~ , ,we 0 tam t e optima welg ts 
using (4.35). 

Again, this result is an important one because it goes directly in the 
direction of the results of Kalton and Brick (1995), Lavallee (2002), and 
Lavallee and Caron (2001). That is, with simple random sampling, the 

optimal choice of BJ~:,oPt should be I if there is a link between unit j of 

if and i of if, and 0 otherwise. 

Using Theorem 4.5, we now verify ifthe conditions (4.44), (4.45a) or 
(4.45b) for strong optimality independent of Yi are satisfied for the 

optimal matrix eAB,OPt that we obtain through weak optimisation. First, 
G G G G 

each submatrix f..ii' of size Nj x N i , is given by Aji' 

N A (N A _n A
) [G 171~'Gl G . G G = -A- A X H, - A where H, IS a N x N, 

n (N -1) II N II I I 

diagonal matrix of ones, "padded" with zeros. A typical element of H~, 

is given by I if both i and i' are linked to the same unit j of UA (that is 
linked to unit g of if), and 0 otherwise. Therefore, we can easily see in 
which cases the conditions (4.44), (4.45a) or (4.45b) can be satisfied. In 

~OGB opt .4. G~OGB,opt . 
fact, because all components of i' are equal, uii' i' IS a vector 

proportional to the sum of the lines of A~, i.e., the sum of the lines of 

[ 
IGIT,G 1 

H~ - iNi~ . But (4.44) says that this vector must have the same 

components. This is possible if and only if the matrix H~ contains only 

zeros, or if it is of dimension 1 xl, which occurs when both i and i' are 
each linked to only one element of if. Therefore, strong optimality 
independent ofyB does not occur in general for simple random sampling. 



CHAPTERS 

OTHER GENERALISATIONS 

We mentioned in Chapter 1 that the GWSM is in fact a 
generalisation of the weight share method described by Ernst (1989). 
It can also be considered as a generalisation of network sampling as 
well as adaptive cluster sampling described by Thompson (1992), 
Thompson and Seber (1996) and Thompson (2002). It is however 
possible to go a little further with the by expanding the context in 
which the GWSM can be used. Firstly, we will consider the possibility 
of performing a two-stage indirect sampling. Secondly, we will 
discuss the arbitrary aspect of the formation of clusters. Finally, we 
will examine the possibility of eliminating the notion of clusters. 

5.1 TWO-STAGE INDIRECT SAMPLING 

An important constraint to which the survey process was 
subjected is to consider all units belonging to the same cluster. In 
other words, if a unit is selected in the sample, then all units from the 
cluster containing the selected unit must be surveyed. Although this 
constraint often permits savings and also allows for estimates on the 
clusters to be produced, we may want to consider only a subsample of 
units from the cluster to survey. This could tum out to be useful, for 
example, when the cluster size is considerable. 

As an example, we can consider the survey of enterprises 
through their establishments, as shown in Figure 1.3. Recall that we 
select a sample of establishments, we go to the enterprise level 
(cluster) and we finally survey all establishments from the identified 
enterprises. Unfortunately, the number of establishments for certain 
enterprises (like chains of small retail stores, for example) can prove 
to be enormous and in this case, we may want to restrict ourselves to a 
subsample of establishments. We could however argue that we already 
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had a sample of establishments at the beginning, and why then would 
we select another one? In the example that concerns us, this new 
sample allows us to give a non-zero selection probability to 
establishments f and g that have no chance of being selected in the 
sample at the beginning. 

In a formal way, a sample SA is selected as before containing 

m A units from the population U A containing MA units according to 

a certain sampling design. We assume that JrA represents the 
J 

selection probability of unit} and that JrA >0 for all } E U A . On the 
J 

other hand, the target population U B contains MB units. This 

population is divided into N clusters, where cluster i contains Mf 

units. 

For each unit} selected in SA, we identify the units ik from U B 

that have a non-zero link with}, i.e., lj,ik = 1. For each identified 

unit ik, we assume that we can create the list of MiB units of cluster i 

containing this unit. This cluster i itself then represents a population 

U i
B where U B = U;~I U i

B . Let OB be the set of n clusters identified by 

the units} E SA • 

From each cluster i E OB , a sample s; containing mi
B units is 

selected from the MiB units of the cluster. We assume that Jr(:)k 

represents the selection probability of unit k and Jr(:)k >0 for all 

k E Ui
B • The variable of interest y is measured only for the units from 

the samples SiB, i=l, ... n. 

In the context of indirect sampling presented in Chapter 2, we 

had performed a census of each cluster i E Q.B . The fact of selecting a 

sample SiB of clusters i from OB brings us a second stage to the 

sampling design. Since the first stage of the sampling design is an 
indirect sampling, we can call the present design two-stage indirect 
sampling. Note that a similar two-stage design was proposed by 
Sirken and Shimizu (1999) in the context of network sampling. 

By applying the GWSM, we want to assign an estimation 
weight w:; to each unit k E SiB of the n clusters i E OB. To estimate 

the total yB of the target population U B , we can then use the estimator 
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(5.1 ) 

We now present the steps of the GWSM to obtain the 
. h II welg ts W ik • 

Steps of the GWSMfor two-stage indirect sampling 

Step 1: For each unit k of the MiB units from cluster i contributing to 

yll,B, calculate the initial weight W,'k ' that is: 

,>[, t. 
, "I J 

W ik == L.., j.ik -A ' 
j~1 7r j 

(5.2) 

where tj == I if j E SA , and 0 otherwise. 

Step 2: For each unit k of the MiB units from cluster i contributing to 

yll,8, obtain the total number oflinks L~ : 

AlA 

LBk == "lk . 
I ~,.I (5.3) 

H 

Step 3: Calculate the first-stage weight Wi given by 

(5.4) 

Step 4: Finally, set W{; == Wi / Jr/{)k for all k E SiB. 

In order to calculate the bias and the variance of YII.B, we 
prove the following Theorem 5.1, inspired by Theorem 4.1. 

Theorem 5.1: Duality in the form of yI/,B 

, Ii II d LB _ '" M," LB Let Y; = L;'~I Yik /1C(ilk an i - L..k~1 ik' For the clusters 

i E OB , set Zik = ~ / L~ for all units k E Ui
B . The estimator yII,B, given 

by (5.1), can then also be written in the form 

(5.5) 
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where (5.6) 

Proof 

F Y~II,B - "n "mY / II - "n y~ b' h rom - L..i~lWi L..k~lY ik 'ff(i)k - L..i~lWi i' we su stltute t e 

definition of Wi in yll,B to get: 

(5.7) 

Let Zik = ~ / L~ . Note that this quantity is defined if and only if 

L~ > 0, that is, if and only if Constraint 2.1 is satisfied. We then get 

(5.8) 

By replacing w:k with its definition (5.2), we get 

~ n MiB [MA t.j 
yB = ~B ~li'ik ;: Zik 

(5.9) 

Finally, 

(5.10) 

• 
The estimator yII,B can therefore be written as a function of 

the units ik of U B , or as a function of the units} of U A • 

A II B 
Corollary 5.1: Bias of Y . 

The estimator yll,B is unbiased for the estimation of yB, with 
respect to the sampling design. 
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Proof 

Take the expectation ECyff,B) from (5.5), with respect to the 

design. This expectation can be decomposed into EQB[E(yfI,B InB)], 

where the first expectation is performed with respect to all possible 

samples nB of clusters, and the second expectation is conditional on 

the clusters of nB. From (5.5) and (5.6), we have 

(5.11) 

Now, 

(5.12) 

, B B h 
since Y; = L;~l Yik /1rik is nothing more than a Horvitz-Tompson 

estimator of Y; . Thus, 

(5.13) 

Following the survey process, the cluster i will be part of the n 
clusters of nR if and only if l/,ik -::f. 0 (there is a link between units) of 

VA and ik of VB) for at least one k E V i
B , and t/ = 1 (unit) of VA is 

selected in SA), or in other words, if and only if lj,iktj -::f. O. Unit k of 

cluster i is therefore surveyed if and only if, for all 1r:, we have 

lj,iktj /1r: -::f. 0 for at least one k E V i
B , which implies that 

Mt MA A 
CfJi = Lk=l Lj=llj,iktjZik /1rj -::f. O. The n clusters surveyed therefore have 

CfJi -::f. 0 , and the N-n non-surveyed clusters have CfJi = O. Thus, 

(5.14) 
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From Corollary 4.2, we have directly EoB eys) = yS and 

therefore 

~ II B 
Corollary 5.2: Variance of Y , 

(5.15) 

• 
The variance formula o[the estimator ylI,S, with respect to the 

sampling design, is given by 

where 

(5.17) 

and where IT'[;)k,(i)k' represents the joint selection probability of units 

k and k' from cluster i. 

Proof 

To get a variance formula for yll,S, we start from equation 
(5.5). As with Corollary 5.1, we start from a conditional argument 
using the following identity from Samdal, Swensson and Wretman 
(1992): 

Var(yII,S) = En B [Var(yII,S I [2s)] + VarnB [E(yll,S I [2s)]. 

From equation (5.14) and from Corollary 4.2, we get directly 

AI' AI" (A A A) 
VarnR [E(yII,S lOS)] = II IT'it -AIT' ~IT' t ZjZt. 

j~Jj'~J IT'jlT'j' 

Now, from (5.5) and (5.6), we have 

yII,S = ~Ji ~~l ~ 
L.. A L..L.. ),Jk LS 
j~J IT'j i~1 k~l i 

(5.18) 

(5.19) 
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We then calculate the conditional variance of yII,B to get 

Var(l,n, I n')~ t;;; t( ~~i' )' Var(Y, In'). (5.20) 

• " m B II· 
Smce y; = Ik~l Yik / tr(i)k IS nothing more than a Horvitz-

Thompson estimator of Y; , we have 

(521) 

From (520) and (521), using the same arguments as those used 
in obtaining (5,14), we have 

(523) 

5.2 ARBITRARY ASPECT IN THE FORMATION OF 
CLUSTERS 

• 

We saw that the GWSM relates to an indirect sampling of 
clusters surveyed within the population U B • In practice, the clusters 

of the population U B are, most of the time, formed in a natural 
manner. In social surveys, for example, clusters often correspond to 
households or families, and the units are the people belonging to these 
households or these families. For economic surveys, the clusters often 
represent enterprises while the units of these clusters are 
establishments or local units. To apply the GWSM, the formation of 
the clusters can however be performed in an arbitrary fashion. 

If the process of forming the clusters is independent from the 
selection of the sample SA, the GWSM remains unbiased for the 
estimation of the total yE. We indeed notice that the proof of Corollary 
4.1 does not mention the construction of the clusters themselves. Note, 
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however, that for the GWSM to remain unbiased, the process of 
forming the clusters must respect Constraint 2.1. Assuming that the 
clusters respect Constraint 2.1, the choice of the clusters, however, 
will influence the precision of the estimates produced for the target 

population UB. In other words, the variance of the estimator yB 
depends on the formation of the clusters. 

In the construction of the clusters for the population U B , we 
find two extreme cases: (i) the formation of a single cluster of size 
MB and (ii) the formation of MB clusters of size 1. Of course, in 
practice, the formation of the clusters is somewhere between these two 
extremes. Meanwhile, these two extreme cases can help us to 
understand the process governing the precision of the estimates 
according to the construction of the clusters. 

5.2.1 Extreme case (i): population U B with a single 
cluster of size MB 

Suppose that we decide to create a single cluster of size MB 
for the target population UB (Figure 5.1). Since the survey process 
requires us to survey all units belonging to the clusters selected 

indirectly through the sample SA, we will then inevitably have a 

census of the population U B • Indeed, for each unit j selected in SA, 

we are linked to the population U B by the links lloik > o. For each of 

these links, we survey all units of each linked cluster i and, as the 
population only has one single cluster, we will thus survey the entire 
population U B • 

As we are interested in the variance of the estimator yB, it is 

practical to use the form of yB given by Corollary 4.3. Since UB only 

h . I I . 1 h Y. - yB L - '" Mt I - LA d as a smg e custer 1= ,we ave I - , j.1 - L..k~1 j,lk - j' an 
B MB B 

LI = Ik~1 Llk = L . 

We then get 

'vf"4 t L M" t L4 
'B I' 'I " I ' " y = _,_I y~ = _,_I _, yB 

A I LB A 
I~I 1r1 i~1 i j~1 1r 1 L 

, , 

yB M' t, yB 
= -,,-} LA =-i 

L ~ A, L 
j~1 1r 1 

(5.24) 
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, MA A A 
where L = Lj=1 tJi /1rj . We can see that L is in fact a Horvitz-

Thompson estimator of the total number of links L. The variance of 

yB in the case where the population UB only has a single cluster is 
thus given by 

j lOOk j,1 

@---

k 

i=l 

Figure 5.1: Population U B with a single cluster 

(5.25) 

Looking at the variance formula (5.25), this variance will be 

zero if, for each unit j of the population U A , the selection probability 

1rA is proportional to the total number of links LA. In other words, it 
J J 

is preferable here to assign the selection probabilities of the units from 
the sampling frame U A in such a way that they are proportional to the 
number of links coming from these units. 
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Note that the variance (5.25) also becomes zero in the case 

where there is only one link for each unit j of VA (such as for the 
longitudinal surveys showed in Figure 3.1, for example) and where the 
sample SA is selected by stratified simple random sampling. 

However, the present discussion remains academic since we 

are in the extreme case where the population V B has only a single 

cluster. In fact, by only choosing a single unit j of V A , we should be 

able to estimate the total VB with a zero variance owing to the fact 
that having only a single cluster leads to the census of the population 

VB. The variance of yB is unfortunately not zero here due to the 

complex links that can exist between populations V A and VB. 

With complex links, we find ourselves calculating a 
"weighted" mean (with the variable li.1k) that counts the census value 

yB many times. This "weighting" unfortunately contributes to 

increasing the variance of yB. It is however possible to reduce this 

variance to zero by calibrating the estimator yB on the total number 
of links L. We will see in Chapter 7 how it is possible to introduce 
calibration in the GWSM. 

5.2.2 Extreme case (ii): population U B with MB 
clusters of size 1 

Suppose that we decide to create MB clusters of size 1 for the 
population VB, as shown in Figure 5.2. In practice, this case can 

cause problems in bias if the population VB has unlinked units k, such 
as units 5 and 7 in Figure 2.1. 

By forming clusters of size 1, the unlinked units will find 

themselves isolated from the population V A and they will therefore 
not have any chance of being surveyed. Furthermore, note that this 
situation is directly contradicting Constraint 2.1 of the GWSM. In 
order to simplify the discussion, we will assume here that the 
population VB does not have unlinked units to population VA. In 
Figure 5.2, we thus added links between pairs (3,5) and (4,7) that we 
have represented by dotted lines. 
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uA UB 

j l"k j,1 
k 

0- ------0 
~ 

2 

3~----

------~ 

&~:-------~~ 

--~--~ 

1 

J 

Figure 5.2: Population V B with clusters of size 1 
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As in section 5.3.1, it is appropriate to use the fonn of yB 
given by Corollary 4.3. Since the target population VB here has MB 

clusters i of size MiB = 1, we have 1'; = Ik~IYik = Y il , Lj,i = 
'" I I d B .1.1' ,w' L,k~l j,ik = j,il an Li = Ij~l Lj,i = Ij~l li,il ' 

We then get 

(5.26) 

Unfortunately, the fonn (5.26) does not bring much 
infonnation on the effect that the creation of clusters can have on the 

precision of the estimator yB. This fonn, however, can be useful in 

studying the perfonnance of yB if we create clusters of size 2. 
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In order to simplify the discussion, assume that MB is an even 

number. We decide to create N = MB 12 clusters of size 2 by 
combining in pairs the clusters of size 1. 

Let the new cluster i' consist of cluster i = i' and cluster 

i = MB - i' + 1, for i' = 1, ... , N . The estimator yB given by (4.l6) then 

takes the form 

M·' N [/ + / ] 
"" ti ""( ) j,il i,(M R -i+lI1 

= L,..; "A L,..; Yi l + Y(M Li -i+I)1 [LB + LB ] 
J-l J I-I I (M"-i+l) 

(5.27) 

By reindexing from N+ 1 to MB the N clusters of the second 
sum of (5.27), we can then write equation (5.27) under the form 

(5.28) 

By comparing equations (5.26) and (5.28), we can see the 
effect of forming clusters of size 2, compared to forming clusters of 
size 1. We first note that in the two equations, the variable of interest 
Yil is "weighted" by a factor representing the ratio between the 

number of links for the cluster with unit} and the total number oflinks 
for the cluster. With the clusters of size 1, we see by equation (5.26) 
that each unit i1 is weighted by a factor dependent on a single link 
with unit j. With the clusters of size 2, equation (5.28) shows us that 
the factor then depends on two possible links with unit j. This factor 

All 
proves to be decisive in the precision of the estimator Y ,as we can 
see in the following section. 
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5.2.3 General case and discussion 

We will consider here the general case where each cluster i has 

MiB units. Again, we consider the form of the estimator yB given by 

Corollary 4.3. From (4.16), we have 
M' t LV L 

yB == "_i "y ~ 
L. AL.'LB 
j~1 ;rr j i~1 i 

We now use the following result. 

Result 5.1 

For all unitsj of the population VA, we have 
N Mi" L .. 

Zj == LLYik LJ~' . 
,~I k~1 , 

Proof 

== Zj' 

(5.29) 

(5.30) 

• 
According to equation (5.29), in a general manner, each unit k 

of a cluster i of V B is "weighted" by a factor representing the ratio 
between the number of links between cluster i and unit j, and the total 
number of links for cluster i. The larger the cluster size, the more we 
expect that the number of the links part of this factor will be large. As 
it is a question of the number of links for the whole cluster i 
containing unit k, the larger the cluster is, the more we expect that the 
factor "weighting" each unit ik has a kind of homogeneity. This 
homogeneity is important because of Result 5.1 that shows us that the 
double some coming from equation (5.29) is nothing more than the 
variable Zj defined in Theorem 4.1. More important still is the fact 

that, by Corollary 4.2, the variable Zj feeds directly into the 

calculation of the variance for the estimator yB. 
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The homogeneity of the factor "weighting" each unit ik of U B 

will contribute to the homogeneity of the variable Zj' However, this 

homogeneity will only be favourable if the formation of the clusters is 
done in such a way that we combine the clusters that are already 

linked to the same unit} of U A • Indeed, since the "weighting" of each 

unit ik of UB depends on the number of links Lj ,; between cluster i 

and unit}, such a grouping of these clusters will not produce an 
increase in surveyed units following the selection of unit} of U A • This 
can be seen from Result 5.1. For example, we decide to group cluster 
i=l for which Lj ,; * 0 and cluster i=2 for which Lj ,; = O. The new 

cluster i' will have Lil * 0 and we will survey all units of this new 

cluster. As a consequence, we will now survey the units of cluster i=2 
that were not included previously in the survey process because 
Lj,i = O. We will thus have increased the size of Zj and perhaps have 

created heterogeneity in this cluster, which could contribute to 

increasing the variance of yB instead of decreasing it. 

We can also see this problem from the point of view of the 
estimation weights W;k obtained by (2.4), By grouping clusters that 

are not linked to the same unit} of U A , we risk combining clusters 
that would have been surveyed with other clusters that would not have 
been surveyed without this grouping. These new clusters would not 
have been surveyed simply because none of the units} of U A to which 

they are linked would have been selected in SA, i,e., that for a given 
cluster i, we would have L i ,; * 0 but ti = O. From (2.4), we see that 

the weights W ik of the new clusters would only depend upon the 

selection probabilities 7r; of the clusters that would have been 

surveyed before the grouping. We would then have large clusters, but 
whose weight would be calculated from some 7rJ only. Ernst (1989) 

noted this problem by pointing out that a use of a maximum number 

of selection probabilities 7r: generally leads to an estimate of UB 

with a larger precision. In section 4,6, we also saw that estimator 

(4.26) coming from the improvement of the estimator yB depends on 
the selection probability of the n clusters of OB , and therefore on the 
selection probabilities of the units} de U A having non-zero links with 

these n clusters. This estimator reGND,B (or yRB,B) in fact has a 
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variance less than or equal to the estimator yB because it uses the set 

of all selection probabilities IT: leading to the selection of the clusters 

of OB , and not only the probabilities IT: of the units} selected in SA. 

It is important to note that if the links are complex, a grouping 

involving only the clusters that are linked to the same unit} of U A is 
not always possible. Consider the example shown in Figure 5.2. We 

could consider grouping the clusters containing units 2 and 4 from U B 

because they are linked to the same unit }=2 of U A • However, this 
grouping will have an effect on the clusters linked to unit}=3, as this 

unit will now have an indirect link with unit 2 of UB through unit 4. 

In the case where the sampling design used for the selection of 

the sample SA of UA is of equal probabilities, Corollary 4.2 shows us 
that the homogeneity of the Z. will contribute to reducing the 

J 

variance. Thus, it seems that with this type of sampling design, we 
will have an advantage, for increasing the precision of the estimates, 
to form clusters of large size by combining as much as possible 
clusters that are already links to the same units} of U A • 

If the sampling design is of unequal probabilities, the variance 

will be zero if the variable Zj is proportional to IT: for } = 1, ... , MA . 

If the links are complex, it is not clear how the clusters must be 
formed so that we have that proportionality. Indeed, as one unit} can 
also lead to surveying more than one cluster and that a same cluster 
can be surveyed due to the selection of more than one unit} of U A , it 
is then necessary to control at the same time the formation of the 
clusters and the assignment of the selection probabilities ITA , which is 

J 

very difficult to do in practice. If the links are not complex (being one­
to-one, one-to-many, or many-to-one), it is possible to determine the 

selection probabilities IT: so that they are approximately proportional 

to the variables Zj under the conditions, of course, of having an 

auxiliary variable correlated with the variable of interest y and of 

knowing the composition of the clusters i of U B before surveying 
them. 
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Example 5.1 

As an example, consider the case shown in Figure 5.2. 

Units of i k Zik 

U B from YII 

Fig. 5.2 ZI I 
1 I I YII II 

2 2 I Y21 II 

3 3 I Y31 1I Z2 
Y21 + Y41 

I 2 

4 4 1 Y41 /2 
Z3 

lli+ Y41 +~ 
5 5 1 Y sl l1 1 2 I 

6 6 1 Y61 I I 

7 7 I Y71 11 Z4 
fu+fu 

1 I 

If we select from U 1 unit j= I and unit j=2, the estimator yB 
is then written 

Assuming that this sample was selected with a simple random 

sample of m A = 2 units chosen among MA = 4, we have 

n A = n A = 1 I 2 . This estimator becomes 
J 

Moreover, assuming that we measure the value Yik = 1 for all 

units surveyed in U B with the goal of estimating M B , 

'B 'B 'B Y = M = 2(1 + I + I I 2) = 5 . The variance of M is given by 

Var(M8)=~ 1-~ _1 "Z2_ L..FI J 
, A 2( A J [141 ("M 1Z )2] 

m A MA MA -I ~ J MA 

=~(I_~I~(L.4 Z~ - 49J 
2 4)3 i~1 4 

=i(I+~+ 25 +4- 49 1=2 =1.6667. 
3 4 4 4) 3 
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Suppose that we combine the adjacent cluster pairs to form 
new clusters. We then combine clusters i=1 and i=2, i=3 and i=4, as 
well as i=5 and i=6. Then, we can calculate, as presented in the 
following table, the new values of Z;. 

Units of 
U B from i' k Zi'k 

Fig. 5.2 

Yll + YI2 
1 1 I 2 

YI I + YI2 
2 1 2 2 YII + YI2 + Y21 + Y22 

Y21 + Y22 
2 3 

3 2 1 3 

Y21 + Y22 
4 2 2 3 2x Y21 + Y22 + Y31 + Y]2 

Y31 + Y]2 3 2 
5 3 1 2 

Y31 + Y32 
6 3 2 2 

Y41 
7 4 1 1 

Selecting unitj=1 and unitj=2, the estimator yB can then be 
written 

yB =~(YII + YI2 )+~(YII + YI2 + YOI + Y22). 
Jrl 2 Jr2 2 3 

If this sample was selected with a simple random sample of 

rnA = 2 units chosen among MA = 4, we have 

yB = 2 x (2 X YII + YI2 + Y2I + Yn ) = 2 x (Y + Y + Y2I + Y22). 
2 3 II 12 3 

Furthermore, assuming that we measure the value Yik = 1 for 

all units surveyed In U B , we can conclude that 

yB =MB =2(1+1+2/3)=16/3=5.3333. The variance of MB is 

given by 

93 
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'B 4(~ 249) 4( 2549 49) Var(M )=- L.. Z,-- =- 1+-+-+4-- =1.2962. 
3 '~I 4 3 9 9 4 

Suppose that we again combine adjacent clusters into pairs to 
form new clusters. As for the previous table, we combine in this 
manner clusters i' = 1 and i' = 2, as well as i' = 3 and i' = 4. We can 

then calculate the new values of Z,. 

Units of 
U B from i" k 

Fig. 5.2 

1 1 1 

2 1 2 

3 1 3 

4 1 4 

5 2 1 

6 2 2 

7 2 3 

Zi'k 

YII + YI2 + Y13 + YI4 

5 

YII + Y12 + Y13 + YI4 

5 

YII + YI2 + YI3 + YI4 

5 

YII + YI2 + Y13 + YI4 

5 

Y21 + Y22 + Y23 
3 

Y2I + Y7 2 + Y23 

3 

Y2I + Y22 + Y23 
3 

YII + YI2 + Y13 + YI4 
ZI 5 

Z2 2x YI I + YI2 + Y13 + YI4 
5 

2x YII + YI2 + Y13 + YI4 
5 

+ Y2I + Y22 + Y23 
3 

Selecting unit j= 1 and unit j=2, the estimator yB is then 
written 

yB =~(YII + YI2 + YI3 + YI4 )+~(YII + YI2 + YI3 + YI4). 
Jr l 5 Jr2 5 

Selecting this sample with a simple random sample of rnA = 2 

units chosen among M A = 4 , we have 

yB = 6X(YII + Y12; Y13 + YI4). 
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Furthermore, assuming that we measure the value Yik = 1 , 

fB = MB = 6(4/5) = 2415 = 4.8. The variance of MB is given by 

Finally, suppose that we combine the two clusters from the 
previous table to form a single cluster. We can then calculate the new 

values of Zj' 

Units of 
UB from 

.", 

1 k Zi"k 

Fig. 5.2 

I I I 
I:=IYlk 

8 

2 1 2 
I:=IYlk 

8 

3 1 3 
I:=IYlk 

8 

4 1 4 
I:=IYlk 

8 

5 1 5 
I:=IYlk 

8 

6 1 6 
I:=I Y1k 

8 

7 1 7 
I:=I Ylk 

8 

Selecting unitsj=l andj=2, the estimator fB is then written 

Selecting this sample with a simple random sample of rnA = 2 

units chosen among M A = 4 , we have 

y" ~5X[L;~Y") 

95 
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Finally, supposing moreover that we measure the value 

Yik == I, yB == MB == 5(7/4) == 8.75. The variance of MB is given by 

In addition to the considerations of precision of the estimates, 
there are operational reasons that themselves encourage us to not form 
large clusters. The first reason is the difficulty of creating the list of 
links for the selected clusters. As we can see in steps 2 and 3 of the 
GWSM given in Chapter 2, the use ofthe GWSM requires us to know 
the total number of links L~ for each unit k of the clusters i for OB . 

This is necessary to get the total number of links L~ = I;~~L~ for 

each cluster i of OB. If the cluster is large, this quantity can be 
difficult, indeed even impossible, to establish in practice. In the case 
where the two populations V A and V B are lists where we know all 

the links lj.;k between units} of V A and units ik of VB, this does not 

pose a problem. In the case of social surveys, however, the 
compositions of the households are often established during the 
interviews themselves. If the clusters are no longer the households but 
rather a much larger entity (the neighbourhood, for example), it will 
then be much more difficult to establish the number of links for the 
clusters of OB . Ardilly and Le Blanc (1999) as well as Ardilly and Le 
Blanc (2001) noted this problem during the use of the GWSM for the 
weighting of a survey of homeless people. Section 8.7 will deal with 
the problem of links identification. 

The second operational reason to not form large clusters is 
related to the instability of collection costs. Recall that following the 
selection of units} from SA, we identify the units ik of VB that have a 
non-zero link with these units}, and we finally go and survey all units 
of the clusters i containing the identified units ik. Therefore, the 
selection of each unit} from V A leads to the surveying of an entire 
cluster. If this cluster is large, we will then have an imposing 
collection cost associated with each cluster. In the case where the links 
between VA and VB are one-to-one or many-to-one, the rnA units of 

SA will be linked to at most rnA clusters of VB. We can then control 
the maximum collection cost. In the case where certain links are one­
to-many, there will be a large instability in the collection costs. 
Indeed, by selecting one unit} linked to a single cluster, we will have 
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the collection costs of this single cluster. On the other hand, by 
selecting one unit j linked to two clusters, we will then double the 
collection costs, and so on if unit j is linked to more clusters. We 
easily see that if the clusters are small, these variations in collection 
costs can be negligible. In the opposite, if the clusters are large, they 
can cause enormous budgetary problems. 

The instability of collection costs can also be the result of a 
large disparity between the sizes of clusters. By allowing for the 
creation of large clusters, we at the same time allow a much larger 
variability between cluster sizes. For example, in social surveys, by 
extending the clusters to the neighbourhood level instead of the 
household, these new clusters will be of variable size if the 
neighbourhoods are not all of the same size. The variability in the size 
of the neighbourhoods is generally much larger than that of the 
households, as neighbourhoods can contain between hundreds or even 
several thousands of people, whereas households contain, most often, 
between one to five people. If the selection of different units j from 

U A leads to the surveying of clusters of very variable size, it will then 
be very difficult to control the collection costs. To better control these 
costs, it will thus be worthwhile to form small clusters of relatively 
equal size. 

5.3 ELIMINATION OF THE NOTION OF CLUSTERS 

According to the survey process, a sample SA from U A is 

selected that leads to the identification of n clusters from U B • For 

each of these clusters i, all MiB units contained in the clusters are then 

surveyed. The survey process is therefore performed in two steps. 
From Figure 2.1, we can illustrate these two steps with Figure 5.3. 

We can also see this process as having a single step. A sample 
SA from U A is selected that then leads directly to the identification of 

m B units from U B , where m B = I7~1 MiB . This way of seeing the 

process eliminates the notion of clusters used up to now. However, it 
requires extending the structure of the links in such a way that a unit j 

from U A that had a non-zero link with a unit k of a cluster i from U B 

now has non-zero links with all units k of this cluster i. 
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j k 

IL------r0 } 

2 

Figure 5.3: Survey process seen in two steps 

One way of extending the structure of the links for the clusters 
is to define a new indicator variable l;,ik to identify the links between 

units} of U A and units ik of U B • We then define t ·k = 1 for each unit 
1,1 

k E Ui
B if lj,ik = 1 for at least one unit k E Ui

B , and 0 otherwise. In 

other words, l;,ik = 1- TI7=': (I-Ij,ik) . From Figure 2.1 (or Figure 5.3), 

we then get Figure 5.4. Note that a similar structure of links will be 
used in section 6.5 in the context of longitudinal surveys. 

By applying steps 1 to 4 of the GWSM, we can obtain the 

estimation weight Wi: by replacing the indicator variable Ij,ik with the 

new variable l;,ik' However, note that the resulting estimation weight 

Wi: is different from the estimation weight Wik obtained by the 

GWSM with the indicator variable Ij,ik' This can be illustrated by the 

small example that we present in the two Figures 5.5. 
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j ['*'k J,I k 

Figure 5.4: Example of extending the structure of links 

99 

Let the populations VA and VB be represented in Figure 5.5a. 

The population VB only has a single cluster of size 2. 
~------- ._----.. __ . 

j [. 'k J,I k 

i=l 

Figure 5.5a: Example of population with links li.ik 
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A sample SA from U A is selected according to a certain 

sampling design. Assume that ;rA >0 represents the selection 
j 

probability ofunitj. Following steps 1 to 4 of the GWSM, we get for 
each unit ik of the target population U B the estimation weight W ik • 

Unit ik 

I I 

I 2 

2 tl I t2 
--+--
3 7[IA 3 7[: 

2 tl I t2 
--+--
3 7[IA 37[: 

By extending the structure of the links in such a way that a unit 

j from U A that had a non-zero link with a unit k of a cluster i from 

U B now has non-zero links with all units k of this cluster i, we get 
Figure S.Sb. 

---"------------~ 

j k 

Figure 5.5b: Example of population with links 1* k' 
J, 

Since the notion of the cluster is eliminated, it is practical to 
replace the subscripts of units ik from U B by the subscript k' where 

k' = k + I;~I Mi? . This new subscript no longer uses the subscript i 
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linked to the clusters. By using the new indicator variable l;.k' (or l;,ik) 

in steps I to 4 of the GWSM, we get the following estimation weights 

Unit k' 

2 

It is possible to construct the estimation weights after 
eliminating the notion of the cluster so that they are the same as before 
the elimination. To do this, we use the weighted links described in 

section 4.5. Starting with (2.5), it is sufficient to set (j I'k = L / LB 
I, .1,1 I 

for all units k from the clusters i of U B • Note that this definition of the 

constants (}j,ik must be taken before extending the links. We proceed 

subsequently by extending the links in such a way that a unit j from 

U A that had a non-zero link with a unit k of a cluster i from U B now 
has non-zero links with all units k of this cluster i. Again, starting 
from Figure 2.1, we get Figure 5.4. We then replace the subscripts of 

units ik from U B by the subscript k'. We then have a value (j k' for 
.I, 

each unit k' of the target population U B (without the notion of the 
cluster). 

Following steps 1 to 3 of the weighted version of the GWSM 
given in section 4.5, we get the following estimation weight: 

MA t e ,,~ , 
wk ' = ~(}j,k'~ 

j=i 7rj 

Ivt A L ~ t " _ ~ .I .1,1 

- j=i 7r1 L~ 

(5.31) 

for k' E Ui
B , the old cluster i. 
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By comparing (5.31) and (2.5), we see that the estimation 

weight w:, of unit k' from the population U B without clusters is the 

same as the estimation weight W ik of unit k from cluster i obtained 

from the population U B with clusters. We can illustrate this result by 
again using the small example from Figure 5.5. For the units} from 

U A and k' from U B of Figure 5.5b, we first of all get the following 

values of ()j,k' : 

Unitj of U A Unit k' of U B 
~ 

() k' J, 

1 2 
-
3 

1 2 2 
-
3 

1 1 
-
3 

2 2 1 
-

3 

From (5.31), we then get the following estimation weights: 

Unit k' 

2 

The weights W:. are quite comparable to those obtained by the 

GWSM with the notion of the cluster. 

As seen, it is possible to eliminate the notion of the cluster for 
the GWSM. To do this, it is at first sufficient to extend the links in 
such a way that a unit} from U A that had a non-zero link with a unit k 

of a cluster i from U B now has non-zero links with all units k of this 
cluster i. Secondly, to get the same estimation weights as the GWSM 
with the clusters, the weighted version of the GWSM is used by 

setting (j 'k = L / LB . 
J,I J,I I 
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Although it can be interesting to eliminate the notion of the 
cluster for the GWSM, it is more natural to work with the clusters. 
Indeed, as mentioned in section 5.2, the clusters are most of the time 
formed in a natural manner. In social surveys, they generally 
correspond to households, whereas in economic surveys they often 
correspond to enterprises. Eliminating the notion of the cluster also 
contradicts the recommended survey process that is the one which 

surveys all units of the clusters identified by the units j of SA. Recall 
that this allows for savings in collection costs and allows us to 
produce estimates at the cluster level. 

The extension of the links also goes against the nature of the 
problems treated. The links represent a certain connection between the 

two populations U A and U B • The fact that units from the target 

population U B do not have a link with the population U A often refers 
to a natural process. For example, at the level of longitudinal surveys, 
individuals that belong to a household (or cluster) from population 

U B and that do not have a link with U A are either immigrants within 
the population or newborns. We will further discuss in detail this 
problem in Chapter 6. At the level of economic surveys, if we refer to 
Figure 1.3, the establishments unlinked to enterprises (or clusters) are 
establishments absent from the sampling frame. The extension of the 
links to the set of units from the clusters contributes toward hiding this 
aspect of the problem. It is worth noting that the extension of the links 
is, anyway, performed during the application of the GWSM, but this is 
done in an implicit manner. 

Finally, the elimination of the notion of the cluster remains 

artificial since we must obtain the constants B/A to apply the 

weighted version of the GWSM. Recall that the constants B·k depend 
J,I 

on the number L . of links between cluster i from U B and unit j from 
J ,1 

uA , as well as the number L~ of links for cluster i from U B . As a 

result, we cannot completely eliminate the notion of the cluster. 
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APPLICATION IN LONGITUDINAL SURVEYS 

Longitudinal surveys, i.e., surveys that follow units over time, are 
steadily gaining importance within statistical agencies. Statistics Canada 
currently has three major longitudinal surveys of individuals: the 
National Population Health Survey, the National Longitudinal Survey of 
Children, and the Survey of Labour and Income Dynamics (SLID). 

The primary objective of these surveys is to obtain longitudinal 
data. One of the uses of these data is to study the changes in variables 
over time (for example, longitudinal data may be used to analyse the 
chronic aspect of poverty). 

A secondary objective is the production of cross-sectional 
estimates, in other words, estimates that represent the population at a 
given point in time. Although these estimates are far less important than 
the longitudinal data, to many users they are an essential aspect of the 
survey. Obtaining a representative cross-sectional view of the current 
population can be found to be useful for measuring the evolution of the 
population over time. The longitudinal aspect of the survey also 
improves the accuracy of the measurement of change. 

We propose to apply the GWSM to longitudinal surveys and, in 
particular, to SLID. In the context oflongitudinal surveys, the sampling 

frame U A can be associated to the initial population (wave I), while the 

target population U B is the population a few years later (which will be 
called wave 2). 

The GWSM is used here so that longitudinal samples can be used 
for cross-section estimation. The difficulty arises from the fact that, 
although the longitudinal sample remains constant, the distribution of the 
population (individuals and households) changes over time. At the 
individual level, these changes are produced by such events as births and 
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deaths, immigration and emigration, and moves from one place to 
another. Obviously, the birth or death of an individual also changes 
household composition. Events such as marriage, divorce, separation, 
departure of a child and cohabitation are all factors that affect the 
population distribution within the household. Ifwe are to obtain accurate 
and unbiased cross-sectional estimates based on a longitudinal sample, 
we need an estimation method that takes these changes into account. 

As seen in Chapter 3, the fair share method and the weight share 
method (the precursor to the GWSM) were already used in the context of 
longitudinal surveys. This was described by Huang (1984), Judkins et al. 
(1984), Ernst, Hubble and Judkins (1984), and Ernst (1989). 

The use ofthe GWSM instead of these methods, however, allows 
us to establish a more general theory, which leads to, among others, a 
simple variance calculation for the estimates (Lavallee, 1995). Deville 
(1998a) also discussed the GWSM in the context oflongitudinal surveys. 

Note that other methods, different from the weight share method 
and the GWSM, were studied to perform the weighting oflongitudinal 
surveys and, in particular, for SLID. Lavallee and Hunter (1993) as well 
as Gailly and Lavallee (1993) considered the use of a composite (or 
combined) estimator where the sampled units are weighted differently 
depending on whether or not they are part of the longitudinal sample. 
Their research showed that the GWSM produces estimates with 
variances equal to those of the composite estimator, but the GWSM has 
the advantage of producing unbiased estimates. 

6.1 SAMPLING DESIGN OF SLID 

In January 1994, SLID was launched by Statistics Canada. Its aim 
is to observe individual activity in the labour market over time and 
changes in individual income and family circumstances. SLID first and 
foremost provides longitudinal data. However, cross-sectional estimates 
are also produced. 

The target population of SLID is all persons, with no distinction 
as to age, who live in the provinces of Canada. For operational reasons, 
the Territories, institutions, Indian reserves, and military camps are 
excluded. For more details, see Lavallee (1993), Lavigne and Michaud 
(1998), as well as Levesque and Franklin (2000). 
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6.1.1 Initial sample 

The SLID longitudinal sample was drawn in January 1993. 
Although selected in January 1993, the survey formally began in January 
1994; the January 1993 survey in fact served in obtaining preliminary 
data on the longitudinal individuals. This first panel of longitudinal 
individuals was surveyed for a period of six years, in addition to the 
preliminary interview. Thus, this panel selected in January 1993 was 
surveyed from 1994 to 1999. Note that a second panel of the same type 
was selected in January 1996 and was surveyed from 1997 to 2002. At 
the end of the first panel, a third panel selected in January 1999 was set 
up in order to replace the first one. This use of "superimposed" panels 
allows for different longitudinal samples starting in different years to be 
obtained. The panel rotation design is illustrated in Table 6.1, taken from 
Lavigne and Michaud (1998). For the current discussion, we will limit 
ourselves to the first panel selected in January 1993. 

Table 6.1: Panel rotation in SLID 

Years 
Panel 

93 94 95 96 97 98 99 00 01 02 03 04 05 06 

1 p I r I I I I 

2 P I I 1 I I I 

3 P [ [ [ [ I I 

4 P I r I I 

P: Preliminary interviews I: Interview on labour and income 

The initial sample (or first panel) of SLID comes from two groups 
rotating out of the Canadian Labour Force Survey (LFS), making the 
sample a subsample of the LFS. The longitudinal sample for SLID is 
made up of close to 15,000 households. A household is defined as any 
person or group of persons living in a dwelling. It may consist of one 
person living alone, a group of people who are not related but who share 
the same dwelling, or the members of a family. 

LFS is a periodic survey designed to produce monthly estimates 
of employment, self-employment and unemployment. This survey uses a 
stratified multi-stage sampling design that uses an area frame in which 
dwellings are the final sampling units. All the individuals who are 
members of households that occupy the selected dwellings make up the 
LFS sample. In other words, LFS draws a sample of dwellings and all 
individuals in the households that live in the selected dwellings are 
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surveyed. A six-group rotation design is used to construct the sample: 
every month, one group that has been in the sample for six months is 
rotated out. Each rotation group contains approximately 10,000 
households, or approximately 20,000 individuals 16 years of age or 
older. For further details on the LFS sample design, see Singh et al. 
(1990) and Dufour et al. (1998). 

The longitudinal sample for SLID is not updated following its 
selection in January 1993. However, to give the sample some cross­
sectional representativeness, initially-absent individuals in the population 
(i.e., individuals who were not part of the population in the year the 
longitudinal sample was selected) are considered in the sample in 
January 1994 and later. Initially-absent individuals include newborns 
(births since January 1993) and immigrants. Note that this addition to the 
sample is cross-sectional in that only the longitudinal individuals are 
permanently included in the sample. 

Table 6.2 presents the terminology developed for SLID. 

Table 6.2: SLID Terminology 

Individuals 

Longitudinal individuals: Individuals selected at wave I in the longitudinal 
sample. 

Initially-absent individuals: Individuals who were not part of the population in 
the year the longitudinal sample was selected (wave 1). It includes 
immigrants and newborns. 

Initially-present individuals: Individuals who were part of the population of 
wave I but were not selected then. 

Cohabitants: Initially-absent and initially-present individuals who join a 
longitudinal household. 

Immigrants: Individuals who, in January of wave 1, were outside the ten 
provinces of Canada and individuals who live in excluded areas (the 
Territories, institutions, Indian reserves and military bases). 

Newborns: Births since January of wave 1. 

Households 

Longitudinal households: Households containing at least one longitudinal 
individual. 
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After sample selection in January 1993 (wave 1), the population 
contains longitudinal individuals and initially-present individuals. In 
January 1994 (wave 2), for example, the population contains longitudinal 
individuals, initially-present individuals and initially-absent individuals. 
Focusing on the households containing at least one longitudinal 
individual (i.e., longitudinal households), initially-present and initially­
absent individuals who join these households are referred to as 
cohabitants. 

SLID follows individual and household characteristics over time. 
At the time of each wave of interviews, all the members of a longitudinal 
household are surveyed. The composition of the longitudinal households 
changes over time, as the result of a birth or the arrival of an immigrant 
in the household. A part of the selection of initially-absent individuals is 
based on individuals who join longitudinal households. 

6.1.2 Supplementary sample 

Restricting the selection of initially-absent individuals who join 
longitudinal households unfortunately excludes households made up of 
initially-absent individuals only (for example, families of immigrants). 
To offset this shortcoming, one possibility is to select a supplementary 
sample. For example, this sample could be one of dwellings drawn 
directly from the ongoing LFS at each wave of interviews. 
Supplementary questions can then be added to the LFS questionnaire to 
detect households that contain at least one immigrant; the households 
selected are then surveyed. 

Recalling that the supplementary sample is used for the selection 
of households made up solely of initially-absent individuals (i.e., 
immigrants and newborns), restricting this sample to immigrants does not 
pose any problem in representativeness. This is because it is highly 
unlikely that households containing only newborns would be found; each 
household normally contains at least one adult. The newborns are then 
already represented in the sample by the longitudinal households. Now, if 
the supplementary sample were to include newborns in addition to 
immigrants, significant costs would be added to the survey. This is 
because the supplementary sample would include a complete household 
for each newborn selected, producing excessive sample growth and 
unnecessary collection costs since the newborns are already represented 
in the initial sample. 

Instead of using the ongoing LFS, another different approach is to 
select the supplementary sample by revisiting the dwellings used for the 
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selection of the initial sample. This method offers some practical 
advantages (for example, it is easier to go to known addresses). This 
approach, however, brings the problem of new dwellings which were not 
there in January 1993. These dwellings have a zero probability of being 
selected in the supplementary sample, which introduces a source of bias. 
This is one reason why we favour the first approach, i.e., detecting 
households that contain at least one immigrant via the questionnaire of 
the LFS. 

Figure 6.1 summarises the longitudinal and cross-sectional 
selection of individuals. 

Wave 1 Wave 2 Wave 3 

A-t----+ -+---+ A-+--' 

-+---+ 0-+--. 

c 

-+----+- E-t--+ 

H 

-+---+ F-+----+ F-+---+ 

~ 
G------------~ 

M H 

~I 
ljJ 

Figure 6.1: Example of the selection of individuals within households 
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In Figure 6.1, the letters and houses represent individuals and 
households, respectively. Individuals A, D, E, and F are longitudinal 
individuals whom we follow over time. Individual C is an initially­
present individual, i.e., an individual who was included in the population 
in wave 1 but was not selected then. Initially-absent and initially-present 
individuals who join a longitudinal household are called cohabitants. In 
wave 2, individual H represents an initially-absent individual who joins 
the sample as a cohabitant. 

The fourth house in wave 2 represents a household selected for 
the supplementary sample of wave 2 and in which individuals I and J are 
initially-absent individuals (with one of the two being necessarily an 
immigrant since the supplementary sample is restricted to them). 
Individual G is an initially-present individual with the same status as C. 
In wave 3, individuals C and H have left their longitudinal households 
and will therefore not be surveyed. Individuals I and J who were selected 
in the supplementary sample are now replaced with the individuals of the 
supplementary sample of wave 3, i.e., individuals K and L. Individual M 
is an initially-absent individual joining a longitudinal household as a 
cohabitant. It may finally be noted that, for cross-sectional 
representativeness, a selected household may contain one or more 
longitudinal individuals, initially-present individuals and initially-absent 
individuals (newborns and immigrants). 

6.2 ESTIMATION WEIGHTS 

To produce cross-sectional estimates, the longitudinal sample 
augmented with initially-absent individuals and initially-present 
individuals must be weighted. So, we look to obtain an estimation weight 
for each individual in each surveyed household. Note that the estimation 
weight of which we speak here is that before any adjustment for non­
response and calibration (or post-stratification). It is, so to speak, the 
equivalent of the sample weight. It should be noted that the estimation 
weights here are useful solely for cross-sectional estimation. 

The estimation weights are obtained from the selection 
probabilities. As mentioned above, in January 1993 (wave 1), we select 
for SLID a sample S(I) of m(l) individuals from a population U(l) of 

M(I) individuals. The sample is selected through dwellings which 

contain households. In other words, the m(l) individuals are obtained by 

selecting n(l) households from N(I) ,each household l having a selection 

probability JrI(I) > 0, l =1 , ... , N(l). Let MI(I) be the size of household l 
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so that M(I) = I~(III M{(I) . Also let Jr~) be the selection probability of 

individual} from household 1. We have Jr,(? = Jr,(I) for all individuals} of 

household 1 . This selection probability is retained throughout all waves 
ofthe survey. In order to simplify the notation, we will omit the subscript 

1 related to the households and thus write Jr;I) . 

For a given subsequent wave (which may be defined as wave 2), 

the population V contains the M(I) individuals present at wave I, plus 

M(2) initially-absent individuals (i.e., initially absent from the 
population at wave I). The initially-absent individuals are immigrants or 
newborns. The population of initially-absent individuals is indicated by 
V(2) . Hence, the population V = V(I) U V(2) contains M = M(\) + M(2) 

individuals. Letting V*(2) be the population of M*(2) immigrants (i.e., 

excluding newborns) of wave 2, we have V*(2) ~ V(2), and also 

M*(2) S M(2) . In our notation, the asterisk (*) is used to specify that the 
newborns have been excluded. The individuals of wave 2 are contained 

in N households where household i is of size Mi' i= I, ... , N. 

For cross-sectional representativeness, some immigrants are 
selected from the supplementary sample. At wave 2, we then select a 
sample /(2) of m*(2) immigrants from the population V*(2) of M*(2) 

immigrants. The m *(2) individuals from the supplementary sample are 

obtained by selecting n *(2) households from N*(2) where N*(2) represents 

the number of households from V*(2) containing at least one immigrant. 

The selection probability of household 1 is given by Jr;(2) where we 

assume that Jr;(2) > 0 for 1= 1, ... , N*(2). Let Jr;Y) be the selection 

probability of immigrant} from household 1, for } = 1, ... ,M;(2) . To 

simplify the notation, here we will also omit the subscript 1 related to the 

household and thus write Jr;2). 

One implication of selecting immigrants through households is 
that other individuals (such as newborns, initially-present individuals or 
longitudinal individuals) can be brought in by the supplementary sample 
by living in the same household as the selected immigrants. Since the 
selection units of the supplementary sample are restricted to the 
immigrants, these other individuals are indirectly selected, even if they 
will be surveyed. The selection probabilities of these individuals are 
often difficult, if not impossible, to obtain in practice. 
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The remaining immigrants selected for cross-sectional represent­
ativeness are those individuals who join longitudinal households, who are 
then considered as cohabitants. As with the newborns and initially­
present individuals of the previous paragraph, the addition of these 
cohabitants to longitudinal households results in the inclusion of 
individuals having selection probabilities that are often difficult, if not 
impossible, to obtain in practice. 

The individuals with unknown selection probabilities have entered 
the survey process in an indirect way. They complicate the determination 
of the estimation weights, as their selection probability is unknown. In 
order to override this difficulty, the GWSM is proposed. 

6.3 USE OF THE GWSM IN OBTAINING ESTIMATION 
WEIGHTS 

The GWSM is now applied to the SLID sample, including the 

supplementary sample. The population U A is here represented by the 

union of the two distinct populations U(l) and U*(2) , i.e., 

U A = U* = U(1) U U*(2). The sample SA of mA = m(l) + m*(2) individuals 

corresponds to the union of the two distinct samples s(1) and s '(2) . The 

population U B is represented by U = U(l) U U(2). Note that the 

population U A = U* excludes the newborns while the population 

U B = U includes them. The clusters of population U B simply 

correspond to the N households of wave 2, and hence MiB = Mi . 

A linkage between population U A and U B can be established by 

the same individuals in populations U A and U B • That is, lj,ik=l if 

individual j in population U A corresponds to individual k of household i 

in population U B , and I j,ik =0 otherwise. Thus, these links form a one­

to-one relation. For each individual ik not being a newborn, we then have 

L! = I~:l j,ik = 1. On the other hand, for each newborn ik, we have 

L! = L~;l j,ik = 0 since they are excluded from U A. We now have 

L: = Lf:~L~ = M? where M? is the size of household i excluding the 

newborns. This situation can be illustrated by Figure 6.2. 
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By considering definition (2.2), the initial weight W,'k of 

individual k in household i is given by 

(6.1 ) 

where ti~) =1 ifindividualikis part of S(I) ,and 0 otherwise, and ti:(2) =1 

if individual ik is part of s *(2) , and 0 otherwise. 

'----------------------------" 

Figure 6.2: Example of links in longitudinal surveys 

This can be written more explicitly by expressing W;k as follows: 

{ 
1/ 1[i~) for ik E S(I) 

W'ik = 1/1[i:(2) for ik E s *(2) 

o otherwise. 

(6.2) 
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Note that the first line of (6.2) corresponds to the longitudinal 
individuals. The second line corresponds to the immigrants selected 
through the supplementary sample. The third line represents altogether 
newborns, cohabitants (if the household is a longitudinal household not 
part ofthe supplementary sample) and/or initially-present individuals (if 
the household is part of the supplementary sample). 

From (2.4), the final weight Wi of household i is obtained from 

Finally, the estimation weight W ik is obtained by setting W ik = Wi 

for all individuals k of household i surveyed. 

Example 6.1 

As an example, take the case illustrated by Figure 6.2. Suppose 

that unitsj=l, 2, 3 are selected from U l • Before applying the GWSM, 

we are going to re-index the units of U B from Figure 6.2 according to 

the notation used. 

Units of uB from Fig. 6.2 2 3 4 5 6 7 
-~.--,-------.-~~ ---~-----. ._.-_._-----

i 1 2 2 2 3 3 

k 2 I 2 3 2 

By selecting unitj= I, we survey all units of cluster i= 1. Likewise, by 
selecting unitj=2, we again survey the units of cluster i= 1. By selecting unit 

j=3, we survey all units of cluster i=2. Therefore, nB = {I, 2}. For each unit 

k from clusters i of nB , the initial weight W,'k ' the number of links L~ and 

the final weight Wi are calculated: 
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i k W:k L~ Wi 

A Jrll 
1 [1 1] 
"2 Jrl~ + Jrl~ 

2 A Jrl2 
1 [1 1] 
"2 Jrl~ + Jrl~ 

2 Jr;1 
- -+0+0 =--1 [ 1 ] 1 
2 Jr;1 2Jr~41 

2 2 o (because t22 = 0 ) 2Jr;1 

o (because li,23 = 0 

2 3 for all}) 0 2Jr;11 

The estimator yB given by (2,1) is finally written 

'B 1 [1 1] 1 [1 1] Y21 Y22 Y21 Y =- -A +-4 YII +- -4 +-4 YI2 +--A +--1 +-'-4 . 
2 Jrll Jrl2 2 Jrll Jrl2 2Jr21 2Jr;1 2Jr21 

Using the estimation weights obtained from the GWSM, one can 

estimate the total yB = I;~I I~u,: Yik of the characteristic Y measured at 

wave 2. The estimator used is the one given by equation (2.1). From 

Theorem 4.1, since the links are one-to-one, yB can be rewritten as 
(1) * *(2) * 

AB _ ~ Zj ~ ~_ A*(1l A*(2) 

Y - L. (I) + L. *(2) - Z + Z 
i=1 1Ci j=1 1Ci 

(6.4) 

where Z; = ~* for individual} of U A linked to household i of U B , with 

Y;* = I~: Yik / Mi* B • Thus, estimator (6.4) is the sum of two Horvitz­

Thompson estimators related to S(I) and s *(2) • As shown by Corollary 

4.1, this estimator is unbiased for yB. 
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6.4 VARIANCE ESTIMATION 

The variance formula for yB is provided by equation (4.11a), or 
(4.11 b), from Corollary 4.2. However, assuming that the two samples 

s(l) and s *(2) are selected independently, we can see that 

VarCyB) = Var(i*(I») + Var(i*(2») , where each term has the form of 

equation (4.11a), or C 4.11 b). For SLID, this assumption of independence 
holds if the selection of the supplementary sample is done through LFS. 

Considering i*(I) , we can index the individuals to reflect the fact 

that the m(l) individuals were selected at wave I through n(l) 

households. This gives 

(6.5) 

where z(l) = "M,") z* 
I L..J~I IJ 

since, by selecting complete households, 

i7'1()l =i7'?) for individuals} of household t. The variance Var(i*(l») IS 

then directly obtained as 

N(" N") «(I) (I) (I») 
V. (i'(I»)= "" i7'u' -i7'1 i7'!, Z*(I)Z'(I) ar L..L.. (I) (I) I !'. 

1~1 !'~I i7'1 i7'!, 

(6.6) 

Considering i'(2) , the individuals can also be indexed to reflect 
the fact that the m '(2) individuals were selected at wave 2 through n '(2) 

households. Following the same steps used for Var(i'(l») , Var(i'(2») is 

obtained as 
N'I') N'I') *(2) *(2) *(2) 

V. (i*(2») = " ,,(ITIl , - i7', IT!, ) Z'(2) Z'(2) 
ar L..J L..J *(2) *(2) ,,., 

,~1 "~1 IT, i7'!, 

(6.7) 

where N'(2) is the number of households of wave 2 containing at least 

one immigrant and Z;(2) = I~~~') Z;. 

Recall that the quantity M;(2) represents the number of 

immigrants present in household t. 
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Finally, Var(yB) is given by 

(6.8) 

The variance (6.8) may be unbiasedly estimated using an 
estimator derived from (4.12) or (4.13). As SLID is in fact a subsample 
ofLFS, the Jackknife variance estimator developed for LFS (see Singh et 
ai., 1990) may also be used, with minor modifications. In general, the 
Jackkn!fe method works as follows: the sample first is divided into 
random groups (or replicates, according to the LFS terminology). Then, 
the random groups c are removed in tum from the sample and a new 

estimate ~~) ofthe total yB is computed. The different estimates ~~) are 

finally compared to the original estimate yB to obtain an estimate of the 

variance Var( Y B). For further details on the Jackknife method in 

general, refer to Wolter (1985) and Samdal, Swensson and Wretman 
(1992). 

Recall that the LFS is based on a stratified multi-stage design 
which uses an area frame. Within each first-stage stratum h, the random 
groups (or replicates) correspond basically to the primary sampling units. 
To compute the Jackknife variance estimate for the estimation of the total 
yB, the following formula can be used: 

Var JACK (yB) = I (eh -1) ~>~!C) _ yB)2 (6.9) 
II ell c~l 

where eh is the number of random groups in stratum h and ~hC) is the 

estimate of yB obtained after random group c in stratum h is removed. 

For LFS, both estimators yB and ~!C) are post-stratified based on the 

integrated approach of Lemaitre and Dufour (1987). SLID also uses this 
type of post-stratification, but this is out of the scope for the present 
discussion. 

6.5 USE OF ANOTHER TYPE OF LINKS 

In the previous sections of this chapter, a link between the 
populations U A and U B was established by the individuals that are part 
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of the two populations. Hence, lj,ik = 1 if individual j from population 

U A corresponds to individual kofhousehold i from population U B ,and 
lk = 0 otherwise. This is a type of link among the many possibilities. 

j,1 

The links described in the previous paragraph can be extended to 
all other members of the household, i.e., by setting lj,ik = 1 for all 

individuals k of a household i from U B that belong to the same 

household i to which individual j (from U A) now belongs, and 0 

otherwise. In other words, li,ik = 1 if individuals j and k belong to 

household i. This is illustrated in Figure 6.3. 

'--"~~"-'------l 

UA UB I 

j k 

Figure 6.3: Example of links extended to all household members 
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From (2.4), the final weight is given by 

(6.10) 

Although the weightings obtained by the GWSM are the same, we 
preferred the type of link used in the previous sections because it 
corresponds in a more natural way to linking individuals. Indeed, for a 
longitudinal survey where individuals are followed over time, it is natural 
to consider a link limited to the individuals who are the same in the 
populations U A and U B • 



CHAPTER 7 

GWSM AND CALIBRATION 

The GWSM described in the previous chapters does not use 
auxiliary information to obtain estimation weights. It can be imagined, 
however, that the use of auxiliary variables can improve the precision 
of estimates coming from the GWSM. For example, auxiliary 

information could come from the population U A from which the 

sample is selected, from the target population Us, or both of the 
populations. In this chapter, we are going to show that it is possible to 
associate the calibration of Deville and Samdal (1992) to the GWSM. 
In fact, it corrects the estimation weights from the GWSM so that the 
estimates produced correspond to known totals associated to auxiliary 
information. We will show that it is possible in this case to use 
auxiliary information from the two populations U A and Us. We will 
develop in particular the regression estimator coming from the 
application of calibration. 

7.1 REVIEW OF CALIBRATION 

Calibration arises from a generalisation by Deville (1988), and 
then by Deville and Samdal (1992), of an idea by Lemel (1976). 
Calibration consists of adjusting survey weights in such a way that the 
estimates are calibrated on known totals. The basic principle of 
calibration is to obtain estimation weights - in fact, calibration 
weights - that are the closest possible to the survey weights while 
satisfying the constraint that the calibrated estimates must satisfy 
known totals. The distance function used to measure the distance 
between calibration weights and survey weights determines the final 
form of calibration. In fact, with a judicious choice of the distance 
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function, calibration can lead to known estimators such as the ratio 
estimator, the regression estimator or the raking ratio estimator. 

Calibration is described as follows. From a population U of 
size N, a sample s of size n is selected, where each unit k is selected 

with probability Jrk > 0 . A variable of interest Y k and a column vector 

of auxiliary variables xk of dimension p are measured, k = I, ... , n. It is 

assumed that the total X = I~V=1 xk is known, or at least a relatively precise 

estimate of this total. 1 The total Y can be estimated with the Horvitz-
'HT 

Thompson estimator Y = I7=1 Y k / Jr k' However, the totals X are not 

necessarily respected in the sense where XHT = I7=1 Xk / Jr k 1= X. The 

problem is then to obtain calibration weights W;AL that are the closest 

possible to the survey weights d k = 1/ Jr k in such a way that the totals X 

are respected, i.e., XCAL = I7=1 W;ALXk = X . It is thus desired to minimise 

the changes made on the survey weights d k . 

Let Gk(a,b) be a distance function between a and b such that: 

(i) GJa,b)'?O; 

(ii) G k( a, b) is differentiable with respect to a; 

(iii) G J a, b) is strictly convex; 

(iv) Gk(a,b) is defined on an interval Ik(b) dependent on k and 

containing b; 

(v) Gk(a,a)=O; 

(vi) gk(a,b)=8Gk(a,b)/8a is continuous and forms a one-to-one 

relationship between 1 k (b) and its image lmk (b) . 

It then follows that gk (a, b) is strictly increasing with respect 

to a and that g k (a, a) = 0 (Deville and Samdal, 1992). 

The mathematical formulation of determining the calibration 

estimator yCAL = IZ=1 W;AL Yk is the following: 

I Deville (2000a) discussed the problem of calibration when there is no exact value 
for X, but instead an approximate value or a value estimated from another survey. 
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CAL 
DETERMINE wk , FOR k = 1, ... , n, TO MINIMISE 

II 

IGk(w;AL,dk) (7.1) 
k~1 

UNDER THE CONSTRAINT XCAL = I W;'ALXk = X. (7.2) 
k~1 

Deville and Sarndal (1992) give several examples of distance 
functions. In this chapter, we will restrict ourselves to the Euclidean 

• CAL CAL 2 dlstanceGk(wk ,dk)=(Wk ~dk) /dk • 

After having minimised the distance (7.1) under the constraint 
(7.2), the calibration estimator is obtained as 

(7.3) 

where W;AL =dkFk(X~A) is the calibration weight. Note that Fk(X~A) 

corresponds to the g-weight from Sarndal, Swensson and 
Wretman (1992). 

In the preceding formula, the function dkF /) is the reciprocal 

of gJ . ,dk) that goes from Imk(dk ) to Ik(dk)· 

The value of the vector A of dimension p is the solution of the 

equation X = I;~I dkFk (X~A)Xk' Note that A is the Lagrange 

multiplier entering the minimisation of (7.1 ). 

To calculate the calibration weights W;AL, Sautory (1991) and 

Le Guennec and Sautory (2004) developed a software program called 
CALMAR, which stands for Calage sur marges (or Calibration to 
Margins). This program produces calibration weights for the different 
distance functions listed by Deville and Sarndal (1992). CALMAR is 
used in most of the surveys at the Institut National de la Statistique et 
des Etudes Economiques (lNSEE) in France such as the Modes de vie 
(lifestyles) survey and the Budgets de famille (family budgets) survey. 
For more details, see Sautory (1992). 

One can take as an example the case where the distance 
function is the Euclidean distance GJW;AL,dk)=(W;'AL~dk)2 /dk • 

With this distance function, the generalised regression estimator 'fREG 

from Cassel, Sarndal and Wretman (1976) is obtained. Indeed, here 
we obtain 
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(7.4) 

and 

CAL REG d (1 T~) wk = wk = k + x k '" (7.5) 

with A = O=~~I dkXkX~f (X - X). For a given square matrix A, the 

matrix A-is the generalised inverse of A. Recall that the generalised 

inverse of A is any matrix A-satisfying AA -A = A (Searle, 1971). If 

the matrix A is non-singular, then A-is unique and furthermore 

A - = A -I, the inverse of A. The calibration estimator, with the 
Euclidean distance, thus has the form 

n 

yeAL = L W~'AL Yk = yHT + (X - XHT)T P = yREG , (7.6) 
k~1 

where p = (I;~I dkXkX~ f IZ~I dkxkYk . 

The asymptotic bias and the asymptotic variance of the 
calibration estimator (7.3) can be calculated. This requires first to 
establish an asymptotic framework. The asymptotic framework used 
by Deville and Samdal (1992) is essentially the same as that of Fuller 
and Isaki (1981), as well as Isaki and Fuller (1982). We consider a 
sequence of finite populations and survey designs indicated by n, the 
sample size. 

The size N of the finite population approaches infinity with n, 
and we assume that for every vector x of variables, we have: 

(i) lim N- I X exists; 

(ii) N-I (XHT - X) ~ 0 III probability, with respect to the 

sampling design; 

(iii) nY, N- I (XHT - X) follows a multinorrnal N(O,~) distribution; 

(iv) 

(v) 

Deville and Samdal (1992) proved that for all Fk (-) satisfying 

the previous conditions, the calibration estimator yeAL given by (7.3) 

is asymptotically equivalent to the estimator yREG given by (7.6) in 

the sense where N-I(yCAL - yREG) = 0p(n- I ). 
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This is equivalent to writing that for all & > 0 , there exists a 

whole number n such that Pen I N-1 (i~CAL - yREe) I < &) = 1 . Recall that 

N, yeAL , and yREe all depend on n. It is said that nN-1 (yCAL _ yREe) 

converges toward 0 in probability. 

Having given that the estimators yCAL and yREe are 
asymptotically equivalent, the asymptotic bias and the asymptotic 

variance of yCAL are the same as those for yREe. The estimator yREe 
can be proven to be asymptotically unbiased (Samdal, Swensson and 
Wretman, 1992). Furthermore, the asymptotic variance of the 

estimator yREe, and therefore of yCAL , is given by 

T7 (y'CAL)~ff("kk'-"k"k') 
rar - ~~ ekek" 

k~l k'~l "k"k' 

(7.7) 

where ek = Yk - xrp is the regression residual, and where the 

regression coefficient P satisfies (I~~l xkxr) P = I~~l XkYk' For a 

proof of obtaining the variance (7.7), see Samdal, Swensson and 
Wretman (1992). 

To estimate the variance (7.7), and thus to obtain a variance 

estimator for yCAL , Deville and Samdal (1992) suggest to use 

The variance of yeAL can also be estimated by using the 
Jackknife method. In the case where the sample s was selected using a 
multi-stage design with the first stage divided into strata h, a variance 
estimator can be used that is comparable to the Jackknife estimator 
(6.9) described in section 6.4. This estimator is here given by 

C V. JACK (yCAL) = " (Ch -1) ~ (}TeAL _ yCAL)2 
ar ~ C ~ (he) , 

h h e~l 

(7.9) 
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where C h represents the number of random groups from stratum h 

and ~~:)L represents the estimate of Yobtained after the elimination of 

random group c in stratum h. 

From the CALMAR software program, Bernier and Lavallee 
(1994) created the CALlA CK software which, in addition to 
calculating calibration weights, performs the calculation of estimates 
of totals and ratios, and obtains an estimate of their variance. As the 
name of the software suggests, CALJACK carries out the variance 
estimates using the Jackknife method. CALJACK is used notably for 
the production of estimates in SLID (Lavallee, 1995). 

Deville (1998b) developed a generalised theory for calibration. 
The basic idea is to generalise the function Fk (.) input into the 

calibration estimator yCAL given by (7.3). For each unit k of the 

population, a calibration function ~ is associated that goes from iR P 

toward iR. 

The function Fk is such that: 

(i) Fk(O) = 1; 

(ii) ~ is regular. 

From this function, calibration equations similar to (7.2) can be 
solved that here take the form: 

Id/i'k('A)xk = X. (7.10) 

As in the formulation given by (7.1) and (7.2), we obtain 

'A = (L~~l dk 'V kXrr(X - X"T) + O( Ilx -xm112), (7.11) 

where 'V k = grad ~ (0) is a column vector of dimension p. The 

generalised calibration estimator yCALG is then given by 

(7.12) 

The function Fk eliminates, in a way, the explicit expression of 

the distance function Gk in the formulation (7.1). It thus allows a 

generalisation of the distance function Gk and, consequently, of 

calibration. The simplest particular case is the linear case where we 
simply take 
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(7.13) 

Deville (1998b) give the variable 'V k the name instrumental 

variable. From (7.13), by solving the calibration equations given by 
(7.1 0), the following generalised calibration estimator is then 
obtained: 

yCALG =yHT +(X_XHT)TC"'11 d'V xT)_",n d'V Y 
L..ko\ k k k L..k~\ k k k 

Note that p is the solution of 

I:~\dk'Vk(Yk -x~P)=O. 

(7.14) 

(7.15) 

The generalised calibration weight W;ALG associated with each 

unit k of sample s is then given by: 

W;ALG = dk + dk 'V~ A 
(7.16) 

T ('" 11 d T - A HT) =dk +dk'Vk L..k~\ k'VkXk) (X-X . 

Deville (1998b) mentioned that the asymptotic variance of the 

generalised calibration estimator yCALG given by (7.12) is the same as 
the one obtained in the linear case (7.13). Thus, the asymptotic 

variance of the estimator yCALG is given by 

(7.17) 

where ~ = Yk - x~ P is the regression residual and the regression 

coefficient P satisfies (I~~\ 'V k x~) P = I~~\ 'V k Y k' It is important to 

note that the variance (7.17) depends on the instrumental variable 'V k • 

Hence, two generalised calibration estimators that use different 
instrumental variables are not asymptotically equivalent. To estimate 
the variance (7.17), we can use 

(7.18) 

where ~CALG = Yk - x~ pCALG with the regression coefficient pCALG 

satisfying 
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Another description of generalised calibration theory is found 
in Deville (2000b). 

7.2 GWSM WITH CALIBRATION 

As mentioned in the introduction, we can have auxiliary 

variables relating to the population U A contained in a column vector 

xJ of dimension pA for j E U A . Assume that the total XA = I~~ x1 is 

known. We then want the estimates obtained from the auxiliary 

variables xJ to be equal to the known total X A • 

In the same way, we can also have a vector of auxiliary 

variables relating to the target population U B • These variables are 

contained in a column vector x~ of dimension pB for ik E U B . 

Assume that the total XB = I;~lI~~~ x~ is known. We also want the 

estimates obtained from the x~ to be equal to the known total X B • 

It is important to mention that it is not necessary to know the 

values of x: and x~ for each j E U A and each ik E U B , but only for 

the units of U A and U B that were selected in the sample SA or 

surveyed in the target population U B • 

The calibration constraints associated with the GWSM can be 
expressed here in the following way: 

AND 
n lv/jR 

XCAL,B = IIwi~AL,BX~ = X B , 

i~l k~l 

(7.19) 

(7.20) 

where WCAL,A is the calibration weight obtained from the sampling 
J 

weights df = 1/ ref. The weight Wi~AL,B is the calibration weight of 

unit k from the surveyed cluster i where the GWSM was applied. This 
weight can be obtained by using Theorem 4.1. First of all, from (2.1), 
we have 
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(7.21) 

Let - XB IrB h XB - '\'Mf B!' 11 k UB F Yik - i I~ i were i - L..k~IXik lor a E i' rom 

Theorem 4.1, we can then write 
,I .\' Mil A A Mt" M t m 

xB= L~ LL1J,ikYik = L~ri= Ld1ri' (7.22) 
j~J 7[j i~1 k~l i~l 7[j j~1 

Note that Deville (1998a) obtained a similar result using matrix 

notation. Since the estimator XB can also be written as a function of 

the units j E SA , constraint (7.20) can be rewritten under the form 
mA 

XCAL,B = "W.CAL.Ar . = XB , 
~ J J 

(7.23) 
j~1 

The two constraints (7.19) and (7,23) are now expressed as a 
~unctl'on f th 't ' A L t T,AB -_ ( T,A rT) and 11 0 e um s } E s, e Xj x j ' j 

XT,AB = (XT,A ,XT,B) be column vectors of dimension pAB = pA + pB , 

From (7,19) and (7.23), a unique constraint can then be obtained: 

(7.24) 

Recall now that with the GWSM, an estimator of the form (2.1) 
is developed where the weight W ik of each unit k from cluster i is 

given by equation (2.4). By Theorem 4.1, this estimator can be 
rewritten as a function of units j sampled from U A , i.e., 

yB = I i~; tiZ i /7[1 = I'7~1 d: Zj' The calibration estimator yCAL,B = 
A CAL A . . . 

I7~1 Wi ' Zi assocIated wIth the GWSM can finally be determmed 

from the following formulation: 

DETERMINE W~AL,A , FOR j = 1, ... , mA , IN ORDER TO MINIMISE 

(7.25) 

tn' 

UNDER THE CONSTRAINT XCAL,AB = L W~'AL,AXJB = XAB . (7.26) 
j~1 

This form proves to be very useful. Indeed, it corresponds 
exactly to the formulation of Deville and Samdal (1992) given by 

(7.1) and (7.2). Thus, the estimator yW,B can be developed to 
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estimate the total yB using auxiliary variables associated to the 

populations U A and U B • After having minimised the distance (7.25) 
under the constraint (7.26), the calibration estimator is obtained: 

(7.27) 

where W~AL.A =d:Fj(x~,ABAAB) is the calibration weight. The value of 

the vector AAB of dimension pAB is the solution of the equation 

X AB = ,\,mA dA F(XT,AB~ AB)XAB 
.L..J~I J } J A J' 

As an example, we can again consider the Euclidean distance. 
The following calibration weight is then obtained: 

(7.28) 

The calibration (or regression) estimator given by (7.6) here 
takes the form: 

n,.-l 

yREG,B = L w;EG,A Zi = yB + (XAB _ XAB)T pAB , (7.29) 
i~1 

where (7.30) 

The expreSSIOn for yB is given by (2.1) or (4.1), and 
x, AB= ,\,m,1 dAx AB 

.L..FI J J • 

To obtain the calibration weight W;;AL,B associated with each 

unit k of cluster i surveyed from the target population U B , the GWSM 

is applied by replacing 1/ ITj4 with the calibration weight W~'AL,A 

in (2.2). 

Steps of the GWSM with calibration weights 

Step 1: For each unit k of clusters i from QB, calculate the initial 

weight W:k
CAL , to know: 

m 
ICAL = "I, CAL,A 

W ik ~ /ik Wj • (7.31 ) 
j 1 
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Step 2: For each unit k of clusters i from OB , obtain the total number 
fl" k B MA o III S Lik = Lj=\ljJk . 

Step 3: Calculate the final weight WiCAI.B: 

(7.32) 

Step 4: FinaIIy, we set W~AL.B = W~·AL.B for all k E VB. 

Following steps I to 4, it is concluded that 

mA L 
CAL.B _" .CAL.A jJ 

W ik - L... Wj -S' 

j=\ Li 
(7.33) 

The estimator rCAL •S = 2:7='1 W~AL.A Zj determined from (7.25) 

and (7.26) can thus be rewritten under the form: 

(7.34) 

It is important to note that the GWSM is applied here after 
calibration has been performed. It will be shown in section 7.4.2 that it 
is possible to first apply the GWSM, and then perform calibration, in 
the case where auxiliary information only comes from the population 

U B • 

By following the proof of Theorem 4.1, it can be verified here 

th t X~ L'AL.B "n "Mi" CAL.B B XB I d d./.' 11 . Th 4 1 a = L..i=1 L..k=1 W ik X ik = . n ee , to owmg eorem., 

expression (7.35) is obtained. 

(7.35) 

Because with the calibration weight W CAL .A , the constraint 
J 

(7.26) is satisfied and X~,AB =(x~,A,r~) and XT,AB = (XT,A,XT,B), we 

directly get 

(7.36) 
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As the estimator yCAL,B is obtained by the formulations (7.25) 
and (7.26) that correspond exactly to the formulation from Deville and 
Samdal (1992), the asymptotic bias and the asymptotic variance of 
~CAL B ' G B Y , are then the same as those for yRE .. For these asymptotic 

properties, we consider here a sequence of finite populations u A and 
sampling designs indexed by the sample size rnA. The size MA of 
finite population uA approaches infinity with rnA. 

The estimator yREG,B given by (7.29) is nothing more than the 

estimator yREG given by (7.6) where the variable Yk is replaced by 

the variable Z,. Thus, the estimator YCAL.B is asymptotically 
J 

unbiased. Furthermore, the asymptotic variance of the estimator 
fCAL,B is given by 

\1' \1 A (' A A A) 
IT (y'CAL,B)::::~" lrj/ -lrjlr/ A A 
r ar - L. L. A A ei ej' , 

j~l j'~l lrj lr/ 
(7.37) 

where eA = Z, - XT,AB~AB is the regression residual and where the 
J J J 

. ffi' RAB . fi ("M 4 AB T 4B)RAB ,,11" AB regressIOn coe lClent p satJs les L.j~l x j x/ p = L.~~l Xj Zj . 

To estimate the variance (7.37), we can follow the suggestion from 
Deville and Samdal (1992) and use 

1 ,I (4 4 A) 
T7 (y'CAL,B) = ~~ lrjj' -1[;1[/ CAL,A'CAL,A CAL.A'CAL.A (738) 
rar L.L. A Wj ei wj' ej' , . 

i~l j'~l lrJj' 

where e~AL,A = Zj - X~,ABpCAL.AB with the regression coefficient pCAL,AB 

t · [y' g ("m 4 CAL,A AB T.AB)i!.CAL,AB = "mA CAL.A ABz sa IS III L.j~l Wi Xj Xj P L/~l Wi Xj j' 

The variance of yCAL,B can also be estimated by using the 
Jackknife method with an estimator similar to (7.9). 

7.3 PARTICULAR CASE 1: 
AUXILIARY VARIABLES COMING FROM U A 

In the previous section, calibration was associated to the 
GWSM by developing the general case where auxiliary information 
comes from the population VA from which the sample is selected, the 

target population VB, or both of the populations. From the developed 
theory, the results are here derived for the particular case where 
auxiliary information comes from VA only. 
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We have auxiliary variables relating to the population U A and 

contained in a column vector x; of dimension pA for j E U A • Assume 

that the total XA = I~; x; IS known. The calibration estimator 

yCAL,S = I7~1 W~AL,AZJ associated with the GWSM when there are 

auxiliary variables x; can be expressed in the following way: 

DETERMINE W~'AL,A , FOR j = 1, ... , rnA , IN ORDER TO MINIMISE 

nrc! 

LG;Cw~AL,A ,dn (7.39) 
i~l 

mA 

UNDER THE CONSTRAINT XCA1,A = '" WCAL,AXA = X A . L.. J J 
(7.40) 

j~l 

After having minimised the distance (7.39) under the constraint 
(7.40), the calibration estimator is obtained: 

yeAL,S = ~W.CAL.AZ. = ~ dAY(XT,AJ,.A)Z, 
L..! JL..JJJ J 

(7.41) 
i~l i~l 

where W~AL,A =d:Fj(x~,AJ,.A) is the calibration weight. The value of 

the vector J,. A of dimension pA IS the solution of 

XA ='J mA dAY(XT,AJ,.A)X A . 
~Fl J J J J 

As an example, we can again consider the Euclidean distance. 
The calibration (or regression) estimator given by (7.29) and (7.30) 
here takes the form: 

yREG,B = ~WREG'AZ = yH +(XA _XA)TpA 
L.. J J 

(7.42) 

where (7.43) 

The expression for yB is given by (2.1) or even (4.1), and 
X~ A "mA d A A = L..j~l j Xj . 

To obtain the calibration weight W~AL,S associated to each unit 

k of cluster i surveyed from the target population U B , the GWSM is 

applied by replacing 1/ ffJ
A with the calibration weight W~AL,A in (2.2). 

Thus, steps 1 to 4 are performed as described in section 7.2. 
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In practice, the auxiliary information of U A often comes down 
to qualitative variables that were not used in the stratification, or else 
quantitative variables on which we wish to calibrate the estimates. 

Note that the theory presented is general and thus the auxiliary 
variables can be qualitative, quantitative, or a mix of the two. Take the 
example of selecting parents to survey their children (Figure 1.2). 
Suppose that the selection of parents was carried out from an area 
sampling frame. It can then prove useful to calibrate the weight of the 
parents on the age-sex categories (qualitative variables), and also on 
the income of the persons (quantitative variable). Note that 
stratification by age-sex groups is notably used by the LFS (Singh et 
al., 1990, and Dufour et al., 1998). 

It is important to remember that the choice of calibration 

variables is linked to the availability of the totals X A == L/~; xJ . Going 

back to the previous example, it is clear that it is pointless to consider 
using income as the calibration variable if the total income or a 
relatively precise estimate of it is not known. 

In some cases, it turns out to be useful to choose, as auxiliary 

variables coming from U A , the stratification variables used for the 

selection of sample SA. This is particularly the case for sampling 
designs with random sample sizes such as Poisson sampling. With this 
type of sampling where the final sample size m A is random, it is 

generally noticed that I 7~1 d/ -::f- M Ii. If a Horvitz-Thompson 

estimator is used to produce estimates, as is the case with the GWSM 
without calibration, the estimates produced then have very large 
variances (Sarndal, Swensson and Wretman, 1992). To correct this 
problem, it is strongly advised to perform calibration using the 
stratification variables as auxiliary variables. For more details, see 
Lavallee (1998b). 

A choice of an auxiliary variable that can prove to be very 
efficient for improving the precision of the estimates drawn from the 

GWSM is the number of links L1. Indeed in section 5.2, it was noted, 

in the extreme case where the population U B only has a single cluster, 

that the variance of yB is non-zero, though the population U B then 
undergoes a census. This observation was also made in section 4.4. 
Part of the variance in fact comes from the complex links. By setting 

xJ == L~ for j E U Ii , this variance is reduced to zero by calibrating the 
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estimator yB on the total number of links L. It is assumed here, of 
course, that the total number of links L is known or, if not, that we 
have a good estimate of L. 

We can take, for example, the regression estimator given by 

(7.42). By setting X";l = L~, the following estimator calibrated on the 

total number of links L is obtained: 

/11 4 

yREG,B = "W.REG,AZ 
L. I J 
/=1 (7.44) 

where (7.45) 

By replacing yB with (4.1) in (7.44), we then get 
, mA z. , , 

yREG,B = I --1+(L-L)r 
/=1 1[/ 

(7.46) 

Looking at the estimator given by (7.46), we see that if the 
variable of interest Z/ (derived from y) is replaced by the auxiliary 

variable L~, the resulting estimator iREc,B is equal to L. Now, 

suppose that the population U B only has a single cluster of size MB , 

which implies that Z/ = L; yB / L by (5.24). In this case, the 

estimator (7.46) is written 

(7.47) 

Thus, with a single cluster for the target population U B , the 
. y'REG B h . A . d' . 5 2 b estImator 'as a zero vanance. s notIce In sectIon ., y 

choosing only a single unit} from U A , it should have been possible to 

estimate the total yB with a zero variance due to the fact that having 
only a single cluster causes a census of the population U B. The 

variance of yB is non-zero because of the complex links that can exist 
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between populations U A and U B • Fortunately, we see that the 
estimator (7.44) obtained by calibration corrects this situation. 

7.4 PARTICULAR CASE 2: AUXILIARY VARIABLES 
COMING FROM UB 

In section 7.2, calibration was associated to the GWSM by 
developing the general case where auxiliary information comes from 

U A , U B , or both. From the theory developed, the results here are 
derived for the particular case where auxiliary information comes only 

from U B • Note that the theory developed in section 7.2 was obtained 
by performing calibration before using the GWSM to obtain the 
weights W~AL,B associated with the units k of surveyed clusters i. In 

the current section, weights W~AL,B will also be obtained that are 

calculated by performing calibration after the use of the GWSM. 
These two sets of weights will then be compared in order to determine 
which of the two is preferable. 

We have auxiliary variables relating to the target 

population U B • These variables are contained in a column vector x! 

of dimension pB for ik E U B . Assume that the total 

XB = L;~l L~~ x~ is known, or at least that there is a relatively precise 

estimate of this total. 

7.4.1 Application of calibration before GWSM 

The calibration constraint associated with the GWSM is 
formulated here by (7.20). This constraint was seen to be equivalent to 
that given by (7.23) expressed as a function of units j E SA. The 

calibration estimator yCAL,B = "m' WCAL,AZ. associated with the 
L..J~1 J J 

GWSM is determined from the following formulation: 

DETERMINE W~AL,A , FOR j = 1, ... , rnA , IN ORDER TO MINIMISE 

(7.48) 

mA 

UNDER THE CONSTRAINT XCAL,B = I w~AL,Ari = XB . (7.49) 
i~l 
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After having minimised the distance (7.48) under the constraint 
(7.49), the calibration estimator is obtained by (7.50). 

(7.50) 

where W7AL.A = d1 Fj (r~ A B) is the calibration weight. The value of the 

vector AB of dimension pB IS the solution of XB = 
Irn~ldAF(rTAB)r • 

J- J J J J 

As an example, consider the Euclidean distance. The 
calibration (or regression) estimator given by (7.29) is here: 

rnA 

YREG.B = " W.REG,A Z . 
L...J I J 
j~l (7.51) 

where A B ( rnA A T )- rnA A p = ". dr r " .. dr z. L...J Fl J J J L...J I~l } } J 
(7.52) 

The expressiOn for yB is given by (2.1) or also (4.1), and 
A B rnA A 
X = Ij~ldi r i · 

To obtain the calibration weight W~AL,B associated with each 

unit k of cluster i surveyed from the target population U B , the GWSM 
is applied from the calibration weights WCAL,A obtained earlier. The 

J 

GWSM is performed according to steps 1 to 4 described in section 

7.2. The estimator yCAL,B = I7~1 W~AL,A Zi is then rewritten under the 

form yCAL,B = "n "MiB CAL,B 
L.,,~l L.,k~l W ik Yik' 

As Wi~AL,B = W;AL,B , we also have 

yCAL,B = "n CAL,B y 
L...Ji~1 Wi i' 

As an example, with the Euclidean distance, from (7.51) and 
(7.52), the following calibration weight is obtained by using (7.33): 
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REG B ImA 
.REG 4 L i W. '= W " _1_, 

, . 1 LB 
FI i 

(7.53) 

m
A L. (A )-

=W+ "dA~rT "".' dArrT 
, ~ I LB I ~ j=1 I I 1 

1=1 i 

The last line follows from Result 2.1. 

7.4.2 Application of calibration after GWSM 

To estimate the total yB of the target population US , we have 

the estimator fB given by (2.1) and obtained from the GWSM. If we 

have auxiliary variables x! for which the total XB = L;~I L~~ x! is 

known, the possibility of directly calibrating the estimator Y B on the total 

XB can be considered. Note that this approach corresponds to that 
used for the calibration of estimates produced by SLID (Lavallee and 
Hunter, 1993, and Levesque and Franklin, 2000). 

From the weights W ik given by (2.4), the calibration estimator 

Y~CAIB ,\,II,\,MH'CALS (b' d~ . hGWSM) b -, = L..i=1 L..k~1 W ik 'Yik 0 tame alter usmg t e can e 

determined from the following formulation: 

D ' CAL B k 1 MB ' 1 ETERMINE W ik ' ,FOR = ,00', i AND 1= ,oo.,n, IN ORDER 

TO MINIMISE 

(7.54) 

n AfjH 

UNDER THE CONSTRAINT XCAL,B = II Wi~AL,BX! = X B • (7.55) 
i=1 k=1 
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Although the weight W ik is not strictly a sampling weight (i.e., 

the inverse of the selection probability), the theory of Deville and 
Sarndal (1992) presented in section 7.1 remains valid for the 

determination of the calibration weights W2JL ,B. After having 

minimised the distance (7.54) under the constraint (7.55), the 
calibration estimator is obtained: 

(7.56) 

where Wi~AL,B = Wikr:k(X:,B~B) is the calibration weight obtained after 

having used the GWSM. The value of the vector ~B of dimension pB 

. hI' f XB "n "Mf" F ( T,B~ B) B IS t e so utlOn 0 = L.i~l L.k~l W ik ik Xik '" X ik · 

We can again take as an example the case where the distance 
function selected is the Euclidean distance G ike Wi~AL,B , W ik ) = 

(W;AL,B _ W ik )2 / W ik . With this distance function, we get 

F ( T,B~ B) = I + T,B~ B 
ik X ik '" X ik '" (7.57) 

and 
. CAL,B = . REG,B = ' (1 + T,B~ B) 

W ik W ik l1ik X ik '" (7.58) 

with calibration (or 

regression) estimator obtained with the Euclidean distance thus has 
the form 

" " n )\;/jB " 

yCAL,B =yREG,B = IIWi~EG.BYik =yB +(XB _XB)TpB, (7.59) 
i~l k~l 

for yB is given by (2.1) or (4.1), and XB by (7.21) or (7.22). 

The asymptotic bias and the asymptotic variance of yCAI,B can 
be obtained by specifying the asymptotic framework for the 

identification of the n clusters of OB. In section 7.3, a sequence of 
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finite populations U A and survey designs indexed by the sample size 

rnA were considered where the population size MA approaches 

infinity with rnA. Here, a sequence of target populations U B and a 

sequence of sets of clusters OB are added, both indexed by rnA . The 

sizes MB and N approach infinity with rnA. This addition to the 
asymptotic framework is natural in the context of an indirect sampling 

of the target population U B , through the population U A • Indeed, if 

the population U A increases, it is natural to imagine that the 

population U B can increase also, given that the two populations are 
linked to one another. For example, in the case of the survey of 
children identified from a list of parents, we can conceive that the 
number of children increases as quickly as the list of parents increases. 

The same considerations are applied for SA and OB . 

With this asymptotic framework, we can go back to the results 
, , 

of Deville and Sarndal (1992). It is obtained that yeAL,B and yREG,B 

are asymptotically equivalent. Consequently, the asymptotic bias and 
, , 

the asymptotic variance of yeAL,B are the same as those for YREG.R. 

To get the asymptotic bias and the asymptotic variance of 

YREG.B, first the estimator yREG,B given by (7.59) is expressed as a 

function of units j from SA, instead of the units k of surveyed 

clusters i. The expressions of fB and XR are already expressed in 
these terms by (4.1) and (7.22), respectively. It remains to rewrite the 

estimated parameter pB. 
At the start, using Result 2.1, we have 

~ ~ . xB X T•B = ~ ~ [~.I1A l.· Lj,i J x R XT,R fi' ft w1k Ik Ik fi' ft f:t 1[: L~ Ik Ik 

(7.60) 
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The last line follows from the proof of Theorem 4.1. Following 
the same proof as that for (7.60), the following result is obtained: 

(7.61) 

L tTl xx ",N (L ILB)",M," B T,B b h ' fd' , et T j = L..i=1 j,i i L..k=1 XikX ik e t e matnx 0 ImenSlOn 

B B d xy ",N (L ILB)",MiB B b h 1 f p x p an "'j = L..i=1 j,i i L..k=1 XikYik e t e co umn vector 0 

dimension pB, By replacing these expressions in (7.60) and (7,61), 

we finally get 

(7,62) 

With (7,62), (4.1) and (7.22), the estimator yREG,B given by 

(7,59) can finally be rewritten as a function of units j from SA, To 

obtain the asymptotic bias and the asymptotic variance of yREG,B, the 
Taylor linearisation method is applied, as suggested by Samdal, 
Swensson and Wretman (1992), We then obtain 

yREG,B:::::: yB +(XB _XB)TpB 

~ ~. , ~ t ' . (7.63) 
= yB _ XT,B~B + XT,B~B = L.... ----S-(Z. _ rT~B) + XT,B~B 

. lr } } 
J=1 } 

where the regression coefficient pB satisfies (L:'~; 'P~)PB = L:~; "'7 . 
As E(yREG,B):::::: Z = yB , we see that this estimator is asymptotically 

unbiased. Furthermore, its asymptotic variance is given by 

\1' \1' (A A A) 
Var(fREG,B):::::: II lrjj' ~ lr~ lrj' e:e1 

j=I/=1 lrjlrj' 

(7.64) 

where e1 = Zj - r~pB is the regression residual. 

To estimate the variance (7.64), we can use 

mA mA (A A A) 
~ ~ REG B II lr, - lr . lr, ~ A ~ A Var(Y ,) = J/ J J e. e., 

A A A J J 
j=1 /=1 lrjj'lrj lr/ 

(7.65) 
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where ~J = Zj - r~~B . It is also possible to estimate the variance of 

yREG,B using the Jackknife method with an estimator similar to (7.9). 

7.4.3 Comparison of the two approaches 

To estimate the total yB, we now have two estimators where 

calibration has been performed. It is a matter of estimators yeAL,B and 

yCAL,B given respectively by (7.50) and (7.56). Recall that the first is 
obtained by performing calibration before using the GWSM, while the 
second is obtained by performing calibration after using the GWSM. 
These estimators are different, although the two are asymptotically 

unbiased, and though for the two sets of weights Wi;AL,B and Wi;AL,B, 

we have, respectively, XC4L ,R = X B and XCAL,B = XB . 

The main difference between the two estimators lays in the fact 

that yeAI,B has weights Wi~1L,B that are identical for all units k of the 

clusters i from OB , which is not the case for yeAL,B. This is quite clear 
if we consider step 4 of the GWSM that assigns to units k of cluster i 

the weight WiCAL,B . On the other hand, for yeAL,B , although the weights 

W ik before calibration are identical for all units k of the clusters i from 

QR , nothing guarantees that the weights W~AL,B after calibration are 

always identical. This depends on the choice of the auxiliary variables 
x:~. Many examples are found in practice where the weights W~AL,B 

are different within the same cluster after calibration. The most 
common example is that of household surveys, such as LFS, where 
the estimates are calibrated according to age-sex groups (Singh et al., 
1990, and Dufour et al., 1998). Since in general a household has 
individuals belonging to different age-sex groups, different calibration 
weights are in practice obtained within a household, even though the 
weights before calibration are identical. 

It is possible to force the calibration weights to be identical 
within a household by using integrated weighting. A method of 
integrated weighting described by Sautory (1993) is notably used by 
the Institut National de la Statistique et des Etudes Economiques 
(INSEE) in France. This method consists of considering the sampling 
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unit as being the cluster, instead of the unit itself. We then no longer 

work with the units ik of the target population U B , but rather with the 
clusters i. Note that the integrated weighting method at INSEE differs 
from that used by Statistics Canada. To learn more on this last 
method, see Lemaitre and Dufour (1987). 

With integrated weighting, it is assumed that we have auxiliary 

variables X~ = It~ x~ for each cluster i of OB and that the total 

XB = I;~I X~ is known for them. Recall that from (2.6), the estimator yB 

can be written as a function of clusters i only. From the weights Wi' the 

integrated calibration estimator yCAL,B = I;~I ti{AL,B Y; (obtained after 

using the GWSM) can be determined from the following formulation: 

D ··CAL B • 1 ETERMINE Wi ' ,FOR I = , ... , n , IN ORDER TO MINIMISE 

(7.66) 

UNDER THE CONSTRAINT XCA1,B = I W;'AL,BX~ = XB . (7.67) 
i~1 

After having minimised the distance (7.66) under the constraint 
(7.67), the integrated calibration estimator is obtained: 

yCAL,B = f MfAL,By; = f wJ';CX~,Bp)y; (7.68) 

where WiCAL,B = wl;(X~,B):.B) is the integrated calibration weight 

obtained after having used the GWSM. The value of the vector ):. B of 
dimension pB is the solution of XH = I;'cl wJ';(X~,B):. B)X~ . 

We can again take as an example the case where the 
distance function selected IS the Euclidean distance 
G;( WiCAL,B, Wi) = (W;'AL,B - Wi f / Wi' With this distance function, we get 

(7.69) 

and 

(7.70) 

with P = (L~~I WiX~XrB r (XB - Xll). The integrated calibration 

(or integrated regression) estimator obtained with the Euclidean 
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distance thus has the form 
" "n " 
yeAL,B =yREG,B = Lw;REG,Br; =yB +(XB _XB)TpB (7.71 ) 

;~1 

where pB = (L7~1 w;X~X;,B r L7~1 w;X~r; . The expression for yB is 

A B 
given by (2.1) or (4.1), and X by (7.21) or (7.22). 

With the two estimators yeAL.B and yeAL,B having equal 

weights within each cluster i of OB , the use of calibration before and 
after the GWSM can now be compared on a common basis. By 
considering the expression of the integrated calibration weight W;REG,B 

given by (7.70), it can be seen that if we set V~EG,B = X~ , we are in 

the context of generalised calibration of Deville (1998b). Indeed, with 
the instrumental variable V~EG,B = X~, the expression (7.70) is 

brought back exactly to the form that we had in expression (7.16). 

We can now go back to this same calibration, but with another 
instrumental variable. Let us set the following value for the 
instrumental variable: 

{
I rnA L 
-"dA~r ifiEnB 

VREG,B = w L.... j LB i 
I l J==l I 

o otherwise. 

From (7.16), the following development is then obtained: 

WREG,B = W + WvT,REG,B("n WVREG,BXT,B)-(XB _ xB) 
1 I 1 I L-i=l I I I 

(7.72) 

(7.73) 
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The last line follows directly from the definition of r j gIven 

in (7.22). 

By comparing (7.73) and (7.53), we notice that the two 
calibration weights are exactly the same. Thus, with the Euclidean 
distance, the calibration weight WiREG,B obtained before the GWSM is 

the same as the generalised calibration weight obtained after the 
GWSM with the instrumental variable V~EG,B given by (7.72). 

The two estimators yREG,B and fREG,B can therefore be seen as 
stemming from two generalised calibration estimators carried out after 
the GWSM with different instrumental variables. It is concluded that 
the two estimators are not asymptotically equivalent and, as a result, 

the estimators yCAL,B and yCAL,B are not asymptotically equivalent. 

In short, performing calibration before or after the use of the 
GWSM produces different estimators. The question then is to know 
the extent of this difference. It is this that we are looking to determine 
in the following section using a simulation study. 

7.4.4 Simulation study 

We conducted a small simulation study in order to compare the 

estimators fREG,S and yREG,S, First, although the estimators are both 
asymptotically unbiased, they have a certain bias in cases with small 
or medium-sized samples, On the other hand, these estimators have 
different precisions that can be interesting to quantify in a manner of 
knowing which is the most precise. 

The study has been inspired by the production of the Whole 
Farm Data Base of Statistics Canada. This database contains 
information on livestock, crops and the income and expenditures (tax 
data) of Canadian farms (Statistics Canada, 2000a), The data used for 
the simulations come from the agricultural sector for two Canadian 
provinces: Quebec and New Brunswick. The first can be considered a 
large province, while the second can be seen as a small province. The 
variable of interest y is the gross farm income, while the auxiliary 
variable x is the net farm income. 
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The population U A is a list of MA farms coming from the 
1996 Farm Register. This register essentially comes from the 199] 
Canadian Census of Agriculture, with different updates taking place 

since then. The units} of U A thus represent the farms, but note that 

each farm} can have many farmers. The target population U B is a list 

of MB tax records (or tax reports) from the Canada Revenue Agency 
(CRA). This second list is the 1996 file of unincorporated businesses 
from CRA that contains tax] data for people declaring at least 
agricultural income. The units k are therefore tax reports that are filled 
out by the different members of a household i (or cluster). The target 

population U B has N households. The respective sizes of populations 

U A and U B are given in Table 7.1. 

Table 7.1: Files/rom Quebec and New Brunswick 

Quebec New Brunswick 

Size of the Fann Register (U A ) 43017 4930 

Size of the tax report file (U B ) ! 52394 5 155 

Number of households in U B 22387 2194 

Gross fann income ( yB ) 5543853688 335989609 

The populations U A and U R are related by complex links. 
Indeed, there are cases where a farm} has many farmers and where 
each farmer files a tax report k to eRA. We then have a "one-to­
many" link since we have a farm) linked to many tax reports k. On the 
other hand, a farmer who works on more than one farm) can file a 
single tax report k for the group of farms on which he works. Hence, 
this is a many-to-one link since there are many farms) linked to a 
single tax report k. Finally, there are complex links where farmers 
work on more than one farm and where each farm has a different 
number of farmers. The populations U A and U B, as well as their 
links, can be represented by Figure 2.1. Note that the links between 

units} of U A and ik of U B were obtained by record linkage. This 
process will be described in detail in Chapter 9. 
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A sample SA of rnA farms is selected from the population U A 

according to a certain sampling design. Suppose that lr1 represents 

the selection probability of farm j. We have lrJ
4 > 0 for all farms 

} E U A • For each farm} selected in SA, the tax reports ik from UB are 

identified that have a non-zero link with farm}, i.e., I i,ik = 1. For each 

tax report ik identified, the list of MiB tax reports for the people from 

household i containing this identified tax report is established. Let nB 

be the set of n households identified by the farms} E SA. 

We are interested in estimating the total gross farm income yB, 
which is the income from farming and earned by the members of the 

households (or clusters) from the target population U B • To obtain this 
income, we have the tax reports for all members of the households 
from nB. 

We could question the reason to use a sample of farms from 

U A to obtain the tax reports from U B , instead of simply selecting a 

sample from U B, or even directly using the set of data from the 

population U B • First, although the data from U B are available for the 
entire population, these data require some processing (edit, 
imputation, etc.) in order to be usable for estimation. As this treatment 
entails non-negligible costs, it is then necessary to start with a sample 
instead of a census.2 A certain advantage can also be drawn in 
allowing this sample of tax reports to be linked to a sample of farms. 
Indeed, for the production of statistics on crops and livestock, 
Statistics Canada conducts a sample of farms. By identifying the tax 
reports that are links to the farmers owning the farms, the relationships 
between income and production of crop and livestock can then be 
studied. It is from the set of data collected on livestock, crops and tax 
reports that Statistics Canada produces the Whole Farm Data Base 
(Statistics Canada, 2000a). 

2 Note that for the simulations, the entire population was used after a slight 
processing, assuming that the quality of the data collected was satisfactory. 
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Although the simulations were performed as inspired by the 
Whole Farm Data Base, certain processes and data were modified for 
reasons of confidentiality, and also to avoid needlessly complicating 
the discussion. However, we believe that these changes do not affect 
the results from the simulations. The primary objective of the 

simulations is to compare the two estimators yREC,B and fREC,B in an 
empirical manner, and not to resolve the problems associated with the 
construction of the Whole Farm Data Base. 

For the simulations, the sample SA from U A (the Farm 
Register) is assumed to be selected by simple random sampling 
without replacement and without any stratification. Two sampling 
fractions were considered: 30% and 70%. Recall that we are interested 
in estimating the total gross farm income yB, and that a single 
auxiliary variable x is used, being the net farm income. 

Since we have the entire populations of farms and tax reports, 
it was possible to calculate the value of yB, as well as the variances 

Var(yREC,B) and VarcYREC,B) from the formulas (7.37) and (7.64). 

Moreover, because 
replacement is assumed, 
simplified. Thus, we used 

simple random sampling without 
these theoretical formulas could be 

and 

In these expressions: 

Var(yREC,B)~MA (1- ~A) S~ 
f 

fA = rnA / MA is the sarnplingfraction; 

(7.74) 

(7.75) 
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A Monte Carlo study was also performed to calculate in an 

empirical manner the bias and the variance of yREG,S and fREG,S, To 

do this, 1000 samples SA from U A were selected for each sampling 
fraction, 30% and 70%, The empirical bias and the empirical variance 

of each estimator (represented here by Y) was calculated using 

, , " S 1 1000, S 

Bias(Y)=E(Y)-Y =-LY'-Y 
1000 sA ~1 S 

(7.76) 

and 

" 1~' "2 Var(Y) = - L. (Y, - E(Y)) . 
1 000 sA~1 s 

(7.77) 

The empirical relative bias was calculated from 

RBiasCY) = 100 x BiasiY) . 
y 

(7.78) 

The Monte Carlo study made it possible to empirically verify 
(see Table 7.2 below) the accuracy of the asymptotic vanance 

formulas (7.74) and (7.75) obtained for yREG,S and fREG,S. 

Table 7.2: Simulation results 

Province fA Statistic yREG,B 
A 

yREG,S 

Empirical bias 203979 2240377 
0.30 Empirical relative bias (%) 0.004 0.040 

Theoretical variance 2.756x10 15 2.700xlO15 

Quebec 
Empirical variance 2.623x10 15 2.786xlO15 

Empirical bias -1 108666 -290749 
0.70 Empirical relati ve bias (%) -0,020 -0.005 

Theoretical variance 5.061x1014 4.959xlO14 

Empirical variance 5.473xlO 14 4.814xlO14 

Empirical bias -722336 -605860 
0,30 Empirical relative bias (%) -0.215 -0.180 

Theoretical variance 2,000x1014 2,209xlO14 

New 
Empirical variance 2.025xlO 14 2.161xlO14 

Brunswick Empirical bias -345810 -237159 
0.70 Empirical relative bias (%) -0.103 -0.071 

Theoretical variance 3.674xlO13 4.057x10 13 

Empirical variance 3.897x10 13 4.076x1013 
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Looking at the results in Table 7.2, we first notice that the 

biases of the two estimators fREe,B and yREC,B are effectively 
negligible. Indeed, the largest empirical relative bias in absolute value 
is 0.215%. From the variance point of view, we notice that there is no 
estimator that is always better than the other. The difference between 

the variances of the estimators yRte,B and yREe,B is generally not very 
large at the theoretical or empirical variance level. Furthermore, the 
theoretical variances turn out to be relatively close to the empirical 
vanances. 

Therefore, we finally conclude that, for the Whole Fann Data 

Base, the estimator yREe,S obtained by calibrating before the GWSM 

is relatively comparable to the estimator fREe,s obtained by 
calibrating after the GWSM. 



CHAPTER 8 

NON·RESPONSE 

In censuses or sample surveys, it happens inevitably that no 
value can be obtained for one or several measured variables from 
certain interviewed units. It is then said that there is non-response 
within the survey. In the case where the values are taken from 
automated systems, this can include technical problems or 
breakdowns. On the other hand, when the survey resorts to 
questionnaires, the values can be missing for different reasons. 
Examples could include the unwillingness from the surveyed person, 
gaps in the value asked for, laxity of the interviewer who does not try 
to obtain responses to all the questions, lost questionnaires, etc. Note 
that a missing response here, in addition to a loss of information for 
example, is considered as being a non-response in the same way as a 
person refusing to respond. On the other hand, if the question allows a 
"no opinion" option, then this choice is not a non-response. 

For certain surveys, it is possible go after missing values by 
remeasuring or by recontacting the persons surveyed for whom no 
response has been obtained. However, this recall process often leads 
to significant costs and delays that cannot always be undertaken by the 
survey. It is then decided to perform the recall for only a fraction of 
the non-respondents. 

For other surveys, it becomes impossible to redo the 
measurements or to recontact the non-respondents. Thus, in the case 
of a sampling of persons, we can come up against a definite refusal, 
which excludes all possibility of recontact. It can also occasionally 
happen that the non-responding person is deceased or has moved. 
Non-response therefore makes the final sample rarely corresponds to 
the initial sample planned by the survey designers. 
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An important point to notice is that even if it is physically 
possible to recontact a non-respondent until a response is obtained, the 
values obtained will not necessarily be usable by the survey 
interviewer. Indeed, the quality of the information collected "at any 
cost" can be so poor that it only contributes toward creating a bias 
within the estimates. For example, if the surveyed person does not 
provide a response because he does not know the requested value, 
forcing him to respond anything is not really useful. In the case of an 
individual simply refusing to respond, indiscriminate harassment will 
inevitably lead to a set of erroneous values. 

During a recontact, it is essential to remember that it is not just 
about obtaining a response but to obtain the "correct" response. In 
many cases, it will be more suitable to treat the non-response with 
statistical correction rather than trying to fill in the missing values 
with data containing a significant portion of errors. 

There are sizable, though hardly comprehensive, bibliographies 
in, for example, Droesbeke and Lavallee (1996), Hedges and Olkin 
(1983), and Bogestrom, Larsson and Lyberg (1983). 

Since the topic is so broad, we will confine this chapter to total 
non-response, as opposed to partial non-response. Total non-response 
occurs when none of the variables of interest can be measured. For 
example, the surveyed person simply refused to respond. With partial 
non-response, only a subset of the variables of interest can be 
measured. The surveyed person, for example, did not know the answer 
to one of the questions. 

In this chapter, we will study non-response in the context of 
indirect sampling. Since the GWSM is used in obtaining estimation 
weights, we will look into the adjustment of these weights to take into 
account the non-response. The techniques of treating non-response 
centred on the imputation of missing values will therefore be 
excluded. On this matter, refer to, among others, Platek and Gray 
(1983), and Samdal, Swensson and Wretman (1992). 

8.1 TYPES OF NON·RESPONSE 

With indirect sampling, recall that the selection of a sample SA 

from the population U A is performed in order to produce an estimate 

for the target population U B (consisting of clusters) by using the 
existing correspondence between the two populations. The total non­
response here can therefore be present within the sample SA selected 
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from U A , or within the units identified to be surveyed within U B • For 
example, let us return to the situation illustrated in Figure 1.2 where 
the target population is children, but where we must first select a 
sample of parents before we can select the sample of children. Within 

the sample SA of parents, there can be people who refuse to give the 
names of their children for the survey, which creates non-responses 

within SA. For the parents who agree to respond, their children can 
then be identified and the actual survey can proceed. Here also, there 
will be non-response for the children who refuse, for example, to 
respond to the survey. 

Since the units in population UB are surveyed by cluster, there 
are two types of total non-response associated with cluster sampling 
(direct or indirect): cluster non-response and unit non-response. 
Cluster non-response refers to situations where none of the units in the 
cluster responded to the survey. This is a case often encountered in 
practice. In telephone surveys, for example, if no one answers the 
telephone, we then have no response for the entire household (cluster) 
that we are trying to contact. Moreover, if a person answers the 
telephone but does not want to participate in the survey, then it is 
often difficult to obtain a response for the other members of the 
household. 

Unit non-response is a kind of total non-response in which one 
or more units in the cluster, but not all units, did not respond. Unit 
non-response also occurs as frequently as cluster non-response, but for 
other reasons. For example, in a medical survey, a person can respond 
and describe his own illnesses, but it is not certain that he can answer 
for all the other members of the household. By contacting a household 
where many members are absent, there will in all likelihood be unit 
non-response. Note that some surveys allow for the measurement of 
variables of interest through an intermediary ("proxy"), while others 
will not ("non-proxy"). With a "non-proxy" survey, there can be unit 
non-response if a unit cannot or does not want to answer the survey 
questions. 

With indirect sampling, there is also another form of non­
response that comes from the problem of identifying some of the 
links. This type of non-response is associated with the situation where 
it is impossible to determine whether a unit ik of U B is linked to a unit 

j of U A • This is referred to as the problem of links identtfication. For 
example, consider the case of longitudinal surveys described in 
Chapter 6 where the links are one-to-one between populations U A 
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(wave 1) and US (wave 2). A link is found between populations U i1 

and US through the individuals that belong to both populations. Thus, 

lk = 1 if individual j from population U A corresponds to individual k 
/,1 

of household i from population Us, and I··k = 0 otherwise. An 
/.' 

individual ik from U R therefore has a non-zero link with U A ifit was 
present in the population at wave 1, and a zero link otherwise. During 
the survey, it can prove to be difficult to know if an individual k from 
a household i was present or not at wave 1. The individual, for 
example, can have trouble remembering where he lived at the time of 
wave 1. Consequently, we cannot know whether or not the individual 

has a zero link with population U A , which constitutes a problem of 
links identification. This kind of non-response problem was already 
mentioned by Sirken and Nathan (1988) in the context of network 
sampling. More recently, Ardilly and Le Blanc (2001) faced this 
problem during the use of the GWSM for the weighting of a survey of 
homeless people. 

Non-response can also be classified into ignorable and non­
ignorable non-responses. Non-response is ignorable when the 
response probability for a certain question, given the selected 
sample s, does not depend on the value of the variable measured. The 
fact whether or not a person responds to a question is therefore not 
related to the response to that question. Let (A be the probability that 

person k from the sample s responds to the question measured by the 
variable of interest Yk' The non-response then is ignorable if 

(A = p( unit k responds I Yk ,s) = p( unit k responds Is). An example 

of ignorable non-response is where a questionnaire on employee 
satisfaction for a company is not returned simply because of 
negligence. An example of non-ignorable non-response is where only 
unsatisfied employees return the questionnaire. This last case 
obviously tends to bias the survey results if no correction is used. To 
know more about ignorable and non-ignorable non-response, see 
Rubin (1976), Rubin (1983) and Rubin (1987). We will assume here 
that the non-response is ignorable. 

A final classification of non-response is specific to longitudinal 
surveys and repeated surveys. For these surveys, we have attrition 
and wave non-response. Attrition occurs when a person stops 
responding for good, beginning with a given wave of interviews. For 
example, the person cannot be found because he has moved. Note that 
for deceased persons, they are considered as responding units with the 
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measured variable Yk set to zero. Wave non-response is found when a

person does not respond for one or many waves of interview in a
temporary manner. For more on this subject, refer to
Lepkowski (1989).

In this chapter, treatment of total non-response within the
sample SA will be discussed. Also, we will attempt to treat cluster
non-response and unit non-response among those identified to be

surveyed within U B
• Finally, we will provide some solutions to the

problem of links identification.

8.2 CORRECTING RESPONSE RATES

Response rates take on a particular importance in sample
surveys. They can serve, on the one hand, to measure the progress or
the performance of the survey collection and, on the other hand, to
help correct the estimates taking into account the non-response. Two
categories of response rates can then be distinguished: operational
response rates and corrective response rates. These two categories are
qualitative rates since they contribute to qualitatively assess the
collection results. Operational response rates are so called since they
serve to evaluate the quality of survey operations. For example, an
operational response rate could be the relationship between the
number of interviews completed and the number of persons contacted.
The corrective response rates serve more to correct the estimates
taking into account the non-response (Droesbeke and Lavallee, 1996).

The corrective response rates can correct the total non-response
by drawing the subsample of respondents toward the initial sample.
They have a more restrictive meaning than operational response rates.
In fact, they must reflect the importance of the number of respondents
in the survey in comparison to the initial sample.

In the general context of a population U of size N, a sample s
of size n is selected where each unit k is selected with probability
Jrk > O. We attempt to measure a variable of interest Yk where

unfortunately non-responses are present. Let nr be the number of units

responding to the survey. The corrective response rate R is defined as

the ratio between the number of responding units nr from the sample

and the sample size n, i.e.,

. n
R=-'-.

n
(8.1)
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Using the selection probabilities Trk of the units k from the

sample, a weighted version of the corrective response rate can be
defined. This latest version is given by

"" n, 1/ '
R = L.tk~l / Trk = ~r • (8.2)

"" 11 l/Tr NL.tk~] k

The weighted corrective response rate can be seen as the ratio
between the estimated number of responding units within the
population and the estimated number of units in the population.
Although the debate remains open about the use of R or R, we will
prefer here the weighted version given by (8.2).

A first reason to use the weighted response rate R, instead of

R, is related to the estimate of the size of the population that remains
unchanged, whether there is non-response or not. Indeed, if there is no

non-response, N=I~~l dk where dk =1/Trk • If there is non-response

the sampling weight dk can be corrected by using the corrective

response rate and thus obtaining a new weight dtR corrected for the

non-response. Starting with the response rate (8.2), dtR
= dk / Rand

then we note that I~'~ldtR =N. The sum of the sampling weights

corrected with the weighted response rate therefore gives the same
result as if there was no non-response. However, with the response

rate (8.1), dtR
= dk / R and, in this case, I~'~] dtR

= nNr /nr -j:. N.
Therefore, the desired result is not obtained.

Another reason to use the response rate (8.2) is related to
model-based considerations. As mentioned by Pfeffermann (1993),
the use of weights in survey data modelling results in parameter
estimates that are consistent with respect to the sampling design. In
addition, the use of weights reduces the impact of a poor model
formulation on the estimates. lt will be seen in section 8.3 that the
corrective response rate can be seen as an estimate of the response
probability (A of a unit k from the sample. The corrective response

rate is therefore the result of modelling the response probability (A,
from which the suggestion of using selection probabilities in its
calculation comes. It is finally noted that the two corrective response
rates, weighted and unweighted, are equal when the selection
probabilities Trk are equal.
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The corrective response rates can be calculated for exclusive
and exhaustive groups within the population. For example, these Q
groups can be the strata, but they can also be the result of any partition
of the population. For a group q, the corrective response rate Rq is

thus defined as

In, "l! Jr Nr,q
Rq = k~] k =In" l! Jr N

k~l k '/

(8.3)

where nq is the number of units from the sample belonging to group q

and nr,q is the number of responding units belonging to group q. It

will be seen that the groups q can be formed in a way that they
correspond to sets where the response probabilities of the units
included within them are relatively homogeneous.

It is important to note that it is essential, to calculate the
response rate (8.3), that information concerning the non-respondents
themselves be available. For example, if the groups are formed from
the socioprofessional category of persons in the survey, it is then
necessary to know the categories of the non-respondents, like those of
the respondents, This can represent a problem is the socioprofessional
category is measured in the course of the survey.

The people that are not contacted because they are out-of-scope
for the survey are part of the respondents (and not the non­
respondents) but their variables of interest are all set to zero. This
reflects the fact that other people outside of the sample can also be
out-of scope for the survey, but these people are often only known
during the interview.

8.3 RESPONSE PROBABILITIES

The notion of response probability was briefly touched by
presenting, in section 8.1, the aspect of ignorable and non-ignorable
non-response. This concept will be developed here in further detail, as
presented by Siirndal, Swensson and Wretman (1992) and Lock Oh
and Scheuren (1983).

The concept of response probability is very useful in adjusting
estimates for total non-response. In a general context, let 6k be an

indicator variable that takes a value of 1 if unit k answers the survey
questions, and 0 if not. It is generally assumed that this variable has a
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(8.4)

(8.5)

Bernoulli distribution with probability fA. In other words, it is

assumed that each individual k in the survey population has a certain
probability fA of responding to the survey, I.e.,

P(unit k reponds Is) = P(Ok = 11 s) = fA. In addition, for two units k

and k', the indicator variables Ok and Ok' are deemed to be

independent. This implies that the joint probability of response ¢kk' for

these two units is given by

¢kk' = P(Ok = l,ok' = 11 s)

= P(Ok = 11 S)P(Ok' = 11 s) = ¢k¢k"

Lastly, we have

E(Ok Is)=lxP(ok =lls)+OxP(ok =Ols)

= P(Ok = 11 s) = ¢k

and

Var(ok Is) = E(o; Is) - E2 (Ok Is)

=E(Ok Is)-E 2 (ok Is)

= ¢k - ¢; = ¢k (1- ¢k ).

The independence between the indicator variables 0 of two
units k and k' follows from the assumption that the choice made by
unit k to respond or not will have no bearing on the choice made by
unit k'. In other words, there is no ratchet effect. This turns out
generally to be true in practice, except in the case of cluster sampling
where the cluster effect (or intracorrelation) can nullify this
independence. For example, if the units are individuals selected from a
cluster sampling, we can imagine that the fact that one of the
individuals responded to the survey could prompt other individuals
from the cluster to respond, and the opposite can also be true. Unless
otherwise informed, the assumption of independence will be kept here
in order to simplify the discussion.

As we have above, the response probability can depend on the
sample. Thus, a unit k can have more of a tendency to respond for a
certain sample s compared to another sample s'. For example, in a
sequential sample of a group of persons placed in order, a person
chosen last can be less inclined to respond than a person chosen first
simply because he has been waiting for a longer time.
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The estimation of the response probabilities fA can be done

with different approaches. From the information provided by the
survey and by external sources, we normally seek to develop a model
that is meant to identify the factors influencing the response
probabilities. This model can take forms ranging from very simple to
relatively complex. For example, it can be determined that the
probabilities fA for an employee satisfaction survey are uniquely

influenced by the sex of the persons surveyed. An estimate fA of the

response probabilities fA is then simply given by the corrective

response rate observed in the survey for each of the two sexes, i.e.,
, ,

fA = nr,man / n man if unit k is a man, and fA = nr,woman / nwoman if unit k is a

woman. Recall that, to estimate the response probabilities, it is
essential to use information concerning the non-respondents
themselves. In the previous example, we see that the sex was used as
auxiliary information.

In a general way, we can try to estimate the response
probabilities by calculating the corrective response rates within
response homogeneity groups (RHG) as suggested by Sarndal,
Swensson and Wretman (1992). The RHG form in fact a partition of
the sample into Q groups, where the response probabilities of the units
from the sample are approximately the same within each group q.
They can be represented by the model

¢qk = E(5qk Is) =.8q, (8.6)

where .8q is a fixed effect (or factor) to be estimated. The parameter

.8q is in fact the expected probability of response in group q. The

RHG can be formed by a single factor or by a combination of two or
more factors. For example, we can think of age-sex groups.

To estimate ¢qk , we can use the weighted maximum likelihood

method (Collett, 1991) with weights set at dk =1/lrk. The following

quantity is then maximised:

InA(.8l'oo".8Q ) = I~~II::ldqk[5qk In¢qk +(l-5qk )ln(I-¢qk)]

where the ¢qk depend on the parameters .8q. The ensuing estimator

from the model (8.6) is then given by the corrective response rate
(8.3). We thus have

(8.7)
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(8.9)

Another approach used to estimate the response probabilities
consists of using a logistic regression model (or "logit" model). In a
general way, the logistic regression model is given by

log C~'¢J =~'x" (8.8)

where P is a column vector of dimension p of parameters to be

estimated, and X k is a column vector of auxiliary variables. The

vector of parameters p is estimated, again using the weighted

maximum likelihood method. With the logistic regression model, we
A

obtain an estimate P of p, from which the following estimates are

derived:
'T

¢;OGfT = exp(p ,xk) .
1+exp(pTxk )

It is interesting to note that if the auxiliary variables xk are all

qualitative and if the model chosen is saturated (that is, that there are
as many parameters to estimate as there are combinations of values),
then the logistic regression model approach corresponds exactly to
that of the RHG.

If the number of factors explaining the response probabilities is
large, it is in practice simpler to use the logistic regression approach
because the RHG approach requires making combinations for all the
factors influencing the response probabilities, which can result in the
creation of groups q without respondents (nr,q = 0). The logistic

regression approach only requires that the marginal response rates
correspond to the factors present in the model chosen. Michaud and
Hunter (1992) used it in order to determine the decisive non-response
factors in SLID. Starting from the generalised calibration theory
presented in section 7.1, Deville (1998b) (and Deville, 2000b)
demonstrated that the method used to estimate the response
probabilities is only of little importance. Indeed, from the two
estimates corrected with the different response probabilities, we see
that the difference between these two estimates is asymptotically zero.

8.4 TREATMENT OF NON-RESPONSE WITHIN SA

Non-response in sample SA is a classic case of non-response.
Whether in the context of conventional (or direct) sampling or indirect
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sampling, the treatment of this type of non-response is covered in
most books on sampling theory. In theorem 4. I, we saw that the

estimator yB produced by the GWSM can be written in the form of a

Horvitz-Thompson estimator that is a function of units) of SA. Hence,

non-response in SA is treated as we would treat non-response in the

situation where we selected sample SA to produce an estimate of a

quantity related to population U A
• We still present here the treatment

of this type of non-response because it will allow us to establish the
basis of the discussion for the other types of non-response presented in
this chapter.

A sample SA is selected containing rnA units from the

population U A consisting of M A units according to a certain

sampling design. Suppose that ,,1 represents the selection probability

of unit j. We assume that "1 > 0 for all ) E U A • It is assumed that a

subset s: of m: units of sample SA answered the survey questions. It

is also assumed that there is only total non-response here and no
partial non-response. This situation is illustrated in Figure 8.1. The
arrows indicate that units ) =1 and ) =2 from U A were selected to

be part of SA. Unit) = 2 answered the survey, but unit) = 1 did not.

The target population US contains M B units. This population

is divided into N clusters, where cluster i contains Mi
B units. For each

unit) of s: , units ik from U B can be identified that have a non-zero

link I j,ik with), i.e., I j,ik = I . For each identified unit ik, we assume

that we can make a list of the M i
B units of cluster i containing that

unit. Each cluster i represents, then, by itself, a population U i
B where

U B
= U~l U i

B
• Let n~ be the set of nr clusters identified by the units

. A
J E Sr .

We survey all units k of clusters i E n~ ,where we measure the

variable of interest y. For target population U B
, we want to estimate

B N \1E .
the total Y = Ii~1 Ik~1 Yik' It IS assumed that we have the total

number of links L~ for each cluster i E n~ .
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(!)I----------J

Figure 8.1: Example ofnon-response within SA

(8.10)

In applying the GWSM, we want to assign an estimation
weight W ik to each unit k of surveyed cluster i. To estimate the total

yB for target population U B
, then, we can use the estimator (2.1),

which was constructed on the assumption that there is no non­

response in sample SA. On the basis of Theorem 4.1, we can rewrite

the estimator (2.1) as (4.1), which is a function of units j of SA. Since

we have only subsample s; of the responding units, we have to use an

estimator that has been corrected for non-response. To that end, we
can use the following estimator:

, AI
A tSA

yNRA,B = I jA~A z)
/=1 tr/'If/

m,' z.
= I A~A

/~I tr) 'If)
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(8.11 )

where ¢: is the response probability ofunitj. The superscript "NRA"

refers to the non-response within SA. The indicator variable 6: = 1 if

unit} of SA responds, and 0 if not. The probability ¢: can depend on

the sample SA. Let EsO denote the expected value carried out in

relation to all possible samples of SA. To show that this estimator is
unbiased, we proceed as follows:

[
MltE(6A1 A) •

E(yNRA,B)=E[E(yNRA,BlsA)]=E ". J j s Z
"L..J Ad,A J

i~1 lrj 'Pj

[
M

A

t¢A ] ["V/I t. ]
= E, ~ lrl.A~.A Zi = E, L._ ;A Zi

J-I I 'PI 1-] J

=Z=yB

as, from (8.4), E(6: Is A )=¢:. The last line follows directly from

Corollary 4.1.

Note that the quantity 1/lr/¢/ corresponds to the sampling

weight adjusted to account for non-response. From this adjusted
sampling weight, the estimation weight WI~RA can then be obtained

following steps 1 to 4 of the GWSM described in section 2.1.

Steps ofthe GWSM adjustedfor non-response within SA

Step 1: For each unit k of clusters i from D.~, the initial weight
,NRA

Wik is calculated, to know:

(8.12)

Step 2: For each unit k of clusters i from D.~ , the total number of

links L~ =I~; lj,ik is obtained.

Step 3: The final weight W;VRA is calculated:

(8.13)

. NRA NRA BStep 4: Fmally, we set Wik = Wi for all k EO U; .
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After applying the non-response-adjusted GWSM, we can

assign an estimation weight W;~RA to each unit k of the nr surveyed

clusters. To estimate the total y8 for the target population U B
, the

following estimator is then used:

(8.14)

In practice, estimator yNRA,B is useful only if the value of the

response probabilities rP/ is known for all units j of s: .We want to

estimate these probabilities so that we can use one of the following
forms:

or

" m;./ Z
yNRA,B = ,,\, __j_

L... A' A
i~l ff j rPi

(8.15a)

(8.15b)

4
Q m;,q Z,

=II ffA~A
q=1 J=\ 'lJ q

where the weight W;~RA is obtained by replacing rP/ with J: in (8.12).

To obtain J/ ' either the estimator (8.7) or the estimator (8.9) can be

used,

Here, the model (8.6) takes the form: rP~ = fJqA , In view of the

estimator (8.7) based on this model, we use the weighted response rate

R: = (I75t 11 ff,~ )/(I7i11/ ff:) .

Thus we have
A

;:: NRA B Im,. z .y '= __J_
A 'A

j=1 ff j ¢j

4

Q "m"1 Z / A=I LJ
j=1

4
qi Jrq/(Im:Il/Jr~).

I m"q 1/ A Jq=1 Jr .
j=\ qr

It is assumed here that the number of responding units

greater than 0 for all RHG q.

(8.16)

rnA IS
r,q
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If we look at estimator (8.16), we see that it is nothing more
than a ratio estimator in two-phase sampling. Siirndal, Swensson and
Wretman (1992) present a proof that estimator (8.16) is asymptotically
unbiased, under the conditions of model (8.6). The asymptotic

variance of yNRA,B is calculated using a conditional approach. From
the identity

A A A

Var(yNRA,B) =Var,[E(yNRA,B I sA)] + EJVar(y,VRA,B I SA)]

we get

(8.17)

where P: is the parameter from model (8.6), The variance (8.17) can

be estimated using
A m;' m;' (A A A)

Var(yNRA,B) =II ~ij'~;i~iAZiZj'

j~l j'~l Jrjj'Jrj'f'i Jrj'f/j'

Q (1- R
A

) m,'" 1 [ Im~q Z ./ JrA]2+" q ,,__ Z _ /-1 q; q;
L.- (RA)2 L.- ( A)2 qJ m;'.q A .
q~1 q pi Jrq; Ij~1 1/ Jrq;

(8.18)

Ifwe have auxiliary variables xJ available for all units) of SA,

we can imagine using the model (8.8) with parameter ~A of

dimension pA. With the estimator (8.9) based on this model, we then

have:
" m,~ Z

yNRA,LOGIT,B = " A j

f:t Jr1 ¢fOG1T,A

(8.19)

where the estimator ~A is obtained using the weighted maximum

likelihood method, with the weights set at d = 1/ JrA. Note that the
/ /
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estimator yNRA,LOGfT,B is highly nonlinear. It is not simple to calculate

it~ bias. However, if the estimate of J:OGfT,A turns out to be relatively

close to the true response probability ¢: 'this bias should be small. It

is possible to obtain an approximation of its variance by using Taylor

linearisation, from which an estimate of the variance of yNRA,LOGfT,B is
subsequently obtained. Such an approach, however, is rarely used in
practice at Statistics Canada, where the Jackknife and Bootstrap
methods are preferred instead. If the sampling design used to select
the sample SA is a stratified multi-stage design, the Jackknife

estimator of the variance of yNRA,LOGfT,B has the form (6.9). To learn
more about the Jackknife method, refer to Wolter (1985), and Sarndal,
Swensson and Wretman (1992).

8.5 TREATMENT OF CLUSTER NON-RESPONSE

As mentioned in section 8.1, cluster non-response occurs when

no units of a cluster from U B identified to be surveyed responds to the
survey. This is a case frequently encountered in practice. In this
section, the treatment of this type of non-response is presented. As in
section 8.4, it is proposed here to treat this type of non-response by
using the concept of response probability.

A sample SA is again selected containing rnA units from the

population U A consisting of M A units according to a certain

sampling design. Let IT: > 0 represent the selection probability of

unit}. Contrary to section 8.4, it is assumed that the set of rnA units
from the sample responded to the survey questions.

The target population U B contains M B units. This population

is divided into N clusters, where cluster i contains M i
B units. For each

unit} selected in SA, we identify the units ik of U B that have a non­
zero relationship lj,ik with}, i.e., lj,ik = 1. For each unit ik identified, it

is assumed that a list of the M i
B units of cluster i containing that

unit can be made. Each cluster i represents, then, by itself, a
population U i

B
, where
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uB =UN

U
B

•;=1 I
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Let OS be the set of n clusters identified by the units j E SA.

In carrying out the survey process, we attempt to survey all
units k in clusters i of Os. Unfortunately, for some entire clusters, we
are unable to obtain any data. This is cluster non-response. We assume
here that all the units of each cluster i from OB respond or do not
respond. In other words, there are no clusters in which only a non-zero

subset of units responded. Let O~ be the set of nr responding

clusters. It is worth noting that O~ differs in general to the set of

responding clusters in the context of non-response within the

sample SA. This situation is illustrated in Figure 8.2. The arrows

indicate that units j =1 and j =2 from U A were selected to be part

of SA. Then, clusters i =1 and i =2 are identified to be surveyed.
Only cluster i = 2 here answers the survey.

j

~ 2

3

0~--

k

-1

i=l

i=2

'-- ..-J

Figure 8.2: Example ofcluster non-response
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Let SiB be an indicator variable that takes a value of I if cluster

i answers the survey questions, and 0 if not. As in section 8.3, it is
assumed that this variable has a Bernoulli distribution with probability

<D~. In other words, it is assumed that each cluster i in VB has a

probability <D~ ofresponding to the survey, i.e.,

P(c1uster i responds IQS) = P(S/ = II Os) = <D~ .

In addition, for two clusters i and i', the indicator variables

SiB and Si~ are deemed to be independent.

It is worth noting that it is also possible to define the response

probability <D~ from the indicator variables Si~ associated with the

units k of the surveyed clusters i. Let Si~ = 1 if unit k of cluster i

answers the survey questions, and 0 otherwise. The response
probability of cluster i can be defined as being the probability
that all the units of the cluster respond, I.e.,

<D~ =P(Si~ =1, Si~ =1,...A~i8 =IIO
B
).

In the case of cluster non-response, it is natural to expect that

the indicator variables Si~ are not independent within each cluster i.

Indeed, if we go back to the example of telephone surveys, if no one
answers the telephone, there is then no response for the entire
household (cluster) that is trying to be contacted. Furthermore, if a
person answers the telephone but does not want to participate in the
survey, then it is often difficult to obtain a response for the other
members of the household. Therefore, the response probability of the
cluster can depend on the goodwill of only one person, instead of each
person of the household taken independently. Consequently, in
practice, the probability

P(Si~ = 1, Si~ = 1, ... ,SB B = II0B)
Ilv(

can rarely be expressed as the product I1~~ P(Si~ = Ilns ). For this

reason, it is preferred to look at the response probability <D~ of the

cluster i as a whole in this section on cluster non-response.

For the set of units from clusters i E O~ , a certain variable of

interest y is measured. For the target population VB, we look to

estimate the total yB = L:~) L:~: Yik .
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In applying the GWSM, we want to assign an estimation

weight W~RC to each unit k of responding cluster i. The superscript

"NRC" refers to the non-response of the clusters. To estimate the total
yB for target population U B

, we can then use the estimator

(8.20)

To obtain the weight W;~RC from the GWSM, we are going to

use the response probability cD~ for each cluster i E n~ .

Steps ofthe GWSM adjustedfor cluster non-response

Step 1: For each unit k of the clusters i from Q~ , the initial weight wJ~

is calculated, to know:

M
A

t
w:k = I ljik ----s- '

1"1 ffj

where t i = I if j E SA , and 0 otherwise.

(8.21 )

Step 2: For each unit k of the clusters i from Q~ , the number of total

links is obtained:
M'

L
8

k ="lk .
I L.... J,I

1=1

(8.22)

Step 3: The final weight W i
NRG

, adjusted for non-response, is calculated:

(8.23)

NRC NRC 8Step 4: Finally, we set W ik = Wi for all k E Ui ,for all clusters i

from Q~.

Note that for each unit k of the clusters i from Q.~ , we have

NRC NRC I
W ik = Wi = cD B Wik '

J

(8.24)

where W ik is the weight from the GWSM without cluster non­

response. Furthermore, from Result 2.1, we get
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(8.25)

(8.26)

Let E s (-) denote the expected value carried out for all possible

samples of SA where each sample SA leads, as we recall, to a set of

clusters OB. To show that the estimator YNRC.8 is unbiased, we
proceed from a conditional approach.

From (8.20), we have

£(y"o.,) ~ E,[ E(Y"'"' Ifl')] ~ E, [t. E(J: Ifl')~w;.'ey" ]

[

n M
,
" ] [ n M

,
" ]= E <DB NRC = E <DB Wik

s ~ i BW ik Yik s ~ i B<D~ Yik

~ E, [t.~ w"y,,] ~ E, [Y' ]~ y',

The last line follows directly from Corollary 4.1.

. y~ NRC B
Theorem 8.1: Duallty ofthe form of '

Let Y; =I~~ Yik and L~ =I~~~ L~ for all k E V i
B

. The

estimator yNRC,B given by (8.20) can then also be written under the

form

where
"L 58

Z;RC= I l~i ~B Y;.
1=] I i

(8.27)

(8.28)

Proof

From yNRC.B ="II, WNRC"MIR y. ="n, wNRCy we use identity
~,~I, ~k~l ,k ~,~] I I ,

(8.25) to get

n, [M" t L )yNRC,B =I~ I ~ ;,iB
i~1 j~1 1fj <D i Li

11 Me' tIL \fA t s:B L
I'I· .. InI' ·u ..= _1 -.£:'... Y = _1__,_· -.£:'... Y

A <DB B I A jhB LS "i~1 j~l 1fj i Li i~1 j~l 1fj Wi i

(8.29)
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By continuing the development, we get

, n M' t (5B L.
yNRC,B = II-J--'-· ---e!..:.'...y

i~1 J~] Jr; <P~ L~ ,

M' t n (5B L M' t
= I-J I-'-·~y = I-J ZNRC

J~I Jr1 i~] <P~ L~ , J~I Jr1 J •
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(8.30)

•
The estimator YNRC,B can thus be written as a function of units

ik from UB
, or as a function of units) from U A

• Note that contrary to

the quantity ZJ defined by (4.2), the quantity Z~RC defined by (8.28)

depends on the set nB of clusters that can be surveyed, and therefore
of the sample SA through the variable (5/ .

In practice, the estimator yNRC,B is only useful if the value of

the response probabilities <P~ is known for all clusters i from n~ .We

then want to estimate these probabilities so that we can use the
following estimator:

(8.31 )

where WN
k

RC = w.k / <b B
• To obtain <b B

, we can follow the example of
I I I I

estimator (8.7) or of estimator (8.9). In this case, model (8.6) takes the

form: <P:i =13: .
If we use the estimator (8.7) based on this model, we define

<b:i as follows:

(8.32)

where W qik is the estimation weight provided by the GWSM

(assuming no non-response) for units k in clusters i belonging to
RHGq.
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With (8.32), the estimator yNRC,B given by (8.31) becomes

M B ~ B n M B
::: n r I W Q M r ,q ql

yNRC,B _ "" --.0..- _ ,,_q""- LJ LJ <DB Yik - LJ MB LJ LJ WqikYqik
1=1 k=! i q=! r ,q 1=1 k=!

We can look at estimator (8.33) as a ratio estimator in two­
phase sampling. Indeed, if the identification of the cluster of OB to be
surveyed is considered as the first phase of the sampling design, the

"selection" of the subset n~ of responding clusters makes up the

second phase of this design. To obtain the asymptotic bias and the

asymptotic variance of yNRG,B, the Taylor linearisation method is
applied, as suggested by Sarndal, Swensson and Wretman (1992). Let

, M Br/ =L~~! Lk:; WqikYqik . We then get

(8.34)

As in the case of non-response in SA, we can show that
estimator (8.33) is asymptotically unbiased under the conditions of

model (8.6). To do this, the expectation of yNRc'B from (8.34) is
calculated using a conditional approach.
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(8.35)

The asymptotic variance of yNRC,B IS calculated usmg a
conditional approach with the identity

A A A

Var(yNRc,B) = Var,[E(yNRC,B lOB)] +EJVar(yNRC,B lOB)].

From (8.34), we get

+Es

(8.36)

The variance (8.36) can be estimated using

(8.37)
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If we have auxiliary variables x~ available for all clusters i

from OB, the use of the model (8.8) can be considered, with the

parameter pB of dimension pB . With the estimator (8.9) based on this

model, we then have

(8.38)

" 1/r M:
fIVRC,LOGIT,B ="\' "\' W ik

~~ ,i.,LOGIT,B Yik
i=\ k=! '¥ i

n, M( (1 +exp(pT,BX~))
=II (pT,BX B ) WikYik

i~1 k~\ exp i

where the estimate pB is obtained using the weighted maximum

likelihood method with the weights corresponding to the weights W,k

from the GWSM.

The estimator yIVRC,LOGIT.B is nonlinear and therefore it is not

simple to calculate its bias. However, if the estimate cD~OGIT,B turns

out to be relatively close to the true response probability <I>~ , this bias

should be small. Approaches often used in practice at Statistics
Canada to estimate the variance of (8,38) are the Jackknife and the
Bootstrap methods. If the sampling design used for the selection of the
sample SA is a stratified multi-stage design, the Jackknife estimator

for the variance of yNRC,WGIT,B has the form (6,9).

8.6 TREATMENT OF UNIT NON-RESPONSE

Unit non-response is a kind of total non-response in which one
or more units in the cluster, but not all units, did not respond, This
type of non-response is particularly important in the context of
indirect sampling because it is assumed that all units of the clusters
from U B identified following the selection of the sample SA are
surveyed. If no response is obtained from certain units of the clusters
identified to be surveyed, we must then try to correct the situation. In
this section, we propose an adjustment to correct unit non-response
based on the use of response probabilities.

Following a particular sample design, we again select a sample
SA containing rnA units from population U A consisting of M A units.

Let JrJ > 0 represent the selection probability of unit j. We assume

that all rnA units in the sample answered the survey questions,
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The target population U B contains M B units. This population

is divided into N clusters, where cluster i contains Mf units. For each

unit} in SA, we identify the units ik of UB that have a non-zero
relationship lj,ik with}, i.e., lj,ik = 1. For each unit ik identified, it is

assumed that a list of the M i
B units of cluster i containing that unit

can be made. Each cluster i represents, by itself, a population Ui
B

where U B=U:I U i
B

• Let OB be the set of n clusters identified by the
. . A

umts J E S .

In carrying out the survey process, we attempt to survey all

units k in clusters i of OB. Unfortunately, for some units in the
identified clusters, we are unable to obtain any data. This is unit non­
response. This situation is illustrated in Figure 8.3. The arrows
indicate that units } = 1 and } = 2 from U A were selected to be part

of SA. Then, clusters i =1 and i =2 are identified to be surveyed. In
cluster i =1, only unit 2 responded. In cluster i =2, there is no
response for unit 3. We assume here that we have a response for at
least one unit in each cluster i in OB . Let SB be the set of responding

r,1

units in identified cluster i, and let M B > 0 be the size of that set.r,1

~---------------

--
--

i=l

i=2

(~
'------------- J

Figure 8.3: Example ofunit non-response
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Let c5(~)k be an indicator variable that takes a value of I if unit k

of cluster i answers the survey questions, and 0 if not. It is assumed

that this variable has a Bernoulli distribution with probability ¢(~)k' In

other words, we assume that each unit k in clusters i of U B has a

probability ¢(~)k of responding to the survey, i.e.,

In addition, for two units k and k' of a cluster i (or of two

different clusters), the indicator variables c5(~)k and c5(~)k' are

independent.

For each of the M: i responding units from clusters i E OB , a

variable of interest y is measured. For the target population U B
, we

try to estimate the total yB =L;~lL~\Yik . It is assumed that we have

the total number of links L~ for each cluster i E OB .

In applying the GWSM, we want to assign an estimation
weight w:RU to each responding unit k of cluster i in OB. The

superscript "NRU" refers to the non-response of the units. To estimate
the total yB for target population U B, we can then use the estimator

(8.39)

The weight Wi~RU can be obtained by drawing a parallel with

the two-stage indirect sampling presented in section 5.2. In other
words, we can look at the unit non-response process as the selection of
a sample SB of M B units obtained from the M B units in each clusterr,l r,l I

i of OB . Hence, the sample S;i of M;i responding units corresponds
o 0

to the sample SiB of size mi
B from section 5.2. Furthermore, the

response probability ¢(~)k of unit k from cluster i corresponds to the

selection probability ff[;)k' Thus, the weight w:{ from the GWSM

obtained in the context of two-stage indirect sampling corresponds to
the expected weight W;~RU • By following steps 1 to 4 of the GWSM

presented in section 5.1, we then obtain for all k E SB and i = l, ... ,n:
rol
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W
NRU =~
ik do B

'I'(i)k

177

(8.40)

where Wi is given by (2.4).

Theorem 5.1 and Corollaries 5.1 and 5.2 hold in the present
context. Following Corollary 5.1, the estimator (8.39) with the weight
(8.40) is unbiased.

There exists a fundamental difference however between the
theory presented in section 5.2 and that related to unit non-response.
This difference lies in the fact that in the context of two-stage indirect

sampling, the probability Jr[:)k is generally known, which

unfortunately is not the case for the response probability (A~)k . Recall

that the estimator yNRU.B is only useful in practice if the value of the

response probabilities ¢(~)k is known for all units k of each set S:i of

responding units. We are going to try to estimate these probabilities so
that we can use the following estimator:

..... 11 M~j

Y
A

NRU.B _ '" '" A NRU
- L.L. W ik Yik'

i=1 k=1

(8.41 )

h A NRU / J..Bwere Wik = Wi 'I'(i)k'

A BTo obtain ¢(i)k' we can use one of the following two

approaches. The first approach involves considering the set
s: =U;~I S:i of responding units as a whole. Then, the response

probabilities (A~)k are estimated without necessarily distinguishing

between the different clusters that, as we recall, consist of
subpopulations Uj

B from U B
, from which the sets S,B; are obtained.

This approach can be described as global. The second approach

involves considering each set S,B; of responding units separately. Then

the response probabilities are estimated within each subpopulation
Ui

B from U B
.

The two approaches differ from one another at the level of

weighting used to estimate the response probabilities ¢(~)k' With the

global approach, an estimate can be obtained for the set of the
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probabilities (A~lk usmg the weights Wik from the GWSM. For

example, the model (8.6) takes the form: (A~i)k = p: .If the estimator

(8.7) based on this model is used, the global approach estimator
'GLOB B

¢(qi)k' is then defined as follows:

(8.42)

where Wqik is the estimation weight coming from the GWSM

(assuming no non-response) for units k of clusters i belonging to
RHGq.

With the individual approach, each subpopulation V i
B

IS

considered individually. Since the GWSM assigns an identical

estimation weight to the set of units in each cluster i from OB, the

estimation of probabilities (A~lk for the responding units of each

cluster i can be done without weighting. For example, the model (8.6)

here takes the form: (A~i)k = p(~ . With this model, we then define ¢(~i)k

as follows:

, M B

",B =RB=~
'f'(qilk qi MB'

ql

(8.43)

In general, the two approaches, global and individual, give
different results. In the context of two-stage sampling, direct or
indirect, it is nevertheless more natural to consider the clusters (or
PSUs) individually, instead of globally. Indeed, because each

subpopulation V i
B is considered as a population itself, the modelling

of response probabilities (A~)k can be performed at the level of each

subpopulation V i
B

• Note that this approach is harmonised with the

assumption of independence from the second stage of the sampling
design mentioned by Samdal, Swensson and Wretman (1992).
According to this assumption, the sampling within a PSU (or cluster)
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must be done independently from the other PSUs. For these reasons,
we are going to focus the discussion on the individual approach.

With (8.43), the estimator yNRU.B given by (8.41) becomes

(8.44)

This estimator is nothing more than a ratio estimator within
each PSU under two-stage sampling. To obtain the bias and the

variance of yNRU,B , it is useful to prove the following theorem.
~

Theorem 8.2: Duality ofthe form of yNRU.B

, ,

i E os, we set 2ik = ~ / L~ for all k E Ui
B

. The estimator yNRU,B given

by (8.41) can then also be written under the form

where

(8.45)

(8.46)

Proof

The proof of this theorem is the same as that for Theorem 5.1

where, in particular, the selection probability Jr/:)k is replaced by the

estimated response probability ¢(~)k • •

The estimator yNRU,B can therefore be written as a function of

units ik from U B
, or as a function ofunitsj from U A

•

~

Corollary 8.1: Bias of yNRU.B

The estimator yNRU,B given by (8.44) is asymptotically

unbiasedfor the estimation of Y~ with respect to the sampling design
and under the assumption ofthe model (8.6).
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Proof

The expectation is first decomposed into EQB[E(yNRU,B lOB)]

where the first expectation is performed with respect to all possible
samples OB from the clusters, and the second expectation IS

conditional on the clusters of OB . From (8.45) and (8.46), we have

'" M
A

. n AlB '"

E(yNRU,B lOB) = L ~ LLlj,ikE(Zik lOB) . (8.47)
j~1 trj i~1 k~1

Now, using (8.43), for i E q, we have

E(2ik lOB) = ~B E(~ lOB) = L~ Ec9qi lOB)
I ql

(8.48)

since the ratio estimator is asymptotically unbiased (Samdal,

Swensson and Wretman, 1992). Note that Yqi =Y; and L:i =L~ for

i E q. Therefore, E(2ik IOB) ~ Y; /L~ = Zik where Zik is defined in

Theorem (4.1).

In fact,

Following the proof of Corollary 5.1, we obtain

" M A
n M B

E(yNRU,B IOB)~,,1L ""I Z
~ A ~~J,lk Ik
i~1 7r j i~1 k~1

Thus, according to Corollary 4.1, E(yNRU,B)~ y B .

(8.49)

(8.50)

•
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~

Corollary 8.2: Variance of yNRU,B

The variance formula, with respect to the sampling design, of

the estimator yNRU,B comingfrom (8.44) is given by

(8.5 I)
\1" .w-' (A A A)

I'I' Jr. - Jr Jr.+ II J J zz
A A J j'

j=1 )'=1 Jrj 7r j'

where

and where /3: is the parameter of the model (8.6) in the context of

unit non-response.

Proof

To get a variance fonnula for yNRU,B, we start from equation
(8.45). As in the proof of Corollary 5.2, we proceed from a conditional
argument.

From equation (8.49) and Corollary 4.2, we directly obtain

~ '11"',-11"'( A _ A A)
T/ E(y~NRU.B In B ) ::::: Jrjt JrjJrt Z.Z.,
I' arnB ll-' - A A I J'

j=1 ./=1 Jr j Jr.t
(8.52)

Now, from (8.45) and (8.46) as well as (8.43), the following
result is obtained:

(8.53)
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I!1'}

(8.55)

Then, the conditional variance of yNRU,B is calculated to obtain

A [J2 [ B B
~ M Q n, L M M""

Var(yNRU,B IOB)=~~LL ~~qi Var M t LYqik

J-I lf J q=1 I~I ql r,ql k~1

(8.54)

Since
" M B M,~qi
Y =_qi "

qi MB L. Yqik
r,qi k=1

is nothing more than a ratio estimator of ~i for i E q , in the context

of a Bernoulli sampling, we have

B II [ J2~ (1- .p )Mqi Y
Var(~i IOB) ~ 'p B ql ~ Yqik - ;;'B = (J":i'

ql k-I ql

From (8.54) and (8.55), and as inspired by the proof of Corollary
5.1, we have

(8.56)

(8.57)

•
The variance (8.51) can be estimated using

, N [ J2~ m' Q, L
Var(yNRU,B) = L, ;,A LL ~~qi cJ:i

I~I I q~1 I~I ql

(8.58)

[
~]2(1 - RB ) M,~qi Y

where ~ 2 ql " ql
(J"qi = (RB)2 L.. Yqik - M B

ql k-I ql

(Cochran, 1977, and Sarndal, Swensson and Wretman, 1992).

(8.59)
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(8.60)

If we have auxiliary variables x~ available for all units of

clusters i from OS , the use of the model (8.8) can be imagined, with

parameter ~~ of dimension pS . With the estimator (8.9) based on this

model, we then have
" n i\1t~i

yNRU,WGIT,B = "\'~ Wi
L.L. ;;"WGIT,B Yik
/=1 k=1 'f/(i)k

where the estimator M is obtained using the unweighted maximum

likelihood method. If the estimate ¢(~~~GIT,B turns out to be relatively

close to the true response probability ¢(~)k' the bias of yNRU,WGIT,B

should be small. Approaches often used in practice at Statistics
Canada to estimate the variance of (8.60) are the Jackknife and
Bootstrap methods. If the sampling design used to select the sample

SA is a multi-stage stratified design, the Jackknife estimator of the

variance of yNRU,LOGIT,B has the form (6.9).

8.7 TREATMENT OF ERRORS IN LINKS
IDENTIFICATION

The problem of links identification is associated with the
situation where it cannot be established if a unit ik from U B is linked

to a unit j from U A
• This problem has already been mentioned by

Sirken and Nathan (1988) in the context of Network Sampling. More
recently, Ardilly and Le Blanc (1999), and Ardilly and Le Blanc
(2001), addressed this problem while using the GWSM to weight a
survey of homeless persons. Errors in links identification are
particularly problematic for the GWSM. Indeed, they can create
serious bias problems in the estimates,

As an example, let us consider the case encountered by Ardilly
and Le Blanc (2001). Let if be the target population of homeless
persons, and let UA represent the set of services (meals, bed, etc.) that
are provided to these homeless persons. Using Indirect Sampling, we
select a sample i of services from UA

, in order to estimate the
population if of homeless persons, Now, for each service selected in
i, we are able to identify the homeless person that used this service.
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However, the GWSM requires to know all services that the identified
homeless person has received, and this is often difficult to get because
these persons are usually difficult to interview. This causes errors in
the identification of the links.

As always, following a particular sample design, we select a

sample SA containing rnA units from population U A consisting of

M A units. Suppose that ;r7 > 0 represents the selection probability of

unit). We assume that all rnA units in the sample answered the survey
questions.

The target population U B contains M B units. This population

is divided into N clusters, where cluster i contains Mf units. For each

unit} in SA, we identify units ik of U B that have a non-zero
relationship I j,ik with}, i.e., lj,ik = I . We assume that we can identify

all relationships lj,ik associated with each unit} of SA. For each

identified unit ik, we assume that we can make a list of the Mi
B units

of cluster i containing that unit. Each cluster i represents, then, by

itself, a population ut where U B
= U;~l U i

B . Let OB be the set of n

clusters identified by units} E SA.

We survey all units k in clusters i of OB . Although we can
measure the variable of interest y for all M i

B units in each cluster i of

OB, for some units k, we fail to determine whether there is a
relationship between those units k and a unit} of U A

• In other words,

for some units k of a cluster i E OB, it is impossible to determine
whether I j,ik = 1 or lj,ik = O. Note that, based on interviewing, we

know the links I, 'k for all the units J' from i. Hence, we know I, 'k
j,l j,l

for j E SA, but we do not know all the lj,ik for j E n A1B where

nAIB ={j E VA 13i E nB and Lj,i > O} . The set n A1B contains the

units} from UA that have a link to the clusters in n B that were

identified at the start by the sample i. Let nAlB be the set of units

from nAIB for which the links have been identified. We can see that

SA is a subset of nA1B
, which is itself in general a subset of n A1B

•

Note that it can happen that some null links I j,ik = 0 are identified as

being non null, but this seldom happens in practice. Most of the time,

some links are missing, which makes nAIB a subset of nAIB
•
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The problem of links identification is illustrated in Figure 8.4.

The arrows indicate that units j =land j =2 from U A were selected

to be part of SA. For each of the units j =land j =2, the

relationships with the target population US can be established. Then,
the clusters i = 1 and i = 2 are identified to be surveyed. In cluster

i =2, the relationship between unit 4 of US and unit j =3 cannot be

established, even if the relationship between this unit 4 and unit j = 2

is known. Still in the cluster i = 2, the relationship between unit 3 of

US and unit j = 3 of U A cannot be established.

Let LS
. be the total number of links identified between cluster ir,l

and population U A
• Note that in general L~,i'::;' L~, In addition,

because we are assuming that we can identify all relationships I j,ik

associated with each unit j of SA, we have L~ i > a for all clusters i

in Os.

j k

i=l

i=2

Figure 8.4: Example ofthe problem oflinks identification
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By using only the total number LB. of links found, we
r,1

overestimate the total yB. This can be seen from the expression of yB

given by Corollary 4.3. Indeed, if L~ is replaced by L~,i in (4.16), we

obtain

Af' t N L
yNRL,B = I-J_·IY~

. JrA. 1 LB
1=1 j 1=1 r,i

(8.61 )

where the superscript "NRL" stands for non-response within the links.

Since L~,i ~ L~, we have directly y!VRl.B ::::: yB • Likewise,
~ NRL B ~ B B ~ VRL B BE(Y ')::::: E(Y ) = Y and thus Y' . is a biased estimator of Y .

It is important to note that there is no problem in obtaining the
quantity Lj,i in (8.61) because it is assumed that all the relationships

lj,ik associated to each unit} of SA can be identified. Looking at

(4.16) (or (8.61)), it is seen that this quantity must be known only for

the units) of SA.

There are a number of conceivable solutions to correct the
problem of links identification. They are presented in the following
sections.

8.7.1 Record linkage

If we have access to two files A and B containing VA and vB,
respectively, we can try to obtain all the links between these two

populations. One way to obtain the values for I j,ik is to perform a

record linkage. The purpose of record linkage is to link the records of
the two files A and B. If the records contain unique identifiers, then
the matching process is trivial. Otherwise, the linkage process needs to
use some probabilistic approach to decide whether two records,
coming respectively from each file, are linked together or not. With
this linkage process, the probability of having a real match between
two records is calculated. Based on the magnitude of this probability,
it is then decided whether they can be considered as really being
linked together or not. For more details on record linkage, see section
9.1, as well as Fellegi and Sunter (1969) and Lavallee and Caron
(2001).
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If obtaining the values lj,ik reveals to be too difficult because,

for example, of the size of the files A and B, one can restrict the

record linkage to the units k from the clusters i in Q B and the
population VA. This is sufficient because, as mentioned earlier, we

already know the l··k for J' E SA , but we do not know all the l··k forJ,I J,1

the set Q AlB containing the units j from VA that have a link to the

clusters in QR.

One can also use record linkage to try evaluating Lj,i between

the clusters i in QR and the population VA. As we can see from (8.61),

it is sufficient to obtain the quantities Lj,i' rather than the individual

links lj,ik ' for using the estimator YB •

8.7.2 Modelling

It is possible to estimate the probabilities rPj,ik of a link

between the units j and ik by using a logistic-type model with vectors

x1and x ~ of auxiliary variables. Recall that nAlB is the set of units

from QAIB for which the links have been identified. With the
~ ~ ~

estimated probabilities rPj,ik ' we can produce estimates lj,ik = rPj,ik for

the units j contained in the set Q AlB \ nAlB. This can be seen as

imputing links lj,ik for these units (see Ardilly and Le Blanc, 2001).

Note that it is important to make maximum use of all constraints and
information that would be associated with the values for l··k duringJ,1

modelling,
~

With lj,ik' we obtain

(8.62)

and then

(8.63)
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It is also possible to concentrate on L~ as a whole, without

reference to the population if. If we have auxiliary variables X~

available for all clusters i from OB , the approach is then to use a log­

linear model of the type log(L~) = ~ T,BX~ , where ~B is a column

vector of parameters of size pB. The estimate pB of ~B can be

obtained using the unweighted maximum likelihood method (see

Bishop, Finberg and Holland, 1975). With PB , we compute

i~GLlN,B =exp(pT,BX~) (8.64)

Using (8.63) (or (8.64)), we then construct the estimator

, M,I t N L
yNRL,B ="'_,_i '" Y~ .

~ A ~ I 'B
j=1 Jr i ;=1 Li

(8.65)

It is possible to calculate the asymptotic bias of (8.65) by using
Taylor linearisation. The linearised estimator is then given by

, M' t N L
yNRL,B ==: "'_J_' '" Y _.I_'J_(2LB _ iB ).

- ~ A ~ I (LB)2 I I
j=) Jr j ;=) ;

(8.66)

Let EsO denote the expected value carried out in relation to

all possible samples of SA. To calculate the asymptotic bias of the

estimator yNRL,B , we proceed as follows from (8.66):

(8.67)

(8.68)
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The last line follows directly from Corollary 4.1. The unbiased

nature of the estimator yNRL,B depends, however, on the unbiased

nature of the estimator of L~. In practice, it is not easy to obtain an

unbiased estimator of L~ .

For the survey of homeless persons, Ardilly and Le Blanc
(2001) suggested making an assumption of regularity to impute some
relationships lj,ik to I, which is actually the same as modelling the

quantity L~. Ardilly and Le Blanc (2001), however, have questioned

if the assumption of regularity may not be satisfied in practice.

Approaches used at Statistics Canada to estimate the variance
of estimators such as (8.65) are the Jackknife and the Bootstrap
methods. If the sampling design used for the selection of the sample

SA is a stratified multi-stage design, the Jackknife estimator for the
variance of(8.65) has the form (6.9).

8.7.3 Estimating the proportion of links

Another way of solving the problem of links identification is to
- B

concentrate on the quantity B;,; = Lj,i / L j , rather than on the number

of links L . .. In order to make the estimator (4.16) unbiased, we need
},I

I
MA

-only to ensure that . B.. =1 (see Ernst, 1989, as well as Lavallee
J=I J,I

and Deville, 2002). Thus, it is not necessary to know all values of Lj,i

for i E n AlB, but simply the values Bi,i for i E SA, making sure that

MA
-~ B =1.

L..Jj=1 J,I

It is important to note that B.. can be defined in a general way,
},I

without reference to the links L . ., As in section 4.5, some B.. can be
},I J,I

defined arbitrarily by keeping I:;Bj,i =I , which means that we can

also use the unbiased estimator:

_ B M
A t; N_

y =I-A IBj,iY; (8.69)
j=1 J[j i=1



190 Indirect Sampling

Of course, the precision of the estimator (8.69) will be subject

to the choice of the values e... As an application, this approach was
1,/

used by Bankier (1983) to produce statistics from tax data.

8.7.4 Calibration

Another possible solution to correct the overestimation of the

estimator f'VRL,B given by (8.61) is calibration. If we have auxiliary

variables x~ correlated with the variable of interest Yik' it is indeed

possible to correct, at least in part, the overestimation of the estimator

YNRL,B. By calibrating the estimator yNRL,B on the known total

XB= I:l I;:~ x~ , since this known total is correlated with the total yB,

a part of the overestimation of yNRL,B wiJI be corrected, Note that the

more the variables x~ and Yik are correlated, the more efficient the

correction of the overestimation will be.

Let Z;RL = I;~I Y;L/.i / L~.i ' The equation (8.61) then becomes:

M A

yNRL = I t/
A
zrL .

/=1 Tr j

(8.70)

The calibration estimator yNRL,CAL,B =,III' CAL,A ZNRL
L.. I =1 WI )

associated with the GWSM in the presence of non-response within the
links is determined from the formulation (7,48). An estimator of the
form (7,50) is obtained where the variable Z/ is replaced by Z~RL .

While calibration offers an attractive solution to the problem of
links identification, it depends on the availability of auxiliary variables

x~ correlated with the variable of interest Yik' which is not always the

case in practice. The best solution is still to measure L~ exactly or,

failing that, to obtain an estimate L~ that is as close as possible to L~ .

8.7.5 Proportional adjustments

Xu and Lavallee (2006) proposed to solve the problem of links

identification by directly estimating Lf using a proportional

adjustment,
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Let O:IB = {j E VA liE OB and Lj,i > O} and let M;AIB be

the number of units} in O:IB. The set O:IB contains the units from

UA that have a link to the cluster i in OB. Note that, in general, we
nAIB nAIB n. ~N AlB A· ,

have I>l.; rhl.;, *- VJ, and thus, L...;=1 M; ~ M . SInce for a given

cluster i in OB, L j ,; are non null only for the units} of the set O:IB,

~MA \,fAIB

we directly obtain L~ = L...
j

=1 L j ,; =I~~I L/,;' Finally, we have

MAIB < LB
1 - l'

The set O:IB contains the units} from UA that have a link to

the cluster i, whether they are in the sample s A or not. Let us define

S;AIB = {j E SA liE OB et L/,i > O} and let m;AIB be the number of

, " AlB Th AlB 'h 'fi A h I' k dumtsJ In Si . e set s; contaInS t e umts rom stat are In e

to the cluster i. We can see s;AIB as a "sample" of O:IB. Let the

"selection probability" be TC~;B =P(j E s;AIB liE O:IB). It should be

noted that TCAI;B is a function of TC
A

. Accordingly, we can define the
J J

following estimator for L~ :

m AIB AlB
iPROP,B =~lL ..

I L... AlB J,I
j=1 TC jl;

(8.71)

where t~;B =1 if j E s;AIB, and 0 otherwise. It is clear that

ECi;ROP,B) =I~:IB L/,; =L~ and thus, the estimator (4.16) used

with (8.71) is asymptotically unbiased for the estimation of Y B •

One of the difficulties in using the estimator (8.71) involves

calculating the probabilities TC~;B. If the TC/ are relatively

h h A AlB AlB / MAIB J:AIB h'omogenous, t en we can use TC /1; = m; ; = ; . T IS

approach allows us to focus not on the links themselves and the

quantities L/.; and L~, but solely on the units} from UA that are

involved in the survey of the units i in OB.
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Unfortunately, M i
AIB is often unavailable because of the error

in observing the links, which makes it difficult to use the estimator

(8.71). In this case, we can try to estimate L~ by global proportional

adjustment. For this adjustment, the variations between the clusters i

from VB are ignored. Thus, SA is considered to be a "sample"

of nAIB and the "selection probability" is defined as
AlB P(' A I' nAIB) N h AlB, .C, • f AJr) = } E S } E ::. ~ , ote t at Jr) IS a lunctlOn 0 Jr).

Accordingly, in order to estimate L~ , we can use

mi'B tAIB
iGPROP,B ="_,_I-L

I L..J AlB J,I
)=1 Jr)

(8.72)

As for the estimator (8.71), one of the difficulties in using the

estimator (8.72) is obtaining Jr AlB, Here, we can try to use the
J

, t' A AlB A / MAIB fAIB I t' MAIB (orapproxlma IOn Jr) = m =. n prac Ice,

f AlB) may be easier to obtain than M/IB (or ;; AlB ).

It is advisable to make maximum use of all constraints and

information that would help to calculate the values of MiAIB or M AlB.

For example, in the context of longitudinal surveys of individuals
within households, one can rely on the fact that the household
composition is often relatively stable through time, As in section 6.3,
UA is the population of individuals at the starting wave, and if is the
target population of individuals within households at a later wave.
Letting the clusters i correspond to the households, and assuming that
the household composition is relatively stable through time, we can

then assume that MiAIB:::::: M i
B

. For further details, see Xu and

Lavallee (2006).

In the case where some links between S A and VB (or between

nB and V A) are unknown or incorrectly identified during the survey

process, it can be appropriate to select a subsample from SA, and to
conduct an assessment of the links for this subsample.

The method is as follows: We select a subsample S'A of m'A

units from SA, according to some sample design, in order to get the

exact links for this subsample. Assuming that the subsample s' A leads

us at the end to M' AlB units from V A , we can estimate the selection
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(8.73)

probability ;rr1 1B =P(j E SA I j E gAIB) for the units} of the sample

A . ~AIB 'A/M'AIB W h h'S ,usmg;rr j = m . e t en compute t e estImate

iSUBS.B = M'A! B f, L
I IA L.. j,l

m j~l

In general, the different proportional adjustments proposed in
this section offer good alternatives to decrease the bias of (8.61) due
to the problem of links identification. Using data from SLID, Xu and
Lavallee (2006) found that all the proposed proportional adjustments
perform well both for reducing the bias and the variance of cross­
sectional estimates of totals. Hurand (2006) obtained the same results
with agriculture data similar to the ones described in sections 7.4.4
and 9.3.1. Although all methods were performing well, Hurand (2006)
found that the method based on subsampling provided the best results.



CHAPTER 9

GWSM AND RECORD LINKAGE

Data from different sources are increasingly being combined to
augment the amount of information that we have. Often, the databases
are combined using record linkage. When the files involved have a
unique identifier that can be used, the linkage is done directly using the
identifier as a matching key. When there is no unique identifier, a
probabilistic linkage is used. In that case, a record on the first file is
linked to a record from the second file with a certain probability. Then, a
decision is made on whether this link is a true link or not. Note that this
process usually requires a certain amount of manual resolution.

We again consider the production of an estimate of a total of one
target clustered population U B when using a sample SA selected from

another population U A that is linked to the first population. However, we
assume that the two populations have been linked together using
probabilistic record linkage. Note that this type oflinkage often leads to a
complex linkage between the two populations.

In this chapter, we will try to answer the following questions:

a) Can we use the GWSM to handle the estimation problems related to
populations linked together through record linkage?

b) Can we adapt the GWSM to take into account the linkage weights
issued from record linkage?

c) Can the GWSM help in reducing the manual resolution required by
record linkage?

d) If there is more than one approach to use the GWSM, is there a
"better" approach?

It will be seen that the answer is clearly yes to (a) and (b).
However, for question (c), it will be shown that there is unfortunately a
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price to pay in terms of an increase to the sample size, and therefore to
the collection costs. For question (d), although there is no definite
answer, some approaches seem to generally be more appropriate.

9.1 RECORD LINKAGE

The concepts of record linkage were introduced by Newcome et
al.. (1959), and formalised in the mathematical model of Fellegi and
Sunter (1969). As described by Bartlett et al. (1993), record linkage is
the process ofbringing together two or more separately recorded pieces
of information pertaining to the same unit (individual or business).
Record linkage is sometimes called exact matching, in contrast to
statistical matching. This last process attempts to link files that have few
units in common. In this case, linkages are based on similar
characteristics rather than unique identifYing information. To learn more
about statistical matching, see Budd and Radner (1969), Budd (1971),
Okner (1972) and Singh et al. (1993). In this chapter, we will restrict
ourselves to the context of record linkage. However, the theory presented
can also be used for statistical matching.

Suppose that we have two files A and B containing characteristics

respectively relating to two populations VA and VB. The two
populations are related in a way. They can represent, for example,
exactly the same population, where each of the files contains a different
set of characteristics of the units of that population. They can also
represent different populations, but naturally linked to one another. For
example, one population can be one of parents, and the other population
one ofchildren belonging to the parents, as illustrated in Figure 1.2. Note
that the children usually live in households that can be viewed as
clusters.

Another example is one of the creation of Statistics Canada's
Whole Farm Database. This example was presented before in section
7.4.4. The first population is a list offarms from the Canadian Census of
Agriculture, and the second population is a list of taxation records (or
income tax reports) from the Canada Revenue Agency (CRA). In the first
population, each farm is identified by a unique identifier called the
FarmID and some additional variables such as the name and address of
the farm operators that are obtained from the Census questionnaire. The
second population consists of tax reports of individuals having declared
some form of agricultural income. These individuals live in households
(or clusters). The unique identifier on those records is a corporation
number or a social insurance number, depending on whether or not the
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business is incorporated. Note that each income tax report submitted to
CRA contains similar variables (name and address ofrespondent, etc.) as
those obtained by the Census of Agriculture.

The purpose of record linkage is to link the records of the two
files A and B. If the records contain unique identifiers, then the matching
process is trivial. Unfortunately, often a unique identifier is not available
and then the linkage process needs to use some probabilistic approach to
decide whether two records, coming respectively from each file, are
linked together or not. With this linkage process, the probability of
having a real match between two records is calculated. Based on the
magnitude of this probability, it is then decided whether they can be
considered as really being linked together or not.

Formally, we consider the product space A x B from the two files

A and B. Let j indicate a record (or unit) from file A (or population U A )

and k a record (or unit) from file B (or population Us). For each pair
(j,k) of Ax B , we compute a linkage weight reflecting the degree to
which the pair (j,k) has a true link. The higher the linkage weight is, the
more likely the pair (j,k) has a true link. The linkage weight is commonly
based on the ratio of the conditional probabilities of having a match u
and an unmatch U , given the result of the outcome of the comparison

l1,jk of the characteristic c; of record j from A and k from B,

C; = 1, ... , p. Thus, the linkage weight can be defined as follows:

'.. {P(U. k I I1 I
.
k 112k

...11 '. k)}B = log ) J ) 1.1

Jk 2 P(Uik 1111ik l1 2jk .••11 Pik ) (9.1)

= e1jk +e2jk + ... +epik + e. ik

. {P(11 ·k IU ..k )}
where B,jk = log2 P(I1') I-.!.. )

,)k uJk

{
P(U k)}log __J_

2 P(u
k

) •
)

for r = 1, ... , p, and B·.
k

=
." .)

The mathematical model proposed by Fellegi and Sunter (1969)
considers the probabilities ofan error in the linkage ofunits j from A and
k from B. The linkage weight is then defined as
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(9.2)

where (};;: = log2 ({fJ,jk /qJ,jk) if characteristic c; of pair O,k) is linked,

and (}\~: = log2 ((1- (fJ,jk ) / (1- qJ,jk )) otherwise. The expressions used

here are (fJ,jk =P(L1,jklujk) and qJ,jk =P(L1;jklujk)' Moreover, it is

assumed that the p comparisons are independent.

The linkage weights given by (9.1) are defined on the set 9t of

real numbers, i.e., Bjk E] - 00, +00[. When the ratio of the conditional

probabilities ofhaving a match u jk and an unmatch u jk is equal to 1, we

get Bjk = 0. When this ratio is close to 0, Bjk approaches -00. It can

however be practical to define the linkage weights on [0, +00[. This can

be achieved by taking the antilogarithm of Bk' We then obtain the
J

following linkage weight (}jk :

() = P(ujk I L11jkL12jkoo·L1l'jk)

jk P(ujk I L1 1jk L12jk 00 .L1l'jk )

Note that the linkage weight () k is equal to °when the
J

conditional probabilities of having a match u jk are equal to 0. In other

words, we have (}jk =°when the probability of having a true link for

0, ik) is zero.

Once a linkage weight (}jk has been computed for each pair 0, k)

of Ax B , we need to decide whether the linkage weight is sufficiently
large to consider the pair O,k) as being linked. For this, a decision rule is
generally used. With the approach of Fellegi and Sunter (1969), we
choose an upper threshold (}High and a lower threshold (}LOI} to which each

linkage weight () k is compared. The decision is made as follows:
J

1
link if (}jk ~ (}High

D(j,k)= possiblelink if(}Low<. (}jk<(}High (9.3)

non-link if (}jk ~ (}Low'

The lower and upper thresholds (}Low and (}lIigh are determined by

error bounds that are determined prior to the record linkage process,
based on false links and false non-links. When applying the decision rule
(9.3), a manual resolution is necessary to make a decision concerning the
pairs whose linkage weights are between the lower and upper thresholds.
This is generally done by looking at the data, and also by using auxiliary
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information. In the agriculture example, variables such as date of birth,
address and postal code, which are available on both files, are used for
this purpose. The application ofdecision rule (9.3) leads to the definition
ofan indicator variable I jk such that Ijk = 1 if the pair 0, k) is considered

to be a link, and 0 otherwise. Note that the decision rule (9.3) does not
prevent the existence of complex links such as those illustrated in
Figure 2.1.

By using an automated system and by applying a probabilistic
method, the record linkage process can contain some errors. This
problem has been discussed in several papers, namely Bartlett et al.
(1993), Belin (1993) and Winkler (1995). Linkage errors are out of the
scope of this book, and thus will only be briefly covered in certain
occasions in this chapter.

9.2 GWSM ASSOCIATED WITH RECORD LINKAGE

Let U A be the population containing M A units and U B be the

population consisting of N clusters where each cluster i contains Mi
B

units. With record linkage, linked are established between the

populations U A and U B using a probabilistic process. As mentioned
previously, record linkage uses a decision rule D such as the one given
by (9.3) to decide whether or not there is a link between unit} from U A

and unit ik from U B • Once the links are established, we then have two

populations U A and U B linked together and where the links are
identified by the indicator variable lj,ik' Recall that the decision rule

(9.3) does not prevent complex links from being obtained.

Although the links can be complex, the GWSM can be used to

estimate the total yB from population U B using a sample SA obtained

from population U A
• Therefore, the answer is yes to question (a)

expressed at the beginning of this chapter. The GWSM used with
populations U A and U B linked together by record linkage with decision
rule (9.3) will be called, in the rest ofthe chapter, the classical approach.

It should be noted that these estimates obtained by the application
of the GWSM can be biased if Constraint 2.1 presented in chapter 2 is

not satisfied. In this case, estimator (2.1) underestimates the total yB. To
resolve this problem, a practical solution is to group two clusters so that
at least one non-zero link Ij,ik is obtained for each cluster i. This solution

generally requires manual resolution. Another solution is to create, or
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impute, a link by randomly choosing a link within the cluster. The link
with the largest linkage weight ()j,ik can also be chosen, Note that for a

unit) from U A
, there may only be links Ij,ik =0 with all units ik from

Us, However, this is not a problem since we are only interested in the

coverage of the target population Us, and not the one of U A
,

Now, with the classical approach, the use of the GWSM is based
on links identified by the indicator variable I··k , Is it necessary to/,1

establish whether or not there is positively a link for each pair (j, ik)?
Would it be easier to use the linkage weights ()j,ik (without decision

rules) to estimate the total y S ? These questions lead to question (b), that
is, if it is possible to adapt the GWSM to take into account the linkage
weights issued from record linkage, The answer to this question is yes, as
it was shown in section 4,5 that it was possible to extend the use of the
GWSM to weighted links,

Recall that by presenting the WSM in the context oflongitudinal
surveys, Ernst (1989) proposed the use of constants a in the definition

of estimation weights, Setting e·k =(Jk / (Jt
B

, where ()B =
/J lJ I

I~; L:~~ () ,ik ,a version of the GWSM was obtained in section 4,5,

constructed from these constants, Coming back to the context of
longitudinal surveys, we saw in section 3,3 that Kalton and Brick (1995)
looked at the determination of optimal values for the constants a of
Ernst (1989) by looking to minimise the variance, They concluded that:
"in the two-household case, the equal household weighting scheme
minimises the variance of the household weights around the inverse
selection probability weight when the initial sample is an epsem l one",
They also added that: "in the case ofan approximately epsem sample, the
equal household weighting scheme should be close to the optimal, at
least for the case where the members of the household at time t come
from one or two households at the initial wave", Recall that if SA is a
sample of persons, considering the fact that the persons represent
households of size I, the equal weighting of households and the equal
weighting ofpersons are equivalent, which corresponds to the fair share
method describe in section 3,2, This suggests that, for the version of the
GWSM described in section 4,5, we should be close to the optimal values
by setting the values of the constants a to zero for some units and to an

I "epsem" stands for equal probability selection method,
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equal positive value for all other units of the cluster. As with

aj,ik = lj,ik / L~ , the desired types ofvalues are directly obtained, and the

classical approach should then produce variances close to the minimum
for the estimate ofthe total yB. This result was proved in a formal way
in section 4.6.3 for the case of simple random sampling.

In the present section, three different approaches are given where
the GWSM uses the linkage weights Bj,ik . The first approach is to use all

the non-zero links (i.e., with Bj,ik > 0) identified through the record

linkage process with their respective linkage weights. The second
approach is the one where we use all the non-zero links with linkage
weights above a given threshold BHil;h' The third approach consists of

randomly choosing the links proportionally to Bi,ik'

9.2.1 Approach 1: use all non-zero links with their
respective linkage weights

With the use of all non-zero links with the GWSM, it can be
justified to give more importance to the links that have a larger linkage
weight Bj,ik' compared to those that have a small linkage weight. By

definition, for each pair 0, ik) obtained from crossing populations U A and

U B
, the linkage weight Bi,ik reflects the tendency of the pair (j,ik) to

have a true link. In this case, instead of using the indicator variable lj,ik

identifying whether or not there is a link between unit) from U A and

unit k ofcluster i from U B , we can use the linkage weight Bj,ik obtained

in the first steps of the record linkage process. Note that this implies the
elimination of the manual resolution since no decision rule is used.

The application of this approach assumes, of course, that the file
with the linkage weights is available. In practice, the only file available is
often the final file, once the linkage process ends, after manual
resolution. In this case, the linkage weights are not generally available
(only the indicator variables 0,ik remain) and the three proposed
approaches are then no longer pertinent.

For each unit) selected in SA, we identify the units ik of U B that
have a non-zero linkage weight with unit), i,e., Bi,ik > O. Let

ORL.B = {i E UBI ~) E s A and Bj,i > O} with ()j,i =L:: ()j,ik be the set of

nRL clusters identified by the units) E SA , where "RL" stands for record
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linkage. Note that because we use all linkage weights greater than zero,

we have nRL ~ n , where n is the number of clusters identified by the
classical approach.

To estimate the total yB of the population U B
, one can use the

estimator

(9.4)

where Wi~L is the estimation weight obtained from the GWSM. This

weight is obtained by directly replacing the indicator variable lj,ik with

the linkage weight ()j,ik in the steps ofthe GWSM described in chapter 2.

The following steps are then obtained.

Steps ofthe GWSMfor approach 1

Step 1: For each unit k of the clusters i from nRL,B, the initial weight

w:tL is calculated, that is:

MA

,RL" tj
W ik = L. B j,ik -A

j~1 "j

(9.5)

where t j = I if ) E SA, and 0 otherwise. Note that a unit ik having no link

with any unit} from U A automatically has an initial weight ofzero.

Step 2: For each unit k of the clusters i from nRL,B , we calculate

B iW A

B ik = L:j~l Bj,ik '

Step 3: The final weight W i
RL is calculated:

(9.6)

Step 4: Finally, we set Wi~L = wtL for all k E U i
B

,

It should be noted that because they are present in the numerator
and the denominator, the linkage weights do not need to be between 0
and 1. They just need to represent the likelihood ofhaving a link between

two units from populations U A and U B .It is also interesting to see that
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. h ()~ () I(}B h BB IM'IMi"B b .WIt ' k = "k " were ' = 'k' we 0 tam anJ.I J,I I 'j~1 k~1 1.1

equivalent formulation to the one coming from the generalisation of the
estimation weight described in section 4.5.

With the classical approach, each cluster i of VB is assumed to

have at least one non-zero link with a unit) of V A • This constraint is

translated here into the need of having, for each cluster i of VB ,at least

one linkage weight Bi,ik greater than zero with a unit) of VA. In theory,

it is not guaranteed that this constraint will be satisfied following the
record linkage process. For example, it is possible that for a cluster i of

VB, there is no linkage weight Bj,ik greater than zero. In that case, the

estimation weight (9.6) underestimates the total yB. To solve this
problem, the same solutions proposed in the context of the indicator
variables I"k can be used. That is, two clusters can be collapsed, for/,1

example, in order to get at least one linkage weight Bj,ik greater than zero

for the new cluster. Unfortunately, this solution may require manual
intervention, which has been avoided up to now by not using a decision
rule. A better solution is to impute a link by choosing one link at random

within the cluster. Then, a small value Bi,ik > 0 can be assigned

arbitrarily for the chosen link.

Following the same steps as those from the proofofTheorem 4.1,

the estimator yRL,B given by (9.4) can be rewritten in the following way:

,11" t N ,11;' ,11' t
yRL,B = "_1_'"" B ' ZRL = "_._i Z,RLL... A L...L... 1,ik ,k L... A /

j~1 Jr j i~1 k~1 i~1 Jr j

(9.7)

where Zi~L =L IB/ for all k E V i
B

, and BiB =I;~~ I~; Bj,ik .

With this last expression, it can be shown that the estimator yRL,B
is unbiased using the same development as Corollary 4. L Finally, by

following Corollary 4.2, the variance of yRL,B is given by

,11' ,11" ( A _ A A)

Var(yRL,B) = ""~Y~ZRLZR.L. (9.8)
L...L... A All
i~lj'~l Jrj Jrj'

To estimate the variance (9.8), one ofthe two estimators (4.12) or
(4.13) can be used by replacing the variable Z with ZRL.

1 1
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9.2.2 Approach 2: use all non-zero links above a given
threshold

The use of the GWSM for all non-zero links might require the

manipulation of very large files of size M A x M B
• This can occur if

almost all pairs (j,ik) between populations U A and U B have non-zero
linkage weights Bj,ik' In practice, even if this happens, it is strongly

possible that most of these linkage weights will be very small or
negligible. Even ifthe linkage weights are not non-zero, the links coming
from these small linkage weights are probably not true. Indeed, looking
at equation (9.2), we note that if Bj,ik is very small, the conditional

probability that there is a link between) and ik is then much smaller than
the conditional probability that there is no link. In that case, it might be
useful to only consider the links with linkage weights above a given
threshold BHigh .

As with approach 1, we no longer use the indicator variables lj,ik

identifying the links, but instead, we use the linkage weights Bi,ik

obtained in the first steps of the record linkage process. However, with
approach 2, we restrict ourselves to the linkage weights greater than or
equal to a threshold BHigh • The linkage weights below the threshold BHigh

are considered as zeros. We therefore define the following linkage
weight:

(9.9)

For each unit) selected in SA, we identify the units ik of U B that

have Bj~~T > O. Let ORLT,B = {i E U B 13) E SA and B;'7T > O} with

Bf,7T =I:: Bf,~T be the set of the nRLT clusters identified by the units

) E SA , where "RLT" stands for record linkage with threshold. Note that

nRLT
::::; nRL

• On the other hand, we have n RLT
= n if the record linkage

between VA and U B is done using the decision rule (9.3) with

BHigh = BLow'

To estimate the total yB of population U B
, we can use the

estimator
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(9.10)

where w~LT is the estimation weight obtained from the GWSM. This

weight is obtained by directly replacing the linkage weight (}j,ik with the

linkage weight (}j~~: given by (9.9) in the steps of the GWSM described

in section 9.2.1.

It is again interesting to see that with e/i;T = (}~~T / (}iRLT,B , where

(}/LT,B = I;:I:: (}:'~T ,a formulation is obtained that is equivalent to

the one coming from the generalisation of the estimation weight
described in section 4.5.

By definition, the number of zero linkage weights (}j~~: will be

greater than or equal to the number of zero linkage weights (}j,ik' The

constraint that each cluster i of V B must have at least one linkage weight

(}RLk
T greater than zero with a unit) of VA will thus be more difficult to

j,'

satisfy. To solve this problem, the same solutions proposed in section
9.2.1 can be used. For example, two clusters can be collapsed in the same

way to get at least one linkage weight (}j~~kT greater than zero for each

cluster i of ORLT,B. Unfortunately, this solution can require manual
intervention, which has been avoided up to now by not using any
decision rule. A better solution is to impute a link by randomly choosing

a link within the cluster. A value of e;;: equal to the threshold (}High can

then be assigned to this link.

As in section 9.2.1, the estimator yRLT,B given by (9.10) can be
rewritten in the following way:

M' N Mi" M A

yRLT,B ="~"" (}RLT ZRLT ="~ZRLTL.. A L..L.. j,lk lk L.. A j ,
j=1 1rj i=1 k=1 1=1 1rj

(9.11 )

where ZRLT = y. /(}RLT,B for all k E VB and (}RLT,B =~MiB ~MA (}RLT
,k I I I' I L...k=lL...j~l j,lk '

With (9.11), the estimator yRLT,B can be proven to be unbiased
using the same development as Corollary 4.1. Finally, by following

Corollary 4.2, the variance of yRLT,B is given by
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(9.12)

To estimate the variance (9.12), one of the two estimators (4.12)

or (4.13) can be used by replacing the variable Zi with Z;LT .

9.2.3 Approach 3: choose the links randomly

In order to avoid making a decision on the links between units j
from U A and units k of clusters i from U B , one can decide to simply
choose the links at random from the set of all links with linkage weights
B k greater than zero. For this, it is reasonable to choose the links with

} .f

probabilities proportional to the linkage weights. This can be done using
Bernoulli trials where, for each pair(j,ik), we can decide to accept a link
or not by generating a random number vi,ik ~ U(O, 1) that is then

compared to a quantity proportional to the linkage weight Bj,ik •

In the point of view of record linkage, this approach cannot be
considered as optimal. Indeed, when using the decision rule (9.3) of
Fellegi and Sunter (1969), the idea is to minimise the number of false
links and false non-links. The link li,ik is accepted only if the linkage

weight B iA is large (i.e., Bj,ik ~ B lligh ), or if it is moderately large (i.e.,

BLow < Bj,ik < B High ) and has been accepted after manual resolution. The

random selection oflinks using Bernoulli trials can lead to the selection
of links that would have not been accepted through the decision rule
(9.3), even though the selection probabilities are proportional to the
linkage weights. Following the Bernoulli trials, some of the links

accepted between the two populations U A and U B can be false, and
some other links may have been falsely rejected. The linkage errors
therefore tend to be higher if the Bernoulli trials are used. However, in
the present context, the quality of the links can be considered as a

secondary interest. The problem here is to estimate the total yB using the

sample SA selected from U A , and not to evaluate the quality ofthe links.

In section 9.3, the precision ofthe estimates of yB will be measured with
respect to the sampling variability of the estimators, by conditioning on
the linkage weights Bi,ik . Note that this sampling variability will take

into account the random selection ofthe links, but not the linkage errors.
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To reduce the number ofnon-zero links, the present approach is therefore
considered as being of potential interest, even if the quality of the
resulting links can be questionable.

The first step before performing the Bernoulli trials is to
transform the linkage weights in a way such that they are contained in the
[0, I] interval. By looking at the definition (9.1), it can be seen that the

linkage weights B/,ik correspond in fact to a "logit" transformation (in

base 2) of the probability P(Uj,ik I f'...1/,ik f'...2/,ik oo.f'... Pj,ik) . In the same way,

the linkage weights Bj,ik given by (9.2) depend only on this same

probability. Hence, one way to transform the linkage weights is simply to
use the probability P(Uj,ik I f'...lj,ik f'...2j,ik oo.f'... P/,ik) . From (9.1), we obtain this

result by using the function B= 2iJ /(1 + 2iJ
) and, from (9.2), by using

B= B/(1 + B). Ifthe linkage weight are not obtained through a definition

similar to (9.1) or (9.2), another possible transformation is to simply
divide each weight by the maximum value BMu, =
max(B k IJ'=I,oo.MA,i=l,oo.,N,k=l,oo.,M

B
). Note that we assume.1,1 I

here that the linkage weights are all greater than or equal to zero, which
is the case from definition (9.2), but not necessarily in general.

Once the adjusted linkage weights B/,ik have been obtained, we

generate for each pair (j,ik) a random number V/,ik ~ V(O,I). Then, we
- -- -

assign the value I to the indicator variable l/,ik if Vj,ik ~ B/,ik , and the

value°otherwise. This process provides a set of links similar to the ones
used in the classical approach, with the exception that now the links are
determined randomly and not through a decision process like (9.3). Note

- - -
that since E(l/,ik) =B/,ik' the sum of the adjusted linkage weights Bj,ik

corresponds to the expected total number of links L from the Bernoulli
trials, i.e.,

(9.13)

With the present approach, by randomly selecting links, it is
strongly possible that Constraint 2.1 related to the GWSM will not be
satisfied. To correct this problem, a link can be imputed by choosing the
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link with the largest linkage weight Bj,ik within the cluster, T~ link can
also be selected randomly with a probability proportional to Bj,ik '

For each unit} selected in SA, we identify here the units ik of UB

- - -- -B B A -
that have Ij,ik =1, Let n ={i E U 13} E sand Lj,i > O} where

Lj,i = I:: lj,ik be the set of the ii clusters identified by the units

} E SA, Note that ii:s nRL
• Unfortunately, in contrast to n RL and nRLT

,

the number of clusters ii is hardly comparable to n, the number of
clusters obtained using the classical approach.

To estimate the total yB of the population U B
, we can use

(9.14)

where W ik is the estimation weight obtained from the GWSM. This

weight is obtained by directly replacing the indicator variables Ij,ik with

Tk in the steps of the GWSM described in section 2.1.
J,I

Steps ofthe GWSMfor approach 3

Step 1: For each unit k ofthe clusters i from OB , the initial weight {t:k

is calculated, that is:
MA _

;:;'-"1- tj
W ik - ~ j,ik -A'

j~/ l[ j

where t j = 1 if j E SA, and 0 otherwise.

(9.15)

- -- B -B M' -
Step 2: For each unit k of the clusters i from [2 , L ik = Lj=l/j,ik IS

calculated. The quantity i~ represents the realised number of links

between the units of U A and unit k of cluster i from U B •

Step 3: The final weight {ti is calculated:

,\,MP;:;,
;:; _ L.k=/Wik
Wi - '\'AtffB .

L.k= JL'ik

Step 4: Finally, we set {tik = {ti for all k E U;B .

(9.16)
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By conditioning on the accepted links lj,ik' it can be shown that

the estimator yB given by (9,14) is unbiased, assuming of course that
Constraint 2.1 is satisfied. Let E{ (.) be the expected value carried out in

relation to all the possible realisations of links. Let L be the set of
realised links, i.e.,

We then have
- --

E(yB) =E,[E(fE IL)]. (9,17)

By conditioning on the set L, the estimator (9.14) is then
equivalent to the estimator (2.1 ) (or the estimator (4.1 )). From Corollary

4.1, E(yB IL) = yB is directly obtained and therefore, the estimator

(9.14) is conditionally unbiased. Consequently, this estimator is unbiased

in an unconditional way. To obtain the variance of yB , we again proceed
in a conditional way from

- - - - -
Var(yB) = E,[Var(fE IL)] + Va1f[E(yB IL)] .

First of all, since E(yB IL) =yB , we have

(9.18)

By conditioning on the set L, it was already mentioned that the
estimator (9.14) is equivalent to the estimator (2.1). By Corollary 4.2, the
following result is thus obtained:

_ _ M' M' (A A A) __
Var(yBIL)="" JrrJrjJrj' ii, (9.19)L.L. A A J J

i~li'~l Jrj Jrj'

:: N wB :: - -::B :: B
where Zj =Li=ILk~llj,ik'iik with 'iik = Y/Li . The variance of Y can

therefore be written

(9.20)

To estimate the variance (9.20), one of the two estimators (4.12)
or (4.13) can be used by replacing the variable Z. with i ..

J J
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9.2.4 Some remarks

Indirect Sampling

The three proposed approaches do not use the decision rule (9.3).
They also do not require any manual resolution. Consequently, the
answer to question (c) is yes. That is, the GWSM can help in reducing
the manual resolution required by record linkage. Note that there is
however a price to pay for avoiding manual resolution.

First, with approach I, the number nRL of clusters identified by

the units j E SA is greater than or equal to the number n of clusters

identified by the classical approach, i.e., when the decision rule (9.3) is
used to accept the links or not. This happens because we use all non-zero
links, and not just the ones satisfying the decision rule (9.3). As a
consequence, the collection costs with approach I are greater than or
equal to the ones related to the classical approach. It needs then to be
checked which ones are the most important: the collection costs or the
costs of manual resolution. Note that if the precision resulting from the
use of approach 1 is much higher than the one from the classical
approach, it can be more advantageous to choose approach I than the
classical approach.

With approach 2, we have nRLT ~ n RJ and therefore the collection
costs of this approach are less than or equal to the ones of approach 1. If
the precision of approach 2 is comparable to the one of approach 1, then
approach 2 will certainly be more advantageous than approach 1. By
comparing approach 2 with the classical approach, it can be seen that the
collection costs can be almost equivalent if the value of the threshold
Bfllgh is chosen to be relatively close to the lower and upper thresholds of

the decision rule (9.3).

Note that approach 2 does not use any manual resolution. If the
precision of approach 2 is at least comparable to the one of the classical
approach, then approach 2 is more advantageous. Note that if
BHigh = BLow' the two approaches differ only in the definition of the

estimation weights ensuing from the GWSM. Approach 2 uses the

linkage weights BRL
k
T

, while the classical approach uses the indicator
},l

variables lj,ik' Setting BHigh = BLow' it is certainly of interest to know

which approach has the highest precision.
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With approach 3, the number ofselected links is less than or equal

to the number ofnon-zero links used by approach 1, i.e., ~ s: n RL
• Hence,

the collection costs of approach 3 are less than or equal to the ones of

approach 1. As mentioned before, unlike n RL and n RLT
, the number of

clusters ~ is hardly comparable to n. The two depend on different
parameters: the classical approach depends on the thresholds BLow and

B High' while approach 3 depends on the adjusted linkage weights B/,ik .

9.3 SIMULATION STUDY

We performed a simulation study to evaluate the approaches
presented in this chapter, including the classical approach. For this study,

we compared the precision obtained for the estimation ofthe total yB for
five different approaches:

Approach 1: use all non-zero links with the linkage weights Bj,ik

Approach 2: use all non-zero links above a threshold

Approach 3: choose the links randomly

Approach 4: classical approach

Approach 5: use all non-zero links with the indicator variables Ij.ik'

Approach 5 is a mixture ofapproach I and the classical approach.
It consists of first accepting all links ofthe pairs (j,ik) that have a linkage
weight greater than zero, i.e., assign I··k = 1 for all pairs (j,ik) whereJ ,I

B k > 0 , and I. ·k = 0 otherwise. The GWSM described in chapter 2 is
} ,1 J,t

then used to estimate the total yB from the estimator (2.1). Approach 5
was added to the simulations to verify the effect of using the indicator
variables 'j,ik instead of the linkage weights Bj,ik when using all non-

zero links. As with all the other approaches, according to Corollary 4.1,
approach 5 is unbiased. Since the five approaches yield unbiased

estimates ofthe total yB , we compared them with the standarderror (the
square root ofthe variance), and more specifically with the coefficient of
variation (the standard error divided by the expected value of the
estimator).
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9.3.1 Data used

Indirect Sampling

The simulation study was perfonned using the agricultural data
presented in section 7.4.4. Thus, the study again is inspired by Statistics
Canada's Whole Fann Data Base. Recall that this database has
infonnation on livestock, crops and the income and expenditures (tax
data) ofCanadian fanns (Statistics Canada, 2000a). The data used for the
simulations come from Quebec and New Brunswick. Although the
simulations were inspired by the Whole Fann Data Base, some processes
and data were changed for reasons of confidentiality, and also to not
needlessly complicate the discussion. However, we believe that these
changes do not affect the conclusions drawn from the simulations.

The population V A is a list of M A fanns coming from the 1996
Fann Register. This list essentially comes from the 1991 Canadian
Census ofAgriculture, with different updates that have been made since

1991. The units j from V A thus represent fanns, but note that each fann j
can have many fann operators. In addition to the FannID, the Fann
Register contains a fann operator number together with some
demographic variables related to the farm operators.

The target population V B is a list of M B tax records (or income
tax reports) from the Canadian Revenue Agency (CRA). This second list
is the 1996 CRA Unincorporated Business File that contains tax data for
the persons declaring at least one farming income. This file contains a
household number (only for a sample), a tax filer number, and also
demographic variables related to the tax filers. The units k are thus the
tax reports that are completed by the different members of households i
(or clusters). The target population V B has N households. The respective

sizes of the populations V A and VB are given in Table 7.1.
For the simulations, linkage has been perfonned for the two

populations VA and VB (in fact, linkage of the files A and B related to
these populations). To do this, a linkage process was used based on the
matching of five variables. It was perfonned using the MERGE
statement in SAS®. The records on both files were compared to one
another in order to detennine whether or not there is a match. The record
linkage was perfonned using the following five key variables common to
both files:
1) first name (modified using NYSIlS)

2) last name (modified using NYSIlS)

3) birth date
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4) street address

5) postal code.
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The first name and last name were modified using the NYSIIS
system. This basically changes the name in phonetic expressions, which
in tum increases the chance of finding matches by reducing the
probability that a good match is rejected because ofa spelling mistake or
a typing error.

Records that matched on all five variables were given the highest
linkage weight (B = 60). Records that matched on only a subset of at
least two of the five variables received a lower non-zero linkage weight
(B = 2). Pairs of records that did not match on any combination of key
variables were considered as pairs having no possible links, which is
equivalent to having a linkage weight of zero.

Two different threshold were chosen for the simulations:

BHigh = BLow =15 and BHigh = BLr!H= 30 The upper and lower thresholds,

BHigh and BLow' were set to be the same to avoid the grey area where

some manual intervention is needed when applying the decision rule
(9.3).

Following the linkage process, the constraint requiring that each

cluster i ofthe target population UB have at least one non-zero link was
not satisfied for all clusters. To correct the situation, we imputed a link
by choosing the link with the largest linkage weight Bi,ik within the

cluster. In the case where all linkage weights are zero, we chose a link at
random.

The record linkage process used here does not exactly correspond
to the one used to construct the Whole Farm Data Base. For more
information on the exact process, refer to Lim (2000). We believe that
the changes, however, do not affect the conclusions drawn from the
simulations. Recall that the main goal of the simulations is to evaluate

the different approaches for the estimation of y B
, and not to solve the

problems related to the construction ofthe Whole Farm Data Base.

Following record linkage, it turns out that the populations U A and

U B are linked by complex links. Indeed, a farm} sometimes has many
operators and each operator returns one tax report k to the eRA. There is
then a "one-to-many" link since we have one farm} linked to many tax
reports k. On the other hand, an operator who deals with more than one
farm} can return a single tax report k for the set of farms that he operates.
Therefore, this type oflink is "many-to-one" since there are many farms}
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(9.22)

(9.23)

linked to a single tax report k. Finally, there are also situations of
complex links where the operators deal with more than one farm and
where each farm has a number of different operators. The populations

UA and UB as well as their links can be represented by Figure 2.1.

9.3.2 Sampling plan

For the simulations, the sample SA was selected from U A (Farm
Register) using simple random sampling without replacement, without
any stratification. We also considered two sampling fractions: 30% and
70%. The variable of interest y for which we want to estimate the total

yB is the total farming income. Since we have the entire populations of

farms and tax records, it was possible to calculate the value of yB and
the variances from the theoretical formulas developed for this approach.
Furthermore, because a simple random sampling without replacement
was performed, these theoretical formulas can be simplified. For

example, in the case of approach 1, the variance of YRI.,B given by (9.8)
can then be written in the following form:

Var(yRLB)= M A(1- fA) ~(ZRL _ZRL)2 (9.21)
fA M A- I 7:t J '

A A A' - RL I \4" RLwhere f = m / M IS the samplingfraction and Z =~ IJ=I Zj .

A Monte Carlo study was also conducted to empirically calculate
the bias and the variance under the different approaches. Note that for
approach 3, only the Monte Carlo study was used. For the Monte Carlo
study, 500 samples SA from U A were selected for each sampling fraction
30% and 70%, and for each threshold 15 and 30. The empirical bias and

the empirical variance of each estimator (represented by y) were

calculated using

, , ~, B 1 ~~
Bias(Y) =E(Y) - Y =- ~ Y" - yB

500,'=1

I 500

Var(Y)=-I(~, -£(Y)2 .
500""=1
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(9.24)

The coefficients of variation (CV) were then calculated by using

A A ~Var(f)
CV(y) =100 X A A •

E(Y)

The Monte Carlo study was, among other things, performed to
verify in an empirical manner the accuracy of the theoretical formulas
given in section 9.2. The results all indicated that the theoretical formulas
are exact.

9.3.3 Results and discussion

The results of the simulations are given in Figures 9.1 to 9.4,
Table 9.1 and Figure 9.5. Figures 9.1 to 9.4 provide histograms of the
CVs obtained for each of the five approaches. Eight histograms are
shown, corresponding to the eight cases obtained by crossing the two
provinces Quebec and New Brunswick, the two sampling fractions 30%
and 70%, and the two thresholds 15 and 30.

On each bar of the histograms, one can see the number of non­
zero links between U A and U B for each of the five approaches. For
approach 3, it is in fact the expected number ofnon-zero links. Note that
the number (expected or not) ofnon-zero links does not change from one
sampling fraction to another.

Table 9.1 shows, for each of the eight cases, the average number
of clusters surveyed for each approach. This average is calculated with
respect to the 500 samples SA used for the simulations. The numbers is
parentheses represent the standard error for the number of surveyed
clusters. The standard errors are relatively small compared to the
averages and therefore, the number of clusters surveyed do not vary
greatly from one sample to another.

Figure 9.5 gives, for each of the eight cases, a graph of the
obtained CVs for the five approaches as a function ofthe average number
of surveyed clusters.

By looking at Figures 9.1 to 9.4, it can be seen that in all cases,
approaches land 5 give the smallest CVs for the estimation of total
farming income. Therefore, using all non-zero links produces estimates
with the greatest precision. Looking at Table 9.1, we note however that
these approaches are the ones for which the number ofsurveyed clusters
is the highest. In fact, we can see that the greater the number of surveyed
clusters, the greater the precision ofthe estimates is. This result is shown
in Figure 9.5 where we can see that the CVs tend to decrease as the
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average number ofsurveyed clusters increases. Although this observation
is well known in the classical sampling theory, it is not necessarily
evident in the context ofindirect sampling. As we can see from equations

(4.11 a) and (4.11 b), it is not the sample size of SA that increases, but

rather the homogeneity of the derived variables Zj'
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Figure 9.1: CVsfor New Brunswick (with BHigh = BLow =15)
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Table 9.1: Surveyed clusters for Quebec and New Brunswick

Thr Approach Average number of surveyed clusters (s.e.)
esho

Id Quebec New Brunswick

BHigh fA=0.3 fA =0.7 fA =0.3 fA =0.7

1 15752 (58) 21106 (30) 1709 (18) 2100 (7)

2 14281 (49) 20593 (34) 1310 (17) 1966 (13)

15 3 10930(50) 18881 (47) 1123 (14) 1869 (14)

4 14281 (49) 20593 (34) 1310 (17) 1966 (13)

5 15752 (58) 21106 (30) 1709(18) 2100 (7)

1 15752 (58) 21106 (30) 1709(18) 2100 (7)

2 11310 (45) 19139(37) 1215 (17) 1924 (15)

30 3 10930 (50) 18881 (47) 1123(14) 1869 (14)

4 11310(45) 19139(37) 1215 (17) 1924 (15)

5 15752 (58) 21106(30) 1709(18) 2100 (7)

Now, by comparing approaches 1 and 5, it can be seen that
approach 5 always provided smaller CVs than approach 1. This suggests
using the indicator variable li,ik instead ofthe linkage weight Bj,ik when

all the links are considered to be non-zero. Note that it seems this result
can be generalised when we note that the same phenomenon is produced
for approaches 2 and 4 (classical approach). Recall that because
BHigh = BLow' the two approaches differ only in the definition of the

estimation weights obtained by the GWSM; approach 4 uses the indicator
variable li,ik and approach 2, the linkage weight B j .ik . This result is

particularly important because it corresponds to the conclusions of
Kalton and Brick (1995) and the ones in section 4.6.3, namely that by

using e··k = lk / LB in the version of the GWSM described in sectionJ,/ ./,1 I

4.5, we should then approach minimal variances for the estimation ofthe
total yB.
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Now consider approach 3. For seven out of the eight histograms
from Figures 9.1 to 9.4, approach 3 produced the highest CVs. It should
be noted however that this approach is the one that is based on the lowest
number of non-zero links, and also the lowest number of surveyed
clusters. Therefore, the poor performance ofapproach 3 is not surprising.

Recall that the number ofnon-zero links used by approach 3 does
not depend on the threshold BHigh , and thus the CVs obtained for

thresholds 15 and 30 are the same. For BHigh =15, the CV obtained for

Quebec for approach 3 proves to be higher than the ones obtained for
approaches 2 and 4, and these two approaches use more non-zero links
and more surveyed clusters. For BHigh =30, the CV obtained for approach

3 proves to be lower than the ones obtained for approaches 2 and 4, but
these two approaches still used more non-zero links and more surveyed
clusters. Therefore, there are intermediate situations where, with
15<BHigh <30, we get equal CVs for approaches 3 and 2, and equal CVs

for approaches 3 and 4. As a result, to get equal CVs for approach 3 and
each of approaches 2 and 4, more links (and more surveyed clusters)
must be used by approaches 2 and 4. This suggests that approach 3 can,
in some cases, be more worthwhile than approaches 2 and 4 because it
produces estimates with the same precision but with lower collection
costs.

So as to better compare approach 3 and approaches 2 and 4, we
made the expected number of non-zero links to be the same as the
number of non-zero links used by approaches 2 and 4. To do this, we

have transformed the linkage weights Bj,ik into new weights iJj,ik such

that

(9.25)

where Lo is the desired number of non-zero links. The transformation

used was the following:

B. = {Bj,ik / B. if Bj,ik / B. :s; 1 (9.26)
j,ik 1 otherwise

where B. was determined iteratively so that constraint (9.25) is satisfied.

The use of approach 3 with the transformed linkage weights by (9.26)
was called approach 6. The results of the simulations are presented in
Figures 9.6 to 9.9.
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As we can see, approach 6 produced the smallest CVs for half of
the cases. For the other half, approach 4 yielded the best precision. Note
that this result was not obtained for a specific province, or a specific
sampling fraction, or a specific threshold. It would therefore be difficult
in practice to determine in advance which ofapproaches 4 or 6 would be
likely to produce the smallest CVs. Furthermore, using the decision rule
(9.3) to determine the links, it was shown that the number offalse links
and false non-links are minimised. Thus, ifthe quality ofthe links proves
to be a concern, it is preferable to use approach 4 because the random
selection of links suggested by approach 3 can lead to the selection of
links that would not be acceptable through the decision rule (9.3), even if
the selection probabilities of the links are proportional to the linkage
weights. For these reasons, it seems preferable to choose approach 4
instead of approaches 2 and 6 (or approach 3).

In conclusion, if the number of links and the number of surveyed
clusters do not pose a problem, it is suggested to use approach 5, i.e., to
consider all the links of pairs (j,ik) that have a linkage weight (Jj,ik

greater than zero, and to use the GWSM described in chapter 2 to

estimate the total yB from the estimator (2.1). If the number ofsurveyed
clusters proves to be too large because, for example, it leads to collection
costs that are too high, approach 4 can be seen as a reasonable choice.
Recall that the use of the threshold (JHigh (and also the threshold (JLG") is

useful to reduce the number ofnon-zero links to manipulate. By reducing
the number ofnon-zero links, we reduce at the same time the number of
clusters identified through the sample SA and therefore also the
collection costs associated to the measurement ofthe variable of interest
y. By reducing the number of links, however, the precision of the
estimates is reduced. Thus, a compromise must be made between the
desired precision and the collection costs.
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CONCLUSION

Throughout this book, it was shown that indirect sampling is a
convenient way to obtain a sample to produce estimates for a target
population if, when the only frame available is one for a population
UA related to if. Once the sample is selected, the GWSM can prove to
be a viable solution for producing estimation weights in the context of
indirect sampling. These weights lead to unbiased estimates. They
roughly correspond to an average of the sampling weights for the units
of the population UA from which the sample is selected. Recall that the
GWSM works even if the links between the two populations UA and
if are complex, that is, they are of the type "many-to-many."

The GWSM turns out to be particularly useful because it
provides:

1) a weighting for an indirect sampling meant for rare populations;

2) a weighting using only the selection probabilities of selected units;

3) a weighting for populations related by complex links;

4) a weighting for non-linked units.

It was mentioned in the introduction that the GWSM was first
presented by Lavallee (1995) in the context of the problem of cross­
sectional weighting for longitudinal household surveys. Since then,
the author produced new theoretical and practical results on the
GWSM. Recently, some survey statisticians drew on these results in
order to solve concrete problems associated with the indirect sampling
of clusters. We present here six of these new applications of the
GWSM that were chosen not necessarily for their complexity, but
instead for their diversity.
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A first application is the one from Whitridge and Beaucage
(2000) in relation to the measurement by Statistics Canada of the
extent of electronic commerce in Canada. Here, we want to produce
estimates on the use of electronic commerce for which the variables of
interest y related to the use of the computer, the Internet and Web
pages are measured. For example, we are interested in the proportion
of enterprises that perform transactions over the Internet. This study
covers all economic sectors with the exception of local governments,
some agricultural sectors, construction and fishing. Note that the use
of electronic commerce is a phenomenon still considered as relatively
rare in Canada. The target population is the universe of enterprises
from the economic sectors mentioned earlier.

An important constraint associated with this study is the use of
the sample selected for the Canadian Public and Private Investment
Survey (Statistics Canada, 2000b). This sample is one of
establishments that covers the same economic sectors as the target
population. This constraint was imposed in order to reduce as much as
possible the selection, contact, and collection costs related to the
study. Note that the selection of establishments instead of enterprises
allows the sample selection to be controlled at the geographic and
sector levels. The sampling frame VA is therefore the universe of
establishments covering the same economic sectors as the target
population if. Thus, a sample SA of establishments selected from VA

is used to survey the enterprises having the establishments in SA. This
situation is illustrated in Figure 3.2. The GWSM here offers a simple
solution to produce estimates and their variance.

A second application is the one described by Girard and
Simard (2000) in the context of Statistics Canada's Unified Enterprise
Survey (UES). This survey is part of an extensive project known
under the acronym PIPES (Project to Improve Provincial Economic
Statistics) that has an objective of implementing a complete system of
annual economic statistics by province, from business and household
statistics, as well as from data drawn from tax records and other
sources of administrative data. Important secondary objectives are
also intended: the reduction of response burden for Canadian
businesses; the use of a single sampling frame, the Business Register;
and the development of an approach and integrated methods that are
the most coherent possible for all annual economic programs at
Statistics Canada (Laniel and Royce, 1998).

PIPES is based on the use of network sampling described in
section 3.4. This type of sampling is used here to select enterprises
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through their establishments. Hence, a sample of establishments is
selected and subsequently, the enterprises having these selected
establishments are surveyed. The establishments are sampled instead
of the enterprises because we want to control the sample selection at
the geographic and sector levels. The population VA is therefore the
universe of establishments that covers the majority of the economic
sectors. The target population if is the population of enterprises

covering the same economic sectors as VA. Note that this population
consists of clusters of size 1. Girard and Simard (2000) considered
two options for the production of estimates from UES and the
calculation of their variance. The first option is based on the exact

calculation of the selection probabilities (say Jri~) of the enterprises ik

surveyed through the sample i, while the second option depends on
the use of the GWSM. It turns out that the GWSM offers a much
simpler solution than the exact calculation of the probabilities,
particularly with regard to the calculation of the variances.

A third application of the GWSM is the one from Ardilly and
Le Blanc (2001) that used the GWSM to weight a survey of homeless
persons. The problem with this type of survey is the absence of a
sampling frame for the target population if, which is here the set of
homeless persons in France. Thus, an indirect sampling is required.
The variables of interest of this survey are, for example, the age at the
end of the studies and the number of centres frequented. To survey
these persons, Ardilly and Le Blanc (1999) and ArdillY and Le Blanc
(2001) proposed to make use of the services provided to these persons
in the centres during a certain reference period such as a day, a week,
or a month. A service can be, for example, a meal or an
accommodation. The population VA from which the sample is selected
is therefore the set of services provided during the chosen reference
period. Each service from VA is linked to a homeless person from VB
and, of course, a homeless person can receive more than one service.
Thus, we are in the situation of "many-to-one" links between the
populations VA and VB, as illustrated in Figure 3.2. Ardilly and Le
Blanc (2001) used the GWSM to produce estimates on the homeless
persons. Although they were confronted with a problem of
identification of links, the GWSM again proved to be greatly useful.

A fourth application of indirect sampling is the one from
Deville and Maumy (2005) where indirect sampling was used to
measure tourism in the region of Brittany in France. This application
is somewhat similar to the one from Ardilly and Le Blanc (2001), as
we try to measure a target population of people (in the present
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example, tourists) using a frame based on services provided to them.
The application of Deville and Maumy (2005) differs however from
the fact that the frame used by the survey has been built from three
different frames: (1) a subset of the most visited attractions in
Brittany; (2) the highway payment poll of La Gravelle that most
automobiles used to enter or leave Brittany; (3) a sample of bakeries.
Note that these services have been sampled for a given time period.

For each of the three different frames (or populations) U:, a

sample s: of tourists has been selected to estimate the total

population if of tourists in Brittany. Now, it is clear that a given
tourist can be found in all three frames, since he is likely to visit the
main attractions of Brittany, use the highway, or buy some bread.
Therefore, we are in a context of "many-to-one" links between the
populations UA and if. Using the information collected from the three
samples s:, estimates have been produced for the target population

if using weights obtained through the GWSM.

It should be noted that the GWSM is offering here a different
way to attack the estimation problem in the context of multiple frames.
This problem has been known for years, and the related theory has
been developed by Hartley (1962). For more details on multiple frame
estimation, one can see Kott and Vogel (1995).

A fifth application of indirect sampling is the one from
Dessertaine and Fluteaux (2004), which is in the context of traditional
mailing in France. The problem was to estimate the flow of mail at La
Paste, the French national mail agency. The population UA is rounds
of postmen j, while the target population if is objects k (envelopes,
packages, etc.) distributed at a given day i (cluster). The links lj,ik

between the two populations relate the postmanj to the objects k that
he delivered on a given day i. Note that because it was difficult to
establish exactly how many objects were delivered by a certain
postman k on a given day i, Dessertaine and Fluteaux (2004) were
faced with the problem of obtaining the total number of links Lj,i'

which is a problem of links identification. They solved this problem
by using, instead of the links lj,ik' the probability f)j,ik of having a

link. They obtained a mathematical formulation of the estimator of the
total yB similar to (9.7).

Finally, Renaud (2006) used the GWSM to weight the sample
of towns for the estimation of the 2004 Swiss statistics on social
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security beneficiaries. The sample of towns was selected in 1999 from
a list of towns established in 1998. From 1998 to 2004, some
modifications occurred to the towns, and therefore the weights needed
to be adjusted to account for these changes. This situation is similar to
the one illustrated in Figure 1.4. As some towns were collapsed to
others, or divided into smaller towns, the links between the population
of towns in 1998 (population VA) and the one in 2004 (population if)
were complex. The use of the GWSM turned out to be useful to solve
this estimation problem.

In the future, we expect other developments around the
GWSM. For example, we can think of the development of allocation

methods for the sample SA, considering that we are faced with an
indirect sampling. These methods could consider cost constraints, in
addition to constraints in precision.

In closing, the author knows that the developments presented in
this book only represent the tip of the iceberg of the potential of
indirect sampling and the GWSM. The more indirect sampling is
studied, the more its potential to solve, in a simple manner, complex
estimation problems is discovered. The GWSM opens up new
possibilities to simply treat theoretical and practical situations that are
introduced during the use of sample surveys to obtain information.
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a Constant used in the definition of the weight share method

fJ Regression coefficient

p Column vector of regression coefficients

(j Indicator variable

V Gradient function

;rr Probability of selection

n Diagonal matrix of selection probabilities

Q Set of surveyed clusters

E Set of all samples s

() Variable identifying the weighted links

o Matrix of variables identifying the weighted links

Y Column vector of auxiliary variables

r Column vector containing the total of the auxiliary variables y

U Indicator variable indicating a match between two records

~ Indicator variable associated with the comparison of two records

A Matrix entering into the expression of the variance

r; Subscript identifying the comparisons

77 Number of clusters (households) from Vii

Clusters (household) from the population VA

K Number of names from snowball sampling

T Number of phases from snowball sampling

JL Cluster average in adaptive cluster sampling

cr 2 Variance

OJ Multiplicity weight related with network sampling

A Lagrange multiplier

A Likelihood function

¢ Probability of response for a unit

<D Probability of response for a cluster of units
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\II Column vector derived from auxiliary variables x and the
variable of interest y

'P Matrix derived from auxiliary variables x

v

9
1

A

ADAP
B

c

C

CAL
CALG
CLUS
COND

D

D

e

f
F

FS
g

G

GLOB
GPROP

h

h

HT

I

I

Random number uniformly distributed between ]0, I [

Statistic

Column vector of l's

Superscript identifying the population for which we have a
sampling frame

Superscript identifying adaptive cluster sampling

Superscript associated with the target population

Random (or repeated) group

Number of random (or repeated) groups

Superscript identifying calibration

Superscript identifying generalized calibration

Superscript identifying cluster sampling

Superscript identifying the conditional approach to Improve
estimators

Decision rule ofFellegi and Sunter

Set of indices and measured variables for a sample

Regression residual

Sampling fraction

Inverse ofthe derivative of the distance function G

Superscript identifying the approach of Fellegi and Sunter

Derivative of the distance function G

Superscript identifying the intermediate population obtained
through factorisation, and distance function used in calibration

Superscript identifying the global approach for unit non-response

Superscript identifying the use of global proportional adjustment

Stratum

Function

Superscript identifying the Horvitz-Thompson estimator

Cluster from the population if
Interval

Identity matrix
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II

j

JACK

k

I

L

L

LGLIN

LOGIT

m

M

MULT

n

N

NET

NR

NRA

NRC

NRL

NRU

opt

P

P
PROP

q

Q

r

R

RB
REG

RL

RLT

s

SUBS

Superscript identifying two-stage indirect sampling

Unit from the population UA

Superscript identifying the use of the Jackknife method

Unit from the population UB

Indicator variable identifying the links between UA and if
Total number of links

Set of all links

Superscript identifying the use of the log-linear model

Superscript identifying the use of the logistic model

Number of units selected in the sample

Number of units from the population

Superscript identifying the multiplicity approach

Number of surveyed clusters

Number of clusters from the target population

Superscript identifying network sampling

Superscript identifying non-response

Superscript identifying the case of non-response within i
Superscript identifying the case of non-response of clusters

Superscript identifying the problem oflinks identification

Superscript identifying the case of non-response of units

Superscript identifying an optimal quantity

Sampling plan

Dimension of the vectors of auxiliary variables

Superscript identifying the use of proportional adjustment

Group or subset from the population

Total number of groups or subsets from the population

Subcript identifying the subset of respondents

Corrected response rate

Superscript identifying the use of the Rao-Blackwell theorem

Superscript identifying the regression estimator

Superscript identifying record linkage

Superscript identifying record linkage with threshold

Sample

Superscript identifying the use of subsampling
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T

T

u

u
w

W

WSM

x

X
y
y

y

z

z
z

Indirect Sampling

Indicator variable identifying the units selected in VA

Transpose of a matrix or vector

Diagonal matrix of indicator variables t

Sufficient statistic

Population

Estimation weight

Column vector of estimation weights

Superscript identifying the weight share method

Column vector of auxiliary variables

Column vector containing the total of the auxiliary variables x

Variable of interest

Total of the variable of interest y

Column vector containing the variable of interest y

Variable derived from the variable ofinteresty

Total of the derived variable z

Column vector of variables derived from y
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