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“Common sense is the most equally shared thing in the world.”

DESCARTES



FOREWORD

“Writing a foreword is a formidable honour.” These words come
from one of my friends who, in 1988, began in this manner his preface
that he had kindly written for one of my books. It is only today that I
truly realise the complete accuracy of his sentiments.

It is without a doubt an honour, and [ definitely feel this way
about it, for this is an excellent work and its author is strongly
captivating.

A mathematician who graduated with highest honours from the
University of Ottawa, Pierre Lavallée conquered the lofty goal of a
Masters in Science (mathematics and statistics option) at Carleton
University. For more than fifteen years, he has held the position of
senior survey methodologist at Statistics Canada, where he could
supplement his existing theoretical training with solid experience in
one of the most outstanding official organisations in the field of
surveys. It was therefore with a great deal of enthusiasm that [
supervised his doctoral thesis that he brilliantly defended in June 2001
at the Université Libre de Bruxelles and from which this book
evolved.

During the second half of the 20™ century, we saw more and
more books on survey theory, a movement that continues at the start
of this new millennium. Many of them are good, and even very good.
This is the case, for example, with the book written by Carl-Erik
Sarndal, Bengt Swensson and Jan Wretman (1992) that some consider
— a justifiable title by the way — as the reference book of the end of
the 20" century for all scientists working in this domain. How, under
these conditions, can we still propose a written work that keeps this
attention of the public if it does not reach new means, expanding the
facets that we generally find in these works, granting the privilege of
an educational presentation from a book?
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In a text entitled « Dans quelle direction vont la théorie et la
pratique des sondages ? » (“In which direction are the theory and
practice of sampling headed?”), which the reader can refer to in the
book that I edited for Dunod with Ludovic Lebart in 2001 (p. 20),
Carl-Erik Sérndal insists on the fact that in scientific literature,
“survey methodology and sampling theory are certainly two different
things.” Very few people can boast that they possess the recognised
competence in the domains of both sampling theory and survey
practice. Pierre Lavallée is part of a small, fortunate group that
concurrently holds these qualities and who, in fact, can only enrich the
disciplines in which he works.

Furthermore, the discourse is new. Up to now, the majority of
proposed sampling methods looked to estimate parameters of a
population by taking a sample selected directly from a sampling frame
consisting of units from that population. The idea defended by Pierre
Lavallée goes further since it proposes to estimate these parameters by
sampling not the population concerned, but another population having
connections with the first one. Look for information about children by
selecting parents or obtain information on subsidiaries of companies
through the parent companies, all while conserving the statistical
properties of the estimators so constructed; these depict examples of
actual concrete problems for which the proposed approach offers
elegant solutions. We must be indebted to Pierre Lavallée for having
detailed this issue and for presenting it to us with the pedagogical
qualities that are so familiar to us all.

Before concluding, I asked myself if this preface sufficiently
and clearly conveyed all of the goodness that I thought of this book
and of its author if the reader read it from beginning to end, but [ am
half reassured by calling to mind what was said by Luc de Clapiers,
marquis de Vauvenargues, in his thoughts: “I have never seen a boring
preface leading into a good book.”

May this work have all the success that it merits.

Jean-Jacques Droesbeke
Université Libre de Bruxelles
April 2002



PREFACE

Among all books written on sampling theory, there was no
existing one devoted to indirect sampling. In 2002, 1 published in
French the book “Le sondage indirect, ou la méthode généralisée du
partage des poids” at the Editions de ['Université de Bruxelles
(Belgium) and the Editions Ellipse (France). The present book on
indirect sampling is a translated version of this book, with some
sections added to reflect the new developments that have occurred
since 2002. For the readers that are familiar with the content of the
previous book, the new developments are with respect to obtaining
optimal weighted links (section 4.6.3), the treatment of the problem of
links identification (section 8.7), and some recent applications
(chapter 10).

As we know, sampling may be performed by drawing samples
of people, businesses, or other things that we survey in order to obtain
the desired information. According to classical sampling theory, the
selection of samples is done by selecting at random from lists called
sampling frames. These sampling frames are supposed to represent the
set of people or businesses for which we are looking to produce
information; this is what constitutes the target population.

When the statistician has a sampling frame representing the
desired target population, the drawing of samples can be made
according to the well-established techniques of classical sampling
theory, which we could also call direct sampling, as opposed to
indirect sampling. The techniques of classical theory depend on a
random selection of samples so that we can establish the probability of
drawing some sample or other. This is what we call probability
sampling. The knowledge of the selection probability ensures that we
can establish the precision and reliability of the information produced
by the survey. For example, we can establish if the results produced
can contain a bias and in which interval we can hope to find the “true”
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response. Moreover, the selection probabilities are directly used in the
calculations of the results in obtaining precise estimates.

In certain situations, the survey statistician does not have at his
or her disposal any sampling frame and he or she must then manage to
construct the samples needed in order to obtain the desired
information. For opinion polls, for example, it is not rare that the
sample of respondents be obtained by surveying the opinion of people
chosen at random in a shopping centre. Since we do not have a list of
customers at the shopping centre, there is then an absence of a
sampling frame. This absence ensures that we cannot establish the
probability of obtaining the sample, which makes the calculation of
sampling precision impossible. This type of sampling is described as
non-probability sampling.

In other situations, the survey statistician has access to
sampling frames, but none of which correspond directly to the desired
target population. To carry out the survey, the statistician can then
choose a sampling frame that is indirectly related to it. For example,
for a survey about children, the statistician can make use of a
sampling frame of adults whose children are chosen to be surveyed. In
this case, the statistician first selects a sample of adults from the
sampling frame which he or she has. For each adult in the sample, the
statistician then identifies the children of the selected adult and finally
surveys on behalf of all of the children identified. This is in the end
what we mean by indirect sampling. Let us note that since there is the
usage of a sampling frame, indirect sampling is a form of probability
sampling.

Indirect sampling finds its application in social surveys, as seen
previously, but also in economic surveys. For example, for a survey
about businesses, the survey statistician can consider the possibility of
using, by way of a sampling frame, a list of businessmen or
businesswomen registered at a chamber of commerce. Indirect
sampling becomes complicated here when a businessperson owns
more than one business, or when a business is the property of more
than one businessperson.

One sampling technique that can be as often employed in the
context of a classical sampling, as it is in indirect sampling, is cluster
sampling. This sampling technique is not used for the sample selection
of units (people, businesses, or others), but instead for samples of
groups of units called clusters. In social surveys, clusters most often
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correspond to households or dwellings. In fact, a dwelling consists of
a cluster of persons living in it. In economic surveys, clusters are
generally enterprises that own establishments.

When indirect sampling is used jointly with cluster sampling,
many complications stand out for the survey statistician. One of these
complications lies in the calculation of the selection probabilities of
surveyed units at the time of the survey. As was mentioned
previously, the knowledge of the selection probabilities allows for the
establishment of the precision and reliability of the information
produced by the survey. Furthermore, these are directly used in the
calculation of the results derived from the survey. The knowledge of
the selection probabilities is therefore considered as vital for the
survey statistician.

In the absence of selection probabilities, it is possible to
calculate values that can substitute for the selection probabilities and
can produce survey results that are entirely as valid for the survey
statistician as for users of the results (governments, company
directors, sociologists, etc.). This is possible under the generalised
weight share method (GWSM). In sampling theory, weights are
generally associated with the inverse of the selection probabilities.
The GWSM in part uses the selection probabilities in a relatively
simple calculation focused on the relationship between units from the
sampling frame and those from the target population. In the context of
indirect sampling, let us recall that the sampling frame and the target
population are distinct.

The use of the GWSM proves to be crucial in the context of
indirect sampling, and in particular in the indirect sampling of
clusters. The production of estimates of simple totals or means can
often become almost insurmountable without this method. The GWSM
in fact allows for the solution of problems, both theoretical and
practical, that up to now gave nightmares to survey statisticians.

The development of indirect sampling and the GWSM is the
fruit of many years of reflection from the solution of practical
problems occurring in the application of classical sampling theory.
The lack of a sampling frame for a target population unfortunately
constitutes a very common situation, even in national statistical
institutes. This is what brought me to the publication of this book. I
hope that survey statisticians will find in it answers to their questions
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and that they will be able to put into practice the different
developments presented about indirect sampling and the GWSM.

In closing, I would like to greatly thank Jean-Jacques
Droesbeke of the Université Libre de Bruxelles (ULB), who patiently
encouraged me to write this book, to whom I also express my
gratitude. I would also like to thank Jean-Claude Deville of the Ecole
Nationale de la Statistique et de I'Analyse de I'Information (ENSAI)
for his invaluable advice and especially for the spark behind the
generalisation of the weight share method. My thanks go also to Carl
Sarndal, who pertinently gave me advice in the formulation of certain
theoretical results. My gratitude also goes to my colleague Pierre
Caron of Statistics Canada, who carried out the simulations, and to my
other colleague Michel Hidiroglou of Statistics Canada, who is a daily
source of inspiration. Also, 1 would like to thank the late Bernard
Gailly of the Centre d’Etudes des Populations, de la Pauvreté et des
Politigues Socio-économiques (CEPS) in Luxembourg, with whom the
numerous discussions were always fruitful. I should surely not forget
Pambu Kita-Phambu from the ULB who helped in the layout of this
book, and also my colleague Leon Jang who translated it from French
to English. Finally, I wish to thank my wife Marie-Claude, who
encouraged and supported me in the writing of this book.
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CHAPTER 1

INTRODUCTION

Sample surveys today make up a varied and often
indispensable source of information. Whether at the level of
governments, company managers, sociologists, economists, or
ordinary citizens, surveys allow the informational needs necessary in
taking a decision to be met. For example, to establish their policies
concerning certain economic sectors, governments must have a picture
of the situation before taking decisions concerning these sectors.

1.1 REVIEW OF SAMPLING THEORY AND
WEIGHTING

Sample surveys are carried out by selecting samples of persons,
businesses or other items (called units) that we survey in order to get
the desired information. Sample selection is often done by randomly
selecting certain units from a list that we call a sampling frame. This
list, or sampling frame, is supposed to represent the set of units for
which we are looking to produce information; this is what makes up
the target population. The sample size can be determined prior to the
selection (fixed size sampling) or at the time of the sampling itself
(random size sampling). In this book, we will restrict ourselves to
fixed size sampling which is, in practice, the most widespread.

Strictly speaking, fixed size sampling is described as follows.
Consider Y, =(,,....yy ), the vector containing the values y, for a

population U of size N. For a survey on tobacco use, for example, the
variable of interest y, of Y,, can be the number of cigarettes smoked by
individual £ during a given day. In general, we want to know the value for
instance of the total Y =3}, y, , or otherwise the mean ¥ =Y /N . If the
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size N of population U is known, the problem in determining the total Y or

the mean Y is the same. Going back to the previous example on tobacco,
the total Y represents the total number of cigarettes smoked during the day,

while the mean Y represents the average number of cigarettes smoked by
an individual.

To estimate the total Y (or the mean Y) of population U, we
select a sample s of size n. A sampling design p is a function p(s) of

the set 2 of all samples s selected from U such that p(s)>0 and
Y ..=p(s)=1. The function p(s) is in fact the probability of selecting
sample s among all samples of =Z. We assume that p(s) is known for

the set E ; this is what we call probability sampling. A well-known
sampling design is simple random sampling (without replacement)
where all possible samples of Z have the same chance of being
selected. We have in fact p(s)=n!(N-n)!/N!. By dividing the
population U into subpopulations U, called strata, where U ={J, U, ,
we define stratified simple random sampling that consists of selecting
a simple random sample in each of the 4 strata.

We define the selection probability (or inclusion probability)
of unit k£ from population U by

o= p(s), (1.1)

$3k
where the sum of (1.1) is carried out over all the samples of s from the
set = that contains unit k. We assume that 7, >0 for all units k& of

population U, i.e., all units have a non-zero chance of being selected. For
example, with simple random sampling, we get 7, =n/N , fork=1,...,N.
For each unit k£ of s, we measure the value of the variable of
interest y,. We can estimate the total Y with the following Horvitz-
Thompson estimator:
prr =y 4 (1.2)
k=1 7}

where the sum of (1.2) is carried out over all units £ of sample s
(Horvitz and Thompson, 1952)." We can show that the estimator ¥''" is

" In this book, the sums will be based on a re-indexing of units. For example, for a
sum over the population of size N and another over the sample of size » selected
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unbiased for Y with respect to the sampling design, i.e., that if )iHT
represents the value of ¥/ obtained for sample s, we have:
EX")=Yp(s)Y" =Y. (1.3)

The mean of the values of Y7 weighted by the selection
probability of sample s then corresponds to the true value of the
total Y.

Consider ¢,, an indicator variable where #, =1 if kes, and 0

otherwise. With this variable, we can rewrite the estimator ¥"" under
the form

N
Y :Zt—"yk. (1.4)
k=1 7[/(
Moreover, we note that
Et)=1xPlkes)+0xPlkegs)=Plkes)=r, . (1.5)

From (1.4) and (1.5), we can prove the unbiasedness of the
Horvitz-Thompson estimator in the following way:

N t N E t )
E(Y'T) E[Ziykji) W,
k=1 7[/( k=1 7[/(
_ (1.6)
N N
=2 =W :Zyk =Y
k=1 T k=1

The formula for the variance of the estimator ¥, with respect
to the sampling design, is given by

NN _ ’
Var(F*7) ZZZMykyk’ (1.7a)
k=1 k'=I T Ty
or, in an equivalent manner, by

2
sury 1 by e M
Var(Y'"") = ZZZ(% ~ ) P (1.7b)

k=1 k'=1 k

from the population, we will respectively use ¥Y, and Y7,. This notation has
been used in several books on sampling theory such as, among others, Cochran
(1977) and Morin (1993).
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where =, represents the joint selection probability of units & and

k'. For the details in the proofs of (1.7a) and (1.7b), we can consult
Sérndal, Swensson and Wretman (1992).

We can also write the estimator Y*7 given by (1.2) as a
function of the sampling weight d, =1/, . We then have

Y =3dy, . (1.8)
k=1

In sampling theory, the sampling weight is the inverse of the
selection probability 7, of unit k£ from sample s. The sampling weight
of unit & corresponds to the expected number of units from population
U represented by this unit. For example, if an individual has one
chance out of four (7, =1/4) of being part of the sample, it will have
a sampling weight of 4; we then say that this individual in the sample
represents on average four individuals within the population. Let us
note that the sampling weight d, may possibly not be an integer.

It is possible to define in a general way an estimation weight
w, that we associate to unit £ of sample s. This weight leads to the

estimator
Y=Y wy,. (1.9)
k=1

The properties (bias and variance, for example) of this
estimator depend upon the construction of the estimation weight w, .

In this book, we will focus on an estimation weight obtained by the
generalisation of a method called weight share.

To learn more about sampling theory, the reader can consult
books such as Cochran (1977), Grosbras (1986), Sirndal, Swensson and
Wretman (1992), Morin (1993), Ardilly (2006), and Lohr (1999).

1.2 CLUSTER SAMPLING

It often happens that sample surveys are performed in clusters.
Cluster sampling is in fact a sampling design commonly used in
practice. This technique of sampling is not suitable for the drawing of
samples of units, but rather the selection of groups of units called
clusters [or primary sampling units (PSU)]. The units in the clusters
are called secondary sampling units (SSU). In cluster sampling,
we survey for all the SSU belonging to the selected PSU. When we
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survey only for a subsample of the SSU, within the selected PSU,
we are instead speaking of two-stage sampling.

For social studies, several surveys are built in such a way that
we sample households in order to survey for the set of individuals
from these households. The households thus form clusters of
individuals. This is particularly the case for the Labour Force Survey
conducted by Statistics Canada (Singh et al., 1990). For economic
surveys, the sampling of enterprises is often done with the goal of
obtaining information on their components, for instance, the
establishments or the local units. Enterprises are therefore composed
of clusters of establishments, or local units, which we survey in order
to provide economic statistics, in particular for national accounts.

With cluster sampling, the survey statistician can hope for
reductions in collection costs. Indeed, surveying for entire households,
for example, allows the interviewer to considerably reduce his number
of trips compared to sampling for the same number of persons, but in
different households. Cluster sampling also allows for the production
of results at the cluster level itself, on top of the units. For example,
we can calculate the average income of the households.

Cluster sampling is presented in most books that deal with
sampling theory. We assume that the population U consists of N
clusters where each cluster i contains M, units. This is illustrated in
Figure 1.1. We select a sample s containing # clusters in population U
according to a certain sampling design. We assume that 7, represents

U k

Figure 1.1: Cluster sampling
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the selection probability of cluster i, where 7, >0 for all clusters
ieU . As each cluster i of population U contains M, units, we have

in total M =Y, M, units in the population. We survey all units of

clusters i for sample s. Each unit k of cluster i therefore has the same
selection probability as the cluster, 1.e., 7, =7, .

With cluster sampling, we are looking to estimate the total
Y=Y1>"y, for a characteristic y. Considering the Horvitz-

5 CLUS.IHT
Y

Thompson estimator (1.2), we can use the estimator given by

)}CI,L-'S.HTZZL (1.10)
i=1 7[1'

where ¥, =%}"y, . The superscript CLUS refers to the term cluster

sampling. The variance of ¥*"*/" is given by

-
Var(VEHUSHT ) = ZZ (%= 7 ) YY.. (1.11)

=1 7[1 7[1

i= 1=

We can rewrite estimator (1 10) in the following manner:

YCILS' HT z zy,k

= 7 ke (1.12)

n M, n M,

= ZZy LYY

ol k=1 T, i=l k=1
where d, =1/7,, .

Estimator (1.10) can then be written as a function of units & for

clusters i of sample s with sampling weight d,, . In a general way, we

CLUS

can construct an estimation weight w, " and define an estimator of

the form

n M,

YC1b9 Zz (LL? . (113)

i=l k=l

The properties of this estimator depend upon the construction
of the estimation weight w "
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1.3 INDIRECT SAMPLING

To select in a probabilistic way the necessary samples for
social or economic surveys, it is useful to have available sampling
frames, i.e., lists of units meant to represent the target populations.
Unfortunately, it may happen that no available sampling frame
corresponds directly to the desired target population. We can then
choose a sampling frame that is indirectly related to this target

population. We can thus speak of two populations U” and U” that
are related to one another. We wish to produce an estimate for U” but
unfortunately, we only have a sampling frame for U". We can then
imagine the selection of a sample from U and produce an estimate
for U® using the existing links between the two populations. This is
what we can refer to as indirect sampling.

For example, consider the situation where the estimate is
concerned with young children (units) belonging to families (clusters)
but the only sampling frame we have is a list of parents’ names. The
target population is that of the children, but we must first select a
sample of parents before we can select the sample of children. Note
that the children of a particular family can be selected through the
father or the mother.

This is illustrated by Figure 1.2. In this example, the families
are represented by the rectangles and we note that the children can
come from different unions.

Another example of an application of indirect sampling is the
situation where we wish to conduct a survey of enterprises (clusters)
when we only have an incomplete sampling frame of establishments
of these enterprises. For each establishment selected from the
sampling frame, we want to sample the set of establishments (units)
belonging to the same enterprise. The establishments that are not
represented in the frame must be represented by those that are part of
this frame (Lavallée, 1998b).

This example can be represented by Figure 1.3. Here we see
that establishments a, b, ¢, d, and e are part of the sampling frame
whereas establishments f and g are not part of it.

A third example is one where we are looking to conduct a
survey on people (units) who live in dwellings (clusters). We have for
this case a sampling frame of dwellings, but which is unfortunately
not up-to-date. This sampling frame does not contain, among others,
renovations affecting the division of buildings into apartments.
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An example of this type of renovation is illustrated in Figure
1.4a. We note that dwellings a, b, ¢, d, and e have been transformed to
get dwellings a’, b’, ¢’, and d’. By selecting a sample of dwellings
from the sampling frame, we then go to new dwellings using the
correspondence between the old and new dwellings. This
correspondence is illustrated in Figure 1.4b.

()
/
\

—

]
\\,
@@

\

O

\\
Y
\ |
@

\
@ @

2 B

Y
===

\
\
{ (_‘::/ b

e M _—— &) w1

(&

B

(L
|
\
| \
\

Figure 1.2: Indirect sampling of children
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Figure 1.3: Indirect sampling of
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Figure 1.4a: Indirect sampling of dwellings

Figure 1.4b: Indirect sampling of dwellings
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1.4 GENERALISED WEIGHT SHARE METHOD

The estimation of a total (or a mean) of a target population U”

of clusters using a sample selected from another population U* that is
related in a certain manner to the first can be a major challenge, in
particular if the links between the units of the two populations are not
one-to-one. The problem comes especially from the difficulty of
associating a selection probability, or an estimation weight, to the
surveyed units in the target population.

If we consider the example of families in Figure 1.2, it can be
very difficult to associate a selection probability to each child of a
selected family (or cluster). Indeed, we could have selected a family
through one or more of the parents but, unfortunately, to know the
selection probability of the family, and consequently of the children,
we must know the selection probability of each parent, whether
selected or not. In practice, this is not always the case, particularly if
we used, for the selection of parents, a multi-stage design. In the
example of selecting enterprises (or clusters of establishments) from
the establishments (Figure 1.3), the problem is above all to associate
an estimation weight to the new establishments (f and g) of the target
population. In order to solve this type of estimation problem, we
developed the generalised weight share method (GWSM).

The GWSM produces an estimation weight for each surveyed
unit from the target population U”. This estimation weight basically

constitutes an average of the sampling weights of the population U "
from which the sample is selected. Lavallée (1995) presented for the
first time the GWSM within the context of the problem of cross-
sectional weighting for longitudinal household surveys. The GWSM is
a generalisation of the weight share method described by Ernst (1989).
We can also consider the GWSM as a generalisation of network
sampling as well as adaptive cluster sampling. These two sampling
methods are described by Thompson (1992) and by Thompson and
Seber (1996).

This book is meant to be a detailed document on the GWSM
encompassing the different developments carried out by the author on
this method. The theory dealing with the GWSM is presented, in
addition to different possible applications that bring out the appeal of
this. In Chapter 2, we present a formal description of the GWSM and
we describe its use. In Chapter 3, we give a literature review where we
associate the GWSM with different sampling methods appearing in
literature. We will see that the GWSM 1is a generalisation of methods
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such as the fair share method and adaptive cluster sampling. In
Chapter 4, we present theoretical results on the GWSM, for instance
the unbiasedness of the method and the variance of estimates resulting
from it. In Chapter 5, we examine other possible generalisations of the
GWSM. For example, we describe how to extend indirect sampling
from one stage to two stages. In Chapter 6, we look at one of the main
applications of the GWSM, being that related to longitudinal surveys.
In Chapter 7, we describe how we can try to improve the precision of
estimates coming from the GWSM by using calibration. In Chapter 8,
we deal with the practical case where non-response occurs during data
collection. We see that we can correct the weights coming from the
GWSM by calculating a response probability associated with the
responding units. In Chapter 9, we discuss the case where the links
between populations U and U” were established from a process of
probabilistic linkage. We then see that it is possible to modify the
GWSM in order to adapt it to the situation where the links between
the two populations are not deterministic. Finally, we end the book
with a conclusion that emphasises new applications of the indirect
sampling.



CHAPTER 2

DESCRIPTION AND USE OF THE GWSM

As mentioned in the introduction, the GWSM was first described
by Lavallée (1995). It produces an estimation weight for each unit

surveyed in the target population UU®. This estimation weight basically
constitutes an average of the sampling weights of the
population U* from which the sample is selected. We first present in

this chapter a formal description of the GWSM. Second, we describe the
use of the method.

2.1 DESCRIPTION

We select a sample s* containing m* units from the
population U* containing M* units according to a certain sampling
design. Suppose that 77/ represents the selection probability of unit;j. We

assume that ﬂj>0 for all jey*. On the other hand, the target

population U” contains M”® units. This population is divided into N
clusters,' where cluster i contains Af% units.

We assume there exists a relationship between units j of
population U* and units k of clusters i of the population U”. This
relationship is identified by an indicator variable /, , , where /, , =1 if
there exists a /ink between unit jey* and unit ikey?, and 0
otherwise. Note that there might be some cases where no links exist

"' We will use later the notation N (instead of N) to indicate the clusters of U* as the
population U itself will be divided into clusters. When we write N (and ») without
superscripts, we will take for granted that it is a matter of the clusters of U*
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between a unit j of population U and units k of clusters i of
population U#, which comes back to saying that 4= 3", ¥4 Ly =0.
Moreover, there can be zero, one or more links for any unit £ of a cluster
i of population U”, i.e., that it is possible to have L) = ﬁi; [,4=0,
L} =1, or even L} >1 for all units ike/®. To use the GWSM,
however, we must satisfy the following constraint.

Constraint 2.1 Each cluster i of U® must have at least one link
with a unitjof U” | i.e.,

B M,-E M?
=5 50

i ik :

We will see that this constraint is essential to ensure the
unbiasedness of the GWSM.

For each unit j selected in s*, we identify the units ik of U” that
have a non-zero link with j, i.e., 7, =1.1f Lj =0 for a unit j of 5",

there are simply no units of U” identified by this unit j, which affects the
efficiency of the sample s* but does not introduce any bias. For each
unit ik identified, we assume that we can set up the list of M units of

cluster i containing this unit. Each cluster i then represents, within itself,
a population U where U” ={JX,U” . Let Q° be the set of n clusters

identified by the units j es”,ie, Q" ={ieU”|3jes" and L,, >0}

Mmp
I

where L, = > "I, .

We survey all the units & of clusters i € Q° where we measure a

certain variable of interest y, and the number of links L = Z;i: L

between unit ik of U” and the population U" . An important constraint
to which the survey process (or measurement) is subjected is thus to
consider all units within the same cluster. That is, if a unit is selected in
the sample then every unit of the cluster containing the selected unit will
be surveyed.

This constraint is one that often arises in surveys for two reasons:
(1) cost reductions and (ii) the need for producing estimates on clusters.
As an example, for social surveys, there is normally only a small
marginal cost for interviewing all persons within the household. On the
other hand, household estimates are often of special interest for those

who are looking to measure poverty, for example.
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Different cases of links are shown in Figure 2.1. Looking at it, we
see that there is no unit j of U" that does not have a link with U”.
Constraint 2.1 of the GWSM is satisfied here since all clusters i of U*®
are linked to at least one unit j of U*. This constraint is necessary to
make the GWSM unbiased. We can indeed see that if a cluster does not
have a link with U, it results in an underestimation of a total or mean of
U”* since this cluster has no chance of being surveyed. As shown by unit
7 of U” in Figure 2.1, it is possible for there to be no links for a given
unit of a cluster i provided, however, that at least one unit of the cluster
has a link with U, as claimed by Constraint 2.1.

For the target population U”, we look to estimate the total

Y2 =3¥ 34y, . By using the GWSM, we want to assign an estimation
weight w, to each unitk of a surveyed cluster ;. To estimate the total ¥*

belonging to the target population U” , we can then use the estimator
. M’k

PE=Y w .1

=] k=]
where 7 is the number of surveyed clusters and v, , the weight assigned
to unit & of cluster i. With the GWSM, the estimation method is based on
the sample s, together with the existing links between U” and U” to
estimate the total Y”. The links are in fact used as a bridge to go between
the populations U* and U”.

Figure 2.1: Example of links
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The GWSM provides to each sampled unit a final weight
calculated according to a weighted method within each cluster / entering

into Y?. We first calculate an initial weight that corresponds to the
inverse of the selection probability of units j of s* that have a non-zero

link with unit & of cluster i of Y. An initial weight of zero is assigned to
the units not having a link. The final weight is obtained by calculating the
ratio of the sum of the initial weights for the cluster over the total number
of links for that cluster. This final weight is finally assigned to all units
within the cluster. Note that the fact of allocating the same estimation
weight to all units has the considerable advantage of ensuring
consistency of estimates for units and clusters.

Steps of the GWSM

Step 1: For each unit k of cluster i of Q° , we calculate the initial weight
w, , as follows:

ro_ i tj
Wi =Y a5 (2.2)
j=1 T

where ¢, =1 if je s, and 0 otherwise. Note that a unit ik having no
link with any unit j of U* automatically has an initial weight of zero.

Step 2: For each unit & of cluster i of Q”, we get the total number of
links 22 :

.MA
L=31,. (2.3)
j=1

The quantity L] represents the number of links between the units of U
and the unit k of cluster i of the population U”. The quantity
k= Z,ﬁiLﬁ then corresponds to the total number of links present in

cluster i.

Step 3: We calculate the final weight w,:

MP oy
qum’k
==l (2.4)

! M,"LB
Zk:I i

Step 4: Finally, we assign w, =w, forall keU;.
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By following steps 1 to 4, we deduce the following result.

Result 2.1 For the units ik of the target population U” | we
have

Proof
ME g i M*
Wik = _W% = LBZ%IZ/ ik
k=l Li k=l Li J=1 71'»,- ' 25
M* t 1 M,B M ) L ( ) )
D DI S
EEIR = =R
|

To estimate the total Y*, we use equation (2.1). Because the
estimation weights coming from the GWSM are the same for the set of

M,.B units of each cluster i, the estimator (2.1) can be written as a
function of only clusters. Thus we have

n M;

,B n M,-H n
Y’ :ZZWikyik :Zwizyik ZZWiYi . (2'6)
k=1 i=1

i=1 k=1 i=1

We will formally show in Chapter 4 that if Constraint 2.1 is
respected, the estimator V& proves to be unbiased. Moreover, we can
obtain a variance formula to calculate the precision of Y?.

Example 2.1

As an example, take the case illustrated in Figure 2.1. We are
here looking to estimate the total ¥ linked to the target population U .

Suppose that we select from U* the unit j=1 and the unit j=2.
Before applying the GWSM, we are going to re-index the units of U” in
accordance to the notation used in Figure 2.1. We thus obtain:
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Units of U® from
Fig. 2.1

i 1 1
k

By selecting the unit j=1, we survey the units of cluster i=I.
Likewise, by selecting the unit /=2, we survey the units of clusters i=1
and i=2. We therefore have Q° ={1,2} . For each unit k of clusters i of
Q" we calculate the initial weight w/, , the number of links L, , and

the final weight w,, which gives us the table below.

i k wilk Lﬁ- w;
s I
1 l ﬂlA 1 2 ”]A ”;{
RS o,
! 2 7 : P A
Hou o]t
2 1 0 (because £, =0) 1 3 ”_;+ =3 :
1 1 1
2 2 x +0:g 2 3
1
2 3 | O(because /,,;, =0 forall | 0 3t
7

The estimator ¥* given by (2.1) is finally written
. 11 | 1 1 1 y Voo Y
Yome| —4— |y, +=| —+— |y + e+ = 2B
2 LZ,A Vo }y” 2 sz ) }y,_ 3 3x) 3nf

2.2 USE

The GWSM derives its use in practical situations taking place in
problems of sampling. It offers a simple solution to sampling problems
and to complex weighting. Note that in simple problems concerning
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classical sampling theory, the GWSM in general gives the same
results as classical theory. We will in particular verify this observation in
section 4.2 for the case of cluster sampling.

In the world of surveys, it is often useful to have different
relatively simple processes so as to minimise the possibility of errors that
may arise during processing. With its simplicity, the GWSM offers an
interesting solution that could be chosen, even though it could turn out
that the GWSM is not the most precise (i.e., of minimal variance)
compared to another more complex estimation method. This is
particularly the case with the application of the GWSM in the Program to
Improve Provincial Economic Statistics (PIPES) where the GWSM was
used as the basis for calculating the variance of estimates. For more
details, we can consult Girard and Simard (2000).

Here we present the four principal reasons to use the GWSM.

2.2.1 Indirect sampling for rare populations

In practice rare populations are often difficult to target for
surveying purposes. Most of the time, we do not have any adequate
sampling frames and we must therefore use a different but somewhat
related sampling frame to reach the rare target population. An indirect
sampling is thus performed. For example, to target people having some
infectious disease in a large city, we can use lists of dwellings as
sampling frames, which subsequently causes us to survey the families of
the selected dwellings.

Fortunately for the statistician, it turns out that rare populations
are often found in clusters. This is often the case, for example, with
infectious diseases (Thompson, 1992). By surveying the complete
clusters, we then see considerable reductions in costs since a large part of
the costs are related to the identification of these rare populations.
Therefore, in the end, we get data for the clusters of surveyed units
through indirect sampling.

The problem for the statistician is finally to weight the survey data
so that we can produce unbiased estimates for the characteristics of the
rare target population. The GWSM provides a simple way of obtaining
this weighting.
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2.2.2 Weighting using only the selection probabilities
of the selected units

The GWSM needs selection probabilities 7/ only for the selected

units j in the sample s*. This is a major simplification compared to other
weighting methods such as the one based on the exact calculation of
selection probabilities of surveyed units. Take, for example, unit 2 of the

population U” from Figure 2.1. This unit is surveyed if we select the
unit j=1, the unit j=2, or both, in sample s*. Thus, we can in theory
calculate the probability of surveying unit 2 that is approximately given
by

P(surveying unit 2) = P((j=les") U (j=2es"))
21-[1-P(j=1es")] [1-P(j=2es")]

:1_[1_%"’] [1—;z;]. (2.7)

Unfortunately, in practice, such a probability can be very difficult,
if not impossible, to get. This is the case, for example, if sample st is
selected from a multi-stage sampling design. With such a design, if we
selected unit j=1 in the sample but not unit /=2, it is uncertain that we
know the selection probability 7 (and vice versa), in particular if the
two units j=1 and j=2 are not part of the same PSU. In this case, we
cannot calculate probability (2.7) and we cannot then weight unit 2 from
its probability of being surveyed. By only using the probabilities of
selected units in sample s*, the GWSM gives a simple solution that is
applicable in all cases where we know the selection probabilities of units
Jj in sample s”.

2.2.3 Weighting of populations related by complex
links

When we perform an indirect sampling, it often turns out that the
links between the population U from which the sample is selected and
the target population U” are complex, that is to say, the links between
U” and U” are of the type “many-to-many.” For example, we can take
the situation of the sampling of children of blended families illustrated in
Figure 1.2. In this example, we select a sample of parents with the
intention of surveying the children who belong to the families (clusters).
If the two parents lived together with their children, we would be in a
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relatively simple case of conventional cluster sampling. However, in a
case of blended families where the children living together are not
necessarily brothers and sisters and where the parents do not necessarily
live together, we find ourselves in a much more complex situation. To
get an estimation weight for each child of the surveyed families, the
GWSM then turns out to be very useful.

2.2.4 Weighting of unlinked units

Since here we are surveying the set of units from the clusters, it
can happen that we must calculate an estimation weight for a unit of U”
that is surveyed but that is not linked to the population U* from which
the sample is selected. Such a situation is illustrated in Figure 2.1 by
units 5 and 7.

A typical example of this type of situation comes from
longitudinal surveys of individuals belonging to households. In this type
of survey, we select a sample s* of individuals from a population U .
We then follow these individuals over time. During a second survey
wave, following changes in the population (movements into and out of
the population, modifications to the composition of households), we are
faced with a new population U” . The links between populations U and
U” here are associated to the individuals. The individuals of s* can now
belong to households that have individuals of U who have not been
selected in s*, or who are new (births or immigrants) to the population.
Note that by definition, those who are new to the population do not have
any links with U, Since we are surveying all individuals of the
households having individuals from s, we thus get data for the new
individuals. The problem is then to get an estimation weight for these
units so that we can produce unbiased estimates, including the data from
the new individuals. This problem, however, is not obvious to solve since
the new individuals in the population were not selected at the time of s,
but they are surveyed simply because they are part of households
containing the individuals of s . Obtaining of an estimation weight for
the new individuals in the population is, among others, discussed in
Chapter 6. We will see that the GWSM allows for the finding of an
elegant and unbiased solution for this problem.



CHAPTER 3

LITERATURE REVIEW

The GWSM turns out to be useful in the most diverse
applications where we must obtain an estimate of a total for a
population of clusters when meanwhile the sample comes from
another population related to the first.

The first “official” application of the GWSM is that written by
Lavallée (1995) where it was used to perform cross-sectional
weighting for Statistics Canada’s Survey of Labour and Income
Dynamics (SLID). SLID is a longitudinal survey of individuals
belonging to households (or clusters) where we must also produce
cross-sectional estimates on top of longitudinal estimates. Owing to its
importance, this example will be described in details in Chapter 6.

3.1 FIRST STEPS

Before its application in SLID, the foundations of the GWSM
were already used to solve complex estimation problems. For
example, the tax data program at Statistics Canada has used for many
years a partner correction factor (PCF) to correct estimates in order to
account for partners in a single business. These partners are in fact the
tax filers who produce identical income tax reports for the same
enterprise where they are in partnership as owners.

For the tax data program, a sample is selected from the file of
tax filers (population U*) to produce an estimate of gross income for
the population of businesses (population UU” ). Note that a tax filer can
own many businesses and, in the case of partners, many tax filers can
own the same business. If we consider the businesses as clusters, we
are therefore, because of the “one-to-many” and “many-to-one” type
of links, in a relatively complex case of estimation.
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The PCF turns out to be a factor associated to the measured
variables of the partners that reduces the value of these variables
proportionally to the profits of the partners owning the business. For
example, if a business has two owners and each partner eams 50% of
the business profits, the measured variables of each partner, whether
or not he is selected in the sample of tax filers, will be divided by two.

This case appears in the possible applications of the GWSM.
We will expand this idea in section 4.5. Bankier (1983) showed that
the PCF allowed for unbiased estimates to be produced.

3.2 FAIR SHARE METHOD

The fair share method can be considered as one of the
precursors to the GWSM. This method was presented by Huang
(1984), Judkins et al. (1984), Emst, Hubble and Judkins (1984), and
Ernst (1989), in the context of longitudinal surveys. These authors
used the fair share method in order to solve theoretical and operation
problems relative to the Survey of Income and Program Participation
(SIPP) conducted in the United States for the Income Survey
Development Program. SIPP is a longitudinal survey of persons and
households. It is in fact similar to Statistics Canada’s SLID that is
described in details in Chapter 6 in the context of the application of
the GWSM to longitudinal surveys.

Huang (1984) presented the fair share method with a method
called multiplicity approach to solve the problem of cross-sectional
weighting for longitudinal surveys of households. The problem is the
following. In Wave 1, a sample of households containing persons is
selected, and these persons are followed over time for SIPP. These
persons are considered longitudinal. In a subsequent wave (say, Wave
2), the composition of households containing the longitudinal persons
may have changed following departures, moves, marriages, births, etc.
In each wave, all persons belonging to households containing
longitudinal persons are surveyed. We again encounter the problem of
surveying clusters of units (here persons) from the choice of one or
more units of the cluster. The problem is then to associate to each
household surveyed in Wave 2 an estimation weight so that we can
produce unbiased estimates for the cross-sectional population of Wave
2. This problem is illustrated in Figure 3.1.

If we use the notation relative to the GWSM, we can formally
describe the fair share method in the following manner. As we can see
in Figure 3.1, waves 1 and 2 correspond, respectively, to the
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populations U* and U”. The population U* is divided into N*
households (or clusters), where household ¢ contains A7 persons (or

units). Each household ¢ then represents, in itself, a population U

where U =", U/ .

Wave | Wave 2

Sl

Figure 3.1: Example of links in longitudinal surveys

According to Huang (1984), a sample s of »n* households is
selected among N“ from the population U* following a certain
sampling design. The sample contains in total m* persons while the
population U contains M* persons. Let 7' be the selection
probability of household ¢ from U“. Each person j of household ¢
has the same selection probability as its household. We assume that
z1>0 for all households zey*. The target population U”

corresponds to the same population as U, plus the persons who are
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added between waves | and 2. This population is divided into N*
households, where household i contains Af? persons.

In this context, the links between populations U* and U” are
one-to-one for longitudinal persons and non-existent for persons who
were added to the households (Figure 3.1). Huang (1984) noticed that

there can be in practice households of U” made up uniquely of

persons added to the population U*. In this case, the fair share
method presented by Huang (1984) will produce an underestimate of
the latter that is assumed to be negligible.

For the population U”, Huang (1984) was interested in the
estimation of the total Y* =3 ¥y for the variable of interest y.

To do this, he calculated an estimation weight w; associated with the
surveyed household i of the population U” that will be used in the
following estimator:

Y=y, (3.1)
i=1

where #” is the number of clusters surveyed from U® and
Y, = Z,ff: v, 1s the total of the variable of interest y for household i.

With the fair share method, the estimation weight w; of
household i is given by

N»t L”. [[
w,:ZL—é —, (3.2)

=1 f 1

where L, =331 . and L’ =¥} L. The quantity L is the
number of links between household 7 of U* and household i of U”.
Because the links are one-to-one, L, corresponds to the number of
persons from household / of Wave 2 coming from household ¢ of
Wave 1. In a similar manner, the quantity L’ corresponds to the
number of persons from Wave 1 belonging to household i of Wave 2.
We can show that the fair share method is only a particular
case of the GWSM. Indeed, since we select entire households from
Wave 1, we have 7z, =z," forall jeU'. Likewise, we have 1, =1,
for all jeU?. The initial weight w/,, given by (2.2) then takes the

form:
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M’ { N M / N A v

! A o i _ f
Wik Zlﬂk 4 —ZZW p _Z—AZ[I/IX( —Z —AL,,,-,(. (3.3)

j=1 T =1 j=I Ty =1 T j=l =1 7T,

From (2.4), the final weight w. is given by

M2 ' B o4 A M”
Zk [wrk l MZINZ t( L 1 2 t N tz L
A M) T A S A BZ— ;
ZM " L,klzlﬂ' L,-1:17T,k1 L 'S,
k=1

(3.4)
The estimation weight w, obtained by the GWSM therefore

corresponds exactly to that of the fair share method.

The method presented by Huang (1984) was named the fair
share method because the estimation weight w; given by (3.2) divides
the value Y; among the households of Wave 1 having contributed to
household i of Wave 2, proportionally to the number of persons from
the households involved. Indeed, by combining equations (3.1) and
(3.2), we can rewrite the estimator Y? in the following manner:

IJ‘ N 1 ;o I{

{ Z ZF,. (3.5)

i=l =l 1:1111

We thus see that the value Y; is divided according to the
proportion of persons from household i of U® coming from
household ¢ of U” with respect to the total number of persons from
household i of U”.

Huang (1984) presented, on top of the fair share method, the
multiplicity approach that is, as a matter of fact, another approach to
divide the value of Y, With this latest approach, the value of Y; is
divided according to the number of households 7, from Wave 1|

having contributed (in terms of persons) to household i from Wave 2.
The resulting estimator of ¥* is given by

N n
MUZ r.B Z 5
=1

T e A8 (3.6)
where J,, =1 if L, >0, and 0 otherwise. The indicator variable J,,

7T, i N,

denotes whether or not household ¢ of U contributed to household
of U”. Notethat 7, =Y, 5, .

Huang (1984) proved that the fair share method and the
multiplicity approach are both unbiased for the estimate of the total
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Y”. Note that the unbiasedness of the fair share method also directly
follows from the fact that this is an application of the GWSM, whose
unbiasedness will be shown in Chapter 4.

From an operational point of view, Huang (1984) mentioned
that the fair share method is more appealing than the multiplicity

approach because the quantities Z,, and L going into (3.2) are easier
to obtain than the quantities 6,; and 7, going into (3.6). Indeed, after

many waves, it can be difficult to know how many different
households from Wave 1 contributed to a given household i of the
current wave. However, it is relatively easy to know how many
persons from Wave 1 contributed to household i of the current wave
because the persons (and not the households) are followed over time.
Note that the two approaches are identical if we assume that the

households 7 of U” are of size 1.

In addition to the operational aspect, the fair share method also
seems to have an advantage in the precision of the estimate of Y’.
Under certain hypotheses, Huang (1984) gave a heuristic proof that
the fair share method is of minimal variance compared to any other
method for dividing the value of Y. This speaks in favour of the
GWSM as the fair share method is only a particular case of the
GWSM.

3.3 CONTRIBUTION OF ERNST (1989)

Ernst (1989) presented a form of generalisation of the fair share
method of Huang (1984). This method, based on the calculation of an
average of weights for the cross-sectional weighting of individuals
belonging to households, can be called the weight share method
(WSM). The WSM differs notably from the fair share method in that
the calculation of the estimation weights is centred on the individuals
rather than the households. Note, however, that in the majority of
applications, the two methods give identical results. The article by
Ernst (1989) as a matter of fact acted as a basis for the GWSM.

The formal description of the WSM is written in the same
context as that of Huang’s fair share method (1984). Waves 1 and 2

correspond to the populations U” and U® from Figure 3.1. The
population U* is divided into N* households (or clusters), where
household ¢ contains p7; persons (or units). We select a sample s”

of n" households among the N* from population U according to a
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certain sampling design. This sample contains in total m” persons
whereas population U” contains M* persons. Let 7 be the
selection probability of household ¢ from U where we assume that
72> 0 for all households e (/" . Each person j of household 7 has

the same selection probability as the household and thus 7} =7," for

all units j of household z. The population UU® corresponds to the same
population as U, plus the persons who are added between waves 1
and 2. In this way, the links between populations U* and U” are one-
to-one (Figure 3.1). The population U’ is divided into N’
households, where household i contains Af; persons. We assume that
sample s* led to a survey of »° households within the target
population U”.

By applying the WSM, we want to assign an estimation weight

wi™ to each unit k of a surveyed cluster i. To estimate the total Y* of

the target population U”, we can then use

NEB MB
SWSM B WSM
P =3y Wiy, (3.7)
i=l k=l
where w)*" is the weight assigned to unit & of cluster i. This weight is

0 for the N® —n” clusters i of U” that are not surveyed.

Ernst (1989) mentioned that in the classical approach of a
cross-sectional survey, the estimation weight w;,>" for the surveyed
units corresponds to the inverse of the selection probability of unit ik.

We then produce unbiased estimates for the total Y”. In the context of
longitudinal surveys, the selection probability of surveyed units (or
persons) can be difficult, indeed impossible, to obtain. This problem
arises for persons who are surveyed simply because they live in

households having persons from sample s* (see Chapter 6).
p p

Judkins et al. (1984), Ernst, Hubble and Judkins (1984), and

Ernst (1989) noted that to produce unbiased estimates of the total Y*,
it is not necessary to know all the selection probabilities of the units ik
going into (3.7). A necessary condition is simply to have

EWMy=1 (3.8)
for all M*® units of U”®. Indeed, if E(w,**)=1, we have
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NB M,B ] NE M,R
S ED D IITASIIES ) B AN )
i=t k=l =t k=l

The WSM allows us to get estimation weights that satisfy
equation (3.8). We now show the steps given by Ernst (1989) for
obtaining these weights.

Steps of the WSM

Step 1: For each unit k of cluster i, calculate the initial weight w}"" .

that 1s:

" (3.10)

sy _ |1/ 7! for units selected in s
0  otherwise

Step 2: Define constants o, , i=1,...N® and k=1,..., MiB. These

) _y . WM
constants are independent of the initial weights wl.'k and we have:

B
M

>a, =1. (3.11)
k=1

Step 3: Calculate the final weight WI.WSM :

M/

WSM WM
W™ =3, Wi (3.12)
k=1

Step 4: Set ;" =w"" for all units k of clusters i.

The constants ¢, form a sort of generalisation of the fair share

method of Huang (1984). By assigning certain ¢, to zero, we can

exclude some people from the calculation of the final weights given
by (3.12). For example, we can decide to exclude from the weighting

people less than 16 years of age by assigning them «, =0. Ernst
(1989) gave different possible choices for the ¢, for the cross-

sectional weighting of longitudinal surveys for individuals belonging
to households. Ernst (1989), among other things, noticed that the most

common choice for the constants ¢, is that where these constants

correspond to the inverse of the number of persons M from

household i who belong to the two populations U* and U”.
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We can see that the GWSM can constitute a generalisation of
the WSM. The GWSM in fact elaborates beyond the context of
longitudinal surveys since it allows the use of links that are not

necessarily one-to-one between the populations U” and U”. In the
context of the GWSM, since the links between populations U” and
U® here are one-to-one for the longitudinal persons, we have La=1
if person j of U" corresponds to person k of cluster i from U”, and 0

otherwise. The indices j and ik are thus interchangeable for persons
belonging to the two populations The initial weight (2.2) is then

Zm T (3.13)
j=1 Ty Ty
Likewise,
M[k
YL =L =M". (3.14)

If we concentrate on the choice a, =1/ M/, by replacing the

quantities (3.13) and (3.14) in expression (2.4) for the final weight of
the GWSM, we directly obtain

M; /WSM B
Z l —Mza,k IWSM _ ,' ) (3 15)

W, =——"& wlk

1

Kalton and Brick (1995) as well as Lavallée and Deville (2002)
studied the determination of optimal values for the constants o, .

Because the problem turns out to be relatively complex to solve,
Kalton and Brick particularly concentrated on the case where two
households of U* form a new household (or cluster) i of U”. They
drew the following conclusion: “in the two-household case, the equal
household weighting scheme minimizes the variance of the household
weights around the inverse selection probability weight when the
initial sample is an epsem one”. Minimising the variance of the
household weights corresponds here to minimising the variance of the
estimate of ¥*. What Kalton and Brick called the equal household
weighting scheme is in fact the multiplicity approach described by
Huang (1984) and presented in Section 3.2. Recall that with this
approach, the weighting is calculated by dividing according to the
number of households of U" having contributed (in terms of persons)

to household i of U”. They add that “in the case of an approximately
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epsem' sample, the equal household weighting scheme should be
close to the optimal, at least for the case where the members of the
household at time ¢ come from one or two households at the initial
wave.” These conclusions do not directly support the WSM (and
consequently the GWSM) since this latter conclusion is quite similar
to an equal person weighting scheme. Indeed, with the WSM, the
weighting is calculated by dividing according to the number of
persons M from U” having contributed to household i of U”.

Note however that if s* is a sample of persons, considering the fact
that the persons represent households of size 1, the equal weighting of
households and the equal weighting of persons are equivalent. More
recently, Deville and Lavallée (2006) obtained the necessary and
sufficient conditions to obtain optimal weights for the GWSM. Their
results are presented in details in Section 4.6.3.

Like Huang (1984), Kalton and Brick (1995) recognised that
the WSM is more interesting in practice than the equal household
weighting scheme (or the multiplicity approach). With the multiplicity
approach, we need to know the number of households of U* that

provided the persons of a household i from U”, which is sometimes
difficult to establish. Thus, it can be difficult to know if two people
from a household i of U? live in the same household 7 of U*. So,
although it might not be completely optimal, the GWSM offers an
interesting solution, especially from the practical point of view, for the
case of longitudinal surveys.

3.4 NETWORK SAMPLING

Network sampling is a survey method often used in social
surveys. It proves to be particularly useful, for example, in defining
populations that are rare or difficult to identify. In this type of
sampling, the notion of network often corresponds to a range or set of
contacts. We select units called enumeration units and we ask them to
mention persons that they know corresponding to the desired criteria.
We can illustrate the use of network sampling from an application by
Sanders and Kalsbeek (1990). They used network sampling for a
survey of pregnant women taken from a list of telephone numbers.
The procedure consisted of contacting by telephone a certain number
of persons selected by random digit dialling. They were then asked to
mention if they knew any pregnant women among their family or

! equal-probability-of-selection method
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friends. Sanders and Kalsbeek (1990) tested different options for the
set of contacts (children, brothers and sisters; brothers, sisters, uncles
and aunts; brothers, sisters and cousins, etc.) and it turned out that
none of the options was really better than the others.

Enumeration units Target units

Figure 3.2: Example of links in network sampling

For business surveys, network sampling finds an interesting
application. It is used to select enterprises through their
establishments, or local units. A sample of establishments is selected
and subsequently, enterprises having the selected establishments are
surveyed. This example is illustrated by Figure 3.2. This method is
used in particular at Statistics Canada within the Project to Improve
Provincial Economic Statistics (PIPES). For more details, we can refer
to Girard and Simard (2000).

One of the problems with the application of network sampling
for social surveys is the difficulty of defining the network itself, i.e.,
the desired set of contacts. In the case of family relationships, this set
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is clearly defined, though its definition remains relatively arbitrary.
Indeed, we can decide, for example, to include or exclude the
grandparents from the family set. As mentioned by Sirken and Levy
(1974), the definition of the network influences the selection
probability of the target units, and thus affects the precision of the
resulting estimates. In certain cases, the network itself is misspecified.
For example, if we ask the selected people to “mention the people that
they know,” the set becomes relatively vague. Granovetter (1976)
proposed a solution to this problem in the context of a study looking
to measure the average number of relationships (or acquaintances) in a
population. He proposed to select a sample of persons (enumeration
units) and to ask each person if he or she knows, one after another, the
other members of the list of selected persons. Although interesting,
this solution becomes impossible to put into practice as soon as the
sample reaches about a hundred people.

Network sampling seems to emerge under several forms in the
literature. Indeed, according to what we are looking to measure, the
notion of the network takes different forms. For example, the
“networks” for Granovetter (1976) is restricted only to the
enumeration units selected in the sample because these units can only
mention people who are part of this sample. In general, however, the
enumeration units can mention people apart from the selected persons,
as 18 the case for Sanders and Kalsbeek (1990). The form of network
sampling that appears most commonly in literature is that coming
from Bimbaum and Sirken (1965) as well as Sirken (1970).

Birnbaum and Sirken (1965) and Sirken (1970) gave a formal
statistical framework about network sampling by developing
multiplicity estimation. This form of estimation takes into account the
number of times a targeted person was mentioned by the enumeration
units. Sirken (1970), Sirken (1972), Sirken and Levy (1974), and Levy
(1977) used this estimation to evaluate the number (or the proportion)
of persons in the population meeting the given criteria. Note that
multiplicity estimation was not used by these authors to estimate the
totals of quantitative variables. Multiplicity estimation certainly
contributed to inspire the multiplicity approach described by
Huang (1984).

Following the notation used for the GWSM, we can describe in
a formal manner multiplicity estimation, and, in the process, network
sampling. As seen in Figure 3.2, the enumeration units form the
population U“ whereas the target units — those which have the

desired characteristics — form the population U”. Note that Sirken
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(1970) assumed that the population U* is a population of households,
i.e., that each enumeration unit j of U” corresponds to a household.
Although the GWSM generally considers the units of U as being
simple units (people, local units, etc.), this does not change anything
in the theory presented.

According to Sirken (1970), a simple random sample s* of m*
enumeration units is selected from the population U* containing M "
units. Each enumeration unit j therefore has the same selection
probability 77 =m"/M". The population U” corresponds to that of
the target units, i.e., the units that have the desired characteristics. The
population U” has M* target units.

As for the GWSM, Sirken (1970) used an indicator variable / to
denote the link between enumeration units of U” and target units of
U?® . Therefore, we have | M,:l if enumeration unit je /" identifies

target unit ke /®, and 0 otherwise. We see here that the links are
often many-to-one between U* and U” .

Sirken (1970) was interested in the estimation of the population
count M? of the target population U” . For example, we can think of

the estimation of the total number of pregnant women in a given
region, as in the application of Sanders and Kalsbeek (1990). To do

this, he calculated the following multiplicity weight @, , associated to

each unit  selected in s™:
/.
w, =y L (3.16)
where L} =¥/ . . The multiplicity weight @, is so named because

j
it keeps count of the number of times /[ that target unit k can be
mentioned by the different enumeration units of U .
The multiplicity estimator MMTE of M is finally given by:
! o,

M.\"ET,B — z_

A
=1 7

(3.17)

where the superscript “NET” refers to network sampling.

It is relatively simple to show that multiplicity estimation, and
thus network sampling, is a particular case of the GWSM. Although
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the target population U® does not contain clusters as such, we can

assume that the target units k of U” in fact belong to clusters of size
1. In the context of the GWSM, we can then ignore the index i. Since
we are interested here in the estimation of a population count, the
variable of interest y here simply takes the value 1. The initial weight

w/, given by (2.2) takes the form:

t.
wy =1, (3.18)
J=l T

From (2.4), the final weight w, is given by

wk 1 & t].
w = L= (3.19)
7 LHZ; !

To estimate M ? estimator (2. 1) can then be written as

Zwk Z szk

k/l /' /l/kl

(3.20)

Following the survey process, the m” target units are surveyed
if and only if there is a link between unit j of U* and k of U”, and
‘= 1 (unitj of U" is selected in s7). In other words, the target unit k

is surveyed if and only if we have /,,¢, #0. The m” surveyed units
have therefore /, ¢,/ L] #0, and the M* —m" unsurveyed units have

[, t;/L] =07 Thus,

(3.21)

Sirken (1972) extended multiplicity estimation in the case where

the sample s” is no longer a simple random sample but rather a
stratified sample. Owing to the generality of the GWSM, it is simple to

show again that multiplicity estimation is just an application of the
GWSM.

Sirken (1970) and Sirken (1972) showed that multiplicity
estimation is unbiased. With respect to the precision of estimates,

? Note that a similar argument will be used in Chapter 4 in the proof of Theorem 4.1.
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network sampling seems to have an advantage compared to
conventional sampling where each enumeration unit only reports for
itself. Indeed, under certain conditions, Sirken (1970) showed that
multiplicity estimation, and thus network sampling, can give inferior
variances to those coming from estimators used in conventional
surveys. Again, this speaks in favour of the GWSM since we showed
that multiplicity estimation is nothing more than a particular case of
the GWSM.

3.5 ADAPTIVE CLUSTER SAMPLING

Thompson (1992) and Thompson (2002) discussed sampling
methods to use for populations that are difficult to reach because there
is no sampling frame or because these populations are migratory or
elusive. We can think, for example, of the problem of counting
populations of fish in a lake, the assessment of the number of trees in
a forest, or even the estimation of the number of people belonging to
certain target groups (a particular ethnic origin or a socioprofessional
category, for example) in a city. To solve this type of problem,
Thompson (1990) proposed adaptive cluster sampling.

Adaptive cluster sampling is similar to network sampling and
is particularly used to produce estimates for populations that are
difficult to reach. Suppose, for example, that we are looking to
estimate the number of people in a city, having income greater than
$200,000. First of all, note that it is strongly possible that people with
similar income live in the same neighbourhoods. To estimate this
population count, we first select a small number of units (for example,
houses) and we measure the income (left table of Figure 3.3). If a unit
has income greater than $200,000, we then go to see the contiguous
neighbours of this unit and also measure their income. For the new
units where we found income greater than $200,000, we go to see
their neighbors, and so on until we find no more neighbours with
$200,000 in income (right table of Figure 3.3). We can thus obtain a
considerable sample with, a priori, very little information about the
units of the target population. Note that the sample is modified (or
adapted) as the interviews progress.

With adaptive cluster sampling, the final clusters containing
the target units are not distinct. This is due to the edge units that are
units adjacent to the clusters of target units but are not part of them.
Let us come back to the example of the measurement of income
greater than $200,000, and assume that a house a neighbouring a
targeted house b does not have income greater than $200,000. If house
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a is selected, the process of adaptive cluster sampling will stop there
because unit a does not belong to the target population. On the other
hand, by selecting unit b, the survey process will continue and unit a
will be surveyed because it is adjacent to b. The edge unit a can thus
be surveyed in two clusters. Nevertheless, note that it will not
contribute to the estimates because it is not part of the target
population. Thompson (1990) bypasses this problem by defining
networks that are in fact the final clusters, excluding edge units. These
latter cases form the networks of size 1.

&

A ]
[ i ‘

Figure 3.3: Example of adaptive cluster sampling

The networks are mutually exclusive and exhaustive.
Whichever units are selected in the starting sample, we will have the
same composition of networks at the end of the survey process. This
comes from the fact that the established procedure to identify the
“neighbours” of the selected units is independent from the selection
process. Adaptive cluster sampling is therefore only a form of cluster
sampling where the clusters here are networks selected from their
component units. This type of sampling is often employed in practice.
For example, in social surveys, it happens that people are selected
from a list and subsequently all the people from their households are
surveyed (Lavallée, 1995). At the business survey level, we often
decide to select a sample of establishments (or local units) to then go
up to the enterprise level to finally survey all establishments of this
enterprise. Such a procedure is described, among others, in
Lavallée (1998a).

Adaptive cluster sampling was described in details by
Thompson (1990), Thompson (1991a), Thompson (199 1b), Thompson
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(1992), Thompson and Seber (1996), and Thompson (2002). We now
present in a formal manner adaptive cluster sampling following the
notation used for the GWSM. In this type of sampling, the populations
U” and U” in fact correspond to the same population; the difference
being that population U” is formed by networks (or clusters, if we
ignore the edge units). This is illustrated in Figure 3.4. We note that
the subscripts j and & refer to the same units.

jiik

OXC

Figure 3.4: Example of links in adaptive cluster sampling

According to Thompson (1990), a sample s* is selected
containing m” units in the population U" containing M " units using
A

a certain sampling design. Assume that 7

¢ represents the selection

probability of unit j and that />0 for all jey”. The target
population U*? contains M* units, where M"=M". This

population is divided into N networks, where network i contains pz?
units.
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Once the sample s” is selected, the units j of s are surveyed.
As shown in Figure 3.4, this corresponds to surveying the units & of
U® associated to the units j of s*. The process of adaptive cluster
sampling then requires going to survey the “neighbours” of the
selected units. Let us again take the example of selecting enterprises
through its establishments and assume that establishment 6 from
Figure 3.4 was selected. Here, the neighbours are establishments 5 and
7. By surveying establishment 5, we realise that it is not part of the
same enterprise as establishment 6, and it is therefore not considered
as being part of the network. The survey process is then terminated for
this establishment. Establishment 7 is part of the same enterprise as
establishment 6 and therefore it is part of the network. Following the
process of adaptive cluster sampling, we then restart the survey
process for the neighbours of establishment 7 to finally complete the
network, i.e., all establishments of the enterprise having establishment

6 selected at the start from s”.

Thompson (1990) was interested in the estimation of the mean
Y=/ M*)L" 3y, of the target population U®, which is in fact
the same problem as estimating the total Y* =3 ¥y . To

estimate Y, he calculated, for each selected unit j of s* and linked to
network 7, the variable u, defined by

V/ B

Z y, = —, (3.22)
where Y, Zk 1 ¥, - The estimation of the total ¥” was then given by
)'}ADAI’\B a 'u/ (323)

/17[

where the superscript “ADAP” refers to adaptive cluster sampling.
We can show that adaptive cluster sampling is just a particular

case of the GWSM. First of all, recall that each unit j of U”

corresponds to a unit k from the network (or cluster) i of U?.

Consequently, /.,

oa =1 for j=ik, and 0 otherwise. We can thus

interchange the indices j and ik. Furthermore, L) = ZM Lw=

For each unit & of the cluster / going into Y?, the initial weight
(2.2) here is given by:
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w, =Lk (3.24)
ik
Here, the final weight w; given by (2.4) takes the form:
ME 1 M?
Zewi Lt
w= = . (3.25)
Py /LB MB ; Ty
From Y%= Zf’:,wiz;ﬁyik =37 ,wY:, we substitute the

definition of w. in ¥” to obtain

—Z

Following the survey process of adaptive cluster sampling, the
M units of network i are surveyed if 7, =¢, =1 (unit j of U"

{Z } (3.26)

k 172.1/(

linked to unit ik of U* is selected in s ) for at least one k €U’ . The
n surveyed networks have thus Y37, /7!#0, and the N-n

8 A
unsurveyed networks have ¥,% ¢, /7, =0. So,

M
Li
A
k=1 T

LoaL Y (M
YB:;W[Z

N MP
= Z Z (3.27)
i=1 ,'
i=l k=1 7[,’/: MiB'
Since each unit j of U” corresponds to a unit & of a network i
of U”, the double sum over the population U® can also be written
using a sum over the population U . Thus,

. N M ) Y M, t m .
7 i 7

Therefore, we have Y*”"%=Y® Thompson (1990) proved that
adaptive cluster sampling is unbiased. For the precision of estimates,
this type of sampling seems to be worthwhile in comparison to



42 Indirect Sampling

conventional sampling when the target population forms clusters. This
remark supports the use of the GWSM since this turns out to be a
generalisation of adaptive cluster sampling.

3.6 SNOWBALL SAMPLING

In the context where we are looking to survey clusters of
individuals by selecting at the start one or many elements of the
clusters, Goodman (1961) suggested snowball sampling. This is
similar to the type of sampling that concerns us, i.e., surveying entire
clusters from the target population U”. However, the sizes of the
clusters are not fixed in advance, but rather by the selection
parameters.

A snowball sample with 7 phases’ and x names can be
described in the following way. A random sample s of » individuals is
selected from a population of size N where each individual & is
selected with a probability 7, >0. The sampling design used here to

select this sample does not matter much in the survey process. At the
first phase, each of the # individuals selected in s is asked to name x
names of individuals belonging to the same population. The way in
which the names of the individuals are chosen must be specified in the
survey process. For example, we can ask an individual to name «
people from his or her immediate family, or x people of the same
nationality. The individuals named by the individuals selected in s,
and who are not part of s, form the first phase of the survey. Note that
we create here clusters of size x +1 that can however be overlapping.
At the second phase, we ask each individual from the first phase to in
turn name « individuals. In a similar way, the new individuals named
by the individuals from the first phase, and who are neither part of the
first phase nor of s, form the second phase of the survey. This process
continues until we have completed r phases.

Goodman (1961) was interested in this type of sampling not to
estimate some total of a variable of interest y, but rather to estimate
the number of relationships between individuals. A mutual
relationship (or of type (1,1)) exists when an individual k£ names an
individual &', and vice versa. A relationship of type (7 +1, 1) exists

’ The sense of the term “phase” used here by Goodman (1961) differs from that
commonly used in sampling theory, namely a design where each phase represents a
level of sampling where the second-phase units are selected within the units
selected at the first phase, and so on.
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when an individual £ from s named another individual at the first
phase of sampling, who then named another individual, and so on
until the individual from phase z names the first individual . This
relationship containing 7 +1 individuals is called circular. Goodman
(1961) also studied the estimation of the number of relationships of
type (r,x), that is, relationships where, counting all the «

individuals named by a given individual £ from s, all the individuals
named by the x individuals coming from the previous x individuals,
and so on for the ¢ phases, we have exactly 7+« individuals. It is
again interesting to note that the relationships studied by Goodman
(1961) are nothing but clusters.

Snowball sampling can be similar to the survey process studied
here with indirect sampling and the GWSM. Recall that the survey
constraint associated with indirect sampling is that all units of the

clusters selected from the target population U” must be surveyed.
This in fact corresponds to snowball sampling with x =1 phase and
7 =00 names. Indeed, by selecting the sample s* and by surveying
the corresponding units in U”, we have, so to speak, the selection of
units in U®. Now, the process looking to survey the rest of the
individuals of the cluster corresponds to the survey process where we
ask each individual k from cluster i to name all the M individuals
contained in the cluster, whatever the number they are.

Snowball sampling can also be similar to the adaptive cluster
sampling of Thompson (1990). If we refer to Figure 3.3, we then have
snowball sampling with x =o0 phases and four names. Here, we are
looking to survey individuals having some characteristic. We then
randomly choose a sample of quadrilaterals (i.e., small squares) of
individuals and we identify the quadrilaterals where we found
individuals having the desired characteristic. In the identified
quadrilaterals, we are then going to see the four adjacent quadrilaterals
(north, south, east, and west) to identify other individuals having the
desired characteristic. We proceed in this manner until we find no
more adjacent quadrilaterals having the characteristic. The process of
naming individuals in snowball sampling corresponds here to
identifying an adjacent quadrilateral having the desired characteristic.
We thus “name” all the quadrilaterals during a sufficient number of
phases (not specified in advance), until all the “named” quadrilaterals
systematically bring us back to quadrilaterals already named.



CHAPTER 4

PROPERTIES

In this chapter, we present properties of the GWSM. We will
first show that the GWSM is unbiased for the estimation of the total

Y? of the target population U”. We will then give the variance

formula of the estimator ¥* , and we will discuss the estimation of this
variance. Afterwards, we will show that, in the case where the indirect
sampling carried out is conventional cluster sampling, the GWSM
gives the same results as the classical theory. We will then deal with

the case where we do a census of the population U* and where we do
a census of the target population U”. We will also look at the use of

weighted links. Finally, we will look to improve the estimator & by
reducing its variance. For this, we will first be using sufficient
statistics, and next we will find optimum weights for the links.

4.1 BIAS AND VARIANCE

In order to be able to calculate the bias and the variance of the
estimator Y?, we first prove the following Theorem 4.1.

Theorem 4.1: Duality of the form of Y8 with respect to
U'and U°®

Let z3=Y,/L] where Y, =ym v, and L° =yM L for all

keU;. The estimator Ye, given by (2.1), can then also be written
under the form

(4.1)
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N M,
where Z‘,-ZZZ[/,MZI‘/( : (4.2)
= k=1

Proof:
From Y%=3" 3"y, =" wy,, we substitute the

definition of w, in ¥* to obtain

Wl . (4.3)

Let z,= Y/LB for all ikeU?®. Note that this quantity is
defined if and only if Lf >0 for all clusters i of U”, that is, if and
only if constraint 2.1 is satisfied. From (4.3), we obtain

n ME

ZZw,kz,k (4.4)

i=l k=1

By replacing w/, with its definition (2.2), we get

iZ{ZII ik .AJ izzl/ ik ‘4 . (45)

i=l k=1 j i= k=l

Following the survey process, the M units of cluster i are
surveyed if and only if /,, #0 (there is a link between units j of U
and ik of U”) for at least one keU/, and t,=1 (unit j of U’ is
selected in s*), or in other words, if and only if [, xt; #0 for at least
one keU’. " Therefore, cluster i is surveyed if and only if, for all

z,.k/ﬁ we have /

aliZi /%0 for at least one k eU;"; which

corresponds to having ¢ =Y, Z,I/I,JZ /7! #0. The n

j<ik

" In the present context, since the variable lj & is dichotomous, writing /, , #0 is
equivalent to writing /., =1. This condition will be relaxed, particularly in Section

4.5 and Chapter 9 on record linkage, where we will allow a non-negative real value
for /.
Juk
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surveyed clusters thus have ¢, # 0, and the N—» unsurveyed clusters
have ¢, =0. Thus,

TR My Z, y oM Zy
Y :ZZZZ/.M"/”_[A:ZZZZ/,MI_/”;A (4.6)
i=l k=1 j=1 G i) k=l el i

and finally,

M

zlkz - Zi Z—z 4.7

Jj= 1 T

wma

The estimator YB can therefore be written as a function of
units ik from U”, or as a function of units j from U" . |

The estimator Y* is in fact only a Horvitz-Thompson estimator
where the variable of interest is the variable Z;. This observation leads
us to many results that then become relatively simple to prove. Note
that Deville (1998a) obtained estimator (4.1) by using matrix notation.

Example 4.1

As an example, we return to the case illustrated in Figure 2.1.

Units of U*
from Fig. 2.1 i k T
Yitrn
1 1 1 2
Yut Yo
2 1 2 2
YtV Ty
3 2 1 3
YotV t
4 2 2 3
Yot Vn Vs
5 2 3 3
Vit s
6 3 1 1
Yutn
7 3 2 1
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Z, BATIRIP AP
2
Z, Yut +)’21+.V22+J’23
2 3
Z, 2X[J’21+y22+J’23j
3
Z, Vit sy
1

Suppose that we select from U* unit j=1 and unit j=2. The

estimator ¥? given by (4.1) is then written:
s _ L (Inty Uit Yatintd
YB:_A( 11 12j+_7_( 11 ]2+ 21 22 3
T 2 /2 2 3
11 1 11 1 Yu o In I
=—=|—+— —t+— +2
2 Lr{’ s }yl] 2 [IZ'IA s }’12 3 37[2” 3
We get the same estimator as the illustrative example from
Chapter 2 where this was derived from (2.1).

Corollary 4.1: Bias of ¥*

The estimator Y® is unbiased for estimating Y*, with respect
to the sampling design.
Proof:

We take the expected value of (4.1) with respect to the sampling
design

. ‘w.l E t M.»l
E(YB):Z—(—A’—)ZJ. =>27Z=Z 4.8)
J=1 i J=l

as E(1)=7].

It is then sufﬁcient to prove that Z=Y” . First we have

Mt N M
7-52,-5330.
Jj=t j=li=l k=l
4.9)
N M, 4 M N 1\4,”
Z Zik lj,ik :Z zy L zk'
=1 k=1 j=l i=1 k=1

Since z, =Y /L, , we therefore have
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N Mt . N M’B Y .
Z=ZZZMLM =ZZL; Ly
i=l k=l =l k=1 4
Ly ~ (4.10)
DR OWEIRELE
i=1 L, k=1 i=t
[ ]

The unbiasedness of the GWSM can also be shown with the
help of a similar method as that presented by Ernst (1989).

Corollary 4.2: Variance of ¥*

The formula for the variance of the estimator Y8, with respect
to the sampling design, is given by:

M'M'( 4 A)

Var(Y®)= ZZ il (4.11a)

or, equivalently, by

Var(Y )———MZE(HU 7rA7r )[Z if;] , (4.11b)
7r,. T

/I/ =l J'

where we denote by 7' the joint probability of the selection of units
jand J'.

Proof:

To obtain a variance formula for ¥* , we start from equation

(4.1). Since it turns out that Y? s nothing more than a Horvitz-
Thompson estimator of the total Z, the variance of Y? follows
directly. For details of the proof, see Sirndal, Swensson and Wretman
(1992). [ |

For the calculation of 7[: under various sampling designs, one
can look at Sarndal, Swensson and Wretman (1992).

In practice, equations (4.11a) and (4.11b) are easy to set up. It
is sufficient at first to calculate z; =y /L’ for each unit k of each
surveyed cluster i. We then calculate the total Z; =y Zk azy -
All that remains is to substitute each Zz; in the variance equation of
the Horvitz-Thompson estimator.

The variance Var(); ?) can be estimated without bias using the
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following equation:

Var(ihy-§§ i), (4.12)

J=1y=I 7[// T 7[/
(Sarndal, Swensson and Wretman, 1992).

We can also draw up another variance estimator of Var(Y*)
inspired from Yates and Grundy (1953). This estimator is given by

Var(YB)———ii(” I )[”A —%j @)

J =l j'= J 7'

Other variance estimators are proposed in the scientific
literature, such as Jackknife and Bootstrap estimators. We will present
in Chapter 6 a Jackknife variance estimator used within the context of
SLID. For more information, we can consult Wolter (1985) and
Sédrndal, Swensson and Wretman (1992).

4.2 PARTICULAR CASE 1:
CLUSTER SAMPLING

We saw that the GWSM allows for the calculation of
estimation weights in the case of indirect sampling where the target
population U”® consists of clusters. In the context of conventional
cluster sampling, the question is then to know if the GWSM gives the
same results as classical theory.

Cluster sampling was presented in section 1.2. We recall that
this type of sampling consists of first selecting primary sampling units
(PSU) that contain secondary sampling units (SSU). Finally, we survey
all the SSU belonging to the selected PSU.

In the context of indirect sampling, we can illustrate cluster
sampling with the help of Figure 4.1.

Using the notation relative to the GWSM, we select a sample
s” containing m" PSU in the population U* containing M* PSU
according to a certain sampling design. We assume that 77 represents

the selection probability of PSU j, where z7>0 for all jeyy*. The

target population U” contains M” units. This population is divided
into N clusters, where cluster i contains 37 units. Each cluster i of
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A B
U U
D——""""7y i
7

u

Figure 4.1: Example of links in cluster sampling

U? is linked to a PSU j of U”. The links / between populations U

and U” are thus made between PSU j and SSU k of the clusters i.
Note here that the two indices j and 7 represent the clusters and thus,
these two indices are interchangeable.

With cluster sampling, we are looking to estimate the total
yi=yvs ,fii v, for a characteristic y. To do this, the classical theory

suggests using the estimator ¥“*“** given by
)’}(’LUS,B:"ZT:):L (4 14)
y :
=17

where Y, =Y, 22}:4:"; vy, for j=i (Sirndal, Swensson and Wretman,

1992). The variance of ¥““*# s given by
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Var(YELVs# ) = ZZ—”—’—L(” i) Yo (4.15)

==

Before verifying if the application of the GWSM gives the same
results as equations (4.14) and (4.15) obtained by the classical theory, it
is useful to prove the following Corollary 4.3 ensuing from
Theorem 4.1.

Corollary 4.3: Alternative form of the estimator y*

The estimator Y* given by (2.1) and (4.1) can also be written
under the form

M t XN L.

_ i _ﬂ’ 4.16
Z:I:fr Z L7 e
where L./-i = ZK’? lj,ik .

Proof:
From equations (4.1) and (4.2), we have

M7 N ME

Z > z::z, wZ - 4.17)

Jj=l

By replacing z, with its deﬁnition, we then get

=1 T st k=t ;
M t QY Mp
— J i
=27 L—BZZ/,& (4.18)
j=t 70 =l by k=1
M?

Note that the form of estimator (4.16) reminds the multiplicity
approach described in section 3.2 and presented by Huang (1984). In
fact, estimator (4.16) is a generalisation of the multiplicity approach.

We can now check if the application of the GWSM gives the
same results as equations (4.14) and (4.15) obtained by the classical
theory. First of all, since the indices j and i are interchangeable, we
have
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Mf L? ifj=i
L,=>1,= { , (4.19)

P 0 otherwise.

The ratio L, / I} is thus equal to 1 when j=i, and 0 otherwise.

For a given PSU j, we then have the following result:

yooL

Y-y = (4.20)

: m[:

i=]
From (4.14) and (4.20), we can then rewrite the estimator
coming from the GWSM in the following way:

M*

z Y = z = yeLsE, (4.21)

j=1
The variance formula (4.15) follows directly from this result.

Thus, in the case of conventional cluster sampling, the GWSM
gives the same results as the classical theory. This suggests that in
simple estimation cases where the GWSM possibly would not have
been essential, the results obtained would be comparable to those
coming from a more classical theory.

4.3 PARTICULAR CASE 2:
CENSUS OF POPULATION U

In Chapter 2, the GWSM was presented in the context where a
sample s” containing m" units was selected from the population U
containing M* units according to a certain sampling design. Using
the links between population U” and the target population U”, we
then looked to estimate the total ¥* using the sample s*.

We can now ask ourselves what happens to the precision of the

estimator Y? if we perform a census of U” instead of selecting a
sample.

In the case of a census of U, we have 77 =1 and 1, =1 for
all units jeU 4, and thus s* =U". From Theorem 4.1, we then have
y8= fﬁ: Z, =7 . From (4.10), we have Z=Y" and thus, we get
directly Y?=v?.

By performing a census of U”, the total ¥® can then be
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estimated with certainty. Note that the inverse reasoning is not always
true. Indeed, if we perform a census of the population U”, the
estimator Y? will not necessarily have zero variance. This situation is
discussed in the following section.

We will also see in section 5.3 that in setting up for U’ a
single cluster of size M” (which, following the survey process, will

be completely surveyed), the estimator Y% in general does not have a
variance equal to zero.

4.4 PARTICULAR CASE 3:
CENSUS OF POPULATION U*

With indirect sampling, it is possible for the selection of certain
samples s* of U” to lead to a census of the target population U” . If
this occurs for a subset of all the possible samples selected from U,
we cannot expect to get zero variance for the estimator YE.

Unfortunately, such is also the case even if all the possible
samples s* of U” lead to a census of U”. In other words, if the
number of surveyed clusters # corresponds to the total number N of
clusters from U?®, the variance of Y? is not necessarily zero.

The small example that we present in Figure 4.2 on the census
of population U?, perfectly illustrates this situation.

Let there exist populations U and U” represented in Figure
4.2. The population U” contains three units with two units selected
using simple random sampling without replacement. The target
population U” contains two clusters of size 1. Using the links
between the population U and the target population U”, we look to
estimate the total Y from the sample s* using the estimator Y*
given by (4.1). To use this estimator, we must first calculate the values
of the derived variables Z, given by (4.2).
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A B
U U

J k

g -

—

Figure 4.2: Example of census of U®

Z, i
2
Z, &+J’21 _ Yt
22 2
Z, Rl
2

There are three possible samples s*:
{1,2}, {2,3}, and {1,3}.

For each sample, we always survey the two clusters of U”.
Thus, n=N and we then have a census of the target population U” for
all possible samples selected from U . For each possible sample s,

we now calculate the value of the estimator Y* , which, in this
example, leads to the results contained in the following table.
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Samples s* y?

Ny ity 3 Yo

{1,2} 2{ 2 2 27T
3\,

{1.3} 202 2

3\ vitrn | Ya 31

e i ] JEA
{2,3} 2[ 2 2 T2

Looking at this table, we notice that the values of Y7 differ
according to the chosen sample s*. Thus, the variance of the
estimator ¥? is not zero, even though we perform a census of U® .

Note that this result is interesting simply from an academic
point of view. In practice, immediately after noticing that the variable
y is measured for all units £ of the N clusters i of the target population

U?, the estimator Y# could be directly replaced by the measured
value of the total Y?. We would no longer be faced with indirect
sampling, but rather a direct census of U”.

4.5 USE OF WEIGHTED LINKS

With indirect sampling, we assume that a link (or a
relationship) existed between units j of population U” and units ik of
population U”. In chapter 2, this link is identified by an indicator
variable /,,, where /,, =1 if a link exists between unit je U* and

unit ik e y*, and 0 otherwise. The variable /,, simply indicates that

there is or not a link between units j and ik from populations U* and
U*® . 1t does not, however, indicate the relative importance that certain
links can have compared to others.

Take the case of a survey of enterprises where we have a unit ;
from the sampling frame U that is linked to two establishments A=1
and k=2 of enterprise i of the target population U”. Suppose that
establishment 4=1 has 1 million euros in assets and establishment k=2
100 million euros. In the construction of an economic indicator, we
could then want to give a larger weight to establishment =2
compared to establishment £=1. In the context of the GWSM, this
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could happen by replacing the indicator variable /,, with a
quantitative variable 6,, representing the assets of the establish-
ments.

In a more general context, it is possible to replace the indicator
variable /;; with any quantitative variable 6,, representing the

importance that we want to give to the link 7, . It indeed turns out

that there is no problem with generalising the indicator variable /
defined on {0,1} with a quantitative variable 6 defined on [0,+o0[ ,

the set of non-negative real numbers. The theory developed around the
GWSM remains quite valid.

Remember that a value of ¢, , =0 for two units j of U * and ik

of U? amounts to a link / ;=0 In order for the GWSM to remain

unbiased, it is always necessary to respect the following constraint.

Constraint 4.1

For each cluster i of U”, we must have
93 _ ZM”’ Mr 6. >0
i T 2 k=1 Uy 7Y

With the use of a quantitative variable @, instead of the
indicator variable /,,, we can explain why the PCF described in

section 3.1 appears in the possible applications of the GWSM. Recall
that the PCF is a factor associated with variables measuring partners
and which decreases the value of these variables proportionally to the
profits of the partners owning the enterprise. Let us go back to the
example of the enterprise that has two partners, where each partner
earns 50% of the profits of the enterprise. This corresponds, let’s say,
to having a cluster ;=1 (the enterprise) of U” having only a single unit
k=1 and where this unit k=1 is linked to two units /=1 and j=2 (the

partners) of U" .

Now, consider the estimator Y? under the form given by
Theorem 4.1. From (4.2), for j=1, 2, the value of Z, is given here by

Z,=Y /2. If we replace in (4.2) the indicator variable /,, by a

quantitative variable 8, , representing the profits of partner j in
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establishment =1 of enterprise /=1, the variable Z, is then given by
Z,=0Y, /67 where 0., =0, since enterprise i=1 only has a single
establishment k=1, and where 6 =6, ,, +6,,,. Here, the PCF is given
by 6, /6" and it effectively decreases the value of the variable of

interest ¥, measured for the enterprise, proportionally to the profits of
the partners owning the enterprise.

Setting gj.ik =0,,/6" where 6 =y oy 6, . we get a

direct generalisation to the WSM described in section 3.3. Note that
MiIom! oy . L

we then have zj:l zk:'l 6,4 =1. This generalisation leads to a

version of the GWSM constructed with the constants gj’ik .

Steps for the GWSM with weighted links

Step 1. For each unit k of clusters / of Q" | we calculate the initial
weight w;,f,that is:
M! ¢
0 _ n J
Wi =204~
/= T,

where 7, =1 if jes”, and 0 otherwise.

Step 2: The final weight w! is given by
M’/f M,B M N f
g 19
W, = Z Wy = Z ‘9,/,1'/(
k=1 j=1

-
1
= k=1 7[/

Step 3: Finally, we set W', = w’ forall keU”.

In section 4.6.3, we will seek for optimal values for the
weighted links 6, , (or €, ). In Chapter 9, we will go into greater

depth on the use of the quantitative variable @, particularly in the case
where @ is the linkage weight coming from a probabilistic record
linkage.
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4.6 IMPROVEMENT OF THE ESTIMATOR

The GWSM, as we have seen, offers a simple solution of
obtaining an estimation weight w, for each unit £ of the surveyed

clusters i. However, the resulting estimator Y® given by (2.1) is not
always the one that has the smallest variance.

It is in fact possible to improve the estimator Y# using a
conditional approach, or sufficient statistics. It is also possible to
improve it by determining optimal weights for the links &,
presented in section 4.5. The estimators obtained by these approaches
have a variance less than or equal to that of the original estimator Y.

4.6.1 Conditional approach

The conditional approach consists of improving the estimator
Y by obtaining a new estimator ¥“”** based on the conditional
expectation of Y?®, given a certain statistic 9. The new estimator

YO8 is thus defined from

YeOrE Z p(yE 1 9). (4.22)
The conditional approach is in fact based on the following
identity:

Var(Y?)=Var,[E(Y® | )]+ E,[Var(Y’ | $)] (4.23)
where E () and Var,(.) are calculated with respect to all possible
values of the statistic &¢. We note that ES[Var();B |$H]=0 and
therefore  Var(Y ")y =Var,[E(Y* | 9)]<Var(Y*). The variance of
the estimator Y**™” is thus less than or equal to the variance of the
estimator V7.

With the GWSM, it proves to be useful to condition on the set
QF of n clusters identified by the units j of the sample s*. Recall that
we perform the selection of the sample s* of m” units in the
population U*. For each unit j selected in s*, we then identify the
units ik of U” that have a non-zero link with j, i.e., /;«=1.For each
unit ik identified, we measure the variable y, for all M units of the

cluster i containing this unit. By looking at the sampling design from
the point of view of the population U?, we can see this as cluster
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sampling where we obtained a sample Q° of n clusters selected
among the N clusters of population U” . The selection of each unit j of
s* therefore leads to the selection of a cluster / from U”® and we
notice that there can be many samples s leading to a set Q° of given
clusters.

Starting from estimator (4.16), the new estimator ¥?"?% is
given by

M

)’}CONDB E(YB }Q ) E|:Z

Since we have
E(tj|QB)=l><P(t_/. =1|QB)+0xP(t].:0|QB):P(tj:1|QB),

we can consequently write:

(4.25)
A/ .
Z ‘A /tﬁ'
The probability P(z].=l|QB ) in fact corresponds to the

probability of having selected unit j from U”, considering that the #
clusters i of Q” had been surveyed. We note that, for a given unit j, if
L,, =0 for all the n clusters i €, we must have P(1, =1/Q°)=0.

Still for a given unit j, for the N-n clusters i Q”, we also have
P, =1| 0”)=0. Indeed, by way of the survey process, the selection

of each unit ; must lead to the survey of clusters forming Q°.
Therefore, we get

> COND, B g P(t _1|QB Y,
Y ZZ LJ'I'_B
Py ; L
e i ’ (4.26)
n M =11Q8
N
Li ¢ ﬂ_j I



Chapter 4: Properties 61

The probabilities P(¢; =1| 0O”)#0 depend upon the links
=1 linking unit j of U" to the units k from clusters i of U”. With

1/',1'1(
complex links, this probability is difficult to set up. Nevertheless,
since  P(z, =1|QB):P(t_/. =1, Q%)/PQ°) and P(Q") is the
probability of surveying the # clusters of Q”, it is clear that it is a
function of the selection probabilities of all the units j having non-zero
links with these  clusters of Q°.

Unfortunately, although through identity (4.23) the estimator
YO has a variance smaller than or equal to that of Y?, the
estimator ¥”* here only has a theoretical interest. Indeed, we saw
in section 2.2 that one of the major uses of the GWSM is to be able to
get a weighting using only the selection probabilities 7[;1 of the units

selected in s*. Unfortunately, P(z,=1/Q") is a function of the

selection probabilities of all units j having non-zero links with the »
clusters of QF, whether these units have been selected or not. As
already mentioned, there exist many situations where the probabilities
ﬁf are unknown for the units jgs”. In these cases, it is then

impossible to use the estimator Y*"® and the only estimator ¥®

obtained by the GWSM remains as one of the sole recourses.

Example 4.2

Suppose that the population U” has two clusters where each
of the clusters has only one unit. This is illustrated in Figure 4.3. Unit
k=1 of cluster i=1 is linked to two units j/=1 and j=2 of U", and unit
k=1 of cluster i=2 is linked to a single unit j=3 of U". We select a
sample s* of size 1. Suppose that we selected unit j=2. Then, we
survey cluster i=1 in order to measure the variable of interest y, for
i=1 and k=1.

The probability P(Q®) here comes down to the probability of
surveying cluster i=1 of Q. This probability is equal to the
probability of selecting unit j=1, unit /=2 or the two units j/=1 and j=2
of U”. Therefore, we have P(Q°)=r"+x; -z where 7} is the
selection probability of the two units /=1 and j=2. On the other hand,
for this example, P(, =1, Q®)=P(t, =1)= 7/ for j=1 and j=2, and

P(t, =1, Q%)=0 as cluster i=2 is not part of Q”. Therefore, we
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Figure 4.3: Example of populations for the
improvement of estimator Y*

ultimately get P(, =11Q°) =z x'+ 7' —x3) for j=1 and j=2,
and P(t,=1|Q%)=0.

From (4.16), the estimator y? obtaining by the GWSM is here
5 Y
ivenby Y% =1,
g Y 27!
On the other hand, the estimator (4.26) obtained by the
conditional approach is given by

. Y & 1 Y
yeows _ 1 Z i
—5

Jj=l

(! +m) —mp) (x+ml-xh)

By comparing these two estimators, we notice that the

>COND.B
Y

estimator requires the knowledge of the selection

probabilities 7z, 7;' and 7y, while the estimator y* only requires

us to know the selection probability of unit j/=2 that was selected
in s*. Tt is worth noting that since P(Q°)=z"+7x; -x;, the
estimator Y““”* here corresponds to the Horvitz-Thompson

estimator.
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4.6.2 Use of sufficient statistics

Sufficient statistics play a key role in mathematical statistics.
We will verify this in the present subsection. By the Rao-Blackwell
theorem, sufficient statistics allow for the improvement of an existing
estimator by producing a new estimator whose mean squared error is
less than or equal to that of the starting estimator. Note that this form
of improvement was used, among others, by Thompson (1990} in the
context of adaptive cluster sampling.

The theory presented here on sufficient statistics comes
primarily from Cassel, Sdrndal and Wretman (1977). Note that
Thompson and Seber (1996) also gave a similar presentation.

Let Y =(y,,....¥y) be the vector containing the values y,

for a population of size N. Recall that a sample design p is a function
p(s) on the set Z of all samples s such that p(s)>0 and

Y.=p(s)=1. We define D={(k,y,)|k es}, the set of indices k
and the measured variables y, for the sample s.

A statistic u(D) is called sufficient for the parameter Y if and
only if the conditional distribution of D, given u(D), does not depend
on Y, provided that this conditional probability is well-defined.

The statistic #(D) is in fact sufficient if and only if we have
the following result:

p(D.Y) =p(u(D),Y)xh(D) (4.27)
where h(D) >0 does not depend on Y. For the proof of this result, we
can consult Bickel and Doksum (1977).

We now present a version of the Rao-Blackwell theorem
adapted for finite populations. The Rao-Blackwell theorem was
developed independently by Rao (1945) and Blackwell (1947). The
first use of this theorem in the context of finite populations was in
Basu (1958).

Theorem 4.2 (Rao-Blackwell)
Let Y= );(D) be an estimator (not necessarily unbiased) of

Y=3,v, based on the set D, and let u(D) be a sufficient statistic.
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We define a new estimator YR given by the expectation of Y
conditional on u(D), i.e.,

Y* = E(Y |u(D)) (4.28)

We then have,

(@  EY*™)=EQ)

(b)  EQM(Y)= EQM(Y™)+ E[(Y - Y*')’]

(c) EOM(Y™)< EOM(Y).

For the proof of this theorem, we can consult Cassel, Sirndal
and Wretman (1977).

Let p(s”|Y®) be the sample design associated with the

selection of the sample s for the measurement of certain values of the
vector Y% =( Vi»s Vy) for the target population U®. Let

D, ={(,Y)|L,, #0} be the set of indices i and the measured
variables Y from the clusters of U’ that have at least one link with
unit j of U”. We note that the sets D, are not exclusive for
j=1,.,M". By Corollary 4.3, we notice that the sampling of each

unit j from s* leads to the selection of each cluster ; of U” that have
L,,#0. We thus define D’ = {(U,D;)]je 53 to be the set of the

indices j of s* and the values Y, of the clusters surveyed through each
jes”. The set of surveyed clusters Q° is thus a function of the
sample s*. Now, let D” = {(i,Y,)| j € Q"} be the set of indices i
and the measured variables Y, from clusters i € Q®. As the sampling

of each unit j of s leads to the selection of at least one cluster i of
U?, the set D® is a function of the set D”, that is D® =u(D").

Furthermore, we have p(D”* | Y?)=p(D*,D? | Y?).
Using the conditional probabilities, we obtain
p(D*,D"|Y") =p(D* D", Y")p(D” | Y").

Because the set of surveyed clusters Q° is a function of the
sample s, the selection of sample s*, given by the set Q°, does not
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depend wpon Y’ =(y,,..,y,). Consequently, we get
p(D*|D? Y*)=p(D*|D”). We thus finally get the following
result:
p(D*|Y") =p(D” | Y*)xp(D* | D*)
=p(D")|Y")xp(D"|D")
By comparing (4.27) and (4.29), we then get that the set
D’ ={(i,Y)| j€ Q"} of indices i and measured variables Y from

(4.29)

clusters i € Q° is a sufficient statistic for Y.

From Corollary 4.3, we have Ye = );B(DA). By Theorem 4.2

(Rao-Blackwell), we can then get a new estimator Y*5E with the
sufficient statistic D” =u(D") whose mean squared error will be less
than or equal to that of Y®. Using expression (4.28), this estimator is
given by
Y = E(Y" |u(D"
(A | u(D")) (4.30)
=E(Y? | D").

Because the measurement of Y, for each cluster / is directly
related to QF, we have E(Y®|D®)=E(Y*|Q°). By comparing
(4.24) and (4.30), we see that the estimator Y**” here is the same as
the estimator ¥ “**"# obtained by the conditional approach.

Once again, although through Theorem 4.2 (Rao-Blackwell) the
estimator Y**? has a mean squared error less than or equal to that of

Y®, the estimator Y**” here only has a theoretical interest. It is
indeed a function of selection probabilities for all units j having non-

zero links with the » clusters of Q°, whether these units were selected
or not. This is contrary to one of the uses of the GWSM, which is to

be able to get a weighting using only the selection probabilities ﬂf of

the units selected in s*.

4.6.3 Obtaining optimal weighted links

As mentioned before, it is possible to improve Y® by
determining optimal weights for the links presented in section 4.5.
This problem has been solved by Lavallée and Deville (2002). The
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goal is to obtain an estimator that has a variance less than or equal to
that of the original estimator ¥*.

In the present section, we will assume that each cluster i of U”
contains only one unit. This is done without loss of generality since

following (2.4), the weights w, are first computed at the cluster

level i. As well, the fact that a unit j of U can have a link with more
than one unit k in the same cluster i can directly be handled by making

the weighted links 0 ;. proportional to the original number of links

L, = le lj’,.k . For example, considering Figure 2.1, we see that
unit /=2 leads to unit &=4 of U”, and that unit /=3 leads to units k=3
and k&=4. Therefore, we have Lf; =3 for the identified cluster, rather
than Lf =2 that we would have if this cluster had contained only one

consolidated unit (i.e., adding together units k=3, k=4 and £=5). If one
go with one consolidated unit per cluster, we can then make the

weighted link Hj‘,. proportional to 2 for /=3, and 01'.1‘ proportional to |
for j=2.
For obtaining optimal weighted links, it is convenient to use

matrix notation, as done by Lavallée and Deville (2002). Let the
correspondence between the two populations U' and U’ be

represented by the link matrix @ = [fo,.B] of size N*x N® where
each element 0/‘418 is greater than or equal to zero.” That is, unit j of U”

is related to unit i of U® provided that Hfff >(), otherwise the two units

are not related to each other. For the example of Figure 1.2, the link
matrix is given by

9 0”0 0 0
g 67 0o 0 0
0 0 67 67 0
0 6% 6% 65 0
0 0 0 67 6% 0 0
0 0 0 0 0 67 6%

o O O

@AB —

O O O O
o O O O

S O O

2 For the present section, we add the superscript “4B” to the weighted links as we will
need to differentiate between links from three populations: U4, UP, and UC.
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Obtaining the link matrix ©* = [9/413

] is a critical issue in
indirect sampling. [t influences the precision of the estimates. Now, as

we saw before, in several applications, the values of 9/.”4’[.3 >0 for the

linked units are simply set to 1. Since the choice of 913 >0 for two
linked units j and i can affect the precision of the estimates, it is
natural to seek for those & f,.B values that will minimise the variance of

the estimates. This optimisation problem is solved in the present
section.

In matrix notation, the total Y” of the target population U” is
written as Y? =1""Y* where 17 is the column vector of 1's of size
N. Setting 0, =0,
10" ={0",.., Q:f} . We then define the standardised link matrix

B . .
/6° as in section 4.5, we have

0" =" [diag(1""@*)]"', where diag(v) is the square matrix
obtained by putting the elements of the row-vector (or column-vector)
v in the diagonal, and O elsewhere. Note that in order for the matrix

O to be well defined, [diag(1"" @ )] must exist, which is the
case if and only if GI.AB >0 for all i=1,...,N®. Note that this

corresponds to Constraint 2.1.
Theorem 4.3
The link matrix @ is a standardised link matrix ifand only if
0" 1'=1" 4.31)

Proof:

By definition, 071 = [diag1™O")]'O@""*1" is a
column vector of size N*. Now, @17 =0 = {91/’3,...,9;5}. Let
b, be the i" element of @ **1” obtained by the product of line i of
the matrix diag(0”")"' and the vector 8" We have b, = 0x 6,

+o (07 X0+ +0x 007 =1,

3 . . . B . NE
Note that we use for simplification the notation 17 instead of 1" .
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Therefore, @"**1* = {brseesb s} = =1, L]

Using Theorem 4.3, we directly obtain Corollary 4.4 that can
also be found in Deville (1998a):
Corollary 4.4
YB — lT,BYB
NN 9”‘3 (4.32)

lT A@ABYB ZZ@AB

j=t i=l Y

Let us define the column vector Z—@ABYB of size N'.

Considering each line of Z, the variable z, = Z 9 AB is defined

=1 _]I l
for each unit j of the population U and measured for each unit

jes”.

Let W' = {W,..., w s} where w, is the estimation weight of
unit i of Q°, with w =0 for igQ”. For estimating ¥?, the
estimator (2.1) can be rewritten as

Y2 =W'Y". (4.33)

In matrix notation, the GWSM can be formulated as follows.
Let n' = {ﬂlA,...,ﬂ;A}' and let TI" = diag(n") be the diagonal
matrix of size N* x N* containing the selection probabilities used
for the selection of sample s*. Accordingly, let t* ={t",. A}'
where tf =1if jes”, and 0 otherwise. Let T* = diag(t") be the
diagonal matrix of size N”xN? containing the indicator
variables t‘f . Starting from Y* = 1"0"Y? =177 | the estimator
(4.1) translates to

Y2 =1"T4(M")"'Z (4.34)

Using the fact that Z= 0Y®, we have

Y2 =114 (HA)'IGABYB and therefore we can define the column
vector W of weights obtained by the GWSM as

W =0T "4, (4.35)
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The vector W is of size N® and for each i=1,..., N”, we

N 4B A
have w, _ijltf 0 7.

By construction, because the estimator (4.34) is a Horvitz-
Thompson estimator, the GWSM produces unbiased estimates. We
can, in addition, have the following theorem:

Theorem 4.4
The vector of weights W given by (4.35) provides unbiased

estimates if and only if the matrix 0" is a standardised link matrix.
Proof:
Starting from (4.35), we have
E(W) =011, (4.36)
Using Theorem 4.3, we directly get E(W)=1" and therefore
we have unbiased estimates. Now, assume that E(W)=1°. From

(4.36), we must have 01" =1" and therefore, 0 is a
standardised link matrix. [
The variance (4.11a) of Y% is here expressed as
Var(Y?) =Z"A'Z
4.37)
=Y"A"Y
where A" = [(ﬂ';, —ﬂfﬂ'ﬁ)/ ﬂfﬂf]Ww’ is a non-negative definite
matrix of size N*xN* and where ﬂ;, is the joint selection
probability of wunits j and ;' from U’ and where
A8 — (':)T,ABAA(:')AB
As shown in Theorem 4.4, the estimator Y? obtained by the

GWSM will provide unbiased estimates provided that the matrix 0"
is a standardised link matrix. Now, given that the variance (4.37) of
this estimator depends on this matrix, there should be at least one

matrix @*#%" such that the variance of the estimator Y will be
minimal. That is, for the Q;f 7 that are greater than 0, we are interested

in finding the values that these 9;1.3 should have to obtain the most

. . 5B
precise estimator Y.
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This optimality problem was first assessed by Kalton and Brick
(1995). They obtained results based on the simplified situation where
N'=2 and with 5" obtained through equal probability sampling. Their

conclusions suggested the use of 0_;’.3‘”” "=1 when 0;?3 >0, and
9;:8"”’ " =0 when 0;:3 =0. Lavallée (2002) and Lavallée and Caron
(2001) obtained results along the same lines by the use of simulations.

In order to find the optimal weighted links Q:f"’p ", we need to

first factorise the standardised link matrix @"*. Factorisation
consists in finding a population U° and standardised link matrices

@Acand @GB such that @43 @AG@GB. We consider the

population U° contalnmg as many units as there are links starting
from the units j of U”. The population size N“ is then given by the

number of & ffg from ©@* that are greater than 0. Each unit g of U°
can be seen as the extremity of an “arrow” starting from some unit; of
U". From this graph, there is only one link matrix @*“ of size
N*xNY keeping unbiasedness, namely @'’ = [Hf;f] where
Ofgc =1 if there is a link (or an “arrow™) leaving unit j of U to unit g
from UY, and 9;’5 =0 otherwise. Note that by construction, each unit
g from U is linked to at most one unit j from U" and therefore
éAG _ @AG

Considering the graph from UY to U, we can construct

the link matrix O of size NYxN? as follows. Becquse
of the definition of the population UY, each unit g of UY is

linked to exactly one unit i of U”. Let 0% = 0 [diag(1™“ @]
be the standardised link matrix obtained from @“®. We have
diag(1" @) = diag(1""@"), and therefor 0% = @ [diag.
(IT,A @AB )]—]
Now,
(:)AG(T)GB — @AG@GB
— @AG@GB[diag(lT,A @AB )]71
— @AB[diag(lT.AG)AB)]—I
_ éAB

(4.38)
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Therefore, using this construction, the standardised link matrix
O from U* to U? can always be factorised into @““ and ©@“*
Using the factorisation (4.38), we have
Var();B) _ YT.B(?)T,ABAA(:)ABYB
_ YT,B(?)T,GB(?)T,AGAA'(:)AG(T)GBYB (4.39)
_ YT,B(:)TAGBAGE)GBYB
where A% =@"1A"@ "¢
For any standardised link matrix 0 , the factorisation (4.38)
always produces the same first factor 01, Therefore, if we seek
some optimal link matrix O 2" that minimises the variance (4.37), it
is sufficient to optimise the second factor 0 . We would also like

the optimal matrix @***"

to produce unbiased estimates.
Let U I.G be the subpopulation of U° containing the N,,G links

to unit i of U”. Note that the subpopulations U ,.G are disjoint. Thus,

without loss of generality, we can order the links from U" to U” so
that, for every i, the links to unit  in U are indexed consecutively.

Now, let (.)I.GB be the i column vector of the matrix (?)GB L =1, NP

By construction, the vector (')iGB contains non null elements only for

the N links to unit / of U®. Hence, letting 5,.63 be a column vector

of size NI.G containing the non null elements of GIGB, we have
0
9,63 =|0°" |. Similarly, let 11(’ be the column vector of size N°

0

containing 1’s for N elements and 0’s elsewhere. Letting 17 be a

0
. G . . e G
column vector of size N, containing 1’s, we have 17 =|1; |. Now,

0
for the GWSM from U to U to be unbiased, we need to have
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EI.T’GB ll.G =1 for all i, or equivalently ('),.T’GBLG =1. All this together
leads to the following optimisation problem:

FIND A MATRIX @7 = {0727 09"} SATISFYING

079’19 =1 FOR ALL i=1,...,N* AND MINIMISING THE
QUADRATIC FORM Var(Y?) = Y@ “* A°@"Y" .

This problem turns out to be nothing more than the
minimisation of a positive quadratic form under linear constraints.
This is a relatively standard and simple problem to solve. It is well
known that a solution always exists and is unique if the form (4.39) is

positive definite or if the null subspace of O is not included in the
null-space of A°.

The above optimisation problem can be rewritten in a different
form. Let Afl’ be the submatrix of A° corresponding to the elements
in positions g and g’ if g has a link with unit { and g’ has a link
with unit . These matrices form a partition of A°. Note that the
matrices A; are symmetric, positive definite, and A" = A} . With

these notations, the optimisation problem can be written as:
MINIMISE

NEB NB

3> vy 0 AH” (4.40)

i=1 i'=l

UNDER THE CONSTRAINTS 0/ “°1° =1 FOR ALL i=1,...,N’.

Minimisation is achieved for vectors 6@’”” " satisfying
NR
GGBopt ., G
inAii'ei' ye =41 (4.41)
/=1
for all i=1,...,N° and where 4. are the Lagrange multipliers entering

into the constrained minimisation of (4.40). As we can see from
(4.41), the optimal choice 0% (and therefore @) will depend,
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in general, explicitly on the vector Y?, which is not useful in

practice. Notice that the set of 4 depends also on the variable Y”.

This is the reason why we should seek, instead of a strong
optimisation, a weaker form of optimality that will lead to the

I i i N o B,
existence of an “optimal” solution @“*”" (and @"*”') not

depending on Y?.

Equations (4.41) must be valid for any vector Y. A necessary
condition is to have them hold a particular variable of interest, such as
y, =1 for a unit i of U’ and y, =0 for all other units i’ of U’
(i' #1). This leads to the necessary conditions (one for each of those
particular variables) AS@FB’O" ‘=217, Assuming that AU s

invertible, we then have 61@,0,; "= 2(A2) 19 It can be shown that

NT.GB, G
0, %717 =1, we

this is also a sufficient condition. Now, because
have A, =1/17°(A9)"1¢ . Therefore, a necessary and sufficient
condition for equation (4.41) to be satisfied is when
(A7
17947197

GLii i

NGB.opt _
os ! =

(4.42)

This result corresponds to weak optimality as it holds for a
particular variable of interest.

Weak optimality is a necessary condition for strong optimality
independent of the vector Y for a variable of interest. 1t provides the

necessary form for the vectors 6,.63’0” " in (4.41). To get sufficient

conditions for strong optimality independent of Y, we go back to
equations (4.41). These equations need to be satisfied for all vectors
Y® and they must therefore be satisfied for a particular variable of

interest such as y, =1 for a unit i of U°, y, =1 for another unit i’ of
U°, and y. =0 for all other units i" of U® (i"#i'#1). In that case,

to satisfy equations (4.41), it is necessary to have the following
relations for any 7 and /':
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AS’BIGB,Opt + Agei'G'B,opI — Aiii 1'(1 (443)
G p GB.opt GpGBopt __ 1ii'4G
Ai'i'ei' + Ai'iei - A’i' li' '
As we must necessarily have weak optimality, we have
ATO" = 217 Considering the first line of (4.43), we then get

i
G GBopt i G
ACBEE = (2 = AN

(4.44)
= (Dii’liG

Multiplying both sides of (4.44) by 617,03.(),; ", we obtain

A 7T.GB, G GB, N T.GB, G
0. Bop[A,',-'B[' opt :(D[«,-r('),- oprli

=0,
since 617,@3,0,; 17 =1. Let ® be the matrix with elements @, off the
diagonal and @, = A, on the diagonal. Using again (4.39), it can be
shown that the optimal variance (whenever it exists) has the
expression Y P®Y” .

Let us show that this set of conditions is also sufficient.
Assume that (4.44) holds. Note that for i=i', condition (4.44) is
nothing more than (4.42) which gives the necessary values for the

61.63 P 1t is now straightforward to verify that (4.41) holds, whatever

the value of Y”, and that we have obtained strong optimality. Now,
the values of A4, depend on Y?, as well as the variance Var(Y"),
but we have that equations (4.41) always have the same solution

(4.42) that does not depend on Y*. We therefore have the following
theorem:

Theorem 4.5: Strong optimisation independent of \'&

AG QB

. G
The conditions A0, =®,1’ are necessary and

sufficient for the existence of a standardised link matrix Q" or
equivalently @*%" | that achieves strong optimality independent of

the vector Y© for the variable of interest. The values in the columns
of this strong optimal matrix are given by (4.42), which are the

op

vectors @7 obtained from weak optimality.
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Since Aﬁﬁf&”” =17, (4.44) can be written equivalently as

@ 0757 = (AY)" Aﬁﬁf‘“ﬁ' (4.452)
or O 17 =A% (A ™M (4.45b)
where = (OTGBO”’AGOGB”’”) (ITG(A ) 16) and (I): =

(OT('B””'AC'OGBW’) (17°(AS)"17). In some situations, these

can proved to be easier to use than the expresssion (6.7) stated in
Theorem 4.5.

We now present an example that illustrates the preceding
theory on weak optimality and strong optimality independent of Y* .

Example 4.3

Let us suppose that the sample s* is selected using simple
random sampling. In that case, the N x N matrix A” is given by
AA NA (N4 —n ) 1,417‘,‘4

' (N*=1) N?

} where 1 is the identity matrix

of size N x N*. Considering the factorisation (4.38), we have

G _ (:')T,AGAA@AG

4 A AN T.A
:N_A(ZVNA nl))XG)T.AG{IA 1]\1] }G)AG 4.46)
n _
y A G4T.G
N ) [ 1T
n® (N° =D a N

where lfj is a square matrix of size N ;.4 , with Nf being the number

of links (or “arrows™) starting from unit j of U"'. From A%, we extract

the  submatrices Af,’ Each submatrix AY s given by

¢ N'(N'-n")
Aii Ve A
nt (N'-1)

using a matrix result that can be found in Jazwinski (1970), we get

A

) 1917¢ ,
—’]—vi— , which 1s of size N,.(’. Then,
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4 4
(Ag)_l IMH—AX IIG +‘%1?1?’G . Now,
(N"=n") N (N"=N;)

- 1
from (4.42), we directly obtain the optimal values GI.GB’OP ' = — lf' that
minimise Var(?g), in the weak sense, i =1,..., N”. These values are

7T,GB,opt
i

used to construct the vectors , and then the matrix

Ocs, = {OIGB’O’”,...,GSIS’O’”}. Finally, after computing the optimal

matrix @"%7" =@"“@"" | we obtain the optimal weights W
using (4.35).

Again, this result is an important one because it goes directly in the
direction of the results of Kalton and Brick (1995), Lavallée (2002), and
Lavallée and Caron (2001). That is, with simple random sampling, the

optimal choice of Hﬁf'apt should be 1 if there is a link between unit j of
U* and i of U2, and 0 otherwise.

Using Theorem 4.5, we now verify if the conditions (4.44), (4.45a) or
(4.45b) for strong optimality independent of y; are satisfied for the
optimal matrix (:)AB’OP " that we obtain through weak optimisation. First,

. G . G, AfG : G
each  submatrix A}, of size N/ xN, is given by A}

4 4 4 G4T G
:N—A—(é\]fv/linl)) X {HS——I-I—AIZ’T} where Hf is a NIQ X Nﬁ;
n J—

diagonal matrix of ones, “padded” with zeros. A typical element of Hf

is given by 1 if both 7 and i’ are linked to the same unit j of U’ (that is
linked to unit g of U°), and 0 otherwise. Therefore, we can easily see in
which cases the conditions (4.44), (4.45a) or (4.45b) can be satisfied. In

Q GB.opt GQGB.opt .
fact, because all components of 0" are equal, A9, *" is a vector
G

proportional to the sum of the lines of Aﬁ,, i.e., the sum of the lines of

19179
{Hf - —’N# . But (4.44) says that this vector must have the same

components. This is possible if and only if the matrix Hl(: contains only

zeros, or if it is of dimension 1 x 1, which occurs when both 7 and i’ are
each linked to only one element of U”. Therefore, strong optimality
independent of Y? does not occur in general for simple random sampling.




CHAPTER 5

OTHER GENERALISATIONS

We mentioned in Chapter 1 that the GWSM is in fact a
generalisation of the weight share method described by Ernst (1989).
It can also be considered as a generalisation of network sampling as
well as adaptive cluster sampling described by Thompson (1992),
Thompson and Seber (1996) and Thompson (2002). It is however
possible to go a little further with the by expanding the context in
which the GWSM can be used. Firstly, we will consider the possibility
of performing a two-stage indirect sampling. Secondly, we will
discuss the arbitrary aspect of the formation of clusters. Finally, we
will examine the possibility of eliminating the notion of clusters.

5.1 TWO-STAGE INDIRECT SAMPLING

An important constraint to which the survey process was
subjected is to consider all units belonging to the same cluster. In
other words, if a unit is selected in the sample, then all units from the
cluster containing the selected unit must be surveyed. Although this
constraint often permits savings and also allows for estimates on the
clusters to be produced, we may want to consider only a subsample of
units from the cluster to survey. This could turn out to be useful, for
example, when the cluster size is considerable.

As an example, we can consider the survey of enterprises
through their establishments, as shown in Figure 1.3. Recall that we
select a sample of establishments, we go to the enterprise level
(cluster) and we finally survey all establishments from the identified
enterprises. Unfortunately, the number of establishments for certain
enterprises (like chains of small retail stores, for example) can prove
to be enormous and in this case, we may want to restrict ourselves to a
subsample of establishments. We could however argue that we already
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had a sample of establishments at the beginning, and why then would
we select another one? In the example that concerns us, this new
sample allows us to give a non-zero selection probability to
establishments f and g that have no chance of being selected in the
sample at the beginning.

In a formal way, a sample s” is selected as before containing
m* units from the population U* containing M units according to
a certain sampling design. We assume that 7[?’ represents the

selection probability of unit ; and that 7[};1 >0 forall jey*. On the

other hand, the target population U” contains M”® units. This
population is divided into N clusters, where cluster i contains )f7?

units.

For each unit j selected in s*, we identify the units ik from U”
that have a non-zero link with j, ie., /;,,=1. For each identified
unit ik, we assume that we can create the list of M units of cluster i
containing this unit. This cluster / itself then represents a population
U? where U =Y, U’ . Let Q° be the set of n clusters identified by
the units jes”.

From each cluster i€ Q”, a sample s’ containing m” units is

selected from the M units of the cluster. We assume that 7[(11'[)1(
represents the selection probability of unit k and 7[(',.')k >0 for all

k €U/ . The variable of interest y is measured only for the units from
the samples s, i=1,...n.

In the context of indirect sampling presented in Chapter 2, we
had performed a census of each cluster i € Q”. The fact of selecting a
sample s” of clusters i from Q° brings us a second stage to the

sampling design. Since the first stage of the sampling design is an
indirect sampling, we can call the present design two-stage indirect
sampling. Note that a similar two-stage design was proposed by
Sirken and Shimizu (1999) in the context of network sampling.

By applying the GWSM, we want to assign an estimation

weight w; to each unit ke’ of the n clusters ie Q”. To estimate

the total Y* of the target population U” , we can then use the estimator
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M ”I

YIIB ZZ ky:k (5‘1)

i=1 k=l

We now present the steps of the GWSM to obtain the
weights w/ .

Steps of the GWSM for two-stage indirect sampling

Step 1: For each unit k of the M/ units from cluster 7 contributing to
Y calculate the initial weight w/, , that is:

M

Zz/ et (5.2)

7T

where 1, =1 if jes”, and 0 otherwise.

Step 2: For each unit k of the M/ units from cluster i contributing to
Y™* | obtain the total number of links L% :

M

Lﬁ( = zl/.lk . (53)
=1

Step 3: Calculate the first-stage weight w, given by

MP
W

Wik ;/f . (54)
Z k=1 /’<

Step 4: Finally, set w} =w,/z/, forall kes/.

In order o calculate the bias and the variance of Y"**, we
prove the following Theorem 5.1, inspired by Theorem 4.1.

Theorem 5.1: Duality in the form of ye

Let ¥, =Xy, Izl and LF=X"1%  For the clusters
ieQ’ set 2, =V /I forall units k €U’ . The estimator Y"* | given
by (5.1), can then also be written in the form

A~ w A
yh= Z Z (5.9)

:l
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]
n M

where ZAF/: ZZZ,/,isz,-k . (5.6)

i=l k=1
Proof
R , . ,
From YY" =Y wyr y, /=i, =YL wY,, we substitute the

definition of w, in Y% to get:

E
!

11,B Z wi );,
14 Z Y =27
Z =1 lk = !
Let z, )A’I /I . Note that this quantity is defined if and only if
Lf >0, that is, if and only if Constraint 2.1 is satisfied. We then get

n M,

ZZ ‘2. (5.8)

=1 k=1

MK

W . (5.7)

-
n

By replacing w;, with its definition (5.2), we get

555 ]

i=1 k=l

(5.9)
n WR M
PPN pry
i=l k=1 j=1 j
Finally,
M' ¢ o M
:Z—L le,ikzik
/= 77" i=l k=l (5 10)
M t_] R )
=) 7,
Jj= 17[
|

The estimator ¥”* can therefore be written as a function of
the units ik of U”, or as a function of the units j of U*.
Corollary 5.1: Bias of Y"'®

The estimator Y""* is unbiased for the estimation of Y°, with
respect to the sampling design.
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Proof
Take the expectation E(Y"*) from (5.5), with respect to the
design. This expectation can be decomposed into E_, [EY"E|1Q%)],

where the first expectation is performed with respect to all possible
samples Q° of clusters, and the second expectation is conditional on
the clusters of Q”. From (5.5) and (5.6), we have

. e . no M .

E(YH,B |QB):ZW§'ZZ[,/.:'I<E(ZM |QB) . (5.11)

J=1 T =l k=1
Now,
B Y\; ylk B
EG, |0 = E[F j [Z 10 ]
i L o (5.12)
Y
=E:Zik

!

since );,:ZZ'Q y, /7, is nothing more than a Horvitz-Thompson

estimator of Y, . Thus,

R M y n M"
E(YH,B |QB):ZASZZ[%”‘Z’* ) (5.13)
=1 i i=l k=1

Following the survey process, the cluster i will be part of the »
clusters of Q" ifand only if /, , # 0 (there is a link between units j of

U* and ik of U”) for at least one k€U, and 7, =1 (unitj of U" is
selected in s”), or in other words, if and only if /,,7, #0. Unit k of

cluster i is therefore surveyed if and only if, for all 7z , we have

[ t/;r #0 for at least one keU”, which implies that

Joik"j
0 = ,{": > llj wl 2 /7z # 0. The » clusters surveyed therefore have

@, # 0, and the N-n non-surveyed clusters have ¢, =0. Thus,

E(}'}H,B | QB) - Z
(5.14)
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From Corollary 4.2, we have directly E_, (); ®y=Y*® and
therefore

E(Y"y=y* . (5.15)

|

Corollary 5.2: Variance of ¥"*

The variance formula of the estimator Y'""® | with respect to the
sampling design, is given by

Var(Y"?)= Z( j ZZ(—”LJ#) Z,Z;, (5.16)

j=t =l j=1j'=1 Ty

where
M M" 7[ . )
(l)k (r)k (:)k (:)k
o=y 3" Vb (5.17)
k=1k'=] 7Z' kﬂ'(,)k

and where 7w represents the joint selection probability of units

k and k' from cluster i.

Proof

To get a variance formula for Y/*?, we start from equation
(5.5). As with Corollary 5.1, we start from a conditional argument
using the following identity from Sédrndal, Swensson and Wretman
(1992):

Var(Y"")=E_,[(Var(Y""* | Q"))+ Var_,[EZ"" |Q")].
From equation (5.14) and from Corollary 4.2, we get directly

n ( -
Var ,JE(Y"" |Q”)]= ZZM Z,Z,.  (518)
j=1j'=1 Ty

Now, from (5.5) and (5.6), we have

1

WBZ4ZZM

J=1 ) =l k=]

~24 L; i

=1 ) i=1

i w]:@

(5.19)
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We then calculate the conditional variance of Y*# to get

2
A Mt (] N
Var(Y"? | QF)= Zl{; ZEL—’Bj Var(Y,|Q"). (5.20)

j=1 7[‘/' i=1

. ol B . B .
Since Y =Y.y, /x}, is nothing more than a Horvitz-

Thompson estimator of Y, , we have

ME \4”

Var(Y !QB) ZZ M}’zk,"w
k—1k—1 T T (e (5.21)
=o.

From (5.20) and (5.21), using the same arguments as those used
in obtaining (5.14), we have

Var(Y™? | QF) = Z*ZL LBJ Z*Z[ “J o’.(5.22)

=17 =1 =17 =1

Finally,

E [Var(7"?1Q")] =Mzﬁ[%] ol (5.23)

j=1 i=1

5.2 ARBITRARY ASPECT IN THE FORMATION OF
CLUSTERS

We saw that the GWSM relates to an indirect sampling of
clusters surveyed within the population U”. In practice, the clusters

of the population U” are, most of the time, formed in a natural
manner. In social surveys, for example, clusters often correspond to
households or families, and the units are the people belonging to these
households or these families. For economic surveys, the clusters often
represent enterprises while the units of these clusters are
establishments or local units. To apply the GWSM, the formation of
the clusters can however be performed in an arbitrary fashion.

If the process of forming the clusters is independent from the
selection of the sample s”, the GWSM remains unbiased for the

estimation of the total Y*. We indeed notice that the proof of Corollary
4.1 does not mention the construction of the clusters themselves. Note,
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however, that for the GWSM to remain unbiased, the process of
forming the clusters must respect Constraint 2.1. Assuming that the
clusters respect Constraint 2.1, the choice of the clusters, however,
will influence the precision of the estimates produced for the target

population U®. In other words, the variance of the estimator Y*
depends on the formation of the clusters.

In the construction of the clusters for the population U”®, we
find two extreme cases: (i) the formation of a single cluster of size

M’ and (ii) the formation of M? clusters of size 1. Of course, in
practice, the formation of the clusters is somewhere between these two
extremes. Meanwhile, these two extreme cases can help us to
understand the process governing the precision of the estimates
according to the construction of the clusters.

5.2.1 Extreme case (i): population U® with a single
cluster of size M*

Suppose that we decide to create a single cluster of size M”°
for the target population U” (Figure 5.1). Since the survey process
requires us to survey all units belonging to the clusters selected
indirectly through the sample s*, we will then inevitably have a
census of the population U?. Indeed, for each unit j selected in s*,
we are linked to the population U” by the links /., >0. For each of
these links, we survey all units of each linked cluster i and, as the
population only has one single cluster, we will thus survey the entire
population U”.

As we are interested in the variance of the estimator Y7, it is
practical to use the form of Y given by Corollary 4.3. Since U® only

has a single cluster i=1, we have ¥ =Y®, L | =y [, =17, and
=YL =L.
We then get

e (5.24)
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where L=¥" ¢ L!/x". We can see that L is in fact a Horvitz-
Thompson estimator of the total number of links L. The variance of

Y? in the case where the population U” only has a single cluster is
thus given by

vari?y=| X2 | S i i) 5.25
ar(Y")= A Z it iR (5.25)
J=1j'=1 it

=oeae e R

.

Figure 5.1: Population U* with a single cluster

Looking at the variance formula (5.25), this variance will be
zero if, for each unit j of the population U*, the selection probability
ﬂ;’ is proportional to the total number of links L_’; . In other words, it

is preferable here to assign the selection probabilities of the units from

the sampling frame U in such a way that they are proportional to the
number of links coming from these units.
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Note that the variance (5.25) also becomes zero in the case
where there is only one link for each unit j of U* (such as for the
longitudinal surveys showed in Figure 3.1, for example) and where the

sample s* is selected by stratified simple random sampling.

However, the present discussion remains academic since we
are in the extreme case where the population U” has only a single
cluster. In fact, by only choosing a single unit j of U*, we should be
able to estimate the total U” with a zero variance owing to the fact
that having only a single cluster leads to the census of the population
U?. The variance of Y? is unfortunately not zero here due to the
complex links that can exist between populations U* and U”.

With complex links, we find ourselves calculating a
“weighted” mean (with the variable /,, ) that counts the census value

Y® many times. This “weighting” unfortunately contributes to
increasing the variance of Y?. It is however possible to reduce this
variance to zero by calibrating the estimator Y? on the total number

of links L. We will see in Chapter 7 how it is possible to introduce
calibration in the GWSM.

5.2.2 Extreme case (ii): population U”® with M”*
clusters of size 1

Suppose that we decide to create M” clusters of size 1 for the
population U”, as shown in Figure 5.2. In practice, this case can
cause problems in bias if the population U” has unlinked units &, such
as units 5 and 7 in Figure 2.1.

By forming clusters of size 1, the unlinked units will find
themselves isolated from the population U" and they will therefore
not have any chance of being surveyed. Furthermore, note that this
situation is directly contradicting Constraint 2.1 of the GWSM. In
order to simplify the discussion, we will assume here that the
population UU® does not have unlinked units to population U". In
Figure 5.2, we thus added links between pairs (3,5) and (4,7) that we
have represented by dotted lines.
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|
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Figure 5.2: Population U” with clusters of size 1

As in section 5.3.1, it is appropriate to use the form of V&
given by Corollary 4.3. Since the target population U® here has M*®
clusters i of size M =1, we have Y, =%, y,=y,.L, =

Zk:ll/,ik :lj,il and L? = Z?il' Lj,i = Z 1/ i
We then get

oL, Wt ¥,
Z‘ ZB— = Z 71' ley,.l L_B (526)
= i j o= i

L
7[ j=1

Unfortunately, the form (5.26) does not bring much
information on the effect that the creation of clusters can have on the

precision of the estimator Y% . This form, however, can be uscful in
studying the performance of Y*# if we create clusters of size 2.
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In order to simplify the discussion, assume that M” is an even
number. We decide to create N =M"/2 clusters of size 2 by
combining in pairs the clusters of size 1.

Let the new cluster ' consist of cluster i=i" and cluster
i=M®—i'+1,for i'=1,..,N . The estimator ¥* given by (4.16) then
takes the form

YB - S Y I
A i rB
J=1 ﬂ.j i'=1 LI
M N [/_ S+, ]
_ _j__z( JV T M P—ie
_ B+ )
A i (ME—ien) B B
A [L +L(M 1+1)]
, (5.27)
! [[/' il +1,(w”»i+1)1]

N
J

=27 Zy,l
J [L + (M”

l+l)]

N [+ ., ]
,,[ JUMP i)
+ B, .
;y(M —-i+1)1 [L +L }

(MP—i41) ]

By reindexing from N+/ to M” the N clusters of the second
sum of (5.27), we can then write equation (5.27) under the form

M~4

Z i‘y /ll /(MH ,+|)|] N MZK ), [;./-(MH-—HI)I +/j.il]
SO L T A e, ]

=1 7 (MP—i+l) =N+l (A8 —is1)

o [1i1+1 MP —i+|l]
Z {Z ¥V, T [i‘ ) } (5.28)

:l i=l (m? ,+|)]

By comparing equations (5.26) and (5.28), we can see the
effect of forming clusters of size 2, compared to forming clusters of
size 1. We first note that in the two equations, the variable of interest
v, 1s “weighted” by a factor representing the ratio between the

number of links for the cluster with unit; and the total number of links
for the cluster. With the clusters of size I, we see by equation (5.26)
that each unit i1 is weighted by a factor dependent on a single link
with unit j. With the clusters of size 2, equation (5.28) shows us that
the factor then depends on two possible links with unit j. This factor
proves to be decisive in the precision of the estimator Y*#, as we can
see in the following section.



Chapter 5: Other Generalisations 89

5.2.3 General case and discussion

We will consider here the general case where each cluster i has
M? units. Again, we consider the form of the estimator Y? given by
Corollary 4.3. From (4.16), we have

M!

ZZY

/|7Z./Il

; (5.29)
= Yy =5
i=t 7T it k=1 ' L?
We now use the following result.
Result 5.1
For all units j of the population U*, we have
N M
Z/ = Zzyik L_jB
i=l k=l i
Proof
voMi Xy M
ANy 2 N LN
,Z:]:k:]ylk Lf; ;:Lfg ;Lf};/lk
N M’H Y ~ M’Ii
=2 Zl,m’k =22 (5.30)
i=l k=1 L,‘ =1 k=t
= Z./"
|

According to equation (5.29), in a general manner, each unit £
of a cluster i of U” is “weighted” by a factor representing the ratio
between the number of links between cluster / and unit j, and the total
number of links for cluster i. The larger the cluster size, the more we
expect that the number of the links part of this factor will be large. As
it is a question of the number of links for the whole cluster i
containing unit k, the larger the cluster is, the more we expect that the
factor “weighting” each unit ik has a kind of homogeneity. This
homogeneity is important because of Result 5.1 that shows us that the
double some coming from equation (5.29) is nothing more than the
variable Z; defined in Theorem 4.1. More important still is the fact

that, by Corollary 4.2, the variable Z, feeds directly into the

calculation of the variance for the estimator ¥”.
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The homogeneity of the factor “weighting” each unit ik of U”
will contribute to the homogeneity of the variable Z,. However, this
homogeneity will only be favourable if the formation of the clusters is
done in such a way that we combine the clusters that are already
linked to the same unit j of U”. Indeed, since the “weighting” of each
unit ik of U” depends on the number of links L, between cluster i

and unit j, such a grouping of these clusters will not produce an
increase in surveyed units following the selection of unit j of U*. This
can be seen from Result 5.1. For example, we decide to group cluster
i=1 for which L, #0 and cluster =2 for which L, =0. The new

cluster i" will have L, #0 and we will survey all units of this new
cluster. As a consequence, we will now survey the units of cluster i=2

that were not included previously in the survey process because
L;,=0. We will thus have increased the size of Z; and perhaps have

created heterogeneity in this cluster, which could contribute to
increasing the variance of ¥” instead of decreasing it.

We can also see this problem from the point of view of the
estimation weights w, obtained by (2.4). By grouping clusters that
are not linked to the same unit j of U", we risk combining clusters

that would have been surveyed with other clusters that would not have
been surveyed without this grouping. These new clusters would not

have been surveyed simply because none of the units j of U” to which
they are linked would have been selected in s, i.e., that for a given
cluster i, we would have L,, #0 but 7, =0. From (2.4), we see that

the weights w, of the new clusters would only depend upon the
selection probabilities 7zJA of the clusters that would have been

surveyed before the grouping. We would then have large clusters, but
whose weight would be calculated from some ﬂf only. Ernst (1989)

noted this problem by pointing out that a use of a maximum number
of selection probabilities 7! generally leads to an estimate of U”

with a larger precision. In section 4.6, we also saw that estimator
(4.26) coming from the improvement of the estimator Y? depends on
the selection probability of the 7 clusters of Q”, and therefore on the

selection probabilities of the units j de U having non-zero links with

>COND,B > RB,B
Y Y

these » clusters. This estimator (or ) in fact has a
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variance less than or equal to the estimator Y# because it uses the set
of all selection probabilities 7[_;’ leading to the selection of the clusters

of O, and not only the probabilities 77 of the units j selected in s*.

It is important to note that if the links are complex, a grouping
involving only the clusters that are linked to the same unit j of U is
not always possible. Consider the example shown in Figure 5.2. We
could consider grouping the clusters containing units 2 and 4 from U”
because they are linked to the same unit j=2 of U". However, this
grouping will have an effect on the clusters linked to unit /=3, as this
unit will now have an indirect link with unit 2 of U” through unit 4.

In the case where the sampling design used for the selection of
the sample s* of U” is of equal probabilities, Corollary 4.2 shows us
that the homogeneity of the Z, will contribute to reducing the
variance. Thus, it seems that with this type of sampling design, we
will have an advantage, for increasing the precision of the estimates,
to form clusters of large size by combining as much as possible
clusters that are already links to the same units j of U".

If the sampling design is of unequal probabilities, the variance
will be zero if the variable Z; is proportional to 7[_;’ for j=1,..,.M".
If the links are complex, it is not clear how the clusters must be

formed so that we have that proportionality. Indeed, as one unitj can
also lead to surveying more than one cluster and that a same cluster

can be surveyed due to the selection of more than one unit j of U”, it
is then necessary to control at the same time the formation of the

clusters and the assignment of the selection probabilities 7:/4 , which is
very difficult to do in practice. If the links are not complex (being one-
to-one, one-to-many, or many-to-one), it is possible to determine the
selection probabilities ﬁ;’ so that they are approximately proportional

to the variables Z, under the conditions, of course, of having an

auxiliary variable correlated with the variable of interest y and of
knowing the composition of the clusters i of U® before surveying
them.
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Example 5.1

As an example, consider the case shown in Figure 5.2.

Units of i k Tik
U’? from i
Fig. 5.2 A 1
1 1 1 '/l
2 2 I Yy /1 Yo | Y
Z _;_+—
3 3] v, /1 ) 12
4 A L T By Yy Ya
5 s |1 v /1 Z 12 1
6 6 1 Vo !l Yo, o
P s
7 7 1 i/l 4 |

If we select from U unit j=1 and unit j=2, the estimator ¥*
is then written

5 1 1 y
7= (y wij
ﬂ]A ( 11) 771 ()H )

Assuming that this sample was selected with a simple random
sample of m*=2 units chosen among M*=4, we have
7;/’.‘ =x" =1/2. This estimator becomes

y? :ZX(y” + 3y, +%j

Moreover, assuming that we measure the value y, =1 for all
units surveyed in U” with the goal of estimating M7,
Y% =M% =2(1+1+1/2)=5. The variance of M® is given by

m M MK’Z. >
Var(M®) = (M°) [1— ] : Zz?_—-_(zf“ )
m

MM — j M*
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Suppose that we combine the adjacent cluster pairs to form
new clusters. We then combine clusters /=1 and /=2, i=3 and =4, as
well as /=5 and i=6. Then, we can calculate, as presented in the
following table, the new values of Z,.

Units of
rB o
18- > 7 Inths
Vit yn 1 2
1 1 1 >
Ynt e
2 1 2 2 Z, Y11+YI2+Y21+)’22
YutVa 2 3
3 2 1 3
Yutrm
4 212
3 2x)’z|+)’22+Y31+Y32
Z
Vit Vn ’ 3 2
5 3 1 >
Vit Vs
6 312 2 Z, Yyt Vs sl
Ya 2 1
7 4 1 1

Selecting unit /=1 and unit /=2, the estimator ¥”* can then be
written

7E :L(J}n +)}1zj+_1_(yn ) +Yz| +)’22j

z 2 7 2 3

If this sample was selected with a simple random sample of
m* =2 units chosen among M* =4, we have

)}B:2X(2XJ’11+)’[2+)’21+Ysz:2X(yH+yp+Y2x+YzzJ.
2 3 ) 3

Furthermore, assuming that we measure the value y, =1 for

all  units surveyed in  U®, we can conclude that
Y? =M" =2(1+1+2/3)=16/3=5.3333. The variance of M’ is
given by
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4
Var(MB)zi Zz?—f _4 1+§+4—9+4—£j:1.2962.
35S 4) 30 9 9 4

Suppose that we again combine adjacent clusters into pairs to
form new clusters. As for the previous table, we combine in this
manner clusters i'=1 and {"=2,aswellas i"=3and i'=4. We can
then calculate the new values of Z,.

Units of
U? trom | i"| k Zim
Fig. 5.2 Mt o+t
Vit Vot Vst Vs Z 5
1 1{ 1 5
Yut Vot Vst N
2 1t 2 5
Z, 2X)’11+y12+Y13+Y14
Vit Vot VstV 3
3 113 5
Vit Vot Vst Vs 2XY11+Y12+YI3+Y14
4 1{ 4 5 5
Z; +y21 YVt Vy
Yo+ Y + s 3
5 211 3
YotV ¥ ¥y
6 122 3 Zy | oy Ynt¥ntin
Yot VYt 3
7 21 3 3

Selecting unit j=1 and unit j=2, the estimator Y” is then
written

78 :L(J}11+Y12+Y13+Y14]+ 2 [)’11+Y12+Y13+YI4J

! 5 7 5

Selecting this sample with a simple random sample of m* =2
units chosen among M" =4, we have

78 :6X[y” +y12+y13+y14j'
5
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Furthermore, assuming that we measure the value y, =1,

Y# = M® =6(4/5)=24/5=4.8 . The variance of M" is given by

4
var(it"y =21y 72 -2 J(Eﬁi‘fﬁw-ﬁ):z.zg.
3 74 3 25 25 25 4

j=
Finally, suppose that we combine the two clusters from the

previous table to form a single cluster. We can then calculate the new
values of Z,.

Units of
B - 7
U. from | i k Zpm L
Fig. 5.2 Z, B
7
| 1 1 i Y
8
27
2 ) i ik 7
8 Z ZX k:IyU(
7 2 8
3 1| 3 2
8
-
4 T Lia 7
8 Z 3>< /(:ly”‘
7 3 8
5 1| s 2o i
8
7
6 1| 6 2 i 1
8 7 2% e Nk
7 4 8
7 1|7 2
8

Selecting units /=1 and j=2, the estimator Y is then written

7 7
iz :L ot Yk +i pa Yl
' 7 8

Selecting this sample with a simple random sample of m" =2

oo

units chosen among M* =4, we have

;
¥?=5x Lai Vi .
4
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Finally, supposing moreover that we measure the value
y, =1, Y? = M® =5(7/4)=8.75 . The variance of M? is given by

4
Var(M”)zi sz—fg =i(f+ﬁq+ﬂ+l—%_£j:2.o417.
3 74 364 64 64 64 4

J=

In addition to the considerations of precision of the estimates,
there are operational reasons that themselves encourage us to not form
large clusters. The first reason is the difficulty of creating the list of
links for the selected clusters. As we can see in steps 2 and 3 of the
GWSM given in Chapter 2, the use of the GWSM requires us to know

the total number of links L; for each unit & of the clusters i for Q°.
This is necessary to get the total number of links L’ =¥/ 1% for

each cluster i of Q”. If the cluster is large, this quantity can be
difficult, indeed even impossible, to establish in practice. In the case

where the two populations U* and U” are lists where we know all
the links /, , between units j of U and units ik of U”, this does not

pose a problem. In the case of social surveys, however, the
compositions of the households are often established during the
interviews themselves. If the clusters are no longer the households but
rather a much larger entity (the neighbourhood, for example), it will
then be much more difficult to establish the number of links for the
clusters of Q. Ardilly and Le Blanc (1999) as well as Ardilly and Le
Blanc (2001) noted this problem during the use of the GWSM for the
weighting of a survey of homeless people. Section 8.7 will deal with
the problem of links identification.

The second operational reason to not form large clusters is
related to the instability of collection costs. Recall that following the
selection of units j from s, we identify the units ik of U” that have a
non-zero link with these units j, and we finally go and survey all units
of the clusters i containing the identified units ik. Therefore, the
selection of each unit j from U” leads to the surveying of an entire
cluster. If this cluster is large, we will then have an imposing
collection cost associated with each cluster. In the case where the links
between " and U” are one-to-one or many-to-one, the m" units of
s” will be linked to at most m” clusters of U”. We can then control
the maximum collection cost. In the case where certain links are one-
to-many, there will be a large instability in the collection costs.
Indeed, by selecting one unit j linked to a single cluster, we will have
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the collection costs of this single cluster. On the other hand, by
selecting one unit j linked to two clusters, we will then double the
collection costs, and so on if unit j is linked to more clusters. We
casily see that if the clusters are small, these variations in collection
costs can be negligible. In the opposite, if the clusters are large, they
can cause enormous budgetary problems.

The instability of collection costs can also be the result of a
large disparity between the sizes of clusters. By allowing for the
creation of large clusters, we at the same time allow a much larger
variability between cluster sizes. For example, in social surveys, by
extending the clusters to the neighbourhood level instead of the
household, these new clusters will be of variable size if the
neighbourhoods are not all of the same size. The variability in the size
of the neighbourhoods is generally much larger than that of the
households, as neighbourhoods can contain between hundreds or even
several thousands of people, whereas households contain, most often,
between one to five people. If the selection of different units j from
U" leads to the surveying of clusters of very variable size, it will then
be very difficult to control the collection costs. To better control these
costs, it will thus be worthwhile to form small clusters of relatively
equal size.

5.3 ELIMINATION OF THE NOTION OF CLUSTERS

According to the survey process, a sample s* from U” is
selected that leads to the identification of » clusters from U”. For
each of these clusters i, all M/ units contained in the clusters are then

surveyed. The survey process is therefore performed in two steps.
From Figure 2.1, we can illustrate these two steps with Figure 5.3.

We can also see this process as having a single step. A sample
s* from U is selected that then leads directly to the identification of
m” units from U”, where m” =37 M . This way of seeing the
process eliminates the notion of clusters used up to now. However, it
requires extending the structure of the links in such a way that a unit j
from U" that had a non-zero link with a unit & of a cluster / from U*
now has non-zero links with all units & of this cluster 7.
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f l}i

Figure 5.3: Survey process seen in two steps

One way of extending the structure of the links for the clusters
is to define a new indicator variable /‘;,ik to identify the links between

units j of U* and units ik of U”. We then define /7, =1 for each unit
keU! if |,,=1 for at least one unit k€U, and 0 otherwise. In
other words, 1;',* =1—H7;T(1—fj_1k)- From Figure 2.1 (or Figure 5.3),
we then get Figure 5.4. Note that a similar structure of links will be
used in section 6.5 in the context of longitudinal surveys.

By applying steps 1 to 4 of the GWSM, we can obtain the
estimation weight w, by replacing the indicator variable [, with the

new variable 1;’% . However, note that the resulting estimation weight

w, is different from the estimation weight w, obtained by the

H

GWSM with the indicator variable /; , . This can be illustrated by the

small example that we present in the two Figures 5.5.



Chapter 5: Other Generalisations 99

Y

Figure 5.4: Example of extending the structure of links

Let the populations U* and U” be represented in Figure 5.5a.
The population U” only has a single cluster of size 2.

Figure 5.5a: Example of population with links I, ,
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A sample s* from U” is selected according to a certain
sampling design. Assume that 7[1”.' >0 represents the selection

probability of unit j. Following steps 1 to 4 of the GWSM, we get for
each unit ik of the target population U” the estimation weight w, .

Unit ik W,

24 14

11 3n' 3
24 14

__+ —_

12 3n' 3

By extending the structure of the links in such a way that a unit
j from U that had a non-zero link with a unit & of a cluster i from
U” now has non-zero links with all units & of this cluster i, we get
Figure 5.5b.

—
—

S 2

Figure 5.5b: Example of population with links l: .

Since the notion of the cluster is eliminated, it is practical to
replace the subscripts of units ik from U® by the subscript ' where
k'=k+¥Z,M? . This new subscript no longer uses the subscript i
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linked to the clusters. By using the new indicator variable l;‘k, (or l;,,.,( )

in steps 1 to 4 of the GWSM, we get the following estimation weights

*
Wt

Unit &’ W,
A
1 2! 2 )
[
2 2 2nxf

It is possible to construct the estimation weights after
eliminating the notion of the cluster so that they are the same as before
the elimination. To do this, we use the weighted links described in

section 4.5. Starting with (2.5), it is sufficient to set 67_/.’,.,( =L, /L
for all units k from the clusters i of U? . Note that this definition of the

constants gj’ik must be taken before extending the links. We proceed

subsequently by extending the links in such a way that a unitj from

U that had a non-zero link with a unit k£ of a cluster / from U” now
has non-zero links with all units & of this cluster i. Again, starting
from Figure 2.1, we get Figure 5.4. We then replace the subscripts of

units ik from U” by the subscript k. We then have a value 5, . for
each unit k' of the target population U” (without the notion of the
cluster).

Following steps 1 to 3 of the weighted version of the GWSM
given in section 4.5, we get the following estimation weight:
M- 4

B zg t.
J=i 72—/4

) (5.31)
- oL,
- j=1 7T/A Lf;

for k'€ U, the old cluster i.
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By comparing (5.31) and (2.5), we see that the estimation
weight wf, of unit k' from the population U” without clusters is the

same as the estimation weight w, of unit k from cluster i obtained

from the population U® with clusters. We can illustrate this result by
again using the small example from Figure 5.5. For the units j from
U” and k' from U” of Figure 5.5b, we first of all get the following

values of @, ,.:

Unit j of U Unit k' of U® 0.,

1 2

3

1 2 2

3

! [

3

2 2 1

3

From (5.31), we then get the following estimation weights:

Unit k' Wy
24 14
__+__
1 3a" 3xf
246 16
2 3x' 3

The weights w. are quite comparable to those obtained by the
GWSM with the notion of the cluster.

As seen, it is possible to eliminate the notion of the cluster for
the GWSM. To do this, it is at first sufficient to extend the links in

such a way that a unit j from U* that had a non-zero link with a unit k

of a cluster i from U” now has non-zero links with all units & of this
cluster i. Secondly, to get the same estimation weights as the GWSM
with the clusters, the weighted version of the GWSM is used by

P S B
setting 6, , =L, /L.
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Although it can be interesting to eliminate the notion of the
cluster for the GWSM, it is more natural to work with the clusters.
Indeed, as mentioned in section 5.2, the clusters are most of the time
formed in a natural manner. In social surveys, they generally
correspond to households, whereas in economic surveys they often
correspond to enterprises. Eliminating the notion of the cluster also
contradicts the recommended survey process that is the one which
surveys all units of the clusters identified by the units j of s*. Recall
that this allows for savings in collection costs and allows us to
produce estimates at the cluster level.

The extension of the links also goes against the nature of the
problems treated. The links represent a certain connection between the

two populations U” and U”. The fact that units from the target

population U” do not have a link with the population U often refers
to a natural process. For example, at the level of longitudinal surveys,
individuals that belong to a household (or cluster) from population
U” and that do not have a link with U are either immigrants within
the population or newborns. We will further discuss in detail this
problem in Chapter 6. At the level of economic surveys, if we refer to
Figure 1.3, the establishments unlinked to enterprises (or clusters) are
establishments absent from the sampling frame. The extension of the
links to the set of units from the clusters contributes toward hiding this
aspect of the problem. It is worth noting that the extension of the links
is, anyway, performed during the application of the GWSM, but this is
done in an implicit manner.

Finally, the elimination of the notion of the cluster remains

~

artificial since we must obtain the constants &, to apply the
weighted version of the GWSM. Recall that the constants 5,.‘,.,( depend
on the number L of links between cluster / from U” and unit from

U*, as well as the number L’ of links for cluster i from U”. As a
result, we cannot completely eliminate the notion of the cluster.



CHAPTER 6

APPLICATION IN LONGITUDINAL SURVEYS

Longitudinal surveys, i.e., surveys that follow units over time, are
steadily gaining importance within statistical agencies. Statistics Canada
currently has three major longitudinal surveys of individuals: the
National Population Health Survey, the National Longitudinal Survey of
Children, and the Survey of Labour and Income Dynamics (SLID).

The primary objective of these surveys is to obtain longitudinal
data. One of the uses of these data is to study the changes in variables
over time (for example, longitudinal data may be used to analyse the
chronic aspect of poverty).

A secondary objective is the production of cross-sectional
estimates, in other words, estimates that represent the population at a
given point in time. Although these estimates are far less important than
the longitudinal data, to many users they are an essential aspect of the
survey. Obtaining a representative cross-sectional view of the current
population can be found to be useful for measuring the evolution of the
population over time. The longitudinal aspect of the survey also
improves the accuracy of the measurement of change.

We propose to apply the GWSM to longitudinal surveys and, in
particular, to SLID. In the context of longitudinal surveys, the sampling
frame U can be associated to the initial population (wave 1), while the
target population U” is the population a few years later (which will be
called wave 2).

The GWSM is used here so that longitudinal samples can be used
for cross-section estimation. The difficulty arises from the fact that,
although the longitudinal sample remains constant, the distribution of the

population (individuals and households) changes over time. At the
individual level, these changes are produced by such events as births and
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deaths, immigration and emigration, and moves from one place to
another. Obviously, the birth or death of an individual also changes
household composition. Events such as marriage, divorce, separation,
departure of a child and cohabitation are all factors that affect the
population distribution within the household. If we are to obtain accurate
and unbiased cross-sectional estimates based on a longitudinal sample,
we need an estimation method that takes these changes into account.

As seen in Chapter 3, the fair share method and the weight share
method (the precursor to the GWSM) were already used in the context of
longitudinal surveys. This was described by Huang (1984), Judkins ez al.
(1984), Ernst, Hubble and Judkins (1984), and Ernst (1989).

The use of the GWSM instead of these methods, however, allows
us to establish a more general theory, which leads to, among others, a
simple variance calculation for the estimates (Lavallée, 1995). Deville
(1998a) also discussed the GWSM in the context of longitudinal surveys.

Note that other methods, different from the weight share method
and the GWSM, were studied to perform the weighting of longitudinal
surveys and, in particular, for SLID. Lavallée and Hunter (1993) as weil
as Gailly and Lavallée (1993) considered the use of a composite (or
combined) estimator where the sampled units are weighted differently
depending on whether or not they are part of the longitudinal sample.
Their research showed that the GWSM produces estimates with
variances equal to those of the composite estimator, but the GWSM has
the advantage of producing unbiased estimates.

6.1 SAMPLING DESIGN OF SLID

In January 1994, SLID was launched by Statistics Canada. Its aim
is to observe individual activity in the labour market over time and
changes in individual income and family circumstances. SLID first and
foremost provides longitudinal data. However, cross-sectional estimates
are also produced.

The target population of SLID is all persons, with no distinction
as to age, who live in the provinces of Canada. For operational reasons,
the Territories, institutions, Indian reserves, and military camps are
excluded. For more details, see Lavallée (1993), Lavigne and Michaud
(1998), as well as Lévesque and Franklin (2000).
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6.1.1 Initial sample

The SLID longitudinal sample was drawn in January 1993.
Although selected in January 1993, the survey formally began in January
1994; the January 1993 survey in fact served in obtaining preliminary
data on the longitudinal individuals. This first panel of longitudinal
individuals was surveyed for a period of six years, in addition to the
preliminary interview. Thus, this panel selected in January 1993 was
surveyed from 1994 to 1999. Note that a second panel of the same type
was selected in January 1996 and was surveyed from 1997 to 2002. At
the end of the first panel, a third panel selected in January 1999 was set
up in order to replace the first one. This use of “superimposed” panels
allows for different longitudinal samples starting in different years to be
obtained. The panel rotation design is illustrated in Table 6.1, taken from
Lavigne and Michaud (1998). For the current discussion, we will limit
ourselves to the first panel selected in January 1993.

Table 6.1: Panel rotation in SLID

Years
Panel

93 [94 | 95|96 {97 ] o8 [99]oo|orfoa]os]oa]os]os
1 P 1 1 I I I |
2 P 1 I | [ I I
3 P I I i I I I
4 P | 1 I [

P: Preliminary interviews I: Interview on labour and income

The initial sample (or first panel) of SLID comes from two groups
rotating out of the Canadian Labour Force Survey (LFS), making the
sample a subsample of the LFS. The longitudinal sample for SLID is
made up of close to 15,000 households. A household is defined as any
person or group of persons living in a dwelling. It may consist of one
person living alone, a group of people who are not related but who share
the same dwelling, or the members of a family.

LFS is a periodic survey designed to produce monthly estimates
of employment, self-employment and unemployment. This survey uses a
stratified multi-stage sampling design that uses an area frame in which
dwellings are the final sampling units. All the individuals who are
members of households that occupy the selected dwellings make up the
LFS sample. In other words, LFS draws a sample of dwellings and all
individuals in the households that live in the selected dwellings are
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surveyed. A six-group rotation design is used to construct the sample:
every month, one group that has been in the sample for six months is
rotated out. Each rotation group contains approximately 10,000
households, or approximately 20,000 individuals 16 years of age or
older. For further details on the LFS sample design, see Singh et al.
(1990) and Dufour ez al. (1998).

The longitudinal sample for SLID is not updated following its
selection in January 1993. However, to give the sample some cross-
sectional representativeness, initially-absent individuals in the population
(i.e., individuals who were not part of the population in the year the
longitudinal sample was selected) are considered in the sample in
January 1994 and later. Initially-absent individuals include newborns
(births since January 1993) and immigrants. Note that this addition to the
sample is cross-sectional in that only the longitudinal individuals are
permanently included in the sample.

Table 6.2 presents the terminology developed for SLID.

Table 6.2: SLID Terminology

Individuals

Longitudinal individuals: Individuals selected at wave 1 in the longitudinal
sample.

Initially-absent individuals: Individuals who were not part of the population in
the year the longitudinal sample was selected (wave 1). It includes
immigrants and newborns.

Initially-present individuals: Individuals who were part of the population of
wave | but were not selected then.

Cohabitants: Initially-absent and initially-present individuals who join a
longitudinal household.

Immigrants: Individuals who, in January of wave 1, were outside the ten
provinces of Canada and individuals who live in excluded areas (the
Territories, institutions, Indian reserves and military bases).

Newborns: Births since January of wave 1.

Households

Longitudinal households: Households containing at least one longitudinal
individual.




Chapter 6: Application in Longitudinal Surveys 109

After sample selection in January 1993 (wave 1), the population
contains longitudinal individuals and initially-present individuals. In
January 1994 (wave 2), for example, the population contains longitudinal
individuals, initially-present individuals and initially-absent individuals.
Focusing on the households containing at least one longitudinal
individual (i.e., longitudinal households), initially-present and initially-
absent individuals who join these households are referred to as
cohabitants.

SLID follows individual and household characteristics over time.
Atthe time of each wave of interviews, all the members of a longitudinal
household are surveyed. The composition of the longitudinal households
changes over time, as the result of a birth or the arrival of an immigrant
in the household. A part of the selection of initially-absent individuals is
based on individuals who join longitudinal households.

6.1.2 Supplementary sample

Restricting the selection of initially-absent individuals who join
longitudinal households unfortunately excludes households made up of
initially-absent individuals only (for example, families of immigrants).
To offset this shortcoming, one possibility is to select a supplementary
sample. For example, this sample could be one of dwellings drawn
directly from the ongoing LFS at each wave of interviews.
Supplementary questions can then be added to the LFS questionnaire to
detect households that contain at least one immigrant; the households
selected are then surveyed.

Recalling that the supplementary sample is used for the selection
of households made up solely of initially-absent individuals (i.e.,
immigrants and newborns), restricting this sample to immigrants does not
pose any problem in representativeness. This is because it is highly
unlikely that households containing only newborns would be found; each
household normally contains at least one adult. The newborns are then
already represented in the sample by the longitudinal households. Now, if
the supplementary sample were to include newborns in addition to
immigrants, significant costs would be added to the survey. This is
because the supplementary sample would include a complete household
for each newborn selected, producing excessive sample growth and
unnecessary collection costs since the newborns are already represented
in the initial sample.

Instead of using the ongoing LFS, another different approach is to
select the supplementary sample by revisiting the dwellings used for the
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selection of the initial sample. This method offers some practical
advantages (for example, it is easier to go to known addresses). This
approach, however, brings the problem of new dwellings which were not
there in January 1993. These dwellings have a zero probability of being
selected in the supplementary sample, which introduces a source of bias.
This is one reason why we favour the first approach, i.e., detecting
households that contain at least one immigrant via the questionnaire of
the LFS.

Figure 6.1 summarises the longitudinal and cross-sectional
selection of individuals.

Wave 1 Wave 2 Wave 3
A A A——»
L. C
. ol
C
E——

FH—>
M| H
AL
G------=b G K [
I
J L

Figure 6.1: Example of the selection of individuals within households
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In Figure 6.1, the letters and houses represent individuals and
households, respectively. Individuals A, D, E, and F are longitudinal
individuals whom we follow over time. Individual C is an initially-
present individual, i.e., an individual who was included in the population
inwave | but was not selected then. Initially-absent and initially-present
individuals who join a longitudinal household are called cohabitants. In
wave 2, individual H represents an initially-absent individual who joins
the sample as a cohabitant.

The fourth house in wave 2 represents a household selected for
the supplementary sample of wave 2 and in which individuals I and J are
initially-absent individuals (with one of the two being necessarily an
immigrant since the supplementary sample is restricted to them).
Individual G is an initially-present individual with the same status as C.
In wave 3, individuals C and H have left their longitudinal households
and will therefore not be surveyed. Individuals I and J who were selected
in the supplementary sample are now replaced with the individuals of the
supplementary sample of wave 3, i.e., individuals K and L. Individual M
is an initially-absent individual joining a longitudinal household as a
cohabitant. It may finally be noted that, for cross-sectional
representativeness, a selected household may contain one or more
longitudinal individuals, initially-present individuals and initially-absent
individuals (newborns and immigrants).

6.2 ESTIMATION WEIGHTS

To produce cross-sectional estimates, the longitudinal sample
augmented with initially-absent individuals and initially-present
individuals must be weighted. So, we look to obtain an estimation weight
for each individual in each surveyed household. Note that the estimation
weight of which we speak here is that before any adjustment for non-
response and calibration (or post-stratification). It is, so to speak, the
equivalent of the sample weight. It should be noted that the estimation
weights here are useful solely for cross-sectional estimation.

The estimation weights are obtained from the selection
probabilities. As mentioned above, in January 1993 (wave 1), we select
for SLID a sample s of m" individuals from a population U of
M individuals. The sample is selected through dwellings which
contain households. In other words, the m"" individuals are obtained by
selecting 7'" households from N, each household 7 having a selection
probability 7" >0, 1=1,.., N". Let M'" be the size of household ¢
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so that MV =3¥" MY . Also let 7, be the selection probability of

M
)

household . This selection probability is retained throughout all waves
of the survey. In order to simplify the notation, we will omit the subscript
¢ related to the households and thus write 7;(,.” .

individual j from household 1. We have 7)) = 7" for all individuals j of

For a given subsequent wave (which may be defined as wave 2),
the population U contains the M individuals present at wave 1, plus
M® initially-absent individuals (i.e., initially absent from the
population at wave 1). The initially-absent individuals are immigrants or
newborns. The population of initially-absent individuals is indicated by
U . Hence, the population U =U" UU" contains M = M + p?
individuals. Letting U™ be the population of M™* immigrants (i.e.,
excluding newborns) of wave 2, we have U™ cU", and also

M™® < M™ In our notation, the asterisk (*) is used to specify that the
newborns have been excluded. The individuals of wave 2 are contained

in N households where household i is of size M, i=1,..., N.

For cross-sectional representativeness, some immigrants are
selected from the supplementary sample. At wave 2, we then select a

sample s** of m"® immigrants from the population U™® of M™™®

2)

immigrants. The m™* individuals from the supplementary sample are

obtained by selecting n* households from N"® where N'® represents
the number of households from U™’ containing at least one immigrant.
The selection probability of household ¢ is given by 7* where we

assume that 7, >0 for =1..,N"”. Let 7, be the selection

probability of immigrant j from household ¢, for j=1,..M . To

simplify the notation, here we will also omit the subscript  related to the

household and thus write 7'*'.

One implication of selecting immigrants through households is
that other individuals (such as newborns, initially-present individuals or
longitudinal individuals) can be brought in by the supplementary sample
by living in the same household as the selected immigrants. Since the
selection units of the supplementary sample are restricted to the
immigrants, these other individuals are indirectly selected, even if they
will be surveyed. The selection probabilities of these individuals are
often difficult, if not impossible, to obtain in practice.
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The remaining immigrants selected for cross-sectional represent-
ativeness are those individuals who join longitudinal households, who are
then considered as cohabitants. As with the newborns and initially-
present individuals of the previous paragraph, the addition of these
cohabitants to longitudinal households results in the inclusion of
individuals having selection probabilities that are often difficult, if not
impossible, to obtain in practice.

The individuals with unknown selection probabilities have entered
the survey process in an indirect way. They complicate the determination
of the estimation weights, as their selection probability is unknown. In
order to override this difficulty, the GWSM is proposed.

6.3 USE OF THE GWSM IN OBTAINING ESTIMATION
WEIGHTS

The GWSM is now applied to the SLID sample, including the
supplementary sample. The population U* is here represented by the
union of the two distinct populations U and U™, ie.,
U'=U0"=0"UU™ . The sample s of m* =m"" + m"* individuals
corresponds to the union of the two distinct samples s'” and s™*. The
population U”® is represented by U=U"UU". Note that the
population U”*=U" excludes the newborns while the population
U’ =U includes them. The clusters of population U”® simply
correspond to the N households of wave 2, and hence M” =M, .

A linkage between population U* and U” can be established by
the same individuals in populations U” and U”. That is, [, ;=1 if
individual j in population U corresponds to individual k of household i

in population U*, and | ;7. =0 otherwise. Thus, these links form a one-
to-one relation. For each individual ik not being a newborn, we then have

L =Z§f}] ,x=1. On the other hand, for each newborn ik, we have
Ly =Y 1,,=0 since they are excluded from U”. We now have

LB =3MI5 = pr® where M.P is the size of household i excluding the
newborns. This situation can be illustrated by Figure 6.2.
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By considering definition (2.2), the initial weight w) of
individual £ in household i is given by

t([) t*(2)
v ik ik
W =t G (6.1)
ik ik

where 7’ =1 if individual ik is part of s'"”, and 0 otherwise, and #,*’ =1

if individual ik is part of s**, and 0 otherwise.

Figure 6.2: Example of links in longitudinal surveys
This can be written more explicitly by expressing w/, as follows:

1/78 for ik e s
w', =11/7 for ik e 5™ (6.2)

0  otherwise.
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Note that the first line of (6.2) corresponds to the longitudinal
individuals. The second line corresponds to the immigrants selected
through the supplementary sample. The third line represents altogether
newborns, cohabitants (if the household is a longitudinal household not
part of the supplementary sample) and/or initially-present individuals (if
the household is part of the supplementary sample).

From (2.4), the final weight y; of household i is obtained from

M B ) *2)
2 i M MY M 2
2 Vw1 2: ,o_ 1 ' [i(k) \ Zik( ) 6.3
R VR - R i Dt L | (63)

Z Li i k=l it k=t Ty k=1 Ty
fet

Finally, the estimation weight w, is obtained by setting w, = w.

I

for all individuals 4 of household i surveyed.

Example 6.1

As an example, take the case illustrated by Figure 6.2. Suppose
that units j=1, 2, 3 are selected from U . Before applying the GWSM,
we are going to re-index the units of U” from Figure 6.2 according to
the notation used.

Units of U® from Fig. 6.2 ‘ 1 2 3 4 5 6 7
B i o2 2 2
k 1 2 1 2 3 1 2

By selecting unit /=1, we survey all units of cluster i=1. Likewise, by
selecting unit /=2, we again survey the units of cluster /=1. By selecting unit
/=3, we survey all units of cluster ;/=2. Therefore, Q" = {1, 2} . For each unit
k from clusters i of Q” | the initial weight w/, , the number of links £’ and

the final weight w, are calculated:
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i |k Wi L W,
L nt.r
NI ) 1 22"
R L
L2 T 1 AR A
! 1 1 I
— —|—+0+0|=
;
2| 2| O(because 1, =0) 1 27,
0 (because /,,, =0 1
2|3 for all /) 0 2,

The estimator ¥? given by (2.1) is finally written
L 11 1 1 Vv oy,
Vsol—t— Dt | =7 [Pt v S
2|z # 2|7y m; 27y 2my 27y

Using the estimation weights obtained from the GWSM, one can

estimate the total Y2 =¥ ¥, 33, of the characteristic y measured at
wave 2. The estimator used is the one given by equation (2.1). From

A

. . B .
Theorem 4.1, since the links are one-to-one, ¥~ can be rewritten as

17)

w7 AR .

J *(1) *(2)
Z Z ) +Z (6.4)
=R

/17f

where Z =Y, forindividual j of U linked to household i of U, with

}7, =fo='l: yik/M:B . Thus, estimator (6.4) is the sum of two Horvitz-

Thompson estimators related to s and s"* . As shown by Corollary
4.1, this estimator is unbiased for Y*.
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6.4 VARIANCE ESTIMATION

The variance formula for Y7 is provided by equation (4.11a), or
(4.11b), from Corollary 4.2. However, assuming that the two samples
S(/) and S*(Z)
Var(Y®)=Var(Z"")+Var(Z"?), where each term has the form of

equation (4.11a), or (4.11b). For SLID, this assumption of independence
holds if the selection of the supplementary sample is done through LFS.

are selected independently, we can see that

Considering Z"" , we can index the individuals to reflect the fact
that the m" individuals were selected at wave 1 through »'"
households. This gives

(I) ‘ (1) M(H Z* m M'“ m *(1)

2" = Z L DN =TT Z Z e 69

11/17[ zl,

where Zl‘”zzyjl Z:/. since, by selecting complete households,

# =z" for individuals j of household ¢. The variance Var(Z"") is

then directly obtained as

1y | 1
N () 7[( )ﬂ.( )

) Ty (1) (1)
Var(Z"") = ZZ prp] R A (6.6)
=] =1 1

Considering Z"? | the individuals can also be indexed to reflect

the fact that the m™* individuals were selected at wave 2 through »"®

households. Following the same steps used for Var(Z™"), Var(Z"®) is
obtained as

N( ) A *(2) _ *(2)
Var(z (2)) Z Z ( v ﬂ- ﬂ- )Z*(Z)Z;Q) , (67)

*(2) *
=1 /=] ,’

where N"® is the number of households of wave 2 containing at least

*2) *
one immigrantand 7. = ?4:’, Zy

Recall that the quantity M” represents the number of
immigrants present in household ¢.
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Finally, Var(Y?) is given by

’V“’N“'( 1) 1) (l))
* *
Var(z (1)) zz Ty (]) (l)Z,’“)
=1 1'=1 ,
6.8
A (g _”*mﬂ D (6.8)
11

*2)7*2)
+zz *(2)7[*(2 Zr Z:' .

=l 1=l '

The variance (6.8) may be unbiasedly estimated using an
estimator derived from (4.12) or (4.13). As SLID is in fact a subsample
of LFS, the Jackknife variance estimator developed for LFS (see Singh et
al., 1990) may also be used, with minor modifications. In general, the
Jackknife method works as follows: the sample first is divided into
random groups (or replicates, according to the LFS terminology). Then,
the random groups ¢ are removed in turn from the sample and a new

estimate Y” of the total ¥* is computed. The different estimates Y , are

finally compared to the original estimate Y*# to obtain an estimate of the
variance Var(}; ). For further details on the Jackknife method in
general, refer to Wolter (1985) and Sarndal, Swensson and Wretman
(1992).

Recall that the LFS is based on a stratified multi-stage design
which uses an area frame. Within each first-stage stratum /, the random
groups (or replicates) correspond basically to the primary sampling units.
To compute the Jackknife variance estimate for the estimation of the total

Y2, the following formula can be used:
JACK (VBN _ (G, -1 c 5B 5BN\2
Var"™(Y*) = ZTZ@M -Y?) (6.9)
h h =1

where C, is the number of random groups in stratum 4 and Y, , is the

(he)
estimate of ¥ obtained after random group c in stratum 4 is removed.

For LFS, both estimators Y2 and Y2 are post-stratified based on the

B
(he)
integrated approach of Lemaitre and Dufour (1987). SLID also uses this
type of post-stratification, but this is out of the scope for the present
discussion.

6.5 USE OF ANOTHER TYPE OF LINKS

In the previous sections of this chapter, a link between the
populations U* and U” was established by the individuals that are part
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of the two populations. Hence, /, ;=1 if individual j from population

U* corresponds to individual k of household i from population U* | and

[, 4 =0 otherwise. This is a type of link among the many possibilities.

The links described in the previous paragraph can be extended to
all other members of the household, i.e., by setting /., =1 for all
individuals k of a household i from U’ that belong to the same
household i to which individual j (from U”) now belongs, and 0
otherwise. In other words, /,, =1 if individuals j and k belong to

household i. This is illustrated in Figure 6.3.

Figure 6.3: Example of links extended to all household members
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From (2.4), the final weight is given by

M,B '
Zk'zl Wi

MP g
> L
k=17

i

MmEY MYy M x2)
| S 3
By (*B 1 (2
M,‘ Mj k'=1| k=1 7[;1() k=1 7[[1(( )
) ! (6.10)
1 M[(l) 5 M{*(:v ,,.(2) 1 MF
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Although the weightings obtained by the GWSM are the same, we
preferred the type of link used in the previous sections because it
corresponds in a more natural way to linking individuals. Indeed, for a
longitudinal survey where individuals are followed over time, it is natural
to consider a link limited to the individuals who are the same in the
populations U" and U°”.



CHAPTER 7

GWSM AND CALIBRATION

The GWSM described in the previous chapters does not use
auxiliary information to obtain estimation weights. It can be imagined,
however, that the use of auxiliary variables can improve the precision
of estimates coming from the GWSM. For example, auxiliary

information could come from the population U from which the

sample is selected, from the target population U”, or both of the
populations. In this chapter, we are going to show that it is possible to
associate the calibration of Deville and Sarndal (1992) to the GWSM.
In fact, it corrects the estimation weights from the GWSM so that the
estimates produced correspond to known totals associated to auxiliary
information. We will show that it is possible in this case to use
auxiliary information from the two populations U and U”. We will
develop in particular the regression estimator coming from the
application of calibration.

7.1 REVIEW OF CALIBRATION

Calibration arises from a generalisation by Deville (1988), and
then by Deville and Sdrndal (1992), of an idea by Lemel (1976).
Calibration consists of adjusting survey weights in such a way that the
estimates are calibrated on known totals. The basic principle of
calibration is to obtain estimation weights —in fact, calibration
weights — that are the closest possible to the survey weights while
satisfying the constraint that the calibrated estimates must satisfy
known totals. The distance function used to measure the distance
between calibration weights and survey weights determines the final
form of calibration. In fact, with a judicious choice of the distance
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function, calibration can lead to known estimators such as the ratio
estimator, the regression estimator or the raking ratio estimator.

Calibration is described as follows. From a population U of
size N, a sample s of size n is selected, where each unit % is selected
with probability 7, >0. A variable of interest y, and a column vector

of auxiliary variables x, of dimension p are measured, k=1, ..., n. It is
assumed that the total X =3} x, is known, or at least a relatively precise
estimate of this total.' The total Y can be estimated with the Horvitz-
Thompson estimator Y =¥y /7. However, the totals X are not

necessarily respected in the sense where X =Y x, /7, #X. The
problem is then to obtain calibration weights w;* that are the closest
possible to the survey weights 4, = I/, in such a way that the totals X
are respected, i.e., X7 =Y, wi*x, =X Itis thus desired to minimise

the changes made on the survey weights ;.

Let G,(a,b) be adistance function between a and b such that;

(i) Glab)20;

(i) G(a,b) is differentiable with respect to a;

(111) G(a,b) is strictly convex;

(iv) Gi(a,b) is defined on an interval /,(bh) dependent on k and
containing b;

V) Gila.a)=0;

(vi) g.(a,b)=0G(ab)/0a is continuous and forms a one-to-one
relationship between /, (b) and its image Im, (b).

It then follows that g, (a,b) is strictly increasing with respect
to a and that g, (a,a) =0 (Deville and Sarndal, 1992).

The mathematical formulation of determining the calibration

CAL

estimator Y =¥7_ wy, s the following:

" Deville (2000a) discussed the problem of calibration when there is no exact value
for X, but instead an approximate value or a value estimated from another survey.
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DETERMINE w"" FOR k =1, ..., n, TO MINIMISE

> G (wi".d,) (7.1)
k=

UNDER THE CONSTRAINT X =Yy x, =X . (7.2)
k=1

Deville and Sarndal (1992) give several examples of distance
functions. In this chapter, we will restrict ourselves to the Euclidean

distance G (w-" . d)=w"—d,) /d, .

After having minimised the distance (7.1) under the constraint
(7.2), the calibration estimator is obtained as

Y=Y wity, =Y d,F (M), (7.3)
k=1 k=1

where wi** =d, F,(x]}) is the calibration weight. Note that F, (x] 1)

corresponds to the g-weight from Sdrndal, Swensson and
Wretman (1992).

In the preceding formula, the function d,F () is the reciprocal
of g,( - .d;) that goes from Im,(d,) to [,(d,).

The value of the vector & of dimension p is the solution of the
equation X=Y).d F,(x;h)x,. Note that A is the Lagrange
multiplier entering the minimisation of (7.1).

To calculate the calibration weights w.*", Sautory (1991) and

Le Guennec and Sautory (2004) developed a software program called
CALMAR, which stands for Calage sur marges (or Calibration to
Margins). This program produces calibration weights for the different
distance functions listed by Deville and Sirndal (1992). CALMAR is
used in most of the surveys at the Institut National de la Statistique et
des Etudes Economiques (INSEE) in France such as the Modes de vie
(lifestyles) survey and the Budgets de famille (family budgets) survey.
For more details, see Sautory (1992).

One can take as an example the case where the distance
function is the Euclidean distance G, (w:*",d,)=W"_d,) /d, .
With this distance function, the generalised regression estimator y e¢
from Cassel, Sdrndal and Wretman (1976) is obtained. Indeed, here
we obtain
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Fk(x,fk) =1+ xe (7.4)
and

Wi = Wl = d, (1+x])) (7.5)

with A =(X7_d,x,x]) (X-X). For a given square matrix A, the
matrix A~ is the generalised inverse of A. Recall that the generalised
inverse of A is any matrix A~ satisfying AA A = A (Searle, 1971). If
the matrix A is non-singular, then A~ is unique and furthermore

A =A", the inverse of A. The calibration estimator, with the
Euclidean distance, thus has the form

}'}CAL — ZW:TALyk - )’}HT +(X - XHT )Tﬁ — }'}REG , (7.6)
k=1

where ﬁ = (Zzzldkxkxz )' ZZ:I dkxkyk '

The asymptotic bias and the asymptotic variance of the
calibration estimator (7.3) can be calculated. This requires first to
establish an asymptotic framework. The asymptotic framework used
by Deville and Sarndal (1992) is essentially the same as that of Fuller
and Isaki (1981), as well as Isaki and Fuller (1982). We consider a
sequence of finite populations and survey designs indicated by #, the
sample size.

The size N of the finite population approaches infinity with #,
and we assume that for every vector x of variables, we have:

(i) limN™'X exists;

(ii) N'(X"-X)—>0 in probability, with respect to the
sampling design;

(iii) n N’ (XHT —X) follows a multinormal N(0,X) distribution;

(iv) rrklgllx”xk H =@ <o forall n;
" [F(2) :
(v) nz_lx[—azz— _0 =@’ <o forall n.

Deville and Sérndal (1992) proved that for all F, (-) satistying

the previous conditions, the calibration estimator Yo given by (7.3)
is asymptotically equivalent to the estimator Y**° given by (7.6) in
the sense where N™'(Y* —=¥Y**)=0 (n™).
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This is equivalent to writing that for all & >0, there exists a
whole number # such that P(n| N (Y - Y*9)| < &) =1. Recall that

N, Y and Y% all depend on n. It is said that nN ™' (Y4 — YREC)
converges toward 0 in probability.

Having given that the estimators Y™ and Y*° are
asymptotically equivalent, the asymptotic bias and the asymptotic

variance of Y are the same as those for Y**° . The estimator ¥**°
can be proven to be asymptotically unbiased (Sarndal, Swensson and
Wretman, 1992). Furthermore, the asymptotic variance of the

estimator Y%, and therefore of Y*, is given by

N N
Var(F") = ZZ T Z70%0) o (7.7)
k=1 k'=1 ﬂ'kﬂ'k'

where e, =y, —x,B is the regression residual, and where the

regression coefficient P satisfies (X, x,x,)p=3,,x,y,. For a
proof of obtaining the variance (7.7), see Sdrndal, Swensson and
Wretman (1992).

To estimate the variance (7.7), and thus to obtain a variance
estimator for Y| Deville and Sirndal (1992) suggest to use

A A (. 7, T, - A
Var(Y(AL) — ZZ( kk k‘Yk )wkCAI eC'iLw;AI eCIAL , (7.8)
k=1 k'= Y

AC . . e 0 CAL
where &7 =y, —x] B“*" with the regression coefficient [

satisfying (X7, wy™ x,x; )BCAL =YW XY
The variance of Y can also be estimated by using the
Jackknife method. In the case where the sample s was selected using a
multi-stage design with the first stage divided into strata 4, a variance
estimator can be used that is comparable to the Jackknife estimator
(6.9) described in section 6.4. This estimator is here given by

-1
JACK (YCAL) Z ) Z(Y(i:i)l YCAL , (79)
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where (C, represents the number of random groups from stratum h

and );(fff represents the estimate of ¥ obtained after the elimination of

random group c in stratum A.

From the CALMAR software program, Bernier and Lavallée
(1994) created the CALJACK software which, in addition to
calculating calibration weights, performs the calculation of estimates
of totals and ratios, and obtains an estimate of their variance. As the
name of the software suggests, CALJACK carries out the variance
estimates using the Jackknife method. CALJACK is used notably for
the production of estimates in SLID (Lavallée, 1995).

Deville (1998b) developed a generalised theory for calibration.
The basic idea is to generalise the function F,(.) input into the

calibration estimator Y given by (7.3). For each unit k of the
population, a calibration function F, is associated that goes from R”
toward R .

The function F, is such that:
i RO)=1;
(i) £, is regular.

From this function, calibration equations similar to (7.2) can be
solved that here take the form:

Zn:dkﬁk(k)xk =X. (7.10)

As in the formulation given by (7.1) and (7.2), we obtain
), (11D

where V, =grad F,(0) is a column vector of dimension p. The

2

h=(X V) (XX O [x- X7

generalised calibration estimator Y“* is then given by
=S Wy = 3 d F (M), (7.12)
k=1 k=1

The function ﬁk eliminates, in a way, the explicit expression of
the distance function G, in the formulation (7.1). It thus allows a

generalisation of the distance function G, and, consequently, of

calibration. The simplest particular case is the linear case where we
simply take
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F,(A\)=1+ViL. (7.13)

Deville (1998b) give the variable V, the name instrumental

variable. From (7.13), by solving the calibration equations given by
(7.10), the following generalised calibration estimator is then
obtained:

A L (X- X,IT)T(z::ldkvkx: )'Zzzl LAY

. . A (7.14)
— YHT + (X _ XHT )T B
Note that ﬁ is the solution of
> AV, (v, -xB)=0. (7.15)

CAL(:

The generalised calibration weight w, ™" associated with each

unit £ of sample s is then given by:
w ' =d, +d,V,h

. ) (7.16)
=d, +d,V;(Q dV,x)) (X-X").

Deville (1998b) mentioned that the asymptotic variance of the

generalised calibration estimator Y given by (7.12) is the same as
the one obtained in the linear case (7.13). Thus, the asymptotic

variance of the estimator ¥ is given by

Var(YCALG);zN:z(”kk sLUOPPR (7.17)

k=1 k'=1 7[1(7[/(
where &, =y, —x| B is the regression residual and the regression
coefficient B satisfies (¥, V,x)p=3r,V,y,. It is important to

note that the variance (7.17) depends on the instrumental variable V, .

Hence, two generalised calibration estimators that use different
instrumental variables are not asymptotically equivalent. To estimate
the variance (7.17), we can use

5 BCALG N (T — T, At P
Var(YCALG): ZZ( kk Kk )WkCALGekCALOWkC:ALGek(VALO , (7,18)
k=1 k=1 m

where e =y —x" BY with the regression coefficient
k k k

satisfying

CALG
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CALG CALG CALG
(2w, TV, x k)B =W Ve,

Another description of generalised calibration theory is found
in Deville (2000b).

7.2 GWSM WITH CALIBRATION

As mentioned in the introduction, we can have auxiliary
variables relating to the population U* contained in a column vector
xf of dimension p* for jeU". Assume that the total X" =Z‘7=: xf is
known. We then want the estimates obtained from the auxiliary
variables xf to be equal to the known total X" .

In the same way, we can also have a vector of auxiliary
variables relating to the target population U”. These variables are
contained in a column vector x;; of dimension p® for ikeU”.

Assume that the total X* =YY lx,k is known. We also want the

estimates obtained from the x|, to be equal to the known total X”.

It is important to mention that it is not necessary to know the
values of x and x; for each jeU" and each ik € U”, but only for

the units of U" and U” that were selected in the sample s or
surveyed in the target population U* .

The calibration constraints associated with the GWSM can be
expressed here in the following way:

A
1

v CAL,A _ CAL, 4 4 A
XAt =" =X (7.19)
J=1
AND
A n M
XCAL,B ALB lB (720)
where wCAL 1 is the calibratlon welght obtained from the sampling

CAL,B

weights d =1/x". The weight w;'“® is the calibration weight of

unit £ from the surveyed cluster i where the GWSM was applied. This
weight can be obtained by using Theorem 4.1. First of all, from (2.1),
we have
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n ME

P23 ! (7.21)

=1 k=]
Let v, =X?/I! where X’=Yx" for all keU’. From
Theorem 4.1, we can then write

N M[x'

24221, WY = ZJF Zd“r (7.22)

j=1 T j izl k=]
Note that Deville (1998a) obtamed a s1m11ar result using matrix
notation. Since the estimator X” can also be written as a function of
the units js*, constraint (7.20) can be rewritten under the form

o CAL.B _ z CAL A _yB8
Xhr= ij r=x" (7.23)
=
The two constraints (7.19) and (7.23) are now expressed as a

function of the units jes®. Let xf‘AB:(xC‘A,Ff) and

X" = (X" X™*) be column vectors of dimension p** = p* + p°.
From (7.19) and (7.23), a unlque constraint can then be obtained:

CAL,AB C4L 4 4B «1B
X ; =X (7.24)
Recall now that with the GWSM, an estimator of the form (2.1)
is developed where the weight w, of each unit £ from cluster 7 is
given by equation (2.4). By Theorem 4.1, this estimator can be
rewritten as a function of units j sampled from U”, ie.,

);B:ZM_At.Z‘/g, > d'Z,. The calibration estimator Yy =

;"] wi*Z  associated with the GWSM can finally be determined

from the following formulation:

CAL,A

DETERMINE w/*** FOR j=1,...,m", INORDER TO MINIMISE

36,04 d) (725)
J=l

UNDER THE CONSTRAINT X4 = wa“ x5 = X (7.26)
=

This form proves to be very useful. Indeed, it corresponds
exactly to the formulation of Deville and Sidrndal (1992) given by

(7.1) and (7.2). Thus, the estimator Y can be developed to
P
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estimate the total Y” using auxiliary variables associated to the
populations U” and U”. After having minimised the distance (7.25)
under the constraint (7. 26) the calibration estimator is obtained:

YCAL ,B - Z (A[ AZ ZdAF (XT AB;\'AB )Z (727)
Jj=1
where wi""" = dF (x"**)."") is the calibration weight. The value of

the vector A" of dimension p*® is the solution of the equation
XAB — r]n:l d//.‘lF'j(X;,AB;\'AB)X;IB )

As an example, we can again consider the Euclidean distance.
The following calibration weight is then obtained:
WCAL,A RE(/ A d (1 + XT AB;\AB) (728)

J
Where ;\'AB _(Zm dA AB T 48) (X4B XAB).

The calibration (or regression) estimator given by (7.6) here
takes the form:

PGP =N MOz — PP (XY -XEY BT, (7.29)

where B = (Z d'x"x “3) Sz, (7.30)

J=1"J j=t

The expression for Y s given by (2.1) or (4.1), and
K= 3 i

CAL.B

To obtain the calibration weight w), associated with each

unit & of cluster i surveyed from the target population U” , the GWSM
CAL. A

is applied by replacing 1/ 7r with the calibration weight w;
in (2.2).

Steps of the GWSM with calibration weights

Step 1: For each unit k of clusters i from QP calculate the initial

1CAL

weight w/, ", to know:

I(4L Zl,,k W(ALA. (731)
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Step 2: For each unit k& of clusters i from Q°, obtain the total number
of links L& =3 "1,

J=l ik

CAL.B |

Step 3: Calculate the final weight w,

ME caL
CAL.B __ k=1""i
weAls — 2k (7.32)

! MmErB
vl

Step 4: Finally, we set wy™" =w™"? forall keU/.

Following steps | to 4, it is concluded that

A
n

L
wALE — ZW,/C'AL.A _L/ITI (7.33)

j=l i

The estimator Y“*? :Z’/’,’:I WfAL'AZ./‘ determined from (7.25)

and (7.26) can thus be rewritten under the form:

n MP

)'}CAL.B _ Z Z wi(k‘AL.Byik i (7.34)

i=l k=1

It is important to note that the GWSM is applied here after
calibration has been performed. It will be shown in section 7.4.2 that it
is possible to first apply the GWSM, and then perform calibration, in
the case where auxiliary information only comes from the population

U®.
By following the proof of Theorem 4.1, it can be verified here
that X8 = yr S0, CibByB - X8 [ndeed, following Theorem 4.1,

expression (7.35) is obtained.

A
m
o CALB __ n M caLB_B _ CALA
X _ZMZM W Xk _ZW/ Fj. (7.35)
J=1

CAL, A4
‘
(7.26) is satisfied and x”*" = (x[*,I") and X"** =(X"*,X""), we
directly get

Because with the calibration weight w;""", the constraint

A

3

wihr = X" (7.36)

J
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As the estimator Y“** is obtained by the formulations (7.25)

and (7.26) that correspond exactly to the formulation from Deville and
Séarndal (1992), the asymptotic bias and the asymptotic variance of
Y48 are then the same as those for Y. For these asymptotic
properties, we consider here a sequence of finite populations U and
sampling designs indexed by the sample size m'. The size M* of
finite population U* approaches infinity with m".

>REG,B
Y B

The estimator given by (7.29) is nothing more than the

estimator ¥"%° given by (7.6) where the variable y, is replaced by

>CAL.B
Y

the variable Z,. Thus, the estimator is asymptotically

unbiased. Furthermore, the asymptotic variance of the estimator
)}CAL,B

is given by

Var(Y%) = zz ) elel (7.37)

= 7z

where e»f =Z, xT 8% is the regression residual and where the
Jl 782
To estimate the variance (7.37), we can follow the suggestion from
Deville and Sérndal (1 992) and use

mt ! ._ﬂ-ﬂ-)

Var(YCAL B) ZZ jAL’AéCAL’AWC,AL’AéC,AL‘A , (738)

J J J

regression coefficient B** satisfies (ZMIXAB B =3

J=1 = Ty

where &' = Z/. - xR with the regression coefficient "

Satlsfylng (z (AL 4 ABXT AB BC4L AB — zm (AL A ABZ

/

The variance of Y“** can also be estimated by using the
Jackknife method with an estimator similar to (7.9).

7.3 PARTICULAR CASE 1:
AUXILIARY VARIABLES COMING FROM U

In the previous section, calibration was associated to the
GWSM by developing the general case where auxiliary information
comes from the population U* from which the sample is selected, the
target population U” | or both of the populations. From the developed
theory, the results are here derived for the particular case where
auxiliary information comes from U* only.
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We have auxiliary variables relating to the population U* and
contained in a column vector x/ of dimension p* for jeU". Assume

that the total X =Z‘J.M:'; x_‘;’ is known. The calibration estimator
y ik —Z w47 associated with the GWSM when there are

auxiliary varlables x - can be expressed in the following way:

CAL,A

DETERMINE w; ,FOR j=1,..., m’ , INORDER TO MINIMISE

DG (wd (7.39)
=1

UNDER THE CONSTRAINT X = Z Cab-Axt = X", (7.40)
j=1

After having minimised the distance (7.39) under the constraint
(7.40), the calibration estimator is obtained:

Y“CAL,B _ Z wICAL,AZj _ Z:,d/4F/ (X:'AKA )Zj R (7.41)
.:l /':

where wC“ 4 dfFj(xf’Ak”) is the calibration weight. The value of

the wvector A" of dimension 4 is the solution of
p

=3 dIF (X

T L=l

As an example, we can again consider the Euclidean distance.
The calibration (or regression) estimator given by (7.29) and (7.30)
here takes the form:

YRbGB _ZWRF(J 4 = +(XA )TﬁA (7‘42)

j=1

J=1

where i :(Z/ X 4) d’xAZ (7.43)

The expression for Y? is given by (2.1) or even (4.1), and
X*= T:Idf"f :

CAL.B

To obtain the calibration weight w,"" associated to each unit

k of cluster i surveyed from the target population U”, the GWSM is
applied by replacing 1/ with the calibration weight w(*" in (2.2).

Thus, steps 1 to 4 are performed as described in section 7.2.
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In practice, the auxiliary information of U* often comes down
to qualitative variables that were not used in the stratification, or else
quantitative variables on which we wish to calibrate the estimates.

Note that the theory presented is general and thus the auxiliary
variables can be qualitative, quantitative, or a mix of the two. Take the
example of selecting parents to survey their children (Figure 1.2).
Suppose that the selection of parents was carried out from an area
sampling frame. It can then prove useful to calibrate the weight of the
parents on the age-sex categories (qualitative variables), and also on
the income of the persons (quantitative variable). Note that
stratification by age-sex groups is notably used by the LFS (Singh et
al., 1990, and Dufour et al., 1998).

It is important to remember that the choice of calibration
variables is linked to the availability of the totals X" = Z/”:: x;’ . Going

back to the previous example, it is clear that it is pointless to consider
using income as the calibration variable if the total income or a
relatively precise estimate of it is not known.

In some cases, it turns out to be useful to choose, as auxiliary
variables coming from U", the stratification variables used for the

selection of sample s*. This is particularly the case for sampling
designs with random sample sizes such as Poisson sampling. With this
type of sampling where the final sample size m” is random, it is

1

generally noticed that Z”.’,d_;’;tM”’. If a Horvitz-Thompson

i
estimator is used to produce estimates, as is the case with the GWSM
without calibration, the estimates produced then have very large
variances (Sidrndal, Swensson and Wretman, 1992). To correct this
problem, it is strongly advised to perform calibration using the
stratification variables as auxiliary variables. For more details, see
Lavallée (1998b).

A choice of an auxiliary variable that can prove to be very
efficient for improving the precision of the estimates drawn from the
GWSM is the number of links L/; . Indeed in section 5.2, it was noted,

in the extreme case where the population U” only has a single cluster,

that the variance of Y* is non-zero, though the population U” then
undergoes a census. This observation was also made in section 4.4,
Part of the variance in fact comes from the complex links. By setting

x;’ = Lj for jeU", this variance is reduced to zero by calibrating the



Chapter 7: GWSM and Calibration 135

estimator ¥? on the total number of links L. It is assumed here, of
course, that the total number of links L is known or, if not, that we
have a good estimate of L.

We can take, for example, the regression estimator given by
(7.42). By setting x| =L, the following estimator calibrated on the

total number of links L is obtained:

= (7.44)

where (Z di (L) ) Z d Lz, (7.45)

By replacing Y? with (4.1) in (7.44), we then get
N w7 A n
YRFGB:Z_/:+(L_L)ﬂ4
j=1ety
m’ Z " dALAZ
:Z_+(L L)Z, (i A
=Ry Z/ AL )
Looking at the estimator given by (7.46), we see that if the
variable of interest Z, (derived from y) is replaced by the auxiliary

(7.46)

variable L?, the resulting estimator L“* is equal to L. Now,

suppose that the population U only has a single cluster of size M?,
which implies that Z =L? Y®/L by (5.24). In this case, the

estimator (7.46) is written

- YB m! LA " d4L4LA
YREG,B — L Z ﬂ. + (L L) g/ ld; /A J - YB . (747)
j= (L
=17

Thus, with a single cluster for the target population U, the
estimator Y% has a zero variance. As noticed in section 5.2, by
choosing only a single unitj from U, it should have been possible to
estimate the total Y” with a zero variance due to the fact that having
only a single cluster causes a census of the population U®. The

variance of Y” is non-zero because of the complex links that can exist



136 Indirect Sampling

between populations U? and U®. Fortunately, we see that the
estimator (7.44) obtained by calibration corrects this situation.

7.4 PARTICULAR CASE 2: AUXILIARY VARIABLES
COMING FROM U*

In section 7.2, calibration was associated to the GWSM by
developing the general case where auxiliary information comes from
U*, U®, or both. From the theory developed, the results here are
derived for the particular case where auxiliary information comes only
from U”. Note that the theory developed in section 7.2 was obtained
by performing calibration before using the GWSM to obtain the

weights wi*"* associated with the units k of surveyed clusters i. In

the current section, weights WwS*" will also be obtained that are

calculated by performing calibration after the use of the GWSM.
These two sets of weights will then be compared in order to determine
which of the two is preferable.

We have auxiliary variables relating to the target
population U” . These variables are contained in a column vector x’

of dimension p® for ikeU”®. Assume that the total

X® = Zj\ilz,’ﬁ x5 is known, or at least that there is a relatively precise
estimate of this total.

7.4.1 Application of calibration before GWSM

The calibration constraint associated with the GWSM is
formulated here by (7.20). This constraint was seen to be equivalent to

that given by (7.23) expressed as a function of units jes”. The

calibration estimator Y- = Z'}’:l w17 associated with the
GWSM is determined from the following formulation:

DETERMINE w$*** FOR j=1,...,m", INORDER TO MINIMISE

J

m.«l

.G (W d) (7.48)
J=
UNDER THE CONSTRAINT X5 = D wT =X (7.49)

J=1
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After having minimised the distance (7.48) under the constraint
(7.49), the calibration estimator is obtained by (7.50).

A4
m

JeALB _ zwaL,AZj _ zdfF,‘(FJT';‘B )Z, (7.50)

Jj=1 J=1

where w(*"* =d!F (T")?) is the calibration weight. The value of the

vector A% of dimension p® is the solution of X% =

Td] F (TN, .

As an example, consider the Euclidean distance. The
calibration (or regression) estimator given by (7.29) is here:

)’}REG,B & WREG,AZ_
,Z ! ! (7.51)
=Y%+(XE - XY B*
where BB=(ZJ diT, rT) 2 ATz, (7.52)

The expression for Y8 is given by (2.1) or also (4.1), and
‘G Z”’ dAF

CAL,B

To obtain the calibration weight w; associated with each

unit k of cluster i surveyed from the target population U”, the GWSM

CAL,A

is applied from the calibration weights w; obtained earlier. The

GWSM is performed according to steps 1 to 4 described in section
7.2. The estimator Y*"? =Z".’:1 wJ.CAI““‘Zj is then rewritten under the

5 CAL,B CALB
form Y =2 IZk W, Yie -

B
As wihP = wCAL , we also have

> CALB _ n CAL.B
Y = E W Y.
i=

As an example, with the Euclidean distance, from (7.51) and
(7.52), the following calibration weight is obtained by using (7.33):
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LB

=Y dt (7.53)

+ZdA /[FT(Z d'T rT) (xB—XB)J

=w, +Zd4 rT(Z’” d%‘rj.ri) (X*-X").

The last line follows from Result 2.1.

7.4.2 Application of calibration after GWSM

To estimate the total Y” of the target population U” , we have
the estimator ¥* given by (2.1) and obtained from the GWSM If we
have auxiliary variables x2 for which the total X* =YY ¥¥ x? is
known, the possibility of directly calibrating the estimator ¥* on the total
X? can be considered. Note that this approach corresponds to that

used for the calibration of estimates produced by SLID (Lavallée and
Hunter, 1993, and Lévesque and Franklin, 2000).

From the welghts w, given by (2.4), the calibration estimator

YOE — g v MCHE - (obtained after using the GWSM) can be
determined from the following formulation:

DETERMINE w,** [FOR k =1,...,M" AND i=1,...,n, INORDER
TO MINIMISE

n M

> 3G, G ) (7.54)

i=l k=l

n M

UNDER THE CONSTRAINT X&*H-# ZZ v tPx? = X% (7.55)
i=l k=l
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Although the weight w, is not strictly a sampling weight (i.e.,

the inverse of the selection probability), the theory of Deville and

Sarndal (1992) presented in section 7.1 remains valid for the

determination of the calibration weights w,"". After having

minimised the distance (7.54) under the constraint (7.55), the
calibration estimator is obtained:

n ”Ii

Y(AL B iz (4[ By,k zz k Ik(x7 B)\’B )y[k , (756)

i=l k=1 i=1 k=l

- CALB

where W% =w, F, (x}"1°

) is the calibration weight obtained after
having used the GWSM. The value of the vector 1” of dimension p®
is the solution of X® =¥ 3% w, F, (x\*38)x2 .

We can again take as an example the case where the distance
function selected is the Euclidean distance G (W’ w,)=

(ws™® - w.)* /w, . With this distance function, we get
F (x""3) =1+ x1 %32 (7.57)
and
WOILD = REOE _ (14 xT 557 (7.58)

with XB—(Z el lkxixka) (X* ~X"). The calibration (or

regression) estimator obtained with the Euclidean distance thus has
the form

1 ~

f,CAL.B _ f,REG,B Z SR, =78 (X* _XB)TﬁB , (7.59)

=1 k=1

5B _ n Mp B_T.B " M B .
where f —( 2 e Wy X Xyl ) 2 2ph WXy vy The expression

for Y% is given by (2.1) or (4.1), and X’ by (7.21) or (7.22).

The asymptotic bias and the asymptotic variance of ¥“"** can

be obtained by specifying the asymptotic framework for the
identification of the » clusters of Q” . In section 7.3, a sequence of
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finite populations U and survey designs indexed by the sample size
m" were considered where the population size M approaches
infinity with m" . Here, a sequence of target populations U” and a
sequence of sets of clusters Q° are added, both indexed by m™" . The
sizes M® and N approach infinity with m*. This addition to the
asymptotic framework is natural in the context of an indirect sampling
of the target population U”, through the population U*. Indeed, if
the population U” increases, it is natural to imagine that the

population U” can increase also, given that the two populations are
linked to one another. For example, in the case of the survey of
children identified from a list of parents, we can conceive that the
number of children increases as quickly as the list of parents increases.

The same considerations are applied for s* and Q°.

With this asymptotic framework, we can go back to the results
of Deville and Sirndal (1992). It is obtained that Y** and y*“*
are asymptotically equivalent. Consequently, the asymptotic bias and
the asymptotic variance of ¥“**? are the same as those for ¥*¢*

To get the asymptotic bias and the asymptotic variance of
YFEOE | first the estimator Y*9* given by (7.59) is expressed as a
function of units j from s*, instead of the units k of surveyed

clusters i. The expressions of ¥ and X® are already expressed in
these terms by (4.1) and (7.22), respectively. It remains to rewrite the

estimated parameter .
At the start, using Result 2.1, we have

¥ B TB 2 L[ L L/z B TB
R B bt
t

i=1 k=l i=] k=1 i

[Z_A_] B TB
AN (7.60)

B
!
M l
— J st M B_T.B
- A Z B Zk: Xlkxlk
A by
M N
_ l_/ 75t MP B_T.B
- A B k=1 XXy
=t Ty =t Ly
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The last line follows from the proof of Theorem 4.1. Following
the same proof as that for (7.60), the following result is obtained:

n MP M N L
zlkz:,wzkxzkylk Z Zl LB Z o Ikylk . (7.61)
i ] i

Let ¥ =¥X,(L,,/L)Ti xix}® be the matrix of dimension

p’xp® and vy =3 I(L],/LB)Zk ' X2y, be the column vector of

dimension p”. By replacing these expressions in (7.60) and (7.61),
we finally get

/:B 3 [j XX o J Xy
B = ;ﬁg > Ly (7.62)
7 J

With (7.62), (4.1) and (7.22), the estimator )3REG‘B given by
(7.59) can finally be rewritten as a function of units j from s*. To

obtain the asymptotic bias and the asymptotic variance of Y***  the
Taylor linearisation method is applied, as suggested by Sérndal,
Swensson and Wretman (1992). We then obtain

{,REG,B ~ V54 (X? - XB)TBB
YAB XT,B 0B XT‘B B _ e tj TpB 7,BpB (7'63)
= — B+ ﬁ —Z;Z(Zj_r_/ﬂ )+X B

J=1

where the regression coefficient p° satisfies (Z_‘}C; ‘I’;‘,")BB = HE

As E(Y™98y=7 =Y"®, we see that this estimator is asymptotically
unbiased. Furthermore, its asymptotic variance is given by

A

7REG,B ~M X (7[// ) 4.4
Var(Y )zzx—ﬁ—e é (7.64)

where ¢/ =Z, —T')B" is the regression residual.

To estimate the variance (7.64), we can use

P o (=T
Var(Y***) = ZZ(%—#é‘fe‘ﬁ (7.65)
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A

where ef =Z, -T7B". It is also possible to estimate the variance of

Y using the Jackknife method with an estimator similar to (7.9).

7.4.3 Comparison of the two approaches

To estimate the total Y”, we now have two estimators where

> CALB
Y

calibration has been performed. It is a matter of estimators and

Y“*“# given respectively by (7.50) and (7.56). Recall that the first is
obtained by performing calibration before using the GWSM, while the
second is obtained by performing calibration after using the GWSM.
These estimators are different, although the two are asymptotically

unbiased, and though for the two sets of weights wy** and wi™",

we have, respectively, X% =X? and X“# =X" .

The main difference between the two estimators lays in the fact
CAL.B

that Y°*? has weights w(**” that are identical for all units k of the
clusters i from QF, which is not the case for Y This is quite clear
if we consider step 4 of the GWSM that assigns to units £ of cluster i

the weight w™""” . On the other hand, for youLs, although the weights

w, before calibration are identical for all units k of the clusters i from

Q?, nothing guarantees that the weights w,*” after calibration are

always identical. This depends on the choice of the auxiliary variables

x2 . Many examples are found in practice where the weights """

are different within the same cluster after calibration. The most
common example is that of household surveys, such as LFS, where
the estimates are calibrated according to age-sex groups (Singh et al.,
1990, and Dufour er al., 1998). Since in general a household has
individuals belonging to different age-sex groups, different calibration
weights are in practice obtained within a household, even though the
weights before calibration are identical.

It is possible to force the calibration weights to be identical
within a household by using integrated weighting. A method of
integrated weighting described by Sautory (1993) is notably used by
the Institut National de la Statistique et des Etudes Economiques
(INSEE) in France. This method consists of considering the sampling
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unit as being the cluster, instead of the unit itself. We then no longer
work with the units ik of the target population U”, but rather with the
clusters i. Note that the integrated weighting method at INSEE differs
from that used by Statistics Canada. To learn more on this last
method, see Lemaitre and Dufour (1987).

With integrated weighting, it is assumed that we have auxiliary

variables X® =Y x2 for each cluster i of Q° and that the total

X? =3 X” is known for them. Recall that from (2.6), the estimator ¥*

can be written as a function of clusters / only. From the weights w,, the

integrated calibration estimator Y% =¥ Py (obtained after

i=1"Y
using the GWSM) can be determined from the following formulation:

DETERMINE 7*"* | FOR i =1,...,n , INORDER TO MINIMISE

ZG,-(W,-GJLva,-) (766)
i=1

UNDER THE CONSTRAINT X" =3 i X" =X (7.67)

=l

After having minimised the distance (7.66) under the constraint
(7.67), the integrated calibration estimator is obtained:

)‘;C,AL,B — Z wi(‘/”,,ﬁ)]i — ZW’[F;(X/['H);B)X (7.68)

i=1 i=1
where W ™f =w F(X"*4%) is the integrated calibration weight
obtained after having used the GWSM. The value of the vector &% of
dimension p” is the solution of X =¥ w.F (X *L*)X? .
We can again take as an example the case where the
distance  function  selected is the FEuclidean distance

GO wy = (0P —w,)’ /w,. With this distance function, we get
F(xI'PhB) =14 X237 (7.69)
and

T = REOE = (14 XTPRE) = w + wXTPA (7.70)

with A° =(z; w,.XfX,T'”)i (X® —X"). The integrated calibration

(or integrated regression) estimator obtained with the Euclidean
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distance thus has the form
yOALE _ JREGE _ N REGBY P8 4 (XP _XE)TﬁE (7.71)
i

A

where ﬁE =(Z,’.’:l w X XT# )7 Y7, wX?’Y . The expression for Y” is
given by (2.1) or (4.1), and X? by (7.21) or (7.22).

With the two estimators Y and Y“’* having equal

weights within each cluster i of Q°, the use of calibration before and

after the GWSM can now be compared on a common basis. By

considering the expression of the integrated calibration weight w*“*”

given by (7.70), it can be seen that if we set V*® = X? we are in
the context of generalised calibration of Deville (1998b). Indeed, with
the instrumental variable VF* =X’ the expression (7.70) is
brought back exactly to the form that we had in expression (7.16).

We can now go back to this same calibration, but with another
instrumental variable. Let us set the following value for the
instrumental variable:

Zd” Loy r, ifieQ’

REGB
V 1
1 Jj=

(7.72)
0 otherwise.

From (7.16), the following development is then obtained:

REG,B T,REG,B n REG,B~yT,B N\~ B v B
wot =w A w Ve ’(E_ wV X0 (X -XT)
=1

lm /l T A i T.B B
w,— Yy w—>yd frx (XE-X5
oS S Sy )
—w+mZAdAirT iidAir X8 (XP-XF)
M _leB J VI_leB R
J= i =l j= i

L, [z " Liiors) .
A4 7T A4 Ji4T,.B B B
=w, + 2 dj L_IBFI ,E]dj Fj E] _LlE_Xt ) (X -X )
i j= i= i

J=1 i /=l

L. m ) .
:w.+Zdj—L»;irj Zdjr‘,.rj] (X% -X5). (7.73)
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The last line follows directly from the definition of I', given
in (7.22).

By comparing (7.73) and (7.53), we notice that the two
calibration weights are exactly the same. Thus, with the Euclidean

distance, the calibration weight w“°* obtained before the GWSM is
the same as the generalised calibration weight obtained after the
GWSM with the instrumental variable V**%* given by (7.72).

5 REG,B 5 REG. B
Yy Y

The two estimators and can therefore be seen as
stemming from two generalised calibration estimators carried out after
the GWSM with different instrumental variables. It is concluded that
the two estimators are not asymptotically equivalent and, as a result,

the estimators Y*“# and ¥“** are not asymptotically equivalent.
ymp Yy €q

In short, performing calibration before or after the use of the
GWSM produces different estimators. The question then is to know
the extent of this difference. It is this that we are looking to determine
in the following section using a simulation study.

7.4.4 Simulation study
We conducted a small simulation study in order to compare the

estimators Y**% and Y**“?_ First, although the estimators are both
asymptotically unbiased, they have a certain bias in cases with small
or medium-sized samples. On the other hand, these estimators have
different precisions that can be interesting to quantify in a manner of
knowing which is the most precise.

The study has been inspired by the production of the Whole
Farm Data Base of Statistics Canada. This database contains
information on livestock, crops and the income and expenditures (tax
data) of Canadian farms (Statistics Canada, 2000a). The data used for
the simulations come from the agricultural sector for two Canadian
provinces: Québec and New Brunswick. The first can be considered a
large province, while the second can be seen as a small province. The
variable of interest y is the gross farm income, while the auxiliary
variable x is the net farm income.
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The population U* is a list of M" farms coming from the
1996 Farm Register. This register essentially comes from the 1991
Canadian Census of Agriculture, with different updates taking place
since then. The units j of U thus represent the farms, but note that
each farm j can have many farmers. The target population U” is a list
of M* tax records (or tax reports) from the Canada Revenue Agency
(CRA). This second list is the 1996 file of unincorporated businesses
from CRA that contains taxl data for people declaring at least
agricultural income. The units £ are therefore tax reports that are filled
out by the different members of a household i (or cluster). The target
population U” has N households. The respective sizes of populations

U” and U” are given in Table 7.1.

Table 7.1: Files from Québec and New Brunswick

i

Québec New Brunswick

Size of the Farm Register (U ™) : 43017 4930
Size of the tax report file (U”) | 52 394 5155
Number of households in U* { 22387 2194
i 5543 853 688 335989 609

Gross farm income (Y*)

The populations U* and U” are related by complex links.
Indeed, there are cases where a farm j has many farmers and where
each farmer files a tax report k¥ to CRA. We then have a “one-to-
many” link since we have a farm j linked to many tax reports . On the
other hand, a farmer who works on more than one farm j can file a
single tax report k for the group of farms on which he works. Hence,
this is a many-to-one link since there are many farms j linked to a
single tax report k. Finally, there are complex links where farmers
work on more than one farm and where each farm has a different
number of farmers. The populations U and U”, as well as their
links, can be represented by Figure 2.1. Note that the links between
units j of U” and ik of U” were obtained by record linkage. This
process will be described in detail in Chapter 9.
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A sample s* of m” farms is selected from the population U
according to a certain sampling design. Suppose that ﬂj‘ represents

the selection probability of farm j. We have 7[/4 >0 for all farms

jey”. For each farm j selected in s*, the tax reports ik from U” are
identified that have a non-zero link with farmj, i.e., /, , =1. For each

tax report ik identified, the list of M tax reports for the people from

household i containing this identified tax report is established. Let Q”
be the set of n households identified by the farms jes”.

We are interested in estimating the total gross farm income Y*,
which is the income from farming and earned by the members of the
households (or clusters) from the target population U” . To obtain this
income, we have the tax reports for all members of the households

from QF.

We could question the reason to use a sample of farms from
U* to obtain the tax reports from U’ instead of simply selecting a
sample from U”, or even directly using the set of data from the
population U” . First, although the data from U” are available for the
entire population, these data require some processing (edit,
imputation, etc.) in order to be usable for estimation. As this treatment
entails non-negligible costs, it is then necessary to start with a sample
instead of a census.” A certain advantage can also be drawn in
allowing this sample of tax reports to be linked to a sample of farms.
Indeed, for the production of statistics on crops and livestock,
Statistics Canada conducts a sample of farms. By identifying the tax
reports that are links to the farmers owning the farms, the relationships
between income and production of crop and livestock can then be
studied. It is from the set of data collected on livestock, crops and tax
reports that Statistics Canada produces the Whole Farm Data Base
(Statistics Canada, 2000a).

2 Note that for the simulations, the entire population was used after a slight

processing, assuming that the quality of the data collected was satisfactory.
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Although the simulations were performed as inspired by the
Whole Farm Data Base, certain processes and data were modified for
reasons of confidentiality, and also to avoid needlessly complicating
the discussion. However, we believe that these changes do not affect
the results from the simulations. The primary objective of the

>REG,B 5 REG.B
Yy Yy

simulations is to compare the two estimators and in an
empirical manner, and not to resolve the problems associated with the
construction of the Whole Farm Data Base.

For the simulations, the sample s* from U* (the Farm
Register) is assumed to be selected by simple random sampling
without replacement and without any stratification. Two sampling
fractions were considered: 30% and 70%. Recall that we are interested
in estimating the total gross farm income Y”, and that a single
auxiliary variable x is used, being the net farm income.

Since we have the entire populations of farms and tax reports,
it was possible to calculate the value of ¥?, as well as the variances
Var(Y*%2) and Var(Y*°*) from the formulas (7.37) and (7.64).

Moreover, because simple random sampling without
replacement is assumed, these theoretical formulas could be
simplified. Thus, we used

Var(7%65) = prt U “ff A)Sf (7.74)
and |
var(p#ery =yt 4200 _f{ )2 (7.75)

In these expressions:

f*=m"IM" is the sampling fraction;

21 MY, o4 —AN2 : A _ TpB —A4 _ M 4 A,
S’ = — 2iale;—e’) with e;=Z,-T'B" and e”" =3 e/ /M";
2 i MY A TAN2 : “A TpB TA oMt -4 A
S; = vz 2l —e”) witheél =Z - " and e” =37 ¢/ /M".
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A Monte Carlo study was also performed to calculate in an

empirical manner the bias and the variance of Y*“? and Y*“*. To

do this, 1000 samples s* from U” were selected for each sampling
fraction, 30% and 70%. The empirical bias and the empirical variance

of each estimator (represented here by ¥ ) was calculated using

R R . ] oo,
Bias(Y)=E(Y)-Y’ =——> Y, -Y® 7.76
1)=E@) 1000 7= ° (7.76)
and
. ] lowo o
Var(Y)=——)> (Y, - E())" . 7.77
() 1000;:](5, (1) (7.77)
The empirical relative bias was calculated from
RBias(¥)=100x 240 (7.78)

YB
The Monte Carlo study made it possible to empirically verify
(see Table 7.2 below) the accuracy of the asymptotic variance

formulas (7.74) and (7.75) obtained for Y**°% and yrEGH

Table 7.2: Simulation results

Province | £ Statistic y REG.B §REG.B
Empirical bias ﬂ'703 979 | 2240377
0.30 | Empirical relative bias (%) 0.004 0.040
Theoretical variance 2.756x10" | 2.700x10"
Québec Empirical variance 2.623x10"° | 2.786x10"
Empirical bias ~1 108666 | —290 749
0.70 | Empirical relative bias (%) | —0.020 -0.005
Theoretical variance 5.061x10™ | 4.959x10"
Empirical variance 5473x10™ | 4.814x10"
Empirical bias 722 336 —605 860
0.30 | Empirical relative bias (%) | ~0.215 ~0.180
Theoretical variance 2.000x10™ | 2.209x10"
New Empirical variance 2.025x10" | 2.161x10"
Brunswick Empirical bias —-345 810 -237 159
0.70 | Empirical relative bias (%) | -0.103 -0.071
Theoretical variance 3.674x10"” | 4.057x10"
Empirical variance 3.897x10"” | 4.076x10"
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Looking at the results in Table 7.2, we first notice that the

" REG.B © REG.B
Y Y

biases of the two estimators and are effectively
negligible. Indeed, the largest empirical relative bias in absolute value
is 0.215%. From the variance point of view, we notice that there is no
estimator that is always better than the other. The difference between

the variances of the estimators Y*:°* and Y**¥ is generally not very
large at the theoretical or empirical variance level. Furthermore, the
theoretical variances turn out to be relatively close to the empirical
variances.

Therefore, we finally conclude that, for the Whole Farm Data

Base, the estimator ¥**%* obtained by calibrating before the GWSM
;REG.B

is relatively comparable to the estimator obtained by

calibrating after the GWSM.
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NON-RESPONSE

In censuses or sample surveys, it happens inevitably that no
value can be obtained for one or several measured variables from
certain interviewed units. It is then said that there is non-response
within the survey. In the case where the values are taken from
automated systems, this can include technical problems or
breakdowns. On the other hand, when the survey resorts to
questionnaires, the values can be missing for different reasons.
Examples could include the unwillingness from the surveyed person,
gaps in the value asked for, laxity of the interviewer who does not try
to obtain responses to all the questions, lost questionnaires, etc. Note
that a missing response here, in addition to a loss of information for
example, is considered as being a non-response in the same way as a
person refusing to respond. On the other hand, if the question allows a
“no opinion” option, then this choice is not a non-response.

For certain surveys, it is possible go after missing values by
remeasuring or by recontacting the persons surveyed for whom no
response has been obtained. However, this recall process often leads
to significant costs and delays that cannot always be undertaken by the
survey. It is then decided to perform the recall for only a fraction of
the non-respondents.

For other surveys, it becomes impossible to redo the
measurements or to recontact the non-respondents. Thus, in the case
of a sampling of persons, we can come up against a definite refusal,
which excludes all possibility of recontact. It can also occasionally
happen that the non-responding person is deceased or has moved.
Non-response therefore makes the final sample rarely corresponds to
the initial sample planned by the survey designers.
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An important point to notice is that even if it is physically
possible to recontact a non-respondent until a response is obtained, the
values obtained will not necessarily be usable by the survey
interviewer. Indeed, the quality of the information collected “at any
cost” can be so poor that it only contributes toward creating a bias
within the estimates. For example, if the surveyed person does not
provide a response because he does not know the requested value,
forcing him to respond anything is not really useful. In the case of an
individual simply refusing to respond, indiscriminate harassment will
inevitably lead to a set of erroneous values.

During a recontact, it is essential to remember that it is not just
about obtaining a response but to obtain the “correct” response. In
many cases, it will be more suitable to treat the non-response with
statistical correction rather than trying to fill in the missing values
with data containing a significant portion of errors.

There are sizable, though hardly comprehensive, bibliographies
in, for example, Droesbeke and Lavallée (1996), Hedges and Olkin
(1983), and Bogestrom, Larsson and Lyberg (1983).

Since the topic is so broad, we will confine this chapter to total
non-response, as opposed to partial non-response. Total non-response
occurs when none of the variables of interest can be measured. For
example, the surveyed person simply refused to respond. With partial
non-response, only a subset of the variables of interest can be
measured. The surveyed person, for example, did not know the answer
to one of the questions.

In this chapter, we will study non-response in the context of
indirect sampling. Since the GWSM is used in obtaining estimation
weights, we will look into the adjustment of these weights to take into
account the non-response. The techniques of treating non-response
centred on the imputation of missing values will therefore be
excluded. On this matter, refer to, among others, Platek and Gray
(1983), and Sarndal, Swensson and Wretman (1992).

8.1 TYPES OF NON-RESPONSE

With indirect sampling, recall that the selection of a sample s
from the population U* is performed in order to produce an estimate

for the target population U® (consisting of clusters) by using the
existing correspondence between the two populations. The total non-
response here can therefore be present within the sample s* selected
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from U*, or within the units identified to be surveyed within U® . For
example, let us return to the situation illustrated in Figure 1.2 where
the target population is children, but where we must first select a
sample of parents before we can select the sample of children. Within
the sample s of parents, there can be people who refuse to give the
names of their children for the survey, which creates non-responses
within s”. For the parents who agree to respond, their children can
then be identified and the actual survey can proceed. Here also, there
will be non-response for the children who refuse, for example, to
respond to the survey.

Since the units in population U” are surveyed by cluster, there
are two types of total non-response associated with cluster sampling
(direct or indirect): cluster non-response and unit non-response.
Cluster non-response refers to situations where none of the units in the
cluster responded to the survey. This is a case often encountered in
practice. In telephone surveys, for example, if no one answers the
telephone, we then have no response for the entire household (cluster)
that we are trying to contact. Moreover, if a person answers the
telephone but does not want to participate in the survey, then it is
often difficult to obtain a response for the other members of the
household.

Unit non-response is a kind of total non-response in which one
or more units in the cluster, but not all units, did not respond. Unit
non-response also occurs as frequently as cluster non-response, but for
other reasons. For example, in a medical survey, a person can respond
and describe his own illnesses, but it is not certain that he can answer
for all the other members of the household. By contacting a household
where many members are absent, there will in all likelihood be unit
non-response. Note that some surveys allow for the measurement of
variables of interest through an intermediary (“proxy”), while others
will not (“non-proxy”). With a “non-proxy” survey, there can be unit
non-response if a unit cannot or does not want to answer the survey
questions.

With indirect sampling, there is also another form of non-
response that comes from the problem of identifying some of the
links. This type of non-response is associated with the situation where

it is impossible to determine whether a unit ik of U” is linked to a unit
jof U”. This is referred to as the problem of links identification. For
example, consider the case of longitudinal surveys described in
Chapter 6 where the links are one-to-one between populations U”
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(wave 1) and U” (wave 2). A link is found between populations U
and U” through the individuals that belong to both populations. Thus,
[, =1 ifindividual j from population U * corresponds to individual k

of household i from population U”, and [+ =0 otherwise. An

individual ik from U” therefore has a non-zero link with U* if it was
present in the population at wave 1, and a zero link otherwise. During
the survey, it can prove to be difficult to know if an individual k from
a household i was present or not at wave 1. The individual, for
example, can have trouble remembering where he lived at the time of
wave |. Consequently, we cannot know whether or not the individual

has a zero link with population U", which constitutes a problem of
links identification. This kind of non-response problem was already
mentioned by Sirken and Nathan (1988) in the context of network
sampling. More recently, Ardilly and Le Blanc (2001) faced this
problem during the use of the GWSM for the weighting of a survey of
homeless people.

Non-response can also be classified into ignorable and non-
ignorable non-responses. Non-response is ignorable when the
response probability for a certain question, given the selected
sample s, does not depend on the value of the variable measured. The
fact whether or not a person responds to a question is therefore not
related to the response to that question. Let @, be the probability that

person k from the sample s responds to the question measured by the
variable of interest y,. The non-response then is ignorable if
¢, = P(unit k responds | ,,s)= P(unit k responds |s). An example
of ignorable non-response is where a questionnaire on employee
satisfaction for a company is not returned simply because of
negligence. An example of non-ignorable non-response is where only
unsatisfied employees return the questionnaire. This last case
obviously tends to bias the survey results if no correction is used. To
know more about ignorable and non-ignorable non-response, see
Rubin (1976), Rubin (1983) and Rubin (1987). We will assume here
that the non-response is ignorable.

A final classification of non-response is specific to longitudinal
surveys and repeated surveys. For these surveys, we have attrition
and wave non-response. Aftrition occurs when a person stops
responding for good, beginning with a given wave of interviews. For
example, the person cannot be found because he has moved. Note that
for deceased persons, they are considered as responding units with the
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measured variable y, set to zero. Wave non-response is found when a

person does not respond for one or many waves of interview in a
temporary manner. For more on this subject, refer to
Lepkowski (1989).

In this chapter, treatment of total non-response within the

sample s will be discussed. Also, we will attempt to treat cluster
non-response and unit non-response among those identified to be

surveyed within U Finally, we will provide some solutions to the
problem of links identification.

8.2 CORRECTING RESPONSE RATES

Response rates take on a particular importance in sample
surveys. They can serve, on the one hand, to measure the progress or
the performance of the survey collection and, on the other hand, to
help correct the estimates taking into account the non-response. Two
categories of response rates can then be distinguished: operational
response rates and corrective response rates. These two categories are
qualitative rates since they contribute to qualitatively assess the
collection results. Operational response rates are so called since they
serve to evaluate the quality of survey operations. For example, an
operational response rate could be the relationship between the
number of interviews completed and the number of persons contacted.
The corrective response rates serve more to correct the estimates
taking into account the non-response (Droesbeke and Lavallée, 1996).

The corrective response rates can correct the total non-response
by drawing the subsample of respondents toward the initial sample.
They have a more restrictive meaning than operational response rates.
In fact, they must reflect the importance of the number of respondents
in the survey in comparison to the initial sample.

In the general context of a population U of size N, a sample s
of size n is selected where each unit & is selected with probability
7, >0. We attempt to measure a variable of interest y, where

unfortunately non-responses are present. Let n, be the number of units
responding to the survey. The corrective response rate R is defined as
the ratio between the number of responding units n_ from the sample
and the sample size #, 1.¢.,

R=" (8.1)

n



156 Indirect Sampling

Using the selection probabilities 7, of the units £ from the

sample, a weighted version of the corrective response rate can be
defined. This latest version is given by
"Un, N
R=———Zf‘,‘/ fe—r (82)
Zk:l l/ & N
The weighted corrective response rate can be seen as the ratio
between the estimated number of responding units within the
population and the estimated number of units in the population.

Although the debate remains open about the use of R or R, we will
prefer here the weighted version given by (8.2).

A first reason to use the weighted response rate R, instead of
R, is related to the estimate of the size of the population that remains
unchanged, whether there is non-response or not. Indeed, if there is no
non-response, N = Yi.d, where d, =1/z, . If there is non-response
the sampling weight d, can be corrected by using the corrective
response rate and thus obtaining a new weight d,'" corrected for the
non-response. Starting with the response rate (8.2), d," =d, /R and

then we note that Y d,* =N . The sum of the sampling weights
corrected with the weighted response rate therefore gives the same
result as if there was no non-response. However, with the response
rate (8.1), d'¥ =d, /R and, in this case, ¥ ,d" =nN, /n #N .
Therefore, the desired result is not obtained.

Another reason to use the response rate (8.2) is related to
model-based considerations. As mentioned by Pfeffermann (1993),
the use of weights in survey data modelling results in parameter
estimates that are consistent with respect to the sampling design. In
addition, the use of weights reduces the impact of a poor model
formulation on the estimates. It will be seen in section 8.3 that the
corrective response rate can be seen as an estimate of the response
probability ¢, of a unit £ from the sample. The corrective response

rate is therefore the result of modelling the response probability ¢, ,

from which the suggestion of using selection probabilities in its
calculation comes. It is finally noted that the two corrective response
rates, weighted and unweighted, are equal when the selection
probabilities 7, are equal.
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The corrective response rates can be calculated for exclusive
and exhaustive groups within the population. For example, these O
groups can be the strata, but they can also be the result of any partition
of the population. For a group g, the corrective response rate R is

thus defined as

“Vig, N
R :Z":‘ kol (8.3)

q ,
Zk:ll/ﬁk N,

where n, is the number of units from the sample belonging to group ¢

and n,, is the number of responding units belonging to group g. It

will be seen that the groups ¢ can be formed in a way that they
correspond to sets where the response probabilities of the units
included within them are relatively homogeneous.

It is important to note that it is essential, to calculate the
response rate (8.3), that information concerning the non-respondents
themselves be available. For example, if the groups are formed from
the socioprofessional category of persons in the survey, it is then
necessary to know the categories of the non-respondents, like those of
the respondents. This can represent a problem is the socioprofessional
category is measured in the course of the survey.

The people that are not contacted because they are out-of-scope
for the survey are part of the respondents (and not the non-
respondents) but their variables of interest are all set to zero. This
reflects the fact that other people outside of the sample can also be
out-of scope for the survey, but these people are often only known
during the interview.

8.3 RESPONSE PROBABILITIES

The notion of response probability was briefly touched by
presenting, in section 8.1, the aspect of ignorable and non-ignorable
non-response. This concept will be developed here in further detail, as
presented by Sérndal, Swensson and Wretman (1992) and Lock Oh
and Scheuren (1983).

The concept of response probability is very useful in adjusting
estimates for total non-response. In a general context, let &, be an

indicator variable that takes a value of 1 if unit & answers the survey
questions, and 0 if not. It is generally assumed that this variable has a
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Bernoulli distribution with probability ¢,. In other words, it is

assumed that each individual £ in the survey population has a certain
probability ¢~ of responding to the survey, ie,

P(unit £ reponds | s) = P(5, =1|s)=4¢,. In addition, for two units &k
and k', the indicator variables 5, and ¢, are deemed to be
independent. This implies that the joint probability of response ¢,,. for
these two units is given by
Gy =P(6, =16, =1]|s)
=P(6, =1|5)P(, =1|s)=9,4,.
Lastly, we have
E(0,|s)=1xP(5, =1|s)+0xP(J, =0]s)

=P(5, =1]5)=¢, (&4

and
Var(6, |s)= E(5 | 5)~ E*(6, | 5)
= E(5,|5)- E*(5, |5) 85)
=9, _¢k2 =¢,(1-4,).

The independence between the indicator variables & of two
units k£ and k' follows from the assumption that the choice made by
unit k£ to respond or not will have no bearing on the choice made by
unit k£'. In other words, there is no ratchet effect. This turns out
generally to be true in practice, except in the case of cluster sampling
where the cluster effect (or intracorrelation) can nullify this
independence. For example, if the units are individuals selected from a
cluster sampling, we can imagine that the fact that one of the
individuals responded to the survey could prompt other individuals
from the cluster to respond, and the opposite can also be true. Unless
otherwise informed, the assumption of independence will be kept here
in order to simplify the discussion.

As we have above, the response probability can depend on the
sample. Thus, a unit £ can have more of a tendency to respond for a
certain sample s compared to another sample s'. For example, in a
sequential sample of a group of persons placed in order, a person
chosen last can be less inclined to respond than a person chosen first
simply because he has been waiting for a longer time.
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The estimation of the response probabilities @, can be done
with different approaches. From the information provided by the
survey and by external sources, we normally seek to develop a model
that is meant to identify the factors influencing the response
probabilities. This model can take forms ranging from very simple to
relatively complex. For example, it can be determined that the
probabilities ¢, for an employee satisfaction survey are uniquely
influenced by the sex of the persons surveyed. An estimate ¢?k of the
response probabilities ¢, is then simply given by the corrective
response rate observed in the survey for each of the two sexes, i.e.,
q;k =1, o / P 1T UNIL K 1S @ man, and ¢fk =1, oman ! Pyoman 11 UNIL K is @
woman. Recall that, to estimate the response probabilities, it is
essential to wuse information concerning the non-respondents
themselves. In the previous example, we see that the sex was used as
auxiliary information.

In a general way, we can try to estimate the response
probabilities by calculating the corrective response rates within
response homogeneity groups (RHG) as suggested by Sirndal,
Swensson and Wretman (1992). The RHG form in fact a partition of
the sample into Q groups, where the response probabilities of the units
from the sample are approximately the same within each group g.
They can be represented by the model

Gy =EOG,15)=5,, (8.6)
where [ is a fixed effect (or factor) to be estimated. The parameter
B, is in fact the expected probability of response in group g. The

RHG can be formed by a single factor or by a combination of two or
more factors. For example, we can think of age-sex groups.

To estimate ¢, , we can use the weighted maximum likelihood

method (Collett, 1991) with weights set at d, =1/7,. The following
quantity is then maximised:

INAB - By) = 20 D 8 I, +(1-5,)In(l - 4,,)]

where the 4, depend on the parameters S . The ensuing estimator

from the model (8.6) is then given by the corrective response rate
(8.3). We thus have

. =R,. (8.7)



160 Indirect Sampling

Another approach used to estimate the response probabilities
consists of using a logistic regression model (or “logit” model). In a
general way, the logistic regression model is given by

log [¢—"j:ﬂrxk, (8.8)

where B is a column vector of dimension p of parameters to be
estimated, and x, is a column vector of auxiliary variables. The
vector of parameters P is estimated, again using the weighted
maximum likelihood method. With the logistic regression model, we
obtain an estimate ﬁ of B, from which the following estimates are
derived:

¢?LOGIT _ exp(B’x,) (8.9)
1+exp(B’x,)
It is interesting to note that if the auxiliary variables x, are all

qualitative and if the model chosen is saturated (that is, that there are
as many parameters to estimate as there are combinations of values),
then the logistic regression model approach corresponds exactly to
that of the RHG.

If the number of factors explaining the response probabilities is
large, it is in practice simpler to use the logistic regression approach
because the RHG approach requires making combinations for all the
factors influencing the response probabilities, which can result in the
creation of groups g without respondents (n, =0). The logistic

regression approach only requires that the marginal response rates
correspond to the factors present in the model chosen. Michaud and
Hunter (1992) used it in order to determine the decisive non-response
factors in SLID. Starting from the generalised calibration theory
presented in section 7.1, Deville (1998b) (and Deville, 2000b)
demonstrated that the method used to estimate the response
probabilities is only of little importance. Indeed, from the two
estimates corrected with the different response probabilities, we see
that the difference between these two estimates is asymptotically zero.

8.4 TREATMENT OF NON-RESPONSE WITHIN s

Non-response in sample s* is a classic case of non-response.
Whether in the context of conventional (or direct) sampling or indirect
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sampling, the treatment of this type of non-response is covered in
most books on sampling theory. In theorem 4.1, we saw that the

estimator ¥? produced by the GWSM can be written in the form of a
Horvitz-Thompson estimator that is a function of units j of s*. Hence,
non-response in s” is treated as we would treat non-response in the
situation where we selected sample s* to produce an estimate of a

quantity related to population U*. We still present here the treatment
of this type of non-response because it will allow us to establish the
basis of the discussion for the other types of non-response presented in
this chapter.

A sample s” is selected containing m” units from the
population U* consisting of M* units according to a certain
sampling design. Suppose that 7rj.’ represents the selection probability

of unit j. We assume that 7 >0 forall jeU". It is assumed that a

subset s:’ of mVA units of sample s” answered the survey questions. It

is also assumed that there is only total non-response here and no
partial non-response. This situation is illustrated in Figure 8.1. The

arrows indicate that units j=1 and j=2 from U" were selected to

be part of s*. Unit j =2 answered the survey, but unit j =1 did not.
The target population U” contains M* units. This population
is divided into N clusters, where cluster i contains M” units. For each

unit j of s/, units ik from U” can be identified that have a non-zero
link /,, withj, ie., /,,=1. For each identified unit ik, we assume
that we can make a list of the M units of cluster i containing that
unit. Each cluster / represents, then, by itself, a population U’ where
UP =Y\ U? . Let QF be the set of n, clusters identified by the units
jesl.

We survey all units & of clusters i € Q”, where we measure the
variable of interest y. For target population U”, we want to estimate
the total Y® =3y . It is assumed that we have the total

number of links L” for each cluster i e Q7.
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Figure 8.1: Example of non-response within s*

In applying the GWSM, we want to assign an estimation
weight w, to each unit &k of surveyed cluster i. To estimate the total

Y*® for target population U”, then, we can use the estimator (2.1),
which was constructed on the assumption that there is no non-
response in sample s”. On the basis of Theorem 4.1, we can rewrite
the estimator (2.1) as (4.1), which is a function of units j of s*. Since
we have only subsample s* of the responding units, we have to use an

estimator that has been corrected for non-response. To that end, we
can use the following estimator:
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where ¢ ;’ is the response probability of unit j. The superscript “NRA”
refers to the non-response within s*. The indicator variable & f =1 if
unit j of s* responds, and 0 if not. The probability ¢ can depend on

the sample s*. Let E,(-) denote the expected value carried out in

relation to all possible samples of s*. To show that this estimator is
unbiased, we proceed as follows:

. . wot BT s
E(yNRA,B):EX[E(YNRA,B |SA)] — El‘ |:Z J A/ y Z/

p 7[»/.¢j.
M t¢ M f
=F | =E, 7. (8.11)
:Z:YB

as, from (8.4), E(5;'|s")=¢;. The last line follows directly from
Corollary 4.1.
Note that the quantity 1/7;‘,4¢‘/‘4 corresponds to the sampling

weight adjusted to account for non-response. From this adjusted
sampling weight, the estimation weight w;** can then be obtained
following steps 1 to 4 of the GWSM described in section 2.1.

Steps of the GWSM adjusted for non-response within s*

Step 1: For each unit & of clusters i from Q! the initial weight

NRA .
wi, " is calculated, to know:

7 YL t5A
w4 Zm peveg (8.12)

Step 2: For each unit k of clusters / from Q, the total number of

links L}, =¥,/ , is obtained.

Step 3: The final weight w,fw is calculated:

MP yNR4
w,

Wkl = kel _H (8.13)

‘ Mf
Zk | ik

Step 4: Finally, we set w) " =w"* forall keU”.
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After applying the non-response-adjusted GWSM, we can

assign an estimation weight w'™' to each unit k of the n_ surveyed
g g ik r y

clusters. To estimate the total Y® for the target population U”, the
following estimator is then used:

n, M,B
YR =D 2w (8.14)
i=l k=1
In practice, estimator Y™ is useful only if the value of the

response probabilities ¢f is known for all units j of 5. We want to

estimate these probabilities so that we can use one of the following
forms:

i

A m 7,
yrE =y (8.15a)
19
or
A n, MIB )
YR NN o (8.15b)

i=] k=]
where the weight 11, is obtained by replacing ¢ with ¢,A in (8.12).
To obtain ¢?/A , either the estimator (8.7) or the estimator (8.9) can be

used.

Here, the model (8.6) takes the form: ¢ = £ In view of the

estimator (8.7) based on this model, we use the weighted response rate
R =X U a1zl

Thus we have

N m/! Z ) Q mr"{q Z )
YNRA B — JA — qj
2 " RETe
4 (8.16)

It is assumed here that the number of responding units . 18
greater than 0 for all RHG g¢.
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If we look at estimator (8.16), we see that it is nothing more
than a ratio estimator in two-phase sampling. Sérndal, Swensson and
Wretman (1992) present a proof that estimator (8.16) is asymptotically
unbiased, under the conditions of model (8.6). The asymptotic

variance of Y"*#

the identity

is calculated using a conditional approach. From

Var(Y "™ = Var [E(Y "™ | s Y]+ E.[Var(Y™F | s")]

we get

) e 2
Dt S PR AL AR
= B S Yz,

(8.17)
where ,BqA is the parameter from model (8.6). The variance (8.17) can

be estimated using

A
Var(YNRAB) 224%” arsik 2,7
j=1y lﬂ'//ﬂ' ¢ ¢

1 2
0 (1—R*) ™y "az |t
+Z(( Z : [Z —ZHA - %J.

] () PR VB 5

(8.18)
If we have auxiliary variables x/ available for all units j of s*,
we can imagine using the model (8.8) with parameter B’ of

dimension p*. With the estimator (8.9) based on this model, we then
have:

;NRA,LOG]T,B _ g Z . Z_(l +€Xp A(BT’A X;I )
S ¢ILOGITA 17[ exp (BT,A X_f)

(8.19)
where the estimator |§A is obtained using the weighted maximum
likelihood method, with the weights set at d, =1/ ﬂf Note that the
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estimator Y% is highly nonlinear. It is not simple to calculate

its bias. However, if the estimate of ¢*?"

; turns out to be relatively

close to the true response probability ¢ f , this bias should be small. It

is possible to obtain an approximation of its variance by using Taylor

linearisation, from which an estimate of the variance of Y0978 ig

subsequently obtained. Such an approach, however, is rarely used in
practice at Statistics Canada, where the Jackknife and Bootstrap
methods are preferred instead. If the sampling design used to select

the sample s* is a stratified multi-stage design, the Jackknife

estimator of the variance of ¥Y"* 9T hag the form (6.9). To learn
more about the Jackknife method, refer to Wolter (1985), and Sirndal,
Swensson and Wretman (1992).

8.5 TREATMENT OF CLUSTER NON-RESPONSE

As mentioned in section 8.1, cluster non-response occurs when
no units of a cluster from U” identified to be surveyed responds to the
survey. This is a case frequently encountered in practice. In this
section, the treatment of this type of non-response is presented. As in
section 8.4, it is proposed here to treat this type of non-response by
using the concept of response probability.

A sample s? is again selected containing m” units from the
population U” consisting of M* units according to a certain
sampling design. Let 7sz >0 represent the selection probability of

unitj. Contrary to section 8.4, it is assumed that the set of m” units
from the sample responded to the survey questions.

The target population U® contains M® units. This population
is divided into N clusters, where cluster i contains M units. For each
unit j selected in s, we identify the units ik of U” that have a non-
zero relationship /;; withj,ie., /,, =1. For each unit ik identified, it
is assumed that a list of the M/ units of cluster i containing that

unit can be made. Each cluster / represents, then, by itself, a
population U, where
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Ut :UZIU.B.

1

Let QF be the set of # clusters identified by the units jes*.

In carrying out the survey process, we attempt to survey all

units & in clusters / of Q" . Unfortunately, for some entire clusters, we
are unable to obtain any data. This is cluster non-response. We assume

here that all the units of each cluster i from Q” respond or do not
respond. In other words, there are no clusters in which only a non-zero

subset of units responded. Let Q be the set of n responding
clusters. It is worth noting that QF differs in general to the set of
responding clusters in the context of non-response within the
sample s*. This situation is illustrated in Figure 8.2. The arrows
indicate that units j=1 and j=2 from U" were selected to be part

of s*. Then, clusters i=1 and i=2 are identified to be surveyed.
Only cluster i =2 here answers the survey.

NN

Figure 8.2: Example of cluster non-response
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Let 6° be an indicator variable that takes a value of 1 if cluster

i answers the survey questions, and O if not. As in section 8.3, it is
assumed that this variable has a Bernoulli distribution with probability

®” . In other words, it is assumed that each cluster i in U” has a

probability @7 of responding to the survey, i.e.,
P(cluster i responds | Q%)= P(5” =1|Q%)=®?.

In addition, for two clusters i and ', the indicator variables
67 and &7 are deemed to be independent.

It is worth noting that it is also possible to define the response
probability ®” from the indicator variables &, associated with the

units 4 of the surveyed clusters i. Let &, =1 if unit £ of cluster i

answers the survey questions, and O otherwise. The response
probability of cluster i can be defined as being the probability
that all the units of the cluster respond, i.e.,
o’ =P(5) =1,55 =1,...,5j41, =1|Q%).

In the case of cluster non-response, it is natural to expect that
the indicator variables . are not independent within each cluster i.
Indeed, if we go back to the example of telephone surveys, if no one
answers the telephone, there is then no response for the entire
household (cluster) that is trying to be contacted. Furthermore, it a
person answers the telephone but does not want to participate in the
survey, then it is often difficult to obtain a response for the other
members of the household. Therefore, the response probability of the
cluster can depend on the goodwill of only one person, instead of each
person of the household taken independently. Consequently, in
practice, the probability

P35} =1, 85 =1,..80, =11Q")

can rarely be expressed as the product Hi”j PS5} =11Q%) . For this
reason, it is preferred to look at the response probability ®” of the
cluster i as a whole in this section on cluster non-response.

For the set of units from clusters i € QY a certain variable of
interest y is measured. For the target population U”, we look to
estimate the total Y* =YY, ¥4y .
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In applying the GWSM, we want to assign an estimation
weight w{* to each unit k of responding cluster i. The superscript
“NRC” refers to the non-response of the clusters. To estimate the total

Y? for target population U”, we can then use the estimator

n M? n ME

>NRC,B _ NRC . _ B NRC

PO <Y Wy =Y W (820)
i=] k=1 i=l k=1

NRC

To obtain the weight w,™ from the GWSM, we are going to

use the response probability ®” for each cluster i e Q.

Steps of the GWSM adjusted for cluster non-response

Step 1: For each unit & of the clusters i from Q7| the initial weight w)
is calculated, to know:

M

' 1
Wy = le‘[k _/A s (821)
j=1 T

where 1, =1 1if je s*, and 0 otherwise.
Step 2: For each unit & of the clusters i from Q| the number of total
links is obtained:

(8.22)

Step 3: The final weight w*“ , adjusted for non-response, is calculated:

B
, 1 3w
NRC kil
W€ = &kl ik

; i (8.23)
(D,'B Z}y!/Li

Step 4: Finally, we set w“ = w* forall keU”, for all clusters i

ik
from QF .

Note that for each unit & of the clusters i from Q7 , we have

N Ni 1
Wit =W = @Wik , (8.24)
where w, is the weight from the GWSM without cluster non-
response. Furthermore, from Result 2.1, we get
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_ L
Wik —Fwik Z A (I) LB (825)
Let E () denote the expected value carried out for all possible
samples of s* where each sample s leads, as we recall, to a set of

clusters QF. To show that the estimator Y"*® is unbiased, we
proceed from a conditional approach.

From (8.20), we have

E(YNRCB) E. [E(YNRC .B ‘QB {ZE@‘B IQB)Z chyik}

=E, Z@BZ NRCy,.k} {ZCD Z By,k} (8.26)

[, oM

—E ZZ ky’k:| [ ]:YB.

llkl

The last line follows directly from Corollary 4.1.

Theorem 8.1: Duality of the form of y VRO

Let X:Z}i’[;yik and I} = ,fﬁLﬁ for all keU?. The

estimator Y€ given by (8.20) can then also be written under the

Sform
Y’\RCB_Z;LZNRC (827)
=17
where e = " —’35—2Y (8.28)
i=1 L,‘ (D,'
Proof

From Y™ =y wCs My, — 3% w¥Cy e use identity
(8.25) to get
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By continuing the development we get

NRC.,B - i

Y ’Zl:; Aq)B LB i
M 53 L M
Sl S

j= /11 /l

(8.30)

The estimator ¥¥*<# can thus be written as a function of units

ik from U®, or as a function of units j from U*. Note that contrary to
the quantity Z, defined by (4.2), the quantity Z;““ defined by (8.28)

depends on the set Q° of clusters that can be surveyed, and therefore
of the sample s* through the variable & .

In practice, the estimator Y"*“% is only useful if the value of
the response probabilities ®” is known for all clusters i from Q° . We

then want to estimate these probabilities so that we can use the
following estimator:

n'\/l’f

YNRCB _zz ~ NRC V. (8.31)

i=1 k=]

where W% =w, /®® . To obtain ®”, we can follow the example of
estimator (8.7) or of estimator (8.9). In this case, model (8.6) takes the
form: @) =B

If we use the estimator (8.7) based on this model, we define

é)fi as follows:

” _RB Zlekl qi
q
lez i

“rB
le qu quk _Mr,q

“rB
M
Z;:l Zk:l Wik a

where w,, is the estimation weight provided by the GWSM

(8.32)

(assuming no non-response) for units £ in clusters i belonging to
RHG gq.
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With (8.32), the estimator Y% given by (8.31) becomes

", MB MB g Mf

YNRCB ZZ ylk z ZZ qtkyqtk
i=1 k= 1 i=1 k=l (833)
Y MB y z/l

z zl qlz q:kyqzk

We can look at estimator (8.33) as a ratio estimator in two-

phase sampling. Indeed, if the identification of the cluster of Q to be
surveyed is considered as the first phase of the sampling design, the

“selection” of the subset Q° of responding clusters makes up the
second phase of this design. To obtain the asymptotic bias and the

asymptotic variance of Y*?  the Taylor linearisation method is
applied, as suggested by Sdrndal, Swensson and Wretman (1992). Let

, M,ﬁ
YqB =22 W Vaix - We then get

A 0 n, )’}B n, M
eestlin Eog e, ittt
=1

VB
g=1 i=l k=1 ﬂq Mq i=] q

0 0 58 ’VIB )’}B n, 53 Mfi
ZY Z(Z y Z quyq:k "—3 v wqik}
g=1

=1 i=l q k=1 Mq i=1 ﬁq k=1
L &SP Y?
_ VB i q
=Y +z —-E'k quk yqik —W . (834)
g=1 =1 Py k=l 7

As in the case of non-response in s, we can show that
estimator (8.33) is asymptotically unbiased under the conditions of

model (8.6). To do this, the expectation of Y"*® from (8.34) is
calculated using a conditional approach.



Chapter 8: Non-Response 173

E({;NRC B) E [(YNRC B |QB)]

. E(S! Q%) & y?
~E|Y?+ — YW |y, ——
{ ;Z V= N 75
N 0 n, ﬂB M:,. }'}B
= E, [YB LD D W [yqfk __%H
g=1 i=l My k= Mq
[ o o M Y8
=E|Y’+ W | Vo ———
| Z R N Y
—'\B g > B YA':/B "B
:ES YY"+ Yq —WM(]
(. (I=] q
-E[7* +o] e (8.35)

The asymptotic variance of Y™? is calculated using a
conditional approach with the identity

Var(Y¥8) = Var [E(Y™CF | Q)] + E [Var(TV*F | QF)].

From (8.34), we get

N MA MA
Var(yNRC,B)E (ﬂ'u ﬂ:g 1) Z.7;
J=1j=1 7[17[/
B ~ 2
0 (l_ﬂB) g A’V[q, YB
+E, Bq Wjik Yyik ~—"‘1_B
4=l ,B,, i= k=t Mq
(8.36)
The variance (8.36) can be estimated using
Var(yNRC 3) ZZ T 71' )Z’\/RCZNRC
j=1j'=1 7[1/77 77/
(8.37)

+ZQ:(1 R )ZZ qlk(yqlk ;/[B}‘

g=1 i=l k=1 r.q
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If we have auxiliary variables X available for all clusters i
from Q°, the use of the model (8.8) can be considered, with the
parameter B° of dimension p”. With the estimator (8.9) based on this
model, we then have

fl.
NRC,LOGIT B
YV ZZ y
LOG[T B ik
<D

i=l k=1

” N (8.38)
&+ ep(pTXE)
S5 epBX7)

ik ik

where the estimate ﬁB is obtained using the weighted maximum
likelthood method with the weights corresponding to the weights w,
from the GWSM.

)'}NRC,L()GIT.B

The estimator is nonlinear and therefore it is not

simple to calculate its bias. However, if the estimate ®°°"* turns

out to be relatively close to the true response probability @7, this bias

should be small. Approaches often used in practice at Statistics
Canada to estimate the variance of (8.38) are the Jackknife and the
Bootstrap methods. If the sampling design used for the selection of the

sample s” is a stratified multi-stage design, the Jackknife estimator

for the variance of ¥"*¢*%9T% hag the form (6.9).

8.6 TREATMENT OF UNIT NON-RESPONSE

Unit non-response is a kind of total non-response in which one
or more units in the cluster, but not all units, did not respond. This
type of non-response is particularly important in the context of
indirect sampling because it is assumed that all units of the clusters
from U’ identified following the selection of the sample s* are
surveyed. If no response is obtained from certain units of the clusters
identified to be surveyed, we must then try to correct the situation. In
this section, we propose an adjustment to correct unit non-response
based on the use of response probabilities.

Following a particular sample design, we again select a sample
s containing m” units from population U” consisting of M* units.
Let />0 represent the selection probability of unit j. We assume

that all m* units in the sample answered the survey questions.
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The target population U” contains M” units. This population
is divided into N clusters, where cluster i contains AZ units. For each

unit j in s*, we identify the units ik of U” that have a non-zero
relationship /;, with j, ie., /,,=1. For each unit ik identified, it is

assumed that a list of the M/ units of cluster i containing that unit

{

can be made. Each cluster i represents, by itself, a population U’
where U® ={JY,U” . Let Q® be the set of n clusters identified by the
units jes”.

In carrying out the survey process, we attempt to survey all

units k in clusters i of Q”. Unfortunately, for some units in the
identified clusters, we are unable to obtain any data. This is unit non-
response. This situation is illustrated in Figure 8.3. The arrows

indicate that units j=1 and j=2 from U" were selected to be part

of s”. Then, clusters i=1 and i=2 are identified to be surveyed. In
cluster i=1, only unit 2 responded. In cluster i=2, there is no
response for unit 3. We assume here that we have a response for at
least one unit in each cluster i in Q° . Let s”, be the set of responding

units in identified cluster i, and let M7, > 0 be the size of that set.

Figure 8.3: Example of unit non-response
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Let 62, be an indicator variable that takes a value of 1 if unit k

(i)Yk
of cluster i answers the survey questions, and 0 if not. It is assumed
that this variable has a Bernoulli distribution with probability ¢(lf) .- In

other words, we assume that each unit & in clusters ; of U® has a
probability ¢(f) , of responding to the survey, i.e.,

P(unit k € i reponds | Q°) = P(5(f)k =11Q%) = ¢(lf)k .

In addition, for two units k and k' of a cluster i (or of two
different clusters), the indicator variables &, and &, are
independent.

For each of the M/, responding units from clusters i€ Q’, a

variable of interest y is measured. For the target population U”®, we
try to estimate the total Y* =¥~ ! ¥, - It 1s assumed that we have

the total number of links L for each cluster i € Q”.

In applying the GWSM, we want to assign an estimation
weight wi™ to each responding unit k of cluster i in Q°. The
superscript “NRU” refers to the non-response of the units. To estimate
the total Y* for target population U” | we can then use the estimator

n M}

n M7,
YHOE=N S wi =2 D 80w vy (8.39)
i=1 k=1 i=1 k=1
The weight w}*" can be obtained by drawing a parallel with

the two-stage indirect sampling presented in section 5.2. In other
words, we can look at the unit non-response process as the selection of

asample s”, of M units obtained from the M, units in each cluster
i of Q. Hence, the sample s”, of M, responding units corresponds
to the sample s’ of size m’ from section 5.2. Furthermore, the
response probability ¢(f)k of unit £ from cluster i corresponds to the

selection probability 7. Thus, the weight w;, from the GWSM

obtained in the context of two-stage indirect sampling corresponds to
the expected weight w}*" . By following steps 1 to 4 of the GWSM

presented in section 5.1, we then obtain forall kes’, and i=1,...,n:
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wire = (8.40)
¢(i)k

where w, is given by (2.4).

Theorem 5.1 and Corollaries 5.1 and 5.2 hold in the present
context. Following Corollary 5.1, the estimator (8.39) with the weight
(8.40) is unbiased.

There exists a fundamental difference however between the
theory presented in section 5.2 and that related to unit non-response.
This difference lies in the fact that in the context of two-stage indirect

sampling, the probability z(,, is generally known, which
unfortunately is not the case for the response probability ¢£)k . Recall

that the estimator ¥**"® is only useful in practice if the value of the
response probabilities ¢(’f)k is known for all units & of each set sf ; of

responding units. We are going to try to estimate these probabilities so
that we can use the following estimator:

B
n M

;NRU.B _ Z Z WUy, (8.41)

il k=l
~ NRU _ 7B
where W, —w[/¢(,.)k.

To obtain q;(f)k, we can use one of the following two

approaches. The first approach involves considering the set

s? =U;’:1sf_,. of responding units as a whole. Then, the response

probabilities ¢(lf)k are estimated without necessarily distinguishing
between the different clusters that, as we recall, consist of
subpopulations U from U”, from which the sets s, are obtained.

This approach can be described as global. The second approach
involves considering each set sf , of responding units separately. Then

the response probabilities are estimated within each subpopulation
U’ from U®.

The two approaches differ from one another at the level of
weighting used to estimate the response probabilities ¢('f)k. With the

global approach, an estimate can be obtained for the set of the
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probabilities ¢f)k using the weights w, from the GWSM. For

example, the model (8.6) takes the form: ¢f;,.)k = ,Bf . If the estimator

(8.7) based on this model is used, the global approach estimator
éGLOB,B

ik is then defined as follows:

7GLOB,B _ Z =[ Zk 1 qi
(giyk t/ Zn
I
B
_Z, 12 =] (‘Il)kwak MHJ
MB
Zi:le:l Wyik 4

where w,, 1s the estimation weight coming from the GWSM

(8.42)

(assuming no non-response) for units £ of clusters i belonging to
RHG g.

With the individual approach, each subpopulation U’ is
considered individually. Since the GWSM assigns an identical
estimation weight to the set of units in each cluster i from QF, the
estimation of probabilities (zﬁ(f)k for the responding units of each

cluster i can be done without weighting. For example, the model (8.6)

here takes the form: ¢°,, = A . With this model, we then define ¢/,

as follows:
. ME
¢(Bi)k = RB, :—%, (8.43)
q. q Mq,-

where M) =M and M. =M’ forieq.

Vql

In general, the two approaches, global and individual, give
different results. In the context of two-stage sampling, direct or
indirect, it is nevertheless more natural to consider the clusters (or
PSUs) individually, instead of globally. Indeed, because each

subpopulation U/ is considered as a population itself, the modelling

of response probabilities ¢, can be performed at the level of each

subpopulation U”. Note that this approach is harmonised with the

assumption of independence from the second stage of the sampling
design mentioned by Sdrndal, Swensson and Wretman (1992).
According to this assumption, the sampling within a PSU (or cluster)
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must be done independently from the other PSUs. For these reasons,
we are going to focus the discussion on the individual approach.

With (8.43), the estimator ¥"*V** given by (8.41) becomes

Y’\Rb B Zz y,
i=1 k=1 ¢(,
oo a1 (8.44)

= ZZ Z WiV ik

i=1 ,q,kl

This estimator is nothing more than a ratio estimator within
each PSU under two-stage sampling. To obtain the bias and the

5 NRU B
Y B

variance of , it is useful to prove the following theorem.

Theorem 8.2: Duality of the form of y VRU-B

B ~
Let Y:Z}Zi'y;k/ﬁ[f)k and L= ,Z[:Lﬁ For the clusters

{

ieQ’, we set éik = };, /LY forall keU". The estimator YMUE given
by (8.41) can then also be written under the form

VRU N
b= Z 7, (8.45)
j=17Cj
" M/}
where Zl/ KZy (8.46)

Proof

The proof of this theorem is the same as that for Theorem 5.1

where, in particular, the selection probability 7z, is replaced by the

estimated response probability ¢, . n

The estimator ¥**“"® can therefore be written as a function of
units ik from U”, or as a function of units j from U*.

Corollary 8.1: Bias of y VRU.B

The estimator Y"*V* given by (8.44) is asymptotically
unbiased for the estimation of Y° with respect to the sampling design
and under the assumption of the model (8.6).
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Proof

The expectation is first decomposed into E ,[E (YMRUE | O8]

where the first expectation is performed with respect to all possible
samples Q° from the clusters, and the second expectation is
conditional on the clusters of Q. From (8.45) and (8.46), we have

. MY n M A
E™# 108 =Y L3 N EG, 108, (8.47)
J=1 T =l k=i
Now, using (8.43), for i € g, we have
. 1 2 1 2
E(z, |Q%) =L—BE(Y,. Q%) :ZB-E(Yq,. Q%) (8.48)

i qi

M, B Y

LB [M,q, ;y"’k1 }LB
since the ratio estimator is asymptotically unbiased (Sirndal,
Swensson and Wretman, 1992). Note that ¥, =Y and Lg, =17 for

ieq. Therefore, E(Z,|Q®)=Y /Lf =z, where z, is defined in
Theorem (4.1).

In fact,
NRUB | (B S 1 i
EYM™OP Q=Y LNz, (8.49)
=17 i=t k=1

Following the proof of Corollary 5.1, we obtain

M M*E

,’: ; t n
i =3 LS8
T o
iy Y (8.50)
t g 5
= ﬁz L i =Y’
Jj= 17[/ i=l k=1

Thus, according to Corollary 4.1, E(Y "V %)= y? . [ |



Chapter 8. Non-Response 181

n
I’}NRU,B

Corollary 8.2: Variance of

The variance formula, with respect to the sampling design, of

the estimator ¥"*V:® coming from (8.44) is given by

MA

, 2
V. ;NRU,B ~ 2, Lj,qi 2
ar( )= ZZ 2| i o,

(8.51)

where

2

-5 ZM:;[y x, J
i~ B - ik~ 3B
q IB k=1 q Mq,'

and where ﬂ,ﬁ is the parameter of the model (8.6) in the context of

unit non-response.

Proof

To get a variance formula for Y"*"** | we start from equation
(8.45). As in the proof of Corollary 5.2, we proceed from a conditional

argument.
From equation (8.49) and Corollary 4.2, we directly obtain

5 NRU, B B p! (ﬂf‘[' - 7Z'Af ﬂ'Ag')
Var,, E(Y’ “PIQP) = Y Z,Zy. (8.52)
s TGy

Now, from (8.45) and (8.46) as well as (8.43), the following
result is obtained:

5 NRU,B Y
Y =

_&y J i
—‘“J{;. d'a (8.53)
j
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Then, the conditional variance of ¥"*V# is calculated to obtain

Var(P¥ | Q%)= Z—LZZ[ J VarL qu,k | J

J=L TG og=1 i=1
(8.54)

Since
R MB M2,

r.qi k=1
is nothing more than a ratio estimator of ¥, for ieq, in the context

of a Bernoulli sampling, we have

b U=82) RANE
Var(Y Q%)= 7 ;{yw Mf,-] =0, (8.55)

From (8.54) and (8.55), and as inspired by the proof of Corollary

5.1, we have
NRU,B | (B M“L‘ & Lj,ql 7 2
Var(P¥08 | 0P )= 3 L DL o
=L g=l =l i
. , (8.56)
_ M l_L g Ny it 5
- Z 4 Z B O
j=1 7 g=l i=1 Lqi
Finally,
M0 Nq 2
[Var(Y“RUB |QF )} =33 [Lf,j'] o, (8.57)
j=l g=l i=] gi
|

I} )aNRU,B _mA 1 & 2 L./‘,qi 2 A2 Y ﬁ”?["”?”?’ A2
ar( )_Z-—A_ Z 1B gi +ZZ 4_a_4 Lily
AT =\ Ly VR I
(8.58)
where o= . .
Ry &

(Cochran, 1977, and Sirndal, Swensson and Wretman, 1992).
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If we have auxiliary variables x; available for all units of
clusters i from QF, the use of the model (8.8) can be imagined, with
parameter B’ of dimension p®. With the estimator (8.9) based on this
model, we then have

ME
N n Mg w
YNRUJ,()GIT,B _ ZZ i
2 LOGIT B Vit

i=l k=1 Piipe
Mk, NTB _B
oo (+exp (B x,)

= ~ W, Vi
~iT exp (B xp)

(8.60)

where the estimator BIB is obtained using the unweighted maximum
likelihood method. If the estimate éﬁﬁf"” turns out to be relatively

close to the true response probability ¢/, , the bias of ¥ /005

should be small. Approaches often used in practice at Statistics
Canada to estimate the variance of (8.60) are the Jackknife and
Bootstrap methods. If the sampling design used to select the sample

s* is a multi-stage stratified design, the Jackknife estimator of the

variance of YY*V'200TE hag the form (6.9).

8.7 TREATMENT OF ERRORS IN LINKS
IDENTIFICATION

The problem of links identification is associated with the
situation where it cannot be established if a unit ik from U? is linked

to a unit j from U”. This problem has already been mentioned by
Sirken and Nathan (1988) in the context of Network Sampling. More
recently, Ardilly and Le Blanc (1999), and Ardilly and Le Blanc
(2001), addressed this problem while using the GWSM to weight a
survey of homeless persons. Errors in links identification are
particularly problematic for the GWSM. Indeed, they can create
serious bias problems in the estimates.

As an example, let us consider the case encountered by Ardilly
and Le Blanc (2001). Let U” be the target population of homeless
persons, and let U” represent the set of services (meals, bed, etc.) that
are provided to these homeless persons. Using Indirect Sampling, we
select a sample s* of services from U/, in order to estimate the
population U® of homeless persons. Now, for each service selected in
5", we are able to identify the homeless person that used this service.
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However, the GWSM requires to know all services that the identified
homeless person has received, and this is often difficult to get because
these persons are usually difficult to interview. This causes errors in
the identification of the links.

As always, following a particular sample design, we select a
sample s” containing m* units from population U? consisting of
M* units. Suppose that 77 >0 represents the selection probability of

unit j. We assume that all m” units in the sample answered the survey
questions.

The target population U” contains M” units. This population
is divided into N clusters, where cluster i contains AfZ units. For each

unit j in s*, we identify units ik of U® that have a non-zero
relationship /;, withj, i.e, [,,=1. We assume that we can identify

all relationships /,, associated with each unit j of s”. For each

identified unit ik, we assume that we can make a list of the M units
of cluster i containing that unit. Each cluster i represents, then, by
itself, a population U” where U® =JX, U . Let QO be the set of n
clusters identified by units jes”.

We survey all units & in clusters i of Q. Although we can
measure the variable of interest y for all M units in each cluster i of
Q?, for some units k£, we fail to determine whether there is a
relationship between those units & and a unit j of U*. In other words,
for some units k of a cluster i€ Q”, it is impossible to determine
whether /;,=1 or /,,=0. Note that, based on interviewing, we

know the links /,, for all the units j from s”. Hence, we know /.,
for jes”, but we do not know all the [,y for j e Q" where
Q" ={jeU"|3ieQ’ and L,,>0}. The set Q™" contains the

units j from U* that have a link to the clusters in Q° that were
identified at the start by the sample s”. Let Q" be the set of units
from Q™ for which the links have been identified. We can see that
s is a subset of Q% which is itself in general a subset of Q%
Note that it can happen that some null links /,, =0 are identified as
being non null, but this seldom happens in practice. Most of the time,
some links are missing, which makes Q" asubsetof Q%
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The problem of links identification is illustrated in Figure 8.4.
The arrows indicate that units j=1 and j=2 from U" were selected
to be part of s*. For each of the units j=1 and j=2, the
relationships with the target population U* can be established. Then,
the clusters i=1 and /=2 are identified to be surveyed. In cluster
i =2, the relationship between unit 4 of U” and unit j =3 cannot be
established, even if the relationship between this unit 4 and unit j =2
is known. Still in the cluster i =2, the relationship between unit 3 of
U? and unit j=3 of U” cannot be established.

Let L7, be the total number of links identified between cluster i

and population U”. Note that in general L’ <L’. In addition,
because we are assuming that we can identify all relationships /; ;
associated with each unit j of s, we have L}, >0 for all clusters i

in QF.

Figure 8.4: Example of the problem of links identification
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By using only the total number L’ of links found, we

overestimate the total ¥*. This can be seen from the expression of Y?
given by Corollary 4.3. Indeed, if L is replaced by L}, in (4.16), we

obtain

: . N L
AL ST o i (8.61)

where the superscript “NRL” stands for non-response within the links.
Since I,<I?, we have directly Y"™’>¥" Likewise,

E(YY*y> E(Y?)=Y® and thus Y"*? is a biased estimator of ¥*.

It is important to note that there is no problem in obtaining the
quantity L, in (8.61) because it is assumed that all the relationships

I, associated to each unit j of s” can be identified. Looking at

(4.16) (or (8.61)), it is seen that this quantity must be known only for
the units j of s*.

There are a number of conceivable solutions to correct the
problem of links identification. They are presented in the following
sections.

8.7.1 Record linkage

If we have access to two files A and B containing U* and U,
respectively, we can try to obtain all the links between these two

populations. One way to obtain the values for /; , is to perform a

record linkage. The purpose of record linkage is to link the records of
the two files 4 and B. If the records contain unique identifiers, then
the matching process is trivial. Otherwise, the linkage process needs to
use some probabilistic approach to decide whether two records,
coming respectively from each file, are linked together or not. With
this linkage process, the probability of having a real match between
two records is calculated. Based on the magnitude of this probability,
it is then decided whether they can be considered as really being
linked together or not. For more details on record linkage, see section
9.1, as well as Fellegi and Sunter (1969) and Lavallée and Caron
(2001).
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If obtaining the values /, , reveals to be too difficult because,

for example, of the size of the files A and B, one can restrict the

record linkage to the units k from the clusters i in Q° and the
population U". This is sufficient because, as mentioned earlier, we

already know the /; , for j e s, but we do not know all the / L for
the set Q** containing the units j from U* that have a link to the
clusters in Q° .

One can also use record linkage to try evaluating L ; between

the clusters i in Q” and the population U, As we can see from (8.61),
it is sufficient to obtain the quantities L, rather than the individual

links 7, , for using the estimator Yo,

8.7.2 Modelling

It is possible to estimate the probabilities ¢, of a link
between the units j and ik by using a logistic-type model with vectors

x4 and xi of auxiliary variables. Recall that Q™" s the set of units

from Q" for which the links have been identified. With the
estimated probabilities ¢ . » We can produce estimates l ¢ e for
the units j contained in the set Q" \Q" . This can be seen as
imputing links lj,ik for these units (see Ardilly and Le Blanc, 2001).

Note that it is important to make maximum use of all constraints and
information that would be associated with the values for /, , during

modelling.
With /, ,.ik» We obtain
L=+ Dl (8.62)
[EQA‘B /EQA\B\QA\B
and then

ZL,k . (8.63)
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It is also possible to concentrate on L’ as a whole, without
reference to the population U7 If we have auxiliary variables X’

available for all clusters i from Q°, the approach is then to use a log-
linear model of the type log(L’)=p"*X?, where B” is a column

vector of parameters of size p”. The estimate ﬁB of B* can be
obtained using the unweighted maximum likelihood method (see

Bishop, Finberg and Holland, 1975). With ﬁB , We compute
LFHNE — exp(BTPX T (8.64)

Using (8.63) (or (8.64)), we then construct the estimator

A N ..
yORLE _ _]zY, IRy (8.65)

It is possible to calculate the asymptotic bias of (8.65) by using
Taylor linearisation. The linearised estimator is then given by

~ M

N
> NRL,B
sy

]:l i=l j

(2LB ry. (8.66)

Let E (-) denote the expected value carried out in relation to

all possible samples of s*. To calculate the asymptotic bias of the

:NRL B
Y -

estimator , we proceed as follows from (8.66):

E(YANRL.B) — [E()'}NRL.B | SA )]

s Zx: . . (8.67)
=E|Y L QL -E(L?|sY) |
j:] 7[ i=l (LB
If E(L?|s*)=1IF, we then have
. S A
EQYY™ ") =E | Y LYY — 2L - L)

j=1 72-/' i=1 (L, )

N (8.68)
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The last line follows directly from Corollary 4.1. The unbiased

nature of the estimator ¥"®* depends, however, on the unbiased
nature of the estimator of L. In practice, it is not easy to obtain an
unbiased estimator of L.

For the survey of homeless persons, Ardilly and Le Blanc
(2001) suggested making an assumption of regularity to impute some
relationships /,, to 1, which is actually the same as modelling the

quantity Z”. Ardilly and Le Blanc (2001), however, have questioned
if the assumption of regularity may not be satisfied in practice.

Approaches used at Statistics Canada to estimate the variance
of estimators such as (8.65) are the Jackknife and the Bootstrap
methods. If the sampling design used for the selection of the sample

s” is a stratified multi-stage design, the Jackknife estimator for the
variance of (8.65) has the form (6.9).

8.7.3 Estimating the proportion of links

Another way of solving the problem of links identification is to

concentrate on the quantity 5/.‘,. =L,/ L?, rather than on the number
of links Z,,. In order to make the estimator (4.16) unbiased, we need
only to ensure that ZZI 5 = 1 (see Ernst, 1989, as well as Lavallée
and Deville, 2002). Thus, it is not necessary to know all values of L i

for i e Q" but simply the values 5 . forie s*, making sure that

ZjM:1 gjl =1

It is important to note that 5}1 can be defined in a general way,

without reference to the links L ;. As in section 4.5, some 6, can be

M

defined arbitrarily by keeping Z 6 =1 , which means that we can

j=1 g

also use the unbiased estimator:

Sl 86)
iy
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Of course, the precision of the estimator (8.69) will be subject
to the choice of the values 0].,,. . As an application, this approach was

used by Bankier (1983) to produce statistics from tax data.

8.7.4 Calibration

Another possible solution to correct the overestimation of the
estimator Y% given by (8.61) is calibration. If we have auxiliary
variables x; correlated with the variable of interest y,, it is indeed
possible to correct, at least in part, the overestimation of the estimator

Y¥LE By calibrating the estimator YY* on the known total

X =y ¥, >M x? | since this known total is correlated with the total Y*,

a part of the overestimation of ¥ will be corrected. Note that the
more the variables x; and y, are correlated, the more efficient the
correction of the overestimation will be.

Let Z)™ =% Y.L, /L, . The equation (8.61) then becomes:

M4

Ay t.
yre=N Lz (8.70)
=ty ‘

. . . ’\1 X - N 1 3
The calibration  estimator Y0 =5 g0t 7 HE

associated with the GWSM in the presence of non-response within the
links is determined from the formulation (7.48). An estimator of the

form (7.50) is obtained where the variable Z, is replaced by Z7* .

While calibration offers an attractive solution to the problem of
links identification, it depends on the availability of auxiliary variables

x. correlated with the variable of interest v, , which is not always the
case in practice. The best solution is still to measure L’ exactly or,

failing that, to obtain an estimate L” that is as close as possible to L? |

8.7.5 Proportional adjustments
Xu and Lavallée (2006) proposed to solve the problem of links
identification by directly estimating Lfg using a proportional

adjustment.
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Let Q" ={jeU"|ieQ’ and L, >0} and let M™ be
the number of units j in Q. The set Q" contains the units from
U” that have a link to the cluster i in Q”. Note that, in general, we
have Q" QM 20, and thus, zl[i] M > M* . Since for a given

cluster i in Q°, L ;. are non null only for the units j of the set Q.

AlB
we directly obtain L’ = L i ijl L,,. Finally, we have
M <P

The set Q! ® contains the units j from U* that have a link to

the cluster i, whether they are in the sample s or not. Let us define
5 :{jesA lie QP et L, >0} and let m"” be the number of

48 contains the units from s* that are linked

units j in S . The set s;
to the clusteri. We can see sA ® as a “sample” of Q.A‘B Let the
“selection probability” be 7r =P(jes™|je Q™). 1t should be
noted that ﬂ.ﬁl‘.g is a function of 7:/. . Accordingly, we can define the

following estimator for L’ :

i A
[ PROP,B /It
L _z il (8.71)
R
where t;li,'B—l if jes™, and 0 otherwise. It is clear that

~ A8
E(LfROP ’B):Zj: Lj’,. =Lf.9 and thus, the estimator (4.16) used

with (8.71) is asymptotically unbiased for the estimation of Y*.
One of the difficulties in using the estimator (8.71) involves

calculating the probabilities ﬂ;‘ll‘.B. If the 7z,4 are relatively

homogenous, then we can use 7?;”,‘.3 =mI.A‘B/ M,.A‘B = fiA‘B. This
approach allows us to focus not on the links themselves and the

quantities L, and L?, but solely on the units j from U? that are

involved in the survey of the units / in Q°.
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Unfortunately, M iA‘B is often unavailable because of the error
in observing the links, which makes it difficult to use the estimator
(8.71). In this case, we can try to estimate Lf} by global proportional
adjustment. For this adjustment, the variations between the clusters i
from U’ are ignored. Thus, s is considered to be a “sample”
of Q% and the “selection probability” is defined as

M =P(jes'|jeQ™). Note that 7" is a function of 7.

. . . B
Accordingly, in order to estimate L, , we can use

mt L AB

rGPrOPB N\ L.

L = E L
A
=1y

(8.72)

As for the estimator (8.71), one of the difficulties in using the
estimator (8.72) is obtaining 7[/7”3. Here, we can try to use the

AB

approximation 731/-”8 =m'/M" =f In practice, M™* (or

/%) may be easier to obtain than M** (or f,.A‘B ).

It is advisable to make maximum use of all constraints and
information that would help to calculate the values of M I.A‘B or M4

For example, in the context of longitudinal surveys of individuals
within households, one can rely on the fact that the household
composition is often relatively stable through time. As in section 6.3,
U is the population of individuals at the starting wave, and U” is the
target population of individuals within households at a later wave.
Letting the clusters i correspond to the households, and assuming that
the household composition is relatively stable through time, we can

then assume that M"* ~ M?. For further details, see Xu and
Lavallée (2006).

In the case where some links between s and U” (or between
Q° and U*) are unknown or incorrectly identified during the survey

process, it can be appropriate to select a subsample from s*, and to
conduct an assessment of the links for this subsample.

The method is as follows: We select a subsample s of m'*
units from s?, according to some sample design, in order to get the
exact links for this subsample. Assuming that the subsample s'" leads

us at the end to M’ units from U™, we can estimate the selection
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probability ﬂf/B =P(jes’|je Q") for the units j of the sample

s*, using 7%;“3 =m'*/ M'"® . We then compute the estimate

. M!A,’B m?
LY =——>'L (8.73)
A

In general, the different proportional adjustments proposed in
this section offer good alternatives to decrease the bias of (8.61) due
to the problem of links identification. Using data from SLID, Xu and
Lavallée (2006) found that all the proposed proportional adjustments
perform well both for reducing the bias and the variance of cross-
sectional estimates of totals. Hurand (2006) obtained the same results
with agriculture data similar to the ones described in sections 7.4.4
and 9.3.1. Although all methods were performing well, Hurand (2006)
found that the method based on subsampling provided the best results.



CHAPTER 9

GWSM AND RECORD LINKAGE

Data from different sources are increasingly being combined to
augment the amount of information that we have. Often, the databases
are combined using record linkage. When the files involved have a
unique identifier that can be used, the linkage is done directly using the
identifier as a matching key. When there is no unique identifier, a
probabilistic linkage is used. In that case, a record on the first file is
linked to a record from the second file with a certain probability. Then, a
decision is made on whether this link is a true link or not. Note that this
process usually requires a certain amount of manual resolution.

We again consider the production of an estimate of a total of one
target clustered population UU® when using a sample s* selected from
another population U* that is linked to the first population. However, we
assume that the two populations have been linked together using

probabilistic record linkage. Note that this type of linkage often leads to a
complex linkage between the two populations.

In this chapter, we will try to answer the following questions:
a) Can we use the GWSM to handle the estimation problems related to
populations linked together through record linkage?

b) Can we adapt the GWSM to take into account the linkage weights
issued from record linkage?

¢) Canthe GWSM help in reducing the manual resolution required by
record linkage?

d) If there is more than one approach to use the GWSM, is there a
“better” approach?

It will be seen that the answer is clearly yes to (a) and (b).
However, for question (c), it will be shown that there is unfortunately a
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price to pay in terms of an increase to the sample size, and therefore to
the collection costs. For question (d), although there is no definite
answer, some approaches seem to generally be more appropriate.

9.1 RECORD LINKAGE

The concepts of record linkage were introduced by Newcome ez
al.. (1959), and formalised in the mathematical model of Fellegi and
Sunter (1969). As described by Bartlett et al. (1993), record linkage is
the process of bringing together two or more separately recorded pieces
of information pertaining to the same unit (individual or business).
Record linkage is sometimes called exact matching, in contrast to
statistical matching. This last process attempts to link files that have few
units in common. In this case, linkages are based on similar
characteristics rather than unique identifying information. To learn more
about statistical matching, see Budd and Radner (1969), Budd (1971),
Okner (1972) and Singh et al. (1993). In this chapter, we will restrict
ourselves to the context of record linkage. However, the theory presented
can also be used for statistical matching.

Suppose that we have two files 4 and B containing characteristics
respectively relating to two populations U* and U”. The two
populations are related in a way. They can represent, for example,
exactly the same population, where each of the files contains a different
set of characteristics of the units of that population. They can also
represent different populations, but naturally linked to one another. For
example, one population can be one of parents, and the other population
one of children belonging to the parents, as illustrated in Figure 1.2. Note
that the children usually live in households that can be viewed as
clusters.

Another example is one of the creation of Statistics Canada’s
Whole Farm Database. This example was presented before in section
7.4.4. The first population is a list of farms from the Canadian Census of
Agriculture, and the second population is a list of taxation records (or
income tax reports) from the Canada Revenue Agency (CRA). In the first
population, each farm is identified by a unique identifier called the
FarmID and some additional variables such as the name and address of
the farm operators that are obtained from the Census questionnaire. The
second population consists of tax reports of individuals having declared
some form of agricultural income. These individuals live in households
(or clusters). The unique identifier on those records is a corporation
number or a social insurance number, depending on whether or not the
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business is incorporated. Note that each income tax report submitted to
CRA contains similar variables (name and address of respondent, etc.) as
those obtained by the Census of Agriculture.

The purpose of record linkage is to link the records of the two
files 4 and B. If the records contain unique identifiers, then the matching
process is trivial. Unfortunately, often a unique identifier is not available
and then the linkage process needs to use some probabilistic approach to
decide whether two records, coming respectively from each file, are
linked together or not. With this linkage process, the probability of
having a real match between two records is calculated. Based on the
magnitude of this probability, it is then decided whether they can be
considered as really being linked together or not.

Formally, we consider the product space A4 x B from the two files
A and B. Let j indicate a record (or unit) from file 4 (or population U*)
and k a record (or unit) from file B (or population U”). For each pair
(k) of AxB, we compute a linkage weight reflecting the degree to
which the pair (j,k) has a true link. The higher the linkage weight is, the
more likely the pair (j,k) has a true link. The linkage weight is commonly
based on the ratio of the conditional probabilities of having a match v
and an unmatch U, given the result of the outcome of the comparison
A, of the characteristic ¢ of record j from 4 and k from B,

¢ =1, ..., p. Thus, the linkage weight can be defined as follows:

9/’k = 10g2 P(lijk |Al'/.kA2jk"'A17/'k)
‘ P(U/‘k |A1.ka2_/'k"'Ap,'k)

(9.1)

=0, +0,, +..+0,, + 9,‘,*

. P(A_, |v,
where 6_, =log, —(ﬂk|—_L)
P(Agjk |U/'k)

P(vy)
log, —
P(Uﬂ( )
The mathematical model proposed by Fellegi and Sunter (1969)
considers the probabilities of an error in the linkage of units j from 4 and

k from B. The linkage weight is then defined as

P

FS _ FS
‘911( - Zez;jk ’

c=l

} for ¢=1,.,p, and é,j,k =
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where 6:;( =log,(@_, / @, ) 1f characteristic ¢ of pair (j,k) is linked,
and 67

x =log, (-9 ;) / (1-¢_,)) otherwise. The expressions used
here are ¢_, =P(A_,|v,) and ¢_, =P(A_,|0,). Moreover, it is
assumed that the p comparisons are independent.

The linkage weights given by (9.1) are defined on the set R of

real numbers, i.e., é,k €]—c0,+o0[ . When the ratio of the conditional
probabilities of having a match v, and anunmatch v, isequalto 1, we
get é/k =(0. When this ratio is close to 0, 0//{ approaches —co. It can
however be practical to define the linkage weights on [0,+cc[ . This can
be achieved by taking the antilogarithm of é/.k . We then obtain the
following linkage weight 6, :
P A A, D)
FUP@, A B A )

(9.2)

Note that the linkage weight 6, is equal to 0 when the
conditional probabilities of having a match v, are equal to 0. In other
words, we have 6, =0 when the probability of having a true link for
(j,ik) is zero.

Once a linkage weight &, has been computed for each pair (j.k)

of Ax B, we need to decide whether the linkage weight is sufficiently
large to consider the pair (j,k) as being linked. For this, a decision rule is
generally used. With the approach of Fellegi and Sunter (1969), we
choose an upper threshold 6, , and alower threshold 6, to which each

W

linkage weight 6, is compared. The decision is made as follows:

link if6,>6,,
D(j,k)=qpossible link ifg, <0, <06, (9.3)
non-link irg, <o,,.

The lower and upper thresholds ¢, and 6, are determined by

OW

error bounds that are determined prior to the record linkage process,
based on false links and false non-links. When applying the decision rule
(9.3), a manual resolution is necessary to make a decision concerning the
pairs whose linkage weights are between the lower and upper thresholds.
This is generally done by looking at the data, and also by using auxiliary
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information. In the agriculture example, variables such as date of birth,
address and postal code, which are available on both files, are used for
this purpose. The application of decision rule (9.3) leads to the definition
of an indicator variable /, suchthat /, =1 if the pair (j,) is considered
to be a link, and 0 otherwise. Note that the decision rule (9.3) does not
prevent the existence of complex links such as those illustrated in
Figure 2.1.

By using an automated system and by applying a probabilistic
method, the record linkage process can contain some errors. This
problem has been discussed in several papers, namely Bartlett et al.
(1993), Belin (1993) and Winkler (1995). Linkage errors are out of the
scope of this book, and thus will only be briefly covered in certain
occasions in this chapter.

9.2 GWSM ASSOCIATED WITH RECORD LINKAGE

Let U be the population containing M* units and U” be the
population consisting of N clusters where each cluster i contains M/
units. With record linkage, linked are established between the
populations U* and U® using a probabilistic process. As mentioned
previously, record linkage uses a decision rule D such as the one given
by (9.3) to decide whether or not there is a link between unitj from U*
and unit ik from U®. Once the links are established, we then have two
populations U* and U® linked together and where the links are
identified by the indicator variable /,, . Recall that the decision rule
(9.3) does not prevent complex links from being obtained.

Although the links can be complex, the GWSM can be used to
estimate the total Y” from population U” using a sample s* obtained
from population U“. Therefore, the answer is yes to question (a)
expressed at the beginning of this chapter. The GWSM used with
populations U* and U” linked together by record linkage with decision
rule (9.3) will be called, in the rest of the chapter, the classical approach.

It should be noted that these estimates obtained by the application
of the GWSM can be biased if Constraint 2.1 presented in chapter 2 is

not satisfied. In this case, estimator (2.1) underestimates the total Y. To
resolve this problem, a practical solution is to group two clusters so that
at least one non-zero link /, , is obtained for each cluster i. This solution

generally requires manual resolution. Another solution is to create, or
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impute, a link by randomly choosing a link within the cluster. The link
with the largest linkage weight €, , can also be chosen. Note that for a

unit j from U*, there may only be links / .« =0 with all units ik from

U” . However, this is not a problem since we are only interested in the
coverage of the target population U?, and not the one of U”.

Now, with the classical approach, the use of the GWSM is based
on links identified by the indicator variable / , . Is it necessary to

establish whether or not there is positively a link for each pair (j,ik)?
Would it be easier to use the linkage weights €, , (without decision

rules) to estimate the total Y ? These questions lead to question (b), that
is, if it is possible to adapt the GWSM to take into account the linkage
weights issued from record linkage. The answer to this question is yes, as
it was shown in section 4.5 that it was possible to extend the use of the
GWSM to weighted links.

Recall that by presenting the WSM in the context of longitudinal
surveys, Ernst (1989) proposed the use of constants ¢ in the definition

of estimation weights. Setting §‘Nk =0,, /6", where 0°=

Zﬁ; Zfﬁﬁ « »aversion of the GWSMwas obtained in section 4.5,

constructed from these constants. Coming back to the context of
longitudinal surveys, we saw in section 3.3 that Kalton and Brick (1995)
looked at the determination of optimal values for the constants o of
Ernst (1989) by looking to minimise the variance. They concluded that:
“in the two-household case, the equal household weighting scheme
minimises the variance of the household weights around the inverse
selection probability weight when the initial sample is an epsem' one”.
They also added that: “in the case of an approximately epsem sample, the
equal household weighting scheme should be close to the optimal, at
least for the case where the members of the household at time ¢ come
from one or two households at the initial wave”. Recall that if s” is a
sample of persons, considering the fact that the persons represent
households of size 1, the equal weighting of households and the equal
weighting of persons are equivalent, which corresponds to the fair share
method describe in section 3.2. This suggests that, for the version of the
GWSM described in section 4.5, we should be close to the optimal values
by setting the values of the constants « to zero for some units and to an

" “epsem” stands for equal probability selection method.
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equal positive value for all other units of the cluster. As with

&y =1yl L7 , the desired types of values are directly obtained, and the
classical approach should then produce variances close to the minimum

for the estimate of the total Y” . This result was proved in a formal way
in section 4.6.3 for the case of simple random sampling.

In the present section, three different approaches are given where
the GWSM uses the linkage weights &, , . The first approach is to use all

the non-zero links (i.e., with 6, >0) identified through the record
linkage process with their respective linkage weights. The second

approach is the one where we use all the non-zero links with linkage
weights above a given threshold 6, ,. The third approach consists of

randomly choosing the links proportionally to 6, ,, .

9.2.1 Approach 1: use all non-zero links with their
respective linkage weights

With the use of all non-zero links with the GWSM, it can be
justified to give more importance to the links that have a larger linkage
weight 6, , compared to those that have a small linkage weight. By

definition, for each pair (j,ik) obtained from crossing populations U* and
U?”, the linkage weight 6, reflects the tendency of the pair (j,ik) to
have a true link. In this case, instead of using the indicator variable /; ;
identifying whether or not there is a link between unit j from U* and
unit k of cluster i from U” , we can use the linkage weight & & Obtained
in the first steps of the record linkage process. Note that this implies the
elimination of the manual resolution since no decision rule is used.

The application of this approach assumes, of course, that the file
with the linkage weights is available. In practice, the only file available is
often the final file, once the linkage process ends, after manual
resolution. In this case, the linkage weights are not generally available
(only the indicator variables /; remain) and the three proposed
approaches are then no longer pertinent.

For each unitj selected in s, we identify the units ik of U”® that
have a non-zero linkage weight with unit j, ie, 6, >0. Let

QP ={icU”|Fjes" and6,, >0} with 0, =" 0, bethesetof

n® clusters identified by the units j € s*, where “RL” stands for record
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linkage. Note that because we use all linkage weights greater than zero,
we have n™ >n, where n is the number of clusters identified by the
classical approach.

To estimate the total Y* of the population U®, one can use the
estimator

nRI. AMF
Y= Wi v (9.4)

i=1 k=1
where w;" is the estimation weight obtained from the GWSM. This
weight is obtained by directly replacing the indicator variable /, , with
the linkage weight 6, , in the steps of the GWSM described in chapter 2.

The following steps are then obtained.

Steps of the GWSM for approach 1

Step 1: For each unit & of the clusters i from Q*? | the initial weight

wi is calculated, that is:

M/l
IRL _ i
wit =0, (9.5)
=1 7
where t = lif je s* ., and 0 otherwise. Note that a unit ik having no link
with any unit j from U* automatically has an initial weight of zero.
Step 2: For each unit & of the clusters i from Q*"* , we calculate

B _ .’VI/"
O =220, 4 -

Step 3: The final weight w" is calculated:

ME. IRL

RL k=1""ik
Wit = S (9.6)

L0,

Step 4: Finally, we set w'- =w" forall keU?.
ik i i

It should be noted that because they are present in the numerator
and the denominator, the linkage weights do not need to be between 0
and 1. They just need to represent the likelihood of having a link between

two units from populations U and U’ . It is also interesting to see that
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=0

7tk

with 6,

ik we obtain an

107, where 6 = z v
equivalent formulation to the one coming from the generalisation of the
estimation weight described in section 4.5.

With the classical approach, each cluster i of U* is assumed to
have at least one non-zero link with a unit j of U”. This constraint is
translated here into the need of having, for each cluster i of U* , at least
one linkage weight 6, greater than zero with a unitj of U * . In theory,

/tk’

it is not guaranteed that this constraint will be satisfied following the
record linkage process. For example, it is possible that for a cluster i of

U?, there is no linkage weight 6, greater than zero. In that case, the

estimation weight (9.6) underestimates the total Y*. To solve this
problem, the same solutions proposed in the context of the indicator
variables /., can be used. That is, two clusters can be collapsed, for

example, in order to get at least one linkage weight 8, , greater than zero

for the new cluster. Unfortunately, this solution may require manual
intervention, which has been avoided up to now by not using a decision
rule. A better solution is to impute a link by choosing one link at random
within the cluster. Then, a small value #,, >0 can be assigned
arbitrarily for the chosen link.

Following the same steps as those from the proof of Theorem 4.1,
the estimator Y**® given by (9.4) can be rewritten in the following way:

N M” M

7o = z ORI R ©.7)
177 '

= ,llkl j=

where z}" =y, /6” forall keU”,and 67 =3}/ T¥16,, .

With this last expression, it can be shown that the estimator ¥ *-#
is unbiased using the same development as Corollary 4.1. Finally, by

following Corollary 4.2, the variance of ¥*** is given by

M M
Var(Y -8y = Zzu @z“z“ (9.8)
j=tj=i T ./7T _/'
To estimate the variance (9.8), one of the two estimators (4.12) or
(4.13) can be used by replacing the variable Z, with Z*
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9.2.2 Approach 2: use all non-zero links above a given
threshold

The use of the GWSM for all non-zero links might require the
manipulation of very large files of size M“ x M?” . This can occur if
almost all pairs (j,ik) between populations U* and U” have non-zero
linkage weights €, . In practice, even if this happens, it is strongly
possible that most of these linkage weights will be very small or
negligible. Even if the linkage weights are not non-zero, the links coming
from these small linkage weights are probably not true. Indeed, looking
at equation (9.2), we note that if 6, , is very small, the conditional
probability that there is a link between j and ik is then much smaller than
the conditional probability that there is no link. In that case, it might be

useful to only consider the links with linkage weights above a given
threshold 6, , .

As with approach 1, we no longer use the indicator variables /;
identifying the links, but instead, we use the linkage weights &, ,

obtained in the first steps of the record linkage process. However, with
approach 2, we restrict ourselves to the linkage weights greater than or
equal to a threshold 6, . The linkage weights below the threshold 6,

are considered as zeros. We therefore define the following linkage
weight:

9.9
ik 0 otherwise. ©9)

0 LT :{eﬂik if ei,ik > 0High
For each unitj selected in s, we identify the units ik of U 5 that

have 07 >0. Let Q"'* ={ieU®|Jjes’ and 7" >0} with
ME . . .
or" = E 'O be the set of the n™” clusters identified by the units
Jot k=1 /!

jes”, where “RLT” stands for record linkage with threshold. Note that

n™7 <n™ . On the other hand, we have »n*" =n if the record linkage
between U” and U’ is done using the decision rule (9.3) with
0, =0

ig Low *

To estimate the total Y” of population U”, we can use the
estimator
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RLT

YRLTB — ZZ RLT lk, (910)

i=1 k=1

is the estimation weight obtained from the GWSM. This
weight is obtained by directly replacing the linkage weight 6, , with the

linkage weight 67, given by (9.9) in the steps of the GWSM described

in section 9.2.1.

where wi"

e A RLT HRLT /QRLT B

It is again interesting to see that with & i , Where

HRLT B Z . Zk . g jRﬁ(T , a formulation is obtained that is equivalent to

the one coming from the generalisation of the estimation weight
described in section 4.5.

By definition, the number of zero linkage weights @7 will be
greater than or equal to the number of zero linkage weights 6, , . The

constraint that each cluster i of U” must have at least one linkage weight

Hffkr greater than zero with a unit j of U will thus be more difficult to

satisfy. To solve this problem, the same solutions proposed in section
9.2.1 can be used. For example, two clusters can be collapsed in the same

way to get at least one linkage weight 87" greater than zero for each

cluster i of Q®"™? . Unfortunately, this solution can require manual
intervention, which has been avoided up to now by not using any
decision rule. A better solution is to impute a link by randomly choosing

a link within the cluster. A value of H_ff{ equal to the threshold 6, can

then be assigned to this link.

As in section 9.2.1, the estimator ¥ *7*

rewritten in the following way:

pRLT.E z ZZQIRIL/(T T = i%Z?LT , (9.11)
=174

Jl]kl

given by (9.10) can be

where z" =y, /68" forall keU?,and 67 =31 ¥4 gL

kot
With (9.11), the estimator Y*"*# can be proven to be unbiased
using the same development as Corollary 4.1. Finally, by following
Corollary 4.2, the variance of Y™™ is given by
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~ M ! M ! A —
Var(yRLT.B) ZZ (7 it/ [”[)ZRLTZRIT (9.12)
1= T 77/
To estimate the variance (9.12), one of the two estimators (4.12)
or (4.13) can be used by replacing the variable Z, with Z*" .

9.2.3 Approach 3: choose the links randomly

In order to avoid making a decision on the links between units j
from U* and units & of clusters i from U, one can decide to simply
choose the links at random from the set of all links with linkage weights

6, greater than zero. For this, it is reasonable to choose the links with

probabilities proportional to the linkage weights. This can be done using
Bernoulli trials where, for each pair( j,ik), we can decide to accept a link
or not by generating a random number v, ,~U(0,1) that is then

compared to a quantity proportional to the linkage weight €, , .

In the point of view of record linkage, this approach cannot be
considered as optimal. Indeed, when using the decision rule (9.3) of
Fellegi and Sunter (1969), the idea is to minimise the number of false
links and false non-links. The link 7, is accepted only if the linkage

weight 6., is large (i.e., &
6

Low
random selection of links using Bernoulli trials can lead to the selection
of links that would have not been accepted through the decision rule
(9.3), even though the selection probabilities are proportional to the
linkage weights. Following the Bernoulli trials, some of the links
accepted between the two populations U* and U” can be false, and
some other links may have been falsely rejected. The linkage errors
therefore tend to be higher if the Bernoulli trials are used. However, in
the present context, the quality of the links can be considered as a
secondary interest. The problem here is to estimate the total ¥ using the
sample s* selected from U", and not to evaluate the quality of the links.

i 2 O )5 or if it is moderately large (i.e.,

<8, <8,,,) and has been accepted after manual resolution. The

In section 9.3, the precision of the estimates of ¥? will be measured with
respect to the sampling variability of the estimators, by conditioning on
the linkage weights &, , . Note that this sampling variability will take

into account the random selection of the links, but not the linkage errors.
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To reduce the number of non-zero links, the present approach is therefore
considered as being of potential interest, even if the quality of the
resulting links can be questionable.

The first step before performing the Bernoulli trials is to
transform the linkage weights in a way such that they are contained in the
[0,1] interval. By looking at the definition (9.1), it can be seen that the
linkage weights 49'_/.’,* correspond in fact to a “logit” transformation (in

base 2) of the probability P(v,, |A; A, ,--A, ). In the same way,

plik

the linkage weights 6, , given by (9.2) depend only on this same

probability. Hence, one way to transform the linkage weights is simply to
use the probability P(v, , [A; A, A, ). From (9.1), we obtain this

result by using the function 5 =2 /(1+2%) and, from (9.2), by using

6=0 /(1+ 6). If the linkage weight are not obtained through a definition

similar to (9.1) or (9.2), another possible transformation is to simply

divide each  weight by the maximum  valueé,, =

max(@,, | j=1..M"i=1.,N,k=1..,M). Note that we assume
here that the linkage weights are all greater than or equal to zero, which
is the case from definition (9.2), but not necessarily in general.

Once the adjusted linkage weights é/.‘jk have been obtained, we

generate for each pair (j,ik) a random number v, , ~ U(0,1) . Then, we

assign the value 1 to the indicator variable i,.‘, if v, < 0., and the

Jik 2
value 0 otherwise. This process provides a set of links similar to the ones
used in the classical approach, with the exception that now the links are
determined randomly and not through a decision process like (9.3). Note

that since £ (l w)= 6’ , the sum of the adjusted linkage weights 6’]‘,,(

corresponds to the expected total number of links L from the Bernoulli
trials, i.e.,

A }\/t

<

183

>3

1=t k=1

(9.13)

-
1]
~.

With the present approach, by randomly selecting links, it is
strongly possible that Constraint 2.1 related to the GWSM will not be
satisfied. To correct this problem, a link can be imputed by choosing the
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link with the largest linkage weight 0 . within the cluster. The link can
also be selected randomly with a probab111ty proportional to 0

For each unit j selected in s*, we identify here the units ik of U®
that have ij,ik =1. Let Qf={icU®?|3jes" and ljj,l. >0} where

= M; z . . .
L= E 1., be the set of the 7 clusters identified by the units
s k=1 J»t

RL

jes?. Note that 7 <»™ . Unfortunately, in contrast to #** and n*"’

the number of clusters 7 is hardly comparable to #, the number of
clusters obtained using the classical approach.

To estimate the total ¥* of the population U*, we can use

i ME

ZZ Wel, (9.14)

i=l k=1

where 1w, is the estimation weight obtained from the GWSM. This
weight is obtained by directly replacing the indicator variables /. , with

l~j, + in the steps of the GWSM described in section 2.1.

Steps of the GWSM for approach 3

Step 1: For each unit & of the clusters i from Q° , the initial weight W),

is calculated, that is:
ﬁ/iyk = ik 4 (9.15)

where £, =1 if jes”,and 0 otherwise.

Step 2: For each unit & of the clusters i from QB Li = Z k18

calculated. The quantity Li represents the realised number of links

between the units of U* and unit & of cluster / from U”.

Step 3: The final weight w. is calculated:

5= i 9.16)

Zk: /‘Lik

Step 4: Finally, we set w, =w, forall keU”.
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By conditioning on the accepted links l~j i » 1t can be shown that

the estimator ¥ given by (9.14) is unbiased, assuming of course that
Constraint 2.1 is satisfied. Let E,(.) be the expected value carried out in

relation to all the possible realisations of links. Let L be the set of

realised links, i.e.,
~ ~ M4 N ME
i-f7, "
J=li=lk=1

E(Y®)=E[EQY*®|L)]. 9.17)

We then have

By conditioning on the set i, the estimator (9.14) is then
equivalent to the estimator (2.1) (or the estimator (4.1)). From Corollary

4.1, E()i s |£) =Y” is directly obtained and therefore, the estimator
(9.14) is conditionally unbiased. Consequently, this estimator is unbiased

in an unconditional way. To obtain the variance of Y*, we again proceed
in a conditional way from

Var(Y®) = E [Var(Y® | L)+ Var [E(Y® | L)].

First of all, since E(}aB | ﬂ) =Y*, we have

Var[E(Y® L)) =Var[Y*]=0. (9.18)

By conditioning on the set i , it was already mentioned that the
estimator (9.14) is equivalent to the estimator (2.1). By Corollary 4.2, the
following result is thus obtained:

M’ 1
Var(YBIL) ZZ ZZ (9.19)
J=1j'=l
where Z =3 Wi I,(Z,( with Z, =Y,./if3 . The variance of ¥* can

therefore be written

Var(1®) = E{ZZ(” ' 'z:z: (9.20)

J=Lj'=1

To estimate the variance (9.20), one of the two estjmators (4.12)
or (4.13) can be used by replacing the variable Z, with Z .
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9.2.4 Some remarks

The three proposed approaches do not use the decision rule (9.3).
They also do not require any manual resolution. Consequently, the
answer to question (c) is yes. That is, the GWSM can help in reducing
the manual resolution required by record linkage. Note that there is
however a price to pay for avoiding manual resolution.

First, with approach 1, the number »™ of clusters identified by
the units jes? is greater than or equal to the number 7 of clusters

identified by the classical approach, i.e., when the decision rule (9.3) is
used to accept the links or not. This happens because we use all non-zero
links, and not just the ones satisfying the decision rule (9.3). As a
consequence, the collection costs with approach 1 are greater than or
equal to the ones related to the classical approach. It needs then to be
checked which ones are the most important: the collection costs or the
costs of manual resolution. Note that if the precision resulting from the
use of approach 1 is much higher than the one from the classical
approach, it can be more advantageous to choose approach 1 than the
classical approach.

With approach 2, we have n™” < »n™ and therefore the collection

costs of this approach are less than or equal to the ones of approach 1. If
the precision of approach 2 is comparable to the one of approach 1, then
approach 2 will certainly be more advantageous than approach 1. By
comparing approach 2 with the classical approach, it can be seen that the
collection costs can be almost equivalent if the value of the threshold

0,40 18 chosen to be relatively close to the lower and upper thresholds of

the decision rule (9.3).

Note that approach 2 does not use any manual resolution. If the
precision of approach 2 is at least comparable to the one of the classical
approach, then approach 2 is more advantageous. Note that if
B pin = 0., » the two approaches differ only in the definition of the

Low ?
estimation weights ensuing from the GWSM. Approach 2 uses the
linkage weights #7.", while the classical approach uses the indicator

variables /, , . Setting 6, , =6

Low ?

it is certainly of interest to know

which approach has the highest precision.
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With approach 3, the number of selected links is less than or equal
to the number of non-zero links used by approach 1, i.e., n<n™ Hence,
the collection costs of approach 3 are less than or equal to the ones of
approach 1. As mentioned before, unlike »** and »™", the number of
clusters 7 is hardly comparable to »n. The two depend on different
parameters: the classical approach depends on the thresholds 6, and

Low

6,10, » While approach 3 depends on the adjusted linkage weights émk .

9.3 SIMULATION STUDY

We performed a simulation study to evaluate the approaches
presented in this chapter, including the classical approach. For this study,
we compared the precision obtained for the estimation of the total Y* for
tive different approaches:

Approach 1: use all non-zero links with the linkage weights 6, ,

Approach 2: use all non-zero links above a threshold
Approach 3: choose the links randomly
Approach 4: classical approach

Approach 5: use all non-zero links with the indicator variables /, .

Approach 5 is a mixture of approach 1 and the classical approach.
It consists of first accepting all links of the pairs (j, ik) that have a linkage
weight greater than zero, i.e., assign [, , =1 for all pairs (jik) where

0,,>0,and /,, =0 otherwise. The GWSM described in chapter 2 is

then used to estimate the total Y* from the estimator (2.1). Approach 5
was added to the simulations to verify the effect of using the indicator
variables /, , instead of the linkage weights &, , when using all non-

zero links. As with all the other approaches, according to Corollary 4.1,
approach 5 is unbiased. Since the five approaches yield unbiased
estimates of the total Y*, we compared them with the standard error (the
square root of the variance), and more specifically with the coefficient of
variation (the standard error divided by the expected value of the
estimator).
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9.3.1 Data used

The simulation study was performed using the agricultural data
presented in section 7.4.4. Thus, the study again is inspired by Statistics
Canada’s Whole Farm Data Base. Recall that this database has
information on livestock, crops and the income and expenditures (tax
data) of Canadian farms (Statistics Canada, 2000a). The data used for the
simulations come from Québec and New Brunswick. Although the
simulations were inspired by the Whole Farm Data Base, some processes
and data were changed for reasons of confidentiality, and also to not
needlessly complicate the discussion. However, we believe that these
changes do not affect the conclusions drawn from the simulations.

The population U* is a list of M* farms coming from the 1996
Farm Register. This list essentially comes from the 1991 Canadian
Census of Agriculture, with different updates that have been made since
1991. The unitsj from U" thus represent farms, but note that each farm
can have many farm operators. In addition to the FarmID, the Farm
Register contains a farm operator number together with some
demographic variables related to the farm operators.

The target population U” is a list of M” tax records (or income
tax reports) from the Canadian Revenue Agency (CRA). This second list
is the 1996 CRA Unincorporated Business File that contains tax data for
the persons declaring at least one farming income. This file contains a
household number (only for a sample), a tax filer number, and also
demographic variables related to the tax filers. The units & are thus the
tax reports that are completed by the different members of houscholds i
(or clusters). The target population U” has N households. The respective
sizes of the populations UU* and U” are given in Table 7.1.

For the simulations, linkage has been performed for the two
populations U* and U” (in fact, linkage of the files 4 and B related to
these populations). To do this, a linkage process was used based on the
matching of five variables. It was performed using the MERGE
statement in SAS®. The records on both files were compared to one
another in order to determine whether or not there is a match. The record
linkage was performed using the following five key variables common to
both files:

1) first name (modified using NYSIIS)

2) last name (modified using NYSIIS)
3) birth date
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4) street address

5) postal code.

The first name and last name were modified using the NYSIIS
system. This basically changes the name in phonetic expressions, which
in turn increases the chance of finding matches by reducing the
probability that a good match is rejected because of a spelling mistake or
a typing error.

Records that matched on all five variables were given the highest
linkage weight (6 = 60). Records that matched on only a subset of at
least two of the five variables received a lower non-zero linkage weight
(@ =2). Pairs of records that did not match on any combination of key
variables were considered as pairs having no possible links, which is
equivalent to having a linkage weight of zero.

Two different threshold were chosen for the simulations:
Oir = 0., =15 and 6, , =6, =30 The upper and lower thresholds,

Low Low

Opign and 6, were set to be the same to avoid the grey area where

some manual intervention is needed when applying the decision rule
(9.3).
Following the linkage process, the constraint requiring that each

cluster i of the target population U” have at least one non-zero link was
not satisfied for all clusters. To correct the situation, we imputed a link
by choosing the link with the largest linkage weight 6, within the

cluster. In the case where all linkage weights are zero, we chose a link at
random.

The record linkage process used here does not exactly correspond
to the one used to construct the Whole Farm Data Base. For more
information on the exact process, refer to Lim (2000). We believe that
the changes, however, do not affect the conclusions drawn from the
simulations. Recall that the main goal of the simulations is to evaluate

the different approaches for the estimation of Y* and not to solve the
problems related to the construction of the Whole Farm Data Base.

Following record linkage, it turns out that the populations U and

U® are linked by complex links. Indeed, a farm j sometimes has many
operators and each operator returns one tax report & to the CRA. There is
then a “one-to-many” link since we have one farm ; linked to many tax
reports k. On the other hand, an operator who deals with more than one
farm can return a single tax report & for the set of farms that he operates.
Therefore, this type of link is “many-to-one” since there are many farms;
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linked to a single tax report k. Finally, there are also situations of
complex links where the operators deal with more than one farm and
where each farm has a number of different operators. The populations

U” and U” as well as their links can be represented by Figure 2.1.

9.3.2 Sampling plan

For the simulations, the sample s* was selected from U* (Farm
Register) using simple random sampling without replacement, without
any stratification. We also considered two sampling fractions: 30% and
70%. The variable of interest y for which we want to estimate the total

Y” is the total farming income. Since we have the entire populations of

farms and tax records, it was possible to calculate the value of Y” and
the variances from the theoretical formulas developed for this approach.
Furthermore, because a simple random sampling without replacement
was performed, these theoretical formulas can be simplified. For

example, in the case of approach 1, the variance of Y*** given by (9.8)
can then be written in the following form:

A

FRLB N _ A(l_fA) 1 \ RL _ 77 RLN\2
Var(Y**)=M Iz M”‘—lz(zj Z%Y,  9.21)

J=1
where f4=m"/M* is the sampling fraction and Z*" = 74]—12,”:: ZfL .

A Monte Carlo study was also conducted to empirically calculate
the bias and the variance under the different approaches. Note that for
approach 3, only the Monte Carlo study was used. For the Monte Carlo
study, 500 samples s* from U" were selected for each sampling fraction
30% and 70%, and for each threshold 15 and 30. The empirical bias and

the empirical variance of each estimator (represented by Y) were

calculated using
n n o 500 n
Bias(Y)=E(Y)-Y* :LZn = (9.22)
500,&'":] $
. . 1 &, . a
Var(Y) = 0 DY, -EQX) . (9.23)

s4=1
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The coefficients of variation (CV) were then calculated by using

éV(f)leOx——VVar(Y). (9.24)

~ A

The Monte Carlo study was, among other things, performed to
verify in an empirical manner the accuracy of the theoretical formulas
given in section 9.2. The results all indicated that the theoretical formulas
are exact.

9.3.3 Results and discussion

The results of the simulations are given in Figures 9.1 to 9.4,
Table 9.1 and Figure 9.5. Figures 9.1 to 9.4 provide histograms of the
CVs obtained for each of the five approaches. Eight histograms are
shown, corresponding to the eight cases obtained by crossing the two
provinces Québec and New Brunswick, the two sampling fractions 30%
and 70%, and the two thresholds 15 and 30.

On each bar of the histograms, one can see the number of non-
zero links between U* and U” for each of the five approaches. For
approach 3, it is in fact the expected number of non-zero links. Note that
the number (expected or not) of non-zero links does not change from one
sampling fraction to another.

Table 9.1 shows, for each of the eight cases, the average number
of clusters surveyed for each approach. This average is calculated with
respect to the 500 samples s used for the simulations. The numbers is
parentheses represent the standard error for the number of surveyed
clusters. The standard errors are relatively small compared to the
averages and therefore, the number of clusters surveyed do not vary
greatly from one sample to another.

Figure 9.5 gives, for each of the eight cases, a graph of the
obtained CVs for the five approaches as a function of the average number
of surveyed clusters.

By looking at Figures 9.1 to 9.4, it can be seen that in all cases,
approaches 1 and 5 give the smallest CVs for the estimation of total
farming income. Therefore, using all non-zero links produces estimates
with the greatest precision. Looking at Table 9.1, we note however that
these approaches are the ones for which the number of surveyed clusters
is the highest. In fact, we can see that the greater the number of surveyed
clusters, the greater the precision of the estimates is. This result is shown
in Figure 9.5 where we can see that the CVs tend to decrease as the
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average number of surveyed clusters increases. Although this observation
is well known in the classical sampling theory, it is not necessarily
evident in the context of indirect sampling. As we can see from equations
(4.11a) and (4.11b), it is not the sample size of s” that increases, but
rather the homogeneity of the derived variables Z,.

New Brunswick
threshold=15

6.0% =
5.0% -
4.0% -

2.0% -
1.0% -
0.0% +

=3 E7

sampling fraction

numbers in chart represent number of non zero links

Figure 9.1: CVs for New Brunswick (with 6,,, =6,,. =15)
New Brunswick
threshold=30
6.0%
5.0% - mapproach 1
4.0% - mapproach 2
6 Oapproach 3
3 30% - 1 | mapproach 4
2.0% - : | mapproach 5
1.0% -
0.0%
V(=3 Gmpling fraction (-7
numbers in chart represent number of non zero links
Figure 9.2: CVs for New Brunswick (with 6, =0, =30)
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Quebec
threshold=15
14.0%
12.0% -
mapproach 1
10.0% - mapproach 2
S 80%- Dapproach 3
O 6o%- Dapproach 4
| i | @mapproach 5
4.0% - 1
| 2.0% -
0.0% -
=3 dhiG S =7
numbers in chart represent number of non zero links
Figure 9.3: CVs for Québec (with 6,,, =6,,, =15)
Quebec
threshold=30
18.0%

16.0% - 1
14.0% @ approac
_12.0% - m approach 2
£ 10.0% - ; 5 Dapproach 3
3 8.0% 0 2 Dapproach 4

6.0% - 9
mapproach 5
4.0% - g 0
2.0% - 8
0.0% -
=3 sampling fraction =7
numbers in chart represent number of non zero links
Figure 9.4: CVs for Québec (with 6, =6,,, =30)
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Table 9.1: Surveyed clusters for Québec and New Brunswick

Thr | Approach Average number of surveyed clusters (s.e.)
esho
1d Québec New Brunswick
O f1=03 | f'=07 | f'=03 | f'=07
1 15752 (58) | 21106 (30) | 1709 (18) 2100 (7
2 14281 (49) | 20593 (34) | 1310(17) | 1966 (13)
15 3 10930 (50) | 18881 (47) | 1123 (14) | 1869 (14)
4 14281 (49) | 20593 (34) | 1310(17) | 1966 (13)
5 15752 (58) | 21106 (30) | 1709 (18) 2100 (7)
1 15752 (58) | 21106 (30) | 1709 (18) 2100(7)
2 11310 (45) | 19139 (37) | 1215(17) | 1924 (15)
30 3 10930 (50) | 18881 (47) | 1123 (14) | 1869 (14)
4 11310 (45) | 19139 (37) | 1215(17) | 1924 (15)
5 15752 (58) | 21106 (30) | 1709 (18) | 2100 (7)

Now, by comparing approaches 1 and 5, it can be seen that
approach 5 always provided smaller CVs than approach 1. This suggests
using the indicator variable /, , instead of the linkage weight 6, , when

all the links are considered to be non-zero. Note that it seems this result
can be generalised when we note that the same phenomenon is produced
for approaches 2 and 4 (classical approach). Recall that because
1i0n =0, » the two approaches differ only in the definition of the

Low >

estimation weights obtained by the GWSM; approach 4 uses the indicator
variable /, , and approach 2, the linkage weight &, , . This result is

particularly important because it corresponds to the conclusions of
Kalton and Brick (1995) and the ones in section 4.6.3, namely that by
using HN/J.,( =14/ L’ in the version of the GWSM described in section
4.5, we should then approach minimal variances for the estimation of the
total ¥*.
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CVvs # of clusters
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Figure 9.5: Graphs of CVs versus average number of surveyed
clusters
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Now consider approach 3. For seven out of the eight histograms
from Figures 9.1 to 9.4, approach 3 produced the highest CVs. It should
be noted however that this approach is the one that is based on the lowest
number of non-zero links, and also the lowest number of surveyed
clusters. Therefore, the poor performance of approach 3 is not surprising.

Recall that the number of non-zero links used by approach 3 does
not depend on the threshold 6,,,, and thus the CVs obtained for

thresholds 15 and 30 are the same. For 6,,, =15, the CV obtained for

Queébec for approach 3 proves to be higher than the ones obtained for
approaches 2 and 4, and these two approaches use more non-zero links
and more surveyed clusters. For 8,,,, =30, the CV obtained for approach

3 proves to be lower than the ones obtained for approaches 2 and 4, but
these two approaches still used more non-zero links and more surveyed
clusters. Therefore, there are intermediate situations where, with
15<8,,,, <30, we get equal CVs for approaches 3 and 2, and equal CVs

for approaches 3 and 4. As a result, to get equal CVs for approach 3 and
each of approaches 2 and 4, more links (and more surveyed clusters)
must be used by approaches 2 and 4. This suggests that approach 3 can,
in some cases, be more worthwhile than approaches 2 and 4 because it
produces estimates with the same precision but with lower collection
costs.

So as to better compare approach 3 and approaches 2 and 4, we
made the expected number of non-zero links to be the same as the
number of non-zero links used by approaches 2 and 4. To do this, we

have transformed the linkage weights 6, , into new weights é . such
that

N ~
zz 0,4 =Ly, (9.25)

where L, is the desired number of non-zero links. The transformation
used was the following:

5o {0,-,,-k/9. if 6,,/6,<1

(9.26)

= _
- 1 otherwise

where 6, was determined iteratively so that constraint (9.25) is satisfied.

The use of approach 3 with the transformed linkage weights by (9.26)
was called approach 6. The results of the simulations are presented in
Figures 9.6 t0 9.9.
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As we can see, approach 6 produced the smallest CVs for half of
the cases. For the other half, approach 4 yielded the best precision. Note
that this result was not obtained for a specific province, or a specific
sampling fraction, or a specific threshold. It would therefore be difficult
in practice to determine in advance which of approaches 4 or 6 would be
likely to produce the smallest CVs. Furthermore, using the decision rule
(9.3) to determine the links, it was shown that the number of false links
and false non-links are minimised. Thus, if the quality of the links proves
to be a concern, it is preferable to use approach 4 because the random
selection of links suggested by approach 3 can lead to the selection of
links that would not be acceptable through the decision rule (9.3), even if
the selection probabilities of the links are proportional to the linkage
weights. For these reasons, it seems preferable to choose approach 4
instead of approaches 2 and 6 (or approach 3).

In conclusion, if the number of links and the number of surveyed
clusters do not pose a problem, it is suggested to use approach 5, i.e., to
consider all the links of pairs (j,ik) that have a linkage weight 6, ,

greater than zero, and to use the GWSM described in chapter 2 to

estimate the total Y* from the estimator (2.1). If the number of surveyed
clusters proves to be too large because, for example, it leads to collection
costs that are too high, approach 4 can be seen as a reasonable choice.
Recall that the use of the threshold 6, (and also the threshold 6, ) is

useful to reduce the number of non-zero links to manipulate. By reducing
the number of non-zero links, we reduce at the same time the number of
clusters identified through the sample s* and therefore also the
collection costs associated to the measurement of the variable of interest
v. By reducing the number of links, however, the precision of the
estimates is reduced. Thus, a compromise must be made between the
desired precision and the collection costs.
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CONCLUSION

Throughout this book, it was shown that indirect sampling is a
convenient way to obtain a sample to produce estimates for a target
population U”, when the only frame available is one for a population
U related to U”. Once the sample is selected, the GWSM can prove to
be a viable solution for producing estimation weights in the context of
indirect sampling. These weights lead to unbiased estimates. They
roughly correspond to an average of the sampling weights for the units
of the population U” from which the sample is selected. Recall that the
GWSM works even if the links between the two populations U* and
UP are complex, that is, they are of the type “many-to-many.”

The GWSM turns out to be particularly useful because it
provides:

1) a weighting for an indirect sampling meant for rare populations;
2) aweighting using only the selection probabilities of selected units;
3) a weighting for populations related by complex links;

4) a weighting for non-linked units.

It was mentioned in the introduction that the GWSM was first
presented by Lavallée (1995) in the context of the problem of cross-
sectional weighting for longitudinal household surveys. Since then,
the author produced new theoretical and practical results on the
GWSM. Recently, some survey statisticians drew on these results in
order to solve concrete problems associated with the indirect sampling
of clusters. We present here six of these new applications of the
GWSM that were chosen not necessarily for their complexity, but
instead for their diversity.
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A first application is the one from Whitridge and Beaucage
(2000) in relation to the measurement by Statistics Canada of the
extent of electronic commerce in Canada. Here, we want to produce
estimates on the use of electronic commerce for which the variables of
interest y related to the use of the computer, the Internet and Web
pages are measured. For example, we are interested in the proportion
of enterprises that perform transactions over the Internet. This study
covers all economic sectors with the exception of local governments,
some agricultural sectors, construction and fishing. Note that the use
of electronic commerce is a phenomenon still considered as relatively
rare in Canada. The target population is the universe of enterprises
from the economic sectors mentioned eatlier.

An important constraint associated with this study is the use of
the sample selected for the Canadian Public and Private Investment
Survey (Statistics Canada, 2000b). This sample is one of
establishments that covers the same economic sectors as the target
population. This constraint was imposed in order to reduce as much as
possible the selection, contact, and collection costs related to the
study. Note that the selection of establishments instead of enterprises
allows the sample selection to be controlled at the geographic and
sector levels. The sampling frame U” is therefore the universe of
establishments covering the same economic sectors as the target
population U?. Thus, a sample s* of establishments selected from U*
is used to survey the enterprises having the establishments in s*. This
situation is illustrated in Figure 3.2. The GWSM here offers a simple
solution to produce estimates and their variance.

A second application is the one described by Girard and
Simard (2000) in the context of Statistics Canada’s Unified Enterprise
Survey (UES). This survey is part of an extensive project known
under the acronym PIPES (Project to Improve Provincial Economic
Statistics) that has an objective of implementing a complete system of
annual economic statistics by province, from business and household
statistics, as well as from data drawn from tax records and other
sources of administrative data. Important secondary objectives are
also intended: the reduction of response burden for Canadian
businesses; the use of a single sampling frame, the Business Register;
and the development of an approach and integrated methods that are
the most coherent possible for all annual economic programs at
Statistics Canada (Laniel and Royce, 1998).

PIPES is based on the use of network sampling described in
section 3.4. This type of sampling is used here to select enterprises
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through their establishments. Hence, a sample of establishments is
selected and subsequently, the enterprises having these selected
establishments are surveyed. The establishments are sampled instead
of the enterprises because we want to control the sample selection at
the geographic and sector levels. The population U* is therefore the
universe of establishments that covers the majority of the economic
sectors. The target population U” is the population of enterprises
covering the same economic sectors as U” . Note that this population
consists of clusters of size 1. Girard and Simard (2000) considered
two options for the production of estimates from UES and the
calculation of their variance. The first option is based on the exact

calculation of the selection probabilities (say 7 ) of the enterprises ik

surveyed through the sample s”, while the second option depends on
the use of the GWSM. It turns out that the GWSM offers a much
simpler solution than the exact calculation of the probabilities,
particularly with regard to the calculation of the variances.

A third application of the GWSM is the one from Ardilly and
Le Blanc (2001) that used the GWSM to weight a survey of homeless
persons. The problem with this type of survey is the absence of a
sampling frame for the target population U”, which is here the set of
homeless persons in France. Thus, an indirect sampling is required.
The variables of interest of this survey are, for example, the age at the
end of the studies and the number of centres frequented. To survey
these persons, Ardilly and Le Blanc (1999) and Ardiily and Le Blanc
(2001) proposed to make use of the services provided to these persons
in the centres during a certain reference period such as a day, a week,
or a month. A service can be, for example, a meal or an
accommodation. The population U from which the sample is selected
1s therefore the set of services provided during the chosen reference
period. Each service from U” is linked to a homeless person from U?
and, of course, a homeless person can receive more than one service.
Thus, we are in the situation of “many-to-one” links between the
populations U* and U°, as illustrated in Figure 3.2. Ardilly and Le
Blanc (2001) used the GWSM to produce estimates on the homeless
persons. Although they were confronted with a problem of
identification of links, the GWSM again proved to be greatly useful.

A fourth application of indirect sampling is the one from
Deville and Maumy (2005) where indirect sampling was used to
measure tourism in the region of Brittany in France. This application
is somewhat similar to the one from Ardilly and Le Blanc (2001), as
we try to measure a target population of people (in the present
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example, tourists) using a frame based on services provided to them.
The application of Deville and Maumy (2005) differs however from
the fact that the frame used by the survey has been built from three
different frames: (1) a subset of the most visited attractions in
Brittany; (2) the highway payment poll of La Gravelle that most
automobiles used to enter or leave Brittany; (3) a sample of bakeries.
Note that these services have been sampled for a given time period.

For each of the three different frames (or populations) U qA, a

sample s: of tourists has been selected to estimate the total

population U® of tourists in Brittany. Now, it is clear that a given
tourist can be found in all three frames, since he is likely to visit the
main attractions of Brittany, use the highway, or buy some bread.
Therefore, we are in a context of “many-to-one” links between the
populations U and U”. Using the information collected from the three

samples s: , estimates have been produced for the target population

U? using weights obtained through the GWSM.

It should be noted that the GWSM is offering here a different
way to attack the estimation problem in the context of multiple frames.
This problem has been known for years, and the related theory has
been developed by Hartley (1962). For more details on multiple frame
estimation, one can see Kott and Vogel (1995).

A fifth application of indirect sampling is the one from
Dessertaine and Fluteaux (2004), which is in the context of traditional
mailing in France. The problem was to estimate the flow of mail at La
Poste, the French national mail agency. The population U” is rounds
of postmen j, while the target population U” is objects k (envelopes,

packages, etc.) distributed at a given day i (cluster). The links 7,

between the two populations relate the postman j to the objects £ that
he delivered on a given day i. Note that because it was difficult to
establish exactly how many objects were delivered by a certain
postman k on a given day i, Dessertaine and Fluteaux (2004) were
faced with the problem of obtaining the total number of links L,

i
which is a problem of links identification. They solved this problem
by using, instead of the links /, , , the probability &, , of having a
link. They obtained a mathematical formulation of the estimator of the
total Y2 similar to (9.7).

Finally, Renaud (2006) used the GWSM to weight the sample
of towns for the estimation of the 2004 Swiss statistics on social
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security beneficiaries. The sample of towns was selected in 1999 from
a list of towns established in 1998. From 1998 to 2004, some
modifications occurred to the towns, and therefore the weights needed
to be adjusted to account for these changes. This situation is similar to
the one illustrated in Figure 1.4. As some towns were collapsed to
others, or divided into smaller towns, the links between the population
of towns in 1998 (population U") and the one in 2004 (population U”)
were complex. The use of the GWSM turned out to be useful to solve
this estimation problem.

In the future, we expect other developments around the
GWSM. For example, we can think of the development of allocation

methods for the sample s”, considering that we are faced with an

indirect sampling. These methods could consider cost constraints, in
addition to constraints in precision.

In closing, the author knows that the developments presented in
this book only represent the tip of the iceberg of the potential of
indirect sampling and the GWSM. The more indirect sampling is
studied, the more its potential to solve, in a simple manner, complex
estimation problems is discovered. The GWSM opens up new
possibilities to simply treat theoretical and practical situations that are
introduced during the use of sample surveys to obtain information.
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NOTATIONS

Constant used in the definition of the weight share method

Regression coefficient
Column vector of regression coefficients

Indicator variable

Gradient function

Probability of selection

Diagonal matrix of selection probabilities

Set of surveyed clusters

Set of all samples s

Variable identifying the weighted links

Matrix of variables identifying the weighted links

Column vector of auxiliary variables

Column vector containing the total of the auxiliary variables ¥

Indicator variable indicating a match between two records

Indicator variable associated with the comparison of two records

Matrix entering into the expression of the variance
Subscript identifying the comparisons

Number of clusters (households) from "'

Clusters (household) from the population U
Number of names from snowball sampling
Number of phases from snowball sampling
Cluster average in adaptive cluster sampling

Variance

Multiplicity weight related with network sampling
Lagrange multiplier
Likelihood function

Probability of response for a unit

Probability of response for a cluster of units
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ADAP

CAL
CALG
CLUS
COND

GLOB
GPROP

Indirect Sampling

Column vector derived from auxiliary variables x and the
variable of interest y

Matrix derived from auxiliary variables x

Random number uniformly distributed between ]0,1]
Statistic

Column vector of 1°s

Superscript identifying the population for which we have a
sampling frame

Superscript identifying adaptive cluster sampling
Superscript associated with the target population
Random (or repeated) group

Number of random (or repeated) groups
Superscript identifying calibration

Superscript identifying generalized calibration
Superscript identifying cluster sampling

Superscript identifying the conditional approach to improve
estimators

Decision rule of Fellegi and Sunter

Set of indices and measured variables for a sample
Regression residual

Sampling fraction

Inverse of the derivative of the distance function G
Superscript identifying the approach of Fellegi and Sunter
Derivative of the distance function G

Superscript identifying the intermediate population obtained
through factorisation, and distance function used in calibration

Superscript identifying the global approach for unit non-response
Superscript identifying the use of global proportional adjustment
Stratum

Function

Superscript identifying the Horvitz-Thompson estimator

Cluster from the population U”

Interval

Identity matrix
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1
J
JACK

RB
REG
RL

SUBS

Superscript identifying two-stage indirect sampling

Unit from the population U

Superscript identifying the use of the Jackknife method
Unit from the population U/

Indicator variable identifying the links between U* and U”
Total number of links

Set of all links

Superscript identifying the use of the log-linear model
Superscript identifying the use of the logistic model
Number of units selected in the sample

Number of units from the population

Superscript identifying the multiplicity approach

Number of surveyed clusters

Number of clusters from the target population

Superscript identifying network sampling

Superscript identifying non-response

Superscript identifying the case of non-response within s
Superscript identifying the case of non-response of clusters
Superscript identifying the problem of links identification
Superscript identifying the case of non-response of units
Superscript identifying an optimal quantity

Sampling plan

Dimension of the vectors of auxiliary variables
Superscript identifying the use of proportional adjustment
Group or subset from the population

Total number of groups or subsets from the population
Subcript identifying the subset of respondents

Corrected response rate

Superscript identifying the use of the Rao-Blackwell theorem
Superscript identitying the regression estimator
Superscript identifying record linkage

Superscript identifying record linkage with threshold
Sample

Superscript identifying the use of subsampling
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Indicator variable identifying the units selected in U*
Transpose of a matrix or vector

Diagonal matrix of indicator variables ¢

Sufficient statistic

Population

Estimation weight

Column vector of estimation weights

Superscript identifying the weight share method
Column vector of auxiliary variables

Column vector containing the total of the auxiliary variables x
Variable of interest

Total of the variable of interest y

Column vector containing the variable of interest y
Variable derived from the variable of interest y
Total of the derived variable z

Column vector of variables derived from y
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