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PREFACE

The main objective of a course on structural concrete design is to develop, in the engineering stu-
dent, the ability to analyze and design a reinforced concrete member subjected to different types of
forces in a simple and logical manner using the basic principles of statistics and some empirical for-
mulas based on experimental results. Once the analysis and design procedure is fully understood,
its application to different types of structures becomes simple and direct, provided that the student
has a good background in structural analysis.

The material presented in this book is based on the requirements of the American Con-
crete Institute (ACI) Building Standard 318-14, International Building Code IBC-2012, American
society of Civil Engineers Load Standards ASCE 7-10, and AASHTO LRFD Bridge Design Spec-
ifications. Also, information has been presented on material properties, including volume changes
of concrete, stress–strain behavior, creep, and elastic and nonlinear behavior or reinforced concrete.

Concrete structures are widely used in the United States and almost all over the world. The
progress in the design concept has increased in the last few decades, emphasizing safety, service-
ability, and economy. To achieve economical design of a reinforced concrete member, specific
restrictions, rules, and formulas are presented in the codes to ensure both safety and reliability of
the structure. Engineering firms expect civil engineering graduates to understand the code rules and,
consequently, to be able to design a concrete structure effectively and economically with minimum
training period or overhead costs. Taking this into consideration, this book is written to achieve the
following objectives:

1. To present the material for the design of reinforced concrete members in a simple and logical
approach.

2. To arrange the sequence of chapters in a way compatible with the design procedure of actual
structures.

3. To provide a large number of examples in each chapter in clear steps to explain the analysis
and design of each type of structural member.

4. To provide an adequate number of practical problems at the end of most chapters to achieve
a high level of comprehension.

xiii
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5. To explain the failure mechanism of a reinforced concrete beam due to flexure and to develop
the necessary relationships and formulas for design.

6. To explain why the code used specific equations and specific restrictions on the design
approach based on either a mathematical model or experimental results. This approach will
improve the design ability of the student.

7. To provide adequate number of design aids to help the student in reducing the repetitive
computations of specific commonly used values.

8. To enhance the student’s ability to use a total quality and economical approach in the design
of concrete structures and to help the student to design reinforced concrete members with
confidence.

9. To explain the nonlinear behavior and the development of plastic hinges and plastic rotations
in continuous reinforced concrete structures.

10. To provide review problems for concrete building component design in Chapter 23.
11. To provide a summary at the end of most chapters to help the student to review the materials

of each chapter separately. Also to design and analysis flowcharts in Chapter 24.
12. To provide new information on the design of special members, such as beams with variable

depth (Chapter 5), deep beams using ACI and AASHTO design methods (Chapter 8), stairs
design (Chapter 18), seismic design utilizing IBC 2012 and ASCE 7-10 (Chapter 20), beams
curved in plan (Chapter 21), and bridge design according to AASHTO (Chapter 22).

13. To present information on the design of reinforced concrete frames, principles of limit design,
and moment redistribution in continuous reinforced concrete structures.

14. To present examples on prediction of creep and shrinkage of concrete using the ACI and
AASHTO codes.

15. To provide examples in SI units in all chapters of the book. Equivalent conversion factors
from customary units to SI units are also presented. Design tables in SI units are given in
Appendix B.

16. References are presented at the end of most chapters.

The book is an outgrowth of the authors’ lecture notes, which represent their teaching and
industrial experience over the past 35 years. The industrial experience of the authors includes the
design and construction supervision and management of many reinforced, prestressed, and precast
concrete structures. This is in addition to the consulting work they performed for international
design and construction firms, professional registration in the United Kingdom, Canada, and other
countries, and a comprehensive knowledge of other European codes on the design of concrete
structures.

The book is written to cover two courses in reinforced concrete design. Depending on the
proficiency required, the first course may cover Chapters 1 through 7, 9, 10, 11, 13, 23, and 24,
whereas the second course may cover the remaining chapters. Parts of the late chapters may also
be taught in the first course as needed. A number of optional sections have been included in var-
ious chapters. These sections are indicated by an asterisk (*) in the Contents and may easily be
distinguished from those that form the basic requirements of the first course. The optional sections
may be covered in the second course or relegated to a reading assignment. Brief descriptions of the
chapters are given below.

The first chapter of the book presents information on the historical development of concrete,
codes of practice, loads and safety provisions, and design philosophy and concepts. The second
chapter deals with the properties of concrete as well as steel reinforcement used in the design
of reinforced concrete structures, including stress–strain relationships, modulus of elasticity and
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shear modulus of concrete, shrinkage, creep, fire resistance, high-performance concrete, and fibrous
concrete. Because the current ACI Code emphasizes the strength approach based on strain limits,
this approach has been adopted throughout the text. Chapters 3 and 4 cover the analysis and design
of reinforced concrete sections based on strain limits. The behavior of reinforced concrete beams
loaded to failure, the types of flexural failure, and failure mechanism are explained very clearly. It
is essential for the student to understand the failure concept and the inherent reserve strength and
ductility before using the necessary design formulas.

Chapter 5 covers shear design, including members with variable depth in actual structure.
Chapter 6 deals with the serviceability of reinforced concrete beams, including deflection and

control of cracking. Chapter 7 covers bond and development length. Chapter 8 covers the design
of deep beams utilizing the ACI and AASHTO strut-and-tie approach.

Chapter 9 covers the design of one-way slabs, including joist-floor systems. Distributions of
loads from slabs to beams and columns are also presented in this chapter to enhance the student’s
understanding of the design loads on each structural component. Chapters 10, 11, and 12 cover the
design of axially loaded, eccentrically loaded, and long columns, respectively. Chapter 10 allows
the student to understand the behavior of columns, failure conditions, tie and spiral design, and
other code limitations. After absorbing the basic information, the student is introduced in Chapter
11 to the design of columns subjected to compression and bending. New mathematical models
are introduced to analyze column sections controlled by compression or tension stresses. Biaxial
bending for rectangular and circular columns is presented. The design of long columns is discussed
in Chapter 12 using the ACI moment-magnifier method.

Chapters 13 and 14 cover the design of footings and retaining walls, then Chapter 15 covers
the design of reinforced concrete sections for shear and torsion. Torsional theories and ACI Code
design procedure are explained. Chapter 16 deals with continuous beams and frames. A unique
feature of this chapter is the introduction of the design of frames, frame hinges, the limit state design
collapse mechanism, rotation and plastic hinges, and moment redistribution. Adequate examples
are presented to explain these concepts.

The design of two-way slabs is introduced in Chapter 17. All types of two-way slabs, includ-
ing waffle slabs, are presented with adequate examples. A summary of the design procedure is
provided with tables and diagrams. Chapter 18 covers the design of reinforced concrete stairs.
Slab-type and stepped-type stairs are explained. The second type, although quite common, has
not been covered in any text. Chapter 19 covers an introduction to prestressed concrete. Methods
of prestressing, fully and partially prestressed concrete design, losses, and shear design are pre-
sented with examples. Chapter 20 presents the seismic design and analysis of members utilizing
the IBC 2012, ASCE 7-10, and the ACI Code. Chapter 21 deals with the design of curved beams.
In actual structures curved beams are used frequently. These beams are subjected to flexure, shear,
and torsion. Chapter 22 covers prestressed concrete bridge design based on the AASHTO LRFD
bridge design specifications with design examples. Chapter 23 deals with sample problems review
for concrete building component design. Chapter 24 provides flow charts to help the students and
engineers to better understand the design and analysis of concrete structure.

In Appendixes A and B, design tables using customary units and SI units are presented.
Finally, the book is written to provide basic reference materials on the analysis and design of

structural concrete members in a simple, practical, and logical approach. Because this is a required
course for seniors in civil engineering, we believe this book will be accepted by reinforced concrete
instructors at different universities as well as designers who can make use of the information in their
practical design of reinforced concrete structures.
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A companion Web site for the book is available at www.wiley.com/college/hassoun. This
Web site contains MSExcel spreadsheets that enable students to evaluate different design aspects
of concrete members in an interactive environment and a solutions manual for instructors.

Our appreciation and thanks go out to Radwa Sakr for the boundless time she spent in helping
in the revision of this manuscript and her contributions to the sample problem review chapter. Our
thanks also go to Peter Gomez for his contribution to the deep beam chapter, Armando Prada for
his contribution to the creep and shrinkage chapter, Peter Park for his contribution to the bridge
design chapter, and Pamela Gagnier for her comments on foundation design. We would like to
thank Farzam Tondnevis for his constructive comments on the seismic chapter and Maryam Fakhari
for reviewing the creep and shrinkage chapter. Also, our appreciation and thanks go to Abdullah
Fayyaz, Najah Elias, Snezana Ristanovic, Rashmi Ganeriwal, and Vickie Estrada for their contri-
butions to previous editions of the book.

Our sincere thanks go out to Ahmet Pamuk, Florida State University; Nadim Wehbe,
South Dakota State University; M. Issa, University of Illinois at Chicago; and Faisal Wafa, King
Abdul-Aziz University, for their constructive comments. Our thanks to Basile Rabbat for many
discussions on the code interpretation. Special thanks are due to the civil engineering students at
South Dakota State University and San Jose State University for their feedback while using the
manuscript.

Most of the photos shown in this book were taken by the authors. We wish to express appreci-
ation to John Gardner and Murat Saatcioglu from the University of Ottawa, Canada, for the photos
provided in the seismic chapter.

http://www.wiley.com/college/hassoun


NOTATION

a Depth of the equivalent rectangular concrete stress block
ab Value of a for a balanced condition
A Effective tension area of concrete surrounding one bar. (This value is used for control of cracking.)
Ab Area of individual bar
Ach Area of core of spirally reinforced column
Acp Gross area enclosed by outside perimeter of cross section
ACI American Concrete Institute
Ag Gross (total) area of cross section
Al Total area of longitudinal torsion steel
Ao Gross area enclosed by shear flow 0.85 Aoh
Aoh Area enclosed by centerline of the outmost closed transverse torsional reinforcement
Aps Area of prestressed reinforcement in the tension zone
As Area of flexural tension steel
A′

s Area of compression steel
Asb Area of balanced steel
Ast Total steel area in the section (column)
Asf Area of reinforcement to develop compressive strength of overhanging flanges in T- or L-sections
At Area of one leg of close stirrups used to resist torsion
Atc Transformed concrete area
A𝑣 Total area of shear reinforcement within a spacing S
A1 Loaded area
A2 Maximum area of supporting surface geometrically similar and concentric with the loaded area
b Width of compression zone at extreme fiber
be Effective width of flange
bo Perimeter of critical section for punching shear
b𝑤 Width of beam web
c Distance from extreme compression fiber to neutral axis
c2 Side of rectangular column measured transverse to the span
C Cross-sectional constant

∑
(1 − 0.63x/y)x3y/3; compression force

xvii
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Cc Compression force in a concrete section with a depth equal to a
Cm Correction factor applied to the maximum end moment in columns
Cr Creep coefficient = creep strain per unit stress per unit length
Cs Force in compression steel
Ct Factor relating shear and torsional stress properties = b𝑤d/

∑
x2y

C𝑤 Compression force in web
C1 Force in the compression steel
d Distance from extreme compression fiber to centroid of tension steel
d′ Distance from extreme compression fiber to centroid of compression steel
db Nominal diameter of reinforcing bar
dc Distance from tension extreme fiber to center of bar closest to that fiber, used for crack control
dt Distance from extreme compression fibers to extreme tension steel
D Dead load, diameter of a circular section
e Eccentricity of load
e′ Eccentricity of load with respect to centroid of tension steel
E Modulus of elasticity, force created by earthquake
Ec Modulus of elasticity of concrete = 33𝑤1.5

√
f ′c

Ecb Modulus of elasticity of beam concrete
Ecc Modulus of elasticity of column concrete
Ecs Modulus of elasticity of slab concrete
EI Flexural stiffness of compression member
Es Modulus of elasticity of steel = 29 × 106 psi = 2 × 105 MPa
f Flexural stress
fc Maximum flexural compressive stress in concrete due to service loads
fca Allowable compressive stress in concrete (alternate design method)
f ′c 28-day compressive strength of concrete (standard cylinder strength)
fd Compressive strength of concrete at transfer (initial prestress)
fpc Compressive stress in concrete due to prestress after all losses
fpe Compressive stress in concrete at extreme fiber due to the effective prestressing force after all losses
fps Stress in prestress steel at nominal strength
fpu Tensile strength of prestressing tendons
fpy Yield strength of prestressing tendons

fr Modulus of rupture of concrete = 7.5𝜆
√

f ′c psi
fs Stress in tension steel due to service load
f ′s Stress in the compression steel due to service load
fse Effective stress in prestressing steel after all losses
ft Tensile stress in concrete
fy Specified yield strength of steel reinforcement
fyt Specified yield strength of transverse reinforcement
F Loads due to weight and pressure of fluids
Fn Nominal strength of a strut, tie, or nodal zone
Fns Nominal strength of a strut
Fnt Nominal strength of a tie
G Shear modulus of concrete (in torsion) = 0.45Ec
h Total depth of beam or slab or column
hf Depth of flange in flanged sections
hp Total depth of shearhead cross section
H Lateral earth pressure
I Moment of inertia



Notation xix

Ib Moment of inertia of gross section of beam about its centroidal axis
Ic Moment of inertia of gross section of column
Icr Moment of inertia of cracked transformed section
Ie Effective moment of inertia, used in deflection
Ig Moment of inertia of gross section neglecting steel
Is Moment of inertia of gross section of slab
Ise Moment of inertia of steel reinforcement about centroidal axis of section
J Polar moment of inertia
K kip = 1000 lb, a factor used to calculate effective column length
Kb Flexural stiffness of beam
Kc Flexural stiffness of column
Kec Flexural stiffness of equivalent column
Ks Flexural stiffness of slab
Kt Torsional stiffness of torsional member
kN Kilonewton
ksi Kip per square inch
𝓁c Length of compression member in a frame
𝓁n Clear span
𝓁u Unsupported length of column
L Live load, span length
Lr Roof live load
ld Development length
Ldc Development length in compression
ldh Development length in tension of a standard hook
lhb Basic development length of a standard hook
ln Clear span
lu Unsupported length of compression member
l𝑣 Length of shearhead arm
l1 Span length in the direction of moment
l2 Span length in direction transverse to span ll
M Bending moment
M1 Smaller factored end moment at end of column
M2 Larger factored end moment at end of column
Ma Maximum service load moment
Mb Balanced moment in columns, used with Pb
Mc Factored moment amplified for long columns
Mcr Cracking moment
Mcre Moment causing flexural cracking at a section
Mm Factored modified moment
Mn Nominal moment strength = Mu/𝜙
M′

n Nominal moment strength using an eccentricity e′

M0 Total factored moment
Mp Plastic moment
Mu Moment strength due to factored loads
Mu1 Part of Mu when calculated as singly reinforced
Mu2 Part of Mu due to compression reinforcement or overhanging flanges in T- or L-sections
M′

u Moment strength using an eccentricity e′

M𝑣 Shearhead moment resistance
M1ns Factored end moment in nonsway frame at which M1 acts
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M1s Factored end moment in sway frame at which M1 acts
M2,min Minimum value of M2 in columns
M2ns Factored end moment in nonsway frame at which M2 acts
M2s Factored end moment in sway frame at which M2 acts
n Modular ratio = Es/Ec
N Normal force
Nu Factored normal load
N1 Normal force in bearing at base of column
NA Neutral axis
psi Pounds per square inch
Pcp Outside perimeter of gross area = 2(x0 + y0)
P Unfactored concentrated load
Pb Balanced load in column (at failure)
Pc Euler buckling load
Pn Nominal axial strength of column for a given e
P0 Perimeter of shear flow in area A0
P0 Axial strength of a concentrically loaded column
Ps Prestressing force in the tendon at the jacking end
Pu Factored load = 𝜙Pn
Px Prestressing force in the tendon at any point x
q Soil-bearing capacity
qa Allowable bearing capacity of soil
qu Ultimate bearing capacity of soil using factored loads
Q Stability index for a story
r Radius of gyration, radius of a circle
R Resultant of force system, reduction factor for long columns, or R = Ru/𝜙, also rain load
Ru A factor = Mu/bd2

S Snow loads
s Spacing between bars, stirrups, or ties
SI International System of Units
t Thickness of a slab
T Torque, tension force
Tc Nominal torsional strength provided by concrete
Tcr Cracking torsional moment
Tn Nominal torsional strength provided by concrete and steel
Ts Nominal torsional strength provided by reinforcement
Tu Torque provided by factored load = 𝜙Tn
u Bond stress
U Design strength required to resist factored loads
V Shear stress produced by working loads
𝑣c Shear stress of concrete
𝑣cr Shear stress at which diagonal cracks develop
𝑣h Horizontal shear stress
𝑣t Shear stress produced by a torque
𝑣u Shear stress produced by factored loads
V Unfactored shear force
Vc Shear strength of concrete
Vci Nominal shear strength of concrete when diagonal cracking results from combined shear and

moment
Vcw Nominal shear strength of concrete when diagonal cracking results from excessive principal tensile

stress in web
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Vd Shear force at section due to unfactored dead load (d = distance from the face of support)
Vn Nominal shear strength = Vc +Vs
Vp Vertical component of effective prestress force at section
Vs Shear strength carried by reinforcement
Vu Shear force due to factored loads
𝑤 Width of crack at the extreme tension fiber, unit weight of concrete
𝑤u Factored load per unit length of beam or per unit area of slab
W Wind load or total load
x0 Length of the short side of a rectangular section
x1 Length of the short side of a rectangular closed stirrup
yb Same as yt, except to extreme bottom fibers
y0 Length of the long side of a rectangular section
yt Distance from centroidal axis of gross section, neglecting reinforcement, to extreme top fiber
yl Length of the long side of a rectangular closed stirrup
𝛼 Angle of inclined stirrups with respect to longitudinal axis of beam, ratio of stiffness of beam to

that of slab at a joint
𝛼c Ratio of flexural stiffness of columns to combined flexural stiffness of the slabs and beams at a

joint; (𝛴 Kc)/𝛴(Ks +Kb)
𝛼ec Ratio of flexural stiffness of equivalent column to combined flexural stiffness of the slabs and

beams at a joint: (Kec)/𝛴(Ks +Kb)
𝛼f (EcbIb/EcsIs)
𝛼f1 𝛼f in direction 𝓁1
𝛼f2 𝛼f in direction 𝓁2
𝛼m Average value of 𝛼 for all beams on edges of a panel
𝛼𝑣 Ratio of stiffness of shearhead arm to surrounding composite slab section
𝛽 Ratio of long to short side of rectangular footing, measure of curvature in biaxial bending
𝛽1 Ratio of a/c, where a = depth of stress block and c = distance between neutral axis and extreme

compression fibers. (This factor is 0.85 for f ′c ≤ 4000 psi and decreases by 0.05 for each
1000 psi in excess of 4000 psi but is at least 0.65.)

𝛽a Ratio of unfactored dead load to unfactored live load per unit area
𝛽c Ratio of long to short sides of column or loaded area
𝛽ds Ratio used to account for reduction of stiffness of columns due to sustained lateral load
𝛽dns Ratio of maximum factored dead load moment to maximum factored total moment
𝛽 t Ratio of torsional stiffness of edge beam section to flexural stiffness of slab: EcbC/2EcsIs
𝛾 Distance between rows of reinforcement on opposite sides of columns to total depth of column h
𝛾 f Fraction of unbalanced moment transferred by flexure at slab–column connections
𝛾p Factor for type of prestressing tendon (0.4 or 0.28)
𝛾𝑣 Fraction of unbalanced moment transferred by eccentricity of shear at slab–column connections
𝛿 Magnification factor
𝛿ns Moment magnification factor for frames braced against sidesway
𝛿s Moment magnification factor for frames not braced against sidesway
𝛥 Deflection
𝜀 Strain
𝜀c Strain in concrete
𝜀s Strain in steel
𝜀′s Strain in compression steel
𝜀y Yield strain = fy/Es
𝜃 Slope angle
𝜆 Multiplier factor for reduced mechanical properties of lightweight concrete
𝜆𝛥 Multiplier for additional long-time deflection
𝜇 Poisson’s ratio; coefficient of friction
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𝜁 Parameter for evaluating capacity of standard hook
𝜋 Constant equal to approximately 3.1416
𝜌 Ratio of the tension steel area to the effective concrete area = As/bd
𝜌′ Ratio of compression steel area to effective concrete area = A′

s∕bd
𝜌1 𝜌 – 𝜌′

𝜌b Balanced steel ratio
𝜌g Ratio of total steel area to total concrete area
𝜌p Ratio of prestressed reinforcement Aps/bd
𝜌s Ratio of volume of spiral steel to volume of core
𝜌𝑤 As/b𝑤d
𝜙 Strength reduction factor
𝜓e Factor used to modify development length based on reinforcement coating
𝜓 s Factor used to modify development length based on reinforcing size
𝜓 t Factor used to modify development length based on reinforcement location
𝜔 Tension reinforcing index = 𝜌fy/f′c
𝜔′ Compression reinforcing index = 𝜌′fy∕f ′c
𝜔p Prestressed steel index = 𝜌pfps∕f ′c
𝜔pw Prestressed steel index for flanged sections
𝜔𝑤 Tension reinforcing index for flanged sections
𝜔′
𝑤 Compression reinforcing index for flanged sections computed as for 𝜔, 𝜔p, and 𝜔′



CONVERSION FACTORS

To Convert to Multiply By

1. Length
Inch Millimeter 25.4
Foot Millimeter 304.8
Yard Meter 0.9144
Meter Foot 3.281
Meter Inch 39.37

2. Area
Square inch Square millimeter 645
Square foot Square meter 0.0929
Square yard Square meter 0.836
Square meter Square foot 10.76

3. Volume
Cubic inch Cubic millimeter 16390
Cubic foot Cubic meter 0.02832
Cubic yard Cubic meter 0.765
Cubic foot Liter 28.3
Cubic meter Cubic foot 35.31
Cubic meter Cubic yard 1.308

4. Mass
Ounce Gram 28.35
Pound (lb) Kilogram 0.454
Pound Gallon 0.12
Short ton (2000 lb) Kilogram 907
Long ton (2240 lb) Kilogram 1016
Kilogram Pound (lb) 2.205
Slug Kilogram 14.59

(continued)

xxiii



xxiv Conversion Factors

To Convert to Multiply By

5. Density
Pound/cubic foot Kilogram/cubic meter 16.02
Kilogram/cubic meter Pound/cubic foot 0.06243

6. Force
Pound (lb) Newton (N) 4.448
Kip (1000 lb) Kilonewton (kN) 4.448
Newton (N) Pound 0.2248
Kilonewton (kN) Kip (K) 0.225

7. Force/length
Kip/foot Kilonewton/meter 14.59
Kilonewton/meter Pound/foot 68.52
Kilonewton/meter Kip/foot 0.06852

8. Force/area (stress)
Pound/square inch (psi) Newton/square centimeter 0.6895
Pound/square inch (psi) Newton/square millimeter (MPa) 0.0069
Kip/square inch (ksi) Meganewton/square meter 6.895
Kip/square inch (ksi) Newton/square millimeter 6.895
Pound/square foot Kilonewton/square meter 0.04788
Pound/square foot Newton/square meter 47.88
Kip/square foot Kilonewton/square meter 47.88
Newton/square millimeter Kip/square inch (Ksi) 0.145
Kilonewton/square meter Kip/square foot 0.0208
Kilonewton/square meter Pound/square foot 20.8

9. Moments
Foot⋅kip Kilonewton⋅meter 1.356
Inch⋅kip Kilonewton⋅meter 0.113
Inch⋅kip Kilogram force⋅meter 11.52
Kilonewton⋅meter Foot⋅kip 0.7375



Structural Concrete





CHAPTER1
INTRODUCTION

Water Tower Place, Chicago, 74 stories, tallest
concrete building in the United States.

1.1 STRUCTURAL CONCRETE

The design of different structures is achieved by performing, in general, two main steps: (1) deter-
mining the different forces acting on the structure using proper methods of structural analysis and
(2) proportioning all structural members economically, considering the safety, stability, serviceabil-
ity, and functionality of the structure. Structural concrete is one of the materials commonly used
to design all types of buildings. Its two component materials, concrete and steel, work together to
form structural members that can resist many types of loadings. The key to its performance lies
in strengths that are complementary: Concrete resists compression and steel reinforcement resists
tension forces.

The term structural concrete indicates all types of concrete used in structural applications.
Structural concrete may be plain, reinforced, prestressed, or partially prestressed concrete; in addi-
tion, concrete is used in composite design. Composite design is used for any structural member,
such as beams or columns, when the member contains a combination of concrete and steel shapes.

1.2 HISTORICAL BACKGROUND

The first modern record of concrete is as early as 1760, when John Smeaton used it in Britain
in the first lock on the river Calder [1]. The walls of the lock were made of stones filled in with

1
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concrete. In 1796, J. Parker discovered Roman natural cement, and 15 years later Vicat burned a
mixture of clay and lime to produce cement. In 1824, Joseph Aspdin manufactured portland cement
in Wakefield, Britain. It was called portland cement because when it hardened it resembled stone
from the quarries of the Isle of Portland.

In France, François Marte Le Brun built a concrete house in 1832 in Moissac in which he used
concrete arches of 18-ft span. He used concrete to build a school in St. Aignan in 1834 and a church
in Corbarièce in 1835. Joseph Louis Lambot [2] exhibited a small rowboat made of reinforced
concrete at the Paris Exposition in 1854. In the same year, W. B. Wilkinson of England obtained a
patent for a concrete floor reinforced by twisted cables. The Frenchman François Cignet obtained
his first patent in 1855 for his system of iron bars, which were embedded in concrete floors and
extended to the supports. One year later, he added nuts at the screw ends of the bars, and in 1869,
he published a book describing the applications of reinforced concrete.

Joseph Monier, who obtained his patent in Paris on July 16, 1867, was given credit for the
invention of reinforced concrete [3]. He made garden tubs and pots of concrete reinforced with
iron mesh, which he exhibited in Paris in 1867. In 1873, he registered a patent to use reinforced
concrete in tanks and bridges, and four years later, he registered another patent to use it in beams
and columns [1].

In the United States, Thaddeus Hyatt conducted flexural tests on 50 beams that contained
iron bars as tension reinforcement and published the results in 1877. He found that both concrete
and steel can be assumed to behave in a homogeneous manner for all practical purposes. This
assumption was important for the design of reinforced concrete members using elastic theory. He
used prefabricated slabs in his experiments and considered prefabricated units to be best cast in
T-sections and placed side by side to form a floor slab. Hyatt is generally credited with developing
the principles upon which the analysis and design of reinforced concrete are now based.

A reinforced concrete house was built by W. E. Ward near Port Chester, New York, in 1875. It
used reinforced concrete for walls, beams, slabs, and staircases. P. B. Write wrote in the American
Architect and Building News in 1877 describing the applications of reinforced concrete in Ward’s
house as a new method in building construction.

E. L. Ransome, head of the Concrete Steel Company in San Francisco, used reinforced con-
crete in 1879 and deformed bars for the first time in 1884. During 1889 to 1891, he built the
two-story Leland Stanford Museum in San Francisco using reinforced concrete. He also built a
reinforced concrete bridge in San Francisco. In 1900, after Ransome introduced the reinforced
concrete skeleton, the thick wall system started to disappear in construction. He registered the
skeleton type of structure in 1902 using spiral reinforcement in the columns, as was suggested by
Armand Considére of France. A. N. Talbot, of the University of Illinois, and F. E. Turneaure and
M. O. Withney, of the University of Wisconsin, conducted extensive tests on concrete to determine
its behavior, compressive strength, and modulus of elasticity.

In Germany, G. A. Wayass bought the French Monier patent in 1879 and published his book
on Monier methods of construction in 1887. Rudolph Schuster bought the patent rights in Austria,
and the name of Monier spread throughout Europe, which is the main reason for crediting Monier
as the inventor of reinforced concrete.

In 1900, the Ministry of Public Works in France called for a committee headed by Armand
Considére, chief engineer of roads and bridges, to establish specifications for reinforced concrete,
which were published in 1906.

Reinforced concrete was further refined by introducing some precompression in the tension
zone to decrease the excessive cracks. This refinement was the preliminary introduction of par-
tial and full prestressing. In 1928, Eugene Freyssinet established the practical technique of using
prestressed concrete [4].
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The Barkwick House, a three-story concrete building built in 1905, Montreal, Canada.

From 1915 to 1935, research was conducted on axially loaded columns and creep effects
on concrete; in 1940, eccentrically loaded columns were investigated. Ultimate-strength design
started to receive special attention, in addition to diagonal tension and prestressed concrete. The
American Concrete Institute Code (ACI Code) specified the use of ultimate-strength design in 1963
and included this method in all later codes. The method is called in the current ACI code the strength
design method. Building codes and specifications for the design of reinforced concrete structures
are established in most countries, and research continues on developing new applications and more
economical designs.

1.3 ADVANTAGES AND DISADVANTAGES OF REINFORCED CONCRETE

Reinforced concrete, as a structural material, is widely used in many types of structures. It is com-
petitive with steel if economically designed and executed.

The advantages of reinforced concrete can be summarized as follows:

1. It has a relatively high compressive strength.
2. It has better resistance to fire than steel.
3. It has a long service life with low maintenance cost.
4. In some types of structures, such as dams, piers, and footings, it is the most economical

structural material.
5. It can be cast to take the shape required, making it widely used in precast structural compo-

nents. It yields rigid members with minimum apparent deflection.
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The disadvantages of reinforced concrete can be summarized as follows:

1. It has a low tensile strength of about one-tenth of its compressive strength.
2. It needs mixing, casting, and curing, all of which affect the final strength of concrete.
3. The cost of the forms used to cast concrete is relatively high. The cost of form material and

artisanry may equal the cost of concrete placed in the forms.
4. It has a low compressive strength as compared to steel (the ratio is about 1:10, depending on

materials), which leads to large sections in columns of multistory buildings.
5. Cracks develop in concrete due to shrinkage and the application of live loads.

1.4 CODES OF PRACTICE

The design engineer is usually guided by specifications called the codes of practice. Engineering
specifications are set up by various organizations to represent the minimum requirements neces-
sary for the safety of the public, although they are not necessarily for the purpose of restricting
engineers.

Most codes specify design loads, allowable stresses, material quality, construction types, and
other requirements for building construction. The most significant standard for structural concrete
design in the United States is the Building Code Requirements for Structural Concrete, ACI 318,
or the ACI Code. Most of the design examples of this book are based on this standard. Other codes
of practice and material specifications in the United States include the International building Code
(IBC), The American Society of Civil Engineers standard ASCE 7, The American Association of
State Highway and Transportation Officials (AASHTO) specifications, and specifications issued
by the American Society for Testing and Materials (ASTM), the American Railway Engineering
Association (AREA), and the Bureau of Reclamation, Department of the Interior.

1.5 DESIGN PHILOSOPHY AND CONCEPTS

The design of a structure may be regarded as the process of selecting the proper materials and pro-
portioning the different elements of the structure according to state-of-the-art engineering science
and technology. In order to fulfill its purpose, the structure must meet the conditions of safety, ser-
viceability, economy, and functionality. This can be achieved using design approach-based strain
limits in concrete and steel reinforcement.

The unified design method (UDM) is based on the strength of structural members assuming a
failure condition, whether due to the crushing of the concrete or to the yield of the reinforcing steel
bars. Although there is some additional strength in the bars after yielding (due to strain hardening),
this additional strength is not considered in the analysis of reinforced concrete members. In this
approach, the actual loads, or working loads, are multiplied by load factors to obtain the factored
design loads. The load factors represent a high percentage of the factor for safety required in the
design. Details of this method are presented in Chapters 3, 4, and 11. The ACI Code emphasizes
this method of design, and its provisions are presented in the body of the Code. The reason for
introducing this approach by the ACI Code relates to the fact that different design methods were
developed for reinforced and prestressed concrete beams and columns. Also, design procedures for
prestressed concrete were different from reinforced concrete. The purpose of the Code approach is
to simplify and unify the design requirements for reinforced and prestressed flexural members and
compression members.
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A second approach for the design of concrete members is called the strut-and-tie method
(STM). The provisions of this method are introduced in the ACI Code, Chapter 23. It applies effec-
tively in regions of discontinuity such as support and load applications on beams. Consequently,
the structural element is divided into segments and then analyzed using the truss analogy approach,
where the concrete resists compression forces as a strut, while the steel reinforcement resists tensile
forces as a tie.

A basic method that is not commonly used is called the working stress design or the elastic
design method. The design concept is based on the elastic theory assuming a straight-line stress dis-
tribution along the depth of the concrete section under service loads. The members are proportioned
on the basis of certain allowable stresses in concrete and steel. The allowable stresses are fractions
of the crushing strength of concrete and yield strength of steel. This method has been deleted from
the ACI Code. The application of this approach is still used in the design of prestressed concrete
members under service load conditions, as shown in Chapter 19.

Limit state design is a further step in the strength design method. It indicates the state of the
member in which it ceases to meet the service requirements such as losing its ability to withstand
external loads or suffering excessive deformation, cracking, or local damage. According to the limit
state design, reinforced concrete members have to be analyzed with regard to three limiting states:

1. Load-carrying capacity (safety, stability, and durability)
2. Deformation (deflections, vibrations, and impact)
3. Formation of cracks

The aim of this analysis is to ensure that no limiting state will appear in the structural member
during its service life.

1.6 UNITS OF MEASUREMENT

Two units of measurement are commonly used in the design of structural concrete. The first is the
U.S. customary system (lying mostly in its human scale and its ingenious use of simple numerical
proportions), and the second is the SI (Système International d’Unités), or metric, system.

The metric system is expected to be in universal use within the coming few years. The United
States is committed to changing to SI units. Great Britain, Canada, Australia, and other countries
have been using SI units for many years.

The base units in the SI system are the units of length, mass, and time, which are the meter
(m), the kilogram (kg), and the second (s), respectively. The unit of force, a derived unit called the
newton (N), is defined as the force that gives the acceleration of one meter per second (1 m/s2) to
a mass of one kilogram, or 1 N= 1 kg × m/s2.

The weight of a body, W, which is equal to the mass, m, multiplied by the local gravitational
acceleration, g (9.81 m/s2), is expressed in newtons (N). The weight of a body of 1 kg mass is
W=mg= 1 kg× 9.81 m/s2 = 9.81 N.

Multiples and submultiples of the base SI units can be expressed through the use of prefixes.
The prefixes most frequently used in structural calculations are the kilo (k), mega (M), milli (m),
and micro (μ). For example,

1 km = 1000 m 1 mm = 0.001 m 1 μm = 10−6 m

1 kN = 1000 N 1 Mg = 1000 kg = 106 g
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1.7 LOADS

Structural members must be designed to support specific loads.
Loads are those forces for which a given structure should be proportioned. In general, loads

may be classified as dead or live.
Dead loads include the weight of the structure (its self-weight) and any permanent material

placed on the structure, such as tiles, roofing materials, and walls. Dead loads can be determined
with a high degree of accuracy from the dimensions of the elements and the unit weight of materials.

Live loads are all other loads that are not dead loads. They may be steady or unsteady or mov-
able or moving; they may be applied slowly, suddenly, vertically, or laterally, and their magnitudes
may fluctuate with time. In general, live loads include the following:

• Occupancy loads caused by the weight of the people, furniture, and goods
• Forces resulting from wind action and temperature changes
• The weight of snow if accumulation is probable
• The pressure of liquids or earth on retaining structures
• The weight of traffic on a bridge
• Dynamic forces resulting from moving loads (impact), earthquakes, or blast loading

The ACI Code does not specify loads on structures; however, occupancy loads on differ-
ent types of buildings are prescribed by IBC-2012 and the American National Standards Institute
(ANSI) [5]. Some typical values are shown in Table 1.1. Table 1.2 shows the weights and specific
gravity of various materials.

Table 1.1 Typical Uniformly Distributed Design Loads

Design Live Load

Occupancy Contents lb/ft2 kN/m2

Assembly hall Fixed seats 60 2.9
Movable seats 100 4.8

Hospital Operating rooms 60 2.9
Private rooms 40 1.9

Hotel Guest rooms 40 1.9
Public rooms 100 4.8
Balconies 100 4.8

Housing Private houses and apartments 40 1.9
Public rooms 100 4.8

Institution Classrooms 40 1.9
Corridors 100 4.8

Library Reading rooms 60 2.9
Stack rooms 150 7.2

Office building Offices 50 2.4
Lobbies 100 4.8

Stairs (or balconies) 100 4.8
Storage warehouses Light 100 4.8

Heavy 250 12.0
Yards and terraces 100 4.8
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Table 1.2 Density and Specific Gravity of Various Materials

Density

Material lb/ft3 kg/m3 Specific Gravity

Building materials
Bricks 120 1924 1.8–2.0
Cement, portland, loose 90 1443 —
Cement, portland, set 183 2933 2.7–3.2
Earth, dry, packed 95 1523 —
Sand or gravel, dry, packed 100–120 1600–1924 —
Sand or gravel, wet 118–120 1892–1924 —

Liquids
Oils 58 930 0.9–0.94
Water (at 4∘C) 62.4 1000 1.0
Ice 56 898 0.88–0.92

Metals and minerals
Aluminum 165 2645 2.55–2.75
Copper 556 8913 9.0
Iron 450 7214 7.2
Lead 710 11, 380 11.38
Steel, rolled 490 7855 7.85
Limestone or marble 165 2645 2.5–2.8
Sandstone 147 2356 2.2–2.5
Shale or slate 175 2805 2.7–2.9

Normal-weight concrete
Plain 145 2324 2.2–2.4
Reinforced or prestressed 150 2405 2.3–2.5

AASHTO and AREA specifications prescribe vehicle loadings on highway and railway
bridges, respectively. These loads are given in References 6 and 7.

Snow loads on structures may vary between 10 and 40 lb/ft2 (0.5 and 2 kN/m2), depending on
the local climate.

Wind loads may vary between 15 and 30 lb/ft2, depending on the velocity of wind. The wind
pressure of a structure, F, can be estimated from the equation

F = 0.00256Cs V2 (1.1)

where
V = velocity of air (mi/h)
Cs = shape factor of structure
F = dynamic wind pressure (lb/ft2)

As an example, for a wind of 100 mi/h with Cs = 1, the wind pressure is equal to 25.6 lb/ft2. It is
sometimes necessary to consider the effect of gusts in computing the wind pressure by multiplying
the wind velocity in Eq. 1.1 by a gust factor, which generally varies between 1.1 and 1.3.

The shape factor, Cs, varies with the horizontal angle of incidence of the wind. On vertical
surfaces of rectangular buildings, Cs may vary between 1.2 and 1.3. Detailed information on wind
loads can be found in Reference 5.
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1.8 SAFETY PROVISIONS

Structural members must always be proportioned to resist loads greater than the service or actual
load in order to provide proper safety against failure. In the strength design method, the mem-
ber is designed to resist factored loads, which are obtained by multiplying the service loads by
load factors. Different factors are used for different loadings. Because dead loads can be esti-
mated quite accurately, their load factors are smaller than those of live loads, which have a high
degree of uncertainty. Several load combinations must be considered in the design to compute
the maximum and minimum design forces. Reduction factors are used for some combinations of
loads to reflect the low probability of their simultaneous occurrences. The ACI Code presents
specific values of load factors to be used in the design of concrete structures (see Chapter 3,
Section 3.5).

In addition to load factors, the ACI Code specifies another factor to allow an additional reserve
in the capacity of the structural member. The nominal strength is generally calculated using an
accepted analytical procedure based on statistics and equilibrium; however, in order to account
for the degree of accuracy within which the nominal strength can be calculated, and for adverse
variations in materials and dimensions, a strength reduction factor, 𝜙, should be used in the strength
design method. Values of the strength reduction factors are given in Chapter 3, Section 3.6.

To summarize the above discussion, the ACI Code has separated the safety provision into
an overload or load factor and to an undercapacity (or strength reduction) factor, 𝜙. A safe design
is achieved when the structure’s strength, obtained by multiplying the nominal strength by the
reduction factor,𝜙, exceeds or equals the strength needed to withstand the factored loadings (service
loads times their load factors). For example,

Mu ≤ 𝜙Mn and Vu ≤ 𝜙Vn (1.2)

where
Mu, Vu = external factored moment and shear forces, respectively
Mn, Vn = nominal flexural strength and shear strength of member, respectively

Given a load factor of 1.2 for dead load and a load factor of 1.6 for live load, the overall safety
factor for a structure loaded by a dead load, D, and a live load, L, is

Factor of safety = 1.2D + 1.6L
D + L

(
1
𝜙

)
=

1.2 + 1.6(L∕D)
1 + (L∕D)

(
1
𝜙

)
(1.3)

The factors of safety for the various values of 𝜙 and L/D ratios are as follows:

𝝓 0.9 0.8 0.75

L/D 0 1 2 3 0 1 2 3 0 1 2 3
Factor of safety 1.33 1.56 1.63 1.67 1.50 1.74 1.83 1.88 1.6 1.87 1.96 2

For members subjected to flexure (beams), with tension-controlled sections, 𝜑= 0.9, and the
factor of safety ranges between 1.33 for L/D= 0 and 1.67 for L/D= 3. These values are less than
those specified by the ACI Code 318 Appendix C of 1.56 for L/D= 0 and 1.81 for L/D= 3.0 based
on load factors of 1.4 for dead load and 1.7 for live load. This reduction ranges between 17 and
8%, respectively.
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For members subjected to axial forces (spiral columns), 𝜙= 0.75, and the factor of safety
ranges between 1.60 for L/D= 0 and 2 for L/D= 3. The increase in the factor of safety in columns
reflects the greater overall safety requirements of these critical building elements.

A general format of Eq. 1.2 may be written as [8]

𝜙R ≥ 𝑣0

∑
(𝑣iQi) (1.4)

where
Rn = nominal strength of structural number
𝜙 = undercapacity factor (Reduction factor <1.0)∑

Qi = sum of load effects
𝑣i = overload factor
𝑣0 = analysis factor (>1.0)

The subscript i indicates the load type, such as dead load, live load, and wind load. The analysis
factor, 𝑣0, is greater than 1.0 and is introduced to account for uncertainties in structural analysis.
The overload factor, 𝑣i, is introduced to account for several factors such as an increase in live load
due to a change in the use of the structure and variations in erection procedures. The design concept
is referred to as load and resistance factor design (LRFD).

1.9 STRUCTURAL CONCRETE ELEMENTS

Structural concrete can be used for almost all buildings, whether single story or multistory. The
concrete building may contain some or all of the following main structural elements, which are
explained in detail in other chapters of the book:

• Slabs are horizontal plate elements in building floors and roofs. They may carry gravity loads
as well as lateral loads. The depth of the slab is usually very small relative to its length or
width (Chapters 9 and 17).

• Beams are long, horizontal, or inclined members with limited width and depth. Their main
function is to support loads from slabs (Chapters 3, 4, and 8).

• Columns are critical members that support loads from beams or slabs. They may be subjected
to axial loads or axial loads and moments (Chapters 10, 11, and 12).

• Frames are structural members that consist of a combination of beams and columns or slabs,
beams, and columns. They may be statically determinate or statically indeterminate frames
(Chapter 16).

• Footings are pads or strips that support columns and spread their loads directly to the soil
(Chapter 13).

• Walls are vertical plate elements resisting gravity as well as lateral loads as in the case of
basement walls (Chapter 14).

• Stairs are provided in all buildings either low or high rise (Chapter 18).

1.10 STRUCTURAL CONCRETE DESIGN

The first step in the design of a building is the general planning carried out by the architect to
determine the layout of each floor of the building to meet the owner’s requirements. Once the
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architectural plans are approved, the structural engineer then determines the most adequate struc-
tural system to ensure the safety and stability of the building. Different structural options must be
considered to determine the most economical solution based on the materials available and the soil
condition. This result is normally achieved by:

1. Idealizing the building into a structural model of load-bearing frames and elements
2. Estimating the different types of loads acting on the building
3. Performing the structural analysis using computer or manual calculations to determine the

maximum moments, shear, torsional forces, axial loads, and other forces
4. Proportioning the different structural elements and calculating the reinforcement needed
5. Producing structural drawings and specifications with enough details to enable the contractor

to construct the building properly

1.11 ACCURACY OF CALCULATIONS

In the design of concrete structures, exact calculations to determine the size of the concrete elements
are not needed. Calculators and computers can give an answer to many figures after the decimal
point. For a practical size of a beam, slab, or column, each dimension should be approximated
to the nearest 1 or 1∕2 in. Moreover, the steel bars available in the market are limited to specific
diameters and areas, as shown in Table 1, Appendix 1. The designer should choose a group of bars
from the table with an area equal to or greater than the area obtained from calculations. Also, the
design equations in this book based on the ACI Code are approximate. Therefore, for a practical
and economical design, it is adequate to use four figures (or the full number with no fractions if
it is greater than four figures) for the calculation of forces, stresses, moments, or dimensions such
as length or width of a section. For strains, use five or six figures because strains are very small
quantities measured in a millionth of an inch (e.g., a strain of 0.000358 in./in.). Stresses are obtained
by multiplying the strains by the modulus of elasticity of the material, which has a high magnitude
(e.g., 29,000,000 lb/in.2) for steel. Any figures less than five or six figures in strains will produce
quite a change in stresses.

Examples

For forces, use 28.45 K, 2845 lb, 567.8 K (four figures).
For force/length, use 2.451 K/ft or 2451 lb/ft.
For length or width, use 14.63 in., 1.219 ft (or 1.22 ft).
For areas, use 7.537 in.2, and for volumes, use 48.72 in.3.
For strains, use 0.002078.

1.12 CONCRETE HIGH-RISE BUILDINGS

High-rise buildings are becoming the dominant feature of many U.S. cities; a great number of these
buildings are designed and constructed in structural concrete.

Although at the beginning of the century the properties of concrete and joint behavior of steel
and concrete were not fully understood, a 16-story building, the Ingalls Building, was constructed
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Table 1.3 Examples of Reinforced Concrete Skyscrapers

Height

Year Structure Location Stories ft m

1965 Lake Point Tower Chicago 70 645 197
1969 One Shell Plaza Houston 52 714 218
1975 Peachtree Center Plaza Hotel Atlanta 71 723 220
1976 Water Tower Place Chicago 74 859 262
1976 CN Tower Toronto — 1465 447
1977 Renaissance Center Westin Hotel Detroit 73 740 226
1983 City Center Minneapolis 40 528 158

in Cincinnati in 1902 with a total height of 210 ft (64 m). In 1922, the Medical Arts Building, with
a height of 230 ft (70 m), was constructed in Dallas, Texas. The design of concrete buildings was
based on elastic theory concepts and a high factor of safety, resulting in large concrete sections in
beams and columns. After extensive research, high-strength concrete and high-strength steel were
allowed in the design of reinforced concrete members. Consequently, small concrete sections as
well as savings in materials were achieved, and new concepts of structural design were possible.

To visualize how high concrete buildings can be built, some structural concrete skyscrapers
are listed in Table 1.3. The CN Tower is the world’s tallest free-standing concrete structure.

The reader should realize that most concrete buildings are relatively low and range from one to
five stories. Skyscrapers and high-rise buildings constitute less than 10% of all concrete buildings.

Photos of some different concrete buildings and structures are shown here.

Renaissance Center, Detroit, Michigan. Marina City Towers, Chicago, Illinois.
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City Center, Minneapolis, Minnesota. CN Tower, Toronto, Canada (height 1465 ft, or 447 m).

Concrete bridge for the city transit system, Washington, D.C.
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Concrete bridge, Knoxville, Tennessee.

Reinforced concrete grain silo using the slip form system. Brookings, South Dakota.
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CHAPTER2
PROPERTIES OF
REINFORCED
CONCRETE

IBM Building, Montreal Canada (the highest concrete
building in Montreal, with 50 stories).

2.1 FACTORS AFFECTING STRENGTH OF CONCRETE

In general, concrete consists of coarse and fine aggregate, cement, water, and—in many cases—
different types of admixture. The materials are mixed together until a cement paste is developed,
filling most of the voids in the aggregates and producing a uniform dense concrete. The plastic
concrete is then placed in a mold and left to set, harden, and develop adequate strength. For the
design of concrete mixtures, as well as composition and properties of concrete materials, the reader
is referred to Refs. 1 through 6.

The strength of concrete depends upon many factors and may vary within wide limits with the
same production method. The main factors that affect the strength of concrete are described next.

2.1.1 Water–Cement Ratio

The water–cement ratio is one of the most important factors affecting the strength of concrete. For
complete hydration of a given amount of cement, a water–cement ratio (by weight) equal to 0.25 is
needed. A water–cement ratio of about 0.35 or higher is needed for the concrete to be reasonably
workable without additives. This ratio corresponds to 4 gal of water per sack of cement (94 lb)
(or 17.8 lb per 50 kg of cement). Based on this cement ratio, a concrete strength of about 6000 psi
may be achieved. A water–cement ratio of 0.5 and 0.7 may produce a concrete strength of about
5000 and 3000 psi, respectively.

15
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2.1.2 Properties and Proportions of Concrete Constituents

Concrete is a mixture of cement, aggregate, and water. An increase in the cement content in the
mix and the use of well-graded aggregate increase the strength of concrete. Special admixtures are
usually added to the mix to produce the desired quality and strength of concrete.

2.1.3 Method of Mixing and Curing

The use of mechanical concrete mixers and the proper time of mixing both have favorable effects on
strength of concrete. Also, the use of vibrators produces dense concrete with a minimum percentage
of voids. A void ratio of 5% may reduce the concrete strength by about 30%.

The curing conditions exercise an important influence on the strength of concrete. Both mois-
ture and temperature have a direct effect on the hydration of cement. The longer the period of moist
storage, the greater the strength. If the curing temperature is higher than the initial temperature of
casting, the resulting 28-day strength of concrete is reached earlier than 28 days.

2.1.4 Age of Concrete

The strength of concrete increases appreciably with age, and hydration of cement continues for
months. In practice, the strength of concrete is determined from cylinders or cubes tested at the
age of 7 and 28 days. As a practical assumption, concrete at 28 days is 1.5 times as strong as at
7 days: The range varies between 1.3 and 1.7. The British Code of Practice [2] accepts concrete
if the strength at 7 days is not less than two-thirds of the required 28-day strength. For a normal
portland cement, the increase of strength with time, relative to 28-day strength, may be assumed as
follows:

Age 7 days 14 days 28 days 3 months 6 months 1 year 2 years 5 years

Strength ratio 0.67 0.86 1.0 1.17 1.23 1.27 1.31 1.35

2.1.5 Loading Conditions

The compressive strength of concrete is estimated by testing a cylinder or cube to failure in a few
minutes. Under sustained loads for years, the compressive strength of concrete is reduced by about
30%. Under 1 day sustained loading, concrete may lose about 10% of its compressive strength.
Sustained loads and creep effect as well as dynamic and impact effect, if they occur on the structure,
should be considered in the design of reinforced concrete members.

2.1.6 Shape and Dimensions of Tested Specimen

The common sizes of concrete specimens used to predict the compressive strength are either 6 ×
12-in. (150 × 300-mm) or 4 × 8-in. (100 × 200-mm) cylinders or 6-in. (150-mm) cubes. When a
given concrete is tested in compression by means of cylinders of like shape but of different sizes,
the larger specimens give lower strength indexes. Table 2.1 [4] gives the relative strength for various
sizes of cylinders as a percentage of the strength of the standard cylinder; the heights of all cylinders
are twice the diameters.

Sometimes concrete cylinders of nonstandard shape are tested. The greater the ratio of spec-
imen height to diameter, the lower the strength indicated by the compression test. To compute the
equivalent strength of the standard shape, the results must be multiplied by a correction factor.
Approximate values of the correction factor are given in Table 2.2, extracted from ASTM C 42/C
42 M. The relative strengths of a cylinder and a cube for different compressive strengths are shown
in Table 2.3.
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Table 2.1 Effect of Size of Compression Specimen on Strength of
Concrete

Size of Cylinder

in. mm Relative Compressive Strength

2 × 4 50 × 100 1.09
3 × 6 75 × 150 1.06
6 × 12 150 × 300 1.00
8 × 16 200 × 400 0.96

12 × 24 300 × 600 0.91
18 × 36 450 × 900 0.86
24 × 48 600 × 1200 0.84
36 × 72 900 × 1800 0.82

Table 2.2 Strength Correction Factor for Cylinders of Different Height–Diameter Ratios

Ratio 2.0 1.75 1.50 1.25 1.10 1.00 0.75 0.50

Strength correction factor 1.00 0.98 0.96 0.93 0.90 0.87 0.70 0.50
Strength relative to standard cylinder 1.00 1.02 1.04 1.06 1.11 1.18 1.43 2.00

Table 2.3 Relative Strength of Cylinder versus Cube [6]

Compressive strength (psi) 1000 2200 2900 3500 3800 4900 5300 5900 6400 7300

(N/mm2) 7.0 15.5 20.0 24.5 27.0 24.5 37.0 41.5 45.0 51.5
Strength ratio of cylinder to cube 0.77 0.76 0.81 0.87 0.91 0.93 0.94 0.95 0.96 0.96

2.2 COMPRESSIVE STRENGTH

In designing structural members, it is assumed that the concrete resists compressive stresses and
not tensile stresses; therefore, compressive strength is the criterion of quality concrete. The other
concrete stresses can be taken as a percentage of the compressive strength, which can be easily
and accurately determined from tests. Specimens used to determine compressive strength may be
cylindrical, cubical, or prismatic.

Test specimens in the form of a 6-in. (150-mm) or 8-in. (200-mm) cube are used in Great
Britain, Germany, and other parts of Europe.

Prism specimens are used in France, Russia, and other countries and are usually 70 × 70 ×
350 mm or 100 × 100 × 500 mm. They are cast with their longer sides horizontal and are tested,
like cubes, in a position normal to the position of cast.

Before testing, the specimens are moist cured and then tested at the age of 28 days by gradually
applying a static load until rupture occurs. The rupture of the concrete specimen may be caused
by the applied tensile stress (failure in cohesion), the applied shearing stress (sliding failure), the
compressive stress (crushing failure), or combinations of these stresses.

The failure of the concrete specimen can be in one of three modes [5], as shown in Fig. 2.1.
First, under axial compression, the specimen may fail in shear, as in Fig. 2.1a. Resistance to failure
is due to both cohesion and internal friction.
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Figure 2.1 Modes of failure of standard concrete cylinders.

The second type of failure (Fig. 2.1b) results in the separation of the specimen into columnar
pieces by what is known as splitting, or columnar, fracture. This failure occurs when the strength
of concrete is high, and lateral expansion at the end bearing surfaces is relatively unrestrained.

The third type of failure (Fig. 2.1c) is seen when a combination of shear and splitting failure
occurs.

2.3 STRESS–STRAIN CURVES OF CONCRETE

The performance of a reinforced concrete member under load depends, to a great extent, on the
stress–strain relationship of concrete and steel and on the type of stress applied to the member.
Stress–strain curves for concrete are obtained by testing a concrete cylinder to rupture at the age of
28 days and recording the strains at different load increments.

Standard capped cylinders ready for testing.
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Figure 2.2 Typical stress–strain curves of concrete.

Figure 2.2 shows typical stress–strain curves for concretes of different strengths. All curves
consist of an initial relatively straight elastic portion, reaching maximum stress at a strain of about
0.002; then rupture occurs at a strain of about 0.003. Concrete having a compressive strength
between 3000 and 6000 psi (21 and 42 N/mm2) may be adopted. High-strength concrete with a
compressive strength greater than 6000 psi (6000 to 15,000 psi) is becoming an important building
material for the design of concrete structures.

2.4 TENSILE STRENGTH OF CONCRETE

Concrete is a brittle material, and it cannot resist the high tensile stresses that are important when
considering cracking, shear, and torsional problems. The low tensile capacity can be attributed to
the high stress concentrations in concrete under load, so that a very high stress is reached in some
portions of the specimen, causing microscopic cracks, while the other parts of the specimen are
subjected to low stress.

Direct tension tests are not reliable for predicting the tensile strength of concrete, due to
minor misalignment and stress concentrations in the gripping devices. An indirect tension test in
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Figure 2.3 Cylinder splitting test [6]: (a) configuration of test, (b) distribution of
horizontal stress, and (c) cylinder after testing.

the form of splitting a 6 × 12-in. (150 × 300-mm) cylinder was suggested by the Brazilian Fernando
Carneiro. The test is usually called the splitting test. In this test, the concrete cylinder is placed
with its axis horizontal in a compression testing machine. The load is applied uniformly along
two opposite lines on the surface of the cylinder through two plywood pads, as shown in Fig. 2.3.
Considering an element on the vertical diameter and at a distance y from the top fibers, the element
is subjected to a compressive stress

fc =
2P
𝜋LD

(
D2

y (D − y)
− 1

)
(2.1)

and a tensile stress
f ′sp = 2P

𝜋LD
(2.2)

where P is the compressive load on the cylinder and D and L are the diameter and length of the
cylinder. For a 6 × 12-in. (150 × 300-mm) cylinder and at a distance y=D/2, the compression
strength is fe = 0.0265 P, and the tensile strength is f ′sp = 0.0088P = fc∕3.

Concrete cylinder splitting test.
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The splitting strength of f ′sp can be related to the compressive strength of concrete in that it

varies between six and seven times
√

f ′c for normal concrete and between four and five times
√

f ′c for
lightweight concrete. The direct tensile stress, f ′t , can also be estimated from the split test: Its value
varies between 0.5f ′sp and 0.7f ′sp. The smaller of these values applies to higher strength concrete.
The splitting strength, f ′sp, can be estimated as 10% of the compressive strength up to f ′c = 6000 psi
(42 N/mm2). For higher values of compressive strength, f ′sp can be taken as 9% of f ′c .

In general, the tensile strength of concrete ranges from 7 to 11% of its compressive strength,
with an average of 10%. The lower the compressive strength, the higher the relative tensile strength.

2.5 FLEXURAL STRENGTH (MODULUS OF RUPTURE) OF CONCRETE

Experiments on concrete beams have shown that tensile strength in bending is greater than the
tensile stress obtained by direct or splitting tests. Flexural strength is expressed in terms of the
modulus of rupture of concrete (fr), which is the maximum tensile stress in concrete in bending.
The modulus of rupture can be calculated from the flexural formula used for elastic materials,
fr =Mc/I, by testing a plain concrete beam. The beam, 6 × 6 × 28 in. (150 × 150 × 700 mm), is
supported on a 24-in. (600-mm) span and loaded to rupture by two loads, 4 in. (100 mm) on either
side of the center. A smaller beam of 4 × 4 × 20 in. (100 × 100 × 500 mm) on a 16-in. (400-mm)
span may also be used.

The modulus of rupture of concrete ranges between 11 and 23% of the compressive strength.
A value of 15% can be assumed for strengths of about 4000 psi (28 N/mm2). The ACI Code, Section
19.2.3.1, prescribes the value of the modulus of rupture as

fr = 7.5𝜆
√

f ′c (psi) = 0.62𝜆
√

f ′c (N∕mm2) (2.3)

where the modification factor 𝜆 for type of concrete (ACI Table 19.2.4.2) is given as

𝜆 =
⎧
⎪
⎨
⎪
⎩

1.0 for normal-weight concrete
0.85 for sand − lightweight concrete
0.75 for all − lightweight concrete

Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric fractions,
for concrete containing normal-weight fine aggregate and a blend of lightweight and normal-weight
coarse aggregate.

The modulus of rupture as related to the strength obtained from the split test on cylinders may
be taken as fr = (1.25 to 1.50)f ′sp.

2.6 SHEAR STRENGTH

Pure shear is seldom encountered in reinforced concrete members because it is usually accompanied
by the action of normal forces. An element subjected to pure shear breaks transversely into two
parts. Therefore, the concrete element must be strong enough to resist the applied shear forces.

Shear strength may be considered as 20 to 30% greater than the tensile strength of concrete,
or about 12% of its compressive strength. The ACI Code, Section 22.6.6.1, allows a nominal shear
stress of 2𝜆

√
f ′c psi (0.17𝜆

√
f ′c N∕mm2) on plain concrete sections. For more information, refer to

Chapter 5.
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2.7 MODULUS OF ELASTICITY OF CONCRETE

One of the most important elastic properties of concrete is its modulus of elasticity, which can
be obtained from a compressive test on concrete cylinders. The modulus of elasticity, Ec, can be
defined as the change of stress with respect to strain in the elastic range:

Ec =
unitstress
unitstrain

(2.4)

The modulus of elasticity is a measure of stiffness, or the resistance of the material to defor-
mation. In concrete, as in any elastoplastic material, the stress is not proportional to the strain,
and the stress–strain relationship is a curved line. The actual stress–strain curve of concrete can be
obtained by measuring the strains under increments of loading on a standard cylinder.

The initial tangent modulus (Fig. 2.4) is represented by the slope of the tangent to the curve
at the origin under elastic deformation. This modulus is of limited value and cannot be determined
with accuracy. Geometrically, the tangent modulus of elasticity of concrete, Ec, is the slope of the
tangent to the stress–strain curve at a given stress. Under long-time action of load and due to the
development of plastic deformation, the stress-to-total-strain ratio becomes a variable nonlinear
quantity.

Figure 2.4 Stress–strain curve and modulus of elasticity of concrete. Lines a–d repre-
sent (a) initial tangent modulus, (b) tangent modulus at a stress, fc, (c) secant modulus
at a stress, fc, and (d) secant modulus at a stress f ′c∕2.
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For practical applications, the secant modulus can be used. The secant modulus is represented
by the slope of a line drawn from the origin to a specific point of stress (B) on the stress–strain curve
(Fig. 2.4). Point B is normally located at f ′c∕2.

The ACI Code, Section 19.2.2.1, gives a simple formula for calculating the modulus of elas-
ticity of normal and lightweight concrete considering the secant modulus at a level of stress, fc,
equal to half the specified concrete strength, f ′c ,

Ec = 33𝑤1.5
√

f ′c psi(𝑤 in pcf) = 0.043𝑤1.5
√

f ′c N∕mm2 (2.5)

where 𝑤= unit weight of concrete [between 90 and 160 lb/ft3 (pcf) or 1400 to 2600 kg/m3] and
f ′c = specified compressive strength of a standard concrete cylinder. For normal-weight concrete,
𝑤 is approximately 145 pcf (2320 kg/m3); thus,

Ec = 57,600
√

f ′c psi = 4780
√

f ′c MPa (2.6)

The ACI Code allows the use of Ec = 57,000
√

f ′c (psi) = 4700
√

f ′c MPa. The module of elas-
ticity, Ec, for different values of f ′c are shown in Table A.10.

2.8 POISSON’S RATIO

Poisson’s ratio 𝜇 is the ratio of the transverse to the longitudinal strains under axial stress within
the elastic range. This ratio varies between 0.15 and 0.20 for both normal and lightweight con-
crete. Poisson’s ratio is used in structural analysis of flat slabs, tunnels, tanks, arch dams, and other
statically indeterminate structures. For isotropic elastic materials, Poisson’s ratio is equal to 0.25.
An average value of 0.18 can be used for concrete.

Test on a standard concrete cylinder to determine the modulus of elasticity of concrete.
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2.9 SHEAR MODULUS

The modulus of elasticity of concrete in shear ranges from about 0.4 to 0.6 of the corresponding
modulus in compression. From the theory of elasticity, the shear modulus is taken as follows:

Gc =
Ec

2(1 + 𝜇)
(2.7)

where 𝜇=Poisson’s ratio of concrete. If 𝜇 is taken equal to 1
6
, then Gc = 0.43Ec = 24,500

√
f ′c .

2.10 MODULAR RATIO

The modular ratio n is the ratio of the modulus of elasticity of steel to the modulus of elasticity of
concrete: n=Es/Ec.

Because the modulus of elasticity of steel is considered constant and is equal to 29 × 106 psi
and Ec = 33𝑤1.5

√
f ′c ,

n = 29 × 106

33𝑤1.5
√

f ′c
(2.8)

For normal-weight concrete, Ec = 57,000
√

f ′c ; hence, n can be taken as

n = 500
√

f ′c
(f ′c in psi) = 42

√
f ′c
(f ′c in N∕mm2) (2.9)

The significance and the use of the modular ratio are explained in Chapter 6.

2.11 VOLUME CHANGES OF CONCRETE

Concrete undergoes volume changes during hardening. If it loses moisture by evaporation, it
shrinks, but if the concrete hardens in water, it expands. The causes of the volume changes in
concrete can be attributed to changes in moisture content, chemical reaction of the cement with
water, variation in temperature, and applied loads.

2.11.1 Shrinkage

The change in the volume of drying concrete is not equal to the volume of water removed [6].
The evaporation of free water causes little or no shrinkage. As concrete continues to dry, water
evaporates and the volume of the restrained cement paste changes, causing concrete to shrink,
probably due to the capillary tension that develops in the water remaining in concrete. Emptying
of the capillaries causes a loss of water without shrinkage, but once the absorbed water is removed,
shrinkage occurs.

Many factors influence the shrinkage of concrete caused by the variations in moisture condi-
tions [5]:

1. Cement and Water Content. The more cement or water content in the concrete mix, the greater
the shrinkage.

2. Composition and Fineness of Cement. High-early-strength and low-heat cements show more
shrinkage than normal portland cement. The finer the cement, the greater the expansion under
moist conditions.
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3. Type, Amount, and Gradation of Aggregate. The smaller the size of aggregate particles, the
greater the shrinkage. The greater the aggregate content, the smaller the shrinkage [7].

4. Ambient Conditions, Moisture, and Temperature. Concrete specimens subjected to moist con-
ditions undergo an expansion of 200 to 300 × 10−6, but if they are left to dry in air, they shrink.
High temperature speeds the evaporation of water and, consequently, increases shrinkage.

5. Admixtures. Admixtures that increase the water requirement of concrete increase the shrink-
age value.

6. Size and Shape of Specimen. As shrinkage takes place in a reinforced concrete member, ten-
sion stresses develop in the concrete, and equal compressive stresses develop in the steel.
These stresses are added to those developed by the loading action. Therefore, cracks may
develop in concrete when a high percentage of steel is used. Proper distribution of reinforce-
ment, by producing better distribution of tensile stresses in concrete, can reduce differential
internal stresses.

The values of final shrinkage for ordinary concrete vary between 200 and 700 × 10−6. For
normal-weight concrete, a value of 300 × 10−6 may be used. The British Code [8] gives a value of
500 × 10−6, which represents an unrestrained shrinkage of 1.5 mm in a 3-m length of thin, plain
concrete sections. If the member is restrained, a tensile stress of about 10 N/mm2 (1400 psi) arises.
If concrete is kept moist for a certain period after setting, shrinkage is reduced; therefore, it is
important to cure the concrete for a period of no fewer than 7 days.

Exposure of concrete to wind increases the shrinkage rate on the upwind side. Shrinkage
causes an increase in the deflection of structural members, which in turn increases with time.
Symmetrical reinforcement in the concrete section may prevent curvature and deflection due to
shrinkage.

Generally, concrete shrinks at a high rate during the initial period of hardening, but at later
stages the rate diminishes gradually. It can be said that 15 to 30% of the shrinkage value occurs in
2 weeks, 40 to 80% occurs in 1 month, and 70 to 85% occurs in 1 year.

2.11.2 Expansion Due to Rise in Temperature

Concrete expands with increasing temperature and contracts with decreasing temperature. The
coefficient of thermal expansion of concrete varies between 4 and 7 × 10−6 per degree Fahren-
heit. An average value of 5.5 × 10−6 per degree Fahrenheit (12 × 10−6 per degree Celsius) can be
used for ordinary concrete. The British Standard Institution [8] suggests a value of 10−5 per degree
Celsius. This value represents a change of length of 10 mm in a 30-m member subjected to a change
in temperature of 33∘C. If the member is restrained and unreinforced, a stress of about 7 N/mm2

(1000 psi) may develop.
In long reinforced concrete structures, expansion joints must be provided at lengths of 100 to

200 ft (30 to 60 m). The width of the expansion joint is about 1 in. (25 mm). Concrete is not a good
conductor of heat, whereas steel is a good one. The ability of concrete to carry load is not much
affected by temperature.

2.12 CREEP

Concrete is an elastoplastic material, and beginning with small stresses, plastic strains develop
in addition to elastic ones. Under sustained load, plastic deformation continues to develop over a
period that may last for years. Such deformation increases at a high rate during the first 4 months
after application of the load. This slow plastic deformation under constant stress is called creep.
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(a) (b) (c) (d)
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ε3
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Figure 2.5 Deformation in a loaded concrete cylinder: (a) specimen unloaded, (b) elas-
tic deformation, (c) elastic plus creep deformation, and (d) permanent deformation after
release of load.

Figure 2.5 shows a concrete cylinder that is loaded. The instantaneous deformation is 𝜀1,
which is equal to the stress divided by the modulus of elasticity. If the same stress is kept for a
period of time, an additional strain, 𝜀2, due to creep effect, can be recorded. If load is then released,
the elastic strain, 𝜀1, will be recovered, in addition to some creep strain. The final permanent plastic
strain, 𝜀3, will be left, as shown in Fig. 2.5. In this case, 𝜀3 = (1− 𝛼)𝜀2, where 𝛼 is the ratio of
the recovered creep strain to the total creep strain. The ratio 𝛼 ranges between 0.1 and 0.2. The
magnitude of creep recovery varies with the previous creep and depends appreciably upon the
period of the sustained load. Creep recovery rate will be less if the loading period is increased,
probably due to the hardening of concrete while in a deformed condition.

The ultimate magnitude of creep varies between 0.2 × 10−6 and 2 × 10−6 per unit stress
(lb/in.2) per unit length. A value of 1 × 10−6 can be used in practice. The ratio of creep strain to
elastic strain may be as high as 4.

Creep takes place in the hardened cement matrix around the strong aggregate. It may be
attributed to slippage along planes within the crystal lattice, internal stresses caused by changes in
the crystal lattice, and gradual loss of water from the cement gel in the concrete.

The different factors that affect the creep of concrete can be summarized as follows [9]:

1. Level of Stress. Creep increases with an increase of stress in specimens made from concrete
of the same strength and with the same duration of load.

2. Duration of Loading. Creep increases with the loading period. About 80% of the creep occurs
within the first 4 months; 90% occurs after about 2 years.

3. Strength and Age of Concrete. Creep tends to be smaller if concrete is loaded at a late age.
Also, creep of 2000 psi (14 N/mm2)–strength concrete is about 1.41 × 10−6, whereas that
of 4000 psi (28 N/mm2)–strength concrete is about 0.8 × 10−6 per unit stress and length
of time.

4. Ambient Conditions. Creep is reduced with an increase in the humidity of the ambient air.
5. Rate of Loading. Creep increases with an increase in the rate of loading when followed by

prolonged loading.
6. Percentage and Distribution of Steel Reinforcement in Reinforced Concrete Member. Creep

tends to be smaller for higher proportion or better distribution of steel.
7. Size of Concrete Mass. Creep decreases with an increase in the size of the tested specimen.
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8. Type, Fineness, and Content of Cement. The amount of cement greatly affects the final creep
of concrete, as cement creeps about 15 times as much as concrete.

9. Water–Cement Ratio. Creep increases with an increase in the water–cement ratio.
10. Type and Grading of Aggregate. Well-graded aggregate will produce dense concrete and con-

sequently a reduction in creep.
11. Type of Curing. High-temperature steam curing of concrete, as well as the proper use of a

plasticizer, will reduce the amount of creep.

Creep develops not only in compression but also in tension, bending, and torsion.
The ratio of the rate of creep in tension to that in compression will be greater than 1 in the

first 2 weeks, but this ratio decreases over longer periods [5].
Creep in concrete under compression has been tested by many investigators. Troxell, Raphale,

and Davis [10] measured creep strains periodically for up to 20 years and estimated that of the total
creep after 20 years, 18 to 35% occurred in 2 weeks, 30 to 70% occurred in 3 months, and 64 to
83% occurred in 1 year.

For normal concrete loaded after 28 days, Cr = 0.13 3
√

t, where Cr = creep strain per unit stress
per unit length. Creep augments the deflection of reinforced concrete beams appreciably with time.
In the design of reinforced concrete members, long-term deflection may be critical and has to be
considered in proper design. Extensive deformation may influence the stability of the structure.

Sustained loads affect the strength as well as the deformation of concrete. A reduction of up
to 30% of the strength of unreinforced concrete may be expected when concrete is subjected to a
concentric sustained load for 1 year.

The fatigue strength of concrete is much smaller than its static strength. Repeated loading
and unloading cycles in compression lead to a gradual accumulation of plastic deformations. If
concrete in compression is subjected to about 2 million cycles, its fatigue limit is about 50 to 60%
of the static compression strength. In beams, the fatigue limit of concrete is about 55% of its static
strength [11].

2.13 MODELS FOR PREDICTING SHRINKAGE AND CREEP OF CONCRETE

Seven models were described in this chapter for the prediction of shrinkage and creep of concrete.
These include ACI 209R-92, B3, GL-2000, CEB 90, CEB MC 90–99, fib MC 2010, and AASHTO.

2.13.1 ACI 209R-92 Model

The American Concrete Institute recommends the ACI 209R-92 as one of four models [12].
Branson and Christianson [13] first developed this model in 1970. The ACI 209 model was used
for many years in the design of concrete structures. The model is simple to use but limited in its
accuracy.

Shrinkage Calculation. Calculation of shrinkage using the ACI 209R-92 model can be per-
formed if the following parameters and conditions are known: curing method (moist-cured or
steam-cured concrete), relative humidity, H, type of cement, specimen shape, ultimate shrinkage
strain, 𝜀shu, age of concrete after casting, t, age of the concrete drying commenced, usually taken
as the age at the end of moist curing, tc.

The shrinkage strain is defined as

𝜀sh(t, tc) =
t − tc

f + (t − tc)
KssKsh𝜀shu (2.10)
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where
t = age of concrete after casting (days)

tc = age of the concrete drying commenced (days)
f = constant in determining shrinkage strain, depends on curing method shape and size factors

according to Table 2.4
Kss = shape and size correction factor for shrinkage according to Eq. 2.11
Ksh = relative humidity correction factor for shrinkage according to Eq. 2.12
𝜀shu = ultimate shrinkage strain 780 × 10−6 (in./in.) or (mm/mm) (for both moist- and steam-cured

concrete)

Shape and size correction factor for shrinkage should be calculated as follows:

For t − tc ≤ one year

Kss =
⎧
⎪
⎨
⎪
⎩

1.23 − 0.152
(

V
S

)
(in. − lb)

1.23 − 0.006
(

V
S

)
(SI)

(2.11a)

For t − tc > one year

Kss =
⎧
⎪
⎨
⎪
⎩

1.17 − 0.116
(

V
S

)
(in. − lb)

1.17 − 0.00456
(

V
S

)
(SI)

(2.11b)

where
V = volume of the specimen (in.3 or mm3)
S = surface of the specimen (in.2 or mm2)

Relative humidity correction factor for shrinkage is

Ksh =
{

1.40 − 0.01H for 40% ≤ H ≤ 80%
3.00 − 0.03H for 81% ≤ H ≤ 100%

(2.12)

where

H = relative humidity (%)

Table 2.4 Values of Constant f as a Function of Curing
Method

Conditions f

Moist-cured concrete (7 days min.) 35
Steam-cured concrete (3 days min.) 55
If shape and size effects are
considered for both curing condition

26e[0.36(V/S)] (in.−lb)

26e[1.42×10−2(V∕S)] (SI)

Note: In practice, f = 35 and f = 155 are commonly used.
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Creep Calculation. The total load-dependent strain at time t, 𝜀ic (t, t0) of a concrete member
uniaxially loaded at time t0 with a constant stress 𝜎 may be calculated as follows:

𝜀ic(t, t0) = 𝜀i(t0) + 𝜀c(t, t0) (2.13)

where
𝜀i(t0) = initial elastic strain at loading

𝜀c(t, t0) = creep strain at time t≥ t0

𝜀i(t0) =
𝜎

Ecmt0

(2.14)

𝜀c(t, t0) =
𝜎

Ecmt0

Cc(t) (2.15)

where
Ecmt0

= modulus of elasticity at age of loading (MPa) as given in Eq. 2.17
Cc(t) = creep coefficient at time t, as given in Eq. 2.19

Usually, the total load-dependent strain is presented with compliance function, also called creep
function, J(t, t0), which represents the total load-dependent strain at time t produced by a unit
constant stress that has been acting since time t0.

J(t, t0) =
1 + Cc(t)

Ecmt0

(2.16)

Ecmt0
=

{
33(𝛾)3∕2

√
f ′c (t0) (in. − lb)

0.043(𝛾)3∕2
√

f ′c (t0) (SI)
(2.17)

where
𝛾 = concrete unit weight (kg/m3) or (lb/ft3)

f ′c (t0) = mean concrete compressive strength at age of loading (MPa) or ksi

f ′c (t0) = fcm28

t0
a + bt0

(2.18)

where fcm28
is the average 28-day concrete compressive strength (MPa) a and b are constants accord-

ing to Table 2.5.
Creep coefficient, Cc(t), can be determined as follows:

Cc(t, t0) =
(t − t0)0.60

10 + (t − t0)0.60
CcuKchKcaKcs (2.19)

Table 2.5 Constants a and b as Function of Cement Type and Curing
Method

Type of Cement Moist-Cured Concrete Steam-Cured Concrete

I a= 4 b= 0.85 a= 1 b= 0.95
III a= 2.30 b= 0.92 a= 0.70 b= 0.98
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Table 2.6 Correction Factors for Age of Loading and Relative Humidity

Curing Method t0 (days) H Kca Kch

Moist cured ≥ 1 day ≥ 40% N/A N/A
≥ 7 days ≥ 40% 1.25(t0)−0.118 1.27− 0.0067H

Steam cured ≥ 1 day ≥ 40% 1.13(t0)−0.095 1.27 – 0.0067H
≥ 7 days ≥ 40% N/A N/A

Table 2.7 Correction Factors for Shape and Size

t− t0 Kcs (in. −lb) Kcs (SI)

< 1 year 1.14 − 0.092
(

V
S

)
1.14 − 0.00363

(
V
S

)

> 1 year 1.10 − 0.068
(

V
S

)
1.10 − 0.00268

(
V
S

)

where
t0 = age of concrete at loading (days)
t = age of concrete (days)

Ccu = ultimate creep coefficient= 2.35
Kch = relative humidity correction factor for creep determined from Table 2.6
Kca = age at loading correction factor determined from Table 2.6
Kcs = shape and size correction factor for creep determined from Table 2.7

2.13.2 B3 Model

The model was developed by Bazant and Baweja [14] and is described by ACI [12].

Shrinkage Calculation. Required parameters for calculation of shrinkage strain using the B3
model are concrete mean compressive strength at 28 days, curing conditions, cement type, relative
humidity, water content in concrete, and specimen shape.

The shrinkage strain can be estimated using the following equation:

𝜀s(t) = (𝜀shu)(Kh)S(t) (2.20)

where
𝜀shu = ultimate shrinkage strain according to Eq. 2.21
Kh = humidity function for shrinkage according to Table 2.9

S(t) = time function for shrinkage according to Eq. 22.27

Ultimate shrinkage strain can be calculated using the following equation:

𝜀shu = −𝜀su
Ecm607

Ecm(tc+𝜏sh)
(2.21)

𝜀su =
{
−𝛼1𝛼2

[
0.025(𝑤)2.1(fcm28

)−0.28 + 270
]
× 10−6 (in. − lb)

−𝛼1𝛼2[0.019(𝑤)2.1(fcm28
)−0.28 + 270] × 10−6 (SI)

(2.22)
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Table 2.8 Correction Factor 𝛼1 as
Function of Cement Type

Type of Cement 𝜶1

I 1.00
II 0.85
III 1.10

Table 2.9 Correction Factor 𝛼2 as
Function of Type of Curing

Type of Curing 𝜶2

Steam cured 0.75
Water cured or H= 100% 1.00
Sealed during curing 1.20

where
𝛼1 = type of cement correction factor according to Table 2.8
𝛼2 = curing condition correction factor according to the Table 2.9
𝑤 = water content (kg/m3) or (lb/yd3)

fcm28
= mean compressive concrete strength at 28 days (MPa) or (psi)

Ecm607∕Ecm(t+𝜏sh) = a factor that accounts for the time dependence of ultimate shrinkage of concrete

Type of cement correction factor 𝛼1 can be determined using Table 2.8.
Curing condition correction factor 𝛼2 can be determined using Table 2.9.
Humidity function for shrinkage, Kh, should be determined according to Table 2.10.

Ecm28 =

{
57000

√
fcm28 (in. − lb)

4735
√

fcm28 (SI)
(2.23)

Ecm607 = (1.167)1∕2Ecm28 (2.24)

Ecm(tc+Tsh) =

(
tc + 𝜏sh

4 + 0.85
(
tc + 𝜏sh

)

)1∕2

Ecm28 (2.25)

𝜏sh =
⎧
⎪
⎨
⎪
⎩

190.8t−0.08
c

(
fcm28

)−0.25
[
2ks

(V
S

)]2

(in. − lb)

0.085t−0.08
c (fcm28)−0.25

[
2ks

(V
S

)]2

(SI)
(2.26)

where H is relative humidity (%).
Time function for shrinkage, S(t), should be calculated according to the following equation:

S(t) = tanh

√
t − tc

Tsh
(2.27)
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Table 2.10 Humidity Function for Shrinkage, Kh

Humidity Kh

H≤ 98% 1− (H/100)3

H= 100% −0.2
98%≤H ≤ 100% Linear interpolation

Table 2.11 Correction Factor Ks as Function
of Cross-Sectional Shape

Cross-Sectional Shape Ks

Infinite slab 1.00
Infinite cylinder 1.15
Infinite square prism 1.25
Sphere 1.30
Cube 1.55

where
t = age of concrete (days)

tc = age of concrete drying commenced (days)
t− tc = time from end of initial curing

Tsh = shrinkage half-time (days) according to Eq. 2.26
Ecm28 = modulus of elasticity of concrete at 28 days (MPa or psi)

Ks = cross-sectional shape correction factor according to Table 2.11

If type of member is not defined, Ks can be assumed to be 1.

Creep Calculation. The creep function, also called creep compliance, J(t, t0) is given by Eq. 2.28:

J(t, t0) = q1 + C0(t, t0) + Cd(t, t0, tc) (2.28)

where
q1 = instantaneous strain, given in Eq. 2.29

C0(t, t0) = compliance function for basic creep composed of three terms, an aging viscoelastic
term, a nonaging viscoelastic term, and an aging flow term given in Eq. 2.30

Cd(t, t0, tc) = compliance function for drying creep, given in Eq. 2.38

q1 = 0.6
Ecm28

(2.29)

The compliance function for basic creep, C0(t, t0), should be calculated as follows:

C0(t, t0) = q2Q(t, t0) + q3ln[1 + (t − t0)0.1] + q4ln

(
t
t0

)
(2.30)

where
q2 = aging viscoelastic compliance parameter

Q(t, t0) = binomial integral
q3 = nonaging viscoelastic compliance parameter
q4 = flow compliance parameter
t0 = age of concrete at loading (days)
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q2 =
{

86.8(c)0.5(fcm28
)−0.9 × 10−6 (in. − lb)

185.4(c)0.5(fcm28
)−0.9 × 10−6 (SI)

(2.31)

where c is the cement content (kg/m3).

Q(t, t0) = Qf (t0)

[

1 +
Qf

(
t0
)r(t0)

Z(t, t0)r(t0)

]−1∕r(t0)

(2.32)

where

Qf (t0) =
1

0.086(t0)2∕9 + 1.21(t0)4∕9
(2.33)

Z(t, t0) =
ln[1 + (t − t0)0.1]√

t0
(2.34)

r(t0) = 1.7(t0)0.12 + 8 (2.35)

q3 = 0.29q2

(
𝑤

c

)4
(2.36)

q4 =
⎧
⎪
⎨
⎪
⎩

0.14
(a

c

)−0.7
× 10−6 (in. − lb)

20.3
(a

c

)−0.7
× 10−6 (SI)

(2.37)

The compliance function for drying creep, Cd(t, t0, tc), should be calculated as follows:

Cd(t, t0, tc) = q5

√
exp[−8H(t)] − exp[−8H(t0)] (2.38)

where q5 is a drying creep compliance parameter that can be calculated from the equation

q5 =
0.757|𝜀shu × 106|−0.6

fcm28

(2.39)

where 𝜀shu is the ultimate shrinkage strain, given by Eq. 2.21. H(t) and H(t0) are spatial averages
of pore relative humidity.

H(t) = 1 −
[(

1 − H
100

)
S(t)

]
(2.40)

H(t0) = 1 −
[(

1 − H
100

)
S(t0)

]
(2.41)

where S(t) is given by Eq. 2.27 and

S(t0) = tanh

√
t0 − tc

Tsh
(2.42)

and Tsh is given by Eq. 2.26.

2.13.3 GL 2000 Model

The GL 2000 model was developed by Gardner et al. and is described in Refs. [12] and [15].
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Shrinkage Calculation. Parameters required for calculation of shrinkage strain using the GL
2000 model are mean 28-day concrete compressive strength, fcm28

, relative humidity, H, age of
concrete at the beginning of shrinkage, tc, type of cement, and specimen shape.

The shrinkage strain can be calculated using the following equation:

𝜀s(t) = 𝜀shu𝛽(h)𝛽(t − tc) (2.43)

where
𝜀shu = ultimate shrinkage strain according to Eq. 2.44
𝛽(h) = correction term for effect of humidity according to Eq. 2.45

𝛽(t− tc) = correction term for effect of time of drying according to Eq. 2.46

Ultimate shrinkage strain should be calculated from the following equation:

𝜀shu =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(900)K

(
4350
fcm28

)1∕2

× 10−6 (in. − lb)

(900)K
(

30
fcm28

)1∕2

× 10−6 (SI)
(2.44)

where
K = shrinkage constant, which depends on cement type as shown in Table 2.12

fcm28
= mean 28-day concrete compressive strength (MPa) or psi

Shrinkage constant K can be determined from Table 2.12.
Correction term for effect of humidity, 𝛽(h), should be calculated as shown:

𝛽(h) = 1 − 1.18
( H

100

)4

(2.45)

where H is the relative humidity (%).
Correction term for effect of time, 𝛽(t− tc), should be determined as follows:

𝛽(t − tc) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
t − tc

t − tc + 77(V∕S)2

)1∕2

(in. − lb)
(

t − tc
t − tc + 0.12(V∕S)2

)1∕2

(SI)

(2.46)

where
t = age of concrete after casting (days)

tc = age of concrete at the beginning of shrinkage (days)
V/S = volume-to-surface area ratio (mm or in.)

Table 2.12 Shrinkage Constant K as
Function of Cement Type

Type of Cement K

I 1.00
II 0.75
III 1.15
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Creep Calculation. The creep compliance is composed of two parts: the elastic strain and the
creep strain according to the following equation:

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

(2.47)

where

Ecmt0
= modulus of elasticity of concrete at loading (MPa or psi)

Ecm28
= modulus of elasticity of concrete at 28 days (MPa or psi)

𝜙28(t, t0) = creep coefficient

Ecmt0
=
{

500,000 + 52,000
√

fcmt0
(in. − lb)

3500 + 4300
√

fcmt0
(SI)

(2.48)

where fcmt0
is the concrete mean compressive strength at loading (MPa or psi), which can be deter-

mined as follows:

fcmt0
= fcm28

t0
3∕4

a + bt03∕4
(2.49)

Coefficients a and b are related to the cement type as shown in Table 2.13.

Ecm28
= 3500 + 4300

√
fcm28

(2.50)

Creep coefficient, 𝜙(t, t0), can be calculated as shown:

𝜙28(t, t0) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜙
(
tc
)
[

2

( (
t − t0

)0.3

(t − t0)0.3 + 14

)

+
(

7
t0

)0.5( t − t0
t − t0 + 7

)0.5

+2.5
(
1 − 1.086h2

)
(

t − t0

t − t0 + 77(V∕S)2

)0.5⎤
⎥
⎥
⎦

(in. − lb)

𝜙(tc)

[

2

( (
t − t0

)0.3

(t − t0)0.3 + 14

)

+
(

7
t0

)0.5( t − t0
t − t0 + 7

)0.5

+2.5
(
1 − 1.086h2

)
(

t − t0
t − t0 + 0.12(V∕S)2

)0.5⎤
⎥
⎥
⎦

(SI)

(2.51)

If t0 = tc then 𝜙(tc) = 1 (2.52)

Table 2.13 Coefficient a and b as Function of
Cement Type

Cement Type a b

I 2.8 0.77
II 3.4 0.72
III 1.0 0.92
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If t0 > tc then 𝜙(tc) =
⎡
⎢
⎢
⎣
1 −

(
t0 − tc

t0 − tc + 77(V∕S)2

)0.5⎤
⎥
⎥
⎦

0.5

(in. − lb)

If t0 > tc then 𝜙(tc) =
⎡
⎢
⎢
⎣
1 −

(
t0 − tc

t0 − tc + 0.12(V∕S)2

)0.5⎤
⎥
⎥
⎦

0.5

(SI)

h = H
100

(2.53)

where H is the relative humidity (%).

2.13.4 CEB 90 Model

The CEB 90 model was developed by Muller and Hillsdorf [16].

Shrinkage Calculation. Parameters required for calculation of shrinkage strain using the CEB 90
model are mean 28-day concrete compressive strength fcm28

, relative humidity H, age of concrete
at the beginning of shrinkage tc, type of cement, and specimen shape.

The strain due to shrinkage may be calculated from the following equation:

𝜀s(t, tc) = 𝜀cs0
𝛽s(t − tc) (2.54)

where
𝜀cs0

= notional shrinkage coefficient according to Eq. 2.55
𝛽s(t, tc) = coefficient describing development of shrinkage with time according to Eq. 2.58

Notional shrinkage coefficient is

𝜀cs0
= 𝜀s(fcm28

)𝛽RH (2.55)

where
𝜀s(fcm28

) = concrete strength factor on shrinkage according to Eq. 2.56
𝛽RH = relative humidity factor on notional shrinkage coefficient according to Table 2.14

Concrete strength factor on shrinkage, 𝜀s(fcm28
), can be calculated as

𝜀s(fcm28
) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
160 + 10

(
𝛽sc

)(
9 −

fcm28

1450

)]
× 10−6 (in. − lb)

[
160 + 10

(
𝛽sc

)(
9 −

fcm28

10

)]
× 10−6 (SI)

(2.56)

Table 2.14 Determination of Coefficient 𝛽RH

Humidity 𝜷RH

40%≤H< 99% −1.55× 𝛽arh
H≥ 99% 0.25



2.13 Models for Predicting Shrinkage and Creep of Concrete 37

Table 2.15 Coefficient 𝛽sc

Type of Cement European Type American Type 𝜷sc

Slow hardening SL II 4
Normal/rapid hardening R I 5
Rapid hardening, high strength RS III 8

where
𝛽sc = coefficient that depends on type of cement according to Table 2.15.

fcm28
= mean 28-day concrete compressive strength (MPa or psi)

Coefficient 𝛽sc dependent on humidity, 𝛽RH, should be determined according to Table 2.15,
where

𝛽arh = 1 −
( H

100

)3

(2.57)

The development of shrinkage with time is given by

𝛽s(t − tc) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

√
t − tc

350
(
he∕4

)2 + (t − tc)
(in. − lb)

√
(t − tc)

0.56(he∕4)2 + (t − tc)
(SI)

(2.58)

where
t = age of concrete (days)

tc = age of concrete at the beginning of shrinkage (days)
he = effective thickness to account for volume/surface ratio (mm)

Effective thickness, he, can be determined as follows:

he =
2Ac

u
= 2V

S
(2.59)

where
Ac = cross section of the structural member (mm2 or in.2)
u = perimeter of the structural member in contact with the atmosphere (mm or in.)

Creep Calculation. Creep compliance represents the total stress-dependent strain per unit stress.
It can be calculated as

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

(2.60)

where
Ecmt0

= modulus of elasticity at time of loading t0 (MPa or psi)
Ecm28

= modulus of elasticity at 28 days (MPa or psi)
𝜙28(t, t0) = creep coefficient

Ecmt0
= Ecm28

exp

[
0.5S

(
1 −

√
28
t0

)]
(2.61)
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Table 2.16 Coefficient S as Function of Cement Type

Cement Type European Type U.S. Type S

Slow hardening SL II 0.38
Normal/rapid hardening R I 0.25
Rapid hardening high strength RS III 0.20

where S is the coefficient that depends on cement type and can be determined from Table 2.16.

Ecm28
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

3,118,310
3

√
fcm28

1450
(in. − lb)

21,500
3

√
fcm28

10
(SI)

(2.62)

Creep coefficient, 𝜙(t, t0), can be evaluated from the given equation:

𝜙28(t, t0) = 𝜙0𝛽c(t − t0) (2.63)

where
𝜙0 = notional creep coefficient

𝛽c(t,t0) = equation describing development of creep with time after loading

𝜙0 = 𝜙RH𝛽(fcm28
)𝛽(t0) (2.64)

where 𝜙RH is the relative humidity factor on the notional creep coefficient given by

𝜙RH =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 +
1 − H∕100

0.46 3
√

he∕4
(in. − lb)

1 +
1 − H∕100

0.46 3
√

he∕100
(SI)

(2.65)

𝜀as0
(fcm28

) is the concrete strength factor on the notional creep coefficient given by

𝛽(fcm28
) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

5.3
√

fcm28
∕1450

(in. − lb)

5.3
√

fcm28
∕10

(SI)
(2.66)

𝛽 (t0) is the age of concrete at loading factor on the notional creep coefficient given by

𝛽(t0) =
1

0.1 + t0.2
0

(2.67)

An equation describing development of creep with time after loading, 𝛽c(t, t0), can be calculated
using the following equation:

𝛽c(t, t0) =
(

t − t0
𝛽H + t − t0

)0.3

(2.68)
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𝛽H =
{

37.5he

[
1 + (0.012H)18] + 250 ≤ 1500 days (in. − lb)

1.5he[1 + (0.012H)18] + 250 ≤ 1500 days (SI)
(2.69)

2.13.5 CEB MC 90-99 Model

The CEB MC 90-99 is a modification of the CEB 90 and is described in Ref. 17.

Shrinkage Calculation. In this new model, total shrinkage contains an autogenous and drying
shrinkage component. In high-performance concrete, autogenous shrinkage is significant and needs
to be considered in prediction of shrinkage. This new approach was necessary so that shrinkage of
normal as well as high-performance concrete can be predicted with sufficient accuracy [1].

Total shrinkage strain can be calculated using the following equation:

𝜀s(t, tc) = 𝜀as(t) + 𝜀ds(t, tc) (2.70)

where
𝜀as(t) = autogenous shrinkage at time t

𝜀ds(t, tc) = drying shrinkage at time t

Autogenous shrinkage, 𝜀as(t), should be calculated as follows:

𝜀as(t) = 𝜀as0
(fcm28

)𝛽as(t) (2.71)

where
𝜀cas0

(fcm28
) = notional autogenous shrinkage coefficient according to Eq. 2.72

𝛽as(t) = function to describe the time-development of autogenous shrinkage, from Eq. 2.73

Notional autogenous shrinkage coefficient, 𝜀cas0
(fcm), can be calculated as

𝜀as0
(fcm28

) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−𝛼as

( fcm28
∕1450

6 + fcm28
∕1450

)2.5

× 10−6 (in. − lb)

−𝛼as

( fcm28
∕10

6 + fcm28
∕10

)2.5

× 10−6 (SI)
(2.72)

where
𝛼as = coefficient that depends on type of cement

= 800 for slowly hardening cements (SL)
= 700 for normal or rapidly hardening cements (N or R)
= 600 for rapidly hardening high-strength cements (RS)

𝜀ds0
(fcm28

) = mean compressive strength of concrete at an age of 28 days (MPa or psi)

Function 𝛽as(t) should be calculated using the following equation:

𝛽as(t) = 1 − exp[−0.2(t)0.5] (2.73)

where t is the age of concrete (days).
Drying shrinkage, 𝜀ds(t, tc), can be estimated by the equation

𝜀ds(t, tc) = 𝜀ds0
(fcm28

)𝛽RH(H)𝛽ds(t − tc) (2.74)
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where
𝜀ds0

(fcm28
) = notional drying shrinkage coefficient according to Eq. 2.75

𝛽RH(H) = coefficient to take into account the effect of relative humidity on drying shrinkage
according to Eq. 2.76

𝛽ds(t− tc) = function to describe the time development of drying shrinkage according to Eq. 2.78

Notional drying shrinkage coefficient, 𝜀ds0
(fcm28

), may be calculated from the following
equation:

𝜀ds0
(fcm28

) =
{

[(220 + 110𝛼ds1
)exp(−𝛼ds2

fcm28
∕1450)] × 10−6 (in. − lb)

[(220 + 110𝛼ds1
)exp(−𝛼ds2

fcm28
∕10)] × 10−6 (SI)

(2.75)

where
𝛼ds1

= coefficient that depends on type of cement
= 3 for slowly hardening cements (SL)
= 4 for normal or rapidly hardening cements (N or R)
= 6 for rapidly hardening high-strength cements (RS)

𝛼ds2
= coefficient that depends on type of cement
= 0.13 for slowly hardening cements (SL)
= 0.12 for normal or rapidly hardening cements (N or R)
= 0.12 for rapidly hardening high-strength cements (RS)

Coefficient 𝛽RH(H) should be calculated as follows:

𝛽RH =
⎧
⎪
⎨
⎪
⎩

−1.55

[
1 −

( H
100

)3
]

for 40% ≤ H < 99% × 𝛽s1

0.25 for H ≥ 99% × 𝛽s1

(2.76)

where
H = ambient relative humidity (%)
𝛽s1

= coefficient to take into account the self-desiccation in high-performance concrete

It can be determined as follows:

𝛽s1
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
3.5 × 1450

fcm28

)0.1

≤ 1.0 (in. − lb)
(

35
fcm28

)0.1

≤ 1.0 (SI)
(2.77)

Function 𝛽ds(t− tc) may be estimated as follows:

𝛽ds(t − tc) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
t − tc

350
(
he∕4

)2 + (t − tc)

)0.5

(in. − lb)

(
t − tc

0.56
(
he∕4

)2 + (t − tc)

)0.5

(SI)

(2.78)
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where
tc = concrete age at the beginning of drying (days)
he = 2Ac/u= notional size of member (mm), where Ac is the cross section (mm2) and u is the

perimeter of the member in contact with the atmosphere (mm)

Creep Calculation. Total stress-dependent strain per unit stress, also called creep compliance or
creep function, can be determined as follows:

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

(2.79)

where
Ecmt0

= modulus of elasticity at age of loading (MPa or psi)
Ecm28

= modulus of elasticity at day 28 (MPa or psi)
𝜙28 (t, t0 ) = creep coefficient

Ecmt0
= Ecm28

exp
⎡
⎢
⎢
⎣
0.5S

⎛
⎜
⎜
⎝
1 −

√(
28
t0

)⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

(2.80)

where S is the coefficient that depends on cement type and compressive strength and can be deter-
mined from Table 2.17.

Ecm28
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

3,118,310
3

√
fcm28

1450
(in. − lb)

21,500
3

√
fcm28

10
(SI)

(2.81)

Creep coefficient, 𝜙(t, t0), can be evaluated from the given equation:

𝜙(t, t0) = 𝜙0𝛽c(t, t0) (2.82)

where
𝜙0 = notional creep coefficient

𝛽(t, t0 ) = equation describing development of creep with time after loading

𝜙0 = 𝜙RH𝛽(fcm28
)𝛽(t0) (2.83)

Table 2.17 Coefficient S as Function of Cement Type and
Compressive Strength

fcm28
Type of Cement S

≤ 60 MPa (8700 psi) Rapidly hardening high strength (RS) 0.20
≤ 60 MPa (8700 psi) Normal or rapidly hardening (N or R) 0.25
≤ 60 MPa (8700 psi) Slow hardening (SL) 0.38
> 60 MPa (8700 psi) All typesa 0.20

aCase not considered in CEB MC 90–99.
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where 𝜙RH is the relative humidity factor on the notional creep coefficient given as

𝜙RH =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[

1 +
1 − H∕100

0.46 3
√

he∕4
𝛼1

]

𝛼2 (in. − lb)

[

1 +
1 − H∕100

0.46 3
√

he∕100
𝛼1

]

𝛼2 (SI)

(2.84)

where

𝛼1 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
3.5 × 1450

fcm28

]0.7

(in. − lb)

[
35

fcm28

]0.7

(SI)

(2.85)

𝛼2 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
3.5 × 1450

fcm28

]0.2

(in. − lb)

[
35

fcm28

]0.2

(SI)

(2.86)

𝛽(fcm28
) is the concrete strength factor on the notional creep coefficient,

𝛽(fcm28
) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

5.3
√

fcm28
∕1450

(in. − lb)

5.3
√

fcm28
∕10

(SI)
(2.87)

𝛽(t0) is the age of concrete at loading factor on the notional creep coefficient,

𝛽(t0) =
1

0.1 + t0.2
0

(2.88)

where

t0 = t0,T

[
9

2 + t1.2
0,T

+ 1

]𝛼
≥ 0.5 days (2.89)

t0 = age of concrete at loading (days)
t0,T = age of concrete at loading adjusted according to the concrete temperature; for

T = 20∘C, t0,T corresponds to t0
𝛼 = coefficient that depends on type of cement
= −1 for slowly hardening cement
= 0 for normal or rapidly hardening cement
= 1 for rapidly hardening high-strength cement

An equation describing development of creep with time after loading, 𝛽c(t, t0), can be calcu-
lated using the following equation:

𝛽c(t, t0) =
(

t − t0
𝛽H + t − t0

)0.3

(2.90)
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𝛽H =
{

37.5he

[
1 + (0.012H)18] + 250𝛼3 ≤ 1500𝛼3 (in. − lb)

1.5he[1 + (0.012H)18] + 250𝛼3 ≤ 1500𝛼3 (SI)
(2.91)

𝛼3 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
3.5 × 1450

fcm28

]0.5

(in. − lb)
[

35
fcm28

]0.5

(SI)
(2.92)

2.13.6 fib MC 2010 Model

The fib MC 2010 model is a modification of the CEB MC 90–99 model and is described in
Ref. 18.

Shrinkage Calculation. The equations utilized by the fib MC 2010 shrinkage prediction model
are similar to those of the CEB MC 90-99 model. Shrinkage predictions according to the fib MC
2010 model can be calculated as described in the Shrinkage Calculation area of Section 2.13.5.

Creep Calculation. The creep compliance, or the total stress-dependent strain per unit stress is
calculated by the following equation:

J(t, t0) =
1

Eci(t0)
+
𝜙(t, t0)

Eci
(2.93)

where
Eci = elastic modulus at 28 days according to Equation 2.94

Eci(t0) = elastic modulus at age of loading according to Equation 2.95
𝜙(t,t0) = creep coefficient found by Equation 2.96

t0 = age of concrete at time of loading (days)
t = age of concrete (days)

The elastic modulus of concrete at 28 days can found by the expression:

Eci =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

3,118,310
3

√
fcm

1450
(in. − lb)

21,500
3

√
fcm

10
(SI)

(2.94)

where

fcm = mean compressive strength of concrete at 28 days of age (MPa or psi)

The elastic modulus at the age of loading can be predicted from the following expression:

Eci(t0) = Eciexp
⎡
⎢
⎢
⎣
0.5S

⎛
⎜
⎜
⎝
1 −

√(
28
t0

)⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

(2.95)
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where
S = coefficient that depends on type of cement and compressive strength
= 0.20 for fcm ≤ 60 MPa (8700 psi) and rapidly hardening high-strength cement (Type III)
= 0.25 for fcm ≤ 60 MPa (8700 psi) and normal and rapidly hardening cement (Type I)
= 0.38 for fcm ≤ 60 MPa (8700 psi) and slow-hardening cement (Type II)
= 0.20 for fcm > 60 MPa (8700 psi) and all types of cement

The creep coefficient, 𝜙(t, t0), may be found using the following expression:

𝜙(t, t0) = 𝜙bc(t, t0) + 𝜙dc(t, t0) (2.96)

where
𝜙bc(t,t0) = basic creep coefficient found from Equation 2.97
𝜙dc(t,t0) = drying creep coefficient found from Equation 2.101

The basic creep coefficient, 𝜙bc(t, t0), can be found from the following expression:

𝜙bc(t, t0) = 𝛽bc(fcm)𝛽bc(t, t0) (2.97)

with

𝛽bc(fcm) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

58.6
(
fcm

)0.7
(in.−lb)

1.8
(fcm)0.7

(SI)
(2.98)

𝛽bc(t, t0) = ln

[(
30

t0,adj
+ 0.035

)2

(t − t0) + 1

]

(2.99)

where
t0,adj = modified age of loading accounting for the effect of creep due to the type of cement according

to Equation 2.100.

t0,adj = t0,T

[
9

2 + t0,T 1.2
+ 1

]𝛼
≥ 0.5 days (2.100)

where
t0, T = age of concrete at loading adjusted according to the concrete temperature;

for T = 20∘C, t0, T corresponds to t0
𝛼 = coefficient, which depends on the type of cement
= −1 for slowly hardening or Type II cement
= 0 for normal or rapidly hardening or Type I cement
= 1 for rapidly hardening high-strength or Type III cement

The drying creep coefficient, 𝜙dc(t, t0), may be calculated using the expression:

𝜙dc(t, t0) = 𝛽dc(fcm) ⋅ 𝛽(RH) ⋅ 𝛽dc(t0) ⋅ 𝛽dc(t, t0) (2.101)
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with

𝛽dc(fcm) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

437,333
(
fcm

)1.4
(in.−lb)

412
(fcm)1.4

(SI)
(2.102)

𝛽(RH) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

(
1 − RH

100

)

3

√
0.1

(
h
4

) (in.−lb)

(
1 − RH

100

)

3

√
0.1

(
h

100

) (SI)

(2.103)

𝛽dc(t0) =
1

0.1 + t0,adj
0.2

(2.104)

𝛽dc(t,t0) = drying creep development with time calculated by Equation 2.105:

𝛽dc(t, t0) =

[ (
t − t0

)

𝛽h + (t − t0)

]𝛾(t0)
(2.105)

where

𝛾(t0) =
1

2.3 + 3.5
√

t0,adj

(2.106)

𝛽h =
{

38.1h + 250𝛼fcm ≤ 1500𝛼fcm (in.−lb)
1.5 ⋅ h + 250𝛼fcm ≤ 1500𝛼fcm (SI)

(2.107)

where

𝛼fcm =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
5075
fcm

)0.5

(in.−lb)
(

35
fcm

)0.5

(SI)
(2.108)

where
fcm = mean compressive strength of concrete at 28 days of age (MPa or psi)
RH = relative humidity of the ambient environment (%)

h = 2Ac/u is the notional size of member (mm or in.), where Ac is the area of the cross section
(mm2 or in.2) and u is the perimeter of the member in contact with the atmosphere (mm or in.)

2.13.7 The AASHTO Model

The model is described by AASHTO LRFD (Section 5.4.2.3.3) bridge design specifications in
Ref. 19.
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Shrinkage Calculation. Parameters required for calculation of shrinkage strain using the
AASHTO model are: curing method (moist-cured or steam-cured concrete), 28-day concrete
compressive strength, fcm28

, relative humidity, H, drying time of concrete, t, type of cement, and
specimen shape.

The strain due to shrinkage may be calculated from the following equation:

𝜀sh = kskhskf ktd(0.48 × 10−3) (2.109)

where
t = drying time (day)

ks = size factor for shrinkage specified in Eq. 2.111
kh = humidity factor for shrinkage specified in Eq. 2.112
kf = factor for the effect of concrete strength specified in Eq. 2.113

ktd = time development factor

Time development factor for shrinkage should be calculated as follows:

ktd =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
t

61 − (4∕1000) f ′c + t

)
(f′c in psi) (in.−lb)

(
t

61 − 0.58f ′c + t

)
(f′c in MPa) (SI)

(2.110)

Size factor for shrinkage should be calculated as follows:

ks =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
t∕
(
26e0.36(V∕S) + t

)

t∕(45 + t)

][
1064 − 94 (V∕S)

923

]
(in. − lb)

[
t∕
(
26e0.0142(V∕S) + t

)

t∕(45 + t)

][
1064 − 3.70 (V∕S)

923

]
(SI)

(2.111)

where
V = volume of the specimen (in.3)
S = surface of the specimen (in.2)

f ′ci = specified compressive strength of concrete at time of prestressing for pretension members and
at time of initial loading for non-prestressed member. If concrete age at time of initial loading
is unknown at design time, f ′c shall be taken as 0.80 f ′c (ksi or MPa)

Humidity factor for shrinkage is

khs = [2.0 − 0.014H] (2.112)

where H is the relative humidity (%).

kf =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

5
1 + f ′ci

(in. − lb)

35
7 + f ′ci

(SI)
(2.113)
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Creep Calculation. The creep compliance represents the total stress-dependent strain per unit
stress. It can be calculated as

J(t, t0) =
1
Ec

+
𝜓(t, t0)

Ec
(2.114)

where
𝜓(t, t0 ) = creep coefficient as given in Eq. 2.115

Ec = modulus of elasticity at 28 days (ksi) as given in Eq. 2.120

The creep coefficient may be calculated from the following equation:

𝜓(t, t0) = 1.9kskhckf ktdt−0.118
0 (2.115)

where
t = maturity of concrete (day)

t0 = age of concrete when load is initially applied (day)
kf = factor for the effect of concrete strength as given in Eq. 2.116
ks = factor for the effect of the volume-to-surface ratio of the component as given in Eq. 2.117

khc = humidity factor for creep
ktd = time development factor

The factor for the effect of concrete strength should be calculated as follows:

kf =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

5
1 + f ′ci

(in. − lb)

35
7 + f ′ci

(SI)
(2.116)

where fci is the specified concrete compressive strength at time of initial loading.
The factor for the effect of the volume-to-surface ratio of the component should be calculated

as follows:

ks =
{

1.45 − 0.13 (V∕S) ≥ 1.0 (in. − lb)
1.45 − 0.0051(V∕S) ≥ 1.0 (SI)

(2.117)

where
V = volume of the specimen (in.3)
S = surface of the specimen (in.2)

Humidity factor is given by following equations:

khc = 1.56 − 0.008H (2.118)

Time development factor:

ktd =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
t

61 − 4f ′ci + t

)
(in. − lb)

(
t

61 − 0.58f ′ci + t

)
(SI)

(2.119)
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The modulus of elasticity at 28 days should be calculated as follows:

Ec =

{
33000𝜔1.5

c

√
f ′c (in. − lb)

0.043𝜔1.5
c

√
f ′c (SI)

(2.120)

where
𝜔c = concrete unit weight (kip/ft3) or kg/m3

f ′c = specified concrete compressive strength at 28 days (ksi or MPa)

Example 2.1 (in.−lb Units)

Calculate the shrinkage strain and creep compliance and coefficient for the concrete specimen given
below. Use the ACI 209R-92 model.

Given factors:

Humidity= 75%
he = 2V/S= 2Ac/u= 3 in.
fcm28

= 6556psi

𝑤= 345 lb/yd3

𝑤/c= 0.46
a/c= 3.73
t= 35 days
t0 = 28 days
tc = 8 days
𝛾 = 146 lb/ft3

Cement type III
Moist-cured concrete

Solution

Shrinkage Calculation

𝜀sh(t, tc) =
t − tc

f + (t − tc)
KssKsh𝜀shu

𝜀shu = 780 × 10−6 in.∕in.

According to Table 2.4, f= 35

V
S
= 1.5 in.

Kss = 1.23 − 0.152
(V

S

)
= 1.23 − 0.152(1.5) = 1.002

For H= 75%,

Ksh = 1.40 − 0.01H = 1.40 − 0.01(75) = 0.65

𝜀sh(t, tc) =
t − tc

f + (t − tc)
KssKsh𝜀shu

= 35 − 8
35 + (35 − 8)

(1.002)(0.65)(780 × 10−6) = 222.3 × 10−6 in.∕in.
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Creep Calculation

J(t, t0) =
1 + Cc(t)

Ecmt0

Determination of Ecmt0
:

a = 2.30 b = 0.92 (Table 2.5)

f ′c (t0) = fcm28

t0
a + bt0

= 6556
28

2.3 + 0.92 × 28
= 6542 psi

Ecmt0
= 33(𝛾)3∕2

√
f ′c (t0) = 33(146)3∕2

√
6542 = 4,708,673 psi

Determination of Cc(t):

Ccu = 2.35

Kch = 1.27 − 0.0067(H) = 1.27 − 0.0067(75) = 0.768

Kca = 1.25(t0)−0.118 = 1.25(28)−0.118 = 0.844

Kcs = 1.14 − 0.092
(V

S

)
= 1.14 − 0.138 = 1.002

Cc(t) =
(t − t0)0.60

10 + (t − t0)0.60
CcuKchKcaKcs =

(35 − 28)0.60

10 + (35 − 28)0.60
2.35 × 0.768 × 0.844 × 1.002 = 0.37

J(t, t0) =
1 + Cc(t)

Ecmt0

= 1 + 0.37
4,708,673

= 0.29 × 10−6 psi−1

Example 2.2 (in.−lb Units)

Using the B3 model, calculate the shrinkage strain and creep function for the specimen given in Example
2.1.

Solution

Shrinkage Calculation

𝜀s(t) = (𝜀shu)(Kh)S(t)

Determination of 𝜀shu:

𝛼1 = 1.10 (Table 2.8)

𝛼2 = 1.0 (Table 2.9)

𝜀shu = −𝜀su

Ecm607

Ecm(tc+𝜏sh)

𝜀su = −𝛼1𝛼2[0.025(𝑤)2.1(fcm28
)−0.28 + 270] × 10−6

= −(1.10)(1.0)[0.025(345)2.1(6556)−0.28 + 270] × 10−6 = −798 × 10−6 in.∕in.

Ecm28 = 57000
√

fcm28 = 57,000
√

6556 = 4,615,240 psi

ks = 1.0
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(Since the type of member is not defined)

𝜏sh = 190.8(tc)−0.08(fcm28)−0.25
[
2ks

(V
S

)]2

= 190.8(8)−0.08(6556)−0.25[2(1)(1.5)]2

= 161.58 days

Ecm607 = (1.167)1∕2Ecm28

= (1.167)1∕2(4,615,240) = 4,985,741 psi

Ecm(tc+𝜏sh) =

(
tc + 𝜏sh

4 + 0.85
(
tc + 𝜏sh

)

) 1∕2

Ecm28 =
(

8 + 161.58
4 + 0.85(8 + 161.58

)1∕2

(4,615,240)

= 4,937,886 psi

𝜀shu = −𝜀su

Ecm607

Ecm(tc+𝜏sh)
= −(−798 × 10−6)4,985,741

4,937,886
= 806 × 10−6 in.∕in.

Determination of Kh:
According to the Table 2.10, for H= 75%

Kh = 1 −
( H

100

)3

= 1 −
( 75

100

)3

= 0.578

Determination of S(t):

S(t) = tanh

√
t − tc
Tsh

= tanh

√
35 − 8
161.58

= 0.387

𝜀s(t) = (𝜀shu)(Kh)S(t) = (806 × 10−6)(0.578)(0.387) = 180 × 10−6 in.∕in.

Creep Calculation

J(t, t0) = q1 + C0(t, t0) + Cd(t, t0, tc)

Determination of q1:

q1 = 0.6
Ecm28

= 0.6
4,615,240

= 1.3 × 10−7 psi−1

Calculation of C0(t, t0):

c = 𝑤

𝑤∕c
= 345

0.46
= 750 lb∕yd3

q2 = 86.8(c)0.5(fcm28
)−0.9 × 10−6 = 86.8(750)0.5(6556)−0.9 × 10−6

= 0.873 × 10−6

Qf (t0) =
1

0.086(t0)2∕9 + 1.21(t0)4∕9
= 1

0.086(28)2∕9 + 1.21(28)4∕9
= 0.182

Z(t, t0) =
ln[1 + (t − t0)0.1]√

t0
= ln[1 + (35 − 28)0.1]

√
28

= 0.150

r(t0) = 1.7(t0)0.12 + 8 = 1.7(28)0.12 + 8 = 10.54
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Q(t, t0) = Qf (t0)
⎡
⎢
⎢
⎣
1 +

Qf

(
t0
)r(t0)

Z(t, t0)r(t0)
⎤
⎥
⎥
⎦

−1∕r(t0)

= 0.182

[
1 + 0.18210.54

0.15010.54

]−1∕10.54

= 0.148

q3 = 0.29q2

(
𝑤

c

)4
= 0.29(0.873 × 10−6)(0.46)4 = 0.011 × 10−6

q4 = 0.14
(a

c

)−0.7
× 10−6 = 0.14(3.73)−0.7 × 10−6 = 5.57 × 10−8

C0(t, t0) = q2Q(t, t0) + q3ln[1 + (t − t0)0.1] + q4ln

(
t
t0

)

= (0.873 × 10−6)(0.148) + (0.011 × 10−6)ln[1 + (35 − 28)0.1] + (5.57 × 10−8)ln
(35

28

)

= 0.15 × 10−6 psi−1

Calculation of Cd(t,t0,tc):

q5 =
0.757|𝜀shu × 106|−0.6

fcm28

= 0.757|806 × 10−6 × 106|−0.6

6556
= 2.08 × 10−6

S(t) = 0.387

S(t0) = tanh

√
t0 − tc

Tsh
= tanh

√
28 − 8
161.58

= 0.338

H(t) = 1 −
[(

1 − H
100

)
S(t)

]
= 1 −

[(
1 − 75

100

)
0.387

]
= 0.903

H(t0) = 1 −
[(

1 − H
100

)
S(t0)

]
= 1 −

[(
1 − 75

100

)
0.338

]
= 0.916

Cd(t, t0, tc) = q5

√
exp[−8H(t)] − exp[−8H(t0)]

= (2.08 × 10−6)
√

exp[−8 × 0.903] − exp[−8 × 0.916] = 0.0176 × 10−6 psi−1

J(t, t0) = q1 + C0(t, t0) + Cd(t, t0, tc)

= (1.3 × 10−7) + (0.15 × 10−6) + (0.0176 × 10−6) = 0.298 × 10−6 psi−1

Creep coefficient

cc(t, t0) = J(t, t0)Ecm28 − 1 = (0.298 × 10−6)(4615240) − 1 = 0.375

Example 2.3 (in.−lb Units)

Using the GL 2000 model, calculate the shrinkage strain and creep compliance and coefficient for the
specimen given in Example 2.1.

Solution

Shrinkage Calculation

𝜀s(t) = 𝜀shu𝛽(h)𝛽(t − tc)
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Calculation of 𝜀shu:

K = 1.15 (Table 2.12)

𝜀shu = (900)K

(
4350
fcm28

)1∕2

× 10−6 = (900)(1.15)
(4350

6556

)1∕2

× 10−6 = 843 × 10−6 in.∕in.

Calculation of 𝛽(h):

𝛽(h) = 1 − 1.18
( H

100

)4

= 1 − 1.18
( 75

100

)4

= 0.627

Calculation of 𝛽(t− tc):

𝛽(t − tc) =

(
t − tc

t − tc + 77(V∕S)2

)1∕2

=
(

35 − 8

35 − 8 + 77(1.5)2

)1∕2

= 0.367

𝜀s(t) = 𝜀shu𝛽(h)𝛽(t − tc) = (843 × 10−6)(0.627)(0.367) = 194 × 10−6 in.∕in.

Creep Calculation

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

Calculation of Ecmt0
and Ecm28

:

t0 = 28days ⇒ Ecmt0
= Ecm28

Ecm28
= 500,000 + 52,000

√
fcm28

= 500,000 + 52000
√

6556 = 4,710,395 psi

Calculation of 𝜙(t,t0):

t0 = 28 > tc = 8 days

𝜙(tc) =
⎡
⎢
⎢
⎣
1 −

(
t0 − tc

t0 − tc + 77(V∕S)2

)0.5⎤
⎥
⎥
⎦

0.5

=

[

1 −
(

28 − 8

28 − 8 + 77(1.5)2

)0.5
]0.5

= 0.824

h = H
100

= 75
100

= 0.75

𝜙28(t, t0) = 𝜙(tc)

[

2

( (
t − t0

)0.3

(t − t0)0.3 + 14

)

+
(

7
t0

)0.5( t − t0
t − t0 + 7

)0.5

+ 2.5(1 − 1.086h2)

(
t − t0

t − t0 + 77(V∕S)2

)0.5⎤
⎥
⎥
⎦

= 0.824

[
2

(
(35 − 28)0.3

(35 − 28)0.3 + 14

)
+
( 7

28

)0.5( 35 − 28
35 − 28 + 7

)0.5

+ 2.5(1 − 1.086(0.75)2)
(

35 − 28

35 − 28 + 77(1.5)2

)0.5
]

= 0.636

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

= 1
4,710,394

+ 0.636
4,710,395

= 0.347 × 10−6 psi−1
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Example 2.4 (in.−lb Units)

Using the CEB 90 model, calculate the shrinkage strain and creep compliance and coefficient for the
specimen given in Example.2.1

Solution
Shrinkage Calculation

𝜀s(t, tc) = (𝜀cs0
)𝛽s(t − tc)

Calculation of 𝜀cs0
:

𝜀cs0
= 𝜀s(fcm28)𝛽RH

𝛽sc = 8

𝜀s(fcm28
) =

[
160 + 10

(
𝛽sc

)(
9 −

fcm28

1450

)]
× 10−6

=
[
160 + 10 (8)

(
9 − 6556

1450

)]
× 10−6 = 518.3 × 10−6 in.∕in.

For H= 75%,

𝛽RH = −1.55𝛽arh

𝛽arh = 1 −
( H

100

)3

= 1 −
( 75

100

)3

= 0.578

𝛽RH = −1.55𝛽arh = −1.55 × 0.578 = −0.896

𝜀cs0
= 𝜀s(fcm28

)(𝛽RH) = (518.3 × 10−6)(−0.896) = −464.4 × 10−6 in.∕in.

Calculation of 𝛽s(t− tc):

he =
2Ac

u
= 2 × 1.5 = 3.0 in.

𝛽s(t − tc) =

√
t − tc

350(he∕4)2 + (t − tc)
=
√√√√√

35 − 8

350
(

3
4

)2
+ (35 − 8)

= 0.347

𝜀s(t, tc) = (𝜀cs0
)𝛽s(t − tc) = (−464.2 × 10−6)(0.347) = −161 × 10−6 in.∕in.

Creep Calculation

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

Calculation of Ecmt0
and Ecm28

:

t0 = 28 days ⇒ Ecmt0
= Ecm28

Ecm28
= 3,118,310

3

√
fcm28

1450
= 3,118,310 3

√
6556
1450

= 5,156,356 psi

Calculation of 𝜙(t, t0):

𝜙RH = 1 +
1 − H∕100

0.46 3
√

he∕4
= 1 +

1 − 75∕100

0.46 3
√

3∕4
= 1.598
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𝛽(fcm28
) = 5.3

√
fcm28

∕1450
= 5.3

√
6556∕1450

= 2.49

𝛽(t0) =
1

0.1 + t0.2
0

= 1

0.1 + 280.2
= 0.488

𝜙0 = 𝜙RH𝛽(fcm28
)𝛽(t0) = (1.598)(2.49)(0.488) = 1.94

𝛽H = 37.5he[1 + (0.012H)18] + 250 = 37.5(3)[1 + (0.012 × 75)18] + 250

= 379.4 ≤ 1500 days

𝛽c(t, t0) =
(

t − t0
𝛽H + t − t0

)0.3

=
( 35 − 28

379.4 + 35 − 28

)0.3

= 0.3

𝜙28(t, t0) = 𝜙0𝛽c(t, t0) = 1.94 × 0.3 = 0.582

J(t, t0) =
1

Ecmt0

+
𝜙(t, t0)
Ecm28

= 1
5,156,356

+ 0.582
5,156,356

= 0.307 × 10−6 psi−1

Example 2.5 (in.−lb Units)

Use the CEB MC 90–99 model to calculate the shrinkage strain and creep compliance and coefficient
for the specimen given in Example 2.1.

Solution

Shrinkage Calculation
𝜀s(t, tc) = 𝜀as(t) + 𝜀ds(t, tc)

Calculation of 𝜀as(t):

𝛼as = 600 for rapidly hardening high − strength cements

𝜀as0
(fcm28

) = −𝛼as

(
fcm28

∕1450

6 + fcm28
∕1450

)2.5

× 10−6

= −600

(
6556∕1450

6 + 6556∕1450

)2.5

× 10−6 = −72.64 × 10−6 in.∕in.

𝛽as(t) = 1 − exp(−0.2(t)0.5) = 1 − exp(−0.2(35)0.5) = 0.694

𝜀as(t) = 𝜀as0
(fcm28

)𝛽as(t) = (−72.64 × 10−6)(0.694) = −50.41 × 10−6 in.∕in.

Calculation of 𝜀ds (t, tc):

𝛼ds1
= 6 for rapidly hardening high − strength cements

𝛼ds2
= 0.12 for rapidly hardening high − strength cements

𝜀ds0
(fcm28

) = [
(

220 + 110𝛼ds1

)
exp(−𝛼ds2

fcm28
∕1450)] × 10−6

= [(220 + 110 × 6)exp(−0.12 × 6556∕1450)] × 10−6 = 511.5 × 10−6 in.∕in.
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𝛽s1 =

(
35 × 1450

fcm28

)0.1

=
(35 × 1450

6556

)0.1

= 1.23 ≥ 1.0

𝛽s1 = 1.0

𝛽RH = −1.55

[
1 −

( H
100

)3
]
= −1.55

[
1 −

( 75
100

)3
]
= −0.896

𝛽ds(t − tc) =

(
t − tc

350
(
he∕4

)2 + (t − tc)

)0.5

=
⎛
⎜
⎜
⎜
⎝

35 − 8

350
(

3
4

)2
+ (35 − 8)

⎞
⎟
⎟
⎟
⎠

0.5

= 0.347

𝜀ds(t, tc) = 𝜀ds0
(fcm28

)𝛽RH(H)𝛽ds(t − tc)

= (511.5 × 10−6)(−0.896)(0.347) = −159 × 10−6 in.∕in.

𝜀s(t, tc) = 𝜀as(t) + 𝜀ds(t, tc) = (−50.41 × 10−6) + (−159 × 10−6) = −209 × 10−6 in.∕in.

Creep Calculation

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

Calculation of Ecmt0
and Ecm28

:

t0 = 28 days ⇒ Ecmt0
= Ecm28

Ecm28
= 3,118,310

3

√
fcm28

1450
= 3,118,310 3

√
6556
1450

= 5,156,356 psi

Calculation of 𝜙(t, t0):

𝛼1 =

[
3.5 × 1450

fcm28

]0.7

=
[3.5 × 1450

6556

]0.7

= 0.84

𝛼2 =

[
3.5 × 1450

fcm28

]0.2

=
[3.5 × 1450

6556

]0.2

= 0.95

𝜙RH =

[

1 +
1 − H∕100

0.46 3
√

he∕100
𝛼1

]

𝛼2 =

[

1 +
1 − 75∕100

0.46 3
√

3∕4
0.84

]

0.950 = 1.427

𝛽(fcm28
) = 5.3

√
fcm28

∕1450
= 5.3

√
6556∕1450

= 2.49

t0 = t0.T

[
9

2 + t1.2
0.T

+ 1

]

= 28

[
9

2 + 281.2
+ 1

]
= 32.5 ≥ 0.5 days
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𝛽(t0) =
1

0.1 + t0.2
0

= 1

0.1 + 32.50.2
= 0.475

𝜙0 = 𝜙RH𝛽(fcm28
)𝛽(t0) = 1.427 × 2.49 × 0.475 = 1.69

𝛼3 =

[
3.5 × 1450

fcm28

]0.5

=
[3.5 × 1450

6556

]0.5

= 0.88

𝛽H = 37.5he[1 + (0.012H)18] + 250𝛼3

= 37.5 × 3 × [1 + (0.012 × 75)18] + 250 × 0.88 = 349.34 ≤ 1500 × 0.880 = 1320

𝛽c(t, t0) =
(

t − t0
𝛽H + t − t0

)0.3

=
( 35 − 28

349.38 + 35 − 28

)0.3

= 0.308

𝜙28(t, t0) = 𝜙0𝛽c(t, t0) = 1.68 × 0.308 = 0.52

J(t, t0) =
1

Ecmt0

+
𝜙(t, t0)
Ecm28

= 1
5,156,356

+ 0.52
5,156,356

= 0.295 × 10−6 psi−1

Example 2.6 (in.−lb Units)

Use the fib MC 2010 model to calculate the shrinkage strain and creep compliance and coefficient for
the specimen given in Example 2.1.

Solution

Shrinkage Calculation
The equations utilized by the fib MC 2010 shrinkage prediction model are similar to those of the CEB
MC 90-99 model. Refer to Example 2.5 Shrinkage Calculation section for shrinkage prediction.

Creep Calculation

J(t, t0) =
1

Eci(t0)
+
𝜙(t, t0)

Eci

Calculation of Eci(t0) and Eci:

t0 = 28 days ⇒ Eci(t0) = Eci

Eci = 3,118,310
3

√
fcm

1450
= 3,118,310 3

√
6556
1450

= 5,156,356 psi

Calculation of 𝜙(t, t0):

𝛽bc(fcm) =
58.6

(fcm)0.7
= 58.6

(6556)0.7
= 0.125

𝛼 = 1 for type III cement

t0,adj = t0,T

[
9

2 + t0,T 1.2
+ 1

]𝛼
≥ 0.5 days

= 28 ⋅
[

9

2 + 281.2
+ 1

]1

= 32.5 days ≥ 0.5 days
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𝛽bc(t, t0) = ln

[(
30

t0,adj
+ 0.035

)2

⋅ (t − t0) + 1

]

= ln

[( 30
32.5

+ 0.035
)2

⋅ (35 − 28) + 1

]
= 2

𝜙bc(t, t0) = 𝛽bc(fcm) ⋅ 𝛽bc(t, t0) = (0.125)(2) = 0.25

𝛽dc(fcm) =
437,333
(fcm)1.4

= 437,333
(6556)1.4

= 1.98

𝛽(RH) =

(
1 − RH

100

)

3

√
0.1

(
h
4

) =

(
1 − 75

100

)

3

√
0.1

(
3
4

) = 0.59

𝛽dc(t0) =
1

0.1 + t0,adj
0.2

= 1

0.1 + 32.50.2
= 0.475

𝛾(t0) =
1

2.3 + 3.5
√

t0,adj

= 1

2.3 + 3.5√
32.5

= 0.343

𝛼fcm =
(

5075
fcm

)0.5

=
(5075

6556

)0.5

= 0.880

𝛽h = 38.1 ⋅ h + 250𝛼fcm ≤ 1500𝛼fcm

= 38.1(3) + 250(0.880) ≤ 1500(0.880)

⇒ 334 ≤ 1320

𝛽dc(t, t0) =

[ (
t − t0

)

𝛽h + (t − t0)

]𝛾(t0)
=
[

(35 − 28)
334 + (35 − 28)

]0.343

= 0.264

𝜙dc(t, t0) = 𝛽dc(fcm) ⋅ 𝛽(RH) ⋅ 𝛽dc(t0) ⋅ 𝛽dc(t, t0)

= (1.98)(0.59)(0.475)(0.264) = 0.146

𝜙(t, t0) = 𝜙bc(t, t0) + 𝜙dc(t, t0)

= 0.25 + 0.146 = 0.396

J(t, t0) =
1

Eci(t0)
+
𝜙(t, t0)

Eci

= 1
5,156,356

+ 0.396
5,156,356

= 0.271 × 10−6 psi−1

Example 2.7 (in.−lb Units)

Using the AASHTO model, calculate the shrinkage strain and creep compliance and coefficient for the
specimen given in Example 2.1.
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Solution
Shrinkage Calculation
For moist-cured concrete, 𝜀sh should be taken as

𝜀sh = KsKhsKf Ktd(0.48 × 10−3)
Determination of Ks:

Ks =

[
t∕
(
26e0.36(V∕S) + t

)

t∕(45 + t)

][
1064 − 94 (V∕S)

923

]

=

[
35∕

(
26e0.36(1.5) + 35

)

35∕(45 + 35)

][
1064 − 94 (1.5)

923

]
= 1.005

Determination of Khs:
For H= 75%,

Khs = 2.00 − 0.014H = 0.95

Determination of Kf:
Let f ′ci = f ′c = 6556 psi

Kf =
5

1 + fci

Fci = 6556 psi (at time of initial loading= ta = 28 days)

Kf =
5

1 + 6.556
= 0.66

Calculation of Ktd:

Ktd = t
61 − 4f ′ci + t

= 35
61 − 4(6556) + 35

= 0.50

𝜀sh = (1.005)(0.95)(0.66)(0.50)(0.48 × 10−3) = 151.2 × 10−6 in.∕in.

Creep Calculation
The creep coefficient should be taken as

𝜓(t, t0) = 1.9KsKhcKf Ktdt−0.118
0

Values of ktd and kf are same as shrinkage calculation.
Determination of ks:

ks = 1.45 − 0.13
(V

S

)
≥ 1.0

= 1.45 − 0.13(1.5) = 1.26

Determination of khc:

khc = 1.56 − 0.008H = 1.56 − 0.008(75) = 0.96

Calculation of 𝜓 (t, t0):

𝜓(t, t0) = 1.9(1.26)(0.96)(0.66)(0.50)(28)−0.118 = 0.512

Determination of Ec:

𝜔c = 2405kg∕m3 = 0.145Kcf

Ec = 33000𝑤1.5
c

√
f ′c

Ec = 4665.4 ksi
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Calculation of J(t, t0):

J(t, t0) =
1
Ec

+
𝜓(t, t0)

Ec

= 1
4665.4

+ 0.512
4665.4

= 324 × 10−6 psi−1

Example 2.8 (SI Units)

Calculate the shrinkage strain and creep compliance and coefficient for the concrete specimen given
below. Use the ACI 209R-92 model.

Given factors:

Humidity= 75%
he = 2V/S= 2Ac/u= 76 mm
fcm28

= 45.2MPa
𝑤= 207.92 kg/m3
𝑤/c= 0.46
a/c= 3.73
t= 35 days
t0 = 28 days
tc = 8 days
𝛾 = 2405 kg/m3
Cement type III
Moist-cured concrete

Solution
Shrinkage Calculation

𝜀sh(t, tc) =
t − tc

f + (t − tc)
KssKsh𝜀shu

𝜀shu = 780 × 10−6 mm∕mm

According to Table 2.4, f= 35.
V
S

= 38 mm

Kss = 1.23 − 0.006
(V

S

)
= 1.23 − 0.006(38) = 1.002

For H= 75%,

Ksh = 1.40 − 0.01H = 1.40 − 0.01(75) = 0.65

𝜀sh(t, tc) =
t − tc

f + (t − tc)
KssKsh𝜀shu

= 35 − 8
35 + (35 − 8)

(1.002)(0.65)(780 × 10−6) = 221.3 × 10−6 mm∕mm

Creep Calculation

J(t, t0) =
1 + Cc(t)

Ecmt0
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Determination of Ecmt0
:

a = 2.30 b = 0.92 (Table 2.5)

f ′c (t0) = fcm28

t0
a + bt0

= 45.2
28

2.3 + 0.92 × 28
= 45.1 MPa

Ecmt0
= 0.043(𝛾)3∕2

√
f ′c (t0) = 0.043(2405)3∕2

√
45.1 = 34058.8 MPa

Determination of Cc(t):

Ccu = 2.35

Kch = 1.27 − 0.0067(H) = 1.27 − 0.0067(75) = 0.768

Kca = 1.25(t0)−0.118 = 1.25(28)−0.118 = 0.844

Kcs = 1.14 − 0.0035
(V

S

)
= 1.14 − 0.0035(38) = 1.007

Cc(t) =
(t − t0)0.60

10 + (t − t0)0.60
CcuKchKcaKcs =

(35 − 28)0.60

10 + (35 − 28)0.60
2.35 × 0.768 × 0.844 × 1.00 = 0.37

J(t, t0) =
1 + Cc(t)

Ecmt0

= 1 + 0.37
34058.8

= 40.2 × 10−6 MPa−1

Example 2.9 (SI Units)

Using the B3 model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.

Solution
Shrinkage Calculation

𝜀s(t) = (𝜀shu)(Kh)S(t)

Determination of 𝜀shu:

𝛼1 = 1.10 (Table 2.8)

𝛼2 = 1.0 (Table 2.9)

𝜀shu = −𝜀su

Ecm607

Ecm(tc+𝜏sh)

𝜀su = −𝛼1𝛼2[0.019(𝑤)2.1(fcm28
)−0.28 + 270] × 10−6

= −(1.10)(1.0)[0.019(207.92)2.1(45.2)−0.28 + 270] × 10−6 = −827 × 10−6 mm∕mm

Ecm28 = 4735
√

fcm28 = 4735
√

45.2 = 31833.9 MPa

ks = 1.0

(Since the type of member is not defined)

Tsh = 0.085(tc)−0.08(fcm28)−0.25
[
2ks

(V
S

)]2

Tsh = 0.085(8)−0.08(45.2)−0.25[2(1)(38)]2

= 160.3 days
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Ecm607 = (1.167)1∕2Ecm28

= (1.167)1∕2(31833.9) = 34389.5 MPa

Ecm(tc+𝜏sh) =

(
tc + 𝜏sh

4 + 0.85
(
tc + 𝜏sh

)

)1∕2

Ecm28 =
(

8 + 160.3
4 + 0.85 (8 + 160.3)

)1∕2

(31833.9)

= 34055.9 MPa

𝜀shu = −𝜀su

Ecm607

Ecm(tc+𝜏sh)
= −(−827 × 10−6)34389.5

34055.9
= 835.1 × 10−6 mm∕mm

Determination of Kh:
According to the Table 2.10, for H= 75%

Kh = 1 −
( H

100

)3

= 1 −
( 75

100

)3

= 0.578

Determination of S(t):

S(t) = tanh

√
t − tc
Tsh

= tanh

√
35 − 8
160.3

= 0.389

𝜀s(t) = (𝜀shu)(Kh)S(t) = (835.1 × 10−6)(0.578)(0.389) = 187.8 × 10−6 mm∕mm

Creep Calculation:

J(t, t0) = q1 + C0(t, t0) + Cd(t, t0, tc)

Determination of q1:

q1 = 0.6
Ecm28

= 0.6
31833.9

= 18.85 × 10−6 MPa−1

Calculation of C0(t,t0):

c = 𝑤

𝑤∕c
= 207.92

0.46
= 452 kg∕m3

q2 = 185.4(c)0.5(fcm28
)−0.9 × 10−6 = 185.4(452)0.5(45.2)−0.9 × 10−6

= 127.7 × 10−6

Qf (t0) =
1

0.086(t0)2∕9 + 1.21(t0)4∕9
= 1

0.086(28)2∕9 + 1.21(28)4∕9
= 0.182

Z(t, t0) =
ln[1 + (t − t0)0.1]√

t0
= ln[1 + (35 − 28)0.1]

√
28

= 0.150

r(t0) = 1.7(t0)0.12 + 8 = 1.7(28)0.12 + 8 = 10.54

Q(t, t0) = Qf (t0)
⎡
⎢
⎢
⎣
1 +

Qf

(
t0
)r(t0)

Z(t, t0)r(t0)
⎤
⎥
⎥
⎦

−1∕r(t0)

= 0.182

[
1 + 0.18210.54

0.15010.54

]−1∕10.54

= 0.148

q3 = 0.29q2

(
𝑤

c

)4
= 0.29(127.7 × 10−6)(0.46)4 = 1.66 × 10−6
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q4 = 20.3
(a

c

)−0.7
× 10−6 = 20.3(3.73)−0.7 × 10−6 = 8.08 × 10−6

C0(t, t0) = q2Q(t, t0) + q3ln[1 + (t − t0)0.1] + q4ln

(
t
t0

)

= (127.6 × 10−6)(0.148) + (1.66 × 10−6)ln[1 + (35 − 28)0.1] + (8.08 × 10−6)ln
(35

28

)

= 22.01 × 10−6 MPa−1

Calculation of Cd(t,t0,tc):

q5 =
0.757|𝜀shu × 106|−0.6

fcm28

= 0.757|835.1 × 10−6 × 106|−0.6

45.2
= 295.7 × 10−6

S(t) = 0.389

S(t0) = tanh

√
t0 − tc

Tsh
= tanh

√
28 − 8
160.3

= 0.339

H(t) = 1 −
[(

1 − H
100

)
S(t)

]
= 1 −

[(
1 − 75

100

)
0.389

]
= 0.903

H(t0) = 1 −
[(

1 − H
100

)
S(t0)

]
= 1 −

[(
1 − 75

100

)
0.339

]
= 0.915

Cd(t, t0, tc) = q5

√
exp[−8H(t)] − exp[−8H(t0)]

= (295.7 × 10−6)
√

exp[−8 × 0.903] − exp[−8 × 0.915] = 2.42 × 10−6 MPa−1

J(t, t0) = q1 + C0(t, t0) + Cd(t, t0, tc)

= (18.85 × 10−6) + (22.01 × 10−6) + (2.42 × 10−6) = 43.28 × 10−6 MPa−1

Creep coefficient:

cc(t, t0) = J(t, t0)Ecm28 − 1 = (43.3 × 10−6)(31833.9) − 1 = 0.38

Example 2.10 (SI Units)

Using the GL 2000 model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.

Solution

Shrinkage Calculation:

𝜀s(t) = 𝜀shu𝛽(h)𝛽(t − tc)

Calculation of 𝜀shu:

K = 1.15 (Table 2.12)

𝜀shu = (900)K

(
30

fcm28

)1∕2

× 10−6 = (900)(1.15)
( 30

45.2

)1∕2

× 10−6 = 843.2 × 10−6 mm∕mm
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Calculation of 𝛽(h):

𝛽(h) = 1 − 1.18
( H

100

)4

= 1 − 1.18
( 75

100

)4

= 0.627

Calculation of 𝛽(t− tc):

𝛽(t − tc) =

(
t − tc

t − tc + 0.12(V∕S)2

)1∕2

=
(

35 − 8

35 − 8 + 0.12(38)2

)1∕2

= 0.367

𝜀s(t) = 𝜀shu𝛽(h)𝛽(t − tc) = (843.2 × 10−6)(0.627)(0.367) = 194 × 10−6 mm∕mm

Creep Calculation

J(t, t0) =
1

Ecmt0

+
𝜙(t, t0)
Ecm28

Calculation of Ecmt0
and Ecm28

:

t0 = 28 days ⇒ Ecmt0
= Ecm28

Ecm28
= 3500 + 4300

√
fcm28

= 3500 + 4300
√

45.2 = 32409.3 MPa

Calculation of 𝜑(t, t0):

t0 = 28 > tc = 8 days

𝜙(tc) =
⎡
⎢
⎢
⎣
1 −

(
t0 − tc

t0 − tc + 0.12(V∕S)2

)0.5⎤
⎥
⎥
⎦

0.5

=

[

1 −
(

28 − 8

28 − 8 + 0.12(38)2

)0.5
]0.5

= 0.824

h = H
100

= 75
100

= 0.75

𝜙28(t, t0) = 𝜙(tc)

[

2

( (
t − t0

)0.3

(t − t0)0.3 + 14

)

+
(

7
t0

)0.5( t − t0
t − t0 + 7

)0.5

+ 2.5(1 − 1.086h2)

(
t − t0

t − t0 + 0.12(V∕S)2

)0.5⎤
⎥
⎥
⎦

= 0.824

[
2

(
(35 − 28)0.3

(35 − 28)0.3 + 14

)
+
( 7

28

)0.5( 35 − 28
35 − 28 + 7

)0.5

+ 2.5(1 − 1.086(0.75)2)
(

35 − 28

35 − 28 + 0.12(38)2

)0.5
]

= 0.636

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

= 1
32409.3

+ 0.636
32409.3

= 50.5 × 10−6 MPa−1

Example 2.11 (SI Units)

Using the CEB 90 model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.
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Solution
Shrinkage Calculation

𝜀s(t, tc) = (𝜀cs0
)𝛽s(t, tc)

Calculation of 𝜀cs0
:

𝛽sc = 8

𝜀s(fcm28
) =

[
160 + 10

(
𝛽sc

)(
9 −

fcm28

10

)]
× 10−6

=
[
160 + 10 (8)

(
9 − 45.2

10

)]
× 10−6 = 518.4 × 10−6 mm∕mm

For H= 75%,

𝛽RH = −1.55𝛽arh

𝛽arh = 1 −
( H

100

)3

= 1 −
( 75

100

)3

= 0.578

𝛽RH = −1.55𝛽arh = −1.55 × 0.578 = −0.896

𝜀cs0
= 𝜀s(fcm28

)(𝛽RH) = (518.4 × 10−6)(−0.896) = −464.5 × 10−6 mm∕mm

Calculation of 𝛽s(t− tc):

he =
2Ac

u
= 76 mm

𝛽s(t − tc) =

√
t − tc

0.56(he∕4)2 + (t − tc)
=
√

35 − 8
0.56(76∕4)2 + (35 − 8)

= 0.343

𝜀s(t, tc) = (𝜀cs0
)𝛽s(t − tc) = (−464.5 × 10−6)(0.343) = −159.3 × 10−6 mm∕mm

Creep Calculation

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

Calculation of Ecmt0
and Ecm28

:

t0 = 28 days ⇒ Ecmt0
= Ecm28

Ecm28
= 21,500

3

√
fcm28

10
= 21,500 3

√
45.2
10

= 35,548 MPa

Calculation of 𝜑(t, t0):

𝜙RH = 1 +
1 − H∕100

0.46 3
√

he∕100
= 1 +

1 − 75∕100

0.46 3
√

76∕100
= 1.596

𝛽(fcm28
) = 5.3

√
fcm28

∕10
= 5.3

√
45.2∕10

= 2.49

𝛽(t0) =
1

0.1 + t0.02
0

= 1

0.1 + 280.2
= 0.488
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𝜙0 = 𝜙RH𝛽(fcm28
)𝛽(t0) = (1.596)(2.49)(0.488) = 1.939

𝛽H = 1.5he[1 + (0.012H)18] + 250 = 1.5(76)[1 + (0.012 × 75)18] + 250

= 381 ≤ 1500 days

𝛽c(t, t0) =
(

t − t0

𝛽H + t − t0

)0.3

=
( 35 − 28

381 + 35 − 28

)0.3

= 0.3

𝜙(t, t0) = 𝜙0𝛽c(t, t0) = 1.939 × 0.3 = 0.582

J(t, t0) =
1

Ecmt0

+
𝜙(t, t0)
Ecm28

= 1
35,548

+ 0.582
35,548

= 44.5 × 10−6 MPa−1

Example 2.12 (SI Units)

Use the CEB MC 90–99 model to calculate the shrinkage strain and creep function for the specimen
given in Example 2.8.

Solution

Shrinkage Calculation

𝜀s(t, tc) = 𝜀as(t) + 𝜀ds(t, tc)
Calculation of 𝜀as(t):

𝛼as = 600 for rapidly hardening high − strength cements

𝜀as0
(fcm28

) = −𝛼as

(
fcm28

∕10

6 + fcm28
∕10

)2.5

× 10−6

= −600

(
45.2∕10

6 + 45.2∕10

)2.5

× 10−6 = −72.6 × 10−6 mm∕mm

𝛽as(t) = 1 − exp(−0.2(t)0.5) = 1 − exp(−0.2(35)0.5) = 0.694

𝜀as(t) = 𝜀as0
(fcm28

)𝛽as(t) = (−72.6 × 10−6)(0.694) = −50.4 × 10−6 mm∕mm

Calculation of 𝜀ds (t, tc):

𝛼ds1
= 6 for rapidly hardening high − strength cements

𝛼ds2
= 0.12 for rapidly hardening high − strength cements

𝜀ds0
(fcm28

) = [(220 + 110𝛼ds1
)exp(−𝛼ds2

fcm28
∕10)] × 10−6

= [(220 + 110 × 6)exp(−0.12 × 45.2∕10)] × 10−6 = 511.6 × 10−6 mm∕mm

𝛽s1 =

(
35

fcm28

)0.1

=
( 35

45.2

)0.1

= 0.97 ≤ 1.0

For 40%<H= 75%< 99% (0.97)= 96.5%,

𝛽RH = −1.55

[
1 −

( H
100

)3
]
= −1.55

[
1 −

( 75
100

)3
]
= −0.896
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𝛽ds(t − tc) =

(
t − tc

350
(
he∕100

)2 + (t − tc)

)0.5

=
(

35 − 8

350(76∕100)2 + (35 − 8)

)0.5

= 0.343

𝜀ds(t, tc) = 𝜀ds0
(fcm28

)𝛽RH(H)𝛽ds(t − tc)

= (511.6 × 10−6)(−0.896)(0.343) = −157.2 × 10−6 mm∕mm

𝜀s(t, tc) = 𝜀as(t) + 𝜀ds(t, tc) = (−50.4 × 10−6) + (−157.2 × 10−6) = −207.6 × 10−6 mm∕mm

Creep Calculation

J(t, t0) =
1

Ecmt0

+
𝜙28(t, t0)

Ecm28

Calculation of Ecmt0
and Ecm28

:

t0 = 28 days ⇒ Ecmt0
= Ecm28

Ecm28
= 21,500

3

√
fcm28

10
= 21,500 3

√
45.2
10

= 35,548 MPa

Calculation of 𝜑(t,t0):

𝛼1 =

[
35

fcm28

]0.7

=
[ 35

45.2

]0.7

= 0.836

𝛼2 =

[
35

fcm28

]0.2

=
[ 35

45.2

]0.2

= 0.950

𝜙RH =

[

1 +
1 − H∕100

0.46 3
√

he∕100
𝛼1

]

𝛼2 =

[

1 +
1 − 75∕100

0.46 3
√

76∕100
0.836

]

0.950 = 1.423

𝛽(fcm28
) = 5.3

√
fcm28

∕10
= 5.3

√
45.2∕10

= 2.49

t0 = t0,T

[
9

2 + t1.2
0,T

+ 1

]𝛼
= 28

[
9

2 + 281.2
+ 1

]
= 32.5 ≥ 0.5 days

𝛽(t0) =
1

0.1 + t0.2
0

= 1

0.1 + 32.50.2
= 0.475

𝜙0 = 𝜙RH𝛽(fcm28
)𝛽(t0) = 1.423 × 2.49 × 0.475 = 1.683

𝛼3 =

[
35

fcm28

]0.5

=
[ 35

45.2

]0.5

= 0.880

𝛽H = 1.5he[1 + (0.012H)18] + 250𝛼3

= 1.5 × 76 × [1 + (0.012 × 75)18] + 250 × 0.88 = 351 ≤ 1500 × 0.880 = 1320
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𝛽c(t, t0) =
(

t − t0

𝛽H + t − t0

)0.3

=
( 35 − 28

351 + 35 − 28

)0.3

= 0.307

𝜙(t, t0) = 𝜙0𝛽c(t, t0) = 1.683 × 0.307 = 0.517

J(t, t0) =
1

Ecmt0

+
𝜙(t, t0)
Ecm28

= 1
35,548

+ 0.517
35,548

= 42.68 × 10−6 MPa−1

Example 2.13 (SI Units)
Use the fib MC 2010 model to calculate the shrinkage strain and creep function for the specimen given
in Example 2.8.

Solution
Shrinkage Calculation
The equations utilized by the fib MC 2010 shrinkage prediction model are similar to those of the CEB
MC 90-99 model. Refer to Example 2.12 Shrinkage Calculation section for shrinkage prediction.

Creep Calculation

J(t, t0) =
1

Eci(t0)
+
𝜙(t, t0)

Eci

Calculation of Eci(t0) and Eci:

t0 = 28 days ⇒ Eci(t0) = Eci

Eci = 21,500
3

√
fcm28

10
= 21,500 3

√
45.2
10

= 35,548 MPa

Calculation of 𝜑(t,t0):

𝛽bc(fcm) =
1.8

(fcm)0.7
= 1.8

(45.2)0.7
= 0.125

𝛼 = 1 for type III cement

t0,adj = t0,T

[
9

2 + t0,T
1.2

+ 1

]𝛼
≥ 0.5 days

= 28 ⋅
[

9

2 + 281.2
+ 1

]1

= 32.5 days ≥ 0.5 days

𝛽bc(t, t0) = ln

[(
30

t0,adj
+ 0.035

)2

⋅ (t − t0) + 1

]

= ln

[( 30
32.5

+ 0.035
)2

⋅ (35 − 28) + 1

]
= 2

𝜙bc(t, t0) = 𝛽bc(fcm) ⋅ 𝛽bc(t, t0) = (0.125)(2) = 0.25

𝛽dc(fcm) =
412

(fcm)1.4
= 412

(45.2)1.4
= 1.98

𝛽(RH) =

(
1 − RH

100

)

3

√
0.1 ⋅ h

100

=

(
1 − 75

100

)

3

√
0.1 ⋅ 76

100

= 0.59
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𝛽dc(t0) =
1

0.1 + t0,adj
0.2

= 1

0.1 + 32.50.2
= 0.475

𝛾(t0) =
1

2.3 + 3.5
√

t0,adj

= 1

2.3 + 3.5√
32.5

= 0.343

𝛼fcm =
(

35
fcm

)0.5

=
( 35

45.2

)0.5

= 0.880

𝛽h = 1.5 ⋅ h + 250 ⋅ 𝛼fcm ≤ 1500 ⋅ 𝛼fcm

= 1.5 ⋅ (76) + 250 ⋅ (0.880) ≤ 1500 ⋅ (0.880)

⇒ 334 ≤ 1320

𝛽dc(t, t0) =

[ (
t − t0

)

𝛽h + (t − t0)

]𝛾(t0)

=
[

(35 − 28)
334 + (35 − 28)

]0.343

= 0.264

𝜙dc(t, t0) = 𝛽dc(fcm) ⋅ 𝛽(RH) ⋅ 𝛽dc(t0) ⋅ 𝛽dc(t, t0)

= (1.98)(0.59)(0.475)(0.264) = 0.146

𝜙(t, t0) = 𝜙bc(t, t0) + 𝜙dc(t, t0)

= 0.25 + 0.146 = 0.396

J(t, t0) =
1

Eci(t0)
+
𝜙(t, t0)

Eci

= 1
35,548

+ 0.396
35,548

= 39.27 × 10−6 MPa−1

Example 2.14 (SI Units)

Using the AASHTO model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.

Solution

Shrinkage Calculation
For moist-cured concrete, 𝜀sh should be taken as

𝜀sh = KsKhsKf Ktd(0.48 × 10−3)

Determination of Ks:

Ks =

[
t∕
(
26e0.0142(V∕S) + t

)

t∕(45 + t)

][
1064 − 3.7 (V∕S)

923

]

=

[
35∕

(
26e0.014(38) + 35

)

35∕(45 + 35)

][
1064 − 3.7 (38)

923

]
= 1.009 ≈ 1.00

Determination of Khs:
For H= 75%,

Khs = [2.00 − 0.014H] = 0.95
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Determination of Kf:

Kf =
35

7 + fci
= 0.95

fci = 45.2 MPa (at time of initial loading = ta = 28 days)

Kf =
35

7 + 45.2
= 0.67

Calculation of Ktd:

Ktd =
(

t
61 − 0.58f ′ci + t

)
=
(

35
61 − 0.58 (45.2) + 35

)
= 0.50

𝜀sh = (1.0)(0.95)(0.67)(0.50)(0.48 × 10−3) = 153 × 10−6 mm∕mm

Creep Calculation
The creep coefficient should be taken as

𝜓(t, t0) = 1.9KsKhcKf Ktdt−0.118
0

Values of ktd and kf are same as shrinkage calculation.
Determination of ks:

ks = 1.45 − 0.005
(V

S

)
≥ 1.0

= 1.45 − 0.005(38) = 1.26

Determination of khc:

khc = 1.56 − 0.008H = 1.56 − 0.008(75) = 0.96

Calculation of 𝜓(t, t0):

𝜓(t, t0) = 1.9(1.26)(0.96)(0.67)(0.50)(28)−0.118 = 0.52

Determination of Ec:
𝜔c = 240kg∕m3 = 0.15 Kcf

Ec = 0.043(2405)1.5
√

45.2

= 34,097 MPa

Calculation of J(t, t0):

J(t, t0) =
1
Ec

+
𝜓(t, t0)

Ec

= 1
34,096

+ 0.52
34,097

= 44.6 × 10−6MPa−1

2.14 UNIT WEIGHT OF CONCRETE

The unit weight,𝑤, of hardened normal concrete ordinarily used in buildings and similar structures
depends on the concrete mix, maximum size and grading of aggregates, water–cement ratio, and
strength of concrete. The following values of the unit weight of concrete may be used:

1. Unit weight of plain concrete using maximum aggregate size of 3
4

in. (20 mm) varies
between 145 and 150 lb/ft3 (2320 to 2400 kg/m3). For concrete of strength less than 4000 psi
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(280 kg/cm2), a value of 145 lb/ft3 (2320 kg/m3) can be used, whereas for higher strength
concretes, 𝑤 can be assumed to be equal to 150 lb/ft3 (2400 kg/m3).

2. Unit weight of plain concrete of maximum aggregate size of 4 to 6 in. (100 to 150 mm) varies
between 150 and 160 lb/ft3 (2400 to 2560 kg/m3). An average value of 155 lb/ft3 may be used.

3. Unit weight of reinforced concrete, using about 0.7 to 1.5% of steel in the concrete section,
may be taken as 150 lb/ft3 (2400 kg/m3). For higher percentages of steel, the unit weight, 𝑤,
can be assumed to be 155 lb/ft3 (2500 kg/m3).

4. Unit weight of lightweight concrete used for fireproofing, masonry, or insulation purposes
varies between 20 and 90 lb/ft3 (320 and 1440 kg/m3). Concrete of upper values of 90 pcf or
greater may be used for load-bearing concrete members.

The unit weight of heavy concrete varies between 200 and 270 lb/ft3 (3200 and 4300 kg/m3).
Heavy concrete made with natural barite aggregate of 1 1

2
in. maximum size (38 mm) weighs about

225 lb/ft3 (3600 kg/m3). Iron ore sand and steel-punchings aggregate produce a unit weight of
270 lb/ft3 (4320 kg/m3) [20].

2.15 FIRE RESISTANCE

Fire resistance of a material is its ability to resist fire for a certain time without serious loss of
strength, distortion, or collapse [21]. In the case of concrete, fire resistance depends on the thick-
ness, type of construction, type and size of aggregates, and cement content. It is important to
consider the effect of fire on tall buildings more than on low or single-story buildings because
occupants need more time to escape.

Reinforced concrete is a much better fire-resistant material than steel. Steelwork heats rapidly,
and its strength drops appreciably in a short time. Concrete itself has low thermal conductivity. The
effect of temperatures below 250∘C is small on concrete, but definite loss is expected at higher
temperatures.

2.16 HIGH-PERFORMANCE CONCRETE

High-performance concrete may be assumed to imply that the concrete exhibits combined prop-
erties of strength, toughness, energy absorption, durability, stiffness, and a relatively higher duc-
tility than normal concrete. This improvement in concrete quality may be achieved by using a
new generation of additives and superplasticizers, which improves the workability of concrete
and, consequently, its strength. Also, the use of active microfillers such as silica fume, fly ash,
and polymer improves the strength, porosity, and durability of concrete. The addition of different
types of fiber to the concrete mix enhances many of its properties, including ductility, strength,
and toughness.

Because it is difficult to set a limit to measure high-performance concrete, one approach is
to define a lower bound limit based on the shape of its stress–strain response in tension [22]. If
the stress–strain relationship curve shows a quasi-strain-hardening behavior—or, in other words,
a postcracking strength larger than the cracking strength with an elastic-plastic behavior—then
high performance is achieved [22]. In this behavior, multicracking stage is reached with high
energy-absorption capacity. Substantial progress has been made recently in understanding the
behavior and practical application of high-performance concrete.
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Casting and finishing precast concrete wall panels.

2.17 LIGHTWEIGHT CONCRETE

Lightweight concrete has been made lighter than conventional normal-weight concrete and, con-
sequently, it has a relatively lower density. Basically, reducing the density requires the inclusion of
air in the concrete composition. This, however, can be achieved in four distinct ways:

1. By omitting the finer sizes from the aggregate grading, thereby creating what is called no-fines

concrete. It is a mixture of cement, water, and coarse aggregate only
(

3
4
− 3

8

)
, mixed to pro-

duce concrete with many uniformly distributed voids.
2. By replacing the gravel or crushed rock aggregate with a hollow cellular or porous aggregate,

which includes air in the mix. This type is called lightweight aggregate concrete. Lightweight
aggregate may be natural, such as pumice, pozzolans, and volcanic slags; artificial (from
industrial by-products), such as furnace clinker and foamed slag; or industrially produced,
such as perlite, vermiculite, expanded clay, shale, and slate.
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3. By creating gas bubbles in a cement slurry, which, when it sets, leaves a spongelike structure.
This type is called aerated concrete.

4. By forming air cells in the slurry by chemical reaction or by vigorous mixing of the slurry with
a preformed stable foam, which is produced by using special foam concentrate in a high-speed
mixer. This type is called cellular concrete.

Structural lightweight concrete has a unit weight that ranges from 90 to 115 lb/ft3, compared
with 145 lb/ft3 for normal-weight concrete. It is used in the design of floor slabs in buildings and
other structural members where high-strength concrete is not required. Structural lightweight con-
crete can be produced with a compressive strength of 2500 to 5000 psi for practical applications.

2.18 FIBROUS CONCRETE

Fibrous concrete is made primarily of concrete constituents and discrete reinforcing fibers. The
brittle nature of concrete and its low flexural tensile strength are major reasons for the growing
interest in the performance of fibers in concrete technology. Various types of fibers—mainly steel,
glass, and organic polymers—have been used in fibrous concrete. Generally, the length and diam-
eter of the fibers do not exceed 3 in. (75 mm) and 0.04 in. (1 mm), respectively. The addition of
fibers to concrete improves its mechanical properties, such as ductility, toughness, shear, flexural
strength, impact resistance, and crack control. A convenient numerical parameter describing a fiber
is its aspect ratio, which is the fiber length divided by an equivalent fiber diameter. Typical aspect
ratios range from about 30 to 150, with the most common ratio being about 100. More details on
fibrous concrete are given in Reference 23.

2.19 STEEL REINFORCEMENT

Reinforcement, usually in the form of steel bars, is placed in the concrete member, mainly in the
tension zone, to resist the tensile forces resulting from external load on the member. Reinforcement
is also used to increase the member’s compression resistance. Steel costs more than concrete, but it
has a yield strength about 10 times the compressive strength of concrete. The function and behavior
of both steel and concrete in a reinforced concrete member are discussed in Chapter 3.

Longitudinal bars taking either tensile or compression forces in a concrete member are called
main reinforcement. Additional reinforcement in slabs, in a direction perpendicular to the main
reinforcement, is called secondary, or distribution, reinforcement. In reinforced concrete beams,
another type of steel reinforcement is used, transverse to the direction of the main steel and bent
in a box or U shape. These are called stirrups. Similar reinforcements are used in columns, where
they are called ties.

2.19.1 Types of Steel Reinforcement

Different types of steel reinforcement are used in various reinforced concrete members. These types
can be classified as follows:

Round Bars. Round bars are used most widely for reinforced concrete. Round bars are available
in a large range of diameters, from 1

4
in. (6 mm) to 1 3

8
in. (36 mm), plus two special types, 1 3

4
in.

(45 mm) and 2 1
4

in. (57 mm). Round bars, depending on their surfaces, are either plain or deformed
bars. Plain bars are used mainly for secondary reinforcement or in stirrups and ties. Deformed bars
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have projections or deformations on the surface for the purpose of improving the bond with concrete
and reducing the width of cracks opening in the tension zone.

The diameter of a plain bar can be measured easily, but for a deformed bar, a nominal diameter
is used that is the diameter of a circular surface with the same area as the section of the deformed bar.
Requirements of surface projections on bars are specified by ASTM specification A 305 or A 615.
The bar sizes are designated by numbers 3 through 11, corresponding to the diameter in one-eighths
of an inch. For instance, a no. 7 bar has a nominal diameter of 7

8
in. and a no. 4 bar has a nominal

diameter of 1
2

in. The two largest sizes are designated no. 14 and no. 18, respectively. American
standard bar marks are shown on the steel reinforcement to indicate the initial of the producing mill,
the bar size, and the type of steel (Fig. 2.6). The grade of the reinforcement is indicated on the bars

Figure 2.6 Some types of deformed bars and American standard bar marks.
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by either the continuous-line system or the number system. In the first system, one longitudinal
line is added to the bar, in addition to the main ribs, to indicate the high-strength grade of 60 ksi
(420 N/mm2), according to ASTM specification A 617. If only the main ribs are shown on the
bar, without any additional lines, the steel is of the ordinary grade according to ASTM A 615 for
the structural grade (fy = 40 ksi, or 280 N/mm2). In the number system, the yield strength of the
high-strength grades is marked clearly on every bar. For ordinary grades, no strength marks are
indicated. The two types are shown in Fig. 2.6.

Welded Fabrics and Mats. Welded fabrics and mats consist of a series of longitudinal and trans-
verse cold-drawn steel wires, generally at right angles and welded together at all points of intersec-
tion. Steel reinforcement may be built up into three-dimensional cages before being placed in the
forms.

Prestressed Concrete Wires and Strands. Prestressed concrete wires and strands use special
high-strength steel (see Chapter 20). High-tensile steel wires of diameters 0.192 in. (5 mm) and
0.276 in. (7 mm) are used to form the prestressing cables by winding six steel wires around a seventh
wire of slightly larger diameter. The ultimate strength of prestressed strands is 250 or 270 ksi.

2.19.2 Grades and Strength

Different grades of steel are used in reinforced concrete. Limitations on the minimum yield strength,
ultimate strength, are explained in ASTM specifications for reinforcing steel bars (Table 2.18). The
properties and grades of metric reinforcing steel are shown in Tables 2.19 and 2.20.

ACI Code, Section 20.2.2.4 and 20.2.25 defines the types of nonprestressed bars and wires
to be specified in two tables one is used for deformed bars while the other for plain reinforcement.

Table 2.18 Grade of ASTM Reinforcing Steel Bars

Steel Minimum Yield Strength fy Ultimate Strength fsu

ksi MPa ksi MPa

Billet steel
Grade 40 40 276 70 483

60 60 414 90 621
75 75 518 100 690
80 [24] 80 550 — —

Rail steel
Grade 50 50 345 80 551

60 60 414 90 621
Deformed wire
Reinforcing 75 518 85 586
Fabric 70 483 80 551
Cold-drawn wire
Reinforcing 70 483 80 551
Fabric 65 448 75 518
Fabric 56 386 70 483
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Table 2.19 ASTM 615 M (Metric) for Reinforcing Steel Bars

Bar No. Diameter (mm) Area (mm2) Weight (kg/m)

10 M 11.3 100 0.785
15 M 16.0 200 1.570
20 M 19.5 300 2.355
25 M 25.2 500 3.925
30 M 29.9 700 5.495
35 M 35.7 1000 7.850
45 M 43.7 1500 11.770
55 M 56.4 2500 19.600

Table 2.20 ASTM Metric Specifications

ASTM Bar Size No.

MPa ksi Grade

A615 M 10, 15, 20 300 43.5
Billet steel 10–55 400 58.0

35, 45, 55 500 72.5
A616 M 10–35 350 50.75
Rail steel 10–35 400 58.0
A617 M 10–35 300 43.5
Axle steel 10–35 400 58.0
A706 10–55 400 58.0
Low alloy

The code defines the type of structure and the recommended type of steel to be used. These are
shown in Table 2.21 and Table 2.22.

2.19.3 Stress–Strain Curves

The most important factor affecting the mechanical properties and stress–strain curve of the steel
is its chemical composition. The introduction of carbon and alloying additives in steel increases
its strength but reduces its ductility. Commercial steel rarely contains more than 1.2% carbon; the
proportion of carbon used in structural steels varies between 0.2 and 0.3%.

Two other properties are of interest in the design of reinforced concrete structures; the first
is the modulus of elasticity, Es. It has been shown that the modulus of elasticity is constant for all
types of steel. The ACI Code has adopted a value of Es = 29× 106 psi (2.0× 105 MPa).

The modulus of elasticity is the slope of the stress–strain curve in the elastic range up to the
proportional limit; Es = stress/strain. Second is the yield strength, fy. Typical stress–strain curves
for some steel bars are shown in Fig. 2.7. In high-tensile steel, a definite yield point may not show
on the stress–strain curve. In this case, ultimate strength is reached gradually under an increase of
stress (Fig. 2.7). The yield strength or proof stress is considered the stress that leaves a residual
strain of 0.2% on the release of load, or a total strain of 0.5 to 0.6% under load.
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Table 2.22 Nonprestressed Plain Spiral Reinforcement

Maximum Value Of
fy or fyt Permitted
for Design
Calculations, psi

Applicable ASTM Specification
Usage Application Plain Bars Plain Wires

Lateral support of
longitudinal bars or
concrete confinement

Spirals in
special seismic
systems

100,000 A615, A706, A955,
A1035

A1064, A1022

Spirals 100,000 A615, A706, A955,
A1035

A1064, A1022

Shear Spirals 60,000 A615, A706, A955,
A1035

A1064, A1022

Torsion in
nonprestressed beams

Spirals 60,000 A615, A706, A955,
A1035

A1064, A1022

Figure 2.7 Typical stress–strain curves for some reinforcing steel bars of different
grades. Note that 60-ksi steel may or may not show a definite yield point.
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SUMMARY

Section 2.1

The main factors that affect the strength of concrete are the water–cement ratio, properties and
proportions of materials, age of concrete, loading conditions, and shape of tested specimen.

f ′c (cylinder) = 0.85 f ′c (cube) = 1.10 f ′c (prism)

Sections 2.2–2.6

1. The usual specimen used to determine the compressive strength of concrete at 28 days is a 6 ×
12-in. (150 × 300-mm) cylinder. Compressive strength between 3000 and 6000 psi is usually
specified for reinforced concrete structures. Maximum stress, f ′c , is reached at an estimated
strain of 0.002, whereas rupture occurs at a strain of about 0.003.

2. Tensile strength of concrete is measured indirectly by a splitting test performed on a standard
cylinder using formula f ′sp = 2P∕𝜋LD. Tensile strength of concrete is approximately 0.1f ′c .

3. Flexural strength (modulus of rupture, fr) of concrete is calculated by testing a 6× 6× 28-in.
plain concrete beam, fr = 7.5𝜆

√
f ′c (psi), where 𝜆 is a modification factor related to unit

weight of concrete.

4. Nominal shear stress is 2𝜆
√

f ′c (psi).

Sections 2.7–2.9

The modulus of elasticity of concrete, Ec for unit weight 𝑤 between 90 and 160 pcf, is Ec =
33𝑤1.5

√
f ′c (psi) = 0.043𝑤1.5

√
f ′c MPa.

For normal-weight concrete, 𝑤= 145 pcf.

Ec = 57,600
√

f ′c or Ec = 57,000
√

f ′c = 4700
√

f ′c MPa

The shear modulus of concrete is Gc =Ec/2(1+𝜇)= 0.43 Ec for a Poisson ratio 𝜇 = 1
6
. Poisson’s

ratio, 𝜇, varies between 0.15 and 0.20, with an average value of 0.18.

Section 2.10

Modular ratio is n = Es∕Ec = 500∕
√

f ′c , where f ′c is in pounds per square inch.

Section 2.11

1. Values of shrinkage for normal concrete fall between 200× 10−6 and 700× 10−6. An average
value of 300× 10−6 may be used.

2. The coefficient of expansion of concrete falls between 4× 10−6 and 7× 10−6/∘F.

Section 2.12–2.13

The ultimate magnitude of creep varies between 0.2× 10−6 and 2× 10−6 per unit stress per unit
length. An average value of 1× 10−6 may be adopted in practical problems. Of the ultimate
(20-year) creep, 18 to 35% occurs in 2 weeks, 30 to 70% occurs in 3 months, and 64 to 83% occurs
in 1 year.
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Section 2.14

The unit weight of normal concrete is 145 pcf for plain concrete and 150 pcf for reinforced concrete.

Section 2.15

Reinforced concrete is a much better fire-resistant material than steel. Concrete itself has a low
thermal conductivity. An increase in concrete cover in structural members such as walls, columns,
beams, and floor slabs will increase the fire resistance of these members.

Sections 2.16–2.18

1. High-performance concrete implies that concrete exhibits properties of strength, toughness,
energy absorption, durability, stiffness, and ductility higher than normal concrete.

2. Concrete is made lighter than normal-weight concrete by inclusion of air in the concrete com-
position. Types of lightweight concrete are no-fines concrete, lightweight aggregate concrete,
aerated concrete, and cellular concrete.

3. Fibrous concrete is made of concrete constituents and discrete reinforcing fibers such as steel,
glass, and organic polymers.

Section 2.19

The grade of steel mainly used is grade 60 (fy = 60 ksi). The modulus of elasticity of steel is
Es = 29× 106 psi (2× 105 MPa).
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P R O B L E M S

2.1 Explain the modulus of elasticity of concrete in compression and the shear modulus.
2.2 Determine the modulus of elasticity of concrete by the ACI formula for a concrete cylinder that has a

unit weight of 120 pcf (1920 kg/m3) and a compressive strength of 3000 psi (21 MPa).
2.3 Estimate the modulus of elasticity and the shear modulus of a concrete specimen with a dry density of

150 pcf (2400 kg/m3) and compressive strength of 4500 psi (31 MPa) using Poisson’s ratio, 𝜇= 0.18.
2.4 What is meant by the modular ratio and Poisson’s ratio? Give approximate values for concrete.
2.5 What factors influence the shrinkage of concrete?
2.6 What factors influence the creep of concrete?
2.7 What are the types and grades of the steel reinforcement used in reinforced concrete?
2.8 On the stress–strain diagram of a steel bar, show and explain the following: proportional limit, yield

stress, ultimate stress, yield strain, and modulus of elasticity.
2.9 Calculate the modulus of elasticity of concrete, Ec, for the following types of concrete:

Ec = 33𝑤1.5
√

f ′c (ft)

= 0.043𝑤1.5
√

f ′c (SI)

Density Strength f′c

160 pcf 5000 psi
145 pcf 4000 psi
125 pcf 2500 psi
2400 kg/m3 35 MPa
2300 kg/m3 30 MPa
2100 kg/m3 25 MPa
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2.10 Determine the modular ratio, n, and the modulus of rupture for each case of Problem 2.9. Tabulate your
results.

fr = 7.5𝜆
√

f ′c (psi) fr = 0.62𝜆
√

f ′c (MPa)
2.11 A 6 × 12-in. concrete cylinder was tested to failure. The following loads and strains were recorded:

Load, kips Strain × 10−4 Load, kips Strain × 10−4

0.0 0.0 72 10.0
12 1.2 84 13.6
24 2.0 96 18.0
36 3.2 108 30.0
48 5.2 95 39.0
60 7.2 82 42.0

a. Draw the stress–strain diagram of concrete and determine the maximum stress and corresponding
strain.

b. Determine the initial modulus and secant modulus.
c. Calculate the modulus of elasticity of concrete using the ACI formula for normal-weight concrete

and compare results.

Ec = 57,000
√

f ′c psi

= 4730
√

f ′c MPa

2.12 Calculate the shrinkage strain, creep compliance, and creep coefficient using the ACI 209R-92 model
for a 6 × 12-in. steam-cured concrete cylinder made with type III portland cement. Given:

H 90 %

he = 2V/S 6 in.
fcm28 4021 psi
𝑤 345 lb/yd3

𝑤/c 0.4
a/c 3.25
t 400 days
t0 28 days
tc 1 days
𝛾 146 lb/ft3

2.13 Calculate the shrinkage strain, creep compliance, and creep coefficient for problem 2.12 using the GL
2000 Model.

2.14 Calculate the shrinkage strain, creep compliance, and creep coefficient for problem 2.12 using the fib
MC 2010 Model.

2.15 A concrete specimen has the following properties: Relative Humidity = 50%; he = 2V/S = 35 mm; fcm28
= 33.9 MPa; cement content (c) = 350 kg/m3, 𝑤/c = 0.49, a/c = 4.814, t0 = 7 days, 𝛾 = 2296.74 kg/m3.
The specimen is made with Type I portland cement and was moist-cured.
a. Calculate the creep compliance utilizing the ACI 209R-92 and fib MC 2010 models at ages of: 14,

90,365,2190 and 3650 days.
b. Create a plot showing the ACI 209R-92 and fib MC 2010 creep compliance predictions versus loading

duration up tp 3650 days.
c. Comment on the trend of both models.
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2.16 A concrete specimen has the following properties: Relative humidity = 50%; he = 2V/S = 51 mm; fcm28
= 16.5 MPa; cement content (c) = 320 kg/m3,𝑤/c = 0.59, a/c = 5.669, tc = 28 days, 𝛾 = 2296.74 kg/m3.
The specimen is made with Type I portland cement and was moist-cured.
a. Calculate the shrinkage strain using the B3 and the GL 2000 models at ages of: 56, 90, 365, 2190,

and 3650 days.
b. Create a plot showing the B3 and GL 2000 shrinkage strain predictions versus age up to 3650 days.



CHAPTER3
FLEXURAL
ANALYSIS OF
REINFORCED
CONCRETE
BEAMS

Apartment building, Fort Lauderdale, Florida.

3.1 INTRODUCTION

The analysis and design of a structural member may be regarded as the process of selecting the
proper materials and determining the member dimensions such that the design strength is equal or
greater than the required strength. The required strength is determined by multiplying the actual
applied loads, the dead load, the assumed live load, and other loads, such as wind, seismic, earth
pressure, fluid pressure, snow, and rain loads, by load factors. These loads develop external forces
such as bending moments, shear, torsion, or axial forces, depending on how these loads are applied
to the structure.

In proportioning reinforced concrete structural members, three main items can be investi-
gated:

1. The safety of the structure, which is maintained by providing adequate internal design
strength.

2. Deflection of the structural member under service loads. The maximum value of deflection
must be limited and is usually specified as a factor of the span, to preserve the appearance of
the structure.

3. Control of cracking conditions under service loads. Visible cracks spoil the appearance of
the structure and also permit humidity to penetrate the concrete, causing corrosion of steel
and consequently weakening the reinforced concrete member. The ACI Code implicitly limits
crack widths to 0.016 in. (0.40 mm) for interior members and 0.013 in. (0.33 mm) for exterior
members. Control of cracking is achieved by adopting and limiting the spacing of the tension
bars (see Chapter 6).

It is worth mentioning that the strength design approach was first permitted in the United
States in 1956 and in Britain in 1957. The latest ACI Code emphasizes the strength concept based
on specified strain limits on steel and concrete that develop tension-controlled, compression-
controlled, or transition conditions.

83
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3.2 ASSUMPTIONS

Reinforced concrete sections are heterogeneous (nonhomogeneous), because they are made of two
different materials, concrete and steel. Therefore, proportioning structural members by strength
design approach is based on the following assumptions:

1. Strain in concrete is the same as in reinforcing bars at the same level, provided that the bond
between the steel and concrete is adequate.

2. Strain in concrete is linearly proportional to the distance from the neutral axis.
3. The modulus of elasticity of all grades of steel is taken as Es = 29× 106 lb/in.2 (200,000 MPa

or N/mm2). The stress in the elastic range is equal to the strain multiplied by Es.
4. Plane cross sections continue to be plane after bending.
5. Tensile strength of concrete is neglected because (a) concrete’s tensile strength is about 10%

of its compressive strength, (b) cracked concrete is assumed to be not effective, and (c) before
cracking, the entire concrete section is effective in resisting the external moment.

6. The method of elastic analysis, assuming an ideal behavior at all levels of stress, is not valid.
At high stresses, nonelastic behavior is assumed, which is in close agreement with the actual
behavior of concrete and steel.

7. At failure the maximum strain at the extreme compression fibers is assumed equal to 0.003
by the ACI Code provision.

8. For design strength, the shape of the compressive concrete stress distribution may be assumed
to be rectangular, parabolic, or trapezoidal. In this text, a rectangular shape will be assumed
(ACI Code, Section 22.2).

3.3 BEHAVIOR OF SIMPLY SUPPORTED REINFORCED CONCRETE BEAM
LOADED TO FAILURE

Concrete being weakest in tension, a concrete beam under an assumed working load will defi-
nitely crack at the tension side, and the beam will collapse if tensile reinforcement is not provided.
Concrete cracks occur at a loading stage when its maximum tensile stress reaches the modulus of
rupture of concrete. Therefore, steel bars are used to increase the moment capacity of the beam;
the steel bars resist the tensile force, and the concrete resists the compressive force.

To study the behavior of a reinforced concrete beam under increasing load, let us examine
how two beams were tested to failure. Details of the beams are shown in Fig. 3.1. Both beams had
a section of 4.5 × 8 in. (110 × 200 mm), reinforced only on the tension side by two no. 5 bars.
They were made of the same concrete mix. Beam 1 had no stirrups, whereas beam 2 was provided
with no. 3 stirrups spaced at 3 in. The loading system and testing procedure were the same for both
beams. To determine the compressive strength of the concrete and its modulus of elasticity, Ec, a
standard concrete cylinder was tested, and strain was measured at different load increments. The
following observations were noted at different distinguishable stages of loading.

Stage 1. At zero external load, each beam carried its own weight in addition to that of the load-
ing system, which consisted of an I-beam and some plates. Both beams behaved similarly at this
stage. At any section, the entire concrete section, in addition to the steel reinforcement, resisted
the bending moment and shearing forces. Maximum stress occurred at the section of maximum
bending moment—that is, at midspan. Maximum tension stress at the bottom fibers was much less
than the modulus of rupture of concrete. Compressive stress at the top fibers was much less than
the ultimate concrete compressive stress, f ′c . No cracks were observed at this stage.
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Figure 3.1 Details of tested beams: (a) beam 1, (b) beam 2, and (c) loading system.
All beams are symmetrical about the centerline.



86 Chapter 3 Flexural Analysis of Reinforced Concrete Beams

Test on a simply supported beam and a two-span continuous beam loaded to failure.

Two-span continuous reinforced concrete beam loaded to failure.

Failure conditions at the positive- and negative-moment sections in a continuous reinforced concrete beam.
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Stage 2. This stage was reached when the external load, P, was increased from 0 to P1, which
produced tensile stresses at the bottom fibers equal to the modulus of rupture of concrete. At this
stage the entire concrete section was effective, with the steel bars at the tension side sustaining a
strain equal to that of the surrounding concrete.

Stress in the steel bars was equal to the stress in the adjacent concrete multiplied by the
modular ratio, n, is the ratio of the modulus of elasticity of steel to that of concrete. The compressive
stress of concrete at the top fibers was still very small compared with the compressive strength, f ′c .
The behavior of beams was elastic within this stage of loading.

Stage 3. When the load was increased beyond P1, tensile stresses in concrete at the tension zone
increased until they were greater than the modulus of rupture, fr, and cracks developed. The neutral
axis shifted upward, and cracks extended close to the level of the shifted neutral axis. Concrete in
the tension zone lost its tensile strength, and the steel bars started to work effectively and to resist
the entire tensile force. Between cracks, the concrete bottom fibers had tensile stresses, but they
were of negligible value. It can be assumed that concrete below the neutral axis did not participate
in resisting external moments.

In general, the development of cracks and the spacing and maximum width of cracks depend
on many factors, such as the level of stress in the steel bars, distribution of steel bars in the section,
concrete cover, and grade of steel used.

At this stage, the deflection of the beams increased clearly because the moment of inertia of
the cracked section was less than that of the uncracked section. Cracks started about the midspan of
the beam, but other parts along the length of the beam did not crack. When load was again increased,
new cracks developed, extending toward the supports. The spacing of these cracks depends on the
concrete cover and the level of steel stress. The width of cracks also increased. One or two of the
central cracks were most affected by the load, and their crack widths increased appreciably, whereas
the other crack widths increased much less. It is more important to investigate those wide cracks
than to consider the larger number of small cracks.

If the load were released within this stage of loading, it would be observed that permanent fine
cracks of no significant magnitude were left. On reloading, cracks would open quickly because the
tensile strength of concrete had already been lost. Therefore, it can be stated that the second stage,
once passed, does not happen again in the life of the beam. When cracks develop under working
loads, the resistance of the entire concrete section and gross moment of inertia are no longer valid.

At high compressive stresses, the strain of the concrete increased rapidly, and the stress of
concrete at any strain level was estimated from a stress–strain graph obtained by testing a standard
cylinder to failure for the same concrete. As for the steel, the stresses were still below the yield
stress, and the stress at any level of strain was obtained by multiplying the strain of steel, 𝜀s, by the
modulus of elasticity of steel, Es.

Stage 4. In beam 1, at a load value of 9500 lb (42.75 kN), shear stress at a distance of about the
depth of the beam from the support increased and caused diagonal cracks at approximately 45∘
from horizontal in the direction of principal stresses resulting from the combined action of bending
moment and shearing force. The diagonal crack extended downward to the level of the steel bars
and then extended horizontally at that level toward the support. When the crack, which had been
widening gradually, reached the end of the beam, a concrete piece broke off and failure occurred
suddenly (Fig. 3.2). The failure load was 13,600 lb (61.2 kN). Stresses in concrete and steel at the
midspan section did not reach their failure stresses. (The shear behavior of beams is discussed in
Chapter 8.)

In beam 2, at a load of 11,000 lb (49.5 kN), a diagonal crack developed similar to that of
beam 1; then other parallel diagonal cracks appeared, and the stirrups started to take an effective
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Figure 3.2 Shape of beam 1 at shear failure (top) and beam 2 at bending moment
failure (bottom).

part in resisting the principal stresses. Cracks did not extend along the horizontal main steel bars,
as in beam 1. On increasing the load, diagonal cracks on the other end of the beam developed at a
load of 13,250 lb (59.6 kN). Failure did not occur at this stage because of the presence of stirrups.

Stage 5. When the load on beam 2 was further increased, strains increased rapidly until the max-
imum carrying capacity of the beam was reached at ultimate load, Pu = 16,200 lb (72.9 kN).

In beam 2, the amount of steel reinforcement used was relatively small. When reached, the
yield strain can be considered equal to yield stress divided by the modulus of elasticity of steel,
𝜀y = fy/Es; the strain in the concrete, 𝜀c, was less than the strain at maximum compressive stress,
f ′c . The steel bars yielded, and the strain in steel increased to about 12 times that of the yield strain
without increase in load. Cracks widened sharply, deflection of the beam increased greatly, and the
compressive strain on the concrete increased. After another very small increase of load, steel strain
hardening occurred, and concrete reached its maximum strain, 𝜀′c, and it started to crush under load;
then the beam collapsed. Figure 3.2 shows the failure shapes of the two beams.

3.4 TYPES OF FLEXURAL FAILURE AND STRAIN LIMITS

3.4.1 Flexural Failure

Three types of flexural failure of a structural member can be expected depending on the percentage
of steel used in the section.

1. Steel may reach its yield strength before the concrete reaches its maximum strength, Fig. 3.3a.
In this case, the failure is due to the yielding of steel reaching a high strain equal to or
greater than 0.005. The section contains a relatively small amount of steel and is called a
tension-controlled section.

2. Steel may reach its yield strength at the same time as concrete reaches its ultimate strength,
Fig. 3.3b. The section is called a balanced section.

3. Concrete may fail before the yield of steel, Fig. 3.3c, due to the presence of a high percentage
of steel in the section. In this case, the concrete strength and its maximum strain of 0.003 are
reached, but the steel stress is less than the yield strength, that is, fs is less than fy. The strain in
the steel is equal to or less than 0.002. This section is called a compression-controlled section.
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εs = εt = fy /Es

εs = εt = fy /Es

fs < fy

fy

εs = εt ≤ εy  = fy /Es

εc < εc′

εc′ = 0.003 
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Figure 3.3 Stress and strain diagrams for (a) tension-controlled, (b) balanced, and
(c) compression-controlled sections.



90 Chapter 3 Flexural Analysis of Reinforced Concrete Beams

It can be assumed that concrete fails in compression when the concrete strain reaches 0.003.
A range of 0.0025 to 0.004 has been obtained from tests and the ACI Code, Section 22.2.2.1,
assumes a strain of 0.003.

In beams designed as tension-controlled sections, steel yields before the crushing of concrete.
Cracks widen extensively, giving warning before the concrete crushes and the structure collapses.
The ACI Code adopts this type of design. In beams designed as balanced or compression-controlled
sections, the concrete fails suddenly, and the beam collapses immediately without warning. The
ACI Code does not allow this type of design.

3.4.2 Strain Limits for Tension and Tension-Controlled Sections

The design provisions for both reinforced and prestressed concrete members are based on the con-
cept of tension or compression-controlled sections, ACI Code, Section 21.2. Both are defined in
terms of net tensile strain (NTS), (𝜀t, in the extreme tension steel at nominal strength, exclusive of
prestress strain. Moreover, two other conditions may develop: (1) the balanced strain condition and
(2) the transition region condition. These four conditions are defined as follows:

1. Compression-controlled sections are those sections in which the net tensile strain, NTS, in the
extreme tension steel at nominal strength is equal to or less than the compression-controlled
strain limit at the time when concrete in compression reaches its assumed strain limit of 0.003,
(𝜀c = 0.003). For grade 60 steel, (fy = 60 ksi), the compression-controlled strain limit may be
taken as a net strain of 0.002, Fig. 3.4a. This case occurs mainly in columns subjected to axial
forces and moments.

2. Tension-controlled sections are those sections in which the NTS, 𝜀t, is equal to or greater
than 0.005 just as the concrete in the compression reaches its assumed strain limit of 0.003,
Fig. 3.4c.

3. Sections in which the NTS in the extreme tension steel lies between the compression-
controlled strain limit (0.002 for fy = 60 ksi) and the tension-controlled strain limit of 0.005
constitute the transition region, Fig. 3.4b.

4. The balanced strain condition develops in the section when the tension steel, with the first
yield, reaches a strain corresponding to its yield strength, fy or 𝜀s = fy/Es, just as the maximum
strain in concrete at the extreme compression fibers reaches 0.003, Fig. 3.5.

fy
Es

For fy = 60 ksi

dt

c1

c2
c3

h

b

(a) (b) (c)

0.002 < εt < 0.005

< εt < 0.005
Es

fy
εt ≥ 0.005

εt ≥ 0.005

εt ≤

εt ≤ 0.002

εc = 0.003 εc = 0.003 εc = 0.003

Figure 3.4 Strain limit distribution, c1 > c2 > c3: (a) compression-controlled section,
(b) transition region, and (c) tension-controlled section.
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cb
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d dt
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εc = 0.003

εt  = 0.002 ( fy = 60 ksi)

Figure 3.5 Balanced strain section (occurs at first yield or at distance dt).

Table 3.1 Strain Limits of Figure 3.4

Section Condition Concrete Strain Steel Strain Notes (fy = 60 ksi)

Compression controlled 0.003 𝜀t ≤ fy/Es 𝜀t ≤ 0.002
Tension controlled 0.003 𝜀t ≥ 0.005 𝜀t ≥ 0.005
Transition region 0.003 fy/Es < 𝜀t <0.005 0.002< 𝜀t < 0.005
Balanced strain 0.003 𝜀s = fy/Es 𝜀s = 0.002
Transition region (flexure) 0.003 0.004≤ 𝜀t < 0.005 0.004≤ 𝜀t < 0.005

In addition to the above four conditions, Section 9.3.3.1 of the ACI Code indicates that the
net tensile strain, 𝜀t, at nominal strength, within the transition region, shall not be less than 0.004
for reinforced concrete flexural members without or with an axial load less than 0.10 f ′c Ag, where
Ag = gross area of the concrete section.

Note that dt in Fig. 3.4, is the distance from the extreme concrete compression fiber to the
extreme tension steel, while the effective depth, d, equals the distance from the extreme concrete
compression fiber to the centroid of the tension reinforcement, Fig. 3.5. These cases are summarized
in Table 3.1.

3.5 LOAD FACTORS

The types of loads and the safety provisions were explained earlier in Sections 1.7 and 1.8.
For the design of structural members, the factored design load is obtained by multiplying the

dead load by a load factor and the specified live load by another load factor. The magnitude of the
load factor must be adequate to limit the probability of sudden failure and to permit an economical
structural design. The choice of a proper load factor or, in general, a proper factor of safety depends
mainly on the importance of the structure (whether a courthouse or a warehouse), the degree of
warning needed prior to collapse, the importance of each structural member (whether a beam or
column), the expectation of overload, the accuracy of artisanry, and the accuracy of calculations.

Based on historical studies of various structures, experience, and the principles of probability,
the ACI Code adopts a load factor of 1.2 for dead loads and 1.6 for live loads. The dead-load factor
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is smaller because the dead load can be computed with a greater degree of certainty than the live
load. Moreover, the choice of factors reflects the degree of the economical design as well as the
degree of safety and serviceability of the structure. It is also based on the fact that the performance
of the structure under actual loads must be satisfactorily within specific limits.

If the required strength is denoted by U (ACI Code, Section 5.3.1), and those due to wind and
seismic forces are W and E, respectively, according to the ACI and ASCE 7-10 Codes, the required
strength, U, shall be the most critical of the following factors:

1. In the case of dead, live, and wind loads,

U = 1.4D (3.1a)

U = 1.2D + 1.6L (3.1b)

U = 1.2D + 1.0L + 1.0W (3.1c)

U = 0.9D + 1.0W (3.1d)

U = 1.2D + (1.0L or 0.5W) (3.1e)

2. In the case of dead, live, and seismic (earthquake) forces, E,

U = 1.2D + 1.0L + 1.0E (3.2a)

U = 0.9D + 1.0E (3.2b)

3. For load combination due to roof live load, Lr, rain load, R, snow load, S, in addition to dead,
live, wind, and earthquake load,

U = 1.2D + 1.6L + 0.5(Lr or S or R) (3.3a)

U = 1.2D + 1.6(Lr or S or R) + (1.0L or 0.5W) (3.3b)

U = 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R) (3.3c)

U = 1.2D + 1.0E + 1.0L + 0.2S (3.3d)

4. Where fluid load F is present, it shall be included as follows:

U = 1.4(D + F) (3.4a)

U = 1.2D + 1.2F + 1.6L + 0.5(Lr or S or R) (3.4b)

U = 1.2D + 1.2F + (L + 0.5W) + 1.6(Lr or S or R) (3.4c)

U = 1.2D + 1.2F + 1.0W + L + 0.5(Lr or S or R) (3.4d)

U = 1.2D + 1.2F + 1.0E + L + 0.2S (3.4e)

U = 0.9(D + F) + 1.0E (3.4f)

5. When the load H (load due to lateral earth pressure, groundwater pressure, or pressure of bulk
material) is present, it shall be included as follows:
a. Include H with load factor 1.6, where effect of H adds to the primary variable load effect.
b. Include H with load factor 0.90, where effect of H resist to the primary variable load effect

U = primary permanent loads + 1.6H (3.5a)

U = primary permanent loads − 0.9H (3.5b)
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It is to noted that

1. The load factor L in Eqs. 3.1c, 3.1e, 3.2a, 3.3b, 3.3c, and 3.3d shall be permitted to be reduced
to 0.5L, except for garages, areas occupied as places of public assembly, and all areas where
the live load L is greater than 100 pounds per square foot (psf).

2. Where W is based on service wind loads, 1.6W shall be used in place of 1.0W in Eqs. 3.1c,
3.1d, and 3.3c and 0.8W shall be used in place of 0.5W in Eqs. 3.1e and Eqs. 3.3b.

3. If the service level of the seismic load E is used, 1.4E shall be used in place of 1.0E in Eqs. 3.2a
and b and 3.3d.

4. In a flood zone area, the flood load or load combinations of ASCE shall be used.
5. Impact effects shall be included with the live load L.

The ACI Code does not specify a value for impact, but AASHTO specifications give a simple
factor for impact, I, as a percentage of the live load L as follows:

I = 50
125 + S

≤ 30% (3.6)

where I is the percentage of impact, S is the part of the span loaded, and live load including impact
is L(1 + I).

When a better estimation is known from experiments or experience, the adjusted value shall
be used.

3.6 STRENGTH REDUCTION FACTOR 𝝓

The nominal strength of a section, say Mn, for flexural members, calculated in accordance with the
requirements of the ACI Code provisions must be multiplied by the strength reduction factor, 𝜙,
which is always less than 1. The strength reduction factor has several purposes:

1. To allow for the probability of understrength sections due to variations in dimensions, material
properties, and inaccuracies in the design equations.

2. To reflect the importance of the member in the structure.
3. To reflect the degree of ductility and required reliability under the applied loads.

The ACI Code, Table 21.2.1, specifies the following values to be used:

For tension-controlled sections 𝜙 = 0.90
For compression-controlled sections

a. with spiral reinforcement 𝜙 = 0.75
b. other reinforced members 𝜙 = 0.65

For plain concrete 𝜙 = 0.60
For shear and torsion 𝜙 = 0.75
For bearing on concrete 𝜙 = 0.65
For strut and tie models 𝜙 = 0.75

A higher 𝜙 factor is used for tension-controlled sections than for compression-controlled
sections, because the latter sections have less ductility and they are more sensitive to variations in
concrete strength. Also, spirally reinforced compression members have a 𝜙 value of 0.75 compared
to 0.65 for tied compression members; this variation reflects the greater ductility behavior of spirally
reinforced concrete members under the applied loads. In the ACI Code provisions, the 𝜙 factor is
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based on the behavior of the cross section at nominal strength, (Pn, Mn), defined in terms of the
NTS, 𝜀t, in the extreme tensile strains, as given in Table 3.1. For tension-controlled members,
𝜙 = 0.9. For compression-controlled members, 𝜙 = 0.75 (with spiral reinforcement) and 𝜙 = 0.65
for other members.

For the transition region, 𝜙may be determined by linear interpolation between 0.65 (or 0.75)
and 0.9. Figure 3.6a shows the variation of 𝜙 for grade 60 steel. The linear equations are as follows:

𝜙 =
⎧
⎪
⎨
⎪
⎩

0.75 +
(
𝜀t − 0.002

)
(50) (for spiral members) (3.7)

0.65 + (𝜀t − 0.002)
(250

3

)
(for other members) (3.8)

Alternatively, 𝜙 may be determined in the transition region, as a function of (c/dt) for grade
60 steel as follows:

𝜙 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.75 + 0.15

[
1

c∕dt
− 5

3

]
(for spiral members) (3.9)

0.65 + 0.25

[
1

c∕dt
− 5

3

]
(for other members) (3.10)

where c is the depth of the neutral axis at nominal strength (c2 in Fig. 3.4). At the limit strain of
0.002 for grade 60 steel and from the triangles of Fig. 3.4a, c/dt = 0.003/(0.002+0.003) = 0.6.
Similarly, at a strain, 𝜀t = 0.005, c/dt = 0.003/(0.005+0.003) = 0.375. Both values are shown in
Fig. 3.6.

For reinforced concrete flexural members, the NTS, 𝜀t, should be equal to or greater than
0.004 (ACI Code, Section 22.2.2). In this case,

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.82 (3.11)

Figure 3.6b shows the range of 𝜙 for flexural members. For grade 60 steel, the range varies
between 0.9 for 𝜀t ≥ 0.005 and 0.82 for 𝜀t = 0.004. Other values of 𝜙 can be obtained from Eq. 3.11
or by interpolation.

3.7 SIGNIFICANCE OF ANALYSIS AND DESIGN EXPRESSIONS

Two approaches for the investigations of a reinforced concrete member will be used in this book:

Analysis of a section implies that the dimensions and steel used in the section (in addition to
concrete strength and steel yield strength) are given, and it is required to calculate the internal
design moment capacity of the section so that it can be compared with the applied external
required moment.

Design of a section implies that the external required moment is known from structural analysis,
and it is required to compute the dimensions of an adequate concrete section and the amount
of steel reinforcement. Concrete strength and yield strength of steel used are given.

3.8 EQUIVALENT COMPRESSIVE STRESS DISTRIBUTION

The distribution of compressive concrete stresses at failure may be assumed to be a rectangle,
trapezoid, parabola, or any other shape that is in good agreement with test results.
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Figure 3.6 (a) Variation of 𝜙, with the net tensile strain for grade 60 steel and for pre-
stressed steel [1]; (b) variation of 𝜙 and strain limit in flexural member with fy = 60 ksi.

When a beam is about to fail, the steel will yield first if the section is underreinforced, and in
this case the steel is equal to the yield stress. If the section is overreinforced, concrete crushes first
and the strain is assumed to be equal to 0.003, which agrees with many tests of beams and columns.
A compressive force, C, develops in the compression zone and a tension force, T, develops in the
tension zone at the level of the steel bars. The position of force T is known because its line of
application coincides with the center of gravity of the steel bars. The position of compressive force
C is not known unless the compressive volume is known and its center of gravity is located. If that is
done, the moment arm, which is the vertical distance between C and T, will consequently be known.
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Figure 3.7 Forces in a rectangular section.

In Fig. 3.7, if concrete fails, 𝜀c = 0.003, and if steel yields, as in the case of a balanced section,
fs = fy.

The compression force C is represented by the volume of the stress block, which has the
nonuniform shape of stress over the rectangular hatched area of bc. This volume may be considered
equal to C = bc(𝛼1 f ′c ), where 𝛼1 f ′c is an assumed average stress of the nonuniform stress block.

The position of compression force C is at a distance z from the top fibers, which can be
considered as a fraction of the distance c (the distance from the top fibers to the neutral axis), and z
can be assumed to be equal to 𝛼2c, where 𝛼2 <1. The values of 𝛼1 and 𝛼2 have been estimated from
many tests, and their values, as suggested by Mattock, Kriz, and Hognestad [2], are as follows:

𝛼1 = 0.72 for f ′c ≤ 4000 psi (27.6 MPa); it decreases linearly by 0.04 for every 1000 psi

(6.9MPa) greater than 4000 psi

𝛼2 = 0.425 for f ′c < 4000 psi (27.6 MPa); it decreases linearly by 0.025 for every 1000 psi

greater than 4000 psi

The decrease in the value of 𝛼1 and 𝛼2 is related to the fact that high-strength concretes show more
brittleness than low-strength concretes [3].

To derive a simple rational approach for calculations of the internal forces of a section, the
ACI Code adopted an equivalent rectangular concrete stress distribution, which was first proposed
by C.S. Whitney and checked by Mattock and others [2]. A concrete stress of 0.85 f ′c is assumed to
be uniformly distributed over an equivalent compression zone bounded by the edges of the cross
section and a line parallel to the neutral axis at a distance a= 𝛽1c from the fiber of maximum
compressive strain, where c is the distance between the top of the compressive section and the
neutral axis (Fig. 3.8). The fraction 𝛽1 is 0.85 for concrete strengths f

′
c ≤ 4000 psi (27.6 MPa) and

is reduced linearly at a rate of 0.05 for each 1000 psi (6.9 MPa) of stress greater than 4000 psi
(Fig. 3.9), with a minimum value of 0.65.

The preceding discussion applies in general to any section, and it is not confined to a rectangu-
lar shape. In the rectangular section, the area of the compressive zone is equal to ba, and every unit
area is acted on by a uniform stress equal to 0.85 f ′c , giving a total stress volume equal to 0.85 f ′c ab,
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Figure 3.8 Actual and equivalent stress distributions at failure.

Figure 3.9 Values of 𝛽1 for different compressive strengths of concrete, f ′c.
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Figure 3.10 Forces in a nonrectangular section.

which corresponds to the compressive force C. For any other shape, the force C is equal to the area
of the compressive zone multiplied by a constant stress equal to 0.85 f ′c .

For example, in the section shown in Fig. 3.10, the force C is equal to the shaded area of the
cross section multiplied by 0.85 f ′c :

C = 0.85 f ′c (6 × 3 + 10 × 2) = 32.3 f ′c lb

The position of the force C is at a distance z from the top fibers, at the position of the resultant force
of all small-element forces of the section. As in the case when the stress is uniform and equals
0.85 f ′c , the resultant force C is located at the center of gravity of the compressive zone, which has
a depth of a.

In this example, z is calculated by taking moments about the top fibers:

z =

(
6 × 3 × 3

2

)
+ 10 × 2(1 + 3)

6 × 3 + 10 × 2
= 107

38
= 2.82in.
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3.9 SINGLY REINFORCED RECTANGULAR SECTION IN BENDING

We explained previously that a balanced condition is achieved when steel yields at the same time
as the concrete fails, and that failure usually happens suddenly. This implies that the yield strain
in the steel is reached (𝜀y = fy/Es) and that the concrete has reached its maximum strain of 0.003.
The percentage of reinforcement used to produce a balanced condition is called the balanced steel
ratio, 𝜌b. This value is equal to the area of steel, As, divided by the effective cross section, bd:

𝜌b =
As(balanced)

bd
where

b = width of compression face of member
d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement

Two basic equations for the analysis and design of structural members are the two equations
of equilibrium that are valid for any load and any section:

1. The compression force should be equal to the tension force; otherwise, a section will have
linear displacement plus rotation:

C = T (3.12)

2. The internal nominal bending moment, Mn, is equal to either the compressive force, C, mul-
tiplied by its arm or the tension force, T, multiplied by the same arm:

Mn = C(d − z) = T(d − z)

(Mu = 𝜙Mn after applying a reduction factor 𝜙) (3.13)

The use of these equations can be explained by considering the case of a rectangular section with
tension reinforcement (Fig. 3.8). The section may be balanced, underreinforced, or overreinforced,
depending on the percentage of steel reinforcement used.

3.9.1 Balanced Section

Let us consider the case of a balanced section, which implies that at maximum load the strain in
concrete equals 0.003 and that of steel equals the first yield stress at distance dt divided by the
modulus of elasticity of steel, fy/Es. This case is explained by the following steps.

Step 1. From the strain diagram of Fig. 3.11,
cb

dt − cb
= 0.003

fy∕Es

From triangular relationships (where cb is c for a balanced section) and by adding the numer-
ator to the denominator,

cb

dt
= 0.003

0.003 + fy∕Es

Substituting Es = 29× 103 ksi,

cb =
(

87
87 + fy

)
dt (fyinksi) (3.14)

where fy is in ksi.
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a

d

b

dt

a
Cb

0.85fc′

′

εc = 0.003

εy = fy/Es

T = As fy

As

a/2
C = 0.85fcab

Figure 3.11 Rectangular balanced section.

Step 2. From the equilibrium equation,

C = T 0.85 f ′c ab = As fy (3.15)

a =
As fy

0.85 f ′c b
(3.16)

Here, a is the depth of the compressive block, equal to 𝛽1c, where 𝛽1 = 0.85 for f ′c ≤ 4000 psi
(27.6 MPa) and decreases linearly by 0.05 per 1000 psi (6.9 MPa) for higher concrete strengths
(Fig. 3.9). Because the balanced steel reinforcement ratio is used,

𝜌b =
As(balanced)

bd
=

Asb

bd
(3.17)

and substituting the value of Asb in Eq. 3.15,

0.85 f ′c ab = fy𝜌bbd

Therefore,

𝜌b =
0.85 f ′c

fyd
a =

0.85 f ′c
fyd

(𝛽1cb)

Substituting the value of cb from Eq. 3.14, the general equation of the balanced steel ratio becomes

𝜌b = 0.85𝛽1
f ′c
fy

(
87

87 + fy

)(
dt

d

)
(3.18)

The value of dt is equal to d when only one single layer of steel is provided.

Step 3. The internal nominal moment, Mn, is calculated by multiplying either C or T by the dis-
tance between them:

Mn = C(d − z) = T(d − z) (3.13)

For a rectangular section, the distance z= a/2 as the line of application of the force C lies at the
center of gravity of the area ab, where

a =
As fy

0.85 f ′c b

Mn = C
(

d − 1
2

a
)
= T

(
d − 1

2
a
)
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For a balanced or an underreinforced section, T=As fy. Then

Mn = As fy
(

d − 1
2

a
)

(3.19)

To get the usable design moment 𝜑Mn, the previously calculated Mn must be reduced by the capac-
ity reduction factor, 𝜙,

𝜙Mn = 𝜙As fy
(

d − a
2

)
= 𝜙As fy

(
d −

As fy
1.7 f ′c b

)
(3.19a)

Equation 3.19a can be written in terms of the steel percentage 𝜌:

𝜌 =
As

bd
As = 𝜌bd

𝜙Mn = 𝜙 fy 𝜌bd

(
d −

𝜌bdfy

1.7 f ′c b

)
= 𝜙𝜌 fybd2

(
1 −

𝜌fy
1.7 f ′c

)
(3.20)

Equation 3.20 can be written as
𝜙Mn = Rubd2 (3.21)

where

Ru = 𝜙𝜌 fy

(
1 −

𝜌fy
1.7 f ′c

)
(3.22)

The ratio of the equivalent compressive stress block depth, a, to the effective depth of the section,
d, can be found from Eq. 3.15:

0.85 f ′c ab = 𝜌bdfy

a
d
=

𝜌fy
0.85 f ′c

(3.23)

3.9.2 Upper Limit of Steel Percentage

The upper limit or the maximum steel percentage, 𝜌max, that can be used in a singly reinforced
concrete section in bending is based on the net tensile strain in the tension steel, the balanced steel
ratio, and the grade of steel used. The relationship between the steel percentage, 𝜌, in the section
and the net tensile strain, 𝜀t, is as follows:

𝜀t =
(0.003 + fy∕Es

𝜌∕𝜌b

)
− 0.003 (3.24)

For fy = 60 ksi, and assuming fy/Es = 0.002,

𝜀t =
(

0.005
𝜌∕𝜌b

)
− 0.003 (3.25)

These expressions are obtained by referring to Fig. 3.12. For a balanced section,

cb =
ab

𝛽1
=

Asb fy
0.85 f ′c b𝛽1

=
𝜌b fyd

0.85 f ′c𝛽1

Similarly, for any steel ratio, 𝜌,

c =
𝜌 fyd

0.85 f ′c𝛽1
and

c
cb

= 𝜌

𝜌b
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h
d = dt

As

b

c cb
ab

Cb = 0.85fcabb′

0.85fc

0.0030.003

εt
Tension-controlled

fy/Es
Balanced

T = As fy

′

Figure 3.12 Strains in tension-controlled and balanced conditions. (d=dt one layer of
steel).

Divide both sides by d to get
c
d
=
(
𝜌

𝜌b

)(cb

d

)
(3.26)

From the triangles of the strain diagrams,

c
d
= 0.003

0.003 + 𝜀t

𝜀t =
0.003
c∕d

− 0.003 (3.27)

Similarly,
cb

d
= 0.003

0.003 + fy∕Es
(3.28)

Substituting Eq. 3.28 into Eq. 3.26

c
d
=
(
𝜌

𝜌b

)(cb

d

)
=
(
𝜌

𝜌b

)(
0.003

0.003 + fy∕Es

)
(From Eq. 3.26)

Substitute this value in Eq. 3.27 to get

𝜀t =
0.003
c∕d

− 0.003 =
[0.003 + fy∕Es

𝜌∕𝜌b

]
− 0.003 (From Eq. 3.27)

For grade 60 steel, fy = 60 ksi, Es = 29,000 ksi, and fy/Es = 0.00207, then

𝜀t =
(

0.00507
𝜌∕𝜌b

)
− 0.003 (From Eq. 3.25)

To determine the upper limit or the maximum steel percentage, 𝜌, in a singly reinforced con-
crete section, refer to Fig. 3.6. It can be seen that concrete sections subjected to flexure or axial load
and bending moment may lie in compression-controlled, transition, or tension-controlled zones.
When 𝜀t ≤ 0.002 (or c/dt ≥ 0.6), compression controls, whereas when 𝜀t ≥ 0.005 (or c/dt ≤ 0.375),
tension controls. The transition zone occurs when 0.002<𝜀t < 0.005 or 0.6> c/dt > 0.375.



3.9 Singly Reinforced Rectangular Section in Bending 103

For members subjected to flexure, the relationship between the steel ratio, 𝜌, was given in
Eq. 3.24:

𝜀t + 0.003 =
0.003 + fy∕Es

𝜌∕𝜌b
(3.24)

or
𝜌

𝜌b
=

0.003 + fy∕Es

0.003 + 𝜀t
(3.29)

For fy = 60 ksi and Es = 29,000 ksi, fy/Es may be assumed to be 0.00207.

𝜌

𝜌b
= 0.00507

0.003 + 𝜀t
(3.30)

The limit for tension to control is 𝜀t ≥ 0.005 according to ACI. For 𝜀t = 0.005, Eq. 3.30 becomes

𝜌

𝜌b
= 0.005

0.008
= 5

8
= 0.625 (3.30a)

or 𝜌≤ 0.63375 𝜌b for tension-controlled sections if 𝜀t = 0.00507= fy/Es. Both values can be used
for practical analysis and design. The small increase in 𝜌will slightly increase the moment capacity
of the section. For example, if f ′c = 4 ksi and fy = 60 ksi, 𝜌b = 0.0285 and 𝜌≤ 0.01806 for tension
to control (as in the case of flexural members). The 𝜙 factor in this case is 0.9. This value is less
than 𝜌max = 0.75𝜌b = 0.0214 allowed by the ACI Code for flexural members when 𝜙 = 0.9 can
be used.

Design of beams and other flexural members can be simplified using the limit of 𝜀t = 0.005.

𝜌

𝜌b
=

0.003 + fy∕Es

0.008
(3.31)

In this case, 𝜌= 𝜌max = upper limit for tension-controlled sections.

𝜌max =
(0.003 + fy∕Es

0.008

)
𝜌b (3.31a)

Note that when 𝜌 used ≤ 𝜌max, tension controls and 𝜙 = 0.9. When 𝜌> 𝜌max, the section will be in
the transition region with 𝜙< 0.9.

And for fy = 60 ksi and fy/Es = 0.00207,

𝜌max

𝜌b
= 0.63375 (3.32)

This steel ratio will provide adequate ductility before beam failure.
Similarly,

𝜌max =
⎧
⎪
⎨
⎪
⎩

0.5474𝜌b for fy = 40 ksi (3.32a)

0.5905𝜌b for fy = 50 ksi (3.32b)

0.6983𝜌b for fy = 75 ksi (3.32c)

It was established that 𝜙Mn =Rubd 2 (Eq. 3.21), where Ru = 𝜙𝜌 fy(1 − 𝜌fy∕1.7 f ′c ) (Eq. 3.22).
Once f ′c and fy are known, then 𝜌b, 𝜌, Ru, and bd 2 can be calculated. For example, for f ′c = 4 ksi,
fy = 60 ksi, 𝜙 = 0.9, 𝜀t = 0.005, and one row of bars in the section,

𝜌b = 0.0285 𝜌 = 0.01806 Ru = 820 psi
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Table 3.2 Values of 𝜌max and Ru =Mu/bd2 for Flexural Tension-Controlled
Sections with One Row of Bars, 𝜀t = 0.005

f′c (ksi) fy (ksi) 𝝆b 𝝆max = 0.63375 𝝆b Ru (psi) (Eq. 3.22)

3 60 0.0214 0.01356 615
4 60 0.0285 0.01806 820
5 60 0.0335 0.02123 975
6 60 0.0377 0.02389 1109

Note that for one row of bars in the section, it can be assumed that d= dt = h− 2.5 in., whereas
for two rows of bars, d= h− 3.5 in., and dt = h− 2.5 in. = d+1.0 in. (Refer to Figs. 3.4 and 3.5 and
Section 4.3.3.)

Table 3.2 gives the values of 𝜌, 𝜌b, and Ru =Mu /bd 2 for flexural tension-controlled sections
with one row of bars.

For reinforced concrete flexural members with 𝜌> 𝜌max, 𝜀t will be less than 0.005.
Section 9.3.3.1 of the ACI Code specifies that 𝜀t should not be less than 0.004 in the transition
region to maintain adequate ductility and warning before failure.

For this limitation of 𝜀t = 0.004, the general equation (3.29) becomes

𝜌

𝜌b
=

0.003 + fy∕Es

0.007
(3.33)

For fy = 60 ksi,
𝜌

𝜌b
= 0.003 + 0.00207

0.007
= 0.724 (3.34)

and the limit in the transition region is

𝜌max t = 0.724𝜌b (3.34a)

Note that the t here refers to the transition region. In this case, limit of 𝜙t is

𝜙t = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.817 < 0.9 (3.35)

For fy = 60 ksi and f ′c = 4ksi, 𝜌b = 0.0285, 𝜌max t = 0.02063, Rn = 1012 psi (from Eq. 3.22), and
Ru = 𝜙Rn = 0.817(1012) = 826 psi.

This steel ratio in Eq. 3.33 is the upper limit (𝜌max t) for a singly reinforced concrete section
in the transition region with 𝜙< 0.9.

It can be noticed that the aforementioned Ru = 826 psi calculated for 𝜀t = 0.004 is very close to
Ru = 820 psi for 𝜌max = 0.63375𝜌b and 𝜙 = 0.9. Therefore, adding reinforcement beyond 𝜌max (for
𝜀t = 0.005, Table 3.2) reduces 𝜙 because of the reduced ductility resulting in little or nonsubstantial
gain in design strength. Adding compression reinforcement in the section is a better solution to
increase the design moment, keeping the section in the tension-controlled region with 𝜙 = 0.9.
(Refer to Section 3.14.)

Table 3.3 gives the values of 𝜌t(limit), 𝜌b, and Ru for flexural members in the transition region
for fy = 60 ksi and 𝜀t = 0.004 and one row of bars. In this case𝜙= 0.817 (Eq. 3.35) and 𝜌/𝜌b = 0.724.
It is clear that for fy = 60 ksi, the design Ru in both cases, when 𝜀t = 0.005 with 𝜙 = 0.9 and when
𝜀max = 0.004 with 𝜙 = 0.816, are quite close.
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Table 3.3 Values of 𝜌t and Ru for Sections in Transition
Region with 𝜀t = 0.004, fy = 60 ksi, and One
Row of Bars (𝜙 = 0.817)

f′c (ksi) 𝝆b 𝝆t (limit) Ru (psi)

3 0.0214 0.0155 617
4 0.0285 0.0206 822
5 0.0335 0.0243 980
6 0.0377 0.0273 1116

Example 3.1

For the section shown in Fig. 3.13, calculate

a. The balanced steel reinforcement
b. The maximum reinforcement area allowed by the ACI Code for a tension-controlled section and

in the transition region
c. The position of the neutral axis and the depth of the equivalent compressive stress block for the

tension-controlled section in b.

Given: f ′c = 4 ksi and fy = 60 ksi.

8.139.56

 ksi

4.06

Figure 3.13 Example 3.1.

Solution

a. 𝜌b = 0.85𝛽1

f ′c
fy

(
87

87 + fy

)

Because f ′c = 4000 psi, 𝛽1 = 0.85:

𝜌b = (0.85)2
( 4

60

)( 87
87 + 60

)
= 0.0285
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The area of steel reinforcement to provide a balanced condition is

Asb = 𝜌bbd = 0.0285 × 16 × 25.5 = 11.63 in.2

b. For a tension-controlled section, 𝜌max = 0.63375, 𝜌b = 0.63375 × 0.0285 = 0.01806 or, from
Eq. 3.32,

As max = 𝜌maxbd = 0.01806 × 16 × 25.5 = 7.37 in.2 for 𝜙 = 0.9

For the transition region, 𝜌max t = 0.724 𝜌b = 0.0206. For the case of 𝜀t = 0.004, As max t =
0.0206(16 × 25.5) = 8.41 in.2 for 𝜙 = 0.817

c. The depth of the equivalent compressive block using As max is

amax =
As max fy
0.85 f ′c b

= 7.37 × 60
0.85 × 4 × 16

= 8.13 in.

The distance from the top fibers to the neutral axis is c= a/𝛽1. Because f ′c = 4000 psi, 𝛽1 = 0.85;
thus,

c = 8.13
0.85

= 9.56 in.

or c/d = 0.375 and c = 0.375(25.5) = 9.56 in.

Example 3.2

Determine the design moment strength and the position of the neutral axis of the rectangular section
shown in Fig. 3.14 if the reinforcement used is three no. 9 bars. Given: f ′c = 3 ksi and fy = 60 ksi.

21

ksi

εt = 0.0061

18.06

εc

Figure 3.14 Example 3.2.

Solution

1. The area of three no. 9 bars is 3.0 in.2

𝜌 =
As

bd
= 3.0

12 × 21
= 0.0119
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2. 𝜌max = 0.01356>𝜌, tension-controlled section, 𝜙 = 0.9 or check 𝜀t:

a =
As fy

0.85 f ′c b
= 3(60)

0.85 × 3 × 12
= 5.88 in.

c = a
0.85

= 6.92 in.

dt = d = 21 in.

𝜀t =
(21 − 6.92

6.92

)
0.003

= 0.0061 > 0.005, 𝜙 = 0.9

or
c
dt

= 0.33 < 0.375 (OK)

3. 𝜙Mn = 𝜙As fy
(

d − 1
2

a
)

a =
As fy

0.85 f ′c b
= 3.0 × 60

0.85 × 3 × 12
= 5.88 in.

𝜙Mn = 0.9 × 3.0 × 60
(

21 − 5.88
2

)
= 2926 K ⋅ in. = 243.8 K ⋅ ft

Discussion
In this example, the section is tension controlled, which implies that the steel will yield before the
concrete reaches its maximum strain. A simple check can be made from the strain diagram (Fig. 3.14).
From similar triangles,

𝜀c

𝜀y

= c
d − c

and 𝜀y =
fy
Es

= 60
29,000

= 0.00207

𝜀c =
6.92

21 − 6.92
× 0.00207 = 0.00102

which is much less than 0.003. Therefore, steel yields before concrete reaches its limiting strain of 0.003.

Example 3.3

Repeat Example 3.2 using three no. 10 bars as the tension steel (Fig. 3.15).

21

8.75 7.47

17.265”

228.6 k

228.6 k

3.735

 ksi

 = 0.04168εt

εc

Figure 3.15 Example 3.3.
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Solution

1. Check 𝜀t:

a =
As fy

0.85 f ′c b
= 3.81(60)

0.85 × 3 × 12
= 7.47 in.

c = a
0.85

= 8.79 in. dt = d = 21 in.
c
dt

= 0.419 > 0.375

𝜀t =
(

dt − c

c

)
0.003 =

(21 − 8.79
8.79

)
0.003 = 0.004168

This value is less than 0.005 but greater than 0.004 (transition region), 𝜙< 0.9.

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.831

2. Calculate 𝜙Mn:

𝜙Mn = 0.831(3.81)(60)
[
21 − 7.47

2

]
= 3278 K ⋅ in. = 273 K ⋅ ft

Discussion
For a tension-controlled section, 𝜀t = 0.005 and 𝜌 = 0.63375, 𝜌b = 0.01356 (Table 3.2), 𝜙 = 0.9.

As max = 0.01356(12 × 21) = 3.417 in.2 < 3.81 in.2

a = 3.417 × 60
0.85 × 3 × 12

= 6.7 in.

𝜙Mn = 0.9 × 3.417 × 60
(

21 − 6.7
2

)
= 271.4 K ⋅ ft

which is close to the above 𝜙Mn. This is a somewhat conservative approach.

3.10 LOWER LIMIT OR MINIMUM PERCENTAGE OF STEEL

If the factored moment applied on a beam is very small and the dimensions of the section are
specified (as is sometimes required architecturally) and are larger than needed to resist the fac-
tored moment, the calculation may show that very small or no steel reinforcement is required. In
this case, the maximum tensile stress due to bending moment may be equal to or less than the
modulus of rupture of concrete fr = 𝜆 7.5

√
f ′c . If no reinforcement is provided, sudden failure will

be expected when the first crack occurs, thus giving no warning. The ACI Code, Section 9.6.1,
specifies a minimum steel area, As,

As,min =

(
3
√

f ′c
fy

)

b𝑤d ≥

(
200
fy

)
b𝑤d

or the minimum steel ratio, 𝜌min = (3
√

f ′c∕fy) ≥ 200∕fy, where the units of f ′c and fy are in psi.
This 𝜌 ratio represents the lower limit. The first term of the preceding equation was specified to
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accommodate a concrete strength higher than 5 ksi. The two minimum ratios are equal when f ′c =
4440 psi. This indicates that

𝜌min =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

200
fy

for f ′c < 4500 psi

3
√

f ′c
fy

for f ′c ≥ 4500 psi

For example, if fy = 60 ksi, 𝜌min = 0.00333 when f ′c < 4500 psi, whereas 𝜌min = 0.00353 when
f ′c = 5000 psi and 0.00387 when f ′c = 6000 psi.

In the case of a rectangular section, use b= b𝑤 in the preceding expressions. For statically
determinate T-sections with the flange in tension, as in the case of cantilever beams, the value of
As, min must be equal to or greater than following equation:

As,min =

(
3
√

f ′c
fy

)

(x)(d) ≥ 200xd
fy

where

x = 2 b𝑤 or bf whichever is smaller
b𝑤 = width of web
bf = width of flange

For example if bf = 48 in., b𝑤 = 16 in., d = 20 in., fc
′ = 4000 psi, and fy = 60,000 psi, then

As,min =

(
3
√

4000
60,000

)

(32)(20) = 2.02 in.2

200(32)(20)
60,000

= 2.13 in.2 (controls)

As,min = 2.13 in.2

3.11 ADEQUACY OF SECTIONS

A given section is said to be adequate if the internal moment strength of the section is equal to
or greater than the externally applied factored moment, Mu, or 𝜙Mn ≥ Mu. The procedure can be
summarized as follows:

1. Calculate the external applied factored moment, Mu.

Mu = 1.2MD + 1.6ML

2. Calculate 𝜙Mn for the basic singly reinforced section:
a. Check that 𝜌min ≤ 𝜌 ≤ 𝜌max.
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b

d

 = 0.003 0.85f 'c

C = 0.85f 'cab

T = As fy

c
aa

εc

εs ≥ 0.005

As

Figure 3.16 Tension-controlled rectangular section.

b. Calculate a = As fy∕(0.85 f ′c b) and check 𝜀t for 𝜙.
c. Calculate 𝜙Mn =𝜙As fy(d− a/2).

3. If𝜙Mn ≥Mu, then the section is adequate; Fig. 3.16 shows a typical tension-controlled section.

Example 3.4

An 8-ft-span cantilever beam has a rectangular section and reinforcement as shown in Fig. 3.17. The
beam carries a dead load, including its own weight, of 1.5 K/ft and a live load of 0.9 K/ft. Using f ′c = 4 ksi
and fy = 60 ksi, check if the beam is safe to carry the above loads.

15.5"

8"

8' 0"

2.5"

3 # 7

Figure 3.17 Example 3.4.

Solution

1. Calculate the external factored moment:

Wu = 1.2D + 1.6L = 1.2(1.5) + 1.6(0.9) = 3.24 K∕ft

Mu = Wu
L2

2
= 3.24

82

2
= 103.68 K ⋅ ft = 1244 K ⋅ in.
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2. Check 𝜀t:

a =
As fy

0.85 f ′c b
= 1.8 × 60

0.85 × 4 × 8
= 3.97 in.

c = a
0.85

= 4.67 in. dt = d = 15.5 in.
c
dt

= 0.3 < 0.375

Also,

𝜀t =
(

dt − c

c

)
0.003 =

(15.5 − 4.67
4.67

)
0.003 = 0.007 > 0.005, 𝜙 = 0.9

or check

𝜌 =
As

bd
= 1.8

8 × 15.5
= 0.0145 < 𝜌max = 0.01806

(from Table 3.2). Therefore, it is a tension-controlled section and 𝜙= 0.9.
3. Calculate 𝜑Mn:

𝜙Mn = 𝜙As fy
(

d − 1
2

a
)

= 0.9(1.8)(60)
(

15.5 − 3.97
2

)
= 1312 K ⋅ in. > Mu

Then the section is adequate.

Example 3.5

A simply supported beam has a span of 20 ft. If the cross section of the beam is as shown in Fig. 3.18,
f ′c = 3 ksi, and fy = 60 ksi, determine the allowable uniformly distributed service live load on the beam
assuming the dead load is that due to beam weight. Given: b = 12 in., d = 17 in., total depth h = 20 in.,
and reinforced with three no. 8 bars (As = 2.37 in.2).

17"

3"

12"

3 # 8

20' 0"

Figure 3.18 Example 3.5.
Solution

1. Determine the design moment strength:

𝜌 =
As

bd
= 3 × 0.79

12 × 17
= 0.0116

𝜌max = 0.01356 (Table 3.2)

𝜌 < 𝜌max
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Therefore, it is a tension-controlled section and 𝜑 = 0.9.
Also, 𝜌 > 𝜌min = 200

fy
= 0.00333.

2. 𝜙Mn = 𝜙As fy

(
d −

As fy
1.7 f ′c b

)

= 0.9 × 2.37 × 60
(

17 − 2.37 × 60
1.7 × 3 × 12

)
= 1878 K ⋅ in. = 156.5 K ⋅ ft

3. The dead load acting on the beam is self-weight (assumed):

𝑤D = 12 × 20
144

× 150 = 250 lb∕ft = 0.25 K∕ft

where 150 is the weight of reinforced concrete in pcf.
4. The external factored moment is

Mu = 1.2MD + 1.6ML

= 1.2
(0.25

8
× 202

)
+ 1.6

(𝑤L

8
× 202

)
= 15.0 + 80𝑤L

where 𝑤L is the uniform service live load on the beam in K/ft.
5. Internal design moment equals the external factored moment:

156.5 = 15.0 + 80𝑤L and 𝑤L = 1.77 K∕ft

The allowable uniform service live load on the beam is 1.77 K/ft.

Example 3.6 Minimum Steel Reinforcement

Check the design adequacy of the section shown in Fig. 3.19 to resist a factored moment Mu = 30 K ⋅ ft,
using f ′c = 3 ksi and fy = 40 ksi.

Figure 3.19 Example 3.6.

Solution

1. Check 𝜌 provided in the section:

𝜌 =
As

bd
= 3 × 0.2

10 × 18
= 0.00333
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2. Check 𝜌min required according to the ACI Code:

𝜌min = 200
fy

= 0.005 > 𝜌 = 0.00333

Therefore, use 𝜌= 𝜌min = 0.005.

As,min = 𝜌minbd = 0.005 × 10 × 18 = 0.90 in.2

Use three no. 5 bars (As = 0.91 in.2) because three no. 4 bars are less than the minimum specified
by the code.

3. Check moment strength: 𝜙Mn =𝜙As fy(d− a/2).

a =
As fy

0.85 f ′c b
= 0.91 × 40

0.85 × 3 × 10
= 1.43 in.

𝜙Mn = 0.9 × 0.91 × 40
(

18 − 1.43
2

)
= 566 K ⋅ in. = 47.2 K ⋅ ft

4. An alternative solution; for three no. 4 bars, As = 0.6 in.2 is

a =
As fy

0.85 f ′c b
= 0.6 × 40

0.85 × 3 × 10
= 0.94 in.

𝜙Mn = 0.9
12

× 0.6 × 40
(

18 − 0.94
2

)
= 31.55 K ⋅ ft

As required for 30 K ⋅ ft = 30
31.55

× 0.6 = 0.57 in.2

The minimum As required according to the ACI Code, Section 9.6.1, is at least one-third greater
than 0.57 in.2:

Minimum As required = 1.33 × 0.57 = 0.76 in.2

which exceeds the 0.6 in.2 provided by the no. 4 bars. Use three no. 5 bars, because As = 0.91 in.2 is
greater than the 0.76 in.2 required.

3.12 BUNDLED BARS

When the design of a section requires the use of a large amount of steel—for example, when 𝜌max
is used—it may be difficult to fit all bars within the cross section. The ACI Code, Section 25.6.1.1,
allows the use of parallel bars placed in a bundled form of two, three, or four bars, as shown in
Fig. 3.20. Up to four bars (no. 11 or smaller) can be bundled when they are enclosed by stirrups.

The same bundled bars can be used in columns, provided that they are enclosed by ties. All
bundled bars may be treated as a single bar for checking the spacing and concrete cover require-
ments. The single bar diameter shall be derived from the equivalent total area of the bundled bars.

Figure 3.20 Bundled bar arrangement.
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Summary: Singly Reinforced Rectangular Section

The procedure for determining the design moment of a singly reinforced rectangular section accord-
ing to the ACI Code limitations can be summarized as follows:

1. Calculate the steel ratio in the section, 𝜌=As/bd.
2. Calculate the balanced and maximum steel ratios, Eqs. 3.18 and Eqs. 3.31 or Table 3.2, for

tension-controlled section. Also, calculate 𝜌min = 200/fy when f ′c < 4500 psi (f ′c and fy are in

psi units) and 𝜌min = 3
√

f ′c∕fy when f ′c ≥ 4500 psi.

3. If 𝜌min ≤ 𝜌 ≤ 𝜌max, then the section meets the ACI Code limitations for tension-controlled
section. If 𝜌 ≤ 𝜌min, the section is not acceptable (unless a steel ratio 𝜌 ≥ 𝜌min is used). If 𝜌 ≤
𝜌max, 𝜙 = 0.9 (𝜀s ≤ 0.005); otherwise use Fig. 3.6.

4. Calculate a = As fy∕0.85 f ′c b, c, 𝜀t, and 𝜙.
5. Calculate 𝜙 Mn =𝜙 As fy (d− a/2).

Flowcharts representing this section and other sections are given at www.wiley.com/college/
hassoun.

3.13 SECTIONS IN THE TRANSITION REGION (𝝓 < 0.9)

In the case when the NTS, 𝜀t, in the extreme tension steel lies between the compression-controlled
strain limit (0.002 for fy = 60 ksi) and the tension-controlled strain limit of 0.005, the strength
reduction factor, 𝜙, will be less than 0.9. Consequently, the design moment strength of the section
𝜙Mn will be smaller than 𝜙Mn with 𝜙 = 0.9 (refer to Fig. 3.6). In the transition region, 𝜀t should
not be less than 0.004 for flexural members (ACI Code, Section 21.2). (See Example 3.8.)

Example 3.7

Determine the design moment strength of a rectangular concrete section reinforced with four no. 9 bars
in one row (Fig. 3.21).

16.5"

Figure 3.21 Example 3.7 (d=dt).

Given: b = 12 in., d = 16.5 in., h = 19 in., f ′c = 4 ksi, and fy = 60 ksi.

http://www.wiley.com/college/hassoun
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Solution

1. By the ACI Code provisions, for f ′c = 4 ksi, fy = 60 ksi, and tension-controlled conditions
(𝜌b = 0.0285 and 𝜌max = 0.01806), check 𝜌=As/bd = 4/(12 × 16.5) = 0.02020>𝜌max. This
indicates that the section is in the transition region and 𝜑< 0.9.

2. Calculate a, c, and 𝜀t:

a =
As fy

0.85 f ′c b
= 4 × 60

0.85 × 4 × 12
= 5.882 in.

c = a
0.85

= 6.92 in. dt = d = 16.5 in.
c
dt

= 0.42 > 0.375

𝜀t =
(

dt − c

c

)
0.003 =

(16.5 − 6.92
6.92

)
0.003 = 0.004153 > 0.004

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.829

3. Calculate:

𝜙Mn = 𝜙As fy
(

d − 1
2

a
)

= 0.829(4)(60)
16.5 − 5.882∕2

12
= 224.9 K ⋅ ft

Discussion
A slightly conservative approach can be used assuming tension-controlled section, 𝜌= 𝜌max = 0.01806
and 𝜙 = 0.9. As,max = 0.01806(12 × 16.5) = 3.576 in.2, a = 5.259 in., and 𝜙Mn = 223.2 K⋅ft (almost
equal to the above 𝜙Mn).

Example 3.8 Two Rows of Bars

Determine the design moment strength of a rectangular concrete section reinforced with six no. 9 bars
in two rows (Fig. 3.22).

Figure 3.22 Example 3.8.

Given: b = 12 in., d = 23.5 in., h = 27 in., dt = 24.5 in., f ′c = 4 ksi, and fy = 60 ksi.
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Solution

1. For tension-controlled condition, 𝜀t = 0.005, 𝜌max = 0.01806 (Table 3.2), and 𝜌b = 0.0285. Check

𝜌 =
As

bd
= 6

12 × 23.5
= 0.02128 > 𝜌max

Section is in the transition region.
2. Calculate a, c, and 𝜀t:

a =
As fy

0.85 f ′c b
= 6 × 60

0.85 × 4 × 12
= 8.824 in.

c = a
0.85

= 10.38 in. dt = h − 2.5 = 27 − 2.5 = 24.5

c
dt

= 0.424 > 0.375

𝜀t =
(

dt − c

c

)
0.003 =

(24.5 − 10.38
10.38

)
0.003 = 0.00408 > 0.004

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.823

3. Calculate:

𝜙Mn = 𝜙As fy
(

d − 1
2

a
)

= 0.823(6)(60)
23.5 − 8.824∕2

12
= 471 K ⋅ ft

Discussion
For a tension-controlled section limitation, 𝜌max = 0.01806 and Ru = 820 psi,

𝜙Mn = Rubd2 = 0.82(12) (23.5)2

12
= 452.8 K ⋅ ft

This is a conservative value: It is advisable to choose adequate reinforcement to produce
tension-controlled condition with 𝜙 = 0.9.

3.14 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

In concrete sections proportioned to resist the bending moments resulting from external loading
on a structural member, the internal moment is equal to or greater than the external moment, but a
concrete section of a given width and effective depth has a minimum capacity when 𝜌max is used.
If the external factored moment is greater than the design moment strength, more compressive and
tensile reinforcement must be added.

Compression reinforcement is used when a section is limited to specific dimensions due
to architectural reasons, such as a need for limited headroom in multistory buildings. Another
advantage of compression reinforcement is that long-time deflection is reduced, as is explained
in Chapter 6. A third use of bars in the compression zone is to hold stirrups, which are used to
resist shear forces.

Two cases of doubly reinforced concrete sections will be considered, depending on whether
compression steel yields or does not yield.
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3.14.1 When Compression Steel Yields

Internal moment can be divided into two moments, as shown in Fig. 3.23. Let Mu1 be the moment
produced by the concrete compressive force and an equivalent tension force in steel, As1, acting as a
basic section. Then Mu2 is the additional moment produced by the compressive force in compression
steel A′

s and the tension force in the additional tensile steel, As2, acting as a steel section.
The moment Mu1 is that of a singly reinforced concrete basic section,

T1 = Cc (3.36)

As1
fy = Cc = 0.85 f ′c ab (3.37)

a =
As1

fy

0.85 f ′c b
(3.38)

Mu1
= 𝜙As1

fy
(

d − a
2

)
(3.39)

The restriction for Mu1 is that 𝜌=As1/bd shall be equal to or less than 𝜌max for singly reinforced
tension-controlled sections, as given in Eq. 3.31a.

Figure 3.23 Rectangular section with compression reinforcement.
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Consider the moment Mu2 and assume that the compression steel designated as A′
s yields

Mu2
= 𝜙As2

fy(d − d′) (3.40a)

Mu2
= 𝜙A′

s fy(d − d′) (3.40b)

In this case As2 = A′
s, producing equal and opposite forces, as shown in Fig. 3.23. The total

resisting moment, Mu, is then the sum of the two moments Mu1 and Mu2:

𝜙Mn = Mu1
+ Mu2

= 𝜙

[
As1

fy
(

d − a
2

)
+ A′

s fy(d − d′)
]

(3.41)

The total steel reinforcement used in tension is the sum of the two steel amounts As1 and As2.
Therefore,

As = As1
+ As2

= As1
+ A′

s (3.42)

and
As1

= As − A′
s

Then, substituting As − A′
s for As1 in Eqs. 3.38 and 3.41,

a =
(As − A′

s)fy
0.85 f ′c b

(3.43)

𝜙Mn = 𝜙
[(

As − A′
s

)
fy
(

d − a
2

)
+ A′

s fy(d − d′)
]

(3.44)

and

(𝜌 − 𝜌′) ≤ 𝜌max = 𝜌b

(0.003 + fy∕Es

0.008

)
(3.45)

For fy = 60 ksi, 𝜌− 𝜌′ ≤ 0.63375 𝜌b,𝜙 = 0.9, and 𝜀t = 0.005. Equation 3.45 must be fulfilled in
doubly reinforced concrete sections, which indicates that the difference between total tension steel
and the compression steel should not exceed the maximum steel for singly reinforced concrete
tension-controlled sections. Failure due to yielding of the total tensile steel will then be expected,
and sudden failure of concrete is avoided.

If 𝜌1 = 𝜌− 𝜌′ >𝜌max, the section will be in the transition region with a limit of 𝜌− 𝜌′ ≤ 𝜌max t
(Eq. 3.34a). In this case, 𝜙< 0.9 for Mu1 and 𝜙 = 0.9 for Mu2. Equation 3.44 becomes

𝜙Mn = 𝜙

[(
As − A′

s

)
fy
(

d − 1
2

a
)]

+ 0.9A′
s fy(d − d′) (3.44a)

Note that (As − A′
s) ≤ 𝜌max t(bd).

In the compression zone, the force in the compression steel is Cs = A′
s( fy − 0.85 f ′c ), taking

into account the area of concrete displaced by A′
s. In this case,

T = As fy = Cc + Cs = 0.85 f ′c ab + A′
s(fy − 0.85 f ′c )

and
As fy − A′

s fy + 0.85 f ′c A′
s = 0.85 f ′c ab = Cc = As1

fy (for the basic section)

Dividing by bdfy,

𝜌 − 𝜌′
(

1 − 0.85
f ′c
fy

)
= 𝜌1 where 𝜌1 =

As1

bd
≤ 𝜌max
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Therefore,

𝜌 − 𝜌′
(

1 − 0.85
f ′c
fy

)
≤ 𝜌max = 𝜌b

(0.003 + fy∕Es

0.008

)
(3.46)

Although Eq. 3.46 is more accurate than Eq. 3.45, it is quite practical to use both equations to
check the condition for maximum steel ratio in rectangular sections when compression steel yields.

For example, if f ′c = 3 ksi and fy = 60 ksi, Eq. 3.46 becomes 𝜌−0.9575 𝜌′ ≤ 0.016; if f ′c = 4 ksi
and fy = 60 ksi, then 𝜌− 0.9433 𝜌′ ≤ 0.02138.

The maximum total tensile steel ratio, 𝜌, that can be used in a rectangular section when com-
pression steel yields is as follows:

Max𝜌 = 𝜌max + 𝜌′ (3.47)

where 𝜌max is maximum tensile steel ratio for the basic singly reinforced tension-controlled concrete
section. This means that maximum total tensile steel area that can be used in a rectangular section
when compression steel yield is as follows:

Max As = bd(𝜌max + 𝜌′) (3.47a)

In the preceding equations, it is assumed that compression steel yields. To investigate this
condition, refer to the strain diagram in Fig. 3.24. If compression steel yields, then

𝜀′s ≥ 𝜀y =
fy

Es

From the two triangles above the neutral axis, substitute Es = 29,000 ksi and let fy be in ksi.
Then

c
d′ =

0.003
0.003 − fy∕Es

= 87
87 − fy

c =
(

87
87 − fy

)
d′ (3.48)

From Eq. 3.37,
As1

fy = 0.85 f ′c ab

but
As1

= As − A′
s and 𝜌1 = 𝜌 − 𝜌′

Figure 3.24 Strain diagram in doubly reinforced section.
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Table 3.4 Values of K for Different f ′c and fy

f′c (ksi) fy (ksi) K K (for d′ = 2.5 in.)

3 40 0.1003d′/d 0.251/d
3 60 0.1164d′/d 0.291/d
4 60 0.1552d′/d 0.388/d
5 60 0.1826d′/d 0.456/d

Therefore, Eq. 3.37 becomes (As − A′
s)fy = 0.85 f ′c ab:

(𝜌 − 𝜌′)bdfy = 0.85 f ′c ab

𝜌 − 𝜌′ = 0.85

(
f ′c
fy

)(a
d

)

Also,

a = 𝛽1c = 𝛽1

(
87

87 − fy

)
d′

Therefore,

𝜌 − 𝜌′ = 0.85𝛽1

(
f ′c
fy

)(
d′

d

)(
87

87 − fy

)
= K (3.49)

The quantity 𝜌− 𝜌′ is the steel ratio, or (As − A′
s)∕bd = As1∕bd = 𝜌1 for the singly reinforced basic

section.
If 𝜌− 𝜌′ is greater than the value of the right-hand side in Eq. 3.49, then compression steel will

also yield. In Fig. 3.25 we can see that if As1 is increased, T1 and, consequently, C1 will be greater
and the neutral axis will shift downward, increasing the strain in the compression steel and ensuring
its yield condition. If the tension steel used (As1) is less than the right-hand side of Eq. 3.49, then
T1 and C1 will consequently be smaller, and the strain in compression steel, 𝜀′s, will be less than
or equal to 𝜀y, because the neutral axis will shift upward, as shown in Fig. 3.25c, and compression
steel will not yield.

Therefore, Eq. 3.49 can be written

𝜌 − 𝜌′ ≥ 0.85𝛽1
f ′c
fy

× d′

d
× 87

87 − fy
= K (3.49a)

where fy is in ksi, and this is the condition for compression steel to yield.
For example, the values of K for different values of f ′c and fy are as shown in Table 3.4.

Example 3.9

A rectangular beam has a width of 12 in. and an effective depth of d = 22.5 in. to the centroid of tension
steel bars. Tension reinforcement consists of six no. 9 bars in two rows; compression reinforcement
consists of two no. 7 bars placed as shown in Fig. 3.26. Calculate the design moment strength of the
beam if f ′c = 4 ksi and fy = 60 ksi.
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Figure 3.25 Yielding and nonyielding cases of compression reinforcement. Diagram
(d), a closeup of (a), shows how the neutral axis responds to an increase in As 1.

Figure 3.26 Example 3.9.
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Solution

1. Check if compression steel yields:

As = 6.0 in.2 𝜌 =
As

bd
= 6.0

12 × 22.5
= 0.02222

A′
s = 1.2 in.2 𝜌′ =

A′
s

bd
= 1.2

12 × 22.5
= 0.00444

As − A′
s = 4.8 in.2 𝜌 − 𝜌′ = 0.01778

For compression steel to yield,

𝜌 − 𝜌′ ≥ 0.85𝛽1

f ′c
fy

× d′

d
× 87

87 − fy
= K

Let 𝛽1 be 0.85 because f ′c = 4000 psi; therefore,

K = (0.85)2
( 4

60

)( 2.5
22.5

)( 87
87 − 60

)
= 0.0175

𝜌 − 𝜌′ = 0.01778 > 0.0175

Therefore, compression steel yields.
2. Check that 𝜌− 𝜌′ ≤ 𝜌max (Eq. 3.45): For f ′c = 4ksi and fy = 60 ksi, 𝜌b = 0.0285 and 𝜌max = 0.01806

(Table 3.2). Then 𝜌− 𝜌′ = 0.01778<𝜌max, and 𝜙 = 0.9 (a tension-controlled condition).
3. 𝜙Mn can be calculated by Eq. 3.44:

𝜙Mn = 𝜙

[(
As − A′

s

)
fy
(

d − a
2

)
+ A′

s fy(d − d′)
]

a =
(As − A′

s)fy
0.85 f ′c b

= 4.8 × 60
0.85 × 4 × 12

= 7.06 in.

𝜙Mn = (0.9)
[
4.8 × 60

(
22.5 − 7.06

2

)
+ 1.2 × 60(22.5 − 2.5)

]

= 6213K ⋅ in. = 517.8K ⋅ ft

4. An alternative approach for checking if compression steel yields can be made as follows:

c = a
0.85

= 7.06
0.85

= 8.3in.

𝜀′s =
5.8
8.3

× 0.003 = 0.0021 𝜀y =
fy
Es

= 60
29,000

= 0.00207

Because 𝜀′s exceeds 𝜀y, compression steel yields.
5. Check 𝜀t: c = 8.3 in., dt = 26−2.5 = 23.5 in.

𝜀t =
(23.5 − 8.3

8.3

)
0.003 = 0.0055 > 0.005

or
c
d
= 0.353 < 0.375 (OK)

6. The maximum total tension steel for this section, max As, is equal to

Max As = bd(𝜌max + 𝜌′) = 12 × 22.5(0.01806 + 0.00444)

= 6.08 in.2As = 6.0 in.2 (used in the section)
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3.14.2 When Compression Steel Does Not Yield

As was explained earlier, if

𝜌 − 𝜌′ < 0.85𝛽1 ×
f ′c
fy
× d′

d
× 87

87 − fy
= K (3.50)

then compression steel does not yield. This indicates that if 𝜌− 𝜌′ <K, the tension steel will yield
before concrete can reach its maximum strain of 0.003, and the strain in compression steel, 𝜀′s, will
not reach 𝜀y at failure (Fig. 3.25). Yielding of compression steel will also depend on its position
relative to the extreme compressive fibers d′. A higher ratio of d′/c will decrease the strain in the
compressive steel, 𝜀′s, as it places compression steel A′

s nearer to the neutral axis.
If compression steel does not yield, a general solution can be performed by analysis based on

statics. Also, a solution can be made as follows: Referring to 3.23 and 3.24,

𝜀′s = 0.003

(
c − d′

c

)
f ′s = Es𝜀

′
s = 29,000(0.003)

(
c − d′

c

)
= 87

(
c − d′

c

)

Let Cc = 0.85 f ′c𝛽1cb:

Cs = A′
s( f ′s − 0.85 f ′c ) = A′

s

[
87

(
c − d′

c

)
− 0.85 f ′c

]

Because T=As fy =Cc +Cs, then

As fy = (0.85 f ′c𝛽1cb) + A′
s

[
87

(
c − d′

c

)
− 0.85 f ′c

]

Rearranging terms yields

(0.85 f ′c𝛽1b)c2 + [(87A′
s) − (0.85 f ′c A′

s) − As fy]c − 87A′
sd

′ = 0

This is similar to A1c2 +A2c+A3 = 0, where

A1 = 0.85 f ′c𝛽1b

A2 = A′
s(87 − 0.85 f ′c ) − As fy

A3 = −87A′
sd

′

Solve for c:

c = 1
2A1

[
−A2 ±

√
A2

2 − 4A1A3

]
(3.51)

Once c is determined, then calculate f ′s , a, Cc, and Cs:

f ′s = 87

[
c − d′

c

]
a = 𝛽1c Cc = 0.85 f ′c ab Cs = A′

s( f ′s − 0.85 f ′c )

𝜙Mn = 𝜙

[
Cc

(
d − 1

2
a
)
+ Cs(d − d′)

]
(3.52)

When compression steel does not yield, f ′s < fy, and the maximum total tensile steel reinforce-
ment needed for a rectangular section is

Max As = 𝜌𝑤,maxbd + A′
s
f ′s
fy

= bd

(
𝜌𝑤,max +

𝜌′f ′s
fy

)
(3.53)
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Using steel ratios and dividing by bd:

Max𝜌 =
Max As

bd
≤ 𝜌𝑤,max + 𝜌′

f ′s
fy

(3.54)

or (
𝜌 − 𝜌′

f ′s
fy

)
≤ 𝜌𝑤,max (3.55)

where 𝜌w, max is the maximum steel ratio for the tension-controlled singly reinforced web section
of the T-beam (Eq. 3.31).

In this case,

a =
As fy − A′

s f ′s
0.85 f ′c b

(3.56)

𝜙Mn = 𝜙

[(
As fy − A′

s f ′s
) (

d − 1
2

a
)
+ A′

s f ′s (d − d′)
]

(3.57)

In summary, the procedure for analyzing sections with compression steel is as follows:

1. Calculate 𝜌, 𝜌′, and 𝜌− 𝜌′. Also calculate 𝜌max and 𝜌min.
2. Calculate

K = 0.85𝛽1

(
f ′c
fy

)(
87

87 − fy

)(
d′

d

)

Use ksi units.
3. If 𝜌− 𝜌′ ≥ K, then compression steel yields, and f ′s = fy; if 𝜌− 𝜌′ <K, then compression steel

does not yield, and f ′s = fy.
4. If compression steel yields, then

a. Check that 𝜌𝑤, max ≥ 𝜌− 𝜌′ ≥ 𝜌𝑤, min (to use 𝜙 = 0.9) or check 𝜀t ≥ 0.005, where 𝜌𝑤, min
is the minimum steel ratio for the tension-controlled singly reinforced web section of the
T-beam.

b. Calculate

a =
(As − A′

s)fy

0.85 f ′c b

c. Calculate
𝜙Mn = 𝜙

[(
As − A′

s

)
fy
(

d − 1
2

a
)
+ A′

s fy(d − d′)
]

d. The maximum As that can be used in the section is Max As = bd(𝜌max + 𝜌′) ≥ As (used).
5. If compression steel does not yield, then

a. Calculate the distance to the neutral axis c by using analysis (see next Example 3.10) or
by using the quadratic equation 3.51.

b. Calculate

f ′s = 87

(
c − d′

c

)
(ksi)

c. Check that 𝜌 − 𝜌′f ′s ∕fy ≤ 𝜌𝑤,max or max As that can be used in the section is greater than
or equal to the As used.

Max As = bd

(
𝜌𝑤,max +

𝜌′f ′s
fy

)
≥ As (used)
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d. Calculate

a =
As fy − A′

s f ′s
0.85 f ′c b

or a = 𝛽1c

e. Calculate
𝜙Mn = 𝜙

[(
As fy − A′

s f ′s
) (

d − 1
2

a
)
+ A′

s f ′s (d − d′)
]

Example 3.10

Determine the design moment strength of the section shown in Fig. 3.27 using f ′c = 5 ksi, fy = 60 ksi,
A′

s = 2.37 in.2 (three no. 8 bars), and As = 7.62 in.2 (six no. 10 bars).

Figure 3.27 Example 3.10 analysis solution.

Solution

1. Calculate 𝜌 and 𝜌′:

𝜌 =
As

bd
= 7.62

14 × 22.5
= 0.0242 𝜌′ =

A′
s

bd
= 2.37

14 × 22.5
= 0.00753

𝜌 − 𝜌′ = 0.01667

2. Apply Eq. 3.50, assuming 𝛽1 = 0.8 for f ′c = 5000 psi.

K = 0.85𝛽1 ×
f ′c
fy

× d′

d
× 87

87 − fy
= 0.85 × 0.8

( 5
60

)( 2.5
22.5

)( 87
87 − 60

)
= 0.0203

(or from Table 3.4, K = 0.456/d = 0.0203):

𝜌 − 𝜌′ = 0.01667 < 0.0203

Therefore, compression steel does not yield, and f ′s < 60 ksi.
For f ′c = 5ksi and fy = 60 ksi, find 𝜌b = 0.0335 and 𝜌max = 0.02123 (Table 3.2); then check

(𝜌− 𝜌′)<𝜌max, therefore 𝜙 = 0.9, and the section is at a tension-controlled condition.
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3. Calculate 𝜙Mn by analysis. Internal forces:

Cc = 0.85 f ′c ab a = 𝛽1c = 0.8c

Cc = 0.85 × 5(0.8c) × 14 = 47.6c

Cs = force in compression steel

= A′
s f ′s − force in displaced concrete

= A′
s( f ′s − 0.85 f ′c )

From strain triangles,

𝜀′s = 0.003

(
c − d′

c

)

f ′s = Es𝜀
′
s(since steel is in the elastic range)

= 29,000

[
0.003

(
c − d′)

c

]

= 87(c − d′)
c

(ksi)

Therefore,

Cs = 2.37

[
87

c − d′

c
− (0.85 × 5)

]
(kips) =

[
206.2 (c − 2.5)

c

]
− 10.07

T = T1 + T2 = (As1 + As2) fy = As fy = 7.62(60) = 457.2 kips

4. Equate internal forces to determine the position of the neutral axis (the distance c):

T = C = Cc + Cs

457.2 = 47.6c + 206.2(c − 2.5)
c

− 10.07

c2 − 5.48c − 10.83 = 0

c = 7.0 in. a = 0.8c = 5.6 in.

Equation 3.51 can also be used to calculate c and a.
5. Calculate f ′s , Cc, and Cs:

f ′s = 87(c − 2.5)
c

= 87(7.0 − 2.5)
7.0

= 55.9 ksi

which confirms that compression steel does not yield.

Cc = 47.6c = 47.6(7.0) = 333.2 kips

Cs = A′
s f ′s − 10.07 = 2.37(55.90) − 10.07 = 122.40 kips

6. To calculate 𝜙Mn, take moments about the tension steel As:

𝜙Mn = 𝜙

[
Cc

(
d − 1

2
a
)
+ Cs(d − d′)

]
= 0.9[333.2(22.5 − 2.8) + 122.40(22.5 − 2.5)]

= 8110.8 K ⋅ in. = 675.9 K ⋅ ft

7. Check that 𝜌 − 𝜌′f ′s ∕fy ≤ 𝜌𝑤,max (Eq. 3.55):

0.0242 − 0.00754
(55.9

60

)
= 0.0171 < 𝜌max = 0.02123
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The maximum total tension steel that can be used in this section is calculated by Eq. 3.50:

Max As = bd

(
𝜌𝑤,max +

𝜌′f ′s
fy

)

= 14(22.5)
(

0.02123 + 0.00753 × 55.9
60

)
= 8.9 in.2 > 7.62 in.2 (OK)

8. Let 𝜀t be checked as follows: c = 7.0 in., dt = 23.5 in.
c
dt

= 0.3 < 0.375

or

𝜀t =
(

dt − c

c

)
0.003 =

(23.5 − 7
7

)
0.003 = 0.0071 > 0.005

Tension-controlled section.

3.15 ANALYSIS OF T- AND I-SECTIONS

3.15.1 Description

It is normal to cast concrete slabs and beams together, producing a monolithic structure. Slabs have
smaller thicknesses than beams. Under bending stresses, those parts of the slab on either side of the
beam will be subjected to compressive stresses, depending on the position of these parts relative to
the top fibers and relative to their distances from the beam. The part of the slab acting with the beam
is called the flange, and it is indicated in Fig. 3.28a by area bt. The rest of the section confining the
area (h− t)b𝑤 is called the stem, or web.

In an I-section there are two flanges, a compression flange, which is actually effective, and
a tension flange, which is ineffective because it lies below the neutral axis and is thus neglected
completely. Therefore, the analysis and design of an I-beam is similar to that of a T-beam.

3.15.2 Effective Width

In a T-section, if the flange is very wide, the compressive stresses are at a maximum value at points
adjacent to the beam and decrease approximately in a parabolic form to almost 0 at a distance x
from the face of the beam. Stresses also vary vertically from a maximum at the top fibers of the
flange to a minimum at the lower fibers of the flange. This variation depends on the position of the
neutral axis and the change from elastic to inelastic deformation of the flange along its vertical axis.

An equivalent stress area can be assumed to represent the stress distribution on the width b
of the flange, producing an equivalent flange width, be, of uniform stress (Fig. 3.28c).

Analysis of equivalent flange widths for actual T-beams indicates that be is a function of span
length of the beam. Other variables that affect the effective width be are (Fig. 3.29):

• Spacing of beams
• Width of stem (web) of beam b𝑤
• Relative thickness of slab with respect to the total beam depth
• End conditions of the beam (simply supported or continuous)
• The way in which the load is applied (distributed load or point load)
• The ratio of the length of the beam between points of zero moment to the width of the web

and the distance between webs
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Figure 3.28 (a) T-section and (b) I-section, with (c) illustration of effective flange
width be.

The ACI Code, Section 6.3.2.1, prescribes the following limitations on the effective flange
width be, considering that the span of the beam is equal to L:

1. be =L/4
2. be = 16t+ b𝑤
3. be = b, where b is the distance between centerlines of adjacent slabs

The smallest of the aforementioned three values must be used.
These values are conservative for some cases of loading and are adequate for other cases. Anb

similar effective width of flange can be adopted for I-beam sections. Investigations indicate that the
effective compression flange increases as load is increased toward the maximum value [7]. Under
working loads, stress in the flange is within the elastic range.
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Figure 3.29 Effective flange width of T-beams.

A T-shaped or I-shaped section may behave as a rectangular section or a T-section. The two
cases are investigated as follows.

3.15.3 T-Sections Behaving as Rectangular Sections

In this case, the depth of the equivalent stress block ‘a’ lies within the flange, with extreme position
at the level of the bottom fibers of the compression flange (a≤ t). When the neutral axis lies within
the flange (Fig. 3.30a), the depth of the equivalent compressive distribution stress lies within the
flange, producing a compressed area equal to bea. The concrete below the neutral axis is assumed to
be ineffective, and the section is considered singly reinforced, as explained earlier, with b replaced
by be. Therefore,

a =
As fy

0.85 f ′c be
(3.58)

and
𝜙Mn = 𝜙As fy

(
d − a

2

)
(3.59)

If the depth a is increased such that a= t, then the factored moment capacity is that of a singly
reinforced concrete section:

𝜙Mn = 𝜙As fy
(

d − t
2

)
(3.60)

In this case

t =
As fy

0.85 f ′c be
or As =

0.85 f ′c bet

fy
(3.61)

In this analysis, the limit of the steel area in the section should apply: As ≤As, max, and 𝜀t ≥ 0.005.

3.15.4 Analysis of a T-Section

In this case the depth of the equivalent compressive distribution stress lies below the flange; con-
sequently, the neutral axis also lies in the web. This is due to an amount of tension steel As more
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Figure 3.30 Rectangular section behavior (a) when the neutral axis lies within the
flange and (b) when the stress distribution depth equals the slab thickness.

Figure 3.31 T-section behavior.

than that calculated by Eq. 3.61. Part of the concrete in the web will now be effective in resisting
the external moment. In Fig. 3.31, the compressive force C is equal to the compression area of the
flange and web multiplied by the uniform stress of 0.85 f ′c :

C = 0.85 f ′c [bet + b𝑤(a − t)]
The position of C is at the centroid of the T-shaped compressive area at a distance z from top fibers.
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Figure 3.32 T-section analysis.

The analysis of a T-section is similar to that of a doubly reinforced concrete section, consid-
ering an area of concrete (be − b𝑤)t as equivalent to the compression steel area A′

s. The analysis is
divided into two parts, as shown in Fig. 3.32:

1. A singly reinforced rectangular basic section, b𝑤d, and steel reinforcement As1. The compres-
sive force, C1, is equal to 0.85 f ′c ab𝑤, the tensile force, T1, is equal to As1 fy, and the moment
arm is equal to d− a/2.

2. A section that consists of the concrete overhanging flange sides 2× [(be − b𝑤)t]/2 developing
the additional compressive force (when multiplied by 0.85 f ′c ) and a moment arm equal to
d− t/2. If Asf is the area of tension steel that will develop a force equal to the compressive
strength of the overhanging flanges, then

Asf fy = 0.85 f ′c (be − b𝑤)t

Asf =
0.85 f ′c t(be − b𝑤)

fy
(3.62)

The total steel used in the T-section As is equal to As 1 +Asf, or

As1 = As − Asf (3.63)

The T-section is in equilibrium, so C1 =T1, C2 = T2, and C=C1 +C2 =T1 + T2 = T. Con-
sidering equation C1 = T1 for the basic section, then As1fy = 0.85 f ′c ab𝑤 or (As −Asf)fy = 0.85
f ′c ab𝑤 ; therefore,

a =
(As − Asf)fy

0.85 f ′c b𝑤
(3.64)
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Note that b𝑤 is used to calculate a. The factored moment capacity of the section is the sum
of the two moments Mu 1 and Mu2:

𝜙Mn = Mu1 + Mu2

Mu1 = 𝜙As1fy
(

d − a
2

)
= 𝜙(As − Asf)fy

(
d − a

2

)

where

As1 = (As − Asf) and a =
(As − Asf)fy

0.85 f ′c b𝑤

Mu2 = 𝜙Asf fy
(

d − t
2

)

𝜙Mn = 𝜙

[(
As − Asf

)
fy
(

d − a
2

)
+ Asf fy

(
d − t

2

)]
(3.65)

Considering the web section b𝑤d, the net tensile strain (NTS), 𝜀t, can be calculated from a, c, and
dt as follows:

If c= a/𝛽1 (from Eq. 3.64) and dt = h−2.5 in., then 𝜀t = 0.003 [(dt − c)/c]. For tension-
controlled section in the web, 𝜀t ≥ 0.005.

The design moment strength of a T-section or I-section can be calculated from the preceding
equation 3.65. It is necessary to check the following:

1. The total tension steel ratio relative to the web effective area is equal to or greater than 𝜌min:

𝜌𝑤 =
As

b𝑤d
d ≥ 𝜌min

𝜌min =
3
√

f ′c
fy

≥
200
fy

(3.66)

2. Also, check that the NTS is equal to or greater than 0.005 for tension-controlled sections.
3. The maximum tension steel (Max As) in a T-section must be equal to or greater than the steel

ratio used, As, for tension-controlled sections, with 𝜙 = 0.9.

Max As = Asf(flange) + 𝜌max(b𝑤d)(web) (3.67)

Max As =
(

1
fy

)
[0.85 f ′c t(b − b𝑤)] + 𝜌max(b𝑤d) (3.68)

In steel ratios, relative to the web only, divide Eq. 3.67 by b𝑤d:

𝜌𝑤 =
As

b𝑤d
≤ 𝜌max +

Asf

b𝑤d
(3.69)

or
𝜌𝑤 − 𝜌f ≤ 𝜌max(web) (3.70)

where 𝜌max is the maximum steel ratio for the basic singly reinforced web section (Table 3.2), and
𝜌f =Asf/b𝑤d.
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A general equation for calculating (Max As) in a T-section when a< t can be developed as
follows:

C = 0.85 f ′c [(be − b𝑤)t + ab𝑤]
For 𝜀c = 0.003 and 𝜀t = 0.005, then c/d = 0.003/(0.003+0.005) = 0.375 (for the web). Hence,
a= 𝛽1c = 0.375 𝛽1d

The maximum steel area is equal to C/fy and, therefore,

Max As =
(

0.85 f ′c
fy

)
[(be − b𝑤)t + 0.375𝛽1b𝑤d] (3.71)

where Max As is the maximum tension steel area that can be used in a T-section when a> t. For
example, for f ′c = 3 ksi and fy = 60 ksi, the preceding equation is reduced to:

Max As = 0.0425[(be − b𝑤)t + 0.319b𝑤d] (3.72)

For f ′c = 4 ksi and fy = 60 ksi,

Max As = 0.0567[(be − b𝑤)t + 0.319b𝑤d] (3.73)

In summary, the procedure to analyze a T-section, which can also be utilized for inverted
L-section, described later in Section 3-17, is as follows:

1. Determine the effective width of the flange be (refer to Section 3.15.3). Calculate 𝜌max and
𝜌min (or take from tables).

2. Check if a≤ t as follows: a = Asfy∕(0.85 f ′c be).
3. If a≤ t, it is a rectangular section analysis.

a. Calculate 𝜙Mn =𝜙As fy(d− a/2). Note that c= a/𝛽1 and 𝜀t = 0.003(dt − c)/c≥ 0.005 for
tension-controlled section and 𝜙 = 0.9.

b. Check that 𝜌𝑤 =As/b𝑤d≥ 𝜌min.
c. Max As can be calculated from Eq. 3.68 and should be ≥ As used. When a< t, normally

this condition is met.
4. If a′ > t, it is a T-section analysis:

a. Calculate Asf = 0.85 f ′c t(be − b𝑤)∕fy.
b. Check that (𝜌𝑤 − 𝜌f)≤ 𝜌max (relative to the web area), where

𝜌𝑤 =
As

b𝑤d
and 𝜌f =

Asf

b𝑤d

Or check that Max As ≥As used in the section, for 𝜙 = 0.9, (Eq. 3.71).
c. Check that 𝜌𝑤 =As/b𝑤d≥ 𝜌min. This condition is normally met when a> t.
d. Calculate a = (As − Asf)fy∕0.85 f ′c b𝑤 (for the web section).
e. Calculate 𝜙 Mn from Eq. 3.65.

Example 3.11

A series of reinforced concrete beams spaced at 7 ft, 10 in. on centers have a simply supported span of
15 ft. The beams support a reinforced concrete floor slab 4 in. thick. The dimensions and reinforcement
of the beams are shown in Fig. 3.33. Using f ′c =3 ksi and fy = 60 ksi, determine the design moment
strength of a typical interior beam.
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Figure 3.33 Example 3.11: (a) Plan of slab-beam roof and (b) section A–A.

Solution

1. Determine the effective flange width be. The effective flange width is the smallest of

be =
L
4
= 15

4
× 12 = 45 in.

be = 16 t + b𝑤 = (16 × 4) + 10 = 74 in.

be = Centertocenterofadjacentslabs = (7 × 12) + 10 = 94 in.

Therefore, be = 45 in. controls.
2. Check the depth of the stress block. If the section behaves as a rectangular one, then the stress

block lies within the flange (Fig. 3.30). In this case, the width of beam used is equal to 45 in.

a =
As fy

0.85 f ′c be

= 2.37 × 60
0.85 × 3 × 45

= 1.24 in. < t

Therefore, it is a rectangular section.
3. Check that

𝜌𝑤 =
As

b𝑤d
≥ 𝜌min = 0.00333

= 2.37
10 × 16

= 0.0148 > 0.00333
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4. Check 𝜀t: a = 1.24 in., c = 1.24/0.85 = 1.46 in., dt = d = 16 in.

𝜀t =
0.003(dt − c)

c
= 0.003(16 − 1.46)

1.46
= 0.0299 > 0.005, 𝜙 = 0.9

5. Calculate:

𝜙Mn = 𝜙Asfy(d − a∕2) = 0.9(2.37)(60)(16 − 1.24∕2)

= 1968 K ⋅ in. = 164 K ⋅ ft.

6. You may check that As used is less than or equal to Max As (Eq. 3.72), which is not needed when
a< t:

Max As = 0.0425[(45 − 10) + 0.31 × 10 × 16] = 8.11 in.2; As = 2.37 in.2 < Max As

Example 3.12

Calculate the design moment strength of the T-section shown in Fig. 3.34 using f ′c = 3.5 ksi and
fy = 60 ksi.

Figure 3.34 Example 3.12.

Solution

1. Given b= be = 36 in., b𝑤 = 10 in., d = 17 in., and As = 6.0 in.2, check if a≤ t:

a =
As fy

0.85 f ′c b
= 6 × 60

0.85 × 3.5 × 36
= 3.36 in.

Since a> t, it is a T-section analysis.
2. Find:

Asf =
0.85 f ′c t(b − b𝑤)

fy
= 0.85 × 3.5 × 3(36 − 10)

60
= 3.87 in.2(As − Asf) = As1(web)

= 6 − 3.87 = 2.13 in.2

3. Check 𝜀t: a (web)=As1fy∕(0.85 f ′c b𝑤) = 2.13 × 60/(0.85 × 3.5 × 10) = 4.3 in. c = 4.3/0.85 =
5.06 in., dt = 20.5−2.5 = 18 in., and c/dt = 0.281< 0.375. Or 𝜀t = 0.003(dt − c)/c = 0.0077>
0.005, then 𝜙 = 0.9
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4. Check that As >As, min, 𝜌min = 0.00333:

As,min = 0.00333 × 10 × 17 = 0.57 in.2

5. Calculate 𝜙 Mn using Eq. 3.65:

𝜙Mn = 𝜙

[(
As − Asf

)
fy
(

d − 1
2

a
)
+ Asf fy

(
d − 1

2
t
)]

= 0.9
[
2.13 × 60

(
17 − 4.3

2

)
+ 3.87 × 60

(
17 − 3

2

)]

= 4947 K ⋅ in. = 412.3 K ⋅ ft

Another approach to check whether a≤ t is to calculate the tension force, T=As fy, and compare
it to the compressive force in the total flange (Fig. 3.34):

T = As fy = 60 × 60 = 360 K

C = 0.85 f ′c tbe = 0.85 × 3.5 × 3 × 36 = 321.3 K

Since T exceeds C, then a≤ t, and the section acts as a T-section.
An additional area of concrete should be used to provide the difference of (360−321.3) =

38.7 K. This area has a width of 10 in. and a depth of y. Therefore,

b𝑤y(0.85 f ′c ) = 38.7 K or 10(y)(0.85 × 3.5) = 38.7 K

where y = 1.3 in., and a= y+ t = 1.3+3 = 4.3 in., as calculated earlier.

3.16 DIMENSIONS OF ISOLATED T-SHAPED SECTIONS

In some cases, isolated beams with the shape of a T-section are used in which additional compres-
sion area is provided to increase the compression force capacity of sections. These sections are
commonly used as prefabricated units.

The ACI Code, Section 6.3.2.2, specifies the size of isolated T-shaped sections as follows:

1. Flange thickness, t, shall be equal to or greater than one-half of the width of the web, b𝑤.
2. Total flange width b shall be equal to or less than four times the width of the web, b𝑤

(Fig. 3.35).

Figure 3.35 Isolated T-shaped sections.
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3.17 INVERTED L-SHAPED SECTIONS

In slab–beam girder floors, the end beam is called a spandrel beam. This type of floor has part of
the slab on one side of the beam and is cast monolithically with the beam. The section is unsymmet-
rical under vertical loading (Fig. 3.36a). The loads on slab S1 cause torsional moment uniformly
distributed on the spandrel beam B1. Design for torsion is explained later. The overhanging flange
width b− b𝑤 of a beam with the flange on one side only is limited by the ACI Code, Section 6.3.2.1,
to the smallest of the following:

1. be =L/12.
2. be = 6 t+ b𝑤.
3. be = b.

If this is applied to the spandrel beam in Fig. 3.36b, then

1. be = (20 × 12)/12 = 20 in. (controls).
2. be = 6 × 6+12 = 48 in.
3. be = 3.5 × 12+12 = 56 in.

Therefore, the effective flange width is b = 32 in., and the effective dimensions of the spandrel
beam are as shown in Fig. 3.36d.

3.18 SECTIONS OF OTHER SHAPES

Sometimes a section different from the previously defined sections is needed for special require-
ments of structural members. For instance, sections such as those shown in Fig. 3.37 might be used
in the precast concrete industry. The analysis of such sections is similar to that of a rectangular
section, taking into consideration the area of the removed or added concrete. The next example
explains the analysis of such sections.

Example 3.13

The section shown in Fig. 3.38 represents a beam in a structure containing prefabricated elements. The
total width and total depth are limited to 14 and 21 in., respectively. Tension reinforcement used is four
no. 9 bars. Using f ′c = 4ksi and fy = 60 ksi, determine the design moment strength of the section.

Solution

1. Determine the position of the neutral axis based on T = 4 × 60 = 240 K:

240 = 0.85 f ′c [2(4 × 5) + 14(a − 4)]
where a is the depth of the equivalent compressive block needed to produce a total compressive
force of 240 K.

If 240= (0.85 × 4) (40+14 a−56), then a = 6.18 in. and c= a/0.85 = 7.28 in.
2. Calculate Mn by taking moments of the two parts of the compressive forces (each by its arm),

about the tension steel:

C′
1 = compressive force on the two small areas, 4 × 5 in.

= 0.85 × 4(2 × 4 × 5) = 136 K

C′′
1 = compressive force on area, 14 × 2.185
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Figure 3.36 Slab–beam–girder floor, showing (a) plan, (b) section including spandrel
beam, (c) dimensions of the spandrel beam, and (d) its effective flange width.



3.19 Analysis of Sections Using Tables 139

Figure 3.37 Sections of other shapes.

 = 0.003

7.28" 6.185"
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18.5"

2.185"

4"

4" 5"5"

Figure 3.38 Example 3.13: (a) balanced and (b) underreinforced sections.

= 0.85 × 4 × 14 × 2.185 = 104 K

Mn = C′
1(d − 2) + C′′

1 (d − 5.10)

= 136 × 16.5 + 104 × 13.4 = 3637.6 K ⋅ in. = 303.1 K ⋅ ft

3. Calculate 𝜙 Mn𝜀t = 0.003(dt − c)/c, where dt = 18.5 in.:

𝜀t = 0.003(18.5 − 7.28)∕7.28 = 0.004624 < 0.005 but > 0.004

Since 0.004 < 𝜀t < 0.005 the section is in the transition region and 𝜙 < 0.9:

𝜙 = 0.48 + 83𝜀t = 0.864

𝜙Mn = 0.864(303.1) = 261.9 K ⋅ ft

3.19 ANALYSIS OF SECTIONS USING TABLES

Reinforced concrete sections can be analyzed and designed using tables shown in Appendix A (for
U.S. customary units) and Appendix B (for SI units). The tables give the value of Ru as related to
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the steel ratio, 𝜌, in addition to the maximum and minimum values for 𝜌 and Ru. When the section
dimensions are known, Ru is calculated; then 𝜌 and As are determined from tables. The values in
the tables are calculated based on tension-controlled sections with 𝜙 = 0.9. If 𝜙 is less than 0.9
(transition region), the values of Ru should be multiplied by the ratio 𝜙/0.9.

𝜙Mn = Rubd2 Ru =
Mu

bd2
= 𝜙𝜌fy

(
1 −

𝜌fy
1.7 f ′c

)

As = 𝜌bd and 𝜌 =
As

bd
For any given value of 𝜌, Ru can be determined from tables. Then 𝜙 Mn can be calculated. The
values of 𝜌 and Ru range between a minimum value of Ru (min) when 𝜌 minimum is used to a
maximum value as limited by the ACI Code, when 𝜌 is equal to 𝜌 (max), for tension controlled
sections with 𝜙 = 0.9.

The use of tables will reduce the manual calculation time. The next example explains the use
of tables.

Example 3.14

Calculate the design moment strength of the section shown in Example 3.2, Fig. 3.14, using tables. Use
b = 12 in., d = 21 in., f ′c = 3ksi, fy = 60ksi, and three no. 9 bars.

Solution

1. Using three no. 9 bars, As = 3.0 in.2, 𝜌=As/bd = 3.0/(12 × 21) = 0.0119. From Table 3.2,
𝜌max = 0.01356>𝜌 used. Therefore, 𝜙 = 0.9, and it is a tension-controlled section.

From Table A1, for 𝜌= 0.0119, I150= 3 ksi and fy = 60 ksi, get Ru = 553 psi (by interpolation).

2. Calculate 𝜙 Mn =Rubd 2 = 0.553 (12)(21)2 = 2926 K⋅in. = 243.8 K⋅ft.

3.20 ADDITIONAL EXAMPLES

The following examples are introduced to enhance the understanding of the analysis and design
applications.

Example 3.15

Calculate the design moment strength of the precast concrete section shown in Fig. 3.39 using f ′c = 4 ksi
and fy = 60 ksi.

Figure 3.39 Example 3.15.
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Solution

1. The section behaves as a rectangular section with b = 14 in. and d = 21.5 in. Note that the width
b is that of the section on the compression side.

2. Check that 𝜌=As/bd = 5/(14 × 21.5) = 0.01661, which is less than the maximum steel ratio of
0.018 for tension-controlled sections. Therefore, 𝜙 = 0.9. Also 𝜌> 𝜌min = 0.00333. Therefore,
𝜌 is within the limits of a tension-controlled section.

3. Calculate a ∶ a = As fy∕(0.85 f ′c b) = 5 × 60∕(0.85 × 4 × 14) = 6.3 in.

𝜙Mn = 𝜙As fy
(

d − a
2

)
= 0.9 × 5 × 60

(
21.5 − 6.3

2

)
= 4954.5 K ⋅ in = 412.9 K ⋅ ft

Example 3.16

A reinforced concrete beam was tested to failure and had a rectangular section, b= 14 in. and d= 18.5 in.
At failure moment, the strain in the tension steel was recorded and was equal to 0.004106. The strain in
the concrete at failure may be assumed to be 0.003. If f ′c = 3ksi and fy = 60 ksi, it is required to:

1. Check if the tension steel has yielded.
2. Calculate the steel area provided in the section to develop the above strains. Then calculate the

applied moment.
3. Calculate the design moment strength based on the ACI Code provisions. (Refer to Fig. 3.40.)

Solution

1. Check the strain in the tension steel relative to the yield strain. The yield strain 𝜀y = fy/Es =
60/29,000 = 0.00207. The measured strain in the tension steel is equal to 0.004106, which is
much greater than 0.00207, indicating that the steel bars have yielded and in the elastoplastic
range. The concrete strain was 0.003, indicating that the concrete has failed and started to crush.
Therefore, the tension steel has yielded.

2. Calculate the depth of the neutral axis c from the strain diagram (Fig. 3.40). From the triangles of
the strain diagram,

c
d
= 0.003

0.003 + 0.004106
and c = 18.5

( 3
7.106

)
= 7.81 in.

a = 𝛽1c = 0.85 × 7.81 = 6.64 in.

The compression force in the concrete, Cc = 0.85,

f ′c ab = 0.85 × 3 × 6.64 × 14 = 237 K

The tension steel As =Cc/fy = 237/60 = 3.95 in.2 (section has five no. 8 bars):

Mn = As fy
(

d − a
2

)
= 3.95 × 60

(
18.5 − 6.64

2

)
= 3597.6 K ⋅ in = 299.8 K ⋅ ft

3. Check 𝜀t = 0.003(dt − c)/c.

c = 7.81 in. dt = h − 2.5 in. = 22 − 2.5 = 19.5 in.

Therefore, 𝜀t = 0.003(19.5−7.81)/7.81= 0.0045, which is less than 0.005 for tension-controlled sections
but greater than 0.004. Section is in the transition region, and 𝜙< 0.9:

𝜙 = 0.48 + 83𝜀t = 0.853

The allowable design moment=𝜙 Mn = 0.863 × 299.8 = 255.6 K ⋅ ft.
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Figure 3.40 Example 3.16.

Discussion
From Table 3.2, 𝜌b = 0.0214 and 𝜌max = 0.01356. For comparison, As (max) = 0.01356(14 × 18.5) =
3.51 in.2 for 𝜙 = 0.9, and As (balanced) = 5.54 in.2. The ratio of As/As, max = 3.95/3.51 = 1.125 and
As/Asb = 0.713. If As =Amax = 3.51 in.2 is used with 𝜙 = 0.9, then

a = 3.51 × 60
0.85 × 3 × 14

= 5.9 in.

and
𝜙Mn = 0.9 × 3.51 × 60

(
18.5 − 5.9

2

)
= 2947.2 K ⋅ in. = 245.6 K ⋅ ft

which is equal to 96% of the moment calculated above. Figure 3.40 shows the behavior of the
tested beam.

3.21 EXAMPLES USING SI UNITS

The following equations are some of those mentioned in this chapter but converted to SI units. The
other equations, which are not listed here, can be used for both U.S. Customary and SI units. Note
that f ′c and fy are in MPa (N/mm2):

𝜌b = 0.85𝛽1

(
f ′c
fy

)(
600

600 + fy

)
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For tension-controlled condition,

𝜌max =
(0.003 + fy∕Es)𝜌b

0.008

𝜌 − 𝜌′ ≥ 0.85𝛽1

(
f ′c
fy

)(
d′

d

)(
600

600 − fy

)
= K

Example 3.17

Determine the design moment strength and the position of the neutral axis of a rectangular section that
has b = 300 mm, d = 500 mm, and is reinforced with five 20-mm-diameter bars. Given f ′c = 20 MPa and
fy = 400 MPa.

Solution

1. Area of five 20-mm bars is 1570 mm2:

𝜌 =
As

bd
= 1570

300 × 500
= 0.01047 𝜌min = 1.4

fy
= 0.0035

For f ′c = 20 MPa and fy = 400 MPa, 𝜌b = 0.0217 and 𝜌max = 0.01356. Note that
Es = 200,000 MPa and fy/Es = 0.002. Because 𝜌< 𝜌max, it is a tension-controlled section
with 𝜙 = 0.9. Also 𝜌> 𝜌min.

2. Calculate the design moment strength:

𝜙Mn = 𝜙Asfy
(

d − 1
2

a
)

a =
Asfy

0.85 f ′c b
= 1570 × 400

0.85 × 20 × 300
= 123 mm

𝜙Mn = 0.9 × 1570 × 400
(

500 − 123
2

)
× 10−6 = 247.8 KN ⋅ m

Note that the moment was multiplied by 10−6 to get the answer in KN⋅m. The distance to the
neutral axis from the compression fibers (c)= a/𝛽1, where 𝛽1 = 0.85 for f ′c = 30 MPa. Therefore,
c = 123/0.85 = 145 mm.

Example 3.18

A 2.4-m-span cantilever beam has a rectangular section with b = 300 mm, d = 490 mm, and is reinforced
with three bars, 25 mm in diameter. The beam carries a uniform dead load (including its own weight) of
25.5 kN/m and a uniform live load of 32 kN/m. Check the adequacy of the section if f ′c = 30 MPa and
fy = 400 MPa.

Solution

1. U = 1.2D+1.6L = 1.2 × 25.5+1.6 × 32 = 81.8 KN/m. External factored moment=Mu =UL2/2 =
81.8(2.42)/2 = 235.6 KN⋅m.

2. Calculate the design moment strength:

As = 1470mm2 𝜌 =
As

bd
= 1470

300 × 490
= 0.01
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𝜌b = 0.85𝛽1

(
f ′c
fy

)(
600

600 + fy

)
= 0.0325

𝜌max =
(0.005

0.008

)
𝜌b =

(5
8

)
(0.0325) = 0.0203 𝜌min = 1.4

400
= 0.0035

Since 𝜌< 𝜌max but >𝜌min, it is a tension-controlled section and 𝜙 = 0.9. Let a=As fy/
(0.85 f ′c b) = 1470 × 400/(0.85 × 30 × 300) = 77 mm, c = 90 mm. Also 𝜙Mn = 𝜙As fy(d− a/2) =
0.9 × 1470 × 400(490−77/2) × 10−6 = 238.9 KN⋅m. Also 𝜀t = 0.003(dt − c)/c = 0.003
(490−90)/90 = 0.01333> 0.005, 𝜙 = 0.9 as assumed.

3. The internal design moment strength is greater than the external factored moment. Therefore, the
section is adequate.

Example 3.19

Calculate the design moment strength of a rectangular section with the following details: b = 250 mm,
d = 440 mm, d′ = 60 mm, tension steel is six bars 25 mm in diameter (in two rows), compression steel
is three bars 20 mm in diameter, f ′c = 20MPa, and fy = 350 MPa.

Solution

1. Check if compression steel yields:

As = 490 × 6 = 2940 mm2 A′
s = 314 × 3 = 942 mm2 As − A′

s = 1998 mm2

𝜌 = 2940
250 × 440

= 0.0267 𝜌′ = 942
250 × 440

= 0.00856

𝜌 − 𝜌′ = 0.01814

For compression steel to yield:

𝜌 − 𝜌′ ≥ 0.85 × 0.85 ×
( 20

350

)( 60
440

)(600
600

− 350
)
= 0.01351

𝜌 − 𝜌′ = 0.01814 > 0.01351.

Therefore, compression steel yields.
2. Calculate Mn:

a =
As − As

′

0.85 f ′c b
= 1998

0.85 × 20 × 250
= 164 mm

Mn =
[
1998 × 350

(
440 − 164

2

)
+ 942 × 350(440 − 60)

]
× 10−6 = 417.3KN ⋅ m

3. Check 𝜙 based on 𝜀t ≥ 0.005.

𝜀t =
0.003(dt − c)

c
a = 164 mm c = 164

0.85
= 193 mm

dt = h − 65 mm = d + 25 mm for two rows of tension bars

dt = 440 + 25 = 465 mm

Let 𝜀t = 0.003(465−193)/193 = 0.04228, which is less than 0.005, but greater than the 0.004
limit. Also 𝜙 = 0.48+83× 𝜀t, = 0.831, and 𝜙Mn = 0.831 (417.3) = 346.8 KN⋅m.
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SUMMARY

Flowcharts for the analysis of sections are given at www.wiley.com/college/hassoun.

Sections 3.1–3.8

1. The type of failure in a reinforced concrete flexural member is based on the amount of tension
steel used, As.

2. Load factors for dead and live loads are U = 1.2 D+1.6L. Other values are given in the text.
3. The reduction strength factor for beams 𝜙 = 0.9 for tension-controlled sections with
𝜀t ≥ 0.005.

4. An equivalent rectangular stress block can be assumed to calculate the design moment
strength of the beam section, 𝜙Mn.

5. Design provisions are based on four conditions, Section 3.5.

Sections 3.9–3.13: Analysis of a Singly Reinforced Rectangular Section

Given: f ′c , fy, b, d, and As. Required: the design moment strength, 𝜙Mn.
To determine the design moment strength of a singly reinforced concrete rectangular section:

1. Calculate the compressive force, C = 0.85 f ′c ab and the tensile force, T=Asfy. Calculate a =
As fy∕(0.85 f ′c b).

2. Calculate 𝜙Mn =𝜙C(d− a/2)=𝜙T(d− a/2)=𝜙As fy(d− a/2). Check 𝜀t = 0.003(dt − c)/
c≥ 0.005 for 𝜙 = 0.9 (tension-controlled section). (See Section 3.6.)

3. Calculate the balanced, maximum, and minimum steel ratios:

𝜌b = 0.85𝛽1

(
f ′c
fy

)(
87

87 + fy

)
𝜌max =

(0.003 + fy∕Es)𝜌b

0.008

𝜌min = 0.2
fy

for f ′c ≤ 4.5 ksi

where f ′c and fy are in ksi. (See Section 3.9.2.) The steel ratio in the section is 𝜌=As/bd. Check
that 𝜌min ≤ 𝜌 ≤ 𝜌max.

4. Another form of the design moment strength is

Mn = 𝜌fy(bd2)
(

1 −
𝜌fy

1.7 f ′c

)
= Rnbd2

Rn = 𝜌fy

[
1 −

(
𝜌fy

1.7 f ′c

)]
and Ru = 𝜙Rn

5. For fy = 60 ksi and f ′c = 3 ksi (Table 3.2), 𝜌max = 0.01356, 𝜌min = 0.00333, Rn = 686 psi, and
Ru = 615 psi.

For fy = 60 ksi and f ′c = 4ksi, 𝜌max = 0.01806, 𝜌min = 0.00333, Rn = 911 psi, and
Ru = 820 psi.

Section 3.14: Analysis of Rectangular Section with Compression Steel

Given: b, d, d′, As, f ′c , and fy. Required: the design moment strength, 𝜙Mn.

http://www.wiley.com/college/hassoun
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1. Calculate 𝜌=As/bd, 𝜌′ =As/bd, and (𝜌− 𝜌′).
2. Calculate 𝜌b, 𝜌max, and 𝜌min as given above (or see Section 3.10).
3. Calculate K = 0.85𝛽1(f ′c∕fy)(d′∕d)[87∕(87 − fy)]. (f ′c and fy are in ksi.)
4. When compression steel yields,

a. Check that 𝜌 ≥ 𝜌min.
b. Check that 𝜌− 𝜌′ ≥ K for compression steel to yield. If not, then compression steel does

not yield.
c. If compression steel yields, then f ′s = fy.
d. Check that 𝜌≤(𝜌max + 𝜌′) or (𝜌− 𝜌′) ≤ 𝜌max.
e. a = (As − A′

s)fy∕(0.85 f ′c b).

f. Calculate 𝜙Mn = 𝜙(As − A′
s)fy

(
d − 1

2
a
)
+ 𝜙A′

s fy(d − d′).
g. If 𝜌− 𝜌′ >𝜌max but <𝜌max t (for the transition region), then 𝜙 < 0.9 for Mu1 and 𝜙 = 0.9

for Mu2 (Eq. 3.44a).
5. When compression steel does not yield,

a. Compression steel does not yield when 𝜌− 𝜌′ <K. The value of f ′s is not known.
b. Calculate c= distance to the neutral axis from the compression fibers as follows:

A1c2 + A2c + A3 = 0

where

A1 = 0.85 f ′c𝛽1b

A2 = A′
s(87 − 0.85fc) − As fy

A3 = −87A′
sd

′

Solve for c. An alternative solution to calculate c is as follows:

C + C′ = T

C = 0.85 f ′c (𝛽1cb − A′
s) C′ = A′

s

(
87

(
c − d′)

c

)

− 0.85 f ′c A′
s

and
T = As fy

Solve for c.
c. Calculate f ′s = 87(c − d′)∕c ≤ fy(in.ksi).
d. Check that 𝜌 ≤ [𝜌max + 𝜌′( f ′s ∕fy)] or

As ≤ 𝜌max(bd) + A′
s

(
f ′s
fy

)
.

e. Calculate a:

a =
As fy − A′

s f ′s
0.85 f ′c b

or a = 𝛽1c

f. Calculate 𝜑Mn:

𝜙Mn = 𝜙

[(
As fy − A′

s f ′s
) (

d − 1
2

a
)
+ A′

s f ′s (d − d′)
]
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Note that (As fy − A′
s fy) = As1 = As − As2 = As − (A′

s f ′s∕fy) and As2 fy = A′
s f ′s . Also, a =

As1 fy∕(0.85 f ′c b).

Sections 3.15–3.17: Analysis of T-Sections

Given: f ′c , fy,As, and section dimensions. Required: design moment strength, 𝜙Mn. Two possible
cases may develop. (Determine the effective flange width, be, first.)

Case 1

1. If a≤ t (the slab thickness), then it is a T-section shape but acts as a singly reinforced rectan-
gular section using b= be (the flange effective width) to calculate 𝜙Mn.

a′ =
As fy

0.85 f ′c be
≤ t

Or, check that Ac (the area of concrete in compression)=As fy∕(0.85 f ′c ) ≤ bt. If Ac ≥ bt,
then it is a T-section analysis.

2. If a′ ≤ t or Ac ≤ bt, then a′ = a and 𝜙Mn =𝜙As fy(d− a/2).
3. Check that 𝜌𝑤 (steel ratio in web) =As/b𝑤d≥ 𝜌min.
4. Check that As ≤Max As from Eq. 3.71. (Normally, this is OK for this case.)

Max As =
(

0.85 f ′c
fy

)
[(be − b𝑤)t + 0.375𝛽1b𝑤d]

5. Check that 𝜀t ≥ 0.005 for 𝜙 = 0.9. (Normally this is OK for this case.)
6. The effective flange width b= be is the smallest of

a. Span/4
b. Center to center of adjacent slabs
c. b𝑤 +16 t, where t= slab thickness

Case 2

1. When a> t or Ac > bt, it is a T-section analysis.
2. For the flange, Cf = 0.85 f ′c t(b − b𝑤) = Asf fy, calculate Asf =Cf/fy.
3. For the web,

Asw = tensionsteelintheweb = As − Asf

a =
(As − Asf)fy
0.85 f ′c b𝑤

C𝑤(web) = 0.85 f ′c ab𝑤 = Aswfy

4.
𝜙Mn = 𝜙[M𝑤(web) + Mf (flange)] = 𝜙

[
C𝑤

(
d − 1

2
a
)
+ Cf

(
d − 1

2
t
)]

.

= 𝜙
[
0.85 f ′c ab𝑤

(
d − 1

2
a
)
+ 0.85 f ′c t(b − b𝑤)

(
d − 1

2
t
)]

.

= 𝜙
[(

As − Asf

)
fy
(

d − 1
2

a
)
+ Asf fy

(
d − 1

2
t
)]
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5. Check that 𝜀t ≥ 0.005 for tension-controlled section and 𝜙 = 0.9. (See Example 3.12.)
6. Check that As, min≤As ≤ As, max. (See case 1.)

Sections 3.18–3.21

1. Analysis of nonuniform sections is explained in Example 3.13.
2. Tables in Appendix A may be used for the analysis of rectangular sections.
3. Examples in SI units are introduced.
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P R O B L E M S

3.1 Singly reinforced rectangular sections. Determine the design moment strength of the sections given in
the following table, knowing that f ′c = 4 ksi and fy = 60 ksi. (Answers are given in the right column.)

No. b (in.) d (in.) As (in.2) 𝝓Mn (K⋅ft)

a 14 22.5 5.08 (4 no. 10) 441.2
b 18 28.5 7.62 (6 no. 10) 849.1
c 12 23.5 4.00 (4 no. 9) 370.1
d 12 18.5 3.16 (4 no. 8) 230.0
e 16 24.5 6.35 (5 no. 10) 600.0
f 14 26.5 5.00 (5 no. 9) 525.3
g 10 17.5 3.00 (3 no. 9) 200.5
h 20 31.5 4.00 (4 no. 9) 535.2

For problems in SI units, 1 in. = 25.4 mm, 1 in.2 = 645 mm2,
1 ksi = 6.9 MPa (N/mm2), and 1 Mu (K⋅ft) = 1.356 kN⋅m.
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3.2 Rectangular section with compression steel. Determine the design moment strength of the sections given
in the following table, knowing that f ′c = 4ksi, fy = 60 ksi, and d′ = 2.5 in. (Answers are given in the right
column. In the first four problems, f ′s = fy)

No. b (in.) d (in.) As (in.2) A′
s(in.2) 𝝓Mn (K⋅ft)

a 15 22.5 8.00 (8 no. 9) 2.00 (2 no. 9) 692.2
b 17 24.5 10.08 (8 no. 10) 2.54 (2 no. 10) 950.0
c 13 22 7.00 (7 no. 9) 1.80 (3 no. 7) 590.2
d 10 21.5 5.08 (4 no. 10) 1.20 (2 no. 7) 418.2
e 14 20.5 7.62 (6 no. 10) 2.54 (2 no. 10) 597.9
f 16 20.5 9.00 (9 no. 9) 4.00 (4 no. 9) 716.3
g 20 18.0 12.00 (12 no. 9) 6.00 (6 no. 9) 820.3
h 18 20.5 10.16 (8 no. 10) 5.08 (4 no. 10) 813.7

For problems in SI units: 1 in.= 25.4 mm, 1 in.2 = 645 mm2, 1 ksi= 6.9 MPa (N/mm2),
and 1 Mu(K⋅ft) = 1.356 kN⋅m.

3.3 T-sections. Determine the design moment strength of the T-sections given in the following table, know-
ing that f ′c = 3 ksi and fy = 60 ksi. (Answers are given in the right column. In the first three problems,
a< t.)

No. b (in.) b𝒘 (in.) t (in.) d (in.) As (in.2) 𝝓Mn (K⋅ft)

a 54 14 3 17.5 5.08 (4 no. 10) 374.8
b 48 14 4 16.5 4.0 (4 no. 9) 279.4
c 72 16 4 18.5 10.16 (8 no. 10) 769.9
d 32 16 3 15.5 6.0 (6 no. 9) N.G.
e 44 12 4 20.5 8.0 (8 no. 9) 660.1
f 50 14 3 16.5 7.0 (7 no. 9) 466.8
g 40 16 3 16.5 6.35 (5 no. 10) 415.0
h 42 12 3 17.5 6.0 (6 no. 9) 425.8

For problems in SI units: 1 in. = 25.4 mm, 1 in.2 = 645 mm2, 1 ksi = 6.9 MPa (N/mm2),
and 1 Mu (K ⋅ ft) = 1.356 kN⋅m. Answer = 325.5 K⋅ft if 𝜌max is used.

3.4 Calculate 𝜌b, 𝜌max, Ru(max), Ru, a/d, and max (a/d) for a rectangular section that has a width of b = 12 in.
(300 mm) and an effective depth of d = 20 in. (500 mm) for the following cases:
a. f ′c = 3 ksi, fy = 40 ksi, As = four no. 8 bars

b. f ′c = 4 ksi, fy = 60 ksi, As = four no. 7 bars

c. f ′c = 4 ksi, fy = 75 ksi, As = four no. 9 bars

d. f ′c = 5 ksi, fy = 60 ksi, As = four no. 9 bars

e. f ′c = 30 MPa, fy = 400 MPa, As = 3 × 30 mm

f. f ′c = 20 MPa, fy = 300 MPa, As = 3 × 25 mm

g. f ′c = 30 MPa, fy = 500 MPa, As = 4 × 25 mm

h. f ′c = 25 MPa, fy = 300 MPa, As = 4 × 20 mm
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3.5 Using the ACI Code requirements, calculate the design moment strength of a rectangular section that has
a width of b = 250 mm (10 in.) and an effective depth of d = 550 mm (22 in.) when f ′c = 20 MPa(3 ksi),
fy = 420 MPa (60 ksi), and the steel used is as follows:
a. 4 × 20 mm
b. 3 × 25 mm
c. 4 × 30 mm
d. 2 no. 9 bars
e. 6 no. 9 bars

3.6 A reinforced concrete simple beam has a rectangular section with a width of b= 8 in. (200 mm) and effec-
tive depth of d= 18 in. (450 mm). At design moment (failure), the strain in the steel was recorded and was
equal to 0.0015. (The strain in concrete at failure may be assumed to be 0.003) Use f ′c = 3 ksi(20 MPa)
and fy = 50 ksi (350 MPa) for all parts.
a. Check if the section is balanced, tension controlled, or compression controlled.
b. Determine the steel area that will make the section balanced.
c. Calculate the steel area provided in the section to produce the aforementioned strains and then cal-

culate its moment. Compare this value with the design moment strength allowed by the ACI Code
using 𝜌max.

d. Calculate the design moment strength of the section if the steel percentage used is 𝜌 = 1.4%.
3.7 A 10-ft.- (3-m)-span cantilever beam has an effective cross section (bd) of 12 × 24 in. (300 × 600 mm)

and is reinforced with five no. 8 (5 × 25 mm) bars. If the uniform load due to its own weight and the dead
load are equal to 685 lb/ft (10 kN/m), determine the allowable uniform live load on the beam using the
ACI load factors. Given: f ′c = 3 ksi (20 MPa) and fy = 60 ksi (400 MPa).

3.8 The cross section of a 17-ft (5-m)-span simply supported beam is 10 × 28 in. (250 × 700 mm), and it
is reinforced symmetrically with eight no. 6 bars (8 × 20 mm) in two rows. Determine the allowable
concentrated live load at midspan considering the total acting dead load (including self-weight) is equal
to 2.55 K/ft (37 kN/m). Given: f ′c = 3 ksi (20 MPa) and fy = 40 ksi (300 MPa).

3.9 Determine the design moment strength of the sections shown in Fig. 3.41. Neglect the lack of symmetry
in (b). Given: f ′c = 4 ksi (30 MPa) and fy = 60 ksi (400 MPa).

3.10 A rectangular concrete section has a width of b = 12 in. (300 mm), an effective depth of d = 18 in.
(450 mm), and d′ = 2.5 in. (60 mm). If compression steel consisting of two no. 7 bars (2 × 20 mm) is
used, calculate the allowable moment strength that can be applied on the section if the tensile steel, As,
is as follows:
a. Four no. 7 (4 × 20 mm) bars
b. Eight no. 7 (8 × 20 mm) bars

Given: f ′c = 3 ksi (20 MPa) and fy = 40 ksi (300 MPa).
3.11 A 16-ft- (4.8-m-)span simply supported beam has a width of b = 12 in. (300 mm), d = 22 in. (500 mm),

d′ = 2.5 in. (60 mm), and A′
s = three no. 6 bars (3 × 20 mm). The beam carries a uniform dead load of

2 K/ft (30 kN/m), including its own weight. Calculate the allowable uniform live load that can be safely
applied on the beam. Given: f ′c = 4 ksi (20 MPa) and fy = 60 ksi (400 MPa). (Hint: Use 𝜌max for the basic
section to calculate Mu.)

3.12 Check the adequacy of a 10-ft- (3-m)-span cantilever beam, assuming a concrete strength of f ′c = 4 ksi
(30 MPa) and a steel yield strength of fy = 60 ksi (400 MPa) are used. The dimensions of the beam section
are b = 10 in. (250 mm), d = 20 in. (500 mm), d′ = 2.5 in. (60 mm), As = six no. 7 bars (6 × 20 mm),
A′

s = twono. 5 bars (2 × 15 mm). The dead load on the beam, excluding its own weight, is equal to 2 K/ft
(30 kN/m), and the live load equals 1.25 K/ft (20 kN/m). (Compare the internal Mu with the external
factored moment.)

3.13 A series of reinforced concrete beams spaced at 9 ft (2.7 m) on centers are acting on a simply supported
span of 18 ft (5.4 m). The beam supports a reinforced concrete floor slab 4 in. (100 mm) thick. If the width
of the web is b𝑤 = 10 in. (250 mm), d = 18 in. (450 mm), and the beam is reinforced with three no. 9 bars
(3 × 30 mm), determine the moment strength of a typical interior beam. Given: f ′c = 4 ksi (30 MPa) and
fy = 60 ksi (400 MPa).



Problems 151

Figure 3.41 Problem 3.9.

3.14 Calculate the design moment strength of a T-section that has the following dimensions:
• Flange width = 30 in. (750 mm)
• Flange thickness = 3 in. (75 mm)
• Web width = 10 in. (250 mm)
• Effective depth (d) = 18 in. (450 mm)
• Tension reinforcement: six no. 8 bars (6 × 25 mm)
• f ′c = 3 ksi (20 MPa)
• fy = 60 ksi (400 MPa)

3.15 Repeat Problem 3.14 if d = 24 in. (600 mm).
3.16 Repeat Problem 3.14 if the flange is an inverted L shape with the same flange width projecting from one

side only. (Neglect lack of symmetry)
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Reinforced concrete office building, Amman, Jordan.

4.1 INTRODUCTION

In the previous chapter, the analysis of different reinforced concrete sections was explained. Details
of the section were given, and we had to determine the design moment of the section. In this chapter,
the process is reversed: The external moment is given, and we must find safe, economic, and prac-
tical dimensions of the concrete section and the area of reinforcing steel that provides adequate
internal moment strength.

4.2 RECTANGULAR SECTIONS WITH TENSION REINFORCEMENT ONLY

From the analysis of rectangular singly reinforced sections (Section 3.9), the following equations
were derived for tension-controlled sections, where f ′c and fy are in ksi:

𝜌b = 0.85𝛽1
f ′c
fy

(
87

87 + fy

)
(3.18)

𝜌max = 𝜌b

(0.003 + fy∕Es

0.008

)
(3.31)

For fy = 60 ksi,
𝜌max = 0.63375𝜌b(or 0.634𝜌b)

Also,

𝜌max

⎧
⎪
⎨
⎪
⎩

0.5474𝜌b for fy = 40 ksi
0.5905𝜌b for fy = 50 ksi
0.6983𝜌b for fy = 75 ksi

152
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Table 4.1 Suggested Design Steel Ratios, 𝜌s

f′c (ksi) fy (ksi) % 𝝆b % 𝝆max % 𝝆s

Ratio
𝝆s/𝝆b

Ratio
𝝆s/𝝆max

Rus
(psi)

Ru,max
(psi)

3 40 3.71 2.031 1.4 0.38 0.69 450 614
60 2.14 1.356 1.2 0.56 0.89 556 615

4 60 2.85 1.806 1.4 0.49 0.78 662 820
75 2.07 1.445 1.2 0.58 0.83 702 820

5 60 3.35 2.123 1.6 0.48 0.75 766 975
75 2.43 1.700 1.4 0.58 0.82 830 975

Table 4.2 Relation between 𝜀t, 𝜌/𝜌b, 𝜙, and 𝜀t/𝜀y (fy = 60 ksi)

𝜺t 0.004 0.005 0.006 0.007 0.0075 0.008 0.009 0.010 0.040

𝜌/𝜌b 0.714 0.625 0.555 0.500 0.476 0.454 0.417 0.385 0.117
𝜀t/𝜀y 2.0 2.5 3.0 3.5 3.75 4.0 4.5 5.0 20
𝜙 0.82 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

The value of 𝛽1 in 𝜌b is 0.85 when f ′c ≤ 4000 psi (30 N/mm2) and decreases by 0.05 for every
increase of 1000 psi (7 N/mm2) in concrete strength. The steel percentage of balanced section, 𝜌b,
and the maximum allowable steel percentage, 𝜌max, can be calculated for different values of f ′c and
fy, as shown in Table 4.1 or A.4.

It should be clarified that the designer has a wide range of choice between a large concrete
section and relatively small percentage of steel, 𝜌, producing high ductility and a small section
with a high percentage of steel with low ductility. A high value of the net tensile strain, 𝜀t, indi-
cates a high ductility and a relatively low percentage of steel. The limit of the net tensile strain
for tension-controlled sections is 0.005, with 𝜙= 0.9. The strain limit of 0.004 can be used with a
reduction in𝜑. If the ductility index is represented by the ratio of the net tensile strain, 𝜀t, to the yield
strain, 𝜀y = fy/Es, the relationship between 𝜀t, 𝜌/𝜌b, 𝜙, and 𝜀t/𝜀y is shown in Table 4.2 for fy = 60 ksi.
Also, the ACI Code, Section 6.6.5.1, indicates that 𝜀t should be ≥ 0.0075 for the redistribution of
moments in continuous flexural members producing a ductility index of 3.75. It can be seen that
adopting 𝜀t ≥ 0.005 is preferable to the use of a higher steel ratio, 𝜌/𝜌b, with 𝜀t = 0.004, because the
increase in Mn is offset by a lower 𝜙. The value of 𝜀t = 0.004 represents the use of minimum steel
percentage of 0.00333 for f ′c = 4ksi and fy = 60 ksi. This case should be avoided. The value of 𝜙

between 𝜀t = 0.005 and 𝜀t = 0.004 can be calculated from Eq. 3.8: 𝜙 = 0.65 + (𝜀t − 0.002)
(

250
3

)
.

The design moment equations were derived in the previous chapter in the following forms:

𝜙Mn = Mu = Rubd2 (3.21)

where

Ru = 𝜙𝜌fy

(
1 −

𝜌fy

1.7f ′c

)
= 𝜙Rn (3.22)

where 𝜙= 0.9 for tension-controlled sections and 𝜙< 0.9 for sections in the transition region:

𝜙Mn = Mu = 𝜙Asfy

(
d −

Asfy
1.7f ′c b

)
(3.19a)
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Also,

𝜙Mn = Mu = 𝜙𝜌fybd2

(
1 −

𝜌fy
1.7f ′c

)
(3.20)

We can see that for a given factored moment and known f ′c and fy there are three unknowns in
these equations: the width, b, the effective depth of the section, d, and the steel ratio, 𝜌. A unique
solution is not possible unless values of two of these three unknowns are assumed. Usually, 𝜌 is
assumed (e.g., using 𝜌max), and b can also be assumed.

Based on the preceding discussion, the following cases may develop for a given Mu, f ′c ,
and fy:

1. If 𝜌 is assumed, then Ru can be calculated from Eq. 3.22, giving bd2 =Mu/Ru. The ratio of
d/b usually varies between 1 and 3, with a practical ratio of 2. Consequently, b and d can
be determined, and As = 𝜌bd. The ratio 𝜌 for a singly reinforced rectangular section must be
equal to or less than 𝜌max, as given in Eq. 3.31. It is a common practice to assume a value of
𝜌 that ranges between 1

2
𝜌max and 1

2
𝜌b. Table 4.1 gives suggested values of the steel ratio 𝜌 to

be used in singly reinforced sections when 𝜌 is not assigned. For example, if fy = 60 ksi, the
value 𝜌s = 1.4% is suggested for f ′c = 4ksi, 1.6% for f ′c = 5ksi, and 1.2% for f ′c = 3ksi. The
designer may use 𝜌 up to 𝜌max, which produces the minimum size of the singly reinforced
concrete section. Using 𝜌min will produce the maximum concrete section. If b is assumed in
addition to 𝜌, then d can be determined as

d =

√
Mu

Rub
(4.1)

If d/b= 2, then d = 3
√

2Mu∕Ru and b= d/2, rounded to the nearest higher inch.
2. If b and d are given, then the required reinforcement ratio 𝜌 can be determined by rearranging

Eq. 3.20 to obtain

𝜌 =
0.85f ′c

fy

[

1 −

√

1 −
4Mu

1.7𝜙f ′c bd2

]

(4.2)

=
0.85f ′c

fy

[

1 −

√

1 −
2Rn

0.85f ′c

]

(4.2a)

or

𝜌 =
f ′c
fy

[
0.85 −

√
(0.85)2 − Q

]

where

Q =
(

1.7
𝜙f ′c

)
Mu

bd2
=
(

1.7
𝜙f ′c

)
Ru (4.3)

As = 𝜌bd =
(

f ′c
fy

)
bd

[
0.85 −

√
(0.85)2 − Q

]
(4.4)

where all units are in kips (or pounds) and inches and Q is dimensionless. For example, if
Mu = 2440 K ⋅ in., b= 12 in., d= 18 in., f ′c = 3ksi, and fy = 60 ksi, then 𝜌= 0.01389 (from
Eq. 4.2) and As = 𝜌bd= 0.01389(12)(18)= 3.0 in.2, or directly from Eq. 4.4, Q= 0.395 and
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As = 3.0 in.2 When b and d are given, it is better to check if compression steel is or is not
required because of a small d. This can be achieved as follows:
a. Calculate 𝜌max and Ru(max) = 𝜙𝜌maxfy[1 − (𝜌maxfy∕1.7f ′c )].
b. Calculate𝜙Mn(max)=Ru bd2, the design moment strength of a singly reinforced concrete

section.
c. If Mu <𝜙Mn, max, then no compression reinforcement is needed. Calculate 𝜌 and As from

the preceding equations.
d. If Mu >𝜙Mn, max, then compression steel is needed. In this case, the design procedure is

explained in Section 4.4.
3. If 𝜌 and b are given, calculate Ru:

Ru = 𝜙𝜌fy

(
1 −

𝜌fy
1.7f ′c

)

Then calculate d from Eq. 4.1:

d =

√
Mu

Rub
and As = 𝜌bd

4.3 SPACING OF REINFORCEMENT AND CONCRETE COVER

4.3.1 Specifications

Figure 4.1 shows two reinforced concrete sections. The bars are placed such that the clear spacing
shall be at least the greatest of 1 in. (25 mm), nominal bar diameter D, and (4/3)dagg (nominal

Figure 4.1 Spacing of steel bars in (a) one row or (b) two rows.



156 Chapter 4 Flexural Design of Reinforced Concrete Beams

maximum size of the aggregate), (ACI Code, Section 25.2.1).Vertical clear spacing between bars in
more than one layer shall not be less than 1 in. (25 mm), according to the ACI Code, Section 25.2.2.
Also for reinforcement of more than two layers, the upper layer reinforcement shall be placed
directly above the reinforcement of the lower layer.

The width of the section depends on the number, n, and diameter of bars used. Stirrups are
placed at intervals; their diameters and spacings depend on shear requirements, to be explained
later. At this stage, stirrups of 3

8
in. (10 mm) diameter can be assumed to calculate the width of

the section. There is no need to adjust the width, b, if different diameters of stirrups are used. The
specified concrete cover for cast-in-place and precast concrete is given in the ACI Code, Section
20.6.1. Concrete cover for beams and girders is equal to 3

2
in. (38 mm), and that for slabs is equal

to 3
4

in. (20 mm), when concrete is not exposed to weather or in contact with the ground.

4.3.2 Minimum Width of Concrete Sections

The general equation for the minimum width of a concrete section can be written in the form

bmin = nD + (n − 1)s + 2(stirrup diameter) + 2(concrete cover) (4.5a)

where
n = number of bars
D = diameter of largest bar used
s = spacing between bars (equal to D or 1 in., whichever is larger)

If the stirrup’s diameter is taken equal to 3
8

in. (10 mm) and concrete cover equals 3
2
in.

(38 mm), then
bmin = nD + (n − 1)s + 3.75 in. (95mm) (4.5b)

This equation, if applied to the concrete sections in Fig. 4.1, becomes

b1 = 3D + 2S + 3.75in. (95 mm)

b2 = 4D + 3S + 3.75in. (95 mm)

To clarify the use of Eq. 4.5, let the bars used in sections of Fig. 4.1 be no. 10 (32-mm) bars. Then

b1 =
{

5 × 1.27 + 3.75 = 10.10 in. (s = D) say, 11 in.
5 × 32 + 95 = 225 mm say, 250 mm

b2 =
{

7 × 1.27 + 3.75 = 12.64 in. (s = D) say, 13 in.
7 × 32 + 95 = 319 mm say, 320 mm

If the bars used are no. 6 (20 mm), the minimum widths become

b1 =
{

3 × 0.75 + 2 × 1 + 3.75 = 8.0 in. (s = 1 in.)
3 × 20 + 2 × 25 + 95 = 205 mm say, 210 mm

b2 =
{

4 × 0.75 + 3 × 1 + 3.75 = 9.75 in. say, 10 in.
4 × 20 + 3 × 25 + 95 = 250 mm

The width of the concrete section shall be increased to the nearest inch. Table 1 gives the
minimum beam width for different numbers of bars in the section.
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4.3.3 Minimum Overall Depth of Concrete Sections

The effective depth, d, is the distance between the extreme compressive fibers of the concrete
section and the centroid of the tension reinforcement. The minimum total depth is equal to d plus
the distance from the centroid of the tension reinforcement to the extreme tension concrete fibers,
which depends on the number of layers of the steel bars. In application to the sections shown in
Fig. 4.1,

h1 = d1 +
1
2

D + 3
8

in. + concrete cover(1.5 in.)

= d1 +
1
2

D + 1.857 in.(50 mm)

for one row of steel bars and

h2 = d2 + 0.5 + D + 3
8

in. + concrete cover (1.5 in)

= d2 + D + 2.375 in. (60 mm)
for two layers of steel bars. The overall depth, h, shall be increased to the nearest half inch (10 mm)
or, better, to the nearest inch (20 mm in SI). For example, if D= 1 in. (25 mm), d1 = 18.9 in.
(475 mm), and d2 = 20.1 in. (502 mm),

Minimum h1 = 18.9 + 0.5 + 1.875 = 21.275 in.

say, 21.5 in. or 22 in.,
h1 = 475 + 13 + 50 = 538 mm

say, 540 mm or 550 mm, and

Minimum h2 = 20.1 + 1.0 + 2.375 = 23.475 in.

say, 23.5 in. or 24 in.,
h2 = 502 + 25 + 60 = 587 mm

say, 590 mm or 600 mm.
If no. 9 or smaller bars are used, a practical estimate of the total depth, h, can be made as

follows:

h =
{

d + 2.5 in. (65 mm) for one layer of steel bars
d + 3.5 in.(90 mm) for two layers of steel bars

For more than two layers of steel bars, a similar approach may be used.
It should be mentioned that the minimum spacing between bars depends on the maximum

size of the coarse aggregate used in concrete. The nominal maximum size of the coarse aggregate
shall not be larger than one-fifth of the narrowest dimension between sides of forms, or one-third
of the depth of slabs, or three-fourths of the minimum clear spacing between individual reinforcing
bars or bundles of bars (ACI Code, Section 26.4.2.1).

Example 4.1

Design a simply reinforced rectangular section to resist a factored moment of 361 K⋅ft using the maxi-
mum steel percentage 𝜌max for tension-controlled sections to determine its dimension. Given: f ′c = 3ksi
and fy = 60 ksi.
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Solution
For f ′c = 3ksi, fy = 60 ksi, and 𝛽1 = 0.85, 𝜌max for a tension-controlled section is calculated as follows
(𝜙= 0.9):

𝜌b = (0.85)𝛽1

(
f ′c
fy

)[
87

87 + fy

]

𝜌 = (0.85)2
( 3

60

)( 87
147

)
= 0.0214

𝜌max = 𝜌b

(0.003 + fy∕Es

0.008

)
= 0.63375𝜌b = 0.01356 (Table 4.1)

Ru,max = 𝜙𝜌maxfy

(
1 −

𝜌maxfy
1.7f ′c

)

= 0.9 × 0.01356 × 60 ×
(

1 − 0.01356 × 60
1.7 × 3

)
= 0.615 ksi

(Or, use the tables in Appendix A or Table 4.1.)
Since Mu =Rubd2,

bd2 =
Mu

Ru
=
(361 × 12

0.615

)
= 4332

0.615
= 7043 in.3

Thus, for the following assumed b, calculate d and As = 𝜌bd:

𝜌 =
0.85f ′c

fy

⎡
⎢
⎢
⎣
1 −

√

1 −
4Mu

1.7f ′c bd2

⎤
⎥
⎥
⎦

b = 10 in. d = 26.5 in. As = 3.59 in.2

b = 12 in. d = 24.2 in. As = 3.94 in.2 six no. 8 bars (As = 4.71 in.2)
b = 14 in. d = 22.4 in. As = 4.95 in.2 five no. 9 bars (As = 5.0 in.2)
b = 16 in. d = 21.0 in. As = 4.55 in.2

The choice of the effective depth d depends on three factors:

1. Width b Required. A small width will result in a deep beam that decreases the headroom available.
Furthermore, a deep narrow beam may lower the design moment strength of the structural member
due to possible lateral deformation.

2. Amount and Distribution of Reinforcing Steel. A narrow beam may need more than one row of
steel bars, thus increasing the total depth of the section.

3. Wall Thickness. If cement block walls are used, the width b is chosen to be equal to the wall thick-
ness. Exterior walls in buildings in most cases are thicker than interior walls. The architectural
plan of the structure will show the different thicknesses.

A reasonable choice of d/b varies between 1 and 3, with practical value about 2. It can be seen from
the previous calculations that the deeper the section, the more economical it is, as far as the quantity of
concrete used, expressed by the area bd of a 1-ft length of the beam. Alternatively, calculate bd2 =Mu/Ru
and then choose adequate b and d.

The area of the steel reinforcement, As, is equal to 𝜌bd. The area of steel needed for the different
choices of b and d for this example was shown earlier. Because the steel percentage required is constant
(𝜌max = 0.01356), As is proportional to bd. For a choice of a 12×24.2-in. section, the required As is
4.65 in.2 Choose six no. 8 bars in two rows (actual As = 4.71 in.2). The minimum b required for three
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Figure 4.2 Example 4.1.

no. 8 bars in one row is 8.9 in.< 12 in., and total h= 24.2+ 3.5= 27.7 in., say, 28 in. (actual d= 24.6 in.).
Another choice is a section with a 14 × 22.4-in. section with a total depth (h) of 25 in. and five no. 9
bars in one row. The choice of bars depends on:

1. Adequate placement of bars in the section, normally in one or two rows, fulfilling the restrictions
of the ACI Code for minimum spacing between bars.

2. The area of steel bars chosen closest to the required calculated steel area.

The final section is shown in Fig. 4.2.

Example 4.2

Design a simply reinforced rectangular section with 𝜌 of about 1%. Given: f ′c = 3ksi and fy = 60 ksi.

Solution
1. For f ′c = 3ksi and fy = 60 ksi, 𝜌max = 0.01356.

Since 𝜌< 0.01356, the section is tensioned controlled, and 𝜙= 0.9,

Ru = 𝜙𝜌fy

(
1 −

𝜌fy
1.7f ′c

)

= 0.9 × 0.01 × 60
(

1 − 0.01 × 60
1.7 × 3

)
= 0.476ksi

(From the tables in Appendix A, for 𝜌= 0.01, Ru = 476 psi.)
2. bd2 =Mu/Ru = 4332/0.476= 9100 in.3 Choosing b= 14 in. and d= 25.5 in.,

As = 𝜌bd = 0.01 × 14 × 25.5 = 3.57 in.2

Choose four no. 9 bars in one layer; As = 4.00 in.2:

bmin = nD + (n − 1)s + 3.75

= 7 × 1.128 + 3.75 = 11.7 in. < 14 in. (width is sufficient)
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Figure 4.3 Example 4.2.

hmin = d + D
2
+ 1.875 (assume 1.5 in cover)

= 25.5 + 1.138
2

+ 1.875 = 27.94 in. say, 28 in. (d = 25.5 in.)

The final cross section is shown in Fig. 4.3.

Example 4.3

Find the necessary reinforcement for a given section that has a width of 10 in. and a total depth of 20 in.
(Fig. 4.4) if it is subjected to an external factored moment of 163 K⋅ft. Given: f ′c = 4ksi and fy = 60 ksi.

Figure 4.4 Example 4.3.
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Solution
1. Assuming one layer of no. 8 steel bars (to be checked later), d= 20− 0.5− 1.875= 17.625 in. (or

d= 20− 2.5 in.= 17.5 in.).
2. Check if the section is adequate without compression reinforcement. Compare the moment

strength of the section (using 𝜌max for the tension-controlled condition). For f ′c = 4ksi and
fy = 60 ksi, 𝜌max = 0.01806:

Ru,max = 𝜙𝜌max fy

(
1 −

𝜌max fy
1.7f ′c

)
= 820 psi (from Table 4.1)

The moment strength of a singly reinforced basic section is

𝜙Mn,max = Ru,maxbd2 = 0.82(10)(17.5)2

= 2511K ⋅ in. > 163 × 12 = 1956K ⋅ in.

Therefore, 𝜌< 𝜌max and the section is singly reinforced and is tension controlled (𝜙= 0.9).
3. Calculate 𝜌 from Eq. 4.2 or 4.3:

Q =
(

1.7
𝜙f ′c

)
×

Mu

bd2
=
( 1.7

0.9 × 4

)
×
(

1956

10 × 17.52

)
= 0.302

𝜌 =
f ′c
fy

[
0.85 −

√
(0.85)2 − Q

]
= 0.0134 < 𝜌max (tension − controlled condition)

As = 𝜌bd= 0.0134(10)(17.5)= 2.345 in.2 Use three no. 8 bars (As = 2.35 in.2) in one row,
bmin < 10 in. The final section is shown in Fig. 4.4.

Example 4.4

Find the necessary reinforcement for a given section, b= 15 in., if it is subjected to a factored moment
of 313 K ⋅ ft. Use f ′c = 4ksi and fy = 60 ksi.

Solution
1. For f ′c = 4ksi and fy = 60 ksi, and from Table 4.1, 𝜌b = 0.0285, 𝜌max = 0.01806 (tension-controlled

section), Ru, textmax = 820 psi.
2. Using 𝜌max = 0.01806 and Ru = 820 psi,

bd2 =
Mu

Ru
= 313(12)

0.820
= 4581 in.3

For b= 15 in. and d= 17.50,

As = 𝜌bd = 0.01806(15)(17.5) = 4.74 in.2

Choose four no. 10 bars, As = 5.08 in.2 > 4.74 in.2 Bars can be placed in one row, bmin = 12.7 in.
in Table A.7. Total depth (h)= 17.5+ 2.5= 20 in.

Discussion
1. Since a steel area of 5.08 in.2 used is greater than 4.74 in.2 required (the limit for a

tension-controlled section with 𝜙= 0.9), the section is in the transition zone. Actually,
the section is underreinforced and the nominal moment Mn =Asfy(d− a/2)= 368.6 K ⋅ ft
(As = 5.08 in.2 and a= 5.976 in.). If 𝜙= 0.9 is used, then 𝜙Mn = 331.7 K⋅ft.
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2. The ACI Code indicates that for sections in the transition zone, 𝜙< 0.9, and 𝜀t ≥ 0.004. Checking
𝜀t = [0.005/(𝜌/𝜌b)]− 0.003,

𝜌 = 5.08
15 × 17.5

= 0.01935
𝜌

𝜌b
= 0.679

𝜀t =
(0.00507

0.679

)
− 0.003 = 0.004467 > 0.004

Or, alternatively, calculate a= 5.08×60/(0.85×4×15)= 5.976, c= a/0.85= 7.03, dt = d= 17.5 in.
Then 𝜀t = 0.003(dt − c)/c= 0.004467. Calculate

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.856

𝜙Mn = 0.856(368.6) = 315.4K ⋅ ft

3. It can be noticed that, despite an additional amount of steel, 5.08 − 4.67= 0.41 in.2 (or about 9%),
the design moment strength remained the same. This is because the strength reduction factor, 𝜙,
was decreased. Therefore, the design of sections within the tension-controlled zone with 𝜙= 0.9
gives a more economical design based on the ACI Code limitations.

4.4 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

A singly reinforced section has its moment strength when 𝜌max of steel is used. If the applied fac-
tored moment is greater than the internal moment strength, as in the case of a limited cross section,
a doubly reinforced section may be used, adding steel bars in both the compression and the tension
zones. Compression steel will provide compressive force in addition to the compressive force in
the concrete area.

4.4.1 Assuming One Row of Tension Bars

The procedure for designing a rectangular section with compression steel when Mu, f ′c , b, d, and d′

are given can be summarized as follows:

1. Calculate the balanced and the maximum steel ratio, 𝜌max, using Eqs. 3.18 and Eqs. 3.31:

𝜌b = 0.85𝛽1
f ′c
fy

(
87

87 + fy

)

Calculate As, max =As1 = 𝜌maxbd (maximum steel area as singly reinforced).
2. Calculate Ru, max using 𝜌max (𝜙= 0.9):

Ru,max = 𝜙𝜌maxfy

(
1 −

𝜌maxfy
1.7f ′c

)

(Ru, max can be obtained from the tables in Appendix A or Table 4.1.)
3. Calculate the moment strength of the section, Mu1, as singly reinforced using 𝜌max and Ru, max:

Mu1 = Ru,maxbd2
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If Mu1 <Mu (the applied moment), then compression steel is needed. Go to the next step.
If Mu1 >Mu, then compression steel is not needed. Use Eq. 4.2 to calculate 𝜌 and As = 𝜌bd,
as explained earlier.

4. Calculate Mu 2 =Mu −Mu1, the moment to be resisted by compression steel.
5. Calculate As2 from Mu2 =𝜙As2fy(d− d′).

Then calculate the total tension reinforcement, As:
6. Calculate the stress in the compression steel as follows:

a. Calculate f ′s = 87[(c − d′)∕c]ksi ≤ fy (f ′s cannot exceed fy).
b. Or, 𝜀′s can be calculated from the strain diagram, and f ′s = (𝜀′s ⋅ Es). If 𝜀′s ≥ 𝜀y, then com-

pression steel yields and f ′s = fy.
c. Calculate A′

s from Mu2 = 𝜙A′
sf

′
s (d − d′). If f ′s = fy, then A′

s = As2. If f ′s < fy, then A′
s > As2,

and A′
s = As2(fy∕f ′s ).

7. Choose bars for As and A′
s to fit within the section width, b. In most cases, As bars will be

placed in two rows, whereas A′
s bars are placed in one row.

8. Calculate h= d+ 2.5 in. for one row of tension bars and h= d+ 3.5 in. for two rows of tension
steel. Round h to the next higher inch. Now check that ⌊𝜌 − 𝜌′(f ′s∕fy)⌋ < 𝜌max using the new
d or check that As,max = bd⌊𝜌max + 𝜌′(f ′s∕fy)⌋ ≥ As (used):

𝜌 =
As

bd
and 𝜌′ =

A′
s

bd

This check may not be needed if 𝜌max is used in the basic section.
9. If desired, the design moment strength of the final section, 𝜙Mn, can be calculated and com-

pared with the applied moment, Mu: 𝜙Mn ≥ Mu. Note that a steel ratio 𝜌 smaller than 𝜌max
can be assumed in step 1, say 𝜌= 0.6𝜌b or 𝜌= 0.9𝜌max, so that the final tension bars can be
chosen to meet the given 𝜌max limitation.

10. The strain at the bars level can be checked as follows:

𝜀t =
(

dt − c

c

)
0.003 ≥ 0.005

4.4.2 Assuming Two Rows of Tension Bars

In the case of two rows of bars, it can be assumed that d= h–3.5 in. and dt = h − 2.5 in.= d+ 1.0 in.
Two approaches may be used to design the section.

1. One approach is to assume a strain at the level of the centroid of the tension steel equal to
0.005 or 𝜀s = 0.005 (at the d level). In this case, the strain in the lower row of bars is greater
than 0.005: 𝜀t = (dt − c/c)0.003> 0.005, which still meets the ACI Code limitation. For this
case, follow the above steps 1 to 9. Example 4.6, solution 1, explains this approach.

2. A second approach is to assume a strain 𝜀t = 0.005 at the level of the lower row of
bars, dt. In this case, the strain at the level of the centroid of bars is less than 0.005:
𝜀s = [(dt − c)/c]0.003< 0.005, which is still acceptable. Example 4.6, solution 2, explains
this approach. The solution can be summarized as follows:
a. Calculate dt = h − 2.5 in. and then form the strain diagram and calculate c, the depth of

the neutral axis:

c =
(

0.003
0.003 + 𝜀t

)
dt
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For 𝜀t = 0.005,

c =
(3

8

)
dt and a = 𝛽1c

b. Calculate the compression force in the concrete:

C1 = 0.85f ′c ab = T1 = As1fy

Determine As1. Calculate Mu 1 =𝜙 As1fy(d− a/2); 𝜌1 =As1/bd, 𝜙= 0.9.
c. Calculate Mu2 =Mu −Mu1; assume d′ = 2.5 in.
d. Calculate As2: Mu2 =𝜙 As2fy(d− d′), f ′c = fy, 𝜙 = 0.9. Total As =As1 +As2.
e. Check if compression steel yields similar to step 6 in Section 4.4.1.

Example 4.5

A beam section is limited to a width b= 10 in. and a total depth h= 22 in. and has to resist a factored
moment of 226.5 K ⋅ ft. Calculate the required reinforcement. Given: f ′c = 3ksi and fy = 50 ksi.

Solution
1. Determine the design moment strength that is allowed for the section as singly reinforced based

on tension-controlled conditions. This is done by starting with 𝜌max. For f ′c = 3ksi and fy = 50 ksi
and from Eqs. 3.18, 3.22, and 3.31,

𝜌b = 0.0275 𝜌max = 0.01624 Ru = 614 psi

Mu = Rubd2 b = 10 in. d = 22 − 3.5 = 18.5 in.

Mu = 226.5 × 12 = 2718K ⋅ in.

(This calculation assumes two rows of steel, to be checked later.) Assume Mu1 = 0.614 × 10 ×
(18.5)2 = 2101 K⋅in.=max 𝜑Mn, as singly reinforced. Design Mu = 2718 K⋅in.> 2101 K⋅in.
Therefore, compression steel is needed to carry the difference.

2. Compute As1, Mu1, and Mu2:

As1 = 𝜌maxbd = 0.01624 × 10 × 18.5 = 3.0 in.2

Mu1 = 2101K ⋅ in.

Mu2 = Mu − Mu1 = 2718 − 2102 = 617K ⋅ in.

3. Calculate As2 and A′
s, the additional tension and compression steel due to Mu2. Assume d′ = 2.5 in.;

Mu2 =𝜙 As 2fy (d− d′):

As2 =
Mu2

𝜙fy(d − d′)
= 617

0.9 × 50(18.5 − 2.5)
= 0.86 in.2

Total tension steel is equal to As:

As = As1 + As2 = 3.0 + 0.86 = 3.86 in.2

The compression steel has A′
s = 0.86 in.2 (in A′

s yields).
4. Check if compression steel yields:

𝜀y =
fy

29, 000
= 50

29, 000
= 0.00172
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εs′

Figure 4.5 Example 4.5: Doubly reinforced concrete section.

Let a = (As1fy)∕(0.85f ′c b) = (3.0 × 50)∕(0.85 × 3 × 10) = 5.88 in.

c(distance to neutral axis) = a
𝛽1

= 5.88
0.85

= 6.92 in.

𝜀′s = strain in compression steel (from strain triangles)

= 0.003 ×
(6.92 − 2.5

6.92

)
= 0.00192 > 𝜀y = 0.00172

5. Check 𝜀t:

𝜌1 = 3
10 × 18.5

= 0.016216

𝜌1

𝜌b
= 0.5897 fy = 50

From Eq. 3.24, 𝜀ts
= 0.005 is assumed at the centroid of the tension steel for 𝜌max and Ru used.

Calculate 𝜀t (at the lower row of bars):

dt = 22 − 2.5 = 19.5 in.

𝜀t =
(

dt − c

c

)
0.003

=
(19.5 − 6.92

6.92

)
0.003

= 0.00545 > 0.005

as expected.
6. Choose steel bars as follows: As = 3.86 in.2 Choose five no. 8 bars (As = 3.95 in.2) in two rows, as

assumed; A′
s = 0.86 in.2 Choose two no. 6 bars (A′

s = 0.88 in.2).
7. Check actual d: Actual d= 22− (1.5+ 0.375+ 1.5)= 18.625 in. It is equal approximately to the

assumed depth. The final section is shown in Fig. 4.5.
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Example 4.6

A beam section is limited to b= 12 in. and a total depth h= 20 in. and is subjected to a factored moment
Mu = 298.4 K⋅ft. Determine the necessary reinforcement using f ′c = 4ksi and fy = 60 ksi. (Refer to
Fig. 4.6.)

Solution 1: Two Solutions Are Presented
1. Determine the maximum moment capacity of the section as singly reinforced based on

tension-controlled conditions. For f ′c = 4ksi and fy = 60 ksi, 𝜌max = 0.01806 and Ru = 820 psi
(Table 4.1). Assuming two rows of bars, d= 20 −3.5= 16.5 in.:

MaxMu1 = Ru maxbd2 = 0.82(12)(16.5)2 = 2679K ⋅ in. = 223.25K ⋅ ft

The design moment Mu = 298.4×12= 3581 K⋅in.>Mu1; therefore, compression steel is
needed.

2. Calculate As1, Mu2, As2, and As:

As1 = 𝜌maxbd = 0.01806(12)(16.5) = 3.576 in.2

Mu2 = Mu − Mu1 = 3581 − 2679 = 902K ⋅ in.

Mu2 = 𝜙As2 fy(d − d′) (assume d′ = 2.5 in.)

902 = 0.9As2(60)(16.5 − 2.5),As2 = 1.19 in.2

Total As = As1 + As2 = 3.576 + 1.19 = 4.77 in.2 (five no. 9 bars)

3. Check if compression steel yields by Eq. 3.46 Compression steel yields if

𝜌 − 𝜌′ ≥ K = 0.85𝛽1

f ′c
fy

(
d′

d

)(
87

87 − fy

)

K = (0.85)2
( 4

60

)( 2.5
16.5

)(87
27

)
= 0.0235

0.003

0.00548

c1 c2

0.005

Solution 1

0.003

0.005

0.004546

Solution 2

Figure 4.6 Example 4.6.
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𝜌 − 𝜌′ =
As1

bd
= 3.576

(12)(16.5)
= 0.01806 ≤ K

Therefore, compression steel does not yield: f ′s < fy.

4. Calculate f ′s ∶ f ′s = 87[(c − d′)∕c] ≤ fy. Determine c from As1: As1 = 3.576 in.2,

a =
As1 fy

0.85f ′c b
= 3.576 × 60

0.85 × 4 × 12
= 5.26 in.

c = a
𝛽1

= 5.26
0.85

= 6.19 in.

f ′s = 87 ×
(6.19 − 2.5

6.19

)
= 51.8ksi < 60ksi

5. Calculate A′
s from Mu2 = 𝜙A′

s f ′s (d − d′):

902 = 0.9A′
s(51.8)(16.5 − 2.5)

Thus, A′
s = 1.38 in.2, or calculate A′

s from A′
s = As2(fy∕f ′s ) = 1.38 in.2 (two no. 8 bars). Note

that the condition [𝜌 − 𝜌′(f ′s ∕fy)] = (𝜌 − 𝜌′) ≤ 𝜌max is already met:
(
𝜌 − 𝜌′

f ′s
fy

)
= 1

bd
(As − As2) =

3.576
12 × 16.5

= 0.01806

as assumed in the solution.
6. These calculations using 𝜌max and Ru are based on a strain of 0.005 at the centroid of the tension

steel:

𝜀t(at bottom row) =
(

dt − c

c

)
0.003

dt = 20 − 2.5 = 17.5 in. 𝜀t =
(17.5 − 6.19

6.19

)
0.003 = 0.00548 > 0.005

as expected.

Solution 2
Assuming two rows of tension bars and a strain at the lower row, 𝜀t = 0.005, the solution will be as
follows:

1. Calculate dt = 20 −2.5= 17.5 in. From the strain diagram,

c
dt

= 0.003
0.003 + 𝜀t

= 0.003
0.008

= 0.375

c = 0.375(17.5) = 6.5625 in. a = 0.85c = 5.578 in.

2. The compression force in the concrete=C1 = 0.85 f ′c ab,

C1 = 0.85(4)(5.578)(12) = 227.6K = T1(as singly reinforced)

As1 =
C1

fy
=

T1

fy
= 227.6

60
= 3.793 in.2

d = 20 − 3.5 = 16.5 in.

Mu1 = 𝜙As1fy
(

d − a
2

)
= 0.9(3.793)(60)

(
16.5 − 5.578

2

)
= 2808K ⋅ in.

= 234K ⋅ ft
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Ru1 =
Mu1

bd2
= 2808.3

12(16.5)2
= 0.86ksi = 860psi

𝜌1 =
As1

bd
= 0.01916

3. Since Mu = 3581 K ⋅ in.>Mu1, compression steel is needed:

Mu2 = 3581 − 2808 = 773K ⋅ in.

Mu2 = 0.9As2 fy(d − d′)

773 = 0.9As2(60)(16.5 − 2.5) As2 = 1.022 in.2

Total As = As1 + As2 = 3.793 + 1.022 = 4.815 in.2

Use five no. 9 bars.
4. Check if compression steel yields as in step 3 in the first solution:

K = 0.0235(𝜌 − 𝜌′) = 𝜌1 = 0.01916 < K

Compression steel does not yield:

f ′s = 87

(
c − d′

c

)
=
(6.56 − 2.5

6.56

)
87 = 53.84ksi

Calculate As2:

Mu2 = 𝜙A′
s f ′s (d − d′)

773 = 0.9A′
s(53.84)(16.5 − 2.5) A′

s = 1.14 in.2

Use two no. 7 bars (A′
s = 1.2 in.2).

5. Check the design moment strength:

As = 5.0 in.2 A′
s = 1.2 in.2 As1 = (As − A′

s) = 3.8 in.2

𝜙Mn = 𝜙

[
As1 fy

(
d − a

2

)
+ A′

s f ′s (d − d′)
]

= 0.9
[
3.8 (60)

(
16.5 − 5.578

2

)
+ 1.2(53.84)(16.5 − 2.5)

]

= 3627.6K ⋅ in. = 302.3K ⋅ ft

which is adequate. Note that the strain 𝜀s at the centroid level of the tension steel is less
than 0.005:

𝜀s =
(d − c

c

)
0.003 =

(16.5 − 6.56
6.56

)
0.003 = 0.004546

Both solutions are adequate.

Discussion
1. In the first solution, the net tensile strain 𝜀t = 0.005 was assumed at the centroid of the tension

steel. In this case 𝜌max and Ru, max can be determined from Table 4.1 or tables in Appendix A.
The strain in the lower row of bars will always be greater than 0.005, which meets the ACI Code
requirement.

2. In the second solution, the strain limit 𝜀t = 0.005 is assumed at the lower row. In this case, the
strain at the centroid of the two rows of bars will be less than 0.005 and its value depends on the
depth of the section. Moreover, 𝜌 and Ru for this case are not known and their values depend on
the effective depth d.



4.5 Design of T-Sections 169

3. Comparing the two solutions, the neutral axis depth, C1, in solution 1 is slightly smaller than c2
for the second solution because of the strain limitations, producing a smaller As1 and then higher
As2. Total As will normally be very close. It is clear that solution 1 is easier to use because of the
use of tables.

4. Note that solution 1 can have the same results as solution 2 by calculating As1 as follows: As1 = 𝜌max
bdt = 0.01806 (12×17.5)= 3.793 in.2, which is the same As1 calculated in solution 2, producing
𝜀t = 0.005 at the lower row of bars.

4.5 DESIGN OF T-SECTIONS

In slab–beam–girder construction, the slab dimensions as well as the spacing and position of beams
are established first. The next step is to design the supporting beams, namely, the dimensions of the
web and the steel reinforcement. Referring to the analysis of the T-section in the previous chapter,
we can see that a large area of the compression flange, forming a part of the slab, is effective in
resisting a great part or all of the compression force due to bending. If the section is designed on
this basis, the depth of the web will be small; consequently, the moment arm is small, resulting in
a large amount of tension steel, which is not favorable. Shear requirements should be met, and this
usually requires quite a deep section.

In many cases web dimensions can be known based on the flexural design of the section at
the support in a continuous beam. The section at the support is subjected to a negative moment, the
slab being under tension and considered not effective, and the beam width is that of the web.

In the design of a T-section for a given factored moment, Mu, the flange thickness, t, and width,
b, would have been already established from the design of the slab and the ACI Code limitations
for the effective flange width, b, as given in the previous chapter Section 3.15.2. The web thickness,
b𝑤, can be assumed to vary between 8 and 20 in., with a practical width of 12 to 16 in. Two more
unknowns still need to be determined, d and As. Knowing that Mu, f ′c , and fy are always given, two
cases may develop as follows:

1. When d is given and we must calculate As:
a. Check if the section acts as a rectangular or T-section by assuming a= t and calculating

the moment strength of the whole flange:

𝜙Mnf(flange) = 𝜙(0.85f ′c )bt
(

d − 1
2

t
)

(4.7)

If Mu >𝜙 Mnf, then a> t. If Mu <𝜙Mnf, then a< t, and the section behaves as a rectan-
gular section.

b. If a< t, then calculate 𝜌 using Eq. 4.2, and As = 𝜌bd. Check that 𝜌𝑤 ≥𝜌min.
c. If a> t, determine Asf for the overhanging portions of the flange, as explained in

Section 3.15.4:

Asf =
0.85f ′c (b − b𝑤)t

fy
(4.8)

Mu2 = 𝜙Asf fy
(

d − 1
2

t
)

(4.9)

The moment resisted by the web is

Mu1 = Mu − Mu2
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Calculate 𝜌1 using Mu1, b𝑤, and d in Eq. 4.2 and determine As1 = 𝜌1b𝑤d:

Total As = As1 + Asf

Then check that As ≤As, max, as explained in Section 3.15. Also check that 𝜌𝑤 =As/(b𝑤d)
≥𝜌min.

d. If a= t, then As = 𝜙(0.85f ′c )bt∕fy.
2. When d and As are not known, the design may proceed as follows:

a. Assume a= t and calculate the amount of total steel, Asft, needed to resist the compression
force in the whole flange, bt:

Asft =
(0.85f ′c )bt

fy
(4.10)

b. Calculate d based on Asft and a= t from the equation

Mu = 𝜙Asft fy
(

d − 1
2

t
)

(4.11)

If the depth, d, is acceptable, then As =Asft and h= d+ 2.5 in. for one row of bars or
h= d+ 3.5 in. for two rows of bars.

c. If a new d1 is adopted greater than the calculated d, then the section behaves as a rectan-
gular section, and 𝜌 can be calculated using Eq. 4.2; As = 𝜌bd<Asft.

d. If a new d2 is adopted that is smaller than the calculated d, then the section will act as a
T-section, and the final As will be greater then Asft. In this case, proceed as in step 1(c) to
calculate As.

Example 4.7

The T-beam section shown in Fig. 4.7 has a web width, b𝑤, of 10 in., a flange width, b, of 40 in., a flange
thickness of 4 in., and an effective depth, d, of 14.5 in. Determine the necessary reinforcement if the
applied factored moment is 3350 K⋅in. Given: f ′c = 3ksi and fy = 60 ksi.

Solution
1. Check the position of the neutral axis; the section may be rectangular. Assume the depth of com-

pression block a is 4 in.; that is, a= t= 4 in. Then

𝜙Mn = 𝜙(0.85f ′c )bt
(

d − 1
2

t
)
= 4590K ⋅ in. > Mu = 3350K ⋅ in.

Figure 4.7 Example 4.7: T-section.
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The design moment that the concrete flange can resist is greater than the factored applied
moment. Therefore, the section behaves as a rectangular section.

2. Determine the area of tension steel, considering a rectangular section, b= 40 in.:

Ru =
𝜙Mn

bd2
= 3, 350, 000

40 × 14.52
= 398psi

From Eq. 4.2 or from tables in Appendix A, for Ru = 398 psi and 𝜌= 0.00817,

As = 𝜌bd = 0.00817 × 40 × 14.5 = 4.74 in.2

Use six no. 8 bars, As = 4.74 in.2 (in two rows).
3. Check that 𝜌𝑤 =As/b𝑤d ≥ 𝜌min; 𝜌𝑤 = 4.74/(10×14.5)= 0.0327>𝜌min = 0.00333. Note that the As

used is less than As, max of 7.06 in.2 calculated by Eq. 3.72.
Also, a= 2.788 in., c= 3.28 in., dt = 14.5 in.,
and 𝜀t = 0.003(dt − c)/c= 0.01> 0.005, which is OK.

Example 4.8

The floor system shown in Fig. 4.8 consists of 3-in. slabs supported by 14-ft-span beams spaced 10 ft
on center. The beams have a web width, b𝑤, of 14 in. and an effective depth, d, of 18.5 in. Calculate the
necessary reinforcement for a typical interior beam if the factored applied moment is 5080 K ⋅ in. Use
f ′c = 3ksi and fy = 60 ksi.

Solution
1. Find the beam flange width: The flange width is the smallest of

b = 16t + b𝑤 = 3 × 16 + 12 = 60 in.

and
b =

span

4
= 14 × 12

4
= 42 in.

Center-to-center spacing of adjacent slabs is 10×12= 120 in. Use b= 42 in.
2. Check the position of the neutral axis assuming a= t:

𝜙Mn(based on flange) = 𝜙 × 0.85f ′c bt
(

d − 1
2

t
)

= 0.9 × 0.85 × 3 × 42 × 3(18.5 − 1.5) = 4916K ⋅ in.

The applied moment is Mu = 5080 K ⋅ in.> 4916 K ⋅ in.; the beam acts as a T-section, so a> t.

Figure 4.8 Example 4.8: Effective flange width.
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42"

18.5"

14" 14"

14" 14"

Ast = 3.57 in2

As1
As

in.2

Figure 4.9 Analysis of Example 4.8.

3. Find the portion of the design moment taken by the overhanging portions of the flange (Fig. 4.9).
First calculate the area of steel required to develop a tension force balancing the compressive force
in the projecting portions of the flange:

Asf =
0.85f ′c (b − b𝑤)t

fy
= 0.85 × 3 × (42 − 14) × 3

60
= 3.57 in2.

Here, 𝜙 Mn =Mu1 +Mu2, that is, the sum of the design moment of the web and the design
moment of the flanges:

Mu2 = 𝜙Asf fy
(

d − 1
2

t
)

= 0.9 × 3.57 × 60
(

18.5 − 3
2

)
= 3277K ⋅ in.

4. Calculate the design moment of the web (as a singly reinforced rectangular section):

Mu1 = Mu − Mu2 = 5080 − 3277 = 1803K ⋅ in.

Ru =
Mu1

(b𝑤d2)
= 1, 803, 000

14 × (18.5)2
= 376psi

From Eq. 4.2 or the tables in Appendix A, for Ru = 376 psi, 𝜌1 = 0.0077:

As1 = 𝜌1b𝑤d = 0.0077(14)(18.5) = 1.99in.2

TotalAs = Asf + As1 = 3.57 + 1.99 = 5.56in.2 (uses ix no.9 bars in two rows)
Total h 5= 18.5+ 3.5= 22 in. Calculate As, max for T-sections using Eq. 3.72:

MaxAs = 7.02 in.2 > 5.56 in.2

5. Check 𝜀t: a= 1.99×60/(0.85×3×14)= 3.34 in., c= 3.93 in., and dt = 19.5 in. Then 𝜀t = 0.003
(dt − c)/c= 0.0119> 0.005, tension-controlled section (𝜙= 0.9).

Example 4.9

In a slab–beam system, the flange width was determined to be 48 in., the web width was b𝑤 = 16 in., and
the slab thickness was t= 4 in. (Fig. 4.10). Design a T-section to resist an external factored moment of
Mu = 812 K ⋅ ft. Use f ′c = 3ksi and fy = 60 ksi.

Solution
1. Because the effective depth is not given, let a= t and calculate Asft for the whole flange:

Asft =
0.85f ′c bt

fy
= 0.85(3)(48)(4)

60
= 8.16 in.2
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As

Figure 4.10 Example 4.9.

Let Mu =𝜙 Asft fy(d− t/2) and calculate d:

812 × 12 = 0.9(8.16)(60)
(

d − 4
2

)
d = 24.1 in.

Now, if an effective d= 24.1 in. is chosen, then As =Asft = 8.16 in.2

2. If a depth d> 24.1 in. is chosen, say 26.5 in., then a< t and it is a rectangular analysis. The steel
ratio can be calculated from Eq. 4.2 with 𝜌= 0.00574 and As = 𝜌bd= 0.00574 × 48 × 26.5 =
7.3 in.2 (six no. 10 bars in two rows, As = 7.62 in.2).

3. If a depth d< 24.1 in. is chosen, say, 23.5 in., then a> t, and the section behaves as a T-section.
Calculate

Asf =
0.85f ′c t(b − b𝑤)

fy
= 0.85(3)(4)(48 − 16)

60
= 5.44 in.2

Mu2 = 𝜙Asf fy
(

d − 1
2

t
)
= 0.9(5.44)(60)

(
23.5 − 4

2

)
= 6316K ⋅ in.

Mu1 = 812 × 12 − 6316 = 3428K ⋅ in.

4. For the basic singly reinforced section, b𝑤 = 16 in., d= 23.5 in., and Mu1 = 3428 K ⋅ in.,
Ru = 387 psi. Calculate 𝜌1 from Eq. 4.2 to get 𝜌1 = 0.0079:

As1 = 𝜌1b𝑤d = 0.0079(16)(23.5) = 2.97 in.2

Total As = Asf + As1 = 5.44 + 2.97 = 8.41 in.2 (seven no.10 bars in two rows,

As = 8.89 in.2)

5. Check 𝜀t: a = 2.97 × 60/(0.85 × 3 × 16) = 4.368 in., c = a/0.85 = 5.14 in., dt = 24.5 in., and
𝜀t = 0.003 (dt − c)/c= 0.0113> 0.005, a tension-controlled section.

6. Calculate the total max As that can be used for the T-section by Eq. 3:

MaxAs =

= 0.0425[(b − b𝑤)t + 0.319b𝑤d] = 10.54 in.2

As(used) ≤ max As

7. Note: If there are no restrictions on the total depth of the beam, it is a common practice to adopt
the case when a≤ t (step 2). This is because an increase in d produces a small increase in concrete
in the web only while decreasing the quantity of As required.



174 Chapter 4 Flexural Design of Reinforced Concrete Beams

4.6 ADDITIONAL EXAMPLES

The following design examples give some practical applications and combine structural analysis
with concrete design of beams and frames.

Example 4.10
For the precast concrete I-section shown in Fig. 4.11, calculate the reinforcement needed to support a
factored moment of 360 K⋅ft. Use f ′c = 4ksi and fy = 60 ksi.

Solution
Determine if the force in the flange area 14× 5 in. will be sufficient to resist a factored moment of 360
K⋅ft. Let d= 23.5 in. Force in flange (Cc) = 0.85 × f ′c (flange area) = 0.85 × 4 × (14 × 5) = 238 K located
at 2.5 in. from the top fibers and a= 5 in.:

𝜙Mn = 0.9Cc

(
d − a

2

)
= 0.9 × 238

23.5 − 2.5
12

= 374.9K ⋅ ft

which is greater than the applied moment of 360 K⋅ft. Therefore, a< 5 in.:

𝜙Mn = 𝜙Asfy
(

d − 1
2

a
)

360 × 12 = 0.9As(60)
(

23.5 −
60As

1.7 × 14 × 14

)

where

a =
As fy

0.85f ′c b

Solve to get As = 3.79 in.2 Or use Eq. 4.2 to get 𝜌= 0.01152 and As = 0.01152× 14× 23.5= 3.79 in.2

Use three no. 10 bars in one row, as shown in Fig. 4.11.
For similar T-sections or I-sections, it is better to adopt a section with a flange size to accommodate

the compression force, Cc. In this case, a is less than or equal to the flange depth. The bottom flange is
in tension and not effective.

Figure 4.11 Example 4.10.
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Example 4.11

The simply supported beam shown in Fig. 4.12 carries a uniform dead load of 2.8 K/ft (including
self-weight) in addition to a service load of 1.6 K/ft. Also, the beam supports a concentrated dead load
of 16 K and a concentrated live load of 7 K at C, 10 ft from support A.

a. Determine the maximum factored moment and its location on the beam.
b. Design a rectangular section to carry the loads safely using a steel percentage of about 1.5%,

b= 20 in., f ′c = 4 ksi, and fy = 60 ksi.

Solution
a. Calculate the uniform factored load: 𝑤u = 1.2(2.8)+ 1.6(1.6)= 5.91 K/ft. Calculate the concen-

trated factored load: Pu = 1.2(16)+ 1.6(7)= 30.4 K. Calculate the reaction at A by taking moments
about B:

RA = 5.91(30)
30∕2

30
+ 30.4(20)

30
= 108.92K

RB = 5.91(30) + 30.4 − 108.92 = 98.78K

Maximum moment in the beam occurs at zero shear. Starting from B,

V = 0 = 98.78 − 5.91x and x = 16.71 ft from B at D

Mu(atD) = 98.72(16.71) − 5.91(16.71)
(16.71

2

)
= 825.5K ⋅ ft (design moment)

Mu(atC) = 98.78(20) − 5.91(20)
(20

2

)
= 793.6K ⋅ ft

7

16
2.8 1.6

26.5"

8

Section at D

Shearing
force

diagram

Bending
moment
diagram

Figure 4.12 Example 4.11.
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b. Design of the section at D: For f ′c = 4ksi and fy = 60 ksi, 𝜌max = 0.01806 and 𝜌min = 0.00333, and
the design steel ratio of 1.5% is within the limits. For 𝜌= 0.015, Ru = 700 psi (from Table A.2) or
from Eq. 3.22:

Mu = Rubd2 or 825.5 × 12 = 0.7(20)d2

Solve to get d= 26.6 in.:

As = 0.015 × 20 × 26.6 = 7.98 in.2

Choose eight no. 9 bars in two rows (area 8 in.2), five in the lower row plus three in
the upper row. Minimum b for five no. 9 bars in one row is 14 in. (Table A.7). Total depth
h= 26.6+ 3.5= 30.1 in. Use h= 30 in. Actual d= 30 −3.5= 26.5 in. Check the moment capacity
of the section, a = 8 × 60/(0.85 × 4 × 20) = 7.06 in.:

𝜙Mn = 0.9 × 8 × 60
26.5 − 7.06∕2

12
= 826.9 K ⋅ ft

which is greater than 825.5 K ⋅ ft. Check that As = 8 in.2 is less than As, max:

As,max = 0.01806 × 20 × 26.5 = 9.57 in.2

which exceeds 8 in.2 The final section is shown in Fig. 4.12.

Example 4.12

The two-hinged frame shown in Fig. 4.13 carries a uniform service dead load (including estimated
self-weight) of 2.33 K/ft and a uniform service live load of 1.5 K/ft on frame beam BC. The moment at
the corner B (or C) can be evaluated for this frame dimension, Mb =Mc =−𝑤L2/18.4, and the reaction
at A or D equals 𝑤L/2. A typical section of beam BC is shown; the column section is 16×21 in. It is
required to:

a. Draw the bending moment and shear diagrams for the frame ABCD showing all critical values.
b. Design the beam BC for the factored moments, positive and negative, using f ′c = 4ksi and

fy = 60 ksi. Show reinforcement details.

Solution
a. Calculate the forces acting on the frame using a computer program or the values mentioned pre-

viously.
Factored load (𝑤u)= 1.2(2.33)+ 1.6(1.5)= 5.2 K/ft.
Because of symmetry MB =MC =−𝑤L2/18.4=− 5.2(40)2/18.4=− 452.2 K⋅ft.
Positive moment at midspan (E)=𝑤uL2/8+MB = 5.2(40)2/8 −452.2= 587.8 K⋅ft.
Vertical reaction at A=RA =RD =𝑤uL/2= 5.2(40)/2= 104 K. Horizontal reaction at A=HA =

MB/h= 452.2/16= 28.26 K.
The moment and shear diagrams are shown in Fig. 4.13.

Determine the location of zero moment at section F on beam BC by taking moments about F:

104(y) − 28.26(16) − 5.2(y)2∕2 = 0 y = 4.963 ft say, 5 ft from joint B

b. Design of beam BC:
1. Design of section E at midspan: Mu =+ 587.8 K⋅ft. Assuming two rows of bars, d= 21

−3.5= 17.5 in. Calculate the moment capacity of the flange using a= 5.0 in.:

𝜙Mn(flange) = 𝜙(0.85f ′c )ab
(

d − 5
2

)

= 0.9(0.85 × 4) × (5 × 60) × 17.5 − 2.5
12

= 1147.5K ⋅ ft

which is greater than the applied moment; therefore, a< 5.0 in.
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Moment diagram
Loads on main frame

1.5

2.33

Stirrup holders

Typical section (BC)

Shear diagram

Figure 4.13 Example 4.12.
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Assume a = 2.0 in. and calculate As:

Mu = 𝜙As fy
(

d − a
2

)

587.8 × 12 = 0.9 × 60As(17.5 − 1.0) and As = 7.92 in.2

Check assumed a = As fy∕(0.85f
′

cb) = 7.92 × 60∕(0.85 × 4 × 60) = 2.33 in. Revised As=
587.8× 12/(0.9× 60× 16.33)= 7.99 in.2 Check revised a: a= 7.99× 2.33/7.92= 2.35 in.,
which is very close to 2.33 in.

Alternatively, Eq. 4.2 can be used to get 𝜌 and As. Choose eight no. 9 bars in two rows
(area= 8.0 in.2), (bmin = 11.8 in.). Extend four no. 9 bars on both sides to the columns. The
other four bars can terminate where they are not needed, beyond section F; see the longitudinal
section in Fig. 4.13.

2. Design of section at B: Mu =− 452.2 K⋅ft. The section acts as a rectangular section, b= 16 in.
and d= 17.5 in. The main tension reinforcement lies in the flange:

𝜌max = 0.01806 and Ru,max = 820psi (Table 4.1)
Check the maximum moment capacity of the section as singly reinforced:

𝜙Mn,max = Ru,maxbd2 = 0.82(16)(17.5)2

12
= 334.8K ⋅ ft

which is less than the applied moment. Compression steel is needed:

As1 = 0.01806(16)(17.5) = 5.06 in.2

Mu2 = 452.2 − 334.8 = 117.4K ⋅ ft

Mu2 = 𝜙As2 fy(d − d′)

Assumed′ = 2.5 in.

117.4 × 12 = 0.9As2(60)(17.5 − 2.5) and As2 = 1.74 in.2

Total tension steel= 5.06+ 1.74= 6.8 in.2 Use seven no. 9 bars in two rows (area used 7.0 in.2, which is
adequate). For compression steel, use two no. 9 bars (area 2.0 in.2), extended from the positive-moment
reinforcement to the column. Actually, four no. 9 bars are available; see the longitudinal section in
Fig. 4.13.

The seven no. 9 bars must extend in the beam BC beyond section F into the compression zone and
also must extend into the column BA to resist the column moment of 452.2 K ⋅ ft without any splices at
joints B or C.

Check if compression steel yields by using Eq. 3 or Table 3. Assume K= 0.01552 (d′/d)=
0.1552(2.5)/(17.5)= 0.02217>𝜌1 = 0.01806. Therefore, compression steel yields, and f ′s = 60 ksi, as
assumed.

Stirrups are shown in the beam to resist shear (refer to Chapter 8), and two no. 5 bars were placed
at the top of the beam to hold the stirrups in position. Ties are used in the column to hold the vertical
bars (refer to Chapter 10). To determine the extension of the development length of bars in beams or
columns, refer to Chapter 7.

4.7 EXAMPLES USING SI UNITS

Example 4.13

Design a singly reinforced rectangular section to resist a factored moment of 280 kN ⋅ m using the
maximum steel percentage for tension-controlled sections. Given: f ′c = 20N∕mm2, fy = 400 N/mm2, and
b= 250 mm.
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Solution

𝜌b = (0.85)𝛽1

[
f ′c
fy

](
600

600 + fy

)

= 0.85 × 0.85 × 20
400

×
( 600

600 + 400

)
= 0.0217

𝜌max =
(0.003 + fy∕Es

0.008

)
𝜌b Es = 200, 000 MPa

fy
Es

= 0.002

= 0.625𝜌b = 0.01356

𝜙 = 0.9

Ru max = 𝜙𝜌max fy

(
1 −

𝜌max fy
1.7f ′c

)

= 0.9 × 0.01356 × 400
(

1 − 0.01356 × 400
1.7 × 20

)
= 4.1 N∕mm2(MPa)

Mu = Rubd2

d =

√
Mu

Rub
=
√

280 × 106

4.1 × 250
= 523 mm

As = 𝜌bd = 0.01356 × 250 × 523 = 1772 mm2 = 17.72 cm2

Choose four bars, 25 mm diameter, in two rows.
Provided As = 4× 4.9= 19.6 cm2. Total depth is

h = d + 25 mm + 60 mm

= 523 + 25 + 60 = 608 mm say, 610 mm (or 600 mm)

Check minimum width:

bmin = 2D + 1S + 95 mm = 3 × 25 + 95 = 170 mm < 250 mm

Bars are placed in two rows.

Example 4.14

Calculate the required reinforcement for a beam that has a section of b= 300 mm and a total depth
h= 600 mm to resist Mu = 696 kN ⋅m. Given: f ′c = 30 N∕mm2 and fy = 420 N/mm2.

Solution
1. Determine the design moment strength of the section using 𝜌max (for tension-controlled section,
𝜙= 0.9):

𝜌b = (0.85)𝛽1

[
f ′c
fy

](
600

600 + fy

)

= 0.85 × 0.85 × 30
420

×
( 600

600 + 1020

)
= 0.0304
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𝜌max =
(0.003 + fy∕Es

0.008

)
𝜌b = 0.6375𝜌b = 0.01938

Ru max = 𝜙𝜌max fy

(
1 −

𝜌max fy
1.7f ′c

)

= 0.9 × 0.01938 × 420
(

1 − 0.01938 × 420
1.7 × 30

)
= 6.16 N∕mm2(MPa)

d = h − 85 mm(assumingtworowsofbars)

= 600 − 85 = 515 mm

𝜙Mn = Rubd2 = 6.16 × 300 × (515)2 × 10−6 = 490 kN ⋅ m

This is less than the external moment; therefore, compression reinforcement is needed.
2. Calculate As1, Mu1, and Mu2:

As1 = 𝜌maxbd = 0.01938 × 300 × 515 = 2994 mm2

Mu2 = Mu − Mu1 = 696 − 490 = 206 kN ⋅ m

3. Calculate As2 and A′
s due to Mu2. Assume d′ = 60 mm:

Mu2 = 𝜙As2 fy(d − d′)

206 × 106 = 0.9As2 × 420(515 − 60) As2 = 1198 mm2

Total tension steel is 2994+ 1198= 4192 mm2.
4. Compression steel yields if

𝜌 − 𝜌′ = 𝜌1 ≥ 0.85𝛽1 ×
f ′c
fy

× d′

d
× 600

600 − fy
= K

K = (0.85)2 × 30
420

× 60
515

× 600
600 − 420

= 0.020

Because 𝜌− 𝜌′ = 𝜌max = 0.01938< 0.020, compression steel does not yield.
5. Calculate

a =
As fy

0.85f ′c b

= 2994(420)
0.85 × 30 × 300

= 164.4 mm

c = a
0.85

= 193.4 mm d′ = 60 mm

f ′c = 600

(
c − d′

c

)
= 414N∕mm2

A′
s = As2

(420
414

)
= 1215 mm2

6. Choose steel bars as follows: For tension, choose six bars 30 mm in diameter (30 M). The As pro-
vided (4200 mm) is greater than As, as required. For compression steel, choose three bars 25 mm
in diameter (25 M) (Table B.11):

A′
s = 1500 mm2 > 1215 mm2
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SUMMARY

Sections 4.1–4.3: Design of a Singly Reinforced Rectangular Section

Given: Mu (external factored moment), f ′c (compressive strength of concrete), and fy (yield stress
of steel).

Case 1 When b, d, and As (or 𝜌) are not given:

1. Assume 𝜌min ≤ 𝜌 ≤ 𝜌max. Choose 𝜌max for a minimum concrete cross section (smallest) or
choose 𝜌 between 𝜌max/2 and 𝜌b/2 for larger sections. For example, if fy = 60 ksi, you may
choose

𝜌 = 1.2% Rn = 618 psi for f ′c = 3 ksi

𝜌 = 1.4% Rn = 736 psi for f ′c = 4 ksi

𝜌 = 1.4% Rn = 757 psi for f ′c = 5 ksi

For any other value of 𝜌,Rn = 𝜌fy[1 − (𝜌fy∕1.7f ′c )], and Ru =𝜙Rn.

2. Calculate bd2 =Mu/𝜙Rn (𝜙 =0.9) for tension-controlled sections.
3. Choose b and d. The ratio of d to b is approximately 1 to 3, or d/b≈2.0.
4. Calculate As = 𝜌bd; then choose bars to fit in b in either one row or two rows. (Check bmin

from the tables.)
5. Calculate

h =
{

d + 2.5 in. (for one row of bars)
d + 3.5 in. (for two rows of bars)

Here, b and h must be to the nearest higher inch. Note: If h is increased, calculate new d= h
−2.5 (or 3.5) and recalculate As to get a smaller value.

Case 2 When 𝜌 is given, d, b, and As are required. Repeat steps 1 through 5 from Case 1.
Case 3 When b and d (or h) are given, As is required.

1. Calculate Rn =Mu/𝜙bd2 (𝜙= 0.9).
2. Calculate

𝜌 =
(

0.85f ′c
fy

)[

1 −

√

1 −
2Rn

0.85f ′c

]

(or get 𝜌 from tables or Eq. 4.2).
3. Calculate As = 𝜌bd, choose bars, and check bmin.
4. Calculate h to the nearest higher inch (see note, Case 1, step 5).

Case 4 When b and 𝜌 are given, d and As are required.

1. Calculate

Rn = 𝜌fy

(
1 −

𝜌fy

1.7f ′c

)
Ru = 𝜙Rn(𝜙 = 0.9)

2. Calculate

d =

√
Mu

𝜙Rnb
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3. Calculate As = 𝜌bd, choose bars, and check bmin.
4. Calculate h to the nearest higher inch (see note, Case 1, step 5). Note: Equations that may be

used to check the moment capacity of the section after the final section is chosen are

Mu = 𝜙Mn = 𝜙As fy

(
d −

As fy
1.7f ′c b

)
= 𝜙As fyd

(
1 −

𝜌fy

1.7f ′c

)

= 𝜙𝜌fy(bd2)
(

1 −
𝜌fy

1.7f ′c

)
= Rubd2

Section 4.4: Design of Rectangular Sections with Compression Steel

Given: Mu, b, d, d′, f ′c , fy, and 𝜙= 0.9.
Required: As and A′

s.

1. General
a. Calculate 𝜌max and 𝜌min as singly reinforced from equations (or from tables).

b. Calculate Rn,max = 𝜌max fy
[
1 −

(
𝜌max fy
1.7f ′c

)]
(orusetables).

c. Calculate the maximum capacity of the section as singly reinforced:

𝜙Mn = 𝜙Rn,maxbd2

d. If Mu >𝜙Mn, then compression steel is needed. If Mu <𝜙Mn, it is a singly reinforced
section.

2. If Mu >𝜙Mn and compression steel is needed:
a. Let Mu1 =𝜙Rn, maxbd2.
b. Calculate As1 = 𝜌maxbd (basic section).
c. Calculate Mu2 =Mu – Mu1 (steel section).

3. Calculate As2 and A′
s as the steel section:

a. Mu2 =𝜙As2 fy(d− d′).
b. Calculate total tension steel: As =As1 +As2.

4. Calculate A′
s (compression steel area):

a. Calculate a = As1 fy∕0.85f ′c b and c= a/𝛽1.
b. Calculate f ′s = 87[(c − d′)∕c] ≤ fy.

If f ′s ≥ fy, then f ′s = fy and A′
s = As2.

If f ′s < fy, then A′
s = As2

(
fy
f ′s

)
.

c. Check that total steel area (As)≥max As, or check 𝜀t ≥0.005:

As ≤

[
𝜌max (bd) + A′

s

(
f ′s
fy

)]

Section 4.5: Design of T-Sections

Given: Mu, f ′c , fy, b, t, and b𝑤.
Required: As and d (if not given).
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There are two cases:
Case 1 When d and As (or 𝜌) are not given:

1. Let a≤ t (as singly reinforced rectangular section). If a= t is assumed, then

Mu = (totalflange) = 𝜙(0.85f ′c )bt
(

d − t
2

)
= 𝜙As fy

(
d − t

2

)

Solve for d and then for As:

d =
Mu

𝜙(0.85f ′c )bt
+ t

2
As =

Mu

𝜙fy(d − t∕2)
2. If a is assumed to be less than t, then

d =
Mu

𝜙(0.85f ′c )ba
+ a

2
and As =

Mu

𝜙fy(d − a∕2)

Case 2 When d is given and As is required (one unknown):

1. Check if ‘a’ is greater or less than t by considering the moment capacity of the flange (bt).

(flange)𝜙Mn = 𝜙(0.85f ′c )bt
(

d − t
2

)

If 𝜙 Mn >Mu (external), then a< t (rectangular section).
If 𝜙 Mn <Mu (external), then a> t (T-section).

2. If a< t, calculate Rn =Mu/ 𝜙 bd2 and then calculate 𝜌 (or determine 𝜌 from tables or Eq. 4.2):

𝜌 =
0.85f ′c

fy

(

1 −

√

1 −
2Rn

0.85f ′c

)

Then calculate As = 𝜌bd.
3. If a> t:

a. Calculate Cf and Asf:

Asf = 0.85f ′c t
b − b𝑤

fy
=

Cf

fy
(flange)

Then calculate Muf (flange)=𝜙Cf(d− t/2).
b. Calculate Muw (web)=Mu −Muf. Calculate Rn; (web)=Muw/(𝜙b𝑤d2); then find 𝜌𝑤 (use

the equation or tables). Calculate Asw (web)= 𝜌𝑤b𝑤d.
c. Total As =Asf (flange)+Asw (web). Total As must be less than or equal to As, max and greater

than or equal to As, min.
d.

𝜌𝑤 =
(

0.8f ′c
fy

)(

1 −

√

1 −
2Rn

0.85f ′c

)

e. Check that 𝜌𝑤 =As/b𝑤d≥ 𝜌min (𝜌𝑤 = steel ratio in web) or As >As, min, where As, min = 𝜌min
(b𝑤d). Check that As ≤max As, or check 𝜀t = (dt – c)/c≥0.005.
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P R O B L E M S

4.1 Based on the information given in the accompanying table and for each assigned problem, design a
singly reinforced concrete section to resist the factored moment shown in boldface. Use f ′c = 4 ksi and
fy = 60 ksi and draw a detailed, neat section.

No. Mu (K⋅ft) b (in.) d (in.) 𝝆%

a 272.7 12 21.5 —
b 969.2 18 32.0 —
c 816.0 16 — 1.70
d 657.0 16 — 1.50
e 559.4 14 — 1.75
f 254.5 10 21.5 —
g 451.4 14 — 1.80
h 832.0 18 28.0 —
i 345.0 15 — 1.77
j 510.0 0.5d — 𝜌max
k 720.0 — 2.5b 1.80
l 605.0 — 1.5b 1.80

For problems in SI units, 1 in.= 25.4 mm, 1 ksi= 6.9 MPa (N/mm2),
and 1 Mu (K⋅ft)= 1.356 kN⋅m.

4.2 Based on the information given in the following table and for each assigned problem, design a rectangular
section with compression reinforcement to resist the factored moment shown. Use f ′c = 4 ksi, fy = 60 ksi,
and d′ = 2.5 in. Draw detailed, neat sections.

No. Mu (K⋅ft) b (in.) d (in.)

a 554 14 20.5
b 790 16 24.5
c 448 12 18.5
d 520 12 20.5
e 765 16 20.5
f 855 18 22.0
g 555 16 18.5
h 300 12 16.5
i 400 16 16.5
j 280 12 16.5
k 290 14 14.5
l 400 14 17.5

For problems in SI units, 1 in.= 25.4 mm, 1 ksi= 6.9 MPa (N/mm2),
and 1 Mu (K⋅ft)= 1.356 kN⋅m.

4.3 Based on the information given in the following table and for each assigned problem, calculate the tension
steel and bars required to resist the factored moment shown. Use f ′c = 3 ksi and fy = 60 ksi. Draw detailed,
neat sections.
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No. Mu (K⋅ft) b (in.) b𝒘 (in.) t (in.) d (in.) Notes

a 394 48 14 3 18.5
b 800 60 16 4 19.5
c 250 44 15 3 15.0
d 327 50 14 3 13.0
e 577 54 16 4 18.5
f 559 48 14 4 17.5
g 388 44 12 3 16.0
h 380 46 14 3 15.0
i 537 60 16 3 16.5
j 515 54 16 3 17.5
k 361 44 15 3 15.0
l 405 50 14 3 15.5
m 378 44 16 3 — Let a= t
n 440 36 16 4 — Let a= t
o 567 48 12 3 — Let As = 6.0 in.2

p 507 46 14 3 — Let As = 7.0 in.2

For problems in SI units, 1 in.= 25.4 mm, 1 ksi= 6.9 MPa (N/mm2),
and 1 Mu (K⋅ft)= 1.356 kN⋅m.

4.4 Design a singly reinforced rectangular section to resist a factored moment of 232 K ⋅ ft (320 kN⋅m) if
f ′c = 4 ksi (28 MPa), fy = 60 ksi (420 MPa), and b= 10 in. (250 mm) using (a) 𝜌max, (b) 𝜌= 0.016, and (c)
𝜌= 0.012.

4.5 Design a singly reinforced section to resist a factored moment of 186 K ⋅ ft (252 kN ⋅ m) if b= 12 in.
(275 mm), d= 20 in. (500 mm), f ′c = 3 ksi(20 MPa), and fy = 40 ksi (300 MPa).

4.6 Determine the reinforcement required for the section given in Problem 4.5 when f ′c = 4 ksi(30 MPa) and
fy = 60 ksi (400 MPa).

4.7 A simply supported beam has a 20-ft (6-m) span and carries a uniform dead load (DL) of 800 lb/ft (12
kN/m) and a concentrated live load (LL) at midspan of 9 kips (40 kN) (Fig. 4.14). Design the beam if
b= 12 in. (300 mm), f ′c = 4 ksi(30 MPa), and fy = 60 ksi (400 MPa). (Beam self-weight is not included in
the dead load.)

4.8 A beam with a span of 24 ft (7.2 m) between supports has an overhanging extended part of 8 ft (2.4 m)
on one side only. The beam carries a uniform dead load of 2.3 K/ft (30 kN/m) (including its own weight)
and a uniform live load of 1.3 K/ft (18 kN/m) (Fig. 4.15). Design the smallest singly reinforced rect-
angular section to be used for the entire beam. Select steel for positive and negative moments. Use
f ′c = 4 ksi(30 MPa), fy = 60 ksi (400 MPa), and b= 12 in. (300 mm). (Determine the maximum positive
and maximum negative moments by placing the live load once on the span and once on the overhang-
ing part.)

Figure 4.14 Problem 4.7.



186 Chapter 4 Flexural Design of Reinforced Concrete Beams

Figure 4.15 Problem 4.8.

Figure 4.16 Problem 4.10.

4.9 Design a 15-ft (4.5-m) cantilever beam of uniform depth to carry a uniform dead load of 0.88 K/ft
(12 kN/m) and a live load of 1.1 K/ft (15 kN/m). Assume a beam width b= 14 in. (350 mm), f ′c =
4 ksi(30 MPa), and fy = 60 ksi (400 MPa).

4.10 A 10-ft (3-m) cantilever beam carries a uniform dead load of 1.50 K/ft (20 kN/m) (including its own
weight) and a live load of 0.77 K/ft (10 kN/m) (Fig. 4.16). Design the beam using a variable depth.
Draw all details of the beam and reinforcement. Given: f ′c = 3 ksi(20 MPa), fy = 40 ksi (300 MPa), and
b= 12 in. (300 mm). Assume h at the free end is 10 in. (250 mm).

4.11 Determine the necessary reinforcement for a concrete beam to resist an external factored moment of 290
K⋅ft (400 kN⋅m) if b= 12 in. (300 mm), d= 19 in. (475 mm), d′ = 2.5 in. (65 mm), f ′c = 3 ksi(20 MPa),
and fy = 60 ksi (400 MPa).

4.12 Design a reinforced concrete section that can carry a factored moment of 260 K⋅ft (360 kN⋅m) as:
a. Singly reinforced, b= 10 in. (250 mm)
b. Doubly reinforced, 25% of the moment to be resisted by compression steel, b= 10 in. (250 mm)
c. T-section, which has a flange thickness of 3 in. (75 mm), flange width of 20 in. (500 mm), and web

width of 10 in. (250 mm)

Then f ′c = 3 ksi(20 MPa) and fy = 60 ksi(400 MPa) for all problems.
Determine the quantities of concrete and steel designed per foot length (meter length) of beams. Also,
determine the cost of each design if the price of the concrete equals $50/yd3 (67/m3) and that of steel is
$0.30/lb ($0.66/kg). Tabulate and compare results.

4.13 Determine the necessary reinforcement for a T-section that has a flange width b= 40 in. (1000 mm),
flange thickness t= 4 in. (100 mm), and web width b𝑤 = 10 in. (250 mm) to carry a factored moment of
545 K⋅ft (750 kN⋅m). Given: f ′c = 3 ksi(20 MPa) and fy = 60 ksi (400 MPa).

4.14 The two-span continuous beam shown in Fig. 4.17 is subjected to a uniform dead load of 2.6 K/ft (includ-
ing its own weight) and a uniform live load of 3 K/ft. The reactions due to two different loadings are
also shown. Calculate the maximum negative factored moment at the intermediate support B and the
maximum positive factored moment within the span AB (at 0.42L from support A), design the critical
section at B and D, and draw the reinforcement details for the entire beam ABC.
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Figure 4.17 Problem 4.14.

Figure 4.18 Problem 4.15.

Given: L= 20 ft, b= 12 in., and h= 24 in. Use d= 18 in. for one row of bars and d= 17 in. for two rows.
Assume f ′c = 4 ksi and fy = 60 ksi.

4.15 The two-hinged frame shown in Fig. 4.18 carries a uniform dead load of 3.93 K/ft and a uniform live
load of 2.4 K/ft on BC. The reactions at A and D can be evaluated as follows: HA=HD=𝑤L/9 and
RA=RD=𝑤L/2, where 𝑤 is the uniform load on BC. A typical cross section of the beam BC is also
shown. It is required to:
a. Draw the bending moment diagram for the frame ABCD.
b. Design the beam BC for the applied factored moments (positive and negative).
c. Draw the reinforcement details of BC.
Given: f ′c = 4 ksi and fy = 60 ksi.



CHAPTER5
SHEAR AND
DIAGONAL TENSION

Office building, Chicago, Illinois.

5.1 INTRODUCTION

When a simple beam is loaded, as shown in Fig. 5.1, bending moments and shear forces develop
along the beam. To carry the loads safely, the beam must be designed for both types of forces.
Flexural design is considered first to establish the dimensions of the beam section and the main
reinforcement needed, as explained in the previous chapters.

The beam is then designed for shear. If shear reinforcement is not provided, shear failure may
occur. Shear failure is characterized by small deflections and lack of ductility, giving little or no
warning before failure. On the other hand, flexural failure is characterized by a gradual increase
in deflection and cracking, thus giving warning before total failure. This is due to the ACI Code
limitation on flexural reinforcement. The design for shear must ensure that shear failure does not
occur before flexural failure.

5.2 SHEAR STRESSES IN CONCRETE BEAMS

The general formula for the shear stress in a homogeneous beam is

𝑣 = VQ
Ib

(5.1)

where
V = total shear at section considered
Q = statical moment about neutral axis of that portion of cross section lying between line

through point in question parallel to neutral axis and nearest face, upper or lower, of beam
I = moment of inertia of cross section about neutral axis
b = width of beam at given point

The distribution of bending and shear stresses according to elastic theory for a homogeneous
rectangular beam is as shown in Fig. 5.2. The bending stresses are calculated from the flexural

188
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Figure 5.1 Bending moment and shearing force diagrams for a simple beam.

Figure 5.2 Bending and shear stresses in a homogeneous beam according to elastic
theory.

formula f=Mc/I, whereas the shear stress at any point is calculated by the shear formula of Eq. 5.1.
The maximum shear stress is at the neutral axis and is equal to 1.5𝑣a (average shear), where
𝑣a =V/bh. The shear stress curve is parabolic.

For a singly reinforced concrete beam, the distribution of shear stress above the neutral
axis is a parabolic curve. Below the neutral axis, the maximum shear stress is maintained down
to the level of the tension steel, because there is no change in the tensile force down to this
point and the concrete in tension is neglected. The shear stress below the tension steel is zero
(Fig. 5.3). For doubly reinforced and T-sections, the distribution of shear stresses is as shown
in Fig. 5.3.
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Figure 5.3 Distribution of shear stresses in reinforced concrete beams: (a) singly rein-
forced, (b) doubly reinforced, (c) T-section, and (d) T-section with compression steel.

It can be observed that almost all the shear force is resisted by the web, whereas the flange
resists a very small percentage; in most practical problems, the shear capacity of the flange is
neglected.

Referring to Fig. 5.1 and taking any portion of the beam dx, the bending moments at both
ends of the element, M1 and M2, are not equal. Because M2 >M1 and to maintain the equilibrium
of the beam portion dx, the compression force C2 must be greater than C1 (Fig. 5.4). Consequently,
a shear stress 𝑣 develops along any horizontal section a−a1 or b−b1 (Fig. 5.4a). The normal and
shear stresses on a small element at levels a−a1 and b−b1 are shown in Fig. 5.4b. Notice that the
normal stress at the level of the neutral axis b−b1 is zero, whereas the shear stress is at maximum.
The horizontal shear stress is equal to the vertical shear stress, as shown in Fig. 5.4b. When the
normal stress f is zero or low, a case of pure shear may occur. In this case, the maximum tensile
stress ft acts at 45∘ (Fig. 5.4c).

The tensile stresses are equivalent to the principal stresses, as shown in Fig. 5.4d. Such prin-
cipal stresses are traditionally called diagonal tension stresses. When the diagonal tension stresses
reach the tensile strength of concrete, a diagonal crack develops. This brief analysis explains the
concept of diagonal tension and diagonal cracking. The actual behavior is more complex, and it is
affected by other factors, as explained later. For the combined action of shear and normal stresses at
any point in a beam, the maximum and minimum diagonal tension (principal stresses) fp are given
by the equation

fp = 1
2

f ±
√(1

2
f
)2

+ 𝑣2 (5.2)

where

f = intensity of normal stress due to bending
𝑣 = shear stress
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Figure 5.4 (a) Forces and stresses along depth of section, (b) normal and shear
stresses, (c) pure shear, and (d) diagonal tension.

The shear failure in a concrete beam is most likely to occur where shear forces are at max-
imum, generally near the supports of the member. The first evidence of impending failure is the
formation of diagonal cracks.

5.3 BEHAVIOR OF BEAMS WITHOUT SHEAR REINFORCEMENT

Concrete is weak in tension, and the beam will collapse if proper reinforcement is not provided.
The tensile stresses develop in beams due to axial tension, bending, shear, torsion, or a combination
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of these forces. The location of cracks in the concrete beam depends on the direction of principal
stresses. For the combined action of normal stresses and shear stresses, maximum diagonal tension
may occur at about a distance d from the face of the support.

The behavior of reinforced concrete beams with and without shear reinforcement tested under
increasing load was discussed in Section 3.3. In the tested beams, vertical flexural cracks developed
at the section of maximum bending moment when the tensile stresses in concrete exceeded the
modulus of rupture of concrete, or fr = 7.5𝜆

√
f ′c . Inclined cracks in the web developed at a later

stage at a location very close to the support.
An inclined crack occurring in a beam that was previously uncracked is generally referred to as

a web-shear crack. If the inclined crack starts at the top of an existing flexural crack and propagates
into the beam, the crack is referred to as flexural-shear crack (Fig. 5.5). Web-shear cracks occur in
beams with thin webs in regions with high shear and low moment. They are relatively uncommon
cracks and may occur near the inflection points of continuous beams or adjacent to the supports of
simple beams.

Flexural-shear cracks are the most common type found in reinforced concrete beams. A flex-
ural crack extends vertically into the beam; then the inclined crack forms, starting from the top of
the beam when shear stresses develop in that region. In regions of high shear stresses, beams must
be reinforced by stirrups or by bent bars to produce ductile beams that do not rupture at a failure.

Figure 5.5 Shear failure: (a) general form, (b) web-shear crack, (c) flexural-shear crack,
(d) analysis of forces involved in shear (Va = interface shear, Vz = shear resistance,
Vd =dowel force).
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To avoid a shear failure before a bending failure, a greater factor of safety must be provided against
a shear failure. The ACI Code specifies a capacity reduction factor, 𝜙, of 0.75 for shear.

Shear resistance in reinforced concrete members is developed by a combination of the
following mechanisms [2] (Fig. 5.5):

• Shear resistance of the uncracked concrete, Vz [3].
• Interface shear transfer, Va, due to aggregate interlock tangentially along the rough surfaces

of the crack [3].
• Arch action [4].
• Dowel action, Vd, due to the resistance of the longitudinal bars to the transverse shearing

force [5].

In addition to these forces, shear reinforcement increases the shear resistance Vs, which
depends on the diameter and spacing of stirrups used in the concrete member. If shear reinforce-
ment is not provided in a rectangular beam, the proportions of the shear resisted by the various
mechanisms are 20 to 40% by Vz, 35 to 50% by Va, and 15 to 25% by Vd [6].

5.4 MOMENT EFFECT ON SHEAR STRENGTH

In simply supported beams under uniformly distributed load, the midspan section is subjected to
a large bending moment and zero or small shear, whereas sections near the ends are subjected to
large shear and small bending moments (Fig. 5.1). The shear and moment values are both high
near the intermediate supports of a continuous beam. At a location of large shear force and small
bending moment, there will be little flexural cracking, and an average stress 𝑣 is equal to V/bd.
The diagonal tensile stresses are inclined at about 45∘ (Fig. 5.4c). Diagonal cracks can be expected
when the diagonal tensile stress in the vicinity of the neutral axis reaches or exceeds the tensile
strength of concrete. In general, the factored shear strength varies between 3.5

√
f ′c and 5

√
f ′c . After

completing a large number of beam tests on shear and diagonal tension [1], it was found that in
regions with large shear and small moment, diagonal tension cracks were formed at an average shear
force of

Vc = 3.5
√

f ′c b𝑤d (5.3)

where b𝑤 is the width of the web in a T-section or the width of a rectangular section and d is the
effective depth of the beam.

In locations where shear forces and bending moments are high, flexural cracks are formed
first. At a later stage, some cracks bend in a diagonal direction when the diagonal tension stress
at the upper end of such cracks exceeds the tensile strength of concrete. Given the presence of
large moments on a beam, for which adequate reinforcement is provided, the nominal shear force
at which diagonal tension cracks develop is given by

Vc = 1.9𝜆
√

f ′c b𝑤d (5.4)

This value is a little more than half the value in Eq. 5.3 when bending moment is very small.
This means that large bending moments reduce the value of shear stress for which cracking occurs.
The following equation has been suggested to predict the nominal shear stress at which a diagonal
crack is expected [1]:

𝑣c =
V

b𝑤d
=
(

1.9𝜆
√

f ′c + 2500𝜌
Vd
M

)
≤ 3.5𝜆

√
f ′c (5.5)
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1. ACI Code, Section 22.5.5.1, adopted this equation for the nominal shear force to be resisted
by concrete for members subjected to shear and flexure only by

Vc =
[

1.9𝜆
√

f ′c + 2500𝜌𝑤
Vud

Mu

]
b𝑤d ≤ 3.5𝜆

√
f ′c b𝑤d (5.6)

where 𝜌𝑤 =As/b𝑤, d and b𝑤 are the web width in a T-section or the width of a rectangu-
lar section, and Vu and Mu are the factored shearing force and bending moment occurring
simultaneously on the considered section.

The value of Vud/Mu must not exceed 1.0 in Eq. 5.6. If Mu is large in Eq. 5.6, the second
term becomes small and 𝑣c approaches 1.9𝜆

√
f ′c . If Mu is small, the second term becomes

large and the upper limit of 3.5𝜆
√

f ′c controls. As an alternative to Eq. 5.6, the ACI Code,
Section 22.5.5.1, permits evaluating the shear strength of concrete as follows:

Vc =
{

2𝜆
√

f ′c b𝑤d (lb.in.)
0.17𝜆

√
f ′c b𝑤d (SI)

(5.7)

2. For members subjected to axial compression force Nu (ACI Code, Section 22.5.6.1) Vc shall
be calculated by:

Vc =
(

1.9𝜆
√

f ′c + 2500𝜌𝑤
Vud

Mm

)
b𝑤d

Mm = Mu − Nu

(4h − d
8

)
(5.8)

where
𝜌𝑤 = As/(b𝑤 d)
h = overall depth

and Vud/Mu may be greater than 1.0 but Vc must not exceed

Vc = 3.5𝜆
√

f ′c b𝑤d

√

1 +
Nu

500Ag
(5.9)

where Ag is the gross area in square inches.

Shear failure near a middle support.



5.5 Beams with Shear Reinforcement 195

Alternatively, Vc may be computed by

Vc = b𝑤d

(
2 + 0.001

Nu

Ag

)
𝜆
√

f ′c (5.10)

3. In the case of members subjected to axial tensile force Nu (ACI Code, Section 22.5.7.1), Vc
shall be calculated by:

Vc = b𝑤d

(
2 + 0.004

Nu

Ag

)
𝜆
√

f ′c (5.11)

where Nu is to be taken as negative for tension and Nu/Ag is in pounds per square inch.
If Vc is negative, Vc should be taken equal to zero.

5.5 BEAMS WITH SHEAR REINFORCEMENT

Different types of shear reinforcement may be used:

1. Stirrups, which can be placed either perpendicular to the longitudinal reinforcement or
inclined, usually making a 45∘ angle and welded to the main longitudinal reinforcement.
Vertical stirrups, using no. 3 or no. 4 U-shaped bars, are the most commonly used shear
reinforcement in beams (Fig. 5.6a).

2. Bent bars, which are part of the longitudinal reinforcement, bent up (where they are no longer
needed) at an angle of 30∘ to 60∘, usually at 45∘.

3. Combinations of stirrups and bent bars.
4. Welded wire fabric with wires perpendicular to the axis of the member.
5. Spirals, circular ties, or hoops in circular sections, as columns.

The shear strength of a reinforced concrete beam is increased by the use of shear reinforce-
ment. Prior to the formation of diagonal tension cracks, shear reinforcement contributes very little
to the shear resistance. After diagonal cracks have developed, shear reinforcement augments the
shear resistance of a beam, and a redistribution of internal forces occurs at the cracked section.
When the amount of shear reinforcement provided is small, failure due to yielding of web steel
may be expected, but if the amount of shear reinforcement is too high, a shear–compression failure
may be expected, which should be avoided.

Concrete, stirrups, and bent bars act together to resist transverse shear. The concrete, by virtue
of its high compressive strength, acts as the diagonal compression member of a lattice girder system,
where the stirrups act as vertical tension members. The diagonal compression force is such that its
vertical component is equal to the tension force in the stirrup. Bent-up reinforcement acts also as
tension members in a truss, as shown in Fig. 5.6.

In general, the contribution of shear reinforcement to the shear strength of a reinforced con-
crete beam can be described as follows [2]:

1. It resists part of the shear, Vs.
2. It increases the magnitude of the interface shear, Va (Fig. 5.5), by resisting the growth of the

inclined crack.
3. It increases the dowel force, Vd (Fig. 5.5), in the longitudinal bars.
4. The confining action of the stirrups on the compression concrete may increase its strength.
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Figure 5.6 Truss action of web reinforcement with (a) stirrups, (b) bent bars, and (c) ten-
sion steel.

5. The confining action of stirrups on the concrete increases the rotation capacity of plastic
hinges that develop in indeterminate structures at maximum load and increases the length
over which yielding takes place [7].

The total nominal shear strength of beams with shear reinforcement Vn is due partly to the
shear strength attributed to the concrete, Vc, and partly to the shear strength contributed by the shear
reinforcement, Vs:

Vn = Vc + Vs (5.12)

The shear force Vu produced by factored loads must be less than or equal to the total nominal shear
strength Vn, or

Vu ≤ 𝜙Vn = 𝜙(Vc + Vs) (5.13)

where Vu = 1.2VD + 1.6VL and 𝜙= 0.75.
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Figure 5.7 Factors in inclined shear reinforcement.

An expression for Vs may be developed from the truss analogy (Fig. 5.7). For a 45∘ crack and
a series of inclined stirrups or bent bars, the vertical shear force Vs resisted by shear reinforcement
is equal to the sum of the vertical components of the tensile forces developed in the inclined bars.
Therefore,

Vs = nA𝑣 fyt sin 𝛼 (5.14)

where A𝑣 is the area of shear reinforcement with a spacing s and fyt is the yield strength of shear
reinforcement; ns is defined as the distance aa1a2:

d =
{

a1a4 = aa1 tan 45∘ (from triangle aa1a4)
a1a4 = a1a2 tan 𝛼 (from triangle a1a2a4)

ns = aa1 + a1a2

= d(cot 45∘ + cot 𝛼) = d(1 + cot 𝛼)

n = d
S
(1 + cot 𝛼)

Substituting this value in Eq. 5.14 gives

Vs =
A𝑣 fytd

S
sin 𝛼(1 + cot 𝛼) =

A𝑣 fytd

S
(sin 𝛼 + cos 𝛼) (5.15)

For the case of vertical stirrups, 𝛼 = 90∘ and

Vs =
A𝑣 fytd

S
or S =

A𝑣 fytd

Vs
(5.16)

In the case of T-sections, b is replaced by the width of web b𝑤 in all shear equations. When 𝛼 = 45∘,
Eq. 5.15 becomes

Vs = 1.4

(A𝑣 fytd

S

)
or S =

1.4A𝑣 fytd

Vs
(5.17)

For a single bent bar or group of parallel bars in one position, the shearing force resisted by steel is

Vs = A𝑣 fyt sin 𝛼 or A𝑣 =
Vs

fyt sin 𝛼
(5.18)
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For 𝛼 = 45∘,
A𝑣 = 1.4

(
Vs

fyt

)
(5.19)

For circular sections, mainly in columns, Vs will be computed from Eq. 5.16 using d= 0.8× diameter
and A𝑣 = two times the area of the bar in a circular tie, hoop, or spiral.

5.6 ACI CODE SHEAR DESIGN REQUIREMENTS

5.6.1 Critical Section for Nominal Shear Strength Calculation

The ACI Code, Section 7.4.3.2, permits taking the critical section for nominal shear strength cal-
culation at a distance d from the face of the support. This recommendation is based on the fact that
the first inclined crack is likely to form within the shear span of the beam at some distance d away
from the support. The distance d is also based on experimental work and appeared in the testing
of the beams discussed in Chapter 3. This critical section is permitted on the condition that the
support reaction introduces compression into the end region, loads are applied at or near the top of
the member, and no concentrated load occurs between the face of the support and the location of
the critical section.

The Code also specifies that shear reinforcement must be provided between the face of the
support and the distance d using the same reinforcement adopted for the critical section.

5.6.2 Minimum Area of Shear Reinforcement

The presence of shear reinforcement in a concrete beam restrains the growth of inclined cracking.
Moreover, ductility is increased, and a warning of failure is provided. If shear reinforcement is
not provided, brittle failure will occur without warning. Accordingly, a minimum area of shear
reinforcement is specified by the Code. The ACI Code, Section 9.6.3.3, requires all stirrups to have
a minimum shear reinforcement area, A𝑣, equal to

A𝑣 = 0.75
√

f ′c

(
b𝑤s

fyt

)
≥

50b𝑤s

fyt
(5.20)

Shear failure in dapped-end beam.
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where b𝑤 is the width of the web and s is the spacing of the stirrups. The minimum amount of shear
reinforcement is required whenever Vu exceeds 𝜑Vc/2, except in:

1. Slabs and footings.
2. Concrete floor joist construction.
3. Beams where the total depth (h) does not exceed 10 in., 2.5 times the flange thickness for

T-shaped flanged sections, or one-half the web width, whichever is greatest.
4. The beam is integrated with slab, h not greater 24 in. and not greater than the larger of 2.5

times the thickness of the flange and 0.5 times the width of the web.

If 0.75
√

f ′c = 50, then f ′c = 4444 psi. This means that, when f ′c < 4500 psi, the minimum
A𝑣 = 50 b𝑤s/fyt controls, and when f ′c ≥ 4500 psi, the minimum A𝑣 = 0.75

√
f ′c (b𝑤s∕fyt) controls.

This increase in the minimum area of shear reinforcement for f ′c ≥ 4500 psi is to prevent sudden
shear failure when inclined cracking occurs.

It is common practice to increase the depth of a slab, footing, or shallow beam to increase its
shear capacity. Stirrups may not be effective in shallow members, because their compression zones
have relatively small depths and may not satisfy the anchorage requirements of stirrups. For beams
that are not shallow, reinforcement is not required when Vu is less than 𝜙Vc/2.

The minimum shear reinforcement area can be achieved by using no. 3 stirrups placed at
maximum spacing, Smax. If fy = 60 ksi and U-shaped (two legs) no. 3 stirrups are used, then Eq.
5.20 becomes

Smax =
A𝑣 fyt

(0.75
√

f ′c )b𝑤
≤

A𝑣 fyt

50b𝑤
(5.21)

where

Smax (in.) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0.22 (60, 000)
50b𝑤

= 264
b𝑤

for f ′c < 4500 psi

262
b𝑤

for f ′c = 4500 psi

249
b𝑤

for f ′c = 5000 psi

227
b𝑤

for f ′c = 6000 psi

(5.22)

If U-shaped no. 4 stirrups are used, then, for f ′c < 4500 psi,

Smax(in.) =
0.4(60, 000)

50b𝑤
= 480

b𝑤
where

Smax (in.) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

476
b𝑤

for f ′c = 4500 psi

453
b𝑤

for f ′c = 5000 psi

413
b𝑤

for f ′c = 6000 psi

(5.23)

Note that Smax shall not exceed 24 in., or d/2.
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Table 5.1 Values of Smax =A𝑣fy/50b𝑤 =24 in. When fyt = 60 ksi and f ′c < 4500 psi

b𝑤 (in.) 10 11 12 13 14 15 16 18 20 22 24 b𝑤
Smax (in.) no. 3 stirrups 24 24 22 20.3 18.9 17.6 16.5 14.7 13.2 12 11 264/b𝑤
Smax (in.) no. 4 stirrups 24 24 24 24 24 24 24 24 24 21.8 20 480/b𝑤

Table 5.1 gives Smax based on Eqs. 5.22 and Eqs. 5.23. Final spacings should be rounded to
the lower inch. For example, S= 20.3 in. becomes 20 in.

5.6.3 Maximum Shear Carried by Web Reinforcement Vs

To prevent a shear–compression failure, where the concrete may crush due to high shear and
compressive stresses in the critical region on top of a diagonal crack, the ACI Code, Section
22.5.1.2, requires that Vs shall not exceed (8

√
f ′c )b𝑤d. If Vs exceeds this value, the section should

be increased. Based on this limitation,

If f ′c = 3 ksi, then Vs ≤ 0.438b𝑤d (kips) or Vs∕b𝑤d ≤ 438 psi.

If f ′c = 4 ksi, then Vs ≤ 0.506b𝑤d (kips) or Vs∕b𝑤d ≤ 506 psi.

If f ′c = 5 ksi, then Vs ≤ 0.565b𝑤d (kips) or Vs∕b𝑤d ≤ 565 psi.

5.6.4 Maximum Spacing of Stirrups

To ensure that a diagonal crack will always be intersected by at least one stirrup, the ACI Code,
Section 9.7.6.2, requires that the spacing between stirrups shall not exceed d/2, or 24 in., provided
that Vs ≤ (4

√
f ′c )b𝑤d. This is based on the assumption that a diagonal crack develops at 45∘ and

extends a horizontal distance of about d. In regions of high shear, where Vs exceeds (4
√

f ′c )b𝑤d,
the maximum spacing between stirrups must not exceed d/4. This limitation is necessary to ensure
that the diagonal crack will be intersected by at least three stirrups. When Vs exceeds the maximum
value of (8

√
f ′c )b𝑤d, this limitation of maximum stirrup spacing does not apply, and the dimensions

of the concrete cross section should be increased.
A second limitation for the maximum spacing of stirrups may also be obtained from the

condition of minimum area of shear reinforcement. A minimum A𝑣 is obtained when the spacing s
is maximum (Eq. 5.21).

A third limitation for maximum spacing is 24 in. when Vs ≤ (4
√

f ′c )b𝑤d and 12 in. when Vs

is greater than (4
√

f ′c )b𝑤d but less than or equal to (8
√

f ′c )b𝑤d. The least value of all maximum
spacings must be adopted. The ACI Code maximum spacing requirement ensures closely spaced
stirrups that hold the longitudinal tension steel in place within the beam, thereby increasing their
dowel capacity, Vd (Fig. 5.5).

5.6.5 Yield Strength of Shear Reinforcement

The ACI Code, Section 20.2.2.4, requires that the design yield strength of shear reinforcement shall
not exceed 60 ksi (420 MPa). The reason behind this decision is to limit the crack width caused by
the diagonal tension and to ensure that the sides of the crack remain in close contact to improve the
interface shear transfer, Va (Fig. 5.5). For welded deformed wire fabric, the design yield strength
shall not exceed 80 ksi (560 MPa).
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5.6.6 Anchorage of Stirrups

The ACI Code, Section 25.7.1.1, requires that shear reinforcement be carried as close as possible
to the compression and tension extreme fibers, within the Code requirements for concrete cover,
because near maximum load the flexural tension cracks penetrate deep into the beam. Also, for
stirrups to achieve their full yield strength, they must be well anchored. Near maximum load, the
stress in a stirrup reaches its yield stress at the point where a diagonal crack intercepts that stirrup.
The ACI Code requirements for stirrup anchorage, Section 25.7, are as follows:

1. Each bend in the continuous portion of a simple U-stirrup or multiple U-stirrups shall enclose
a longitudinal bar (ACI Code, Section 25.7.1.1). See Fig. 5.8a.

2. The code allows the use of a standard hook of 90∘, 135∘, or 180∘ around longitudinal bars
for no. 5 bars or D31 wire stirrups and no. 6, 7, and 8 bars with fyt < 40 ksi. If no. 6, 7, or 8
stirrups with fyt > 40 ksi are used, the Code (Section 25.7.1.3) requires a standard hook plus an

embedment length of 0.014dbfyt∕(𝜆
√

f ′c ) between midheight of the member and the outside
of the hook. If the bars are bent at 90∘, extensions shall not be less than 12db. For no. 5 bars
or smaller stirrups, the extension is 6db (ACI Code, Section 25.3.2). See Fig. 5.8b.

3. If spliced double U-stirrups are used to form closed stirrups, the lap length shall not be less
than 1.3ld (ACI Code, Section 25.7.1.7). See Fig. 5.8c.

4. Welded wire fabric is used for shear reinforcement in the precast industry. Anchorage details
are given in the ACI Code, Section 25.7.1.4, and in its commentary.

5. Closed stirrups are required for beams subjected to torsion or stress reversals (ACI Code,
Section 9.7.6.4).

6. Beams at the perimeter of the structure should contain closed stirrups to maintain the structural
integrity of the member (ACI Code, Section 9.7.7.2).

5.6.7 Stirrups Adjacent to the Support

The ACI Code, Section 7.4.3.2, specifies that shear reinforcement provided between the face of the
support and the critical section at a distance d from it may be designed for the same shear Vu at the
critical section. It is common practice to place the first stirrup at a distance S/2 from the face of the
support, where s is the spacing calculated by Eq. 5.16 for Vu at the critical section.

5.6.8 Effective Length of Bent Bars

Only the center three-fourths of the inclined portion of any longitudinal bar shall be considered
effective for shear reinforcement. This means that the maximum spacing of bent bars is 0.75
(d − d′). From Fig. 5.9, the effective length of the bent bar is 0.75(d − d′)∕(sin 45∘) =
0.75(1.414) (d − d′) = 1.06 (d − d′). The maximum spacing S is equal to the horizontal projection
of the effective length of the bent bar. Thus Smax = 1.06(d − d′) cos 45∘, or Smax = 0.707
[1.06(d − d′)] = 0.75(d − d′).

5.7 DESIGN OF VERTICAL STIRRUPS

Stirrups are needed when Vu ≥ 𝜙Vc. Minimum stirrups are used when Vu is greater than 1
2
𝜙Vc but

less than 𝜙V . This is achieved by using no. 3 stirrups placed at maximum spacing. When Vu is
greater than 𝜙V , stirrups must be provided. The spacing of stirrups may be less than the maximum
spacing and can be calculated using Eq. 5.16: S = A𝑣 fytd∕Vs.
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Figure 5.8 Stirrup types: (a) U-stirrups enclosing longitudinal bars, anchorage lengths,
and closed stirrups; (b) multileg stirrups; and (c) spliced stirrups.
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Figure 5.9 Effective length and spacing of bent bars.

The stirrups that are commonly used in concrete sections are made of two-leg no. 3 or no. 4
U-stirrups with fyt = 60 ksi. If no. 3 stirrups are used, then Eq. 5.16 becomes

S
d
=

A𝑣 fy
Vs

= 0.22(60)
Vs

= 13.2
Vs

(5.24)

If no. 4 stirrups are used, then
S
d
=

A𝑣 fy
Vs

= 0.4(60)
Vs

= 24
Vs

(5.25)

The ratio of stirrups spacing relative to the effective depth of the beam, d, depends on Vs. The
values of S/d for different values of Vs when fy = 60 ksi are given in Tables 5.2 and 5.3 for no. 3 and
no. 4 U-stirrups, respectively. The same values are plotted in Figs. 5.10 and 5.11. The following
observations can be made:

1. If no. 3 stirrups are used, S = d∕2 when Vs ≤ 26.4. When Vs increases, S/d decreases in a
nonlinear curve to reach 0.132 at Vs = 100 K. If the minimum spacing is limited to 3 in., then

Table 5.2 S/d Ratio for Different Values of Vs (fyt =60 ksi, S/d=13.2/Vs), No. 3 Stirrups

Vs(K) 26.4 30 40 50 52.8 60 70 80 90 100 125
S/d 0.5 0.44 0.33 0.264 0.25 0.22 0.19 0.165 0.15 0.132 0.106

Table 5.3 S/d Ratio for Different Values of Vs(fyt =60 ksi, S/d=24/Vs), No. 4 Stirrups

Vs(K) 48 50 60 70 80 90 96 100 110 120 150 175
S/d 0.50 0.48 0.40 0.34 0.3 0.27 0.25 0.24 0.22 0.20 0.16 0.137
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Figure 5.10 Vs versus S/d for no. 3 stirrups and fyt = 60 ksi.

Figure 5.11 Vs versus S/d for no. 4 stirrups and fyt = 60 ksi.

d must be equal to or greater than 22.7 in. to maintain that 3-in. spacing. When Vs is equal to
or greater than 52.8 K, then S ≤ d/4.

2. If no. 4 U-stirrups are used, S = d∕2 when Vs ≤ 48 k. When Vs increases, S/d decreases to
reach 0.16 at Vs = 150 K. If the minimum spacing is limited to 3 in., then d ≥ 18.75 in. to
maintain the 3-in. spacing. When Vs, then S.

3. If grade 40 U-stirrups are used (fyt = 40 ksi), multiply the S/d values by 2
3

or, in general,
fyt∕60.
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5.8 DESIGN SUMMARY

The design procedure for shear using vertical stirrups according to the ACI Code can be summarized
as follows:

1. Calculate the factored shearing force, Vu, from the applied forces acting on the structural
member. The critical design shear value is at a section located at a distance d from the face
of the support.

2. Calculate 𝜙Vc = 𝜙2𝜆
√

f ′c b𝑤d, or

𝜙Vc = 𝜙

[
1.9𝜆

√
f ′c + 2500𝜌𝑤

Vud

Mu

]
b𝑤d ≤ 𝜙3.5𝜆

√
f ′c b𝑤d

Then calculate 1
2
𝜙Vc.

3. a. If Vu <
1
2
𝜙Vc, no shear reinforcement is needed.

b. If 1
2
𝜙Vc < Vu ≤ 𝜙Vc, minimum shear reinforcement is required. Use no. 3 U-stirrups

spaced at maximum spacings, as explained in step 7.
c. If Vu >𝜙Vc, shear reinforcement must be provided according to steps 4 through 8.

4. If Vu >𝜙Vc, calculate the shear to be carried by shear reinforcement:

Vu = 𝜙Vc + 𝜙Vs or Vs =
Vu − 𝜙Vc

𝜙

5. Calculate Vc1
= (4

√
f ′c )b𝑤d and Vc2

= (8
√

f ′c )b𝑤d = 2Vc1
. Compare the calculated Vs with the

maximum permissible value of Vc2
= (8

√
f ′c )b𝑤d. If Vs < Vc2

proceed in the design; if not,
increase the dimensions of the section.

6. Calculate the stirrups spacing based on the calculated S1 =A𝑣 fytd/Vs or use Figs. 5.10 and
5.11 or Tables 5.2 and 5.3.

7. Determine the maximum spacing allowed by the ACI Code. The maximum spacing is the
least of S2 and S3:

a. S2 = d∕2 ≤ 24 in. if Vs ≤ Vc1
= (4

√
f ′c )b𝑤d.

b. S3 = A𝑣 fyt∕50b𝑤 ≥ A𝑣 fyt∕(0.75
√

f ′c b𝑤).
Thus, Smax is the smaller of S2 and S3. Values of S3 are shown in Table 5.1.

8. If S1 calculated in step 6 is less than Smax (the smaller of S2 and S3), then use S1 to the nearest
smaller 1

2
in. If S1 > Smax, then use Smax as the adopted S.

9. The ACI Code did not specify a minimum spacing. Under normal conditions, a practical
minimum S may be assumed to be equal to 3 in. for d ≤ 20 in. and 4 in. for deeper beams.
If S is considered small, either increase the stirrup bar number or use multiple-leg stirrups
(Fig. 5.8).

10. For circular sections, the area used to compute Vc is the diameter times the effective depth d,
where d= 0.8 times the diameter, ACI Code, Section 22.5.2.2.
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Example 5.1

A simply supported beam has a rectangular section with b= 12 in., d= 21.5 in., and h= 24 in. and is
reinforced with four no. 8 bars. Check if the section is adequate for each of the following factored shear
forces. If it is not adequate, design the necessary shear reinforcement in the form of U-stirrups. Use
f ′c = 4 ksi and fyt = 60 ksi. Assume normal-weight concrete.

(a) Vu = 12 K, (b) Vu = 24 K, (c) Vu = 54 K, (d) Vu = 77 K, (e) Vu = 128 K

Solution
In general, b𝑤 = b= 12 in., d= 21.5 in., and

𝜙Vc = 𝜙(2𝜆
√

f ′c )bd = 0.75(2)(1)(
√

4000)(12)(21.5) = 24.5 K

1
2
𝜙Vc = 12.25 K

Vc1
= (4

√
f ′c )bd =

(4
√

4000)(12)(21.5)
1000

= 65.3 K

Vc2
= (8

√
f ′c )bd = 130.6 K

a. Assume Vu = 12 K <
1
2
𝜙Vc = 12.25 K, the section is adequate, and shear reinforcement is not

required.

b. Assume Vu = 24 K >
1
2
𝜙Vc, but it is less than 𝜙Vc = 24.5 K. Therefore, Vs = 0 and minimum

shear reinforcement is required. Choose a no. 3 U-stirrup (two legs) at maximum spacing. Let
A𝑣 = 2(0.11)= 0.22 in2. Maximum spacing is the least of

S2 = d
2
= 21.5

2
= 10.75 in. say, 10.5 in. (controls)

S3 =
A𝑣 fyt

50b𝑤
= 0.22(60, 000)

50(12)
= 22 in. (or use Table 5.1)

S4 = 24 in.

Use no.3 U-stirrups spaced at 10.5 in.
c. Assume Vu = 54 K>𝜑 Vc. Shear reinforcement is needed. Calculation may be organized in steps:

Calculate Vs = (Vu–𝜙 Vc)/𝜙= (54–24.5)/0.75= 39.3 K.
Check if Vs ≤ Vc1

= (4
√

f ′c )b𝑤d = 65.3 K. Because Vs < 65.3 K, then Smax = d∕2, and the d/4
condition does not apply.

Choose no. 3 U-stirrups and calculate the required spacing based on Vs:

S1 =
A𝑣 fytd

Vs
= 0.22(60)(21.5)

39.3
= 7.26 in. say, 7 in.

Calculate maximum spacing: S2= 10.5 in., S3 = 22 in., and S4 = 24 in. and maximum S =
10.5 in. [calculated in (b)].

Because S = 7 in. < Smax = 10.5 in., then use no. 3 U-stirrups spaced at 7 in.
d. Assume Vu = 77 K>𝜙Vc, so stirrups must be provided.

Calculate Vs = (Vu–𝜙Vc)/𝜙= (77–24.5)/0.75= 70 K.
Check if Vs ≤ Vc1

= (4
√

f ′c )b𝑤d = 65.3 K. Because Vs > 65.3 K, then Smax = d∕4 = 12 in.
must be used.

Check if Vs ≤ Vc1
= (8

√
f ′c )b𝑤d = 130.6 K. Because Vc1

< Vs < Vc2
, then stirrups can be used

without increasing the section.
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Choose no. 3 U-stirrups and calculate S1 based on Vs:

S1 =
A𝑣 fytd

Vs
= 0.22(60)(21.5)

70
= 4.1 in. say, 4 in.

Calculate maximum spacings: S2 = d∕4 = 21.5∕4 = 5.3 in., say, 5.0 in.; S3 = 22 in.; and S4 =
12 in. Hence Smax = 5-in. controls.

Because S = 4 in. < Smax = 5 in., then use no. 3 stirrups spaced at 4 in.
e. Assume Vu = 128 K>𝜙Vc, so shear reinforcement is required.

Calculate Vs = (Vu–𝜙Vc)/𝜙= (128–24.5)/0.75= 138 K.
Because Vs > Vc2

= 130.2 K, the section is not adequate. Increase one or both dimensions of
the beam section.

Notes: Table 5.2 and Fig. 5.10 can be used to calculate the spacing S for (c) and (d).

1. For (c), Vs = 39.3 K, from Fig. 5.10 (or Table 5.2 for no. 3 U-stirrups), S∕d = 0.34 and S1 = 7.3
in., which is less than d∕2 = 10.5 in. Note that Smax based on Vs is d/2 and not d/4. Also, from
Table 5.1, S3 = A𝑣 fyt∕50b𝑤 = 22 in.

2. For (d), Vs = 70 K, S∕d = 0.19 and S1 = 4.1 in. So Vs = 70 > 52.8 K, and Smax = d∕4 is
required.

Example 5.2

A 17-ft-span simply supported beam has a clear span of 16 ft and carries uniformly distributed dead and
live loads of 4.5 and 3.75 K/ft, respectively. The dimensions of the beam section and steel reinforcement
are shown in Fig. 5.12. Check the section for shear and design the necessary shear reinforcement. Given
f ′c = 3 ksi normal-weight concrete and fyt = 60 ksi.

Solution
Given: b𝑤 (web) = 14 in. and d = 22.5 in.

1. Calculate factored shear from external loading:

Factoreduniformload = 1.2(4.5) + 1.6(3.75) = 11.4 K∕ft

Vu(at face of support) = 11.4(16)
2

= 91.2 K

Design Vu (at distance d from the face of the support)= 91.2− 22.5(11.4)/12= 69.83 K.
2. Calculate 𝜙Vc:

𝜙Vc = 𝜙(2𝜆
√

f ′c )b𝑤d =
0.75(2)(1)(

√
3000)(14)(22.5)

1000
= 25.88 K

1
2
𝜙Vc = 12.94 K

Calculate Vc1
= (4

√
f ′c )b𝑤d = (4

√
3000)(14)(22.5)∕1000 = 69 K. Calculate Vc2

= (8
√

f ′c )
b𝑤d = 138 K.

3. Design Vu = 69.83 K>𝜙Vc = 25.88 K; therefore, shear reinforcement must be provided. The
distance x′ at which no shear reinforcement is needed (at 1

2
𝜙Vc) is

x′ =
(91.2 − 12.94

91.2

)
(8) = 6.86 ft = 82 in.

(from the triangles of the shear diagram, Fig. 5.12).
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47

82

69

20.25 

25.88 

12.94 

46.13 

Figure 5.12 Example 5.2.

4. Calculate Vs = (Vu −𝜙Vc)/𝜙= (69.83− 25.88)/0.75= 58.6 K. Because Vs is less than Vc1
=

(4
√

f ′c )b𝑤d, then Smax = d∕2 must be considered (or refer to Fig. 5.10 or Table 5.1: Vs < 52.8 K).
5. Design of stirrups: Choose no. 3 U-stirrups, A𝑣 = 2(0.11) = 0.22 in.2 Calculate S1 based on Vs =

58.6 K, S1 = A𝑣 fyd∕Vs = 13.2d∕Vs = 5.07 in., say, 5 in. (or get s∕d = 0.225 from Table 5.2 or
Fig. 5.10).

6. Calculate maximum spacings: S2 = d∕2 = 22.5∕2 = 11.25 in., say, 11.0 in.; S3 = A𝑣 fyt∕50b𝑤 =
0.22(60, 000)∕50(14) = 18.9 in. (or use Table 5.1); S4 = 24 in.; Smax = 11-in. controls.

7. Because S1 = 5 in. < Smax = 11 in., use no. 3 U-stirrups spaced at 5 in.
8. Calculate Vs for maximum spacings of 11 in.:

Vs =
A𝑣 fytd

S
= 0.22(60)(22.5)

11
= 27 K

𝜙Vs = 20.25 K

𝜙Vc + 𝜙Vs = 25.88 + 20.25 = 46.13 K

The distance x1 at which S= 11 can be used is
(91.2 − 46.13

91.2

)
(96) = 47 in.

Because x1 is relatively small, use S = 5 in. for a distance ≥ 47 and then use S = 11 for the rest of
the beam. Note: If x1 is long, then an intermediate spacing between 5 and 11 in. may be added.



5.9 Shear Force Due to Live Loads 209

2.5″ 9 × 5 = 45″ 4 × 11 = 44″ 4.5″

48.5″47.5″

Figure 5.13 Example 5.2: Distribution of stirrups.

9. Distribute stirrups as follows: Place the first stirrup at S/2 from the face of the support.

First stirrup at S∕2 = 5∕2 = 2 in.

Nine stirrups at S = 5 = 45 in.

Total = 45 + 2 in. = 47 in.

Four stirrups at S = 11 = 44 in.

Total = 91 in. > 82 in.(minimum length required).

The total number of stirrups for the beam is 2(1 + 9 + 4) = 28. Distribution of stirrups is shown
in Fig. 5.13, whereas calculated shear forces are shown in Fig. 5.12.

10. Place two no. 4 bars at the top of the beam section to act as stirrup hangers.

5.9 SHEAR FORCE DUE TO LIVE LOADS

In Example 5.2, it was assumed that the dead and live loads are uniformly distributed along the full
span, producing zero shear at midspan. Actually, the dead load does exist along the full span, but
the live load may be applied to the full span or part of the span, as needed to develop the maximum
shear at midspan or at any specific section. Figure 5.15a shows a simply supported beam with a
uniform load acting on the full span. The shear force varies linearly along the beam, with maximum
shear acting at support A.

In the case of live load, W2 = 1.6WL, the maximum shear force acts at support A when
W2 is applied on the full span, Fig. 5.14a. The maximum shear at midspan develops if the live
load is placed on half the beam, BC (Fig. 5.14b), producing Vu at midspan equal to W2L∕8.
Consequently, the design shear force is produced by adding the maximum shear force due to the
live load (placed at different lengths of the span) to the dead-load shear force (Fig. 5.14c) to give
the shear distribution shown in Fig. 5.14d. It is common practice to consider the maximum shear at
support A to be WuL∕2 = (1.2WD + 1.6WL)L∕2, whereas Vu at midspan is W2L∕8 = (1.6WL)L∕8
with a straight-line variation along AC and CB, as shown in Fig. 5.14d. The design for shear
in this case will follow the same procedure explained in Example 5.2. If the approach is
applied to the beam in Example 5.2, then Vu (at A) = 91.2 K and Vu (at midspan) = (1.6 × 3)
(16∕8) = 10 K.
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Figure 5.14 Effect of live-load application on part of the span.
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Example 5.3

A 10-ft-span cantilever beam has a rectangular section and carries uniform and concentrated factored
loads (self-weight is included), as shown in Fig. 5.15. Using f ′c = 4 ksi normal-weight concrete and
fy = 60 ksi, design the shear reinforcement required for the entire length of the beam according to the
ACI Code.

Solution

1. Calculate the shear force along the beam due to external loads:

Vu(at support) = 5.5(10) + 20 + 8 = 83 K

Vud(at d distance) = 83 − 5.5
(20.5

12

)
= 73.6 K

Vu(at 4 ft left) = 83 − 4(5.5) = 61 K

Vu(at 4 ft right) = 61 − 20 = 41 K

Vu(at freeend) = 8 K

The shear diagram is shown in Fig. 5.15.
2. Calculate 𝜙Vc:

𝜙Vc = 2𝜆
√

f ′c bd = 2(0.75)(1)
√

4000(12)(20.5) = 23.34 K

1
2
𝜙Vc = 11.67 K

 8

24"
18"

38.5" 25.5"

8 K

23.34 K

8.0"

Figure 5.15 Example 5.3.
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Because Vud >𝜙Vc, shear reinforcement is required. Calculate

Vc1
= 4

√
f ′c bd = 4

√
4000(12)(20.5) = 62.2 K

Vc2
= 8

√
f ′c bd = 2V1 = 124.4 K

The distance x at which no shear reinforcement is needed (at 1
2
𝜙Vc = 11.67 K) measured from

support A is given as

x = 4 +
(41 − 11.67

41 − 8

)
6 = 9.33 ft = 112 in.

(8.0 in. from the free end). Similarly, x1 for 𝜑Vc is 7.21 ft from A (33.5 in. from the free end).
3. Part AC: Design shear Vu = Vud = 73.6 K. Calculate Vs = (Vu −𝜙Vc)/𝜙= (73.6− 23.34)/0.75 =

67 K. Because Vc1
< Vs < Vc2

, Smax ≤ d∕4 must be considered (or check Fig. 5.10).

4. Design stirrups: Choose no. 3 U-stirrups, A𝑣 = 0.22 in.2 Calculate S1 (based on Vs):

S1 =
A𝑣fytd

Vs
= 13.2d

Vs
= 13.2(20.5)

67
= 4.0 in.

Use 4.0 in. (or get s/d= 0.22 from Fig. 5.10).
5. Calculate maximum spacings: S2 = d/4= 20.5/4= 5.12 in., so use 5.0 in:

S3 =
A𝑣 fyt

50b𝑤
= 22 in. (from Table5.1 for b = 12 in.)

S4 = 12 in.

Then Smax = 5.0 in.
6. Because S = 4 in. < Smax = 5.1 in., use no. 3 stirrups spaced at 4 in.
7. At C, design shear Vu = 61 K>𝜙Vc. Then Vs = (61 − 23.34)∕0.75 = 50.2 K, S1 = A𝑣fytd∕Vs

= 5.4 in:

Vs = 50.2 K < Vc1
= 62.2 K S2 = d

2
= 20.5

2
= 10.25 in. (or 10 in.)

Assume S1 = 5.4 in.< S2; then S1 = 5.4 or 5.0-in. controls.
8. Because spacings of 5.5 and 4.0 in. are close, use no. 3 U-stirrups spaced at 4 in. for part AC.
9. Part BC:

a.

Vu = 41 K > 𝜙Vc

Vs = (Vu − 𝜙Vc)∕𝜙 = 41 − 23.34
0.75

= 23.55 K < Vc1
= 62.2 K

b. S1 = A𝑣 fytd∕Vs = (13.2)(20.5)∕23.55 = 11.5 in.
c. S2 = d∕2 = 20.5∕2 = 10.25 in. (or less than S3 = 22 in. or S4 = 24 in.). Let Smax = 10 in.

Choose no. 3 stirrups spaced at 10 in. for part BC.
10. Distribution of stirrups measured from support A: Place the first stirrup at

1
2

S = 4
2
= 2 in.

12 × 4 in. = 48 in.

50 in.

6 × 10 in. + 1 × 8 in. = 68 in.

Total 118 in.
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Figure 5.16 Example 5.3: Distribution of stirrups.

Distance left to the free end is 2 in., which is less than 8.0 in., where no stirrups are needed.
Distribution of stirrups is shown in Fig. 5.16. Total number of stirrups is 20.

5.10 SHEAR STRESSES IN MEMBERS OF VARIABLE DEPTH

The shear stress, 𝑣, is a function of the effective depth, d; therefore, shear stresses vary along a
reinforced concrete beam with variable depth [10]. In such a beam (Fig. 5.17), consider a small
element dx. The compression force C at any section is equal to the moment divided by its arm, or
C=M/y. The first derivative of C is

dC =
ydM − Mdy

y2

If C1 > C2, then C1 − C2 = dC = 𝑣b dx:

𝑣bdx =
ydM − M dy

y2
= dM

y
− M

y2
dy

𝑣 = 1
yb

(dM
dx

)
− M

by2

(
dy

dx

)

Because y = jd, dM∕dx is equal to the shearing force V and d( jd)/dx is the slope,

𝑣 = V
bjd

− M
b( jd)2

[ d
dx

( jd)
]

and 𝑣 = V
bjd

± M
b( jd)2

(tan𝛼) (5.26)

Figure 5.17 Shear stress in beam with variable depth.
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where V and M are the external shear and moment, respectively, and 𝛼 is the slope angle of one
face of the beam relative to the other face. The plus sign is used when the beam depth decreases
as the moment increases, whereas the minus sign is used when the depth increases as the moment
increases. This formula is used for small slopes, where the angle 𝛼 ≤ 30∘.

A simple form of Eq. 5.26 can be formed by eliminating the j value:

𝑣 = V
bd

± M

bd2
(tan𝛼) (5.27)

For the strength design method, the following equation may be used:

𝑣u =
Vu

𝜙bd
±

Mu

𝜙bd2
(tan𝛼) (5.28)

For the shearing force,

𝜙Vn = Vu ±
Mu

d
(tan𝛼) (5.29)

Figure 5.18 shows a cantilever beam with a concentrated load P at the free end. The moment and
the depth d increase toward the support. In this case a negative sign is used in Eqs. 5.27, 5.28, and
5.29. Similarly, a negative sign is used for section t in the simply supported beam shown, and a
positive sign is used for section Z, where the moment increases as the depth decreases.

Figure 5.18 Beams with variable depth: (a) moment diagrams and (b) typical forms.



5.10 Shear Stresses in Members of Variable Depth 215

In many cases, the variation in the depth of beams occurs on parts of the beams near their
supports (Fig. 5.18).

Tests [11] on beams with variable depth indicate that beams with greater depth at the support
fail mainly by shear compression. Beams with smaller depth at the support fail generally by an
instability type of failure, caused by the propagation of the major crack in the beam upward and
then horizontally to the beam’s top section. Tests also indicate that for beams with variable depth
(Fig. 5.18) with an inclination 𝛼 of about 10∘ and subjected to shear and flexure, the concrete shear
strength, Vcv, may be computed by

Vcv = Vc(1 + tan 𝛼) (5.30)

where
Vcv = shear strength of beam with variable depth
Vc = ACI Code, Eq. 11

= [1.9𝜆
√

f ′c + 2500𝜌𝑤(Vuds∕Mu)]b𝑤ds ≤ 3.5𝜆
√

f ′c b𝑤ds
𝛼 = angle defining orientation of reinforcement, considered positive for beams of

small depth at support and negative for beams with greater depth at support
(Fig. 5.18)

ds = effective depth of beam at support

The simplified ACI Code, Eq. 11.5, can also be used to compute Vc:

Vc = (2𝜆
√

f ′c )b𝑤ds (5.31)

Example 5.4
Design the cantilever beam shown in Fig. 5.19 under the factored loads applied if the total depth at
the free end is 12 in., and it increases toward the support. Use a steel percentage 𝜌= 1.5%, f ′c = 4 ksi
normal-weight concrete, fy = 60 ksi, and b= 10 in.

Solution

1. Let Mu (support) = (2.5∕2)(8)2 (12) + (14)(8)(12) = 2304 K ⋅ in.

2. For 𝜌 = 1.5%, Ru = 𝜙𝜌fy

(
1 −

𝜌fy
1.7f ′c

)
= 703 psi

d =
√

M
Rub

=
√

2304
0.703 × 10

= 18.1 in.

Assume As = 0.015 × 10 × 18.1 = 2.72 in.2 (use three no. 9 bars); let actual d= 19.5 in.,
h= 22 in.

3. Design for shear: Maximum shear at the support is 14+ 20= 34 K. Because the beam section is
variable, the moment effect shall be considered; because the beam depth increases as the moment
increases, a minus sign is used in Eq. 5.28,

𝑣u =
Vu

𝜙bd
−

Mu

𝜙bd2
(tan 𝛼)

To find tan 𝛼, let d at the free end be 9.5 in. and d at the support be 19.5 in.:

tan 𝛼 = 19.5 − 9.5
8 × 12

= 0.1042

𝑣u(at support) = 34, 000
0.75 × 10 × 19.5

− 2304 × 1000 × 0.1042
0.75 × 10 × (19.5)2

= 148 psi
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Figure 5.19 Bending moment diagram (middle) and shear force diagram (bottom).

4. Shear stress at the free end is Vu/𝜙bd(Mu = 0),

𝑣u = 14, 000
0.75 × 10 × 9.5

= 196 psi

5. At a distance 18 in. from the face of the support, the effective depth is 17.6 in. (from geometry),

Vu = 34 − 2.5 × 18
12

= 30.25 K

Mu(at 18 in.from support) = 14 × 78 + 2.5
12

× (78)2

2

= 1726 K ⋅ in.

𝑣u = 30.25 × 1000
0.75 × 10 × 17.6

− 1726 × 1000 × 0.1042
0.75 × 10 × (17.6)2

= 152 psi

6. At midspan (48 in. from the support),

d = 14.5 in.

Vu = 14 + 10 = 24 K
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Mu = 14 × 48 + 2.5
12

× (48)2

2
= 912 K ⋅ in.

𝑣u = 24, 000
0.75 × 10 × 14.5

− 912 × 1000 × 0.1042
0.75 × 10 × (14.5)2

= 160 psi

Similarly, at 6 ft from the support (2 ft from the free end), E67
7. The shear stress resisted by concrete is

2𝜆
√

f ′c = (2)(1)
√

4000 = 126.5 psi

The minimum shear stress to be resisted by shear reinforcement is

𝑣s = 196 − 126.6 = 69.5 psi

(Vu and consequently 𝑣s have already been increased by the ratio 1/𝜙 in Eq. 5.28).
8. Choose no. 3 stirrups with two legs:

A𝑣 = 2 × 0.11 = 0.22 in.2

S (required) =
A𝑣 fyt

𝑣sb𝑤
= 0.22 × 60, 000

69.5 × 10
= 19 in.

Smax(for d∕2 at fixed end) = 9.75 in. to Smax = 4.75 in. at free end

Smax(for minimum A𝑣) =
A𝑣 fyt

50b𝑤
= 0.22 × 60, 000

50 × 10
= 26.4 in.

9. Check for maximum spacing (d/4): 𝑣us ≤ 4
√

f ′c ,

4
√

f ′c = (4)
√

4000 = 253 > 69.5 in.

10. Distribution of stirrups (distances from free end):

1 stirrup at 2 in. = 2 in.

10 stirrups at 4.5 in. = 45 in.

3 stirrups at 7 in. = 21 in.

3 stirrups at 8 in. = 24 in.

Total = 92 in.

There is 4 in. left to the face of the support.

5.11 EXAMPLES USING SI UNITS

The general design requirements for shear reinforcement according to the ACI Code are summa-
rized in Table 5.4, which gives the necessary design equations in both U.S. customary and SI units.
The following example shows the design of shear reinforcement using SI units.
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d = 19.5″

2304 K·in.

0

d = 9.5″

α

17.6″

8¢ 0″

10.75″14.5″

(a)

(b)

(c)

(d)

(e)

12″

1726

912
396 183 BMD

SFD

14 K
16.5 K19 K

24 K

18″

48″

8.8″

4″

962

2″

3 × 8″ 3 × 7″ 10 × 4.5″

3 # 9

2 # 3

Bent bars if needed

Resisted by concrete

7.2″ 6″ 5.3″ 4.75″

24″ 12″ 12″

30.25 K
34 K

0

126

148

S =

152
160

173 182 196 psi

126 psi

0

Figure 5.20 Example 5.4: Web reinforcement for beam of variable depth.
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Table 5.4 Shear Reinforcement Formulas

U.S. Customary Units SI Units

Vu = design shear Vu = design shear

Maximum design Vu at distance d from face of support.

Vc =
(

2.0𝜆
√

f ′c
)

b𝑤d Vc =
(

0.17𝜆
√

f ′c
)

b𝑤d

Vc =
[

1.9𝜆
√

f ′c +
(

2500𝜌𝑤
Vud

Mu

)]
b𝑤d Vc =

[
0.16𝜆

√
f ′c +

(
17.2𝜌𝑤

Vud

Mu

)]
b𝑤d

𝜌𝑤 =
As

b𝑤d

Vud

Mu
≤ 1.0 𝜌𝑤 =

As

b𝑤d

Vud

Mu
≤ 1.0

Vc ≤

(
3.5𝜆

√
f ′c
)

b𝑤d Vc ≤

(
0.29𝜆

√
f ′c
)

b𝑤d

Vu =𝜙Vc +𝜙Vs Vu =𝜙Vc +𝜙Vs

Vertical stirrups
𝜙Vs =Vu−𝜙
Vc

𝜙Vs =Vu −𝜙
Vc

S=A𝑣 fyt d/Vs S=A𝑣 fyt d/Vs

Minimum A𝑣 =
50b𝑤S

fyt
≤

0.75
√

f ′c

(
b𝑤S

fyt

)
Minimum A𝑣 =

0.35b𝑤S

fyt
≤

0.0062
√

f ′c

(
b𝑤S

fy

)

Maximum S =
A𝑣 fyt

50b𝑤
≥

A𝑣 fyt

0.75
√

f ′c b𝑤
Maximum S =

A𝑣 fyt

0.35b𝑤
≥

A𝑣 fy

0.062
√

f ′c b𝑤

For vertical web reinforcement

Maximum S = 1
2

d ≤ 24 in. Maximum S = 1
2

d ≤ 600 mm

If Vs ≤ 4.0
√

f ′c
(
b𝑤d

)
If Vs ≤ 0.33

√
f ′c
(
b𝑤d

)

Maximum S = d∕4 = 12 in. Maximum S = d∕4 = 300 mm
If Vs > 4.0

√
f ′c
(
b𝑤d

)
If Vs > 0.33

√
f ′c
(
b𝑤d

)

Vs ≤ 8
√

f ′c
(
b𝑤d

)
Vs ≤ 0.67

√
f ′c
(
b𝑤d

)

Otherwise increase the dimensions of the
section.

Series of bent bars or inclined stirrups

A𝑣 =
VsS

fytd (sin 𝛼 + cos 𝛼)
A𝑣 =

VsS

fytd (sin 𝛼 + cos 𝛼)
For 𝛼 = 45∘, S = 1.4A𝜐 fy d∕Vs For 𝛼 = 45∘, S = 1.4A𝜐 fy d∕Vs

For single bent bar or group of bars, parallel and bent in one position

A𝑣 =
Vs

fytsin 𝛼
A𝑣 =

Vs

fytsin 𝛼
For 𝛼 = 45∘, Ay = 1.4Vs ∕fyt For 𝛼 = 45∘, A𝑣 = 1.4Vs ∕fyt

Vs ≤

(
3
√

f ′c
)

b𝑤d Vs ≤

(
0.25

√
f ′c
)

b𝑤d
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Example 5.5

A 6-m clear-span simply supported beam carries a uniform dead load of 47.5 kN/m and a live load
of 25 kN/m (Fig. 5.21). The dimensions of the beam section are b= 350 mm, d= 550 mm. The beam
is reinforced with four bars 25 mm diameter in one row. It is required to design the necessary shear
reinforcement. Given: f ′c = 28 MPa and fy = 280 MPa.

Smax

x1 = 0.98 m
CL

CL

291 kN

237.65 kN

130 kN

65 kN

0

3 m

3 m

x = 1.66 m

x' = 2.37 m

0.67 m

Figure 5.21 Example 5.5.

Solution

1. Factored load is
1.2D + 1.6L = 1.2 × 47.5 + 1.6 × 25 = 97 kN∕m

2. Factored shear force at the face of the support is

Vu = 97 × 6
2
= 291 kN

3. Maximum design shear at a distance d from the face of the support is

Vu(at distance d) = 291 − 0.55 × 97 = 237.65 kN

4. The nominal shear strength provided by the concrete is

Vc = (0.17𝜆
√

f ′c )bd = (0.17
√

28) × 350 × 550 = 173.2 kN

Vu = 𝜙Vc + 𝜙Vs

𝜙Vc = 0.75 × 173.2 = 130 kN

1
2
𝜙Vc = 65 kN

𝜙Vs = 237.65 − 130 = 107.65 kN

Vs =
107.65

0.75
= 143.5 kN
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5. Distance from the face of the support at which 1
2
𝜙Vc = 65 kN is

x′ = 291 − 65
291

(3) = 2.33 m (from triangles)

6. Design of stirrups:
a. Choose stirrups 10 mm in diameter with two branches (As = 78.5 mm2).

A𝑣 = 2 × 78.5 = 157 mm2

Spacing S1 =
Ay fytd

Vs
= 157 × 280 × 550

143.5 × 103
= 168.5 mm < 600 mm

b. Check for maximum spacing of d/4:

Smax =

{
1
2
d for Vs ≤

(
0.33

√
f ′c
)

bd
1
4
d for If Vs > (0.33

√
f ′c )bd

bd(0.33
√

f ′c ) = 0.33
√

28 × 350 × 550 = 336.1 kN

Actual Vs = 143.5 kN< 336.1 kN. Therefore, Smax is limited to d/2= 275 mm.
7. The shear reinforcement, stirrups 10 mm in diameter and spaced at 160 mm, will be needed

only for a distance d= 0.55 m from the face of the support. Beyond that, the shear stress Vs
decreases to zero at a distance x= 1.66 m when 𝜙Vc = 130 kN. It is not practical to provide
stirrups at many different spacings. One simplification is to find out the distance from the face of
the support where maximum spacing can be used and then only two different spacings may be
adopted:

Maximum spacing = 1
2

d = 275 mm

Vs(for smax = 275 mm) =
A𝑣fytd

S
= 157 × 0.280 × 550

275
= 87.9 kN

𝜙Vs = 87.9 × 0.75 = 65.94 kN

The distance from the face of the support where Smax = 275 mm can be used (from the trian-
gles):

x1 = 291 − (130 + 65.94)
291

(3) = 0.98 m

Then, for 0.98 m from the face of the support, use stirrups 10 mm in diameter at 160 mm, and
for the rest of the beam, minimum stirrups (with maximum spacing) can be used.

8. Distribution of stirrups:

One stirrup at
S
2
= 160

2
= 80 mm

Six stirrups at 160 mm = 960 mm

Total = 1040 mm = 1.04 m > 0.98 m

Six stirrups at 270 mm = 1620 mm

Total = 2660 mm = 2.66 m < 3 m

The last stirrup is 3− 2.66= 0.34 m= 340 mm from the centerline of the beam, which is ade-
quate. A similar stirrup distribution applies to the other half of the beam, giving a total number of
stirrups of 28.

The other examples in this chapter can be worked out in a similar way using SI equations.
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SUMMARY

Sections 5.1 and 5.2

The shear stress in a homogeneous beam is 𝑣=VQ/Ib. The distribution of the shear stress above the
neutral axis in a singly reinforced concrete beam is parabolic. Below the neutral axis, the maximum
shear stress is maintained down to the level of the steel bars.

Section 5-3

The development of shear resistance in reinforced concrete members occurs by:

• Shear resistance of the uncracked concrete
• Interface shear transfer
• Arch action
• Dowel action

Section 5-4

The shear stress at which a diagonal crack is expected is

𝑣c =
V
bd

=
(

1.9𝜆
√

f ′c + 2500𝜌𝑤
Vud

Mu

)
≤ 3.5

√
f ′c

The nominal shear strength is

Vc = 𝑣cb𝑤d = 2𝜆
√

f ′c b𝑤d

Sections 5.5 and 5.6

1. The common types of shear reinforcement are stirrups (perpendicular or inclined to the main
bars), bent bars, or combinations of stirrups and bent bars:

Vu = 𝜙Vn = 𝜙Vc + 𝜙Vs and Vs =
1
𝜙
(Vu − 𝜙Vc)

2. The ACI Code design requirements are summarized in Table 5.4.

Sections 5.7 and 5.8

Design of vertical stirrups and shear summary are given in these sections.

Sections 5.9 and 5.10

1. Variation of shear force along the span due to live load may be considered.
2. For members with variable depth,

𝜙Vn = Vu ±
Mu(tan 𝛼)

d
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P R O B L E M S

5.1 Design the necessary shear reinforcement (if needed) in the form of U-stirrups (two legs) for the T-section
shown in Fig. 5.22. Use f ′c =4 ksi (28 MPa) and fy = 60 ksi (420 MPa).
a. Vu = 22 K (98 kN)
b. Vu = 56 K (246 kN)
c. Vu = 69 K (306 kN)

Figure 5.22 Problem 5.1.

5.2 Repeat Problem 5.1 for the section shown in Fig. 5.23.
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Figure 5.23 Problem 5.2.

5.3 Design the necessary shear reinforcement (if needed) in the form of U-stirrups (two legs) for the rectan-
gular section shown in Fig. 5.24 using f ′c =3 ksi (21 MPa) and fyt = 60 ksi (420 MPa).
a. Vu = 55 K (245 kN)
b. Vu = 110 K (490 kN)
c. Vu = 144 K (640 kN)

Figure 5.24 Problem 5.3.

5.4 A 16-ft- (4.8-m-) span simply supported beam, Fig. 5.25, has a clear span of 15 ft (4.5 m) and is
supported by 12× 12−in. (300× 300−mm) columns. The beam carries a factored uniform load of
11.1 K/ft (166 kN/m). The dimensions of the beam section and the flexural steel reinforcement are
shown in Fig. 5.25. Design the necessary shear reinforcements using f ′c = 3 ksi (21 MPa) and fyt = 60 ksi
(420 MPa). Show the distribution of stirrups along the beam.

5.5 An 18-ft- (5.4-m-) span simply supported beam carries a uniform dead load of 4 K/ft (60 kN/m) and a live
load of 1.5 K/ft (22 kN/m). The beam has a width b= 12 in. (300 mm) and a depth d= 24 in. (600 mm)
and is reinforced with six no. 9 bars (6× 28 mm) in two rows. Check the beam for shear and design the
necessary shear reinforcement. Given: f ′c =3 ksi (21 MPa) and fyt = 50 ksi (280 MPa).

5.6 Design the necessary shear reinforcement for a 14-ft (4.2-m) simply supported beam that carries a fac-
tored uniform load of 10 K/ft (150 kN/m) (including self-weight) and a factored concentrated load at
midspan of Pu = 24 K (108 kN). The beam has a width b= 14 in. (350 mm) and a depth d= 16.5 (400 mm)
and is reinforced with four no. 8 bars (4× 25 mm). Given: f ′c = 4 ksi (28 MPa) and fyt = 60 ksi (420 MPa).

5.7 A cantilever beam with 7.4-ft (2.20-m) span carries a uniform dead load of 2.5 K/ft (36 kN/m) (including
self-weight) and a concentrated live load of 18 K (80 kN) at a distance of 3 ft (0.9 m) from the face of the
support. Design the beam for moment and shear. Given: f ′c =3 ksi (21 MPa), fyt = 60 ksi (420 MPa), and
b= 12 in. (200 mm) and use 𝜌= 3/4𝜌max.

5.8 Design the critical sections of an 11-ft- (3.3-m-) span simply supported beam for bending moment
and shearing forces using 𝜌= 0.016. Given: f ′c =3 ksi (21 MPa), fyt = 60 ksi (420 MPa), and b= 10 in.
(250 mm). Dead load is 2.75 K/ft (40 kN/m) and live load is 1.375 K/ft (20 kN/m).
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11.1 K/ft

Figure 5.25 Problem 5.4.

5.9 A rectangular beam is to be designed to carry a factored shearing force of 75 K (335 kN). Determine the
minimum beam section if controlled by shear (Vc = 2𝜆

√
f ′c bd) using the minimum shear reinforcement

as specified by the ACI Code and no. 3 stirrups. Given: f ′c = 4 ksi (28 MPa), fyt = 40 ksi (280 MPa), and
b= 16 in. (400 mm).

5.10 Redesign Problem 5.5 using fyt = 60 ksi.
5.11 Redesign the shear reinforcement of the beam in Problem 5.6 if the uniform factored load of 6 K/ft

(90 kN/m) is due to dead load and the concentrated load Pu = 24 k (108 kN) is due to a moving live load.
Change the position of the live load to cause maximum shear at the support and at midspan.

5.12 Design a cantilever beam that has a span of 9 ft (2.7 m) to carry a factored triangular load that varies
from zero load at the free end to maximum load of 8 K/ft (120 kN/m) at the face of the support.
The beam shall have a variable depth, with minimum depth at the free end of 10 in. (250 mm) and
increasing linearly toward the support. Use steel percentage 𝜌= 0.016 for flexural design. Given:
f ′c =4 ksi (28 MPa), fyt = 60 ksi (420 MPa) or flexural reinforcement, fyt = 40 ksi (280 MPa) for stirrups,
and b= 11 in. (275 mm).



CHAPTER6
DEFLECTION AND
CONTROL OF
CRACKING

High-rise building, Chicago, Illinois.

6.1 DEFLECTION OF STRUCTURAL CONCRETE MEMBERS

Flexural concrete members must be designed for safety and serviceability. The members will be
safe if they are designed according to the ACI Code equations and limitations. Consequently, as
explained in previous chapters, the size of each member is determined as well as the reinforce-
ment required to maintain an internal moment capacity equal to or greater than that of the external
moment. Once the final dimensions are determined, the beam must be checked for serviceability:
for cracks and deflection. Adequate stiffness of the member is necessary to prevent excessive cracks
and deflection.

The use of the ACI Code provisions, taking into consideration the nonlinear relationship
between stress and strain in concrete, has resulted in smaller sections than those designed by the
elastic theory. The ACI Code, Section 20.2.2.4, recognizes the use of steel up to a yield strength of
100 ksi (690 MPa) and the use of high-strength concrete. The use of high-strength steel and concrete
results in smaller sections and a reduction in the stiffness of the flexural member and consequently
increases its deflection.

The permissible deflection is governed by many factors, such as the type of the building, the
appearance of the structure, the presence of plastered ceilings and partitions, the damage expected
due to excessive deflection, and the type and magnitude of live load.

226
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Table 6.1 Minimum Thickness of Beams and One-Way Slabs (L=Span Length)

Member

Yield
Strength
fy (ksi)

Simply
Supported

One End
Continuous

Both Ends
Continuous Cantilever

Solid one-way slabs 40 L/25 L/30 L/35 L/12.5
50 L/22 L/27 L/31 L/11
60a L/20 L/24 L/28 L/10

Beams or ribbed one-way slabs 40 L/20 L/23 L/26 L/10
50 L/18 L/20.5 L/23.5 L/9
60a L/16 L/18.5 L/21 L/8

a Values reported in ACI Table 9.5(a).

The ACI Code, Sections 7.3.11, specifies minimum thickness for one-way flexural members
and one-way slabs, as shown in Table 6.1. The values are for members not supporting or attached
to partitions or other constructions likely to be damaged by large deflections.

The minimum thicknesses indicated in Table 6.1 are used for members made of normal-weight
concrete and for steel reinforcement with yield strengths as mentioned in the table. The values are
modified for cases of lightweight concrete or a steel yield strength different from 60 ksi as follows:

• For lightweight concrete having unit weights in the range of 90 to 115 pcf, the values in the
tables for fy = 60 ksi (420 MPa) shall be multiplied by the greater of 1.65–0.005 Wc but not
less than 1.09, where Wc is the unit weight of concrete in pounds per cubic foot.

• For yield strength of steel different from 60 ksi (420 MPa), the values in the tables for 60 ksi
shall be multiplied by 0.4+ fy/100, where fy is in ksi.

6.2 INSTANTANEOUS DEFLECTION

The deflection of structural members is due mainly to the dead load plus a fraction of or all the
live load. The deflection that occurs immediately upon the application of the load is called the
immediate, or instantaneous, deflection. Under sustained loads, the deflection increases appreciably
with time. Various methods are available for computing deflections in statically determinate and
indeterminate structures. The instantaneous deflection calculations are based on the elastic behavior
of the flexural members. The elastic deflection, 𝛥, is a function of the load, W, span, L, moment of
inertia, I, and modulus of elasticity of the material, E:

𝛥 = f
(WL

EI

)
= 𝛼

(
WL3

EI

)
= K

(
ML2

EI

)
(6.1)

where W is the total load on the span and 𝛼 and K are coefficients that depend on the degree of fixity
at the supports, the variation of moment of inertia along the span, and the distribution of load. For
example, the maximum deflection on a uniformly loaded simply supported beam is

𝛥 = 5WL3

384 EI
= 5𝑤L4

384 EI
(6.2)

where W=𝑤L (uniform load per unit length× span) is the total load on the span. Deflections of
beams with different loadings and different end conditions as a function of the load, span, and EI
are given in Appendix C and in books of structural analysis.
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Because W and L are known, the problem is to calculate the modulus of elasticity, E, and the
moment of inertia, I, of the concrete member or the flexural stiffness of the member, EI.

6.2.1 Modulus of Elasticity

The ACI Code, Section 19.2.2, specifies that the modulus of elasticity of concrete, Ec, may be
taken as

Ec = 33𝑤1.5
c

√
f ′c psi (6.3)

for values of 𝑤c between 90 and 160 pcf. For normal-weight concrete (Wc = 145 pcf),

Ec = 57,600
√

f ′c psi (or ACI recommends 57,000
√

f ′c )
The modulus of elasticity is usually determined by the short-term loading of a concrete cylin-

der. In actual members, creep due to sustained loading, at least for the dead load, affects the modulus
on the compression side of the member. For the tension side, the modulus in tension is assumed
to be the same as in compression when the stress magnitude is low. At high stresses the modu-
lus decreases appreciably. Furthermore, the modulus varies along the span due to the variation of
moments and shear forces.

6.2.2 Modular Ratio

The modular ratio, n=Es/Ec, which is used in the transformed area concept, was explained
in Section 2.10. It may be used to the nearest whole number but may not be less than 6. For
example:

When f ′c = 2500 psi(17.5 MPa), n = 10.

When f ′c = 3000 psi(20 MPa), n = 9.

When f ′c = 4000 psi(30 MPa), n = 8.

When f ′c = 5000 psi(17.5 MPa), n = 7.

For normal-weight concrete, n may be taken as 500∕
√

f ′c (psi units).

6.2.3 Cracking Moment

The behavior of a simply supported structural concrete beam loaded to failure was explained in
Section 3.3. At a low load, a small bending moment develops, and the stress at the extreme tension
fibers will be less than the modulus of rupture of concrete, fr = 7.5𝜆

√
f ′c . If the load is increased

until the tensile stress reaches an average stress of the modulus of rupture, fr, cracks will develop.
If the tensile stress is higher than fr, the section will crack, and a cracked section case will develop.
This means that there are three cases to be considered:

1. When the tensile stress, ft, is less than fr, the whole-uncracked section is considered to cal-
culate the properties of the section. In this case, the gross moment of inertia, Ig, is used:
Ig = bh3/12, where bh is the whole concrete section.

2. When the tensile stress, ft, is equal to the modulus of rupture, fr = 7.5𝜆
√

f ′c , a crack may start
to develop, and the moment that causes this stress is called the cracking moment. Using the
flexural formula,

fr = Mcr
c
Ig

or Mcr = fr
Ig

c
(6.4)
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where fr = 7.5𝜆
√

f ′c , Ig is the gross moment of inertia, and c is the distance from the neutral
axis to the extreme tension fibers. For example, for a rectangular section, Ig = bh3/12 and
c= h/2, and 𝜆 is a modification factor for type of concrete (ACI Table 19.2.4.2) given as

𝜆 =
⎧
⎪
⎨
⎪
⎩

1.0 for normal-weight concrete
0.85 for sand-lightweight concrete
0.75 for all-lightweight concrete

Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric
fractions, for concrete containing normal-weight fine aggregate and a blend of lightweight
and normal-weight coarse aggregate.

3. When the applied external moment exceeds the cracking moment, Mcr, a cracked section case
is developed, and the concrete in the tension zone is neglected. A transformed cracked section
is used to calculate the cracking moment of inertia, Icr, using the concrete area in compression
and the transformed steel area nAs.

Example 6.1

A rectangular concrete section is reinforced with three no. 9 bars in one row and has a width of 12 in., a
total depth of 25 in., and d= 22.5 (Fig. 6.1). Calculate the modulus of rupture, fr, the gross moment of
inertia, Ig, and the cracking moment, Mcr. Use f ′c = 4 ksi and fy = 60 ksi.

Solution

1. The modulus of rupture is

fr = 7.5𝜆
√

f ′c = 7.5 × 1 ×
√

4000 = 474 psi (𝜆 = 1 normal − weight concrete)
2. The gross moment of inertia for a rectangular section is

bh3

12
= 12(25)3

12
= 15,625 in.4

3. The cracking moment is Mcr = frIg/c,

fr = 474 psi Ig = 15,625 in.4 c = 1
2

h = 12.5 in.

Therefore, Mcr = 474× 15,625/(12.5× 1000)= 592.5 K ⋅ in.= 49.38 K ⋅ ft.

25″

22.5″

12″

12.5″

As

fb
Stress diagram

ft

12″

Figure 6.1 Example 6.1.
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6.2.4 Moment of Inertia

The moment of inertia, in addition to the modulus of elasticity, determines the stiffness of the
flexural member. Under small loads, the produced maximum moment will be small, and the tension
stresses at the extreme tension fibers will be less than the modulus of rupture of concrete; in this
case, the gross transformed cracked section will be effective in providing the rigidity. At working
loads or higher, flexural tension cracks are formed. At the cracked section, the position of the neutral
axis is high, whereas at sections midway between cracks along the beam, the position of the neutral
axis is lower (nearer to the tension steel). In both locations only the transformed cracked sections
are effective in determining the stiffness of the member; therefore, the effective moment of inertia
varies considerably along the span. At maximum bending moment, the concrete is cracked, and its
portion in the tension zone is neglected in the calculations of moment of inertia. Near the points
of inflection the stresses are low, and the entire section may be uncracked. For this situation and in
the case of beams with variable depth, exact solutions are complicated.

Figure 6.2a shows the load–deflection curve of a concrete beam tested to failure. The beam
is a simply supported 17-ft span and loaded by two concentrated loads 5 ft apart, symmetrical
about the centerline. The beam was subjected to two cycles of loading: In the first (curve cy 1),
the load–deflection curve was a straight line up to a load P= 1.7 K when cracks started to occur
in the beam. Line a represents the load–deflection relationship using a moment of inertia for the
uncracked transformed section. It can be seen that the actual deflection of the beam under loads less
than the cracking load, based on a homogeneous uncracked section, is very close to the calculated
deflection (line a). Curve cy 1 represents the actual deflection curve when the load is increased
to about one-half the maximum load. The slope of the curve, at any level of load, is less than the
slope of line a because cracks developed, and the cracked part of the concrete section reduces
the stiffness of the beam. The load was then released, and a residual deflection was observed at
midspan. Once cracks developed, the assumption of uncracked section behavior under small loads
did not hold.

In the second cycle of loading, the deflection (curve c) increased at a rate greater than that of
line a, because the resistance of the concrete tension fibers was lost. When the load was increased,
the load–deflection relationship was represented by curve cy 2. If the load in the first cycle is
increased up to the maximum load, curve cy 1 will take the path cy 2 at about 0.6 of the maximum
load. Curve c represents the actual behavior of the beam for any additional loading or unloading
cycles.

Line b represents the load–deflection relationship based on a cracked transformed section; it
can be seen that the deflection calculated on that basis differs from the actual deflection. Figure 6.2c
shows the variation of the beam stiffness EI with an increase in moment. ACI Code, Section
24.2.3.5, presents an equation to determine the effective moment of inertia used in calculating
deflection in flexural members. The effective moment of inertia given by the ACI Code (Eq.
24.2.3.5a) is based on the expression proposed by Branson [3] and calculated as follows:

Ie =
(

Mcr

Ma

)3

Ig +

[

1 −
(

Mcr

Ma

)3
]

Icr ≤ Ig (6.5)

where Ie is the effective moment of inertia, the cracking moment is given as

Mcr =
(

frlg
Yt

)
(6.6)
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(a)

(b)

(c)

Figure 6.2 (a) Experimental and theoretical load–deflection curves for a beam of the
section and load illustrated, (b) deflection of a reinforced concrete beam, and (c) variation
of beam moment of inertia, I, with an increase in moment (E= const). BC is a transition
curve between Ig and Icr.
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and the modulus of rupture of concrete as

fr = 7.5𝜆
√

f ′c psi (0.623𝜆
√

f ′c MPa) (6.7)

and
Ma = maximum unfactored moment in member at stage for which deflection is being computed
Ig = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement
Icr = moment of inertia of cracked transformed section
Yt = distance from centroidal axis of cross section, neglecting steel, to tension face

The following limitations are specified by the code:

1. For continuous spans, the effective moment of inertia may be taken as the average of the
moment of inertia of the critical positive- and negative-moment sections.

2. For prismatic members, Ie may be taken as the value obtained from Eq. 6.5 at midspan for
simple and continuous spans and at the support section for cantilevers (ACI Code, Section
24.2.3.6 and 24.2.3.7).

Note that Ie, as computed by Eq. 6.5, provides a transition between the upper and lower
bounds of the gross moment of inertia, Ig, and the cracked moment of inertia, Icr, as a function
of the level of Mcr/Ma. Heavily reinforced concrete members may have an effective moment
of inertia, Ie, very close to that of a cracked section, Icr, whereas flanged members may have
an effective moment of inertia close to the gross moment of inertia, Ig.

3. For continuous beams, an approximate value of the average Ie for prismatic or nonprismatic
members for somewhat improved results is as follows: For beams with both ends continuous,

AverageIe = 0.70Im + 0.15(Ie1 + Ie2) (6.8)

For beams with one end continuous,

AverageIe = 0.85Im + 0.15(Icon) (6.9)

where Im is the midspan Ie, Ie1, Ie 2 = Ie at beam ends, and Icon = Ie at the continuous
end. Also, Ie may be taken as the average value of the Ie’s at the critical positive- and
negative-moment sections. Moment envelopes should be used in computing both positive
and negative values of Ie. In the case of a beam subjected to a single heavy concentrated
load, only the midspan Ie should be used.

6.2.5 Properties of Sections

To determine the moment of inertia of the gross and cracked sections, it is necessary to calculate
the distance from the compression fibers to the neutral axis (x or kd).

1. Gross moment of inertia, Ig (neglect all steel in the section):

a. For a rectangular section of width b and a total depth h, Ig = bh3/12.
b. For a T-section, flange width b, web width b𝑤, and flange thickness t, calculate y, the

distance to the centroidal axis from the top of the flange:

y =
(bt2∕2) + b𝑤(h − t)[(h + t)∕2]

bt + b𝑤(h − t)
(6.10)
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Then calculate Ig:

Ig =
[

bt3

12
+ bt

(
y − t

2

)2
]
+
[

b𝑤
(y − t)3

3

]
+
[

b𝑤
(h − y)3

3

]

2. Cracked moment of inertia, Icr: Let x be the distance of the neutral axis from the extreme
compression fibers (x= kd).
a. Rectangular section with tension steel, As, only:

i. Calculate x from the equation

bx2

2
− nAs(d − x) = 0 (6.11)

ii. Calculate

lcr =
bx3

3
+ nAs(d − x)2 (6.11a)

b. Rectangular section with tension steel As and compression steel A′
s:

i. Calculate x:

x = bx2

2
+ (n − 1)A′

s(x − d′) − nAs(d − x) = 0 (6.12)

ii. Calculate

lcr =
bx3

3
+ (n − 1)A′

s(x − d′)2 + nAs(d − x)2 (6.12a)

c. T-sections with tension steel As:
i. Calculate x:

x = bt
(

x − t
2

)
+ b𝑤

(x − t)2

2
− nAs(d − x) = 0 (6.13)

ii. Calculate Icr:

Icr =
[

bt3

12
+ bt

(
x − t

2

)2
]
+
[

b𝑤
(x − t)3

3

]
+ nAs(d − x)2 (6.13a)

6.3 LONG-TIME DEFLECTION

Deflection of reinforced concrete members continues to increase under sustained load, although
more slowly with time. Shrinkage and creep are the cause of this additional deflection, which
is called long-time deflection [1]. It is influenced mainly by temperature, humidity, age at time
of loading, curing, quantity of compression reinforcement, and magnitude of the sustained load.
The ACI Code, Section 24.2.4.1, suggests that unless values are obtained by a more comprehen-
sive analysis, the additional long-term deflection for both normal and lightweight concrete flexural
members shall be obtained by multiplying the immediate deflection caused by sustained load by
the factor

𝜆𝛥 =
𝜁

1 + 50𝜌′
(6.14)

where
𝜆𝛥 = multiplier for additional deflection due to long-term effect.
𝜌′ = A′

s∕bd for section at midspan of simply supported or continuous beam or at support of
cantilever beam

𝜁 = time-dependent factor for sustained loads that may be taken as shown in Table 6.2.
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Table 6.2 Multipliers for Long-Time Deflections

Period
(months) 1 3 6 12 24 36 48

60 and
over

𝜁 0.5 1.0 1.2 1.4 1.7 1.8 1.9 2.0

The factor 𝜆𝛥 is used to compute deflection caused by the dead load and the portion of the live
load that will be sustained for a sufficient period to cause significant time-dependent deflections.
The factor 𝜆𝛥 is a function of the material property, represented by 𝜁 , and the section property,
represented by 1 + 50𝜌′. In Eq. 6.14, the effect of compression reinforcement is related to the area
of concrete rather than the ratio of compression to tension steel.

The ACI Code Commentary, Section 24.2.4.1.3, presents a curve to estimate 𝜁 for periods
less than 60 months. These values are estimated as shown in Table 6.2.

The total deflection is equal to the immediate deflection plus the additional long-time deflec-
tion. For instance, the total additional long-time deflection of a flexural beam with 𝜌′ = 0.01 at a
5-year period is equal to 𝜆𝛥 times the immediate deflection, where 𝜆𝛥 = 2/(1+ 50× 0.01)= 1.33.

6.4 ALLOWABLE DEFLECTION

Deflection shall not exceed the following values according to the ACI Code, Section 24.2.2:

• L/180 for immediate deflection due to service roof live load, snow loads, and rain loads for
flat roofs not supporting elements that are likely to be damaged by large deflections.

• L/360 for immediate deflection due to live load for floors not supporting elements likely to
be damaged by large deflections.

• L/480 for the part of the total deflection that occurs after attachment of elements, that is, the
sum of the long-time deflection due to all sustained loads and the immediate deflection due
to any additional live load, for floors or roofs supporting elements likely to be damaged by
large deflections.

• L/240 for the part of the total deflection occurring after elements are attached, for floors or
roofs not supporting elements not likely to be damaged by large deflections.

6.5 DEFLECTION DUE TO COMBINATIONS OF LOADS

If a beam is subjected to different types of loads (uniform, nonuniform, or concentrated loads)
or subjected to end moments, the deflection may be calculated for each type of loading or force
applied on the beam separately and the total deflection calculated by superposition. This means
that all separate deflections are added up algebraically to get the total deflection. The deflections
of beams under individual loads are shown in Table 6.3.
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Table 6.3 Deflection of Beams
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Example 6.2

Calculate the instantaneous midspan deflection for the simply supported beam shown in Fig. 6.3, which
carries a uniform dead load of 0.4 K/ft and a live load of 0.6 K/ft in addition to a concentrated dead load
of 5 kips at midspan. Given: f ′c = 4 ksi normal-weight concrete, fy = 60 ksi, b= 13 in., d= 21 in., and
total depth= 25 in. (n= 8).

Solution

1. Check minimum depth according to Table 6.1:

Minimum total depth = L
16

= 40 × 12
16

= 30 in.

The total thickness used is 25 in.< 30 in.; therefore, deflection must be checked.
2. The deflection at midspan due to a distributed load is

𝛥1 = 5𝑤L4

384EcIe

The deflection at midspan due to a concentrated load is

𝛥2 = PL3

48EcIe

Because 𝑤, P, and L are known, we must determine the modulus of elasticity, Ec, and the
effective moment of inertia, Ie.

3. The modulus of elasticity of concrete is

Ec = 57,000
√

f ′c = 57,000
√

4000 = 3.60 × 106 psi

4. The effective moment of inertia is equal to:

Ie =
(

Mcr

Ma

)3

Ig +

[

1 −
(

Mcr

Ma

)3
]

Icr ≤ Ig

Figure 6.3 Example 6.2.
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Determine values of all terms on the right-hand side:

Ma = 𝑤L2

8
+ PL

4
= 0.6 + 0.4

8
(40)2 × 12 + 5 × 40

4
× 12 = 3000 K ⋅ in.

Ig = bh3

12
= 13(25)3

12
= 16,927 in.4

Mcr =
frIg

Yt

Yt =
h
2
= 12.5 in. fr = 7.5𝜆

√
f ′c = 474 psi 𝜆 = 1 (normal weight)

Mcr =
0.474 × 16,927

12.5
= 642 K ⋅ in.

The moment of inertia of the cracked transformed area, Icr, is calculated as follows: Determine
the position of the neutral axis for a cracked section by equating the moments of the transformed
area about the neutral axis to 0, letting x= kd= distance to the neutral axis:

bx2

2
− nAs(d − x) = 0 n =

Es

Ec

= 8.0 As = 4.8 in.2

13
2

x2 − (8)(4.8)(21 − x) = 0

x2 + 5.9x − 124 = 0 x = 8.8 in.

Icr =
bx3

3
+ nAs(d − x)2 = 13(8.8)3

3
+ 38.4(21 − 8.8)2 = 8660 in.4

With all terms calculated,

Ie =
( 642

3000

)3

× 16,927 +
[

1 −
( 642

3000

)3
]
× 8660 = 8740 in.4

5. Calculate the deflections from the different loads:

𝛥1 = 5𝑤L4

384EcIe
(due to distributed load)

=
( 5

384

)
×
(1000

12

)
× (40 × 12)4

3.60 × 106 × 8740
= 1.83 in.

𝛥2 = PL3

48EcIe

(due to concentrated load)

= 5000 × (40 × 12)3

48 × 3.60 × 106 × 8740
= 0.36 in.

and
Total immediate deflection = 𝛥1 + 𝛥2 = 1.83 + 0.36 = 2.19 in.

6. Compare the calculated values with the allowable deflection: The immediate deflection due to
a uniform live load of 0.6 K/ft is equal to 0.6(1.83)= 1.10 in. If the member is part of a floor
construction not supporting or attached to partitions or other elements likely to be damaged by
large deflection, the allowable immediate deflection due to live load is equal to

L
360

= 40 × 12
360

= 1.33 in. > 1.10 in.

If the member is part of a flat roof and similar to the preceding, the allowable immediate
deflection due to live load is L/180= 2.67 in. Both allowable values are greater than the actual
deflection of 1.10 in. due to the uniform applied live load.
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Example 6.3

Determine the long-time deflection of the beam in Example 6.2 if the time-dependent factor equals 2.0.

Solution

1. The sustained load causing long-time deflection is that due to dead load, consisting of a distributed
uniform dead load of 0.4 K/ft and a concentrated dead load of 5 K at midspan:

Deflection due to uniform load = 0.4 × 1.83 = 0.73 in.

Deflection is a linear function of load, 𝑤, all other values (L, Ec, Ie) being the same:

Deflection due to concentrated load = 0.36 in.

Total immediate deflection due to sustained loads = 0.73 + 0.36

= 1.09 in.

2. For additional long-time deflection, the immediate deflection is multiplied by the factor 𝜆𝛥:

𝜆𝛥 = 𝜁

1 + 50𝜌′
= 2

1 + 0

In this problem, A′
s = 0 ; therefore, 𝜆𝛥 = 2.0.

Additional long-time deflection = 2 × 1.09 = 2.18 in.

3. Total long-time deflection is the immediate deflection plus additional long-time deflection: 2.19
+ 2.18= 4.37 in.

4. Deflection due to dead load plus additional long-time deflection due to shrinkage and creep is
1.09 + 2.18= 3.27 in.

Example 6.4

Calculate the instantaneous and 1-year long-time deflection at the free end of the cantilever beam shown
in Fig. 6.4. The beam has a 20-ft span and carries a uniform dead load of 0.4 K/ft, a uniform live load
of 0.4 K/ft, a concentrated dead load, PD, of 3 K at the free end, and a concentrated live load, PL, of 4 K

Figure 6.4 Example 6.4.
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placed at 10 ft from the fixed end. Given: f ′c = 4 ksi, fy = 60 ksi, b= 12 in., d= 21.5 in., and total depth
of section= 25 in. (Tension steel is six no. 8 bars and compression steel is two no. 8 bars.) Assume
normal-weight concrete.

Solution

1. Minimum depth = L∕8 = 20
8
= 2.5 ft = 30 in., which is greater than the 25 in. used. Therefore,

deflection must be checked. The maximum deflection of a cantilever beam is at the free end. The
deflection at the free end is as follows.
a. Deflection due to distributed load:

𝛥1 = 𝑤L4

8EI
b. Deflection due to a concentrated dead load at the free end:

𝛥2 =
PDL3

3EI
c. Deflection due to concentrated live load at a= 10 ft from the fixed end is maximum at the free

end:

𝛥3 =
PL(a)2

6EI
(3L − a) or 𝛥3 = Pa3

3EI

(
1 + 3b

2a

)

2. The modulus of elasticity of normal-weight concrete is

Ec = 57,000
√

f ′c = 57,000
√

4000 = 3.60 × 106 psi

3. Maximum moment at the fixed end is

Ma = 𝑤L2

2
+ PD × 20 + PL × 10

= 1
2
(0.4 + 0.4)(400) + 3 × 20 + 4 × 10 = 260 K ⋅ ft

4. Ig = gross moment of inertia (concrete only)

= bh3

12
12 × (25)3

12
= 15,625 in.4

5.

Mcr =
frIg

Yt
=

(7.5)(1)
√

4000 × 15,625
25∕2

= 592.9 K ⋅ in. = 49.40 K ⋅ ft

6. Determine the position of the neutral axis; then determine the moment of inertia of the cracked
transformed section. Take moments of areas about the neutral axis and equate them to zero. Use
n= 8 to calculate the transformed area of As and use n–1= 7 to calculate the transformed area of
A′

s. Let kd= x:

b
x2

2
+ (n − 1)A′

s(x − d′) − nAs(d − x) = 0

For this section, x= 8.44 in.:

Icr =
b
3

x3 + (n − 1)A′
s(x − d′)2 + nAs(d − x)2 = 9220 in.4

7. Effective moment of inertia is

Ie =
(

Mcr

Ma

)3

Ig +

[

1 −
(

Mcr

Ma

)3
]

Icr ≤ Ig

=
(49.40

260

)3

× 15,625 +
[

1 −
(49.40

260

)3
]
× 9220 = 9264 in.4
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8. Determine the components of the deflection:

𝛥1 = 800
12

× (20 × 12)4

8 × 3.60 × 106 × 9264
= 0.82 in. (due to uniform load of 0.8 K/ft)

= 0.82 × 0.4
0.8

= 0.41 in. (due to dead load)

𝛥2 = 3000(20 × 12)3

3 × 3.60 × 106 × 9264
= 0.41 in. (due to concentrated

dead load at free end)

𝛥3 =
4000(10 × 12)2 × (3 × 20 × 12 − 10 × 12)

6 × 3.60 × 106 × 9264
= 0.17 in. (due to concentrated live load

at 10 ft from fixed end)

The total immediate deflection is

𝛥s = 𝛥1 + 𝛥2 + 𝛥3 = 0.82 + 0.41 + 0.17 = 1.40 in.

9. For additional long-time deflection, the immediated deflection is multiplied by the factor 𝜆𝛥. For
a 1-year period, 𝜁 = 1.4:

𝜌′ =
A′

s

bd
= 1.57

12 × 21.5
= 0.0061

𝜆𝛥 =
1.4

1 + 50 × 0.0061
= 1.073

Total immediate deflection 𝛥s due to sustained load (here only the dead load of 0.4 K/ft
and PD = 3 K at free end): 𝛥s = (𝛥1 +𝛥2)= (0.41 + 0.41)= 0.82 in. Additional long-time
deflection= 1.073× 0.82= 0.88 in.

10. Total long-time deflection is the immediate deflection plus long-time deflection due to shrinkage
and creep:

Total 𝛥 = 1.40 + 0.88 = 2.28 in.

Example 6.5

Calculate the instantaneous midspan deflection of beam AB in Fig. 6.5, which has a span of 32 ft. The
beam is continuous over several supports of different span lengths. The absolute bending moment dia-
gram and cross sections of the beam at midspan and supports are also shown. The beam carries a uniform
dead load of 4.2 K/ft and a live load of 3.6 K/ft. Given: f ′c = 3 ksi normal-weight concrete, fy = 60 ksi,
and n= 9.2.

Moment at midspan: MD = 192 K ⋅ ft M(D+L) = 480 K ⋅ ft

Moment at left support A ∶ MD = 179 K ⋅ ft M(D+L) = 420 K ⋅ ft

Moment at right support B ∶ MD = 216 K ⋅ ft M(D+L) = 542 K ⋅ ft
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Figure 6.5 Example 6.5: deflection of continuous beam.
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Solution

1. The beam AB is subjected to a positive moment that causes a deflection downward at midspan
and negative moments at the two ends, causing a deflection upward at midspan. As was explained
earlier, the deflection is a function of the effective moment of inertia, Ie. In a continuous beam,
the value of Ie to be used is the average value for the positive- and negative-moment regions.
Therefore, three sections will be considered: the section at midspan and the sections at the two
supports.

2. Calculate Ie: For the gross area of all sections, kd= 13.5 in. and Ig = 114,300 in.4 Also,

fr = 7.5𝜆
√

f ′c = 410 psi and Ee = 57,000
√

f ′c = 3.12 × 106 for all sections. The values of kd, Icr,
and Mcr for each cracked section, Ie for dead load only (using Ma of dead load), and Ie for dead
and live loads (using Ma for dead and live loads) are calculated and tabulated as follows:

Section
kd
(in.)

Icr
(in.4) yt

Mcr
(K⋅ft)

Ie (in.4)
(Dead Load)

Ie (in.4)
(D+L)

Midspan 6.67 48,550 24.5 159.4 86,160 50,960
Support A 10.9 34,930 13.5 289.3 114,300 60,880
Support B 12.6 44,860 13.5 289.3 114,300 55,415

Note that when the beam is subjected to dead load only and the ratio Mcr/Ma is greater than
1.0, Ie = Ig.

3. Calculate average Ie from Eq. 6.8:

Ie1(average) = 0.7(50,960) + 0.15(60,880 + 55,415)

= 53,116 in.4

For dead and live loads,

Average Ie for end sections = 1
2
(60,880 + 55,415)

= 58,150 in.4

Ie2 (average) = 1
2
(50,960 + 58,150) = 54, 550 in.4

For dead loads only,

Average Ie for end sections = 114,300 in.4

Ie3 (average) = 1
2
(86,160 + 114,300) = 100,230 in.4

4. Calculate immediate deflection at midspan:

𝛥1(due to uniform load) = 5𝑤L4

384EIe
(downward)

𝛥2(due to a moment at A, MA) =
MAL2

16EIe
(upward)

𝛥3(due to a moment at B, MB) = −
MBL2

16EIe
(upward)

Total deflection 𝛥 = 𝛥1 − 𝛥2 − 𝛥3
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The dead-load deflection for a uniform dead load of 4.2 K/ft, taking MA (dead load)= 179
K⋅ft, MB (dead load)= 216 K ⋅ ft, and Ie3 = 100,230 in.4 and then substituting in the preceding
equations, is

𝛥 = 0.314 − 0.063 − 0.075 = 0.176 in. (downward)
The deflection due to combined dead and live loads is found by taking dead plus live

load= 7.8 K/ft, MA = 420 K ⋅ ft, MB = 542 K⋅ft, and Ie2 = 54,550 in.4:

𝛥 = 1.071 − 0.270 − 0.349 = 0.452 in. (downward)
The immediate deflection due to live load only is 0.452–0.176= 0.276 in. (downward). If the

limiting permissible deflection is L/480= (32× 12)/480= 0.8 in., then the section is adequate.
There are a few points to mention about the results:

a. If Ie of the midspan section only is used (Ie = 50,960 in.4), then the deflection due to dead plus
live loads is calculated by multiplying the obtained value in step 4 by the ratio of the two Ie:

𝛥(dead + live) = 0.452 ×
(

54,550
50,960

)
= 0.484 in.

The difference is small, about 7% on the conservative side.
b. If Ie1 (average) is used (Ie1 = 53,116 in.4), then 𝛥 (dead + live)= 0.471 in. The difference is

small, about 4% on the conservative side.
c. It is believed that it is more convenient to use Ie at the midspan section unless a more rigorous

solution is required.

6.6 CRACKS IN FLEXURAL MEMBERS

The study of crack formation, behavior of cracks under increasing load, and control of crack-
ing is necessary for proper design of reinforced concrete structures. In flexural members, cracks
develop under working loads, and because concrete is weak in tension, reinforcement is placed in
the cracked tension zone to resist the tension force produced by the external loads.

Flexural cracks develop when the stress at the extreme tension fibers exceeds the modulus of
rupture of concrete. With the use of high-strength reinforcing bars, excessive cracking may develop
in reinforced concrete members. The use of high-tensile-strength steel has many advantages, yet
the development of undesirable cracks seems to be inevitable. Wide cracks may allow corrosion of
the reinforcement or leakage of water structures and may spoil the appearance of the structure.

A crack is formed in concrete when a narrow opening of indefinite dimension has developed
in the concrete beam as the result of internal tensile stresses. These internal stresses may be due to
one or more of the following:

• External forces such as direct axial tension, shear, flexure, or torsion.
• Shrinkage.
• Creep.
• Internal expansion resulting from a change of properties of the concrete constituents.

In general, cracks may be divided into two main types: secondary cracks and main cracks.

6.6.1 Secondary Cracks

Secondary cracks, very small cracks that develop in the first stage of cracking, are produced by the
internal expansion and contraction of the concrete constituents and by low flexural tension stresses
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due to the self-weight of the member and any other dead loads. There are three types of secondary
cracks: Shrinkage, flexural, and corrosion.

Shrinkage Cracks. Shrinkage cracks are important cracks, because they affect the pattern of
cracking that is produced by loads in flexural members. When they develop, they form a weak path
in the concrete. When load is applied, cracks start to appear at the weakest sections, such as along
the reinforcing bars. The number of cracks formed is limited by the amount of shrinkage in concrete
and the presence of restraints. Shrinkage cracks are difficult to control.

Secondary Flexural Cracks. Usually secondary flexural cracks are widely spaced, and one crack
does not influence the formation of others [8]. They are expected to occur under low loads, such
as dead loads. When a load is applied gradually on a simple beam, tensile stress develops at the
bottom fibers, and when it exceeds the flexural tensile stress of concrete, cracks start to develop.
They widen gradually and extend toward the neutral axis. It is difficult to predict the sections at
which secondary cracks start because concrete is not a homogeneous, isotropic material.

Salinger [9] and Billing [10] estimated the steel stress just before cracking to be from about
6000 to 7000 psi (42 to 49 MPa). An initial crack width of the order of 0.001 in. (0.025 mm) is
expected at the extreme concrete tensile fibers. Once cracks are formed, the tensile stress of con-
crete at the cracked section decreases to zero, and the steel bars take all the tensile force. At this
moment, some slip occurs between the steel bars and the concrete due to the differential elonga-
tion of concrete and steel and extends to a section where the concrete and steel strains are equal.
Figure 6.6 shows the typical stress distribution between cracks in a member under axial tension.

Corrosion Secondary Cracks. Corrosion secondary cracks form when moisture containing
deleterious agents such as sodium chloride, carbon dioxide, and dissolved oxygen penetrates

Figure 6.6 Typical stress distribution between cracks.
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the concrete surface, corroding the steel reinforcement [11]. The oxide compounds formed by
deterioration of steel bars occupy a larger volume than the steel and exert mechanical pressure
that perpetuates extensive cracking [12, 13]. This type of cracking may be severe enough to result
in eventual failure of the structure. The failure of a roof in Muskegan, Michigan, in 1955 due to
the corrosion of steel bars was reported by Shermer [13]. The extensive cracking and spalling
of concrete in the San Mateo–Hayward Bridge in California within 7 years was reported by
Stratful [12]. Corrosion cracking may be forestalled by using proper construction methods and
high-quality concrete. More details are discussed by Evans [14] and Mozer and others [15].

6.6.2 Main Cracks

Main cracks develop at a later stage than secondary cracks. They are caused by the difference in
strains in steel and concrete at the section considered. The behavior of main cracks changes at two
different stages. At low tensile stresses in steel bars, the number of cracks increases, whereas the
widths of cracks remain small; as tensile stresses are increased, an equilibrium stage is reached.
When stresses are further increased, the second stage of cracking develops, and crack widths
increase without any significant increase in the number of cracks. Usually one or two cracks start
to widen more than the others, forming critical cracks (Fig. 6.7).

Main cracks in beams and axially tensioned members have been studied by many investiga-
tors; prediction of the width of cracks and crack control were among the problems studied. These
are discussed here, along with the requirements of the ACI Code.

Crack Width. Crack width and crack spacing, according to existing crack theories, depend on
many factors, which include steel percentage, its distribution in the concrete section, steel flex-
ural stress at service load, concrete cover, and properties of the concrete constituents. Different
equations for predicting the width and spacing of cracks in reinforced concrete members were pre-
sented at the Symposium on Bond and Crack Formation in Reinforced Concrete in Stockholm,
Sweden, in 1957. Chi and Kirstein [16] presented equations for the crack width and spacing as a
function of an effective area of concrete around the steel bar: A concrete circular area of diameter
equal to four times the diameter of the bar was used to calculate crack width. Other equations were
presented over the next decade [17–23].

Gergely and Lutz [23] presented the following formula for the limiting crack width:

W = 0.076𝛽fs
3
√

Adc × 10−6(in.) (6.15)

where 𝛽, A, and fs are as defined previously and dc is the thickness of concrete cover measured
from the extreme tension fiber to the center of the closest bar. The value of 𝛽 can be taken to be
approximately equal to 1.2 for beams and 1.35 for slabs. Note that fs is in psi and W is in inches.

The mean ratio of maximum crack width to average crack width was found to vary between
1.5 and 2.0, as reported by many investigators. An average value of 1.75 may be used.

In SI units (mm and MPa), Eq. 6.15 is

W = 11.0𝛽fs
3
√

Adc × 10−6 (6.16)

Tolerable Crack Width. The formation of cracks in reinforced concrete members is unavoidable.
Hairline cracks occur even in carefully designed and constructed structures. Cracks are usually mea-
sured at the face of the concrete, but actually they are related to crack width at the steel level, where
corrosion is expected. The permissible crack width is also influenced by aesthetic and appearance
requirements. The naked eye can detect a crack about 0.006 in. (0.15 mm) wide, depending on the
surface texture of concrete. Different values for permissible crack width at the steel level have been
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(a)

(b)

Figure 6.7 (a) Main cracks in a reinforced concrete beam. (b) Spacing of cracks in a
reinforced concrete beam.

suggested by many investigators, ranging from 0.010 to 0.016 in. (0.25 to 0.40 mm) for interior
members and from 0.006 to 0.010 in. (0.15 to 0.25 mm) for exterior exposed members. A limit-
ing crack width of 0.016 in. (0.40 mm) for interior members and 0.013 in. (0.32 mm) for exterior
members under dry conditions can be tolerated.

Crack Control. Control grows in importance with the use of high-strength steel in reinforced
concrete members, as larger cracks develop under working loads because of the high allowable
stresses. Control of cracking depends on the permissible crack width: It is always preferable to
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have a large number of fine cracks rather than a small number of large cracks. Secondary cracks
are minimized by controlling the total amount of cement paste, water–cement ratio, permeability
of aggregate and concrete, rate of curing, shrinkage, and end-restraint conditions.

The factors involved in controlling main cracks are the reinforcement stress, the bond charac-
teristics of reinforcement, the distribution of reinforcement, the diameter of the steel bars used, the
steel percentage, the concrete cover, and the properties of concrete constituents. Any improvement
in these factors will help in reducing the width of cracks.

6.7 ACI CODE REQUIREMENTS

To control cracks in reinforced concrete members, the ACI Code, Section 24.3, specifies the fol-
lowing:

1. Only deformed bars are permitted as main reinforcement.
2. Tension reinforcement should be well distributed in the zones of maximum tension (ACI

Code, Sections 11.7.2.4 and 24.3.1).
3. When the flange of the section is under tension, part of the main reinforcement should be

distributed over the effective flange width or one-tenth of the span, whichever smaller. If the
effective flange width exceeds one-tenth the span, some longitudinal reinforcement has to be
provided in the outer portion of the flange (ACI Code, Section 24.3.4).

4. The design yield strength of reinforcement should not exceed 80 ksi (560 MPa) (ACI Code,
Section 20.2.2.4).

5. The maximum spacing s of reinforcement closest to a concrete surface in tension in reinforced
concrete beams and one-way slabs is limited to

s(in.) =
[

15

(
40
fs

)
− 2.5Cc

]
(6.17)

but not greater than 12 (40/fs),
where

fs = calculated stress (ksi) in reinforcement at service load computed as unfactored moment
divided by product of steel area and internal moment arm, fs =M/(Asjd) (alternatively,
fs =

2
3
fy may be used; approximate value of jd= 0.87d may be used)

Cc = clear cover from nearest surface in tension to surface of flexural tension reinforcement (in.)
s = center-to-center spacing of flexural tension reinforcement nearest extreme concrete tension

face (in.)

The preceding limitations are applicable to reinforced concrete beams and one-way slabs
subject to normal environmental condition and do not apply to structures subjected to aggres-
sive exposure. The spacing limitation just given is independent of the bar size, which may
lead to the use of smaller bar sizes to satisfy the spacing criteria. For the case of concrete
beams reinforced with grade 60 steel bars and Cc = 2 in., clear cover to the tension face,
the maximum spacing is calculated as follows: Assume fs = 2/3 fy = (2/3)× 60= 40 ksi and

s = 15
(

40
40

)
− 2.5 × 2 = 10 in. (controls), which is less than 12(40/40)= 12 in.

6. In SI units, Eq. 6.17 becomes

s(mm) = 105,000∕fs − 2.5Cc (6.18)
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but not greater than 300 (280/fs), where fs is in ‘MPa’ and Cc is in ‘mm’. For example, if bars
with a clear cover equal to 50 mm are used, then the maximum spacing, s, is calculated as

s = 105,000
280

− 2.5 × 50 = 250 mm (controls),

which is less than 300(280/280)= 300 mm in this example. This is assuming that fs =
2
3
×

420 = 280 MPa.
7. In the previous codes, control of cracking was based on a factor Z defined as follows:

Z = fs
3
√

Adc ≤ 175 k∕in. (31 kN∕mm) for interrior members

≤ 140 k∕in. (26 kN∕mm) for exterior members (6.19)

where fs is the flexural stress at service load (ksi) and may be taken as 0.6 fy and A and
dc are the effective tension area of concrete and thickness of concrete cover, respectively.
This expression is based on Eq. 6.15 assuming a limiting crack width of 0.016 in. for interior
members and 0.013 in. for exterior members. It encouraged a decrease in the reinforcement
cover to achieve a smaller Z, while unfortunately it penalized structures with concrete cover
that exceeded 2 in.

8. Skin Reinforcement. For relatively deep girders, with a total depth, h, equal to or greater than
36 in. (900 mm), light reinforcement should be added near the vertical faces in the tension
zone to control cracking in the web above the main reinforcement. The ACI Code, Section
9.7.2.3, referred to this additional steel as skin reinforcement. The skin reinforcement should
be uniformly distributed along both side faces of the member for a distance h/2 from the
tension face.

The spacing S between the longitudinal bars or wires of the skin reinforcement shall be as
provided in Eq. 6.17 where Cc is the least distance from the skin reinforcement to the side face.

Referring to Figure 6.8, if b= 16 in., h= 40 in., fy = 60 ksi, and choosing no. 3 bars spaced
at 6.0 in. as skin reinforcement (three spaces on each side), then the height covered is equal to
3× 6+ 2.5= 20.5 in., which is greater than h/2= 40/2= 20 in.

Figure 6.8 Skin reinforcement (six no. 3 bars).
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Checking the spacing S by Eq. 6.18 and assuming fs = 2/3fy = 2/3× 60= 40 ksi, and Cc = 2 in.,
then S= 15(40/40)− 2.5× 2= 10 in., which is less than 12(40/40)= 12 in. The spacing used is ade-
quate. Note that Cc = 1.5 in. may be used for the skin reinforcement concrete cover.

It is recommended to use smaller spacing to control the propagation of tensile cracks along
the side of the tension zone with the first side bar to be placed at 4 to 6 in. from the main tensile steel.

Example 6.6

The sections of a simply supported beam are shown in Fig. 6.9.

a. Check if the bar arrangement satisfies the ACI Code requirements.
b. Determine the expected crack width.
c. Check the Z-factor based on Eq. 6.19.

Given: f ′c = 4 ksi, fy = 60 ksi, and no. 3 stirrups.

Solution

1. Fig. 6.9, section a:
a. For three no. 8 bars, As = 2.35 in.2, clear cover, Cc = 2.5− 8/16= 2.0 in. Assume fs =

2
3
fy = 2∕3 × 60 = 40 ksi. Maximum spacing s= 600/40–2.5× 2= 10 in., which is less than

12(40/40)= 12 in. Spacing provided equals 0.5(12–2.5–2.5)= 3.5 in., center to center of bars,
which is less than 10 in.

b. For this section, dc = 2.5 in. The effective tension area of concrete for one bar is

A = 12(2 × 2.5)
3

= 20 in.2

Estimated crack width using Eq. 6.16 is

W = 0.076(1.2)(36,000) 3
√

20 × 2.5 × 10−6 = 0.0121 in.

This is assuming 𝛽 = 1.2 for beams and fs = 36 ksi. The crack width above is less than
0.016 in. and 0.013 in. for interior and exterior members.

Figure 6.9 Two sections for Example 6.6.
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2. Fig. 6.9, section b:
a. Calculations of spacing of bars are similar to those in section a.
b. For this section, dc = 2.5 in., and the steel bars are placed in two layers. The centroid

of the steel bars is 3.5 in. from the bottom fibers. The effective tension concrete area is
A= 12(2× 3.5)/6= 14 in.2 Then

W = 0.076 × 1.2 × 36,000
3
√

14 × 2.5 × 10−6 = 0.0107 in.

which is adequate.

Discussion
It can be seen that the spacing, s, in Eq. 6.17 is a function of the stress in the tension bars or, indirectly,
is a function of the strain in the tension steel, fs =Es × 𝜀s, and Es for steel is equal to 29,000 ksi. The
spacing also depends on the concrete cover, Cc. An increase in the concrete cover will reduce the limited
spacing s, which is independent on the bar size used in the section.

In this example, the expected crack width was calculated by Eq. 6.17 to give the student or the
engineer a physical feeling for the crack width and crack control requirement. The crack width is usually
measured in beams when tested in the laboratory or else in actual structures under loading when serious
cracks develop in beams or slabs and testing is needed. If the crack width measured before and after
loading is greater than the yield strain of steel, then the main reinforcement is in the plastic range and
ineffective. Sheets with lines of different thickness representing crack widths are available in the market
for easy comparisons with actual crack widths. In addition to the steel stress and the concrete cover, W
depends on a third factor, A, representing the tension area of concrete surrounding one bar in tension.

Example 6.7

Design a simply supported beam with a span of 24 ft to carry a uniform dead load of 1.5 K/ft and a live
load of 1.18 K/ft. Choose adequate bars; then check their spacing arrangement to satisfy the ACI Code.
Given: b= 16 in., f ′c = 4 ksi, fy = 60 ksi, a steel percentage= 0.8%, and a clear concrete cover of 2 in.

Solution

1. For a steel percentage of 0.8%, Ru = 400 psi= 0.4 ksi (𝜙= 0.9). The external factored moment is
Mu =𝑤u ×L2/8, and

wu = 1.2(1.5) + 1.6(1.18) = 3.69 K∕ft

Mu = 3.69(24)2

8
= 265.68 K ⋅ ft = 3188.2 K ⋅ in.

Mu = Rubd2 d = 22.32 As = 0.008 × 16 × 22.32 = 2.86 in.2

Figure 6.10 Example 6.7.
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Choose three no. 9 bars (area= 3.0 in.2) in one row, and a total depth of h= 25.0 in. Actual
d= 25–2–9/16= 22.44 in. (Fig. 6.10).

2. Check spacing of bars using Eq. 6.18. Calculate the service load and moment, 𝑤= 1.5+
1.18= 2.68 K/ft:

M = 2.68(24)2

8
= 193 K ⋅ ft = 2315 K ⋅ in.

3. Calculate the neutral axis depth kd and the moment arm jd (Eq. 6.12):

1
2

b(kd)2 − nAs(d − kd) = 0 n = 8 As = 3.0 d = 22.44 in.

kd = 6.85 in. jd = d − kd
3

= 20.16 in. j = 20.16
22.44

= 0.898

Note that an approximate value of j= 0.87 may be used if kd is not calculated.
4. Calculate the stress fs:

M = Asfsjd 2315 = 3(fs)(20.16) fs = 38.3 ksi

5. Calculate the spacing s by Eq. 6.18:

s = 600∕38.3 − 2.5 × 2 = 10.7 in. (controls)
which is less than 12(40/40)= 12.0 in. Spacing provided= 0.5 (16–2.56–2.56)= 5.44 in., which
is less than 10.7 in.

Example 6.8

Design a simply supported beam of 7.2-m span to carry a uniform dead load of 22.2 kN/m and a live
load of 17 kN/m. Choose adequate bars, and check their spacing arrangement to satisfy the ACI Code.

Given: b= 400 mm, f ′c = 30 MPa, fy = 400 MPa, a steel percentage of 0.8%, and a clear concrete
cover of 50 mm.

Solution

1. For a steel percentage of 0.008 and from Eq. 3.22, Ru = 2.7 MPa. Factored load 𝑤u = 1.2(22.2)+
1.6(17)= 53.8 kN/m. Then Mu =𝑤uL2/8= 53.8(7.2)2/8= 348.6 kN ⋅m; Mu =Ru⋅bd2, or
348.6× 106 = 2.7× 400d2, d= 568 mm, As = 𝜌bd= 0.008× 400× 568= 1818 mm2. Choose four
bars, 25 mm (no. 25 M), As = 2040 mm2, in one row (bmin = 220 mm). Let h= 650 mm, the actual
d= 650–50–25/2= 587.5 mm, say 585 mm. Final section: b= 400 mm, h= 650 mm, with four
no. 25 mm bars (Fig. 6.11).

Figure 6.11 Example 6.8.
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2. Check spacing of bars using Eq. 6.17. Calculate the service load moment, 𝑤= 22.2+ 17=
39.2 kN/m,

M = 39.2(7.2)2

8
= 254 kN ⋅ m

Calculate kd and jd as in the previous example. Alternatively, use a moment arm, jd=
0.87d= 0.87(585)= 509 mm and fs =M/(As⋅jd)= 254(10)6/(2040× 509)= 244.6 MPa. From
Eq. 6.19, maximum s= (105,000/244.6)–2.5(50)= 304 mm (controls), which is less than
300(280/fs)= 300(280)/244.6= 343 mm. Note that if fs = 0.6 fy = 0.6(400)= 240 MPa is used,
then maximum s= 312 mm. It is preferable to calculate fs from the moment equation to reflect
the actual stress in the bars. Spacing provided= (1/3)(400–50–25)= 92 mm, which is adequate.

SUMMARY

Sections 6.1 and 6.2

1. Deflection 𝛥= 𝛼(WL3/EI)= 5WL3/384EI= 5𝑤L4/384EI for a simply supported beam sub-
jected to a uniform total load of W=𝑤L:

Ec = 33𝑤1.5
√

f ′c = 57,400f ′c psi

for normal-weight concrete.
2. Effective moment of inertia is

Ie =
(

Mcr

Ma

)3

Ig +

[

1 −
(

Mcr

Ma

)3
]

Icr ≤ Ig

Mcr = fr ×
Ig

yt
and fr = 7.5𝜆

√
f ′c

Section 6.3

The deflection of reinforced concrete members continues to increase under sustained load.
Additional long-time deflection equals 𝜁𝛥 × instantaneous deflection:

𝜁𝛥 =
𝜁

1 + 50𝜌′

where 𝜁 = 1.0, 1.2, 1.4, 2.0 for periods of 3, 6, 12, and 60 months, respectively.

Sections 6.4 and 6.5

1. The allowable deflection varies between L/180 and L/480.
2. Deflections for different types of loads may be calculated for each type of loading separately

and then added algebraically to obtain the total deflection.

Section 6.6

1. Cracks are classified as secondary cracks (shrinkage, corrosion, or secondary flexural cracks)
and main cracks.
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2. Maximum crack width is
W = 0.076𝛽fs

3
√

Adc × 10−6(in.)
Approximate values for 𝛽, fs, and dc are 𝛽 = 1.2 for beams and 𝛽 = 1.35 for slabs, dc = 2.5 in.,
and fs = (2/3) fy.

3. The limiting crack width is 0.016 in. for interior members and 0.013 in. for exterior members.

Section 6.7

The maximum spacing s of bars closest to a concrete surface in tension is limited to

s = 600
fs

− 2.5Cc

but not more than 12(40/fs). Note that fs may be taken as 2/3 fy.
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P R O B L E M S

6.1 Determine the instantaneous and long-time deflection of a 20-ft-span simply supported beam for each of
the following load conditions. Assume that 10% of the live loads are sustained and the dead loads include
the self-weight of the beams. Use f ′c = 4 ksi, fy = 60 ksi, d′ = 2.5 in., and a time limit of 5 years. Refer
to Fig. 6.12.

No.
b

(in.)
d

(in.)
h

(in.)
As

(in.2)
A′

s
(in.2)

WD
(K/ft)

WL
(K/ft)

PD
(K)

PL
(K)

a 14 17.5 20 5 no. 9 — 2.2 1.8 — —
b 20 27.5 30 6 no. 10 — 7.0 3.6 — —
c 12 19.5 23 6 no. 8 — 3.0 1.5 — —
d 18 20.5 24 6 no. 10 2 no. 9 6.0 2.0 — —
e 16 22.5 26 6 no. 11 2 no. 10 5.0 3.2 12 10
f 14 20.5 24 8 no. 9 2 no. 9 3.8 2.8 8 6

Note: h–d= 2.5 in. indicates one row of bars, whereas h–d= 3.5 in. indicates two rows of bars. Concentrated
loads are placed at midspan.

6.2 Determine the instantaneous and long-term deflection of the free end of a 12-ft-span cantilever beam for
each of the following load conditions. Assume that only dead loads are sustained, and the dead loads

Figure 6.12 Problem 6.1.
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Figure 6.13 Problem 6.2.

Figure 6.14 Dead load= 2 K/ft (30 kN/m) and live load=1.33 K/ft (20 kN/m).

Figure 6.15 Problem 6.5.
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Figure 6.16 Skin reinforcement.

include the self-weight of the beams. Use f ′c = 4 ksi, fy = 60 ksi, and a time limit of more than 5 years.
Refer to Fig. 6.13.

No.
b

(in.)
d

(in.)
h

(in.)
As

(in.2)
A′

s
(in.2)

WD
(K/ft)

WL
(K/ft)

PD
(K)

PL
(K)

a 15 20.5 24 8 no. 9 2 no. 9 3.5 2.0 — —
b 18 22.5 26 6 no. 10 — 2.0 1.5 7.4 5.0
c 12 19.5 23 8 no. 8 2 no. 8 2.4 1.6 — —
d 14 20.5 24 8 no. 9 2 no. 9 3.0 1.1 5.5 4.0

Note h–d= 2.5 in. indicates one row of bars, whereas h–d= 3.5 in. indicates two rows of bars. Concentrated
loads are placed as shown.

6.3 A 28-ft simply supported beam carries a uniform dead load of 2 K/ft (including self-weight) and a live
load of 1.33 K/ft. Design the critical section at midspan using the maximum steel ratio allowed by the
ACI Code and then calculate the instantaneous deflection. Use f ′c = 4 ksi, fy = 60 ksi, and b= 12 in. See
Fig. 6.14.

6.4 Design the beam in Problem 6.3 as doubly reinforced, considering that compression steel resists 20% of
the maximum bending moment. Then calculate the maximum instantaneous deflection.

6.5 The four cross sections shown in Fig. 6.15 belong to four different beams with f ′c = 4 ksi and fy = 60 ksi.
Check the spacing of the bars in each section according to the ACI Code requirement using fs = 0.6fy.
Then calculate the tolerable crack width, W.

6.6 Determine the necessary skin reinforcement for the beam section shown in Fig. 6.16. Then choose
adequate bars and spacings. Use f ′c = 4 ksi and fy = 60 ksi.



CHAPTER7
DEVELOPMENT
LENGTH OF
REINFORCING BARS

Reinforced concrete columns supporting an
office building, Toronto, Canada.

7.1 INTRODUCTION

The joint behavior of steel and concrete in a reinforced concrete member is based on the fact that a
bond is maintained between the two materials after the concrete hardens. If a straight bar of round
section is embedded in concrete, a considerable force is required to pull the bar out of the concrete.
If the embedded length of the bar is long enough, the steel bar may yield, leaving some length of
the bar in the concrete. The bonding force depends on the friction between steel and concrete. It
is influenced mainly by the roughness of the steel surface area, the concrete mix, shrinkage, and
the cover of concrete. Deformed bars give a better bond than plain bars. Rich mixes have greater
adhesion than weak mixes. An increase in the concrete cover will improve the ultimate bond stress
of a steel bar [2].

In general, the bond strength is influenced by the following factors:

1. Yield strength of reinforcing bars, fy. Longer development length is needed with higher fy.
2. Quality of concrete and its compressive strength, f ′c . An increase in f ′c reduces the required

development length of reinforcing bars.
3. Bar size, spacing, and location in the concrete section. Horizontal bars placed with more

than 12 in. of concrete below them have lower bond strength due to the fact that concrete
shrinks and settles during the hardening process. Also, wide spacings of bars improve the
bond strength, giving adequate effective concrete area around each bar.

4. Concrete cover to reinforcing bars. A small cover may cause the cracking and spalling of the
concrete cover.

5. Confinement of bars by lateral ties. Adequate confinement by ties or stirrups prevents the
spalling of concrete around bars. 257
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7.2 DEVELOPMENT OF BOND STRESSES

7.2.1 Flexural Bond

Consider a length dx of a beam subjected to uniform loading. Let the moment produced on one
side be M1 and on the other side be M2 with M1 being greater than M2. The moments will produce
internal compression and tension forces, as shown in Fig. 7.1. Because M1 is greater than M2, T1
is greater than T2; consequently, C1 is greater than C2.

At any section, T=M/jd, where jd is the moment arm:

T1 − T2 = dT = dM
jd

but
T1 = T2 + u

∑
Odx

where u is the average bond stress and
∑

O is the sum of perimeters of bars in the section at the
tension side. Therefore,

T1 − T2 = u
∑

Odx = dM
jd

u = dM
dx

× 1
jd
∑

O

The rate of change of the moment with respect to x is the shear, or dM/dx=V. Therefore,

u = V
jd
∑

O
(7.1)

The value u is the average bond stress; for practical calculations, j can be taken to be approximately
equal to 0.87:

u = V
0.87d

∑
O

In the strength design method, the nominal bond strength is reduced by the capacity reduction
factor, 𝜙= 0.75. Thus,

Uu =
Vu

𝜙(0.87)d
∑

O
(7.2)

Based on the preceding analysis, the bond stress is developed along the surface of the reinforcing
bar due to shear stresses and shear interlock.

Figure 7.1 Flexural bond.
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Figure 7.2 Bond stresses and development length. (a) Distribution of stress along Id
and (b) radial stress in concrete around the bar.

7.2.2 Tests for Bond Efficiency

Tests to determine the bond stress capacity can be made using the pullout test (Fig. 7.2). This test
evaluates the bond capacity of various types of bar surfaces relative to a specific embedded length.
The distribution of tensile stresses will be uniform around the reinforcing bar at a specific section
and varies along the anchorage length of the bar and at a radial distance from the surface of the bar
(Fig. 7.2). However, this test does not represent the effective bond behavior in the surface of the
bars in flexural members because stresses vary along the depth of the concrete section. A second
type of test can be performed on an embedded rod (Fig. 7.3). In these tests, the tensile force, P,
is increased gradually and the number of cracks and their spacings and widths are recorded. The
bond stresses vary along the bar length between the cracks. The strain in the steel bar is maximum
at the cracked section and decreases toward the middle section between cracks.

Tests on flexural members are also performed to study the bond effectiveness along the surface
of the tension bars. The analysis of bond stresses in the bars of these members was explained earlier,
and they are represented by Eq. 7.2.

Based on this discussion, it is important to choose an appropriate length in each reinforcing
bar to develop its full yield strength without a failure in the bond strength. This length is called
the development length, ld. If this length is not provided, the bond stresses in the tension zone of a
beam become high enough to cause cracking and splitting in the concrete cover around the tension
bars (Fig. 7.4). If the split continues to the end of the bar, the beam will eventually fail. Note that
small spacings between tensile bars and a small concrete cover on the sides and bottom will reduce
the bond capacity of the reinforcing bars (Fig. 7.4).
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Figure 7.3 Bond mechanism in an embedded bar. (a) Strain and (b) stress distribution
between cracks.
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Figure 7.4 Examples of spalling of concrete cover. (a) High bottom cover, (b) wide
spacing, and (c) small bottom cover.

7.3 DEVELOPMENT LENGTH IN TENSION

7.3.1 Development Length, Id

If a steel bar is embedded in concrete, as shown in Fig. 7.2, and is subjected to a tension force T,
then this force will be resisted by the bond stress between the steel bar and the concrete. The
maximum tension force is equal to Asfy, where As is the area of the steel bar. This force is resisted
by another internal force of magnitude UuOld, where Uu is the ultimate average bond stress, ld is
the embedded length of the bar, and O is the perimeter of the bar (𝜋D). The two forces must be
equal for equilibrium:

As fy = UuOld and ld =
As fy
UuO

For a combination of bars,

ld =
As fy

Uu
∑

O
(7.3)

The length ld is the minimum permissible anchorage length and is called the development length:

ld =
𝜋d2

b fy
4Uu(𝜋db)

=
db fy
4Uu

(7.4)

where db is the diameter of reinforcing bars.
This means that the development length is a function of the size and yield strength of the

reinforcing bars in addition to the ultimate bond stress, which in turn is a function of
√

f ′c . The bar
length ld given in Eq. 7.4 is called the development length, ld. The final development length should
also include the other factors mentioned in Section 7.1. Equation 7.4 may be written as follows:

ld

db
= K

(
fy

√
f ′c

)

(7.5)

where K is a general factor that can be obtained from tests to include factors such as the bar charac-
teristics (bar size, spacing, epoxy coated or uncoated, location in concrete section, and bar splicing),
amount of transverse reinforcement, and the provision of excess reinforcement compared to that
required from design.

The ACI Code, Section 25.4.2.3, evaluated K as follows:

K =
( 3

40𝜆

)(
𝜓t𝜓e𝜓s(

cb + Ktr

)
∕db

)

(7.6)
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and 7.5 becomes
ld
db

=
( 3

40𝜆

)(
fy
√

f ′c

)(
𝜓t𝜓e𝜓s(

cb + Ktr

)
∕db

)

(7.7)

where
𝜓 t = bar location
𝜓e = coating factor
𝜓 s = bar-size factor
𝜆 = lightweight aggregate concrete factor (ACI Code, Section 19.2.4.2)
= 1.0 normal-weight concrete
= When lightweight aggregate is used, 𝜆 shall not exceed 0.75 unless splitting tensile strength is

specified, then
𝜆 = fct∕(6.7

√
f ′c ) ≤ 1 (ACI Code, Section 19.2.4.2) cb = spacing or cover dimension (in.); the

smaller of

(1) Distance from center of bar or wire being developed to the nearest concrete surface or
(2) One-half the center-to-center spacing of bars or wires being developed

Ktr = transverse reinforcement index
= 40 Atr/sn

n = number of bars or wires being developed along the plane of splitting
s = maximum spacing of transverse reinforcement within ld, center to center (in.)

fyt = yield strength of transverse reinforcement (psi)
Atr = total sectional area of all transverse reinforcement within spacing s that crosses the potential

plane of splitting through to the reinforcement being developed (in.2)

Notes:

1. Let (cb-+Ktr)/db not exceed 2.5 to safeguard against pullout-type failures.

2. The value of
√

f ′c shall not exceed 100 psi (ACI Code, Section 25.4.1.4).
3. Let Ktr = 0 be used as a design simplification (ACI Code, Section 25.4.2.3).

7.3.2 ACI Code Factors for Calculating ld for Bars in Tension

1. 𝛹 t = bar location factor
𝛹 t = 1.3 for top bars defined as horizontal reinforcement, placed so that more than 12 in. of
fresh concrete is below the development length, or splice
𝛹 t = 1.0 for all other reinforcement

2. 𝛹 e = coating factor
𝛹 e = 1.5 for epoxy-coated bars or wires with cover less than 3db or clear spacing less than
6db
𝛹 e = 1.2 for all other epoxy coated bars or wires
𝛹 e = 1.0 for uncoated and zinc-coated (galvanized) reinforcement (However, the value of the
𝛹 t𝛹 e product should not exceed 1.7.)

3. 𝛹 s = bar size factor
𝛹 s = 0.8 for no. 6 bars or smaller bars and deformed wires
𝛹 s = 1.0 for no. 7 bars and larger bars
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4. 𝜆= lightweight aggregate concrete factor

𝜆 =
6.7

√
f ′c

fct
≤ 1.0

𝜆= 𝜆 shall not exceed 0.75 unless fct is specified
𝜆= 1.0 for normal-weight concrete

5. The ACI Code permits using Ktr = 0 even if transverse reinforcement is present. In this case,

ld
db

=
( 3

40𝜆

)(
fy
√

f ′c

)(
𝜓t𝜓e𝜓s

cb∕db

)
(7.8)

The value of
√

f ′c should not exceed 100 psi.
6. Assume Rs is the reduction factor due to excess reinforcement. The ACI Code, Section

25.4.10.1, permits the reduction of ld by the factor Rs when the reinforcement in a flexural
member exceeds that required by analysis, This reduction does not apply when the full fy
development is required, as for tension lap splices, specified in ACI Code, Sections 4.10 and
25.5.2.1, and ACI Code, Section 8.7.4.2, development of positive-moment reinforcement at
supports, and for development of shrinkage and temperature reinforcement.

This reduction in development length is not permitted for reinforcement in structures
located in seismic risk or for structures assigned to high seismic performance or design
categories, except where anchorage or development for fy is specifically required or the
reinforcement is designed considering seismic effects.

Rs =
As (required)
As (provided)

(7.9)

7. The development length, ld, in all cases shall not be less than 12 in. (ACI Code, Section
25.4.2.1)

7.3.3 Simplified Expressions for Id

As design simplification, ACI Code permits to take ktr = 0 even if transverse reinforcement is
present. To further simplify computation of ld, preselected value of term (cb + ktr)/db were cho-
sen. As a result Eq. 7.7 can take the simplified forms specified in ACI Code, Section 25.4.2.2.
These are shown in Eqs. 7.10 to 7.13:

ld

db
=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

fy𝜓t𝜓e

25𝜆
√

f ′c
(no. 6 and smaller bar) (7.10)

fy𝜓t𝜓e

20𝜆
√

f ′c
(no. 7 and larger bars) (7.11)

3fy𝜓t𝜓e

50𝜆
√

f ′c
(no. 6 and smaller bars) (7.12)

3fy𝜓t𝜓e

40𝜆
√

f ′c
(no. 7 and larger bars) (7.13)

In Eqs. 7.10 and Eqs. 7.11 the term (cb + ktr)/db = 1.5, while in Eqs. 7.12 and Eqs. 7.13
(cb + ktr)/db = 1.0. Equations 7.10 and 7.12 include a reinforcement size factor 𝜓 s = 0.8, while Eqs.
7.11 and Eqs. 7.13 include 𝜓e = 1.0.
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Equations 7.10 and 7.11 can only be applied if one of the following two different sets of
conditions is satisfied:

Set 1: The following three conditions must simultaneously be satisfied:

1. The clear spacing of bars being developed or spliced should not be less than the diameter of
reinforcement being developed (S ≥ db).

2. The clear cover for reinforcement being developed should not be less than db.
3. Minimum amount of stirrups or ties throughout ld should not be less than the minimum value

specified in ACI Code, Section 9.7.6.2, for beams or ACI Code, Section 9.7.6.4, for columns.

Set 2: The following two conditions must simultaneously be satisfied:

1. The clear spacing of reinforcement being developed or spliced should not be less than 2db.
2. The clear cover should not be less than db.

If all the conditions of set 1 and set 2 cannot be satisfied then Eqs. 7.12 and Eqs. 7.13 must
be used.

It is quite common to use f ′c = 4ksi and fy = 60 ksi in the design and construction of rein-
forced concrete buildings. If these values are substituted in the preceding equations, and assuming
normal-weight concrete (𝜆= 1.0), then

Equation 7.10 becomes ld = 38db (≤ no. 6 bars) (7.10a)

Equation 7.11 becomes ld = 47.5db (≥ no. 7 bars) (7.11a)

Equation 7.12 becomes ld = 57db (≤ no. 6 bars) (7.12a)

Equation 7.13 becomes ld = 71.2db (≥ no. 7 bars) (7.13a)
For design simplicity other values of ld/db ratios are shown in Table 7.1. Table 7.2 gives the devel-
opment length, ld, for different reinforcing bars (when fy = 40 or 60 ksi and f ′c = 3 and 4 ksi).

7.4 DEVELOPMENT LENGTH IN COMPRESSION

The development length of deformed bars in compression is generally smaller than that required
for tension bars, due to the fact that compression bars do not have the cracks that develop in tension
concrete members that cause a reduction in the bond between bars and the surrounding concrete.

Table 7.1 Values of ld/db for Various Values of f ′c and fy (Tension Bars), (𝜆=1.0)

fy =40 ksi fy = 60 ksi

No. 6 Bars ≥ No. 7 Bars No. 6 Bars ≥ No. 7 Bars

f′c (ksi)
Conditions

Met
Other
Cases

Conditions
Met

Other
Cases

Conditions
Met

Other
Cases

Conditions
Met

Other
Cases

3 29.3 43.9 36.6 54.8 43.9 65.8 54.8 82.2
4 25.3 38.0 31.7 47.5 38.0 57.0 47.5 71.2
5 22.7 34.0 28.3 42.5 34.0 51.0 42.5 63.7
6 20.7 31.0 25.9 38.8 31.0 46.5 38.8 58.1
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Table 7.2 Development Length Id (in.) for Tension Bars and fy = 60 ksi (𝜓 t =𝜓e = 𝜆= 1.0)

Development Length Id (in.)—Tension Bars

f′c = 3ksi f′c = 4ksi

Bar Number Bar Diameter (in.) Conditions Met Other Cases Conditions Met Other Cases

3 0.375 17 25 15 21
4 0.500 22 33 19 29
5 0.625 28 41 24 36
6 0.750 33 50 29 43
7 0.875 48 72 42 63
8 1.000 55 83 48 72
9 1.128 62 93 54 81

10 1.270 70 105 61 92
11 1.410 78 116 68 102

The ACI Code, Section 25.4.9.2, gives the basic development length in compression for all bars as
follows:

ldc =
0.02dbfy

𝜆
√

f ′c
≥ 0.0003dbfy (7.14)

which must not be less than 8 in. (ACI Code, Section 25.4.9.1). The development length, ldc, may
be reduced by multiplying ldc by Rs = (As required)/(As provided). For spirally reinforced concrete
compression members with spirals of not less than 1

4
in. diameter and a spacing of 4 in. or less, the

value of ldc in Eq. 7.14 may be multiplied by Rsl = 0.75. In general, ld = ldc × (Rs or Rsl, if applicable)
≥ 8 in. Tables 7.3 and 7.4 give the values of ldc/db when fy = 60 ksi.

Table 7.3 Values of ld/db for Various Values of f ′c and fy (Compression Bars),

𝜆= 1.0, Minimum Idc = 8 in. Idc∕db = 0.02fy∕𝜆
√

f ′c ≥ 0.0003fy

f′c(ksi) 3 4 5 or more

fy = 40 ksi 15 13 12
fy = 60 ksi 22 19 18

Table 7.4 Development Length, Idc (in.), for Compression Bars (fy = 60 ksi), 𝜆= 1.0

Development Length, Idc (in.) when f′c =

Bar Number Bar Diameter (in.) 3 ksi 4 ksi 5 ksi or More

3 0.375 9 8 8
4 0.500 11 10 9
5 0.625 14 12 12
6 0.750 17 15 14
7 0.875 20 17 16
8 1.000 22 19 18
9 1.128 25 22 21

10 1.270 28 25 23
11 1.410 31 27 26
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7.5 SUMMARY FOR COMPUTATION OF ID IN TENSION

Assuming normal construction practices, (cb +Ktr)/db = 1.5.

1. If one of the following two conditions is met:
a. Clear spacing of bars ≥ db, clear cover ≥ db, and bars are confined with stirrups not less

than the code minimum.
b. Clear spacing of bars ≥ 2db and clear cover ≥ db; then

ld

db
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜓t𝜓efy

20𝜆
√

f ′c
for no. 7 and larger bars (Eq. 7.10)

𝜓t𝜓efy

25𝜆
√

f ′c
for no. 6 or smaller bars (Eq. 7.11)

2. For all other cases, multiply these ratios by 1.5.

3. Note that
√

f ′c ≤ 100psi and 𝜓 t𝜓e ≤ 1.7; values of 𝜓 t, 𝜓e, and 𝜆 are as explained earlier.
4. For bundled bars, either in tension or compression, ld should be increased by 20% for three-bar

bundles and by 33% for four-bar bundles. A unit of bundled bars is considered a single bar
of a diameter and area equivalent to the total area of all bars in the bundle. This equivalent
diameter is used to check spacings and concrete cover.

Example 7.1

Figure 7.5 shows the cross section of a simply supported beam reinforced with four no. 8 bars that are
confined with no. 3 stirrups spaced at 6 in. Determine the development length of the bars if the beam is
made of normal-weight concrete, bars are not coated, f ′c = 3ksi, and fy = 60 ksi.

4 no. 8

Figure 7.5 Example 7.1.

Solution
1. Check if conditions for spacing and concrete cover are met:

a. For no. 8 bars, db = 1.0 in.
b. Clear cover= 2.5–0.5= 2.0 in. > db.

c. Clear spacing between bars 12−5
3

− 1.0 = 1.33 > db
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d. Bars are confined with no. 3 stirrup. The conditions are met. Then

ld

db

=
𝜓t𝜓efy

20𝜆
√

f ′c
(for bars > no. 7) (Eq. 7.8)

2. Determine the multiplication factors: 𝜓 t = 1.0 (bottom bars), 𝜓e = 1.0 (no coating), and 𝜆= 1.0
(normal-weight concrete). Also check that

√
f ′c = 54.8psi < 100psi.

ld
db

= 60,000

20 × 1 ×
√

3000
= 54.8 (Eq. 7.7)

So, ld = 54.8(1.0)= 54.8 in., say, 55 in. These values can be obtained directly from Tables 7.1
and 7.2.

If we calculate ld from Eq. 7.7,

ld
db

=
( 3

40

)(
fy

√
f ′c

)(
𝜓t𝜓e𝜓s(

cb + Ktr

)
∕db

)

= 𝜓t = 𝜓e = 𝜓s = 𝜆 = 1.0

Also cb = smaller of distance from center of bar to the nearest concrete surface cb1 or one-half
the center-to-center bar spacing cb2:

cb1 = 2.5 in. cb2 =
(1

2

)(12 − 5
3

)
= 1.17 in. (controls)

ktr =
40Atr

sn

Atr = 2 × (0.11) = 0.22 in.2

s = 6 in.

n = 2

ktr =
40 × 0.22

2 × 6
= 0.73

Cb + ktr

db
= 1.17 + 0.73

1.0
= 1.9 in. < 2.5 OK

ld
db

= 3
40

(
6000
√

3000

)( 1
1.9

)
= 43.24 in.

ld = 43.24(1.0) = 43.24 in.

Say 44 in., which is 11 in. less than the simplified approach.

Example 7.2

Repeat Example 7.1 if the beam is made of lightweight aggregate concrete, the bars are epoxy coated,
and As required from analysis is 2.79 in.2

Solution

1. Determine the multiplication factors: 𝜓 t = 1.0 (bottom bars), 𝜓e = 1.5 (epoxy coated), 𝜆= 0.75
(lightweight aggregate concrete), and Rs = (As required)/(As provided)= 2.79/3.14= 0.89.
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The value of 𝜓e is 1.5 because the concrete cover is less than 3db = 3 in. Check that
𝜓 t𝜓e = 1.0(1.5)= 1.5 < 1.7 (Assuming ktr = 0).

2.
ld
db

=
Rs𝜓t𝜓efy

20𝜆
√

f ′c
(for bars > no. 7)

= 0.89(1.0)(1.5)(60,000)

(20)(0.75)
√

3000
= 97.5 in. say, 98 in.

3. The development length ld can be obtained from Table 7.2 (ld = 55 in. for no. 8 bars) and then
divided by the factor 0.75.

Example 7.3

A reinforced concrete column is reinforced with eight no. 10 bars, which should extend to the footing.
Determine the development length needed for the bars to extend down in the footing. Use normal-weight
concrete with f ′c = 4ksi and fy = 60 ksi.

Solution
The development length in compression is

ldc =
0.02dbfy

𝜆
√

f ′c
≥ 0.0003dbfy

= 0.02(1.27)(60,000)

(1)
√

4000
= 24.1 in. (controls)

The minimum ldc is 0.0003(1.27)(60,000)= 22.86 in., but it cannot be less than 8 in. Because there
are no other multiplication factors, then ld = 24.1 in., or 25 in. (The same value is shown in Table 7.4.)

7.6 CRITICAL SECTIONS IN FLEXURAL MEMBERS

The critical sections for development of reinforcement in flexural members are

• At points of maximum stress
• At points where tension bars within the span are terminated or bent
• At the face of the support
• At points of inflection at which moment changes signs

The critical sections for a typical uniformly loaded continuous beam are shown in Fig. 7.6.
The sections and the relative development lengths are explained as follows:

1. Three sections are critical for the negative moment reinforcement:
Section 1 is at the face of the support, where the negative moment as well as stress is at

maximum values. The distance x1 should be greater or equal the development length in
tension ld for all bars.

Section 2 is the section where part of the negative reinforcement bars are no longer needed
to resist negative moment and can be terminated. To develop full tensile force, the bars
should extend a distance x2 before they can be terminated. Once parts of the bars are
terminated, the remaining bars develop maximum stress. The distance x2 should be the
larger of d or 12 bar diameters.
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la = d or 12 db

Total embedment

(a)

(b)

Point of inflection

Critical section for bar “a”
at theoritical cut location
for bars “b”

Critical section for bars a

1.3 Mn/Vula

Mn/Vu

bars a

bars a

bars b

(c)

max ld

Figure 7.6 Critical sections (circled numbers) and development lengths (x1 − x7).
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Section 3 is at the point of inflection. The bars shall extend a distance x3, which must be
equal to or greater than the effective depth, d, 12 bar diameters, or 1/16th the clear span,
whichever is greater. At least one-third of the total reinforcement provided for negative
moment at the support shall be extended a distance x3 beyond the point of inflection,
according to the ACI Code, Sections 7.7.3.8 and 9.7.3.8.

2. Three sections are critical for positive moment reinforcement:
Section 4 is that of maximum positive moment and maximum stresses. The distance x5

should be greater or equal the development length in tension ld for all bars.
Section 5 is where parts of the positive reinforcement bars are no longer needed to resist

positive moment and may be terminated. To develop full tensile force, the bars should
extend a distance x6. The remaining bars will have a maximum stress due to the termi-
nation of part of the bars. The distance x6 should be the larger of d or 12 bar diameters.
At the face of support, section 1, at least one-third the positive moment reinforcement
in simple members and one-fourth of the positive moment reinforcement in continuous
members shall extend along the same face of the member into the support. In beams
such reinforcement shall extend into the support 6 in. (ACI Code, Section 9.7.3.8.1).
At the face of support section 1, the bottom bars should extend a distance x7 equal
to the development length for compression ldc when bottom bars used as compression
reinforcement (ACI Code, Section 18.4.2).

Section 6 is at the point of inflection. ACI Code, Sections 7.7.3.8.3 and 9.7.3.8.3, specifies
at simple supports and at points of inflection positive moment tension reinforcement
shall be limited to a diameter such that the ld computed for fy shall satisfy following
equation:

ld ≤
Mn

Vu
+ la (See Fig. 7.6b)

This equation needs not be satisfied for reinforcement terminating beyond centerline of simple
support by standard hook.

Mn = is the nominal flexural strength of cross section (without the 𝜙 factor). Mn is calculated assuming
all reinforcement at the section to be stressed to fy. Mn is not the applied factored moment.

Vu = is shear force calculated at the section. la = At support, shall be the embedded length beyond
center of support

la = At point of inflection, shall be limited to d or 12 bar diameters, whichever is greater.

An increase of 30% in the value of Mn/Vu shall be permitted when the ends of the bars are
confined by a compressive reaction such as provided by a column below, but not when a beam
frames into a girder (Fig. 7.6a).

Example 7.4

A continuous beam has the bar details shown in Fig. 7.7. The bending moments for maximum positive
and negative moments are also shown. We must check the development lengths at all critical sections.
Given: f ′c = 3ksi normal-weight concrete, fy = 40 ksi, b= 12 in., d= 18 in., and span L= 24 ft.

Solution
The critical sections are section 1 at the face of the support for tension and compression reinforcement;
sections 2 and 5 at points where tension bars are terminated within span; sections 3 and 6 at point of
inflection, and at midspan section 4.
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Figure 7.7 Development length of a continuous beam.

1. Development lengths for negative-moment reinforcement, from Fig. 7.7, are as follows: Three no.
9 bars are terminated at a distance x1 = 4.5 ft from the face of the support, whereas the other three
bars extend to a distance of 6 ft (72 in.) from the face of the support.
a. The development length of no. 9 tension bars if conditions of spacing and cover are satisfied

can be determined from Table 7.1 or Eq. 7.11. For no. 9 bars,

db = 1.128 in.

Clear cover = 2.5 − 1.128
2

= 1.94 in. > db

Clear spacing = 12 − 5
2

− 1.128 = 2.37 in. > 2db

Then conditions are met. Use Table 7.1 to determine ld = 36.6(1.128)= 41.3 in. 𝜓 t = 1.3, 𝜓 s,
𝜓e = 1.0. Therefore ld = 1.3(41.3)= 54 in. For top bars, x1 ≥ ld ≥ 12 in. (minimum).

b. The development length x2 shall extend beyond the cutoff point where three no. 9 bars are not
needed, either d= 18 in. or 12db = 13.6 in., whichever is greater. Thus, x2 = 18 in. The required



272 Chapter 7 Development Length of Reinforcing Bars

development length x4 = 4.50 ft, is similar to x1. Total length required from the face of support
for the extended bar is y= x1 + 1.5 ft= 6.0 ft.

c. Beyond the point of inflection (section 3), three no. 9 bars extend a length x3 = y− 39= 72− 39
= 33 in. The ACI Code requires that at least one-third of the bars should extend beyond the
inflection point. Three no. 9 bars are provided, which are adequate. The required development
length of x3 is the larger of d= 18 in., 12db = 13.6 in., or L∕16 = 24 × 12

16
in. = 18 in., which is

less than the provided x3 distance.
2. Compressive reinforcement at the face of the support (section 1) (no. 8 bars): The development

length x7 is equal to

ldc =
0.02dbfy

𝜆
√

f ′c
= 0.02 × 1 × 40,000

1 ×
√

3000
= 14.6 in., say 15 in.

Minimum ldc = 0.0003dbfy = 0.0003 × 1 × 40,000 = 12 in.

ldc cannot be less than 8 in. The length 15 in. controls. For no. 8 bars, db = 1 in.; ldc pro-
vided= 15 in., which is greater than that required.

3. Development length for positive-moment reinforcement: six no. 8 bars extend 6 ft beyond the cen-
terline, and the three bars extend to the support. The development length x5 from the centerline is
ld = 36.6db = 37 in. (Table 7.1), but it cannot be less than 12 in. That is, x5 provided is 6 ft= 72 in.
> 37 in.

The length x6 is equal to d or 12db, that is, 18 in. or 12 × 1= 12 in. The provided value is 18 in.,
which is adequate.

The actual position of the termination of bars within the span can be determined by the
moment–resistance diagram, as will be explained later.

7.7 STANDARD HOOKS (ACI CODE, SECTIONS 25.3 AND 25.4)

A hook is used at the end of a bar when its straight embedment length is less than the necessary
development length, ld. Thus, the full capacity of the bar can be maintained in the shortest distance
of embedment. The minimum diameter of bend, measured on the inside of the main bar of a standard
hook Db, is as follows (Fig. 7.8) [9]:

• For no. 3 to no. 8 bars (10–25 mm), Db = 6db.
• For no. 9 to no. 11 bars (28, 32, and 36 mm), Db = 8db.
• For no. 14 and no. 18 bars (43 and 58 mm), Db = 10db.

The ACI Code, Section 25.4.3, specifies a development length ldh for hooked bar as follows:

ldh =

(
0.02𝜓efy

𝜆
√

f ′c

)

(db)(modification factor) (7.15)

where
𝜓e = 1.2 for epoxy-coated bars
𝜆 = 0.75 for lightweight aggregate concrete unless fct is specified, then 𝜆 = fct∕(6.7(

√
f ′c ) ≤ 1

𝜓 e, 𝜆 = 1.0 for all other cases

For grade 60 hooked bar (fy = 60 ksi) with 𝜓e = 𝜆= 1, ldh becomes

ldh =
1200db√

f ′c
(modification factor) (7.15a)
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no. 3 through no. 8 (Db = 6db)

no. 9, no. 10, and no. 11 (Db = 8db)

no. 14 and no. 18 (Db = 10db)

Figure 7.8 Hooked-bar details for the development of standard hooks [9]. Courtesy
of ACI.

Based on different conditions, the development length, ldh, must be multiplied by one of the
following applicable factors:

1. For 90∘ hooks of no. 11 or smaller bars are used, and the hook is enclosed vertically along
ldh or horizontally along the length of tail extension of the hook plus bend within stirrups or
ties spaced not greater than three times the diameter of the hooked bar, the basic development
length is multiplied by 0.8.(Figs. 7.9b,c).

2. When no. 11 or smaller bars are used and the side concrete cover, normal to the plane of the
hook, is not less than 2.5 in., the development length is multiplied by 0.7. The same factor
applies for a 90∘ hook when the concrete cover on bar extension beyond the hook is not less
than 2 in.

3. For 180∘ hooks of no. 11 or smaller bars that are enclosed with ties or stirrups perpendicular
to the bar and spaced not greater than 3db, the development length is multiplied by 0.8.

4. When a bar anchorage is not required, the basic development length for the reinforcement in
excess of that required is multiplied by the ratio

As (required)
As (provided)

5. When standard hooks with less than a 2.5-in. concrete cover on the side and top or bottom
are used at a discontinuous end of a member, the hooks shall be enclosed by ties or stirrups
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Less than
Ties or stirrup
ties required

Section A–A

2 2
1"

Less than

2 2
1"

db db

≤ 2db

≤ 2db

≤ 3db

db

≤ 3db

Tail of hook
(incl. bend)

(b) (c)

A

A

(a)

ldh

ldh

Figure 7.9 (a) Concrete cover limitations and (b and c) stirrups or ties placed perpen-
dicular or parallel to the bar being developed [9]. Courtesy of ACI.

spaced at no greater than 3db along ldh, The first tie or stirrups shall enclose the bent portion
of the hook, within 2db of the outside of the band. Moreover, the factor 0.8 given in items 1
and 3 shall not be used.

The development length, ldh, of a standard hook for deformed bars in tension must not be
less than 8db or 6 in., whichever is greater. Note that hooks are not effective for reinforcing bars in
compression and may be ignored (ACI Code, Section 25.4.3).

Details of standard 90∘ and 180∘ hooks are shown in Fig. 7.8 [9]. The dimensions given
are needed to protect members against splitting and spalling of concrete cover. Figure 7.9a shows
details of hooks at a discontinuous end with a concrete cover less than 2.5 in. that may produce
concrete spalling [9]. The use of closed stirrups is necessary for proper design. Figures 7.9b and c
show placement of stirrups or ties perpendicular and parallel to the bar being developed, spaced
along the development length. Figure 7.10 shows the stress distribution along a 90∘ hooked bar
under a tension force p.

The development required for deformed welded wire reinforcement is covered in ACI Code,
Section 25.4.6. Development length for welded wire reinforcement in tension ld, measured from
the critical section to the end of wire, shall be computed as the product of ld times welded deformed
wire reinforcement factor 𝜓𝑤.

1. For welded deformed wire reinforcement with at least one cross wire within ld and not less
than 2 in. from the point of critical section, 𝜓𝑤 shall be the greater of (fy − 35,000)/fy and
5db/s but not greater than 1.0, where s is the spacing between wires to be developed.
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Figure 7.10 Stress distribution in 90∘ hooked bar.

2. With no cross wire within ld or with a single cross wire less than 2 in. from the point of critical
section, 𝜓𝑤 = 1.0.

Example 7.5

Compute the development length required for the top no. 8 bars of the cantilever beam shown in Fig. 7.11
that extend into the column support if the bars are

a. Straight
b. Have a 90∘ hook at the end
c. Have a 180∘ hook at the end

Figure 7.11 Example 7.5.

The bars are confined by no. 3 stirrups spaced at 6 in. and have a clear cover= 1.5 in. and clear
spacings= 2.0 in. Use f ′c = 4ksi normal-weight concrete and fy = 60 ksi.

Solution

a. Straight bars: For no. 8 bars, db = 1.0 in. Because clear spacing= 2db and clear cover is greater
than db with bars confined by stirrups, then conditions a and b are met. Equation 7.10 can be used
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to calculate the basic ld or you can get it directly from Table 7.2: ld = 48 in. For top bars, 𝜓e = 1.3
and final ld = 1.3(48)= 63 in.

b. Bars with 90∘ hook: For no. 8 bars, db = 1.0 in. development length for fy = 60 ksi

ldh = 1200db∕
√

f ′c = 1200(1.0)∕
√

4000 = 19 in. Because no other modifications apply,
then ldh = 19 in.> 8 db = 8 in. or 6 in. Other details are shown in Fig. 7.11. The factor 𝜓e = 1.3 for
top bars does not apply to hooks.

c. Bars with 180∘ hook: ldh = 19 in., as calculated before. No other modifications apply; then
ldh = 19 in.> 8db = 8 in. Other details are shown in Fig. 7.11.

7.8 SPLICES OF REINFORCEMENT

7.8.1 General

Steel bars that are used as reinforcement in structural members are fabricated in lengths of 20,
40, and 60 ft (6, 12, and 18 m), depending on the bar diameter, transportation facilities, and other
reasons. Bars are usually tailored according to the reinforcement details of the structural members.
When some bars are short, it is necessary to splice them by lapping the bars a sufficient distance to
transfer stress through the bond from one bar to the other.

ACI Code, Section 25.6.1.7, gives the provisions for lap splicing of bars in a bundle (tension or
compression). The lap-splice length required for individual bars within a bundle must be increased
20% for a 3-bar bundle and 33% for a 4-bar bundle. Overlapping of individual bar splices with a
bundle is not permitted. Two bundles must not be lap spliced as individual bars. For noncontact lap
splices in flexural members, bars should not be spaced transversely farther apart than one-fifth the
required length or 6 in. (150 mm).

ACI Code, Section 25.5.7, permits the use of mechanical and welded splices. A full mechani-
cal splice must develop, in tension or compression, at least 125% of the fy of bar (ACI Code, Section
25.5.7.1).

In a full welded splice, the bars must develop in tension at least 125% of the specified yield
strength of bar (ACI Code, Section 25.5.7.1).

ANSI/AWSD1.4 allows indirect welds where the bars are not butted. Although AWSD1.4
does indicate that, wherever practical, direct butt splices are preferable for no.7 bars and larger.

Use of mechanical and welded splices have less than 125% of the specified yield strength of
bars in the region of low computed stresses.

Splices should not be made at or near sections of maximum moments or stresses. Also, it
is recommended that no bars should be spliced at the same location to avoid a weakness in the
concrete section and to avoid the congestion of bars at the same location, which may cause difficulty
in placing the concrete around the bars.

The stresses developed at the end of a typical lap splice are equal to 0, whereas the lap-splice
length, ld, embedded in concrete is needed to develop the full stress in the bar, fy. Therefore, a
minimum lap splice of ld is needed to develop a continuity in the spliced tension or compression
bars. If adequate splice length is not provided, splitting and spalling occurs in the concrete shell
(Fig. 7.12).

Splices in tension and compression are covered by Sections 25.5 of the ACI Code.

7.8.2 Lap Splices in Tension, lst

Depending upon the percentage of bars spliced on the same location and the level of stress in the
bars or deformed wires, the ACI Code introduces two classes of splices (with a minimum splice
length of 12 in.):



7.8 Splices of Reinforcement 277

Figure 7.12 Lap-splice failure due to the development of one or more cracks.

1. Class A splices: These splices have a minimum length lst = ld and are used when (a) one-half
or less of the total reinforcement is spliced within the required lap-splice length; and (b) the
area of tensile reinforcement provided is at least twice that required by analysis over the
entire length of the splice. The length ld is the development length of the bar, as calculated
earlier.

2. Class B splices: These splices have a minimum length lst = 1.3ld and are used for all other
cases that are different from the aforementioned conditions. For example, class B splices are
required when all bars or deformed wires are spliced at the same location with any ratio of
(As provided)/(As required). Splicing all the bars in one location should be avoided when
possible.

3. ld in classes A and B splices is calculated without the modification factor of (As required)/
(As provided).

4. When multiple bars located in the same plane are spliced at the same section, the clear spacing
is the minimum clear distance between the adjacent splices. For staggered splices, the clear
spacing is taken as the minimum distance between adjacent splices.

5. When bars of different size are lap spliced in tension, splice length shall be the larger of
ld of the larger bar and the tension lap-splice length of the smaller bar (ACI Code, Section
25.5.2.2).

6. Lap splice shall not be used for bars larger than no. 11 because of lack of adequate experi-
mental data (ACI Code, Section 25.5.1.1).

7.8.3 Lap Splice in Compression, lsc

The lap-splice length of the reinforcing bars in compression, lsc, should be equal to or greater
than the development length of the bar in compression, ldc (including the modifiers), calcu-
lated earlier (Eq. 7.14). Moreover, the lap-splice length shall satisfy the following (ACI Code,
Section 25.5.5.1):

lsc = (0.0005fydb) for fy ≤ 60,000psi (7.16)

lsc = (0.0009fy − 24)db for fy > 60,000psi (7.17)

For both cases, the lap-splice length must not be less than 12 in. Table 7.5 gives the lap-splice
length for various fy values. If the concrete strength, f ′c , is less than 3000 psi, the lap-splice length,
lsc, must be increased by one-third. When bars of different sizes are lap spliced in compression,
splice length shall be the larger of ldc of larger bar and compression lap splice lsc of smaller bar.
Lap splices of no. 14 and no.18 to no. 11 and smaller shall be permitted.
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Table 7.5 Lap-Splice Length in Compression, lsc (in.), (f ′c ≥ 3ksi and
Minimum lsc =12 in.)

fy (ksi)

Bar Number Bar Diameter (in.) 40 60 80

3 0.375 12 12 18
4 0.500 12 15 24
5 0.625 13 19 30
6 0.750 15 23 36
7 0.875 18 27 42
8 1.000 20 30 48
9 1.128 23 34 55

10 1.270 26 39 61
11 1.410 29 43 68

7.8.4 Lap Splice in Columns

The following special requirement are given in ACI Code, Section 10.7.5, for lap splice in columns:

a. If bar stress due to factored load is tensile and does not exceed 0.5fy in tension (≤ 0.5fy), use
class B tension splice if more than one-half of total column bars spliced at same location, or
use class A splice if not more than one-half of total column bar spliced at same location and
alternate lap splices are staggered by ld.

b. If bar stress due to factored loads > 0.5fy in tension, use class B lap splice.
c. In spirally reinforced columns, lap-splice length within a spiral may be multiplied by 0.75

but may not be less than 12 in. In tied columns, with ties within the splice length having a
minimum effective area of 0.0015 hs, lap splice may be multiplied by 0.83 but may not be
less than 12 in., where h is overall thickness of column and s is spacing of ties (in.). Tie legs
parallel to dimension h shall be used in determining effective area.

h2

h1

(Parallel to h1 dimension)
= 3 tie bar areas ≥ 0.0015h1s
(Parallel to h2 dimension)
= 2 tie bar areas ≥ 0.0015h1s 

Example 7.6

Calculate the lap-splice length for six no. 8 tension bottom bars (in two rows) with clear spacing= 2.5 in.
and clear cover= 1.5 in. for the following cases:

a. When three bars are spliced and (As provided)/(As required) > 2.
b. When four bars are spliced and (As provided)/(As required) < 2.
c. When all bars are spliced at the same location. Given: f ′c = 5ksi and fy = 60 ksi.
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Solution

a. For no. 8 bars, db = 1.0 in., and𝜓 t =𝜓 e = 𝜆= 1.0: Check first for
√

5000 = 70.7psi < 100psi, and
then calculate ld from Eq. 7.8 or Table 7.1, ld = 42.5db, conditions for clear spacings and cover are
met. ld = 42.5(1.0)= 42.5 in., or 43 in. For (As provided)/(As required) > 2, class A splice applies,
lst = 1.0ld = 43 in.> 12 in. (minimum). Bars spliced are less than half the total number.

b. Let ld = 43 in., as calculated before. Because (As provided)/(As required) is less than 2, class B
splice applies, lst = 1.3ld = 1.3(42.5)= 55.25 in., say, 56 in., which is greater than 12 in. and more
than half the total number of bar spliced.

c. Class B splice applies and lst = 56 in.> 12 in.

Example 7.7

Calculate the lap-splice length for a tied column. The column has eight no. 10 longitudinal bars and no.
3 ties. Given f ′c = 5ksi, solve for (a) fy = 60 ksi and (b) fy = 80 ksi.

Solution
Tie spacing s is the smaller of 16 × 1.128= 18 in., 48 × 3/8= 18 in. or 20 in. therefore s= 18 in.

20

8 no. 10 bars

20

a. Determine lap-splice length for fy = 60,000 psi

lsc = 0.0005fydb > 12 in.

= 0.0005 × 60,000 × 1.27

= 38.1 in. ≃ 39in. > 12 in. (Eq. 7.16)

Determine column tie requirements to allow 0.83 reduce lap-splice length according to ACI
Code, Section 10.7.5.2.1.

Effective area of ties ≥0.0015 hs

2 × 0.11 ≥ 0.0015 × 20 × 18

0.22 < 0.54

Modifier 0.83 will not apply. Lap-splice length= 39 in.
b. Determine lap-splice length for fy > 60,000 psi

lsc = (0.0009fy − 24)db

= (0.0009 × 80000 − 24) × 1.27

= 60.96 in ≃ 61 in. (Eq. 7.17)

Modifier 0.83 will not apply as previously calculated.
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Example 7.8

Calculate the lap-splice length for 20 × 20-in. tied column, for the following cases:
Load combination 1: All bars are in compression.
Load combination 2: Bar stress < 0.5fy
Load combination 3: Bar stress > 0.5fy
Given f ′c = 4ksi, fy = 60ksi, cover to the stirrups edge = 1.5 in.
Provided 4 no. 10 bars (above and below floor level)
No. 3 ties at 18 in.

Solution:
1. Determine type of lap splice required:

For load combination 1. All bars are in compression, so a compression lap splice could be used
(ACI Code, Section 10.7.5.2.1).

For load combination 2. Bar stress <0.5fy, so a class B tension splice required of more than half
of bars spliced at section or a class A splice may be used if alternate lap splice are staggered
(ACI Code, Section 10.7.5.2.2).

For load combination 3. Bar stress >0.5fy class B splice must be used (ACI Code, Section
10.7.5.2.2).
Lap splice required for the four no. 10 bars must be based on the load combination producing

the greatest amount of tension in the bars.
For this example load combination 3 governs.

2. Determine lap-splice length:

s

20
1.5 cover

No. 3 tie

Nominal diameter of no. 10 bar = 1.27 in.
Clear spacing between bars being developed is large and will not govern.
Clear cover= 1.5 + 0.375= 1.875 > db = 1.27.
Distance from center of bar to concrete surface = 1.875 + 0.635 = 2.51 > db.
cb is the smaller of (1) distance from center of bar being developed to the nearest concrete surface.

(2) One-half the center-to-center spacing of bars being developed.

cb = 2.51

ld =

[
3
40

fy

𝜆
√

f ′c

𝜓t𝜓e𝜓s(
cb + ktr

)
∕db

]

db

𝜓t = 1.0 for vertical bar

𝜓c = 1.0 for uncoated bar

𝜓s = 1.0 for no. 7 and larger bars

𝜆 = 1.0 for normal − weight concrete

ktr =
40Atr

sn
= 40 × 2 × (0.11)

18 × 2
= 0.244
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cb + ktr

db
= 2.51 + 0.244

1.27
= 2.16 < 2.5, use 2.16

ld =
( 3

40

) (60,000)(1.0)(1.0)(1.0)

(1)
√

4000(2.16)
(1.28) = 41.8 in.

Class B splice = 1.3(32.83) = 54.3 in.

7.9 MOMENT–RESISTANCE DIAGRAM (BAR CUTOFF POINTS)

The moment capacity of a beam is a function of its effective depth, d, width, b, and the steel area for
given strengths of concrete and steel. For a given beam, with constant width and depth, the amount
of reinforcement can be varied according to the variation of the bending moment along the span. It
is a common practice to cut off the steel bars where they are no longer needed to resist the flexural
stresses. In some other cases, as in continuous beams, positive-moment steel bars may be bent up,
usually at 45∘, to provide tensile reinforcement for the negative moments over the supports.

The factored moment capacity of an underreinforced concrete beam at any section is

Mu = 𝜙Asfy
(

d − a
2

)
(7.18)

The lever arm (d–a/2) varies for sections along the span as the amount of reinforcement varies;
however, the variation in the lever arm along the beam length is small and is never less than the value
obtained at the section of maximum bending moment. Thus, it may be assumed that the moment
capacity of any section is proportional to the tensile force or the area of the steel reinforcement,
assuming proper anchorage lengths are provided.

To determine the position of the cutoff or bent points, the moment diagram due to external
loading is drawn first. A moment–resistance diagram is also drawn on the same graph, indicating
points where some of the steel bars are no longer required. The factored moment resistance of one
bar, Mub, is

Mub = 𝜙Asbfy
(

d − a
2

)
(7.19)

where

a =
Asfy

0.85f ′c b

Asb = area of one bar

The intersection of the moment–resistance lines with the external bending moment diagram
indicates the theoretical points where each bar can be terminated. To illustrate this discussion,
Fig. 7.13 shows a uniformly loaded simple beam, its cross section, and the bending moment dia-
gram. The bending moment curve is a parabola with a maximum moment at midspan of 2400 K ⋅ in.
Because the beam is reinforced with four no. 8 bars, the factored moment resistance of one
bar is

Mub = 𝜙Asbfy
(

d − a
2

)

a =
Asfy

0.85f ′c b
= 4 × 0.79 × 50

0.85 × 3 × 12
= 5.2 in.

Mub = 0.9 × 0.79 × 50
(

20 − 5.2
2

)
= 620K ⋅ in.
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4 no. 8

Figure 7.13 Moment–resistance diagram.

The factored moment–resistance of four bars is thus 2480 K ⋅ in., which is greater than the
external moment of 2400 K ⋅ in. If the moment diagram is drawn to scale on the baseline A–A,
it can be seen that one bar can be terminated at point a, a second bar at point b, the third bar
at point c, and the fourth bar at the support end A. These points are the theoretical positions
for the termination of the bars. However, it is necessary to develop part of the strength of the
bar by bond, as explained earlier. The ACI Code specifies that every bar should be continued
at least a distance equal to the effective depth, d, of the beam or 12 bar diameters, whichever is
greater, beyond the theoretical points a, b, and c. The Code (Section 9.7.3.8) also specifies that at
least one-third of the positive-moment reinforcement must be continued to the support for sim-
ple beams. Therefore, for the example discussed here, two bars must extend into the support,
and the moment–resistance diagram, Mur, shown in Fig. 7.13, must enclose the external bend-
ing moment diagram at all points. Full load capacity of each bar is attained at a distance ld from
its end.

For continuous beams, the bars are bent at the required points and used to resist the negative
moments at the supports. At least one-third of the total reinforcement provided for the negative
moment at the support must be extended beyond the inflection points a distance not less than the
effective depth, 12 bar diameters, or 1

16
the clear span, whichever is greatest (ACI Code, Sections

7.7.3.8 and 9.7.3.8).
Bent bars are also used to resist part of the shear stresses in beams. The moment–resistance

diagram for a typical continuous beam is shown in Fig. 7.14.
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Figure 7.14 Sections and bending moment diagram (top) and moment–resistance dia-
gram (bottom) of a continuous beam. Bar diameter is signified by D.

Example 7.9

For the simply supported beam shown in Fig. 7.15, design the beam for the given factored loads and
draw the moment–resistance diagram. Also, show where the reinforcing bars can be terminated. Use
b= 10 in., a steel ratio of 0.018, f ′c = 3 ksi, and fy = 40 ksi.

Solution
For 𝜌= 0.018, Ru = 556 psi and Mu =Rubd2. Let Mu = 132.5 K ⋅ ft. Now 132.5(12)= 0.556(10)d2, so
d= 17 in.; let h= 20 in.
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Figure 7.15 Details of reinforcing bars and the moment–resistance diagram.
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Let As = 0.018(10)(17)= 3.06 in.2; use four no. 8 bars (As = 3.14 in.2). Actual d= 20–2.5= 17.5 in.

Mur = 𝜙Asfy
(

d − a
2

)
and a = 3.14(40)

0.85(3)(10)
= 4.93 in.

Mur(foronebar) = 0.9(0.79)(40)
(

17.5 − 4.93
2

)

= 427.7K ⋅ in. = 35.64K ⋅ ft

Mur(forall four bars) = 1710.8K ⋅ in. = 142.6K ⋅ ft

For the calculation of ‘a’, the four no. 8 bars were utilized rather than calculating the ‘a’ for the
extended two bars. This assumption will slightly increase the length of the bars beyond the cutoff point.

Details of the moment–resistance diagram are shown in Fig. 7.15. Note that the bars can be bent or
terminated at a distance of 17.5, say, 18 in. (or 12 bar diameters, whichever is greater), beyond the points
where (theoretically) the bars are not needed. The development length, ld, for no. 8 bars is 36.6db = 37 in.
(Table 7.1). The cutoff points of the first and second bars are at points A and B, but the actual points
are at A′ and B′, 18 in. beyond A and B. From A′, a length ld = 37 in. backward is shown to establish the
moment–resistance diagram (the dashed line). The end of the last two bars extending to the support will
depend on how far they extend inside the support, say, at C′. Normally, bars are terminated within the
span at A′ and B′ as bent bars are not commonly used to resist shear.

SUMMARY

Sections 7.1 and 7.2

Bond is influenced mainly by the roughness of the steel surface area, the concrete mix, shrinkage,
and the cover of concrete. In general,

ld =
Asfy

Uu
∑

O
(Eq. 7.3)

Sections 7.3 and 7.5

1. The general formula for the development length of deformed bars or wire shall be

ld
db

=
( 3

40𝜆

)(
fy
√

f ′c

)(
𝜓t𝜓e𝜓s(

cb + ktr

)
∕db

)

(Eq. 7.7)

As design simplification, ktr may be assumed to be zero. Other values of ld/db are given in
Tables 7.1 and 7.2. 𝜓 t, 𝜓e, 𝜓 s, and 𝜆 are multipliers defined in Section 7.3.1.

2. Simplified expressions are used when conditions for concrete cover and spacing requirement
are met. For no. 7 and larger bars,

ld

db
=

(
fy
√

f ′c

)(𝜓t𝜓e

20𝜆

)
= Q

For no. 6 and smaller bars,
ld
db

= 0.8Q

3. For all other cases, multiply the previous Q by 1.5.
4. Minimum length is 12 in.
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Section 7.4

Development length in compression for all bars is

ldc =
0.02dbfy

𝜆
√

f ′c
≥ 0.0003dbfy ≥ 8in. (Eq. 7.14)

For specific values, refer to Tables 7.3 and 7.4.

Section 7.6

The critical sections for the development of reinforcement in flexural members are

• At points of maximum stress
• At points where tension bars are terminated within the span
• At the face of the support
• At points of inflection

Section 7.7

The minimum diameter of bends in standard hooks is

• For no. 3 to no. 8 bars, 6db
• For no. 9 to no. 11 bars, 8db

The development length ldh of a standard hook is

ldh =

(
0.02𝜓 fy

𝜆
√

f ′c

)

(db)(modification factor)

Section 7.8

1. For splices in tension, the minimum lap-splice length is 12 in. If (a) one-half or less of the total
reinforcement is spliced within the required lap-splice length and (b) the area of reinforcement
provided is at least twice that required by analysis over the entire length of the splice, then
lst = 1.0 ld = class A splice.

2. For all other cases, class B has to be used when lst = 1.3ld.
3. For splices in compression, the lap-splice length should be equal to or greater than ldc in

compression, but it also should satisfy the following: lsc ≥ 0.0005 fydb (for fy ≤ 60,000 psi).
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P R O B L E M S

7.1 For each assigned problem, calculate the development length required for the following tension bars. All
bars are bottom bars in normal-weight concrete unless specified otherwise in the notes.

No.
Bar
No. f′c (ksi) fy (ksi)

Clear
Cover (in.)

Clear
Spacing (in.) Notes

a 5 3 60 2.0 2.25
b 6 4 60 2.0 2.50 Lightweight aggregate concrete
c 7 5 60 2.0 2.13 Epoxy coated
d 8 3 40 2.5 2.30 Top bars, lightweight aggregate concrete
e 9 4 60 1.5 1.5
f 10 5 60 2.0 2.5 No. 3 stirrups at 6 in.
g 11 5 60 3.0 3.0
h 9 3 40 2.0 1.5 Epoxy coated
i 8 4 60 2.0 1.75 (As provided)/(As required)= 1.5
j 6 4 60 1.5 1.65 Top bars, epoxy coated and no. stirrup at 4 in.

7.2 For each assigned problem, calculate the development length required for the following bars in compres-
sion.

No. Bar No. f′c (ksi) fy (ksi) Notes

a 8 3 60
b 9 4 60
c 10 4 40
d 11 5 60 (As required)/(As provided)= 0.8
e 7 6 60 (As required)/(As provided)= 0.9
f 9 5 60 Column with spiral no. 3 at 2 in.

7.3 Compute the development length required for the top no. 9 bars of a cantilever beam that extend into the
column support if the bars are
a. Straight
b. Have a 90∘ hook at the end
c. Have a 180∘ hook at the end

The bars are confined with no. 3 stirrups spaced at 5 in. and have a clear cover of 2.0 in. Use
f ′c = 4ksi and fy = 60 ksi. (Clear spacing= 2.5 in.)

7.4 Repeat Problem 7.3 when no. 7 bars are used.
7.5 Repeat Problem 7.3 when f ′c = 3ksi and fy = 40 ksi.
7.6 Repeat Problem 7.3 when no. 10 bars are used.



288 Chapter 7 Development Length of Reinforcing Bars

7.7 Calculate the lap-splice length for no. 9 tension bottom bars with clear spacing of 2.0 in. and clear cover
of 2.0 in. for the following cases:
a. When 50% of the reinforcement is spliced and (As provided)/(As required)= 2.
b. When 75% of the reinforcement is spliced and (As provided)/(As required)= 1.5.
c. When all bars are spliced at one location and (As provided)/(As required)= 2.
d. When all bars are spliced at one location and (As provided)/(As required)= 1.3. Use f ′c = 4ksi and

fy = 60 ksi.

7.8 Repeat Problem 7.7 using f ′c = 3ksi and fy = 60 ksi.

7.9 Calculate the lap splice length for no. 9 bars in compression when f ′c = 5ksi and fy = 60 ksi.
7.10 Repeat Problem 7.9 when no. 11 bars are used.
7.11 Repeat Problem 7.9 when fy = 80 ksi.

7.12 Repeat Problem 7.9 when f ′c = 4ksi and fy = 60 ksi.
7.13 A continuous beam has the typical steel reinforcement details shown in Fig. 7.16. The sections at midspan

and at the face of the support of a typical interior span are also shown. Check the development lengths
of the reinforcing bars at all critical sections. Use f ′c = 4ksi and fy = 60 ksi.

8 no. 8

6 no. 8
2 no. 8

Figure 7.16 Problem 7.13.

7.14 Design the beam shown in Fig. 7.17 using 𝜌max. Draw the moment–resistance diagram and indicate where
the reinforcing bars can be terminated. The beam carries a uniform dead load, including self-weight of
1.5 K/ft, and a live load of 2.2 K/ft. Use f ′c = 4ksi, fy = 60 ksi, and b= 12 in.
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Figure 7.17 Problem 7.14: Dead load= 1.5 K/ft (22.5 kN/m), live load=2.2 K/ft
(33 kN/m).

7.15 Design the beam shown in Fig. 7.18 using a steel ratio 𝜌= 1
2
𝜌b. Draw the moment–resistance diagram

and indicate the cutoff points. Use f ′c = 3ksi, fy = 60 ksi, and b= 12 in.

Figure 7.18 Problem 7.15: Dead load=2 K/ft (30 kN/m), live load (concentrated
loads only) is P1 =10 K (45 kN), P2 =16 K (72 kN).

7.16 Design the section at support B of the beam shown in Fig. 7.19, 𝜌max. Adopting the same dimensions of
the section at B for the entire beam ABC, determine the reinforcement required for part AB and draw the
moment–resistance diagram for the beam ABC. Use f ′c = 4ksi, fy = 60 ksi, and b= 12 in.

Figure 7.19 Problem 7.16: Dead load= 6 K/ft (90 kN/m), live load=4 K/ft (60 kN/m).



CHAPTER8
DESIGN OF DEEP
BEAMS BY THE
STRUT-AND-TIE
METHOD

Deep-beam flexural-shear failure.

8.1 INTRODUCTION

A strut-and-tie model of a structure is a valuable tool for the analysis and design of concrete mem-
bers especially for regions where the plane sections assumption of beam theory does not apply. A
strut-and-tie model visualizes a truss-like system in a structure and transmits forces from loading
points to the supports. This method can be applied effectively in regions of discontinuity in the
structural member, such as support areas, zones of load application, or areas with sudden change in
the geometrical dimensions such as brackets and portal frames. In these regions, the plane sections
do not remain plane after bending.

The ACI Code, Chapter 23 [1], and AASHTO [2] Section 5.6.3 introduce similar methods
and will be discussed later in this chapter.

8.2 B- AND D-REGIONS

St. Venant’s principle indicates that stresses due to axial load and bending approach a linear dis-
tribution at a certain distance from the discontinuity. This distance is generally taken as the larger
dimension of the member cross section, that is, depth h or width b.

The region where stresses cannot be computed from the flexure formula are called D-regions
(Fig. 8.1). The other regions of beam where bending theory and linear strain relationship applyes
are called B-regions (Fig. 8.1).

If two D-regions overlap or meet, they can be considered as a single D-region. ACI defines a
D-region as the portion of the member within a distance equal to the member heights, h or depth d
from a force discontinuity or a geometric discontinuity. For D-regions, maximum length-to-depth
ratio would be equal to 2.

8.3 STRUT-AND-TIE MODEL

The strut-and-tie model can be represented by an idealized truss model with force acting at the
different nodes. Compression members are defined as struts, tension members are defined as ties,
and joints are defined as nodal zone. These three elements are illustrated in Fig. 8.2.

290
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Figure 8.1 D- and B-regions in beam. (a) continuous beam, (b) beam with concentrated
load, and (c) beam with an opening [1]. Courtesy of ACI 318.

1. Strut: Compressive force resisted by concrete is called a strut. They are primarily made of
concrete or a combination of concrete and compression reinforcement. A strut is idealized as
a prismatic member of constant width or uniformly tapered width.

The ACI Code, Section R23.4.2 defines that if the effective compression strength fce differs at
the two ends of a strut, due either to differential nodal zone strengths at the two ends, or to different
bearing strength, the strut is idealized as a uniformly tapered compression member.”

As shown in Fig. 8.2 members AD and BD are called struts. The width of a strut is affected
by location and distribution of a tie and its anchorage. Size and location of bearing also affect the
width of a strut.

A bottle-shaped strut is a strut where the width of the compressed concrete at midlength
of the strut can spread laterally. To simplify the design, bottle-shaped struts are idealized either
as prismatic or uniformly tapered members. A taper of 1 to 2 is recommended as a first trial
in design.

2. Ties: These are tensile members in a strut-and-tie model. They are made out of a combination
of reinforcement and concrete. The contribution of concrete to the tensile resistance of a
tie is neglected. However, the presence of concrete helps to improve stiffness and control
deformations. Element AB in Fig. 8.2 is called a tie.
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Tie

Bottle-shaped
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(a)

(b)
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Figure 8.2 (a) Strut-and-tie model and (b) idealized model. Courtesy of ACI 318.

3. Nodes and nodal zone: The intersection between the axes of two or more struts and ties defines
the nodes in the model. Nodal zones are regions surrounding the nodes. These are confined
areas of concrete that should satisfy strength requirements. Nodes A, B, and D are shown in
Fig. 8.2. In a structural model at least three forces must intersect at a node to satisfy equi-
librium. Nodal zones are triangular in shape, implying that there are three force resultant
approaches at the node. When two struts meet at different angles to the surface of the nodal
zone, that surface can be taken to be normal to the resulting force from the two struts, as
shown later in Fig. 8.6d.

Forces at a node can vary between different combinations of compression and tensile forces,
C–C–C, C–C–T, C–T–T, T–T–T as shown in Fig. 8.3.

Now, consider the steel truss shown in Fig. 8.4. Due to symmetry, the reactions at A and B are
equal, RA =RB = 20 K, and from the equilibrium of joints A and D, the tensile force in AB= 20 K,
while the compressive force in AD or BD= 28.3 K. Member AB is considered a tie, while AD and
BD act as struts. The forces in the other members are equal to zero. Comparing this truss with the
concrete beam in Fig. 8.2a, it can be seen that most of the areas ACD and BED and below the nodal
zone D are not effective and act as fillers. The forces in the struts, for this loading condition, are
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Figure 8.3 Classification of nodes.
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Figure 8.4 Example of steel truss.

greater than the force in the tie. In this case, adequate concrete areas are available to act as idealized
struts. Steel reinforcement is needed to act as a tie for AB. Proper anchoring of the ties are essential
for a safe design and should be anchored in a nodal zone.

8.4 ACI DESIGN PROCEDURE TO BUILD A STRUT-AND-TIE MODEL

8.4.1 Model Requirements

• Equilibrium of forces should be maintained. Forces in strut and ties should be uniaxial.
• Struts must not cross or overlap each other. They can cross or overlap only at nodes.
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• Ties can overlap struts or other ties.
• Minimum angle between struts and ties should be 25∘.
• Tie should yield before strut crush (ductility).
• Tension in concrete is neglected.
• External forces should apply at nodes. If uniform load is present, that should resolve in con-

centrated load to apply at node.
• Prestressing is an external load.
• Reinforcement should be adequately anchored and provide sufficient detailing.

8.4.2 Check for Shear Resistance

ACI Code, Section 9.9.2.1, specifies the following limitations for deep beams. This check is nec-
essary prior to building a strut-and-tie model:

Vn ≤ 10
√

f ′c b𝑤d (8.1)

where
Vn = shear strength
b𝑤 = web width

d = effective depth of section

If this equation is not satisfied, the cross section of the member should be increased.

8.4.3 Design Steps According to ACI Section 23.2

a. Define and isolate each region. This should be defined as shown in Fig. 8.5 and Section 8.2.
If the beam is shallow (with a large span-to-depth ratio), B-region can be much longer. In that
type of beam, shear span is defined as being > 2h. If the beam has a small span-to-depth ratio,
the D-region would cover the whole beam. And shear span is defined as < 2h.

b. Determine the resultant forces acting on each D-region boundary. Determine loads on struc-
ture and locate concentrated force either from reactions or from applied loads. Uniform load
can be resolved into equivalent force resultant at node points.

c. Select a truss model to transfer the resultant forces across the D-region. In determining the
geometry of a truss, the dimension of the struts, ties, and nodal zones shall be taken into
account. The axes of the struts and ties should coincide, approximately, with the compression
and tension fields. The selection of model geometry is the most important task in design.
The selection of truss geometry may be done by visualizing the stress field that develops in
a structure. For simple structures such as simple supported beams, the flow of stresses may
be easily visualized. For a more complex structural system, the selection of a suitable truss
model is more difficult.

d. Compute the forces in strut and ties. The strut-and-tie model should be in equilibrium with
the applied loads and reactions. To calculate force in strut and ties, start computing forces at
the joint. There are two equation of equilibrium, one for horizontal force and one for vertical
force. These equations must be satisfied at each node.

e. Determine the effective widths of the struts and nodal zones based on the concrete and steel
strengths and the truss model chosen. The effective width of the struts and nodal zones are
determined considering the force from step (d) and the effective compressive strength. The
strut, tie, and nodal zone all have finite widths that should be taken into account in selecting
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Figure 8.5 Description of deep and slender beams: (a) shear span, a𝑣 <2h, deep beam;
(b) shear span, a𝑣 = 2h, limit for a deep beam; and (c) shear span, a𝑣 > 2h, slender beam.
Courtesy of ACI.

the dimension of the truss. Thickness of strut, tie, and nodal zone should be the same as the
member. Figure 8.6 shows a nodal zone. Vertical and horizontal forces equilibrate the force
in the inclined strut. If the stresses are equal in all three struts, a hydrostatic nodal zone can
be used and the width of struts will be in proportion to the force on the struts.

f. Design the tie anchorage. Ties may fail if the end anchorage is not designed properly. The
anchorage of the ties in the nodal zone is a critical part in the strut-and-tie model.

g. Check minimum steel requirement according to ACI 318, Section 9.9.3.1 and 9.9.3.2, mini-
mum steel for deep beams.

8.4.4 Design Requirements According to ACI

The design requirements for struts and ties can be summarized as follows:

1. Design of Struts, Ties, and Nodal Zones:

𝜙Fn ≥ Fu (8.2)

where
Fu = force in strut, tie, or one face of nodal zone due to factored loads
Fn = nominal strength of a strut, tie, or nodal zone
𝜙 = 0.75 for struts, ties, and nodal zone
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Figure 8.6 Nodal zones [1]. (a) Nodal zone, (b) subdivision of nodal zone, (c) three struts
acting on a nodal zone, and (d) struts AE and CE may be replaced by AC.
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The nominal strength is obtained from the effective strength given in the ACI Code for
each element.

2. Design of Struts. Strut capacity is determined by the effective strength times its cross-
sectional area.

The thickness of a strut is generally equal to member thickness. The width of a strut is gen-
erally controlled by the width of the nodal zone, bearing plate, or tie. When ties are anchored
through development length, the strut width is affected by the location and detailing of rein-
forcement and its anchorage.

Figure 8.7 shows how a strut width𝑤s is influenced by the bearing pad width and tie width.
Tie width also depends upon reinforcement and cover to reinforcement.
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Figure 8.7 Extended nodal zones and hydrostatic nodes [1]: (a) one layer of steel, (b)
distributed steel, (c) geometry, (d) tension force anchored by a plate, and (e) tension
force anchored by bond. Courtesy of ACI 318-14.
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a. Strength of Struts. The nominal compressive strengths of a strut without longitudinal rein-
forcement, Fns, shall be the smaller value of Fns at the two ends of the strut such that:

Fns = fceAcs (8.3)

where
Ac = cross-sectional area at one end of strut
fce = smaller effective compressive strength of concrete in strut and nodal zone.

That is the smaller of Eqs. 8.4 and Eqs. 8.5.
Effective compressive strength of the concrete in a strut:

fce = 0.85𝛽sf
′
c (8.4)

where 𝛽s equals 1.0 for a prismatic strut; 0.75 for struts with the width of the midsection
is larger than the width at the nodes (bottle-shaped struts) with adequate reinforcement to
resist transverse tensile stresses; 0.60 𝜆 for struts with the width of the midsection is larger
than the width at the nodes (bottle-shaped struts) without adequate reinforcement to resist
transverse tensile stresses (𝜆= 1.0 for normal weight concrete, 0.85 for sand–lightweight
concrete, and 0.75 for all lightweight concrete); 0.40 for struts in tension members or
tension flanges of member; and 0.60𝜆 for all other cases.

Effective compressive strength of the concrete of a nodal zone:

fce = 0.85𝛽nf ′c (8.5)

where 𝛽n equals 1.0 in nodal zones bounded by struts or bearing areas, or both, C–C–C
node; 0.80 in nodal zones anchoring one tie, C–C–T node; and 0.60 in nodal zones anchor-
ing two or more ties, C–T–T or T–T–T node.

b. Reinforcement Crossing Struts. The value 𝛽s = 0.75 is for bottle-shaped struts where rein-
forcement required is related to the tension force in the concrete due to the spreading of
the strut. The axis of the strut shall be crossed by reinforcement, which is resisting the
transverse tensile force resulting from the compression force spreading in the strut. The
compressive force in the strut may be assumed to spread at a 2:1 slope (Fig. 8.8).

For f ′c ≤ 6 ksi, the value of transverse reinforcement can be calculated from

∑(
Asi

bsi

)
(sin 𝛾i) ≥ 0.003 (8.6)

where
Asi = total area of reinforcement in ith layer crossing strut
si = spacing of reinforcement in ith layer adjacent to surface of member
b = width of member
𝛾 i = angle between axis of strut and bars in ith layer of bars crossing strut

The transverse reinforcement as mentioned above shall be placed in either two orthog-
onal directions at angles 𝛼1 and 𝛼2 to the axis of the strut or in one direction at an angle
𝛼 to the axis of the strut. If the reinforcement is only in one direction, 𝛼 shall not be less
than 40∘.

c. Compression Reinforcement in Struts. Compression reinforcement can be used to increase
the strength of a strut. The nominal strength of a longitudinal reinforced strut is

Fns = fceAc + A′
sf

′
s (8.7)
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Figure 8.8 Reinforcing bars crossing a strut. Courtesy of ACI 318-14.

where
Fns = strength of longitudinal reinforced strut
A′

s = area of compression reinforcement in strut
f ′s = steel stress for A′

s (f ′s = fy for grades 40–60)

Compression reinforcement should be properly anchored and parallel to the axis
of the strut. This reinforcement should be located in the strut and enclosed in ties or
spirals.

3. Design of Ties. The tie includes the reinforcement and the prism of concrete around the tie.
Tie design involves selecting the area of steel; and reinforcement is properly anchored and
ensures that the reinforcement fits within the tie width.

Strength of Ties. The nominal strength of a tie Fnt is

Fnt = Astfy + Aps(fse + 𝛥fp) (8.8)

where
Ast = area of non-prestressed reinforcement in tie
Aps = area of prestressing reinforcement
fse = effective stress after losses in prestressed reinforcement
𝛥fp = increase in prestressing stress due to factored loads
Aps = for nonprestressed members

fse + 𝛥fp ≤ fpy

It is permitted to take 𝛥fp = 60 ksi for bonded prestressed reinforcement or 10 ksi for
unbonded prestressed reinforcement.

The axis of reinforcement in a tie shall coincide with the axis of the tie in the strut-and-tie
model. The effective tie width (𝑤t) depends upon distribution of the tie reinforcement.

If the bars in the tie are in one layer, then

𝑤t = diameter of bar in tie + 2(cover to surface of bars) (8.9)
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Also, a practical upper limit of the tie width,𝑤t, can be taken as follows (ACI Code, Section
R23.8.1):

𝑤t(max) =
Fnt

fcebs
(8.10)

where fce is the compressive strength of the nodal zone as computed in Eq. 8.5.
The concrete is included in the tie to establish the width of the faces of the nodal zone

acted on by the ties. The concrete in a tie does not resist any load. Ties help in the transfer of
loads from strut to ties or to bearing areas by bonding to the reinforcement.

4. Design of Nodal Zone. If all the strut stresses are equal at a node, a hydrostatic nodal zone
can be used. The face of such a nodal zone is perpendicular to the axis of the strut and the
width of the faces of the nodal zone is proportional to the forces in the strut.

The thickness of the nodal zone is generally taken the same as the thickness of the member.
Calculation of the width of nodal zone is useful to calculate the width of compression strut
first.

Nodal zones are generally triangular in shape; it is often necessary to determine one side
of the triangle given others.

5. Strength of Nodal Zones. The nominal compression strength of a nodal zone, Fnn, is

Fnn = fceAn (8.11)

where An is the smaller of:
• The area of the face of the nodal zone on which Fnn acts; The area shall be taken perpen-

dicular to the line of action of Fnn.
• The area of the section through the nodal zone is, taken perpendicular to the line of action

of the resultant force on the section.
a. Confinement in Nodal Zones. Unless confining reinforcement is provided within the nodal

zone and its effect is supported by tests and analysis, the calculated effective compressive
stress on the face of a nodal zone due to the strut-and-tie forces should not exceed the
following:

fce = 0.85𝛽nf ′c (8.12)

where 𝛽n equals 1.0 in nodal zones bounded by struts or bearing areas, or both, C–C–C
node; 0.80 in nodal zones anchoring one tie, C–C–T node; and 0.60 in nodal zones anchor-
ing two or more ties, C–T–T or T–T–T node.

8.5 STRUT-AND-TIE METHOD ACCORDING TO AASHTO LRFD

AASHTO uses a design approach similar to ACI’s (Fig. 8.9). However, AASTHO uses different
strength and resistance factors from those used by the ACI Code.

1. Strut. Resistance of compressive strut is given by

Fr = 𝜙Fn (8.13)

where
𝜙 = 0.7 for strut-and-tie model

Fn = nominal compression resistance

Fn =
{

fceAcs for unreinforced struts (8.14)
fceAcs + Assfy for reinforced strut (8.15)
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Figure 8.9 Influence of anchorage condition on effective cross-sectional area of strut:
(a) Strut anchored by reinforcement, (b) strut anchored by bearing and reinforcement,
and (c) strut anchored by bearing and strut. Source: AASHTO LRFD Bridge Design Spec-
ification, 2014. Used by permission.

where Acs = effective cross-sectional area of strut determined from concrete area and anchor-
age conditions Ass = area of reinforcement in strut

fce =
f ′c

0.8 + 170𝜀1
≤ 0.85f ′c (8.16)

𝜀1 = 𝜀s + (𝜀s + 0.002)cot2𝛼s (8.17)

where
𝛼s = smallest angle between compressive strut and adjoining tension ties
𝜀s = tensile strain in concrete in direction of tension tie (in./in.)
f ′c = specified compressive strength

2. Ties. For nominal resistance of ties the AASHTO equation is

Fnt = Astfy + Aps(fse + fy) (8.18)



8.6 Deep Members 303

This equation is the same as the ACI equation only FY is used instead of ( 𝛥fp ).

𝜙 =
{

0.9 for reinforced concrete
1.0 for prestressed concrete

3. Nodal Zone. For the nodal zone the AASHTO recommends 𝜙= 0.7 for all cases, and the
effective width strength coefficient, 𝛽n, is taken as 0.85 for CCC nodes, 0.75 and for CCT
nodes, 0.65 for CTT and TTT nodes.

Minimum Reinforcement: AASHTO suggest that the D-region should contain orthogonal
grid reinforcement near each face with maximum spacing less than or equal to 12 in. Orthog-
onal grid reinforcement requirement is not applicable for slabs and footing. The minimum
steel ratio in each orthogonal direction should not be less than 0.003.

8.6 DEEP MEMBERS

Flexural members should be designed as deep beams if the ratio of the clear span, ln (measured
from face to face of the supports; Fig. 8.10), to the overall depth, h, is less than 4 (ACI Code,
Section 9.9.1.1). The members should be loaded on one face and supported on the opposite face
so that compression struts can develop between the loads and supports (Fig. 8.10). If the loads are
applied through the bottom or sides of the deep beam, shear design equations for ordinary beams
given earlier should be used. Examples of deep beams are short-span beams supporting heavy loads,
vertical walls under gravity loads, shear walls, and floor slabs subjected to horizontal loads.

The definition of deep flexural members is also given in ACI Code, Section 9.9.1. The code
defines flexural members as members where when the ratio of the clear span, ln, to the overall depth,
h (Fig. 8.10), is less than 4, regions loaded with concentrated loads within twice the member depth
from the face of the support are considered deep flexural members. Such beams should be designed
using nonlinear analysis or a strut-and-tie model (Fig. 8.11a).

8.6.1 Analysis and Behavior of Deep Beams

Elastic analysis of a deep beam is meaningful in the uncracked state only before cracking.
Deep-beam cracking occurs generally at one-third or one-half of the strength load. After cracks
develop, a redistribution of stresses is necessary. Elastic analysis shows the distribution of stresses

h d

Main steel

w, K/ft

ln

Figure 8.10 Single-span deep beam (ln/d<u).
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Figure 8.11 Stress distribution and cracking: (a) elastic stress distribution, (b) stress
trajectories (tension, solid lines, and compression, dashed lines), (c) crack patterns, and
(d) truss model for a concentrated load applied at the wall upper surface.
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that cause cracking and give guidance to the direction of cracking and the flow of stresses after
cracking.

Figure 8.11a shows the elastic stress distribution at the midspan section of a deep beam, and
Fig. 8.11b shows the principal trajectories in top-loaded deep beams. Solid lines indicate tensile
stresses, whereas dashed lines indicate compressive stress distribution. Under heavy loads, inclined
vertical cracks develop in the concrete in a direction perpendicular to the principal tensile stresses
and almost parallel to the dashed trajectories (Fig. 8.11c). Hence, both horizontal and vertical rein-
forcement is needed to resist principal stresses. Moreover, tensile flexural reinforcement is needed
within about the bottom one-fifth of the beam along the tensile stress trajectories (Fig. 8.11b). In
general, the analysis of deep beams is complex and can be performed using truss models or more
accurately using a finite-element approach or similar methods.

8.6.2 Design of Deep Beams Using Strut-and-Tie Model

Design of deep beam using the strut-and-tie model involves the following steps:

a. Laying out a truss that will transmit the necessary loads. The loads, reactions, struts, and ties
are all positioned in such a way that the centroid of each truss member and the line of action
of all externally applied loads concide at each joint. This is necessary for joint equilibrium.

b. Once a truss has finalized, the joints and members of the truss are detailed to transmit the
necessary forces.

c. Verify the capacity of struts both at middle length and at the nodal zone.
d. Design the tie and tie anchorage.
e. Prepare design detail and check minimum reinforcement requirements. In deep beams min-

imum reinforcement shall not be less than 0.0025b𝑤s, and s shall not exceed the smaller of
d/5 and 12 in. ACI 318 (Section 9.9.3.1 and 9.9.4.3). For AASHTO Section 5.6.3.6 the ratio
is 0.003, and the spacing s shall not exceed the smaller of d/4 and 12 in.

f. Design for the rest of the structure, that is, the rest of the structure designed as a B-region.
And the design should be integrated with the design of the D-region.

g. Check for anchorage.

Example 8.1 Strut-and-Tie Deep Beam—ACI Method

A simply supported deep beam has a clear span equal to 12 ft, a total height equal to 6 ft, and a width of
18 in. The beam supports an 18-in.-square column at midspan carrying a dead load equal to 300 K, and
a live load equal to 240 K. Design the beam using the strut-and-tie model, using f ′c equal to 4 ksi and fy
equal to 60 equal ksi. (Refer to Fig. 8.12.)

Solution

1. Calculate the factored loads:

Weight of beam = 15 × 6 × 1.5 × 0.150 = 20 K

Since the weight of the beam is small relative to the concentrated loads at midspan, add it to
the concentrated load at midspan:

Pu = 1.2D + 1.6L = 1.2(300 + 20) + 1.6(240) = 768 K

RA = RB = 768
2

= 384 K
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Figure 8.12 Example 8.1.

2. Check if the beam is deep according to to the ACI Code, Section 9.9. clear span, ln = 12 ft, h= 6 ft,
and ln/h= 2 ≤ 4, deep beam.

3. Calculate the maximum shear strength of the beam cross section. Let Vu at A=RA = 384 K and
assume d = 0.9h = 0.9 × 72 = 64 in.:

Vn = 10
√

f ′c b𝑤d = 10
√

4000(18 × 64) = 728.6 K

𝜙Vn = 0.75(728.6) = 546 K > Vu OK

4. Select a truss model. A triangular truss model is chosen. Assume that the nodes act at the centerline
of the supports and at 6.0 in. from the lower or upper edge of the beam (Fig. 8.13). The strut-and-tie
model consists of a tie AB and two struts AD and BD. Also, the reactions at A and B and the load
Pu at D represent vertical struts:

Length of diagonal strut AD =
√

602 + 812 = 100.8 in.

Let 𝜃 be the angle between the strut and the tie. Then tan 𝜃 = 60/81= 0.7407 and
𝜃 = 36.5∘ > 25∘, OK (ACI Section 23.2.7).

5. Calculate the forces in the truss members:

Compression force in strut AD: FAD = FBD = 384
(100.8

60

)
= 645 K

Tension force in tie AB: FAB = 645
( 81

100.8

)
= 518.3 K

6. Calculate the effective strength fce. Assume that confining reinforcement is provided to resist
the splitting forces. Struts AD and BD represent the bottle-shaped compression members, and
therefore 𝛽s = 0.75, and

fce = 0.85𝛽sf
′
c = 0.85 × 0.75 × 4 = 2.55 ksi
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Figure 8.13 Example 8.1.

The vertical struts at A, B and D have uniform sections, and therefore 𝛽s = 1.0 and

fce = 0.85 × 1.0 × 4 = 3.4 ksi

The nodal zone D has C–C–C forces, and therefore 𝛽s = 1.0. The effective strength at nodal
zone D is given as

fcu = 0.85 × 1.0 × 4 = 3.4 ksi

Since the struts AD and BD connect to the other nodes, then fcu = 2.55 ksi controls to all nodal
zones.

7. Design of nodal zones:
a. Design the nodal zone at A. Assume that the faces of the nodal zone have the same stress of

2.55 ksi and the faces are perpendicular to their respective forces:

𝜙Fn ≥ Fu or 𝜙fcuAc ≥ Fu

where 𝜙 equals 0.75 for struts, ties, and nodes.
The length of the horizontal face ab, Fig. 8.14a, is equal to Fu/(𝜑 fcu b)= 384/(0.75×

2.55× 18)= 11.2 in.
From geometry, the length ac= 11.2 (518.3/384)= 15.2 in.
Similarly, the length of bc= 11.2 (645/384)= 18.8 in.
The center of the nodal zone is located at 15.2/2= 7.6 in. from the bottom of the beam,

which is close to 6.0 in., assumed earlier.
b. Design the nodal zone at D (Fig. 8.14b):

The length of the horizontal face de = 768∕(0.75 × 2.55 × 18) = 22.3 in.
The length of df= ef= 22.3 (645/768)= 18.7 in.
The length of fg= 15.0 in, and the center of the nodal zone is located at 15/3= 5.0 in. from

the top, which is close to the assumed 6.0 in.
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Figure 8.14 Example 8.1: Nodal zones: (a) at node A, (b) at node D, and (c) reinforce-
ment details.

8. Design of horizontal and vertical reinforcement:
Vertical web reinforcements provided must be at least:

A𝑣 = 0.0025bs

And horizontal web reinforcements provided must be at least:

A𝑣h = 0.0025bs

Spacing for both horizontal and vertical reinforcement shall not exceed d/5= 14.4 in. or 12 in.,
therefore use s= 12 in.

A𝑣 = A𝑣h = 0.0025 × 18 × 12 = 0.54 in.2(per 12 inch)

Use No. 5 at 12 in.: As = 2(0.31)= 0.62.
a. Vertical Bars: From Figure 8.14a, the angle between the vertical bars and strut is equal to 53.5∘

(
Asi

bs

)
sin 𝛾 = 0.62

18 × 12
sin 53.5 = 0.0023

b. Horizontal Bars: From Figure 8.14a, the angle between the vertical bars and strut= 36.5∘
(

Asi

bs

)
sin 𝛾 = 0.62

18 × 12
sin 36.5 = 0.0017

∑(
Asi

bs

)
sin 𝛾 = 0.0023 + 0.0017 = 0.004 > 0.003
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Figure 8.15 Example 8.1: Development of tie reinforcement.

9. Design of the horizontal tie AB:
a. Calculate As:

Fu = 𝜙As fy As =
518.30

0.75 × 60
= 11.52 in.2

Use 12 no. 9 bars. As = 12 in.2 in three rows as shown in Fig. 8.14c.
b. Calculate anchorage length. Anchorage length is measured from the point beyond the extended

nodal zone, Fig. 8.15. Tan 36.5= 7.6/x; then x= 10.27 in.
Available anchorage length= 10.27+ 5.6+ 9− 1.5 in., (cover)= 23.37 in. Development length

of no. 9 bars required= 47.5 in. (Table 7.1), which is greater than 23.37 in. Use a standard 90∘ hook
enclosed within the column reinforcement:

ldh =
(0.02𝜓efy)db

𝜆
√

f ′c

𝜓e = 𝜆 = 1.0 db = 1.128 in.

ldh = 0.02(1.0)(60, 000)(1.128)

(1.0)
√

4000
= 21.4 in. < 23.37 in.

Example 8.2 ACI Method

Design a simply supported deep beam for flexural and shear reinforcement that carries two-concentrated
live load of 95 kips, shown in Fig. 8.16. The beam has a clear span of 10 ft, overall depth of 40 in. and
width of 12 in. The beam is supported on 16-in.-wide columns. Given f ′c = 4 ksi, fy = 60 ksi. Assume the
bearing plates at supports and loading points are 16 in.× 20 in. and 12 in.× 20 in., respectively.
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Solution

1. Calculate the factored load:

Weight of the beam =
(

10 + 16
12

+ 16
12

)(40
12

)(12
12

)
(0.150) = 6.3 K

Since the weight of beam is small relative to concentrated loads, add to the concentrated loads.

Pu = 1.2D + 1.6L = 1.2(6.3) + 1.6 × 95 = 160 K

RA = RD = 160 K

2. Check if beam is deep according to ACI Code, Section 9.9:

Clear span, ln = 10 ft, h = 3.3 ft, therefore
ln

h
= 3 < 4, deep beam.

Check the bearing capacity at support and loading location:
a. At supports A and D: The area of bearing plate at each support is Ac = 16× 20= 320 in.2 The

bearing stresses at each support is:

Vu

Ac
= 160(1000)

320
= 500 psi

The nodal zone over the support is a compression-tension node (C-C-T), therefore:

fcu = 0.85𝛽nf ′c = 0.85 × 0.8 × 4000 = 2720 psi, 𝜙fcu = 0.75(2720) = 2040 psi

Check if

𝜙fcu >
Vu

Ac

2040 psi > 500 psi OK

Therefore, the bearing plate at the support is adequate.
b. At loading points B and C: The area of bearing plate at each loading point is Ac = 12× 20= 240 in.2

The bearing stress at each loading point is

Vu

Ac
= 160(1000)

240
= 666.7 psi

The nodal zone beneath each loading point is a pure compression node (C-C-C), therefore,

fcu = 0.85𝛽nf ′c = 0.85 × 1.0 × 4000 = 3400 psi 𝜙fcu = 0.75(3400) = 2550 psi



8.6 Deep Members 311

40"

40" 28"

STRUT

CL

Vu = 160 K

ws Fu,BC

jd

Fu,AD

TIEA

B

STRUTF u,AB

θ
wt

Figure 8.17 Free-body diagram of the left third of the beam.

Check if

fcu >
Vu

Ac

2500 psi > 666.7 psi OK

Therefore, the bearing plate loading point is adequate.
3. Calculate the maximum shear strength of beam cross section:

Let Vu at A=RA = 160 K, and assume d= 0.9h= 0.9× 40= 36 in.

Vn = 10
√

f ′c b𝑤d = 10 ×
√

4000 × 12 × 36 = 273 K

𝜙Vn = 0.75 × 273 = 205 > Vu = 160K

Therefore, the cross sectional dimensions are adequate.
4. Select strut and tie model and geometry:

A truss model is chosen as shown in Fig. 8.16. Assume that the nodes act at the centerline of
the supports and loading points. Therefore, the horizontal position of A, B, C, and D are defined.
The vertical position of the nodes must be as close to the top and bottom of the beam. To reach
this goal, the lever arm, jd shown in Fig. 8.17, for the coupled forces should be at a maximum, or
𝑤s and 𝑤t should be at a minimum.

To minimize 𝑤s and 𝑤t, the strut and tie should reach their capacity:
For strut BC:

Fu,BC = 𝜙Fnc = 𝜙fcuAc = 𝜙(0.85𝛽sf
′
c )b𝑤s

where 𝛽s = 1.0 (horizontal strut).
For tie AD:

Fu,AD = 𝜙Fnt = 𝜙fcuAc = 𝜙(0.85𝛽nf ′c )b𝑤t

where 𝛽n = 0.8 (C-C-T node).
As shown in Fig. 8.17, strut BC and tie AD form a couple, therefore Fu, BC =Fu, AD or

𝜙(0.85 × 1.0f ′c )b𝑤s = 𝜙(0.85 × 0.8f ′c )b𝑤t,

𝑤t = 1.25𝑤s

jd = 40 −
𝑤s

2
−
𝑤t

2
= 40 − 1.125𝑤s

By writing the moment equilibrium about point A we have:

Vu(40) − Fu,BC(jd) = 0

(160)(40) − 𝜙(0.85𝛽sf
′
c )b𝑤s(40 − 1.125𝑤s) = 0
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(160)(40) − 0.75(0.85 × 1.0 × 4)(12)𝑤s(40 − 1.125𝑤s) = 0

𝑤s = 6.4 in. and 𝑤t = 1.125𝑤s = 7.2 in.

Therefore
jd = 40 − 7.2

2
− 6.4

2
= 33.2 in.

5. Calculate the forces in all truss members:

length of diagnal struts, AB and CD =
√

402 + 33.22 = 52 in.

Let 𝜃 be the angle between the strut and the tie,

tan𝜃 = 33.2
40

= 0.831, 𝜃 = 39.7∘ > 25∘ OK

Fu,BC = Fu,AD = 160
( 40

33.2

)
= 192.5K

Fu,AB = Fu,CD = 160
sin 39.7∘

= 250K

6. Calculate the effective stress, fce:
For struts:
Assume that confining reinforcements is provided to resist the splitting forces. Struts, AB, BC,

and CD represent the bottle-shaped compression members, therefore, 𝛽s = 0.75

fce = 0.85𝛽sf
′
c = 0.85 × 0.75 × 4 = 2.55 ksi

For nodes:
The nodal zone B or C has C-C-C forces, therefore 𝛽n = 1.0.

fce = 0.85𝛽nf ′c = 0.85 × 1 × 4 = 3.4 ksi

Since the three struts are connected to the other nodes, then fcu = 2.55 ksi controls all nodes.
7. Design of nodal zones:

a. Design the nodal zone at B or C (Fig. 8.18a):As shown in Fig. 8.19a, the width of the top
strut is

𝑤st = 12 sin 𝜃 +𝑤s cos 𝜃 = 12 sin 39.7∘ + 6.4 cos 39.7∘ = 11 in.

b. Design the nodal zone at A or D (Fig. 8.19b):

𝑤sb = 16 sin 𝜃 +𝑤t cos 𝜃 = 16 sin 39.7∘ + 7.2 cos 39.7∘ = 14.4 in.

Struts AB, BC, and CD represent the bottle-shaped compression members, 𝛽s = 0.75.

𝜙Fns = 𝜙(0.85𝛽sf
′
c )b𝑤st = 0.75(0.85)(0.75)(4)(12)(11) = 251.3 K

𝜙Fns = 𝜙(0.85𝛽sf
′
c )b𝑤sb = 0.75(0.85)(0.75)(4)(12)(14.4) = 329 K

use 𝜙Fns = 251.3 K

Because 𝜑Fns is higher than the required forces, struts AB, BC, and CD are adequate.

𝜙Fns ≥ FuAB,CD
or 251.3 > 250 and 𝜙Fns ≥ FuBC

or 251.3 > 250 OK

8. Design of horizontal and vertical reinforcement:
Vertical web reinforcements provided must be at least:

A𝑣 = 0.0025bs

And horizontal web reinforcements provided must be at least:

A𝑣h = 0.0025bs



8.6 Deep Members 313

12"

39.7° 39.7°

39.7°

B
A

(a)

Centroid ofstrut

Centroid ofstrut

Centroid of tie

w
s

= 
6.

4"

w
st

16"

(b)

x

w
t
= 

7.
2"

w
sb

Figure 8.18 (a) Node zone at B or C. (b) Node zone at A or D.

Spacing for both horizontal and vertical reinforcement shall not exceed d/5= 7.2 in. or 12 in.,
therefore use s= 7 in.

A𝑣 = A𝑣h = 0.0025 × 12 × 7 = 0.21 in.2(per 7 in.)

A𝑣 = A𝑣h = 0.21 × 7∕12 = 0.36 in.2(per 12 in.)

Use No. 4 at 12 in.: As = 2(0.2)= 0.4 in.2 (two legs)
a. Vertical Bars: From Fig. 8.18b, the angle between the vertical bars and strut is equal to 50.3∘

(
Asi

bs

)
sin𝛾 = 0.4

12 × 12
sin 50.3 = 0.0021

b. Horizontal Bars: From Fig. 8.18b, the angle between the vertical bars and strut= 39.7∘
(

Asi

bs

)
sin𝛾 = 0.4

12 × 12
sin 39.7 = 0.0017

∑(
Asi

bs

)
sin𝛾 = 0.0021 + 0.0017 = 0.0038 > 0.003

9. Design of the horizontal tie AD:
Required tie reinforcement

Fu = 𝜙Asfy As =
192.5

0.75 × 60
= 4.27 in.2

Provide six no. 8 bars in three rows, Ast = 4.8 in.2

10. Calculate anchorage length:
Anchorage length is measured from the point beyond the extended nodal zone:

tan 39.7∘ =
𝑤t

2x
= 7.2

2x

x = 4.5 in.

Available anchorage length: 4.5+ 16− 1.5= 19 in.
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NO. 8 bars

NO. 4 @ 12 in. c/cNO. 4 @ 12 in. c/c

40" 40"

12"

6-
 N

O
. 8

 b
ar

s

10' = 120" 16"16"

Figure 8.19 Reinforcement details.

Development length of No. 8 bars required= 47.5(1)= 47.5 inch (table 7), which is greater
than 19 in. Use a standard 90∘ hook enclosed with column reinforcement:

ldh

(0.02𝜓efy)db

𝜆
√

f ′c
= 0.02(1.0)(60000)(1.0)

(1.0)
√

4000
= 19 ≤ 19 in. OK

Reinforcement details are shown in Fig. 8.19.

Example 8.3 AASHTO LRFD Method

A simply supported deep beam has a depth of 4 ft. The clear span is 4 ft, and the width is 1 ft (Fig. 8.20).
The beam is carrying a total factored load of 250 K at midspan. Design the beam using the strut-and-tie
model. Assume f ′c = 4 ksi, fy = 60 ksi, and bearing pads of 8 in.× 8 in.

4'

4"A

CB

RA

RA = RB = 125 K

RB

60°

4"

4'

250 K

Figure 8.20 Example 8.3: Idealized deep beam.

Solution

1. Calculate reactions. Total factored load given is 250 K. The reaction is

RA = RB = 125 K
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2. Check if beam is deep. Height of beam (h) is 4 ft, clear span (ln) is 4 ft.

ln

h
= 4

2
= 2 < 4 ft (Entire beam is in D − region)

3. Calculate maximum shear strength of the beam cross section. Let Vu at A be given as RA = 125 K
and assume

d = 0.9h = 0.9 × 48 = 43.2 in., use 43 in.

𝜙Vn = 𝜙(10)
√

f ′c b𝑤d = 0.75(10)
√

4000(12)(43) = 244 K > Vu = 125 K (OK)

4. Select a truss model. A triangular truss model is chosen. Assume that nodes act at the centerline
of the supports and 4 in. from the lower and upper edges of the beam. The strut-and-tie model
consists of a tie, BC, and two struts AB and AC.

Let the angle between the strut and tie be 𝜃 = 60∘ > 25∘ OK.
5. Calculate the forces in truss members.

At the joint A (C–C–C) nodes:

250 K

FACFAB

FAB = FAC

FAB cos 30∘ = 250 K

FAB = 250
cos 30∘

= 144.34 K

At joint B (C–C–T) nodes:

144.34 K

FBC

125 K

FBC = 144.34 cos 60 = 72.17 K

6. Check size of bearing:
Effective strength of node A (C–C–C node) = 0.85f ′c𝜙
Effective strength of node B, C (C–C–T node) = 0.75f ′c𝜙

Bearing area required at node A =
Pu

0.85f ′c𝜙
= 250

0.85 × 4 × 0.7
= 105 in.2

Bearing area required at nodes B and C =
Pu

0.85f ′c𝜙
= 125

0.75 × 4 × 0.7
= 60 in.2

Bearing area proposed= 8′′ × 8′′ = 64 in.2 < 105 in.2 (not safe)
Since the width of beam is 12′′, keep a “width with clear spacing 1.5” on both sides. The

bearing pad length L is

L = 105
9

= 11.67′′

Use 9′′ × 12′′ bearing pad at the load position and 8′′ × 8′′ bearing pad at support.
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7. Chose tension tie reinforcement:

𝜙 = 0.9 for tension tie

Pu = 𝜙fyAst

Ast =
72.17

(0.9)(60)
= 1.34 in.2

There can be three bars of reinforcement:
1.34

3
= 0.447 in.2

Use 3 three no. 6 bars:
As = 3 × 0.44 = 1.32 in.2

8. Check capacity of struts:

FAB = FAC = 144.34 K

𝜀s =
Pu

AstEs

= 722
1.34 × 29,000

= 1.85 × 10−3 in.∕in.

where 𝜀s is the tensile strain in the concrete in the direction of tension tie (in./in.),

𝜀l = 𝜀s + (𝜀s + 0.002)cot2𝛼

= 1.85 × 10−3 + (1.85 × 10−3 + 0.002)cot2(60) = 3.13 × 10−3in.∕in.

fce =
f ′c

0.8 + 170𝜀l
≤ 0.85f ′c

= 4

0.8 + 170(3.13 × 10−3)
≤ 0.85(4) = 3.00 ≤ 3.4 OK

Acs = 𝑤 × (lb sin 𝜃s + ha cos 𝜃s)

where
𝑤 = width of deep beam = 12′′

lb = bearing pad 8′′ and 12′′

𝜃s = 60∘

ha = width of tie = 8
(72.2

125

)
= 4.62 in., use 5 in.

At node B, C

𝑤s = lb sin 𝜃s + ha cos 𝜃s = 8 sin 60∘ + 5 cos 60∘ = 9.42 in., use 9.5 in.

At node A:

Width of bearing pad = 12 in.

Width of strut = 12
(144.34

250

)
= 6.92 in.

Therefore 𝑤s = 9.5 in.governs

Acs = 12 × 9.5 = 114 in.2

Fr = 𝜙Fn = 0.7fceAcs = 0.7(3)(114) = 239 K > 144.34 K

Therefore, strut reinforcement is not required.
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9. Check anchorage of tension ties. There is almost no embedded length to devolve no. 6 tension tie
reinforcement. Therefore, provide anchor plate or headed plate or headed ends.

10. Check nodal zone stress:
fc =

72.2
2(4)(12)

= 0.752 ksi

Then limiting nodal zone stress is

0.75𝜙f ′c = 0.75(0.7)(4) = 2.1 ksi > 0.752 OK.

11. Crack control reinforcement. The minimum ratio of reinforcement to gross concrete area is
0.003 in each direction. The maximum spacing is the smaller of d/4= 43/4= 10.75 or 12 in.
Therefore, use 10′′c/c

As,min = 0.003 × 12 × 48 = 1.73 in.2

Provide no. 4 bars = 1.73
0.2

= 8.65 ≃ 10

Provide 10 no. 4 bars 5 each face at 10 in. c/c.
12. Details of reinforcement are shown in Fig. 8.21.

4'

4'

9" × 12" bearing pad

5 no. 4 each face

Anchor or headed ends

8 × 8 bearing pad3 no. 6

A

4'

5 no. 4 each face

5 no. 4 each face

3 no. 6

1'

Figure 8.21 Example 8.3: Deep-beam reinforcement details.
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Example 8.4 ACI Method

A simply supported deep beam with an opening, shown in Figure 8.22, has a clear span equal to 12 ft,
a total height equal to 6 ft, and a width of 18 in. The beam supports an 18 in. - square column at
midspan carrying a service dead load of 300 K, and a live service load of 240 K. f′c = 4 ksi, fy = 60 ksi,
Es= 29 * 106 psi.

18"

24"

24"

24"

18.0"

18"

A E

C

42" 60" 18"42"

Figure 8.22 Example 8.4: Idealized deep beam with an opening.

1. Calculate the factored loads:
2. Check if beam is deep beam according to ACI Code, Section 9.9, ln = 12 ft, h = 6 ft.
3. Calculate Maximum Shear Strength:
4. Select Truss Model:

See Figure 8.23
5. Calculate Element Forces:
6. Calculate Effective Strength:

Struts connect to all nodes therefore, 2.55 ksi controls to all nodal zones.
7. Design Nodal zones:

Nodes A, E (Figure 8.24)
Nodes C see (Figure 8.24)
Nodes B, E (Figure 8.24)
Design Horizontal and Vertical reinforcement:
Suggest No. 5 bars @ 12 in.
Vertical Bars below opening
Horizontal Bars below opening
Vertical Bars above opening
Horizontal Bars above opening
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Pu = 766 K

C

B

A E

D28.0°

41.0°

9.0" 9.0"

6.0"

6.0"

41.0"

RA = 383K RE = 383K

41.0"62.0"

19.5"

43.5"

Figure 8.23 Example 8.4: Strut and Tie model for idealized deep beam with an
opening.

12.8"
19.8"41.0°

28.0°

28.0°

62.0°

49.0°

a

c

b

d e
h

g i

f

11.1"

10.5"

22.3"

Node A or E Node C Node B or D

26.8"

Figure 8.24 Example 8.4: Nodal zones.
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Table 8.1 Element Forces for Truss Shown in Figure 8.23

Member Length P

Identification in. Kip
AB 63 –551.06
BC 40 –919.23
CD 40 –919.23
DE 63 –551.1
AE 162 396.21
BD 72 439.43

12"

No. 5 bar

No. 5 bar No. 5 bar

Strut BCNo. 5 bar

12"

12" 12"

41° 28°

49°

Strut AB

62°

Figure 8.25 Example 8.4: Horizontal and vertical reinforcement.

6.4"
9.9"

B

5.6" X

Node A or E

5.3" X

Node B or D

Strut boundary
Strut boundary

Tie AE
Tie BD

Stru
t A

B Strut BC

41°
28°

A

Figure 8.26 Example 8.4: Node zone at A or E and B or D.

Design Ties:
Calculate anchorage length
Development length of No. 9 tension bar with clear spacing not less than 2db and clear cover not

less than db. Therefore, according to ACI Code, Section 25.4
Tie AE (Figure 8.26)
ACI Code, Section 25.4.3.2 if cover is 2.5 in. or greater ldh can be factored by 0.7
Tie BD (Figure 8.26)
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8.3"

6.0"
12.0"

No. 5 bar

No. 9 bar @3.5" c/c

10 No. 9 bars

No . 5 bars

No . 5 @12" c/c
2.5" clear cover

No. 9 bars @ 2.5" c/c 6" c/c

9 No. 9 bars

2.5" clear cover

6.0"

19.5"

18.0"

72.0"

Figure 8.27 Example 8.4: Reinforcement details.

Hook tail 16" for all hooks

16.0"

No. 9 bars @ 2.5" c/c

3.1"

15.5"2.5"

Figure 8.28 Example 8.4: Hook details.
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P R O B L E M S

8.1 Design the single corbel shown in figure 8.29 on a 24 in. × 24 in. concrete column with the forces shown.
Assume fc′ = 6000 psi, and Grade 60 steel

8.2 Design the bridge bent cap shown in figure 8.30 is to carry two train tracks and five girders spanning
between abutments, with the factored loads and geometry given below. The cap has a width of b = 6 ft
and height of h = 7 ft, supported by two 6-ft-wide columns. Design the cap using f’c = 5000 psi and fy =
60,000 psi.

8.3 Design a simply supported deep beam with two openings shown in figure 8.31, carries two concentrated
live service loads of 95 K. The beam has a clear span of 10 ft, overall depth of 40 in. and width of 12 in. The
beam is supported on 16-in.-wide columns. Given f’c = 4 ksi, fy = 60 ksi, and Es = 29× 106 psi. Assume
bearing pads at supports and loading points are 16 in. × 20 in. and 12 in. × 20 in., respectively.

24.0"

8.0"

10.0"

Nu = 15 kips

Vu = 75 kipsRu

10.0"

Figure 8.29 Corbel on a Column Cap.
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11.3’

0.7’ 6.6’ 7.25’ 7.25’ 6.6’ 0.7’

7’

6’
7.3’ 14.5’ 7.3’

WLL WLL

WDL

PGirder PGirder PGirder PGirder PGirder

11.3’

Figure 8.30 Bridge Bent Cap.

40.0" 8.0" 8.0" 8.0" 8.0" 40.0"

95 K 95 K

DC

A F

40.0"

10.0"

12.0"

18.0"

16.0" 16.0"12.0" 12.0"96.0"

Figure 8.31 Deep Beam with Two Openings.



CHAPTER9
ONE-WAY SLABS

The Westin Hotel, Toronto, Canada.

9.1 TYPES OF SLABS

Structural concrete slabs are constructed to provide flat surfaces, usually horizontal, in building
floors, roofs, bridges, and other types of structures. The slab may be supported by walls, by
reinforced concrete beams usually cast monolithically with the slab, by structural steel beams,
by columns, or by the ground. The depth of a slab is usually very small compared to its span.
See Fig. 9.1.

Structural concrete slabs in buildings may be classified as follows:

1. One-way slabs: If a slab is supported on two opposite sides only, it will bend or deflect in a
direction perpendicular to the supported edges. The structural action is one way, and the loads
are carried by the slab in the deflected short direction. This type of slab is called a one-way
slab (Fig. 9.1a). If the slab is supported on four sides and the ratio of the long side to the short
side is equal to or greater than 2, most of the load (about 95% or more) is carried in the short
direction, and one-way action is considered for all practical purposes (Fig. 9.1b). If the slab is
made of reinforced concrete with no voids, then it is called a one-way solid slab. Figure 9.1c,
d, and e show cross sections and bar distribution.

2. One-way joist floor system: This type of slab is also called a ribbed slab. It consists of a floor
slab, usually 2 to 4 in. (50 to 100 mm) thick, supported by reinforced concrete ribs (or joists).
The ribs are usually tapered and are uniformly spaced at distances that do not exceed 30 in.
(750 mm). The ribs are supported on girders that rest on columns. The spaces between the
ribs may be formed using removable steel or fiberglass form fillers (pans), which may be

324
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(a) (b)

(c)

(d) (e)

No. 4 No. 4 No. 4 No. 4 No. 4

Figure 9.1 One-way slabs.

used many times (Fig. 9.2). In some ribbed slabs, the spaces between ribs may be filled with
permanent fillers to provide a horizontal slab.

3. Two-way floor systems: When the slab is supported on four sides and the ratio of the long
side to the short side is less than 2, the slab will deflect in double curvature in both directions.
The floor load is carried in two directions to the four beams surrounding the slab (refer to
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(a)

(b)

Figure 9.2 Cross sections of one-way ribbed slab: (a) without fillers and (b) with fillers.

Chapter 17). Other types of two-way floor systems are flat plate floors, flat slabs, and waffle
slabs, all explained in Chapter 17. This chapter deals only with one-way floor systems.

9.2 DESIGN OF ONE-WAY SOLID SLABS

If the concrete slab is cast in one uniform thickness without any type of voids, it can be referred to
as a solid slab. In a one-way slab, the ratio of the length of the slab to its width is greater than 2.
Nearly all the loading is transferred in the short direction, and the slab may be treated as a beam.
A unit strip of slab, usually 1 ft (or 1 m) at right angles to the supporting girders, is considered a
rectangular beam. The beam has a unit width with a depth equal to the thickness of the slab and a
span length equal to the distance between the supports. A one-way slab thus consists of a series of
rectangular beams placed side by side (Fig. 9.1).

If the slab is one span only and rests freely on its supports, the maximum positive moment M
for a uniformly distributed load of 𝑤 psf is M= (𝑤L2)/8, where L is the span length between the
supports. If the same slab is built monolithically with the supporting beams or is continuous over
several supports, the positive and negative moments are calculated either by structural analysis or
by moment coefficients as for continuous beams. The ACI Code, Section 6.5, permits the use of
moment and shear coefficients for prismatic members in the case of two or more approximately
equal spans (Fig. 9.3). This condition is met when the larger of two adjacent spans does not exceed
the shorter span by more than 20%. For uniformly distributed loads, the unit live load shall not
exceed three times the unit dead load. When these conditions are not satisfied, structural analysis
is required. In structural analysis, the negative bending moments at the centers of the supports are
calculated. The value that may be considered in the design is the negative moment at the face of
the support. To obtain this value, subtract from the maximum moment value at the center of the
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Figure 9.3 Moment coefficients for continuous beams and slabs (ACI Code,
Section 6.5).

support a quantity equal to Vb/3, where V is the shearing force calculated from the analysis and b
is the width of the support:

Mf (at face of support) = Mc (at centerline of support) − Vb
3

(9.1)

In addition to moment, diagonal tension and development length of bars should also be
checked for proper design.

The conditions under which the moment coefficients for continuous beams and slabs, given
in Fig. 9.3, should be used can be summarized as follows:

1. Spans are approximately equal: Longer span ≤1.2 (shorter span).
2. Loads are uniformly distributed.
3. The ratio (live load/dead load) is less than or equal to 3.
4. For slabs with spans less than or equal to 10 ft, negative bending moment at face of all supports

is
(

1
12

)
𝑤ul2n.

5. For an unrestrained discontinuous end at A, the coefficient is 0 at A and + 1
11

at B.

6. Shearing force at C is 1.15𝑤uln/2 and at the face of all other support is 1
2
𝑤uln.

7. Mu = (coefficient) (𝑤ul2n) and ln = clear span.
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9.3 DESIGN LIMITATIONS ACCORDING TO ACI CODE

The following limitations are specified by the ACI Code:

1. A typical imaginary strip 1 ft (or 1 m) wide is assumed.
2. The minimum thickness of one-way slabs using grade 60 steel according to the ACI Code,

Sections 7.3.1.1, for solid slabs and for beams or ribbed one-way slabs should be equal to the
following:
• For simply supported spans: solid slabs, h = L∕20 (ribbed slabs, h = L∕16).
• For one-end continuous spans: solid slabs, h = L∕24 (ribbed slabs, h = L∕18.5).
• For both-end continuous spans: solid slabs, h = L∕28 (ribbed slabs, h = L∕21).
• For cantilever spans: solid slabs, h = L∕10 (ribbed slabs, h = L∕8).
• For fy other than 60 ksi, these values shall be multiplied by (0.4 + 0.01fy), where fy is in

ksi. This minimum thickness should be used unless computation of deflection indicates a
lesser thickness can be used without adverse effects.

3. Deflection is to be checked when the slab supports are attached to construction likely to be
damaged by large deflections. Deflection limits are set by the ACI Code, Table 24.2.2.

4. It is preferable to choose slab depth to the nearest 1
2

in. (or 10 mm).

5. Shear should be checked, although it does not usually control.

6. Concrete cover in slabs shall not be less than 3
4

in. (20 mm) at surfaces not exposed to weather

or ground. In this case, d = h −
(

3
4

in.
)
− (half − bar diameter). Refer to Fig. 9.1d.

7. In structural one way slabs of uniform thickness, the minimum amount of reinforcement in
the direction of the span shall not be less than that required for shrinkage and temperature
reinforcement (ACI Code, Sections 7.6.1 and 24.4.3).

8. The main reinforcement maximum spacing shall be the lesser of three times the slab thickness
and 18 in. (ACI Code, Section 7.7.2.3).

9. Straight-bar systems may be used in both tops and bottoms of continuous slabs. An alternative
bar system of straight and bent (trussed) bars placed alternately may also be used. Bars may
also be placed at the center of the slab using a lesser effective depth but accounting for the
highest moments.

10. In addition to main reinforcement, steel bars at right angles to the main must be provided. This
additional steel is called secondary, distribution, shrinkage, or temperature reinforcement.

9.4 TEMPERATURE AND SHRINKAGE REINFORCEMENT

Concrete shrinks as the cement paste hardens, and a certain amount of shrinkage is usually antici-
pated. If a slab is left to move freely on its supports, it can contract to accommodate the shrinkage.
However, slabs and other members are joined rigidly to other parts of the structure, causing a cer-
tain degree of restraint at the ends. This results in tension stresses known as shrinkage stresses. A
decrease in temperature and shrinkage stresses is likely to cause hairline cracks. Reinforcement is
placed in the slab to counteract contraction and distribute the cracks uniformly. As the concrete
shrinks, the steel bars are subjected to compression.

Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement
should be provided in a structural slab in which the principal reinforcement extends in one direction
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only. The ACI Code, Sections 7.6.1, 8.6.1, and 24.4.3, specifies the following minimum steel ratios:
For slabs in which grade 40 or 50 deformed bars are used, 𝜌= 0.2%, and for slabs in which grade
60 deformed bars or welded bars or welded wire fabric are used, 𝜌= 0.18%. In no case shall such
reinforcement be placed farther apart than five times the slab thickness or more than 18 in.

For temperature and shrinkage reinforcement, the whole concrete depth h exposed to shrink-
age shall be used to calculate the steel area. For example, if a slab has a total depth of h= 6 in. and
fy = 60 ksi, then the area of steel required per 1-ft width of slab is As = 6(12)(0.0018)= 0.129 in.2.
The spacings of the bars, S, can be determined as follows:

S =
12Ab

As
(9.2)

where Ab is the area of the bar chosen and As the calculated area of steel.
For example, if no. 3 bars are used (Ab = 0.11 in.2), then S = 12(0.11)∕0.129 = 10.33 in.,

say, 10 in. If no. 4 bars are chosen (Ab = 0.2 in.2), then S = 12(0.2)∕0.129 = 18.6 in., say, 18 in.
Maximum spacing is the smaller of five times slab thickness (30 in.) or 18 in. Then no. 4 bars
spaced at 18 in. are adequate (or no. 3 bars at 10 in.). These bars act as secondary reinforcement
and are placed normal to the main reinforcement calculated by flexural analysis. Note that areas of
bars in slabs are given in Table A.14.

9.5 REINFORCEMENT DETAILS

In continuous one-way slabs, the steel area of the main reinforcement is calculated for all critical
sections, at midspans, and at supports. The choice of bar diameter and detailing depends mainly on
the steel areas, spacing requirements, and development length. Two bar systems may be adopted.

In the straight-bar system (Fig. 9.4), straight bars are used for top and bottom reinforcement
in all spans. The time and cost to produce straight bars is less than that required to produce bent
bars; thus, the straight-bar system is widely used in construction.

In the bent-bar, or trussed, system, straight and bent bars are placed alternately in the floor slab.
The location of bent points should be checked for flexural, shear, and development length require-
ments. For normal loading in buildings, the bar details at the end and interior spans of one-way
solid slabs may be adopted as shown in Fig. 9.4.

9.6 DISTRIBUTION OF LOADS FROM ONE-WAY SLABS TO SUPPORTING BEAMS

In one-way floor slab systems, the loads from slabs are transferred to the supporting beams along
the long ends of the slabs. The beams transfer their loads in turn to the supporting columns.

From Fig. 9.5 it can be seen that beam B2 carries loads from two adjacent slabs. Considering
a 1-ft length of beam, the load transferred to the beam is equal to the area of a strip 1 ft wide and S
feet in length multiplied by the intensity of load on the slab.

This load produces a uniformly distributed load on the beam:

UB = USS

The uniform load on the end beam, B1, is half the load on B2 because it supports a slab from one
side only.

The load on column C4 is equal to the reactions from two adjacent B2 beams:

Load on column C4 = UBL = USLS
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(a)

(b)

Figure 9.4 Reinforcement details in continuous one-way slabs: (a) straight bars and
(b) bent bars.

Figure 9.5 Distribution of loads on beams.



9.6 Distribution of Loads from One-Way Slabs to Supporting Beams 331

The load on column C3 is one-half the load on column C4 because it supports loads from slabs on
one side only. Similarly, the loads on columns C2 and C1 are

Load on C2 = US
L
2

S = load on C3

Load on C1 = US

(L
2

)(S
2

)

From this analysis, it can be seen that each column carries loads from slabs surrounding the column
and up to the centerline of adjacent slabs: up to L/2 in the long direction and S/2 in the short
direction.

Distribution of loads from two-way slabs to their supporting beams and columns is discussed
in Chapter 17.

Example 9.1

Calculate the design moment strength of a one-way solid slab that has a total depth of h= 7 in. and is
reinforced with no. 6 bars spaced at S= 7 in. Use f ′c = 3 ksi and fy = 60 ksi.

Solution

1. Determine the effective depth, d:

d = h − 3
4

in.(cover) − half − bar diameter (See Fig.9.1d)

d = 7 − 3
4
− 6

16
= 5.875 in.

2. Determine the average As provided per 1-ft width (12 in.) of slab. The area of a no. 6 bar is Ab =
0.44 in2.

As =
12Ab

S
= 12(0.44)

7
= 0.754 in.2∕ft

Areas of bars in slabs are given in Table A.14 in Appendix A.
3. Compare the steel ratio used with 𝜌max and 𝜌min. For f ′c = 3 ksi and fy = 60 ksi, 𝜌max = 0.01356 and
𝜌min = 0.00333, where 𝜌 (used) = 0.754∕(12 × 5.875) = 0.0107, which is adequate (𝜙 = 0.9).

4. Calculate 𝜙:

a = Asfy∕(0.85f ′c b) = 0.754(60)∕(0.85 × 3 × 12) = 1.48 in.

𝜙Mn = 0.9(0.754)(60)(5.875 − 1.48∕2) = 209 K ⋅ in. = 17.42 K ⋅ ft

Example 9.2

Determine the allowable uniform live load that can be applied on the slab of the previous example if the
slab span is 16 ft between simple supports and carries a uniform dead load (excluding self-weight) of
100 psf.

Solution

1. The design moment strength of the slab is 17.42 K ft per 1-ft width of slab.

Mu = 𝜙Mn = 17.42 =
WuL2

8
=

Wu(16)2

8

The factored uniform load is Wu = 0.544 K∕ft2 = 544 psf.
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2. Wu = 1.2D + 1.6L

D = 100 psf + self − weight = 100 + 7
12

(150) = 187.5 psf

544 = 1.2(187.5) + 1.6L L = 200 psf

Example 9.3
Design a 12-ft simply supported slab to carry a uniform dead load (excluding self-weight) of 120 psf
and a uniform live load of 100 psf. Use f ′c = 3 ksi, fy = 60 ksi, 𝜆= 1, and the ACI Code limitations.

Solution

1. Assume a slab thickness. For fy = 60 ksi, the minimum depth to control deflection is L∕20 =
12(12)∕20 = 7 in. Assume a total depth of h= 7 in. and assume d= 6 in. (to be checked later).

2. Calculate factored load: weight of slab = 7
12
(150) = 87.5 psf

Wu = 1.2D + 1.6L = 1.2(87.5 + 120) + 1.6(100) = 409 psf

For a 1-ft width of slab, Mu = WuL2∕8.

Mu = 0.409(12)2

8
= 7.362 K ⋅ ft

3. Calculate As ∶ For Mu = 7.362 K ⋅ ft, b= 12 in., and d= 6 in., Ru = Mu∕bd2 = 7.362(12,000)∕
(12)(6)2 = 205 psi. From tables in Appendix A, 𝜌 = 0.0040 < 𝜌max = 0.01356, 𝜙 = 0.9.

As = 𝜌bd = 0.0040(12)(6) = 0.28 in.2

Choosing no. 4 bars (Ab = 0.2 in.2), and S = 12Ab∕As = 12(0.2)∕0.28 = 8.6 in. Check actual d =
h − 3

4
− 4

16
= 6 in. It is acceptable. Let S= 8 in. and As = 0.3 in2.

4. Check the moment capacity of the final section.

a =
Asfy

0.85f ′c b
= 0.3(60)

0.85 × 3 × 12
= 0.59 in.

𝜙Mn = 𝜙Asfy
(

d − a
2

)
= 0.9(0.3)(60)(6 − 0.59∕2) = 92.42 K ⋅ in. = 7.7 K ⋅ ft > Mu

= 7.362 K ⋅ ft

5. Calculate the secondary (shrinkage) reinforcement normal to the main steel. For fy = 60 ksi,

𝜌min = 0.0018

Ash = 𝜌bh = 0.0018(12)(7) = 0.1512 in.2

Choose no. 4 bars, Ab = 0.2 in.2, S = 12Ab∕As = 12(0.2)∕0.1512 = 15.9 in. Use no. 4 bars spaced
at 15 in.

6. Check shear requirements: Vu at a distance d from the support is 0.409
(

12
2
− 6

12

)
= 2.25 K.

𝜙Vc =
𝜙2𝜆

√
f ′c bd = 0.75(2)(1)(

√
3000)(12 × 6)

1000
= 5.9 K

1
2
𝜙Vc = 2.95 K > Vu

so the shear is adequate.
7. Final section: h= 7 in., main bars= no. 4 spaced at 8 in., and secondary bars= no. 4 spaced

at 15 in.
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Example 9.4

The cross section of a continuous one-way solid slab in a building is shown in Fig. 9.6. The slabs are
supported by beams that span 12 ft between simple supports. The dead load on the slabs is that due to
self-weight plus 77 psf; the live load is 130 psf. Design the continuous slab and draw a detailed section.
Given: f ′c = 3 ksi and fy = 40 ksi.

Solution

1. The minimum thickness of the first slab is L/30 because one end is continuous and the second
end is discontinuous. The distance between centers of beams may be considered the span L, here
equal to 12 ft. For fy = 40 ksi,

Minimum total depth = L
30

= 12 × 12
30

= 4.8 in.

Minimum total depth for interior span = L
35

= 4.1 in.

Assume a uniform thickness of 5 in., which is greater than 4.8 in.; therefore, it is not necessary
to check deflection.

2. Calculate loads and moments in a unit strip:

Dead load = weight of slab + 77 psf

=
( 5

12
× 150

)
+ 77 = 139.5 psf

Factored load (U) = 1.2D + 1.6L = 1.2 × 139.5 + 1.6 × 130 = 375.5 psf

The clear span is 11.0 ft. The required moment in the first span is over the support and equals
UL2∕10.

Mu = U(11)2

10
= (0.3755)121

10
= 4.54 K ⋅ ft = 54.5 K ⋅ in.

3. Assume 𝜌= 1.4%; then Ru = 450 psi = 0.45 ksi. This value is less than 𝜌max of 0.0203 (Table 4.1),
and greater than 𝜌min of 0.005 (𝜙 = 0.9).

d =

√
Mu

Rub
=
√

54.5
0.45 × 12

= 3.18 in.

As = 𝜌bd = 0.014(12)(3.18) = 0.53 in.2

Choosing no. 5 bars,

Total depth = d + 1
2

bar diameter + cover = 3.18 + 5
16

+ 3
4
= 4.25 in.

Use slab thickness of 5 in., as assumed earlier.

Actual d used = 5 − 3
4
− 5

16
= 3.9 in.

Figure 9.6 Example 9.4.
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No. 5 @ No. 4 @

Figure 9.7 Example 9.4: Reinforcement details.

4. Moments and steel reinforcement required at other sections using d= 3.9 in. are as follows:

Location
Moment

Coefficient
Mu

(K ⋅ in.)
Ru =Mu/bd2

(psi) 𝝆(%)
As

(in.2)
Bars and
Spacings

A − 1
24

22.7 Small 0.50 0.23 No. 4 at 10 in.

B + 1
14

38.9 213 0.65 0.30 No. 5 at 12 in.

C − 1
10

54.5 300 0.90 0.44 No. 5 at 8 in.

D − 1
11

49.6 271 0.80 0.38 No. 5 at 8 in.

E + 1
16

34.1 187 0.55 0.26 No. 4 at 8 in.

The arrangement of bars is shown in Fig. 9.7.
5. Maximum shear occurs at the exterior face of the second support, section C.

Vu(at C) =
1.15ULn

2
= 1.15(0.3755)(11)

2
= 2.375 K∕ft of width

𝜙Vc = 𝜙2𝜆
√

f ′c bd =
0.75(2)(1)(

√
3000)(12)(3.9)

1000
= 3.84 K

This result is acceptable. Note that the provision of minimum area of shear reinforcement when
Vu exceeds 1

2
𝜙Vc does not apply to slabs (ACI Code, Section 9.6.3.1).

Example 9.5

Determine the uniform factored load on an intermediate beam supporting the slabs of Example 9.4. Also
calculate the axial load on an interior column; refer to the general plan of Fig. 9.5. Assume the beam
span= 24 ft.

Solution

1. The uniform factored load per foot length on an intermediate beam is equal to the factored uniform
load on slab multiplied by S, the short dimension of the slab. Therefore,

U(beam) = U(slab) × S = 0.3755 × 12 = 4.5 K∕ft
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The weight of the web of the beam shall be added to this value. Span of the beam is 24 ft.

Estimated total depth = L
20

× 0.8 =
(24

20
× 0.8

)
× 12 = 11.5 in. say, 12 in.

Slab thickness is 5 in. and height of the web is 12 – 5= 7 in.

Factored weight of beam web =
( 7

12
× 150

)
× 1.2 = 105 lb∕ft

Total uniform load on beam = 4.5 + 0.105 = 4.605 K∕ft

2. Axial load on an interior column:

Pu = 4.605 × 24 ft = 110.5 K

9.7 ONE-WAY JOIST FLOOR SYSTEM

A one-way joist floor system consists of hollow slabs with a total depth greater than that of solid
slabs. The system is most economical for buildings where superimposed loads are small and spans
are relatively large, such as schools, hospitals, and hotels. The concrete in the tension zone is inef-
fective; therefore, this area is left open between ribs or filled with lightweight material to reduce
the self-weight of the slab.

The design procedure and requirements of ribbed slabs follow the same steps as those for
rectangular and T-sections explained in Chapter 3. The following points apply to design of one-way
ribbed slabs:

1. Ribs are usually tapered and uniformly spaced at about 16 to 30 in. (400 to 750 mm). Voids are
usually formed by using pans (molds) 20 in. (500 mm) wide and 6 to 20 in. (150 to 500 mm)
deep, depending on the design requirement. The standard increment in depth is 2 in. (50 mm).

2. The ribs shall not be less than 4 in. (100 mm) wide and must have a depth of not more than
3.5 times the width. Clear spacing between ribs shall not exceed 30 in. (750 mm) (ACI Code,
Section 9.8.1).

3. Shear strength, Vc, provided by concrete for the ribs may be taken 10% greater than that for
beams. This is mainly due to the interaction between the slab and the closely spaced ribs (ACI
Code, Section 9.8.1.5).

4. The thickness of the slab on top of the ribs is usually 2 to 4 in. (50 to 100 mm) and contains
minimum reinforcement (shrinkage reinforcement). This thickness shall not be less than 1

12
of the clear span between ribs or 1.5 in. (38 mm) (ACI Code, Section 9.8.2.1.1).

5. The ACI coefficients for calculating moments in continuous slabs can be used for continuous
ribbed slab design.

6. There are additional practice limitations, which can be summarized as follows:
• The minimum width of the rib is one-third of the total depth or 4 in. (100 mm), whichever

is greater.
• Secondary reinforcement in the slab in the transverse directions of ribs should not be less

than the shrinkage reinforcement or one-fifth of the area of the main reinforcement in
the ribs.

• Secondary reinforcement parallel to the ribs shall be placed in the slab and spaced at
distances not more than half of the spacings between ribs.
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• If the live load on the ribbed slab is less than 3 kN/m2 (60 psf) and the span of ribs exceeds
5 m (17 ft), a secondary transverse rib should be provided at midspan (its direction is per-
pendicular to the direction of main ribs) and reinforced with the same amount of steel as
the main ribs. Its top reinforcement shall not be less than half of the main reinforcement in
the tension zone. These transverse ribs act as floor stiffeners.

• If the live load exceeds 3 kN/m2 (60 psf) and the span of ribs varies between 4 and 7 m
(13 and 23 ft), one traverse rib must be provided, as indicated before. If the span exceeds 7 m
(23 ft), at least two transverse ribs at one-third span must be provided with reinforcement,
as explained before.

Example 9.6

Design an interior rib of a concrete joist floor system with the following description: Span of rib= 20 ft
(simply supported), dead load (excluding own weight)= 16 psf, live load= 85 psf, f ′c = 4 ksi, and
fy = 60 ksi.

Solution

1. Design of the slab: Assume a top slab thickness of 2 in. that is fixed to ribs that have a clear spacing
of 20 in. No fillers are used. The self-weight of the slab is 2

12
× 150 = 25 psf.

Total DL = 16 + 25 = 41 psf

U = 1.2D + 1.6L = 1.2 × 41 + 1.6 × 85 = 185 psf

Mu = UL2

12
(Slab is assumed fixed to ribs.)

= 0.185
12

(20
12

)2

= 0.043 K ⋅ ft = 0.514 K ⋅ in.

Considering that the moment in slab will be carried by plain concrete only, the allowable flexu-
ral tensile strength is ft = 5

√
f ′c , with a capacity reduction factor𝜙= 0.55, ft = 5

√
4000 = 316 psi.

Flexural tensile strength = Mc
I

= 𝜙ft

where

I = bh3

12
= 12(2)3

12
= 8 in.4 c = h

2
= 2

2
= 1 in.

M = 𝜙ft
I
c
= 0.55 × 0.316 × 8

1
= 1.39 K ⋅ in.

This value is greater than Mu = 0.514 K ⋅ in., and the slab is adequate. For shrinkage rein-
forcement, As = 0.0018× 12× 2= 0.043 in.2 Use no. 3 bars spaced at 12 in. laid transverse to the
direction of the ribs. Welded wire fabric may be economically used for this low amount of steel
reinforcement. Use similar shrinkage reinforcement no. 3 bars spaced at 12 in. laid parallel to the
direction of ribs, one bar on top of each rib and one bar in the slab between ribs.

2. Calculate moment in a typical rib:

Minimum depth = L
20

= 20 × 12
20

= 12 in.

The total depth of rib and slab is 10+ 2= 12 in. Assume a rib width of 4 in. at the lower end that
tapers to 6 in. at the level of the slab (Fig. 9.8). The average width is 5 in. Note that the increase
in the rib width using removable forms has a ratio of about 1 horizontal to 12 vertical.

Weight of rib = 5
12

× 10
12

× 150 = 52 lb∕ft
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2 no. 5

Figure 9.8 Example 9.6.

The rib carries a load from (20+ 4)-in.-wide slab plus its own weight:

U = 24
12

× 185 + (1.2 × 52) = 432.4 lb∕ft

Mu = UL2

8
= 0.4324

8
(20)2 × 12 = 259.4 K ⋅ in.

Rectangular steel pans used in one-way ribbed slab construction.

3. Design of rib: The total depth is 12 in. Assuming no. 5 bars and concrete cover of 3
4

in., the

effective depth d is 12 − 3
4
− 5

16
= 10.9 in. Check the moment capacity of the flange (assume

tension-controlled section, 𝜙= 0.9):

𝜙Mn(flange) = 𝜙C
(

d − t
2

)
where C = 0.85 f ′c bt

Mu = 0.9(0.85 × 4 × 24 × 2)
(

10.9 − 2
2

)
= 1454 K ⋅ in.
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The moment capacity of the flange is greater than the applied moment; thus, the rib acts as
a rectangular section with b= 24 in., and the depth of the equivalent compressive block a is less
than 2 in.

𝜙Mn = 𝜙Asfy
(

d − a
2

)
= 𝜙Asfy

(
d −

Asfy
1.7f ′c b

)

259.4 = 0.9As × 60

(
10.9 −

As × 60

1.7 × 4 × 24

)
As = 0.45 in.2

a =
Asfy

0.85 × f ′c b
= 0.33 in. < 2 in.

Use two no. 5 bars per rib (As = 0.65 in.2).

As min = 0.0033b𝑤d = 0.0033(5)(10.9) = 0.18 in.2 < 0.45 in.2

Check
𝜌 = 0.45

24 × 10.9
= 0.00172 < 𝜌max = 0.01806

which is a tension-controlled section, 𝜙= 0.9.
4. Calculate shear in the rib: The allowable shear strength of the rib web is

𝜙Vc = 𝜙(1.1) × 2𝜆
√

f ′c b𝑤d

= 0.75 × 1.1 × 2(1)
√

4000 × 5 × 10.9 = 5687 lb

The factored shear at a distance d from the support is

Vu = 432.4
(

10 − 10.9
12

)
= 3931 lb

This is less than the shear capacity of the rib. Minimum stirrups may be used, and in this case
an additional no. 4 bar will be placed within the slab above the rib to hold the stirrups in place. It
is advisable to add one transverse rib at midspan perpendicular to the direction of the ribs having
the same reinforcement as that of the main ribs to act as a stiffener.

SUMMARY

Section 9.1

Slabs are of different types, one way (solid or joist floor systems) and two way (solid, ribbed, waffle,
flat slabs, and flat plates).

Sections 9.2 and 9.3

1. The ACI Code moment and shear coefficients for continuous one-way slabs are given in the
accompanying figure.

2. The minimum thickness of one-way slabs using grade 60 steel is L/20, L/24, L/28, and
L/10 for simply supported, one-end continuous, both-end continuous, and cantilever slabs,
respectively.
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One-way ribbed slab roof. The wide beams have the same total depth as the ribbed slab.

Section 9.4

The minimum shrinkage steel ratios, 𝜌min, in slabs are 0.002 in. for slabs in which grade 40 or grade
50 bars are used and 0.0018 in. for slabs in which deformed bars of grade 60 are used.

Maximum spacings between bars ≤5 times rib thickness ≤18 in.

Sections 9.5 and 9.6

1. Reinforcement details are shown in Fig. 9.4.
2. Distribution of loads from one-way slabs to the supporting beams is shown in Fig. 9.5.

Section 9.7

The design procedure of ribbed slabs is similar to that of rectangular and T-sections. The width of
ribs must be greater than or equal to 4 in., whereas the depth must be less than or equal to 3.5 times
the width. The minimum thickness of the top slab is 2 in. or not less than one-twelfth of the clear
span between ribs.
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P R O B L E M S

9.1 For each problem, calculate the factored moment capacity of each concrete slab section using fy = 60 ksi.

Number f′c h (in.)
Bars and
Spacings (in.)

Answer 𝜱Mn
(K ⋅ ft)

a 3 5 No. 4 at 6 6.35
b 3 6 No. 5 at 8 9.29
c 3 7 No. 6 at 9 14.06
d 3 8 No. 8 at 12 21.01
e 4 5 1

2
No. 5 at 10 6.93

f 4 6 No. 7 at 12 11.80
g 4 7 1

2
No. 6 at 6 22.68

h 4 8 No. 8 at 12 21.23
i 5 5 No. 5 at 10 6.19
j 5 6 No. 5 at 8 9.66

9.2 For each slab problem, determine the required steel reinforcement, As, and the total depth, if required;
then choose adequate bars and their spacings. Use fy = 60 ksi for all problems, b= 12 in., and a steel ratio
close to the steel ratio 𝜌=As/bd given in some problems.

One Answer

Number f′c (ksi) Mu (K ⋅ ft) h (in.) 𝝆 (%) h (in.) Bars

a 3 5.4 6 — 6 No. 4 at 9 in.
b 3 13.8 7 1

2
— 7 1

2
No. 6 at 10 in.

c 3 24.4 — 0.85 9 No. 8 at 12 in.
d 3 8.1 5 — 5 No. 5 at 7 in.
e 4 22.6 — 1.18 7 1

2
No. 7 at 8 in.

f 4 13.9 8 1
2

— 8 1
2

No. 6 at 12 in.

g 4 13.0 — 1.10 6 No. 6 at 8 in.
h 4 11.2 — 0.51 7 1

2
No. 5 at 9 in.

i 5 20.0 9 — 9 No. 7 at 12 in.
j 5 10.6 — 0.90 6 No. 6 at 10 in.

9.3 A 16-ft- (4.8-m)-span simply supported slab carries a uniform dead load of 200 psf (10 kN/m2) (excluding
its own weight). The slab has a uniform thickness of 7 in. (175 mm) and is reinforced with no. 6 (20-mm)
bars spaced at 5 in. (125 mm). Determine the allowable uniformly distributed load that can be applied on
the slab if f ′c = 4 ksi (28 MPa) and fy = 60 ksi (420 MPa).

9.4 Design a 10-ft (3-m) cantilever slab to carry a uniform total dead load of 170 psf (8.2 kN/m2) and a con-
centrated live load at the free end of 2 K (8.9 kN), when f ′c = 4 ksi (28 MPa) and fy = 60 ksi (420 MPa).

9.5 A 6-in. (150-mm) solid one-way slab carries a uniform dead load of 190 psf (9.2 kN/m2) (includ-
ing its own weight) and a live load of 80 psf (3.9 kN/m2). The slab spans 12 ft (3.6 m) between
10-in.-(250-mm)-wide simple supports. Determine the necessary slab reinforcement using
f ′c = 4 ksi (28 MPa) and fy = 50 ksi (350 MPa).
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9.6 Repeat Problem 9.4 using a variable section with a minimum total depth at the free end of 4 in. (100 mm).
9.7 Design a continuous one-way solid slab supported on beams spaced at 14 ft (4.2 m) on centers. The width

of the beams is 12 in. (300 mm), leaving clear slab spans of 13 ft (3.9 m). The slab carries a uniform
dead load of 126 psf (6.0 kN/m2) (including self-weight of slab) and a live load of 120 psf (5.8 kN/m2).
Use f ′c = 3 ksi (21 MPa), fy = 40 ksi (280 MPa), and the ACI coefficients. Show bar arrangements using
straight bars for all top and bottom reinforcement.

9.8 Repeat Problem 9.7 using equal clear spans of 13 ft (3 m), f ′c = 3 ksi (21 MPa), and fy = 60 ksi (420 MPa).

9.9 Repeat Problem 9.7 using f ′c = 4 ksi (28 MPa) and fy = 60 ksi (420 MPa).
9.10 Design an interior rib of a concrete joist floor system with the following description: Span of ribbed slab is

18 ft (5.4 m) between simple supports; uniform dead load (excluding self-weight) is 30 psf (1.44 kN/m2);
live load is 100 psf (4.8 kN/m2); support width is 14 in. (350 mm); f ′c = 3 ksi (21 MPa) and fy = 60 ksi
(420 MPa). Use 30-in.-(750-mm)-wide removable pans.

9.11 Repeat Problem 9.10 using 20-in.-(500-mm)-wide removable pans.
9.12 Use the information given in Problem 9.10 to design a continuous ribbed slab with three equal spans of

18 ft (5.4 m) each.



CHAPTER10
AXIALLY LOADED
COLUMNS

Continuous slabs in a parking structure, New
Orleans, Louisiana.

10.1 INTRODUCTION

Columns are members used primarily to support axial compressive loads and have a ratio of height
to the least lateral dimension of 3 or greater. In reinforced concrete buildings, concrete beams,
floors, and columns are cast monolithically, causing some moments in the columns due to end
restraint. Moreover, perfect vertical alignment of columns in a multistory building is not possi-
ble, causing loads to be eccentric relative to the center of columns. The eccentric loads will cause
moments in columns. Therefore, a column subjected to pure axial loads does not exist in concrete
buildings. However, it can be assumed that axially loaded columns are those with relatively small
eccentricity, e, of about 0.1 h or less, where h is the total depth of the column and e is the eccentric
distance from the center of the column. Because concrete has a high compressive strength and is
an inexpensive material, it can be used in the design of compression members economically. This
chapter deals only with short columns; slender columns are covered in detail in Chapter 12.

10.2 TYPES OF COLUMNS

Columns may be classified based on the following different categories (Fig. 10.1):

1. Based on loading, columns may be classified as follows:
a. Axially loaded columns, where loads are assumed acting at the center of the column

section.
342
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Figure 10.1 Types of columns.

b. Eccentrically loaded columns, where loads are acting at a distance e from the center of
the column section. The distance e could be along the x or y axis, causing moments either
about the x or y axis.

c. Biaxially loaded columns, where the load is applied at any point on the column section,
causing moments about both the x and y axes simultaneously.

2. Based on length, columns may be classified as follows:
a. Short columns, where the column’s failure is due to the crushing of concrete or the yielding

of the steel bars under the full load capacity of the column.
b. Long columns, where buckling effect and slenderness ratio must be taken into considera-

tion in the design, thus reducing the load capacity of the column relative to that of a short
column.

3. Based on the shape of the cross section, column sections may be square, rectangular, round,
L-shaped, octagonal, or any desired shape with an adequate side width or dimensions.

4. Based on column ties, columns may be classified as follows:
a. Tied columns containing steel ties to confine the main longitudinal bars in the columns.

Ties are normally spaced uniformly along the height of the column.
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b. Spiral columns containing spirals (spring-type reinforcement) to hold the main longitu-
dinal reinforcement and to help increase the column ductility before failure. In general,
ties and spirals prevent the slender, highly stressed longitudinal bars from buckling and
bursting the concrete cover.

5. Based on frame bracing, columns may be part of a frame that is braced against sidesway or
unbraced against sidesway. Bracing may be achieved by using shear walls or bracings in the
building frame. In braced frames, columns resist mainly gravity loads, and shear walls resist
lateral loads and wind loads. In unbraced frames, columns resist both gravity and lateral loads,
which reduces the load capacity of the columns.

6. Based on materials, columns may be reinforced, prestressed, composite (containing rolled
steel sections such as I-sections), or a combination of rolled steel sections and reinforcing
bars. Concrete columns reinforced with longitudinal reinforcing bars are the most common
type used in concrete buildings.

10.3 BEHAVIOR OF AXIALLY LOADED COLUMNS

When an axial load is applied to a reinforced concrete short column, the concrete can be considered

to behave elastically up to a low stress of about
(

1
3

)
f ′c . If the load on the column is increased to

reach its design strength, the concrete will reach the maximum strength and the steel will reach its
yield strength, fy. The nominal load capacity of the column can be written as follows:

P0 = 0.85f ′c An + Astfy (10.1)

where An and Ast are the net concrete and total steel compressive areas, respectively.

An = Ag − Ast

where Ag is the gross concrete area.
Two different types of failure occur in columns, depending on whether ties or spirals are used.

For a tied column, the concrete fails by crushing and shearing outward, the longitudinal steel bars
fail by buckling outward between ties, and the column failure occurs suddenly, much like the failure
of a concrete cylinder.

A spiral column undergoes a marked yielding, followed by considerable deformation before
complete failure. The concrete in the outer shell fails and spalls off. The concrete inside the spiral is
confined and provides little strength before the initiation of column failure. A hoop tension develops
in the spiral, and for a closely spaced spiral the steel may yield. A sudden failure is not expected.
Figure 10.2 shows typical load deformation curves for tied and spiral columns. Up to point a, both
columns behave similarly. At point a, the longitudinal steel bars of the column yield, and the spiral
column shell spalls off. After the factored load is reached, a tied column fails suddenly (curve b),
whereas a spiral column deforms appreciably before failure (curve c).

10.4 ACI CODE LIMITATIONS

The ACI Code presents the following limitations for the design of compression members:

1. For axially as well as eccentrically loaded columns, the ACI Code sets the strength reduction
factors at 𝜙= 0.65 for tied columns and 𝜙= 0.75 for spirally reinforced columns. The dif-
ference of 0.10 between the two values shows the additional ductility of spirally reinforced
columns.
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(a)

(b)

(c)

Figure 10.2 Behavior of tied and spiral columns.

The strength reduction factor for columns is much lower than those for flexure (𝜙= 0.9)
and shear (𝜙= 0.75). This is because in axially loaded columns, the strength depends mainly
on the concrete compression strength, whereas the strength of members in bending is less
affected by the variation of concrete strength, especially in the case of an underreinforced
section. Furthermore, the concrete in columns is subjected to more segregation than in the
case of beams. Columns are cast vertically in long, narrow forms, but the concrete in beams
is cast in shallow, horizontal forms. Also, the failure of a column in a structure is more critical
than that of a floor beam.

2. The minimum longitudinal steel percentage is 1%, and the maximum percentage is 8% of the
gross area of the section (ACI Code, Section 10.6.1.1). Minimum reinforcement is necessary
to provide resistance to bending, which may exist, and to reduce the effects of creep and
shrinkage of the concrete under sustained compressive stresses. Practically, it is very difficult
to fit more than 8% of steel reinforcement into a column and maintain sufficient space for
concrete to flow between bars.

3. At least four bars are required for tied circular and rectangular members and six bars are
needed for circular members enclosed by spirals (ACI Code, Section 10.7.3.1). For other
shapes, one bar should be provided at each corner, and proper lateral reinforcement must
be provided. For tied triangular columns, at least three bars are required. Bars shall not be
located at a distance greater than 6 in. clear on either side from a laterally supported bar.
Figure 10.3 shows the arrangement of longitudinal bars in tied columns and the distribution
of ties. Ties shown in dotted lines are required when the clear distance on either side from
laterally supported bars exceeds 6 in. The minimum concrete cover in columns is 1.5 in.

4. The minimum ratio of spiral reinforcement, 𝜌s, according to the ACI Code, Section
25.7.3.3, is

𝜌s ≥ 0.45

(
Ag

Ach
− 1

)
f ′c
fyt

(10.2)

where
Ag = gross area of section
Ach = area of core of spirally reinforced column measured to the outside diameter of spiral
fyt = yield strength of spiral reinforcement (≤100 ksi)
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Figure 10.3 Arrangement of bars and ties in columns.

5. The minimum diameter of spiral bar is 3
8

in. (ACI Code, Section 25.7.3.2), and their clear
spacing according to ACI Code, Section 25.7.3.1 should not be more than 3 in. nor less than
1 in. or 4/3 the nominal maximum size of coarse aggregate. Splices may be provided by weld-
ing or by lapping the deformed uncoated spiral bars by 48 diameters or a minimum of 12 in.
(ACI Code, Section 25.7.3.6). Lap splices for plain uncoated bar or wire= 72dp ≤ 12 in. The
same applies for epoxy-coated deformed bar or wire. The Code also allows full mechanical
splices. ACI Code, Table 25.7.3.56 gives details for the different cases.

6. Ties for columns must have a minimum diameter of 3
8

in. to enclose longitudinal bars of no.

10 size or smaller and a minimum diameter of 1
2

in. for larger bar diameters (ACI Code,
Section 25.7.2).

7. Center to center spacing of ties shall not exceed the smallest of 48 times the tie bar diameter,
16 times the longitudinal bar diameter, or the least dimension of the member. Clear spacing
of ties should be at least 4/3 the nominal maximum size of the aggregate. Table 10.1 gives the
spacing for no. 3 and no. 4 ties. The Code does not give restrictions on the size of columns to
allow wider utilization of reinforced concrete columns in smaller sizes.
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Table 10.1 Maximum Spacing of Ties

Spacing of Ties (in.) for BarColumn Least
Side or
Diameter (in.) No. 6 No. 7 No. 8 No. 9 No. 10 No. 11

12 12 12 12 12 12 12
14 12 14 14 14 14 14
16 12 14 16 16 16 16
18 12 14 16 18 18 18
20 12 14 16 18 18 20
22–40 12 14 16 18 18 22
Ties No. 3 No. 3 No. 3 No. 3 No. 3 No. 4

10.5 SPIRAL REINFORCEMENT

Spiral reinforcement in compression members prevents a sudden crushing of concrete and buckling
of longitudinal steel bars. It has the advantage of producing a tough column that undergoes gradual
and ductile failure. The minimum spiral ratio required by the ACI Code is meant to provide an
additional compressive capacity to compensate for the spalling of the column shell. The strength
contribution of the shell is

Pu(shell) = 0.85f ′c (Ag − Ach) (10.3)

where Ag is the gross concrete area and Ach is the core area (Fig. 10.4).
In spirally reinforced columns, spiral steel is at least twice as effective as longitudinal bars;

therefore, the strength contribution of spiral equals 2𝜌sAchfyt, where 𝜌s is the ratio of volume of
spiral reinforcement to total volume of core.

chch

Figure 10.4 Dimensions of a column spiral.
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If the strength of the column shell is equated to the spiral strength contribution, then

0.85f ′c (Ag − Ach) = 2𝜌sAchfyt

𝜌s = 0.425

(
Ag

Ach
− 1

)
f ′c
fyt

(10.4)

The ACI Code adopted a minimum ratio of 𝜌s according to the following equation:

Minimum𝜌s = 0.45

(
Ag

Ach
− 1

)
f ′c
fyt

The design relationship of spirals may be obtained as follows (Fig. 10.4):

𝜌s =
volume of spiral in one loop

volume of core for a spacing S

=
as𝜋(Dch − ds)(

𝜋

4
D2

ch

)
S

=
4as(Dch − ds)

D2
chS

(10.5)

where
as = area of spiral reinforcement
Dch = diameter of the core measured to the outside diameter of spiral
D = diameter of the column
ds = diameter of the spiral
S = spacing of the spiral

Table 10.2 gives spiral spacings for no. 3 and no. 4 spirals with fy = 60 ksi.

10.6 DESIGN EQUATIONS

The nominal load strength of an axially loaded column was given in Eq. 10.1. Because a perfect
axially loaded column does not exist, some eccentricity occurs on the column section, thus reducing
its load capacity, P0. To take that into consideration, the ACI Code specifies that the maximum
nominal load, P0, should be multiplied by a factor equal to 0.8 for tied columns and 0.85 for spirally

Table 10.2 Spirals for Circular Columns (fy =60 ksi)

Column
Diameter (in.)

Spacing (in.),
f′c = 4 ksi,

No. 3 Spirals

f′c = 5 ksi Spacing (in.),
f′c = 6 ksi,

No. 4 SpiralsSpiral No. Spacing (in.)

12 2.0 4 2.75 2.25
14 2.0 4 3.00 2.25
16 2.0 4 3.00 2.50
18 2.0 4 3.00 2.50
20 2.0 4 3.00 2.50
22 2.0 4 3.00 2.50
24 2.0 3 1.75 2.50
26–40 2.25 3 1.75 2.75
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reinforced columns. Introducing the strength reduction factor, the axial load strength of columns
according to the ACI Code, Sections 22.4.2.2 and 22.4.2.3, are as follows:

Pu = 𝜙Pn = 𝜙(0.80)[0.85f ′c (Ag − Ast) + Astfy] (10.6)

for tied columns and
Pu = 𝜙Pn = 𝜙(0.85)[0.85f ′c (Ag − Ast) + Astfy] (10.7)

for spiral columns, where
Ag = gross concrete area
Ast = total steel compressive area
𝜙 = 0.65 for tied columns and 0.75 for spirally reinforced columns

Equations 10.6 and 10.7 may be written as follows:

Pu = 𝜙Pn = 𝜙K[0.85f ′c Ag + Ast(fy − 0.85f ′c )] (10.8)

where 𝜙= 0.65 and K = 0.8 for tied columns and 𝜙= 0.75 and K = 0.85 for spiral columns.
If the gross steel ratio is 𝜌g = Ast∕Ag, or Ast = 𝜌gAg, then Eq. 10.8 may be written as follows:

Pu = 𝜙Pn = 𝜙KAg[0.85f ′c + 𝜌g(fy − 0.85f ′c )] (10.9)

Equation 10.8 can be used to calculate the axial load strength of the column, whereas Eq. 10.9
is used when the external factored load is given and it is required to calculate the size of the column
section, Ag, based on an assumed steel ratio, 𝜌g, between a minimum of 1% and a maximum of 8%.

It is a common practice to use grade 60 reinforcing steel bars in columns with a concrete
compressive strength of 4 ksi or greater to produce relatively small concrete column sections.

10.7 AXIAL TENSION

Concrete will not crack as long as stresses are below its tensile strength; in this case, both con-
crete and steel resist the tensile stresses, but when the tension force exceeds the tensile strength of
concrete (about one-tenth of the compressive strength), cracks develop across the section, and the
entire tension force is resisted by steel. The nominal load that the member can carry is that due to
tension steel only:

Tn = Astfy (10.10)

Tu = 𝜙Astfy (10.11)

where 𝜙 is 0.9 for axial tension.
Tie rods in arches and similar structures are subjected to axial tension. Under working loads,

the concrete cracks and the steel bars carry the whole tension force. The concrete acts as a fire and
corrosion protector. Special provisions must be taken for water structures, as in the case of water
tanks. In such designs, the concrete is not allowed to crack under the tension caused by the fluid
pressure.

10.8 LONG COLUMNS

The equations developed in this chapter for the strength of axially loaded members are for short
columns. In the case of long columns, the load capacity of the column is reduced by a reduction
factor.

A long column is one with a high slenderness ratio, h/r, where h is the effective height of
the column and r is the radius of gyration. The design of long columns is explained in detail in
Chapter 12.
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Example 10.1

Determine the allowable design axial load on a 12-in. square, short tied column reinforced with
four no. 9 bars. Ties are no. 3 spaced at 12 in. Use f ′c = 4 ksi and fy = 60 ksi.

Solution

1. Using Eq. 10.9,
Pu = 𝜙Pn = 𝜙K[0.85f ′c Ag + Ast(fy − 0.85f ′c )]

For a tied column, 𝜙= 0.65, K= 0.8, and Ast = 4.0 in.2

Pu = 𝜙Pu = 0.65(0.8)[0.85(4)(12 × 12) + 4(60 − 0.85 × 4)] = 372 K

2. Check steel percentage: 𝜌g = 4
144

= 0.02778 = 2.778%. This is less than 8% and greater than 1%.

3. Check tie spacings: Minimum tie diameter is no. 3. Spacing is the smallest of the 48-tie diameter,

16-bar diameter, or least column side. S1 = 16
(

9
8

)
= 18 in., S2 = 48

(
3
8

)
= 18 in., S3 = 12.0 in.

Ties are adequate (Table 10.1). Note: Clear spacing of ties should be at least 4/3 the nominal
maximum size of the aggregate.

Example 10.2

Design a square tied column to support an axial dead load of 400 K and a live load of 232 K using
f ′c = 5 ksi, fy = 60 ksi, and a steel ratio of about 5%. Design the necessary ties.

Solution

1. Calculate Pu = 1.2PD + 1.6 PL = 1.2(400) + 1.6(232) = 851 K. Using Eq. 10.10, Pu = 851 =
0.65(0.8) Ag[0.85 × 5 + 0.05(60–0.8 × 5)], Ag = 232.5 in.2, and column side= 15.25 in., so use
16 in. (Actual Ag = 256 in.2.)

2. Because a larger section is adopted, the steel percentage may be reduced by using Ag = 256 in.2

in Eq. 10.8:

851 = 0.65(0.8)[0.85 × 5 × 256 + Ast(60 − 0.85 × 5)]

Ast = 9.84 in.2

Use eight no. 10 bars (Ast = 10.16 in.2). See Fig. 10.5.

Figure 10.5 Example 10.2.
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3. Design of ties (by calculation or from Table 10.1): Choose no. 3 ties with spacings equal to the

least of S1 = 16
(

10
8

)
= 20 in., S2 = 48

(
3
8

)
= 18 in., or S3 = column side= 16 in. Use no. 3 ties

spaced at 16 in. Clear distance between bars is 4.25 in., which is less than 6 in. Therefore, no
additional ties are required.

Example 10.3

Repeat Example 10.2 using a rectangular section that has a width of b= 14 in.

Solution

1. Pu = 851 K and calculated Ag = 232.5 in.2 For b= 14 in., h= 232.5/14= 16.6 in. Choose a column
14× 18 in.; actual Ag = 252 in.2.

2. Pu = 851 = 0.65(0.8)[0.85 × 5 × 252 + Ast(60 − 0.85 × 5)].

Ast = 10.14 in.2

Use eight no. 10 bars (Ast = 10.16 in.2).
3. Design of ties: Choose no. 3 ties, S1 = 20 in., S2 = 18 in., and S3 = 14 in. (least side). Use no. 3

ties spaced at 14 in. Clear distance between bars in the long direction is (18 – 5)/2-bar diameter
of 1.27= 5.23 in. <6 in. No additional ties are needed. Clear distance in the short direction is
(14 – 5)/2 – 1.27= 3.23 in. <6 in.

Example 10.4

Design a circular spiral column to support an axial dead load of 475 K and a live load of 250 K using
f ′c = 4 ksi, fy = 60 ksi, and a steel ratio of about 3%. Also, design the necessary spirals.

Solution

1. Calculate Pu = 1.2 PD + 1.6 PL = 1.2(475) + 1.6(250) = 970 K. Using Eq. 10.10 and spiral
columns,

Pu = 970 = 0.75(0.85)Ag[0.85 × 4 + 0.03(60 − 0.85 × 4)]

Ag = 299 in.2 and column diameter= 19.5 in., so use 20 in. Actual Ag = 314.2 in.2.
2. Calculate Ast needed from Eq. 10.8:

Pu = 970 = 0.75(0.85)[0.85 × 4 × 314.2 + Ast(60 − 0.85 × 4)]

Ast = 8 in.2

Use eight no. 10 bars (Ast = 10.16 in.2).
3. Design of spirals: The diameter of core is 20 – 2(1.5)= 17 in. The area of core is

Ach = 𝜋

4
(17)2 Ag = 𝜋

4
(20)2

Minimum 𝜌s = 0.45

( Ag

Ach
− 1

)
f ′c
fyt

= 0.45

(
202

172
− 1

)( 4
60

)
= 0.01152
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Assume no. 3 spiral, as = 0.11 in.2, and ds = 0.375 in.

𝜌s = 0.01152 =
4as(Dch − db)

SD2
ch

= 4(0.11)(17 − 0.375)
S(17)2

Spacing s is equal to 2.2 in; use no. 3 spiral at s= 2 in. (as shown in Table 10.2).

Example 10.5

Design a rectangular tied short column to carry a factored axial load of 1765 kN. Use f ′c = 30 MPa,
fy = 400 MPa, column width (b)= 300 mm, and a steel ratio of about 2%.

Solution SI Units

1. Using Eq. 10.9,
Pu = 0.8𝜙Ag[0.85f ′c + 𝜌g(fy − 0.85f ′c )]

Assuming a steel percentage of 2%,

1765 × 103 = 0.8 × 0.65Ag[0.85 × 30 + 0.02(400 − 0.85 × 30)]

Ag = 102, 887 mm2

For b= 300 mm, the other side of the rectangular column is 343 mm. Therefore, use a section
of 300× 350 mm (Ag= 105,000 mm2).

2. As = 0.02 × 102,887 = 2057 mm2. Choose six bars, 22 mm in diameter (As = 2280 mm2).
3. Check the axial load strength of the section using Eq. 10.6:

𝜙Pn = 0.8𝜙[0.85f ′c (Ag − Ast) + Astfy]

= 0.8 × 0.65[0.85 × 30(105,000 − 2280) + 2280 × 400] × 10−3

= 1836 kN

This meets the required Pu of 1765 kN.
4. Choose ties 10 mm in diameter. Spacing is the least of (1) 16× 22= 352 mm, (2) 48× 10=

480 mm, or (3) 300 mm. Choose 10-mm ties spaced at 300 mm. Note: Clear spacing of ties
should be at least 4/3 the nominal maximum size of the aggregate.

SUMMARY

Sections 10.1–10.4

Columns may be tied or spirally reinforced:

𝜙 =
{

0.65 for tied columns
0.75 for spirally reinforced columns

Also, 𝜌g must be≤ 8% and ≥1%.
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Section 10.5

Minimum ratio of spirals is

𝜌s =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.45

(
Ag

Ach
− 1

)
f ′c
fyt

4as(Dch − ds)
D2

chS

(Eq. 10.2)

The minimum diameter of spirals is 3
8

in., and the clear spacing should not be more than 3 in. or
less than 1 in.

Section 10.6

For tied columns,
Pu = 𝜙Pn = 0.8𝜙[0.85f ′c (Ag − Ast) + Astfy] (Eq. 10.6)

or
Pu = 𝜙Pn = 0.8𝜙Ag[0.85f ′c + 𝜌g(fy − 0.85f ′c )]

For spiral columns,
Pu = 𝜙Pn = 0.85𝜙[0.85f ′c (Ag − Ast) + Astfy] (Eq. 10.7)

or
Pu = 𝜙Pn = 0.85𝜙Ag[0.85f ′c + 𝜌g(fy − 0.85f ′c )]

where 𝜌g = Ast∕Ag.

Section 10.7

1. For axial tension,
Tu = 𝜙Astfy(𝜙 = 0.9) (Eq. 10.11)

2. Arrangements of vertical bars and ties in columns are shown in Fig. 10.3.
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P R O B L E M S

10.1 Determine the factored axial load for each (𝜙P0) for each of the following short rectangular columns
according to the ACI Code limitations. Assume fy = 60 ksi and properly tied columns (b= width of
column, in., and h= total depth, in.).

Number
f′c

(ksi)
b

(in.)
h

(in.) Bars
Answer
(𝝓 Pn) K

a 4 16 16 8 no. 9 688
b 4 20 20 16 no. 11 1442
c 4 12 12 8 no. 8 439
d 4 12 24 12 no. 10 955
e 5 14 14 10 no. 9 722
f 5 16 16 4 no. 10 712
g 5 14 26 12 no. 10 1244
h 5 18 32 8 no. 11 1634
i 6 16 16 8 no. 10 968
j 6 12 20 6 no. 10 852

10.2 Determine the factored axial load for each of the following short, spirally reinforced circular columns
according to the ACI Code limitations. Assume fy = 60 ksi and the spirals are adequate (D= diameter of
column, in.).

Number
f′c

(ksi)
D

(in.) Bars
Answer
(𝝓 Pn) K

a 4 14 8 no. 9 581
b 4 16 6 no. 10 663
c 5 18 8 no. 10 980
d 5 20 12 no. 10 1300
e 6 15 8 no. 9 797

10.3 For each problem, design a short square, rectangular, or circular column, as indicated, for each set of axial
loads given, according to ACI limitations. Also, design the necessary ties or spirals and draw sketches of
the column sections showing all bar arrangements. Use fy = 60 ksi and a steel ratio close to the 𝜌g given
(PD = dead load, PL = live load, b= width of a rectangular column, and= 𝜌g = Ast/Ag).
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Number
f′c

(ksi)
PD
(K)

PL
(K) 𝝆g% Section One Solution

a 4 200 200 4 Square 14× 14, 8 no. 9
b 4 750 400 3.5 Square 24× 24, 16 no. 10
c 4 220 165 7 Square 12× 12, 8 no. 10
d 5 330 230 3 Square 16× 16, 8 no. 9
e 4 190 170 2 Rectangular, b= 12 in. 12× 18, 6 no. 8
f 4 280 315 4.5 Rectangular, b= 14 in. 14× 20, 10 no. 10
g 4 210 150 3 Rectangular, b= 12 in. 12× 16, 6 no. 9
h 5 690 460 2 Rectangular, b= 18 in. 18× 32, 8 no. 10
i 4 350 130 4 Circular—spiral 16, 7 no. 9
j 4 475 220 3.25 Circular—spiral 20, 7 no. 10
k 4 400 260 5 Circular—spiral 18, 9 no. 10
l 5 285 200 4.25 Circular—spiral 15, 6 no. 10

For SI units, use 1 psi= 0.0069 MPa, 1 K= 4.45 kN, and 1 in.= 25.4 mm.



CHAPTER11
MEMBERS IN
COMPRESSION AND
BENDING

Residential building, Minneapolis, Minnesota.

11.1 INTRODUCTION

Vertical members that are part of a building frame are subjected to combined axial loads and bend-
ing moments. These forces develop due to external loads, such as dead, live, and wind loads.
The forces are determined by manual calculations or computer applications that are based on
the principles of statics and structural analysis. For example, Fig. 11.1 shows a two-hinged por-
tal frame that carries a uniform factored load on BC. The bending moment is drawn on the tension
side of the frame for clarification. Columns AB and CD are subjected to an axial compressive
force and a bending moment. The ratio of the moment to the axial force is usually defined as
the eccentricity e, where e = Mn/Pn (Fig. 11.1). The eccentricity e represents the distance from
the plastic centroid of the section to the point of application of the load. The plastic centroid is
obtained by determining the location of the resultant force produced by the steel and the con-
crete, assuming that both are stressed in compression to fy and 0.85 f ′c , respectively. For symmet-
rical sections, the plastic centroid coincides with the centroid of the section. For nonsymmetrical
sections, the plastic centroid is determined by taking moments about an arbitrary axis, as explained
in Example 11.1.

356



11.1 Introduction 357

C

A
HA

VA VD

D

B

HD

Figure 11.1 Two-hinged portal frame with bending moment diagram drawn on the
tension side.

Example 11.1

Determine the plastic centroid of the section shown in Fig. 11.2. Given: f ′c = 4 ksi and fy = 60 ksi.

FS1 FS2FC

4 no. 9 2 no. 9

Figure 11.2 Example 11.1: Plastic centroid (PC) of section.
Solution

1. It is assumed that the concrete is stressed in compression to 0.85 f ′c :

Fc = force in concrete = (0.85f ′c )Ag

= (0.85 × 4) × 14 × 20 = 952 K

Force Fc is located at the centroid of the concrete section (at 10 in. from axis A–A).
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2. Forces in steel bars:

Fs1 = As1fy = 4 × 60 = 240 K

Fs2 = As2fy = 2 × 60 = 120 K

3. Take moments about A–A:

x = (952 × 10) + (240 × 2.5) + (120 × 17.5)
952 + 240 + 120

= 9.31 in.

Therefore, the plastic centroid lies at 9.31 in. from axis A–A.
4. If As1 = As2 (symmetrical section), then x = 10 in. from axis A–A.

11.2 DESIGN ASSUMPTIONS FOR COLUMNS

The design limitations for columns, according to the ACI Code, Section 22.2.2, are as follows:

1. Strains in concrete and steel are proportional to the distance from the neutral axis.
2. Equilibrium of forces and strain compatibility must be satisfied.
3. The maximum usable compressive strain in concrete is 0.003.
4. Strength of concrete in tension can be neglected.
5. The stress in the steel is fs = 𝜀Es ≤ fy.
6. The concrete stress block may be taken as a rectangular shape with concrete stress of 0.85 f ′c

that extends from the extreme compressive fibers a distance a = 𝛽1c, where c is the distance
to the neutral axis and 𝛽1 is 0.85 when f ′c ≤ 4000 psi (30 MPa); 𝛽1 decreases by 0.05 for each
1000 psi above 4000 psi (0.008 per 1 MPa above 30 MPa) but is not less than 0.65. (Refer to
Fig. 3.6, Chapter 3.)

11.3 LOAD–MOMENT INTERACTION DIAGRAM

When a normal force is applied on a short reinforced concrete column, the following cases may
arise, according to the location of the normal force with respect to the plastic centroid. Refer to
Figs 1-3a and 11.3b:

1. Axial Compression (P0). This is a theoretical case assuming that a large axial load is acting
at the plastic centroid; e = 0 and Mn = 0. Failure of the column occurs by crushing of the
concrete and yielding of steel bars. This is represented by P0 on the curve of Fig. 11.3a.

2. Maximum Nominal Axial Load Pn, max. This is the case of a normal force acting on the section
with minimum eccentricity. According to the ACI Code, Pn, max = 0.80P0 for tied columns
and 0.85P0 for spirally reinforced columns, as explained in Chapter 10. In this case, failure
occurs by crushing of the concrete and the yielding of steel bars.

3. Compression Failure. This is the case of a large axial load acting at a small eccentricity. The
range of this case varies from a maximum value of Pn = Pn max to a minimum value of Pn =
Pb (balanced load). Failure occurs by crushing of the concrete on the compression side with
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a strain of 0.003, whereas the stress in the steel bars (on the tension side) is less than the yield
strength, fy (fs < fy). In this case Pn > Pb and e < eb.

4. Balanced Condition (Pb). A balanced condition is reached when the compression strain in the
concrete reaches 0.003 and the strain in the tensile reinforcement reaches 𝜀y = fy/Es simul-
taneously; failure of concrete occurs at the same time as the steel yields. The moment that
accompanies this load is called the balanced moment, Mb, and the relevant balanced eccen-
tricity is eb = Mb/Pb.

5. Tension Failure. This is the case of a small axial load with large eccentricity, that is, a large
moment. Before failure, tension occurs in a large portion of the section, causing the tension
steel bars to yield before actual crushing of the concrete. At failure, the strain in the tension
steel is greater than the yield strain, 𝜀y, whereas the strain in the concrete reaches 0.003. The
range of this case extends from the balanced to the case of pure flexure (Fig. 11.3). When
tension controls, Pn < Pb and e > eb.

6. Pure Flexure. The section in this case is subjected to a bending moment, Mn, whereas the axial
load is Pn = 0. Failure occurs as in a beam subjected to bending moment only. The eccentricity
is assumed to be at infinity. Note that radial lines from the origin represent constant ratios of
Mn/Pn = e = eccentricity of the load Pn from the plastic centroid.

εc

 0

0

ε
ε

ε ε

ε ε

ε

ε

ε ε
ε ε

ε

(a)

e

e = e b

Figure 11.3 (a) Load–moment strength interaction diagram showing ranges of cases
discussed in text and (b) column sections showing the location of Pn for different load
conditions.
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0

(b)

Figure 11.3 (Continued)
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11.4 SAFETY PROVISIONS

The safety provisions for load factors were discussed earlier in Section 3.5. For columns, the safety
provisions may be summarized as follows:

1. Load factors for gravity and wind loads are

U = 1.4D

U = 1.2D + 1.6L

U = 1.2D + (1.0L or 0.5W)

U = 1.2D + 1.0L + 1.0W

U = 0.9D + 1.0W

The most critical factored load should be used.
2. The strength reduction factor, 𝜑, to be used for columns may vary according to the following

cases:
a. When Pu = 𝜙Pn ≥ 0.1f ′c Ag, 𝜙 is 0.65 for tied columns and 0.75 for spirally reinforced

columns. This case occurs generally when compression failure is expected. Area Ag is the
gross area of the concrete section.

b. The sections in which the net tensile strain, 𝜀t, at the extreme tension steel, at nominal
strength, is between 0.005 and 0.002 (transition region) 𝜙 varies linearly between 0.90
and 0.65 (or 0.75), respectively (Fig. 11.4). Refer to Section 3.7. For spiral sections,

𝜙 = 0.75 + (𝜀t − 0.002)(50) or 𝜙 = 0.75 + 0.15

[
1

c∕dt
− 5

3

]
(11.1)

0.90

 = 0.002

 = 0.600

0.75

0.65

Compression Transition

Spiral

Other

Tension
controlledcontrolled

 = 0.005

c
dt

 = 0.375c
dt

Interpolation on

= 0.75 + ( - 0.002)(50)

= 0.65 + ( - 0.002)(250/3)

Other

Spiral = 0.75 + 0.15

= 0.65 + 0.25

1
c/dt

5
3-

1
c/dt

5
3-

c
dt

:

εt

εt

εt εt

Figure 11.4 Variation in 𝜑 with NTS for grade 60 steel 7. Courtesy of ACI.
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For tied sections

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
or 𝜙 = 0.65 + 0.25

[
1

c∕dt
− 5

3

]
(11.2)

c. When Pu = 0, the case of pure flexure, then 𝜙 = 0.90 for tension-controlled sections and
varies between 0.90 and 0.65 (or 0.75) in the transition region.

11.5 BALANCED CONDITION: RECTANGULAR SECTIONS

A balanced condition occurs in a column section when a load is applied on the section and produces,
at nominal strength, a strain of 0.003 in the compressive fibers of concrete and a strain 𝜀y = fy/Es in
the tension steel bars simultaneously. This is a special case where the neutral axis can be determined
from the strain diagram with known extreme values. When the applied eccentric load is greater than
Pb, compression controls; if it is smaller than Pb, tension controls in the section.

Columns supporting 52-story building, Minneapolis, Minnesota. (Colums are 96 × 64 in. with
round ends.).

The analysis of a balanced column section can be explained in steps (Fig. 11.5):

1. Let c equal the distance from the extreme compressive fibers to the neutral axis. From the
strain diagram,

cb(balanced)
dt

= 0.003
0.003 + fy∕Es

(where Es = 29,000 ksi) (11.3)
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dt = d

ε

ε

Figure 11.5 Balanced condition (rectangular section).

and

cb =
87dt

87 + fy
(where fy is in ksi)

The depth of the equivalent compressive block is

ab = 𝛽1cb =
(

87
87 + fy

)
𝛽1dt (11.4)

where 𝛽1 = 0.85 for f ′c ≤ 4000 psi and decreases by 0.05 for each 1000-psi increase in f ′c .
2. From equilibrium, the sum of the horizontal forces equals 0: Pb − Cc − Cs + T = 0, where

Cc = 0.85f ′c ab and T = Asfy

Cs = A′
s(f ′s − 0.85f ′c ) (11.5)

(Use f ′s = fy if compression steel yields.)

f ′s = 87

(
c − d′

c

)
≤ fy

The expression of Cs takes the displaced concrete into account. Therefore, Eq. 11.5
becomes

Pb = 0.85f ′c ab + A′
s(f ′s − 0.85f ′c ) − Asfy (11.6)

3. The eccentricity eb is measured from the plastic centroid and e′ is measured from the centroid
of the tension steel: e′ = e + d′′ (in this case e′ = eb + d′′), where d′′ is the distance from
the plastic centroid to the centroid of the tension steel. The value of eb can be determined by
taking moments about the plastic centroid:

Pbeb = Cc

(
d − a

2
− d′′

)
+ Cs(d − d′ − d′′) + Td′′ (11.7)

or

Pbeb = Mb = 0.85f ′c ab
(

d − a
2
− d′′

)
+ A′

s(fy − 0.85f ′c )(d − d′ − d′′) + Asfyd
′′ (11.8)
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The balanced eccentricity is

eb =
Mb

Pb
(11.9)

For nonrectangular sections, the same procedure applies, taking into consideration the actual
area of concrete in compression.

The strength reduction factor,𝜙, for the balanced condition with fy = 60 ksi, can be assumed=
0.65 (or 0.75). This is because 𝜀s = 𝜀t = fy/Es = 0.00207 (or 0.002), for which 𝜙 = 0.65 (Fig. 11.4).

Example 11.2

Determine the balanced compressive force Pb; then determine eb and Mb for the section shown in
Fig. 11.6. Given: f ′c = 4 ksi and fy = 60 ksi.

ε

ε

Figure 11.6 Example 11.2: Balanced condition.

Solution

1. For a balanced condition, the strain in the concrete is 0.003 and the strain in the tension steel is

𝜀y =
fy
Es

= 60
29,000

= 0.00207

2. Locate the neutral axis:

cb = 87
87 + fy

dt =
87

87 + 60
(19.5) = 11.54 in.

ab = 0.85cb = 0.85 × 11.54 = 9.81 in.

3. Check if compression steel yields. From the strain diagram,

𝜀′s

0.003
= c − d′

c
= 11.54 − 2.5

11.54
𝜀′s = 0.00235

which exceeds 𝜀y of 0.00207; thus, compression steel yields. Or check that

f ′s = 87

(
c − d′′

c

)
≤ fy

= 87(11.54 − 2.5)
11.54

= 68 ksi > 60 ksi

Then f ′s = fy = 60 ksi.
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4. Calculate the forces acting on the section:

Cc = 0.85f ′c ab = 0.85 × 4 × 9.81 × 14 = 467 K

T = Asfy = 4 × 60 = 240 K

Cs = A′
s(fy − 0.85f ′c ) = 4(60 − 3.4) = 226.4 K

5. Calculate Pb and eb:

Pb = Cc + Cs − T = 467 + 226.4 − 240 = 453.4 K

From Eq. 11.7,

Mb = Pbeb = Cc

(
d − a

2
− d′′

)
+ Cs(d − d′ − d′′) + Td′′

The plastic centroid is at the centroid of the section, and d′′ = 8.5 in.

Mb = 453.4eb = 467
(

19.5 − 9.81
2

− 8.5
)
+ 226.4(19.5 − 2.5 − 8.5) + 240 × 8.5

= 6810.8 K ⋅ in. = 567.6 K ⋅ ft

eb =
Mb

Pb
= 6810.8

453.4
= 15.0 in.

6. For a balanced condition, 𝜙 = 0.65, 𝜙 Pb = 294.7 K, and 𝜙 Mb = 368.9 K.ft.

11.6 COLUMN SECTIONS UNDER ECCENTRIC LOADING

For the two cases when compression or tension failure occurs, two basic equations of equilibrium
can be used in the analysis of columns under eccentric loadings: (1) the sum of the horizontal or
vertical forces = 0, and (2) the sum of moments about any axis = 0. Referring to Fig. 11.7, the
following equations may be established.

ε

ε

Figure 11.7 General case, rectangular section.
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Reinforced concrete tied column under construction. The two columns are separated by an expansion joint.

1.
Pn − Cc − Cs + T = 0 (11.10)

where
Cc = 0.85f ′c ab
Cs = A′

s(f ′s − 0.85f ′c ) (If compression steel yields, then f ′s = fy.)
T = Asfs (If tension steel yields, then fs = fy.)

2. Taking moments about As,

Pne′ − Cc

(
d − a

2

)
− Cs(d − d′) = 0 (11.11)

The quantity e′ = e + d′′, and e′ = (e + d − h/2) for symmetrical reinforcement (d′′ is the
distance from the plastic centroid to the centroid of the tension steel.)

Pn = 1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]
(11.12)

Taking moments about Cc,

Pn

[
e′ −

(
d − a

2

)]
− T

(
d − a

2

)
− Cs

(a
2
− d′

)
= 0 (11.13)

and

Pn =
T(d − a∕2) + Cs(a∕2 − d′)

(e′ + a∕2 − d)
(11.14)



11.7 Strength of Columns for Tension Failure 367

If As = A′
s and fs = f ′s = fy, then

Pn =
Asfy(d − d′)

(e′ + a∕2 − d)
=

Asfy(d − d′)
(e − h∕2 + a∕2)

(11.15)

As = A′
s =

Pn(e − h∕2 + a∕2)
fy(d − d′)

(11.16)

11.7 STRENGTH OF COLUMNS FOR TENSION FAILURE

When a column is subjected to an eccentric force with large eccentricity e, tension failure is
expected. The column section fails due to the yielding of steel and crushing of concrete when the
strain in the steel exceeds 𝜀y (𝜀y = fy/Es). In this case the nominal strength, Pn, will be less than Pb
or the eccentricity, e = Mn/Pn, is greater than the balanced eccentricity, eb. Because it is difficult in
some cases to predict if tension or compression controls, it can be assumed (as a guide) a tension
failure will occur when e > d. This assumption should be checked later.

The general equations of equilibrium, Eqs. 11.10 and Eqs. 11.11, may be used to calculate
the nominal strength of the column. This is illustrated in steps as follows:

1. For tension failure, the tension steel yields and its stress is fs = fy. Assume that stress in
compression steel is f ′s = fy.

2. Evaluate Pn from equilibrium conditions (Eq. 11.10):

Pn = Cc + Cs − T

where Cc = 0.85f ′c ab,Cs = A′
s(fy − 0.85f ′c ), and T = As fy.

3. Calculate Pn by taking moments about As (Eq. 11.11):

Pne′ = Cc

(
d − a

2

)
+ Cs(d − d′)

where e′ = e + d′′ and e′ = e + d − h/2 when As = A′
s.

4. Equate Pn from steps 2 and 3:

Cc + Cs − T = 1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]

This is a second-degree equation in a. Substitute the values of Cc, Cs, and T and solve for a.
5. The second-degree equation, after the substitution of Cc, Cs, and T, is reduced to the following

equation:
Aa2 + Ba + C = 0

where
A = 0.425f ′c b
B = 0.85f ′c b(e′ − d) = 2A(e′ − d)
C = A′

s(f ′s − 0.85f ′c )(e′ − d + d′) − Asfye′

Solve for a to get

a = −B ±
√

B2 − 4AC
2A
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Note that the value of f ′s − 0.85f ′c must be a positive value. If this value is negative, then let
f ′s − 0.85f ′c = 0.

6. Substitute a in the equation of step 2 to obtain Pn. The moment Mn can be calculated:

Mn = Pne

7. Check if compression steel yields as assumed. If 𝜀′s ≥ 𝜀y, then compression steel yields; oth-
erwise, f ′s = Es𝜀

′
s. Repeat steps 2 through 5. Note that 𝜀′s = [(c − d′∕c]0.003, 𝜀y = fy∕Es, and

a = 𝛽1 c.
8. Check that tension controls. Tension controls when e> eb or Pn <Pb. Example 11.3 illustrates

this procedure.
9. The net tensile strain, 𝜀t, in this section, is normally greater than the limit strain of 0.002 for a

compression-controlled section (Fig. 11.4). Consequently, the value of the strength reduction
factor, 𝜙, will vary between 0.65 (or 0.75) and 0.90. Equation 11.1 or 11.2 can be used to
calculate 𝜙.

Example 11.3

Determine the nominal compressive strength, Pn, for the section given in Example 11.2 if e = 20 in. (See
Fig. 11.8.)

ε

ε ε

ε

Figure 11.8 Example 11.3: Tension failure.

Solution

1. Because e = 20 in. is greater than d = 19.5 in., assume that tension failure condition controls (to be
checked later). The strain in the tension steel, 𝜀s, will be greater than 𝜀y and its stress is fy. Assume
that compression steel yields f ′s = fy, which should be checked later.

2. From the equation of equilibrium (Eq. 11.10),

Pn = Cc + Cs − T

where

Cc = 0.85f ′c ab = 0.85 × 4 × 14a = 47.6a

Cs = A′
s(fy − 0.85f ′c ) = 4(60 − 0.85 × 4) = 226.4 K

T = Asfy = 4 × 60 = 240 K

Pn = 47.6a + 226.4 − 240 = 47.6a − 13.6 (I)
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3. Taking moments about As (Eq. 11.12),

Pn = 1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]

Note that for the plastic centroid at the center of the section, d′′ = 8.5 in.

e′ = e + d′′ = 20 + 8.5 = 28.5 in.

Pn = 1
28.5

[
47.6a

(
19.5 − a

2

)
+ 226.4 × 17

]

Pn = 32.56a − 0.835a2 + 135.0

4. Equating Eqs. I and II,

Pn = 47.6a − 13.6 = 32.56a − 0.835a2 + 135.0 (II)

or
a2 + 18a − 178.0 = 0 a = 7.1 in.

5. From Eq. I:

Pn = 47.6 × 7.1 − 13.6 = 324.4 K

Mn = Pne = 324.4 × 20
12

= 540.67 K ⋅ ft

6. Check if compression steel has yielded:

c = a
0.85

= 7.1
0.85

= 8.35 in. 𝜀y =
60

29,000
= 0.00207

𝜀′s =
8.35 − 2.5

8.35
0.003 = 0.0021 > 𝜀y

Compression steel yields. Check strain in tension steel:

𝜀s =
(19.5 − 8.35

8.35

)
× 0.003 = 0.004 > 𝜀y

If compression steel does not yield, use f ′s as calculated from f ′s = 𝜀′sEs and revise the calcula-
tions.

7. Calculate 𝜙: Since 𝜀t = 0.004, the section is in the transition region.

𝜙 = 0.65 + (𝜀t − 0.002)(250∕3) = 0.817

𝜙Pn = 0.817(324.4) = 264.9 K

𝜙Mn = 0.817(540.67) = 441.7 K ⋅ ft

8. Because e = 20 in. > eb = 15 in. (Example 11.2), there is a tension failure condition.
9. The same results can be obtained using the values of A, B, and C given earlier.

Aa2 + Ba + C = 0

where
A = 0.425f ′c b = 0.425(4)(14) = 23.8
B = 2A(e′ − d) = 2(23.8)(28.5 − 19.5) = 428.4
C = 4(60 − 0.85 × 4)(28.5 − 19.5 + 2.5) − 4(60)(28.5)
= −4236.4

Solve for a to get a = 7.1 in. and Pn = 324.4 K.
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ε

ε

ε

Figure 11.9 Strain diagram when compression controls. When 𝜀s < 𝜀y, c > cb and
𝜀′s ≥ 𝜀y.

11.8 STRENGTH OF COLUMNS FOR COMPRESSION FAILURE

If the compressive applied force, Pn, exceeds the balanced force, Pb, or the eccentricity, e = Mn/Pn,
is less than eb, compression failure is expected. In this case compression controls, and the strain in
the concrete will reach 0.003, whereas the strain in the steel is less than 𝜀y (Fig. 11.9). A large part
of the column will be in compression. The neutral axis moves toward the tension steel, increasing
the compression area, and therefore the distance to the neutral axis c is greater than the balanced
cb (Fig. 11.9).

Because it is difficult to predict compression or tension failure whenever a section is given,
compression failure can be assumed when e < 2d/3, which should be checked later. The nominal
load strength, Pn, can be calculated using the principles of statics. The analysis of column sections
for compression failure can be achieved using Eqs. 11.10 and Eqs. 11.11 given earlier and one of
the following solutions.

11.8.1 Trial Solution

This solution can be summarized as follows:

1. Calculate the distance to the neutral axis for a balanced section, cb:

cb =
(

87dt

87 + fy

)
(11.17)

where fy is in ksi.
2. Evaluate Pn using equilibrium conditions:

Pn = Cc + Cs − T (11.18)

3. Evaluate Pn by taking moments about the tension steel, As:

Pn ⋅ e′ = Cc

(
d − a

2

)
+ Cs(d − d′) (11.19)
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4 no. 9

Figure 11.10 Example 11.4: Compression controls.

where e′ = e + d − h/2 when As = A′
s or e′ = e + d′′ in general, Cc = 0.85f ′c ab,Cs = A′

s(f ′s −
0.85f ′c ), and T = As fs.

4. Assume a value for c such that c > cb (calculated in step 1). Calculate a = 𝛽1 c. Assume
f ′s = fy.

5. Calculate fs based on the assumed c:

fs = 𝜀sEs = 87

(
dt − c

c

)
ksi ≤ fy

6. Substitute the preceding values in Eq. 11.10 to calculate Pn1 and in Eq. 11.11 to calculate Pn2.
If Pn1 is close to Pn2, then choose the smaller or average of Pn1 and Pn2. If Pn1 is not close to
Pn2, assume a new c or a and repeat the calculations starting from step 4 until Pn1 is close to
Pn2. (1% is quite reasonable.)

7. Check that compression steel yields by calculating 𝜀′s = 0.003[(c − d′)∕c] and comparing it
with 𝜀y = fy/Es. When 𝜀′s ≥ 𝜀y, compression steel yields; otherwise, f ′s = 𝜀′sEs or, directly,

f ′s = 87

(
c − d′

c

)
≤ fy ksi

8. Check that e < eb or Pn > Pb for compression failure. Example 11.4 illustrates the procedure.
9. The net tensile strain, 𝜀t, in the section is normally less than 0.002 for compression-controlled

sections (Fig. 11.4). Consequently, the strength reduction factor (𝜙) = 0.65 (or 0.70 for spiral
columns).

Example 11.4

Determine the nominal compressive strength, Pn, for the section given in Example 11.2 if e = 10 in. (See
Fig. 11.10.)

Solution

1. Because e= 10 in.<
(

2
3

)
d= 13 in., assume compression failure. This assumption will be checked

later. Calculate the distance to the neutral axis for a balanced section, cb:

cb = 87
87 + fy

dt =
87

87 + 60
(19.5) = 11.54 in.
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2. From the equations of equilibrium,

Pn = Cc + Cs − T (Eq. 11.10)

where

Cc = 0.85f ′c ab = 0.85 × 4 × 14a = 47.6a

Cs = A′
s(fy − 0.85f ′c ) = 4(60 − 0.85 × 4) = 226.4 K

Assume compression steel yields. (This assumption will be checked later.)

T = Asfs = 4fs fs < fy

Pn = 47.6a + 226.4 − 4fs (I)

3. Taking moments about As,

Pn = 1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]
(Eq. 11.11)

The plastic centroid is at the center of the section and d′′ = 8.5 in.

e′ = e + d′′ = 10 + 8.5 = 18.5 in.

Pn = 1
18.5

[
47.6a

(
19.5 − a

2

)
+ 226.4(19.5 − 2.5)

]

= 50.17a − 1.29a2 + 208 (II)

4. Assume c = 13.45 in., which exceeds cb (11.54 in.).

a = 0.85 × 13.45 = 11.43 in.

Substitute a = 11.43 in Eq. II:

Pn1 = 50.17 × 11.43 − 1.29(11.43)2 + 208 = 612.9 K

5. Calculate fs from the strain diagram when c = 13.45 in.

fs =
(19.5 − 13.45

13.45

)
87 = 39.13 ksi 𝜀s = 𝜀t =

fs
Es

= 0.00135

6. Substitute a = 11.43 in. and fs = 39.13 ksi in Eq. I to calculate Pn2:

Pn2 = 47.6(11.43) + 226.4 − 4(39.13) = 613.9 K

which is very close to the calculated Pn1 of 612.9 K (less than 1% difference).

Mn = Pne = 612.9
(10

12

)
= 510.8 K ⋅ ft

7. Check if compression steel yields. From the strain diagram,

𝜀′s =
13.45 − 2.5

13.45
(0.003) = 0.00244 > 𝜀y = 0.00207

Compression steel yields, as assumed.
8. Pn = 612.9 K is greater than Pb = 453.4 K, and e = 10 in. < eb = 15 in., both calculated in the

previous example, indicating that compression controls, as assumed. Note that it may take a few
trials to get Pn1 close to Pn2.
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9. Calculate 𝜙:
dt = d = 19.5 in. c = 13.45 in.

𝜀t (at tension steel level) =
0.003(dt − c)

c

= 0.003(19.5 − 13.45)
13.45

= 0.00135

Since 𝜀t < 0.002, then 𝜙 = 0.65.

𝜙Pn = 0.65(612.9) = 398.4 K

𝜙Mn = 0.65(510.8) = 332 K ⋅ ft

11.8.2 Numerical Analysis Solution

The analysis of columns when compression controls can also be performed by reducing the calcu-
lations into one cubic equation in the form

Aa3 + Ba2 + Ca + D = 0

and then solving for a by a numerical method, or a can be obtained directly by using one of many
inexpensive scientific calculators with built-in programs that are available. From the equations of
equilibrium,

Pn = Cc + Cs − T

= (0.85f ′c ab) + A′
s(fy − 0.85f ′c ) − Asfs (Eq. 11.10)

Taking moments about the tension steel, As,

Pn = 1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]

= 1
e′

[
0.85f ′c ab

(
d − a

2

)
+ A′

s(fy − 0.85f ′c )(d − d′)
]

(Eq. 11.11)

From the strain diagram,

𝜀s =
(

dt − c

c

)
(0.003) =

(d − a∕𝛽1)
a∕𝛽1

(0.003)

The stress in the tension steel is

fs = 𝜀sEs = 29,000𝜀s =
87
a
(𝛽1d − a)

Substituting this value of fs in Eq. 11.10 and equating Eqs. 11.10 and Eqs. 11.11 and simplifying
gives

(
0.85f ′c b

2

)
a3 + [0.85f ′c b(e′ − d)]a2 + [A′

s(fy − 0.85f ′c )(e′ − d + d′) + 87Ase
′]a

− 87Ase
′𝛽1d = 0

This is a cubic equation in terms of a:

Aa3 + Ba2 + Ca + D = 0
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where

A =
0.85f ′c

b2
B = 0.85f ′c b(e′ − d)
C = A′

s(fy − 0.85f ′c )(e′ − d + d′) + 87Ase
′

D = −87 As e′𝛽1 d

Once the values of A, B, C, and D are calculated, a can be determined by trial or directly
by a scientific calculator. Also, the solution of the cubic equation can be obtained by using the
well-known Newton–Raphson method. This method is very powerful for finding a root of f(x) = 0.
It involves a simple technique, and the solution converges rapidly by using the following steps:

1. Let f(a) = Aa3 + Ba2 + Ca + D, and calculate A, B, C, and D.
2. Calculate the first derivative of f(a):

f ′(a) = 3Aa2 + 2Ba + C

3. Assume any initial value of a, say, a0, and compute the next value:

a1 = a0 −
f (a0)
f ′(a0)

4. Use the obtained value a1 in the same way to get

a2 = a1 −
f (a1)
f ′(a1)

5. Repeat the same steps to get the answer up to the desired accuracy. In the case of the analysis of
columns when compression controls, the value a is greater than the balanced a(ab). Therefore,
start with a0 = ab and repeat twice to get reasonable results.

Example 11.5

Repeat Example 11.4 using numerical solution.

Solution

1. Calculate A, B, C, and D and determine f(a):

A = 0.85 × 4 × 14
2

= 23.8

B = 0.85 × 4 × 14(18.5 − 19.5) = −47.6

C = 4(60 − 0.85 × 4)(18.5 − 19.5 + 2.5) + 87 × 4 × 18.5

= 6777.6

D = −87 × 4 × 18.5 × (0.85 × 19.5) = −106,710

f (a) = 23.8a3 − 47.6a2 + 6777.6a − 106,710

2. Calculate the first derivative:

f ′(a) = 71.4a2 − 95.2a + 6777.6
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3. Let a0 = ab = 9.81 in. For a balanced section, cb = 11.54 in. and ab = 9.81 in.

a1 = 9.81 −
f (9.81)
f ′(9.81)

= 9.81 − −22,334
12,715

= 11.566 in.

4. Calculate a2:

a2 = 11.566 −
f (11.566)
f ′(11.566)

= 11.566 − 2136
15,228

= 11.43 in.

This value of a is similar to that obtained earlier in Example 11.3. Substitute the value of a in
Eq. 11.3 or 11.11 to get Pn = 612.9 K.

11.8.3 Approximate Solution

An approximate equation was suggested by Whitney to estimate the nominal compressive strength
of short columns when compression controls, as follows [15]:

Pn =
bhf ′c

3he∕d2 + 1.18
+

A′
sfy

e∕(d − d′) + 0.5
(11.20)

This equation can be used only when the reinforcement is symmetrically placed in single layers
parallel to the axis of bending.

A second approximate equation was suggested by Hsu [16]:

Pn − Pb

P0 − Pb
+
(

Mn

Mb

)1.5

= 1.0 (11.21)

where
Pn = nominal axial strength of the column section

Pb, Mb = nominal load and moment of the balanced section
Mn = nominal bending moment = Pne
P0 = nominal axial load at e = 0

= 0.85f ′c (Ag − Ast) + Astfy
Ag = gross area of the section = bh
Ast = total area of nonprestressed longitudinal reinforcement

Example 11.6

Determine the nominal compressive strength, Pn, for the section given in Example 11.4 by Eqs. 11.20
and Eqs. 11.21 using the same eccentricity, e = 10 in., and compare results.

Solution

1. Solution by Whitney equation (Eq. 11.20):
a. Properties of the section shown in Fig. 11.10 are b = 14 in., h = 22 in., d = 19.5 in., d′ = 2.5 in.,

A′
s = 4.0 in.2, and d − d′ = 17 in.

b. Apply the Whitney equation:

Pn = 14 × 22 × 4
(3 × 22 × 10)∕(19.5)2 + 1.18

= 4 × 60
(10∕17) + 0.5

= 643 K

𝜙Pn = 0.65Pn = 418 K
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c. Then Pn calculated by the Whitney equation is not a conservative value in this example, and
the value of Pn = 643 K is greater than the more accurate value of 612.9 K calculated by statics
in Example 11.4.

2. Solution by Hsu equation (Eq. 11.21):
a. For a balanced condition, Pb = 453.4 K and Mb = 6810.8 K ⋅ in. (Example 11.2).
b. P0 = 0.85f ′c (Ag − Ast) + Astf = 0.85(4)(14 × 22 − 8) + 8(60) = 1500 K

c.
Pn − 453.4

1500 − 453.4
+
(

10Pn

6810.8

)1.5

= 1

Multiply by 1000 and solve for Pn.

0.9555Pn + 0.05626P1.5
n = 1433.2 K

By trial, Pn = 611 K, which is very close to 612.9 K, as calculated by statics.

11.9 INTERACTION DIAGRAM EXAMPLE

In Example 11.2, the balanced loads Pb, Mb, and eb were calculated for the section shown in
Fig. 11.6 (eb = 15 in.). Also, in Examples 11.3 and 11.4, the load capacity of the same section
was calculated for the case when e = 20 in. (tension failure) and when e = 10 in. (compression
failure). These values are shown in Table 11.1.

To plot the load–moment interaction diagram, different values of 𝜙Pn and 𝜙Mn were calcu-
lated for various e values that varied between e = 0 and e = maximum for the case of pure moment
when Pn = 0. These values are shown in Table 11.1. The interaction diagram is shown in Fig. 11.11.
The load 𝜙Pn0 = 975 K represents the theoretical axial load when e = 0, whereas 0.8𝜙Pn0 = 780 K
represents the maximum axial load allowed by the ACI Code based on minimum eccentricity. Note
that for compression failure, e< eb and Pn > Pb, and for tension failure, e> eb and Pn < Pb. The last

Table 11.1 Summary of Load Strength of Column Section in Previous Examples

e (in.) a (in.) 𝝓 Pn (K) 𝝓Pn (K) 𝝓Mn (K ⋅ ft) Notes

0 — 0.65 1500 975 0.0 𝜙Pn0
2.25 19.39 0.65 1200 780 146.3 0.8 𝜙Pn0
4 16.82 0.65 1018 661.7 220.6 Compression
6 14.19 0.65 843.3 548.1 274.0 Compression
10a 11.43 0.65 612.9 398.4 332.0 Compression
12 10.63 0.65 538.0 349.7 349.7 Compression
15a 9.81 0.65 453.4 294.7 368.9 Balanced
20a 7.10 0.81 324.4 263.4 439.0 Transition
30 5.06 0.90 189.4 170.5 426.2 Tension
50 4.01 0.90 100.6 90.5 377.2 Tension
80 3.59 0.90 58.8 52.9 352.0 Tension
PMb 3.08 0.90 0.0 0.0 352.0 Tension
PM 3.08 0.65 0.0 0.0 254.2 PM (X)c

aValues calculated in Examples 11.2, 11.3 and 11.4.
bPM is pure moment.
cX indicates not applicable, for comparison only.
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K ∙ ft

Figure 11.11 Interaction diagram of the column section shown in Fig. 11.10.

two cases in the table represent the pure moment (PM) or beam-action case for 𝜙 = 0.9 and 𝜙 =
0.65 (Mn = 391 K ⋅ ft). To be consistent with the design of beams due to bending moments, the ACI
Code allows the use of 𝜙 = 0.9 with pure moment, so 𝜙Mn = 352 K ⋅ ft instead of 254.2 K ⋅ ft. Also
note that 𝜙 varies between 0.65 and 0.9 according to Eq. 11.2 for tied columns. Note that Mn =
391.1 K ⋅ ft.

11.10 RECTANGULAR COLUMNS WITH SIDE BARS

In some column sections, the steel reinforcement bars are distributed around the four sides of the
column section. The side bars are those placed on the sides along the depth of the section in addition
to the tension and compression steel, As and A′

s, and can be denoted by Ass (Fig. 11.12). In this case,
the same procedure explained earlier can be applied, taking into consideration the strain variation
along the depth of the section and the relative force in each side bar either in the compression or
tension zone of the section. These are added to those of Cc, Cs, and T to determine Pn and Eq. 11.10
becomes

Pn = Cc + 𝛴Cs − 𝛴T (11.10a)

Example 11.7 explains this analysis. Note that if the side bars are located near the neutral axis
(Fig. 11.12b), the strains—and, consequently, the forces—in these bars are very small and can be
neglected. Those bars close to As and A′

s have appreciable force and increase the load capacity of
the section.
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(a) (b)

Figure 11.12 Side bars in rectangular sections: (a) six side bars and (b) two side bars
(may be neglected).

Example 11.7

Determine the balanced load, Pb moment, Mb, and eb for the section shown in Fig. 11.13. Use f ′c = 4 ksi
and fy = 60 ksi.

Solution
The balanced section is similar to Example 11.2. Given: b = h = 22 in., d = 19.5 in., d′ = 2.5 in.,As =
A′

s = 6.35 in.2 (five no. 10 bars), and six no. 10 side bars (three on each side).

1. Calculate the distance to the neutral axis:

cb =
(

87
87 + fy

)
dt =

( 87
87 + 60

)
19.5 = 11.54 in.

ab = 0.85(11.54) = 9.81 in.

2. Calculate the forces in concrete and steel bars; refer to Fig. 11.13a. In the compression zone,
Cc = 0.85f ′c ab = 0.85(4)(9.81)(22) = 733.8 K.

f ′s = 87

(
c − d′

c

)
= 87

(11.54 − 2.5
11.54

)
= 68.15 ksi > 60 ksi

Then f ′s = 60 ksi.

Cs1 = A′
s(fy − 0.85f ′c ) = 6.35(60 − 0.85 × 4) = 359.4 K

fs2 = 87
(11.54 − 2.5 − 4.25

11.54

)
= 36.11 ksi

Cs2 = 2(1.27)(36.11 − 0.85 × 4) = 83.1 K

Similarly, fs3 = 4.07 ksi and Cs3 = 2(1.27)(4.07 − 0.85 × 4) = 1.7 K.
In the tension zone,

𝜀s4 = 964.50 × 10−6 fs4 = 28 ksi

T1 = 2(1.27)(28) = 71 K T2 = Asfy = 6.35(60) = 381 K



11.10 Rectangular Columns with Side Bars 379

ε
ε

ε

ε

ε

ε

ε

ε

ε

(a)

(b)

ε

ε

ε
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Figure 11.13 (a) Example 11.7: Balanced section. (b) Example 11.8: For compression
failure, e = 6 in.

3. Calculate Pb = Cc + 𝛴Cs − 𝛴T.

Pb = 733.8 + (359.4 + 83.1 + 1.7) − (71 + 381)

= 726 K

4. Taking moments about the plastic centroid,

Mb = 733.8(6.095) + 359.4(8.5) + 83.1(4.25) + 71(4.25) + 381(8.5)

= 11,421 K ⋅ in. = 952 K ⋅ ft

eb =
Mb

Pb
= 15.735 in.
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5. Determine 𝜑: For a balanced section, 𝜀t = 𝜀y = 0.002, 𝜙 = 0.65,

𝜙Pb = 0.65Pb = 472 K and 𝜙Mb = 0.65Mb = 618.8 K ⋅ ft

Example 11.8

Repeat the previous example when e = 6.0 in.

Solution

1. Because e = 6 in. < eb = 15.735 in., this is a compression failure condition. Assume c = 16.16 in.
(by trial) and a = 0.85(16.16) = 13.74 in. (Fig. 11.13b).

2. Calculate the forces in concrete and steel bars:

Cc = 0.85(4)(13.74)(22) = 1027.75 K

In a similar approach to the balanced case, fs1 = 60 ksi and Cs1 = 359.41.

fs2 = 50.66 ksi Cs2 = 120.0 K

fs3 = 27.78 ksi Cs3 = 61.92 K

fs4 = 4.9 ksi Cs4 = 3.81 K

fs5 = 18 ksi T = 6.35(18) = 114.2 K

3. Calculate Pn = Cc + 𝛴Cs − 𝛴T = 1458.7 K.

Mn = Pne = 729.35 K ⋅ ft (e = 6 in.)

4. Check Pn by taking moments about As,

Pn = 1
e′

[
Cc

(
d − a

2

)
+ Cs1(d − d′) + Cs2(d − d′ − s)

+ Cs3(d − d′ − 2s) + Cs4(d − d′ − 3s)]

e′ = e + d − h
2
= 6 + 19.5 − 22∕2 = 14.5 in.

s = distance between side bars

= 4.25 in. (s = constant in this example.)

Pn = 1
14.5

[
1027.75

(
19.5 − 13.74

2

)
+ 359.41(17)

+ 120(17 − 4.25) + 61.92(17 − 8.5)

+ 3.81(17 − 12.75)] = 1459 K

5. Calculate 𝜙:
dt = d = 19.5 in. c = 16.16 in.

𝜀t (at tension steel level) =
0.003(dt − c)

c

= 0.003(19.5 − 16.16)
16.16

= 0.00062
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Since 𝜀t < 0.002, then 𝜑 = 0.65.

𝜙Pn = 0.65(1459) = 948.3 K

𝜙Mn = 0.65(729.5) = 474 K ⋅ ft

Note: If side bars are neglected, then

Pb = 733.8 + 359.4 − 381 = 712.2 K

Pn(at e = 6 in.) = 1027.75 + 359.4 − 114.2 = 1273 K

If side bars are considered, the increase in Pb is about 2% and that in Pn is about 14.6%.

11.11 LOAD CAPACITY OF CIRCULAR COLUMNS

11.11.1 Balanced Condition

The values of the balanced load Pb and the balanced moment Mb for circular sections can be deter-
mined using the equations of equilibrium, as was done in the case of rectangular sections. The bars
in a circular section are arranged in such a way that their distance from the axis of plastic centroid
varies, depending on the number of bars in the section. The main problem is to find the depth of
the compressive block a and the stresses in the reinforcing bars. The following example explains
the analysis of circular sections under balanced conditions. A similar procedure can be adopted to
analyze sections when tension or compression controls.

Example 11.9
Determine the balanced load Pb and the balanced moment Mb for the 16-in. diameter circular spiral
column reinforced with eight no. 9 bars shown in Fig. 11.14. Given: f ′c = 4 ksi and fy = 60 ksi.

S = 8 − 2.5 = 5.5 in.

S1 = S cos 22.5deg = 5.1 in.

S2 = S cos 67.5deg = 2.1 in.

d = 8 + 5.1 = 13.1 in.

S3 = 1.85 in.

S4 = 4.85 in.

Solution

1. Because the reinforcement bars are symmetrical about the axis A–A passing through the center
of the circle, the plastic centroid lies on that axis.

2. Determine the location of the neutral axis:

dt = 13.1 in. 𝜀y =
fy
ES

(ES = 29,000 ksi)

cb

dt
= 0.003

0.003 + 𝜀y
= 0.003

0.003 + fy∕ES
= 87

87 + fy

cb = 87
87 + 60

(13.1) = 7.75 in.

ab = 0.85 × 7.75 = 6.59 in.
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Figure 11.14 Example 11.9: Eight no. 9 bars.
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3. Calculate the properties of a circular segment (Fig. 11.15):

Area of segment = r2(𝛼 − sin 𝛼 cos 𝛼) (11.22)

Location of centroid x (from the circle center 0):

x = 2
3

r sin3 𝛼

𝛼 − sin 𝛼 cos 𝛼
(11.23)

Z = r − x (11.24)

r cos 𝛼 = r − a or cos 𝛼 =
(

1 − a
r

)
(11.25)

Then
cos 𝛼 =

(
1 − 6.59

8

)
= 0.176

and 𝛼 = 79.85∘, sin 𝛼 = 0.984, and 𝛼 = 1.394 rad.

Area of segment = (8)2(1.394 − 0.984 × 0.176)

= 78.12 in.2

x =
(2

3

) 8(0.984)3

1.394 − 0.984 × 0.176
= 4.16 in.

Z = r − x = 8 − 4.16 = 3.84 in.

4. Calculate the compressive force Cc:

Cc = 0.85f ′c × area of segment

= 0.85 × 4 × 78.12 = 265.6 K

It acts at 4.16 in. from the center of the column.
5. Calculate the strains, stresses, and forces in the tension and the compression steel. Determine the

strains from the strain diagram. For T1,

𝜀 = ey = 0.00207 fs = fy = 60 ksi

T1 = 2 × 60 = 120 K

For T2,

𝜀s3 = 2.35
5.35

𝜀y =
2.35
5.35

× 0.00207 = 0.00091

fs3 = 0.00091 × 29,000 = 26.4 ksi

T2 = 26.4 × 2 = 52.8 K

For Cs1,

𝜀s1 = 4.85
7.75

× 0.003 = 0.000188

fs1 = 0.000188 × 29,000 = 54.5 ksi < 60 ksi

Cs1 = 2(54.5 − 3.4) = 102.2 K

For Cs2

𝜀s2 = 1.85
7.75

× 0.003 = 0.000716

fs2 = 0.000716 × 29,000 = 20.8 ksi

Cs2 = 2(20.8 − 3.4) = 34.8 K
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A

B

C

Figure 11.15 Example 11.9: Properties of circular segments.

The stresses in the compression steel have been reduced to take into account the concrete
displaced by the steel bars.

6. The balanced force is Pb = Cc + 𝛴Cs − 𝛴T (𝜑 = 0.75).

Pb = 265.6 + (102.2 + 34.8) − (120 + 52.8) = 230 K

For a balanced section,

𝜀t = 0.002 and 𝜙 = 0.65

𝜙Pb = 149.5 K

7. Take moments about the plastic centroid (axis A–A through the center of the section) for all forces:

Mb = Pbeb = Cc × 4.16 + Cs1 × 5.1 + Cs2 × 2.1 + T1 × 5.1 + T2 × 2.1

= 2422.1 K ⋅ in. = 201.9 K ⋅ ft

𝜙Mb = 131.2 K ⋅ ft

eb = 2422.1
230

= 10.5 in.

11.11.2 Strength of Circular Columns for Compression Failure

A circular column section under eccentric load can be analyzed in similar steps as the balanced
section. This is achieved by assuming a value for c > cb or a > ab and calculating the forces in
concrete and steel at different locations to determine Pn1 Pn1 = Cc + 𝛴Cs − 𝛴T. Also, Mn can be
calculated by taking moments about the plastic centroid (center of the section) and determining
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Pn2 = Mn/e. If they are not close enough, within about 1%, assume a new c or a and repeat the
calculations. (See also Section 11.8.) Compression controls when e < eb or Pn > Pb.

For example, if it is required to determine the load capacity of the column section of
Example 11.9 when e = 6 in., Pn can be determined in steps similar to those of Example 11.9:

1. Because e = 6 in. is less than eb = 10.5 in., compression failure condition occurs.
2. Assume c = 9.0 in. (by trial) > cb = 7.75 in. and a = 7.65 in.
3. Calculate x = 3.585 in., Z = 4.415 in., and the area of concrete segment = 94.93 in.2

4. Calculate forces: and Cc = 322.7 K, Cs1 = 110.7 K, Cs2 = 53.1 K, T1 = 21.6 K, and T2 =
78.9 K.

5. Calculate Pn1 = Cc + 𝛴Cs − 𝛴T = 386 K.
6. Taking moments about the center of the column (plastic centroid): Mn = 191 K ⋅ ft, Pn2 =

Mn/6 = 382 K, which is close to Pn1 (the difference is about 1%). Therefore, Pn = 382 K.
Note that if the column is spirally reinforced, 𝜙 = 0.70.

An approximate equation for estimating Pn in a circular section when compression controls
was suggested by Whitney [15]:

Pn =
Agf ′c

9.6he∕(0.8h + 0.67Ds)2 + 1.18
+

Astfy
3e∕Ds + 1

(11.26)

where
Ag = gross area of section
H = diameter of section

Ds = diameter measured through centroid of bar arrangement
Ast = total vertical steel area

E = eccentricity measured from plastic centroid

Example 11.10

Calculate the nominal compressive strength Pn for the section of Example 11.9 using the Whitney
equation if the eccentricity is e = 6 in.

Solution

1. Eccentricity e = 6 in. is less than eb = 10.5 in., calculated earlier; thus, compression controls.
2. Using the Whitney equation,

Ag = 𝜋

4
h2 = 𝜋

4
(16)2 = 201.1 in.2

h = 16 in. Ds = 16 − 5 = 11.0 in. Ast = 8 × 1 = 8 in.2

Pn = 201.1 × 4
9.6 × 16 × 6∕(0.8 × 16 + 0.67 × 11)2 + 1.18

+ 8 × 60
3 × 6∕11 + 1

= 415.5 K

3. Mn = Pne = 415.5 × 6
12

= 207.8 K ⋅ ft. The value of Pn here is greater than Pn = 382 K calculated
earlier by statics.
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11.11.3 Strength of Circular Columns for Tension Failure

Tension failure occurs in circular columns when the load is applied at an eccentricity e > eb, or
Pn < Pb. In this case, the column section can be analyzed in steps similar to those of the balanced
section and Example 11.8. This is achieved by assuming c < cb or a < ab and then following the
steps explained in Section 11.11.1. Note that because the steel bars are uniformly distributed along
the perimeter of the circular section, the tension steel As provided could be relatively low, and
the load capacity becomes relatively small. Therefore, it is advisable to avoid the use of circular
columns for tension failure cases.

11.12 ANALYSIS AND DESIGN OF COLUMNS USING CHARTS

The analysis of column sections explained earlier is based on the principles of statics. For
preliminary analysis or design of columns, special charts or tables may be used either to determine
𝜙Pn and 𝜙Mn for a given section or determine the steel requirement for a given load Pu and
moment Mu. These charts and tables are published by the ACI [7], the Concrete Reinforcing
Steel Institute (CRSI), and the Portland Cement Association (PCA). Final design of columns
must be based on statics by using manual calculations or computer programs. The use of the
ACI charts is illustrated in the following examples. The charts are given in Figs. 11.16 and
11.17 [7]. These data are limited to the column sections shown on the top-right corner of
the charts.

Example 11.11

Determine the necessary reinforcement for a short tied column shown in Fig. 11.18a to support a factored
load of 483 K and a factored moment of 322 K ⋅ ft. The column section has a width of 14 in. and a total
depth, h, of 20 in. Use f ′c = 5 ksi, fy = 60 ksi.

Solution

1. The eccentricity e = Mu/Pu = 322 × 12/483 = 8 in. Let d = 20 − 2.5 = 17.5 in., 𝛾h = 20 − 2 ×
2.5 = 15 in., and 𝛾 = 15/20 = 0.75.

2. Since e = 8 in. < d, assume compression-controlled section with 𝜑 = 0.65.

Pn = 483
0.65

= 743 K and Mn = 322
0.65

= 495.4 K ⋅ ft.

Kn = 743
5 × 14 × 20

= 0.531

Rn = Kn

( e
h

)
= 0.531

( 8
20

)
= 0.212

3. From the charts of Fig. 11.17, for 𝛾 = 0.7, 𝜌= 0.034. Also, for 𝛾 = 0.8, 𝜌= 0.029. By interpolation,
for 𝛾 = 0.75, 𝜌 = 0.0315.

As = 0.0315(14 × 20) = 8.82 in.2

Use eight no. 10 bars (As = 10.16 in.2), four on each short side. Use no. 3 ties spaced at 14 in.
(Fig. 11.18a).
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k

(a)

Figure 11.16 Load–moment strength interaction diagram for rectangular columns
where f ′c = 4 ksi, fy = 60 ksi, and (a) 𝛾 = 0.60, (b) 𝛾 = 0.70, (c) 𝛾 = 0.80, and (d) 𝛾 = 0.90.
Courtesy of American Concrete Institute [7].
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Figure 11.16 (Continued)
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Figure 11.17 Load–moment strength interaction diagram for rectangular columns
where f ′c = 5 ksi, fy = 60 ksi, and (a) 𝛾 = 0.60, (b) 𝛾 = 0.70, (c) 𝛾 = 0.80, and (d) 𝛾 = 0.90.
Courtesy of American Concrete Institute [7].
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Figure 11.17 (Continued)
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Figure 11.18 Column sections of (a) Example 11.11 and (b) Example 11.12.

Example 11.12
Use the charts to determine the column strength, 𝜙Pn, of the short column shown in Fig. 11.18b acting
at an eccentricity e = 12 in. Use f ′c = 5 ksi and fy = 60 ksi.

Solution

1. Properties of the section: H = 24 in., 𝛾h = 24 – 2 × 2.5 = 19 in. (distance between tension and
compression steel). 𝛾 = 19/24 = 0.79, and 𝜌 = 8(1.27)/(14 × 24) = 0.030.

2. Since e < d, assume compression-controlled section. Let 𝜀t = 0.002, fs/fy = 1.0, and 𝜑 = 0.65.
From the charts of Fig. 11.17, get Kn = 0.36 = Pn/(5 × 14 × 24). Then Pn = 605 K.

3. Check assumption for compression-controlled section: For Kn = 0.36, Rn =Kn (e/h)= 0.36 (12/24)
= 0.18. From charts, get 𝜌 = 0.018 < 0.03. Therefore, Pn > 605 K (to use 𝜌 = 0.03).

4. Second trial: Let 𝜀t = 0.0015, fs = 0.0015 (29,000) = 43.5 ksi.

fs
fy

= 43.5
60

= 0.725 𝜌 = 0.03 Kn = 0.44

0.44 =
Pn

5 × 14 × 24
Pn = 740 K

5. Check assumption: For Kn = 0.44, Rn = 0.44
(

12
24

)
= 0.22. From charts, 𝜌 = 0.03 as given.

Therefore, Pn = 740 K.

𝜙Pn = 0.65(740) = 480 K and 𝜙Mn = 0.65(740) = 480 K ⋅ ft

By analysis, 𝜙Pn = 485 K (which is close to 480 K ⋅ ft).

11.13 DESIGN OF COLUMNS UNDER ECCENTRIC LOADING

In the previous sections, the analysis, behavior, and the load–interaction diagram of columns
subjected to an axial load and bending moment were discussed. The design of columns is more
complicated because the external load and moment, Pu and Mu, are given and it is required to
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determine many unknowns, such as b, h, As, and A′
s, within the ACI Code limitations. It is a

common practice to assume a column section first and then determine the amount of reinforcement
needed. If the designer needs to change the steel reinforcement calculated, then the cross section
may be adjusted accordingly. The following examples illustrate the design of columns.

11.13.1 Design of Columns for Compression Failure

For compression failure, it is preferable to use As = A′
s for rectangular sections. The eccentricity,

e, is equal to Mu/Pu. Based on the magnitude of e, two cases may develop.

1. When e is relatively very small (say, e ≤ 4 in.), a minimum eccentricity case may develop that
can be treated by using Eq. 10, as explained in the examples of Chapter 10. Alternatively, the
designer may proceed as in case 2. This loading case occurs in the design of the lower-floor
columns in a multistory building, where the moment, Mu, develops from one floor system and
the load, Pu, develops from all floor loads above the column section.

2. The compression failure zone represents the range from the axial to the balanced load, as
shown in Figs. 11.3 and 11.11. In this case, a cross section (bh) may be assumed and then the
steel reinforcement is calculated for the given Pu and Mu. The steps can be summarized as
follows:
a. Assume a square or rectangular section (bh); then determine d, d′, and e = Mu/Pu.
b. Assuming As = A′

s, calculate A′
s from Eq. 11.16 using the dimensions of the assumed

section, and 𝜙 = 0.65 for tied columns. Let As = A′
s and then choose adequate bars. Deter-

mine the actual areas used for As and A′
s. Alternatively, use the ACI charts.

c. Check that 𝜌g = (As + A′
s)∕bh is less than or equal to 8% and greater or equal to 1%. If 𝜌g

is small, reduce the assumed section, but increase the section if less steel is required.
d. Check the adequacy of the final section by calculating 𝜙Pn from statics; as explained in

the previous examples, 𝜙Pn should be greater than or equal to Pu.
e. Determine the necessary ties.

A simple approximate formula for determining the initial size of the column bh or the total
steel ratio 𝜌g is

Pn = Kcbh2 or Pu = 𝜙Pn = 𝜙Kcbh2 (11.27)

where Kc has the values shown in Table 11.2 and plotted in Fig. 11.19 for fy = 60 ksi and As = A′
s.

Units for Kc are in lb/in.3

The values of Kc shown in Table 11.2 are approximate and easy to use because Kc increases by
0.02 for each increase of 1 ksi in f ′c . For the same section, as the eccentricity, e = Mu/Pu, increases,
Pn decreases, and, consequently, Kc decreases. Thus, Kc values represent a load Pn on the interaction
diagram between 0.8 Pn0

and Pb as shown in Fig. 11.3 or 11.11.

Table 11.2 Values of Kc (fy = 60 ksi)

Kc

𝝆g (%) f′c = 4 ksi f′c = 5 ksi f′c = 6 ksi

1 0.090 0.110 0.130
4 0.137 0.157 0.177
8 0.200 0.220 0.240
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Figure 11.19 Values of Kc versus 𝜌g (%).

Linear interpolation can be used. For example, Kc = 0.1685 for 𝜌g = 6% and f ′c = 4 ksi. The
steps in designing a column section can be summarized as follows:

1. Assume an initial size of the column section bh.
2. Calculate Kc = Pu/(𝜑bh2).
3. Determine 𝜌g from Table 11.2 for the given f ′c .
4. Determine As = A′

s = 𝜌gbh∕2 and choose bars and ties.
5. Determine 𝜙Pn of the final section by statics (accurate solution). The value of 𝜙Pn should be

greater than or equal to Pu. If not, adjust bh or 𝜌g.

Alternatively, if a specific steel ratio is desired, say 𝜌g = 6%, then proceed as follows:

1. Assume 𝜌g as required and then calculate e = Mu/Pu.
2. Based on the given f ′c and 𝜌g, determine Kc from Table 11.2.

3. Calculate bh2 = Pu/𝜙Kc; then choose b and h. Repeat steps 4 and 5. It should be checked that
𝜌g is less than or equal to 8% and greater than or equal to 1%. Also, check that c calculated
by statics is greater than cb = 87dt/(87 + fy) for compression failure to control.

Example 11.13

Determine the tension and compression reinforcement for a 16 × 24-in. rectangular tied column to
support Pu = 780 K and Mu = 390 K ⋅ ft. Use f ′c = 4 ksi and fy = 60 ksi.
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5 no. 10

5 no. 10

Figure 11.20 Example 11.13.

Solution

1. Calculate e = Mu/Pu = 420(12)/840 = 6.0 in. We have h = 24 in; let d = 21.5 in. and d′ = 2.5 in.
Because e is less than 2

3
d = 14.38 in., assume compression failure.

2. Assume As = A′
s and use Eq. 11.20 to determine the initial value of A′

s, Pn = Pu∕𝜙 = 780∕0.65 =
1200 K.

Pn =
bh f ′c

(3he∕d2) + 1.18
+

A′
s fy

[e∕(d − d′)] + 0.5
(11.20)

For Pn = 1200 K, e = 6 in., d = 21.5 in., d′ = 2.5 in., and h = 24 in., calculate A′
s = 6.44 in.2 = As.

Choose five no. 10 bars (As = 6.35 in.2) for As and A′
s (Fig. 11.20).

3. Let 𝜌g = 2(6.35)/(16 × 24) = 0.033, which is less than 0.08 and >0.01.
4. Check the section by statics following the steps of Example 11.4 to get

a = 16.64 in. c = 19.58 in. Cc = 905.2 K

Cs = 6.35(60 − 0.85 × 4) = 359.4 K

fs = 87
(d − c

c

)
= 8.55 ksi

T = As fs = 6.35(8.55) = 54.3 K

Pn = Cc + Cs − T = 1210.3 K > 1200 K

Note that if 𝜙Pn < Pu, increase As and A′
s, for example, to six no. 10 bars, and check the section

again.
5. Check Pn based on moments about As (Eq. 11.12) to get Pn = 1210 K.
6. For a balanced section,

cb =
(

87
87 + fy

)
dt =

( 87
147

)
21.5 = 12.7 in.

Because c = 19.58 in. > cb = 12.7 in., this is a compression failure case, as assumed.
7. Use no. 3 ties spaced at 16 in (refer to Chapter 10).
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Example 11.14
Repeat Example 11.13 using Eq. 11.27.

Solution

1. The column section is given: 16 × 24 in.
2. Determine Kc from Eq. 11.27:

Kc =
Pu

𝜙bh2
= 780

0.65 × 16 × 242
= 0.13 lb∕in.3

3. From Table 11.2 or Fig. 11.19, for Kc = 0.13, f ′c = 4 ksi, by interpolation, get 𝜌g = 3.5%.

4. Calculate As = A′
s = 𝜌bh∕2 = 0.035(16)(24)∕2 = 6.77 in.2 Choose five no. 10 bars (As =

6.35 in.2) for the first trial.
5. Determine 𝜙Pn using steps 4 to 7 in Example 11.13. Let 𝜙Pn = 1210.3 K > Pn = 1200 K, so the

section is adequate.
6. If the section is not adequate, or𝜙Pn < Pu, increase As and A′

s and check again to get closer values.

Example 11.15
Design a rectangular column section to support Pu = 696 K and Mu = 465 K ⋅ ft with a total steel ratio
𝜌g of about 4%. Use f ′c = 4 ksi, fy = 60 ksi, and b = 18 in.

Solution

1. Calculate e = Mu/Pu = 465(12)/696 = 8 in. Assume compression failure (𝜙= 0.65) (to be checked
later) and As = A′

s.
2. For 𝜌s = 4% and f ′c = 4 ksi, Kc = 0.137 (Table 11.2).
3. Calculate bh2 from Eq. 11.27: Pu = 𝜙Kcbh2, or 696 = 0.65(0.137)(18)h2. Thus, h = 20.84 in. Let

h = 22 in.
4. Calculate As = A′

s = 0.04(18 × 22)∕2 = 7.92 in.2 Choose five no. 11 bars (As = 7.8 in.2) in one
row for As and A′

s (Fig. 11.21). Choose no. 4 ties spaced at 18 in.
5. Check the final section by analysis, similar to Example 11.4, to get a = 13.15 in., c = 15.47 in.,

Cc = 0.85 f ′c ab = 804.8 K, f ′s = 60 ksi, Cs = A′
s(fy − 0.85f ′c ) = 441.5 K, fs = 87[(d − c)/c] =

21.24 ksi, and T = Asfs = 168 K. Also, Pn = Cc + Cs − T = 1078.3 K and 𝜙Pn = 0.65 Pn = 701 K
> 696 K. The section is adequate.

5 no. 11

5 no. 11

Figure 11.21 Example 11.15.
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6. For a balanced section,

cb =
(

87
87 + fy

)
dt =

( 87
147

)
19.3 = 11.42 in. < c = 15.47 (d = 19.3 in.)

Therefore, this is a compression failure case, as assumed.

11.13.2 Design of Columns for Tension Failure

Tension failure occurs when Pn < Pb or the eccentricity e > eb, as explained in Section 11.7. In the
design of columns, Pu and Mu are given, and it is required to determine the column size and its
reinforcement. It may be assumed (as a guide) that tension controls when the ratio of Mu (K ⋅ ft) to
Pu (kips) is greater than 1.75 for sections of h < 24 in. and 2.0 for h ≥ 24 in. In this case, a section
may be assumed, and then As and A′

s are determined. The ACI charts may be used to determine 𝜌g
for a given section with As = A′

s. Note that 𝜙 varies between 0.65 (0.75) and 0.9, as explained in
Section 11.4.

When tension controls, the tension steel yields, whereas the compression steel may or may not
yield. Assuming initially f ′s = fy and As = A′

s, Eq. 11.16 (Section 11.6) may be used to determine
the initial values of As and A′

s:

As = A′
s =

Pn(e − h∕2 + a∕2)
fy(d − d′)

(11.16)

Because a is not known yet, assume a = 0.4d and Pu = 𝜑Pn; then

As = A′
s =

Pu(e − 0.5h + 0.2d)
𝜙fy(d − d′)

(11.28)

The final column section should be checked by statics to prove that 𝜑Pn ≥ Pu. Example 11.16
explains this approach.

When the load Pu is very small relative to Mu, the section dimensions may be determined due
to Mu only, assuming Pu = 0. The final section should be checked by statics. This case occurs in
single- or two-story building frames used mainly for exhibition halls or similar structures. In this
case, A′

s may be assumed to be less than As. A detailed design of a one-story, two-hinged frame
exhibition hall is given in Chapter 16.

Example 11.16

Determine the necessary reinforcement for a 16 × 22-in. rectangular tied column to support a factored
load Pu = 257 K and a factored moment Mu = 643 K ⋅ ft. Use f ′c = 4 ksi and fy = 60 ksi.

Solution

1. Calculate e = Mu/Pu = 643(12)/257 = 30 in.; let d = 22 −2.5 = 19.5 in. Because Mu/Pu = 500/200
= 2.5 > 1.75, or because e > d, assume tension failure case, 𝜙 = 0.9 (to be checked later).

2. Assume As = A′
s and f ′s = fy and use Eq. 11.28 to determine As and A′

s. Let Pu = 257.0 K,
e = 30 in., h = 22 in., d = 19.5 in., and d′ = 2.5 in.

As = A′
s =

257(30 − 0.5 × 22 + 0.2 × 19.5)
0.9(60)(17.0)

= 6.41 in.2

Choose five no. 10 bars (6.35 in.2) in one row for each of As and A′
s (Fig. 11.22).

3. Check 𝜌g = 2(6.35)(16 × 22) = 0.036, which is less than 0.08 and greater than 0.01.
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5 no. 10

5 no. 10

Figure 11.22 Example 11.16.

4. Check the chosen section by statics similar to Example 11.3.
a. Determine the value of a using the general equation Aa2 + Ba + C = 0 with e′ = e + d −

h/2 = 38.5 in., A = 0.425 f ′c b = 27.2,B = 2A(e′ − d) = 1033.6,C = A′
s( fy − 0.85 f ′c )(e′ − d +

d′) − As fye′ = −6941.2. Solve to get a = 5.82 in. and c = a/0.85 = 6.85.

b. Check f ′s :

f ′s = 87

(
c − d′

c

)
= 87

(6.85 − 2.5
6.85

)
= 55.26 ksi

Let f ′s = 57 ksi.
c. Recalculate a:

C = A′
s( f ′s − 0.85 f ′c )(e′ − d + d′) − As fye′ = −7351

Solve now for a to get a = 6.13 and c = 7.21 in.
d. Check f ′s :

f ′s = 87
(c − 2.5

c

)
= 56.83 ksi

Calculate

Cc = 0.85(4)(6.13)(16) = 333.5 K Cs = A′
s( f ′s − 0.85 f ′c ) = 6.35(57 − 0.85 × 4)

= 340.4 K T = As fy = 6.35(60) = 381 K

e. Let Pn = Cc + Cs − T = 292.9 K.
5. Determine 𝜙: 𝜀t = [(dt − c)/c] 0.003 = 0.00511. Because 𝜀t = 0.00511 > 0.005, 𝜙 = 0.9.
6. Because 𝜙Pn = 0.9(292.9) = 263.6 K > 257 K, the section is adequate.

11.14 BIAXIAL BENDING

The analysis and design of columns under eccentric loading was discussed earlier in this chapter,
considering a uniaxial case. This means that the load Pn was acting along the y-axis (Fig. 11.23),
causing a combination of axial load Pn and a moment about the x-axis equal to Mnx = Pn ey or
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PC

Figure 11.23 Uniaxial bending with load Pn along the y-axis with eccentricity ey.

Figure 11.24 Uniaxial bending with load Pn along the x-axis, with eccentricity ex.

acting along the x-axis (Fig. 11.24) with an eccentricity ex, causing a combination of an axial load
Pn and a moment Mny = Pn ex.

If the load Pn is acting anywhere such that its distance from the x-axis is ey and its distance
from the y-axis is ex, then the column section will be subjected to a combination of forces: An
axial load Pn a moment about the x-axis = Mnx = Pn ey and a moment about the y-axis = Mny =
Pn ex (Fig. 11.25). The column section in this case is said to be subjected to biaxial bending. The
analysis and design of columns under this combination of forces is not simple when the principles
of statics are used. The neutral axis is at an angle with respect to both axes, and lengthy calcula-
tions are needed to determine the location of the neutral axis, strains, concrete compression area,
and internal forces and their point of application. Therefore, it was necessary to develop practical
solutions to estimate the strength of columns under axial load and biaxial bending. The formulas
developed relate the response of the column in biaxial bending to its uniaxial strength about each
major axis.

The biaxial bending strength of an axially loaded column can be represented by a
three-dimensional interaction curve, as shown in Fig. 11.26. The surface is formed by a series
of uniaxial interaction curves drawn radially from the Pn axis. The curve M0x represents the
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Figure 11.25 Biaxial bending.

(0A)

M0x

M0xM0y

M0y

Figure 11.26 Biaxial interaction surface.

interaction curve in uniaxial bending about the x-axis, and the curve M0y represents the curve
in uniaxial bending about the y-axis. The plane at constant axial load Pn shown in Fig. 11.26
represents the contour of the bending moment Mn about any axis.

Different shapes of columns may be used to resist axial loads and biaxial bending. Circular,
square, or rectangular column cross sections may be used with equal or unequal bending capacities
in the x and y directions.

11.15 CIRCULAR COLUMNS WITH UNIFORM REINFORCEMENT UNDER BIAXIAL BENDING

Circular columns with reinforcement distributed uniformly about the perimeter of the section have
almost the same moment capacity in all directions. If a circular column is subjected to biaxial
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bending about the x and y axes, the equivalent uniaxial Mu moment can be calculated using the
following equations:

Mu =
√

(Mux)2 + (Muy)2 = Pue (11.29)

and

e =
√

(ex)2 + (ey)2 =
Mu

Pu
(11.30)

where
Mux = Pu ey = factored moment about the x-axis
Muy = Pu ex = factored moment about the y-axis
Mu = Pue = equivalent uniaxial factored moment of the section due to Mux and Muy

In circular columns, a minimum of six bars should be used, and these should be uniformly
distributed in the section.

Example 11.17 Circular Column
Determine the load capacity Pn of a 20-in.-diameter column reinforced with 10 no. 10 bars when ex =
4 in. and ey = 6 in. Use f ′c = 4 ksi and fy = 60 ksi.

Solution

1. Calculate the eccentricity that is equivalent to uniaxial loading by using Eq. 11.30.

e(for uniaxial loading) =
√

e2
x + e2

y =
√
(4)2 + (6)2 = 7.211 in.

2. Determine the load capacity of the column based on e = 7.211 in. Proceed as in Example 11.9:

d = 17.12 in. a = 9.81 in. c = 11.54 in. (by trial)

Cc = 521.2 K 𝛴Cs = 269.8 K 𝛴T = 132.1 K

Pn = Cc + 𝛴Cs − 𝛴T = 650 K

3. For a balanced condition,

cb =
(

87
87 + fy

)
dt =

( 87
147

)
17.12 = 10.13 in.

c = 11.54 in. > cb

which is a compression failure case.

Example 11.18 Circular Column
Design a 16-in. circular column subject to biaxial bending using the equivalent uniaxial moment method.
Given Pu = 200 K, Mux = 1000 K ⋅ in, Muy = 700 K ⋅ in, f ′c = 4 ksi, fy = 60 ksi.

Solution

1. Determine nominal load:

For spiral column 𝜙 = 0.75

Nominal load = 200∕0.75 = 266.67 K

Nominal moment capacity about x axis Mnx = 1000∕0.75 = 1333.33 K ⋅ in.

Nominal moment capacity about y axis Mny = 700∕0.75 = 933.33 K ⋅ in.
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Figure 11.27 Example 11.18. Courtesy of American Concrete Institute [7].

2. Determine the equivalent moment Mnr using Eq. 11.29:

Mnr =
√

M2
nx + M2

ny =
√

13332 + 9332 = 1627.54 K ⋅ in.

3. Calculate 𝜌g using interaction diagram (Fig. 11.27):

Compute Ag∶

Ag = 𝜋D2

4
= 3.14 × 162

4
= 200.96 in.2

Compute kn =
Pn

f ′c Ag

= 266.67
4 × 200.96

= 0.33

Compute Rn =
Mn

f ′c Agh
= 1627.54

4 × 200.96 × 15
= 0.13

Compute 𝛾 = h − 5
h

= 16 − 5
16

= 0.69

From the interaction diagram (Fig. 11.27) for 𝛾 = 0.7, 𝜌g = 0.05

Ast = 0.05 × 200.96 = 10.05 in.2

Provide 8 no. 10 bars, Ast = 10.16 in2
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4. Check minimum load capacity of the column from Eq. 10.7:

𝜙Pnmx = 0.85𝜙(0.85f ′c (Ag − Ast) + fyAst) (ACI Eq. 10.1)

= 0.85(0.75)(0.85)(4)(200.96 − 10.16) + (60)(10.16)

= 1023.2 K > 200 K, the section is adequate

11.16 SQUARE AND RECTANGULAR COLUMNS UNDER BIAXIAL BENDING

11.16.1 Bresler Reciprocal Method

Square or rectangular columns with unequal bending moments about their major axes will require
a different amount of reinforcement in each direction. An approximate method of analysis of such
sections was developed by Boris Bresler and is called the Bresler reciprocal method [9, 12]. Accord-
ing to this method, the load capacity of the column under biaxial bending can be determined by
using the following expression:

1
Pu

= 1
Pux

+ 1
Puy

− 1
Pu0

(11.31)

or
1

Pn
= 1

Pnx
+ 1

Pny
− 1

Pn0

(11.32)

where
Pu = factored load under biaxial bending

Pux = factored uniaxial load when the load acts at eccentricity ey and ex = 0
Puy = factored uniaxial load when the load acts at an eccentricity ex and ey = 0
Pu0

= factored axial load when ex = ey = 0

Pn =
Pu

𝜙
Pnx =

Pux

𝜙
Pny =

Puy

𝜙
Pn0

=
Pu0

𝜙

The uniaxial load strengths Pnx, Pny, and Pn0
can be calculated according to the equations and

method given earlier in this chapter. After that, they are substituted into Eq. 11.32 to calculate Pn.
The Bresler equation is valid for all cases when Pn is equal to or greater than 0.10Pn0

. When Pn
is less than 0.10Pn0

, the axial force may be neglected and the section can be designed as a member
subjected to pure biaxial bending according to the following equations:

Mux

Mx
+

Muy

My
≤ 1.0 (11.33)

or
Mnx

M0x
+

Mny

M0y
≤ 1.0 (11.34)

where
Mux = Pu ey = design moment about x-axis
Muy = Pu ex = design moment about the y-axis
Mx and My = uniaxial moment strengths about the x and y axes

Mnx =
Mux

𝜙
Mny =

Muy

𝜙
M0x =

Mx

𝜙
M0y =

My

𝜙

The Bresler equation is not recommended when the section is subjected to axial tension loads.
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11.16.2 Bresler Load Contour Method

In this method, the failure surface shown in Fig. 11.26 is cut at a constant value of Pn, giving the
related values of Mnx and Mny. The general nondimension expression for the load contour method is

(
Mnx

M0x

)𝛼1

+
(

Mny

M0y

)𝛼2

= 1.0 (11.35)

Bresler indicated that the exponent 𝛼 can have the same value in both terms of this expression
(𝛼1 = 𝛼2). Furthermore, he indicated that the value of 𝛼 varies between 1.15 and 1.55 and can be
assumed to be 1.5 for rectangular sections. For square sections, 𝛼 varies between 1.5 and 2.0, and an
average value of 𝛼 = 1.75 may be used for practical designs. When the reinforcement is uniformly
distributed around the four faces in square columns, 𝛼 may be assumed to be 1.5:

(
Mnx

M0x

)1.5

+
(

Mny

M0y

)1.5

= 1.0 (11.36)

The British Code assumed 𝛼 = 1.0, 1.33, 1.67, and 2.0 when the ratio Pu∕1.1Pu0
is equal to

0.2, 0.4, 0.6, and ≥ 0.8, respectively.

11.17 PARME LOAD CONTOUR METHOD

The load contour approach, proposed by the PCA, is an extension of the method developed by
Bresler. In this approach, which is also called the Parme method [11], a point B on the load contour
(of a horizontal plane at a constant Pn shown in Fig. 11.28) is defined such that the biaxial moment
capacities Mnx and Mny are in the same ratio as the uniaxial moment capacities M0x and M0y; that is,

Mnx

Mny
=

M0x

M0y
or

Mnx

M0x
=

Mny

M0y
= 𝛽

A

B

M
ny

/M
0y

Mnx/M0x

Figure 11.28 Nondimensional load contour at constant Pn (straight-line approxima-
tion).
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The ratio 𝛽 is shown in Fig. 11.28 and represents that constant portion of the uniaxial moment
capacities that may be permitted to act simultaneously on the column section.

For practical design, the load contour shown in Fig. 11.28 may be approximated by two
straight lines, AB and BC. The slope of line AB is (1 − 𝛽)/𝛽, and the slope of line BC is 𝛽/(1 − 𝛽).
Therefore, when

Mny

M0y
>

Mnx

M0x

then
Mny

M0y
+

Mnx

M0x

(
1 − 𝛽
𝛽

)
= 1 (11.37)

and when
Mny

M0y
<

Mnx

M0x

then
Mnx

M0x
+

Mny

M0y

(
1 − 𝛽
𝛽

)
= 1 (11.38)

The actual value of 𝛽 depends on the ratio Pn/P0 as well as the material and properties of the cross
section. For lightly loaded columns, 𝛽 will vary from 0.55 to 0.7. An average value of 𝛽 = 0.65 can
be used for design purposes.

When uniformly distributed reinforcement is adopted along all faces of rectangular columns,
the ratio M0y/M0x is approximately b/h, where b and h are the width and total depth of the rectangular
section, respectively. Substituting this ratio in Eqs. 11.37 and Eqs. 11.38,

Mny + Mnx

(b
h

)(
1 − 𝛽
𝛽

)
≈ M0y (11.39)

and

Mnx + Mny

(h
b

)(
1 − 𝛽
𝛽

)
≈ M0x (11.40)

For 𝛽 = 0.65 and h/b = 1.5,
M0y ≈ Mny + 0.36Mnx (11.41)

and
M0x ≈ Mnx + 0.80Mny (11.42)

From this presentation, it can be seen that direct explicit equations for the design of columns
under axial load and biaxial bending are not available. Therefore, the designer should have enough
experience to make an initial estimate of the section using the values of Pn, Mnx, and Mny and
the uniaxial equations and then check the adequacy of the column section using the equations for
biaxial bending or by computer.

Example 11.19

The section of a short tied column is 16 × 24 in. and is reinforced with eight no. 10 bars distributed as
shown in Fig. 11.29. Determine the design load on the section 𝜙Pn if it acts at ex = 8 in. and ey = 12 in.
Use f ′c = 5 ksi, fy = 60 ksi, and the Bresler reciprocal equation.



11.17 Parme Load Contour Method 405

A B

C D

8 no. 10 bars

Figure 11.29 Example 11.19: Biaxial load, Bresler method: Pn = 421.5 K.

Solution

1. Determine the uniaxial load capacity Pnx about the x-axis when ey = 12 in. In this case, b = 16 in.,
h = 24 in., d = 21.5 in., d′ = 2.5 in., and As = A′

s = 3.81 in.2. The solution will be performed
using statics following the steps of Examples 11.2 and 11.4 for balanced and compression-control
conditions.
a. For the balanced condition,

cb =
(

87
87 + fy

)
d =

( 87
147

)
21.5 = 12.72 in.

ab = 0.80(12.72) = 10.18 in. (𝛽1 = 0.8 when f ′c = 5 ksi)

Cc = 0.85 f ′c ab = 692.3 K f ′s = 87

(
c − d′

c

)
= 69.9 ksi

Then f ′s = 60 ksi.

Cs = A′
s( fy − 0.85 f ′c ) = 212.4 K T = As fy = 228.6 K

P0x = Cc + Cs − T = 676.1 K

𝜙Pbx = 0.65Pbx = 439.5 K (𝜙 = 0.65 for 𝜀t = 0.002)

b. For ey = 12 in. < d = 21.5 in., assume compression failure and follow the steps of Example
11.4 to get a = 10.65 in. and c = a/0.8 = 13.31 in. > cb = 12.72 in. Thus, compression controls.
Check

f ′s = 87

(
c − d′

c

)
= 70 ksi > fy
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Therefore, f ′s = 60 ksi. Check

fs = 87
(d − c

c

)
= 53.53 ksi > 60 ksi

Calculate forces: Cc = 0.85 f ′c ab = 724.2 K,Cs = A′
s(fy − 0.85 f ′c ) = 212.4 K, T = As fs =

203.95 K, Pnx = Cc + Cs − T = 732.6 K. Pnx > Pbx, so this is a compression failure case as
assumed.

𝜀t =
(d − c

c

)
0.003 = 0.00185

𝜀t < 0.002 𝜙 = 0.65

Pux = 𝜙Pnx = 476.2 K

c. Take moments about As using Eq. 11.11,

d′′ = 9.5 in. e′ = 21.5 in.

Pnx =
1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]
= 732.6 K

2. Determine the uniaxial load capacity Pny about the y-axis when ex = 8 in. In this case, b = 24 in.,
h = 16 in., d = 13.5 in., d′ = 2.5 in., and As = A′

s = 3.81 in.2 The solution will be performed using
statics, as explained in step 1.
a. Balanced condition:

cb =
(

87
87 + fy

)
d =

( 87
147

)
13.5 = 7.99 in. ab = 0.8(7.99) = 6.39 in.

Cc = 0.85 f ′c ab = 651.8 K f ′s = 87

(
c − d′

c

)
= 59.8 ksi

Cs = A′
s( f ′s − 0.85 f ′c ) = 211.6 K T = Asfy = 228.6 K

In a balanced load, Pby = Cc + Cs − T = 634.8 K, 𝜙Pby = 0.65, and Pby = 444.4 K.
b. For ex = 8 in., assume compression failure case and follow the steps of Example 11.4 to get a

= 6.65 in. and c = a/0.8 = 8.31 in. > cb (compression failure). Check

f ′s = 87

(
c − d′

c

)
= 60.8 ksi

Therefore, f ′s = 60 ksi. Check

fs = 87
(d − c

c

)
= 54.3 ksi

Calculate forces: Cc = 0.85 f ′c ab = 678.3 K,Cs = A′
s(60 − 0.85 f ′c ) = 212.4 K, T = As fs =

206.9 K, Pny = Cc + Cs − T = 683.3 K, and 𝜙Pny = Puy = 0.65 Pny = 444.5 K. Because Pny >

Pby, compression failure occurs, as assumed:

𝜀t =
(d − c

c

)
0.003 = 0.00187

𝜀t < 0.002 𝜙 = 0.65

Puy = 𝜙Pny = 444.5 K
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c. Take moments about As using Eq. 11.11:

d′′ = 5.5 in. e′ = 13.5 in.

Pny =
1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]
= 683.8 K

3. Determine the theoretical axial load Pn0
:

Pn0
= 0.85 f ′c Ag + Ast( fy − 0.85 f ′c )

= 0.85(5)(16 × 24) + 10.16(60 − 0.85 × 5) = 2198.4 K 𝜙Pn0 = 0.65Pn0 = 1429 K

4. Using the Bresler equation (Eq. 11.31), multiply by 100:

100
Pu

= 100
476.2

+ 100
444.5

− 100
1429

= 0.365

Pu = 274 K and Pn =
Pu

0.65
= 421.5 K

Notes

1. Approximate equations or the ACI charts may be used to calculate Pnx and Pny. However, since
the Bresler equation is an approximate solution, it is preferable to use accurate procedures,
as was done in this example, to calculate Pnx and Pny. Many approximations in the solution
will produce inaccurate results. Computer programs based on statics are available and may
be used with proper checking of the output.

2. In Example 11.19, the areas of the corner bars were used twice, once to calculate Pnx and
once to calculate Pny. The results obtained are consistent with similar solutions. A conserva-
tive solution is to use half of the corner bars in each direction, giving As = A′

s = 2(1.27) =
2.54 in.2, which will reduce the values of Pnx and Pny.

Example 11.20

Determine the nominal design load, Pn, for the column section of the previous example using the Parme
load contour method; see Fig. 11.30.

Solution

1. Assume 𝛽 = 0.65. The uniaxial load capacities in the direction of x and y axes were calculated in
Example 11.19:

Pux = 476.2 K Puy = 444.5 K Pnx = 732.6 K Pny = 683.8 K

2. The moment capacity of the section about the x-axis is

M0x = Pnxey = 732.6 × 12

The moment capacity of the section about the y-axis is

M0y = Pnyex = 683.8 × 8 K ⋅ in

3. Let the nominal load capacity be Pn. The nominal design moment on the section about the x-axis
is

Mnx = Pney = Pn × 12 K ⋅ in.

and that about the y-axis is
Mny = Pnex = 8Pn
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8 no. 10 bars

Figure 11.30 Example 11.20: Biaxial load, PCA method: Pn = 455 K.

4. Check if Mny/M0y > Mnx/M0x:

8Pn

683.8 × 8
>

12Pn

732.6 × 12
or 1.463 × 10−3Pn > 1.365 × 10−3Pn

Then Mny/M0y > Mnx/M0x. Therefore, use Eq. 11.34.

5.
8Pn

683.8 × 8
+

12Pn

732.6 × 12

(1 − 0.65
0.65

)
= 1

Multiply by 1000 to simplify calculations.

1.463Pn + 0.735Pn = 1000

Pn = 455 K Pu = 𝜙Pn = 295.75 K (𝜙 = 0.65)

Note that Pu is greater than the value of 274 K obtained by the Bresler reciprocal method
(Eq. 11.31) in the previous example by about 8%.

11.18 EQUATION OF FAILURE SURFACE

A general equation for the analysis and design of reinforced concrete short and tied rectangular
columns was suggested by Hsu [16]. The equation is supposed to represent the failure surface and
interaction diagrams of columns subjected to combined biaxial bending and axial load, as shown
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in Fig. 11.26. The axial load can be compressive or a tensile force. The equation is presented as
follows: (

Pn − Pb

P0 − Pb

)
+
(

Mnx

Mbx

)1.5

+
(

Mny

Mby

)1.5

= 1.0 (11.43)

where
Pn = nominal axial strength (positive if compression and negative if tension) for given

eccentricity
P0 = nominal axial load (positive if compression and negative if tension) at zero eccentricity
Pb = nominal axial compressive load at balanced strain condition

Mnx, Mny = nominal bending moments about x and y axes, respectively
Mbx, Mby = nominal balanced bending moments about x and y axes, respectively, at balanced strain

conditions

To use Eq. 11.4, all terms must have a positive sign. The value of P0 was given earlier
(Eq. 10.1):

P0 = 0.85 f ′c (Ag − Ast) + Ast fy (11.44)

The nominal balanced load, Pb, and the nominal balanced moment, Mb = Pb eb, were given in
Eqs. 11.6 and Eqs. 11.7, respectively, for sections with tension and compression reinforcement
only. For other sections, these values can be obtained by using the principles of statics.

Note that the equation of failure surface can also be used for uniaxial bending representing
the interaction diagram. In this case, the third term will be omitted when ex = 0, and the second
term will be omitted when ey = 0.

When ex = 0 (moment about the x-axis only),
(

Pn − Pb

P0 − Pb

)
+
(

Mnx

Mbx

)1.5

= 1.0 (11.45)

(This is Eq. 11.21, given earlier.) When ey = 0 (moment about the y axis only),
(

Pn − Pb

P0 − Pb

)
+
(

Mny

Mby

)1.5

= 1.0 (11.46)

Applying Eq. 11.4 to 11.2 and 11.4, Pb = 453.4 K, Mbx = 6810.8 K.in., ey = 10 in., and P0 =
0.85(4)(14 × 22 − 8) + 8(60) = 1500 K.

Pn − 453.4

1500 − 453.4
+
(

10Pn

6810.8

)1.5

= 1.0

Multiply by 1000 and solve for Pn:

(0.9555Pn − 433.2) + 0.05626P1.5
n = 1000

0.9555Pn + 0.05626P1.5
n = 1433.2

Let Pn = 611 K, which is close to that obtained by analysis.
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Example 11.21

Determine the nominal design load, Pn, for the column section of Example 11.19 using the equation of
failure surface.

Solution

1. Compute

P0 = 0.85 f ′c (Ag − Ast) + Ast fy

= 0.85(5)(16 × 24 − 10.16) + (10.16 × 60)

= 2198.4 K

2. Compute Pb and Mb using Eqs. 11.6 and Eqs. 11.8 about the x and y axes, respectively.
a. About the x-axis,

abx =
87dt

87 + fy
= 87(21.5)

87 + 60
= 12.72 in.

abx = 0.8(12.72) = 10.18 in.

f ′s = 87

(
c − d′

c

)
= 69.9 ksi f ′s = 60 ksi

d′′
x = 9.5 in. As = A′

s = 3.81 in.2

Pbx = 0.85 f ′c axb + A′
s( fy − 0.85 f ′c ) − As fy

= 0.85(5)(10.18)(16) + 3.81(60 − 0.85 × 5) − 3.81(60)

= 676.1 K

Mbx = 0.85(5)(10.18)(16)
(

21.5 − 10.18
2

− 9.5
)

+ 3.81(60 − 0.85 × 5) × (21.5 − 2.5 − 9.5) + 3.81(60)(9.5)

= 8973 K ⋅ in. = 747.8 K ⋅ ft

b. About the y-axis: dt = 13.5 in., d′′
y = 5.5 in., As = A′

s = 3.81 in.2

cby =
87(13.5)
87 + 60

= 7.99 in.

aby = 0.8(7.99) = 6.39 in. f ′s = 87

(
c − d′

c

)
= 59.8 ksi

Pby = 0.85(5)(6.39)(24) + 3.81(59.8 − 0.85 × 5) − 3.81(60)

= 634.8 K

Mby = 0.85(5)(6.39)(24)
(

13.5 − 6.39
2

5.5
)

+ 3.81(59.8 − 0.85 × 5)(13.5 − 2.5 − 5.5) + 3.81(60)(5.5)

= 5557.3 K ⋅ in. = 463 K ⋅ ft



11.19 SI Example 411

3. Compute the nominal balanced load for biaxial bending, Pbb:

tan𝛼 =
Mny

Mnx
=

Pnex

Pney
=

ex

ey
= 8

12
𝛼 = 33.7∘

Pbx − Pby

90∘
=

𝛥Pb

90∘ − 𝛼∘
or

676.1 − 634.8
90

=
𝛥Pb

90 − 33.7

𝛥Pb = 25.8 K

Pbb = Pby + 𝛥Pb = 634.8 + 25.8 = 660.6 K

4. Compute Pn from the equation of failure surface:

Pn − 660.6

2198.4 − 660.6
+
(

Pn × 12

8973

)1.5

+
(

Pn × 8

5557.3

)1.5

= 1.0

Multiply by 1000 and solve for Pn:

(0.65Pn − 429.85) + 0.0489P1.5
n + 0.0546P1.5

n = 1000

0.65Pn + 0.1035P1.5
n = 1429.85

By trial, Pn = 487 K. Because Pn < Pbb, it is a tension failure case for biaxial bending, and
thus P0 = −2198.4 K (to keep the first term positive).

1000

(
Pn − 660.9

−2198.4 − 660.9

)
+ 0.0489P1.5

n + 0.0546P1.5
n = 1000

0.35Pn + 0.1035P1.5
n = 769.1

Pn = 429 K and Pu = 0.65Pn = 278.8 K

Note: The strength capacity, 𝜙Pn, of the same rectangular section was calculated using the Bresler
reciprocal equation (Example 11.19), Parme method (Example 11.20), and Hsu method (Example 11.21)
to get 𝜙Pn = 421.5, 455, and 429 K, respectively. The Parme method gave the highest value for this
example.

11.19 SI EXAMPLE

Example 11.22
Determine the balanced compressive forces Pb, eb, and Mb for the section shown in Fig. 11.31. Use
f ′c = 30 MPa and fy = 400 MPa (b = 350 mm, d = 490 mm).

Solution

1. For a balanced condition, the strain in the concrete is 0.003 and the strain in the tension steel is
𝜀y = fy/Es = 400/200,000 = 0.002, where Es = 200,000 MPa.

As = A′
s = 4(700) = 2800 mm2

2. Locate the neutral axis depth, cb:

cb =
(

600
600 + fy

)
dt (where fy is in MPa)

=
( 600

600 + 420

)
(490) = 288 mm

ab = 0.85cb = 0.85 × 288 = 245 mm
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εy

ε

Figure 11.31 Example 11.22.

3. Check if compression steel yields. From the strain diagram,

𝜀′s

0.003
= c − d′

c
= 288 − 60

288

𝜀′s = 0.00238 > 𝜀y

Therefore, compression steel yields.
4. Calculate the forces acting on the section:

Cc = 0.85 f ′c ab = 0.85
1000

× 30 × 245 × 350 = 2186.6 kN

T = As fy = 2800 × 0.400 × 1120 kN

Cs = A′
s( fy − 0.85 f ′c ) =

2800 mm2

1000
(400 − 0.85 × 30) = 1048.6 kN

5. Calculate Pb and Mb:
Pb = Cc + Cs − T = 2115.2 kN

From Eq. 11.10,

Mb = Pbeb = Cc

(

d − a
1
2

− d′′

)

+ Cs(d − d′ − d′′) + Td′′

The plastic centroid is at the centroid of the section and d′′ = 215 mm.

Mb = 2186.6
(

490 − 245
2

− 215
)
+ 1048.6(490 − 60 − 215)

+ 1120 × 215 − 799.7 kN ⋅ m

eb =
Mb

Pb
= 799.7

2115.2
= 0.378 m = 378 mm
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SUMMARY

Sections 11.1–11.3

1. The plastic centroid can be obtained by determining the location of the resultant force pro-
duced by the steel and the concrete, assuming both are stressed in compression to fy and
0.85 f ′c , respectively.

2. On a load–moment interaction diagram the following cases of analysis are developed:
a. Axial compression, P0

b. Maximum nominal axial load, Pn, max = 0.8P0 (for tied columns) and Pn, max = 0.85P0 (for
spiral columns)

c. Compression failure occurs when Pn > Pb or e < eb

d. Balanced condition, Pb and Mb

e. Tension failure occurs when Pn < Pb or e > eb

f. Pure flexure

Section 11.4

1. For compression-controlled sections, 𝜙 = 0.65, while for tension-controlled section, 𝜙 = 0.9.
2. For the transition region,

𝜙 =
⎧
⎪
⎨
⎪
⎩

0.65 +
(
𝜀t − 0.002

) (250
3

)
for tied columns

0.75 + (𝜀t − 0.002)(50) for spiral columns

Section 11.5

For a balanced section,

cb =
87dt

87 + fy
and ab = 𝛽1cb

𝛽1 = 0.85 for f ′c ≤ 4 ksi

Pb = Cc + Cs − T = 0.85f ′c ab + A′
s( fy − 0.85 f ′c ) − Asfy

Mb = Pbeb = Cc

(
d − a

2
− d′′

)
+ Td′′ + Cs(d − d′ − d′′)

eb =
Mb

Pb

Section 11.6

The equations for the general analysis of rectangular sections under eccentric forces are
summarized.
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Sections 11.7 and 11.8

Examples for the cases when tension and compression controls are given.

Sections 11.9 and 11.10

Examples are given for the interaction diagram and for the case when side bars are used.

Section 11.11

This section gives the load capacity of circular columns. The cases of a balanced section when
compression controls are explained by examples.

Section 11.12

This section gives examples of the analysis and design of columns using charts.

Section 11.13

This section gives examples of the design of column sections.

Sections 11.14 and 11.18

Biaxial bending:

1. For circular columns with uniform reinforcement,

Mu =
√

(Mux)2 + (Muy)2 e =
√

(ex)2 + (ey)2

2. For square and rectangular sections,

1
Pn

= 1
Pnx

+ 1
Pny

− 1
Pn0

Mnx

M0x
+

Mny

M0y
≤ 1.0

3. In the Bresler load contour method,
(

Mnx

M0x

)1.5

+
(

Mny

M0y

)1.5

= 1.0

4. In the PCA load contour method,

Mny + Mnx

(b
h

)(
1 − 𝛽
𝛽

)
= M0y

Mnx + Mny

(h
b

)(
1 − 𝛽
𝛽

)
= M0x

5. Equations of failure surface method are given with applications.
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P R O B L E M S

Note: For all problems, use fy = 60 ksi, d′ = 2.5 in., and As = A′
s where applicable. Slight variations in answers

are expected.

11.1 (Rectangular sections: balanced condition) For the rectangular column sections given in Table 11.3,
determine the balanced compressive load, Pb, the balanced moment, Mb, and the balanced eccentricity,
eb, for each assigned problem. (Answers are given in Table 11.3.) (𝜙 = 0.65.)

11.2 (Rectangular sections: compression failure) For the rectangular column sections given in Table 11.3,
determine the load capacity, Pn, for each assigned problem when the eccentricity is e = 6 in. (Answers
are given in Table 11.3.)

11.3 (Rectangular sections: tension failure) For the rectangular column sections given in Table 11.3, deter-
mine the load capacity, Pn, for each assigned problem when the eccentricity is e = 24 in. (Answers are
given in Table 11.3.)
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Table 11.3 Answers for Problems 11.1-11.3

Answers

Problem 11.1 Problem 11.2 Problem 11.3

Number f′c (ksi) b (in.) h (in.) As = A′
s Pb eb Pn (e = 6 in.) Pn (e = 24 in.)

a 4 20 20 6 no. 10 572 17.4 1193 395
b 4 14 14 4 no. 8 249 10.9 407 93
c 4 24 24 8 no. 10 848 20.1 1860 696
d 4 18 26 6 no. 10 698 20.6 1528 591
e 4 12 18 4 no. 9 305 15.2 592 176
f 4 14 18 4 no. 10 354 16.2 715 221
g 5 16 16 5 no. 10 406 15.3 807 228
h 5 18 18 5 no. 9 540 12.5 930 230
i 5 14 20 4 no. 9 476 13.4 847 221
j 5 16 22 4 no. 10 606 14.8 1140 327
k 6 16 24 5 no. 10 746 16.8 1532 476
l 6 14 20 4 no. 9 534 12.8 944 226

11.4 (Rectangular sections with side bars) Determine the load capacity, 𝜙Pn, for the column section shown
in Fig. 11.32 considering all side bars when the eccentricity is ey = 8 in. Use f ′c = 4 ksi and fy = 60 ksi.
(Answer: 658 K.)

12 no. 10
bars

Figure 11.32 Problem 11.4.

11.5 Repeat Problem 11.4 with Fig. 11.33. (Answer: 660 K.)
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16 no. 10
bars

Figure 11.33 Problem 11.5.

11.6 Repeat Problem 11.4 with Fig. 11.34. (Answer: 368 K.)

8 no. 9
bars

Figure 11.34 Problem 11.6.

11.7 Repeat Problem 11.4 with Fig. 11.35. (Answer: 822 K.)

16 no. 9
bars

Figure 11.35 Problem 11.7.
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11.8 (Design of rectangular column sections) For each assigned problem in Table 11.4, design a rectangular
column section to support the factored load and moment shown. Determine As,A

′
s, and h if not given;

then choose adequate bars considering that As = A′
s. The final total steel ratio, 𝜌g, should be close to

the given values where applicable. Check the load capacity, 𝜙Pn, of the final section using statics and
equilibrium equations. One solution for each problem is given in Table 11.4.

11.9 (ACI charts) Repeat Problems 11.2b, 11.2d, 11.2f, 11.8a, 11.8c, and 11.8e using the ACI charts.
11.10 (Circular columns: balanced condition) Determine the balanced load capacity, 𝜙Pb, the balanced

moment, 𝜙Mb, and the balanced eccentricity, eb, for the circular tied sections shown in Fig. 11.36. Use
f ′c = 4 ksi and fy = 60 ksi.

11.11 Repeat Problem 11.10 for Fig. 11.37.

Table 11.4 Problem 11.8

One Solution

Number f′c (ksi) Pu (K) Mu (K ⋅ ft) b (in.) h (in.) 𝝆g % h (in.) As − A′
s

a 4 530 353 16 — 4.0 20 5 no. 10
b 4 410 205 14 18 — 18 5 no. 8
c 4 480 640 18 — 3.5 24 6 no. 10
d 4 440 440 20 20 — 20 6 no. 9
e 4 1125 375 20 24 — 24 6 no. 10
f 4 710 473 18 — 3.0 24 5 no. 10
g 5 300 300 14 — 2.0 20 3 no. 9
h 5 1000 665 20 26 — 26 6 no. 10
i 6 590 197 14 — 2.0 18 2 no. 10
j 6 664 332 16 20 — 20 4 no. 9

6 no. 9 bars

Figure 11.36 Problem 11.10.

8 no. 10 bars

Figure 11.37 Problem 11.11.
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11.12 Repeat Problem 11.10 for Fig. 11.38.

10 no. 10 bars

Figure 11.38 Problem 11.12.

11.13 Repeat Problem 11.11 for Fig. 11.39.

12 no. 9 bars

Figure 11.39 Problem 11.13.

11.14 (Circular columns) Determine the load capacity, 𝜙Pn, for the circular tied column sections shown in
Figs. 11.36 through 11.39 when the eccentricity is ey = 6 in. Use f ′c = 4 ksi and fy = 60 ksi.

11.15 (Biaxial bending) Determine the load capacity, Pn, for the column sections shown in Figs. 11.32 through
11.35 if ey = 8 in. and ex = 6 ini. using the Bresler reciprocal method. Use f ′c (4 ksi) and fy = 60 ksi. For
each problem the values of Pnx, Pny, Pn0

(Pbx, Mbx), and (Pby, Mby) are as follows:
a. Figure 11.32: 952 K, 835 K, 2168 K (571 K, 792 K ⋅ ft), (536 K, 483 K ⋅ ft).
b. Figure 11.33: 930 K, 1108 K, 2505 K (577 K, 742 K ⋅ ft), (577 K, 742 K ⋅ ft).
c. Figure 11.34: 558 K, 495 K, 1408 K (408 K, 414 K ⋅ ft), (368 K, 260 K ⋅ ft).
d. Figure 11.35: 1093 K, 1145 K, 2538 K (718 K, 865 K ⋅ ft), (701 K, 699 K.ft).

11.16 Repeat Problem 11.15 using the Parme method.
11.17 Repeat Problem 11.15 using the Hsu method.
11.18 For the column sections shown in Fig. 11.32, determine

a. The uniaxial load capacities about the x and y axes, Pnx and Pny using ey = 6 in. and ex = 6 in.
b. The uniaxial balanced load and moment capacities about the x and y axes, Pbx, Pby, Mbx, and Mby.
c. The axial load, Pn0

.
d. The biaxial load capacity Pn when ey = ex = 6 in., using the Bresler reciprocal method, the Hsu

method, or both.
11.19 Repeat Problem 11.18 for Fig. 11.33.
11.20 Repeat Problem 11.18 for Fig. 11.34.
11.21 Repeat Problem 11.18 for Fig. 11.35.



CHAPTER12
SLENDER COLUMNS

Columns in a high-rise building.

12.1 INTRODUCTION

In the analysis and design of short columns discussed in the previous two chapters, it was assumed
that buckling, elastic shortening, and secondary moment due to lateral deflection had minimal effect
on the ultimate strength of the column; thus, these factors were not included in the design procedure.
However, when the column is long, these factors must be considered. The extra length will cause a
reduction in the column strength that varies with the column effective height, width of the section,
the slenderness ratio, and the column end conditions.

A column with a high slenderness ratio will have a considerable reduction in strength, whereas
a low slenderness ratio means that the column is relatively short and the reduction in strength may

420
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Figure 12.1 Rectangular and circular sections of columns, with radius of gyration r.

not be significant. The slenderness ratio is the ratio of the column height, l, to the radius of gyration,
r, where r =

√
I∕A, I being the moment of inertia of the section and A the sectional area.

For a rectangular section of width b and depth h (Fig. 12.1), Ix = bh3/12 and A= bh. There-
fore, rx =

√
I∕A= 0.288h (or, approximately, rx = 0.3h). Similarly, Iy = hb3/12 and ry = 0.288b (or,

approximately, 0.3b). For a circular column with diameter D, Ix = Iy =𝜋D2/64 and A=𝜋D2/4; there-
fore, rx = ry = 0.25D.

In general, columns may be considered as follows:

1. Long with a relatively high slenderness ratio, where lateral bracing or shear walls are required.
2. Long with a medium slenderness ratio that causes a reduction in the column strength. Lateral

bracing may not be required, but strength reduction must be considered.
3. Short where the slenderness ratio is relatively small, causing a slight reduction in strength.

This reduction may be neglected, as discussed in previous chapters.

12.2 EFFECTIVE COLUMN LENGTH (KLU)

The slenderness ratio l/r can be calculated accurately when the effective length of the column (Klu)
is used. This effective length is a function of two main factors:

1. The unsupported length, lu, represents the unsupported height of the column between two
floors. It is measured as the clear distance between slabs, beams, or any structural member
providing lateral support to the column. In a flat slab system with column capitals, the unsup-
ported height of the column is measured from the top of the lower floor slab to the bottom
of the column capital. If the column is supported with a deeper beam in one direction than in
the other direction, lu should be calculated in both directions (about the x and y axes) of the
column section. The critical (greater) value must be considered in the design.

2. The effective length factor, K, represents the ratio of the distance between points of zero
moment in the column and the unsupported height of the column in one direction. For
example, if the unsupported length of a column hinged at both ends, on which sidesway is
prevented, is lu, the points of zero moment will be at the top and bottom of the column—that
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is, at the two hinged ends. Therefore, the factor K= lu/lu is 1.0. If a column is fixed at both
ends and sidesway is prevented, the points of inflection (points of 0 moment) are at lu/4 from
each end. Therefore, K= 0.5lu/lu = 0.5 (Fig. 12.2). To evaluate the proper value of K, two
main cases are considered.

When structural frames are braced, the frame, which consists of beams and columns, is
braced against sidesway by shear walls, rigid bracing, or lateral support from an adjoining
structure. The ends of the columns will stay in position, and lateral translation of joints is
prevented. The range of K in braced frames is always equal to or less than 1.0. The ACI
Code, Section 6.2.5, recommends the use of K= 1.0 for braced frames.

When the structural frames are unbraced, the frame is not supported against sidesway,
and it depends on the stiffness of the beams and columns to prevent lateral deflection. Joint
translations are not prevented, and the frame sways in the direction of lateral loads. The range
of K for different columns and frames is given in Fig. 12.2, considering the two cases when
sidesway is prevented or not prevented.

12.3 EFFECTIVE LENGTH FACTOR (K)

The effective length of columns can be estimated by using the alignment chart shown in Fig. 12.3
[10]. To find the effective length factor K, it is necessary first to calculate the end restraint factors
𝜓A and 𝜓B at the top and bottom of the column, respectively, where

𝜓 =
∑

EI∕lc of columns
∑

EI∕l of beams
(12.1)

Figure 12.2 (a) Effective lengths of columns and length factor K and (b) effective
lengths and K for portal columns.
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Figure 12.2 (Continued)

(both in the plane of bending) where lc is length center to center of joints in a frame and l is the
span length of flexure, center to center of joints. The 𝜓 factor at one end shall include all columns
and beams meeting at the joint. For a hinged end, 𝜓 is infinite and may be assumed to be 10.0.
For a fixed end, 𝜓 is zero and may be assumed to be 1.0. Those assumed values may be used
because neither a perfect frictionless hinge nor perfectly fixed ends can exist in reinforced con-
crete frames.

The procedure for estimating K is to calculate 𝜓A for the top end of the column and 𝜓B for
the bottom end of the column. Plot 𝜓A and 𝜓B on the alignment chart of Fig. 12.3 and connect the
two points to intersect the middle line, which indicates the K value. Two nomograms are shown,
one for braced frames where sidesway is prevented, and the second for unbraced frames, where
sidesway is not prevented. The development of the charts is based on the assumptions that (1) the
structure consists of symmetrical rectangular frames, (2) the girder moment at a joint is distributed
to columns according to their relative stiffnesses, and (3) all columns reach their critical loads at
the same time.
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Ψ = ratio of Σ (EI/ c) of compression members to Σ (EI/ ) of flexural
       members in a plane at one end of a compression member
    = span length of flexural member measured center to center of joints

ψA ψBk ψA ψBk

Nonsway frames Sway frames

Figure 12.3 Alignment chart to calculate effective length factor, k. Courtesy of ACI



12.4 Member Stiffness (EI) 425

Long columns in an office building.

12.4 MEMBER STIFFNESS (EI)

The stiffness of a structural member is equal to the modulus of elasticity E times the moment of
inertia I of the section. The values of E and I for reinforced concrete members can be estimated as
follows:

1. The modulus of elasticity of concrete was discussed in Chapter 2; the ACI Code gives the
following expression:

Ec = 33𝑤1.5
√

f ′c or Ec = 57, 000
√

f ′c (psi)
for normal-weight concrete. The modulus of elasticity of steel is Es = 29× 106 psi.
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2. For reinforced concrete members, the moment of inertia I varies along the member, depending
on the degree of cracking and the percentage of reinforcement in the section considered.

To evaluate the factor 𝜓 , EI must be calculated for beams and columns. For this purpose,
I can be estimated as follows (ACI Code, Section 6.6.3.1.1):
a. Compression members:

Columns I = 0.70Ig

Walls − Uncracked I = 0.70Ig

−Cracked I = 0.35Ig

b. Flexural members:

Beams I = 0.35Ig

Flat plates and flat slabs I = 0.25Ig

Alternatively, the moments of inertia of compression and flexural members, I shall be
permitted to be computed as follows:

c. Compression members:

I =
(

0.80 + 25
Ast

Ag

)(
1 −

Mu

Puh
− 0.5

Pu

P0

)
Ig ≤ 0.875Ig (12.2)

where Pu and Mu shall be determined from the particular load combination under consid-
eration, or the combination of Pu and Mu determined in the smallest value of I, I need not
be taken less than 0.35Ig.

d. Flexural members:

I = (0.10 + 25𝜌)
(

1.2 − 0.2
b𝑤
d

)
Ig ≤ 0.5Ig (12.3)

where Ig is the moment of inertia of the gross concrete section about the centroidal axis,
neglecting reinforcement.

𝜌 = ratio of
As

bd
in cross section

The moment of inertia of T-beams should be based on the effective flange width defined
in Section 8.12. It is generally sufficiently accurate to take Ig of a T-beam as two times the
Ig of the web, 2(b𝑤h3/12).
If the factored moments and shears from an analysis based on the moment of inertia of a

wall, taken equal to 0.70Ig, indicate that the wall will crack in flexure, based on the modulus
of rupture, the analysis should be repeated with I= 0.35Ig in those stories where cracking is
predicted using factored loads.

The values of the moments of inertia were derived for non-prestressed members. For pre-
stressed members, the moments of inertia may differ depending on the amount, location, and
type of the reinforcement and the degree of cracking prior to ultimate. The stiffness value
for prestressed concrete members should include an allowance for the variabilty of the stiff-
nesses.

For continuous flexural members, I shall be permitted to be taken as the average of values
obtained from Eq.12.3 for the critical positive and negative moment sections. Moment of
inertia I need not be taken less than 0.25Ig.
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The cross-sectional dimensions and reinforcement ratio used in the above formulas shall
be within 10% of the dimensions and reinforcement ratio shown on the contract documents
or the stiffness evaluation shall be repeated.

3. Area, A= 1.0 Ag (cross-sectional area).
4. The moments of inertia shall be divided by (1+ 𝛽dns) when sustained lateral loads act on the

structure or for stability check, where

𝛽dns =
maximum factored axial sustained load

maximum factored axial load
= 1.2D (sustained)

1.2D + 1.6L
≤ 1.0 (12.4)

12.5 LIMITATION OF THE SLENDERNESS RATIO (Klu/r)

12.5.1 Nonsway Frames

The ACI Code, Section 6.2.5, recommends the following limitations between short and long
columns in braced (nonsway) frames:

1. The effect of slenderness may be neglected and the column may be designed as a short column
when

Klu
r

≤ 34 −
12M1

M2
≤ 40 (12.5)

where M1 and M2 are the factored end moments of the column and M2 is greater than M1.
2. The ratio M1/M2 is considered positive if the member is bent in single curvature and negative

for double curvature (Fig. 12.4).
3. The term 34− 12M1/M2 shall not be taken greater than 40.

Figure 12.4 Single and double curvatures.
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4. If the factored column moments are zero or e=Mu/Pu < emin, the value of M2 shall not be
taken less than M2, min calculated using the minimum eccentricity given by ACI Code, Section
6.6.4.5.4:

emin = 0.6 + 0.03h (inch) (12.6)

M2,min = Pu(0.6 + 0.03h) (12.7)

where M2, min is the minimum moment and emin is the minimum eccentricity. The moment M2
shall be considered about each axis of the column separately. The value of K may be assumed
to be equal to 1.0 for a braced frame unless it is calculated on the basis of EI analysis.

5. It shall be permitted to consider compression members braced against sidesway when bracing
elements have a total stiffness, resisting lateral movement of that story, of at least 12 times
the gross stiffness of the columns within the story.

12.5.2 Sway Frames

In compression members not braced (sway) against sidesway, the effect of the slenderness ratio
may be neglected when

Klu
r

≤ 22 (ACI Code, Section 6.2.5) (12.8)

12.6 MOMENT-MAGNIFIER DESIGN METHOD

12.6.1 Introduction

The first step in determining the design moments in a long column is to determine whether the frame
is braced or unbraced against sidesway. If lateral bracing elements, such as shear walls and shear
trusses, are provided or the columns have substantial lateral stiffness, then the lateral deflections
produced are relatively small and their effect on the column strength is substantially low. It can be
assumed (ACI Code, Section 6.6.4.4.1) that a story within a structure is nonsway if

Q =
∑

Pu𝛥0

Vuslc
≤ 0.05 (12.9)

where
∑

Pu and Vus are the story total factored vertical load and horizontal story shear in the story
being evaluated, respectively, and 𝛥0 is the first-order relative lateral deflection between the top
and bottom of the story due to Vus. The length lc is that of the compression member in a frame,
measured from center to center of the joints in the frame.

In general, compression members may be subjected to lateral deflections that cause secondary
moments. If the secondary moment, M′, is added to the applied moment on the column, Ma, the
final moment is M=Ma +M′. An approximate method for estimating the final moment M is to
multiply the applied moment Ma by a factor called the magnifying moment factor 𝛿, which must be
equal to or greater than 1.0, or Mmax = 𝛿Ma and 𝛿 ≥ 1.0. The moment Ma is obtained from the elastic
structural analysis using factored loads, and it is the maximum moment that acts on the column at
either end or within the column if transverse loadings are present.

If the P-𝛥 effect is taken into consideration, it becomes necessary to use a second-order analy-
sis to account for the nonlinear relationship between the load, lateral displacement, and the moment.
This is normally performed using computer programs. The ACI Code permits the use of first-order
analysis of columns. The ACI Code moment-magnifier design method is a simplified approach for
calculating the moment-magnifier factor in both braced and unbraced frames.
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12.6.2 Magnified Moments in Nonsway Frames

The effect of the slenderness ratio Klu/r in a compression member of a braced frame may be ignored
if Klu/r ≤ 34− 12 M1/M2 ≤ 40, as given in Section 6.2.5. If Klu/r is greater than 34− 12 M1/M2,
then the slenderness effect must be considered. The procedure for determining the magnification
factor 𝛿ns in nonsway frames can be summarized as follows (ACI Code, Section 6.6.4):

1. Determine if the frame is braced against sidesway and find the unsupported length, lu, and
the effective length factor, K (K may be assumed to be 1.0).

2. Calculate the member stiffness, EI, using the reasonably approximate equation

EI =
0.2EcIg + EsIse

1 + 𝛽dns
(12.10)

or the more simplified approximate equation

EI =
0.4EcIg

1 + 𝛽dns
(12.11)

EI = 0.25EcIg (for𝛽dns = 0.6) (12.12)

where

Ec = 57, 000
√

f ′c
Es = 29× 106 psi
Ig = gross moment of inertia of the section about the axis considered, neglecting Ast
Ise = moment of inertia of the reinforcing steel

𝛽dns =
maximum factored axial sustained load

maximum factored axial load
= 1.2D(sustained)

1.2D + 1.6L

Note: The above 𝛽dns is the ratio used to compute magnified moments in columns due to
sustained loads.

Equations 12.11 and 12.12 are less accurate than Eq.12.10. Moreover, Eq.12.12 is obtained
by assuming 𝛽d = 0.6 in Eq.12.11.

For improved accuracy EI can be approximated using suggested E and I values from
Eq.12.2 divided by 1+ 𝛽dns:

I =
(

0.80 + 25
Ast

Ag

)(
1 −

Mu

Puh
− 0.5

Pu

P0

)
Ig ≤ 0.875Ig (12.12)

I need not be taken less than 0.35Ig
where

Ast = total area of longitudinal reinforcement (in.2)
P0 = nominal axial strength at zero eccentricity (lb)
Pu = factored axial force (+ve for compression) (lb)
Mu = factored moment at section (lb.in.)

h = thickness of member (in.)

3. Determine the Euler buckling load, Pc:

Pc =
𝜋2EI
(Klu)2

(12.13)

Use the values of EI, K, and lu as calculated from steps 1 and 2.



430 Chapter 12 Slender Columns

4. Calculate the value of the factor Cm to be used in the equation of the moment-magnifier factor.
For braced members without transverse loads,

Cm = 0.6 +
0.4M1

M2
(12.14)

where M1/M2 is positive if the column is bent in single curvature and negative if the member
is bent in double curvature. For members in which M2, min =Pu(0.6+ 0.03h) exceeds M2, the
value of Cm in Eq.12.14 shall either be taken equal to 1, or shall be based on the ratio of
computed end moments, M1/M2.

5. Calculate the moment magnifier factor 𝛿ns:

𝛿ns =
Cm

1 − (Pu∕0.75Pc)
≥ 1.0 (12.15)

where Pu is the applied factored load and Pc and Cm are as calculated previously.
6. Design the compression member using the axial factored load, Pu, from the conventional

frame analysis and a magnified moment, Mc, computed as follows:

Mc = 𝛿nsM2 (12.16)

where M2 is the larger factored end moment due to loads that result in no sidesway and should
be ≥ M2,min = Pu(0.6 + 0.03h). For frames braced against sidesway, the sway factor is 𝛿s = 0.
In nonsway frames, the lateral deflection is expected to be less than or equal to H/1500, where
H is the total height of the frame.

12.6.3 Magnified Moments in Sway Frames

The effect of slenderness may be ignored in sway (unbraced) frames when Klu/r< 22. The proce-
dure for determining the magnification factor, 𝛿s, in sway (unbraced) frames may be summarized
as follows (ACI Code, Section 6.6.4.6):

1. Determine if the frame is unbraced against sidesway and find the unsupported length lu and
K, which can be obtained from the alignment charts (Fig. 12.3).

2–4. Calculate EI, Pc, and Cm as given by Eqs. 12.2 and Eqs. 12.10 through 12.14. Note that the
term 𝛽ds is used instead of 𝛽dns to calculate I and is defined as the ratio of maximum factored
sustained shear within a story to the total factored shear in that story.

5. Calculate the moment-magnifier factor, 𝛿s using one of the following methods:
a. Magnifier method:

𝛿s =
1

1 −
(∑

Pu∕0.75
∑

Pc

) ≥ 1.0 (12.17)

where 𝛿s ≤2.5 and
∑

Pu is the summation for all the factored vertical loads in a story and∑
Pc is the summation for all sway-resisting columns in a story. Also,

𝛿sMs =
Ms

1 −
(∑

Pu∕0.75
∑

Pc

) ≥ Ms (12.18)

where Ms is the factored end moment due to loads causing appreciable sway.
b. Approximate second-order analysis:

𝛿s =
1

1 − Q
≥ 1 or 𝛿sMs =

Ms

1 − Q
≥ Ms (12.19)
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where

Q =
∑

Pu𝛥0

Vuslc
(12.20)

where

Pu = factored axial load (lb)
𝛥0 = relative lateral deflection between the top and bottom of a story due to lateral forces using

first-order elastic frame analysis (in.)
Vus = factored horizontal shear in a story (lb)

lc = length of compression member in a frame (in.)

If 𝛿s exceeds 1.5, 𝛿s shall be calculated using second-order elastic analysis or the magnifier
method described in (a).

6. Calculate the magnified end moments M1 and M2 at the ends of an individual compression
member, as follows:

M1 = M1ns + 𝛿sM1s (12.21)

M2 = M2ns + 𝛿sM2s (12.22)

where M1ns and M2ns are the moments obtained from the no-sway condition, whereas M1s and
M2s are the moments obtained from the sway condition. The design magnified moment Mc is
the larger between M1 and M2.

Columns, University of Wisconsin, Madison, Wisconsin.
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Example 12.1

The column section shown in Fig. 12.5 carries an axial load PD = 136 K and a moment MD = 116 K⋅ft
due to dead load and an axial load PL = 110 K and a moment ML = 93 K⋅ft due to live load. The column
is part of a frame that is braced against sidesway and bent in single curvature about its major axis. The
unsupported length of the column is lc = 19 ft, and the moments at both ends of the column are equal.
Check the adequacy of the column using f ′c = 4ksi and fy = 60 ksi.

4 no. 9

4 no. 9

Figure 12.5 Example 12.1.

Solution

1. Calculate factored loads:

Pu = 1.2PD + 1.6PL = 1.2 × 136 + 1.6 × 110 = 339.2K

Mu = 1.2MD + 1.6ML = 1.2 × 116 + 1.6 × 93 = 288K ⋅ ft

e =
Mu

Pu

= 288 × 12
339.2

= 10.2 in.

2. Check if the column is long. Because the frame is braced against sidesway, assume K= 1.0,
r= 0.3h= 0.3× 22= 6.6 in., and lu = 19 ft.

Klu
r

= 1 × 19 × 12
6.6

= 34.5

For braced columns, if Klu/r ≤ 34− 12 M1/M2, slenderness effect may be neglected. Given end
moments M1 =M2 and M1/M2 positive for single curvature,

Right − hand side = 34 − 12
M1

M2
= 34 − 12 × 1 = 22

Because Klu/r = 34.5 > 22, slenderness effect must be considered
3. Calculate EI from Eq.12.10:

a. Calculate Ec:

Ec = 57, 000
√

f ′c = 57, 000
√

4000 = 3605ksi

Es = 29, 000ksi
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b. The moment of inertia is

Ig = 14(22)3

12
= 12, 422 in.4 As = A′

s = 4.0 in.2

Ise = 2 × 4.0
(22 − 5

2

)2

= 578 in.4

The dead-load moment ratio is

𝛽dns =
1.2 × 136

339.2
= 0.48

c. The stiffness is

EI =
0.2EcIg + EsIse

1 + 𝛽dns

= (0.2 × 3605 × 12, 422) + (29, 000 × 578)
1 + 0.48

= 17.40 × 106 K ⋅ in.2

4. Calculate Pc:

Pc =
𝜋2EI
(Klu)2

= 𝜋2(17.40 × 106)
(12 × 19)2

= 3303K

5. Calculate Cm from Eq.12.14:

Cm = 0.6 +
0.4M1

M2

= 0.6 + 0.4(1) = 1.0

6. Calculate the moment-magnifier factor from Eq.12.15:

𝛿ns =
Cm

1 − (Pu∕0.75Pc)
= 1

1 − 339.2∕(0.75 × 3303)
= 1.16

7. Calculate the design moment and load: Assume (𝜙= 0.65),

Pn = 339.2
0.65

= 522K

Mn = 288
0.65

= 443.1K ⋅ ft

Design Mc = (1.16)288= 334 K ⋅ ft. Design eccentricity= (334× 12)/339.2= 11.82 in., or 12 in.
8. Determine the nominal load strength of the section using e= 12 in. according to Example 11.4:

Pn = 47.6a + 226.4 − 4fs

e′ = e + d − h
2
= 12 + 19.5 − 22

2
= 20.50 in. (I)

Pn = 1
20.50

[
47.6a

(
19.5 − a

2

)
+ 226.4(19.5 − 2.5)

]

= 45a − 1.15a2 + 186.6 (II)

Solving for a from Eqs. I and II, a= 10.6 in. and Pn = 535 K. The load strength, Pn, is greater
than the required load of 522 K; therefore, the section is adequate. If the section is not adequate,
increase steel reinforcement.
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9. Check the assumed 𝜙:

a = 10.6 in. c = 12.47 in. dt = 19.5 in.

𝜀t =
(

dt − c

c

)
0.003

= 0.00169 < 0.002

𝜙 = 0.65

Example 12.2

Check the adequacy of the column in Example 12.1 if the unsupported length is lu = 10 ft. Determine
the maximum nominal load on the column.

Solution

1. Applied loads are Pn = 522 K and Mn = 443.1 K.
2. Check if the column is long: lu = 10 ft, r= 0.3h= 0.3× 22= 6.6 in., and K= 1.0 (frame is braced

against sidesway).
Klu

r
= 1 × (10 × 12)

6.6
= 18.2

Check if Klu/r ≤ 34− 12M1b/M2b ≤ 40

Right-hand side = 34 − 12 × 1 = 22 ≤ 40

Klu
r

= 18.2 ≤ 22

Therefore, the slenderness effect can be neglected.
3. Determine the nominal load capacity of the short column, as explained in Example 11.4. From

Example 11.4, the nominal compressive strength is Pn = 612.1 K (for e= 10 in.), which is greater
than the required load of 522 K, because the column is short with e= 10.2 in. (Example 12.1).

Example 12.3

Check the adequacy of the column in Example 12.1 if the frame is unbraced (sway) against sidesway,
the end-restraint factors are 𝜓A = 0.8 and 𝜓B = 2.0, and the unsupported length is lu = 16 ft, assume a
sway moment Ms of 64 K ⋅ ft.

Solution

1. Determine the value of K from the alignment chart (Fig. 12.3) for unbraced frames. Connect the
values of 𝜓A = 0.8 and 𝜓B = 2.0, to intersect the K line at K= 1.4.

Klu
r

= 1.4 × (16 × 12)
6.6

= 40.7

2. For unbraced frames, if Klu/r ≤ 22, the column can be designed as a short column. Because actual
Klur= 40.7> 22, the slenderness effect must be considered.

3. Calculate the moment magnifier 𝛿s, given K= 1.4, EI= 17.40× 106 K ⋅ in.2 (from Example 12.1),
and
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Pc =
𝜋2EI
(Klu)2

= 𝜋2 × 17.40 × 106

(1.4 × 16 × 12)2
= 2377K

Assume factored loads are the same on all columns in the story level

𝛿s =
1.0

1 −
∑

Pu∕
(
0.75 ×

∑
Pc

) = 1.0
1 − 339.2∕(0.75 × 2377)

= 1.24 ≥ 1.0

4. From Example 12.1, the applied loads are Pu = 339.2 K and Mu = 288 K ⋅ ft, or

Pn = 522K and Mn = 443.1K ⋅ ft

The design moment Mc =Mns + 𝛿sMs hence:

Mc = 288 + 1.24(64) = 367.4 K ⋅ ft

e =
Mc

Pu
= 367.4 × 12

339.2
= 13 in.

5. The requirement now is to check the adequacy of a column for Pn = 522 K, Mc = 307.6 K ⋅ ft, and
e= 13 in. The procedure is explained in Example 11.4.

6. From Example 11.4,

Pn = 47.6a + 226.4 − 4fs

e′ = e + d − h
2
= 13 + 19.5 − 22

2
= 21.5 in.

Pn = 1
21.5

[
47.6a

(
19.5 − a

2

)
+ 226.4(19.5 − 2.5)

]

= 43.16a − 1.1a2 + 179 a = 10.4 in.

Thus, c= 12.24 in. and Pn = 508 K. This load capacity of the column is less than the required
Pn of 522 K. Therefore, the section is not adequate.

7. Increase steel reinforcement to four no. 10 bars on each side and repeat the calculations to get
Pn = 568 K, 𝜖t < 0.002, and 𝜙= 0.65.

Example 12.4

Design an interior square column for the first story of an 8-story office building. The clear height of the
first floor is 16 ft, and the height of all other floors is 11 ft. The building layout is in 24 bays (Fig. 12.6),
and the columns are not braced against sidesway. The loads acting on a first-floor interior column due
to gravity and wind are as follows:

Axial dead load = 300K

Axial live load = 100K

Axial wind load = 0K

Dead − load moments = 32K ⋅ ft (top) and54K ⋅ ft (bottom)

Live − load moments = 20K ⋅ ft (top) and36K ⋅ ft (bottom)

Wind − load moments = 50K ⋅ ft (top)and50K ⋅ ft (bottom)

EI∕l for beams = 360 × 103 K ⋅ in.



436 Chapter 12 Slender Columns

1

2

3

Direction of
analysis

4

Figure 12.6 Example 12.4.

Use f ′c = 5ksi, fy = 60 ksi, and the ACI Code requirements. Assume an exterior column load of
two-thirds the interior column load, a corner column load of one-third the interior column load.

Solution
1. Calculate the factored forces using load combinations.

For gravity loads,

Pu = 1.2D + 1.6L = 1.2(300) + 1.6(100) = 520K

Mu,top = M1ns = 1.2MD + 1.6ML = 1.2(32) + 1.6(20) = 70.4K ⋅ ft

Mu,bottom = M2ns = 1.2MD + 1.6ML = 1.2(54) + 1.6(36) = 122.4K ⋅ ft

For gravity plus wind load,

Pu = (1.2D + 1.0L + 1.6W)

= [1.2(300) + 1.0(100) + 0] = 460K

Mu,top = 1.2MD + 1.0ML + 1.6M𝑤

= 1.2(32) + 1.0(20) + 1.6(50) = 138.4K ⋅ ft (top total)

Mu,tns = 1.2MD + 1.0ML = 1.2(32) + 1.0(20) = 58.4K ⋅ ft (top nonsway)

Mu,ts = 1.6M𝑤 = 1.6 × 50 = 80K ⋅ ft (top sway)

Mu,bottom = 1.2MD + 1.0ML + 1.6M𝑤

= 1.2(54) + 1.0(36) + 1.6(50) = 180.8K ⋅ ft (bottom total)

Mu,bns = 1.2MD + 1.0ML = 100.8K ⋅ ft (bottom nonsway)

Mu,bs = 1.6M𝑤 = 80K ⋅ ft (bottom sway)
Other combinations are not critical.
Check for minimum e:

e =
Mu

Pu

e for gravity loads, e = 122.4 × 12
520

= 2.82 in.

e for gravity plus wind loads, e = 180.8 × 12
460

= 4.72 in.

emin = 0.6 + 0.03h = 0.6 + 0.03(18) = 1.14 in.

e > emin safe
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4 no. 10

Figure 12.7 Column cross section, Example 12.4.

2. Select a preliminary section of column based on gravity load combination using tables or charts.
Select a section 18× 18 in. reinforced by four no. 10 bars (Fig. 12.7).

3. Check Klu/r:

Ig = (18)4

12
= 8748 in.4 Ec = 4.03 × 106 psi

for columns, I = 0.7Ig.
For the 16-ft floor columns,

EI
lc

= (0.7)(8748)(4.03 × 106)
16 × 12

= 128.5 × 106

For the 11-ft floor columns,

EI
lc

= (0.7)(8748)(4.03 × 106)
11 × 12

= 187 × 106

For beams, EIg/lb = 360× 106, I= 0.35Ig, and EI/lb = 0.35EIg/lc = 126× 106.
Analyze 18 interior columns along lines 2 and 3 with two beams framing into the direction of

analysis.

𝜓(top) =
∑
(EI∕lc)∑
(EI∕lb)

= 128.5 + 187
2(126)

= 1.25

𝜓(bottom) = 0

From the chart (Fig. 12.3), K is 1.2 for an unbraced frame.

Klu

r
= 1.2(16 × 12)

0.3 × 18
= 42.7 > 22

which is more than 22. Therefore, the slenderness effect must be considered.
4. Compute Pc:

Ec = 4.03 × 103 ksi Es = 29 × 103 ksi

Ig = 8748 in.4 Ise = 4 × 1.27
(18 − 5

2

)2

= 214 in.4

Assume 𝛽ds = 0 (no shear, ACI 10.10.4.2)

EI =
0.2EcIg + EsIse

1 + 𝛽ds

= 0.2(4.03 × 103 × 8748) + 29 × 103(214)
1 + 0.9

= 13.25 × 106 K ⋅ in.2
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Pc =
𝜋2(13.25 × 106)
(1.2 × 16 × 12)2

= 2461.11K (unbraced)

Analyze 18 exterior columns along lines 1 and 4 with one beam framing into them in the direction
of analysis.

𝜓(top) = 128.5 + 187
126

= 2.5

𝜓(bottom) = 0

From the chart (Fig. 12.3) K= 1.3:

Klu
r

= 1.3(16 × 12)
0.3(18)

= 46.2 > 22

Therefore, the slenderness effect must be considered.
Compute Pc:

Pc =
𝜋2EI
(Klu)2

= 𝜋2(13.25 × 106)
(1.3 × 16 × 12)2

= 2097K

5. Calculate moment magnifier for gravity load and wind load:
For one floor in the building, there are 14 interior columns, 18 exterior columns, and four corner

columns.
∑

Pu = 14(460) + 18
(2

3
× 460

)
+ 4

(1
3
× 460

)
= 12, 573K

∑
Pc = 18(2461) + 18(2097) = 82046K

𝛿s =
1.0

1 − 12, 573∕(0.75 × 82046)
= 1.26 ≥ 1.0

which is greater than 1.0 (Eq.12.17 ).
6. Calculate the design magnified moment

Mc = Mu,bns + 𝛿sMu,bs = (100.8) + 1.26(80) = 201.34K ⋅ ft

7. Design loads are Pu = 460 K and Mc = 201.34 K ⋅ ft.

e = 201.34(12)
460

= 5.25 in.

emin = 0.6 + 0.03(18) = 1.14 in. < e

By analysis, for e= 5.25 in. and As = A′
s = 2.53 in.2, (𝜙= 0.65 in.), the load capacity of the

18× 18-in. column is 𝜙Pn = 556 K and 𝜙Mn = 259 K ⋅ ft, so the section is adequate. (Solution
steps are similar to Example 11.4. Values are a= 10.37 in., c= 13 in., fs = 17 ksi, f ′s = 60ksi,
𝜙Pb = 385 K, and eb = 8.9 in.).

𝜀t = 0.003
15.5 − 13

13
= 0.00058 < 0.002 𝜙 = 0.65.

SUMMARY

Sections 12.1–12.3

1. The radius of gyration is r =
√

I∕A, where r= 0.3h for rectangular sections and 0.25D for
circular sections.

2. The effective column length is Klu. For braced frames, K= 1.0; for unbraced frames, K varies
as shown in Fig. 12.2.
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3. The value of K can be determined from the alignment chart (Fig. 12.3) or Eqs. 12.2
through 12.6.

Section 12.4

Member stiffness is EI:
Ec = 33𝑤1.5

√
f ′c

The moment of inertia, I, may be taken as I= 0.35Ig for beams, 0.70Ig for columns, 0.70Ig
for uncracked walls, 0.35Ig for cracked walls, and 0.25Ig for plates and flat slabs.

Alternatively, the moments of inertia of compression and flexural members, I, shall be per-
mitted to be computed as follows:

1. Compression members:

I =
(

0.80 + 25
Ast

Ag

)(
1 −

Mu

Puh
− 0.5

Pu

Po

)
Ig ≤ 0.875Ig (Eq.12.2)

2. Flexural members:

I = (0.10 + 25𝜌)
(

1.2 − 0.2
b𝑤
d

)
Ig ≤ 0.5Ig (Eq.12.3)

Section 12.5

The effect of slenderness may be neglected when

Klu
r

≤

⎧
⎪
⎨
⎪
⎩

22 (for unbraced frames) (Eq.12.8)

34 − 12
M1

M2
≤ 40 (for braced columns) (Eq.12.5)

where M1 and M2 are the end moments and M2 >M1.

Section 12.6

1. For nonsway frames,

EI =
0.2EcIg + EsIse

1 + 𝛽dns
(Eq.12.10)

or the more simplified equation

EI =
0.4EcIg

1 + 𝛽dns
(Eq.12.11)

𝛽dns =
1.2D

1.2D + 1.6L
(Eq.12.4)

More simply,
EI = 0.25EcIg(𝛽dns = 0.6) (Eq.12.12)

The Euler buckling load is

Pc =
𝜋2EI
(Klu)2

(Eq.12.13)
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Cm = 0.6 +
0.4M1

M2
(Eq.12.14)

The moment-magnifier factor (nonsway frames) is

𝛿ns =
Cm

1 − (Pu∕0.75Pc)
(Eq.12.15)

The design moment is
Mc = 𝛿nsM2 (Eq.12.16)

2. For sway (unbraced) frames, the moment-magnifier factor is calculated either from
a. Magnifier method:

𝛿s =
1.0

1 −
(∑

Pu∕0.75
∑

Pc

) ≥ 1.0 (Eq.12.17)

b. Approximate second-order analysis:

𝛿s =
1

1 − Q
(Eq.12.19)

Q =
∑

Pu𝛥0

Vuslc
(Eq.12.20)

the design moment is

M1 = M1ns + 𝛿sM1s (Eq.12.21)

M2 = M2ns + 𝛿sM2s (Eq.12.22)

where M2ns is the unmagnified moment due to gravity loads (nonsway moment) and 𝛿sM2s
is the magnified moment due to sway frame loads.

Mc = larger of M1 and M2 (Eq.12.23)
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P R O B L E M S

12.1 The column section in Fig. 12.8 carries an axial load PD = 128 K and a moment MD = 117 K ⋅ ft due to
dead load and an axial load PL = 95 K and a moment M1 = 100 K ⋅ ft due to live load. The column is part
of a frame, braced against sidesway, and bent in single curvature about its major axis. The unsupported
length of the column is lu = 18 ft, and the moments at both ends are equal. Check the adequacy of the
section using f ′c = 4ksi and fy = 60 ksi.

Figure 12.8 Problem 12.1. (As = A′
s = 5) no. 9 bars and b= 14 in.

12.2 Repeat Problem 12.1 if lu = 12 ft.
12.3 Repeat Problem 12.1 if the frame is unbraced against sidesway and the end-restraint factors are 𝜓

(top)= 0.7 and 𝜓 (bottom)= 1.8 and the unsupported height is lu = 14 ft.
12.4 The column section shown in Fig. 12.9 is part of a frame unbraced against sidesway and supports an

axial load PD = 166 K and a moment MD = 107 K ⋅ ft due to dead load and PL = 115 K and ML = 80
K ⋅ ft due to live load. The column is bent in single curvature and has an unsupported length lu = 16 ft.
The moment at the top of the column is M2 = 1.5M1, the moment at the bottom of the column. Check
if the section is adequate using f ′c = 5ksi, fy = 60 ksi, 𝜓 (top)= 2.0, and 𝜓 (bottom)= 1.0.



442 Chapter 12 Slender Columns

6 no. 10

6 no. 10

Figure 12.9 Problem 12.4.

12.5 Repeat Problem 12.4 if the column length is lu = 14 ft.
12.6 Repeat Problem 12.4 if the frame is braced against sidesway and M1 =M2.
12.7 Repeat Problem 12.4 using f ′c = 4ksi and fy = 60 ksi.
12.8 Design a 20-ft-long rectangular tied column for an axial load PD = 214.5 K and a moment MD = 64

K ⋅ ft due to dead load and an axial load PL = 120 K and a moment ML = 40 K ⋅ ft due to live load. The
column is bent in single curvature about its major axis, braced against sidesway, and the end moments
are equal. The end-restraint factors are 𝜓 (top)= 2.5 and 𝜓 (bottom)= 1.4. Use f ′c = 5ksi, fy = 60ksi,
and b= 15 in.

12.9 Design the column in Problem 12.8 if the column length is 10 ft.
12.10 Repeat Problem 12.8 if the column is unbraced against sidesway.



CHAPTER13
FOOTINGS

Office building under construction, New Orleans,
Louisiana.

13.1 INTRODUCTION

Reinforced concrete footings are structural members used to support columns and walls and to
transmit and distribute their loads to the soil. The design is based on the assumption that the footing
is rigid, so that the variation of the soil pressure under the footing is linear. Uniform soil pressure is
achieved when the column load coincides with the centroid of the footing. Although this assumption
is acceptable for rigid footings, such an assumption becomes less accurate as the footing becomes
relatively more flexible. The proper design of footings requires that

1. The load capacity of the soil is not exceeded.
2. Excessive settlement, differential settlement, or rotations are avoided.
3. Adequate safety against sliding and/or overturning is maintained.

The most common types of footings used in buildings are the single footings and wall footings
(Figs. 13.1 and 13.2). When a column load is transmitted to the soil by the footing, the soil becomes
compressed. The amount of settlement depends on many factors, such as the type of soil, the load
intensity, the depth below ground level, and the type of footing. If different footings of the same
structure have different settlements, new stresses develop in the structure. Excessive differential
settlement may lead to the damage of nonstructural members in the buildings or even failure of the
affected parts.

443



444 Chapter 13 Footings

Figure 13.1 Wall footing.

Figure 13.2 Single footing.
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Vertical loads are usually applied at the centroid of the footing. If the resultant of the applied
loads does not coincide with the centroid of the bearing area, a bending moment develops. In this
case, the pressure on one side of the footing will be greater than the pressure on the other side.

If the bearing soil capacity is different under different footings—for example, if the footings
of a building are partly on soil and partly on rock—a differential settlement will occur. It is usual
in such cases to provide a joint between the two parts to separate them, allowing for independent
settlement.

The depth of the footing below the ground level is an important factor in the design of footings.
This depth should be determined from soil tests, which should provide reliable information on
safe bearing capacity at different layers below ground level. Soil test reports specify the allowable
bearing capacity to be used in the design. In cold areas where freezing occurs, frost action may cause
heaving or subsidence. It is necessary to place footings below freezing depth to avoid movements.

13.2 TYPES OF FOOTINGS

Different types of footings may be used to support building columns or walls. The most common
types are as follows:

1. Wall footings are used to support structural walls that carry loads from other floors or to
support nonstructural walls. They have a limited width and a continuous length under the
wall (Fig. 13.1). Wall footings may have one thickness, be stepped, or have a sloped top.

2. Isolated, or single, footings are used to support single columns (Fig. 13.2). They may be
square, rectangular, or circular. Again, the footing may be of uniform thickness, stepped,
or have a sloped top. This is one of the most economical types of footings, and it is used
when columns are spaced at relatively long distances. The most commonly used are square
or rectangular footings with uniform thickness.

3. Combined footings (Fig. 13.3) usually support two columns or three columns even if not in
a row. The shape of the footing in the plan may be rectangular or trapezoidal, depending on
column loads. Combined footings are used when two columns are so close that single footings
cannot be used or when one column is located at or near a property line.

4. Cantilever, or strap, footings (Fig. 13.4) consist of two single footings connected with a beam
or a strap and support two single columns. They are used when one footing supports an eccen-
tric column and the nearest adjacent footing lies at quite a distance from it. This type replaces
a combined footing and is sometimes more economical.

5. Continuous footings (Fig. 13.5) support a row of three or more columns. They have limited
width and continue under all columns.

6. Raft, or mat, foundations (Fig. 13.6) consist of one footing, usually placed under the entire
building area, and support the columns of the building. They are used when
a. The soil-bearing capacity is low.
b. Column loads are heavy.
c. Single footings cannot be used.
d. Piles are not used.
e. Differential settlement must be reduced through the entire footing system.

7. Pile caps (Fig. 13.7) are thick slabs used to tie a group of piles together and to support and
transmit column loads to the piles.
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Figure 13.3 Combined footing.

Figure 13.4 Strap footing.
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Figure 13.5 Continuous footing.

Figure 13.6 Raft, or mat, foundation.
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Figure 13.7 Pile cap footing.

13.3 DISTRIBUTION OF SOIL PRESSURE

Figure 13.8 shows a footing supporting a single column. When the column load, P, is applied on
the centroid of the footing, a uniform pressure is assumed to develop on the soil surface below the
footing area. However, the actual distribution of soil pressure is not uniform but depends on many
factors, especially the composition of the soil and the degree of flexibility of the footing.

For example, the distribution of pressure on cohesionless soil (sand) under a rigid footing
is shown in Fig. 13.9. The pressure is at maximum under the center of the footing and decreases
toward the ends of the footing. The cohesionless soil tends to move from the edges of the footing,
causing a reduction in pressure, whereas the pressure increases around the center to satisfy
equilibrium conditions. If the footing is resting on a cohesive soil such as clay, the pressure
under the edges is greater than at the center of the footing (Fig. 13.10). The clay near the edges
has a strong cohesion with the adjacent clay surrounding the footing, causing the nonuniform
pressure distribution.

Figure 13.8 Distribution of soil pressure assuming uniform pressure.
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Figure 13.9 Soil pressure distribution in cohesionless soil (sand).

Figure 13.10 Soil pressure distribution in cohesive soil (clay).

The allowable bearing soil pressure, qa, is usually determined from soil tests. The allowable
values vary with the type of soil, from extremely high in rocky beds to low in silty soils. For
example, qa for sedimentary rock is 30 ksf, for compacted gravel is 8 ksf, for well-graded compacted
sand is 6 ksf, and for silty-gravel soils is 3 ksf.

Referring to Fig. 13.8, when the load P is applied, the part of the footing below the column
tends to settle downward. The footing will tend to take a uniform curved shape, causing an
upward pressure on the projected parts of the footing. Each part acts as a cantilever and must
be designed for both bending moments and shearing forces. The design of footings is explained
in detail later.

13.4 DESIGN CONSIDERATIONS

Footings must be designed to carry the column loads and transmit them to the soil safely. The design
procedure must take the following strength requirements into consideration:

1. The area of the footing based on the allowable bearing soil capacity.
2. One-way shear.
3. Two-way shear, or punching shear.
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4. Bending moment and steel reinforcement required.
5. Bearing capacity of columns at their base and dowel requirements.
6. Development length of bars.
7. Differential settlement.

These strength requirements are explained in the following sections.

Reinforcing rebars placed in tow layers in a raft foundation.

13.4.1 Size of Footings

The area of the footings can be determined from the actual external loads (unfactored forces
and moments) such that the allowable soil pressure is not exceeded. In general, for vertical
loads

Area of footing =
total service load (including self − weight)

allowable soil pressure, qa
(13.1)

or

Area = P(total)
qa

where the total service load is the unfactored design load. Once the area is determined, a factored
soil pressure is obtained by dividing the factored load, Pu = 1.2D+ 1.6L, by the area of the footing.
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This is required to design the footing by the strength design method.

qu =
Pu

area of footing
(13.2)

The allowable soil pressure, qa, is obtained from soil test and is based on service load conditions.

13.4.2 One-Way Shear (Beam Shear) (Vu1
)

For footings with bending action in one direction, the critical section is located at a distance d from
the face of the column. The diagonal tension at section m–m in Fig. 13.11 can be checked as was
done before in beams. The allowable shear in this case is equal to

𝜙Vc = 2𝜙𝜆
√

f ′c bd (𝜙 = 0.75) (13.3)

where b is the width of section m–m. The factored shearing force at section m–m can be calculated
as follows:

Vu1
= qub

(L
2
− c

2
− d

)
(13.4)

If no shear reinforcement is to be used, then d can be determined, assuming Vu =𝜙Vc:

d =
Vu1

2𝜙𝜆
√

f ′c b
(13.5)

Wall and column footings, partly covered.
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Figure 13.11 One-way shear.

13.4.3 Two-Way Shear (Punching Shear) (Vu2
)

Two-way shear is a measure of the diagonal tension caused by the effect of the column load
on the footing. Inclined cracks may occur in the footing at a distance d/2 from the face of the
column on all sides. The footing will fail as the column tries to punch out part of the footing
(Fig. 13.12).

The ACI Code, Section 22.6.5.2, allows a shear strength, Vc, in footings without shear rein-
forcement for two-way shear action, the smallest of

Vc1
= 4𝜆

√
f ′c b0d (13.6)

Vc2
=
(

2 + 4
𝛽

)
𝜆
√

f ′c b0d (13.7)

Vc3
=
(
𝛼sd

b0
+ 2

)
𝜆
√

f ′c b0d (13.8)

where
𝛽 = ratio of long side to short side of column

b0 = perimeter of critical section taken at d/2 from loaded area (column section) (see Fig. 13.12)
d = effective depth of footing
𝜆 = modification factor for type of concrete (ACI Code, Section 8.6.1)
𝜆 = 1.0 for normal-weight concrete
𝜆 = 0.85 for sand-lightweight concrete
𝜆 = 0.75 for all-lightweight concrete
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Column

c + d

c

c + d

c 
+

 d

d/2d/2

L

Critical section

Figure 13.12 Punching shear (two way).

Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric fractions,
for concrete containing normal-weight fine aggregate and a blend of lightweight and normal-weight
coarse aggregate. Linear interpolation between 0.75 and 0.85 shall be permitted, on the basis of vol-
umetric fractions, when a portion of the lightweight fine aggregate is replaced with normal-weight
fine aggregate.

Reinforced concrete single footings.
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For the values of Vc1
and Vc2

it can be observed that Vc1
controls (less than Vc2

) whenever
𝛽c ≤ 2, whereas Vc2

controls (less than Vc1
) whenever 𝛽c > 2. This indicates that the allowable

shear Vc is reduced for relatively long footings. The actual soil pressure variation along the long
side increases with an increase in 𝛽. For shapes other than rectangular, 𝛽 is taken to be the ratio of
the longest dimension of the effective loaded area in the long direction to the largest width in the
short direction (perpendicular to the long direction).

For Eq. 13.8, 𝛼s is assumed to be 40 for interior columns, 30 for edge columns, and 20 for
corner columns. The concrete shear strength Vc3

represents the effect of an increase in b0 relative
to d. For a high ratio of b0∕d, Vc3

may control.
Based on the preceding three values of Vc, the effective depth, d, required for two-way shear

is the largest obtained from the following formulas (𝜙= 0.75):

d1 =
Vu2

𝜙4𝜆
√

f ′c b0

(where 𝛽 ≤ 2) (13.9)

or

d1 =
Vu2

𝜙 (2 + 4∕𝛽)𝜆
√

f ′c b0

(where 𝛽 > 2) (13.10)

d2 =
Vu2

𝜙 (𝛼sd∕b0 + 2)𝜆
√

f ′c b0

(13.11)

The two-way shearing force, Vu2
, and the effective depth, d, required (if shear reinforcement

is not provided) can be calculated as follows (refer to Fig. 13.12):

1. Assume d.
2. Determine b0:b0 = 4(c+ d) for square columns, where one side= c. b0 = 2 (c1 + d)+ 2(c2 + d)

for rectangular columns of sides c1 and c2.
3. The shearing force Vu2

acts at a section that has a length b0 = 4 (c+ d) or [2(c1 + d)+ 2(c2 + d)]
and a depth d; the section is subjected to a vertical downward load, Pu, and a vertical upward
pressure, qu (Eq. 13.2). Therefore,

Vu2
=

{
Pu − qu(c + d)2 for square columns (13.12a)

Pu − qu(c1 + d)(c2 + d) for rectangular columns (13.12b)

4. Determine the largest d (of d1 and d2). If d is not close to the assumed d, revise your assump-
tion and repeat. ACI Code, Sections 13.3.1.2 and 13.4.2.1 specifies depth of footing above
bottom reinforcement shall not be less than 6 in. for footing on soil, nor less than 12 in. for
footing on piles.

13.4.4 Flexural Strength and Footing Reinforcement

The critical sections for moment occur at the face of the column (section n–n, Fig. 13.13). The
bending moment in each direction of the footing must be checked and the appropriate reinforcement
must be provided. In square footings and square columns, the bending moments in both directions
are equal. To determine the reinforcement required, the depth of the footing in each direction may
be used. Because the bars in one direction rest on top of the bars in the other direction, the effective
depth, d, varies with the diameter of the bars used. An average value of d may be adopted. A
practical value of d may be assumed to be h− 4.5 in.
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Figure 13.13 Critical section of bending moment.

The depth of the footing is often controlled by shear, which requires a depth greater than that
required by the bending moment. The steel reinforcement in each direction can be calculated in the
case of flexural members as follows:

Mu = 𝜙As fy

(
d −

As fy
1.7f ′c b

)
(13.13)

Also, the steel ratio, 𝜌, can be determined as follows (Eq. 4.2a):

𝜌 =
0.85f ′c

fy

[

1 −

√

1 −
2Ru

𝜙
(
0.85f ′c

)

]

(13.14)

where Ru equals Mu/bd2. When Ru is determined, 𝜌 can also be obtained from Eq. 13.15.
The minimum steel ratio requirement in flexural members is equal to 200/fy when

f ′c < 4500 psi and equal to 3
√

f ′c∕fy when f ′c ≥ 4500 psi. However, the ACI Code, Section 9.6.1,
indicates that for structural slabs of uniform thickness, the minimum area and maximum spacing of
steel bars in the direction of bending shall be as required for shrinkage and temperature reinforce-
ment. This last minimum steel requirement is very small, and a higher minimum reinforcement
ratio is recommended, but it should not be greater than 200/fy.

The reinforcement in one-way footings and two-way footings must be distributed across
the entire width of the footing. In the case of two-way rectangular footings, the ACI Code,
Section 13.3.3.3, specifies reinforcement in the long direction shall be distributed uniformly across
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the entire width of the footing. For reinforcement in the short direction a portion of the total
reinforcement, 𝛾s As, shall be distributed uniformly over a bandwidth (centered on the centerline
of the column or pedestal) equal to the length of the short side of the footing. The remainder of
1 − 𝛾s as reinforcement is required to distribute uniformly the outside center band width of the
footing:

𝛾s =
2

𝛽 + 1
(13.15)

where

𝛽 =
long side of footing

short side of footing
(13.16)

The bandwwidth must be centered on the centerline of the column (Fig. 13.14). The remain-
ing reinforcement in the short direction must be uniformly distributed outside the bandwidth.
This remaining reinforcement percentage shall not be less than that required for shrinkage and
temperature.

When structural steel columns or masonry walls are used, then the critical sections for
moments in footings are taken at halfway between the middle and the edge of masonry walls
and halfway between the face of the column and the edge of the steel base place (ACI Code,
Section 13.2.7.1).

13.4.5 Bearing Capacity of Column at Base

The loads from the column act on the footing at the base of the column, on an area equal to the area
of the column cross section. Compressive forces are transferred to the footing directly by bearing
on the concrete.

Forces acting on the concrete at the base of the column must not exceed the bearing strength
of concrete as specified by the ACI Code, Section 22.8.3.2:

Bearing strength N1 = 𝜙(0.85f ′c A1) (13.17)

where 𝜑 is 0.65 and A1 is the bearing area of the column. The value of the bearing strength given in
Eq. 13.17 may be multiplied by a factor

√
A2∕A1 ≤ 2.0 for bearing on footings when the supporting

surface is wider on all sides than the loaded area. Here A2 is the area of the part of the supporting
footing that is geometrically similar to and concentric with the loaded area (Figs. 13.15 and 13.16).
Because A2 >A1, the factor

√
A2∕A1 is greater than unity, indicating that the allowable bearing

Figure 13.14 Bandwidth for reinforcement distribution.
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Figure 13.15 Bearing areas on footings. A1 = c2, A2 =b2.

45°

Loaded area A1

Loaded area
A1

A2 is measured on this plane

Elevation

Load

2
1

Plan

45°

Figure 13.16 Area of bearing stress. Courtesy of ACI
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strength is increased because of the lateral support from the footing area surrounding the column
base. The modified bearing strength is

N2 = 𝜙(0.85f ′c A1)

√
A2

A1
≤ 2𝜙(0.85f ′c A1) (13.18)

If the factored force, Pu, is greater than either N1 or N2 reinforcement must be provided
to transfer the excess force. This is achieved by providing dowels or extending the column
bars into the footing. The excess force is Pex =Pu −N1 and the area of the dowel bars is
Asd = (Pex/fy)≥ 0.005 A1, where A1 is the area of the column section. At least four bars should
be used at the four corners of the column. If the factored force is less than either N1 or N2, then
minimum reinforcement must be provided. The ACI Code, Section 16.3.5.1, indicates that the
minimum area of the dowel reinforcement is at least 0.005Ag (and not less than four bars), where
Ag is the gross area of the column section. The minimum reinforcement requirements apply also
to the case when the factored forces are greater than N1 and N2. The dowel bars may be placed at
the four corners of the column and extended in both the column and footing. The dowel diameter
shall not exceed the diameter of the longitudinal bars in the columns by more than 0.15 in. This
requirement is necessary to ensure proper action between the column and footing. The develop-
ment length of the dowels must be checked to determine proper transfer of the compression force
into the footing.

13.4.6 Development Length of the Reinforcing Bars

The critical sections for checking the development length of the reinforcing bars are the same
as those for bending moments. The development length for compression bars was given in
Chapter 7:

ldc =
0.02 fydb

𝜆
√

f ′c
(Eq. 7.14)

but this value cannot be less than 0.0003 fydb ≥ 8 in. For other values, refer to Chapter 7.

13.4.7 Differential Settlement (Balanced Footing Design)

Footings usually support the following loads:

• Dead loads from the substructure and superstructure.
• Live load resulting from occupancy.
• Weight of materials used in backfilling.
• Wind loads.

Each footing in a building is designed to support the maximum load that may occur on any
column due to the critical combination of loadings, using the allowable soil pressure.

The dead load, and maybe a small portion of the live load (called the usual live load), may
act continuously on the structure. The rest of the live load may occur at intervals and on some parts
of the structure only, causing different loadings on columns. Consequently, the pressure on the soil
under different footings will vary according to the loads on the different columns, and differential
settlement will occur under the various footings of one structure. Because partial settlement is
inevitable, the problem turns out to be the amount of differential settlement that the structure can
tolerate. The amount of differential settlement depends on the variation in the compressibility of



13.5 Plain Concrete Footings 459

the soils, the thickness of the compressible material below foundation level, and the stiffness of
the combined footing and superstructure. Excessive differential settlement results in cracking of
concrete and damage to claddings, partitions, ceilings, and finishes.

Differential settlement may be expressed in terms of angular distortion of the structure.
Bjerrum [5] indicated that the danger limits of distortion for some conditions vary between 1

600

and 1
150

depending on the damage that will develop in the building.
For practical purposes it can be assumed that the soil pressure under the effect of sustained

loadings is the same for all footings, thus causing equal settlements. The sustained load (or the
usual load) can be assumed to be equal to the dead load plus a percentage of the live load, which
occurs very frequently on the structure. Footings then are proportioned for these sustained loads to
produce the same soil pressure under all footings. In no case is the allowable soil bearing capacity
to be exceeded under the dead load plus the maximum live load for each footing. Example 13.5
explains the procedure for calculating the areas of footings, taking into consideration the effect of
differential settlement.

13.5 PLAIN CONCRETE FOOTINGS

Plain concrete footings may be used to support masonry walls or other light loads and transfer them
to the supporting soil. The ACI Code, Section 14.5.2, allows the use of plain concrete pedestals and
footings on soil, provided that the design stresses shall not exceed the following:

1. Maximum flexural stress in tension is less than or equal to 5𝜙𝜆
√

f ′c (where 𝜙= 0.60).

2. Maximum stress in one-way shear (beam action) is less than or equal to 4
3
𝜙𝜆

√
f ′c (where

𝜙= 0.60) (ACI Code, Section 14.5.5.1).
3. Maximum shear stress in two-way action according to ACI Code, Section 14.5.5.1, is

(
4
3
+ 8

3𝛽

)
𝜙𝜆

√
f ′c ≤ 2.66𝜙

√
f ′c (where 𝜙 = 0.60) (13.19)

where
𝜙 = reduction factor from ACI Code, Section 9.3.5
𝛽 = ratio of long side to short side of rectangular column
𝜆 = modification factor described in Section 8.6.1

4. Maximum compressive strength shall not exceed the concrete bearing strengths specified;
f ′c of plain concrete should not be less than 2500 psi.

5. The minimum thickness of plain concrete footings shall not be less than 8 in.
6. The critical sections for bending moments are at the face of the column or wall.
7. The critical sections for one-way shear and two-way shear action are at distances h and h/2

from the face of the column or wall, respectively. Although plain concrete footings do not
require steel reinforcement, it will be advantageous to provide shrinkage reinforcement in the
two directions of the footing.

8. Stresses due to factored loads are computed assuming a linear distribution in concrete.
9. The effective depth, d, must be taken equal to the overall thickness minus 2 in.

10. For flexure and one-way shear, use a gross section bh, whereas for two-way shear, use b0h to
calculate 𝜙Vc.
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Example 13.1

Design a reinforced concrete footing to support a 20-in.-wide concrete wall carrying a dead load of
26 K/ft, including the weight of the wall, and a live load of 20 K/ft. The bottom of the footing is 6 ft below
final grade. Use normal-weight concrete with f ′c = 4 ksi, fy = 60 ksi, and an allowable soil pressure of
5 ksf.

Solution

1. Calculate the effective soil pressure. Assume a total depth of footing of 20 in. Weight of footing

is
(

20
12

)
(150) = 250 psf. Weight of the soil fill on top of the footing, assuming that soil weighs

100 lb/ft3, is
(

6 − 20
12

)
× 100 = 433 psf. Effective soil pressure at the bottom of the footing is

5000− 250− 433= 4317 psf= 4.32 ksf.
2. Calculate the width of the footing for a 1-ft length of the wall:

Width of footing = total load
effective soil pressure

= 26 + 20
4.32

= 10.7 ft

Use 11 ft.
3. Net upward pressure= (factored load)/(footing width) (per 1 ft):

Pu = 1.2D + 1.6L = 1.2 × 26 + 1.6 × 20 = 63.2 K

Net pressure = qu = 63.2
11

= 5.745 ksf

4. Check the assumed depth for shear requirements. The concrete cover in footings is 3 in., and
assume no. 8 bars; then d= 20− 3.5= 16.5. The critical section for one-way shear is at a distance
d from the face of the wall:

Vu = qu

(B
2
− d − c

2

)
= 5.745

(11
2

− 16.5
12

− 20
2 × 12

)
= 18.91 K

Allowable one-way shear = 2𝜆
√

f ′c = (2)(1)
√

4000 = 126.5 psi

Required d =
Vu

𝜙(2
√

f ′c )b
= 18.91 × 1000

0.75(126.5)(12)
= 16.6 in.

b = 1 − ft length of footing = 12 in.

Total depth is 16.6+ 3.5= 20.1 in., or 20 in. Actual d is 20− 3.5= 16.5 in. (as assumed). Note that
a few trials are needed to get the assumed and calculated d quite close.

5. Calculate the bending moment and steel reinforcement. The critical section is at the face of the
wall:

Mu = 1
2

qu

(B
2
− c

2

)2

b = 5.745
2

(11
2

− 20
24

)2

(1) = 62.6 K ⋅ ft

Ru =
Mu

bd2
= 62.6 × 12,000

12(16.5)2
= 230 psi

From Table A.1 in Appendix A, for Ru = 230 psi, f ′c = 4 ksi, and fy = 60 ksi, the steel percentage
is 𝜌= 0.0045 (or from Eq. 13.14). Minimum steel percentage for flexural members is

𝜌min = 200
fy

= 200
60,000

= 0.0033
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No. 8 bars @ 9″ No. 5 @ 8″

Figure 13.17 Example 13.1: Wall footing.

Percentage of shrinkage reinforcement is 0.18% (for fy = 60 ksi). Therefore, use 𝜌= 0.0045 as
calculated.

As = 0.0045 × 12 × 16.5 = 0.89 in.2

Use no. 8 bars spaced at 9 in. (As = 1.05 in.2) (Table A.14).
6. Check the development length for no. 8 bars:

ld = 48db = 48(1) = 48 in. (Refer to Chapter 7, Section 7.3.3)
Provided

ld = B
2
− c

2
− 3 in. = 11(12)

2
− 20

2
− 3 = 53 in.

7. Calculate secondary reinforcement in the longitudinal direction: As = 0.0018(12)(20)=
0.43 in.2/ft. Choose no. 5 bars spaced at 8 in. (As = 0.46 in.2). Details are shown in Fig. 13.17.

Example 13.2
Design a square single footing to support an 18-in.-square tied interior column reinforced with eight no.
9 bars. The column carries an unfactored axial dead load of 245 K and an axial live load of 200 K. The
base of the footing is 4 ft below final grade and the allowable soil pressure is 5 ksf. Use normal-weight
concrete, with f ′c = 4 ksi and fy = 60 ksi.

Solution

1. Calculate the effective soil pressure. Assume a total depth of footing of 2 ft. The weight of the
footing is 2× 150= 300 psf. The weight of the soil on top of the footing (assuming the weight of
soil= 100 pcf) is 2× 100= 200 psf.

Effective soil pressure = 5000 − 300 − 200 = 4500 psf

2. Calculate the area of the footing:

Actual loads = D + L = 245 + 200 = 445 K

Area of footing = 445
4.5

= 98.9 ft2

Side of footing = 9.94 ft

Thus, use 10 ft (Fig. 13.18).
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13 no. 7 bars each direction

Figure 13.18 Example 13.2: Square footing.

3. Net upward pressure equals (factored load)/(area of footing):

Pu = 1.2D + 1.6L

= 1.2 × 245 + 1.6 × 200 = 614 K

Net upward pressure, qu = 614
10 × 10

= 6.14 ksf

4. Check depth due to two-way shear. If no shear reinforcement is used, two-way shear determines
the critical footing depth required. For an assumed total depth of 24 in., calculate d to the centroid
of the top layer of the steel bars to be placed in the two directions within the footing. Let the bars
to be used be no. 8 bars for calculating d:

d = 24 − 3(cover) − 1.5(bar diameters) = 19.5 in.

It is quite practical to assume d= h− 4.5 in.

b0 = 4(c + d) = 4(18 + 19.5) = 150 in.
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c + d = 18 + 19.5 = 37.5 in. = 3.125 ft

Vu2
= Pu − qu(c + d)2 = 614 − 6.14(3.125)2 = 554 K

Required d1 =
Vu2

4𝜙𝜆(
√

f ′c b0)

= 554(1000)

(4)(0.75)(1)
√

4000(150)
= 19.5 in. (𝛽 = 1; Eq. 13.9)

Required d2 = 554(1000)

0.75
(40 × 19.5

150
+ 2

)
(
√

4000)(150)

= 10.8 in. (not critical)

(𝛼s = 40 for interior columns.) Thus, the assumed depth is adequate. Two or more trials may be
needed to reach an acceptable d that is close to the assumed one.

5. Check depth due to one-way shear action: The critical section is at a distance d from the face of
the column:

Distance from edge of footing =
(L

2
− c

2
− d

)
= 2.625 ft

Vu1
= 6.14 × (2.625)(10) = 161.2 K

The depth required for one-way shear is

d =
Vu1

(0.75)(2)𝜆
√

f ′c b

= 161.2(1000)

(0.75)(2)(1)(
√

4000)(10 × 12)
= 14.2 in. < 19.5 in.

6. Calculate the bending moment and steel reinforcement. The critical section is at the face of the
column. The distance from edge of footing is

(L
2
− c

2

)
= 5 − 1.5

2
= 4.25 ft

Mu = 1
2

qu

(L
2
− c

2

)2

b = 1
2
(6.14)(4.25)2(10) = 554.5 K ⋅ ft

Ru =
Mu

bd2
= 554.5(12,000)

(10 × 12)(19.5)2
= 145.8 psi

Applying Eq. 13.14, 𝜌= 0.0028.

As = 𝜌bd = 0.0028(10 × 12)(19.5) = 6.55 in.2

Minimum As (shrinkage steel) = 0.0018(10 × 12)(24)

= 5.18 in.2 < 6.55 in.2

Minimum As (flexure) = 0.0033(10 × 12)(19.5) = 7.72 in.2

Therefore, As = 7.72 in.2 can be adopted. Use 13 no. 7 bars (As = 7.82 in.2), spaced at
s= (120− 6)/12= 9.5 in. in both directions.
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7. Check bearing stress:
a. Bearing strength, N1, at the base of the column (A1 = 18× 18 in.) is

N1 = 𝜙(0.85f ′c A1) = 0.65(0.85 × 4)(18 × 18) = 716 K

b. Bearing strength, N2, of footing is

N2 = N1

√
A2

A1
≤ 2N1

A2 = 10 × 10 × 144 = 14,400 in.2 A1 = 18 × 18 = 324 in.2

√
A2

A1
= 6.67 > 2

Therefore, N2 = 2N1 = 1432 K. Because Pu = 614 K<N2, bearing strength is adequate. The
minimum area of dowels required is 0.005A1 = 0.005 (18× 18)= 1.62 in.2. The minimum num-
ber of bars is four, so use four no. 8 bars placed at the four corners of the column.

c. Development length of dowels in compression:

ldc =
0.02dbfy

𝜆
√

f ′c
= 0.02(1)(60,000)

(1)
√

4000
= 19 in.

(controls). Minimum ldc is 0.0003dbfy = 0.0003(1) (60,000)= 18 in.≥ 8 in. Therefore, use four
no. 8 dowels extending 19 in. into column and footing. Note that ld is less than d of 19.5 in.,
which is adequate.

8. The development length of main bars in footing for no. 7 bars is ld = 48db = 42 in. (refer
to Chapter 7), provided ld = L/2− c/2− 3 in.= 48 in. Details of the footing are shown in
Fig. 13.18.

Example 13.3

Design a rectangular footing for the column of Example 13.2 if one side of the footing is limited to
8.5 ft.

Solution

1. The design procedure for rectangular footings is similar to that of square footings, taking into
consideration the forces acting on the footing in each direction separately.

2. From the previous example, the area of the footing required is 98.9 ft2:

Length of footing = 98.9
8.5

= 11.63 ft

so use 12 ft (Fig. 13.18). Footing dimensions are 8.5× 12 ft.
3. Pu = 614 K. Thus, net upward pressure is

qu = 614
8.5 × 12

= 6.02 ksf

4. Check the depth due to one-way shear. The critical section is at a distance d from the face of the
column. In the longitudinal direction,

Vu1
=
(L

2
− c

2
− d

)
× qub

=
(12

2
− 1.5

2
− 19.5

12

)
× 6.02 × 8.5 = 185.5 K
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This shear controls. In the short direction, Vu = 135.4 K (not critical):

Required d =
Vu1

2𝜙𝜆
√

f ′c b
= 185.5 × 1000

(2)(0.75)(1)
√

4000 × (8.5 × 12)
= 19.2 in.

d provided = 19.5 in. > 19.2 in.

5. Check the depth for two-way shear action (punching shear). The critical section is at a distance
d/2 from the face of the column on four sides:

b0 = 4(18 + 19.5) = 150 in.

c + d = 18 + 19.5 = 37.5 in. = 3.125 ft

𝛽 = 12
8.5

= 1.41 < 2

(Use Vc = 4𝜙𝜆
√

f ′c b0d)

Vu2
= Pu − qu(c + d)2 = 614 − 6.02(3.125)2 = 555.2 K

d1 =
Vu2

4𝜙𝜆
√

f ′c b0

= 555.2 × 1000

4(0.75)(1)
√

4000 × 150
= 19.5 in.

d2 = 10.6 in. (Does not control.)

6. Design steel reinforcement in the longitudinal direction. The critical section is at the face of the
support. The distance from the edge of the footing is

L
2
− c

2
= 12

2
− 1.5

2
= 5.25 ft

Mu = 1
2
(6.02)(5.25)2(8.5) = 705.2 K ⋅ ft

Ru =
Mu

bd2
= 705.2(12,000)

(8.5 × 12)(19.5)2
= 218 psi

Applying Eq. 13.14, 𝜌= 0.0042:

As = 0.0042(8.5 × 12)(19.5) = 8.35 in.2

MinAs (shrinkage) = 0.0018(8.5 × 12)(24) = 4.4 in.2

MinAs (flexure) = 0.0033(8.5 × 12)(19.5) = 6.56 in.2

Use As = 8.35 in. and 10 no. 9 bars (As = 10 in.2) spaced at S= (102− 6)/9= 10.7 in.
7. Design steel reinforcement in the short direction. The distance from the face of the column to the

edge of the footing is
8.5
2

− 1.5
2

= 3.5 ft

Mu = 1
2
(6.02)(3.5)2(12) = 422.5 K ⋅ ft

Ru =
Mu

bd2
= 442.5(12,000)

(12 × 12)(19.5)2
= 97 psi

Applying Eq. 13.4, 𝜌= 0.0019:

As = 0.0019(12 × 12)(19.5) = 5.34 in.2

MinAs (shrinkage) = 0.0018(12 × 12)(24) = 6.22 in.2

MinAs (flexure) = 0.0033(12 × 12)(19.5) = 9.26 in.2
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The value of As to be used must be greater than or equal to 9.26 in.2 Use 22 no. 6 bars
(As = 9.68 in.2):

𝛾s =
2

𝛽 + 1
= 2

(12∕8.5) + 1
= 0.83

The number of bars in an 8.5-ft band is 22(0.83)= 19 bars. The number of bars left on each side is
1
2
(22 − 19) ≈ 2 bars. Therefore, place 19 no. 6 bars within the 8.5-ft band; then place 2 no. 6 bars

(As = 0.88 in.2) within (12− 8.5)/2= 1.63 ft on each side of the band. The total number of bars is
23 no. 6 bars (As = 10.12 in.2). Details of reinforcement are shown in Fig. 13.19.

23 no. 6 10 no. 9

Figure 13.19 Example 13.3: Rectangular footing.

8. Check the bearing stress at the base of the column, as explained in the previous example. Use four
no. 8 dowel bars.
a. Bearing strength N1 at the base of the column (A1 = 18× 18 in.) is

N1 = 𝜙(0.85f ′c A1) = 0.65(0.85 × 4)(18 × 18) = 716 K > Pu = 614 K OK

b. Bearing strength N2 of footing is

N2 = N1

√
A2

A1
≤ 2N1

A1 = 18 × 18 = 324 in.2

A2 = (48 + 18 + 48)(42 + 18 + 42) = 11,628 in.2(Fig. 13.20)
√

A2

A1
=
√

11,628
18 × 18

= 5.99 > 2
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Figure 13.20 Example 13.3: Rectangular footing.

Therefore, use

N2 = 2[𝜙(0.85f ′c A1)] = 2[0.65(0.85 × 4 × 18 × 18)] = 1432 kips

because Pu = 614<N2 bearing strength is adequate to transfer the factored loads. The mini-
mum area of dowels required is

As,min = 0.005A1 = 0.005(18 × 18) = 1.62 in.2

Provide four no. 8 bars placed at the four corners of the column.
c. Development length of dowels in compression:

ldc =

(
0.02fy

𝜆
√

f ′c

)

(0.875) ≥ (0.0003fy)db

=

(
0.02 (60,000)

1.0
√

4000

)

(0.875) = 16.6 in.

ldc(min) = 0.0003(60,000)(0.875) = 15.8 in. ≥ 8 in.

and

Available length for development in footing = 24 − 3 − (1.125 + 0.75) − 0.875

= 18.25 in > 16.60 in.

Dowels can be fully developed in the footing.
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9. Development length of the main reinforcement: ld = 29 in. for no. 6 bars and 54 in. for no. 9 bars:

Provided ld (long direction) =
(L

2
− c

2
− 3 in.

)
= 60 in.

Provided ld (short direction) = 39 in. > 29 in.

Example 13.4

Determine transfer of force between column and footing for a 14× 14−in. tied column with four
no. 11 longitudinal bars: f ′c = 4000 psi, fy = 60,000 psi, axial dead load= 250 kips, axial live load
PL = 150 kips, and footing size is 10× 10 ft.

Solution

1. Determine the factored load Pu = 1.2× 250+ 1.6× 150= 540 K
2. Bearing strength of column concrete:

𝜙Pnb = 𝜙(0.85f ′c A1) = 0.65(0.85 × 4 × 14 × 14) = 433 K < Pu = 540 K

The bearing strength of the column is less than the axial load. So concrete only cannot transfer the
load to the footing. The excess load (540− 433= 107 kips) must be transferred by reinforcement.

3. Bearing strength of footing concrete:

𝜙Pnb =

√
A2

A1
𝜙(0.85f ′c A1)

A2 =
√

10 × 10 × 144
14 × 14

= 8.6 > 2

Use 2:
𝜙Pnb = 2(433) = 866 K > Pu = 540 K safe

4. Required area of dowel bar:

As =
Pu − 𝜙Pnb

𝜙fy
= 540 − 433

0.65 × 60
= 2.74 in.2

As,min = 0.005(14 × 14) = 0.98 in.2

Provide four no. 8 bars (As = 3.16 in.2).
5. Development of dowel reinforcement

a. For development into the column (Fig. 13.21) no. 11 bar may be lap spliced with no. 8 dowel
bars. Dowels must extend into the column:

Greater of →

{
Devlopment length of no. 11 bars

Lap splice length of no. 8 footing dowels

}

For no. 11 bars:

ldc =

[
0.02fy

𝜆
√

f ′c

]

db =

[
0.02 (60,000)

1.0
√

4000

]

1.41 = 26.75 in.

ldc,min = (0.0003fy)db = 0.0003 × 60,000 × 1.41 = 25.38 in.

For no. 8 bars:

Lap splice length = (0.0005)fydb = 0.0005(60,000)(1.0) = 30 in. (governs)
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10'

30''

14''

2'–0''

No. 8
dowel bars

No. 11 bars

Figure 13.21 Example 13.4 Dowels details.

Lap length of no. 8 bars governs. No. 8 dowel bars should extend not less than 30 in. into
the column.

b. For development into the footing, no. 8 dowels must extend full development length:

ldc =

[
0.02fy

𝜆
√

f ′c

]

db =

[
0.02 (60,000)

1.0
√

4000

]

(1.0) = 19 in.

ldc,min = (0.0003fy)db = 0.0003 × 60,000 × 1.0 = 18 in.

The length may be reduced to account for excess reinforcement according to ACI Code, Section
12.3.3:

As(required)
As(provided)

= 2.74
3.16

= 0.86

ldc = 0.86 × 19 = 16.47 in.

Then

Available length for dowel development = 24 − 3 − 2(0.875) − 1.0

= 18.25 in. > 16.47 required (safe)(Fig.13.21)

Example 13.5

Determine the footing areas required for equal settlement (balanced footing design) if the usual live
load is 20% for all footings. The footings are subjected to dead loads and live loads as indicated in the
following table. The allowable net soil pressure is 6 ksf.

Footing Number

1 2 3 4 5

Dead load 120 K 180 K 140 K 190 K 210 K
Live load 150 K 220 K 200 K 170 K 240 K
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Solution

1. Determine the footing that has the largest ratio of live load to dead load. In this example, footing
3 ratio of 1.43 is higher than the other ratios.

2. Calculate the usual load for all footings. The usual load is the dead load and the portion of live
load that most commonly occurs on the structure. In this example,

Usual load = DL + 0.2(LL)

The values of the usual loads are shown in the following table.
3. Determine the area of the footing that has the highest ratio of LL/DL:

Area of footing → 3 = DL + LL
allowable soil pressure

= 140 + 200
6

= 56.7 ft2

The usual soil pressure under footing 3 is

Usual load
Area of footing

= 180
56.7

= 3.18 ksf

4. Calculate the area required for each footing by dividing its usual load by the soil pressure of
footing 3. The areas are tabulated in the following table. For footing 1, for example, the required
area is 150/3.18= 47.2 ft2.

5. Calculate the maximum soil pressure under each footing:

qmax = D + L
area

≤ 6 ksf (allowable soil pressure)

By Footing Number

Description 1 2 3 4 5

Live load
Dead load

1.25 1.22 1.43 0.90 1.14

Usual load=DL+ 0.2 (LL) (kips) 150 224 180 224 258

Area required = usual load
3.18 ksf

(ft2) 47.2 70.4 56.7 70.4 81.1

Max. soil pressure = D + L
area

(ksf) 5.72 5.68 6.00 5.11 5.55

Example 13.6

Design a plain concrete footing to support a 16-in.-thick concrete wall. The loads on the wall consist of
a 16-K/ft dead load (including the self-weight of wall) and a 10-K/ft live load. The base of the footing
is 4 ft below final grade. Use f ′c = 3 ksi and an allowable soil pressure of 5 ksf.

Solution

1. Calculate the effective soil pressure. Assume a total depth of footing of 28 in.:

Weight of footing = 28
12

× 145 = 338 psf

The weight of the soil, assuming that soil weighs 100 pcf, is (4− 2.33)× 100= 167 psf. Effective
soil pressure is 5000− 338− 167= 4495 psf.
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Figure 13.22 Example 13.6: Plain concrete wall footing.

2. Calculate the width of the footing for a 1-ft length of the wall (b= 1 ft):

Width of footing = total load
effective soil pressure

= 16 + 10
4.495

= 5.79 ft

Use 6.0 ft (Fig. 13.22).
3. U= 1.2D+ 1.6L= 1.2× 16+ 1.6× 10= 35.2 K/ft. The net upward pressure is qu =

35.2/6= 5.87 ksf.
4. Check bending stresses. The critical section is at the face of the wall. For a 1-ft length of wall and

footing,

Mu = 1
2

qu

(L
2
− c

2

)2

= 1
2
(5.87)

(6
2
− 16

2 × 12

)2

= 16 K ⋅ ft

Let the effective depth, d, be 28− 2= 26 in., assuming that the bottom 3 in. is not effective:

Ig = bd3

12
= 12

12
(26)3 = 17,576 in.2

The flexural tensile stress is

ft =
Muc

I
= 16 × 12,000

17,576

(25
2

)
= 137 psi

The allowable flexural tensile stress is 5𝜙
√

f ′c = 5 × 0.60
√

3000 = 164 psi (safe).
5. Check shear stress: The critical section is at a distance d= 26 in. from the face of the wall:

Vu = qu

(L
2
− c

2
− d

)
= 5.87

(6
2
− 16

2 × 12
− 26

12

)
= 0.98 K

𝜙Vc = 𝜙

(4
3

)
𝜆
√

f ′c bd =
(0.60)

(
4
3

)
(1)

√
3000(12)(26)

1000
= 13.67 K

Therefore, the section is adequate. It is advisable to use minimum reinforcement in both directions.
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13.6 COMBINED FOOTINGS

When a column is located near a property line, part of the single footing might extend into the
neighboring property. To avoid this situation, the column may be placed on one side or edge of the
footing causing eccentric loading. This may not be possible under certain conditions, and some-
times it is not an economical solution. A better design can be achieved by combining the footing
with the nearest internal column footing, forming a combined footing. The center of gravity of the
combined footing coincides with the resultant of the loads on the two columns.

Another case where combined footings become necessary is when the soil is poor and the
footing of one column overlaps the adjacent footing. The shape of the combined footing may be
rectangular or trapezoidal (Fig. 13.23). When the load of the external column near the property
line is greater than the load of the interior column, a trapezoidal footing may be used to keep
the centroid of footing in line with the resultant of the two column loads. In most other cases, a
rectangular footing is preferable.

The length and width of the combined footing are chosen to the nearest 3 in., which may cause
a small variation in the uniform pressure under the footing, but it can be tolerated. For a uniform
upward pressure, the footing will deflect, as shown in Fig. 13.24. The ACI Code, Section 13.3,

Figure 13.23 Combined footings.

Figure 13.24 Upward deflection of a combined footing in two directions.
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Figure 13.25 Analysis of combined footing in the transverse direction.

does not provide a detailed approach for the design of combined footings. The design, in general,
is based on structural analysis.

A simple method of analysis is to treat the footing as a beam in the longitudinal direction,
loaded with uniform upward pressure, qu. For the transverse direction, it is assumed that the col-
umn load is spread over a width under the column equal to the column width plus d on each side,
whenever that is available. In other words, the column load acts on a beam under the column within
the footing, which has a maximum width of c+ 2d and a length equal to the short side of the footing
(Fig. 13.25). A smaller width, down to c+ d may be used. The next example explains the design
method in detail.

Example 13.7
Design a rectangular combined footing to support two columns, as shown in Fig. 13.26. The edge col-
umn, I, has a section 16× 16 in. and carries a DL of 180 K and an LL of 120 K. The interior column,
II, has a section 20× 20 in. and carries a DL of 250 K and an LL of 140 K. The allowable soil pres-
sure is 5 ksf and the bottom of the footing is 5 ft below final grade. Design the footing using f ′c = 4 ksi,
fy = 60 ksi.

Solution

1. Determine the location of the resultant of the column loads. Take moments about the center of the
exterior column I:

x = (250 + 140) × 16
(250 + 140) + (180 + 120)

= 9 ft from column I

The distance of the resultant from the property line is 9+ 2= 11.0 ft. The length of the footing is
2× 11= 22.0 ft. In this case the resultant of column loads will coincide with the resultant of the
upward pressure on the footing.

2. Determine the area of the footing. Assume the footing total depth is 36 in. (d= 36− 4.5= 31.5 in.).

Total actual (working) loads = 300 + 390 = 690 K

New upward pressure = 5000 −
(36

12
× 150

)
− (2 × 100) = 4350 psf
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6 no. 8 8 no. 8 8 no. 8 7 no. 8
10 no. 9

7'6"

Figure 13.26 Example 13.6: Design of a combined footing.
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(Assumed density of soil is 100 psf)

Required area = 690
4.35

= 158.6 ft2

Width of footing = 158.6
22

= 7.21 ft

Use 7.5 ft. Choose a footing 22× 7.5 ft (area= 165 ft2).
3. Determine the factored upward pressure using factored loads:

Pu1(column I) = 1.2 × 180 + 1.6 × 120 = 408 K

Pu2(column II) = 1.2 × 250 + 1.6 × 140 = 524 K

The net factored soil pressure is qu = (408+ 524)/165= 5.65 ksf.
4. Draw the factored shearing force diagram as for a beam of L= 22 ft supported on two columns and

subjected to an upward pressure of 5.65 ksf× 7.5 (width of footing)= 42.38 K/ft (per foot length
of footing):

Vu(at outer face column I) = 42.38
(

2 − 8
12

)
= 56.5 K

Vu(at interior face column I) = 408 − 42.38
(

2 + 8
12

)
= 295 K

Vu(at outer face column II) = 42.38
(

4 − 10
12

)
= 134.2 K

Vu(at interior face column II) = 524 −
(

4 + 10
12

)
× 42.38 = 319.1 K

Find the point of zero shear, x; the distance between interior faces of columns I and II is

16 − 8
12

− 10
12

= 14.5 ft

x = 295
295 + 319.3

(14.5) = 6.9 ft

5. Draw the factored moment diagram considering the footing as a beam of L= 22 ft supported by
the two columns. The uniform upward pressure is 42.38 K/ft.

Mu1(at outer face column I) = 42.38
(2 − 8∕12)2

2
= 37.5 K ⋅ ft

Mu2(at outer face column II) = 42.38
(4 − 10∕12)2

2
= 212.9 K ⋅ ft

The maximum moment occurs at zero shear:

Maximum Mu (calculated from column I side) = 408
(

6.9 + 8
12

)
− 42.38

2

(
6.9 + 8

12
+ 2

)2

= 1147.9 K ⋅ ft

Maximum Mu (from column II side) = 524
(

7.6 + 10
12

)
− 42.38

2

(
7.6 + 10

12
+ 4

)2

= 1143.4 K ⋅ ft

The moments calculated from both sides of the footings are close enough, and Mu,max =
1147.9 K ft may be adopted. This variation occurred mainly because of the adjustment of the
length and width of the footing.
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6. Check the depth for one-way shear. Maximum shear occurs at a distance d= 31.5 in. from the
interior face of column II (Fig. 13.26):

Vu1
= 319.3 − 31.5

12
(42.38) = 208.1 K

d =
Vu1

𝜙(2𝜆
√

f ′c )b
= 208.1 × 1000

0.75(2 × 1 ×
√

4000)(7.5 × 12)
= 24.4 in.

The effective depth provided is 31.5 in. > 24.4 in.; thus, the footing is adequate.
7. Check depth for two-way shear (punching shear). For the interior column,

b0 = 4(c + d) =
( 4

12

)
(20 + 31.5) = 17.17 ft

c + d = 20 + 31.5
12

= 4.29 ft

The shear Vu1
at a section d/2 from all sides of the column is equal to

Vu2
= Pu2 − qu(c + d)2 = 524 − 5.65(4.29)2 = 420 K

d =
Vu2

𝜙(4𝜆
√

f ′c )b0

= 420(1000)

0.75(4 × 1 ×
√

4000)(17.7 × 12)
= 10.4 in. < 31.5 in.

The exterior column is checked and proved not to be critical.
8. Check the depth for moment and determine the required reinforcement in the long direction:

Maximum bending moment = 1147.9 K ⋅ ft

Ru =
Mu

bd2
= 1147.9(12,000)

(7.5 × 12)(31.5)2
= 154.1 psi

Applying Eq. 13.14, the steel percentage is 𝜌= 0.0029< 0.0033 (𝜌min), use 𝜌=0.0033:

As = 0.0033(7.5 × 12)(31.5) = 9.35 in.2

Min As (shrinkage) = 0.0018(7.5 × 12)(3 × 12) = 5.83 in.2

As = 9.35 in.2controls. Use 10 No. 9 bars (As = 10 in.2).

Spacing of bars = (7.5 × 12) − 6 (concrete cover)
9 (no. of spacings)

= 9.33 in.

The bars are extended between the columns at the top of the footing with a concrete cover of
3 in. Place minimum reinforcement at the bottom of the projecting ends of the footing beyond the
columns to take care of the positive moments. Extend the bars a development length ld beyond
the side of the column.

The minimum shrinkage reinforcement is 5.83 in.2 Use eight no. 8 bars (As = 6.3 in.2).
The development length required for the main top bars is 1.3ld = 1.3(54)= 70 in. (Table 7.2)

beyond the point of maximum moment. Development lengths provided to both columns are
adequate.

9. For reinforcement in the short direction, calculate the bending moment in the short (transverse)
direction, as in the case of single footings. The reinforcement under each column is to be placed
within a maximum bandwidth equal to the column width plus twice the effective depth d of the
footing (Fig. 13.27). If the distance on any side of the column less than the effective depth d then
use that value on that side.
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16″ × 16″

I II

20″ × 20″

7′ 6″

3′ 0″3′ 0″

7′ 6″ 7′ 6″

22′ 0″

(a)

Exterior footing I

(b)

Interior footing II

(c)

5′ 6″

3′ 1″ 3′ 1″ 2′ 11″ 2′ 11″1′ 4″

8 # 8

10 # 9 10 # 9

6 # 8 8 # 87 # 8

1′ 8″

7′ 0″

#5 @ 10″

Figure 13.27 Design of combined footing, transverse direction: (a) plan, (b) exterior
footing, and (c) interior footing.

a. Reinforcement under exterior column I:

Bandwidth = 16 in.(column width)

+ 16 in.(on exterior side of column 2 × 12 − 16∕2)

+ 31.5 in.(d)

= 63.5 in. = 5.3 ft

Use 5.5 ft. The net upward pressure in the short direction under column I is equal to:

Pu1

width of footing
= 408

7.5
= 54.4 K∕ft

Distance from the free end to the face of the column is 7.5
2
− 8

12
= 3.08 ft

Mu(at face of column I) = 54.4
2

(3.08)2 = 258.0 K ⋅ ft

Ru =
Mu

bd2
= 258.0 × 12,000

(5.5 × 12)(31.5)2
= 47.3 psi

The steel percentage, 𝜌, = 0.0009 (Equation 13.14) is less than minimum 𝜌 for a shrinkage
reinforcement ratio of 0.0018:

Min As (shrinkage) = (0.0018)(5.5 × 12)(36) = 4.3 in.2

Use six no. 8 bars (As = 4.71 in.2) placed within the bandwidth of 66 in.
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b. Reinforcement under the interior column II:

Bandwidth = 20 + 31.5 + 31.5 = 83 in. = 6.91 ft

Use 7 ft(84 in.).

The steel percentage, 𝜌 = 0.0008 is less than minimum 𝜌 for shrinkage reinforcement ratio of
0.0018:

Min As (shrinkage) = (0.0018)(7 × 12)(36) = 5.44 in.2

Use seven no. 8 bars placed within the bandwidth of 84 in. under column II, as shown in
Figs. 13.26 and 13.27. The development length ld of no. 8 bars in the short direction is 48 in.

Though not required by code, it is recommended to provide in the shorter direction at the
top of the footing no. 5 bars at 10 in. center-to-center to prevent possible shrinkage cracks and
to hold the reinforcement in the other direction.

13.7 FOOTINGS UNDER ECCENTRIC COLUMN LOADS

When a column transmits axial loads only, the footing can be designed such that the load acts at the
centroid of the footing, producing uniform pressure under the footing. However, in some cases, the
column transmits an axial load and a bending moment, as in the case of the footings of fixed-end
frames. The pressure q that develops on the soil will not be uniform and can be evaluated from the
following equation:

q = P
A
± Mc

I
≥ 0 (13.20)

where A and I are the area and moment of inertia of the footing, respectively. Different soil con-
ditions exist, depending on the magnitudes of P and M and allowable soil pressure. The different
design conditions are shown in Fig. 13.28 and are summarized as follows:

1. When e=M/P<L/6, the soil pressure is trapezoidal:

qmax = P
A
+ Mc

I
= P

LB
+ 6M

BL2
(13.21)

qmin = P
A
− Mc

I
= P

LB
− 6M

BL2
(13.22)

2. When e=M/P=L/6, the soil pressure is triangular:

qmax = P
LB

+ 6M

BL2
= 2P

LB
(13.23)

qmin = 0 = P
LB

− 6M

BL2
or

P
LB

= 6M

BL2
(13.24)

3. When e>L/6, the soil pressure is triangular:

x =
L − y

3
= L

2
− e

P = qmax

(3x
2

)
B (13.25)

qmax = 2P
3xB

= 4P
3B(L − 2e)
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Mc

Figure 13.28 Single footing subjected to eccentric loading: L= length of footing,
B=width, and h= height.

4. When the footing is moved a distance e from the axis of the column to produce uniform soil
pressure under the footing: Maximum moment occurs at section n–n:

M = M′ − Hh and e = M
P

13.8 FOOTINGS UNDER BIAXIAL MOMENT

In some cases, a footing may be subjected to an axial force and biaxial moments about its x and y
axes; such a footing may be needed for a factory crane that rotates 360∘. The footing then must be
designed for the critical loading.

Referring to Fig. 13.29, if the axial load P acts at a distance ex from the y axis and ey from
the x axis, then

Mx = Pey and My = Pex
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Figure 13.29 Footing subjected to P and biaxial moment. If ex <L/6 and ey <B/6,
footing will be subjected to upward soil pressure on all bottom surface (nonuniform
pressure).

The soil pressure at corner 1 is

qmax = P
A
+

Mxcy

Ix
+

Mycx

Iy
At corner 2,

q2 = P
A
−

Mxcy

Ix
+

Mycx

Iy
At corner 3,

q3 = P
A
−

Mxcy

Ix
−

Mycx

Iy
At corner 4,

q4 = P
A
+

Mxcy

Ix
−

Mycx

Iy

Again, note that the allowable soil pressure must not be exceeded and the soil cannot take any
tension; that is, q≥ 0.

Example 13.8
A 12× 24−in. column of an unsymmetrical shed shown in Fig. 13.30a is subjected to an axial load
PD = 220 K and a moment Md = 180 K ⋅ ft due to dead load and an axial load PL = 165 K and a moment
ML = 140 K ⋅ ft due to live load. The base of the footing is 5 ft below final grade, and the allowable soil
bearing pressure is 5 ksf. Design the footing using f ′c = 4 ksi and fy = 60 ksi.

Solution
The footing is subjected to an axial load and a moment:

P = 220 + 165 = 385 K

M = 180 + 140 = 320 K ⋅ ft
The eccentricity is

e = M
P

= 320 × 12
385

= 9.97 in. say, 10 in.
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ksf

ksf

Figure 13.30 Example 13.7.

The footing may be designed by two methods.
Method 1: Move the center of the footing a distance e= 10 in. from the center of the column. In

this case, the soil pressure will be considered uniformly distributed under the footing (Fig. 13.30b).
Method 2: The footing is placed concentric with the center of the column. In this case, the soil

pressure will be trapezoidal or triangular (Fig. 13.30c), and the maximum and minimum values can be
calculated as shown in Fig. 13.30.

The application of the two methods to Example 13.8 can be explained briefly as follows:
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1. For the first method, assume a footing depth of 20 in. (d= 16.5 in.) and assume the weight of soil
is 100 pcf. Net upward pressure is

5000 − 20
12

× 150 (footing) −
(

5 − 20
12

)
× 100 = 4417 psf

Area of footing = 385
4.42

= 87.1 ft2

Assume a footing width of 9 ft; then the footing length is 87.1/9= 9.7 ft, say, 10 ft. Choose a
footing 9× 10 ft and place the column eccentrically, as shown in Fig. 13.27d. The center of the
footing is 10 in. away from the center of the column.

2. The design procedure now is similar to that for a single footing. Check the depth for two-way
and one-way shear action. Determine the bending moment at the face of the column for the
longitudinal and transverse directions. Due to the eccentricity of the footing, the critical section
will be on the left face of the column in Fig. 13.30d. The distance to the end of footing is
(5× 12)− 2= 58 in.= 4.833 ft.

Pu = 1.2D + 1.6L = 1.2 × 200 + 1.6 × 165 = 504 K

qu = 504
9 × 10

= 5.6 ksf

Maximum Mu = (5.6 × 9) × (4.833)2

2
= 588.6 K ⋅ ft (in 9 − ft width)

In the transverse direction,

Mu = (5.6 × 10) × (4)2

2
= 448 K ⋅ ft

Revise the assumed depth if needed and choose the required reinforcement in both directions of
the footing, as was explained in the single-footing example.

3. For the second method, calculate the area of the footing in the same way as explained in the first
method; then calculate the maximum soil pressure and compare it with that allowable using actual
loads:

Total load P = 385 K

Size of footing = 10 × 9 ft

Because the eccentricity is e = 10 in. < L∕6 × 12
6
= 20 in., the shape of the upward soil pressure

is trapezoidal. Calculate the maximum and minimum soil pressure:

qmax = P
LB

+ 6M

BL2
= 385

10 × 9
+ 6 × 320

9(10)2
= 6.42 ksf > 4.42 ksf

The footing is not safe. Try a footing 9.25× 13 ft (area= 120.25 ft2).

qmax = 385
120.25

+ 6 × 320
9.25(13)2

= 4.22 ksf < 4.42 ksf

qmin = 3.2 − 1.22 = 1.98 ksf

4. Calculate the factored upward pressure using factored loads; then calculate moments and shears,
as explained in previous examples.
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13.9 SLABS ON GROUND

A mat foundation would be used when buildings are founded on soft and irregular soil, where pile
foundation cannot be used.

A concrete slab laid directly on ground may be subjected to

1. Uniform load over its surface, producing small internal forces.
2. Nonuniform or concentrated loads, producing some moments and shearing forces. Tensile

stresses develop, and cracks will occur in some parts of the slab.

Tensile stresses are generally induced by a combination of

1. Contraction due to temperature and shrinkage, restricted by the friction between the slab and
the subgrade, causing tensile stresses.

2. Warping of the slab.
3. Loading conditions.
4. Settlement.

Contraction joints may be formed to reduce the tensile stresses in the slab. Expansion joints
may be provided in thin slabs up to a thickness of 10 in.

Basement floors in residential structures may be made of 4 to 6-in. concrete slabs reinforced
in both directions with a wire fabric reinforcement. In warehouses, slabs may be 6 to 12 in. thick,
depending on the loading on the slab. Reinforcement in both directions must be provided, usually in
the form of wire fabric reinforcement. Basement floors are designed to resist upward earth pressure
and any water pressure. If the slab rests on very stable or incompressible soils, then differential
settlement is negligible. In this case the slab thickness will be a minimum if no water table exists.
Columns in the basement will have independent footings. If there is any appreciable differential
settlement, the floor slab must be designed as a stiff raft foundation.

13.10 FOOTINGS ON PILES

When the ground consists of soft material for a great depth, and its bearing capacity is very low, it is
not advisable to place the footings directly on the soil. It may be better to transmit the loads through
piles to a deep stratum that is strong enough to bear the loads or to develop sufficient friction around
the surface of the piles.

Many different kinds of piles are used for foundations. The choice depends on ground condi-
tions, presence of groundwater, function of the pile, and cost. Piles may be made of concrete, steel,
or timber.

In general, a pile cap (or footing) is necessary to distribute the load from a column to the
heads of a number of piles. The cap should be of sufficient size to accommodate deviation in the
position of the pile heads. The caps are designed as beams spanning between the pile heads and
carrying concentrated loads from columns. When the column is supported by two piles, the cap
may be designed as a reinforced concrete truss of a triangular shape.

The ACI Code, Section 13.4.2.2, indicates that computations for moments and shears for
footings on piles may be based on the assumption that the reaction from any pile is concentrated
at the pile center. The base area of the footing or number of piles shall be determined from the
unfactored forces and moments.
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The minimum concrete thickness above the reinforcement in a pile footing is limited to 12 in.
(ACI Code, Section 13.4.2.1). For more design details of piles and pile footings, refer to books on
foundation engineering.

13.11 SI EQUATIONS

1. One-way shear:

𝜙Vc = 0.17𝜆𝜙
√

f ′c bd (Eq. 13.3)

2. Two-way shear:

Vc1
= 0.33𝜆

√
f ′c b0d (Eq. 13.6)

Vc2
= 0.17

(
1 + 2

𝛽

)
𝜆
√

f ′c b0d (Eq. 13.7)

Vc3
= 0.083

(
𝛼sd

bo
+ 2

)
𝜆
√

f ′c b0d (Eq. 13.8)

Other equations remain the same.

SUMMARY

Sections 13.1–13.4

1. General:

H = distance of bottom of footing from final grade (ft)

h = total depth of footing (in.)

c = wall thickness (in.)

qa = allowable soil pressure (ksf)

qe = effective soil pressure

Ws = weight of soil (pcf)(Assume 100 pcf if not given.)

2. Design of Wall Footings. The design steps can be summarized as follows:
a. Assume a total depth of footing h (in.). Consider 1-ft length of footing.
b. Calculate qe = qa − (h/12)(150)−Ws(H− h/12) (qa in psf).
c. Calculate width of footing: B= (total service load)/qe = (PD +Pn)/qe. (Round to the near-

est higher half foot.) The footing size is (B× 1) ft.
d. Calculate the factored upward pressure, qu =Pu/B where Pu = 1.2PD + 1.6PL.
e. Check the assumed depth for one-way shear requirements considering da = (h− 3.5 in.)

(Two-way shear does not apply.)

Vu = qu

(B
2
− d − c

2

)
(use kips.)
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Required d =
Vu(1000)

𝜙(2𝜆
√

f ′c )(12)
≥ da

f. Calculate the bending moment and main steel. The critical section is at the face of the
wall.
i. Mu = 0.5qu (L/2− c/2)2; get Ru =Mu/bd2.

ii. Determine 𝜌 from tables in Appendix A or from Eq. 13.14.
iii. As = 𝜌bd= 12 𝜌d in.2/ft; As ≥ As min

.
iv. Minimum steel for shrinkage is

Ash =
{

0.0018 (bh) for fy = 60 ksi
0.0020(bh) for fy = 40,50 ksi

Minimum steel for flexure is

Asf =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
200
fy

)
bd =

(
200
fy

)
(12d) when f ′c < 4500 psi

(3
√

f ′c )(12d)
fy

when f ′c > 4500 psi

where As calculated must be greater than Ash (shrinkage). However, if As <Asf, it is
recommended to use As =Asf and then choose bars and spacings.

g. Check development length: Refer to Tables 7.1 to 7.4.
h. Calculate secondary reinforcement in the direction of the wall. As =Ash as calculated in

step f using b= 12 in. Choose bars and spacings.
3. Design of Square/Rectangular Footings. The design steps are as follows:

a. Assume a total depth h (in.); let da (assumed)= h− 4.5 in. Calculate qe = qa −
(h/12)(150)−Ws(H− h/12). (Use psf.)

b. Calculate the area of the footing, AF= (PD +PL)/qe. Choose either a square footing, side =√
AF, or a rectangular footing of length L and width B (short length); then round dimen-

sions to the higher half foot.
c. Calculate qu =Pu/(LB).
d. Check footing depth due to two-way shear first. Maximum Vu2 occurs at a section located

at a distance equal to d/2 around the column.
i. Calculate b0 = 4(c+ d) for square columns and b0 = 2 (c1 + d)+ 2 (c2 + d) for rectan-

gular columns:

Vu2
=
{

Pu − qu(c + d)2 for square columns
Pu − qu(c1 + d)(c2 + d) for rectangular columns

ii. Calculate d1 = Vu2
∕4𝜙𝜆

√
f ′c b0 when 𝛽 = L/B≤ 2.

d1 =
Vu2

𝜙(2 + 4∕𝛽)𝜆
√

f ′c b0

when 𝛽 > 2

iii. Calculate

d2 =
Vu2

𝜙(𝛼sd∕b0 + 2)𝜆
√

f ′c b0
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Let d be the larger of d1 and d2. If d is less than da (assumed), increase da (or h) and
repeat. The required d should be close to the assumed da (within 5% or 1 in. higher).

e. Check one-way shear (normally does not control in single footings):
i. Vu11

= quB(L∕2 − c∕2 − d) in the long direction (or for square footings):

d11 =
Vu11

2𝜙𝜆
√

f ′c B

ii. Vu12
= quL(B∕2 − c∕2 − d) in the short direction:

d12 =
Vu12

2𝜙𝜆
√

f ′c L
(for rectangular footings)

iii. Let d be the larger of d11 and d12; then use the larger d from steps iv and v.
iv. Determine h= (d+ 4.5) in.; round to the nearest higher inch.
v. Calculate the final d= (h− 4.5) in.

f. Calculate the bending moment and the main steel in one direction only for square footings
and two directions for rectangular footings.

i. In the long direction (or for square footings)

MuL = 0.5qu

(L
2
− c

2

)2

Ru =
MuL

Bd2

ii. In the short direction (for rectangular footings):

Mus = 0.5qu

(B
2
− c

2

)2

Rus =
Mus

Ld2

iii. Calculate the reinforcement in the long direction, AsL, and in the short direction, Ass,
using Eq. 13.14.

iv. Check that AsL and Ass are greater than the minimum steel reinforcement. Choose bars
and spacings. For square footings, the same bars are used in both directions. Distribute
bars in the bandwidth of rectangular columns according to Eq. 13.15.

g. Check bearing stress:
i. Calculate N1 and N2 ∶ N1𝜙(0.85f ′c A1), where 𝜙 is 0.65 and A1 is the area of column

section; N2 = N1

√
A2∕A1 ≤ 2N1, where A2 is the square area of footing under column

(A2 =B2).
ii. If Pu ≤N1, bearing stress is adequate. Minimum area of dowels is 0.005A1. Choose

four bars to be placed at the four corners of the column section.
iii. If Pu >N1, determine the excess load, Pex = (Pu −N1), and then calculate Asd (dow-

els)=Pex/fy; Asd must be equal to or greater than 0.005A1. Choose at least four dowel
bars.

iv. Determine the development length in compression for dowels in the column and in the
footing.

h. Calculate the development lengths, ld, of the main bars in the footings. The calculated ld
must be greater than or equal to ld provided in the footing. Provided ld = L/2− c/2− 3 in.
in the long direction and ld =B/2− c/2− 3 in the short direction. Examples 13.2 and 13.3
explain these steps.
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Section 13.5

Plain concrete may be used to support walls. The maximum flexural stress in tension should be
calculated and must be less than the allowable stress of 5𝜙

√
f ′c .

Section 13.6

A combined footing is used when a column is located near a property line. Design of such footings
is explained in Example 13.7.

Sections 13.7–13.9

Footings under eccentric column loads are explained in Example 13.8.
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318–14. ACI Detroit, MI, 2014.

P R O B L E M S

For all problems in this chapter, use the following:

Ha = distance from bottom of footing to final grade

h = depth of concrete footing

qa = allowable soil pressure in ksf

Assume the weight of the soil is 100 pcf and fy = 60 ksi.

13.1 For each problem in Table 13.1, design a wall footing to support the given reinforced concrete wall
loads. Design for shear and moment; check the development length requirements. Also, determine the
footing bars and their distribution. (Assume d= h− 3.5 in.)

13.2 For each problem in Table 13.2, design a square single footing to support the given square and round
column loads. Design for moments, shear, load transfer, dowel length, and development lengths for
footing main bars. Choose adequate bars and spacings. (Assume d= h− 4.5 in. for all problems.)

13.3 Repeat Problem 13.2a–h using rectangular footings with widths of 6, 6, 8, 8, 7, 8, 6, and 9 ft, respec-
tively.

13.4 Repeat Problem 13.2a–d using rectangular columns of 14× 20 in., 16× 20 in., 16× 24 in., and
12× 18 in., respectively, and rectangular footings with the length equal to about 1.5 times the width.

13.5 Repeat Problem 13.1a–d using plain concrete wall footings and one-half the applied dead and
live loads.
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Table 13.1 Problem 13.1

Part Answers

Number
Wall

Thickness (in.)
Dead

Load (K/ft)
Live

Load (K/ft)
f′c

(Ksi)
qa

(Ksf)
H
(ft)

L
(ft)

H
(in.)

a 12 22 12 3 4 5 10 19
b 12 18 14 3 5 4 7.5 17
c 14 28 16 3 6 6 8.5 20
d 14 26 24 3 4 5 14.5 27
e 16 32 16 3 5 5 11 23
f 16 24 20 4 6 8 9 19
g 14 20 18 4 4 6 11.5 19
h 14 28 20 4 5 4 10.5 21
i 12 18 14 4 6 5 6 14
j 14 16 20 4 6 5 7 16

Table 13.2 Problem 13.2

Part Answers

Number
Column

(in.)
Column

bars
Dead

Load (K)
Live

Load (K)
f′c

(Ksi)
qs

(Ksf)
H
(ft)

L
(ft)

H
(in.)

a 16× 16 8 no. 8 150 115 3 5 6 8 20
b 18× 18 8 no. 9 160 100 3 6 5 7 19
c 20× 20 12 no. 9 245 159 3 6 7 9 23
d 12× 12 8 no. 8 180 140 3 5 8 9 24
e 14× 14 8 no. 9 140 160 4 5 6 8.5 21
f 16× 16 8 no. 9 190 140 4 4 5 10 21
g 18× 18 12 no. 8 200 120 4 6 7 8 20
h 20× 20 12 no. 9 195 195 4 5 8 10 22
i Dia. 20 8 no. 9 120 85 4 5 5 7 16
j Dia. 16 8 no. 8 110 90 3 4 6 8 18

13.6 Design a rectangular combined footing to support the two columns shown in Fig. 13.31. The center of
the exterior column is 1 ft away from the property line and 14 ft from the center of the interior column.
The exterior column is square with 18-in. sides, is reinforced with no. 8 bars, and carries an axial dead
load of 160 K and a live load of 140 K. The interior column is square with 20-in. sides, is reinforced
with no. 9 bars, and carries an axial dead load of 240 K and a live load of 150 K. The bottom of the
footing is 5 ft below final grade. Use f ′c = 4 ksi, fy = 60 ksi, and an allowable soil pressure of 5 ksf.

Figure 13.31 Problem 13.6.
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Table 13.3 Problem 13.7

Footing 1 Footing 2 Footing 3 Footing 4 Footing 5 Footing 6

Dead load 130 K 220 K 150 K 180 K 200 K 240 K
Live load 160 K 220 K 210 K 180 K 220 K 200 K

13.7 Determine the footing areas required for a balanced footing design (equal settlement approach) if the
usual load is 25% for all footings. The allowable soil pressure is 5 ksi and the dead and live loads are
given in Table 13.3.

13.8 The 12× 20−in. (300× 500−mm) column of the frame shown in Fig. 13.32 is subjected to an axial
load PD = 200 K and a moment MD = 120 K ⋅ ft due to dead load and an axial load PL = 160 K and a
moment ML = 110 K ⋅ ft due to live load. The base of the footing is 4 ft below final grade. Design the
footing using f ′c = 4 ksi, fy = 40 ksi, and an allowable soil pressure of 4 ksi. Use a uniform pressure and
eccentric footing approach.

Figure 13.32 Problem 13.8.

13.9 Repeat Problem 13.8 if both the column and the footing have the same centerline (concentric case).
13.10 Determine the size of a square or round footing for the case of Problem 13.9, assuming that the loads

and moments on the footing are for a rotating crane fixed at its base.



CHAPTER14
RETAINING
WALLS

Apartment building, Miami, Florida.

14.1 INTRODUCTION

Retaining walls are structural members used to provide stability for soil or other materials and to
prevent them from assuming their natural slope. In this sense, the retaining wall maintains unequal
levels of earth on its two faces. The retained material on the higher level exerts a force on the
retaining wall that may cause its overturning or failure. Retaining walls are used in bridges as
abutments, in buildings as basement walls, and in embankments. They are also used to retain liquids,
as in water tanks and sewage treatment tanks.

14.2 TYPES OF RETAINING WALLS

Retaining walls may be classified as follows (refer to Fig. 14.1):

1. Gravity walls usually consist of plain concrete or masonry and depend entirely on their own
weight to provide stability against the thrust of the retained material. These walls are propor-
tioned so that tensile stresses do not develop in the concrete or masonry due to the exerted
forces on the wall. The practical height of a gravity wall does not exceed 10 ft.

2. Semigravity walls are gravity walls that have a wider base to improve the stability of the
wall and to prevent the development of tensile stresses in the base. Light reinforcement is
sometimes used in the base or stem to reduce the large section of the wall.

3. The cantilever retaining wall is a reinforced concrete wall that is generally used for heights
from 8 to 20 ft. It is the most common type of retaining structure because of economy
and simplicity of construction. Various types of cantilever retaining walls are shown
in Fig. 14.1.

4. Counterfort retaining walls higher than 20 ft develop a relatively large bending moment at the
base of the stem, which makes the design of such walls uneconomical. One solution in this
case is to introduce transverse walls (or counterforts) that tie the stem and the base together
at intervals. The counterforts act as tension ties supporting the vertical walls. Economy is

490
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Figure 14.1 Types of retaining walls.

achieved because the stem is designed as a continuous slab spanning horizontally between
counterforts, whereas the heel is designed as a slab supported on three sides (Fig. 14.1h).

5. The buttressed retaining wall is similar to the counterfort wall, but in this case the transverse
walls are located on the opposite, visible side of the stem and act in compression (Fig. 14.1i).
The design of such walls becomes economical for heights greater than 20 ft. They are not
popular because of the exposed buttresses.

6. Bridge abutments are retaining walls that are supported at the top by the bridge deck. The
wall may be assumed fixed at the base and simply supported at the top.

7. Basement walls resist earth pressure from one side of the wall and span vertically from the
basement-floor slab to the first-floor slab. The wall may be assumed fixed at the base and
simply supported or partially restrained at the top.
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14.3 FORCES ON RETAINING WALLS

Retaining walls are generally subjected to gravity loads and to earth pressure due to the retained
material on the wall. Gravity loads due to the weights of the materials are well defined and can be
calculated easily and directly. The magnitude and direction of the earth pressure on a retaining wall
depends on the type and condition of soil retained and on other factors and cannot be determined
as accurately as gravity loads. Several references on soil mechanics[1,2] explain the theories and
procedure for determining the soil pressure on retaining walls. The stability of retaining walls and
the effect of dynamic reaction on walls are discussed in Refs. 3 and 4.

Granular materials, such as sand, behave differently from cohesive materials, such as clay, or
from any combination of both types of soils. Although the pressure intensity of soil on a retaining
wall is complex, it is common to assume a linear pressure distribution on the wall. The pressure
intensity increases with depth linearly, and its value is a function of the height of the wall and the
weight and type of soil. The pressure intensity, p, at a depth h below the earth’s surface may be
calculated as follows:

p = C𝑤h (14.1)

where 𝑤 is the unit weight of soil and C is a coefficient that depends on the physical properties of
soil. The value of the coefficient C varies from 0.3 for loose granular soil, such as sand, to about
1.0 for cohesive soil, such as wet clay. If the retaining wall is assumed absolutely rigid, a case of
earth pressure at rest develops. Under soil pressure, the wall may deflect or move a small amount
from the earth, and active soil pressure develops, as shown in Fig. 14.2. If the wall moves toward
the soil, a passive soil pressure develops. Both the active and passive soil pressures are assumed to
vary linearly with the depth of the wall (Fig. 14.2). For dry, granular, noncohesive materials, the
assumed linear pressure diagram is fairly satisfactory; cohesive soils or saturated sands behave in
a different, nonlinear manner. Therefore, it is very common to use granular materials as backfill to
provide an approximately linear pressure diagram and also to provide for the release or drainage
of water from behind the wall.

For a linear pressure, the active and passive pressure intensities are determined as
follows:

Pa = Ca𝑤h (14.2)

Pp = Cp𝑤h (14.3)

Figure 14.2 Active and passive earth pressure.
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where Ca and Cp are the approximate coefficients of the active and passive pressures, res-
pectively.

14.4 ACTIVE AND PASSIVE SOIL PRESSURES

The two theories most commonly used in the calculation of earth pressure are those of Rankine and
Coulomb [1,6].

1. In Rankine’s approach, the retaining wall is assumed to yield a sufficient amount to develop a
state of plastic equilibrium in the soil mass at the wall surface. The rest of the soil remains in
the state of elastic equilibrium. The theory applies mainly to a homogeneous, incompressible,
cohesionless soil and neglects the friction between soil and wall. The active soil pressure at a
depth h on a retaining wall with a horizontal backfill based on Rankine’s theory is determined
as follows:

Pa = Ca𝑤h = 𝑤h

(
1 − sin 𝜙
1 + sin 𝜙

)
(14.4)

where

Ca =
(

1 − sin 𝜙
1 + sin 𝜙

)

𝜙 = angle of internal friction of the soil (Table 14.1)
and

Total active pressure, Ha = 𝑤h2

2

(
1 − sin 𝜙
1 + sin 𝜙

)
(14.5)

The resultant, Ha, acts at h/3 from the base (Fig. 14.2). When the earth is surcharged at an
angle 𝛿 to the horizontal, then

Ca = cos 𝛿

(
cos 𝛿 −

√
cos 2𝛿 − cos 2𝜙

cos 𝛿 +
√

cos 2𝛿 − cos 2𝜙

)

Pa = Ca𝑤h and Ha = Ca
𝑤h2

2
(14.6)

Table 14.1 Values of 𝑤 and 𝜙

Type of Backfill

Unit Weight, W
Angle of
Internal

Friction, 𝝓pcf kg/m3

Soft clay 90–120 1440–1920 0∘–15∘
Medium clay 100–120 1600–1920 15∘–30∘
Dry loose silt 100–120 1600–1920 27∘–30∘
Dry dense silt 110–120 1760–1920 30∘–35∘
Loose sand and gravel 100–130 1600–2100 30∘–40∘
Dense sand and gravel 120–130 1920–2100 25∘–35∘
Dry loose sand, graded 115–130 1840–2100 33∘–35∘
Dry dense sand, graded 120–130 1920–2100 42∘–46∘
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Reinforced concrete retaining wall.

Retaining wall in a parking area.
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Figure 14.3 Active soil pressure with surcharge.

Table 14.2 Values of Ca

𝝓 = Ca

𝜹 𝝓 = 28∘ 𝝓 = 30∘ 𝝓 = 32∘ 𝝓 = 34∘ 𝝓 = 36∘ 𝝓 = 38∘ 𝝓 = 40∘

0∘ 0.361 0.333 0.307 0.283 0.260 0.238 0.217
10∘ 0.380 0.350 0.321 0.294 0.270 0.246 0.225
20∘ 0.461 0.414 0.374 0.338 0.306 0.277 0.250
25∘ 0.573 0.494 0.434 0.385 0.343 0.307 0.275
30∘ 0 0.866 0.574 0.478 0.411 0.358 0.315

The resultant, Ha, acts at h/3 and is inclined at an angle 𝛿 to the horizontal (Fig. 14.3). The
values of Ca expressed by Eq. 14.6 for different values of 𝛿 and angle of internal friction 𝜙
are shown in Table 14.2.

Passive soil pressure develops when the retaining wall moves against and compresses the
soil. The passive soil pressure at a depth h on a retaining wall with horizontal backfill is
determined as follows:

Pp = Cp𝑤h = 𝑤h

(
1 + sin 𝜙
1 − sin 𝜙

)
(14.7)

where

Cp =
(

1 + sin 𝜙
1 − sin 𝜙

)
= 1

Ca

Total passive pressure is

Hp = 𝑤h2

2

(
1 + sin 𝜙
1 − sin 𝜙

)
(14.8)
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The resultant, Hp, acts at h′/3 from the base (Fig. 14.2). When the earth is surcharged at an
angle 𝛿 to the horizontal, then

Cp = cos 𝛿

(
cos 𝛿 +

√
cos2𝛿 − cos2𝜙

cos 𝛿 −
√

cos2𝛿 − cos2𝜙

)

Pp = Cp𝑤h and Hp = Cp
𝑤h2

2
(14.9)

In this case Hp acts at h′/3 and is inclined at an angle 𝛿 to the horizontal (Fig. 14.4). The
values of Cp expressed by Eq. 14.9 for different values of 𝛿 and 𝜙 are shown in Table 14.3.

The values of 𝜙 and 𝑤 vary with the type of backfill used. As a guide, common values of
𝜙 and 𝑤 are given in Table 14.1.

2. In Coulomb’s theory, the active soil pressure is assumed to be the result of the tendency of
a wedge of soil to slide against the surface of a retaining wall. Hence, Coulomb’s theory
is referred to as the wedge theory. While it takes into consideration the friction of the soil
on the retaining wall, it assumes that the surface of sliding is a plane, whereas in reality
it is slightly curved. The error in this assumption is negligible in calculating the active soil
pressure. Coulomb’s equations to calculate the active and passive soil pressure are as follows:

Figure 14.4 Passive soil pressure with surcharge.

Table 14.3 Values of Cp

𝝓 = Cp

𝜹 𝝓 = 28∘ 𝝓 = 30∘ 𝝓 = 32∘ 𝝓 = 34∘ 𝝓 = 36∘ 𝝓 = 38∘ 𝝓 = 40∘

0∘ 2.77 3.00 3.25 3.54 3.85 4.20 4.60
10∘ 2.55 2.78 3.02 3.30 3.60 3.94 4.32
20∘ 1.92 2.13 2.36 2.61 2.89 3.19 3.53
25∘ 1.43 1.66 1.90 2.14 2.40 2.68 3.00
30∘ 0 0.87 1.31 1.57 1.83 2.10 2.38
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The active soil pressure is
Pa = Ca𝑤h

where

Ca = cos 2(𝜙 − 𝜃)

cos 2 𝜃 cos(𝜃 + 𝛽)
⎡
⎢
⎢
⎣
1 +

√
sin (𝜙 + 𝛽) sin(𝜙 − 𝛿)
cos(𝜃 + 𝛽) cos(𝜃 − 𝛿)

⎤
⎥
⎥
⎦

2
(14.10a)

where
𝜙 = angle of internal friction of soil
𝜃 = angle of soil pressure surface from vertical
𝛽 = angle of friction along wall surface (angle between soil and concrete)
𝛿 = angle of surcharge to horizontal

The total active soil pressure is

Ha = Ca
𝑤h2

2
= pa

h
2

When the wall surface is vertical, 𝜃 = 0∘, and if 𝛽 = 𝛿, then Ca in Eq. 14.10a reduces to
Eq. 14.6 of Rankine.

Passive soil pressure is

Pp = Cp𝑤h′ and Hp =
(
𝑤h′ 2

2

)
Cp = Pp

h′

2

where

Cp = cos 2(𝜙 + 𝜃)

cos2 𝜃 cos (𝜃 − 𝛽)
⎡
⎢
⎢
⎣
1 −

√
sin (𝜙 + 𝛽) sin(𝜙 + 𝛿)
cos (𝜃 − 𝛽) cos(𝜙 − 𝛿)

⎤
⎥
⎥
⎦

2
(14.10b)

The values of 𝜙 and 𝑤 vary with the type of backfill used. As a guide, common values of 𝜙
and 𝑤 are given in Table 14.1.

3. When the soil is saturated, the pores of the permeable soil are filled with water, which exerts
hydrostatic pressure. In this case the buoyed unit weight of soil must be used. The buoyed
unit weight (or submerged unit weight) is a reduced unit weight of soil and equals 𝑤 minus
the weight of water displaced by the soil. The effect of the hydrostatic water pressure must be
included in the design of retaining walls subjected to a high water table and submerged soil.
The value of the angle of internal friction may be used, as shown in Table 14.1.

14.5 EFFECT OF SURCHARGE

Different types of loads are often imposed on the surface of the backfill behind a retaining wall. If
the load is uniform, an equivalent height of soil, hs, may be assumed acting on the wall to account for
the increased pressure. For the wall shown in Fig. 14.5, the horizontal pressure due to the surcharge
is constant throughout the depth of the retaining wall.

hs =
𝑤s

𝑤
(14.11)
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Figure 14.5 Surcharge effect under a uniform load.

where
hs = equivalent height of soil (ft)
𝑤s = pressure of the surcharge (psf)
𝑤 = unit weight of soil (pcf)

The total pressure is

Ha = Ha1 + Ha2 = Ca𝑤

(
h2

2
+ hhs

)
(14.12)

In the case of partial uniform load acting at a distance from the wall, only a portion of the
total surcharge pressure affects the wall (Fig. 14.6).

It is common practice to assume that the effective height of pressure due to partial surcharge
is h’, measured from point B to the base of the retaining wall [1]. The line AB forms an angle of
45∘ with the horizontal.

In the case of wheel load acting at a distance from the wall, the load is to be distributed over
a specific area, which is usually defined by known specifications such as AASHTO and AREA [4]
specifications.

Figure 14.6 Surcharge effect under a partial uniform load at a distance from the wall.
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14.6 FRICTION ON THE RETAINING WALL BASE

The horizontal component of all forces acting on a retaining wall tends to push the wall in a hori-
zontal direction. The retaining wall base must be wide enough to resist the sliding of the wall. The
coefficient of friction to be used is that of soil on concrete for coarse granular soils and the shear
strength of cohesive soils [4]. The coefficients of friction 𝜇 that may be adopted for different types
of soil are as follows:

• Coarse-grained soils without silt, 𝜇 = 0.55
• Coarse-grained soils with silt, 𝜇 = 0.45
• Silt, 𝜇 = 0.35
• Sound rock, 𝜇 = 0.60

The total frictional force, F, on the base to resist the sliding effect is

F = 𝜇R + Hp (14.13)

where
𝜇 = coefficient of friction
R = vertical force acting on base

Hp = passive resisting force

The factor of safety against sliding is

Factor of safety = F
Hah

=
𝜇R + Hp

Hah
≥ 1.5 (14.14)

where Hah is the horizontal component of the active pressure, Ha. The factor of safety against sliding
should not be less than 1.5 if the passive resistance Hp is neglected and should not be less than 2.0
if Hp is taken into consideration.

14.7 STABILITY AGAINST OVERTURNING

The horizontal component of the active pressure, Ha, tends to overturn the retaining wall about the
point zero on the toe (Fig. 14.7). The overturning moment is equal to M0 = Hah/3. The weight
of the concrete and soil tends to develop a balancing moment, or righting moment, to resist the
overturning moment. The balancing moment for the case of the wall shown in Fig. 14.7 is equal to

Mb = 𝑤1x1 +𝑤2x2 +𝑤3x3 =
∑

𝑤x

The factor of safety against overturning is

Mb

M0
=

∑
𝑤x

Hah∕3
≥ 2.0 (14.15)

This factor of safety should not be less than 2.0.
The resultant of all forces acting on the retaining wall, RA, intersects the base at point C

(Fig. 14.7). In general, point C does not coincide with the center of the base, L, thus causing
eccentric loading on the footing. It is desirable to keep point C within the middle third to get the
whole footing under soil pressure. (The case of a footing under eccentric load was discussed in
Chapter 13.)
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Figure 14.7 Overturning of a cantilever retaining wall.

14.8 PROPORTIONS OF RETAINING WALLS

The design of a retaining wall begins with a trial section and approximate dimensions. The assumed
section is then checked for stability and structural adequacy. The following rules may be used to
determine the approximate sizes of the different parts of a cantilever retaining wall.

1. Height of Wall. The overall height of the wall is equal to the difference in elevation required
plus 3 to 4 ft, which is the estimated frost penetration depth in northern states.

2. Thickness of Stem. The intensity of the pressure increases with the depth of the stem and
reaches its maximum value at the base level. Consequently the maximum bending moment
and shear in the stem occur at its base. The stem base thickness may be estimated as 1

12
to 1

10
of the height h. The thickness at the top of the stem may be assumed to be 8 to 12 in. Because
retaining walls are designed for active earth pressure, causing a small deflection of the wall,
it is advisable to provide the face of the wall with a batter (taper) of 1

4
in. per foot of height, h,

to compensate for the forward deflection. For short walls up to 10 ft high, a constant thickness
may be adopted.

3. Length of Base. An initial estimate for the length of the base of 2
5

to 2
3

of the wall height, h,
may be adopted.
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Figure 14.8 Trial proportions of a cantilever retaining wall.

4. Thickness of Base. The base thickness below the stem is estimated as the same thickness of
the stem at its base, that is, 1

12
to 1

10
of the wall height. A minimum thickness of about 12 in.

is recommended. The wall base may be of uniform thickness or tapered to the ends of the toe
and heel, where the bending moment is 0.

The approximate initial proportions of a cantilever retaining wall are shown in Fig. 14.8.

14.9 DESIGN REQUIREMENTS

The ACI Code, Chapter 11, provides methods for bearing wall design. The main requirements are
as follows:

1. The minimum thickness of bearing walls is 1
25

the supported height or length, whichever is
shorter, but not less than 4 in.

2. The minimum area of the horizontal reinforcement in the wall is 0.0025bh, where bh is the
gross concrete wall area. This value may be reduced to 0.0020bh if no. 5 or smaller deformed
bars with fy ≥ 60 ksi are used. For welded wire fabric (plain or deformed), the minimum steel
area is 0.0020bh.

3. The minimum area of the vertical reinforcement is 0.0015bh, but it may be reduced to
0.0012bh if no. 5 or smaller deformed bars with fy ≥ 60 ksi are used. For welded wire fabric
(plain or deformed), the minimum steel area is 0.0012bh.

4. The maximum spacing of the vertical or the horizontal reinforcing bars is the smaller of 18 in.
or three times the wall thickness.

5. If the wall thickness exceeds 10 in., the vertical and horizontal reinforcement should be placed
in two layers parallel to the exterior and interior wall surfaces, as follows:

For exterior wall surfaces, at least 1
2

of the reinforcement As (but not more than 2
3
As) should

have a minimum concrete cover of 2 in. but not more than 1
3

of the wall thickness. This is because
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the exterior surface of the wall is normally exposed to different weather conditions and temperature
changes.

For interior wall surfaces, the balance of the required reinforcement in each direction should
have a minimum concrete cover of 3

4
in. but not more than 1

3
of the wall thickness.

The minimum steel area in the wall footing (heel or toe), according to the ACI Code,
Section 7.6.1, is that required for shrinkage and temperature reinforcement, which is 0.0018bh
when fy = 60 ksi and 0.0020bh when fy = 40 ksi or 50 ksi. Because this minimum steel area
is relatively small, it is a common practice to increase it to that minimum As required for
flexure:

As,min =

(
3
√

f ′c
fy

)

bd ≥

(
200
fy

)
bd (14.16)

14.10 DRAINAGE

The earth pressure discussed in the previous sections does not include any hydrostatic pressure. If
water accumulates behind the retaining wall, the water pressure must be included in the design.
Surface or underground water may seep into the backfill and develop the case of submerged soil.
To avoid hydrostatic pressure, drainage should be provided behind the wall. If well-drained cohe-
sionless soil is used as a backfill, the wall can be designed for earth pressure only. The drainage
system may consist of one or a combination of the following:

1. Weep holes in the retaining wall of 4 in. or more in diameter and spaced about 5 ft on centers
horizontally and vertically (Fig. 14.9a).

2. Perforated pipe 8 in. in diameter laid along the base of the wall and surrounded by gravel
(Fig. 14.9b).

3. Blanketing or paving the surface of the backfill with asphalt to prevent seepage of water from
the surface.

4. Any other method to drain surface water.

Figure 14.9 Drainage systems.
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Example 14.1

The trial section of a semigravity plain concrete retaining wall is shown in Fig. 14.10. It is required to
check the safety of the wall against overturning, sliding, and bearing pressure under the footing.

Given: Weight of backfill is 110 pcf, angle of internal friction is 𝜙 = 35∘, coefficient of friction
between concrete and soil is 𝜇 = 0.5, allowable soil pressure is 2.5 ksf, and f ′c = 3 ksi.

Figure 14.10 Example 14.1.



504 Chapter 14 Retaining Walls

Solution

1. Using the Rankine equation,

Ca = 1 − sin𝜙sin𝜙
1 + sin 𝜙

= 1 − 0.574
1 + 0.574

= 0.271

The passive pressure on the toe is that for a height of 1 ft, which is small and can be neglected.

Ha =
Ca𝑤h2

2
= 0.271

2
(110)(11)2 = 1804 lb

and Ha acts at a distance h∕3 = 11
3
= 3.67 ft from the bottom of the base.

2. The overturning moment is M0 = 1.804 × 3.67 = 6.62 K⋅ft.
3. Calculate the balancing moment, Mb, taken about the toe end 0 (Fig. 14.10):

Weight (lb) Arm (ft) Moment (K⋅ft)

𝑤1 = 1 × 10 × 145 = 1450 1.25 1.81
𝑤2 = 1

2
× 2.5 × 10 × 145 = 1812 2.60 4.71

𝑤3 = 5.25 × 1 × 145 = 725 2.625 2.00
𝑤4 = 1

2
× 2.5 × 10 × 110 = 1375 3.42 4.70

𝑤5 = 12
12

× 10 × 110 = 1100 4.75 5.22

∑
𝑤 = R = 6.50 K Mb =

∑
M = 18.44 K ⋅ ft

4. The factor of safety against overturning is 18.44/6.62 = 2.78 > 2.0.
5. The force resisting sliding, F = 𝜇 R, is F = 0.5(6.50) = 3.25 K. The factor of safety against sliding

is F/Ha = 3.25/1.804 = 1.8 > 1.5.
6. Calculate the soil pressure under the base:

a. The distance of the resultant from toe end 0 is

x =
Mb − M0

R
= 18.44 − 6.62

6.50
= 1.82 ft

The eccentricity is e = 2.62 − 1.82 = 0.80 ft. The resultant R acts just inside the middle
third of the base and has an eccentricity of e = 0.8 ft from the center of the base (Fig. 14.10).
For a 1-ft length of the footing, the effective width of footing is 5.25 ft.

b. The moment of inertia is I = 1.0(5.25)3/12 = 12.1 ft4. Area = 5.25 ft2.
c. The soil pressures at the two extreme ends of the footing are q1, q2 = R/A ± Mc/I. The moment

M is Re = 6.50(0.8) = 5.2 K⋅ft; c = 2.62 ft.

q1 = 6.50
5.25

+ 5.2(2.62)
12.1

= 1.24 + 1.12 = 2.36 ksf

q2 = 1.24 − 1.12 = 0.12 ksf

7. Check the bending stress in concrete at point A of the toe.
a. Soil pressure at A (from geometry) is

qA = 0.12 +
( 4.5

5.25

)
(2.36 − 0.12) = 2.04 ksf

b. Let MA be is calculated at A due to a rectangular stress and a triangular stress.

MA = 2.04(0.75)2

2
+ (0.32 × 0.75 × 0.5)

(
0.75 × 2

3

)

= 0.63 K ⋅ ft
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c. The flexural stress in concrete is
Mc
I

= 0.63(12, 000)(6)
1728

= 26 psi

where c = h/2 = 12
2
= 6 in. and I = 12(12)3/12 = 1728 in.4

d. The modulus of rupture of concrete is 7.5𝜆
√

f ′c = 410 psi > 26 psi. The factor of safety against
cracking is 410/26 = 16. Therefore, the section is adequate. No other sections need to be
checked.

Example 14.2
Design a cantilever retaining wall to support a bank of earth 16.5 ft high. The top of the earth is to be level
with a surcharge of 330 psf. Given: The weight of the backfill is 110 pcf, the angle of internal friction
is 𝜙 = 35∘, the coefficient of friction between concrete and soil is 𝜇 = 0.5, the coefficient of friction
between soil layers is 𝜇 = 0.7, allowable soil bearing capacity is 4 ksf, f ′c = 3 ksi, and fy = 60 ksi.

Solution

1. Determine the dimensions of the retaining wall using the approximate relationships shown in
Fig. 14.8.
a. Height of wall: Allowing 3 ft for frost penetration to the bottom of the footing in front of the

wall, the height of the wall becomes h = 16.5 + 3 = 19.5 ft.
b. Base thickness: Assume base thickness is 0.08h = 0.08 × 19.5 = 1.56 ft, or 1.5 ft. The height

of the stem is 19.5 − 1.5 = 18 ft.
c. Base length: The base length varies between 0.4h and 0.67h. Assuming an average value of

0.53h, the base length equals 0.53 × 19.5 = 10.3 ft, say, 10.5 ft. The projection of the base in
front of the stem varies between 0.17h and 0.125h. Assume a projection of 0.17h = 0.17 ×
19.5 = 3.3 ft, say, 3.5 ft.

d. Stem thickness: The maximum stem thickness is at the bottom of the wall and varies between
0.08h and 0.1h. Choose a maximum stem thickness equal to that of the base, or 1.5 ft. Select a
practical minimum thickness of the stem at the top of the wall of 1.0 ft. The minimum batter of
the face of the wall is 1

4
in.∕ft. For an 18-ft-high wall, the minimum batter is 1

4
× 18 = 4.5 in.,

which is less than the 1.5 − 1.0 = 0.5 ft (6 in.) provided. The trial dimensions of the wall are
shown in Fig. 14.11.

2. Using the Rankine equation:

Ca = 1 − sin 𝜙
1 + sin 𝜙

= 1 − 0.574
1 + 0.574

= 0.271

3. The factor of safety against overturning can be determined as follows:
a. Calculate the actual unfactored forces acting on the retaining wall. First, find those acting to

overturn the wall:

hs(due to surcharge) =
𝑤s

𝑤
= 330

110
= 3 ft

p1 = Ca𝑤hs = 0.271 × (110 × 3) = 90 psf

p2 = Ca𝑤h = 0.271 × (110 × 19.5) = 581 psf

Ha1
= 90 × 19.5 = 1755 lb Arm = 19.5

2
= 9.75 ft

Ha2
= 12 × 581 × 19.5 = 5665 lb Arm = 19.5

3
= 6.5 ft



506 Chapter 14 Retaining Walls

330 psf

Frost line

1′0″

18′0″

16′6″

1′6″

1′6″

3′6″

1′6″

10′6″

5´6″

Figure 14.11 Example 14.2: Trial configuration of retaining wall.

b. The overturning moment is 1.755 × 9.75 + 5.665 × 6.5 = 53.93 K⋅ft.
c. Calculate the balancing moment against overturning (see Fig. 14.12):

Force (lb) Arm (ft) Moment (K⋅ft)

𝑤1 = 1 × 18 × 150 = 2,700 4.50 12.15
𝑤2 = 1

2
× 18 × 1

2
× 150 = 675 3.83 2.59

𝑤3 = 10.5 × 1.5 × 150 = 2,363 5.25 12.41
𝑤4 = 5.5 × 21 × 110 = 12,705 7.75 98.46

∑
𝑤 = R = 18.44 K

∑
M = 125.61 K ⋅ ft

Factor of safety against overturning = 125.61
53.93

= 2.33 > 2.0

4. Calculate the base soil pressure. Take moments about the toe end 0 (Fig. 14.12) to determine the
location of the resultant R of the vertical forces.

x =
∑

M −
∑

Hy

R
=

balancing M − overturning M

R

= 125.61 − 53.93
18.44

= 3.89 ft >
10.5

3
or 3.5 ft

The eccentricity is e = 10.5/2 − 3.89 = 1.36 ft. The resultant R acts within the middle third of
the base and has an eccentricity of e = 1.36 ft from the center of the base. For a 1-ft length of the
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Figure 14.12 Example 14.2: Forces acting on retaining wall.

footing, area = 10.5 × 1 = 10.5 ft2.

I = 1 × (10.5)3

12
= 96.47ft4

q1 = R
A
+ (Re)C

I
= 18.44

10.5
+ (18.44 × 1.36) × 5.25

96.47

= 1.76 + 1.37 = 3.13 ksf < 4 ksf

q2 = 1.76 − 1.37 = 0.39 ksf

Soil pressure is adequate.
5. Calculate the factor of safety against sliding. A minimum factor of safety of 1.5 must be

maintained.

Force causing sliding = Ha1 + Ha2 = 1.76 + 5.67 = 7.43 K

Resisting force = 𝜇R = 0.5 × 18.44 = 9.22 K

Factor of safety against sliding = 9.22
7.43

= 1.24 < 1.5

The resistance provided does not give an adequate safety against sliding. In this case, a key
should be provided to develop a passive pressure large enough to resist the excess force that causes
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Figure 14.13 Example 14.3: Footing details.

sliding. Another function of the key is to provide sufficient development length for the dowels of
the stem. The key is therefore placed such that its face is about 6 in. from the back face of the stem
(Fig. 14.13). In the calculation of the passive pressure, the top foot of the earth at the toe side is
usually neglected, leaving a height of 2 ft in this example. Assume a key depth of t = 1.5 ft and a
width of b = 1.5 ft.

Cp = 1 + sin 𝜙
1 − sin 𝜙

= 1
Ca

= 1
0.271

= 3.69

Hp = 1
2

Cp𝑤(h′ + t)2 = 1
2
× 3.69 × 110(2 + 1.5)2 = 2486 lb

The sliding may occur now on the surfaces AC, CD, and EF (Fig. 14.13). The sliding surface
AC lies within the soil layers with a coefficient of internal friction= tan𝜙= tan 35∘ = 0.7, whereas
the surfaces CD and EF are those between concrete and soil with a coefficient of internal friction
of 0.5, as given in this example. The frictional resistance is F = 𝜇1R1 + 𝜇2R2.

R1 = reaction of AC =
(3.13 + 1.96

2

)
× 4.5 = 11.44 K

R2 = R − R1 = 18.44 − 11.44 = 7.0 K

= reaction of CDF =
(1.96 + 0.39

2

)
× 6 = 7.05 K

F = 0.7(11.44) + 0.5(7.00) = 11.50 K
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The total resisting force is

F + Hp = 11.50 + 2.49 = 13.99 K

The factor of safety against sliding is

13.99
7.43

= 1.9 or
11.5
7.43

= 1.55 > 1.5

The factor is greater than 1.5, which is recommended when passive resistance against sliding
is not included.

6. Design the wall (stem).
a. Main reinforcement: The lateral forces applied to the wall are calculated using a load factor

of 1.6. The critical section for bending moment is at the bottom of the wall, height = 18 ft.
Calculate the applied maximum forces:

P1 = 1.6(Ca𝑤hs) = 1.6(0.271 × 110 × 3) = 143 lb

P2 = 1.6(Ca𝑤h) = 1.6(0.271 × 110 × 18) = 858.3 lb

Ha1 = 0.143 × 18 = 2.57 K Arm = 18
2

= 9 ft

Ha2 = 1
2
× 0.858 × 18 = 7.72 K Arm = 18

3
= 6 ft

Mu(at bottom of wall) = 2.57 × 9 + 7.72 × 6 = 69.45 K ⋅ ft

The total depth used is 18 in., b = 12 in., and d = 18 − 2 (concrete cover) −0.5 (half the bar
diameter) = 15.5 in.

Ru =
Mu

bd2
= 69.45 × 12, 000

12(15.5)2
= 289 psi

The steel ratio, 𝜌, can be obtained from Table 1 in Appendix A or from

𝜌 =
0.85 f ′c

fy

⎡
⎢
⎢
⎣
1 −

√
2Ru

𝜙0.85 f ′c

⎤
⎥
⎥
⎦
= 0.007

As = 0.007(12)(15.5) = 1.3 in.2

Use no. 8 bars spaced at 7 in. (1.35 in.2). The minimum vertical As according to the ACI
Code, Section 11.6, is

As,min = 0.0015(12)(18) = 0.32 in.2 < 1.35 in.2

Because the moment decreases along the height of the wall, As may be reduced according
to the moment requirements. It is practical to use one As or spacing, for the lower half and a
second As, or spacing, for the upper half of the wall. To calculate the moment at midheight of
the wall, 9 ft from the top:

P1 = 1.6(0.271 × 110 × 3) = 143 lb

P2 = 1.6(0.271 × 110 × 9) = 429 lb

Ha1
= 0.143 × 9 = 1.29 K Arm = 9

2
= 4.5 ft

Ha2
= 1

2
× 0.429 × 9 = 1.9 K Arm = 9

3
= 3 ft

Mu = 1.29 × 4.5 + 1.9 × 3 = 11.5 K ⋅ ft
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The total depth at midheight of wall is

12 + 18
2

= 15 in.

d = 15 − 2 − 0.5 = 12.5 in.

Ru =
Mu

bd2
= 11.5 × 12, 000

12 × (12.5)2
= 73.6 psi

𝜌 = 0.0017 and As = 0.0017(12)(12.5) = 0.25 in.2

As,min = 0.0015 × 12 × 15 = 0.27 in.2 > 0.25 in.2

Use no. 4 vertical bars spaced at 8 in. (0.29 in.2) with similar spacing to the lower vertical
steel bars in the wall.

b. Temperature and shrinkage reinforcement: The minimum horizontal reinforcement at the base
of the wall according to ACI Code, Section 11.6, is

As,min = 0.0020 × 12 × 18 = 0.432 in.2

(for the bottom third), assuming no. 5 bars or smaller.

As,min = 0.0020 × 12 × 15 = 0.36 in.2

(for the upper two-thirds). Because the front face of the wall is mostly exposed to temperature
changes, use one-half to two-thirds of the horizontal bars at the external face of the wall and
place the balance at the internal face.

0.5As = 0.5 × 0.432 = 0.22 in.2

Use no. 4 horizontal bars spaced at 8 in. (As = 0.29 in.2) at both the internal and external
surfaces of the wall. Use no. 4 vertical bars spaced at 12 in. at the front face of the wall to
support the horizontal temperature and shrinkage reinforcement.

c. Dowels for the wall vertical bars: The anchorage length of no. 8 bars into the footing
must be at least 22 in. Use an embedment length of 2 ft into the footing and the key below
the stem.

d. Design for shear: The critical section for shear is at a distance d = 15.5 in. from the
bottom of the stem. At this section, the distance from the top equals 18 − 15.5/12
= 16.7 ft.

P1 = 1.6(0.271 × 110 × 3) = 143 lb

P2 = 1.6(0.271 × 110 × 16.7) = 796 lb

Ha1
= 0.143 × 16.7 = 2.39 K

Ha2
= 1

2
× 0.796 × 16.7 = 6.6 K

Total H = 2.39 + 6.6 = 9.0 K

𝜙Vc = 𝜙(2𝜆
√

f ′c )bd = 0.75 × 2 × 1
1000

×
√

3000 × 12 × 15.5

= 15.28 K > 9.0K

7. Design of the heel: A load factor of 1.2 is used to calculate the factored bending moment and
shearing force due to the backfill and concrete, whereas a load factor of 1.6 is used for the sur-
charge. The upward soil pressure is neglected because it will reduce the effect of the backfill and
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concrete on the heel. Referring to Fig. 14.12, the total load on the heel is

Vu = 1.2[(18 × 5.5 × 110) + (1.5 × 5.5 × 150)] + 1.6(3 × 5.5 × 100)
1000

= 17.5 K

Mu(at face of wall) = Vu ×
5.5
2

= 48.1 K ⋅ ft

The critical section for shear is usually at a distance d from the face of the wall when the
reaction introduces compression into the end region of the member. In this case, the critical section
will be considered at the face of the wall because tension and not compression develops in the
concrete.

Vu = 17.2 K

𝜙Vc = 𝜙(2𝜆
√

f ′c )bd = 0.75 × 2 × 1
1000

×
√

3000 × 12 × 14.5

= 14.3 K

where 𝜙Vc is less than Vu of 17.2 K, and the section must be increased by the ratio 17.5/14.3 or
shear reinforcement must be provided.

Required d = 17.2
14.3

× 14.5 = 17.4 in.

Total thickness required = 17.4 + 3.5 = 20.9 in.

Use a base thickness of 22 in. and d = 18.5 in.

Ru =
Mu

bd2
= 48.1 × 12, 000

12 × (18.5)2
= 140.5 psi 𝜌 = 0.0027

As = 𝜌bd = 0.60 in2

Min. shrinkage As = 0.0018(12)(22) = 0.475 in.2

Min. flexural As = 0.0033(12)(18.5) = 0.733 in.2

Use no. 6 bars spaced at 7 in. (As = 0.76 in.2). The development length for the no. 6
top bars equals 1.4 ld = 35 in. Therefore, the bars must be extended 3 ft into the toe of the
base.

Temperature and shrinkage reinforcement in the longitudinal direction is not needed in the heel
or toe, but it may be preferable to use minimal amounts of reinforcement in that direction, say,
no. 4 bars spaced at 12 in.

8. Design of the toe: The toe of the base acts as a cantilever beam subjected to upward pressures,
as calculated in step 4. The factored soil pressure is obtained by multiplying the service load soil
pressure by a load factor of 1.6 because it is primarily caused by the lateral forces. The critical
section for the bending moment is at the front face of the stem. The critical section for shear is at a
distance d from the front face of the stem because the reaction in the direction of shear introduces
compression into the toe.

Referring to Fig. 14.13, the toe is subjected to an upward pressure from the soil and downward
pressure due to self-weight of the toe slab:

Vu = 1.6
(3.13 + 2.62

2

)
× 1.96 − 1.2

(22
12

× 0.150
)
× 1.96

= 837 K
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No. 4 @ 8″ No. 4 @ 8″

No. 4 @ 8″

No. 8 @ 7″

No. 6 @ 7″

No. 4 @ 12″

No. 4 @ 12″

No. 6 @ 7″

2 no. 5

No. 4 @ 12″

No. 4 @ 12″

Figure 14.14 Example 14.2: Reinforcement details.

This is less than 𝜙Vc of 14.3 K calculated for the heel in step 7.

Mu = 1.6
[2.22

2
× (3.5)2 + (3.13 − 2.22) × 3.5 × 0.5

(2
3
× 3.5

)]

− 1.2

[(22
12

× 0.150
)
× (3.5)2

2

]
= 25.7 K ⋅ ft

Ru =
Mu

bd2
= 25.7 × 12, 000

12 × (18.5)2
= 75 psi 𝜌 = 0.0017

As = 0.0017(12)(18.5) = 0.377 in.2

Min. shrinkage As = 0.0018(12)(22) = 0.475 in.2

Min. flexural As = 0.0033(12)(18.5) = 0.733 in.2

Use no. 6 bars spaced at 7 in., similar to the heel reinforcement. Development length of no. 6
bars equals 25 in. Extend the bars into the heel 25 in. The final reinforcement details are shown in
Fig. 14.14.
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Figure 14.15 Example 14.2: Keyway details.

9. Shear keyway between wall and footing: In the construction of retaining walls, the footing is cast
first and then the wall is cast on top of the footing at a later date. A construction joint is used at the
base of the wall. The joint surface takes the form of a keyway, as shown in Fig. 14.15, or is left in
a very rough condition (Fig. 14.14). The joint must be capable of transmitting the stem shear into
the footing.

10. Proper drainage of the backfill is essential in this design because the earth pressure used is for
drained backfill. Weep holes should be provided in the wall, 4 in. in diameter and spaced at 5 ft in
the horizontal and vertical directions.

14.11 BASEMENT WALLS

It is a common practice to assume that basement walls span vertically between the basement-floor
slab and the first-floor slab. Two possible cases of design should be investigated for a
basement wall.

First, when the wall only has been built on top of the basement floor slab, the wall will be
subjected to lateral earth pressure with no vertical loads except its own weight. The wall in this case
acts as a cantilever, and adequate reinforcement should be provided for a cantilever wall design.
This case can be avoided by installing the basement and the first-floor slabs before backfilling
against the wall.

Second, when the first-floor and the other floor slabs have been constructed and the building
is fully loaded, the wall in this case will be designed as a propped cantilever wall subjected to earth
pressure and to vertical load.

In addition to drainage, a waterproofing or damp-proofing membrane must be laid or applied
to the external face of the wall. The ACI Code, Section 11.3.1.1, specifies that the minimum thick-
ness of an exterior basement wall and its foundation is 7.5 in. In general, the minimum thickness
of bearing walls is 1

25
of the supported height or length, whichever is shorter, or 4 in.
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Basement wall.

Example 14.3

Determine the thickness and necessary reinforcement for the basement retaining wall shown in
Fig. 14.16. Given: Weight of backfill = 110 pcf, angle of internal friction = 35∘, f ′c = 3 ksi, and fy =
60 ksi.

Solution

1. The wall spans vertically and will be considered as fixed at the bottom end and propped at the top.
Consider a span of L = 9.75 ft, (10 – 3/12 = 9.75 ft) as shown in Fig. 14.16.

2. For these data, the different lateral pressures on a 1-ft length of the wall are as follows:
For an angle of internal friction of 35∘, the coefficient of active pressure is Ca = 0.271. The

horizontal earth pressure at the base is Pa = Cawh. For 𝑤 = 110 pcf and an basement height of
h = 10 ft, then

Pa = 0.271 × 0.110 × 10 = 0.3 ksf

Ha = 0.271 × 0.110 × 100
2

= 1.49 K∕ft of wall

Ha acts at h/3 = 10/3 = 3.33 ft from the base. An additional pressure must be added to allow
for a surcharge of about 200 psf on the ground behind the wall. The equivalent height to the
surcharge is

hs =
200
110

= 1.82 ft
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No. 4 @ 12″

No. 4 @ 12″

No. 4 @ 12″

No. 4 @ 10″

No. 5 @ 10″

Uniform
load

Triangular
load

B B B

W

W

A A A

Ha =
1.49 K

W = Total load

+

Hw =
1.56 K

Hs =
1.54 K

RB = 1.30 K

MA = wL/7.5MA = wL/8
RA = 4.44 K

+ 3.17 K ∙ ft

– 7.40 K ∙ ft0.054 ksf0.31 ksf0.30 ksf

4.3′

9.75′ 10′

5′

10/3′

7.6′ C

Figure 14.16 Example 14.3: Basement wall.

Ps = Ca𝑤hs = 0.271 × 0.110 × 1.82 = 0.054 ksf

Hs = Ca𝑤hs × h = 0.054 × 10 = 0.54 K∕ft of wall

Hs of the surcharge acts at h∕2 = 5 ft from the base

In the preceding calculations, it is assumed that the backfill is dry, but it is necessary to inves-
tigate the presence of water pressure behind the wall. The maximum water pressure occurs when
the whole height of the basement wall is subjected to water pressure, and

P𝑤 = 𝑤h = 62.5 × 10 = 625 psf

H𝑤 = 𝑤h2

2
= 0.625 × 102

2
= 3.125 K∕ft of wall
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The maximum pressure may not be present continuously behind the wall. Therefore, if the
ground is intermittently wet, a percentage of the preceding pressure may be adopted, say, 50%:

In summary: Due to active soil pressure, Pa = 0.30 ksf, Ha = 1.49 K. Due to water pressure,
P𝑤 = 0.31 ksf, H𝑤 = 1.56 K. Due to surcharge, Ps = 0.054 ksf, Hs = 0.54 K. Ha and H𝑤 are due to
triangular loadings, whereas HS is due to uniform loading. 10 ft are used to calculate Ha, H𝑤 and
HS as the applied pressure over entire wall without the base. Pressure calculation is shown above.

3. Referring to Fig. 14.16 and using moment coefficients of a propped beam subjected to triangular
and uniform loads, and a load factor = 1.6, the maximum moment Mu at A can be calculated from:

Mu = 1.6(Ha + H𝑤)
L

7.5
+ 1.6Hs

L
8

= 1.6

(
(1.49 + 1.56)

7.5
× 9.75 + 0.54 × 9.75

8

)
= 7.40 K ⋅ ft

RB(9.75) = 1.6

(
(1.49 + 1.56) (9.75)

3
+ 0.54(9.75)

2

)
− 7.40

RB = 1.30 K

RA = 1.6(1.49 + 1.56 + 0.54) − 1.30 = 4.44 K

Maximum positive bending moment within the span occurs at the section of 0 shear. Assume
x from the top roof of the basement wall:

Vu = 1.3 − 1.6(0.054x) − 1.6

(
(0.30 + 0.31) x2

2

)
= 0

x = 4.3 ft

Mc = 1.3 × 4.3 − 1.6

[
0.054

2
(10 − 9.75 + 4.3)2

+
[
(0.31 + 0.30) (10 − 9.75 + 4.3)∕10

]

2
(10 − 9.75 + 4.3)2

3

]

= +3.17 K ⋅ ft

4. Assuming 0.01 steel ratio and one feet strip, Ru = 332 psi,

d =

√
Mu

Rub
=
√

7.40 × 12
0.332 × 12

= 4.72 in.

Total depth = 4.72 + 1.5 (concrete cover) + 0.25 = 6.47 in. Use a 7 1
2

in. slab; d = 5.75 in.

Ru =
Mu

bd2
= 7.40 × 12, 000

12 × (5.75)2
= 224 psi

The steel ratio is 𝜌 = 0.005 and As = 0.005 × 12 × 5.75 = 0.345 in.2

Minimum As = 0.0015bh = 0.0015(12)(7.5) = 0.135 in.2 (vertical bars)

Minimum As(flexure) = 0.0033(12)(5.75) = 0.23 in.2

Use no. 5 bars spaced at 10 in. (As = 0.37 in.2).
5. For the positive moment, Mc = +3.17 K⋅ft:

Ru = 3.17 × 12, 000
12 × (5.75)2

= 96 psi 𝜌 = 0.0018

As = 0.0018 × 12 × 5.75 = 0.125 in.2 < 0.23 in.2

Use no. 4 bars spaced at 10 in. (As = 0.24 in2).
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Figure 14.17 Example 14.3: Adjustment of wall base.

6. Zero moment occurs at a distance of 7.6 ft from the top and 2.15 ft from the base. The development
length of no. 5 bars is 14 in. Therefore, extend the main no. 5 bars to a distance of 2.15 + 1.2 =
3.35 ft, or 3.5 ft, above the base; then use no. 4 bars spaced at 12 in. at the exterior face. For the
interior face, use no. 4 bars spaced at 10 in. throughout.

7. Longitudinal reinforcement: Use a minimum steel ratio of 0.0020 (ACI Code, Section 11.6), or
As = 0.0020 × 7 × 12 = 0.17 in2. Use no. 4 bars spaced at 12 in. on each side of the wall.

8. If the bending moment at the base of the wall is quite high, it may require a thick wall slab, for
example, 12 in. or more. In this case a haunch may be adopted, as shown in Fig. 14.17. This
solution will reduce the thickness of the wall because it will be designed for the moment at the
section exactly above the haunch.

9. The basement slab may have a thickness greater than the wall thickness and may be extended
outside the wall by about 10 in. or more, as required.

SUMMARY

Sections 14.1–14.3

1. A retaining wall maintains unequal levels of earth on its two faces. The most common types
of retaining walls are gravity, semigravity, cantilever, counterfort, buttressed, and basement
walls.

2. For a linear pressure, the active and passive pressure intensities are

Pa = Ca𝑤h and Pp = Cp𝑤h

According to Rankine’s theory,

Ca = 1 − sin 𝜙
1 + sin 𝜙

and Cp = 1 + sin𝜙sin𝜙
1 − sin𝜙sin𝜙

Values of Ca and Cp for different values of 𝜙 and 𝛿 are given in Tables 14.2 and 14.3.

Sections 14.4 and 14.5

1. When soil is saturated, the submerged unit weight must be used to calculate earth pressure.
The hydrostatic water pressure must also be considered.

2. A uniform surcharge on a retaining wall causes an additional pressure height, hs = 𝑤s/𝑤.
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Sections 14.6–14.8

1. A total frictional force, F, to resist sliding effect is

F = 𝜇R + Hp (Eq. 14.13)

Factor of safety against sliding = F
Hah

≥ 1.5 (Eq. 14.14)

2. Factor of safety against overturning is

Mb

M0
=

∑
𝑤x

Hah∕3
≥ 2.0

3. Approximate dimensions of a cantilever retaining wall are shown in Fig. 14.8.

Sections 14.9 and 14.10

1. Minimum reinforcement is needed in retaining walls.
2. To avoid hydrostatic pressure on a retaining wall, a drainage system should be used that con-

sists of weep holes, perforated pipe, or any other adequate device.
3. Basement walls in buildings may be designed as propped cantilever walls subjected to earth

pressure and vertical loads. This case occurs only if the first-floor slab has been constructed.
A surcharge of 200 psf may be adopted.
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P R O B L E M S

14.1 Check the adequacy of the retaining wall shown in Fig. 14.18 with regard to overturning, sliding,
and the allowable soil pressure. Given: Weight of backfill = 110 pcf, the angle of internal friction is
𝜙 = 30∘, the coefficient of friction between concrete and soil is 𝜇 = 0.5, allowable soil pressure =
3.5 ksf, and f ′c = 3 ksi.

14.2 Repeat Problem 14.1 with Fig. 14.19.



Problems 519

Figure 14.18 Problem 14.1: Gravity wall.

Figure 14.19 Problem 14.2: Semigravity wall.

14.3 For each problem in Table 14.4, determine the factor of safety against overturning and sliding. Also,
determine the soil pressure under the wall footing and check if all calculated values are adequate (equal
or below the allowable values). Given: Weight of soil = 110 pcf, weight of concrete = 150 pcf, and the
coefficient of friction between concrete and soil is 0.5 and between soil layers is 0.6. Consider that the
allowable soil pressure of 4 ksf and the top of the backfill is level without surcharge. Ignore the passive
soil resistance. See Fig. 14.20 (𝜙 = 35∘).

14.4 Repeat Problems 14.3e–h, assuming a surcharge of 300 psf.
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Table 14.4 Problem

Problem No. H hf A B C L

a 12 1.00 2.0 1.0 4.0 7
b 14 1.50 2.0 1.5 4.5 8
c 15 1.50 2.0 1.5 4.5 8
d 16 1.50 3.0 1.5 4.5 9
e 17 1.50 3.0 1.5 4.5 9
f 18 1.75 3.0 1.75 5.25 10
g 19 1.75 3.0 1.75 5.25 10
h 20 2.00 3.0 2.0 6.0 11
i 21 2.00 3.5 2.0 6.5 12
j 22 2.00 3.5 2.0 6.5 12

Refer to Fig. 14.20. All dimensions are in feet.

Figure 14.20 Problem 14.3.

14.5 Repeat Problems 14.3e–h, assuming that the backfill slopes at 10∘ to the horizontal. (Add key if needed.)
14.6 For Problems 14.3e–h, determine the reinforcement required for the stem, heel, and toe, and choose

adequate bars and distribution. Use f ′c = 3 ksi and fy = 60 ksi.
14.7 Determine the dimensions of a cantilever retaining wall to support a bank of earth 16 ft high. Assume

that frost penetration depth is 4 ft. Check the safety of the retaining wall against overturning and slid-
ing only. Given: Weight of backfill = 120 pcf, angle of internal friction = 33∘, coefficient of friction
between concrete and soil = 0.45, coefficient of friction between soil layers = 0.65, and allowable soil
pressure = 4 ksf. Use a 1.5 × 1.5-ft key if needed.

14.8 A complete design is required for the retaining wall shown in Fig. 14.21. The top of the backfill is to
be level without surcharge. Given: Weight of backfill soil = 110 pcf, angle of internal friction = 35∘,
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the coefficient of friction between concrete and soil is 0.55 and that between soil layers is 0.6. Use
f ′c = 3 ksi, and fy = 60 ksi, and an allowable soil pressure of 4 ksf.

14.9 Check the adequacy of the cantilever retaining wall shown in Fig. 14.22 for both sliding and overturning
conditions. Use a key of 1.5 × 1.5 ft if needed. Then determine reinforcement needed for the stem, heel,
and toe, and choose adequate bars and distribution. Given: Weight of soil= 120 pcf, the angle of internal

Figure 14.21 Problem 14.8: Cantilever retaining wall.

Figure 14.22 Problem 14.9: Cantilever retaining wall.
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Figure 14.23 Problem 14.11: Basement wall.

friction is 𝜙 = 35∘, the coefficient of friction between concrete and soil is 0.52 and that between soil
layers is 0.70. Use f ′c = 3 ksi, fy = 60 ksi, an allowable soil pressure of 4 ksf, and a surcharge of 300 psf.

14.10 Repeat Problem 14.9, assuming the backfill slopes at 30∘ to the horizontal.
14.11 Determine the thickness and necessary reinforcement for the basement wall shown in Fig. 14.23. The

weight of backfill is 120 pcf and the angle of internal friction is 𝜙 = 30∘. Assume a surcharge of 400 psf
and use f ′c = 3 ksi and fy = 60 ksi.

14.12 Repeat Problem 14.11 using a basement clear height of 14 ft.



CHAPTER15
DESIGN
FOR
TORSION

Apartment building, Habitat 67, Montreal, Canada.

15.1 INTRODUCTION

Torsional stresses develop in a beam section when a moment acts on that section parallel to its
surface. Such moments, called torsional moments, cause a rotation in the structural member and
cracking on its surface, usually in the shape of a spiral. To illustrate torsional stresses, let a torque,
T, be applied on a circular cantilever beam made of elastic homogeneous material, as shown in
Fig. 15.1. The torque will cause a rotation of the beam. Point B moves to point B′ at one end of
the beam, whereas the other end is fixed. The angle 𝜃 is called the angle of twist. The plane AO′

OB will be distorted to the shape AO′ OB′. Assuming that all longitudinal elements have the same
length, the shear strain is

𝛾 = BB′

L
= r𝜃

L
where L is the length of the beam and r is the radius of the circular section.

In reinforced concrete structures, members may be subjected to torsional moments when they
are curved in plan, support cantilever slabs, act as spandrel beams (end beams), or are part of a spiral
stairway.

Structural members may be subjected to pure torsion only or, as in most cases, subjected
simultaneously to shearing forces and bending moments. Example 15.1 illustrates the different
forces that may act at different sections of a cantilever beam.

Example 15.1
Calculate the forces acting at sections 1, 2, and 3 of the cantilever beam shown in Fig. 15.2. The beam is
subjected to a vertical force P1 = 15 K, a horizontal force P2 = 12 K acting at C, and a horizontal force
P3 = 20 K acting at B and perpendicular to the direction of the force P2.

Solution
Let N be the normal force, V the shearing force, M the bending moment, and T the torsional moment.
The forces are as follows:

523
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Figure 15.1 Torque applied to a cantilever beam.

Section N (K) Mx (K ⋅ ft) My (K⋅ft) Vx (K) Vy (K) T(K⋅ft)

1 0 –135 +108 +12 +15 0
(15 × 9) (12 × 9)

2 –12 0 +108 +20 +15 135
Compression (15 × 9)

3 –12 –180 +348 +20 +15 135
Compression (15 × 9)

If P1, P2, and P3 are factored loads (Pu = 1.2 PD + 1.6 PL), then the values in the table will be the factored
design forces.

15.2 TORSIONAL MOMENTS IN BEAMS

It was shown in Example 15.1 that forces can act on building frames, causing torsional moments.
If a concentrated load P is acting at point C in the frame ABC shown in Fig. 15.3a, it develops a
torsional moment in beam AB of T = PZ acting at D. When D is at midspan of AB, then the torsional
design moment in AD equals that in DB, or 1

2
T . If a cantilever slab is supported by the beam AB in

Fig. 15.3b, the slab causes a uniform torsional moment mt along AB. This uniform torsional moment
is due to the load on a unit width strip of the slab. If S is the width of the cantilever slab and 𝑤 is
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Figure 15.2 Example 15.1.

load on the slab (psf), then mt = 𝑤S2/2 K ft/ft of beam AB. The maximum torsion design moment
in beam AB is T = 1

2
mtL acting at A and B. Other cases of loading are explained in Table 15.1. In

general, the distribution of torsional moments in beams has the same shape and numerically has
the same values as the shear diagrams for beams subjected to a load mt or T.

15.3 TORSIONAL STRESSES

Considering the cantilever beam with circular section of Fig. 15.1, the torsional moment T will
cause a shearing force dV perpendicular to the radius of the section. From the conditions of equi-
librium, the external torsional moment is resisted by an internal torque equal to and opposite to T.
If dV is the shearing force acting on the area dA (Fig. 15.4), then the magnitude of the torque is
T = ∫ r dV. Let the shearing stress be 𝑣; then

dV = 𝑣 dA and T =
∫

r𝑣 dA
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Figure 15.3 Torsional moments on AB.

The maximum elastic shear occurs at the external surface of the circular section at radius r
with thickness dr; then the torque T can be evaluated by taking moments about the center 0 for the
ring area:

dT = (2𝜋r dr)𝑣r

where (2𝜋r dr) is the area of the ring and 𝑣 is the shear stress in the ring. Thus,

T =
∫

R

0
(2𝜋r dr)𝑣r =

∫

R

0
2𝜋r2𝑣 dr (15.1)

For a hollow section with internal radius R1,

T =
∫

R

R1
2𝜋r2𝑣 dr (15.2)

For a solid section, using Eq. 15.1 and using 𝑣 = 𝑣max r/R,

T =
∫

R

0
2𝜋r2

(𝑣maxr

R

)
dr =

(2𝜋
R

)
𝑣max

∫

R

0
r3dr

=
(2𝜋

R

)
𝑣max ×

R4

4
=
(
𝜋

2

)
𝑣maxR3

𝑣max =
2T
𝜋R3

(15.3)
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Table 15.1 Torsion Diagrams

At support Mt = T For a circular
section J = 𝜋R4

2

At support Mt = mt L
mt = uniform torque

Mt1 = Mt2 = T
2

Mt1 = Tb
L

Mt2 = Ta
L

Mt1 = T1(b−c)+T2c

L

Mt2 = T2c−T2a

L

Mt3 = T1a−T2(a+b)
L

Note: When a = b = c =
L∕𝛽 and T1 = T2 = Mt1 =
Mt3 = T ⋅ Mt2 = 0

(continued)
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Table 15.1 (Continued)

Mt1 = mtL

2

Figure 15.4 Torque in circular sections.

The polar moment of inertia of a circular section is J = 𝜋R4/2. Therefore, the shear stress can be
written as a function of the polar moment of inertia J as follows:

𝑣max = TR
J

(15.4)

15.4 TORSIONAL MOMENT IN RECTANGULAR SECTIONS

The determination of the stress in noncircular members subjected to torsional loading is not as
simple as that for circular sections. However, results obtained from the theory of elasticity indicate
that the maximum shearing stress for rectangular sections can be calculated as follows:

𝑣max = T
𝛼x2y

(15.5)

where
T = applied torque
x = short side of rectangular section
y = long side of rectangular section
𝛼 = coefficient that depends on ratio of y/x; its value is given in the following table:

y/x 1.0 1.2 1.5 2.0 4 10

𝛼 0.208 0.219 0.231 0.246 0.282 0.312



15.6 Torsion Theories for Concrete Members 529

Figure 15.5 Stress distribution in rectangular sections due to pure torsion.

The maximum shearing stress occurs along the centerline of the longer side y (Fig. 15.5).
For members composed of rectangles, such as T-, L-, or I-sections, the value of 𝛼 can be

assumed equal to be 1
3
, and the section may be divided into several rectangular components having

a long side yi and a short side xi. The maximum shearing stress can be calculated from

𝑣max = 3T
∑

x2
i yi

(15.6)

where
∑

x2
i yi is the value obtained from the rectangular components of the section. When y/x ≤ 10,

a better expression may be used:

𝑣max =
3T

∑
x2y[1 − 0.63(x∕y)]

(15.7)

15.5 COMBINED SHEAR AND TORSION

In most practical cases, a structural member may be subjected simultaneously to both shear and
torsional forces. Shear stresses will be developed in the section, as was explained in Chapter 8,
with an average shear = 𝑣1 in the direction of the shear force V (Fig. 15.6a). The torque T produces
torsional stresses along all sides of the rectangular section ABCD (Fig. 15.6a), with 𝑣3 > 𝑣2. The
final stress distribution is obtained by adding the effect of both shear and torsion stresses to produce
maximum value of 𝑣1 + 𝑣3 on side CD, whereas side AB will have a final stress of 𝑣1 − 𝑣3. Both
sides AD and BC will be subjected to torsional stress 𝑣2 only. The section must be designed for the
maximum 𝑣 = 𝑣1 + 𝑣3.

15.6 TORSION THEORIES FOR CONCRETE MEMBERS

Various methods are available for the analysis of reinforced concrete members subjected to tor-
sion or simultaneous torsion, bending, and shear. The design methods rely generally on two basic
theories: the skew bending theory and the space truss analogy.
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Figure 15.6 Combined shear and torsional stresses: (a) solid sections and (b) hollow
sections.

15.6.1 Skew Bending Theory

The skew bending concept was first presented by Lessig in 1959 [2] and was further developed by
Goode and Helmy [3], Collins et al. in 1968 [4], and Below et al. in 1975 [5]. The concept was
applied to reinforced concrete beams subjected to torsion and bending. Expressions for evaluat-
ing the torsional capacity of rectangular sections were presented by Hsu in 1968 [6,7] and were
adopted by the ACI Code of 1971. Torsion theories for concrete members were discussed by Zia
[8]. Empirical design formulas were also presented by Victor et al. in 1976 [9].

The basic approach of the skew bending theory, as presented by Hsu, is that failure of a
rectangular section in torsion occurs by bending about an axis parallel to the wider face of the
section y and inclined at about 45∘ to the longitudinal axis of the beam (Fig. 15.7). Based on this
approach, the minimum torsional moment, Tn, can be evaluated as follows:

Tn =
(

x2y

3

)
fr (15.8)

where fr is the modulus of rupture of concrete; fr is assumed to be 5
√

f ′c in this case, as compared
to 7.5𝜆

√
f ′c adopted by the ACI Code for the computation of deflection in beams.
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Figure 15.7 Failure surface due to skew bending.

The torque resisted by concrete is expressed as follows:

Tc =

(
2.4
√

x

)

x2y
√

f ′c (15.9)

and the torque resisted by torsional reinforcement is

Ts =
𝛼1(x1y1Atfy)

s
(15.10)

Thus, Tn = Tc + Ts, where Tn is the nominal torsional moment capacity of the section.

15.6.2 Space Truss Analogy

The space truss analogy was first presented by Rausch in 1929 and was further developed by
Lampert [10] and Lampert and Thurlimann [11], who supported their theoretical approach with
extensive experimental work. The Canadian Code provisions for the design of reinforced con-
crete beams in torsion and bending are based on the space truss analogy. Mitchell and Collins
[12] presented a theoretical model for structural concrete in pure torsion. McMullen and Rangan
[13] discussed the design concepts of rectangular sections subjected to pure torsion. In 1983,
Solanki [14] presented a simplified design approach based on the theory presented by Mitchell
and Collins.

The concept of the space truss analogy is based on the assumption that the torsional capac-
ity of a reinforced concrete rectangular section is derived from the reinforcement and the con-
crete surrounding the steel only. In this case, a thin-walled section is assumed to act as a space
truss (Fig. 15.8). The inclined spiral concrete strips between cracks resist the compressive forces,
whereas the longitudinal bars at the corners and stirrups resist the tensile forces produced by the
torsional moment.
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Figure 15.8 Forces on section in torsion (space truss analogy).

Figure 15.9 Idealized torque versus twist relationship.

The behavior of a reinforced concrete beam subjected to pure torsion can be represented by
an idealized graph relating the torque to the angle of twist, as shown in Fig. 15.9. It can be seen
that, prior to cracking, the concrete resists the torsional stresses and the steel is virtually unstressed.
After cracking, the elastic behavior of the beam is not applicable, and hence a sudden change in the
angle of twist occurs, which continues to increase until the maximum torsional capacity is reached.
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An approximate evaluation of the torsional capacity of a cracked section may be expressed
as follows:

Tn = 2

(
Atfy

s

)
x1y1 (15.11)

where
At = area of one leg of stirrups
s = spacing of stirrups

x1 and y1 = short and long distances, center to center of closed rectangular stirrups or corner bars

The preceding expression neglects the torsional capacity due to concrete. Mitchell and Collins
[12] presented the following expression to evaluate the angle of twist per unit length 𝜓 :

𝜓 =
(

P0

2A0

)[( 𝜀1

tan 𝛼

)
+

(
Ph

(
𝜀h tan 𝛼

)

P0

)

+
2𝜀d

sin 𝛼

]

(15.12)

where
𝜀1 = strain in longitudinal reinforcing steel
𝜀h = strain in hoop steel (stirrups)
𝜀d = concrete diagonal strain at position of resultant shear flow
Ph = hoop centerline perimeter
𝛼 = angle of diagonal compression = (𝜀d + 𝜀1 )/[ 𝜀d + 𝜀h (Ph /P0 ) ]
A0 = area enclosed by shear, or

= torque/2q where q = shear flow
P0 = perimeter of shear flow path (perimeter of A0)

The preceding twist expression is analogous to the curvature expression in flexure
(Fig. 15.10):

𝜙 = curvature =
𝜀c + 𝜀s

dt
(15.13)

Figure 15.10 (a) Torsion and (b) flexure.
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where 𝜀c and 𝜀s are the strains in concrete and steel, respectively. A simple equation is presented
by Solanki [14] to determine the torsional capacity of a reinforced concrete beam in pure torsion,
based on the space truss analogy, as follows:

Tu = (2A0)

[(∑
Asfsy

P0

)

×
(Ahfhy

s

)]1∕2

(15.14)

where A0, P0, and s are as explained before and

𝛴Asfsy = yield force of all longitudinal steel bars
Ahfhy = yield force of stirrups

The ACI Code adapted this theory to design concrete structural members subjected to torsion
or shear and torsion in a simplified approach.

15.7 TORSIONAL STRENGTH OF PLAIN CONCRETE MEMBERS

Concrete structural members subjected to torsion will normally be reinforced with special torsional
reinforcement. In case the torsional stresses are relatively low and need to be calculated for plain
concrete members, the shear stress, 𝑣tc, can be estimated using Eq. 15.6:

𝑣tc =
3T

𝜙
∑

x2y
≤ 6

√
f ′c

and the angle of twist is 𝜃 = 3TL/x3yG, where T is the torque applied on the section (less than
the cracking torsional moment) and G is the shear modulus and can be assumed to be equal to
0.45 times the modulus of elastic of concrete, Ec; that is, G = 25,700

√
f ′c . The torsional cracking

shear, 𝑣c, in plain concrete may be assumed equal to 6
√

f ′c . Therefore, for plain concrete rectangular
sections,

Tc = 2𝜙x2y
√

f ′c (15.15)

and for compound rectangular sections,

Tc = 2𝜙
√

f ′c
∑

x2y (15.16)

15.8 TORSION IN REINFORCED CONCRETE MEMBERS (ACI CODE PROCEDURE)

15.8.1 General

The design procedure for torsion is similar to that for flexural shear. When the factored torsional
moment applied on a section exceeds that which the concrete can resist, torsional cracks develop,
and consequently torsional reinforcement in the form of closed stirrups or hoop reinforcement must
be provided. In addition to the closed stirrups, longitudinal steel bars are provided in the corners of
the stirrups and are well distributed around the section. Both types of reinforcement, closed stirrups
and longitudinal bars, are essential to resist the diagonal tension forces caused by torsion; one type
will not be effective without the other. The stirrups must be closed, because torsional stresses occur
on all faces of the section.
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The reinforcement required for torsion must be added to that required for shear, bending
moment, and axial forces. The reinforcement required for torsion must be provided such that the
torsional moment strength of the section 𝜙Tn is equal to or exceeds the applied factored torsional
moment Tu computed from factored loads:

𝜙Tn ≥ Tu (15.17)

When torsional reinforcement is required, the torsional moment strength 𝜙Tn must be calcu-
lated assuming that all the applied torque, Tu, is to be resisted by stirrups and longitudinal bars with
concrete torsional strength, Tc = 0. At the same time, the shear resisted by concrete, 𝑣c, is assumed
to remain unchanged by the presence of torsion.

15.8.2 Torsional Geometric Parameters

In the ACI Code, Section 22.7, the design for torsion is based on the space truss analogy, as shown
in Fig. 15.8. After torsional cracking occurs, the torque is resisted by closed stirrups, longitudinal
bars, and concrete compression diagonals. The concrete shell outside the stirrups becomes relatively
ineffective and is normally neglected in design. The area enclosed by the centerline of the outermost
closed stirrups is denoted by A0h, the shaded area in Fig. 15.11. Because other terms are used in
the design equations, they are introduced here first to make the equation easier to comprehend.
Referring to Fig. 15.11, the given terms are defined as follows:

Acp = area enclosed by outside perimeter of concrete section, in.2

Pcp = perimeter of concrete gross area, Acp, in.
A0 h = area enclosed by centerline of outermost closed transverse torsional

reinforcement, in.2 (shaded area in Fig. 15.11)
A0 = gross area enclosed by shear flow path and may be taken equal to 0.85A0h

(A0 may also be determined from analysis [18,19]).
Ph = perimeter of concrete of outermost closed transverse torsional reinforcement
𝛩 = angle of compression diagonals between 30∘ and 60∘ (may be taken equal to 45∘

for reinforced concrete members)

In T- and L-sections, the effective overhang width of the flange on one side is limited to the
projection of the beam above or below the slab, whichever is greater, but not greater than four times
the slab thickness (ACI Code, Sections 9.2.4.4).

15.8.3 Cracking Torsional Moment, Tcr

The cracking moment under pure torsion, Tcr, may be derived by replacing the actual section, prior
to cracking, with an equivalent thin-walled tube, t = 0.75 Acp/Pcp, and an area enclosed by the wall

centerline, A0 = 2 Acp/3. When the maximum tensile stress (principal stress) reaches 4𝜆
√

f ′c , cracks
start to occur and the torque T in general is equal to

T = 2A0𝜏t (15.18)

where 𝜏 is the torsional shear stress, which is 4𝜆
√

f ′c for torsional cracking.
Replacing 𝜏 by 4𝜆

√
f ′c ,

Tcr = 4𝜆
√

f ′c

(
A2

cp

Pcp

)

= Tn and Tu = 𝜙Tcr (15.19)
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Figure 15.11 (a) Torsional geometric parameters and (b) effective flange width for
T- and L-sections and component rectangles.
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Figure 15.12 Example 15.2.

Assuming that a torque less than or equal to Tcr/4 will not cause a significant reduction in the
flexural or shear strength in a structural member, the ACI Code, Section 22.7.4, permits neglect of
torsion effects in reinforced concrete members when the factored torsional moment Tu ≤ 𝜙Tcr/4, or

Tu ≤ 𝜙𝜆
√

f ′c

(
A2

cp

Pcp

)

(15.20)

When Tu exceeds the value in Eq. 15.20, all Tu must be resisted by closed-stirrup and longitudinal
bars. The torque, Tu, is calculated at a section located at distance d from the face of the support and
Tu = 𝜙Tn, where 𝜙 = 0.75.

Example 15.2

For the three sections shown in Fig. 15.12, and based on the ACI Code limitations, it is required to
compute the following:

a. The cracking moment 𝜙Tcr

b. The maximum factored torque 𝜙Tn that can be applied to each section without using torsional
web reinforcement

Assume f ′c = 4 ksi, fy = 60 ksi, a 1.5-in. concrete cover, and no. 4 stirrups.
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Solution

1. Section 1
a. Cracking moment, 𝜙Tcr, can be calculated from Eq. 15.19:

𝜙Tcr = 𝜙4𝜆
√

f ′c

(
A2

cp

Pcp

)

For this section, Acp = x0y0, the gross area of the section, where x0 = 16 in. and y0 = 24 in.

Acp = 16(24) = 384 in.2

Pcp = perimeter of gross section

= 2(x0 + y0) = 2(16 + 24) = 80 in.

𝜙Tcr =
0.75(4)(1)

√
4000(384)2

80
= 349.7K ⋅ in.

b. The allowable 𝜙Ta that can be applied without using torsional reinforcement is computed from
Eq. 15.20:

Ta =
𝜙Tcr

4
= 349.7

4
= 87.4K ⋅ in.

2. Section 2
a. First, calculate Acp and Pcp for this section and apply Eq. 15.19 to calculate 𝜙Tcr. Assuming

flanges are confined with closed stirrups, the effective flange part to be used on each side of the
web is equal to four times the flange thickness, or 4(4) = 16 in. = h𝑤 = 16 in.

Acp = web area(b𝑤h) + area of effective flanges

= (14 × 20) + 2(16 × 4) = 408 in.2

Pcp = 2(b + h) = 2(14 + 2 × 16 + 20) = 132 in.2

𝜙Tcr =
0.75(4)(1)

√
(4000)(408)2

132
= 239.3K ⋅ in.

Note: If the flanges are neglected and the torsional reinforcement is confined in the web only,
then

Acp = 14(20) = 280 in.2 Pcp = 2(14 + 20) = 68 in. 𝜙Tcr = 219K ⋅ in.

b. The allowable 𝜙Tn that can be applied without using torsional reinforcement is:

𝜙Tn =
𝜙Tcr

4
= 239.3

4
= 59.8K ⋅ in.

3. Section 3
a. Assuming flange is confined with closed stirrups, effective flange width is equal to b𝑤 = 15 in.
< 4 × 6 = 24 in.

Acp = (14 × 21) + (15 × 6) = 384 in.2

Pcp = 2(b + h) = 2(14 + 15 + 21) = 100 in.

𝜙Tcr =
0.75(4)(1)

√
(4000)(384)2

100
= 279.8K ⋅ in.

Note: If the flanges are neglected, then Acp = 294 in.2, Pcp = 70 in., and 𝜙Tcr = 234.3K ⋅ in.

b. The allowable 𝜙Tn = 𝜙Tcr

4
= 279.8

4
= 70K ⋅ in.
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15.8.4 Equilibrium Torsion and Compatibility Torsion

Structural analysis of concrete members gives the different forces acting on the member, such as
normal forces, bending moments, shear forces, and torsional moments, as explained in the simple
problem of Example 15.1. The design of a concrete member is based on failure of the member under
factored loads. In statically indeterminate members, a redistribution of moments occurs before
failure; consequently, design moments may be reduced, whereas in statically determinate members,
such as a simple beam or a cantilever beam, no moment redistribution occurs.

In the design of structural members subjected to torsional moments two possible cases may
apply after cracking.

1. The equilibrium torsion case occurs when the torsional moment is required for the struc-
ture to be in equilibrium and Tu cannot be reduced by redistribution of moments, as in the
case of simple beams. In this case torsion reinforcement must be provided to resist all of
Tu. Figure 15.13 shows an edge beam supporting a cantilever slab where no redistribution of
moments will occur [18,19].

2. The compatibility torsion case occurs when the torsional moment, Tu, can be reduced by
the redistribution of internal forces after cracking while compatibility of deformation is
maintained in the structural member. Figure 15.14 shows an example of this case, where
two transverse beams are acting on an edge beam producing twisting moments. At torsional
cracking, a large twist occurs, resulting in a large distribution of forces in the structure
[18,19]. The cracking torque, Tcr, under combined flexure, shear, and torsion is reached

Figure 15.13 Design torque may not be reduced. Moment redistribution is not
possible [19].

Figure 15.14 Design torque may be reduced in a spandrel beam. Moment redistribu-
tion is possible [19].
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when the principal stress in concrete is about 4𝜆
√

f ′c . When Tu > Tcr, a torque equal
to Tcr Eq. 15.19, may be assumed to occur at the critical sections near the faces of the
supports.

The ACI Code limits the design torque to the smaller of Tu from factored loads or 𝜙Tcr from Eq.
15.19.

15.8.5 Limitation of Torsional Moment Strength

The ACI Code, Section 22.7.7, limits the size of the cross-sectional dimension by the following
two equations:

1. For solid sections,
√√√√√

(
Vu

b𝑤d

)2

+

(
TuPh

1.7 A2
oh

)2

≤ 𝜙

[(
Vc

b𝑤d

)
+ 8

√
f ′c

]
(15.21)

2. For hollow sections,
(

Vu

b𝑤d

)
+

(
TuPh

1.7 A2
oh

)

≤ 𝜙

[(
Vc

b𝑤d

)
+ 8

√
f ′c

]
(15.22)

where Vc equals 2𝜆
√

f ′c b𝑤d, which is shear strength for normal-weight concrete. All other
terms were defined in Section 15.8.2.

This limitation is based on the fact that the sum of the stresses due to shear and torsion
(on the left-hand side) may not exceed the cracking stress plus 8

√
f ′c . The same condition was

applied to the design of shear without torsion in Chapter 5. The limitation is needed to reduce
cracking and to prevent crushing of the concrete surface due to inclined shear and torsion
stresses.

15.8.6 Hollow Sections

Combined shear and torsional stresses in a hollow section are shown in Fig. 15.6, where the
wall thickness is assumed constant. In some hollow sections, the wall thickness may vary around
the perimeter. In this case, Eq. 15.22 should be evaluated at the location where the left-hand
side is maximum. Note that at the top and bottom flanges, the shear stresses are usually negli-
gible. In general, if the wall thickness of a hollow section t is less than Aoh/Ph, then Eq. 15.22
becomes

Vu

b𝑤d
+

Tu

1.7A0ht
≤ 𝜙

[(
Vc

b𝑤d

)
+ 8

√
f ′c

]
(15.23)

(ACI Code, Section 22.7.7).

15.8.7 Web Reinforcement

As was explained earlier, the ACI Code approach for the design of the members due to torsion is
based on the space truss analogy in Fig. 15.8. After torsional cracking, two types of reinforce-
ment are required to resist the applied torque, Tu: transverse reinforcement, At, in the form of
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closed stirrups, and longitudinal reinforcement, Al, in the form of longitudinal bars. The ACI Code,
Section 22.7.6.1, presented the following expression to compute At and Al:

1. Closed stirrups At can be calculated as follows:

Tn =
2A0At fyt cot 𝜃

s
(15.24)

where
Tn =

Tu

𝜙
and 𝜙 = 0.75

At = area of one leg of transverse closed stirrups
fyt = yield strength of At ≤ 60 ksi
s = spacing of stirrups

And A0 and 𝜃 were defined in ACI Section 22.7.6.1. Equation 15.24 can be written as
follows:

At

s
=

Tn

2A0 fyt cot 𝜃
(15.25)

If 𝜃 = 45∘, then cot 𝜃 = 1.0, and if fyt = 60 ksi, then Eq. 15.25 becomes

At

s
=

Tn

120A0
(15.26)

where Tn is in K ⋅ in. Spacing of stirrups, s, should not exceed the smaller of Ph/8 or 12 in. For
hollow sections in torsion, the distance measured from the centerline of stirrups to the inside
face of the wall shall not be less than 0.5 A0 h/Ph.

2. The additional longitudinal reinforcement, Al, required for torsion should not be less than the
following:

Al =
(

At

s

)
Ph

( fyt

fy

)
cot2𝜃 (15.27)

If 𝜃 = 45∘ and fyt = fy = 60 ksi for both stirrups and longitudinal bars, then Eq. 15.27
becomes

Al =
(

At

s

)
Ph = 2

(
At

s

)
(x1 + y1) (15.28)

where Ph is as defined in ACI Section 22.7.6.1. Note that reinforcement required for torsion
should be added to that required for the shear, moment, and axial force that act in combination
with torsion. Other limitations for the longitudinal reinforcement, Al, are as follows:
a. The smallest bar diameter of a longitudinal bar is that of no. 3 or stirrup spacing s/24,

whichever is greater.
b. The longitudinal bars should be distributed around the perimeter of the closed stirrups with

a maximum spacing of 12 in.
c. The longitudinal bars must be inside the stirrups with at least one bar in each corner of

the stirrups. Corner bars are found to be effective in developing torsional strength and in
controlling cracking.

d. Torsional reinforcement should be provided for a distance (bt + d) beyond the point the-
oretically required, where bt is the width of that part of the cross section containing the
stirrups resisting torsion.
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15.8.8 Minimum Torsional Reinforcement

Where torsional reinforcement is required, the minimum torsional reinforcement may be computed
as follows (ACI Code, Section 9.6.4.2):

1. Minimum transverse closed stirrups for combined shear and torsion (see Section 8.6):

A𝑣 + 2At ≥ 0.75
√

f ′c

(
b𝑤s

fyt

)

But shall not be less than
50b𝑤s

fyt
(15.29)

where
A𝑣 = area of two legs of closed stirrup determined from shear
At = area of one leg of closed stirrup determined from torsion
s = spacing of stirrups
fyt = yield strength of closed stirrups ≤60 ksi

Spacing of stirrups, s, should not exceed Ph/8 or 12 in., whichever is smaller. This spacing
is needed to control cracking width.

2. Minimum total area of longitudinal torsional reinforcement:

Al,min =

(
5
√

f ′c Acp

fy

)

−
(

At

s

)
Ph

( fyt

fy

)
(15.30)

where fy is the yield strength of longitudinal torsional reinforcement. Also At/s shall not be
taken less than 25 b𝑤/fyt.

The minimum Al in Eq. 15.30 was determined to provide a minimum ratio of the volume
of torsional reinforcement to the volume of concrete of about 1% for reinforced concrete
subjected to pure torsion.

15.9 SUMMARY OF ACI CODE PROCEDURES

The design procedure for combined shear and torsion can be summarized as follows:

1. Calculate the factored shearing force, Vu, and the factored torsional moment, Tu, from the
applied forces on the structural member. Critical values for shear and torsion are at a section
distance d from the face of the support.

2. a. Shear reinforcement is needed when Vu > 𝜙 Vc∕2, where Vc = 2𝜆
√

f ′c b𝑤d
b. Torsional reinforcement is needed when

Tu > 𝜙𝜆
√

f ′c

(Acp2

Pcp

)
(Eq. 15.20)

If web reinforcement is needed, proceed as follows.
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3. Design for shear:
a. Calculate the nominal shearing strength provided by the concrete, Vc. Determine the shear

to be carried by web reinforcement:

Vu = 𝜙Vc + 𝜙Vs or Vs =
Vu − 𝜙Vc

𝜙

b. Compare the calculated Vs with maximum permitted value of (8
√

f ′c b𝑤d) according to the
ACI Code, Section 22.5.1.2. If calculated Vs is less, proceed with the design; if not, increase
the dimensions of the concrete section.

c. The shear web reinforcement is calculated as follows:

A𝑣 =
Vss

fytd

where

A𝑣 = area of two legs of the stirrup
s = spacing of stirrups

The shear reinforcement per unit length of beam is

A𝑣
s

=
Vs

fytd

d. Check A𝑣/s calculated with the minimum A𝑣/s:

(min)
A𝑣
s

= 0.75
√

f ′c

(
b𝑤
fyt

)
≥ 50

(
b𝑤
fyt

)

The minimum Av, specified by the code under the combined action of shear and torsion,
is given in step 5.

4. Design for torsion:
a. Check if the factored torsional moment, Tu, causes equilibrium or compatibility torsion.

For equilibrium torsion, use Tu. For compatibility torsion, the design torsional moment is
the smaller of Tu from factored load and

Tu2 = 𝜙4𝜆
√

f ′c

(
A2

cp

Pcp

)

(Eq. 15.29)

b. Check that the size of the section is adequate. This is achieved by checking either Eq. 15.21
for solid sections or Eq. 15.22 for hollow sections. If the left-hand-side value is greater than
𝜙(Vc∕b𝑤d + 8

√
f ′c ), then increase the cross-section. If it is less than that value, proceed. For

hollow sections, check if the wall thickness t is less than A0 h/Ph. If it is less, use Eq. 15.23
instead of Eq. 15.22; otherwise, use Eq. 15.25.

c. Determine the closed stirrups required from Eq. 15.25:

At

s
=

Tn

2A0fyt cot 𝜃
(Eq. 15.25)

and At/s should not be less than 25 b𝑤/fyt. Also, the angle 𝜃 may be assumed to be 45∘,
Tn = Tu∕𝜙, and 𝜙 = 0.75.
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Assume A0 = 0.85 A0 h = 0.85 (x1 y1), where x1 and y1 are the width and depth of the
section to the centerline of stirrups; see Fig. 15.11. Values of A0 and 𝜃 may be obtained
from analysis [18]. For 𝜃 = 45∘ and fy = 60 ksi,

At

s
=

Tn

120A0
(Eq. 15.26)

The maximum allowable spacing, s, is the smaller of 12 in. or Ph/8.
d. Determine the additional longitudinal reinforcement:

Al =
(

At

s

)
Ph

( fyt

fy

)
cot2𝜃 (Eq. 15.27)

but not less than

Al,min =

(
5
√

f ′c Acp

fy

)

−
(

At

s

)
Ph

( fyt

fy

)
(Eq. 15.30)

For 𝜃 = 45∘ and fyt = 60 ksi, then Al = (At /s)Ph.
Bars should have a diameter of at least stirrup spacing, s/24, but not less than no. 3 bars.

The longitudinal bars should be placed inside the closed stirrups with maximum spacing of
12 in. At least one bar should be placed at each corner of stirrups. Normally, one-third of Al
is added to the tension reinforcement, one-third at midheight of the section, and one-third
at the compression side.

5. Determine the total area of closed stirrups due to Vu and Tu.

A𝑣t = (Au + 2At) ≥
50b𝑤s

fyt
(Eq. 15.29)

Choose proper closed stirrups with a spacing s as the smaller of 12 in. or Ph/8.
The stirrups should be extended a distance (bt + d) beyond the point theoretically no longer

required, where bt is the width of cross section resisting torsion.

Example 15.3 Equilibrium Torsion

Determine the necessary web reinforcement for the rectangular section shown in Fig. 15.15. The section
is subjected to a factored shear Vu = 48 K and an equilibrium torsion Tu = 360 K ⋅ in at a section
located at a distance d from the face of the support. Use normal-weight concrete with f ′c = 4 ksi and
fy = 60 ksi.

Solution
The following steps explain the design procedure:

1. Design forces are Vu = 48 K and an equilibrium torsion Tu = 360 K ⋅ in.
2. .a. Shear reinforcement is needed when Vu > 𝜙Vc/2.

𝜙Vc = 𝜙2𝜆
√

f ′c bd = 0.75(2)(1)
√

4000(16)(20.5) = 31.1K

Vu = 48K >
𝜙Vc

2
= 15.55K

Shear reinforcement is required.



15.9 Summary of ACI Code Procedures 545

2 no. 4 3 no. 5

2 no. 4

3 no. 9

2 no. 10

5 no. 9

Figure 15.15 Example 15.3.

b. Torsional reinforcement is needed when

Tu > 𝜙𝜆
√

f ′c

(
A2

cp

Pcp

)

= Ta

where

Acp = x0y0 = 16(23) = 368 in.2

Pcp = 2(x0 + y0) = 2(16 + 23) = 78 in.

Tu =
0.75(1)

√
4000(368)2

78
= 82.36K ⋅ in.

Tu = 360K ⋅ in. > 82.36K ⋅ in. (Eq. 15.20)

Torsional reinforcement is needed. Note that if Tu is less than 82.36 K ⋅ in., torsional rein-
forcement is not required, but shear reinforcement may be required.

3. Design for shear:
a. Vu = 𝜙Vc + 𝜙Vs, 𝜙Vc = 48 = 31.1 + 0.75 Vs, Vs = 22.5 K.

b. Maximum Vs = 8
√

f ′c bd = 8
√

4000(16)(20.5) = 166K > Vs.
c. A𝑣 /s = Vs /fy d = 22.5/(60 × 20.5) = 0.018 in.2 /in. (two legs). A𝑣 /2s = 0.018/2 = 0.009 in.2

/in. (one leg).
4. Design for torsion:

a. Design Tu = 360 K ⋅ in. Determine sectional properties, assuming 1.5 in. concrete cover and no.
4 stirrups:

x1 = widthtocenterofstirrups = 16 − 2(1.5 + 0.25) = 12.5 in.

y1 = depthtocenterofstirrups = 23 − 2(1.5 + 0.25) = 19.5 in.

Practically, x1 can be assumed to be b − 3.5 in. and y1 = h − 3.5 in.

A0h = x1y1 = (12.5 × 19.5) = 244 in.2

A0 = 0.85A0h = 207.2 in.2

Ph = 2(x1 + y1) = 2(12.5 + 19.5) = 64 in.

For 𝜃 = 45∘ and cot 𝜃 = 1.0.
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b. Check the adequacy of the size of the section using Eq. 15.21:
√√√√√

(
Vu

b𝑤d

)2

+

(
TuPh

1.7A2
0h

)2

≤ 𝜙

[(
Vc

b𝑤d

)
+ 8

√
f ′c

]

𝜙Vc = 31.1K and Vc = 41.5K

Left − handside =

√(
48,000

16 × 20.5

)2

+
(

360,000 × 64

1.7(244)2

)2

= 271psi

Right − handside = 0.75

(
41,500

16 × 20.5
+ 8

√
4000

)
= 475psi > 271psi

The section is adequate.
c. Determine the required closed stirrups due to torsion from Eq. 15.25:

At

s
=

Tn

2A0fyt cot𝜙

Tn =
Tu

𝜙
= 360

0.75
= 480K ⋅ in. cot 𝜃 = 1.0 and A0 = 207.2 in.2

At

s
= 480

2 × 207.2 × 60
= 0.019 in.2∕in. (per one leg)

d. Determine the additional longitudinal reinforcement from Eq. :

Al =
(

At

s

)
Ph

( fyt

fy

)
cot2𝜃

At

s
= 0.019 Ph = 64 in. fyt = fy = 60ksi cot 𝜃 = 1.0

Al = 0.019(64) = 1.21 in.2

Min.Al =
5
√

f ′c Acp

fy
−
(

At

s

)
Ph

( fyt

fy

)

Acp = 368 in.2
At

s
= 0.019

fyt = fyl = 60ksi

Min.Al =

[
5
√

4000 (368)
60, 000

]

− (0.019 × 64 × 1.0) = 0.72 in.2

Al = 1.21 in.2 controls

5. Determine total area of closed stirrups:
a. For one leg of stirrups, Avt/s = At/s + A𝑣/2s.

Required A𝑣t =
0.018

2
+ 0.019 = 0.028 in.2∕in (per one leg)

Using no. 4 stirrups, the area of one leg is 0.2 in.2

Spacing of stirrups = 0.2
0.028

= 7.14 in. or 7.0 in.
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b. Maximum s = Ph∕8 = 64
8
= 8 in. or 12 in., whichever is smaller. The value of s used is 7.0 in.

< 8 in.
c. Minimum Avt/s = 50 b𝑤/fyt = 50(16)/60,000 = 0.0133 in.2/in. This is less than 0.028 in.2/in.

provided.
6. To find the distribution of longitudinal bars, note that total Al = 1.21 in.2 Use one-third at the

top, or 1.21/3 = 0.4 in.2, to be added to the compression steel A′
s. Use one-third, or 0.4 in.2, at the

bottom, to be added to the tension steel, and one-third, or 0.4 in.2, at middepth.
a. The total area of top bars is 0.4 (two no. 4) + 0.4 = 0.8 in.2 use three no. 5 bars (As = 0.91 in.2).
b. The total area of bottom bars is 5 (five no. 9) + 0.4 = 5.4 in.2; use three no. 9 and two no. 10

bars at the corners (total As = 5.53 in.2).
c. At middepth, use two no. 4 bars (As = 0.4 in.2). Reinforcement details are shown in Fig. 15.15.

Spacing of longitudinal bars is equal to 9 in., which is less than the maximum required of 12 in.
The diameter of no. 4 bars used is greater than the minimum of no. 3 or stirrup spacing, or s/24
= 0.21 in.

Example 15.4 Compatibility Torsion
Repeat Example 15.3 if the factored torsional torque is a compatibility torsion.

Solution
Referring to the solution of Example 15.3:

1. Design forces are Vu = 48 K and compatibility torsion is 360 K ⋅ in.
2. Steps (a) and (b) are the same as in Example 15.3. Web reinforcement is required.
3. Step (c) is the same.
4. Design for torsion:

Because this is a compatibility torsion of 360 K ⋅ in., the design Tu is the smaller of 360 K ⋅ in. or
𝜙Tcr given in Eq. 15.19.

𝜙Tcr = 𝜙4𝜆
√

f ′c

(
A2

cp

Pcp

)

=
0.75(4)(1)

√
4000(368)2

78
= 329.4K ⋅ in. (Eq. 15.19)

Because 𝜙Tcr < 360 K ⋅ in., use Tu = 329.4 K ⋅ in. Repeat all the steps of Example 15.3 using
Tu = 329.3 K ⋅ in. to determine that the section is adequate.

At

s
= 0.018 in.2∕in. (one leg)

Al = 0.018(64) = 1.152 in.2

Use 1.2 in.2 > min. Al.
5. Required Avt = 0.018/2 + 0.018 = 0.027 in.2 /in. (one leg).

s = 0.2
0.027

= 7.4 in.

Use 7 in. Choose bars, stirrups, and spacing similar to Example 15.3.

Example 15.5 L-Section with Equilibrium Torsion
The edge beam of a building floor system is shown in Fig. 15.16. The section at a distance d from the
face of the support is subjected to Vu = 53 K and an equilibrium torque Tu = 240 K ⋅ in. Design the
necessary web reinforcement using f ′c = 4 ksi and fy = 60 ksi for all steel bars and stirrups.
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2 no. 6

4 no. 9

3 no. 6 6 no. 4 bars

2 no. 4

5 no. 9

Figure 15.16 Example 15.5.

Solution

1. Design forces are Vu = 53 K and Tu = 240 K ⋅ in. = 20 K⋅ft.
2. .a. Shear reinforcement is needed when Vu > 𝜙Vc/2.

𝜙Vc = 𝜙2𝜆
√

f ′c b𝑤d = 0.75(2)(1)
√

4000(14)(18) = 23.9K

Vu >
𝜙Vc

2
= 11.95K

Shear reinforcement is required.
b. Check if torsional reinforcement is needed. Assuming that flange is contributing to resist tor-

sion, the effective flange length is h𝑤 = 15 in. < 4 × 6 = 24 in.

x0 = 14 in. and y0 = 21 in.

Acp = (14 × 21)(web) + (15 × 6)(flange) = 384 in.2

Pcp = 2(21 + 29) = 100 in.

Ta(Eq. 15.20) =
0.75(1)

√
4000(384)2

100
= 70K ⋅ in.

Tu > Ta

Torsional reinforcement is required.
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3. Design for shear:
a. Vu = 𝜙Vc + 𝜙Vs

53 = 23.9 + 0.75Vs

Vs = 38.8K

b. Maximum Vs = 8
√

f ′c b𝑤d = 127.5K > Vs

c. A𝑣
s

=
Vs

fyd
= 38.8

60 × 18
= 0.036 in.2∕in. (two legs)

A𝑣
2s

= 0.036
2

= 0.018 in.2∕in.

4. Design for torsion: Tu = 240 K ⋅ in.
a. Determine section properties assuming a concrete cover of 1.5 in. and no. 4 stirrups:

Web x1 = b − 3.5 in. = 14 − 3.5 = 10.5 in. y1 = h − 3.5 = 21 − 3.5 = 17.5 in.

Flange x1 = 15 in.(stirrups extend to the web) y1 = 6 − 3.5 = 2.5 in.

A0h = (15 × 2.5) + (10.5 × 17.5) = 221 in.2 A0 = 0.85A0h = 188 in.2

Ph = 2(15 + 2.5) + 2(10.5 + 17.5) = 91 in. 𝜃 = 45∘ cot 𝜃 = 1.0

b. Check the adequacy of the section using Eq. 15.21: Vu = 53 K, 𝜙Vc = 23.9 K, Vc = 31.9 K, and
Tu = 240 K ⋅ in.

Left-handside =

√(
53,000
14 × 18

)2

+
[

240,000 × 91

1.7(184)2

]2

= 434psi

Right-handside = 0.75

[
31,900
14 × 18

+ 8
√

4000

]
= 475psi

c. Determine the torsional closed stirrups, At/s, from Eq. 15.25:

At

s
=

Tn

2A0fyt
= 240

0.75 × 2 × 188 × 60
= 0.014 in.2∕in. (for one leg)

d. Calculate the additional longitudinal reinforcement from Eq. 15.28 (for fy = 60 ksi and
cot 𝜃 = 1.0):

Al =
(

At

s

)
Ph = 0.014(91) = 1.28 in.2

Al,min (from Eq. 15.30) is

Al =

[
5
√

4000 (384)
60,000

]

− (0.014 × 91) = 0.75 in.2

The contribution of the flange may be neglected with slight a difference in results and less
labor cost.

5. Determine the total area of the closed stirrups.
a. For one leg, Avt/s = At/s + A𝑣/2s.

Required Avt = 0.014 + 0.018 = 0.032 in.2∕in. (per leg)
Choose no. 4 closed stirrups, area = 0.2 in.2

Spacing of stirrups = 0.2
0.032

= 6.25 in.

Use 6 in.
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b. Max. s = Ph/8 = 91/8 = 11.4 in. Use s = 6 in., as calculated.
c. Avt/s = 50b𝑤/fyt = 50(14)/60,000 = 0.017 in.2/in., which is less than the 0.032 in.2/in. used. Use

no. 4 closed stirrups spaced at 6 in.
6. Find the distribution of longitudinal bars. Total Al is 1.28 in.2 Use one-third, or 0.43 in.2, at the

top, at the bottom, and at middepth.
a. Total top bars = 0.88 + 0.43 = 1.31 in.2 ; use three no. 6 bars (1.32 in.2).
b. Total bottom bars = 4.0 + 0.43 = 4.43 in.2; use five no. 9 bars (5.0 in.2). Total Al used = (1.32

− 0.88) + (5 − 4) = 1.44 in.2

c. Use two no. 4 bars at middepth (0.40 in.2). Reinforcement details are shown in Fig. 15.16.
Spacing of longitudinal bars is at 7.5 in. < 12 in. The diameter of no. 4 bars used is 0.5 in.,
which is greater than no. 3 or stirrup spacing, s∕24 = 6

24
= 0.25 in. Add no. 4 longitudinal bars

on all corners of closed stirrups in beam web and flange.

SUMMARY

Sections 15.1–15.7

1. Torsional stresses develop in a beam when a moment acts on the beam section parallel to its
surface.

2. In most practical cases, a structural member may be subjected to combined shear and torsional
moments.

3. The design methods for torsion rely generally on two basic theories: the skew bending theory
and the space truss theory. The ACI Code adopted the space truss theory.

Sections 15.8 and 15.9

A summary of the relative equations in U.S. customary units and SI units is given here.
Note that (1.0

√
f ′c ) in psi is equivalent to (0.08

√
f ′c ) in MPa N/mm2, 1 in. ≈25 mm, and

fyt ≤ 400 MPa.

Equation U.S. Customary Units SI Units

15.16 Tc = 2𝜙
√

f ′c
∑

x2y Tc = 0.17𝜙
√

f ′c
∑

x2y
15.17 𝜙Tn ≥ Tu Same

15.19 Tcr = 4𝜆
√

f ′c

(
A2

cp

Pcp

)

Tcr = (𝜆
√

f ′c∕3)(A2
cp∕Pcp)

15.20 Tu = 𝜙𝜆
√

f ′c

(
A2

cp

Pcp

)

Tu ≤ 𝜙𝜆(
√

f ′c∕12)(A2
cp∕Pcp)

15.21

√√√√
(

Vu

b𝑤d

)2

+

(
TuPh

1.7A2
0h

)2

≤ 𝜙

[(
Vc

b𝑤d

)
+ 8

√
f ′c

]
(U.S.)

√√√√
(

Vu

b𝑤d

)2

+

(
TuPh

1.7A2
0h

)2

≤ 𝜙

[(
Vc

b𝑤d

)
+ (2

√
f ′c∕3)

]
(SI)
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Equation U.S. Customary Units SI Units

15.24 Tn =
2A0Atfyt cot 𝜃

s
Same

(Note that fyt is in MPa, S is in mm, A0 and At are in mm2, and Tn is in kN m.)

15.25
At

s
=

Tn

2A0fyt cot 𝜃
Same

15.27 At =
AtPh(fyt∕fy)cot2𝜃

s
Same

15.29 A𝑣 + 2At ≥
50b𝑤s

fyt
(A𝑣 + 2 At) ≥0.35 b𝑤s/fyt

15.30 Al,min =
5
√

f ′c Acp

fy
Al,min =

5
√

f ′c Acp

12fy

−
(

At

s

)
Ph

( fyt

fy

)
−
(

At

s

)
Ph

( fyt

fy

)
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P R O B L E M S

For each problem, compute the cracking moment 𝜙Tcr and the maximum factored torque 𝜙Tn that can be
applied without using torsional web reinforcement. Use f ′c = 4 ksi and fy = 60 ksi.

15.1 A rectangular section with b = 16 in. and h = 24 in.
15.2 A rectangular section with b = 12 in. and h = 20 in.
15.3 A T-section with b = 48 in., b𝑤 = 12 in., t = 4 in., and h = 25 in. Assume flanges are confined with

closed stirrups.
15.4 A T-section with b = 60 in., b𝑤 = 16 in., t = 4 in., and h = 30 in. Assume flanges are confined with

closed stirrups.
15.5 An inverted L-section with b = 32 in., b𝑤 = 14 in., t = 6 in., and h = 24 in. The flange does not have

closed stirrups.
15.6 An inverted L-section with b = 40 in., b𝑤 = 12 in., t = 6 in., and h = 30 in. The flange contains confined

closed stirrups.
15.7 Determine the necessary web reinforcement for a simple beam subjected to an equilibrium factored

torque Tu = 220 K ⋅ in. and Vu = 36 K. The beam section has b = 14 in., h = 22 in., and d = 19.5 in., and
is reinforced on the tension side by four no. 9 bars. Use f ′c = 4 ksi and fy = 60 ksi.

15.8 Repeat Problem 15.7 using f ′c = 5ksi and fy = 60 ksi.
15.9 The section of an edge (spandrel) beam is shown in Fig. 15.17. The critical section of the beam is

subjected to an equilibrium torque Tu = 300 K ⋅ in. and a shear Vu = 60 K. Determine the necessary
web reinforcement using f ′c = 4 ksi and fy = 60 ksi. Consider that the flange is not reinforced with
closed stirrups.

15.10 Repeat Problem 15.9. Considering that the flange is effective and contains closed stirrups.
15.11 The T-section shown in Fig. 15.18 is subjected to a factored shear Vu = 28 K and a factored equilibrium

torque Tu = 300 K ⋅ in. and Mu = 250 K⋅ft. Design the necessary flexural and web reinforcement. Use
f ′c = 4 ksi and fy = 60 ksi.

15.12 Repeat Problem 15.11 if Vu = 36 K, Tu = 360 K ⋅ in., Mu = 400 K⋅ft, and h = 24 in.
15.13 Repeat Problem 15.11 using f ′c = 3 ksi and fy = 60 ksi.
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3 no. 9

Figure 15.17 Problem 15.9.

Figure 15.18 Problem 15.11.

Figure 15.19 Problem 15.17.

15.14 Repeat Problem 15.11 if Tu is a compatibility torsion.
15.15 Repeat Problem 15.13 if Tu is a compatibility torsion.
15.16 Repeat Problem 15.7 if Tu is a compatibility torsion.
15.17 The cantilever beam shown in Fig. 15.19 is subjected to the factored load shown.

a. Draw the axial and shearing forces and the bending and torsional moment diagrams.
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Figure 15.20 Problem 15.18.

b. Design the beam section at A using a steel percentage less than or equal to 𝜌max for bending moment.
Use b = 16 in. (300 mm), f ′c = 4 ksi, and fy = 60 ksi.

15.18 The size of the slab shown in Fig. 15.20 is 16 × 8 ft; it is supported by the beam AB, which is fixed at
both ends. The uniform dead load on the slab (including its own weight) equals 100 psf, and the uniform
live load equals 80 psf. Design the section at support A of beam AB using f ′c = 4 ksi, fy = 60 ksi, b𝑤 =
14 in., h = 24 in., a slab thickness of 5 in., and the ACI Code requirements.



CHAPTER16
CONTINUOUS
BEAMS AND
FRAMES

Reinforced concrete parking structure, Minneapolis, Minnesota.

16.1 INTRODUCTION

Reinforced concrete buildings consist of different types of structural members, such as slabs,
beams, columns, and footings. These structural members may be cast in separate units as precast
concrete slabs, beams, and columns or with the steel bars extending from one member to the
other, forming a monolithic structure. Precast units are designed as structural members on
simple supports unless some type of continuity is provided at their ends. In monolithic members,
continuity in the different elements is provided, and the structural members are analyzed as
statically indeterminate structures.

The analysis and design of continuous one-way slabs were discussed in Chapter 9, and the
design coefficients and reinforcement details were shown in Figs. 9.8 and. 9.9. In one-way floor
systems, the loads from slabs are transferred to the supporting beams, as shown in Fig. 16.1a. If
the factored load on the slab is 𝑤u psf, the uniform load on beams AB and BC per unit length is
𝑤u s plus the self-weight of the beam. The uniform load on beams DE and EF is 𝑤us/2 plus the
self-weight of the beam. The load on column B equals WuLS, whereas the loads on columns E, A,
and D are WuLS/2, WuSL/2, and WuLS/4, respectively.

In two-way rectangular slabs supported by adequate beams on four sides, the floor loads are
transferred to the beam from tributary areas bounded by 45∘ lines, as shown in Fig. 16.1b. Part of the
floor loads are transferred to the long beams AB, BC, DE, and EF from trapezoidal areas, whereas
the rest of the floor loads are transferred to the short beams AD, BE, and CF from triangular areas.
In square slabs, loads are transferred to all surrounding beams from triangular floor areas. Interior
beams carry loads from both sides, whereas end beams carry loads from one side only. Beams in
both directions are usually cast monolithically with the slabs; therefore, they should be analyzed as
statically indeterminate continuous beams. The beams transfer their loads in turn to the supporting
columns. The load on column B equals WuLS, while the loads on columns E, A, and D are WuLS/2,
WuSL/2, and WuLS/4, respectively. The tributary area for each column extends from the centerlines
of adjacent spans in each direction.

555
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Figure 16.1 Slab loads on supporting beams: (a) one-way direction, L/s>2, and
(b) two-way direction, L/s ≤ 2.

16.2 MAXIMUM MOMENTS IN CONTINUOUS BEAMS

16.2.1 Basic Analysis

The computation of bending moments and shear forces in reinforced concrete continuous beams
is generally based on the elastic theory. When reinforced concrete sections are designed using the
strength design method, the results are not entirely consistent with the elastic analysis. However,
the ACI Code does not include provisions for a plastic design or limit design of reinforced con-
crete continuous structures except in allowing moment redistribution, as is explained later in this
chapter.

16.2.2 Loading Application

The bending moment at any point in a continuous beam depends not only on the position of loads
on the same span but also on the loads on the other spans. In the case of dead loads, all spans must
be loaded simultaneously because the dead load is fixed in position and magnitude. In the case of
moving loads or occasional live loads, the pattern of loading must be considered to determine the
maximum moments at the critical sections. Influence lines may be used to determine the position
of the live load to calculate the maximum and minimum moments. However, in this chapter, sim-
ple rules based on load–deflection curves are used to determine the loading pattern that produces
maximum moments.

16.2.3 Maximum and Minimum Positive Moments within a Span

The maximum positive bending moment in a simply supported beam subjected to a uniform
load 𝑤 K/ft is at midspan, and M=𝑤l2/8. If one or both ends are continuous, the restraint at the
continuous end will produce a negative moment at the support and slightly shift the location of
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Figure 16.2 Loadings for maximum and minimum moment within span AB.

the maximum positive moment from midspan. The deflected shape of the continuous beam for
a single-span loading is shown in Fig. 16.2a; downward deflection indicates a positive moment
and upward deflection indicates a negative moment. If all spans deflected downward are loaded,
each load will increase the positive moment at the considered span AB (Fig. 16.2d). Therefore, to
calculate the maximum positive moment within a span, the live load is placed on that span and on
every alternate span on both sides. The factored live-load moment, calculated as explained before,
must be added to the factored dead-load moment at the same section to obtain the maximum
positive moment.

The bending moment diagram due to a uniform load on AB is shown in Fig. 16.2b. The
deflections and the bending moments decrease rapidly with the distance from the loaded span AB.
Therefore, to simplify the analysis of continuous beams, the moments in any span can be computed
by considering the loaded span and two spans on either side of the considered span AB, assuming
fixed supports at the far ends (Fig. 16.2c).
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Figure 16.3 Loading for maximum negative moment at support A.

If the spans adjacent to span AB are loaded, the deflection curve will be as shown in Fig. 16.2e.
The deflection within span AB will be upward, and a negative moment will be produced in span AB.
This negative moment must be added to the positive moment due to dead load to obtain the final
bending moment. Therefore, to calculate the minimum positive moment (or maximum negative
moment) within a span AB, the live load is placed on the adjacent spans and on every alternate span
on both sides of AB (Fig. 16.2e).

16.2.4 Maximum Negative Moments at Supports

In this case, it is required to determine the maximum negative moment at any support, say, support
A (Fig. 16.3). When span AB is loaded, a negative moment is produced at support A. Similarly,
the loading of span AF will produce a negative moment at A. Therefore, to calculate the maximum
negative moment at any support, the live load is placed on the two adjacent spans and on every
alternate span on both sides (Fig. 16.3).

In the structural analysis of continuous beams, the span length is taken from center to center
of the supports, which are treated as knife-edge supports. In practice, the supports are always made
wide enough to take the loads transmitted by the beam, usually the moments acting at the face of
supports. To calculate the design moment at the face of the support, it is quite reasonable to deduct
a moment equal to Vuc/3 from the factored moment at the centerline of the support, where Vu is the
factored shear and c is the column width.

16.2.5 Moments in Continuous Beams

Continuous beams and frames can be analyzed using approximate methods or computer programs,
which are available commercially. Other methods, such as the displacement and force methods
of analysis based on the calculation of the stiffness and flexibility matrices, may also be adopted.
Slope deflection and moment–distribution methods may also be used. These methods are explained
in books dealing with the structural analysis of beams and frames. However, the ACI Code, Section
6.5, gives approximate coefficients for calculating the bending moments and shear forces in con-
tinuous beams and slabs. These coefficients were given in Chapter 9. The moments obtained using
the ACI coefficients will be somewhat larger than those arrived at by exact analysis. The limitations
stated in the use of these coefficients must be met.

Example 16.1

The slab–beam floor system shown in Fig. 16.4 carries a uniform live load of 130 psf and a dead load
that consists of the slab’s own weight plus 80 psf. Using the ACI moment coefficients, design a typical
interior continuous beam and draw detailed sections. Use f ′c = 4 ksi, fy = 60 ksi, beam width (b)= 12 in.,
12× 12 in. columns, and a slab thickness of 5.0 in.

Solution

1. Design of slabs: The floor slabs act as one-way slabs because the ratio of the long to the short side
is greater than 2. The design of a typical continuous slab was discussed in Example 9.4.
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Figure 16.4 Example 16.1.

2. Loads on slabs:

Dead load = 5
12

× 150 + 80 = 142.5 psf

Live load = 130 psf

Factored load (𝑤u) = 1.2(142.5) + 1.6(130) = 379 psf

Loads on beams: A typical interior beam ABC carries slab loads from both sides of the beam, with
a total slab width of 12 ft.

Factored load on beam = 12 × 379 + 1.2 × (self − weight of beam web)

The depth of the beam can be estimated using the coefficients of minimum thickness
of beams shown in Table 1. For fy = 60 ksi, the minimum thickness of the first beam AB is
L/18.5= (24× 12)/18.5= 15.6 in. Assume a total depth of 22 in. and a web depth of 22− 5= 17 in.
Therefore, the factored load on beam ABCD is

𝑤u = 12 × 379 + 1.2
(17 × 12

144
× 150

)
= 4804 lb∕ft

Use 4.8 K/ft.
3. Moments in beam ABC: Moment coefficients are shown in Fig. 9.8. The beam is continuous on

five spans and symmetrical about the centerline at D. Therefore, it is sufficient to design half of
the beam ABCD because the other half will have similar dimensions and reinforcement. Because
the spans AB and BC are not equal and the ratio 26

24
is less than 1.2, the ACI moment coefficients

can be applied to this beam. Moreover, the average of the adjacent clear span is used to calculate
the negative moments at the supports.

Moments at critical sections are calculated as follows (Fig. 16.4):

Mu = coefficient ×𝑤ul2n
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Test on a continuous reinforced concrete beam. Plastic hinges developed in the positive and negative
maximum moment regions.

Location 1 2 3 4 5 6
Moment coefficient − 1

16
+ 1

14
− 1

10
+ 1

16
− 1

11
+ 1

16

Mu (K ⋅ ft) −158.7 181.4 −276.5 187.5 −272.7 187.5

4. Determine beam dimensions and reinforcement.
a. Maximum negative moment is −276.5 K ft. Using 𝜌max = 0.016, Ru = 740 psi

Ru,max = 820 psi 𝜌max = 0.01806 (Table 4.1) 𝜙 = 0.9

d =

√
Mu

Rub
=
√

276.5 × 12
0.74 × 12

= 19.3 in.

For one row of reinforcement, total depth is 19.3+ 2.5= 21.8 in., say, 23 in., and actual d is
20.5 in. As = 0.016× 12× 19.3= 3.7 in.2; use four no. 9 bars in one row. Note that the total
depth used here is 23 in., which is more than the 22 in. assumed to calculate the weight of the
beam. The additional load is negligible, and there is no need to revise the calculations.

b. The sections at the supports act as rectangular sections with tension reinforcement placed
within the flange. The reinforcements required at the supports are as follows:

c. For the midspan T-sections, Mu =+ 187.5 K ⋅ ft. For a= 1.0 in. and flange width= 72 in.,

As =
Mu

𝜙fy(d − a∕2)
= 187.5 × 12

0.9 × 60(20.5 − 1∕2)
= 2.1 in.2
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2 no. 9

3 no. 8

3 no. 8 3 no. 8 3 no. 8

4 no. 9

4 no. 9 4 no. 9

Figure 16.5 Example 16.1: Reinforcement details.

Check a ∶ a =
Asfy

0.85f ′c b
= 2.1 × 60

0.85 × 3 × 72
= 0.7 in.

Revised a gives As = 2.07 in.2 Therefore, use three no. 8 bars (As = 2.35 in.2) for all midspan
sections. Reinforcement details are shown in Fig. 16.5.

5. Design the beam for shear, as explained in Chapter 8.
6. Check deflection and cracking, as explained in Chapter 6.

16.3 BUILDING FRAMES

A building frame is a three-dimensional structural system consisting of straight members that are
built monolithically and have rigid joints. The frame may be one bay long and one story high, such
as the portal frames and gable frames shown in Fig. 16.6a, or it may consist of multiple bays and
stories, as shown in Fig. 16.6b. All members of the frame are considered continuous in the three
directions, and the columns participate with the beams in resisting external loads. Besides reducing
moments due to continuity, a building frame tends to distribute the loads more uniformly on the
frame. The effects of lateral loads, such as wind and earthquakes, are also spread over the whole
frame, increasing its safety. For design purposes, approximate methods may be used by assuming
a two-dimensional frame system.

A frame subjected to a system of loads may be analyzed by the equivalent frame method. In
this method, the analysis of the floor under consideration is made assuming that the far ends of the
columns above and below the slab level are fixed (Fig. 16.7). Usually, the analysis is performed
using the moment–distribution method.

In practice, the size of panels, distance between columns, number of stories, and the height of
each story are known because they are based upon architectural design and utility considerations.
The sizes of beams and columns are estimated first, and their relative stiffnesses based on the gross
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Figure 16.6 (a) Gable and portal frames (schematic) and (b) multibay, multistory frame.

Figure 16.7 Assumption of fixed column ends for frame analysis.

concrete sections are used. Once the moments are calculated, the sections assumed previously are
checked and adjusted as necessary. More accurate analysis can be performed using computers,
which is recommended in the structural analysis of statically indeterminate structures with several
redundants. Methods of analysis are described in many books on structural analysis.

16.4 PORTAL FRAMES

A portal frame consists of a reinforced concrete stiff girder poured monolithically with its support-
ing columns. The joints between the girder and the columns are considered rigidly fixed, with the
sum of moments at the joint equal to 0. Portal frames are used in building large-span halls, sheds,
bridges, and viaducts. The top member of the frame may be horizontal (portal frame) or inclined
(gable frame) (Fig. 16.8). The frames may be fixed or hinged at the base.

A statically indeterminate portal frame may be analyzed by the moment–distribution method
or any other method used to analyze statically indeterminate structures. The frame members are
designed for moments, shear, and axial forces, whereas the footings are designed to carry the forces
acting at the column base.
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Figure 16.8 Portal and gable frames.

Figure 16.9 Portal frame with two hinged ends. Bending moments are drawn on the
tension side.

Girders and columns of frames may be of uniform or variable depths, as shown in Fig. 16.8.
The forces in a single-bay portal frame of uniform sections may be calculated as follows.

16.4.1 Two Hinged Ends

The forces in the members of a portal frame with two hinged ends [2] can be calculated using the
following expressions (Fig. 16.9).
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For the case of a uniform load on top member BC, let

K = 3 + 2

(
I2

I1
× h

L

)

where
I1, I2 = column and beam moments of inertia
h, L = height and span of frame

The bending moments at joints B and C are

MB = MC = −𝑤L2

4K

Maximum positive moment at midspan is given as BC = 𝑤L2

1
8

+ MB

The horizontal reaction at A is HA =MB/h=HD. The vertical reaction at A is VA =WL/2=VD.
For a uniform load on half the beam BC, Fig. 16.9b: MB =MC =−WL2/8K, HA =HD =MB/h,
VA = 3WL/8, and VD =WL/8.

16.4.2 Two Fixed Ends

The forces in the members of a portal frame with two fixed ends [2] can be calculated as follows
(Fig. 16.10).

Figure 16.10 Portal frame with fixed ends. Bending moments are drawn on the ten-
sion side.
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For a uniform load on top member BC, let

K1 = 2 +
(

I2

I1
× h

L

)

MB = MC = −𝑤L2

6K1

MA = MD =
MB

2
M(midspan) = 𝑤L2

8
+ MB

HA = HD =
3MA

h
and VA = VD = 𝑤L

2
For a uniform load on half the top member BC, let

K2 = 1 + 6

(
I2

I1
× h

L

)

Then

MA = 𝑤L2

8

(
1

3K1
− 1

8K2

)
MB = 𝑤l2

8

(
2

3K1
+ 1

8K2

)

MC = 𝑤L2

8

(
2

3K1
− 1

8K2

)
MD = 𝑤L2

8

(
1

3K1
− 1

8K2

)

HA = HD = 𝑤l2

8
× 1

K1h

VA = 𝑤L
2

− VD and VD = 𝑤L
8

(
1 − 1

4K2

)

16.5 GENERAL FRAMES

The main feature of a frame is its rigid joints, which connect the horizontal or inclined girders of the
roof to the supporting structural members. The continuity between the members tends to distribute
the bending moments inherent in any loading system to the different structural elements according
to their relative stiffnesses. Frames may be classified as

1. Statically determinate frames (Fig. 16.11a).
2. Statically indeterminate frames (Fig. 16.12).
3. Statically indeterminate frames with ties (Fig. 16.13).

Different methods for the analysis of frames and other statically indeterminate structures are
described in books dealing with structural analysis. Once the bending moments, shear, and axial
forces are determined, the sections can be designed as the examples in this book are. Analysis may
also be performed using computer programs.

16.6 DESIGN OF FRAME HINGES

The main types of hinges used in concrete structures are Mesnager hinges, Considére hinges, and
lead hinges [19]. The description of each type is given next.
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Figure 16.11 (a) Statically determinate frames and (b) reinforced concrete stadium.
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Figure 16.12 (a) Vierendeel girder and (b) statically indeterminate frames.

16.6.1 Mesnager Hinge

The forces that usually act on a hinge are a horizontal force, H, and a vertical force, P. The resultant
of the two forces, R, is transferred to the footing through the crossing bars A and B shown in
Fig. 16.14. The inclination of bars A and B to the horizontal varies between 30∘ and 60∘, with a
minimum distance a, measured from the lower end of the frame column, equal to 8D, where D is
the diameter of the inclined bars. The gap between the frame column and the top of the footing
y varies between 1 in. and 1.3h′, where h′ is the width of the concrete section at the hinge level.
A practical gap height ranges between 2 and 4 in. The rotation of the frame ends is taken by the
hinges, and the gap is usually filled with bituminous cork or similar flexible material. The bitumen
protects the cork in contact with the soil from deterioration. The crossing bars A and B are subjected
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Figure 16.13 Structures with ties.

to compressive stresses that must not exceed one-third the yield strength of the steel bars fy under
service loads or 0.55fy under factored loads. The low stress is assumed because any rotation at the
hinge tends to bend the bars and induces secondary flexural stresses. It is generally satisfactory to
keep the compression stresses low rather than to compute secondary stresses. The areas of bars A
and B are calculated as follows:

Area of bars A∶ As1
=

R1

0.55fy
(16.1)

Area of bars B∶ As2
=

R2

0.55fy
(16.2)

where R1 and R2 are the components of the resultant R in the direction of the inclined bars A and B
using factored loads. The components R1 and R2 are usually obtained by statics as follows:

H + R2sin 𝜃 = R1sin 𝜃 and R2 = R1 −
H

sin 𝜃
(16.3a)

Also, (R1 +R2)cos 𝜃 =Pu, so

R1 =
Pu

cos 𝜃
− R2 =

Pu

cos 𝜃
−
[
R1 −

H
sin 𝜃

]

R1 = 1
2

[
Pu

cos 𝜃
+ H

sin 𝜃

]
(16.3b)

The inclined hinge bars transmit their force through the bond along the embedded lengths
in the frame columns and footings. Consequently, the bars exert a bursting force, which must be
resisted by ties. The ties should extend a distance a= 8D (the larger bar diameter of bars A and B)
in both columns and footings. The bursting force F can be estimated as

F =
Pu

2
tan 𝜃 + Ha

0.85d
(16.4)
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Figure 16.14 Hinge details.

If the contribution of concrete is neglected, then the area of tie reinforcement, Ast, required to
resist F is

Ast =
F
𝜙fy

= F
0.85fy

(16.5)

The stress in the ties can also be computed as follows:

fs(ties) =
(Pu∕2)tan 𝜃 + Ha∕(0.85d)

0.005ab + Ast (ties)
≤ 0.85fy (16.6)

where
Ast = area of ties within distance a = 8D

d = effective depth of column section
b = width of column section

This type of hinge is used for moderate forces and limited by the maximum number of inclined
bars that can be placed within the column width.
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Figure 16.15 (a) Considère hinge, (b) Mesnager hinges for a series of portal frames,
and (c) Considère hinge.

16.6.2 Considère Hinge

The difference between the Considère hinge and the Mesnager one is that the normal force Pu is
assumed to be transmitted to the footing by one or more short, spirally reinforced columns extending
deep into the footing, whereas the horizontal force H is assumed to be resisted by the inclined bars
A and B (Fig. 16.15). The load capacity of the spirally reinforced short column may be calculated
using Eq. 10.7, neglecting the factor 0.85 for minimum eccentricity:

Pu = 𝜙Pn = 0.75[0.85f ′c (Ag − Ast) + Astfy] (16.7)

where Ag is the area of concrete hinge section, or bh′, and Ast is the area of longitudinal bars within
the spirals. Ties should be provided in the column up to a distance equal to the long side of the
column section h.

16.6.3 Lead Hinges

Lead hinges are sometimes used in reinforced concrete frames. In this type of hinge, a lead plate,
usually 0.75 to 1.0 in. thick, is used to transmit the normal force, Pu, to the footing. The horizontal
force H is resisted by vertical bars placed at the center of the column and extended to the footing
(Fig. 16.16). At the base of the column, the axial load Pu should not exceed the bearing strength
specified by the ACI Code, Section 22.8.3, of 𝜙(0.85f ′c A1), where 𝜑= 0.65 and A1 = bh′. The area
of the vertical bars is As.=H/0.6fy, where H= factored horizontal force.
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Figure 16.16 Lead hinge.

Example 16.2

An 84× 40–ft hall is to be covered by reinforced concrete slabs supported on hinged-end portal frames
spaced at 12 ft on centers (Fig. 16.17). The frame height is 15 ft, and no columns are allowed within the
hall area. The dead load on the slabs is that due to self-weight plus 75 psf from roof finish. The live load
on the slab is 85 psf. Design a typical interior frame using normal-weight concrete with f ′c = 4 ksi and
fy = 60 ksi for the frame and a column width of b= 16 in.

336.8 K ∙ ft

336.8 K ∙ ft 336.8 K ∙ ft

463.2 K ∙ ft

Figure 16.17 Example 16.2: Design of portal frame.
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Solution
The main structural design of the building will consist of the following:

• Design of one-way slabs
• Analysis of the portal frame
• Design of the frame girder due to moment

• Design of the frame girder due to shear
• Design of columns
• Design of hinges

Design of footings

1. One-way roof slab: The minimum thickness of the first slab is L/30 because one end is continuous
and the other end is discontinuous (Table A.6 in Appendix A):

Minimum depth = 12 × 12
30

= 4.8 in.

Assume a slab thickness of 5.0 in. and design the slab following the steps of Example 9.5.
2. Analysis of an interior portal frame:

a. The loads on slabs are

Dead load on slabs = 75 +
( 5

12
× 150

)
= 137.5 psf

Factored load on slabs = 1.2 × 137.5 + 1.6 × 85 = 301 psf

b. Determine loads on frames: The interior frame carries a load from a 12-ft slab in addition to its
own weight. Assume that the depth of the beam is L/24= (40× 12)/24= 20 in. Use a projection
below the slab of 16 in., giving a total beam depth of 21 in.

Dead load from self − weight of beam =
(16

12

)2

× 150 = 267 lb∕ft

Total factored load on frame = 301 × 12 + 1.2 × 267

= 3932 lb∕ft

𝑤u = 4.0 K∕ft

c. Determine the moment of inertia of the beam and columns sections. The beam acts as
a T-section. The effective width of the slab acting with the beam is the smallest of span
/4= 40× 12/4= 120 in., 16hs + b𝑤 = 16× 5+ 16= 96, or 12 ft× 12= 144 in. Use b= 96 in.
The centroid of the section from the top fibers is

y = 96 × 5 × 2.5 + 16 × 16 × 13
96 × 5 + 16 × 16

= 6.2 in.

Ib(beam) =
[96

12
(5)3 + 96 × 5(3.7)2

]
+
[16

12
(16)3 + 16 × 16(6.8)2

]

= 24,870 in.4

It is common practice to consider an approximate moment of inertia of a T-beam as equal to
twice the moment of inertia of a rectangular section having the total depth of the web and slab:

Ib(beam) = 2 × 16
12

(21)3 = 24,696 in.4

(For an edge beam, approximate I= 1.5× bh3/12.) Assume a column section 16× 20 in. (hav-
ing the same width as the beam).

Ic(column) = 16
12

(20)3 = 10,667 in.4
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d. Let the factor

K = 3 + 2

(
Ib

L
× h

Ic

)
= 3 + 2

(
24,870

40
× 15

10,667

)
= 4.75

Referring to Fig. 16.17 and for a uniform load 𝑤u = 4.0 K/ft on BC,

MB = MC = −
𝑤uL2

4K
= −4.0(40)2

4 × 4.75
= −336.8 K ⋅ ft

The maximum positive bending moment at midspan of BC equals

𝑤u
L2

8
+ MB = 4.0(40)2

8
− 336.8 = 463.2 K ⋅ ft

The horizontal reaction at A is

Ha = HD =
MB

h
= 336.8

15
= 22.5 K

The vertical reaction at A is

VA = VD =
𝑤uL

2
+ weight of column

= 4.0 × 40
2

+ 20
12

× 16
12

× 0.150 × 15 ft = 85.0 K

The bending moment diagram is shown in Fig. 16.17.
e. To consider the sidesway effect on the frame, the live load is placed on half the beam BC, and

the moments are calculated at the critical sections. This case is not critical in this example.
f. The maximum shear at the two ends of beam BC occurs when the beam is loaded with the

factored load 𝑤u, but the maximum shear at midspan occurs when the beam is loaded with
half the live load and with the full dead load:

Vu at support = 4.0 × 40
2

= 80.0 K

Vu at midspan = 𝑤l
L
8
= (1.7 × 80 × 12) × 40

8

= 8160 lb = 8.16 K

g. The axial force in each column is VA =VD = 85.0 K.
h. Let the point of zero moment in BC be at a distance x from B, then

MB = 𝑤uL
x
2
−𝑤u

x2

2

336.8 = 4.0

(
40x
2

− x2

2

)
or x2 − 40x + 168.4 = 0

x = 4.8 ft = 57.6 in. from B

3. Design of girder BC:
a. Design the critical section at midspan. Mu = 463.2 K ⋅ ft, web width is flange width is

b𝑤 = 16 in., flange width is b= 96 in., and d= 21− 3.5= 17.5 in. (assuming two rows of steel
bars). Check if the section acts as a rectangular section with effective b= 96 in. Assume
a= 1.0 in., then

As =
Mu

𝜙fy(d − a∕2)
= 463.2 × 12

0.9 × 60(17.5 − 1.0∕2)
= 6.05 in.2

a =
Asfy

0.85f ′c b
= 6.05 × 60

0.85 × 4 × 96
= 1.1 in. < 5.0 in.
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28.1

37
45 3.75

15

3 no. 9

3 no. 9

3 no. 9

3 no. 7

3 no. 9 2 no. 5

2 no. 10

2 no. 10

2 no. 10

2 no. 10

2 no. 10

2 no. 9

2 no. 6

6 no. 9

2 no. 9 2 no. 9 2 no. 9 2 no. 6

Figure 16.18 Example 16.2: Reinforcement details of frame sections.

The assumed a equals approximately the calculated a. The section acts as a rectangular section;
therefore, use six no. 9 bars. Check bmin (to place bars in one row):

bmin = 11
(9

8

)
+ 2

(3
8

)
+ 3 = 16.13 in. > 16 in.

Place bars in two rows, as shown in Fig. 16.18.
b. Design the critical section at joint B: Mu = 336.8 K ⋅ ft, b= 16 in., and d= 21− 2.5= 18.5 in.

(for one row of steel bars). The slab is under tension, and reinforcement bars are placed on top
of the section.

Ru =
Mu

bd2
= 336.8 × 12,000

16(18.5)2
= 738 psi
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From tables in Appendix A, 𝜌= 0.016<𝜌max = 0.018 (tension-controlled section, 𝜙= 0.9):

As = 0.016 × 16 × 18.5 = 4.73 in.2

Use five no. 9 bars in one row.
4. Design the girder BC due to shear:

a. The critical section is at a distance d from the face of the column with a distance from the
column centerline of 10+ 18.5= 28.5 in.= 2.4 ft. Thus,

Vu(at distance d) = 80 − 4 × 2.4 = 70.4 K

b. The shear strength provided by concrete is

𝜙Vc = 𝜙(2𝜆
√

f ′c ) b𝑤d

= 0.75 × 2 × (1)
1000

×
√

4000 × 16 × 18.5 = 28.1 K

The shear force to be provided by web reinforcement is

𝜙Vs = Vu − 𝜙Vc = 70.4 − 28.1 = 42.3 K

Vs =
42.3
0.75

= 56.4 K

c. Choose no. 4 stirrups and A𝑣 = 2× 0.20= 0.40 in.2 Thus,

S =
A𝑣fyd

Vs
= 0.40 × 60 × 18.5

56.4
= 7.8 in. say, 7 in.

d. Maximum spacing of no. 4 stirrups is

Smax = d
2
= 18.5

2
= 9.25 in. say, 9 in.

or

Smax =
A𝑣fy
50b𝑤

= 0.40 × 60,000
50 × 16

= 30 in.

Check for maximum spacing of d/2: Vs ≤ 4
√

f ′c b𝑤d or

Vs ≤ 4
√

4000 × 16 × 18.5
1000

= 74.9 K

The value Vs of 56.4 is less than 74.9 K, so use Smax = 9 in.

Vs (for Smax = 9 in.) =
A𝑣fyd

S
= 0.40 × 360 × 18.5

9
= 49.3 K

𝜙Vs = 0.75 × 49.3 = 37 K

The distance from the face of the column where Smax = 9 in. can be used is equal to
45 in.= 3.75 ft (from the triangle of shear forces).

e. Distribution of stirrups:

First stirrups at S∕2 = 3.0 in.

7 stirrups at 7 in. = 49.0 in.

19 stirrups at 9 in. = 171.0 in. (total = 223 in.)

The distance from the face of the column to the centerline of the beam is 240− 10= 230 in.
Use the same distribution for the second half of the beam, and place one stirrup at midspan.

5. Design the column section at joint B: Mu = 336.8 K ⋅ ft, Pu = 80 K, b= 16 in., and h= 20 in.
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a. Assuming that the frame under the given loads will not be subjected to sidesway, then the effect
of slenderness may be neglected, and the column can be designed as a short column when

Klu

4
≤ 34 −

12M1

M2
≤ 40 (see Section 12.5)

M1 = 0 and M2 = 336.8 K ⋅ ft

Let K= 0.8 (Fig. 12), Lu = 15− 21/(2× 12)= 14.125 ft, and r= 0.3 h= 0.3× 20= 6 in; then

KLu

r
= 0.8 × 14.125 × 12

6
= 22.6 < 34

If K is assumed equal to 1.0, then

KLu

r
= 28.25 < 34 < 40

Therefore, design the member as a short column.
b. The design procedure is similar to 11.16 and 11.3:

Eccentricity(e) =
Mu

Pu
= 336.8 × 12

80
= 50.5 in.

This is a large eccentricity, and it will be assumed that the section is in the transition region,
𝜙< 0.9:

d = 20 − 2.5 = 17.5 in.

c. Because e= 50.5 in. is much greater than d, determine approximate As and A′
s from the Mu only

and then check the final section by statics, as was explained in Example 11.3. For Mu = 336.8
K ⋅ ft, b= 16 in., h= 20 in., and d= 17.5 in., Ru =Mu/bd2 = 336.8(12,000)/16(17.5)2 = 825 psi.

𝜌 = 0.0183 and As = 𝜌bd = 0.0183(16)(17.5) = 5.12 in.2

Choose three no. 9 and two no. 10 bars and As = 5.53 in.2 Choose A′
s = As∕3 = 5.13∕3 =

1.7 in.2 and three no. 7 bars (A′
s = 1.8 in.2) (Fig. 16.18). When the eccentricity, e, is quite large,

it is a common practice to use A′
s = As∕3 or As/2 instead of As = A′

s.
d. Check the load capacity of the final section using As = 5.53 in.2 and A′

s = 1.8 in.2, similar to
Example 11.3, according to the following steps:

i. Pn = Cc + Cs − T

Cc = 0.85 f ′c ab = 0.85(4)(16)a = 54.4a

Cs = A′
s(f ′s − 0.85 f ′c ) = 1.8(60 − 0.85 × 4) = 101.8 K

T = As fy = 5.53(60) = 331.8 K

Pn = 54.4a + 101.8 − 331.8 = (43.4a − 230) (I)
ii. Take moments about As:

Pn = 1
e′

[
Cc

(
d − a

2

)
+ Cs(d − d′)

]

e′ = e+ d′′, where d′′ is the distance from As to the plastic centroid of the section. The plas-
tic centroid occurs at 11.1 in. from the extreme compression fibers and d′′ = d− x= 6.4 in.
(refer to Example 11.1):

e′ = 50.5 + 6.4 = 56.9 in.

Pn = 1
56.9

[
54.4a

(
17.5 − a

2

)
+ 101.8(15)

]

= 16.73a − 0.478a2 + 26.86 (II)



16.6 Design of Frame Hinges 577

iii. Equate Eqs. I and II and solve to get a= 6.313 in. and Pn = 113.5 K. Check f ′s = 87 (c −
d′)∕c ≤ fy ∶ c = a∕0.85 = 7.43 in. and f ′s = 87(7.43 − 2.5)∕7.43 = 58 ksi, which is close
to the 60 ksi assumed in the calculations. Choose no. 3 ties spaced at 16 in.

iv. Check 𝜑: dt = 17.5 in.

𝜀t =
(

dt − c

c

)
0.003 = 0.00407

𝜙 = 0.65 + (𝜀t − 0.002)
(250

3

)
= 0.823

𝜙Pn = 0.823(113.5) = 93.3 K > 80 K

The section is adequate.
6. Check the adequacy of the column section at midheight, 7.5 ft from A: Mu = 336.8/2= 168.4 K ⋅ ft.

Pu = 80 + 2.5(half the column weight) = 82.5 K

Use As = three no. 9 bars and A′
s = three no. 7 bars. In an approach similar to step 5, 𝜙Pn = 122

K> 82.5 K (no. 10 bars can be terminated, and they have to be extended a development length
below the midheight of the column).

7. Design the hinge at A: Mu = 0, H= 22.5 K, Pu = 85 K.
a. Choose a Mesnager hinge. Using Eqs. 16.3a and Eqs. 16.3b, R1 = 72 K and R2 = 27 K. (Refer

to Fig. 16.19 with 𝜃 = 30∘)

As1 =
R1

0.55fy
= 72

0.55 × 60
= 2.2 in.2

3 no. 9

No. 3 hinge ties

3 no. 8
2 no. 7

2 no. 7

3 no. 8

4 no. 3 ties

3 no. 6

Figure 16.19 Example 16.2: Hinge details.
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Choose three no. 8 bars (As = 2.35 in.2).

As2
=

R2

0.55 × fy
= 27

0.55 × 60
= 0.82 in.2

Choose two no. 7 bars (As = 1.2 in.2). Arrange the crossing bars by placing one no. 8 bar and
then one no. 7 bar, as shown in Fig. 16.19 (or use five no. 8 bars.)

b. Lateral ties should be placed along a distance a= 8db = 8.0 in. within the column and footing.
The bursting force is

F =
Pu

2
tan 𝜃 + Ha

0.85d

For 𝜃 = 30∘, d= 17.5 in., and a= 8.0 in.,

F = 85
2

tan 30∘ + 22.5 × 8
0.85 × 17.5

= 36.6 K

Area of ties = 36.6
0.85 × 60

= 0.72 in.2

If no. 3 closed ties (two branches) are chosen, then the area of one tie is 2× 0.11= 0.22 in.2 The
number of ties is 0.72/0.22= 3.27, say, four ties spaced at 8

3
= 2.7 in., as shown in Fig. 16.19.

8. Design the footing: If the height of the footing is assumed to be h′, then the forces acting on the
footing are the axial load P and a moment M=H/h′. The soil pressure is calculated from Eq. 13.14
of Chapter 13:

q = +P
A
± Mc

I
≤ allowable soil pressure

The design procedure of the footing is similar to that of Example 13.7.

16.7 INTRODUCTION TO LIMIT DESIGN

16.7.1 General

Limit state design of a structure falls into three distinct steps:

1. Determination of the factored design load, obtained by multiplying the dead and live loads
by load factors. The ACI Code adopted the load factors given in Chapter 3.

2. Analysis of the structure under factored loads to determine the factored moments and forces
at failure or collapse of the structure. This method of analysis has proved satisfactory for steel
design; in reinforced concrete design, this type of analysis has not been fully adopted by the
ACI Code because of the lack of ductility of reinforced concrete members. The Code allows
only partial redistribution of moments in the structure based on an empirical percentage, as
will be explained later in this chapter.

3. Design of each member of the structure to fail at the factored moments and forces determined
from structural analysis. This method is fully established now for reinforced concrete design
and the ACI Code permits the use of the strength design method, as was explained in earlier
chapters.

16.7.2 Limit Design Concept

Limit design in reinforced concrete refers to the redistribution of moments that occurs throughout
a structure as the steel reinforcement at a critical section reaches its yield strength. The ultimate
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strength of the structure can be increased as more sections reach their strength capacity. Although
the yielding of the reinforcement introduces large deflections, which should be avoided under ser-
vice loads, a statically indeterminate structure does not collapse when the reinforcement of the first
section yields. Furthermore, a large reserve of strength is present between the initial yielding and
the collapse of the structure.

In steel design, the term plastic design is used to indicate the change in the distribution of
moments in the structure as the steel fibers, at a critical section, are stressed to their yield strength.
The development of stresses along the depth of a steel section under increasing load is shown in
Fig. 16.20. Limit analysis of reinforced concrete developed as a result of earlier research on steel
structures and was based mainly on the investigations of Prager and Hodge [4], Beedle et al. [5],
and Baker et al. [6]. Baker [7] worked on the principles of limit design, whereas Cranston [8] tested
portal frames to investigate the rotation capacity of reinforced concrete plastic hinges. However,
more research work is needed before limit design can be adopted by the ACI Code.

16.7.3 Plastic Hinge Concept

The curvature 𝜑 of a member increases with the applied bending moment M. For an underrein-
forced concrete beam, the typical moment–curvature and the load–deflection curves are shown
in Fig. 16.21. A balanced or an overreinforced concrete beam is not permitted by the ACI Code
because it fails by the crushing of concrete and shows a small curvature range at factored moment
(Fig. 16.22).

Figure 16.20 Distribution of yield stresses in a yielding steel rectangular section.

Figure 16.21 Yielding behavior of an underreinforced concrete beam.
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Figure 16.22 Yielding behavior of an overreinforced concrete beam.

Figure 16.23 Idealized moment–curvature behavior of reinforced concrete beams.

The significant part of the moment–curvature curve in Fig. 16.21 is that between B and C,
in which Mu remains substantially, constant for a wide range of values of 𝜑. In limit analysis, the
moment–curvature curve can be assumed to be of the idealized form shown in Fig. 16.23, where
the curvature, 𝜑, between B and C is assumed to be constant, forming a plastic hinge. Because
concrete is a brittle material, there is usually considered to be a limit at which the member fails
completely at maximum curvature at C.

Cranston [8] reported that in normally designed reinforced concrete frames, ample rotation
capacity is available, and the maximum curvature at point C will not be reached until the failure or
collapse of the frame. Therefore, when the member carries a moment equal to its factored moment,
Mu, the curvature continues to increase between B and C without a change in the moment, producing
a plastic hinge. The increase in curvature allows other parts of the statically indeterminate structure
to carry additional loading.

16.8 THE COLLAPSE MECHANISM

In limit design, the moment strength of a reinforced concrete member is reached when it is on the
verge of collapse. The member collapses when there are sufficient numbers of plastic hinges to
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transform it into a mechanism. The required number of plastic hinges, n, depends upon the degree
of redundancy, r, of the structure. The relation between n and r to develop a mechanism is

n = 1 + r (16.8)

For example, in a simply supported beam no redundants exist, and r= 0. Therefore, the
beam becomes unstable and collapses when one plastic hinge develops at the section of maximum
moment, as shown in Fig. 16.24a. Applications to beams and frames are also shown in Fig. 16.24.

Figure 16.24 Development of plastic hinges (PH).
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16.9 PRINCIPLES OF LIMIT DESIGN

Under working loads, the distribution of moments in a statically indeterminate structure is based on
elastic theory, and the whole structure remains in the elastic range. In limit design, where factored
loads are used, the distribution of moments at failure, when a mechanism is reached, is different
from that distribution based on elastic theory. This change reflects moment redistribution.

For limit design to be valid, four conditions must be satisfied.

1. Mechanism condition: Sufficient plastic hinges must be formed to transform the whole or part
of the structure into a mechanism.

2. Equilibrium condition: The bending moment distribution must be in equilibrium with the
applied loads.

3. Yield condition: The factored moment must not be exceeded at any point in the structure.
4. Rotation condition: Plastic hinges must have enough rotation capacity to permit the develop-

ment of a mechanism.

Only the first three conditions apply to plastic design because sufficient rotation capacity
exists in ductile materials as steel. The fourth condition puts more limitations on the limit design
of reinforced concrete members as compared to plastic design.

16.10 UPPER AND LOWER BOUNDS OF LOAD FACTORS

A structure on the verge of collapse must have developed the required number of plastic hinges
to transform it into a mechanism. For arbitrary locations of the plastic hinges on the structure, the
collapse loads can be calculated, which may be equal to or greater than the actual loads. Because the
calculated loads cannot exceed the true collapse loads for the structure, then this approach indicates
an upper or kinematic bound of the true collapse loads [10]. Therefore, if all possible mechanisms
are investigated, the lowest Mu will be caused by the actual loads. Horne [11] explained the upper
bound by assuming a mechanism and then calculating the external work, We, done by the applied
loads and the internal work, Wi, done at the plastic hinges. If We =Wi, then the applied loads are
either equal to or greater than the collapse loads.

If any arbitrary moment diagram is developed to satisfy the static equilibrium under the
applied loads at failure, then the applied loads are either equal to or less than the true collapse
loads. For different moment diagrams, different factored loads can be obtained. Higher values of
the lower, or static, bound are obtained when the moments at several sections for the assumed
moment diagram reach the collapse moment. Horne [11] explained the lower bound by assuming
different moment distributions to obtain the one that is in equilibrium with the applied loads and
satisfies the yield condition all over the structure. In this case, the applied loads are either equal to
or less than the collapse loads.

16.11 LIMIT ANALYSIS

For the analysis of structures by the limit design procedure, two methods can be used: the virtual
work method and the equilibrium method. In the virtual work method, the work done by the factored
load, Pu (or 𝑤u), to produce a given virtual deflection, 𝛥, is equated to the work absorbed at the
plastic hinges. The external work done by loads is We =𝛴(𝑤u 𝛥) or 𝛴(Pu𝛥). The work absorbed
by the plastic hinges is internal work =Wi =𝛴(Mu𝜃).
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Example 16.3

The beam shown in Fig. 16.25 carries a concentrated load at midspan. Calculate the collapse moment
at the critical sections.

Solution

1. The beam is once statically indeterminate (r= 1), and the number of plastic hinges needed to
transform the beam into a mechanism is n= 1+ 1= 2 plastic hinges, at A and C. The first plas-
tic hinge develops at A, and the beam acts as a simply supported member until a mechanism
is reached.

Figure 16.25 Example 16.3: Pu =𝜙Pn and Mu =𝜙Mn.



584 Chapter 16 Continuous Beams and Frames

2. If a rotation 𝜃 occurs at the plastic hinge at the fixed end, A, the rotation at the sagging hinge is
C= 2𝜃. The deflection of C under the load is (L/2)𝜃 (Fig. 16.25).

We = external work =
∑

Pu𝛥 = Pu

(L𝜃
2

)

Wi = internal work =
∑

Mu𝜃 = Mu1
(𝜃) + Mu2

(2𝜃)

If the two sections at A and C have the same dimensions and reinforcement, then Mu1
= Mu2

= Mu,
and Wi = 3Mu𝜃. Equating We and Wi,

Mu1
+ 2Mu2

= Pu
L
2
= 3Mu and Mu =

PuL

6

Example 16.4

Calculate the collapse moments at the critical sections for the beam shown in Fig. 16.26 due to a uniform
load 𝑤u.

Solution

1. The number of plastic hinges is two.
2. For a deflection at C= 1.0, the rotation at A, 𝜃A, is 1/a; 𝜃B = 1/b; and

𝜃c = 𝜃A + 𝜃B = 1
a
+ 1

b
= a + b

ab
= L

ab
3. External work is

We =
∑

𝑤u𝛥 = 𝑤u

(1 × L
2

)
=
𝑤uL

2
Internal work is

Wi =
∑

Mu𝜃 = Mu1
𝜃A + Mu2

𝜃c

= Mu1

(1
a

)
+ Mu2

(1
a
+ 1

b

)

Equating We and Wi,

𝑤u = 2
L

(Mu1

a
+

Mu2

a
+

Mu2

L − a

)
(16.9)

If both moments are equal, then

𝑤u =
2Mu

L

[2
a
+ 1

L − a

]
=

2Mu

L

[
(2L − a)
a(L − a)

]
(16.10)

4. To determine the position of the plastic hinge at C that produces the minimum value of the collapse
load 𝑤u, differentiate Eq. 16.9 with respect to a and equate to 0:

𝛿𝑤u

𝛿a
= 0 −

(Mu1

a2
+

Mu2

a2
−

Mu2

(L − a)2

)
= 0

If Mu1
= Mu2

= Mu, then

2
a2

= 1
(L − a)2

or a = L(2 −
√

2) = 0.586L
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Figure 16.26 Example 16.4: Mu =𝜙Mn and 𝑤u =𝜙wn.

From Eq. 16.10, the collapse load is 𝑤u = 11.66(Mu∕L2), and the collapse moment is Mu =
0.085 𝑤uL2. The reaction at A is 0.586 𝑤uL, and the reaction at B is 0.414 𝑤uL.

In the equilibrium method, the equilibrium of the beam or of separate segments of the beam is
studied under the forces present at collapse. To illustrate analysis by this method, the two previous
examples are repeated here.
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Example 16.5

For the beam shown in Fig. 16.25, calculate the collapse moments using the equilibrium method.

Solution
Two plastic hinges will develop at A and C. Referring to Fig. 16.25e, the reaction at A is (Pu∕2) + (Mu1

L)
and the reaction at B is (Pu∕2) − (Mu1

∕L).
Considering the equilibrium of beam BC and taking moments about C,

(
Pu

2
−

Mu1

L

)(L
2

)
= Mu2

Mu1
+ 2Mu2

= Pu
L
2

which is the same equation obtained in Example 16.3. When Mu1
= Mu2

= Mu, then

3Mu = Pu
L
2

or Mu = Pu
L
6

Example 16.6

Calculate the collapse moments for the beam shown in Fig. 16.26 by the equilibrium method.

Solution

1. Two plastic hinges will develop in this beam at A and C. Referring to Fig. 16.26d, the reaction
at A = 𝑤u(L∕2) + (Mu1

∕L) and the reaction at B = 𝑤u(L∕2) − (Mu1
∕L). The load on BC is 𝑤ub

acting at b/2 from B, and b= (L− a). Considering the equilibrium of segment BC and taking
moments about C, (

𝑤u
L
2
−

Mu1

L

)
b − (𝑤ub)b

2
= Mu2

If Mu1
= Mu2

= Mu, then

𝑤u
b
2
(L − b) = Mu

(
1 + b

L

)
=

Mu

L
(2L − a)

𝑤u =
2Mu

L
× 2L − a

a(L − a)
which is similar to the results obtained in Example 16.4.

Mu =
𝑤uL

2
× a(L − a)

2L − a
2. The position of a can be determined as before, where a= 0.586L, Mu = 0.0858 𝑤uL2, and
𝑤u = 11.66(Mu/L2).

16.12 ROTATION OF PLASTIC HINGES

16.12.1 Plastic Hinge Length

The assumption that the inelastic rotation of concrete occurs at the point of maximum moment
while other portions of the member act elastically is a theoretical one; in fact, the plastic rotation
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Figure 16.27 (a) Plastic rotation from moment–curvature and moment gradient and (b)
development of plastic hinges in a reinforced concrete continuous beam.

occurs on both sides of the maximum moment section over a finite length. This length is called the
plastic hinge length, lp. The hinge length, lp, is a function of the effective depth d, and the distance
from the section of highest moment to the point of contraflexure (zero moment).

Referring to Fig. 16.27a, the length Lp/2 represents the plastic hinge length on one side of the
center of support; Mu and 𝜙u indicate the factored moment and ultimate curvature at the critical
section, whereas My and 𝜙y indicate the moment and curvature at first yield. The plastic curvature
at the critical section 𝜙p is equal to 𝜙u −𝜙y and the rotation capacity is equal to 𝜙plp.

The estimated length of the plastic hinge was reported by many investigators. Baker [7]
assumed that the length of the plastic hinge is approximately equal to the effective depth d. Corley
[12] proposed the following expression for the equivalent length of the plastic hinge:

lp = 0.5d + 0.2
√

d
( z

d

)
(16.11)

where z is the distance of the critical section to the point of contraflexure and d is the effective depth
of the section. Mattock [13] suggested a simpler form:

lp = 0.5d + 0.05z (16.12)

Tests [14] on reinforced concrete continuous beams showed that lp can be assumed equal to 1.06d.
They also showed that the length of the plastic hinge, in reinforced concrete continuous beams
containing hooked-end steel fibers, increases with the increase in the amount of the steel fibers and
the main reinforcing steel according to the following expression:

lp = (1.06 + 0.13𝜌𝜌s)d (16.13)
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where 𝜌 is the percentage of main steel in the section and 𝜌s is the percentage of steel fibers by
volume, 0 ≤. For example, if 𝜌 = 1.0% and 𝜌s = 0.8%, then lp = 1.164d.

16.12.2 Curvature Distribution Factor

Another important factor involving the calculation of plastic rotations is the curvature distribution
factor, 𝛽. The curvature along the plastic hinge varies significantly, and in most rotation estima-
tions this factor is ignored, which leads to an overestimation of the plastic rotations. Referring to
Fig. 16.27, the shaded area, ABC, represents the inelastic rotation that can occur at the plastic hinge,
whereas the unshaded area, EBF, represents the elastic contribution to the rotation over the length
of the member. The shaded area ABC can be assumed to be equal to 𝛽 times the total area ABCD
within the plastic hinge length, lp/2, on one side of the critical section. The curvature distribution
factor, 𝛽, represents the ratio of the actual plastic rotation, 𝜃pc, to 𝜙lp, where 𝜑 is the curvature and
lp is the length of the plastic hinge. The value of 𝛽 was reported to vary between 0.5 and 0.6. Tests
[14] have showed that 𝛽 can be assumed to be equal to 0.56. When hooked-end steel fibers were
used in concrete beams, the value of 𝛽 decreased according to the following expression:

𝛽 = 0.56 − 0.16𝜌s (16.14)

where 𝜌s is the percentage of steel fibers, 0≤ 𝜌s ≤ 1.2%. The reduction of the curvature distribution
factor of fibrous concrete does not imply that the rotation capacity is reduced: The plastic curvature
of fibrous concrete is substantially higher than that of concrete without fibers. Figure 16.28 shows
the distribution of the curvature along the plastic hinge length. The area ABC1 represents the plastic
rotation for concrete that does not contain steel fibers, 𝛽 = 0.56, whereas the areas ABC2 and ABC3
represent the plastic rotation for concretes containing 0.8 and 1.2% steel fibers, respectively.

16.12.3 Ductility Index

The ratio of ultimate to first-yield curvature is called the ductility index, 𝜇=𝜑u/𝜑y. The ductility
index of reinforced concrete beams was reported [15] to vary between 4 and 6. If steel fibers are
used in concrete beams, the ductility index increases according to the following expression [14]:

𝜇′ = (1.0 + 3.8𝜌s)𝜇 (16.15)

where
𝜇 = ratio of ultimate to first-yield curvature
𝜇′ = ductility index of fibrous concrete
ps = percentage of steel fibers by volume, 0 ≤ 𝜌s ≤ 1.2%

16.12.4 Required Rotation

The rotation of a plastic hinge in a reinforced concrete indeterminate structure is required to allow
other plastic hinges to develop, and the structure to reach a mechanism can be determined by slope
deflection from the following expression [7,20]. For a segment AB between two plastic hinges, the
rotation at A is

𝜃A = L
6EcI

[2(MA − MFA) + (MB − MFB)] (16.16)

where
MA, MB = factored moments at A and B, respectively

MFA, MFB = elastic fixed-end moments at A and B
Ec = modulus of elasticity of concrete = 33𝑤1.5

√
f ′c

I = moment of inertia of cracked section (Chapter 5)
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Figure 16.28 Curvature distribution along the plastic hinge.

16.12.5 Rotation Capacity Provided

Typical tensile plastic hinges at the support and midspan sections of a frame are shown in Fig. 16.29.
The rotation capacity depends mainly on the following:

1. The ultimate strain capacity of concrete, 𝜀′c, which may be assumed to be 0.003 or 0.0035, as
used by Baker [7].

2. The length, lp, over which yielding occurs at the plastic hinge, which can be assumed to be
approximately equal to the effective depth of the section where the plastic hinge developed
(lp = d).
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3. The depth of the compressive block c in concrete at failure at the section of the plastic hinge.
Baker [7] estimated the angle of rotation, 𝜃, of a tensile plastic hinge as follows:

𝜃 =
𝜀pIp

c
(16.17)

where 𝜀p is the increase in the strain in the concrete measured from the initial yielding of steel
reinforcement in the section (see Fig. 16.29c):

𝜀p = 𝜀′c − 𝜀c1
= 0.0035 − 𝜀c1

If lp = d and the ratio c/d equals 𝜆 ≤ 0.5,

𝜃 =
(0.0035 − 𝜀c1

)d
𝜆d

=
0.0035 − 𝜀c1

𝜆

From strain triangles (Fig. 16.29),

𝜀c1
= 𝜀y

( c
d − c

)
=

fy
Es

(
𝜆d

d − 𝜆d

)
=

fy

Es

(
𝜆

1 − 𝜆

)

Figure 16.29 Plastic hinge and typical stress and strain distribution [2].
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where fy is the yield strength of steel bars and Es is the modulus of elasticity of steel = 29× 106 psi.
Therefore,

𝜃 = 0.0035
𝜆

−
𝜀c1

𝜆
= 0.0035

𝜆
−

fy

Es(1 − 𝜆)
(16.18)

For grade 40 steel, fy = 40 ksi, and using a maximum value of 𝜆 of 0.50, then

𝜃min = 0.0035
0.50

− 40
29,000 × (1 − 0.50)

= 0.00424 rad

For grade 60 steel, fy = 60 ksi and 𝜆max = 0.44;

𝜃min = 0.0035
0.44

− 60
29,000(1 − 0.44)

= 0.00426 rad

The 𝜃min calculated here is from one side only, and the total permissible rotation at the plastic
hinge equals 2𝜃 or 2𝜃min. The actual 𝜆 can be calculated as follows, given 𝛼 = 𝛽1c and 𝛽1 = 0.85
for f ′c ≤ 4 ksi:

c = a
0.85

=
As fy

(0.85)2f ′c b

𝜆 = c
d
=

As fy
0.72 f ′c bd

=
𝜌 fy

0.72 f ′c
≤ 0.5 (16.19)

where 𝜌=As/bd. (𝜆max is obtained when 𝜌max is used.)
If the rotation provided is not adequate, one can increase the section dimensions or reduce

the percentage of steel reinforcement to obtain a smaller c, a smaller 𝜆, and greater 𝜃. Baker [3]
indicated that if special binding or spirals are used, the ultimate crushing strain in bound concrete
may be as high as 0.012.

For a compression plastic hinge (as in columns),

𝜃 =
𝜀plp

h
(16.20)

where h is the overall depth of the section and lp is the length over which yielding occurs. In
compression hinges, lp varies between 0.5h and h.

At a concrete ultimate stress of f ′c , 𝜀c = 0.002; thus, 𝜀p = 𝜀′c − 0.002 = 0.0035 − 0.002 =
0.0015 is the minimum angle of rotation on one side. Therefore,

𝜃min = 0.0015 × 0.5h
h

= 0.00075 rad

With special binding or spirals, 𝜃 may be increased to

𝜃max = (0.012 − 0.002) × 0.5h
h

= 0.005 rad

The extreme value of 𝜀′c = 0.012 is quite high, and a smaller value may be used with proper spirals;
otherwise a different section must be adopted.

In reinforced concrete continuous beams containing steel fibers, the plastic rotation may be
estimated as follows [14]:

𝜃p = 𝜆𝛽

(
0.0035
𝜆

−
fy

Es (1 − 𝜆)

)
(16.21)

where
𝜆 = (4.3 + 2.24𝜌s − 0.043fy + 4.17𝜌𝜌s) (16.22)

𝛽 = 0.56 − 0.16𝜌s (16.14)
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and

fy = yield strength of steel, ksi

Es = modulus of elasticity of main steel

𝜌 = percentage of main steel

𝜌s = percentage of steel fibers

A plastic hinge in the maximum negative moment region.

From Eq. 16.21, it is obvious that the plastic rotation of fibrous reinforced concrete is dependent
upon the percentage of steel fibers and percentage of the main steel and its yield strength. Raising
the yield strength of the main steel reduces the plastic rotation. Equation 16.21 also includes the
effect of the plastic hinge length on rotation.

A simplified form can be presented [14]:

𝜃p = 𝜆𝛽

(0.003
𝜆

)
(16.23)

For example, if 𝜌s = 0 and fy = 60 ksi, then 𝜃p1
= 0.00289∕𝜆, and if 𝜌s = 1.0%, 𝜌= 1.5%, and

fy = 60 ksi, then 𝜃p2
= 0.01222∕𝜆. This means that the rotation capacity of a concrete beam may

be increased by about four times if 1% of steel fibers is used.
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16.13 SUMMARY OF LIMIT DESIGN PROCEDURE

1. Compute the factored loads using the load factors given in Chapter 3:

𝑤u = 1.2D + 1.6L

2. Determine the mechanism, plastic hinges, and factored moments Mu.

A plastic hinge in the maximum positive moment region.

3. Design the critical sections using the strength design method.
4. Determine the required rotation of plastic hinges.
5. Calculate the rotation capacity provided at the sections of plastic hinges. The rotation capacity

must exceed that required.
6. Check the factor against yielding of steel and excessive cracking, that is, 𝜙Mu/elastic moment

at service load.
7. Check deflection and cracking under service loads.
8. Check that adequate shear reinforcement is provided at all sections.

For more details, see Ref. 21.
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Example 16.7

The beam shown in Fig. 16.30 is fixed at both ends and carries a uniform factored load of 5.5 K/ft, and
a concentrated factored load of 48 K. Design the beam using the limit design procedure. Use b= 14 in.,
f ′c = 3 ksi, and fy = 40 ksi.

5 no. 9 2 no. 4

5 no. 92 no. 9

Figure 16.30 Example 16.7.



16.13 Summary of Limit Design Procedure 595

Solution

1. Factored uniform load 𝑤u = 5.5 K/ft. Factored concentrated load Pu = 48 K.
2. The plastic hinges will develop at A, B, and C, causing the mechanism shown in Fig. 16.30. Using

the virtual work method of analysis and assuming a unit deflection at C, then the external work is
equal to

We = 48 × 1 + 5.5
(

24 × 1
2

)
= 114 K ⋅ ft

The internal work absorbed by the plastic hinges is

Wi = Mu𝜃(at A) + Mu𝜃(at B) + Mu(2𝜃) at C

= 4Mu𝜃 = 4Mu

( 1
12

)
=

Mu

3
Equating We and Wi gives Mu = 342 K ⋅ ft. The general analysis gives directly

Mu =
𝑤uL2

16
+ Pu

L
8
= 5.5

16
(24)2 + 48

24
8

= 342 K ⋅ ft

3. Design the critical sections at A, B, and C for Mu = 342 K ⋅ ft. From tables in Appendix A and for
f ′c = 3 ksi, fy = 40 ksi, and a steel percentage 𝜌= 0.013, Ru = 420 psi (𝜌max = 0.0203).

Mu = Rubd2

342 × 12 = 0.42 × 14(d)2

Where

d is 26.4 in. and the total depth h = 26.4 + 2.5 = 28.9 in., say, 29 in.,

As = 𝜌bd = 0.013 × 14 × 26.4 = 4.8 in.2

Use five no. 9 bars in one row; As provided = 5.0 in.2, bmin = 13.875 in.< 14 in.

a =
As fy

0.85 f ′c b
= 5.0 × 40

0.85 × 3 × 14
= 5.6 in.

c = a
0.85

= 6.6 in. 𝜆 = c
d
= 6.6

26.4
= 0.25

4. The required rotation of plastic hinges is as follows:
a.

𝜃A = L
6EcI

[2(MA − MFZ) + (MB − MFB)]

Ec = 57,400
√

f ′c = 3.144 × 106 psi

Es = 29 × 106 psi and n =
Es

Ec
= 9.2

b. Determine the fixed end moments at A and B using factored loads:

MFA = MFB =
𝑤uL2

12
(uniform load) +

PuL

8
(concentrated load)

= 5.5
(24)2

12
+ 48 × 24

8
= 408 K ⋅ ft

Plastic MA = plastic MB = 342 K ⋅ ft
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c. The cracked moment of inertia can be calculated from

Icr = b
x3

3
+ nAs(d − x)2

where x is the distance from compression fibers to the neutral axis (kd). To determine x (see
Chapter 6), x= 10.3 in. and Icr = 17,172 in.4

d. Required minimum rotation: Considering all moments at supports A and B are negative, then

𝜃A = 24 × 12

6 × 3.144 × 106 × 17,172
[2(−342 + 408) + (−342 + 408)](12,000) = 0.00211 rad

5. The rotation capacity provided is

𝜃A = 0.0035
𝜆

−
fy

Es(1 − 𝜆)
= 0.0035

0.25
− 40

29,000(1 − 0.25)

= 0.0122 rad > 0.00211 required

The rotation capacity provided is about 5.5 times that required, indicating that the section is ade-
quate.

6. Check the ratio of factored to elastic moment at service load:

MA = MB = 𝑤L2

12
+ PL

8

= 3.5
(24)2

12
+ 30 × 24

8
= 258 K ⋅ ft

Actual 𝜑Mn = 𝜑Asfy[d − (a∕2)] = 0.9 × 5 × 40[26.5 − (5.6∕2)]∕12 = 356 K ⋅ ft. The ratio is
356∕258 = 1.38, which represents the factor of safety against the yielding of steel bars at the
support.

7. Check maximum deflection due to service load (at midspan): Let the uniform service load
𝑤= 3.5 K/ft, and P= 30 K. Then:

𝛥1 = 𝑤L4

384 EI

For a concentrated load at midspan,

𝛥2 = PL3

192 EI

and total deflection is

𝛥 =
(3500∕12)(24 × 12)4

384(17,172)(3.144 × 106)
+ 30,000(24 × 12)3

192(17,172)(3.144 × 106)
= 0.166 in.

𝛥

L
= 0.166

24 × 12
= 1

1735

which is a very small ratio.
8. Adequate shear reinforcement must be provided to avoid any possible shear failure.

16.14 MOMENT REDISTRIBUTION OF MAXIMUM NEGATIVE OR POSITIVE MOMENTS IN
CONTINUOUS BEAMS

Moment redistribution of maximum positive or negative moments in continuous flexural members
is based on the net tensile strain (NTS), 𝜀t, for both reinforced and prestressed concrete members.
Figure 16.31 shows the permissible limits on moment redistribution. It indicates that the percentage
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Figure 16.31 Permissible moment redistribution for minimum rotation capacity [22].
Courtesy of ACI-PCA

decrease in the negative moments at supports and positive moments between supports of continuous
beam, q′, calculated by the elastic theory, must not exceed (1000 𝜀t)%, with maximum of 20%.
Moment redistribution is allowed only when 𝜀t ≥ 0.0075, indicating adequate ductility is available
at the section at which moment is reduced. When 𝜀t < 0.0075, no moment redistribution is allowed.
The modified negative moments must be used to calculate the modified positive moments within
the span, ACI Code, Section 6.6.5.1. Moment redistribution does not apply to members designed
by the direct design method for slab systems. (Refer to Chapter 17.)

In summary, the percentage of decrease in maximum negative or positive moments in contin-
uous beams is as follows:

1. When 𝜀t ≥ 0.0075, moment redistribution is allowed (𝜌∕𝜌b > 0.476).
2. When 𝜀t = 0.0075, the percentage of moment redistribution is 75%(𝜌∕𝜌b = 0.476).
3. When 𝜀t ≥ 0.020, the percentage of moment redistribution is 20%(𝜌∕𝜌b = 0.217).
4. When 0.0075 < 𝜀t < 0.020, the percentage of moment redistribution is

q′ = 1000𝜀t (16.24)

For example, if 𝜀t = 0.010, then the percentage of moment redistribution is 10%. The relationship
between the steel percentage, 𝜌, in the section and the net tensile strain, 𝜀t, is as follows (refer to
Section 3.10):

𝜀t =
(0.003 + fy∕Es

𝜌∕𝜌b

)
− 0.003 (Eq. 3.24)
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Table 16.1 Percentage Change in Moment Redistribution (q′), fy = 60 ksi

𝜀t 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225
𝜌/𝜌b 0.476 0.385 0.323 0.278 0.244 0.217 0.196
q′ % 7.5 10.0 12.5 15.0 17.5 20.0 20.0

Table 16.2 Percentage Change in Moment Redistribution (q′) for a Given 𝜌/𝜌b Ratio

𝜌/𝜌b 0.48 0.45 0.40 0.35 0.30 0.25 0.20
𝜀t 0.0074 0.0081 0.0095 0.0113 0.0137 0.017 0.022
q′ % 0.0 8.1 9.5 11.3 13.7 17.0 20.0

For grade 60 steel, fy = 60 ksi and Es = 29,000 ksi. Assuming fy/Es = 0.002, then

𝜀t =
(

0.005
𝜌∕𝜌b

)
− 0.003 (Eq. 3.25)

For 𝜀t = 0.0075, the ductility limit 𝜀t/𝜀y = 0.0075/0.002= 3.75. The percentage change in moment
redistribution according to these limitations and for fy = 60 ksi is given in Tables 16.1 and 16.2.

Whatever percentage of moment redistribution is used, it is essential to ensure that no section
is likely to suffer local damage or excessive cracking at service loads and that adequate rotation
capacity is maintained at every critical section in the structure. The redistribution of moments in a
statically indeterminate structure will result in a reduction in the negative moments at the supports
and in the positive moments within the spans. This reduction will not imply that the safety of
the structure has been reduced or jeopardized as compared with determinate structures. In fact,
continuity in structures provides additional strength, stability and economy in the design.

Moment redistribution factor, q, based on the ACI Code 318-02 is calculated as follows:

q = 20

(
1 − 𝜌 − 𝜌′

𝜌b

)
(16.25)

where

𝜌 =
As

bd
𝜌′ =

A′
s

bd
𝜌b = 0.85 𝛽1

f ′c
fy

(
87

87 + fy

)

In Eq. 16.25, the code limits the steel ratio 𝜌 or 𝜌− 𝜌′ at the section where the moment is
reduced to a maximum ratio of 0.5𝜌b. The minimum steel ratio allowed in. the section, for flexural
design is 𝜌min = 3

√
f ′c∕fy ≥ 200∕fy. Using these extreme limitations, the maximum and minimum

moment redistribution percentages are shown in Table 16.3.

Table 16.3 Maximum and Minimum Moment Redistribution q (Eq. [eqnid])

f′c
(ksi)

fy
(ksi) 𝝆b 𝝆min

qmax %
(for 𝝆min)

qmin %
(for 0.5 𝝆b)

3 60 0.0215 0.0033 16.9 10
4 60 0.0285 0.0033 17.7 10
5 60 0.339 0.0035 17.9 10
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Example 16.8

Determine the maximum elastic moments at the supports and midspans of the continuous beam of four
equal spans shown in Fig. 16.32a. The beam has a uniform section and carries a uniform dead load
of 8 K/ft and a live load of 6 K/ft. Assume 10% maximum redistribution of moments and consider the
following two cases: (1) When the live load is placed on alternate spans, calculate the maximum positive
moments within the spans, and (2) when the live load is placed on adjacent spans, calculate the maximum
negative moments at the supports.

Solution

1. The beam has a uniform moment of inertia I and has the same E; thus, EI is constant. The
three-moment equation to analyze the beam and for a constant EI is

MAL1 + 2Mb(L1 + L2) + McL2 = −
𝑤1L3

1

4
−
𝑤2L3

2

4

Because the spans are equal,

MA + 4MB + MC = −L2

4
(𝑤1 +𝑤2) (16.26)

In this example MA =ME = 0. Six different cases of loading will be considered, as shown in
Fig. 16.31:
Case 1. Dead load is placed on the whole beam ABCDE (Fig. 16.32b).
Case 2. Live load is placed on AB and CD for maximum positive moments within AB and CD

(Fig. 16.32c).
Case 3. Similar to Case 2 for beams BC and DE (Fig. 16.32d).
Case 4. Live load is placed on AB, BC, and DE for a maximum negative moment at B (Fig. 16.32e).
Case 5. Live load is placed on spans CD and DE (Fig. 16.32f).
Case 6. Live load is placed on BC and CD for a maximum negative moment at C (Fig. 16.32g).

2. Case 1. Apply Eq. 16.26 to the beam segments ABC, BCD, and CDE, respectively:

4MB + MC = −(20)2

4
(8 + 8) = −1600 K ⋅ ft

MB + 4MC + MD = −1600 K ⋅ ft

MC + 4MD = −1600 K ⋅ ft

Solve the three equations to get

MB = MD = −342.8 K ⋅ ft and MC = −228.6 K ⋅ ft

For a 10% reduction in moments,

M′
B = M′

D = 0.9(−342.8) = −308.5 K ⋅ ft

M′
C = 0.9(−228.6) = −205.7 K ⋅ ft

The corresponding midspan moments are

Span AB = DE =
𝑤DL2

8
+ 1

2
MB = 8(20)2

8
− 1

2
× 308.5 = 245.8 K ⋅ ft

Span BC = CD =
𝑤DL2

8
− 1

2
(308.5 + 205.7) = 8(20)2

8
− 257.1 = 142.9 K ⋅ ft
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Figure 16.32 Example 16.8: Bending moments are drawn on the tension side.
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Figure 16.32 (continued)
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3. Case 2. Apply Eq. 16.26 to ABC, BCD, and CDE, respectively:

4MB + MC = −(20)2

4
(6) = −600 K ⋅ ft

MB + 4MC + MD = −600 K ⋅ ft

MC + 4MD = −600 K ⋅ ft

Solve the three equations to get

MB = MD = −129.6 K ⋅ ft MC = −86.4 K ⋅ ft

The corresponding elastic midspan moments are

Beam AB =
𝑤LL2

8
+

MB

2
= 6(20)2

8
− 129.6

2
= +235.2 K ⋅ ft

BC = 0 − 1
2
(129.6 + 86.4) = −108 K ⋅ ft

CD =
𝑤LL2

8
− 1

2
(129.6 + 86.4) = 6(20)2

8
− 108 = +192 K ⋅ ft

DE = 0 − 1
2
× 129.6 = −64.8 K ⋅ ft

To reduce the positive span moment, increase the support moments by 10% and calculate the
corresponding positive span moments. The resulting positive moment must be at least 90% of the
first calculated moments given previously.

M′
B = M′

D = 1.1(−129.6) = −142.6 K ⋅ ft

M′
C = 1.1(−86.4) = −95.0 K ⋅ ft

The corresponding midspan moments are

Beam AB =
𝑤LL2

8
+

M′
B

2
= 6(20)2

8
− 142.6

2
= +228.7 K ⋅ ft

BC = −1
2
(142.6 + 95) = −118.8 K ⋅ ft

CD =
𝑤LL2

8
+ 1

2
(M′

C + M′
D) =

6(20)2

8
− 1

2
(95 + 142.6) = 181.2 K ⋅ ft

DE = −1
2
× 142.6 = −71.3 K ⋅ ft

4. Case 3. This case is similar to Case 2, and the moments are shown in Fig. 16.32d.
5. Case 4. Consider the spans AB, BC, and DE loaded with live load to determine the maximum

negative moment at support B:

4MB + MC = −
𝑤LL2

2
= −6(20)2

2
= −1200 K ⋅ ft

MB + 4MC + MD = −
𝑤LL2

4
= −6(20)2

4
= −600 K ⋅ ft

MC + 4MD = −6(20)2

4
= −600 K ⋅ ft
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Solve the three equations to get

MC = −42.9 K ⋅ ft

MB = −289.3 K ⋅ ft

MD = −139.3 K ⋅ ft

For 10% reduction in moment at support B,

M′
B = 0.9 × (−289.3) = −260.4 K ⋅ ft

The corresponding midspan moments are

Beam AB =
𝑤LL2

8
+

MB

2
= 6(20)2

8
− 260.4

2
= 169.8 K ⋅ ft

BC =
𝑤LL2

8
− 1

2
(260.4 + 42.9) = 148.4 K ⋅ ft

CD = −1
2
(42.9 + 139.3) = −91.1 K ⋅ ft

DE = 300 − 1
2
× 139.3 = +230.4 K ⋅ ft

6. Case 5. This is similar to Case 4, except that one end span is not loaded to produce maximum
positive moment at support B (or support D for similar loading). The bending moment diagrams
are shown in Fig. 16.32f.

7. Case 6. Consider the spans BC and CD loaded with live load to determine the maximum negative
moment at support C:

4MB + MC =
𝑤LL2

4
= −600 K ⋅ ft

MB + 4MC + MD = −
𝑤LL2

2
= −1200 K ⋅ ft

MC + 4MD = −
𝑤LL2

4
= −600 K ⋅ ft

Solve the three equations to get

MC = −257.2 K ⋅ ft

MB = MD = −85.7 K ⋅ ft

For 10% reduction in support moments,

M′
C = 0.9 × (−257.2) = −231.5 K ⋅ ft

M′
B = M′

C = 0.9 × (−85.7) = −77.2 K ⋅ ft

The corresponding midspan moments are

Beam AB = DE = −77.2
2

= −38.6 K ⋅ ft

BC = CD =
𝑤LL2

8
− 1

2
(231.5 + 77.2) = 6(20)2

8
− 154.3 = 145.7 K ⋅ ft
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Table 16.4 Final Moments of Example 16.8 after Moment Redistribution

Case 1 Case 2 Case 3 Case 4 Case 5

Section
Location

DL
Moments

LL
Maximum
Negative

LL
Maximum
Positive

DL+LL
(1)+ (2)

Maximum
Negative

DL+LL
(1)+ (3)

Maximum
Positive

Support
A 0 0 0 0 0
B −308.5 −260.4 +21.4 −568.9a −287.1
C −205.7 −231.5 — −437.2a −205.7
D −308.5 −260.4 +21.4 −568.9a −287.1
E 0 0 0 0 0

Midspan
AB 245.8 −71.3 228.7 ±174.5 ±474.5a

BC 142.9 −118.6 181.2 ±24.3 ±324.1a

CD 142.9 −118.6 181.2 ±24.3 ±324.1a

DE 245.8 −71.3 228.7 ±174.5 ±474.5a

aFinal maximum and minimum design moments.

8. The final maximum and minimum moments after moment redistribution are shown in Table 16.4.
The moment envelope is shown in Fig. 16.32h.

9. In this example, the midspan sections are used for simplicity: The midspan moments are not
necessarily the maximum positive moments. In the case of the end spans AB and DE, the maxi-
mum moment after 10% moment redistribution is equal to (𝑤DL2)/12.2 and occurs at 0.4L from
A and D.

Example 16.9

Use the ACI Code limitation, determine the permissible redistribution of negative moments at supports
B, C, D, and E of the continuous beam ABCDEF shown in Fig. 16.33. The beam has a rectangular
section, b= 12 in., h= 22 in., and d= 19.5 in., and it is reinforced as shown in the following table (f ′c =
4 ksi and fy = 60 ksi).

Solution

1. For f ′c = 4 ksi and fy = 60 ksi, 𝜌b = 0.0285. The ACI Code redistribution factor was given as
follows:

q = 20

(
1 − 𝜌 − 𝜌′

𝜌b

)
(Eq. 16.25)

2. The ACI Code redistribution factor is a function of the net tensile strain, 𝜀t, and varies between
7.5 and 20%, as shown in Fig. 16.31.

q′ = 1000𝜀t

𝜀t =
0.003 + fy∕Es

𝜌∕𝜌b
− 0.003
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A B C D E F

12"
2.5"

2.5"

22"

Tension bars
As

Compression bars
A's

Typical
section at
support

Figure 16.33 Example 16.9.

and
𝜀t =

0.005
𝜌∕𝜌b

− 0.003 (for fy = 60 ksi)

The following table shows the values of q and q′, which are not compatible.

Support
Tension
Bars (As) 𝝆

Compression
Bars (A′

S
) 𝝆′

𝝆− 𝝆′

𝝆b q% 𝜺t q′

B 3 no. 9 0.01282 0 0 0.45 11.0 0.0113 11.3
C 3 no. 10 0.0160 0 0 0.56 8.8 0.006 0
D 3 no. 6 0.00564 0 0 0.198 16.0 0.0226 20
E 4 no. 8 0.01342 3 no. 6 0.0056 0.273 14.5 0.0153 15.3

SUMMARY

Sections 16.1–16.3

In continuous beams, the maximum and minimum moments are obtained by considering the dead
load acting on all spans, whereas pattern loading is considered for live or moving loads, as shown in
Figs. 16.2 and. 16.3. The ACI moment coefficients described in Chapter 9 may be used to compute
approximate values for the maximum and minimum moments and shears.

Sections 16.4 and 16.5

A frame subjected to a system of loads may be analyzed by the equivalent frame method. Frames
may be statically determinate or indeterminate.
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Section 16.6

There are several types of frame hinges: Mesnager, Considère, lead, and concrete hinges. The steel
for a Mesnager hinge is calculated as follows:

As1
=

R1

0.55 fy
and As2

=
R2

0.55 fy
(Eq. 16.2)

Burst force: F =
Pu

2
tan 𝜃 + Ha

0.85d
(Eq. 16.4)

Stress in ties: fs =
F

0.005ab + Ast(ties)
≤ 0.85fy (Eq. 16.6)

Sections 16.7 and 16.8

Limit design in reinforced concrete refers to redistribution of moments, which occurs throughout
the structure as steel reinforcement reaches its yield strength. Ultimate strength is reached when the
structure is on the verge of collapse. This case occurs when a number of plastic hinges, n, develop
in a structure with redundants, r, such that n= 1+ r.

Sections 16.9–16.11

For limit design to be valid, four conditions must be satisfied: mechanism, equilibrium, yield,
and rotation. Two methods of analysis may be used: the virtual work method and the equilibrium
method, which are both explained in Examples 16.3 through 16.6.

Sections 16.12 and 16.13

The plastic hinge length, lp, can be considered equal to the effective depth, d. In fibrous concrete,

lp = (1.06 + 0.13𝜌𝜌s)d

Ductility index 𝜇 =
𝜙u

𝜙y
(Eq. 16.13)

For fibrous concrete,

𝜇′ = (1.0 + 3.8𝜌s)𝜇 (Eq. 16.15)

Angle of rotation 𝜃 = 0.0035
𝜆

−
fy

Es(1 − 𝜆)
(Eq. 16.18)

𝜆 =
𝜌fy

0.72f ′c
≤ 0.5 (Eq. 16.19)

A summary of the limit design procedure is given in Section 16.14.

Section 16.14

Moment redistribution may be taken into account in the analysis of statically indeterminate struc-
tures. In this case, the maximum negative moments calculated by the elastic theory may be increased
or decreased by not more than the ratio q′, where

q′ = 1000𝜀t (Eq. 16.24)
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Table 16.1 gives the different values of q. Moment redistribution is explained in detail in
Example 6.8.
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P R O B L E M S

16.1 The slab–beam floor system shown in Fig. 16.34 carries a uniformly distributed dead load (excluding
weight of slab and beam) of 40 psf and a live load of 100 psf. Using the ACI Code coefficients, design
the interior continuous beam ABCD and draw detailed sections. Given: f ′c = 4 ksi, fy = 40 ksi, width of
beam web= 12 in., slab thickness= 4.0 in., and column dimensions= 14 by 14 in.
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Figure 16.34 Problem 16.1.

16.2 Repeat Problem 16.1 using span lengths of the beams shown in Fig. 16.32 as follows:

L1 = 20 ft L2 = 24 ft

L3 = 20 ft L4 = 10 ft

16.3 For the beam shown in Fig. 16.35, compute the reactions at A, B, and C using constant EI. Draw the
shear and bending moment diagrams and design all critical sections, using b= 14 in, h= 25 in., f ′c =
4 ksi, fy = 40 ksi, and a load factor= 1.6.

Figure 16.35 Problem 16.3.

16.4 Repeat Problem 16.3 using span lengths of beams as follows: span AB= 20 ft and span BC= 16 ft.
16.5 The two-hinged portal frame ABCD shown in Fig. 16.36 carries a uniform dead load (excluding

self-weight) = 2.6 K/ft and a uniform live load of 1.8 K/ft. Design the frame ABCD, the hinges, and
footings using f ′c = 4 ksi, fy = 40 ksi, and a beam width of b= 16 in. The footing is placed 5 ft below
ground level and the allowable bearing soil pressure is 5 ksf. Use a slab thickness of 6 in.

16.6 Design the portal frame ABCD of Problem 16.5 if the frame ends at A and D are fixed.
16.7 Calculate the collapse moments at the critical sections of the beams shown in Fig. 16.37.
16.8 Repeat Problem 16.7 for Fig. 16.38.
16.9 If the beam shown in Fig. 16.36 carries a uniform dead load of 2.5 K/ft and a live load of 2.4 K/ft, design

the beam using the limit design procedure. Use f ′c = 4 ksi, fy = 40 ksi, and a beam width of b= 14 in.
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Figure 16.36 Problem 16.5.

Figure 16.37 Problem 16.7.

Figure 16.38 Problem 16.8.

Figure 16.39 Problem 16.11.

16.10 Determine the maximum and minimum elastic moments at the supports and midspans of the three-span
continuous beam shown in Fig. 16.37. The beam has a uniform rectangular section and carries a uniform
dead load of 6 K/ft and a live load of 5 K/ft. Assuming 10% maximum redistribution of moments;
recalculate the maximum and minimum moments at the supports and midspans of the beam ABC. Note:
Place the live load on alternate spans to calculate maximum positive moments and on adjacent spans to
calculate the maximum negative (minimum) moments (Example 16.8).

16.11 Repeat Problem 16.10 if the beam consists of four equal spans, each 24 ft in length (Fig. 16.39).



CHAPTER17
DESIGN OF
TWO-WAY
SLABS

The Bonaventure Complex and the Bonaventure Hilton Hotel,
Montreal, Canada.

17.1 INTRODUCTION

Slabs can be considered as structural members whose depth, h, is small as compared to their length,
L, and width, S. The simplest form of a slab is one supported on two opposite sides, which primarily
deflects in one direction and is referred to as a one-way slab. The design of one-way slabs was
discussed in Chapter 9.

When the slab is supported on all four sides and the length, L, is less than twice the width, S,
the slab will deflect in two directions, and the loads on the slab are transferred to all four supports.
This slab is referred to as a two-way slab. The bending moments and deflections in such slabs are
less than those in one-way slabs; thus, the same slab can carry more loads when supported on four
sides. The load in this case is carried in two directions, and the bending moment in each direction
is much less than the bending moment in the slab if the load were carried in one direction only.
Typical slab–beam–girder arrangements of one-way and two-way slabs are shown in Fig. 17.1.

17.2 TYPES OF TWO-WAY SLABS

Structural two-way concrete slabs may be classified as follows:

1. Two-way slabs on beams: This case occurs when the two-way slab is supported by beams on
all four sides (Fig. 17.1). The loads from the slab are transferred to all four supporting beams,
which, in turn, transfer the loads to the columns.

2. Flat slabs: A flat slab is a two-way slab reinforced in two directions that usually does not
have beams or girders, and the loads are transferred directly to the supporting columns. The
column tends to punch through the slab, which can be treated by three methods (refer to 17.2
and 17.3):
a. Using a drop panel and a column capital.
b. Using a drop panel without a column capital. The concrete panel around the column capital

should be thick enough to withstand the diagonal tensile stresses arising from the punching
shear.

c. Using a column capital without drop panel, which is not common.
610
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Figure 17.1 (a) One-way slab, L/S>2, and (b) two-way slab, L/S≤ 2.

3. Flat-plate floors: A flat-plate floor is a two-way slab system consisting of a uniform slab that
rests directly on columns and does not have beams or column capitals (Fig. 17.2a). In this case
the column tends to punch through the slab, producing diagonal tensile stresses. Therefore, a
general increase in the slab thickness is required or special reinforcement is used.

4. Two-way ribbed slabs and the waffle slab system: This type of slab consists of a floor slab
with a length-to-width ratio less than 2. The thickness of the slab is usually 2 to 4 in. and
is supported by ribs (or joists) in two directions. The ribs are arranged in each direction at

Figure 17.2 Two-way slabs without beams: (a) flat-plate floor and section, (b) flat-slab
floor and sections, and (c) ribbed slab and sections.
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Figure 17.2 (continued)

spacings of about 20 to 30 in., producing square or rectangular shapes (Fig. 17.2c). The ribs
can also be arranged at 45∘ or 60∘ from the centerline of slabs, producing architectural shapes
at the soffit of the slab. In two-way ribbed slabs, different systems can be adopted:
a. A two-way rib system with voids between the ribs, obtained by using special removable

and usable forms (pans) that are normally square in shape. The ribs are supported on four
sides by girders that rest on columns. This type is called a two-way ribbed (joist) slab
system.

b. A two-way rib system with permanent fillers between ribs that produce horizontal slab
soffits. The fillers may be of hollow, lightweight, or normal-weight concrete or any other
lightweight material. The ribs are supported by girders on four sides, which in turn are
supported by columns. This type is also called a two-way ribbed (joist) slab system or a
hollow-block two-way ribbed system.

c. A two-way rib system with voids between the ribs with the ribs continuing in both direc-
tions without supporting beams and resting directly on columns through solid panels above
the columns. This type is called a waffle slab system.
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Figure 17.3 Types of two-way slab systems: (a) flat plate, (b) flat slab, (c) slab on
beams, and (d) waffle slab.
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17.3 ECONOMICAL CHOICE OF CONCRETE FLOOR SYSTEMS

Various types of floor systems can be used for general buildings, such as residential, office, and
institutional buildings. The choice of an adequate and economic floor system depends on the type of
building, architectural layout, aesthetic features, and the span length between columns. In general,
the superimposed live load on buildings varies between 80 and 150 psf. A general guide for the
economical use of floor systems can be summarized as follows:

1. Flat plates: Flat plates are most suitable for spans of 20 to 25 ft and live loads between 60
and 100 psf. The advantages of adopting flat plates include low-cost formwork, exposed flat
ceilings, and fast construction. Flat plates have low shear capacity and relatively low stiff-
ness, which may cause noticeable deflection. Flat plates are widely used in buildings either
as reinforced or prestressed concrete slabs.

2. Flat slabs: Flat slabs are most suitable for spans of 20 to 30 ft and for live loads of 80 to
150 psf. They need more formwork than flat plates, especially for column capitals. In most
cases, only drop panels without column capitals are used.

3. Waffle slabs: Waffle slabs are suitable for spans of 30 to 48 ft and live loads of 80 to 150 psf.
They carry heavier loads than flat plates and have attractive exposed ceilings. Formwork,
including the use of pans, is quite expensive.

4. Slabs on beams: Slabs on beams are suitable for spans between 20 and 30 ft and live loads of
60 to 120 psf. The beams increase the stiffness of the slabs, producing relatively low deflec-
tion. Additional formwork for the beams is needed.

Flat-plate floor system.
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Slab on beams.

5. One-way slabs on beams: One-way slabs on beams are most suitable for spans of 10 to 20 ft
and a live load of 60 to 100 psf. They can be used for larger spans with relatively higher cost
and higher slab deflection. Additional formwork for the beams is needed.

6. One-way joist floor system: A one-way joist floor system is most suitable for spans of 20 to
30 ft and live loads of 80 to 120 psf. Because of the deep ribs, the concrete and steel quantities
are relatively low, but expensive formwork is expected. The exposed ceiling of the slabs may
look attractive.

17.4 DESIGN CONCEPTS

An exact analysis of forces and displacements in a two-way slab is complex, due to its highly
indeterminate nature; this is true even when the effects of creep and nonlinear behavior of the
concrete are neglected. Numerical methods such as finite elements can be used, but simplified
methods such as those presented by the ACI Code are more suitable for practical design. The ACI
Code, Chapter 8, assumes that the slabs behave as wide, shallow beams that form, with the columns
above and below them, a rigid frame. The validity of this assumption of dividing the structure into
equivalent frames has been verified by analytical [1, 2] and experimental [3, 4] research. It is also
established [3, 5] that factored load capacity of two-way slabs with restrained boundaries is about
twice that calculated by theoretical analysis because a great deal of moment redistribution occurs
in the slab before failure. At high loads, large deformations and deflections are expected; thus, a
minimum slab thickness is required to maintain adequate deflection and cracking conditions under
service loads.
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The ACI Code specifies two methods for the design of two-way slabs:

1. The direct design method, DDM (ACI Code, Section 8.10), is an approximate procedure for
the analysis and design of two-way slabs. It is limited to slab systems subjected to uniformly
distributed loads and supported on equally or nearly equally spaced columns. The method
uses a set of coefficients to determine the design moments at critical sections. Two-way slab
systems that do not meet the limitations of the ACI Code, Section 8.10.1.1, must be analyzed
by more accurate procedures.

2. The equivalent frame method, EFM (ACI Code, Section 8.11), is one in which a
three-dimensional building is divided into a series of two-dimensional equivalent frames
by cutting the building along lines midway between columns. The resulting frames are
considered separately in the longitudinal and transverse directions of the building and treated
floor by floor, as shown in Fig. 17.4.

Figure 17.4 (a) Longitudinal and (b) transverse equivalent frames in plan view and (c)
in elevation and perspective views.
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Figure 17.4 (continued)

Flat-slab system with drop panels (no column captials).
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Two ACI Code procedures are based on the results of elastic analysis of the structure as a
whole using factored loads. A modified approach to the direct design method was presented in the
commentary of the 1989 Code as the modified stiffness method, or MSM. It is based on specific
distribution factors introduced as a function of the stiffness ratio, 𝛼ec, for proportioning the total
static moment in an end span. This method is explained later.

In addition to the ACI Code procedures, a number of other alternatives are available for the
analysis and design of slabs. The resulting slabs may have a greater or lesser amount of reinforce-
ment. The analytical methods may be classified in terms of the basic relationship between load and
deformation as elastic, plastic, and nonlinear.

1. In elastic analysis, a concrete slab may be treated as an elastic plate. The flexure, shear,
and deflection may be calculated by the fourth differential equation relating load to deflec-
tion for thin plates with small displacements, as presented by Timoshenko and Krieger [6].
Finite difference as well as finite element solutions have been proposed to analyze slabs and
plates [7, 8]. In the finite element method, the slab is divided into a mesh of triangles or
quadrilaterals. The displacement functions of the nodes (intersecting mesh points) are usually
established, and the stiffness matrices are developed for computer analysis.

2. For plastic analysis, three methods are available. The yield line method was developed by
Johansen [9] to determine the limit state of the slab by considering the yield lines that occur
in the slab as a collapse mechanism. The strip method was developed by Hillerborg [10]. The
slab is divided into strips, and the load on the slab is distributed in two orthogonal directions.
The strips are analyzed as simple beams. The third method is optimal analysis. There has been
considerable research into optimal solutions. Dhir, and others Munday [11] presented meth-
ods for minimizing reinforcement based on plastic analysis. Optimal solutions are complex
in analysis and produce complex patterns of reinforcement.

3. Nonlinear analysis simulates the true load deformation characteristics of a reinforced con-
crete slab when the finite element method takes into consideration the nonlinearity of the
stress–strain relationship of the individual elements [11, 12]. In this case, the solution becomes
complex unless simplified empirical relationships are assumed.

Waffle slab with light fixtures at the centers of the squares.
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The preceding methods are presented very briefly to introduce the reader to the different
methods of analysis of slabs. Experimental work on slabs has not been extensive in recent years,
but more research is probably needed to simplify current design procedures with adequate safety,
serviceability, and economy [11].

17.5 COLUMN AND MIDDLE STRIPS

Figure 17.5 shows an interior panel of a two-way slab supported on columns A, B, C, and D. If
the panel is loaded uniformly, the slab will deflect in both directions, with maximum deflection at
the center, O. The highest points will be at the columns A, B, C, and D; thus, the part of the slab
around the columns will have a convex shape. A gradual change in the shape of the slab occurs,
from convexity at the columns to concavity at the center of the panel O, each radial line crossing a
point of inflection. Sections at O, E, F, G, and H will have positive bending moments, whereas the

Figure 17.5 Column and middle strips; x= 0.25𝓁1 or 0.25𝓁2, whichever is smaller.
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periphery of the columns will have maximum negative bending moments. Considering a strip along
AFB, the strip bends like a continuous beam (Fig. 17.5b), having negative moments at A and B and
positive bending moment at F. This strip extends between the two columns A and B and continues
on both sides of the panel, forming a column strip.

Similarly, a strip along EOG will have negative bending moments at E and G and a positive
moment at O, forming a middle strip. A third strip along DHC will behave similarly to strip AFB.
Therefore, the panel can be divided into three strips, one in the middle along EOG, referred to as the
middle strip, and one on each side, along AFB and DHC, referred to as column strips (Fig. 17.5a).
Each of the three strips behaves as a continuous beam. In a similar way, the panel is divided into
three strips in the other direction, one middle strip along FOH and two column strips along AED
and BGC, respectively (Fig. 17.5e).

Referring to Fig. 17.5a, it can be seen that the middle strips are supported on the column
strips, which in turn transfer the loads onto the columns, A, B, C, and D in this panel. Therefore, the
column strips carry more load than the middle strips. Consequently, the positive bending moment in
each column strip (at E, F, G, and H) is greater than the positive bending moment at O in the middle
strip. Also, the negative moments at the columns A, B, C, and D in the column strips are greater than
the negative moments at E, F, G, and H in the middle strips. The portions of the design moments
assigned to each critical section of the column and middle strips are discussed in Section 17.8.

The extent of each of the column and middle strips in a panel is defined by the ACI Code,
Sections 8.4.1.5 and 8.4.1.6. The column strip is defined by a slab width on each side of the column
centerline, x in Fig. 17.5, equal to one-fourth the smaller of the panel dimensions l1 and l2, including
beams if they are present, where

l1 = span length, center to center of supports, in the direction moments are being determined

l2 = span length, center to center of supports, in the direction perpendicular to l1
The portion of the panel between two column strips defines the middle strip.

17.6 MINIMUM SLAB THICKNESS TO CONTROL DEFLECTION

The ACI Code, Sections 8.3.1.1 and 8.3.1.2, specifies a minimum slab thickness in two-way slabs
to control deflection. The magnitude of a slab’s deflection depends on many variables, including the
flexural stiffness of the slab, which in turn is a function of the slab thickness, h. By increasing the
slab thickness, the flexural stiffness of the slab is increased, and consequently the slab deflection is
reduced [13]. Because the calculation of deflections in two-way slabs is complicated and to avoid
excessive deflections, the ACI Code limits the thickness of these slabs by adopting the following
three empirical limitations, which are based on experimental research. If these limitations are not
met, it will be necessary to compute deflections.

1. For 0.2<𝛼fm ≤ 2,

h =
ln(0.8 + fy∕200,000)
36 + 5𝛽(𝛼fm − 0.2)

(fy in psi) h =
ln(0.8 + fy∕1400)

36 + 5𝛽(𝛼fm − 0.2)
(fy in MPa) (17.1)

but not less than 5 in.
2. For 𝛼fm > 2.0,

h =
ln(0.8 + fy∕200,000)

36 + 9𝛽
(fy in psi) h =

ln(0.8 + fy∕1400)
36 + 9𝛽

(fy in MPa) (17.2)

but not less than 3.5 in.
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3. For 𝛼fm ≤ 0.2,

h = minimum slab thickness without interior beams (Table 17.1) (17.3)

where
ln = clear span in long direction measured face to face of columns (or face to face of beams for

slabs with beams)
𝛽 = ratio of the long to the short clear spans

𝛼fm = average value of 𝛼 for all beams on the sides of a panel
𝛼f = ratio of flexural stiffness of a beam section EcbIb to flexural stiffness of the slab EcsIs,

bounded laterally by the centerlines of the panels on each side of the beam

𝛼f =
EcbIb

EcsIs
(17.4)

where
Ecb, Ecs = moduli of elasticity of concrete in beam and slab, respectively

Ib = gross moment of inertia of beam section about centroidal axis (beam section includes a slab
length on each side of beam equal to projection of beam above or below slab, whichever is
greater, but not more than four times slab thickness)

Is = moment of inertia of gross section of slab

However, the thickness of any slab shall not be less than the following:

1. For slabs with 𝛼fm ≤ 2.0 then thickness≥ 5.0 in. (125 mm)
2. For slabs with 𝛼fm > 2.0 then thickness≥ 3.5 in. (90 mm)

If no beams are used, as in the case of flat plates, then 𝛼f = 0 and 𝛼fm = 0. The ACI Code
equations for calculating slab thickness, h, take into account the effect of the span length, the panel
shape, the steel reinforcement yield stress, fy, and the flexural stiffness of beams. When very stiff
beams are used, Eq. 17.1 may give a small slab thickness, and Eq. 17.2 may control. For flat plates
and flat slabs, when no interior beams are used, the minimum slab thickness may be determined
directly from Table 8.3.1.1 of the ACI Code, which is shown here as Table 17.1.

Table 17.1 Minimum Thickness of Slabs Without Interior Beams

Without Drop Panelsa With Drop Panelsa

Exterior Panels Exterior Panels

Yield
Stress fy
psi (1)b

Without
Edge

Beams

With
Edge

Beams
Interior
Panels

Without
Edge

Beams

With
Edge

Beamsc
Interior
Panels

40,000 ln
33

ln
36

ln
36

ln
36

ln
40

ln
40

60,000 ln
30

ln
33

ln
33

ln
33

ln
36

ln
36

aFor values of reinforcement, yield stress between 40,000 and 60,000 psi minimum thickness shall be obtained by linear
interpolation.
bDrop panel is defined in ACI Sections 13.3.7 and 13.2.5.
cSlabs with beams between columns along exterior edges. The value of 𝛼f for the edge beam shall be not less than 0.8.
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Other ACI Code limitations are summarized as follows:

1. For panels with discontinuous edges, end beams with a minimum 𝛼 equal to 0.8 must be
used; otherwise, the minimum slab thickness calculated by Eqs. 17.1 and Eqs. 17.2 must be
increased by at least 10% (ACI Code, Section 8.3.1.2.1).

2. The drop panels should extend in each direction from the centerline of support a distance not
less than one-sixth of the span length in that direction between center to center of supports
and also project below the slab at least h/4.

3. Regardless of the values obtained by Eqs. 17.1 and 17.2, the thickness of two-way slabs
shall not be less than the following (a) for slabs without interior beams or drop panels,
5 in. (125 mm) (ACI Code, Section 8.3.1.1); (b) for slabs without interior beams but with
drop panels, 4 in. (100 mm) (ACI Code, Section 8.3.1.1); and (c) for slabs with beams on
all four sides with 𝛼fm > 2.0, 3 1

2
in. (90 mm), and for 𝛼fm ≤ 2.0, 5 in. (125 mm) (ACI Code,

Section 8.3.1.2).

Example 17.1

A flat-plate floor system with panels 4× 20 ft is supported on 20-in. square columns. Using the ACI Code
equations, determine the minimum slab thickness required for the interior and corner panels shown in
Fig. 17.6. Edge beams are not used. Use f ′c = 4 ksi and f ′y = 60 ksi.

Figure 17.6 Example 17.1.
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Solution

1. For corner panel no. 1, the minimum thickness is ln/30 (fy = 60 ksi, and no edge beams are used;
see Table 17.1).

ln1
= 24 − 20

12
= 22.33 ft (long direction)

Min. h = 22.33 × 12
30

= 8.93 in. say, 9.0 in.

2. For the interior panel no. 3 and fy = 60 ksi, the minimum slab thickness is ln/33= (22.33× 12)/
33= 8.12 in., say, 8.5 in. is used for all panels, then h= 9.0 in. will be adopted.

Example 17.2

The floor system shown in Fig. 17.7 consists of solid slabs and beams in two directions supported on
20-in. square columns. Using the ACI Code equations, determine the minimum slab thickness required
for an interior panel. Use f ′c = 3 ksi and fy = 60 ksi.

Solution

1. To use Eq. 17.1, 𝛼m should be calculated first. Therefore, it is required to determine Ib, Is, and 𝛼f
for the beams and slabs in the long and short directions.

Figure 17.7 Example 17.2.
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2. The gross moment of inertia of the beam, Ib, is calculated for the section shown in Fig. 17.7b,
which is made up of the beam and the extension of the slab on each side of the beam x= y
but not more than four times the slab thickness. Assume h= 7 in., to be checked later; then
x= y= 22− 7= 15 in.< 4× 7= 28 in. Therefore, be = 16+ 2× 15= 46 in., and the T-section is
shown in Fig. 17.7c. Determine the centroid of the section by taking moments about the top of
the flange:

Area of flange = 7 × 46 = 322 in.2

Area of web = 16 × 15 = 240 in.2

Total area = 562 in.2

(322 × 3.5) + 240 × (7 + 7.5) = 562y

y = 8.20 in.

Ib =
[46

12
(7)3 + 322 × (4.7)2

]

+
[

16(15)3

12
+ 240(7.5 − 1.2)2

]
= 22,453 in.4

3. The moment of inertia of the slab in the long direction is Is = (bh3)/12, where b= 20 ft and h= 7 in.

Is =
(20 × 12)(7)3

12
= 6860 in.4

𝛼f 1 (in the long direction) =
EIb

EIs
= 22,453

6860
= 3.27

4. The moment of inertia of the slab in the short direction is Is = (bh3)/12 where b= 24 ft and h= 7 in.

Is =
(24 × 12)(7)3

12
= 8232 in.4

𝛼f 2 (in the short direction) =
EIb

EIs
= 22,453

8232
= 2.72

5. 𝛼fm is the average of 𝛼f1 and 𝛼f2:

𝛼fm = 3.27 + 2.72
2

= 3.23 > 2

6.

𝛽 =
24 − 20

12

20 − 20
12

= 22.33
18.33

= 1.22

7. Determine Min. h using Eq. 17.2 (ln = 22.33 ft):

h = (22.33 × 12)(0.8 + 0.005 × 60)
36 + (9 × 1.22)

= 6.27 in. > 3.5 in.

A slab thickness of 6.5 in. is adequate.

17.7 SHEAR STRENGTH OF SLABS

In a two-way floor system, the slab must have adequate thickness to resist both bending moments
and shear forces at the critical sections. To investigate the shear capacity of two-way slabs, the
following cases should be considered.
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Figure 17.8 Areas supported by beams in two-way slab floor system.

17.7.1 Two-Way Slabs Supported on Beams

In two-way slabs supported on beams, the critical sections are at a distance d from the face of
the supporting beams, and the shear capacity of each section is 𝜙Vc = 𝜙(2𝜆

√
f ′c bd). When the

supporting beams are stiff and are capable of transmitting floor loads to the columns, they are
assumed to carry loads acting on floor areas bounded by 45∘ lines drawn from the corners, as
shown in Fig. 17.8. The loads on the trapezoidal areas will be carried by the long beams AB and
CD, whereas the loads on the triangular areas will be carried by the short beams AC and BD. The
shear per unit width of slab is highest between E and F in both directions, and Vu = qu(l2/2), where
qu is the uniform factored load per unit area.

If no shear reinforcement is provided, the shearing force at a distance d from the face of the
beam, Vud, must be equal to

Vud ≤ 𝜙Vc ≤ 𝜙(2𝜆
√

f ′c bd)

where

Vud = qu

(
l2
2
− d

)

17.7.2 Two-Way Slabs without Beams

In flat plates and flat slabs, beams are not provided, and the slabs are directly supported by columns.
In such slabs, two types of shear stresses must be investigated; the first is one-way shear, or beam
shear. The critical sections are taken at a distance d from the face of the column, and the slab is
considered as a wide beam spanning between supports, as in the case of one-way beams. The shear
capacity of the concrete section is 𝜙Vc = 𝜙(2𝜆

√
f ′c bd). The second type of shear to be studied is

two-way, or punching, shear, as was previously discussed in the design of footings. Shear failure
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occurs along a truncated cone or pyramid around the column. The critical section is located at
a distance d/2 from the face of the column, column capital, or drop panel (Fig. 17.9a). If shear
reinforcement is not provided, the shear strength of concrete is the smaller of Eqs. 17.6 and 17.7:

𝜙Vc = 𝜙

(
2 + 4

𝛽

)
𝜆
√

f ′c b0d (17.5)

where
b0 = perimeter of critical section
𝛽 = ratio of long side of column (or loaded area) to short side

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)
𝜆
√

f ′c b0d (17.6)

where 𝛼s is 40 for interior columns, 30 for edge columns, and 20 for corner columns.

𝜙Vn ≤ 𝜙(4𝜆
√

f ′c b0d) (17.7a)

When shear reinforcement is provided, the shear strength should not exceed

𝜙Vn ≤ 𝜙(6
√

f ′c b0d) (17.7b)

17.7.3 Shear Reinforcement in Two-Way Slabs without Beams

In flat-slab and flat-plate floor systems, the thickness of the slab selected may not be adequate to
resist the applied shear stresses. In this case, either the slab thickness must be increased or shear
reinforcement must be provided. The ACI Code allows the use of shear reinforcement by shearheads
and anchored bars or wires.

Shearheads consist of steel I-shapes or channel shapes welded into four cross arms and placed
in the slabs above the column (Figs. 17.9c, d). Shearhead designs do not apply to exterior columns,
where large torsional and bending moments must be transferred between slab and column. The ACI
Code, Section 22.6.9.10, indicates that on the critical section the nominal shear strength, Vn, should
not exceed 4

√
f ′c b0d, but if shearhead reinforcement is provided, Vn should not exceed 7

√
f ′c b0d. To

determine the size of the shearhead, the ACI Code, Section 22.6.9, gives the following limitations:

1. The ratio 𝛼𝑣 between the stiffness of shearhead arm, EsI, and that of the surrounding composite
cracked section of width, c2 + d, must not be less than 0.15.

2. The compression flange of the steel shape must be located within 0.3d of the compression
surface of the slab.

3. The depth of the shear head must not exceed 70 times the web thickness.
4. The plastic moment capacity, Mp, of each arm of the shearhead is computed by

𝜙Mp =
Vu

2n

[
h𝑣 + 𝛼𝑣

(
l𝑣 −

c1

2

)]
(ACI Code, Eq. 22.6.9.6) (17.8)

where
𝜑 = strength reduction factor for tensioned control members

Vu = factored shear force around periphery of column face
N = number of arms
h𝑣 = depth of shearhead
l𝑣 = length of shearhead measured from centerline of column
c1 = dimension of rectangular, or equivalent rectangular, column
𝛼𝑣 = ratio of flexural stiffness of shearhead arm to that of the surrounding composite slab
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Figure 17.9 Critical section for punching shear in (a) flat plates and (b) flat slabs, rein-
forcement by (c, d) shearheads and (e) anchored bars, (f) conventional stirrup cages,
and (g) studded steel strips used as shear reinforcement.
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Figure 17.9 (continued)
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5. The critical slab section for shear must cross each shearhead arm at a distance equal to ( 3
4
)

(l𝑣 − c1/2) from the column face to the end of the shearhead arm, as shown in Fig. 17.9c. The
critical section must have a minimum perimeter, b0, but it should not be closer than d/2 from
the face of the column.

6. The shearhead is considered to contribute a moment resistance, M𝑣, to each slab column strip
as follows:

M𝑣 =
𝜙

2n
𝛼𝑣Vu

(
l𝑣 −

c1

2

)
(ACI Code, Eq. 22.6.9.7) (17.9)

but it should not be more than the smallest of 30% of the factored moment required in the
column strip or the change in the column strip moment over the length l𝑣 or Mp given in
Eq. 17.8

The use of anchored single or multiple-leg stirrups is permitted by the ACI Code,
Section 22.6.7.1 to be used as shear reinforcement provided that d> 6 in. and d> 16db where
db is the diameter of the stirrups. The bars are placed on top of the column, and the possible
arrangements are shown in Fig. 17.9e. When bars or wires are used as shear reinforcement, the
nominal shear strength is

Vn = Vc + Vs = (2𝜆
√

f ′c )b0d +
A𝑣fyd

s
(17.10)

where A𝑣 is the total stirrup bar area and b0 is the length of the critical section of two-way shear
at a distance d/2 from the face of the column. The nominal shear strength, Vn, should not exceed
6𝜆

√
f ′c b0d. (ACI Code, Section 22.6.6.2)
The use of shear reinforcement in flat plates reduces the slab thickness and still maintains the

flat ceiling to reduce the cost of formwork. Typical stirrup cages for shear reinforcement are shown
in Fig. 17.9f. Another type of shear reinforcement consists of studded steel strips (Fig. 17.9g). The
steel strip is positioned with bar chairs and fastened to the formwork, replacing the stirrup cages.
The yield strength of the stud material is specified between 40 and 60 ksi to achieve complete
anchorage at ultimate load.

17.8 ANALYSIS OF TWO-WAY SLABS BY THE DIRECT DESIGN METHOD

The direct design method is an approximate method established by the ACI Code to determine the
design moments in uniformly loaded two-way slabs. To use this method, some limitations must be
met, as indicated by the ACI Code, Section 8.10.2.

17.8.1 Limitations

1. There must be a minimum of three continuous spans in each direction.
2. The panels must be square or rectangular; the ratio of the longer to the shorter span within a

panel must not exceed 2.0.
3. Adjacent spans in each direction must not differ by more than one-third of the longer span.
4. Columns must not be offset by a maximum of 10% of the span length, in the direction of

offset, from either axis between centerlines of successive columns.
5. All loads shall be due to gravity only. All loads must be uniform, and the ratio of the unfactored

live to unfactored dead load must not exceed 2.0.
6. If beams are present along all sides, the ratio of the relative stiffness of beams in two perpen-

dicular directions, 𝛼f1
l22∕𝛼f2

l21 must not be less than 0.2 nor greater than 5.0.
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17.8.2 Total Factored Static Moment

If a simply supported beam carries a uniformly distributed load𝑤 K/ft, then the maximum positive
bending moment occurs at midspan and equals M0 = qul21∕8, where l1 is the span length. If the beam
is fixed at both ends or continuous with equal negative moments at both ends, then the total moment
M0 =Mp (positive moment at midspan)+Mn (negative moment at support) = qul21∕8 (Fig. 17.10).
Now if the beam AB carries the load W from a slab that has a width l2 perpendicular to l1, then
W= qul2, and the total moment is

M0 =
(qul2)l21

8

where qu is the load intensity in K/ft2. In this expression, the actual moment occurs when l1 equals
the clear span between supports A and B. If the clear span is denoted by ln, then

M0 =
qul2l2n

8
(ACI Code, Eq. 8.10.3.2) (17.11)

The clear span, ln, is measured face to face of supports in the direction in which moments are
considered but not less than 0.65 times the span length from center to center of supports. The face
of the support where the negative moments should be calculated is illustrated in Fig. 17.11. The
length l2 is measured in a direction perpendicular to ln and equals the direction between center to
center of supports (width of slab). The total moment M0 calculated in the long direction will be
referred to here as M0l

and that in the short direction, as M0s
.

Once the total moment, M0, is calculated in one direction, it is divided into a positive moment,
Mp, and a negative moment, Mn, such that M0 =Mp +Mn (Fig. 17.10). Then each moment, Mp and
Mn, is distributed across the width of the slab between the column and middle strips, as is explained
shortly.

17.8.3 Longitudinal Distribution of Moments in Slabs

In a typical interior panel, the total static moment, M0, is divided into two moments, the positive
moment, Mp, at midspan, equal to 0.35M0, and the negative moment, Mn, at each support, equal
to 0.65M0, as shown in Fig. 17.12. These values of moment are based on the assumption that the
interior panel is continuous in both directions, with approximately equal spans and loads, so that
the interior joints have no significant rotation. Moreover, the moment values are approximately the

Figure 17.10 Bending moment in a fixed-end beam.
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Figure 17.11 Critical sections for negative design moments. A-A, section for negative
moment at exterior support with bracket.

same as those in a fixed-end beam subjected to uniform loading, where the negative moment at the
support is twice the positive moment at midspan. In Fig. 17.12, if l1 > l2, then the distribution of
moments in the long and short directions is as follows:

M0l = (qul2)
l2
n1

8
Mpl = 0.35M0l Mnl = 0.65M0l

M0s = (qul1)
l2
n2

8
Mps = 0.35M0s Mns = 0.65M0s

If the magnitudes of the negative moments on opposite sides of an interior support are dif-
ferent because of unequal span lengths, the ACI Code specifies that the larger moment should be
considered to calculate the required reinforcement.

In an exterior panel, the slab load is applied to the exterior column from one side only, causing
an unbalanced moment and a rotation at the exterior joint. Consequently, there will be an increase
in the positive moment at midspan and in the negative moment at the first interior support. The
magnitude of the rotation of the exterior joint determines the increase in the moments at midspan
and at the interior support. For example, if the exterior edge is a simple support, as in the case of a
slab resting on a wall (Fig. 17.13), the slab moment at the face of the wall there is 0, the positive
moment at midspan can be taken as Mp = 0.63M0, and the negative moment at the interior support
is Mn = 0.75M0. These values satisfy the static equilibrium equation

M0 = Mp +
1
2

Mn = 0.63M0 +
1
2
(0.75M0)
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Figure 17.12 Distribution of moments in an interior panel.

Figure 17.13 Exterior panel.

In a slab–column floor system, there is some restraint at the exterior joint provided by the
flexural stiffness of the slab and by the flexural stiffness of the exterior columns.

According to ACI Code, Section 8.10.4 the total static moment M0 in an end span is distributed
in different ratios according to Table 17.2 and Fig. 17.14. The moment coefficients in column 1 for
an unrestrained edge are based on the assumption that the ratio of the flexural stiffness of columns
to the combined flexural stiffness of slabs and beams at a joint, 𝛼ec is equal to 0. The coefficients of
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Table 17.2 Distribution of Moments in an End Panel

Exterior Edge

Slab without
Beams between
Interior Supports

Unrestrained
(1)

Fully
Restrained

(2)

Slab with
Beams

between All
Supports

(3)

With
Edge
Beam

(4)

Without
Edge
Beam

(5)

Exterior negative factored moment 0 0.65 0.16 0.30 0.26
Positive factored moment 0.63 0.35 0.57 0.50 0.52
Interior negative factored moment 0.75 0.65 0.70 0.70 0.70

Figure 17.14 Distribution of total static moment into negative and positive span
moments.
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Figure 17.15 Width of the equivalent rigid frame (equal spans in this figure) and distri-
bution of moments in flat plates, flat slabs, and waffle slabs with no beams.

column 2 are based on the assumption that the ratio 𝛼ec is equal to infinity. The moment coefficients
in columns 3, 4, and 5 have been established by analyzing the slab systems with different geometries
and support conditions.

17.8.4 Transverse Distribution of Moments

The longitudinal moment values mentioned in the previous section are for the entire width of the
equivalent building frame. This frame width is the sum of the widths of two half-column strips and
two half-middle strips of two adjacent panels, as shown in Fig. 17.15. The transverse distribution
of the longitudinal moments to the middle and column strips is a function of the ratios l2/l1,

𝛼f =
EcbIb

EcsIs
= beam stiffness

slab stiffness
(17.12)

𝛽t =
EcbC

2EcsIs
=

torsional rigidity of edge beam section

flexural rigidity of aslab of width equal to beam span length
(17.13)

where

C = torsional constant =
∑(

1 − 0.63x
y

)(
x3y

3

)
(17.14)
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where x and y are the shorter and longer dimension of each rectangular component of the section.
The percentages of each design moment to be distributed to column and middle strips for interior
and exterior panels are given in Tables 17.3 through Table 17.6. In a typical interior panel, the
portion of the design moment that is not assigned to the column strip (Table 17.3) must be resisted
by the corresponding half-middle strips. Linear interpolation of values of l2/l1 between 0.5 and 2.0
and of 𝛼f1

l2∕l1 between 0 and 1 is permitted by the ACI Code. From Table 17.3 it can be seen that
when no beams are used, as in the case of flat plates or flat slabs, 𝛼f1

= 0. The final percentage of
moments in the column and middle strips as a function of M0 are given in Table 17.4.

For exterior panels, the portion of the design moment that is not assigned to the column strip
(Table 17.5) must be resisted by the corresponding half-middle strips. Again, linear interpolation

Table 17.3 Percentage of Longitudinal Moment in Column Strips, Interior
Panels (ACI Code, Section 8.10.5)

Aspect Ratio, l2/l1

𝜶f1
l2∕l1 0.5 1.0 2.0

Negative moment at interior support 0 75 75 75
≥1.0 90 75 45

Positive moment near midspan 0 60 60 60
≥1.0 90 75 45

Table 17.4 Percentage of Moments in Two-Way Interior Slabs without Beams (𝛼1 = 0)

Total Design Moment = M0 = (𝒘ul2)
(

l2n1

8

)
n!

r!(n−r)!

Negative Moment Positive Moment

Longitudinal moments in one panel −0.65M0 ±0.35M0
Column strip 0.75(−0.65M0)=−0.49M0 0.60(0.35M0)= 0.21M0
Middle strip 0.25(−0.65M0)= 0.16M0 0.40(0.35M0)= 0.14M0

Table 17.5 Percentage of Longitudinal Moment in Column Strips, Exterior Panels
(ACI Code, Section 8.10.5)

Aspect Ratio l2/l1

𝜶f1
l2∕l1 𝜷t 0.5 1.0 2.0

Negative moment at exterior support 0 0 100 100 100
≥2.5 75 75 75

≥1.0 0 100 100 100
≥2.5 90 75 45

Positive moment near midspan 0 60 60 60
≥1.0 90 75 45

Negative moment at interior support 0 75 75 75
≥1.0 90 75 45
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Table 17.6 Percentage of Longitudinal Moment in Column and Middle Strips, Exterior Panels (for All
Ratios of l2/l1), Given 𝛼f1

= 𝛽t = 0

Percent
Column
Strip

Middle
Strip

Final Moment as a
Function of M0 and
𝜶ec (Column Strip)

Negative moment at exterior support 100 0.26M0 0
[

0.65
(1+1∕aec)

]
(M0)

Positive moment (0.6× 0.52M0) 60 0.312M0 0.208M0

[
0.63 − 0.28

(1+1∕aec)
]
(M0)

Negative moment at interior support
(0.75× 0.70M0)

75 0.525M0 0.175M0

[
0.75 − 0.10

(1+1∕𝛼ec)
]
(M0)

between values shown in Table 17.5 is permitted by the ACI Code, Section 8.10.5. When no beams
are used in an exterior panel, as in the case of flat slabs or flat plates with no edge (spandrel) beam,
𝛼f1

= 0,C = 0, and 𝛽 t = 0. This means that the end column provides the restraint to the exterior end
of the slab. The applicable values of Table 17.5 for this special case are shown in Table 17.6 and
Fig. 17.15.

From Table 17.6 it can be seen that when no edge beam is used at the exterior end of the
slab, 𝛽 t = 0 and 100% of the design moment is resisted by the column strip. The middle strip will
not resist any moment; therefore, minimum steel reinforcement must be provided. The ACI Code,
Section 8.10.5.4, specifies that when the exterior support is a column or wall extending for a distance
equal to or greater than 3/4 the transverse span length, l2, used to compute M0, the exterior negative
moment is to be uniformly distributed across l2. When beams are provided along the centerlines
of columns, the ACI Code, Section 8.10.5.7, requires that beams must be proportioned to resist
85% of the moment in the column strip if 𝛼f1

l2∕l1 > 1.0. For values of 𝛼f1
(l2∕l1) between 1.0 and

0, the moment assigned to the beam is determined by linear interpolation between 85% and 0%.
Beams must also be proportioned to resist additional moments caused by all loads applied directly
to the beams, including the weight of the projecting beam stem above and below the floor slab.
The portion of the moment that is not assigned to the beam must be resisted by the slab in the
column strip.

17.8.5 ACI Provisions for Effects of Pattern Loadings

In continuous structures, the maximum and minimum bending moments at the critical sections are
obtained by placing the live load in specific patterns to produce the extreme values. Placing the live
load on all spans will not produce either the maximum positive or negative bending moments. The
maximum and minimum moments depend mainly on the following:

1. The ratio of live to dead load. A high ratio will increase the effect of pattern loadings.
2. The ratio of column to beam stiffnesses. A low ratio will increase the effect of pattern loadings.
3. Pattern loadings. Maximum positive moments within the spans are less affected by pattern

loadings.
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To determine the design factored moments in continuous structures, the ACI Code,
Section 6.4.3, specifies the following:

1. When the loading pattern is known, the equivalent frame shall be analyzed for that load.

2. When the unfactored live load is variable but does not exceed 3
4

of the unfactored dead load,
qL ≤ 0.75 qD, or when all the panels is almost loaded simultaneously with the live load, it is
permitted to analyze the frame with full factored live load on the entire slab system.

3. For other loading conditions, it is permitted to assume that the maximum positive factored
moment near a midspan occurs with 0.75 of the full factored live load on the panel and alter-
nate panels. For the maximum negative factored moment in the slab at a support, it is permitted
to assume that 0.75 of the full factored live load is applied on adjacent panels only.

4. Factored moments shall not be taken less than the moments occurring with full factored live
load on all continuous panels.

17.8.6 Reinforcement Details

After all the percentages of the static moments in the column and middle strips are determined, the
steel reinforcement can be calculated for the negative and positive moments in each strip, as was
done for beam sections in Chapter 4:

Mu = 𝜙Asfy
(

d − a
2

)
= Rubd2 (17.15)

Calculate Ru and determine the steel ratio 𝜌 using the tables in Appendix A or use the following
equation:

Ru = 𝜙𝜌fy

(
1 −

𝜌fy

1.7f ′c

)
(17.16)

where 𝜙 equals 0.9. The steel area is As = 𝜌bd. When the slab thickness limitations, as discussed
in Section 17.4, are met, no compression reinforcement will be required. Figure 13.3.8 of the
ACI Code indicates the minimum length of reinforcing bars and reinforcement details for slabs
without beams; it is reproduced here as Fig. 17.16. The spacing of bars in the slabs must not
exceed the ACI limits of maximum spacing: 18 in. (450 mm) or twice the slab thickness, whichever
is smaller.

17.8.7 Modified Stiffness Method for End Spans

In this method, the stiffnesses of the slab end beam and of the exterior column are replaced by the
stiffness of an equivalent column, Kec. The flexural stiffness of the equivalent column, Kec, can be
calculated from the following expression:

1
Kec

= 1
∑

Kc

+ 1
Kt

or Kec =
∑

Kc

1 +
∑

Kc∕Kt

(17.17)

where
Kec = flexural stiffness of equivalent column
Kc = flexural stiffness of actual column
Kt = torsional stiffness of edge beam
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Figure 17.16 Minimum extensions for reinforcement in slabs without beams (ACI
Code, Fig. R8.7.4.1.3(b)). Courtesy of American Concrete Institute [14]

The sum of the flexural stiffness of the columns above and below the floor slab can be taken
as follows:

∑
Kc = 4E

(
Ic1

Lc1
+

Ic2

Lc2

)
(17.18)

where Ic1
and Lc1

are the moment of inertia and length of column above slab level and Ic2
and Lc2

are the moment of inertia and length of column below slab level. The torsional stiffness of the end
beam, Kt, may be calculated as follows:

Kt =
∑ 9EcsC

l2(1 − c2∕l2)3
(17.19)

where
c2 = size of rectangular or equivalent rectangular column, capital, or bracket measured on trans-

verse spans on each side of column
Ecs = modulus of elasticity of slab concrete

C = torsion constant determined from following expression:

C =
∑(

1 − 0.63
x
y

)(
x3y

3

)
(17.20)
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where x is the shorter dimension of each component rectangle and y is the longer dimension of
each component rectangle. In calculating C, the component rectangles of the cross section must be
taken in such a way as to produce the largest value of C.

The preceding expressions are introduced here and will also be used in Section 17.12, Equiv-
alent Frame Method.

If a panel contains a beam parallel to the direction in which moments are being determined,
the torsional stiffness, Kt, given in Eq. 17.19 must be replaced by a greater value, Kta, computed as
follows:

Kta = Kt ×
Isb

Is

where
Is = l2 h3/12 = moment of inertia of a slab that has a width equal to full width between panel center-

lines (excluding that portion of beam stem extending above or below slab)
Isb = Is, including portion of beam stem extending above or below slab

Cross sections of some attached torsional members are shown in Fig. 17.17. Once Kec is calculated,
the stiffness ratio, 𝛼ec, is obtained as follows:

𝛼ec =
Kec∑

(Ks + Kb)
(17.21)

where

Ks =
4EcsIs

l1
= flexural stiffness of slab

Kb =
4EcbIb

l1
= flexural stiffness of beam

Ib = gross moment of inertia of longitudinal beam section

The distribution of the total static moment, M0, in an exterior panel is given as a function of 𝛼ec as
follows:

Interior negative factored moment =

(

0.75 − 0.1
(
1 + 1∕𝛼ec

)

)

M0

Positive factored moment =

(

0.63 − 0.28
(
1 + 1∕𝛼ec

)

)

M0

Exterior negative factored moment =

(
0.65

(
1 + 1∕𝛼ec

)

)

M0

These values are shown for a typical exterior panel in Fig. 17.18. These factors take into consider-
ation the effect of the stiffness of the exterior column as well as the slab end beam giving adequate
distribution of moments.

17.8.8 Summary of the Direct Design Method (DDM)

Case 1. Slabs without beams (flat slabs and flat plates).

1. Check the limitation requirements explained in Section 17.8.1. If limitations are not met,
DDM cannot be used.
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Figure 17.17 Cross sections of some attached torsional members.
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Figure 17.17 (continued)

Figure 17.18 Distribution of moments in an exterior panel.

2. Determine the minimum slab thickness (h) to control deflection using values in Table 17.1.
Exterior panels without edge beams give the highest minimum h= (ln/30 for fy = 60 ksi). It is
a common practice to use the same slab depth for all exterior and interior panels.

3. Calculate the factored loads, qu = 1.2 qDu + 1.6 qLu.
4. Check the slab thickness, h, as required by one-way and two-way shear. If the slab thickness,

h, is not adequate, either increase h or provide shear reinforcement.
5. Calculate the total static moment, M0, in both directions (Eq. 17.11).
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6. Determine the distribution factors for the positive and negative moments in the longitudinal
and transverse directions for each column and middle strip in both interior and exterior panels
as follows:
a. For interior panels, use the moment factors given in Table 17.4 or Fig. 17.15.
b. For exterior panels without edge beams, the panel moment factors are given in Table 17.2

or Fig. 17.14 (Case 5). For the distribution of moments in the transverse direction, use
Table 17.6 or Fig. 17.15 for column-strip ratios. The middle strip will resist the portion of
the moment that is not assigned to the column strip.

c. For exterior panels with edge beams, the panel moment factors are given in Table 17.2
or Fig. 17.14 (Case 4). For the distribution of moments in the transverse direction, use
Table 17.5 for the column strip. The middle strip will resist the balance of the panel
moment.

7. Determine the steel reinforcement for all critical sections of the column and middle strips and
extends the bars throughout the slab according to Fig. 17.16.

8. Compute the unbalanced moment and check if transfer of unbalanced moment by flexure is
adequate. If not, determine the additional reinforcement required in the critical width. (Refer
to Section 17.10.)

9. Check if transfer of the unbalanced moment by shear is adequate. If not, increase h or provide
shear reinforcement. (Refer to Section 17.10.)

Case 2. Slabs with interior and exterior beams.

1. Check the limitation requirements as explained in Section 17.8.1.
2. Determine the minimum slab thickness (h) to control deflection using Eqs. 17.1 through 17.3.

In most cases Eq. 17.2 controls.
3. Calculate the factored load, Wu.
4. Check the slab thickness, h, according to one-way and two-way shear requirements. In gen-

eral, shear is not critical for slabs supported on beams.
5. Calculate the total static moment, M0 in both directions (Eq. 17.17).
6. Determine the distribution factors for the positive and negative moments in the longitudinal

and transverse directions for each column and middle strips in both interior and exterior panels
as follows:
a. For interior panels, use moment factors in Fig. 17.14 (Case 3) or Fig. 17.12. For the distri-

bution of moments in the transverse direction, use Table 17.3 for column strips. The middle
strips will resist the portion of the moments not assigned to the column strips. Calculate
𝛼1 from Eq.17.12.

b. For exterior panels, use moment factors in Table 17.2 or Fig. 17.14 (Case 3). For the
distribution of moments in the transverse direction, use Table 17.5 for the column strip.
The middle strip will resist the balance of the panel moment.

c. In both cases (a) and (b), the beams must resist 85% of the moment in the column strip
when 𝛼f1

(l2∕l1) ≥ 1.0, whereas the ratio varies between 85 and 0% when 𝛼f1
(l2∕l1) varies

between 1.0 and 0.
7. Determine the steel reinforcement for all critical sections in the column strip, beam, and mid-

dle strip; then extend the bars throughout the slab according to Fig. 17.16.
8. Compute the unbalanced moment and then check the transfer of moment by flexure and shear.

(Refer to Section 17.10.)
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Example 17.3

Using the direct design method, design the typical interior flat-plate panel shown in Figs. 17.6 and 17.19.
The floor system consists of four panels in each direction with a panel size of 24× 20 ft. All panels are
supported by 20× 20–in. columns, 12 ft long. The slab carries a uniform service live load of 100 psf
and a service dead load that consists of 24 psf of floor finish in addition to the slab self-weight. Use
normal-weight concrete with f ′c = 4 ksi and fy = 60 ksi.

Figure 17.19 Example 17.3: Interior flat plate.
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Solution

1. Determine the minimum slab thickness using Table 17.1 for flat plates. From Example 17.1, a
9-in. slab thickness is adopted.

2. Calculate the factored loads:

qD = 24 + weight of slab = 24 + 9.0
12

× 150 = 136.5 psf

qu = 1.2 × (136.5) + 1.6 × (100) = 323 say, 330 psf

3. Check one- and two-way shears:
a. Check punching shear at a distance d/2 from the face of the column (two-way action): Assum-

ing 3
4
-in. concrete cover and no. 5 bars, then the average d is 9.0 − 0.75 − 5

8
= 7.6 in. and

b0 = 4(20+ 7.6)= 110 in. (See Fig. 17.19c).

Vu =
[
l1l2 −

(27.6
12

× 27.6
12

)]
× qu = (24 × 20 − 5.3) × 0.330 = 156.7 K

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

𝛽 = 24
20

= 1.2

= 0.75
(

2 + 4
1.2

)
×
√

4000
1000

× 110 × 7.6

= 211.5 K

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

𝛼s = 40 (Interior Column)

𝜙Vc = 0.75
(40 × 7.6

110
+ 2

) √
4000

1000
× 110 × 7.6

= 188.9 K

𝜙Vc = 𝜙(4
√

f ′c )b0d = 0.75 × 4
1000

×
√

4000 × 110 × 7.6 = 158.6 K(controls)

which is greater than Vu.
b. Check beam shear at a distance d from the face of the column; average d is 7.6 in. Consider a

1-ft strip (Fig. 17.19d), with the length of the strip being

x = 12 − 10
12

− 7.6
12

= 10.5 ft

Vu = qu(1 × 10.5) = 0.330 × 1 × 10.5 = 3.47 K

𝜙Vc = 𝜙(2𝜆
√

f ′c )bd = 0.75 × 2 × 1
1000

×
√

4000 × (12 × 7.6) = 8.7 K

which is greater than Vu = 3.47 K. In normal loadings, one-way shear does not control.
4. Calculate the total static moments in the long and short directions. In the long direction,

M0l =
qul2l2n1

8
= 0.33

8
× 20(22.33)2 = 411.4 K ⋅ ft
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Table 17.7 Design of Interior Flat-Plate Panel (Long Direction)

M0 = 411.4 K ⋅ ft
Mn = 0.65M0 = −267.4 K ⋅ ft
Mp = +0.35M0 = +144 K ⋅ ft

Column Strip Middle Strip

Long Direction Negative Positive Negative Positive

Moment distribution (%) 75 60 25 40
Mu (K ⋅ ft) 0.75Mn =−201.6 0.6Mp =±86.4 0.25Mn =−66.8 0.4Mp =±57.16
Width of strip b (in.) 120 120 120 120
Effective depth d (in.) 7.9 7.9 7.9 7.9
Ru = Mu

bd2
(psi) 323 128 107 93

Steel ratio 𝜌 (%) 0.633 0.262 0.2 0.175
As = 𝜌bd (in.2) 6.00 2.48 1.92 1.66
Min. As = 0.0018bhs (in.2) 1.94 1.94 1.94 1.94
Bars selected (straight) 20 no. 5 10 no. 5 10 no. 4 10 no. 4
Spacing≤ 2h= 18 in. 6 in. 12 12 12

Table 17.8 Design of Interior Flat-Plate Panel (Short Direction)

M0 = 333 K ⋅ ft
Mn = 0.65M0 = −216.5 K ⋅ ft

Mp = +0.35M0 = +116.5 K ⋅ ft

Column Strip Middle Strip

Short Direction Negative Positive Negative Positive

Moment distribution (%) 75 60 25 40
Mu (K ⋅ ft) 0.75Mn =−162.4 0.6Mp =±69.9 0.25Mn =−54.1 0.4Mp =±46.16
Width of strip b (in.) 120 120 168 168
Effective depth d (in.) 7.3 7.3 7.3 7.3
Ru = Mu

bd2
(psi) 305 131 73 62

Steel ratio 𝜌 (%) 0.60 0.25 0.14 0.12
As = 𝜌bd (in.2) 5.23 2.18 1.72 1.46
Min. As = 0.0018bhs (in.2) 1.94 1.94 2.72 2.72
Bars selected (straight) 18 no. 5 10 no. 5 14 no. 4 14 no. 4
Spacing≤ 2h= 18 in. 6.7 12 12 12

In the short direction,

M0s =
qul1l2n2

8
= 0.33

8
× 24 × (18.33)2 = 333 K ⋅ ft

Because l2 < l1, the width of half a column strip in the long direction is 0.25× 20= 5 ft, and the
width of the middle strip is 20− 2× 5= 10 ft. The width of half the column strip in the short direc-
tion is 5 ft, and the width of the middle strip is 24− 2× 5= 14 ft. To calculate the effective depth, d,
in each direction, assume that steel bars in the short direction are placed on top of the bars in the
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10 no. 5

10 no. 5 10 no. 5 10 no. 5

10 no. 5

10 no. 4

10 no. 4

14 no. 4

10 no. 5 10 no. 5

7 no. 4 7 no. 414 no. 4 14 no. 4

10 no. 5

10 no. 45 no. 4

9 no. 5 9 no. 5

5 no. 4

Total 20 no. 5

Total 10 no. 4

Total 18 no. 5

Total 14 no. 4

Figure 17.20 Example 17.3: Reinforcement details. For bar length, refer to Fig. 17.16.

long direction. Therefore, d(longdirection) = 9.0 − 0.75 − 5
16

= 7.9 in. and d (shortdirection) =
9.0 − 0.75 − 5

8
− 5

16
− = 7.3 in. For practical applications, an average d= 9− 1.5= 7.5 in. can be

used for both directions.
The design procedure can be conveniently arranged in a table form, as in Tables 17.7 and 17.8.
The details for the bars selected for this interior slab are shown in Fig. 17.20 using the straight

bar system. Minimum lengths of the bars must meet those shown in Fig. 17.16.
Straight bars and fy = 60 ksi steel bars are more often preferred by contractors.

Maximum spacing =
width of panel

no. of bars
= 168

14
= 12 in.

occurs at the middle strip in the short direction; this spacing of 12 in. is adequate because it is less
than 2h= 18 in. and less than 18 in. specified by the ACI Code. Note that all steel ratios are less
than 𝜌max = 0.018. Thus 𝜙= 0.9.
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Example 17.4

Using the direct design method, design an exterior flat-plate panel that has the same dimensions, loads,
and concrete and steel strengths given in Example 17.3. No beams are used along the edges (Fig. 17.21).

Solution

1. Determine the minimum slab thickness using Table 17.1 for flat plates. From Example 17.1, a
9.0-in. slab thickness is adopted.

2. Calculate factored loads: Wu = 330 psf. (See Example 17.3.)
3. Check one- and two-way shear (refer to Example 17.3 and Fig. 17.19).

a. Check punching shear at an interior column: Vu = 156.7<𝜙Vc = 158.6 K.
b. Check one-way shear: Vu = 3.47 K<𝜙Vc = 8.7 K.
c. Check punching shear at the exterior column: d= 7.6 in.

x = 20 + d
2
= 20 + 7.6

2
= 23.8 in. = 1.98 ft

y = 20 + d = 20 + 7.6 = 27.6 in. = 2.30 ft

b0 = 2x + y = 75.2 in.

Vu =
[
20

(
12 + 10

12

)
− 1.98(2.30)

]
0.33 = 83.2 K

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

𝛽 = 24
20

= 1.2

= 0.75
(

2 + 4
1.2

)
×
√

4000
1000

× 75.2 × 7.6

= 144 K

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

= 0.75
(30 × 7.6

75.2
+ 2

) √
4000

1000
× 75.2 × 7.6

= 136.4 K

𝜙Vc = 𝜙4
√

f ′c b0d = 108.4 K(controls) > Vu

d. Check punching shear at a corner column: d= 7.6 in.

x = y = 20 + d
2
= 23.8 in. = 1.98 ft

b0 = x + y = 47.6 in.

Vu =
[(

10 + 10
12

)(
12 + 10

12

)
− (1.98)(1.98)

]
0.33 = 44.6 K

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

𝛽 = 24
20

= 1.2
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Figure 17.21 Example 17.4: Distribution of bending moments.
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= 0.75
(

2 + 4
1.2

) √
4000

1000
× 47.6 × 7.6

= 91.5 K

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

= 0.75
(20 × 7.6

47.6
+ 2

) √
4000

1000
× 47.6 × 7.6

= 89.1 K

𝜙Vc = 𝜙4
√

f ′c b0d = 68.6 K(controls) > Vu

4. Calculate the total static moments. From Example 17.3,

M0l (long direction) = 411.4 K ⋅ ft d = 7.9 in.

M0s (short direction) = 333 K ⋅ ft d = 7.3 in.

The width of the column strip is 120 in., and the width of the middle strip is 168 in.
5. Calculate the design moments in the long direction: l1 = 24 ft. (Refer to Table 17.5 or Fig. 17.15).

The distribution of the total moment, M0l
, in the column and middle strips is computed as follows:

a. Column strip:

Interior negative moment = −0.525M0 = −0.525(411.4) = −216 K ⋅ ft

Positive moment within span = 0.312M0 = 0.312(411.4) = +128.4 K ⋅ ft

Exterior negative moment = −0.26M0 = −0.26(411.14) = −107 K ⋅ ft

b. Middle strip:

Interior negative moment = −0.175M0 = −0.175 × 411.4 = −72 K ⋅ ft

Positive moment within span = 0.208M0 = 0.208 × 411.4 = +85.6 K ⋅ ft

Exterior negative moment = 0

6. Calculate the design moments in the short direction: ls = 20 ft. It will be treated as an interior panel
because it is continuous on both sides. Referring to Table 17.4 or Fig. 17.15, the distribution of
the total moment, M0s, in the column and middle strips is computed as follows:
a. Column strip:

Negative moment = 0.49M0 = −0.49(333) = −163.2 K ⋅ ft

Positive moment = +0.21M0 = +0.21(333) = +70.0 K ⋅ ft

b. Middle strip:

Negative moment = −0.16M0 = −0.16(333) = −53.3 K ⋅ ft

Positive moment = +0.14M0 = +0.14(333) = +46.6 K ⋅ ft

The design procedure can be conveniently arranged in Table 17.9. The details for bars selected
are shown in Fig. 17.22 using the straight-bar system in the long direction. Details of reinforce-
ment in the short direction will be similar to Fig. 17.20 using the bars chosen in Table 17.9.

Note that all steel ratios are less than 𝜌max = 0.018. Thus 𝜑= 0.9.
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Table 17.9 Design of Exterior Flat-Plate Panel for Example 17.4 (d= 7.9 in.)

Column Strip Middle Strip

Exterior Positive Interior Exterior Positive Interior

Long direction
Mu (K ⋅ ft) −107.06 ±128.4 −216.0 0 ±85.6 −72.0
b (in.) 120 120 120 120 120 120
Ru = Mu

bd2
(psi) 172 206 346 0 138 116

Steel ratio 𝜌 (%) 0.33 0.4 0.682 0 0.262 0.22
As = 𝜌bd 3.11 3.75 6.47 0 2.48 2.10
Min. As = 0.0018bhs 1.94 1.94 1.94 1.94 1.94 1.94
Bars selected (straight) 12 no. 5 12 no. 5 22 no. 5 10 no. 4 14 no. 4 14 no. 4
Spacing 18 in. 10 10 5.5 12 8.5 8.5
Short direction
Mu (K ⋅ ft) −163.2 — ±70.0 −53.3 — ±46.6
Width of strip b (in.) 120 120 168 168
d (in.) 7.3 7.3 7.3 7.3
Ru = Mu

bd2
(psi) 306 131 71 63

Steel ratio 𝜌 (%) 0.6 0.25 0.133 0.12
As = 𝜌bd (in.2) 5.26 2.20 1.63 1.47
Min. As = 0.0018bhs 1.94 1.94 2.72 2.72
Bars selected (straight) 18 no. 5 8 no. 5 14 no. 4 14 no. 4
Spacing 18 in. 6.67 15 12 12

6 no. 5 11 no. 5

12 no. 5

5 no. 4

14 no. 4 14 no. 47 no. 4 7 no. 4

7 no. 4

Total 12 no. 5

Total 10 no. 4 Total 14 no. 4

Total 22 no. 5

12 no. 5 12 no. 5

Figure 17.22 Example 17.4: Reinforcement details (longitudinal direction). For bar
lengths, refer to Fig. 17.16.
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Example 17.5

Repeat Example 17.4 using the modified stiffness method. (Similar calculations are needed for the equiv-
alent frame method, Section 17.12.)

Solution

1. Steps 1 through 4 will be the same as in Example 17.4.
2. Calculate the equivalent column stiffness, Kec:

1
Kec

= 1
∑

Kc

+ 1
Kt

It can be assumed that the part of the slab strip between exterior columns acts as a beam resisting
torsion. The section of the slab–beam is 20 in. (width of the column)× 9.0 in. (thickness of the
slab), as shown in Fig. 17.21.
a. Determine the torsional stiffness, Kt, from Eq. 17.20:

C =
(

1 − 0.63
x
y

)
x3y

3

For x= 9 in., y= 20 in.,

C =
(

1 − 0.63 × 9
20

) 93 × 20
3

= 3482 in.4

Kt =
9EcC

l2(1 − c2∕l2)3
=

9Ec × 3482

(20 × 12)[1 − 20∕(20 × 12)]3
= 170Ec

For the two adjacent slabs (on both sides of the column) acting as transverse beams,

Kt = 2 × 170Ec = 340Ec

b. Calculate the column stiffness, Kc; the column height Lc = 12 ft:

Kc =
4EcIc

Lc

=
4Ec

12 × 12
× (20)4

12
= 370.4Ec

For two columns above and below the floor slab,

Kc = 2 × 370.14Ec = 740.18Ec

c. Calculate Kec:
1

Kec
= 1

740.8Ec

+ 1
340Ec

To simplify the calculations, multiply by 1000 Ec:

1000Ec

Kec
= 1000

740.8
+ 1000

340
= 4.29 Kec = 233Ec

3. Calculate slab stiffness and the ratio 𝛼ec:

Ks =
4EcIs

l1
h = 9 in. l2 = 20 ft Is =

l2h3

12

Ks =
4Ec

24 × 12
× (20 × 12)(9.0)3

12
= 202.5Ec

𝛼ec =
Kec∑

(Ks + Kb)

Kb = 0 (no beams are provided)
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Thus

𝛼ec =
233Ec

202.5Ec
= 1.15

Let

Q =
(

1 + 1
𝛼ec

)
= 1 + 1

1.15
= 1.87

4. Calculate the design moments in the long direction: l1 = 24 ft. The distribution of moments in one
panel is shown in Fig. 17.18. The interior negative moment is

Mnt =
[

0.75 − 0.10
Q

]
M0l =

(
0.75 − 0.10

1.87

)
(411.4) = −286.6 K ⋅ ft

The positive moment is

Mp =
(

0.63 − 0.28
Q

)
M0l

=
(

0.63 − 0.28
1.87

)
(411.4) = 197.6 K ⋅ ft

The exterior negative moment is

Mne =
0.65

Q
(M0l) =

0.65
1.87

(411.4) = −143.0 K ⋅ ft

5. Calculate the distribution of panel moments in the transverse direction to column and middle
strips. The moments Mni, Mp, and Mne are distributed as follows (refer to Table 17.6):
a. The interior moment (Mnl)=− 28 6.6 K ⋅ ft is distributed 75% for the column strip and 25%

for the middle strip.

Column strip = 0.75(−286.6) = −215 K ⋅ ft

Middle strip = 0.25(−286.6) = −71.6 K ⋅ ft

b. The positive moment, Mp = 197.6 K ⋅ ft, is distributed 60% for the column strip and 40% for
the middle strip.

Column strip = 0.6(197.6) = 118.5 K ⋅ ft

Middle strip = 0.4(197.6) = 79.1 K ⋅ ft

c. The exterior negative moment, Mne =− 143 K ⋅ ft, is distributed according to Table 17.5:

𝛽t =
EcC

2EcIs
= C

2Is

The concrete of slab and column are the same.

Is = (20 × 12) (9.0)
3

12
= 14,580 in.4

𝛽t =
3482

2 × 14,580
= 0.119

𝛼f1
=

EcbIb

EcsIs
= 0 𝛼f1

l2
l1

= 0
l2
l1

= 0.83

From Table 17.5 and by interpolation between 𝛽 t = 0 (percentage= 100%) and 𝛽 t = 2.5 (per-
centage= 100%) for 𝛽 t = 0.1119, the percentage is 99%. The exterior negative moment in the
column strip is 0.99(−143.10)=−142 K ⋅ ft and in the middle strip, it is −1.10 K ⋅ ft. It is
practical to consider that the column strip carries in this case 100% of Mne =−143 K ⋅ ft.
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6. Determine the reinforcement required in the long direction in a table form similar to Example 17.4.
Results will vary slightly from those of Table 17.8.

7. Comparison of results between Examples 17.4 and 17.5 shows that the exterior moment in the
column strip (−143 K ⋅ ft) is greater than that calculated in Example 17.4 (−107 K ⋅ ft) by about
34%, whereas the positive moment (±118.15) is reduced by about 8% (relative to ±128.14). Other
values are almost compatible.

Example 17.6

Design an interior panel of the two-way slab floor system shown in Fig. 17.7. The floor consists of six
panels in each direction, with a panel size of 24× 20 ft. All panels are supported on 20× 20 in. columns,
12 ft long. The slabs are supported by beams along the column lines with the cross sections shown in
the figure. The service live load is to be taken as 100 psf, and the service dead load consists of 22 psf of
floor finish in addition to the slab weight. Use normal-weight concrete with f ′c = 3 ksi, fy = 60 ksi, and
the direct design method.

Solution

1. The limitations required by the ACI Code are met. Determine the minimum slab thickness using
Eqs. 17.1 and Eqs. 17.2. The slab thickness has been already calculated in Example 17.2, and
a 7.0 in. slab can be adopted. Generally, the slab thickness on a floor system is controlled by a
corner panel, as the calculations of hmin for an exterior panel give greater slab thickness than for
an interior panel.

2. Calculate factored loads:

qD = 22 + weight of slab = 22 + 7
12

× 150 = 109.5 psf

qu = 1.2(109.5) + 1.6(100) = 292 psf

3. The shear stresses in the slab are not critical. The critical section is at a distance d from the face
of the beam. For a 1-ft width:

Vu = qu

(
10 − 1

2
beam width − d

)

= 0.292
(

10 − 16
2 × 12

− 6
12

)
= 2.58 K

𝜙Vc = 𝜙(2𝜆
√

f ′c )bd =
0.75 × 2 × 1 ×

√
3000 × 12 × 6

1000
= 6.3 K > Vu

4. Calculate the total static moments in the long and short directions:

M0l =
qu

8
l2(ln1)2 = 0.292

8
(20)(22.33)2 = 364.0 K ⋅ ft

M0s =
qu

8
l1(ln2)2 = 0.292

8
(24)(18.33)2 = 294.3 K ⋅ ft

5. Calculate the design moments in the long direction: l1 = 24 ft.
a. Distribution of moments in one panel:

Negative moment (Mn) = 0.65M0l = 0.65 × 364 = −236.6 K ⋅ ft

Positive moment (Mp) = 0.35M0l = 0.35 × 364 = 127.4 K ⋅ ft
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b. Distributions of panel moments in the transverse direction to the beam, column, and middle
strips are as follows:

l2
l1

= 20
24

= 0.83 𝛼f1
= 𝛼s =

EIb

EIs
= 3.27 (from Example 17.2)

𝛼f1

l2
l1

= 3.27 × 0.83 = 2.71 > 1.0

c. Distribute the negative moment, Mn. The portion of the interior negative moment to be resisted
by the column strip is obtained from Table 17.3 by interpolation and is equal to 80% (for
l2/l1 = 0.83 and 𝛼f1

(l2/l1)> 1.0).

Column strip = 0.8Mn = 0.8 × 236.16 = −189.13 K ⋅ ft

Middle strip = 0.2Mn = 0.2 × 236.16 = −47.13 K ⋅ ft

Because 𝛼f1
(l2∕l1) > 1.0, the ACI Code, Section 8.10.5.7.1, indicates that 85% of the moment

in the column strip is assigned to the beam and the balance of 15% is assigned to the slab in
the column strip.

Beam = 0.85 × 189.3 = −160.9 K ⋅ ft

Column strip = 0.15 × 189.3 = −28.4 K ⋅ ft

Middle strip = −47.3 K ⋅ ft

d. Distribute the positive moment, Mp. The portion of the interior positive moment to be resisted
by the column strip is obtained from Table 17.3 by interpolation and is equal to 80% (for
l2/l1 = 0.83 and 𝛼f1

(l2∕l1) > 1.0).

Column strip = 0.8Mp = 0.8 × 127.4 = +101.9 K ⋅ ft

Middle strip = 0.2Mp = 0.2 × 127.4 = +25.5 K ⋅ ft

Since 𝛼f1
(l2∕l1) > 1.0, 85% of the moment in the column strip is assigned to the beam and the

balance of 15% is assigned to the slab in the column strip:

Beam = 0.85 × 101.9 = +86.6 K ⋅ ft

Column strip = 0.15 × 101.9 = +15.3 K ⋅ ft

Middle strip = +25.5 K ⋅ ft

Moment details are shown in Fig. 17.23.
6. Calculate the design moment in the short direction: span= 20 ft. The procedure is similar to step 5.

Negative moment (Mn) = 0.65M0s = 0.65 × 294.3 = −191.3 K ⋅ ft

Positive moment (Mp) = 0.35M0s = 0.35 × 294.3 = +103.0 K ⋅ ft

Distribution of Mn and Mp to beam, column, and middle strips:

l2
l1

= 24
20

= 1.2 𝛼f2
= 𝛼s =

EIb

EIs
= 2.72 (from Example 17.2)

𝛼f2

l2
l1

= 2.72 × 1.2 = 3.26 > 1.0

The percentages of the column strip negative and positive moments are obtained from Table 17.3
by interpolation. (For l2/l1 = 1.12 and 𝛼f2

(l2∕l1) > 1.0, the percentage is 69%.)
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Figure 17.23 Example 17.6: Interior slab with beams. All moments are in K ⋅ ft.

Column strip negative moment = 0.69Mn = 0.69 × 191.3 = −132 K ⋅ ft

Middle strip negative moment = 0.31Mn = 0.31 × 191.3 = −59.3 K ⋅ ft

Since 𝛼f2
(l2∕l1) > 1.0, 85% of −132 K ⋅ ft is assigned to the beam. Therefore,

Beam negative moment = 0.85 × 132 = −112.2 K ⋅ ft

Column strip negative moment = 0.15 × 132 = −19.8 K ⋅ ft

Beam positive moment = (0.85)(0.69 × 103.0) = +60.4 K ⋅ ft

Column strip positivemoment = (0.15)(0.69 × 103.0) = +10.7 K ⋅ ft

Middle strip positive moment = (1 − 0.69)(103.10) = ±31.19 K ⋅ ft

7. The steel reinforcement required and number of bars is shown in Table 17.10. Note all steel ratios
are less than 𝜌max = 0.0135. Thus, 𝜙= 0.9.
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Table 17.10 Design of an Interior Two-Way Slab with Beams

Column Strip Middle Strip

Long direction
Mu (K ⋅ ft) −28.14 ±15.13 −47.13 ±25.15
Width of strip (in.) 120 120 120 120
Effective depth (in.) 6.0 6.0 6.0 6.0
Ru = Mu

bd2
(psi) 79 43 132 71

Steel ratio 𝜌 0.0016 Low 0.0026 0.0015
As = 𝜌bd (in.2) 1.15 Low 1.87 1.08
Min. As = 0.10018bh (in.2) 1.52 1.52 1.52 1.52
Selected bars 8 no. 4 8 no. 4 10 no. 4 8 no. 4
Short direction
Mu (K ⋅ ft) −19.18 ±10.17 −59.13 ±31.19
Width of strip (in.) 120 120 168 168
Effective depth (in.) 5.5 5.5 5.5 5.5
Ru = Mu

bd2
(psi) 65 35 196 105

Steel ratio 𝜌 Low Low 0.0039 0.002
As = 𝜌bd (in.2) Low Low 3.60 1.85
Min. As = 0.0018bh (in.2) 1.52 1.52 2.10 2.10
Selected bars 8 no. 4 8 no. 4 18 no. 4 10 no. 4

Example 17.7

Using the direct design method, determine the negative and positive moments required for the design of
the exterior panel (no. 2) of the two-way slab system with beams shown in Fig. 17.7. Use the loads and
the data given in Example 17.6.

Solution

1. Limitations required by the ACI Code are satisfied in this problem. Determine the minimum slab
thickness, h, using Eqs. 17.1 and 17.2 and the following steps: Assume h= 7.10 in. The sections
of the interior and exterior beams are shown in Fig. 17.7. Note that the extension of the slab on
each side of the beam x= y= 15 in.

2. a. The moments of inertia for the interior beams and slabs were calculated earlier in
Example 17.2:

Ib (in both directions) = 22,453in.4

Is (in the long direction) = 6860 in.4

Is (in the short direction) = 8232 in.4

b. Calculate Ib and Is for the edge beam and end slab.

Ib(edge beam) =
[27

12
(7)3 + (27 × 7)(5.37)2

]
+
[12

12
12(15)3 + (12 × 15)(5.63)2

]

= 15,302 in.4

Calculate Is for the end strip parallel to the edge beam, which has a width = 24
2

ft +
1
2
columnwidth = 12 + 10

12
= 12.83 ft.

Is (endslab) = 12.83 × 12
12

(7)3 = 4401in.4
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3. a. Calculate 𝛼f(𝛼f =EIb/EIs):

𝛼l (long direction) = 22,453
6860

= 3.27

𝛼s (short direction) = 22,453
8232

= 2.72

𝛼 (edge beam) = 15,302
4401

= 3.48

Average 𝛼 = 𝛼fm = 3.27 + 2.72 × 2 + 3.48
4

= 3.05

b. 𝛽 = ratio of long to short clear span.

22.33
18.33

= 1.22

c. Calculate h:

Min.h =
(22.33 × 12)(0.8 + 60,000∕200,000)

36 + 9(1.22)
= 6.3 in.

Use h= 7 in.> 3.5 in. (minimum code limitations).
4. Calculate factored loads:

qu = 292 psf (from Example 17.6)

5. Calculate total static moments:

M0l = 364.0 K ⋅ ft M0s = 294.3 K ⋅ ft (from previous example)

6. Calculate the design moments in the short direction (span= 20 ft): Because the slab is continuous
in this direction, the moments are the same as those calculated in Example 17.23 and shown in
Fig. 17.23 for an interior panel.

7. Calculate the moments in one panel using the coefficients given in Table 17.2 or Fig. 17.14
(Case 3):

Interior negative moment (Mnt) = 0.7M0 = 0.7 × 364 = −254.8 K ⋅ ft

Positive moment within span (Mp) = 0.57M0 = 0.57 × 364 = +207.5 K ⋅ ft

Exterior negtive moment (Mne) = 0.16M0 = 0.16 × 364 = −58.2 K ⋅ ft

Note: If the modified stiffness method is used, then C= 9528, Kt = 1520 Ec, Kc = 370 Ec, Kb = 312
Ec, Ks = 95 Ec, Kec = 498 Ec, and 𝛼ec = 1.22. The interior negative moment becomes −253.13 K⋅
ft (same as before). The positive moment becomes −173.19 K ⋅ ft (16% decrease) and the exterior
moment becomes −128.16 K ⋅ ft (220% increase).

8. Distribute the panel moments to beam, column, and middle strips:

l2
l1

= 20
24

= 0.83 𝛼f1
= 𝛼s = 3.27

𝛼f1

l2
l1

= 3.27 × 0.83 = 2.71 > 1.0

Calculate C:

C =
∑(

1 − 0.63
x
y

)
x3y

3

Divide the section of the edge beam into two rectangles in such a way as to obtain maximum C.
Use for a beam section 12 by 22 in., x1 = 12 in., y1 = 22 in., and a slab section 7× 15 in., x2 = 7 in.,
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and y2 = 15 in.

C =
(

1 − 0.63 × 12
22

)(
123 × 22

3

)
+
(

1 − 0.63 × 7
15

)(
73 × 15

3

)

= 9528 in.4

𝛽t =
Ecb C

2EcsIs
= 9528

2 × 6860
= 0.69

a. Distribute the interior negative moment, Mni: Referring to Table 17.5 and by interpolation, the
percentage of moment assigned to the column strip (for l2/l1 = 0.83 and 𝛼f1 l2 /l1 > 1.0 is 80%).

Column strip = 0.8 × 254.8 = −203.8 K ⋅ ft

Middle strip = 0.2 × 254.8 = −51.0 K ⋅ ft

Because 𝛼f1
l2∕l1 > 1.0, 85% of the moment in the column strip is assigned to the beam. There-

fore,

Beam = 0.85 × 203.8 = −173.3 K ⋅ ft

Column strip = 0.15 × 203.18 = −30.6 K ⋅ ft

Middle strip = −51.0 K ⋅ ft

b. Distribute the positive moment, Mp: Referring to Table 17.5 and by interpolation, the percent-
age of moment assigned to the column strip is 80% (85% of this value is assigned to the beam).
Therefore,

Beam = (0.85)(0.8 × 207.5) = +141.1 K ⋅ ft

Column strip = (0.15)(0.8 × 207.5) = 24.9 K ⋅ ft

Middle strip = 0.2 × 207.5 = +41.5 K ⋅ ft

c. Distribute the exterior negative moment, Mne: Referring to Table 17.5 and by interpolation,
the percentage of moment assigned to the column strip (for l2/l1 = 0.83, 𝛼f1 l2/l1 > 1.0, and
𝛽 t = 0.69) is 94%, and 85% of the moment is assigned to the beam. Therefore,

Beam = (0.85)(0.94 × 58.2) = −46.5 K ⋅ ft

Column strip = (0.15)(0.94 × 58.2) = −8.2 K ⋅ ft

Middle strip = 0.06 × 58.2 = −3.5 K ⋅ ft

17.9 DESIGN MOMENTS IN COLUMNS

When the analysis of the equivalent frames is carried out by the direct design method, the moments
in columns due to the unbalanced loads on adjacent panels are obtained from the following equation,
which is specified by the ACI Code, Section 8.10.7.2:

Mu = 0.07[(qDu + 0.5qLu)l2l2n − q′
Dul′2(l

′
n)2] (17.22a)

If the modified stiffness method using Kec and 𝛼ec is used, then the moment Mu is computed as
follows:

Mu =
0.08[(qDu + 0.5qLu)l2l2n − q′

Dul′2(l
′
n)2]

1 + 1∕𝛼ec
(17.22b)
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Figure 17.24 Interior column loading.

where
qDu, qLu = factored dead and live loads on longer span

q′
Du = factored dead load on shorter span

ln, l′n = length of longer and shorter spans, respectively

𝛼ec =
Kec∑

(Ks + Kb)
(Eq. 17.21)

The moment in Eq. 17.22 should be distributed between the columns above and below the slab at
the joint in proportion to their flexural stiffnesses (Fig. 17.24). For equal spans l2 = l′2 and ln = l′n,

Mu =
⎧
⎪
⎨
⎪
⎩

0.07
(
0.5qLul2l2n

)
(17.23a)

0.08(0.5qLul2l2n)
(1 + 1∕𝛼ec)

(17.23b)

The development of these equations is based on the assumption that half the live load acts on the
longer span, whereas the dead load acts on both spans. Equation 17.22 can also be applied to an
exterior column by assuming the shorter span length is 0 (Fig. 17.25).

17.10 TRANSFER OF UNBALANCED MOMENTS TO COLUMNS

17.10.1 Transfer of Moments

In the analysis of an equivalent frame in a building, moments develop at the slab–column joints due
to lateral loads, such as wind, earthquakes, or unbalanced gravity loads, causing unequal moments
in the slab on opposite sides of columns. A fraction of the unbalanced moment in the slabs must be
transferred to the columns by flexure, and the balance must be transferred by vertical shear acting
on the critical sections for punching shear. Approximately 60% of the moment transferred to both
ends of the column at a joint is transferred by flexure, and the remaining 40% is transferred by
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Figure 17.25 Exterior column loading.

eccentric shear (or torque) at the section located at d/2 from the face of the column [14, 15]. The
ACI Code, Section 8.4.2.3, states that the fraction of the unbalanced moment transferred by flexure
Mf at a slab–column connection is determined as follows:

Mf = 𝛾f Mu (17.24)

𝛾f =
1

1 +

(
2
3

√
c1 + d

c2 + d

) = 1

1 +
(2

3

)
√

b1

b2

(17.25)

and the moment transferred by shear is

M𝑣 = (1 − 𝛾f )Mu = Mu − Mf (17.26)

where c1 and c2 are the lengths of the two sides of a rectangular or equivalent rectangular column,
b1 = c1 + d, and b2 = c2 + d. When c1 = c2, Mf = 0.6 Mu, and M𝑣 = 0.4 Mu.

17.10.2 Concentration of Reinforcement Over the Column

For a direct transfer of moment to the column, it is necessary to concentrate part of the steel
reinforcement in the column strip within a specified width over the column. The part of the
moment transferred by flexure, Mf, is considered acting through a slab width equal to the
transverse column width c2 plus 1.5h on each side of the column or to the width (c2 + 3h) (ACI
Code, Section 8.4.2.3.3). Reinforcement can be concentrated over the column by closer spacing of
bars or the use of additional reinforcement.

17.10.3 Shear Stresses Due to M𝒗

The shear stresses produced by the portion of the unbalanced moment, M𝑣, must be combined with
the shear stresses produced by the shearing force, Vu, due to vertical loads. Both shear stresses are
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Figure 17.26 Shear stresses due to Vu and M.

assumed to be acting around a periphery plane located at a distance d/2 from the face of the column
[16], as shown in Fig. 17.26. The equation for computing the shear stresses is

𝑣1,2 =
Vu

Ac
±

M𝑣C

Jc
(17.27)

where
Ac = area of critical section around column
Jc = polar moment of inertia of areas parallel to applied moment in addition to that of end area

about centroidal axis of critical section

For an interior column,
Ac = 2d(x + y) (17.28)
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and

Jc =
d
2

(
x3

3
+ x2y

)
+ xd3

6
(17.29)

For an exterior column,
Ac = d(2x + y) (17.30)

and

Jc =
2dx3

3
+ (2x + y)dx2

1 −
(

2dx2x1 −
yd3

12

)
(17.31)

where x, x1, and y are as shown in Fig. 17.26. The maximum shear stress, 𝑣1 =Vu/Ac +M𝑣C/Jc,
must be less than 𝜙(4

√
f ′c ); otherwise, shear reinforcement should be provided.

Example 17.8

Determine the moments at the exterior and interior columns in the long direction of the flat plate in
Example 17.4.

Solution

1. Find the exterior column moment. From Examples Example 17.4 and Example 17.5,

qDu = (136.5)(1.2) = 0.16 ksf

0.5qLu = 0.5 × (1.6 × 100) = 80 psf

l2 = l′2 = 20 ft ln = l′n = 22.33 ft

(
1 + 1

𝛼ec

)
= 1.87

The unbalanced moment to be transferred to the exterior column using Eq. 17.22b is

Mu = 0.08
1.87

[(0.16 + 0.08)(20)(22.33)2 − 0] = 102 K ⋅ ft

If Eq. 17.22a is used, Mu = 168 K ⋅ ft, which is a conservative value.
2. At an interior support, the slab stiffness on both sides of the column must be used to compute 𝛼ec:

𝛼ec =
Kec∑

(Ks + Kb)
(Eq. 17.21)

From Example 17.5, Kec = 233 Ec, Ks = 202.5 Ec, and Kb = 0. Therefore,

𝛼ec =
233Ec

(2)202.5Ec
= 0.58

(
1 + 1

𝛼ec

)
= 1 + 1

0.58
= 2.72

From Eq. 17.22b, the unbalanced moment at an interior support is

Mu = 0.08
2.72

[(0.16 + 0.08)(20)(22.33)2 − 0.16(20)(22.33)2] = 23 K ⋅ ft

If Eq. 17.22a is used, Mu = 42 K ⋅ ft, which is a conservative value.
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Example 17.9

For the flat plate in Example 17.4, calculate the shear stresses in the slab at the critical sections due to
unbalanced moments and shearing forces at an interior and exterior column. Check the concentration of
reinforcement and torsional requirements at the exterior column. Use f ′c = 4 ksi and fy = 60 ksi.

Solution

1. The unbalanced moment at the interior support is Mu = 23 K ⋅ ft (Example 17.8), where 𝛾 f = 0.6
(because c1 = c2 = 20 in.). The moment to be transferred by flexure is

Mf = 𝛾f Mu = 0.6 × 23 = 13.8 K ⋅ ft

The moment to be transferred by shear is

M𝑣 = 23 − 13.8 = 9.2 K ⋅ ft

Alternatively, moments calculated from Eq. 17.22a may be used producing higher shear stresses.
Using d= 7.9 in. (Example 17.4),

Vu = 0.33

[
20 × 24 −

(27.9
12

)2
]
= 156.6 K

From Fig. 17.27,

Ac = 4(27.9)(7.9) = 882 in.

Jc =
d
2

(
x3

3
+ x2y

)
+ xd3

6

= 7.9
2

[
(27.9)3

3
+ (27.9)2(27.9)

]
+ 27.9

6
(7.9)3 = 114,670 in.4

𝑣max = 156,600
882

+
9.2(12,000)(27.9∕2)

114,670

= 177 + 13 = 190 psi

𝑣min = 177 − 13 = 164 psi

Figure 17.27 Example 17.9: Shear stresses at interior column due to unbalanced
moment.
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Figure 17.28 Example 17.9: Shear stresses at exterior column due to unbalanced
moment.

Allowable 𝑣c is 𝜙4
√

f ′c = 0.75 × 4
√

4000 = 190 psi

Since 𝜈max = 190 psi ≤ 𝜈c = 190 psi (safe design)

2. For the exterior column, the unbalanced moment to be transferred by flexure Mf at a slab–column
joint is equal to 𝛾 fMu, where Mu = 102 K ⋅ ft. Note that c1 = c2 = 20 in., d= 7.9 in. in the longitu-
dinal direction, and 𝛾 f = 0.6 for square columns.

Mf = 0.6(102) = 61.2 K ⋅ ft

The moment to be transferred by shear is

M𝑣 = Mu − Mf = 102 − 61.2 = 40.8 K ⋅ ft
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3. For transfer by shear at exterior column, the critical section is located at a distance d/2 from the
face of the column (Fig. 17.28).

qu = 330 psf

Vu = 0.33
(

20 × 12.83 − 23.95
12

× 27.9
12

)
= 83.1 K

Locate the centroid of the critical section by taking moments about AB:

2
(

23.95 × 23.95
2

)
= (2 × 23.95 + 27.9)xl

Therefore, xl = 7.6 in. The area of the critical section Ac is 2(23.95× 7.9)+ (27.9× 7.9)=
599 in.2 Calculate Jc = Ix + Iy for the two equal areas (7.9× 23.95) with sides parallel to the
direction of moment and the area (7.9× 27.9) perpendicular to the direction of moment, all about
the axis through CD.

Jc = Iy + Ix =
∑(

bh3

12
+ Ax2

)

= 2

[
7.9

(23.95)3

12
+ (7.9 × 23.95)

(23.95
2

− 7.6
)2

]

+ (1)
[27.9

12
(7.9)3

]
+ [(27.9 × 7.9)(7.6)2] = 39,208 in.4

or by using Eq. 17.31 for an exterior column. Calculate the maximum and minimum nominal
shear stresses using Eq. 17.27:

𝑣max =
Vu

Ac
+

M𝑣c

Jc
= 83,100

599
+ 40.2(12,000)(7.6)

39,208
= 232 psi

𝑣min = 138 psi

Allowable 𝑣c = 𝜙4
√

f ′c = 0.75 × 4
√

4000 = 190 psi

Shear stress is greater than the allowable 𝑣c, so increase the slab thickness f ′c or use shear rein-
forcement.

4. Check the concentration of reinforcement at the exterior column; that is, check that the flex-
ural capacity of the section is adequate to transfer the negative moment into the exterior col-
umn. The critical area of the slab extends 1.5h on either side of the column, giving an area
(20+ 3× 9)= 47 in. wide and 9 in. deep. The total moment in the 120-in.-wide column strip is
107 K ⋅ ft, as calculated in Example 17.4 (step 5). The moment in a width, c2 + 3h= 47 in., is

equal to 107
(

47
120

)
= 41.9 K ⋅ ft.

If equal spacing in the column strip is used, then the additional reinforcement within the 47-in.
width will be needed for a moment equal to Mf − 41.9= 66− 41.9= 24.1 K ⋅ ft. The required
As = 0.73 in.2 and four no. 4 bars (As = 0.8 in.2) may be used. An alternative solution is to arrange
the reinforcement within the column strip to increase the reinforcement within a width of 47 in.
The amount of steel needed within this width should be enough to resist a moment of 0.6 times
the negative moment in the column strip, or 0.6× 107= 64.2 K ⋅ ft.

As =
Mu

𝜙fy(d − a∕2)

Assume a= 1.0 in. Then

As =
64.2(12)

0.9 × 60(7.9 − 0.5)
= 1.93 in.2
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10 no. 4
top bars

Figure 17.29 Example 17.9: Concentration of reinforcement within exterior column
strip.

2 no. 6 2 no. 6 2 no. 6

no. 4 @ 4″

Figure 17.30 Example 17.9: Reinforcement in edge of slab to resist torque.

Check: a =
Asfy

0.85f ′c b
= 1.93 × 60

0.85 × 4 × 47
= 0.73 in.

Use 10 no. 4 bars within a width 47 in. divided equally at both sides from the center of the column
(Fig. 17.29). Additional reinforcement of four no. 4 bars, as indicated before, provides a better
solution.

5. Torque on slab: The torque from both sides of the exterior column is equal to 40% of the column
strip moment.

Tu = 0.4(107) = 42.8 K ⋅ ft

Torque on each side:
42.8

2
= 21.4 K ⋅ ft = 257 K ⋅ in.

A slab section of width equal to the column width will be assumed to resist the torsional stresses:

Tu = 1
3
𝑣tu

∑
x3y

where x is 9 in. and y is 20 in. The critical section is at a distance d from the face of the column
(Fig. 17.30). Assuming that the torque varies in a parabolic curve to the center of the slab, then
the torque at a distance d is

Tu = 257
(140 − 7.9

140

)2

= 229 K ⋅ in.



17.10 Transfer of Unbalanced Moments to Columns 667

For torsional strength of concrete, Acp = 9× 20= 180 in., Pcp = 2(9+ 20)= 58 in. By Eq. 15.19,

𝜙Tcp = 0.75(4)
√

4000(180)2∕58= 106 K⋅in. and Ta = 106/4= 26.5 K⋅in.< Tu.
Torsional reinforcement is needed. The required closed stirrups and the additional longitudinal

bars are determined as explained in Chapter 15. The final section is shown in Fig. 17.30. It is
advisable to provide an edge beam between the exterior columns to increase the torsional stiffness
of the slab.

Example 17.10

Determine the shear reinforcement required for an interior flat plate panel considering the following:
Punching shear is Vu = 195 K, slab thickness= 9 in., d= 7.5 in., f ′c = 4 ksi, fy = 60 ksi, 𝜆 = 1.0, and col-
umn size is 20× 20 in., and panel has equal dimensions.

Solution

1. Determine 𝜑Vc for two-way shear:

b0 = 4(20 + d) = 4(20 + 7.5) = 110 in.

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

= 0.75
(

2 + 4
1

) √
4000

1000
(110)(7.5) = 234.8 K

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

𝛼s = 40 (Interior plate)

𝜙Vc = 0.75
(40 × 7.5

110
+ 2

)√
4000 × 110 × 7.5

= 185 K

𝜙Vc = 𝜙4𝜆
√

f ′c b0d

𝜙Vc = 0.75(4)(1.0)
√

4000
1000

(110)(7.5) = 156.3 K(controls)

Because Vu = 195 K>𝜑Vc = 156.3 K, shear reinforcement is required.

2. Maximum allowable 𝜙Vn using shear reinforcement is equal to 𝜙6𝜆
√

f ′c b0d = 1.5(𝜙Vc) =
234.5 K Because 𝜙Vn >Vn, shear reinforcement can be used.

3. Shear reinforcement may consist of reinforcing bars, structural steel sections such as I-beams,
or special large-head studs welded to a steel strip. In this example, an inexpensive solution using
normal shear reinforcement will be adopted. See Fig. 17.9f. Shear reinforcement must be provided
on the four sides of the interior column (or three sides of an exterior column) for a distance of
d+ a. See Fig. 17.31. The distance ‘a’ is determined by equating 𝜙Vc =Vu at section b0, indicated
by the dashed line, and assuming 𝜙Vc = 𝜙2𝜆

√
f ′c b0d.

b0 = 4(c +
√

2a) = 4(20 +
√

2a)

0.75(2)
√

4000(4)(20 +
√

2a)(7.5) = 195,000 lb

Here, a= 34.3 in., and (a+ d)= 34.3+ 7.5= 41.8 in., so use 42 in.
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Figure 17.31 Example 17.10: Shear reinforcement no. 3 at 3.5 in.

4. Calculate shear reinforcement:

𝜙Vs = (Vu − 𝜙Vc) = 195 − 156.3 = 38.7K 𝜙 = 0.75 Vs = 51.6 K

Vs(for one face of critical section) =
Vs

4
= 51.6

4
= 12.9 K

Use no. 3 U-stirrups, A𝑣 = 0.22 in.2 (for two legs). The spacing is S=A𝑣fyd/Vs = 0.22(60)(7.5)/
12.9= 7.7 in. Maximum spacing is d/2= 7.5/2= 3.75 in.; let s= 3.5 in.

5. Distribution of stirrups: The number of stirrups per one side of column is 43/3.5= 12.3, or 13
stirrups. Total distance is 13(3.5)= 45.5 in. (Fig. 17.31).

Example 17.11 Flat-Slab Floor System

Using the direct design method, design a typical 24× 20−ft interior flat-slab panel with drop panels only
(Fig. 17.32). All panels are supported by 20× 20-in. columns, 12 ft long. The slab carries a uniform
service live load of 80 psf and a service dead load of 24 psf, excluding self-weight. Use f ′c = 4 ksi, and
fy = 60 ksi. (The solution is similar to Example 17.3.)

Solution

1. Determine slab and drop panel thicknesses using Table 17.1.

a. The clear span is 24 − 20
12

= 22.33 ft. For an exterior panel, minimum h= ln/33= 8.12 in.,
whereas for an interior panel, minimum h= ln/36= 7.44 in. Use a slab thickness of 8 in. The
projection below the slab is h∕4 = 8

4
= 2.0 in.; thus, the drop panel thickness is 10 in.

b. Extend the drop panels L∕6 = 24
6
= 4 ft in each direction from the centerline of support in the

long direction and 20
6
= 3.33 ft, or 3.5 ft, in the short direction. Thus, the total size of one drop

panel is 8× 7 ft (Fig. 17.32).
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(a)

(b)

Figure 17.32 Example 17.11: Flat slab with drop panel.
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(c)

Figure 17.32 (continued)

2. Calculate factored loads:

Slabload = 24 + 8(150)
12

= 124 psf

qu = 1.2(124) + 1.6(80) = 277 psf

Drop panel load = 24 + 10(150)
12

= 149 psf

qu = 1.2(149) + 1.6(80) = 307 psf

Because the drop panel length is L/3 in each direction, the average qu is
(

2
3

)
(277) +

(
1
3

)
(307) = 287 psf.

3. Check two-way shear (at distance d/2 from the face of column):
a. In the drop panel: d= 10− 0.75− 0.5= 8.75 in.

Vu = 0.287

[
24 × 20 −

(28.75
12

)2
]
= 136.1 K

b0 = 4(20 + 8.75) = 115 in.

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

𝛽 = 24
20

= 1.2

𝜙Vc = 0.75 ×
(

2 + 4
1.2

) √
4000

1000
× 115 × 8.75

= 254.38 K
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𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

𝛼s = 40 (Interior panel)

𝜙Vc = 𝜙

(40 × 8.75
115

+ 2
)
×
√

4000
1000

× 115 × 8.75

= 240.75 K

𝜙Vc = 𝜙𝜆4
√

f ′c b0d = (0.75)(4)(1)
√

4000
1000

(115)(8.75) = 190.9 K(controls) > Vu

b. In the slab: d= 8− 0.75− 0.5= 6.75 in. and b0 is measured at 6.75/2 in. (in slab) beyond the
drop panel.

Vu = 0.287[24 × 20 − (102.75)(90.75)∕144] = 119.2 K

b0 = 2(8 × 12 + 6.75) + 2(7 × 12 + 6.75) = 387 in.

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

𝛽 = 1.2

𝜙Vc = 0.75
(

2 + 4
1.2

)
×
√

4000
1000

× 387 × 6.75

= 660.74 K

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

𝛼s = 40

𝜙Vc = 0.75
(40 × 6.75

387
+ 2

) √
4000

1000
× 387 × 6.75

= 334 K (controls)

𝜙Vc = 0.75(4)(1)
√

4000
1000

(387)(6.75) = 495.6 K

Since 334 K>Vu, check OK.
c. One-way shear is not critical.

4. Calculate the total static moments in the long and short directions:

M0l =
0.287(20)(22.33)2

8
= 357.8 K ⋅ ft

M0s =
0.287(24)(18.33)2

8
= 289.3 K ⋅ ft

The width of column strip in each direction is 20
2
= 10 ft, whereas the width of the middle strip is

10 ft in the long direction and 14 ft in the short direction.
5. Calculations of moments and steel reinforcement are shown in Table 17.11. Use an average

d= 10− 1.5= 8.5 in. in the column strip and d= 8− 1.5= 6.5 in. in the middle strip.
Bars are chosen for adequate distribution in both the column and middle strip. Reinforcement

details are similar to those in flat-plate examples.
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Table 17.11 Design of an Interior Flat-Slab Floor System

M0l =358 K⋅ft Column Strip Middle Strip

Long direction
M factor −0.49M0 0.21M0 −0.16M0 0.14M0
Mu (K ⋅ ft) −175.4 ±75.2 −57.3 ±50.1
Width of strip (in.), b 120 120 120 120
Effective depth (in.), d 8.5 6.5 6.5 6.5
Ru = Mu

bd2
(psi) 243 178 129 119

Steel ratio 𝜌 (%) 0.48 0.34 0.25 0.23
As = 𝜌bd (in.2) 4.9 2.65 1.95 1.79
Min. As = 0.0018bhs (in.2) 2.16 2.16 1.73 1.73
Selected bars 16 no. 5 14 no. 4 10 no. 4 9 no. 4

M0s = 289.3 K⋅ft Column Strip Middle Strip

Short Direction
M factor −0.49M0 0.21M0 −0.16M0 0.14M0
Mu (K ⋅ ft) −142 ±60.8 −46.3 ±40.5
Width of strip (in.), b 120 120 168 168
Effective depth (in.), d 8.5 6.5 6.5 6.5
Ru = Mu

bd2
(psi) 196 144 78 68

Steel ratio 𝜌 (%) 0.38 0.28 0.15 0.13
As = 𝜌bd (in.2) 3.9 2.2 1.64 1.42
Min. As = 0.0018bhs (in.2) 2.16 2.16 2.42 2.42
Selected bars 13 no. 5 11 no. 4 12 no. 4 12 no. 4

17.11 WAFFLE SLABS

A two-way waffle slab system consists of concrete ribs that normally intersect at right angles.
These slabs might be constructed without beams, in which case a solid column head is made over
the column to prevent any punching due to shear. Wide beams can also be used on the column
centerlines for uniform depth construction. Square metal or fiberglass pans are commonly used to
form these joists. A thin slab of 3 to 5 in. is cast with these joists to form the waffle slab.

Each panel is divided into a column and a middle strip. The column strip includes all joists that
frame into the solid head; the middle strip is located between consecutive column strips. Straight
or bent bars could be used as reinforcement in a waffle slab. The design of a two-way waffle slab
is similar to that of flat slabs by considering the solid head as a drop panel. To prevent any excess
in the diagonal tension in the head, a sufficient size of column must be used or a shear cap must be
provided.

In the design of a waffle slab, the top slabs with each rib form a T-section, with considerable
depth relative to flat plates. Consequently, long spans carrying heavy loads may be designed with
great savings in concrete. Waffle slabs also provide an attractive ceiling, which is achieved by
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(a)

Figure 17.33 (a) Plan of the waffle slab, (b) cross section, (c) pan and rib dimensions, and (d) spacing and dimensions of solid
heads (Example 17.12).
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(b)

(c)

(d)

Figure 17.33 (continued)

leaving the rib pattern or by integrating lighting fixtures. The standard pans that are commonly used
in waffle slabs can be one of the following two types:

1. 30× 30–in. square pans with a 3-in. top slab, from which 6-in.-wide ribs at 36 in. (3 ft) on
centers are formed. These are available in standard depths of 8 to 20 in. in 2-in. increments.
Refer to Example 17.12 and Fig. 17.33.

2. 19× 19–in. square pans with a 3-in. top slab, from which 5-in.-wide ribs at 24 in. (2 ft) on
centers are formed. These are available in standard depths of 4, 6, 8, 10, and 12 in. Other
information about pans is shown in Table 17.12 [17]. Other types, ranging from 19× 19−in.
pans to 40× 40–in. pans, are available in the construction industry.
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Table 17.12 Gross Section Properties [17]

Top Slab
(in.)

Rib Depth
(in.)

Volume
(cf/pan)

Gross Area
(in.2)

Ycg
(in.)

Ig
(in.4)

For the Joists (19× 19-in. pans)
3 8 3.85 161.3 3.28 1393
3 10 4.78 176.3 3.95 2307
3 12 5.53 192 4.66 3541
3 14 6.54 208.3 5.42 5135
3 16 7.44 223.3 6.20 7127
3 20 9.16 261.3 7.83 12,469
4.5 8 3.85 215.3 3.77 2058
4.5 10 4.78 230.3 4.35 3227
4.5 12 5.53 246.0 4.97 4783
4.5 14 6.54 262.3 5.66 6773
4.5 16 7.44 279.3 6.36 9238
4.5 20 9.16 315.3 7.86 15,768

For the Joists (30× 30-in. pans)
3 6 1.09 105 2.886 598
3 8 1.41 117.4 3.564 1098
3 10 1.9 130.4 4.303 1824
3 12 2.14 144 5.083 2807
4.5 6 1.09 141 3.457 957
4.5 8 1.41 153 4.051 1618
4.5 10 1.9 166.4 4.709 2550
4.5 12 2.14 180 5.417 3794

Example 17.12 Waffle Slab

Design a waffle floor system that consists of square panels without beams considering the following
data (Fig. 17.33):

Span, center to center of columns = 33 ft

Width of rib = 6 in., spaced at 36 in. on centers

Depth of rib = 14 in. and slab thickness = 3 in.

Column size = 20 × 20 in.

Dead load(excluding self − weight) = 50 psf

Live load = 100 psf

f ′c = 5 ksi fy = 60 ksi 𝜆 = 1.0

Solution

1. Determine minimum slab thickness using Table 17.1: Minimum h= ln/30, ln = 33 − 20
12

=
31.33 ft, h= 31.33(12)/30= 12.5 in. for exterior panels, and h= ln/33= 11.4 in. for interior
panels. Equations 17.1 and 17.2 may be used. Assume the total depth is 17 in. consisting of 3-in.
slab thickness and 14-in. rib depth.

2. Calculate loads on the waffle slab:
a. Factored load of solid head part= 1.2(150)(17/12)= 255 psf.
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b. Voided volume of 14-in. rib= 6.54 ft3 on 3× 3 −ft2 area. Total weight of 9-ft2 area is

1.2(150)
(

9 × 17
12

− 6.54
)
= 1118 lb. Weight per square foot is 1118

9
= 125 psf.

c. Factored additional dead plus live load is 1.2(50)+ 1.6(100)= 220 psf. Uniform qu at solid
(head)= 255+ 220 ≈ 500 psf. Uniform qu (at ribbed area)= 125+ 220= 345 psf.

d. Loads on one panel (refer to Fig. 17.34): At the solid head, qu = 0.5(12)+ 0.345(21)= 13.22
K/ft. At the ribbed area, qu = 0.345(33)= 11.39 K/ft.

3. Calculate shear and total static moment:

Vu(at face of column) = 13.22(5.17) + (11.39)(21)
2

= 188 K

M0(at midspan) = 188(15.67) − 13.22(5.17)(13.09) − 11.39(10.5)2

2
= 1424 K ⋅ ft

4. Check punching shear (refer to Fig. 17.35):
a. In the solid head at d/2 from the column face, h= 17 in., d= 17− 1.25= 15.75 in.,

c (column)= 20 in., b0 = 4(20+ 15.75)= 143 in., Vu = 11.39(21 ft)+ 13.22(12 ft)− 0.5(37.75/
12)2 = 393.4 K and

𝜙Vc = 𝜙

(
2 + 4

𝛽

)√
f ′c b0d

𝛽 = 1.0

𝜙Vc = 0.75
(

2 + 4
1.0

) √
5000

1000
× 143 × 15.75

= 716 K

𝜙Vc = 𝜙

(
𝛼sd

b0
+ 2

)√
f ′c b0d

= 0.75
(40 × 15.75

143
+ 2

) √
5000

1000
× 143 × 15.75

= 765 K

𝜙Vc = 𝜙4𝜆
√

f ′c b0d = 0.75(4)(1.0)

(√
5000

1000

)

(143)(15.75) = 478 K (controls) > Vu

Waffle slab (looking upward).
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(a)

(b)

(c)

M0 = 1424 K ∙ ft

Figure 17.34 Load, shear, and moment diagrams: (a) load distribution
on the span, (b) shear force diagram, and (c) bending moment diagram.
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(a)

(b)

Figure 17.35 Punching shear locations: (a) punching shear in column
head and (b) punching shear in slab.
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Table 17.13 Design of Exterior and Interior Waffle Slabs (5 Ribs in Column Strip and 6 Ribs in Middle
Strips)

Column Strip Middle Strip

Exterior Interior

Exterior Panel −M ±M −M −M ±M

Moment factor (%) 100 60 75 25 40
Mu (K ⋅ ft) 370 444 748 249 296
Strip width, b (in.) 150 198 150 36 (6 ribs) 198
d (in.) 15.75 15.75 15.75 15.75 15.75
Ru = Mu

bd2
(psi) 120 108 241 334 72

Steel ratio, 𝜌 (%) 0.226 0.204 0.465 0.657 0.135
As = 𝜌bd (in.2) 5.33 6.36 11.0 3.73 4.2
Min. As = 0.0018bh 2.6 1.22 4.6 1.1 1.47
Bars selected 14 no. 6 2 no. 8/rib 26 no. 6 10 no. 6 2. no. 7/rib

Column Strip Middle Strip

Exterior Interior

Exterior Panel −M ±M −M −M ±M

Moment factor (%) — 60 75 25 40
Mu (K ⋅ ft) — 299 694.2 231.4 200
Strip width, b (in.) — 198 150 36 (6 ribs) 198
d (in.) — 15.75 15.75 15.75 15.75
Ru = Mu

bd2
(psi) — 73 224 311 49

Steel ratio, 𝜌 (%) — 0.137 0.431 0.61 0.091
As = 𝜌bd (in.2) — 4.27 10.18 3.45 2.84
Min. As = 0.10018bh — 1.22/rib 4.6 1.1 1.47
Bars selected — 2 no. 7/rib 24 no. 6 10 no. 6 2 no. 6/rib

b. In the slab at distance d/2 from the edge of the solid head, slab thickness is 3 in.; let d= 2.15 in.
Then

b0 = 4(150 + 2.5) = 610 in.

Vu = 11.39(21) + 13.22(12) − 0.5
(152.5

12

)2

= 317.4 K

𝜙Vc = 0.75(4)(1.0)(
√

5000)(610)(2.5) = 324 K > Vu

5. Design moments and reinforcement:
a. Exterior panel: M0 = 1424 K ⋅ ft

Exterior negative moment = 0.26M0 = −370 K ⋅ ft

Positive moment = 0.52M0 = +740 K ⋅ ft

Interior negative moment = 0.7M0 = −997 K ⋅ ft
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(a)

(b)

14 no. 6 7 no. 6

10 no. 6 10 no. 6 10 no. 6

28 no. 6 13 no. 6 12 no. 6 24 no. 6

2 no. 8/rib

2 no. 7/rib 1 no. 7/rib 2 no. 6/rib 1 no. 6/rib

1 no. 8/rib

2 no. 7/rib 1 no. 7/rib

Figure 17.36 Example 17.12: Reinforcement details of the waffle slab.
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b. Interior panel: M0 = 1424 K ⋅ ft

Negative moment = 0.65(1424) = −925.6 K ⋅ ft

Positive moment = 0.35(1424) = 498.4 K ⋅ ft

Design details are shown in Table 17.13 and Fig. 17.36. Note that all steel ratios are low
and 𝜙= 0.9.

6. Calculate the unbalanced moments in columns and check shear for Vu and M𝑣, as in Examples 17.8
and 17.9.

17.12 EQUIVALENT FRAME METHOD

When two-way floor systems do not satisfy the limitations of the direct design method, the design
moments must be computed by the equivalent frame method. In the latter method, the building is
divided into equivalent frames in two directions and then analyzed elastically for all conditions of
loadings. The difference between the direct design and equivalent frame methods lies in the way
by which the longitudinal moments along the spans of the equivalent rigid frame are determined.
The design requirements can be explained as follows:

1. Description of the equivalent frame: An equivalent frame is a two-dimensional building frame
obtained by cutting the three-dimensional building along lines midway between columns
(Fig. 17.4). The resulting equivalent frames are considered separately in the longitudinal and
transverse directions of the building. For vertical loads, each floor is analyzed separately,
with the far ends of the upper and lower columns assumed to be fixed. The slab–beam may be
assumed to be fixed at any support two panels away from the support considered because the
vertical loads contribute very little to the moment at that support. For lateral loads, the equiv-
alent frame consists of all the floors and extends for the full height of the building because
the forces at each floor are a function of the lateral forces on all floors above the considered
level. Analysis of frames can also be made using computer programs.

2. Load assumptions: When the ratio of the service live load to the service dead load is less than
or equal to 0.75, the structural analysis of the frame can be made with the factored dead and
live loads acting on all spans instead of a pattern loading. When the ratio of the service live
load to the service dead load is greater than 0.75, pattern loading must be used, considering
the following conditions:
a. Only 75% of the full-factored live load may be used for the pattern loading analysis.
b. The maximum negative bending moment in the slab at the support is obtained by loading

only the two adjacent spans.
c. The maximum positive moment near a midspan is obtained by loading only alternate spans.
d. The design moments must not be less than those occurring with a full-factored live load

on all panels (ACI Code, Section 6.4.3).
e. The critical negative moments are considered to be acting at the face of a rectangular col-

umn or at the face of the equivalent square column having the same area for nonrectangular
sections.

3. Slab–beam moment of inertia: The ACI Code specifies that the variation in moment of inertia
along the longitudinal axes of the columns and slab beams must be taken into account in the
analysis of frames. The critical region is located between the centerline of the column and the
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Figure 17.37 Critical sections for column moment, equivalent frame method.

face of the column, bracket, or capital. This region may be considered as a thickened section
of the floor slab. To account for the large depth of the column and its reduced effective width
in contact with the slab beam, the ACI Code, Section 8.11.3.1, specifies that the moment of
inertia of the slab beam between the center of the column and the face of the support is to
be assumed equal to that of the slab beam at the face of the column divided by the quantity
(1− c2/l2)2, where c2 is the column width in the transverse direction and l2 is the width of the
slab beam. The area of the gross section can be used to calculate the moment of inertia of the
slab beam.

4. Column moment of inertia: The ACI Code, Section 8.11.4.1, states that the moment of inertia
of the column is to be assumed infinite from the top of the slab to the bottom of the column
capital or slab beams (Fig. 17.37).

5. Column stiffness, Kec, is defined by

1
Kec

= 1
∑

Kc

+ 1
Kt

(Eq. 17.17)

where 𝛴Kc is the sum of the stiffness of the upper and lower columns at their ends,

Kt =
∑ 9EcsC

l2(1 − C2∕l2)3
(Eq. 17.19)

C =
∑(

1 − 0.63
x
y

)(
x3y

3

)
(Eq. 17.20)

6. Column moments: In frame analysis, moments determined for the equivalent columns at the
upper end of the column below the slab and at the lower end of the column above the slab
must be used in the design of a column.

7. Negative moments at the supports: The ACI Code, Section 8.11.6, states that for an interior
column, the factored negative moment is to be taken at the face of the column or capital but
at a distance not greater than 0.1175l1 from the center of the column. For an exterior column,
the factored negative moment is to be taken at a section located at half the distance between
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the face of the column and the edge of the support. Circular section columns must be treated
as square columns with the same area.

8. Sum of moments: A two-way slab floor system that satisfied the limitations of the direct design
method can also be analyzed by the equivalent frame method. To ensure that both methods will
produce similar results, the ACI Code, Section 8.11.6.5, states that the computed moments
determined by the equivalent frame method may be reduced in such proportion that the numer-
ical sum of the positive and average negative moments used in the design must not exceed
the total statical moment, M0.

Example 17.13

Using the equivalent frame method, analyze a typical interior frame of the flat-plate floor system given
in Example 17.3 in the longitudinal direction only. The floor system consists of four panels in each
direction with a panel size of 25× 20 ft. All panels are supported by a 20× 20-in. columns, 12 ft long.
The service live load is 60 psf and the service dead load is 124 psf (including the weight of the slab).
Use f ′c = 3 ksi and fy = 60 ksi. Edge beams are not used. Refer to Fig. 17.38.

Solution

1. A slab thickness of 8.0 in. is used.
2. Factored load is qu = 1.2× 124+ 1.6× 60= 245 psf. The ratio of service live load to service dead

load is 60/124= 0.48< 0.75; therefore, the frame can be analyzed with the full factored load, qu,
acting on all spans instead of pattern loading.

3. Determine the slab stiffness, Ks:

Ks = k
EcsIs

ls

where k is the stiffness factor and

Is =
l2h3

12
= 20 × 12

12
(8)3 = 10,240 in.4

The stiffness factor can be determined by the column analogy method described in books on
structural analysis. Considering the moment of inertia for the slab Is to be 1.0 as a reference, the
moment of inertia between the column centerline and the face of the column is

1.0

(1 − c2∕l2)2
= 1.0

[1 − 20∕(20 × 12)]2
= 1.19

The width of the analogous column varies with 1/I, as shown in Fig. 17.38b: (1/1.19)= 0.84:

Slab stiffness factor k = l1

(
1

Aa
+ Mc

Ia

)

where
Aa = area of analogous column section
Ia = moment of inertia of analogous column
M = moment due to unit load at extreme fiber of analogous column located at center of slab
M = 1.0 × l1

2
Aa = 23.33+ 2× (0.83 ft)(0.84)= 23.33+ 1.40= 24.72
Ia = I (for slab portion of 23.33)+ I (of end portion) about centerline

Ia =
(23.33)3

12
+ 2(0.83)(0.84)

(
12.5 − 0.83

2

)2

= 1263
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Figure 17.38 Example 17.13.

neglecting the moment of inertia of the short end segments about their own centroid.

Stiffness factor k = 25

[
1

24.72
+ 1.0 × 12.5 (12.5)

1263

]

= 1.01 + 3.09 = 4.1

Carryover factor = 3.09 − 1.01
4.1

= 0.509
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Therefore, slab stiffness is

Ks =
4.1Ecs × 10,240

25 × 12
= 140Ecs

4. Determine the column stiffness, Kc:

Kc = k′
(

EcbIc

lc

)
× 2

for columns above and below the slab.

k′ = column stiffness factor

lc = 12 ft Ic =
(20)4

12
= 13,333 in.4

The stiffness factor, k′, can be determined as follows:

k′ = lc

(
1

Aa
+ Mc

Ia

)

For the column, c= lc/2 and M= 1.0(lc/2)= lc/2.

Aa = lc − h = 12 − 8
12

= 11.33

Ia =
(lc − h)3

12
= (11.33)3

12
= 121.2

k′ = 12

⎡
⎢
⎢
⎢
⎣

1
11.33

+

(
1 × 12

2

)(
12
2

)

121.2

⎤
⎥
⎥
⎥
⎦

= 4.62

Kc = 4.62Ecb ×
13,333
12 × 12

× 2 = 856Ecb

In a flat-plate floor system, the column stiffness, Kc, can be calculated directly as follows:

Kc

Ecb
=

Ic

lc − h
+

3Icl
2
c

(lc − h)3
(17.33)

5. Calculate the torsional stiffness, Kt, of the slab at the side of the column:

Kt =
∑

9EcsC

l2(1 − c2∕l2)3
and C =

∑(
1 − 0.63

x
y

)
x3y

3

In this example, x= 8.0 in. (slab thickness) and y= 20 in. (column width). See Fig. 17.17.

c =
(

1 − 0.63 × 8
20

)(
(8)3 × 20

3

)
= 2553 in.4

Kt =
9Ecs × 2553

(20 × 12)[1 − 20∕(20 − 12)]3
= 124Ecs

For two adjacent slabs, Kt = 2× 124Ecs = 248Ecs.
6. Calculate the equivalent column stiffness, Kec:

1
Kec

= 1
∑

Kc

+ 1
Kt

= 1
856Ecb

+ 1
248Ecs

or Kec = 192Ecs. (Ecb =Ecs in this problem).
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Figure 17.39 Example 17.13: Analysis by moment distribution. All moments are in K ⋅ ft.

7. Moment distribution factors (DF): For the exterior joint,

DF (slab) =
Ks

Ks + Kec
= 140

140 + 192
= 0.42

DF (columns) =
Kec∑

K
= 0.58

The columns above and below the slab have the same stiffness; therefore, the distribution factor
of 0.58 is divided equally between both columns, and each takes a DF of 0.58/2= 0.29. For the
interior joint,

DF (slab) =
Ks

2Ks + Kec
= 140

2 × 140 + 192
= 0.295

DF (columns) =
Kec∑

K
= 192

2 × 140 + 192
= 0.41

Each column will have a DF of 0.41/2= 0.205.
8. Fixed-end moments: Because the actual LL/DL is less than 0.75, the full-factored load is assumed

to act on all spans.
Fixed − end moment = k′′qul2(L1)2

The factor k′′ can be determined by the column analogy method: For a unit load 𝑤= 1.0 K/ft
over the longitudinal span of 25 ft, the simple moment diagram is shown in Fig. 17.38b. The area
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Figure 17.40 Example 17.13: Equivalent frame method— final bending moments and
shear forces. (Slabs can be designed for the negative moments at the face of the
columns as shown.)

of the bending moment diagram, considering the variation of the moment of inertia along the
span, is

Total area (Am) = A1 + A2 + 2A3

= 2
3
× 23.33(78.1 − 10) + 23.33 × 10

+ 2
(1

2
× 0.83 × 10

)
(0.84) = 1300

Fixed − end moment coefficient =
Am

Aal21
where Aa for the slab is 24.72, as calculated in step 3:

k′′ = 1300
24.72(25)2

= 0.084
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It can be seen that the fixed-end moment coefficient, k′′ = 0.084, is very close to the coefficient
1
12

= 0.0833 usually used to calculate the fixed-end moments in beams. This is expected because
the part of the span that has a variable moment of inertia is very small in flat plates where no
column capital or drop panels are used. In this example, only parts AB and CD, each equal to
0.83 ft, have a higher moment of inertia than Is. In flat plates where the ratio of the span to column
width is high, say, at least 20, the coefficient 0.0833 may be used to calculate approximately the
fixed-end moments. Fixed-end moment (due to qu = 276 psf)= 0.084(0.245)(20)(25)2 = 256 K ⋅ ft.
The factors K, K′

s, and K′′ can be obtained from tables prepared by Simmonds and Misic [18] to
meet the ACI requirements for the equivalent frame method.

9. Moment distribution can be performed on half the frame due to symmetry. Once the end negative
moments are computed, the positive moments at the center of any span can be obtained by sub-
tracting the average value of the negative end moments from the simple beam positive moment.
The moment distribution is shown in Fig. 17.39. The final bending moments and shear forces are
shown in Fig. 17.40.

10. Slabs can be designed for the negative moments at the face of the columns as shown in Fig. 17.40.

Example 17.14 SI Units

Use the direct design method to design a typical interior flat slab with drop panels to carry a dead load
of 8.6 kN/m2 and a live load of 11 kN/m2. The floor system consists of six panels in each direction, with
a panel size of 6.0× 5.4 m. All panels are supported by 0.4-m-diameter columns with 1.0-m-diameter
column capitals. The story height is 3.0 m. Use f ′c = 28 MPa and fy = 400 MPa.

Solution

1. All the ACI limitations to using the direct design method are met. Determine the minimum slab
thickness, h, using Eqs. 17.1 and Eqs. 17.2. The diameter of the column capital equals 1.0 m.
The equivalent square column section of the same area will have a side of

√
𝜋r2 =

√
𝜋(500)2 =

885 mm or 900 mm.

Clear span (long direction) = 6.0 − 0.9 = 5.1 m

Clear span (short direction) = 5.4 − 0.9 = 4.5 m

Because no beams are used 𝛼fm = 0, 𝛽s = 1.0, and 𝛽 = 6.0 m/5.4 m= 1.11. From Table 17.1,
minimum slab thickness h= ln/33= 5100/33= 155 mm, but because a drop panel is used, h may
be reduced by 10% if drop panels extend a distance of at least l/6 in each direction from the
centerline of support and project below the slab a distance of at least h/4. Therefore, use a slab
thickness h= 0.9× 155= 140 mm and a drop panel length and width as follows:

Long direction
l1

3
= 6.0

3
= 2.0 m

Short direction
l2
3
= 5.4

3
= 1.8 m

The thickness of the drop panel is 1.25h= 1.25× 140= 175 mm. Increase drop panel thick-
ness to 220 mm to provide adequate thickness for punching shear and to avoid the use of a high
percentage of steel reinforcement. All dimensions are shown in Fig. 17.41.

2. Calculate factored loads:

qu = 1.2 × 8.6 + 1.6 × 11 = 28 kN∕m2
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Figure 17.41 Example 17.4: Interior flat slab with drop panel.
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3. Check two-way shear, first in the drop panel: The critical section is at a distance d/2 around the
column capital. Let d= 220− 30 mm= 190 mm. Diameter of shear section= 1.0 m+ d= 1.19 m:

Vu = 28
[
6.0 × 5.4 − 𝜋

4
(1.19)2

]
= 876 kN

b0 = 2𝜋
(1.19

2

)
= 3.74 m

𝜙Vc = 𝜙 × 0.33 ×
√

f ′c b0d

= 0.75 × 0.33
1000

√
28 × 3740 × 190 = 930 kN

which is greater than Vu of 876 kN. Then check the two-way shear in the slab; the critical section
is at a distance d/2 outside the drop panel:

d(slab) = 140 − 30 = 110 mm

Critical area = (2.0 + 0.11)(1.8 + 0.11) = 4.03m2

b0 = 2(2.11 + 1.91) = 8.04 m

Vu = 28(6 × 5.4 − 4.03) = 794 kN

𝜙Vc =
0.75 × 0.33

1000

√
28 × 8040 × 110 = 1003 kN > Vu

One-way shear is not critical.
4. Calculate the total static moments in the long and short directions:

M0l =
qu

8
l2l2n1 = 28

8
(5.4)(5.1)2 = 491.6 kN ⋅ m

M0s =
qu

8
l1l2n2 = 28

8
(6)(4.5)2 = 425.2 kN ⋅ m

Because l2 < l1, the width of the column strip in the long direction is 2(0.25× 5.4)= 2.7 m. The
width of the column strip in the short direction is 2.7 m. Assuming that the steel bars are 12 mm
in diameter and those in the short direction are placed on top of the bars in the long direction,
then the effective depth in the short direction will be about 10 mm less than the effective depth
in the long direction. The d values and the design procedure are shown in Table 17.14. Minimum
lengths of the selected reinforcement bars should meet the ACI Code length requirements shown
in Fig. 17.16. Note that all steel ratios are less than 𝜌max. Thus, 𝜙= 0.9.

5. The column stiffness is

Ratio
DL
LL

= 8.6
11

= 0.782 and
l1
l2

= 1.11

Determine 𝛼min from Section 17.6, taking into account that the relative beam stiffness is 0
because no beams are used. By interpolation, 𝛼min = 1.15. An approximate method is used here
to determine the stiffness of the column with its capital.

Is (moment of inertia of slab, short direction)

= 6000
(140)3

12
= 1372 × 106 mm4

Ks =
4EcsIs

l2
=

4Ecs × 1372 × 106

5400
= 1016 × 103Ecs
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Table 17.14 Design of an Interior Flab Slab with Drop Panels

M0 = 491.6 kN ⋅ m
M0 = +0.35M0 = −319.5 kN ⋅ m
Mp = +0.35M0 = +172.1 kN ⋅ m

Long Direction Column Strip Middle Strip

Moment factor 0.75M0 0.60Mp 0.25Mn 0.40Mp
Mu (kN ⋅ m) −239.6 ±103.3 −79.9 ±68.8
d (mm) 190 110 110 110
Strip width b (m) 2.7 2.7 2.7 2.7
Ru = Mu

bd2
(MPa) 2.46 3.16 2.44 2.10

Steel ratio, 𝜌 (%) 0.71 0.93 0.7 0.6
As = 𝜌bd (mm2) 3642 2762 2079 1782
Min. As = 0.0018bh (mm2) 1070 680 680 680
Bars selected (straight bars) 18× 16 mm 14× 16 mm 20× 12 mm 16× 12 mm
Spacing (mm) 150 193 135 170

M0 = 425.2 kN ⋅ m
Mn = −0.65M0 = −276.4 kN ⋅ m
Mp = +0.35M0 = +148.8 kN ⋅ m

Short Direction Column Strip Middle Strip

Moment factor 0.75Mn 0.60Mp 0.25Mn 0.40Mp
Mu (kN⋅m) −207.3 ±89.3 −69.1 ±59.5
d (mm) 180 100 100 100
Strip width b (m) 2.7 2.7 3.3 3.3
Ru = Mu

bd2
(MPa) 2.37 3.30 2.10 1.80

Steel ratio, 𝜌 (%) 0.69 1.00 0.6 0.5
As = 𝜌bd (mm2) 3353 2700 1980 1650
Min. As = 0.0018bh (mm 2) 1070 680 832 832
Bars selected (straight bars) 18× 16 mm 14× 16 mm 18× 12 mm 16× 12 mm
Spacing (mm) 150 195 185 205

Ic (for circular column, diameter 400 mm)

= 𝜋D4

64
= 𝜋

64
(400)4 = 1257 × 106 mm4

Kc =
4EcbIc

lc
=

4Ecb × 1257 × 106

3000 mm
= 1676 × 103Ecb

Ratio of column stiffness/slab stiffness (Assume Ecb =Ecs)

=
Kc

Ks
= 1676 × 103

1016 × 103
= 1.65

which is greater than 𝛼min of 1.15. If Is in the long direction is used, the calculated ratio of column
to slab stiffness will be greater than 1.65. Therefore, the column is adequate.

6. Determine the unbalanced moment in the column and check the shear stresses in the slab, as
explained in Examples 17.8 and 17.9.
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SUMMARY

Sections 17.1–17.5

1. A two-way slab is one that has a ratio of length to width less than 2. Two-way slabs may be
classified as flat slabs, flat plates, waffle slabs, or slabs on beams.

2. The ACI Code specifies two methods for the design of two-way slabs: the direct design
method and the equivalent frame method. In the direct design method, the slab panel is divided
(in each direction) into three strips, one in the middle (referred to as the middle strip) and one
on each side (referred to as column strips).

Section 17.6

To control deflection, the minimum slab thickness, h, is limited to the values computed by
Table 17.1 or Eqs. 17.1 and 17.2 and as explained in Examples 17.1 and 17.2.

Section 17.7

For two-way slabs without beams, the shear capacity of the concrete section in one-way shear is

Vc = 2𝜆
√

f ′c bd (17.33)

The shear capacity of the concrete section in two-way shear is

Vc =
(

2 + 4
𝛽c

)
𝜆
√

f ′c b0d ≤ 4
√

f ′c b0d (17.34)

When shear reinforcement is provided, Vn ≤ 6
√

f ′c b0d.

Section 17.8

In the direct design method, approximate coefficients are used to compute the moments in the
column and middle strips of two-way slabs. The total factored moment is

M0 = (qul2)
l21
8

(Eq. 17.11)

The distribution of M0 into negative and positive span moments is given in Fig. 17.14. A summary
of the direct design method is given in Section 17.8.8. The modified stiffness method is explained
in Section 17.8.7.

Sections 17.9–17.11

1. Unbalanced loads on adjacent panels cause a moment in columns that can be computed by
Eq. 17.22

2. Approximately 60% of the moment transferred to both ends of a column at a joint is trans-
ferred by flexure, Mf, and 40% is transferred by eccentric shear, M𝑣. The fraction of the
unbalanced moment transferred by flexure, Mf, is 𝛾 fMu, where 𝛾 f is computed from Eq. 17.25.
The shear stresses produced by M𝑣 must be combined with shear stresses produced by the
shearing force Vu.

3. Waffle slabs are covered in Section 17.11.
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Section 17.12

1. In the equivalent frame method, the building is divided into equivalent frames in two direc-
tions and then analyzed for all conditions of loadings. Example 17.13 explains this procedure.

2. Example 17.14 is an example of a two-way flat slab with drop panel (SI units).
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P R O B L E M S

17.1 (Flat plates) Determine the minimum slab thickness according to the ACI Code for the flat-plate
panels shown in Fig. 17.42 and Table 17.15. The floor panels are supported by 24× 24-in. columns,
12 ft long, with no edge beams at the end of the slab. Use f ′c = 4 ksi fy = 60 ksi, dead load (excluding
self-weight)= 55 psf, and live load= 120 psf.
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17.2 (Flat plates) Use the direct design method to design the interior flat-plate panel (no. 4) of Problems a, b,
c, and e, using the data given earlier. Check the shear and moment transfer at an interior column. Draw
sketches showing the reinforcement distribution and the shear stresses.

17.3 (Flat plates) Repeat Problem 17.2 for the exterior panel no. 3. Check the shear and moment transfer at
the exterior column. If shear stresses are not adequate, use shear reinforcement involving stirrups.

17.4 (Flat slabs with drop panels) Determine the minimum slab and drop panel thicknesses according to
the ACI Code for the slabs shown in Fig. 17.42 and Table 17.15. The floor panels are supported by
24× 24 −in. columns with no edge beams. Use f ′c = 4 ksi, fy = 60 ksi, additional dead load (excluding
self-weight)= 60 psf, and live load= 120 psf.

Figure 17.42 Problem 17.1.

Table 17.15 Problem 17.1

Panel Dimensions (ft)
Number
(Flat Plate) L1 L2

Panel
Numbers

a 20 20 1 and 4
b 24 24 2 and 4
c 26 26 3 and 4
d 20 16 1 and 2
e 24 20 3 and 4
f 26 22 1 and 4
g 30 24 1 and 2
h 30 30 1 and 4
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17.5 (Flat slabs) Use the direct design method to design the interior flat slab panel no. 4, of Problem 17.4a,
b, c, and e, using the data given in Problem 17.4. Check the shear and moment transfer at an interior
column. Draw sketches showing the reinforcement distribution and the shear stresses. Use a 4-ft-column
capital diameter for part c only.

17.6 (Flat slabs) Repeat Problem 17.5 for the exterior panel no. 3.
17.7 (Slabs on beams) Redesign the slabs in Problem 17.2, using the same data when the slabs are supported

by beams on all four sides. Each beam has a width b𝑤 = 14 in. and a projection below the bottom of the
slab of 18 in.

17.8 (Slabs on beams) Redesign the slabs in Problem 17.7 as exterior panels.
17.9 (Waffle slabs) Repeat Example 17.12 when the spans are (a) 36 ft and (b) 42 ft. Use the same data and

24× 24-in. columns.
17.10 (Waffle slabs) Redesign the waffle slabs in Problem 17.9 as exterior panels.
17.11 (Equivalent frame method) Redesign the flat-plate floor system of Problem 17.2a and b using the equiv-

alent frame method.
17.12 (Equivalent frame method) Redesign the waffle slabs of Problem 17.9 using the equivalent frame

method.



CHAPTER18
STAIRS

Office building under construction, Chicago, Illinois.

18.1 INTRODUCTION

Stairs must be provided in almost all buildings, either low-rise or high-rise buildings, even if ade-
quate numbers of elevators are provided. Stairs consist of rises, runs (or treads), and landings. The
total steps and landings are called a staircase. The rise is defined as the vertical distance between
two steps, and the run is the depth of the step. The landing is the horizontal part of the staircase
without rises (Fig. 18.1).

The normal dimensions of the rises and runs in a building are related by some empirical rules:

Rise + run = 17 in. (431mm)

2 × rise + run = 25 in. (635mm)

Rise × run = 75 in.2 (0.05m2)
The rise depends on the use of the building. For example, in public buildings the rise is about
6 in., whereas in residential buildings it varies between 6 and 7.5 in. The run is about 1 ft in public
buildings and varies between 9 and 12 in. in residential buildings. In general, a rise should not
exceed 8 in. or be less than 4 in., and the number of rises is obtained by dividing the structural
floor-to-floor dimension by the assumed rise.

696
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Figure 18.1 Plan of a single-flight staircase: (a) loads, (b) section B-B, and (c) plan.
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The finishing on the stairs varies from troweling Alundum grits to adding asphalt tiles, ter-
razzo tiles, marble, or carpets. In addition to dead loads, stairs must be designed for a minimum
live load of 100 psf.

18.2 TYPES OF STAIRS

There are different types of stairs, which depend mainly on the type and function of the building
and on the architectural requirements. The most common types are as follows.

1. Single-flight stairs: The structural behavior of a flight of stairs is similar to that of a one-way
slab supported at both ends. The thickness of the slab is referred to as the waist (Fig. 18.1).
When the flight of stairs contains landings, it may be more economical to provide beams at B
and C between landings (Fig. 18.2). If such supports are not provided, which is quite common,
the span of the staircase will increase by the width of two landings and will extend between
A and D. In residential buildings, the landing width is in the range of 4 to 6 ft, and the total
distance between A and D is about 20 ft.

An alternative method of supporting a single flight of stairs is to use stringers, or edge
beams, at the two sides of the stairs; the steps are then supported between the beams
(Fig. 18.3).

2. Double-flight stairs: It is more convenient in most buildings to build the staircase in double
flights between floors. The types commonly used are quarter-turn (Fig. 18.4) and closed- or
open-well stairs, as shown in Fig. 18.5. For the structural analysis of the stairs, each flight
is treated as a single flight and is considered supported on two or more beams, as shown
in Fig. 18.2. The landing extends in the transverse direction between two supports and is
designed as a one-way slab. In the case of open-well stairs, the middle part of the landing
carries a full load, whereas the two end parts carry half-loading only, as shown in Fig. 18.5d.
The other half-loading is carried in the longitudinal direction by the stair flights, sections A-A
and B-B.

3. Three or more flights of stairs: In some cases, where the overall dimensions of the staircase are
limited, three or four flights may be adopted (Fig. 18.6). Each flight will be treated separately,
as in the case of double-flight staircases.

4. Cantilever stairs: Cantilever stairs are used mostly in fire escape stairs, and they are supported
by concrete walls or beams. The stair steps may be of the full-flight type, projecting from
one side of the wall, the half-flight type, projecting from both sides of the supporting wall,
or of the semispiral type, as shown in Fig. 18.7. In this type of stairs, each step acts as a
cantilever, and the main reinforcement is placed in the tension side of the run and the bars are
anchored within the concrete wall. Shrinkage and temperature reinforcement is provided in
the transverse direction.

Another form of a cantilever stair is that using open-riser steps supported by a central
beam, as shown in Fig. 18.8. The beam has a slope similar to the flight of stairs and receives
the steps on its horizontally prepared portions. In most cases, precast concrete steps are used,
with special provisions for anchor bolts that fix the steps into the beam.

5. Precast flights of stairs: The speed of construction in some projects requires the use of precast
flights of stairs (Fig. 18.8). The flights may be cast separately and then fixed to cast-in-place
landings. In other cases, the flights, including the landings, are cast and then placed in position
on their supporting walls or beams. They are designed as simply supported one-way slabs
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Figure 18.2 Supporting systems of one flight.

with the main reinforcement at the bottom of the stair waist. Adequate reinforcement must
be provided at the joints, as shown in Fig. 18.9.

Provisions must be made for lifting and handling the precast stair units by providing lift-
ing holes or inserting special lifting hooks into the concrete. Special reinforcement must be
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Figure 18.3 Steps supported by stringer beams.

Figure 18.4 Quarter-turn staircase.

provided at critical locations to account for tensile stresses that will occur in the stairs from
the lifting and handling process.

6. Free-standing staircase: In this type of stairs, the landing projects into the air without any
support at its end (Fig. 18.10). The stairs behave in a springboard manner, causing torsional
stresses in the slab.

Three systems of loading must be considered in the design of this type of stairs, taking into
consideration that torsional moments will develop in the slab in all cases:
a. When the live load acts on the upper flight and half the landing only (Fig. 18.11), the upper

flight slab will be subjected to tensile forces in addition to bending moments, whereas the
lower flight will be subjected to compression forces, which may cause buckling of the slab.

b. When the live load acts on the lower flight and half the landing only (Fig. 18.12), the upper
flight slab will be subjected to tensile forces, whereas the lower flight will be subjected to
bending moment and compression forces.

c. When the live load acts on both upper and lower flights, the loading of one flight will cause
the twisting of the other. The torsional stresses developed in the stairs require adequate
reinforcement in both faces of the stair slabs and the landing. Transverse reinforcement
in the slab and the landing must be provided in both faces of the concrete in the shape of
closed U-bars lapping at midwidth of the stairs. Typical reinforcement details are shown
in Fig. 18.13.
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Figure 18.5 Double-flight stairs: (a) closed-well staircase, (b) open-well staircase,
(c) section B-B, and (d) section C-C.
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Figure 18.6 Three- and four-stair flights.

This type of stairs is favored by architects and sometimes called a pliers-shaped stair-
case or jackknife staircase.

A study was made to determine the effect of the following parameters on the
free-standing staircase forces and moments considering a live load of 100 psf (Figs. 18.10
and 18.13):
i. Width of stairs (Fig. 18.10): An increase in the width from 4 to 10 ft, will increase

the forces and moments sharply. For example, the torsional moment along the flight
increases by about 1400%. Therefore, it is desirable to restrict the flight width between
4.0 and 6.0 ft. Other moments increase by about 450%.

ii. Span length L: An increase in the span L will increase the forces and moments in the
stair flight and landing significantly. For example, if L is increased from 8 to 16 ft, the
shearing forces at the top edge of the stairs increases by about 230%. Moments increase
by about 100 to 150%.
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Figure 18.7 Steps projecting from one or two sides of the supporting wall.

iii. Total flight height h: If h is increased from 10 to 16 ft, the shearing force at the top edge
increases by about 150%. Moments increase by about 50 to 100%.

iv. Flight slab thickness t: This parameter has the least effect on forces and moments. For
example, if t is increased from 6 to 10 in., the moments increase by about 25% and the
shearing force by about 20%.

v. For practical design, the parameters may be chosen as follows: flight width between 4
and 6 ft, horizontal span L between 9 and 12 ft, total flight height between 10 and 15 ft,
and slab thickness between 6 and 10 in.

The preceding information is a guide to help the designer to choose the right parameters
for an economical design.

7. Run-riser stairs: Run-riser stairs are stepped underside stairs that consist of a number of runs
and risers rigidly connected without the provision of the normal waist slab (Fig. 18.14a). This
type of stairs has an elegant appearance and is sometimes favored by architects. The structural
analysis of run-riser stairs can be simplified by assuming that the effect of axial forces is
negligible and that the load on each run is concentrated at the end of the run (Fig. 18.14b).
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Main
reinforcement

Figure 18.8 Precast cantilever stair supported by central beam: (a) section A-A, (b) part
plan, and (c) supporting beam.
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Figure 18.9 Joint of a precast concrete flight of stairs.

Part
landing

Figure 18.10 Plan of a free-standing staircase.

For the analysis of a simply supported flight of stairs, consider a simple flight of two runs,
ABC, subjected to a concentrated load P at B′ (Fig. 18.14b). Because joints B and B′ are rigid,
the moment at joint B is equal to the moment at B′, or

MB = M′
B = 1

2
PS

where S is the width of the run. The moment in rise, BB′, is constant and is equal to PS/2.
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Figure 18.11 Case 1, ABC loaded.

Figure 18.12 Case 2, DBC loaded.

When the rise is absent, the stairs, ABC, act as a simply supported beam, and the maximum
bending moment occurs at midspan with value

MB = 1
4

PL = 1
2

PS

For a flight of stairs that consists of a number of runs and risers, the same approach can be
used; the bending moment diagram is shown in Fig. 18.15a. The moment in BB′ is constant
and is equal to the moment at joint B, or 2PS. Similarly, MC = M′

C = 3PS, MD = M′
D = 3PS,

and ME = M′
E = 2PS.

If a landing is present at one or both ends, the load on the landing practically may be
represented by concentrated loads similar to the runs. The structural analysis may also be
performed by considering a load uniformly distributed on the flight of stairs. The moment
in every riser is constant and is obtained from the bending moment diagram of a simply
supported beam subjected to a uniform load (Fig. 18.15b). Example 18.3 illustrates the design
of a staircase using the two assumptions of concentrated loads and uniform loads.



18.2 Types of Stairs 707

Free-standing staircase.

Figure 18.13 Section of a free-standing staircase.
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Figure 18.14 Run-riser staircase: (a) cross section, (b) elastic curve, and (c) bending
moment diagram.

If the stair flight is fixed or continuous at one or both ends, the moments can be obtained
using any method of structural analysis. To explain this case, consider a flight of stairs that
consists of two runs and is fixed at both ends (Fig. 18.16a). The moments at the fixed ends,
A and B, due to a concentrated load at B are equal to PL/8 = PS/4. This result is obtained by
assuming that the rise does not exist and the stairs, ABC, act as a fixed-end beam subjected
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Figure 18.15 Distribution of moments: (a) bending moment due to concentrated loads
and (b) bending moment due to uniform load.
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Figure 18.16 Fixed-end staircase: (a) loaded steps and (b) loaded beam.

to a concentrated load at midspan (Fig. 18.16b). The moment at midspan, section B, is
equal to

1
4

PL − MA = 1
2

PS − 1
4

PS = 1
4

PS

The bending moment of a flight of stairs with one riser is shown in Fig. 18.16a. Note that the
moment in the riser BB′ is constant, and MB = M′

B = PS∕4.
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For a symmetrical stair flight, fixed at both ends and subjected to a number of concentrated
loads at the node of each run, the moment at the fixed end can be calculated as follows:

M (fixedend) = 1
12

PS (n2 − 1)

where

P = concentrated load at node of run
S = width of run
N = number of runs

When n = 2, then

M (fixedend) = 1
12

PS (4 − 1) = 1
4

PS

which is the same result obtained earlier.
If a landing is present at one or both ends, the load on the landing may be represented by

concentrated loads at spacing S.
8. Helical stairs (open-spiral stairs): A helical staircase is a three-dimensional structure, which

usually has a circular shape in plan (Fig. 18.17). It is a distinctive type of stairs used mainly
in entrance halls, theater foyers, and special low-rise office buildings. The cost of a helical
stair is much higher than that of a normal staircase.

Figure 18.17 Plan of a helical staircase (16 equal runs at 20∘ pitch).
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The stairs may be supported at some edges within adjacent walls or may be designed as a
free-standing helical staircase, which is most popular. The structural analysis of helical staircases
is complicated and was discussed by Morgan [1] and Scordelis [2] using the principles of strain
energy. Design charts for helical stairs are also prepared by Cusens and Kuang [3]. Under load, the
flight slab will be subjected to torsional stresses throughout. The upper landing will be subjected to
tensile stresses, whereas compressive stresses occur at the bottom of the flight. The forces acting at
any section may consist of vertical moment, lateral moment, torsional moment, axial force, shearing
force across the waist of the stairs, and radial horizontal shearing force. The main longitudinal
reinforcement consists of helical bars placed in the concrete waist of the stairs and runs from the
top landing to the bottom support. The transverse reinforcement must be in a closed stirrup form
to resist torsional stresses or in a U-shape lapped at about the midwidth of the stairs.

A study was made to determine the effect of the following parameters on the forces and
moments that develop on helical staircases. These parameters are:

1. The total arc subtended by the helix with an angle that normally ranges from 240∘ to 360∘.
Referring to Fig. 18.17, for 16 equal runs at 20∘ pitch, the total arc equals 320∘. If the arc
is increased from 240∘ to 360∘ the vertical moment may increase by about 1200% for a live
load of 100 psf. Other forces increase appreciably.

Reinforced concrete helical staircase.
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2. The width of stairs that normally ranges from 4 to 8 ft. All other parameters are constant.
The increase of stair width by 100%, from 4 to 8 ft, increases the torsional moment by about
700%.

3. Variation in the interior and exterior radii (Ri and Re) keeping the stair width of 6 ft constant.
The increase in Re (from 9 to 12 ft) and Ri (from 3 to 6 ft) with a ratio of Re/Ri that varies
between 3 and 2, increases the lateral moment by about 230%.

4. The thickness of stair slab is not as critical as the other parameters. For a variation in slab
thickness between 6 and 12 in., the lateral moment increases by about 70%, while the torsional
moment increases by about 170%.

5. The total height of the helical stair, h, has the least effect on all forces (for h between 9 and
15 ft). The increase in lateral moment is about 70% and in torsional moment is about 40%.
Other forces decrease by about 80%.

6. Based on this study, the possible practical dimensions may be chosen as follows: Total
subtended arc between 120∘ and 320∘, stair width between 4 and 6 ft, stairs slab thickness
between 6 and 10 in., and stair height between 10 and 15 ft.

The above information can be used as a guide to achieve a proper and economical design of
helical staircase.

An alternative method of providing a helical stair is to use a central helical girder located
at the midwidth of the stairs and have the steps project equally on both sides of the girder. Each
step is analyzed as a cantilever, and the reinforcement bars extend all along the top of the run.
Precast concrete steps may be used and can be fixed to specially prepared horizontal faces at the
top surfaces of the girder.

18.3 EXAMPLES

Example 18.1

Design the cantilever stairs shown in Fig. 18.18 to carry a uniform live load of 100 psf. Assume the
rise of the steps equals 6.0 in. and the run equals 12 in. Use normal-weight concrete with f ′c = 3ksi and
fy = 60 ksi.

Solution

1. Loads: Assume the thickness of the slab (waist) is 4.0 in. Weight of the assumed slab (areas A1
and A2) is

Trapezoidal area mnn′m′ =
(4.9 + 10.9

2 × 12

)
(1)(150) = 98.8 lb∕ft

Refer to Fig. 18.18b. Assume the weight of the step cover is 5 lb/ft. Total DL = 103.8 lb/ft.

Wu = 1.2D + 1.6L = 1.2 × 103.8 + 1.6 × 100 = 285 lb∕ft

2. Maximum bending moment per step is Wul2/2.

Mu = 0.285
2

(6)2 = 5.13K ⋅ ft

Average thickness of a step is (10.9 + 4.9)/2 = 7.9 in.
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No. 3 @ 15″

No. 3 @ 4″

2 no. 4

2 no. 4 / Step

Figure 18.18 Example 18.1: Cantilever stairs: (a) plan, (b) section in one step, (c)
section A-A, and (d) section B-B.
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Let d = 7.9 − 0.75 (concrete cover) − 0.25 ( 1
2

bar diameter) = 6.9 in.

Mu = 𝜙As fy
(

d − 1
2

a
)

(assume a = 0.5 in.)

As =
5.13 × 12

0.9 × 60(6.9 − 0.25)
= 0.17 in.2

Check

a =
As fy

0.85f ′c b
= 0.17 × 60

0.85 × 3 × 12
= 0.33 in. (close to 0.4 in.)

Minimum As = 0.00333(12)(6.9) = 0.28 in.2

Use two no. 4 bars per step. A smaller depth may be adopted, but to avoid excessive deflection
and vibration of stairs, a reasonable depth must be chosen.

3. Check flexural shear at a distance d from the face of the support:

Vu = 0.315
(

6 − 6.9
12

)
= 1.7K

𝜙Vc = 0.75(2𝜆
√

f ′c bd) = 0.75
1000

× 2 × 1 ×
√

3000 × 12 × 6.9 = 6.8K

Because Vu < 𝜑Vc/2, no shear reinforcement is required. But it is recommended to use no. 3
stirrups spaced at 4 in. to hold the main reinforcement.

4. The stairs must remain in equilibrium either by the weight of the wall or by a reinforced concrete
beam within the wall. In this case, the beam will be subjected to torsional moment of 5.13 K ft/ft.

5. Reinforcement details are shown in Fig. 18.18.

Example 18.2

Design the staircase shown in Fig. 18.19, which carries a uniform live load of 120 psf. Assume a rise of
7.0 in. and a run of 10.75 in. Use f ′c = 3ksi and fy = 60 ksi.

Solution

1. Structural system: If no stringer beam is used, one of the four possible solutions shown in Fig. 18.2
may be adopted. When no intermediate supports are used, the flight of stairs will be supported at
the ends of the upper and lower landings. This structural system will be adopted in this example.

2. Loads: Assume the thickness of the slab (waist) is 8.0 in.

Weight of one step = trapezoidal area × 150pcf

=
(9.5 + 16.5

2 × 12

)(10.75
12

)
(150) = 145.6 lb per step

Average weight per foot length = 145.6
( 12

10.75

)
= 162.5 lb∕ft

Weight of 8 in. landing = 8
12

× 150 = 100 lb∕ft

Assume the weight of the step cover is 7.5 lb/ft and weight of landing = 2 lb/ft. The total DL on
stairs is 162.5 + 7.5 = 170 lb/ft. The total DL on landing is 100 + 2 = 102 lb/ft.

Wu(on stairs) = 1.2 × 170 + 1.6 × 120 = 400 lb∕ft

Wu(on landing) = 1.2 × 102 + 1.6 × 120 = 314 lb∕ft

Because the load on the landing is carried into two directions, only half the load will be considered
in each direction.
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No. 4 @ 7″

No. 4 @ 6″

No. 4 @ 6″

No. 4 @ 6″

No. 4 @ 7″

No. 4 @ 7″

No. 4 @ 8″

No. 4 @ 6″

No. 4 @ 8″

No. 4 @ 12″

No. 4 @ 12″

Figure 18.19 Example 18.2.



18.3 Examples 717

No. 4 @ 6″

No. 4 @ 12″

No. 3 @ 12″

1 no. 3 / step

Figure 18.19 (Continued)

3. Calculate the maximum bending moment and steel reinforcement (Fig. 18.19d):
a. The moment at midspan is

Mu = 2.22
(17.2

2

)
− (0.157 × 5)(6.1) − (0.400) (3.6)

2

2
= 11.71K ⋅ ft

Let d = 8.0 − 0.75 (concrete cover) − 0.25
(

1
2

bar diameter
)
= 7.0 in.
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b. Mu = 𝜙As fy(d − a/2); assume a = 0.8 in.

As =
11.71 × 12

0.9 × 60(7 − 0.4)
= 0.4 in.2

Check:

a =
Asfy

0.85f ′c b
= 0.4 × 60

0.85 × 3 × 12
= 0.78 in. c = 0.92 in.

Minimum As = 0.0033 × 12 × 8 = 0.32 in.2 < 0.4 in.2

Use no. 4 bars spaced at 6 in. (As = 0.4 in.2). For 5-ft-wide stairs, use 10 no. 4 bars.

dt = 7 in. c = 0.92 in.

Net tensile strain,

𝜀t =
dt − c

c
= 0.0198 in.

𝜀t > 0.005 𝜙 = 0.9

c. Transverse reinforcement must be provided to account for shrinkage.

As = 0.0018 × 12 × 8 = 0.18 in.2∕ft

Use no. 4 bars spaced at 12 in. (As = 0.2 in.2).
d. If the slab will be cast monolithically with its supporting beams, additional reinforcement must

be provided at the top of the upper and lower landings. Details of stair reinforcement are shown
in Fig. 18.19.

4. Minimum slab thickness for deflection is
L
25

= 17.2 × 12
25

= 8.26 in.

(for a simply supported slab). In the case presented here, where the slab ends are cast with the
supporting beams and additional negative reinforcement is provided, minimum thickness can be
assumed to be

L
28

= 7.4 in. < 8 in. used

5. Design of landings: Considering a 1-ft length of the landing, the load on the landing is as shown
in Fig. 18.20. The middle 2 ft will carry a full load, whereas the two 5-ft lengths on each side will
carry half the specified design load.

Maximum bending moment = (1.1 × 6) − (0.157 × 5)(3.5) − (0.314) (1)
2

2
= 3.7K ⋅ ft

Because the bars in the landing will be placed on top of the main stair reinforcement,

d = 8.0 − 0.75 − 4
8
− 0.25 = 6.375 in. say, 6.3 in.

Assume a = 0.4 in.

As =
3.7 × 12

0.9 × 60(6.3 − 0.2)
= 0.14 in.2 < As(min) of 0.32 in.2

Use As = 0.32 in.2. Use no. 4 bars spaced at 7 in. (As = 0.34 in.2).

Figure 18.20 Example 18.2: Loads on landing.
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6. The transverse beams at the landing levels must be designed to carry loads from stairs (2.3 K/ft)
in addition to their own weight and the weight of the wall above.

7. Check shear as usual.

Example 18.3

Design the simply supported run-riser stairs shown in Fig. 18.21 for a uniform live load of 120 psf. Use
f ′c = 3ksi and fy = 60 ksi.

Solution
1. Loads: Assume the thickness of runs and risers is 6 in. The concentrated load at each riser is

calculated as follows (refer to Fig. 18.21b). Due to dead load per foot depth of run,

PD =
(16

12
× 6

12
+ 1

12
× 6

12

)
150 = 106 lb

Note that the node dead load on the landing is less than 106 lb but can be assumed to be equal to
PD to simplify calculations. Due to live load per foot depth of run, PL = 10

12
× (120) = 100 lb.

Figure 18.21 Example 18.3.
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No. 4 @ 8″

No. 4 @ 8″

Horizontally:
No. 4 @ 6″

all steps

Vertically:
No. 4 @ 6″

all steps

No. 4 @ 6″

all steps

3 no. 3 each
corner, all steps

Figure 18.21 (Continued)

Factored load,Pu = 1.2PD + 1.6PL

= 1.2 × 106 + 1.6 × 100 = 290 lb

2. Calculate the bending moments at midspan: Loads in this example are symmetrical about midspan

section B. Reaction at A, RA is 1
2
(15)(290) = 2175 lb =

(
7 1

2
Pu

)
.

Moment at B = RA(8S) − 7Pu(4S)

= 2.175(8 × 10) − 7(0.29)(4 × 10) = 92.8K ⋅ in.
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3. Calculate the reinforcement required at midspan section: For h = 6 in., d = 6–1.0 = 5.0 in.,

Ru =
Mu

bd2
= 92.8 × 1000

12(5.0)2
= 309psi

For f ′c = 3ksi, fy = 60 ksi, and Ru = 309 psi, the steel ratio is 𝜌 = 0.0061 < 𝜌max = 0.0135 (𝜑 =
0.9).

As = 0.0061 × 12 × 5.0 = 0.366 in.2

Use no. 4 bars spaced at 6 in. (As = 0.40 in.2) horizontally and vertically in closed stirrup form.
For distribution bars, use minimum 𝜌 of 0.0018:

As = 0.0018 × 16 × 6 = 0.18 in.2

Use no. 3 bars spaced at 6 in. (As = 0.22 in.2). For each step corner, use three no. 3 bars (As =
0.33 in.2), as shown in Fig. 18.21c.

4. The moments and reinforcement required for other sections can be prepared in table form, as
follows:

Location A 1 2 3 4 5 6 7 8

BM (K in.) 0 22 41 57 70 80 87 91 92.8
Ru (psi) 0 73 137 190 233 267 290 303 309
𝜌 (%) 0 0.18 0.26 0.38 0.46 0.52 0.58 0.60 0.61
As (in.2) 0 0.11 0.16 0.23 0.28 0.31 0.35 0.36 0.37

Use no. 4 bars at 8 in. for the landing and no. 4 bars at 6 in. for the steps. For distribution bars,
use minimum 𝜌 of 0.0018. For As = 0.18 in.2, use no. 4 bars spaced at 8 in. in the landing. Details
of reinforcement are shown in Fig. 18.21c.

5. Check reinforcement required in the transverse direction of landing: Load per square foot on the
landing is 290

10
× 12 = 348psf.

Mu = 0.348
8

(12)2 × 12 = 75K ⋅ in.

Ru = 75 × 1000
12(5.0)2

= 250psi 𝜌 = 0.0049 As = 0.29 in.2

Use no. 4 bars spaced at 8 in. (As = 0.29 in.2).
6. If a uniform load is assumed to be acting on the flight of stairs, similar results will be obtained.

For example, design node load was calculated to be 290 lb acting over a 10-in. run width. Load
per foot is 290

10
× 12 = 348 lb∕ft. Maximum moment is at midspan, section B:

Mu = 0.348
8

(13.33)2 = 92.8K ⋅ in.

Moments at other sections can be easily calculated, and the design can be arranged in a table form,
as explained in step 4.

SUMMARY

Sections 18.1 and 18.2

The different types of stairs are single and multiple flights, cantilever and precast concrete flights,
free-standing and helical staircases, and run-riser stairs.
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18.4.2. Section 18.3

Design examples are presented in this section.
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P R O B L E M S

18.1 Design a typical flight of the staircase shown in Fig. 18.22, which is a part of a multistory building. The
height between the concrete floors is 10 ft (3.0 m). The stairs are supported at the ends of the landings
and carry a live load equal to 120 psf (5.75 kN/m2); f ′c = 3ksi (20 MPa) and fy = 60 ksi (400 MPa).

Figure 18.22 Problem 18.1.

18.2 Repeat Problem 18.1 if the stairs are supported by four transverse beams at A, B, C, and D and the live
load is increased to 150 psf (7.2 kN/m2).

18.3 The stairs shown in Fig. 18.23 are to be designed for a live load equal to 100 psf (4.8 kN/m). The stairs
are supported by beams, as shown. Design the stairs and the supporting beams for f ′c = 3ksi (20 MPa)
and fy = 60 ksi (400 MPa).
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Figure 18.23 Problem 18.3.

18.4 Design a typical flight of stairs in a public building for the staircase arrangement shown in Fig. 18.24.
The stairs are supported by central beams, A and B. Design only one flight and the supporting beams A
and B. The runs are 1.0 ft (300 m) deep and the rises are 6.5 in. high. Use f ′c = 3ksi (20 MPa), fy = 60 ksi
(400 MPa), and a live load equal to 80 psf (3.85 kN/m2).

Figure 18.24 Problem 18.4.

Note: Design the beams for bending moments and shear, and neglect torsional moments caused by load-
ing one-half of the steps.

18.5 Repeat Example 18.3 if the run is 12 in. (300 mm) and the rise is 6 in. (150 mm).
18.6 Repeat Example 18.3 if the landing is 5 ft (6 × 10”), runs are 8.33 ft (10 × 10”), risers at 5.5 ft (11 × 6”),

and the live load is 120 psf.
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TO
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Library building, South Dakota State University, Brookings, South
Dakota.

19.1 PRESTRESSED CONCRETE

19.1.1 Principles of Prestressing

To prestress a structural member is to induce internal, permanent stresses that counteract the ten-
sile stresses in the concrete resulting from external loads; this extends the range of stress that the
member can safely withstand. Prestressing force may be applied either before or at the same time
as the application of the external loads. Stresses in the structural member must remain, everywhere
and for all states of loading, within the limits of stress that the material can sustain indefinitely. The
induced stresses, primarily compressive, are usually created by means of high tensile steel tendons,
which are tensioned and anchored to the concrete member. Stresses are transferred to the concrete
either by the bond along the surface of the tendon or by anchorages at the ends of the tendon.

To explain this discussion, consider a beam made of plain concrete, which has to resist the
external gravity load shown in Fig. 19.1. The beam section is chosen with the tensile flexural stress
as the critical criterion for design; therefore, an uneconomical section results. This is because
concrete is considerably stronger in compression than in tension. The maximum flexural tensile
strength of concrete, the modulus of rupture, fr, is equal to 7.5𝜆

√
f ′c (Fig. 19.1).

In normal reinforced concrete design, the tensile strength of concrete is ignored and steel bars
are placed in the tension zone of the beam to resist the tensile stresses, whereas the concrete resists
the compressive stresses (Fig. 19.1).

In prestressed concrete design, an initial compressive stress is introduced to the beam to offset
or counteract the tensile stresses produced by the external loads (Fig. 19.1). If the induced compres-
sive stress is equal to the tensile stress at the bottom fibers, then both stresses cancel themselves,
whereas the compressive stress in the top fibers is doubled; in this case, the whole section is in
compression. If the induced compressive stress is less than the tensile stress at the bottom fibers,
these fibers will be in tension, whereas the top fibers are in compression.

In practice, a concrete member may be prestressed in one of the following methods.

1. Posttensioning: In posttensioning, the steel tendons are tensioned after the concrete has been
cast and hardened. Posttensioning is performed by two main operations: tensioning the steel
wires or strands by hydraulic jacks that stretch the strands while bearing against the ends of
the member and then replacing the jacks by permanent anchorages that bear on the member
and maintain the steel strands in tension. A tendon is generally made of wires, strands, or bars.

724
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Figure 19.1 Effect of prestressing: (a) plain concrete, (b) reinforced concrete, and
(c) prestressed concrete.
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Wires and strands can be tensioned in groups, whereas bars are tensioned one at a time. In the
posttensioning process, the steel tendons are placed in the formwork before the concrete is cast
and the tendons are prevented from bonding to the concrete by waterproof paper wrapping or
a metal duct (sheath). Tendons bonded to the concrete are called bonded tendons. Unbonded
tendons, left without grout or coated with grease, have no bond throughout the length of the
tendon.

2. Pretensioning: In pretensioning, the steel tendons are tensioned before the concrete is cast.
The tendons are temporarily anchored against some abutments and then cut or released after
the concrete has been placed and hardened. The prestressing force is transferred to the con-
crete by the bond along the length of the tendon. Pretensioning is generally done in precasting
plants in permanent beds, which are used to produce pretensioned precast concrete elements
for the building industry.

3. External prestressing: In external prestressing, the prestressing force is applied by flat jacks
placed between the concrete member ends and permanent rigid abutments. The member
does not contain prestressing tendons, as in the previous two methods (also called internal
prestressing). External prestressing is not easy in practice because shrinkage and creep in
concrete tend to reduce the induced compressive stresses unless the prestressing force can be
adjusted.

The profile of the tendons may be straight, curved (bent), or circular, depending on the design
of the structural member. Straight tendons are generally used in solid and hollow-cored slabs,
whereas bent tendons are used in beams and most structural members. Circular tendons are used in
circular structures such as tanks, silos, and pipes. The prestressing force may be applied in one or
more stages, either to avoid overstressing concrete or in cases when the loads are applied in stages.
In this case, part of the tendons are fully prestressed at each stage.

A considerable number of prestressing systems have been devised, among them Freyssinet,
Magnel Blaton, B.B.R.V., Dywidag, CCL, Morandi, VSL, Western Concrete, Prescon, and
INRYCO. The choice of the prestressing system for a particular job can sometimes be a problem.
The engineer should consider three main factors that govern the choice of the system:

1. The magnitude of the prestressing force required.
2. The geometry of the section and the space available for the tendons.
3. Cost of the prestressing system (materials and labor).

The following example illustrates some of the features of prestressed concrete.

Example 19.1
For the simply supported beam shown in Fig. 19.2, determine the maximum stresses at midspan section
due to its own weight and the following cases of loading and prestressing:

1. A uniform live load of 900 lb/ft.
2. A uniform live load of 900 lb/ft and an axial centroidal longitudinal compressive force of

P= 259.2 K.
3. A uniform live load of 2100 lb/ft and an eccentric longitudinal compressive force P= 259.2 K

acting at an eccentricity e= 4 in.
4. A uniform live load of 2733 lb/ft and an eccentric longitudinal compressive force P= 259.2 K

acting at the maximum practical eccentricity for this section (e= 6 in.).
5. The maximum live load when P= 259.2 K acting at e= 6 in.
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Use b= 12 in., h= 24 in., normal-weight concrete with f ′c = 4500 psi, and an allowable
f ′c = 2050 psi.

Solution

1. Stresses due to dead and live loads only are the self-weight of the beam= (1× 2)× 150
= 300 lb/ft:

dead − load moment MDL = 𝑤L2

8
= 0.300(24)2

8
= 21.6 K ⋅ ft

Stresses at the extreme fibers are

𝜎 = Mc
I

=
M(h∕2)
bh3∕12

= 6M
bh2

𝜎D = 6 × 21.6 × 12, 000
12(24)2

= ±225 psi

Figure 19.2 Example 19.1.
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Figure 19.2 (Continued)

Stresses due to the live load L1 = 900 lb/ft are

MLL = 0.9(24)2

8
= 64.8 K ⋅ ft

𝜎L1
= 6M

bh2
= 6 × 64.8 × 12, 000

12(24)2
= ±675 psi
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Adding stresses due to the dead and live loads (Fig. 19.2) gives

Top stress = −225 − 675 = −900 psi (compression)

Bottom stress = +225 + 675 = +900 psi (tension)

The tensile stress is higher than the modulus of rupture of concrete, fr = 7.5𝜆
√

f ′c = 503 psi;
hence, the beam will collapse.

2. In the case of stresses due to uniform prestress, if a compressive force P= 259.2 K is applied at
the centroid of the section, then a uniform stress is induced on any section along the beam:

𝜎P = P
area

= 259.2 × 1000
12 × 24

= −900 psi (compression)

Final stresses due to live and dead loads plus prestress load at the top and bottom fibers
are 1800 psi and 0, respectively (Fig. 19.2). In this case, the prestressing force has dou-
bled the compressive stress at the top fibers and reduced the tensile stress at the bottom
fibers to 0. The maximum compressive stress of 1800 psi is less than the allowable stress of
2050 psi.

3. For stresses due to an eccentric prestress (e= 4 in.), if the prestressing force P= 259.2 K is placed
at an eccentricity of e= 4 in. below the centroid of the section, the stresses at the top and bottom
fibers are calculated as follows. Moment due to eccentric prestress is Pe:

𝜎P = −P
A
± (Pe)c

I
= −P

A
± 6(Pe)

bh2

= −259.2 × 1000
12 × 24

± 6(259.2 × 1000 × 4)
12(24)2

= −900 ± 900

= −1800 psi

at the bottom fibers and 𝜎P = 0 at the top fibers. Consider now an increase in the live load of
L2 = 2100 lb/ft:

MLL = 2.1 × (24)2

8
= 151.2 K ⋅ ft

𝜎L2
= 6(151.2 × 12, 000)

12(24)2
= ±1575 psi

Final stresses due to the dead, live, and prestressing loads at the top and bottom fibers are
1800 psi and 0, respectively (Fig. 19.2). Note that the final stresses are exactly the same as
those of the previous case when the live load was 900 lb/ft; by applying the same prestressing
force but at an eccentricity of 4 in., the same beam can now support a greater live load (by
1200 lb/ft).

4. For stresses due to eccentric prestress with maximum eccentricity, assume that the maximum
practical eccentricity for this section is at e= 6 in., leaving a 2-in. concrete cover; then the bending
moment induced is Pe= 259.2× 6= 1555.2 K⋅in.= 129.6 K⋅ft. Stresses due to the prestressing
force are

𝜎P = −259.2 × 1000
12 × 24

± 6 × (129.6 × 12, 000)
12(24)2

= −900 ± 1350 psi

= −2250 psi and + 450 psi
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Increase the live load now to L3 = 2733 lb/ft. The stresses due to the live load, L3, are

MLL = 2.733 × (24)2

8
= 196.8 K ⋅ ft

𝜎L3
= 6(196.8 × 12, 000)

12(24)2
= ±2050 psi

The final stresses at the top and bottom fibers due to the dead load, live load (L3), and the
prestressing force are 1825 psi and 0, respectively (Fig. 19.2). Note that the final stresses are
about the same as those in the previous cases, yet the live load has been increased to 2733 lb/ft.
A tensile stress of 225 psi is developed when the prestressing force is applied on the beam. This
stress is less than the modulus of rupture of concrete, fr = 503 psi; hence, cracks will not develop
in the beam.

5. The maximum live load when the eccentric force P acts at e= 6 in. is determined as follows. In the
previous case, the final compressive stress is equal to 1825 psi, which is less than the allowable
stress of 2050 psi. Therefore, the live load may be increased to L4 = 3033 lb/ft.

MLL = 3.033 × (24)2

8

𝜎L4
= 6(218.4 × 12, 000)

12(24)2
= ±2275 psi

Final stresses due to the dead load, live load (L4), and the prestressing force are −2050 psi and
± 225 psi (Fig. 19.2). The compressive stress is equal to the allowable stress of 2050 psi, and the
tensile stress is less than the modulus of rupture of concrete of 503 psi. In this case, the uniform
live load of 3033 lb/ft has been calculated as follows: Add the maximum allowable compressive
stress of 2050 psi to the initial tensile stress at the top fibers of 225 psi to get 2275 psi. The moment
that will produce a stress at the top fibers of 2275 psi is equal to

M = 𝜎

(
bh2

6

)

= 2.275
6

(12)(24)2 = 2620.8 K ⋅ in. = 218.4 K ⋅ ft

M =
WLL2

8
and WL = 8 × 218.4

(24)2
= 3.033 K∕ft

Notes:

a. The entire concrete section is active in resisting the external loads.
b. The final tensile stress in the section is less than the modulus of rupture of concrete, which indi-

cates that a crackless concrete section can be achieved under full load.
c. The allowable load on the beam has been increased appreciably due to the application of the

prestressing force.
d. An increase in the eccentricity of the prestressing force will increase the allowable applied load,

provided that the allowable stresses on the section are not exceeded.

19.1.2 Partial Prestressing

A partially prestressed concrete member can be defined as one in which (1) there have been intro-
duced internal stresses to counteract part of the stresses resulting from external loadings, (2) tensile
stresses are developed in the concrete under working loads, and (3) nonprestressed reinforcement
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may be added to increase the moment capacity of the member. That definition implies that there
are two cases that could be considered as partially prestressed concrete:

Partially prestressed concrete beams.

1. A combination of prestressed and nonprestressed steel is used in the same section. The pre-
stressed cables induce internal stresses designed to take only part of the ultimate capacity of
the concrete section. The rest of the capacity is taken by nonprestressed steel placed along
the same direction as the prestressed cables. The steel used as nonprestressed steel could be
any common grade of carbon steel or high-tensile-strength steel of the same kind as the pre-
stressing cables with an ultimate strength of 250 ksi (1725 N/mm2). The choice depends on
two main factors: allowable deflection and allowable crack width. As for deflection, the ACI
Code specifies a maximum ratio of span to depth of reinforced concrete members. With the
smaller depth expected in partially prestressed concrete, and because a smaller steel percent-
age is used, excessive deflection under working loads must not be allowed. Cracks develop
on the tension side of the concrete section or at the steel level because tensile stresses are
allowed to occur under working loads. The maximum crack width that may be allowed is
0.016 in. (0.41 mm) for interior members and 0.013 in. (0.33 mm) for exterior members.

2. Internal stresses act on the member from prestressed steel only, but tensioned to a lower
limit. In this case cracking develops earlier than in a fully prestressed member under similar
loadings.
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Partially prestressed concrete can be considered an intermediate form between reinforced and
fully prestressed concrete. In reinforced concrete members, cracks develop under working loads;
therefore, reinforcement is placed in the tension zone. In prestressed concrete members, cracks do
not usually develop under working loads. The compressive stresses due to prestressing may equal
or exceed the tensile stresses due to external loadings. Therefore, a partially prestressed concrete
member may be considered a reinforced concrete member in which internal stresses are introduced
to counteract part of the stress from external loadings so that tensile stresses in the concrete do
not exceed a limited value under working load. It reduces to reinforced concrete when no internal
stresses act on the member. Full prestressing is an upper extreme of partial prestressing in which
nonprestressed reinforcing steel reduces to 0.

Prestressing jack with a load cell.

Between a reinforced cracked member and a fully prestressed uncracked member, there exists
a wide range of design in partial prestressing (Fig. 19.3). A proper choice of the degree of prestress-
ing will produce a safe and economical structure.

Figure 19.3 shows the load–deflection curves of concrete beams containing different amounts
and types of reinforcement. Curve a represents a reinforced concrete beam, which normally cracks
at a small load Wcr. The cracking moment Mcr can be determined as follows:

Mcr =
frI

c
where

fr = modulus of rupture of concrete = 7.5𝜆
√

f ′c
I = moment of inertia of gross concrete section
c = distance from neutral axis to tensile extreme fibers

The cracking load can be determined from the cracking moment when the span and the type
of loading are specified. For a simply supported beam subjected to a concentrated load at midspan,
Wcr = (4Mcr)/L.

Curves e and f represent underreinforced and overreinforced fully prestressed concrete beams,
respectively. The overreinforced concrete beam fails by crushing of the concrete before the steel
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Figure 19.3 Load–deflection curves of concrete beams with different prestressing.
The cracking load is Wcr.

reaches its yield strength or proof stress. The beam has small deflection and undergoes brittle fail-
ure. The underreinforced beam fails by the steel reaching its yield or ultimate strength. It shows
appreciable deflection and cracking due to elongation of the steel before the gradual crushing of
the concrete and the collapse of the beam.

Between curves a and e is a wide range of concrete beams with varying amounts of reinforce-
ment and subjected to varying amounts of prestress. The beam with little prestressing is closer to
curve a, while the beam with a large prestress is closer to curve e. Depending upon the allowable
concrete stress, deflection, and maximum crack width, a suitable combination of prestressed and
nonprestressed reinforcement may be chosen for the required design.

Curve b represents a beam that will crack under full working load. If only part of the live load
L1 occurs frequently on the structure, then W1 represents the total dead load and that part of the live
load L1.

Curve c represents a beam that starts cracking at working load. The maximum tensile stress
in the concrete = 7.5

√
f ′c .

Curve d represents a beam with limited prestress. The critical section of the beam will not
crack under full working load, but it will have a maximum tensile stress of 0 < ft < 7.5

√
f ′c . The

maximum tensile stress in concrete allowed by the current ACI Code is 6
√

f ′c .
Curves e and e′ represent fully prestressed concrete beams with no tensile stress under work-

ing loads. (See Fig. 19.4.)
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The most important advantage of partial prestressing is the possibility of controlling camber.
By reducing the prestressing force, the camber will be reduced and a saving in the amount of the
prestressing steel, the amount of work in tensioning, and the number of end anchorages is realized.

Depending on the magnitude of the prestressing force, earlier cracking may occur in partially
prestressed rather than in fully prestressed concrete members under service loads. Once cracks
develop, the effective moment of inertia of the critical section is reduced and a greater deflection
is expected. However, partial prestressing has been used with satisfactory results, and its practical
application is increasing.

Prestressing bed for T-beam sections.

19.1.3 Classification of Prestressed Concrete Flexural Members

The ACI Code, Section 24.5.2, divided prestressed concrete members into three classes based on
the computed extreme tensile fiber stress, ft, in the tension zone at service load as follows:

1. Class U (uncracked section), with ft ≤ 7.5
√

f ′c . In this uncracked concrete section, the gross
section properties are used to check deflection at service load. No cracks will develop in this
section and no skin reinforcement is needed.
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Figure 19.4 Distribution of stresses in beams with varying amounts of prestressed and
nonprestressed reinforcement.

2. Class T (section in the transition zone), with 7.5
√

f ′c < ft ≤ 12
√

f ′c . This type of section has a
tensile stress in concrete higher than the modulus of rupture of concrete, fr = 7.5

√
f ′c , produc-

ing a case between uncracked and cracked sections. In this case, the gross section properties
are used to check stresses, while the cracked section bilinear section is used to calculate deflec-
tion. No skin reinforcement is needed in the tension zone.

3. Class C (cracked section), with ft > 12
√

f ′c . The tensile stress in the section exceeds 1.6 times
the modulus of rupture. Therefore, cracks will develop as in the case of partially prestressed
concrete members. In this case a cracked section properties should be used to check stresses,
cracking, and deflection. Crack control provisions and skin reinforcement should be used as
explained in Section 6.7 for reinforced concrete members with the effective depth of d> 36 in.

19.2 MATERIALS AND SERVICEABILITY REQUIREMENTS

19.2.1 Concrete

The physical properties of concrete were discussed in Chapter 2. Although reinforced concrete
members are frequently made of concrete with a compressive strength of 3 to 5 ksi (21 to 35 MPa),
prestressed concrete members are made of higher strength material, usually from 4 to 8 ksi (28 to
56 MPa). High-strength concrete may be adopted for precast, prestressed concrete members where
components are prepared under optimum control of mixing concrete, placing, vibrating, and curing.

The allowable stresses in concrete according to the ACI Code, Section 24.5.3, are as follows.

1. Stresses after prestress transfer and before prestress losses:
a. Maximum compressive stress of 0.6 f ′ci

b. Maximum compressive stress at ends of simply supported 0.7 f ′ci
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c. Maximum tensile stress (experts as permitted below in d) of 3
√

f ′ci

d. Maximum tensile stress at the ends of simply supported members of 6
√

f ′ci where f ′ci is
the strength of concrete at transfer

If the maximum tensile stresses are exceeded in c or d, then reinforcement must be pro-
vided in the tensile zone to resist the total tensile force in concrete (based on uncracked gross
section).

2. Stresses at service loads after all losses (for class U and class T) are as follows: Maximum
compressive stress of 0.45 f ′c due to prestresses plus sustained loads and of 0.6

√
f ′c due to

prestress plus total load.
3. These stresses may be exceeded if it is shown by tests or analysis that performance is

satisfactory.

19.2.2 Prestressing Steel

The most common type of steel tendons used in prestressed concrete are strands (or cables) made
with several wires, usually 7 or 19. Wires and bars are also used. The strands and wires are manufac-
tured according to ASTM Standard A421 for uncoated stress-relieved wires and A416 for uncoated
7-wire stress-relieved strands. Properties of prestressing steel are given in Table 19.1.

Seven-wires prestressing strands (shipped in coils as shown).

Prestressing steel used in prestressed concrete must be of high-strength quality, usually of
ultimate strength, fpu, of 250 to 270 ksi (1730 to 1860 MPa). High-strength steel is necessary to
permit high elongation and to maintain a permanent sufficient prestress in the concrete after the
inelastic shortening of the concrete.

The allowable stresses in prestressing steel according to the ACI Code, Section 20.3.2.5, are
as follows:

1. Maximum stress due to tendon jacking force must not exceed the smaller of 0.8fpu or 0.94fpy.
(The smaller value must not exceed that stress recommended by the manufacturer of tendons
or anchorages.)

2. Maximum stress in pretensioned tendons immediately after transfer must not exceed the
smaller of 0.74fpu or 0.82fpy.

3. Maximum stress in posttensioning tendons after tendon is anchored is 0.70fpu.
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Table 19.1 Properties of Prestressing Steel, Nominal Diameters, Areas, and Weights

Type
Diameter

(in.)
Area
(in.2)

Weight
(lb/ft)

Diameter
(mm)

Area
(mm2)

Mass
(kg/m)

Seven-wire strand (grade 250) 1
4

(0.250) 0.036 0.12 6.350 23.2 0.179
5

16
(0.313) 0.058 0.20 7.950 37.4 0.298

3
8

(0.375) 0.080 0.27 9.525 51.6 0.402
7

16
(0.438) 0.108 0.37 11.125 69.7 0.551

1
2

(0.500) 0.144 0.49 12.700 92.9 0.729

(0.600) 0.216 0.74 15.240 139.4 1.101

Seven-wire strand (grade 270) 3
8

(0.375) 0.085 0.29 9.525 54.8 0.432
7

16
(0.438) 0.115 0.40 11.125 74.2 0.595

1
2

(0.500) 0.153 0.53 12.700 98.7 0.789
(0.600) 0.215 0.74 15.250 138.7 1.101

Prestressing wire grades (250) 0.192 0.029 0.10 4.877 18.7 0.146
(250) 0.196 0.030 0.10 4.978 19.4 0.149
(240) 0.250 0.049 0.17 6.350 31.6 0.253
(235) 0.276 0.060 0.20 7.010 38.7 0.298

Prestressing bars (smooth) (grade 145 or 160) 3
4

(0.750) 0.44 1.50 19.050 283.9 2.232
7
8

(0.875) 0.60 2.04 22.225 387.1 3.036
1 (1.000) 0.78 2.67 25.400 503.2 3.973

1 1
8

(1.125) 0.99 3.38 28.575 638.7 5.030

1 1
4

(1.250) 1.23 4.17 31.750 793.5 6.206

1 3
8

(1.385) 1.48 5.05 34.925 954.8 7.515

Prestressing bars (deformed) (grades 150–160) 5
8

(0.625) 0.28 0.98 15.875 180.6 1.458
3
4

(0.750) 0.42 1.49 19.050 271.0 2.218
1 (1.000) 0.85 3.01 25.400 548.4 4.480

1 1
4

(1.250) 1.25 4.39 31.750 806.5 6.535

1 3
8

(1.385) 1.58 5.56 34.925 1006 8.274

19.2.3 Reinforcing Steel

Nonprestressed reinforcing steel is commonly used in prestressed concrete structural members,
mainly in the prestressed, precast concrete construction. The reinforcing steel is used as shear rein-
forcement, as supplementary reinforcement for transporting and handling the precast elements, and
in combination with the prestressing steel in partially prestressed concrete members. The types and
allowable stresses of reinforcing bars were discussed in Chapters 2 and 5.

19.3 LOSS OF PRESTRESS

19.3.1 Lump-Sum Losses

Following the transfer of the prestressing force from the jack to the concrete member, a continuous
loss in the prestressing force occurs; the total loss of prestress is the reduction in the prestressing
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force during the life span of the structure. The amount of loss in tendon stress varies between 15
and 30% of the initial stress because it depends on many factors. For most normal-weight concrete
structures constructed by standard methods, the tendon stress loss due to elastic shortening, shrink-
age, creep, and relaxation of steel is about 35 ksi (241 MPa) for pretensioned members and 25 ksi
(172 MPa) for posttensioned members. Friction and anchorage slip are not included.

Two current recommendations for estimating the total loss in prestressed concrete members
are presented by AASHTO and the Posttensioning Institute (PTI). AASHTO [23] recommends a
total loss (excluding friction loss) of 45 ksi (310 MPa) for pretensioned strands and 33 ksi (228 MPa)
for posttensioned strands and wires when a concrete strength of f ′c = 5 ksi is used. The PTI [24]
recommends a total lump-sum prestress loss for posttensioned members of 35 ksi (241 MPa) for
beams and 30 ksi (207 MPa) for slabs (excluding friction loss). These values can be used unless a
better estimate of the prestress loss by each individual source is made, as is explained shortly.

In general, the sources of prestress loss are

• Elastic shortening of concrete
• Shrinkage of concrete
• Creep of concrete
• Relaxation of steel tendons
• Friction
• Anchorage set

19.3.2 Loss due to Elastic Shortening of Concrete

In pretensioned members, estimating loss proceeds as follows. Consider a pretensioned concrete
member of constant section and stressed uniformly along its centroidal axis by a force F0. After the
transfer of the prestressing force, the concrete beam and the prestressing tendon shorten by an equal
amount because of the bond between the two materials. Consequently, the starting prestressing
force F0 drops to Fi and the loss in the prestressing force is F0 −Fi. Also, the strain in the concrete,
𝜀c, must be equal to the change in the tendon strain, 𝛥𝜀s. Therefore, 𝜀c =𝛥𝜀s, or fc/Ec =𝛥fs/Es, and
the stress loss due to the elastic shortening is

𝛥fs =
Es

Ec
× fc = nfc =

nFi

Ac
≈

nF0

Ac
(19.1)

where
Ac = area of concrete section
n = Es/Ec =modular ratio
fc = stress in concrete at centroid of prestressing steel

Multiply the stress by the area of the prestressing steel, Asp, to get the total force; then the elastic
loss is

ES = F0 − Fi = 𝛥fs Asp = (nfc)Asp ≈
(

nF0

Ac

)
Asp (19.2)

Fi = F0 − (nfc)Asp (19.3)

For practical design, the loss in the prestressing force, 𝛥fs per unit Asp, may be taken to be approx-
imately nF0/Ac. If the force F0 acts at an eccentricity e, then the elastic loss due to the presence of
F0 and the applied dead load at transfer is

ES = −(nfc)Asp (due to prestress) + (nfc)Asp (dead load)
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and

ES = F0 − Fi = −
(

Fi

A
+

Fie
2

I

)
n Asp +

(
MDe

I

)
n Asp (19.4)

An approximate value of Fi = (0.63fpu)Asp may be used in the above equation:

F0 + fc (DL)n Asp = Fi

[
1 + n Asp

(
1
A
+ e2

I

)]

Fi =
F0 + (n Asp)fc (DL)
1 + (n Asp)(1A + e2I)

(19.5)

For posttensioned members where the tendons or individual strands are not stressed
simultaneously, the loss of the prestress can be taken as half the value ES for pretensioned
members.

Also, it is practical to consider the elastic shortening loss in slabs equal to one-quarter of
the equivalent pretensioned value because stretching of one tendon will have little effect on the
stressing of the other tendons.

19.3.3 Loss due to Shrinkage

The loss of prestress due to shrinkage is time dependent. It may be estimated as follows:

SH = 𝛥fs (shrinkage) = 𝜀shEs (19.6)

where Es is 29× 106 psi and 𝜀sh is the shrinkage strain in concrete.
The average strain due to shrinkage may be assumed to have the following values: for pre-

tensioned members, 𝜀sh1
= 0.0003; for posttensioned members, 𝜀sh2

= 0.0002. If posttensioning is
carried out within 5 to 7 days after concreting, the shrinkage strain can be taken to be 0.8 𝜀sh1

. If
posttensioning is carried out between 1 and 2 weeks, 𝜀sh = 0.7𝜀sh1

can be used, and if it occurs
more than 2 weeks later, 𝜀sh = 𝜀sh2

can be adopted. Shrinkage loss, SH, can also be estimated as
follows [28]:

SH = 8.2 × 10−6KshEs

(
1 − 0.06V

S

)
(100 − RH)

where V/S is the volume-to-surface ratio and RH is the average relative humidity; Ksh is 1.0 for
pretensioned members and 0.8, 0.73, 0.64, and 0.58 for posttensioned members if posttensioning
is carried out after 5, 10, 20, and 30 days, respectively.

19.3.4 Loss Due to Creep of Concrete

Creep is a time-dependent deformation that occurs in concrete under sustained loads. The developed
deformation causes a loss of prestress from 5 to 7% of the applied force.

The creep strain varies with the magnitude of the initial stress in the concrete, the relative
humidity, and time. The loss in stress due to creep can be expressed as follows:

CR = 𝛥fs (creep) = Cc(nfc) = Cc(𝜀crEs) (19.7)

where

Cc = creep coefficient =
creep strain, 𝜀cp

initial elastic strain, 𝜀i
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The value of Cc may be taken as follows:

Concrete strength f′c ≤ 4 ksi f′c > 4 ksi

Relative humidity % 50% 100% 50%
Cc 1–2 2–4 0.7–1.5 1.5–3

Linear interpolation can be made between these values. Considering that half the creep takes
place in the first 134 days of the first 6 months after transfer and under normal humidity conditions,
the creep strain can be assumed for practical design as follows:

1. For pretensioned members, 𝜀cr = 48× 10−5 stress in concrete (ksi).
2. For posttensioned members, 𝜀cr = 36× 10−5 × stress in concrete (ksi). This value is used when

posttensioning is made within 2 to 3 weeks. For earlier posttensioning, an intermediate value
may be used.

These values apply when the strength of concrete at transfer is f ′ci ≥ 4 ksi. When f ′ci < 4 ksi,
the creep strain should increase in the ratio of (4/actual strength).

Total loss of prestress due to creep = 𝜀crEs (19.8)

19.3.5 Loss Due to Relaxation of Steel

Relaxation of steel causes a time-dependent loss in the initial prestressing force, similar to creep
in concrete. The loss due to relaxation varies for different types of steel; its magnitude is usually
furnished by the steel manufacturers. The loss is generally assumed to be 3% of the initial steel
stress for posttensioned members and 2 to 3% for pretensioned members. If test information is not
available, the loss percentages for relaxation at 1000 h can be assumed as follows:

1. In low-relaxation strands, when the initial prestress is 0.7 fpu and 0.8 fpu, relaxation (RE) is
2.5 and 3.5%, respectively.

2. In stress-relieved strands or wire, when the initial prestress is 0.7 fpu or 0.8 fpu, relaxation (RE)
is 8 and 12%, respectively.

19.3.6 Loss Due to Friction

With pretensioned steel, friction loss occurs when wires or strands are deflected through a
diaphragm. This loss is usually small and can be neglected. When the strands are deflected to
follow a concordant profile, the friction loss may be considerable. In such cases, accurate load
measuring devices are commonly used to determine the force in the tendon.

With posttensioned steel, the effect of friction is considerable because of two main factors:
the curvature of the tendon and the lack of alignment (wobble) of the duct. The curvature effect
may be visualized if a belt around a fixed cylinder is tensioned on one end with a force P2; then the
force, P1, at the other end to initiate slippage in the direction of P1 is

P1 = P2e𝜇𝛼px (19.9)

where 𝜇 is the coefficient of static angular friction and 𝛼px is the angle between P1 and P2. It is a
general practice to treat the wobbling effect similarly:

Px = Pse
−(𝜇𝛼+Klx)

Ppx = Ppje
−(Klpx+𝜇p𝛼px) (ACI 2008 Code Eq. 18.1) (19.10)
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where
Ppj = prestressing tendon force at jacking end
Ppx = prestressing tendon force at any point x
𝜇p = curvature friction coefficient
𝛼px = total angular change of prestressing tendon profile, in radians, from tendon jacking

end to any point x

=
length of curve

radius of curvature
K = wobble friction coefficient per foot of prestressing tendon

As an approximation, the ACI Code gives the following expression:

Ppx = Ppj(1 + Klpx + 𝜇p𝛼px)−1 (ACI Code 2008, Eq. 18.2) (19.11)

provided that (Klpx +𝜇p𝛼px)≤ 0.30.
The frictional coefficients 𝛼 and K depend on the type of prestressing strands or wires,

type of duct, and the surface conditions. Some approximate values for 𝜇 and K are given
in Table 19.2.

Friction loss in the jack is variable and depends on many factors, including the length of travel
of the arm over a given load range. The use of accurate load cells to measure directly the force in
the tendon is recommended. The use of pressure gauges may lead to inaccuracies unless they are
calibrated against a known force in the tendon.

The friction loss in the anchorage is dependent mainly upon the type of anchorage and the
amount of deviation of the tendon as it passes through the anchorage. This loss is usually small and
may be neglected. Guidance in particular cases should be obtained from the manufacturers.

19.3.7 Loss Due to Anchor Set

When the force in a tendon is transferred from the jack to the anchorage unit, a small inward
movement of the tendon takes place due to the seating of the gripping device or wedges. The
slippage causes a shortening of the tendon, which results in a loss in the prestressing force. The
magnitude of slippage varies between 0.1 and 0.25 in. (2.5 and 6 mm) and is usually specified by
the manufacturer. The loss due to the anchor set may be calculated as follows:

𝛥fs = 𝛥𝜀Es =
𝛥L
L

× Es (19.12)

Table 19.2 Friction Coefficients for Posttensioned Tendons

Type of Tendon
Wobble Coefficient K
per Foot (×10−3)

Curvature Coefficient
𝝁 (per Radian)

Tendon in flexible metal sheathing (grouted)
Wire tendons 1.0–1.5 0.15–0.25
Seven-wire strand 0.5–2.0 0.15–0.25
High-strength bars 0.1–0.6 0.08–0.30
Pregreased unbonded tendon
Wire tendons and seven-wire strand 0.3–2.0 0.05–0.15
Mastic-coated unbonded tendons
Wire tendons and seven-wire strand 1.0–2.0 0.05–0.15
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where
𝛥𝜀 = magnitude of anchor slippage
Es = 29× 106 psi
L = length of tendon

Because the loss in stress is inversely proportional to the length of the tendon (or approxi-
mately half the length of the tendon if it is stressed from both ends simultaneously), the percentage
loss in steel stress decreases as the length of the tendon increases. If the tendon is elongated by 𝛥𝜀
at transfer, the loss in prestress due to slippage is neglected.

Example 19.2

A 36-ft-span pretensioned simply supported beam has a rectangular cross section with b= 18 in. and
h= 32 in. Calculate the elastic loss and all time-dependent losses. Given: prestressing force at transfer is
Fi = 435 K, area of prestressing steel is Aps = 3.0 in.2, f ′c = 5 ksi, Ec = 5000 ksi, Es = 29, 000 ksi, profile
of tendon is parabolic, eccentricity at midspan= 6.0 in., and eccentricity at ends= 0.

Solution

1. Elastic shortening: Stress due to the prestressing force at transfer is

Fi

Aps
= 435

3
= 145 ksi

Strain in prestressing steel =
fs
Es

= 145
29, 000

= 0.005

Using Eq. Eq. 19.1,

n =
Es

Ec
= 29, 000

5000
= 5.8 or 6

𝛥fs =
nFi

Ac

= 6 × 435
32 × 18

= 4.5 ksi

Considering the variation in the eccentricity along the beam,

Strain at end of section =
Fi

AcEc
= 435

(18 × 32) × 5000
= 0.151 × 10−3

Strain at midspan =
Fi

AcEc

+
Fie

2

IEc

I = bh3

12
= 18(32)3

12
= 49, 152 in.4

Strain = 0.151 × 10−3 + 435(6)2

49, 152(5000)
= 0.215 × 10−3

Average strain = 1
2
(0.151 + 0.215) × 10−3 = 0.183 × 10−3

Prestress loss = strain × Es = 0.183 × 10−3 × 29, 000 = 5.3 ksi

Percent loss = 5.3
145

= 3.66%
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2. Loss due to shrinkage:

Shrinkage strain = 0.0003

𝛥fs = 𝜀shEs = 0.0003 × 29, 000 = 8.7 ksi

Percent loss = 8.7
145

= 6%

3. Loss due to creep of concrete: Assuming Cc = 2.0, then 𝛥fs =Cc(𝜀crEs):

Elastic strain =
Fi

AcEc
= 0.151 × 10−3

𝛥fs = 2(0.151 × 10−3 × 29, 000) = 8.8 ksi

Percent loss = 8.8
145

= 6.1%

Or, approximately, 𝜀cr = 48× 10−5 × stress in the concrete (ksi):

𝜀cr = 48 × 10−5
( 435

32 × 18

)
= 36 × 10−5

𝛥fs = 𝜀crEs = 36 × 10−5 × 29, 000 = 10.4 ksi

Percent loss = 10.4
145

= 7.2%

This is a conservative value, and the same ratio is obtained if Cc = 2.38 is adopted in the
preceding calculations.

4. Loss due to relaxation of steel: For low-relaxation strands, the loss is assumed to be 2.5%.

𝛥fs = 0.025 × 145 = 3.6 ksi

5. Assume the losses due to bending, friction of cable spacers, and the end block of the pretensioning
system are 2%.

𝛥fs = 0.02 × 145 = 2.9 ksi

6. Loss due to friction in tendon is 0.
7. Total losses are as follows:

Elastic shortening loss 5.3 ksi 3.6%
Shrinkage loss 8.7 ksi 6.0%
Creep of concrete loss 8.8 ksi 6.1%
Relaxation of steel loss 3.6 ksi 2.5%
Other losses 2.9 ksi 2.0%
Total losses 29.3 ksi 20.2%

Effective prestress = 145 − 24 = 121 ksi

Effective prestressing force F = 121 × 3 in.2 = 363 ksi

F = (1 − 0.166)Fi = 0.834Fi

For F= 𝜂 Fi, 𝜂 = 0.834.



744 Chapter 19 Introduction to Prestressed Concrete

Example 19.3

Calculate all losses of a 120-ft-span posttensioned beam that has an I-section with the following
details. Area of concrete section (Ac)= 760 in.2; moment of inertia (Ig)= 1.64× 105 in.4; prestressing
force at transfer (Fi)= 1110 K; area of prestressing steel (Aps)= 7.5 in.2; f ′c = 5 ksi, Ec = 5000 ksi and
Es = 29, 000 ksi; profile of tendon is parabolic; eccentricity at midspan= 20 in; and eccentricity at
ends= 0.

Solution

1. Loss due to elastic shortening:

Steel stress at transfer =
Fi

Aps
= 1110

7.5
= 148 ksi

Stress in concrete at end section = 1110
760

= 1.46 ksi

Stress in concrete at midspan =
Fi

Ac
+

Fie
2

I
−

MDe

I

Weight of beam = 760
144

× 150 = 790 lb∕ft

MD = 0.79
(120)2

8
= 1422 K ⋅ ft

Stress at midspan = 1110
760

+ 1110(20)2

164, 000
− (1422 × 12)(20)

164, 000

= 1.46 + 2.71 − 2.08 = 2.09 ksi

Average stress = 1.46 + 2.09
2

= 1.78 ksi

Average strain = 1.78
Ec

= 1.78
5000

= 0.356 × 10−3

Elastic loss is 𝛥fs = 𝜀cEs = 0.356× 103× 29, 000= 10.3 ksi, assuming that the tendons are ten-
sioned two at a time. The first pair will have the greatest loss, whereas the last pair will have 0
loss. Therefore, average 𝛥fs = 10.3/2= 5.15 ksi.

Percent loss = 5.15
148

= 3.5%

2. Loss due to shrinkage of concrete:

𝛥fs (shrinkage) = 0.0002Es = 0.0002 × 29, 000 = 5.8 ksi

Percent loss = 5.8
148

= 3.9%

3. Loss due to creep of concrete: Assume Cc = 1.5.

Elastic strain =
Fi

AcEc

= 1110
760 × 5000

= 0.92 × 10−3

𝛥fs (creep) = Cc(𝜀crEs)

= 1.5(0.292 × 10−3 × 29, 000) = 12.7 ksi

Percent loss = 12.7
148

= 8.6%
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4. Loss due to relaxation of steel: For low-relaxation strands, the loss is 2.5%.

𝛥fs = 0.025 × 148 = 3.7 ksi

5. Slip in anchorage: For tensioning from one end only, assume a slippage of 0.15 in. The length of
the cable is 120× 12= 1440 in.

𝛥fs =
𝛥L
L

× Es =
0.15
1440

× 29, 000 = 3 ksi (Eq. 19.12)

To allow for anchorage slip, set the tensioned force to 148+ 3= 151 ksi on the pressure gauge
to leave a net stress of 148 ksi in the tendons.

6. Loss due to friction: The equation of parabolic profile is

ex =
4e
L2

(Lx − x2)

where ex is the eccentricity at a distance x measured from the support and e is eccentricity at
midspan:

d(ex)
dx

= 4e
L2

(L − 2x)

is the slope of the tendon at any point. At the support, x= 0 and the slope

d(ex)
dx

= 4e
L

= 4 × 20
120 × 12

= 0.056

The slope at midspan is 0; therefore, 𝛼px = 0.056. Using flexible metallic sheath, 𝜇p = 0.5 and
K= 0.001. At midspan, x= 60 ft. Check if (𝜇p𝛼px +Klx)≤ 0.30:

𝜇p𝛼px + Klx = 0.5 × 0.056 + 0.001 × 60 = 0.0088 < 0.3

Ppx = Ppj(1 + Klpx + 𝜇p𝛼px)

= Px(1 + 0.088) = 1.088Px

= 1.088 × 148 = 161 K (force at jacking end)

𝛥fs = 161 − 148 = 13 ksi

Percent loss = 13
148

= 8.8% (Eq. 19.11)

7. Total losses:

Elastic shortening loss 5.2 ksi 3.5%
Shrinkage loss 5.8 ksi 3.9%
Creep of concrete loss 12.7 ksi 8.6%
Relaxation of steel loss 3.7 ksi 2.5%
Friction losses 13.0 ksi 8.8%
Total losses 40.4 ksi 27.3%

Effective prestress = 148 − 35.2 = 112.8 ksi

Effective prestressing force(F) = (1 − 0.238)Fi = 0.762Fi

F = 0.762 × 1110 = 846 K

For F= 𝜂 Fi, 𝜂 = 0.762.
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19.4 ANALYSIS OF FLEXURAL MEMBERS

19.4.1 Stresses Due to Loaded and Unloaded Conditions

In the analysis of prestressed concrete beams, two extreme loadings are generally critical. The first
occurs at transfer, when the beam is subjected to the prestressing force, Fi, and the weight of the
beam or the applied dead load at the time of transfer of the prestressing force. No live load or
additional dead loads are considered. In this unloaded condition, the stresses at the top and bottom
fibers of the critical section must not exceed the allowable stresses at transfers, fci and fti, for the
compressive and tensile stresses in concrete, respectively.

The second case of loading occurs when the beam is subjected to the prestressing force after
all losses F and all dead and live loads. In this loaded condition, the stresses at the top and bottom
fibers of the critical section must not exceed the allowable stresses, fc and ft, for the compressive
and tensile stresses in concrete, respectively.

These conditions can be expressed mathematically as follows:

1. For the unloaded condition (at transfer):
• At top fibers,

𝜎ti = −
Fi

A
+

(Fie)yt

I
−

MDyt

I
≤ fti (19.13)

• At bottom fibers,

𝜎bi = −
Fi

A
−

(Fie)yb

I
+

MDyb

I
≥ −fci (19.14)

2. For the loaded condition (all loads are applied after all losses):
• At top fibers,

𝜎t = −F
A
+

(Fe)yt

I
−

MDyt

I
−

MLyt

I
≥ −fc (19.15)

• At bottom fibers,

𝜎b = −F
A
−

(Fe)yb

I
+

Mdyb

I
+

MLyb

I
≤ ft (19.16)

where

Fi, F = prestressing force at transfer and after all losses
fti, ft = allowable tensile stress in concrete at transfer and after all losses
fci, fc = allowable compressive stress in concrete at transfer and after all losses

MD, ML = moments due to dead load and live load
yt, yb = distances from neutral axis to top and bottom fibers

In this analysis, it is assumed that the materials behave elastically within the working range
of stresses applied.

19.4.2 Kern Limits

If the prestressing force is applied at the centroid of the cross section, uniform stresses will develop.
If the prestressing force is applied at an eccentricity, e below the centroid such that the stress at
the top fibers is equal to 0, that prestressing force is considered acting at the lower Kern point
(Fig. 19.5). In this case e is denoted by Kb, and the stress distribution is triangular, with maximum
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e = Kb = Lower kern

e′ = Kt = Upper kern

Figure 19.5 Kern points: (a) lower, (b) upper, and (c) central.

compressive stress at the extreme bottom fibers. The stress at the top fibers is

𝜎t = −
Fi

A
+

(Fie)yt

I
= 0

e = Kb = lower Kern = I
Ayt

(19.17)

Similarly, if the prestressing force is applied at an eccentricity e′ above the centroid such that
the stress at the bottom fibers is equal to 0, that prestressing force is considered acting at the upper
Kern point (Fig. 19.5). In this case the eccentricity e′ is denoted by Kt, and the stress distribution
is triangular, with maximum compressive stress at the extreme top fibers. The stress at the bottom
fibers is

𝜎b = −
Fi

A
+

(Fie
′)yb

I
= 0

e′ = Kt = upper Kern = I
Ayb

(19.18)

The Kern limits of a rectangular section are shown in Fig. 19.5.

19.4.3 Limiting Values of Eccentricity

The four stress equations, Eqs. 19.13 through 19.16, can be written as a function of the eccentricity
e for the various loading conditions. For example, Eq. 19.13 can be rewritten as follows:

𝜎ti = −
Fi

A
+

(Fie)yt

I
−

MDyt

I
≤ fti

(fie)yt

I
≤ fti +

Fi

A
+

MDyt

I

e ≤
I

Fiyt

(
Fi

A
+

MDyt

I
+ fti

)
(19.19)
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If the lower Kern limit Kb = I/Ayt is used, then

e ≤ Kb +
MD

Fi
+

fti AKb

Fi
(19.20)

This value of e represents the maximum eccentricity based on the top fibers, unloaded condition.
Similarly, from Eq. 19.14,

e ≤
I

Fiyb

(
−

Fi

A
+

MDyb

I
+ fci

)
(19.21)

e ≤ −Kt +
MD

Fi
+

fci AKt

Fi
(19.22)

This value of e represents the maximum eccentricity based on the bottom fibers, unloaded condition.
The two maximum values of e should be calculated from the preceding equations and the smaller
value used.

From Eq. 19.15,

e ≥
I

Fyt

(
F
A
+

MTyt

I
− fc

)
(19.23)

e ≥ Kb +
MT

F
−

fc AKb

F
(19.24)

where MT is the moment due to dead and live loads= (MD +ML). This value of e represents the
minimum eccentricity based on the top fibers, loaded condition. From Eq. 19.16,

e ≥
I

Fyb

(
−F

A
+

MTyb

I
− ft

)
(19.25)

e ≥ −Kt +
MT

F
−

ft AKt

F
(19.26)

This value of e represents the minimum eccentricity based on the bottom fibers, loaded condition.
The two minimum values of e should be calculated from the preceding equations and the larger of
the two minimum eccentricities used.

19.4.4 Limiting Values of the Prestressing Force at Transfer Fi

Considering that F= 𝜂Fi, where 𝜂 represents the ratio of the net prestressing force after all losses,
and for the different cases of loading, Eqs. 19.20, 19.22, 19.24, and 19.26 can be rewritten as
follows:

(e − Kb)Fi ≤ MD + fti AKb (19.27)

(e + Kt)Fi ≤ MD + fci AKt (19.28)

(e − Kb)Fi ≥
MD

𝜂
+

ML

𝜂
− 1
𝜂
(fc AKb) (19.29)

(e + Kt)Fi ≥
MD

𝜂
+

ML

𝜂
− 1
𝜂
(ft AKt) (19.30)

Subtract Eq. 19.27 from Eq. 19.30 to get

Fi(Kb + Kt) ≥ MD

(
1
𝜂
− 1

)
+

ML

𝜂
−

ft AKt

𝜂
− fti AKb
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or

Fi ≥
1

Kb + Kt

[(
1
𝜂
− 1

)
MD +

ML

𝜂
−
(

ft AKt

𝜂

)
− (fti AKb)

]
(19.31)

This value of Fi represents the minimum value of the prestressing force at transfer without exceeding
the allowable stresses under the loaded and unloaded conditions. Subtract Eq. 19.29 from Eq. 19.28
to get

Fi ≤
1

Kb + Kt

[(
1 − 1

𝜂

)
MD −

ML

𝜂
+
(

fc AKb

𝜂

)
+ (fci AKt)

]
(19.32)

This value of Fi represents the maximum value of the prestressing force at transfer without exceed-
ing the allowable stresses under the loaded and unloaded conditions. Subtracting Eq. 19.31 from
Eq. 19.32, then

(
1 − 1

𝜂

)
2MD −

2ML

𝜂
+
(

fti +
fc
𝜂

)
AKb +

(
fci +

ft
𝜂

)
AKt ≥ 0 (19.33)

This equation indicates that (maximum Fi)− (minimum Fi)≥ 0. If this equation is checked for any
given section and proved to be satisfactory, then the section is adequate.

Example 19.4

A pretensioned simply supported beam of the section shown in Fig. 19.6a is to be used on a span of 48 ft.
The beam made with normal-weight concrete must carry a dead load of 900 lb/ft (excluding its own
weight), which will be applied at a later stage, and a live load of 1100 lb/ft. Assuming that prestressing
steel is made of 20 tendons that are 716 in. in diameter, with Es = 29× 106 psi, F0 = 175 ksi, and ultimate
strength fpu = 250 ksi, it is required to do the following:

1. Determine the location of the upper and lower limits of the tendon profile (centroid of the pre-
stressing steel) for the section at midspan and for three other sections between the midspan section
and the beam end.

2. Locate the tendon to satisfy these limits by harping some of the tendons at one-third points of the
span. Check the limiting values of the prestressing force at transfer.

3. Revise the prestress losses, taking into consideration the chosen profile of the tendons and the
variation of the eccentricity e.

Use fci (at transfer)= 4 ksi, f ′c = 5 ksi, Ec = 4000 ksi, and Eci = 3600 ksi.

Solution

1. Determine the properties of the section:

Area = 18 × 6 + 24 × 6 + 12 × 10 = 372 in.2

Determine the centroid of the section by taking moments about the baseline:

yb = 1
372

(120 × 5 + 144 × 22 + 108 × 37) = 20.8 in.

yt = 40 − 20.8 = 19.2 in.

Calculate the gross moment of inertia, Ig:

Ig =
[

18(6)3

12
+ 108(16.2)2

]
+
[

6(24)3

12
+ 144(1.2)2

]
+
[

12(10)3

12
+ 120(15.8)2

]
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= 66, 862 in.4

Kb = I
Ayt

= 66, 862
372 × 19.2

= 9.4 in.

Kt =
I

Ayb
= 66, 862

372 × 20
= 8.6 in.

(a)

(b) (c)

Precast, prestressed concrete sections: (a) single T-section, (b) double T-section, and (c) U-section.

2. Estimate prestress losses, given F0 = 175 ksi.
a. Assume elastic loss is 4%, or 0.04× 175= 7 ksi.
b. Loss due to shrinkage is 0.0003 Es = 0.0003× 29, 000= 8.7 ksi.
c. Loss due to creep of concrete: A good first estimate of creep loss is 1.67 times the elastic loss:

1.67 × 7 = 11.7 ksi

d. Loss due to relaxation of steel is 4%:

0.04 × 175 = 7 ksi

Time-dependent losses are 8.7+ 11.7+ 7= 27.4 ksi.

Percentage = 27.4
175

= 15.7%
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e. The total loss is 27.4+ 7 (elastic loss)= 34.4 ksi. The percentage of total loss is

34.4
175

= 19.7%

f. Prestress stresses are

Fi = 175 − 7 = 168 ksi (at transfer)

F = 175 − 34.4 = 140.6 ksi

F = 𝜂Fi

𝜂 = time − dependent loss ratio

= 140.6
168

= 0.837

Figure 19.6a Example 19.4.
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Figure 19.6b Example 19.4: Tendon profile.

Figure 19.6c Example 19.4: Average e2.

3. Limits of the eccentricity e at midspan section: Calculate the allowable stresses and moments.
At transfer, f ′ci = 4000 psi, fci = 0.6 × 4000 = 2400 psi, and fti = 3

√
f ′c = 190 psi. At service load,

f ′c = 5000 psi, fc = 0.45, f ′c = 2250 psi, and ft = 6
√

f ′c = 424 psi.

Self − weight of beam = 372
144

× 150 = 388 lb∕ft

MD (self − weight) = 0.388
8

(48)2 × 12 = 1341 K ⋅ in.

Ma (additional load and live load) =
𝑤aL2

8

= 0.9 + 1.1
8

(48)2 × 12 = 6912 K ⋅ in.

Total moment (MT ) = MD + Ma = 8253 K ⋅ in.

Fi = stress at transfer × area of prestressing steel
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The area of 20 tendons, 7
16

in. in diameter, is 20× 0.1089= 2.178 in.2

Fi = 2.178 × 168 = 365.9 K

F = 2.178 × 140.6 = 306.2 K

a. Consider the section at midspan. Top fibers, unloaded condition:

e ≤ Kb +
MD

Fi
+

fti AKb

Fi

≤ 9.4 + 1341
365.9

+ 0.190(372)(9.4)
365.9

≤ 14.9 in. (Eq. 19.20)

Bottom fibers, unloaded condition:

e ≤ −Kt +
MD

Fi
+

fci AKt

Fi

≤ −8.6 + 1341
365.9

+ 2.4(372)(8.6)
365.9

≤ 16.1 in. (Eq. 19.22)

Maximum e= 14.9 in. controls.
Top fibers, loaded condition:

e ≥ Kb +
MT

F
−

fc AKb

F

≥ 9.4 + 8253
306.2

− 0.424(372)(8.6)
306.2

≥ 10.7 in. (Eq. 19.24)

Bottom fibers, loaded condition:

e ≥ −Kt +
MT

F
−

ft AKt

F

≥ −8.6 + 8253
306.2

− 0.424(372)(8.6)
306.2

≥ 13.9 in. (Eq. 19.26)

Minimum e= 13.9 in. controls.
b. Consider a section 8 ft from the midspan (section 2, Fig. 19.6a):

MD (self − weight) = RA(16) − 1
2
𝑤D × (16)2

= 0.388(24)(16) − 0.388
2

(16)2 = 99.3 K ⋅ ft = 1192 K ⋅ in.

Ma = 2(24)(16) − 2
2
(16)2 = 512 K ⋅ ft = 6144 K ⋅ in.

MT = 6144 + 1192 = 7336 K ⋅ in.

Top fibers, unloaded condition:

e ≤ 9.4 + 1192
365.9

+ 0.190(372)(9.4)
365.9

≤ 14.5 in.

Bottom fibers, unloaded condition:

e ≤ −8.6 + 1192
365.9

+ 2.4(372)(8.6)
365.9

≤ 15.6 in.

Maximum e= 14.5 in. controls.
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Top fibers, loaded condition:

e ≥ 9.4 + 7336
306.2

− 2.25(372)(9.4)
306.2

≥ 7.7 in.

Bottom fibers, loaded condition:

e ≥ −8.6 + 7336
306.2

− 0.424(372)(8.6)
306.2

≥ 11.0 in.

Minimum e= 11.0 in. controls.
c. Consider a section 16 ft from midspan (section 3, Fig. 19.6a): MD (self−weight)= 745 K ⋅ in.,

Ma = 3840 K ⋅ in., and MT = 4585 K ⋅ in.
• Top fibers, unloaded condition, e ≤ 13.3 in. (max) controls.
• Bottom fibers, unloaded condition, e ≤ 14.4 in.
• Top fibers, loaded condition, e ≥− 1.3 in.
• Bottom fibers, loaded condition, e≥ 1.9 in. (min) controls.

d. Consider a section 3 ft from the end (anchorage length): MD = 314 K ⋅ in., Ma = 1620 K ⋅ in.,
and MT = 1934 K ⋅ in.
• Top fibers, unloaded condition, e≤ 12.1 in. (max) controls.
• Bottom fibers, unloaded condition, e≤ 13.3 in.
• Top fibers, loaded condition, e ≥− 10 in.
• Bottom fibers, loaded condition, e≥− 6.7 in. (min) controls.

4. The tendon profile is shown in Fig. 19.6. The eccentricity chosen at midspan is e= 14.5 in., which
is adequate for section B at 8 ft from midspan. The centroid of the prestressing steel is horizontal
between A and B and then harped linearly between B and the end section at E. The eccentricities at
sections C and D are calculated by establishing the slope of line BE, which is 14.5/16= 0.91 in./ft.
The eccentricity at C is 7.25 in. and at D it is 2.72 in. The tendon profile chosen satisfies the upper
and lower limits of the eccentricity at all sections.

Harping of tendons is performed as follows:

a. Place the 20 tendons ( 7
16

diameter) within the middle third of the beam at spacings of 2 in., as
shown in Fig. 19.6a. To calculate the actual eccentricity at midspan section, take moments for
the number of tendons about the baseline of the section:

Distance from base = 1
20

(16 × 5 + 4 × 11) = 6.2 in.

e (midspan) = yb − 6.2 in.

= 20.8 − 6.2 = 14.6 in.

which is close to the 14.5 in. assumed. If the top two tendons are placed at 3 in. from the row
below them, then the distance from the base becomes 1

20
(16 × 5 + 2 × 10 + 2 × 13) = 6.3 in.

The eccentricity becomes 20.8− 6.3= 14.5 in., which is equal to the assumed eccentricity.
Practically, all tendons may be left at 2 in. spacing by neglecting the difference of 0.1 in.

b. Harp the central 12 tendons only. The distribution of tendons at the end section is shown in
Fig. 19.6a. To check the eccentricity of tendons, take moments about the centroid of the con-
crete section for the 12 tendons at top and the 8 tendons left at bottom:

e = 1
20

(8 × 14.5 − 12 × 9.2) = 0.28 in.

This value of e is small and adequate. The actual eccentricity at 3 ft from the end section is

e = 3
16

(14.5 − 0.28) + 0.28 = 2.95 in. (3 in.)

The actual eccentricity at 8 ft from the end section is

e = 1
2
(14.5 − 0.28) + 0.28 = 7.4 in.
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5. Limited values of Fi: The value of Fi used in the preceding calculations is Fi = 365.9 K. Check
minimum Fi by Eq. 19.31:

Min. Fi =
1

Kb + Kt

[(
1
𝜂
− 1

)
MD +

ML

𝜂
−

ft AKt

𝜂

]
− (fti AKb)

= 1
9.4 + 8.6

[( 1
0.8423

− 1
)

1341 + 6912
0.843

− 0.424 × 372 × 8.6
0.843

(0.19 × 372 × 9.4)
]
= 343.1 K

which is less than the Fi used. Check maximum Fi using Eq. 19.32:

Max. Fi =
1

Kb + Kt

[(
1 − 1

𝜂

)
MD −

ML

𝜂
+

fc AKb

𝜂
+ (fci AKt)

]

= 1
18

[(
1 − 1

0.843

)
1341 − 6912

0.843
+ (2.25 × 3.72 × 9.4)

0.843
+ (2.4 × 3.72 × 8.6)

]

= 475.7 K

which is greater than the Fi used. Therefore, the critical section at midspan is adequate.
6. Check prestress losses, recalling that F0 = 175 ksi and Aps = 2.178 in.2

Total F0 = 2.178 × 175 = 381 K

Ec = 4000 ksi

n =
Es

Ec
= 29

4.0
= 7.25

where n can be assumed to be 7, and MD at midspan= 1341 K ⋅ in.

Fi =
F0 + nApsfc (DL) × 2

3

1 + (nAps)(1∕A + e2∕I)
(Eq. 19.5)

The value of fc due to the distributed dead load is multiplied by 2
3

to reflect the parabolic
variation of the dead-load stress along the span, giving a better approximation of Fi.
a. Determine the average value of e2, as adopted in the beam. The curve representing e2 is shown

in Fig. 19.6a:

Average e2 = 1
24

[(1
3
× 3 × 9

)
+ (9 × 13) +

(1
3
× 13 × 201

)
+ (210 × 8)

]

= 111.5 in.2

e = 10.56 in.

The area of a parabola is one-third the area of its rectangle.
b. Stress due to dead load at the level of the tendons is

fc(DL) = 1341 × 10.56
66, 862

= 0.212 ksi

Therefore,

Fi =
381 + 7(2.178) × 0.212 × 2∕3

1 + (7 × 2.178)
(

1
372

+ 111.5
66,862

) = 358 K
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Elastic loss is 381− 358= 23 K= 6.1%. This value is greater than the assumed elastic loss
of 4%.

Elastic loss per unit steel area = 23
2.178

= 10.6 ksi

Fi per unit steel area = 358
2.178

= 164.4 ksi

c. Time-dependent losses:

Loss due to shrinkage is 8.7 ksi (as before). Loss due to creep ∶

Elastic strain =
Fi

AcEc
= 358

372 × 4000
= 0.240 × 10−3

𝛥fs = Cc(𝜀crEs)

Let Cc = 1.5. Then

𝛥fs = 1.5(0.24 × 10−3 × 29, 000) = 10.4 ksi

Percent loss = 10.4
164.4

= 6.3%

Loss due to relaxation of steel is 7 ksi (as before). Time-dependent losses equal
8.7+ 10.4+ 7= 26.1 ksi, for a percentage loss of 26.1/164.4= 15.8%, which is very close to
the previously estimated value of 15.7%.

F = 𝜂Fi = (1 − 0.158)Fi = 0.842Fi

𝜂 = 0.842

19.5 DESIGN OF FLEXURAL MEMBERS

19.5.1 General

The previous section emphasized that the stresses at the top and bottom fibers of the critical
sections of a prestressed concrete member must not exceed the allowable stresses for all cases or
stages of loading. In addition to these conditions, a prestressed concrete member must be designed
with an adequate factor of safety against failure. The ACI Code requires that the moment due to
the factored service loads, Mu, must not exceed 𝜙Mn, the flexural strength of the designed cross
section.

For the case of a tension-controlled, prestressed concrete beam, failure begins when the steel
stress exceeds the yield strength of steel used in the concrete section. The high-tensile prestressing
steel will not exhibit a definite yield point, such as that of the ordinary mild steel bars used in
reinforced concrete. But under additional increments of load, the strain in the steel increases at an
accelerated rate, and failure occurs when the maximum compressive strain in the concrete reaches
a value of 0.003 (Fig. 19.7).

The limits for reinforcement of prestressed concrete flexural members according to the ACI
Code, Sections 7.6.2, 8.6.2, and 9.6.2, is based on the net tensile strain for tension-controlled,
transition, or compression-controlled sections in accordance with the ACI Code, Section 21.2.2.2,
as was explained here in this textbook, Section 3.5. The strength reduction factor, 𝜙, was given
earlier in Section 3.7 of this textbook based on the ACI Code, Section 21.2.1.
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Figure 19.7 Factored moment capacity of prestressed concrete beams.

19.5.2 Rectangular Sections

The nominal moment capacity of a rectangular section may be determined as follows (refer to
Fig. 19.7):

Mn = C
(

dp −
1
2

a
)
= T

(
dp −

1
2

a
)

(19.34)

where T=Aps fps and C= 0.85 f ′c ab. For C= T,

a =
Aps fps

0.85 f ′c b
=

𝜌p fps

0.85 f ′c
dp (19.35)

where the prestressing steel ratio is 𝜌p =Aps/bdp, and Aps and fps refer to the area and tensile stress
of the prestressing steel. Let

𝜔p = 𝜌p

( fps

f ′c

)
≤ 0.32𝛽1
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Then
a =

𝜔p

0.85
dp (19.36)

The quantity 𝜔p is a direct measure of the force in the tendon. To ensure a tension-controlled
behavior, 𝜔p must not exceed 0.32𝛽1, which corresponds to a net tensile strain, 𝜀t, of 0.005. Note
that the value of 𝛽1 = 0.85 for f ′c ≤ 4 ksi and reduces by 0.05 for each 1 ksi greater than 4 ksi (ACI
Code, Section 22.2.2.4.3). Mn can also be written as follows:

Mn =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Aps fps

(
dp −

1
2

a
)

Aps fpsdp

(
1 −

𝜌p fps

1.7 f ′c

)
(19.37)

Aps fpsdp

(
1 −

𝜔p

1.7

)
(19.38)

and Mu =𝜑Mn.
In the preceding equations, fps indicates the stress in the prestressing steel at failure. The actual

value of fps may not be easily determined. Therefore, the ACI Code, Section 20.3.2.3.1, permits fps
to be evaluated as follows (all stresses are in psi). For bonded tendons,

fps = fpu

[
1 −

𝛾p

𝛽1

(
𝜌p ×

fpu

f ′c

)]
(19.39)

For unbonded tendons in members with a span-to-depth ratio less than or equal to 35,

fps =
(

fse + 10, 000 +
f ′c

100𝜌p

)
≤ fpy (19.40)

provided that fse ≥ 0.5 fpu and that fps for unbonded tendons does not exceed either fpy or
fse + 60, 000 psi. For unbonded tendons in members with a span-to-depth ratio greater than 35,

fps =
(

fse + 10, 000 +
f ′c

300𝜌p

)
(19.41)

but not greater than fpy or fse + 30, 000 psi, where

𝛾p = factor for type of prestressing tendon

=
⎧
⎪
⎨
⎪
⎩

0.55 for fpy∕fpu not less than 0.8
0.4 for fpy∕fpu not less than 0.85
0.28 for fpy∕fpu not less than 0.9

fpu = specified tensile strength of prestressing steel

fse = effective stress in prestressing steel after all losses

fpy = specified yield strength of prestressing steel

In the event that 𝜔p > 0.32 𝛽1, a compression-controlled, prestressed concrete beam may
develop. To ensure a ductile failure, 𝜔p is limited to a maximum value of 0.32𝛽1. For 𝜔p = 0.32𝛽1,
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a= 0.377 𝛽1dp (from Eq. 19.36). Substituting this value of a in Eq. 19.38,

Mn = Aps fpsdp

(
1 −

0.32𝛽1

1.7

)

= (𝜌pbdp) fpsdp(1 − 0.188𝛽1)

= 𝜔pf ′c (1 − 0.188𝛽1)bd2
p

= (0.32𝛽1 − 0.06𝛽2
1 )f

′
c bd2

p (19.42)

for f ′c = 5 ksi, 𝛽1 = 0.8. Then
Mn = 0.22 f ′c bd2

p = 1.09 bd2
p

Similarly, for f ′c = 4 ksi, Mn = 0.915 bd2
p, and for f ′c = 6 ksi, Mn = 1.238 bd2

p .

19.5.3 Flanged Sections

For flanged sections (T- or I-sections), if the stress block depth a lies within the flange, it will be
treated as a rectangular section. If a lies within the web, then the web may be treated as a rectangular
section using the web width, b𝑤, and the excess flange width (b− b𝑤) will be treated similarly to
that of reinforced concrete T-sections discussed in Chapters 3 and 4. The design moment strength
of a flanged section can be calculated as follows (see Fig. 19.7):

Mn = Mn1
(moment strength of web) + Mn2

(moment strength of excess flange)

= Apw fps

(
dp −

1
2

a
)
+ Apf fps

(
dp −

1
2

hf

)

Mu = 𝜙Mn and a =
Apw fps

0.85 f ′c b𝑤
(19.43)

where
Apw = Aps −Apf
Apf = [0.85 f ′c (b − b𝑤)hf ]∕ fps

hf = thickness of flange

Note that the total prestressed steel, Aps, is divided into two parts, Apw and Apf, developing the web
and flange moment capacity. For flanged sections, the reinforcement index, 𝜔pw, must not exceed
0.32𝛽1 for tension-controlled sections, where

𝜔pw =
( Apw

b𝑤dp

)( fps

f ′c

)
= prestressed web steel ratio ×

( fps

f ′c

)

19.5.4 Partial Prestressed Reinforcement

In some cases, nonprestressed reinforcing bars (As) are placed in the tension zone of a prestressed
concrete flexural member together with the prestressing steel (Aps) to increase the moment strength
of the beam. In this case, the total steel (Aps and As) is considered in the moment analysis. For
rectangular sections containing prestressed and nonprestressed steel, the design moment strength,
𝜑Mn, may be computed as follows:

Mn = Aps fps

(
dp −

1
2

a
)
+ As fy

(
d − 1

2
a
)

(19.44)
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where

a =
Aps fps + As fy

0.85 f ′c b

Also, dp and d are the distances from extreme compression fibers to the centroid of the prestressed
and nonprestressed steels, respectively. For flanged sections,

Mn = Apw fps

(
dp −

a
2

)
+ As fy

(
d − a

2

)
+ Apf fps

(
dp −

hf

2

)
(19.45)

where

Apw = Aps − Apf

a =
Aps fps + As fy

0.85 f ′c b𝑤
For rectangular sections with compression reinforcement, and taking moments about the force C,

Mn = Aps fps

(
dp −

a
2

)
+ As fy

(
d − a

2

)
+ A′

s fy
(a

2
− d′

)
(19.46)

where

a =
Aps fps + As fy − A′

s fy
0.85 f ′c b

This equation is valid only if compression steel yields. The condition for compression steel to
yield is

Aps fps + As fy − A′
s fy

bd
≥ 0.85𝛽1

f ′c d′

d

(
87

87 − fy

)

Prestressed concrete beds for slabs and wall panels.



19.5 Design of Flexural Members 761

If this condition is not met, then compression steel does not yield. In this case, A′
s may be neglected

(let A′
s = 0), or alternatively, the stress in A′

s may be determined by general analysis, as explained
in Chapter 3.

When prestressed and nonprestressed reinforcement are used in the same section, Eq. Eq.
19.39 should read as follows:

fps = fpu

[
1 −

𝛾p

𝛽1

(
𝜌p

fpu

f ′c
+ d

dp

(
𝜔 − 𝜔′)

)]
(19.47)

(ACI Code, Section 20.3.2.3.1). If any compression reinforcement is taken into account when cal-
culating fps, the term

𝜌p

fpu

f ′c
+ d

dp
(𝜔 − 𝜔′)

must be greater than or equal to 0.17 and d′ must be less than or equal to 0.15dp, where d, d′, and dp
are the distances from the extreme compression fibers to the centroid of the nonprestressed tension
steel, compression steel, and prestressed reinforcement, respectively,

𝛾p = factor for type of prestressing tendon

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0.55 for
fpy

fpu
not less than0.8

0.40 for
fpy

fpu
not less than0.85

0.28 for
fpy

fpu
not less than0.90

𝛽1 = 0.85 for f ′c ≤ 4ksi less0.05 foreach1ksi increase in f ′c , but𝛽1 ≥ 0.65.

1. For rectangular sections, the ACI Code, Section 21.2.2.2, limits the reinforcement ratio as
follows (𝜀t ≥ 0.005 for tension-controlled sections):

𝜔p +
d
dp
𝜔 ≤ 0.32𝛽1

where

𝜔p = 𝜌p

( fps

f ′c

)
and 𝜌p =

Aps

bd
(prestressed steel)

𝜔 = 𝜌

(
fy
f ′c

)
and 𝜌 =

As

bd
(nonprestressed steel)

2. If ordinary reinforcing bars A′
s are used in the compression zone, then the condition becomes

𝜔p +
d
dp

(𝜔 − 𝜔′) ≤ 0.32𝛽1

where 𝜔′ = 𝜌′( fy∕f ′c ) and 𝜌′ = A′
s∕bd. This reinforcement limitation is necessary to ensure

a plastic failure of underreinforced concrete beams.
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3. For flanged sections, the steel area required to develop the strength of the web (Apw) is used
to check the reinforcement index.

𝜔pw(web) = 𝜌pw

( fps

f ′c

)
≤ 0.32𝛽1

where

𝜌pw =
Apw

b𝑤dd

If nonprestressed reinforcement is used, then the reinforcement limitations are

𝜔pw + d
dpw

(𝜔𝑤 − 𝜔′
𝑤) ≤ 0.32𝛽1

where

𝜔𝑤 =
As

b𝑤d

(
fy

f ′c

)
𝜔′
𝑤 =

A′
s

b𝑤d

(
fy
f ′c

)

When compression steel A′
s is not used, then 𝜔′

𝑤 = 0. The preceding reinforcement condi-
tions must be met in the analysis and design of partially prestressed concrete members.

For class C of prestressed concrete flexural members, where ft > 12
√

f ′c (cracked section),
crack control provisions should be used as explained in Section 6.7 of this textbook. When
using Eq. 6.18 for the maximum spacing s, the ACI Code, Section 24.3.2, specifies the fol-
lowing:

a. For tendons, use 2
3

of the spacing s.

b. For a combination of nonprestressed reinforcement and tendons, use 5
6

of the spacing s.

c. For tendons, use𝛥fps in place of fs, where𝛥fps is the difference between the stress computed
in the prestressing tendons at service load based on a cracked section and the decompres-
sion stress, fdc, in the prestressing tendons, which may be taken conservatively, to be equal
to the effective prestress, fse. Note that 𝛥fps should not exceed 36 ksi. If it is less than or
equal to 20 ksi, the spacing requirement will not apply. Equation 6.17 can be written as
follows:

s =
(2

3

)[
15

(
40
𝛥 fps

)
− 2.5Cc

]

19.6 CRACKING MOMENT

Cracks may develop in a prestressed concrete beam when the tensile stress at the extreme fibers
of the critical section equals or exceeds the modulus of rupture of concrete, fr. The value of fr
for normal-weight concrete may be assumed to be equal to 7.5𝜆

√
f ′c where 𝜆= 1.0. The stress at

the bottom fibers of a simply supported beam produced by the prestressing force and the cracking
moment is

𝜎b = −F
A
−

(Fe)yb

I
+

Mcryb

I

When 𝜎b = fr = 7.5𝜆
√

f ′c , then the cracking moment is

Mcr =
I
yb

(
7.5𝜆

√
f ′c +

F
A
+

(Fe) yb

I

)
(19.48)
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The maximum tensile stress after all losses is 7.5𝜆
√

f ′c , which represents fr. In this case, prestressed
concrete beams may remain uncracked at service loads. To ensure adequate strength against crack-
ing, the ACI Code, Sections 8.6.2.2 requires that the factored moment of the member 𝜙Mn be at
least 1.2 times the cracking moment, Mcr.

Example 19.5

For the beam of Example 19.4, check the design strength and cracking moment against the ACI Code
requirements.

Solution

1. Check if the stress block depth a lies within the flange.

a =
Aps fps

0.85 f ′c b
(Eq. 19.35)

Aps

(
of 20 tendons

7
16

in. in diameter
)
= 2.178 in.2

Let fpy/fpu = 0.85, 𝜌p = 0.4, and 𝛾p/𝛽1 = 0.4/0.8= 0.5. For bonded tensions,

fps = fpu

(
1 −

𝛾p

𝛽1
𝜌p ×

fpu

f ′c

)
(Eq. 19.39)

dp = 40 − 6.3 = 33.7 in.

𝜌p =
Aps

bdp
= 2.178

18 × 33.7
= 0.00359

Given fpu = 250 ksi,

fps = 250
[
1 − 0.5 (0.00359) × 250

5

]
= 228 ksi

a = 2.178 × 228
0.85 × 5 × 18

= 6.5 in.

which is greater than 6 in. Therefore, the section acts as a flanged section.
2. For flanged sections,

Mn = Apw fps

(
dp −

1
2

a
)
+ Apf fps

(
dp −

1
2

hf

)

where

Apw (web) = Aps − Apf (flange)

Apf =
1
fps

[0.85 f ′c (b − b𝑤)hf ]

= 1
228

[0.85 × 5(18 − 6)6] = 1.342 in.2

Apw = 2.178 − 1.342 = 0.836 in.2

a =
Apw fps

0.85 f ′c b𝑤
= 0.836(228)

0.85 × 5 × 6
= 7.5 in.
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Mn = 0.836(228)
(

33.7 − 7.5
2

)
+ 1.342 × 228

(
33.7 − 6

2

)

= 15, 102 K ⋅ in. = 1258.5 K ⋅ ft

𝜙Mn = 0.9(1258.5) = 1132.7 K ⋅ ft

Check the reinforcement index for the flanged section:

𝜌pw (web) =
Apw

b𝑤dp
= 0.836

6 × 33.7
= 0.00413

𝜔pw (web) = 𝜌pw

fps

f ′c
≤ 0.32𝛽1 = 0.32 × 0.8 = 0.256

(𝛽1 = 0.8 for f ′c = 5 ksi.)

𝜔pw = 0.00413
228
5

= 0.188 < 0.256 𝜙 = 0.9

3. Calculate the external factored moment due to dead and live loads:

Dead load = self − weight + additional dead load

= 0.388 + 0.9 = 1.29 K∕ft

Live load = 1.1 K∕ft

U = 1.2D + 1.6L

Mu = (48)2

8
[1.2(1.29) + 1.6(1.1)] = 952.7 K ⋅ ft

This external moment is less than the factored moment capacity of the section of 1132.7 K ⋅
ft; therefore, the section is adequate.

4. The cracking moment (Eq. 19.48) is

Mcr =
I
yb

(
7.5𝜆

√
f ′c +

F
A
+ (Fe)

yb

I

)

From Example 19.4 F= 306.2 K, A= 372 in.2, e= 14.5 in., yb = 20.8 in., I= 66, 862 in.4,
f ′c = 5 ksi, and 7.5𝜆

√
f ′c = 7.55000 = 530 psi.

Mcr =
66, 862

20.8

[
0.53 + 306.2

372
+ (306.2) (14.5)(20.8)

66, 862

]

= 8790 K ⋅ in. = 732.5 K ⋅ ft

Check that 1.2 Mcr ≤𝜙Mn.

1.2Mcr = 1.2(732.5) = 879 K ⋅ ft

This value is less than 𝜙Mn= 1132.7 K⋅ft. Thus, the beam is adequate against cracking.

19.7 DEFLECTION

Deflection of a point in a beam is the total movement of the point, either downward or upward,
due to the application of load on that beam. In a simply supported prestressed concrete beam, the
prestressing force is usually applied below the centroid of the section, causing an upward deflection
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called camber. The self-weight of the beam and any external gravity loads acting on the beam will
cause a downward deflection. The net deflection will be the algebraic sum of both deflections.

In computing deflections, it is important to consider both the short-term, or immediate, deflec-
tion and the long-term deflection. To ensure that the structure remains serviceable, the maximum
short- and long-term deflections at all critical stages of loading must not exceed the limiting values
specified by the ACI Code (see Section 6.3 in this text).

The deflection of a prestressed concrete member may be calculated by standard deflection
equations or by the conventional methods given in books on structural analysis. For example, the
midspan deflection of a simply supported beam subjected to a uniform gravity load 𝑤 is equal
to (5𝑤L4/384EI). The modulus of elasticity of concrete is Ec = 33𝜔1.5

√
f ′c = 57, 000

√
f ′c for

normal-weight concrete.
The moment of inertia of the concrete section I is calculated based on the properties of the

gross section for an uncracked beam. This case is appropriate when the maximum tensile stress
in the concrete extreme fibers does not exceed the modulus of rupture of concrete, fr = 7.5

√
f ′c

(class U beams). When the maximum tensile stress based on the properties of the gross section
exceeds 7.5

√
f ′c , the effective moment of inertia, Ie, based on the cracked and uncracked sections

must be used as explained in Chapter 6 (class T and C beams). Typical midspan deflections for
simply supported beams due to gravity loads and prestressing forces are shown in Table 19.3.

Example 19.6

For the beam of Example 19.4, calculate the camber at transfer and then calculate the final anticipated
immediate deflection at service load.

Solution

1. Deflection at transfer:
a. Calculate the downward deflection due to dead load at transfer, self-weight in this case. For a

simply supported beam subjected to a uniform load,

𝛥D (dead load) =
5𝑤L4

384EI

From Example 19.4, 𝑤D = 388 lb/ft, L= 48 ft, Eci = 3600 ksi, and I= 66, 862 in.4

𝛥D =
5(0.388∕12)(48 × 12)4

384(3600)(66, 862)
= 0.192 in. (downward)

b. Calculate the camber due to the prestressing force. For a simply supported beam harped at
one-third points with the eccentricity e1 = 14.5 in. at the middle third and e2 = 0 at the ends,

𝛥p =
23(Fie1)L2

216EciI
(Table 19.3)

= 23(365.9 × 14.5)(48 × 12)2

216(3600)(66, 862)
= −0.779 in. (upward)

c. Final camber at transfer is −0.779+ 0.192=− 0.587 in. (upward).
2. Deflection at service load: The total uniform service load is WT = 0.388+ 0.9+ 1.1= 2.388 K/ft,

and Ec = 4000 ksi. The downward deflection due to WT is

𝛥𝑤 =
5WT L4

384EcI
=

5(2.388∕12)(48 × 12)4

384(4000)(66, 862)
= +1.067 in. (downward)
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Table 19.3 Midspan Deflections of Simply Supported Beams

Schematic Deflecion Equations

Camber due to prestressing force

𝛥 = (Fe)L2

8EI
(Horizontal tendons)

(1)

𝛥 = FL2

8EI

[5
6

e1 +
1
6

e2

]

When e2 = 0

𝛥 =
5(Fe1)L2

48EI

(2)

(3)

𝛥 = FL2

8EI

[
e1 +

4
3

( a
L

)2
(e2 − e1)

]
(4)

When a = 1
3

L: (5)

𝛥 = FL2

8EI

[
e1 +

4
27

(
e2 − e1

)]

When a = 1
3

L and e2 = 0

𝛥 =
23(Fe1)L2

216EI
(6)

𝛥 = FL2

24EI
[2e1 + e2] (7)

When e2 = 0:

𝛥 =
(Fe1)L2

12EI
(8)

Deflection due to gravity loads

𝛥 = 5𝑤L4

834EI
(9)

𝛥 = PL3

48EI
(10)
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The camber due to prestressing force F= 306.2 K and Ec = 4000 ksi is

𝛥p = 23(306.2 × 14.5)(48 × 12)2

216(4000)(66, 862)
= −0.587 in. (upward)

The final immediate deflection at service load is

𝛥 = 𝛥𝑤 − 𝛥p = 1.067 − 0.587 = +0.48 in. (downward)

19.8 DESIGN FOR SHEAR

The design approach to determine the shear reinforcement in a prestressed concrete beam is almost
identical to that used for reinforced concrete beams. Shear cracks are assumed to develop at 45∘
measured from the axis of the beam. In general, two types of shear-related cracks form. One type is
due to a combined effect of flexure and shear: The cracks start as flexural cracks and then deviate and
propagate at an inclined direction due to the effect of diagonal tension. The second type, web-shear
cracking, occurs in beams with narrow webs when the magnitude of principal tensile stress is high
in comparison to flexural stress. Stirrups must be used to resist the principal tensile stresses in both
cases. The ACI design criteria for shear will be adopted here.

19.8.1 Basic Approach

The ACI design approach is based on ultimate strength requirements using the load factors men-
tioned in Chapter 3. When the factored shear force, Vu, exceeds half the nominal shear strength
(𝜙Vc/2), shear reinforcement must be provided. The required design shear force, Vu, at each section
must not exceed the nominal design strength, 𝜙Vn, of the cross section based on the combined
nominal shear capacity of concrete and web reinforcement:

Vu ≤ 𝜙Vu ≤ 𝜙(Vc + Vs) (19.49)

where
Vc = nominal shear strength of concrete
Vs = nominal shear capacity of reinforcement
𝜙 = strength reduction factor= 0.75
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When the factored shear force, Vu, is less than 1
2
𝜙Vc, minimum shear reinforcement is required.

19.8.2 Shear Strength Provided by Concrete (Prestressed)

The ACI Code, Section 22.5.8.2, presents a simple empirical expression to estimate the nominal
ultimate shear capacity of a prestressed concrete member in which the tendons have an effective
prestress, fse, of at least 40% of the specified tensile strength, fpu:

Vc =
(

0.6𝜆
√

f ′c + 700
Vudp

Mu

)
b𝑤d (19.50)

where
Vu, Mu = factored shear and moment at section under consideration

b𝑤 = width of web
dp (in term Vu dp/Mu) = distance from compression fibers to centroid of prestressing steel

dp (in Vci or Vcw equations) = larger of above d or 0.8h (ACI Code, Section 22.5.2.1)

The use of Eq. 19.50 is limited to the following conditions:

1. The quantity Vudp/Mu ≤ 1.0 (to account for small values of Vu and Mu).

2. Vc ≥ (2𝜆
√

f ′c )b𝑤dp (minimum Vc).
3. Vc ≤ (5𝜆

√
f ′c )b𝑤dp (maximum Vc).

The variation of the concrete shear capacity for a simply supported prestressed concrete beam
subjected to a uniform load is shown in Fig. 19.8. Note that the maximum shear reinforcement may
be required near the supports and near one-fourth of the span where 𝜙Vs reaches maximum values.
In contrast, similar reinforced concrete beams require maximum shear reinforcement (or minimum
spacing) only near the support where maximum 𝜙Vs develops.

The values of Vc calculated by Eq. 19.50 may be conservative sometimes; therefore, the
ACI Code, Section 22.5.8.3, gives an alternative approach for calculating Vc that takes into con-
sideration the additional strength of concrete in the section. In this approach, Vc is taken as the
smaller of two calculated values of the concrete shear strength Vci and Vcw (Fig. 19.8). Both are
explained next.

The shear strength, Vci, is based on the assumption that flexural-shear cracking occurs near
the interior extremity of a flexural crack at an approximate distance of d/2 from the load point in the
direction of decreasing moment. The ACI Code, Section 22.5.8.3.1, specifies that Vci be computed
as follows:

Vci = (0.6𝜆
√

f ′c )b𝑤dp + Vd +
ViMcr

Mmax
(19.51)

but it is not less than (1.7𝜆
√

f ′c )b𝑤d, where

Vd = shear force at section due to unfactored dead load
Vi = factored shear force at section due to externally applied loads occurring simultaneously

with Mmax
Mmax = maximum factored moment at section due to externally applied loads
Mcre = moment causing flexural cracking at section due to externally applied load
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Figure 19.8 Distribution of shear forces along span. The middle diagram shows shear
capacity of a simply supported prestressed concrete beam. The bottom diagram shows
ACI analysis. (Stirrups are required for shaded areas.)

The cracking moment can be determined from the following expression ACI Code, Section
22.5.8.3.1:

Mcre =
I
yt
(6𝜆

√
f ′c + fpe − fd) (19.52)

where
I = moment of inertia of section resisting external factored loads
yt = distance from centroidal axis of gross section neglecting reinforcement to extreme fiber in tension
fpe = compressive strength at extreme fibers of concrete section due to effective prestress force after

all losses
fd = stress due to unfactored dead load at extreme fiber, where tensile stress is caused by external loads
𝜆 = modification factor for concrete

The web-shear strength, Vcw, is based on shear cracking in a beam that has not cracked by
flexure. Such cracks develop near the supports of beams with narrow webs. The ACI Code, Section
22.5.8.3, specifies that Vcw be computed as follows:

Vcw = (3.5𝜆
√

f ′c + 0.3 fpc)b𝑤dp + Vp (19.53)
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where
Vp = vertical component of effective prestress force at section considered
fpc = compressive stress (psi) in concrete (after allowance for prestress losses) at centroid of section

resisting applied loads or at junction of web and flange when centroid lies within flange

Alternatively, Vcw may be determined as the shear force that produces a principal tensile stress
of 4𝜆

√
f ′c at the centroidal axis of the member or at the intersection of the flange and web when

the centroid lies within the flange. The equation for the principal stresses may be expressed as
follows:

ft = 4𝜆
√

f ′c =
√

𝑣2
cw +

(1
2

fpc

)2

− 1
2

fpc

or

Vcw = ft

⎛
⎜
⎜
⎝

√
1 + fpc

ft

⎞
⎟
⎟
⎠

b𝑤dp (19.54)

where ft = 4𝜆
√

f ′c . When applying Eqs. 19.51 and Eqs. 19.53 or 19.54, the value of d is taken as
the distance between the compression fibers and the centroid of the prestressing tendons but is not
less than 0.8h.

The critical section for maximum shear is to be taken at h/2 from the face of the support.
The same shear reinforcement must be used at sections between the support and the section
at h/2.

19.8.3 Shear Reinforcement

The value of Vs must be calculated to determine the required area of shear reinforcement.

Vu = 𝜙(Vc + Vs) (Eq. 19.49)

Vs =
1
𝜙
(Vu − 𝜙Vc) (Eq. 19.55)

For vertical stirrups,

Vs =
A𝑣 fyd

s
(Eq. 19.56)

and

A𝑣 =
Vss

fydp
or s =

A𝑣 fydp

Vs
(Eq. 19.57)

where A𝑣 is the area of vertical stirrups and s is the spacing of stirrups. Equations for inclined
stirrups are the same as those discussed in Chapter 8.

19.8.4 Limitations

1. Maximum spacing, smax, of the stirrups must not exceed 0.75h or 24 in. If Vs exceeds
4
√

f ′c b𝑤dp, the maximum spacing must be reduced to half the preceding values (ACI Code,
Section 9.7.6.2.2).

2. Maximum shear, Vs, must not exceed 8
√

f ′c b𝑤dp; otherwise, increase the dimensions of the
section (ACI Code, Section 22.5.1.2).



19.8 Design for Shear 771

3. The minimum shear reinforcement, A𝑣, required by the ACI Code is

A𝑣, min = 0.75
√

f ′c

(
b𝑤s

fyt

)
≥

50b𝑤s

fyt
(Eq. 19.58)

When the effective prestress, fpe, is greater than or equal to 0.4fpu, the minimum A𝑣 is

A𝑣,min =
Aps

80
×

fpu

fyt
× s

dp
×

√
dp

b𝑤
(Eq. 19.59)

The effective depth, dp, need not be taken less than 0.8h. Generally, Eq. 19.59 requires greater
minimum shear reinforcement than Eq. 19.58.

Example 19.7

For the beam of Example 19.4, determine the nominal shear strength and the necessary shear rein-
forcement. Check the sections at h/2 and 10 ft from the end of the beam. Use fy = 60 ksi for the shear
reinforcement, and a live load= 1.33 K/ft. using normal-weight concrete.

Solution

1. For the section at h/2:
h
2
= 40

2
= 20 in. = 1.67 ft from the end

2. The factored uniform load on the beam is

Wu = 1.2(0.388 + 0.9) + 1.6 × 1.33 = 3.68 K∕ft

Vu at a distance
1
2

h = 3.68(24 − 1.67) = 82.2 K

Using the simplified ACI method (Eq. 19.50), determine Mu at section h/2:

Mu = (3.68 × 21) × 1.67 − 3.68
(1.67)2

2
= 142.4 K ⋅ ft = 1708 K ⋅ in.

The value of dp at section h/2 from the end (Fig. 19.6a) is

dp = 33.7(at midspan) − 16 − 1.67
16

× 14.5 = 20.7 in.

Vudp

Mu

= 82.2 × 20.7
1708

= 0.966 ≤ 1.0

as required by the ACI Code.

Vc =
(

0.6𝜆
√

f ′c + 700
Vudp

Mu

)
b𝑤d

= (0.6 × 1 ×
√

5000 + 700 × 0.996)6 × 20.7 = 91, 800 lb = 91.8 K

Minimum Vc = 2𝜆
√

f ′c b𝑤dp = 2 × 1 ×
√

5000 × 6 × 20.7 = 17.6 K

Maximum Vc = 5𝜆
√

f ′c b𝑤dp = 43.9 K

The maximum Vc of 43.9 K controls.
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3. The alternative approach presented by the ACI Code is that Vc may be taken as the smaller value
of Vci and Vcw.
a. Based on the flexural-shear cracking strength,

Vci =
(

0.6𝜆
√

f ′c
)

b𝑤dp +
(

Vd +
ViMcre

Mmax

)
(Eq. 19.51)

Calculate each item separately:

(0.6𝜆
√

f ′c )b𝑤dp = 0.6 × 1 ×
√

5000
1000

× 6 × 20.7 = 5.3 K

Vd = unfactored dead load shear = 1.288(24 − 1.67) = 28.8 K

Mmax = maximum factored moment at section (except for weight of beam)

Factored load = 1.2 × 0.9 + 1.6 × 1.3 = 3.13 K∕ft

Mmax = 3.13

[
24 × 1.67 − (1.67)2

2

]
= 121 K∕ft = 1453 K ⋅ in.

Vi = 3.13(24 − 1.67) = 69.9 K

Mcre =
I
yt

(6𝜆
√

f ′c + fpe − fd)

I = 66, 862 in.4 yt = 19.2 in.

fpe = compressive stress due to prestressing force

= F
A
+

Feyb

I

= 306.2
372

+ 306.2(1.5)(20.8)
66, 862

= 0.966 ksi

fd = dead load stress =
MDyb

I

MD = (1.288)
[

24 × 1.67 − (1.67)2

2

]
= 49.8 K ⋅ ft = 598 K ⋅ in.

fd = 598 × 20.8
66, 862

= 0.186 ksi

Mcre =
66, 862

19.2
[6(1.0)

√
5000 + 966 − 186] = 4193 K ⋅ in.

Therefore,

Vci = 5.3 + 28.8 + 69.9
(4193

1453

)
= 235.8 K

and Vci must not be less than (1.7𝜆
√

f ′c )b𝑤dp = (1.7 × 1 ×
√

5000) × 6 × 20.7 = 14.9 K
b. Shear strength based on web-shear cracking is

Vcw = (3.5𝜆
√

f ′c + 0.3 fpc)b𝑤dp + Vp

fpc =
306.2
372

= 0.823 ksi

dp = 20.7 in. or 0.8h = 0.8 × 40 = 32 in. (Eq. 19.53)
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Use dp = 32 in.

Vp = 306.2 × 1
13.2

= 23.2 K

where 1/13.2= slope of tendon profile= 14.5 in./(16× 12).

3.5𝜆
√

f ′c = 3.5 × 1 ×
√

5000 = 248 psi

Therefore,
Vcw = (0.248 + 0.3 + 0.823) × 6 × 32 + 23.2 = 118.2 K

c. Because Vcw <Vci, the value Vcw = 118.2 K represents the nominal shear strength at section
h/2 from the end of the beam. In most cases, Vcw controls at h/2 from the support.

4. Web reinforcement:

Vu = 82.3 K 𝜙Vcw = 0.75 × 118.2 = 88.65 K

Because Vu <𝜙Vcw, Vs = 0; therefore, use minimum stirrups. Use no. 3 stirrups. Reinforcement
A𝑣 = 2× 0.11= 0.22 in.2 Maximum spacing is the least of

s1 = (0.75)h = (0.75) × 40 = 30 in. s2 = 24 in.

Calculate s3 from the equation of minimum web reinforcement:

Min. A𝑣 =
Aps

80
×

fpu

fyt
× s

dp

×

√
dp

b𝑤

0.22 = 2.178
80

× 250
60

×
s3

20.7

√
20.7

6

s3 = 21.6 in. (20 in.) (Eq. 19.59)

Also,

Min. A𝑣 = 0.75
√

f ′c

(
b𝑤s

fyt

)
≥

50b𝑤s

fyt
0.75

√
f ′c = 53

s4 =
A𝑣 fy
53b𝑤

= 0.22 × 60, 000
53 × 6

= 41.5 in.

smax = s3 = 20 in. controls

Thus, use no. 3 stirrups spaced at 20 in.
5. For the section at 10 ft from the end, the calculation procedure is similar to that for the section at

h/2. Using the ACI simplified method,

Vu = 3.68(24 − 10) = 51.5 K

Mu = 3.68

[
24 × 10 − (10)2

2

]
= 699.2 K ⋅ ft = 8390 K ⋅ in.

dp = 33.7 (at midspan) − 16 × 10
16

× 14.5 = 28.3 in.

Vudp

Mu
= 515 × 28.3

8390
= 0.174 < 1.0

Vc = (0.6 × 1 ×
√

5000 + 0.174 × 700)6 × 28.3 = 27, 886 lb = 27.9 K (controls)

Minimum Vc = 17.6 K Maximum Vc = 43.9 K
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6. Using the ACI Code equations to compute Vci and Vcw, calculate Vci first (which controls at this
section):

0.6𝜆
√

f ′c b𝑤dp = 0.6 × 1 ×
√

5000 × 6 × 28.3 = 7.2 K

Vd = 1.288(24 − 10) = 18 K

Mmax = 3.13

[
24 × 10 − (10)2

2

]
= 594.7 K ⋅ ft = 7136 K ⋅ in.

Vi = 3.13(24 − 10) = 43.8 K

fpe =
306.2
372

+ 306.2(9.1)(20.8)
66, 862

= 1.69 ksi

MD = 1.288

[
24 × 10 − (10)2

2

]
= 244.7 K ⋅ ft = 2937 K ⋅ in.

fd = 2937 × 20.8
66, 862

= 0.914 ksi Mcr = 4193 K ⋅ in.

Therefore,

Vci = 7.2 + 18 + 43.8(4193)
7136

= 50.9 K

Vci,min = (1.7 × 1 ×
√

5000)6 × 28.3 = 20.4 K

Thus the minimum is met. Then calculate Vcw:

fpc = 0.893 ksi Vp = 23.2 K (as before)

dp = 28.3 in. or 0.8h = 32 in.

Use dp = 32 in.

Vcw = (3.5𝜆
√

f ′c + 0.3 fpc)b𝑤dp + Vp

= (0.248 + 0.3 × 0.823)6 × 32 + 23.2 = 118.2 K

This value of Vcw is not critical. At about span/4, the critical shear value is Vci (Fig. 19.8).
7. To calculate web reinforcement,

Vu = 51.5 K 𝜙Vci = 0.75 × 50.9 = 38.2 K

Vu = 𝜙(Vc + Vs)

Vs =
1

0.75
(51.5 − 38.2) = 17.7 K

Use no. 3 stirrups; A𝑣 = 0.22 in2. Check maximum spacing: smax = 18 in. (as before).

Required A𝑣 =
Vss

fydp
= 17.7 × 18

60 × 28.3
= 0.187 in.2

The value of A𝑣 used is 0.22 in.2 > 0.187 in2. Therefore, use no. 3 stirrups spaced at 14 in.
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19.9 PRELIMINARY DESIGN OF PRESTRESSED CONCRETE FLEXURAL MEMBERS

19.9.1 Shapes and Dimensions

The detailed design of prestressed concrete members often involves a considerable amount of com-
putation. A good guess at the dimensions of the section can result in a savings of time and effort.
Hence it is important to ensure, by preliminary design, that the dimensions are reasonable before
starting the detailed design.

At the preliminary design stage, some data are usually available to help choose proper dimen-
sions. For example, the bending moments due to the applied external loads, the permissible stresses,
and the data for assessing the losses are already known or calculated.

The shape of the cross section of a prestressed concrete member may be a rectangular, T-,
I-, or box section. The total depth of the section, h, may be limited by headroom considerations or
may not be specified. Given the freedom of selection, an empirical practical choice of dimensions
for a preliminary design is as follows (Fig. 19.9):

1. Total depth of section is h = 1
20

to 1
30

of the span L; for heavy loading h=L/20 and for light

loading h=L/30 or h = 2
√

MD + ML, where M is in K⋅ft.
2. The depth of top flange is hf = h/8 to h/6.
3. The width of top flange is b≥ 2h/5.
4. The thickness of the web is b𝑤 ≥ 4 in. Usually b𝑤 is taken as h/30+ 4 in.
5. The values of b𝑤 and t are chosen to accommodate and uniformly distribute the prestressing

tendons, keeping appropriate concrete cover protection.
6. The approximate area of the concrete section required is

Ac (ft2) =
MD + Mt

30h
where MD +ML are in K⋅ft and h is in ft. In SI units,

Ac (m2) =
MD + ML

1450h
(MD + ML in kN ⋅ m and h in m)

Figure 19.9 Proportioning prestressed concrete sections.
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Table 19.4 AASHTO Girders, Normal-Weight Concrete 25

Designation A (in.2) I (in.4) yb (in.) Zb (in.3) Zt (in.3) Weight (lb/ft)

Type II 369 50, 979 15.83 3220 2527 384
Type III 560 125, 390 20.27 6186 5070 593
Type IV 789 260, 741 24.73 10, 544 8908 822

For practical and economical design of prestressed concrete beams and floor slabs, the precast
concrete industry has introduced a large number of standardized shapes and dimensions from which
the designer can choose an adequate member. Tables of standard sections are available in the PCI
Design Handbook [3]. AASHTO [23] has also presented standard girders to be used in bridge
construction (Table 19.4).

19.9.2 Prestressing Force and Steel Area

Once the shape, depth, and other dimensions of the cross section have been selected, approx-
imate values of the prestressing force and the area of the prestressing steel, Aps, can be
determined.

From the internal couple concept, the total moment, MT, due to the service dead and live loads
is equal to the tension force, T, times the moment arm, jd:

MT = T(jd) = C(jd)

MT = Aps fse(jd) Aps =
MT

fse(jd)
where Aps is the area of the prestressing steel and fse is the effective prestressing stress after all
losses. The value of the moment arm, jd, varies from 0.4h to 0.8h, with a practical range of 0.6h to
0.7h. An average value of 0.65 may be used. Therefore,

Aps =
MT

(0.65h) fse
(19.60)

and the prestressing force is

F = T = Aps fse =
MT

0.65h
(19.61)

The prestressing force at transfer is Fi =F/𝜂, where 𝜂 is the factor of time-dependent losses.



19.10 End-Block Stresses 777

The compressive force, C, on the section is equal to the tension force, T:

C = T = Aps fse

In terms of stresses,
C
Ac

=
Aps fse

Ac
= fc1

where fc1
is an assumed uniform stress on the section.

For a preliminary design, a triangular stress distribution is assumed with maximum allow-
able compressive stress, fca, on one extreme fiber; therefore, the average stress is 0.5 fca = fc1

.
The allowable compressive stress in concrete is fca = 0.45 f ′c . Thus, the required concrete area, Ac,
can be estimated from the force, T, as follows:

Ac =
T
fc1

=
Aps fse

fc1

=
Aps fse

0.5 fca
=

Aps fse

0.225 f ′c
(19.62)

Ac =
T

0.5 fca
=

MT

(0.65h)(0.5 fca)
=

MT

0.33 fca
=

MT

0.15 f ′c
(19.63)

This analysis is based on the design for service loads and not for the factored loads. The eccentricity,
e, is measured from the centroid of the section to the centroid of the prestressing steel and can be
estimated approximately as follows:

e = Kb +
MD

Fi
(19.64)

where Kb is the lower Kern limit and MD is the moment due to the service dead load.

19.10 END-BLOCK STRESSES

19.10.1 Pretensioned Members

Much as a specific development length is required in every bar of a reinforced concrete beam, the
prestressing force in a prestressed concrete beam must be transferred to the concrete by embedment
or end anchorage or a combination thereof. In pretensioned members, the distance over which
the effective prestressing force is transferred to the concrete is called the transfer length, lt. After
transfer, the stress in the tendons at the extreme end of the member is equal to 0, whereas the stress
at a distance lt from the end is equal to the effective prestress, fpe. The transfer length, lt, depends
on the size and type of the tendon, surface condition, concrete strength, f ′c , stress, and method of
force transfer. A practical estimation of lt ranges between 50 and 100 times the tendon diameter.
For strands, a practical value of lt is equal to 50 tendon diameters, whereas for single wires, lt is
equal to 100 wire diameters.

In order that the tension in the prestressing steel develop full ultimate flexural strength, a bond
length is required. The purpose is to prevent general slip before the failure of the beam at its full
design strength. The development length, ld, is equal to the bond length plus the transfer length,
lt. Based on established tests, the ACI Code, Section 25.4.8, gives the following expression for
computing the development length of seven-wire pretensioning strands:

ld (in.) =
(

fse

3000

)
db −

(
fps − fse

1000

)
db (19.65)
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where
fps = stresses in prestressed reinforcement at nominal strength (psi)
fse = effective stress in prestressed reinforcement after all losses (psi)
db = nominal diameter of wire or strand (in.)

If bonding of the strand does not extend to end of members, and design includes tension
at service loads in the precompressed tension zone ld calculated by equation 19.65 shall be
doubled.
In pretensioned members, high tensile stresses exist at the end zones, for which special reinforce-
ment must be provided. Such reinforcement in the form of vertical stirrups is uniformly distributed
within a distance h/5 measured from the end of the beam. The first stirrup is usually placed at 1 to
3 in. from the beam end or as close as possible. It is a common practice to add nominal reinforce-
ment for a distance d measured from the end of the beam. The area of the vertical stirrups, A𝑣, to
be used at the end zone can be calculated approximately from the following expression:

A𝑣 = 0.021
Fih

fselt
(19.66)

where fse is allowable stress in the stirrups (usually 20 ksi) and lt is equal to 50 tendon diameters.

Example 19.8

Determine the necessary stirrup reinforcement required at the end zone of the beam given in
Example 19.4.

Solution

Fi = 365.9 K h = 40 in. fs = 20 ksi lt = 50 × 7
16

= 22 in.

Therefore,

A𝑣 = 0.021 × 365.9 × 40
20 × 22

= 0.7 in.2

h
2
= 40

5
= 8 in.

Use four no. 3 closed stirrups within the first 8 in. distance from the support; A𝑣 (pro-
vided)= 4× 0.22= 0.88 in.2.

19.10.2 Posttensioned Members

In posttensioned concrete members, the prestressing force is transferred from the tendons to the
concrete, for both bonded and unbonded tendons, at the ends of the member by special anchorage
devices. Within an anchorage zone at the end of the member, very high compressive stresses and
transverse tensile stresses develop, as shown in Fig. 19.10. In practice, it is found that the length of
the anchorage zone does not exceed the depth of the end of the member; nevertheless, the state of
stress within this zone is extremely complex.

The stress distribution due to one tendon within the anchorage zone is shown in Fig. 19.11.
At a distance h from the end section, the stress distribution is assumed uniform all over the section.
Considering the lines of force (trajectories) as individual elements acting as curved struts, the tra-
jectories tend to deflect laterally toward the centerline of the beam in zone A, inducing compressive
stresses. In zone B, the curvature is reversed in direction and the struts deflect outward, inducing
tensile stresses. In zone C, struts are approximately straight, inducing uniform stress distribution.
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Figure 19.10 Tension and compression zones in a posttensioned member.

Figure 19.11 Tension and compression trajectories in a posttensioned member.

The reinforcement required for the end anchorage zones of posttensioned members gen-
erally consists of a closely spaced grid of vertical and horizontal bars throughout the length
of the end block to resist the bursting and tensile stresses. It is a common practice to space
the bars not more than 3 in. in each direction and to place the bars not more than 1.5 in. from
the inside face of the bearing plate. Approximate design methods are presented in Refs. 24
to 27.
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SUMMARY

Section 19.1

The main objective of prestressing is to offset or counteract all or most of the tensile stresses in a
structural member produced by external loadings, thus giving some advantages over a reinforced
concrete member. A concrete member may be pretensioned or posttensioned. Nonprestressed rein-
forcement may also be added to the concrete member to increase its ultimate strength.

Section 19.2

1. The allowable stresses in concrete at transfer are

Maximum compressive stress = 0.6 f ′ci

Maximum compressive stress at end of simply supported beam = 0.7 f ′ci

Maximum tensile stress = 3
√

f ′ci

Maximum tensile stress at end of simply supported beam = 6
√

f ′ci

The allowable stresses after all losses are 0.45 f ′c for compression and 6 f ′c for tension.
2. The allowable stress in a pretensioned tendon at transfer is the smaller of 0.74 fpu or 0.82

fpy. The maximum stress due to the tendon jacking force must not exceed 0.85 fpu or 0.94
fpy; and the maximum stress in a posttensioned tendon after the tendon is anchored is
0.70 fpu.

Section 19.3

The sources of prestress loss are the elastic shortening, shrinkage, and creep of concrete; relaxation
of steel tendons; and friction. An approximate lump-sum loss is 35 ksi for pretensioned members
and 25 ksi for posttensioned members (friction is not included).

Loss due to elastic shortening =
nFi

Ac
(Eq. 19.1)

Loss due to shrinkage = 𝜀shEs (Eq. 19.6)

Loss due to creep = Cc(𝜀cEs) (Eq. 19.7)

Loss due to relaxation of steel varies between 2.5 and 12%. Loss due to friction in posttensioned
members stems from the curvature and wobbling of the tendon.

Ppx =

{
Ppje

−(klpx+𝜇p𝛼px) (Eq.19.10)
Ppj(1 + Klpx + 𝜇p𝛼px)−1 (Eq.19.11)

Section 19.4

Elastic stresses in a flexural member due to loaded and unloaded conditions are given by Eqs.
19.13 through 19.16. The limiting values of the eccentricity, e, are given by Eqs. 19.20, 19.22,
19.24, and 19.26. The minimum and maximum values of Fi are given by Eqs. 19.31 and Eqs.
19.32, respectively.
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Section 19.5

The nominal moment of a rectangular prestressed concrete member is

Mn = T
(

d − a
2

)
= Aps fpsdp

(
1 −

𝜌p fps

1.7 f ′c

)
(Eq. 19.37)

The values of fps are given by Eqs. 19.39 to 19.41. For flanged sections,

Mn = Apw fps

(
dp −

a
2

)
+ Apf fps

(
dp −

hf

2

)
(Eq. 19.43)

If nonprestressed reinforcement is used in the flexural member, then

Mn = Aps fps

(
dp −

a
2

)
+ As fy

(
d − a

2

)
(Eq. 19.44)

where a = (Aps fps + As fy)∕0.85 f ′c b. For Mn of flanged and rectangular sections with compression
reinforcement, refer to Eqs. 19.46 and Eqs. 19.47, respectively.

Sections 19.6 and 19.7

1. The cracking moment is

Mcr =
I
yb

[
7.5𝜆

√
f ′c +

F
A
+

(Fe) yb

I

]
(Eq. 19.48)

2. Midspan deflections of simply supported beams are summarized in Table 19.3.

Section 19.8

Shear strength of concrete (Vc) =
(

0.6𝜆
√

f ′c + 700
Vudp

Mu

)
b𝑤d (Eq. 19.50)

Minimum Vc = 2𝜆
√

f ′c b𝑤dp

Maximum Vc = 5𝜆
√

f ′c b𝑤dp

The shear strength, Vci, based on flexural shear, is given by Eq. 19.47, and the web-shear
strength, Vcw, is given by Eq. 19.53:

Vs =
1
𝜙
(Vu − 𝜙Vc) and A𝑣 =

Aps

80
×

fpu

fy
× S

d
×
√

d
b𝑤

(Eq. 19.59)

Section 19.9

Empirical practical dimensions for the preliminary design of prestressed concrete members are
suggested in this section.

Section 19.10

The development length of three- to seven-wire strands is

ld =
(

fps −
2
3

fse

)
db (Eq. 19.65)



782 Chapter 19 Introduction to Prestressed Concrete

The area of stirrups in an end block is

A𝑣 = 0.021
Fih

fselt
(Eq. 19.66)
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P R O B L E M S

19.1 A 60-ft-span of a simply supported pretensioned beam has the section shown in Fig. 19.12. The beam
is prestressed by a force Fi = 395 K at transfer (after the elastic loss). The prestress force after all losses
is F = 320, f ′c (compressive stress after all losses) = 6 ksi and f ′ci = 4 ksi. For the midspan section and
using the ACI Code allowable stresses, (a) calculate the extreme fiber stresses due to the prestressing
force plus dead load and (b) calculate the allowable uniform live load on the beam.

Figure 19.12 Problem 19.1.

19.2 For the beam of Problem 19.1 (Fig. 19.12), calculate the elastic loss and all time-dependent losses
using the following data: Fi = 405 K, Aps = 2.39 in.2 located at 6.5 in. from the base, f ′c = 4 ksi, and f ′c =
6 ksi. Ec = 57, 000

√
f ′c , and Es = 28, 000 ksi. The profile of the tendon is parabolic, and the eccentricity

at the supports is 0.
19.3 The cross section of a 56-ft-span simply supported posttensioned girder that is prestressed by 30 cables

7
16

in. diameter (area of one cable is 0.1089) is shown in Fig. 19.13. The cables are made of seven-wire
stress-relieved strands. The profile of the cables is parabolic with the centroid of the prestressing steel
(CGS) located at 9.6 in. from the base at the midspan section and located at the centroid of the concrete
section (e= 0) at the ends. Calculate the elastic loss of prestress and all other losses. Given: f ′c = 6 ksi,
f ′ci = 4 ksi, Ec = 57, 000

√
f ′c ,Es = 28, 000 ksi, fpu = 250 ksi,F0 = 175 ksi, DL = 1.0 K∕ft (excluding

self-weight), and LL= 1.6 K/ft.
19.4 For the girder of Problem 19.3,

a. Determine the location of the upper and lower limits of the tendon profile for the section at midspan
and for at least two other sections between midspan and support. (Choose sections at 12, 18, and
25 ft from support.)

b. Check if the parabolic profile satisfies these limits.
19.5 For the girder of Problem 19.3, check the limiting values of the prestressing force at transfer Fi.



784 Chapter 19 Introduction to Prestressed Concrete

Figure 19.13 Problem 19.3.

Figure 19.14 Problem 19.6.

19.6 A 64-span simply supported pretensioned girder has the section shown in Fig. 19.14. The loads on
the girder consist of a dead load= 1.2 K/ft (excluding its own weight) that will be applied at a later
stage and a live load of 0.6 K/ft. The prestressing steel consists of 24 cables 1

2
in. in diameter (area of

one cable= 0.114 in.2), with Es = 28, 000 ksi, F0 = 175 ksi, and fpu = 250 ksi. The strands are made of
seven-wire stress-relieved steel. The concrete compressive strength at transfer is fci = 4 ksi, and at 28
days, f ′c = 5 ksi. The modulus of elasticity is Ec = 57, 000

√
f ′c . For the beam just described,

a. Determine the upper and lower limits of the tendon profile for the section at midspan and three other
sections between the midspan section and the support. (Choose sections at 3, 11, and 22 ft from the
support.)
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b. Locate the tendons to satisfy these limits using straight horizontal tendons within the middle third
of the span.

c. Check the limiting values of the prestressing force at transfer.
19.7 For the girder of Problem 19.6:

a. Harp some of the tendons at one-third points, and draw sections at midspan and at the end of the
beam showing the distribution of tendons.

b. Revise the prestress losses, taking into consideration the variation of the eccentricity, e, along
the beam.

c. Check the factored moment capacity of the section at midspan.
d. Determine the cracking moment.

19.8 For the girder of Problem 19.6:
a. Calculate the camber at transfer.
b. Calculate the immediate deflection at service load.

19.9 For the girder of Problem 19.6, determine the shear capacity of the section and calculate the necessary
web reinforcement.

19.10 Determine the nominal moment capacity, Mn, of a pretensioned concrete beam that has the cross section
shown in Fig. 19.15. Given: f ′c = 5 ksi, fpu = 270 psi, fse = 160 ksi, and Ase = 2.88 in2.

Figure 19.15 Problem 19.10.
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SEISMIC
DESIGN OF
REINFORCED
CONCRETE
STRUCTURES

Collapse of frame concrete structures due to an earthquake. Courtesy
of Murat Saatcioglu and John Gardner.

20.1 INTRODUCTION

Ground motions during an earthquake can severely damage the structure. The ground acceleration
when transmitted through the structure is amplified, and it is called the response acceleration. The
amplified motion can produce forces and displacements that can be larger than the motions the
structure can sustain.

Many factors influence the intensity of shaking of the structure such as earthquake magnitude,
distance from fault or epicenter, duration of strong shaking, soil conditions of the site, and frequency
content of the motion.

A structure should be designed, depending on the type of structure and its function, to have
acceptable levels of response generated in an earthquake. Economy of design is achieved by allow-
ing the structure to deform above elastic limit.

20.2 SEISMIC DESIGN CATEGORY

Building Code Requirements for Structural Concrete (ACI 318) [1] gives the procedure for design
and detailing of structures subjected to earthquake loads but does not address the calculations of
seismic forces. In this chapter the International Building Code (IBC 2012) [2] will be utilized for
the calculation of seismic forces.

The IBC 2012, Section 1613, defines six seismic design categories (SDC): A, B, C, D, E,
and F. IBC 2012, Section 1613.3.5, also defines four risk categories: I, II, III, and IV. To relate the
SDC and the risk category, the design spectral response acceleration SDS and SD1 are used. SDS is the
design spectral response acceleration coefficient for short periods and SD1 is the design response
acceleration coefficient for a 1-second period. Design spectral response acceleration coefficients
are related to severity of the design earthquake ground motions at the site.

A seismic design category will determine which type of lateral force analysis must be per-
formed and which type of lateral force resisting system must be used.

786
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20.2.1 Determination of Risk Category and Site Class Defination

Buildings shall be assigned a risk category according to Table 20.1 as described in IBC 2012,
Section 1604.5. The first step is to define the nature of occupancy of the structure according to the
risk category. The seismic importance factor, Ie, by risk category is also listed in Table 20.1 and
will be utilized in a later section.

Based on the site soil properties, the site shall be classified as either site class A, B, C, D, E,
and F in accordance with Table 20.4 below. When the soil properties are not known in sufficient
detail to determine site class, site class D shall be used.

20.2.2 Determination of Design Spectral Response Acceleration Coefficients

Earthquake ground motion is usually recorded as an acceleration of the ground at a particular
location. The acceleration of the ground generates the acceleration of the structure (response accel-
eration), which produces earthquake forces that act on the structure. Earthquake forces generate
deformations, internal forces, and stresses in the structure. If the structure is not properly designed
to sustained deformations and forces, it will have great damage and may even collapse.

Therefore, the first step to design an earthquake-resistant structure is to determine the maxi-
mum possible response accelerations that can occur during the earthquake. It is also important to
know that response of the given structure depends on period of vibration and damping characteris-
tics of the structure.

The IBC 2012, Section 1613.3.4, gives a procedure to determine the design response spec-
trum curve, from which the design response accelerations, Sa, for any given period of vibration,
T are calculated. One part of this procedure is the determination of the design spectral response
acceleration coefficients for short periods, SDS, and for a 1-second period, SD1.

To calculate the design acceleration values for short periods, SDS, and 1-second periods, SD1,
the following equation can be utilized:

SDS = 2
3

SMS (20.1a)

SD1 = 2
3

SM1 (20.1b)

where
SMS = mapped maximum considered earthquake spectral response accelerations for short periods

adjusted for site class effect
SM1 = mapped maximum considered earthquake spectral response accelerations for 1-s period

adjusted for site class effect

Thus, SMS and SM1 can be determined from

SMS = FaSs (20.2a)

SM1 = F𝑣S1 (20.2b)

where
SS = mapped maximum considered earthquake spectral response accelerations at short periods

determined from Fig. 20.1a
S1 = mapped maximum considered earthquake spectral response accelerations at 1-s period deter-

mined from Fig. 20.1b
Fa, F𝑣 = site coefficients
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Table 20.1 Risk Classification of Structures Based on Their Nature of Occupancy

Risk
Category Nature of Occupancy

Seismic
Importance

Factor, Ie

I Buildings and other structures that represent a low hazard to human life in
the event of failure including, but not limited to

• Agricultural facilities
• Certain temporary facilities
• Minor storage facilities

1.00

II Buildings and other structures except those listed in risk categories I, III,
and IV

1.00

III Buildings and other structures that represent a substantial hazard to human
life in the event of failure including, but not limited to

• Buildings and other structures whose primary occupancy is public
assembly with an occupant load greater than 300

• Buildings and other structures with elementary school, secondary
school, or day-care facilities with an occupant load greater than 250

• Buildings and other structures containing adult education facilities
such as colleges and university with an occupant load greater than
500

• Group I-2 occupancies with an occupant load of 50 or more resident
patients but not having surgery or emergency treatment facilities

• Group I-3 occupancies
• Any other occupancy with an occupant load greater than 5000
• Power-generating stations, water treatment facilities for potable

water, wastewater treatment facilities and other public utility facilities
not included in category IV

• Buildings and other structures not included in risk category IV con-
taining quantities of toxic or explosive materials that:

Exceed maximum allowable quantities per control area as given in Table
307.1(1) or 307.1(2) or per outdoor control area in accordance with the
International Fire Code; and are sufficient to pose a threat to the public if
released

1.25

IV Buildings and other structures designated as essential facilities including,
but not limited to

• Group I-2 occupancies having surgery or emergency treatment facil-
ities

• Fire, rescue, and police stations and emergency vehicle garages
• Designated earthquake, hurricane, or other emergency shelters
• Designated emergency preparedness, communication, and operation

centers and other facilities required for emergency response
• Power-generating stations and other public utility facilities required

as emergency backup facilities for category IV structures
• Buildings and other structures containing quantities of highly toxic

materials that:

1.50
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Table 20.1 (Continued)

Risk
Category Nature of Occupancy

Seismic
Importance

Factor, Ie

Exceed maximum allowable quantities per control area as given in Table
307.1(2) or per outdoor control area in accordance with the International
Fire Code and are sufficient to pose a threat to the public if released

• Aviation control towers, air traffic control centers, and emergency air-
craft hangers

• Buildings and other structures having critical national defense func-
tions

• Water storage facilities and pump structures required to maintain
water pressure for fire suppression

The parameters Ss and S1 shall be determined from 0.2- and 1-s spectral response acceleration
shown in Figs. 20.1a and 20.1b. Where s1 ≤ 0.04 and Ss ≤ 0.15, the structure is permitted to be
assigned seismic design category A.

The values of Fa and F𝑣 are determined from Tables 20.2 and 20.3 and are dependent on the
mapped spectral values (SS and S1) and the site class as can be determined in Table 20.4 in accor-
dance with Chapter 20 of ASCE 7-10. Where the soil properties are not known in sufficient detail
to determine the site classes, site class D shall be used unless the building official or geotechnical
data determines site class E or F soils are present at the site (IBC 2012, Section 1613.3.2).

20.2.3 Design Response Spectrum

Design response spectrum is used to determine the design spectral response acceleration for a given
structure (i.e., given period of vibration). After calculating design response acceleration coefficients
SDS and SD1 from Section 20.2.2, the design response spectrum curve shown in Figure 20.3 (ASCE
7-10, Section 11.4.5) should be constructed as follows:

1. For periods T ≤ T0, the design spectral response acceleration, Sa, shall be determined as

Sa = SDS

(
0.4 + 0.6

T
To

)
(20.3)

where

T0 = 0.2
SD1

SDS
(20.4)

and T is the fundamental period of the structure (in seconds) determined in Section 20.3.1
(Eq. 20.16).

2. For periods T0 ≤ T ≤ Ts, the design spectral response acceleration, Sa, shall be determined as

Sa = SDS (20.5)

where

Ts =
SD1

SDS
(20.6)
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Figure 20.1a Risk-targeted maximum considered earthquake spectral response
acceleration at short periods, SS [IBC Fig. 1613.3.1(1)]. Courtesy of International Code
Council [2]. Reproduced by permission
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Figure 20.1a (Continued)
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Figure 20.1b Risk-targeted maximum considered earthquake spectral response
acceleration at 1-second periods, S1 [IBC Fig. 1613.3.1(2)]. Courtesy of International
Code Council [2]. Reproduced by permission
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Figure 20.1b (Continued)
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Table 20.2 Values of Site Coefficient, Fa
a [Table 1613.3.3(1) of IBC 2012]

Mapped Spectral Response Acceleration at Short Periods

Site Class SS ≤ 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS ≥ 1.25

A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 1.4 1.2 1.1 1.0
E 2.5 1.7 1.2 0.9 0.9
F Note b Note b Note b Note b Note b

aUse straight-line interpolation for intermediate values of mapped spectral response acceleration at short period, Ss.
bSite-specific geotechnical investigation and dynamic site response analysis shall be performed to determine appropriate
values, or in accordance with Section 11.4.7 of ASCE 7.

Table 20.3 Values of Site Coefficient, F𝑣
a [Table 1613.3.3(2) of IBC 2012]

Mapped Spectral Response Acceleration at 1-Second Period

Site Class S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 ≥ 0.5

A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 1.4 1.3
D 2.4 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 2.4 2.4
F Note b Note b Note b Note b Note b

aUse straight-line interpolation for intermediate values of mapped spectral response acceleration at 1-s period, S1.
bSite-specific ground motion procedures in accordance with Section 11.4.7 of ASCE 7.

3. For periods Ts <T ≤ TL, the design spectral response acceleration, Sa, shall be determined as

Sa =
SD1

T
(20.7)

4. For periods greater than TL, Sa shall be taken as

Sa =
SD1TL

T2
(20.8)

where TL is the long-period transition period(s) shown in Fig. 20.2a and 20.2b (conterminous
United States), Fig. 20.2c (region 1), Fig. 20.2d (Alaska), Fig. 20.2e (Hawaii). Fig. 20.2f (Puerto
Rico, Culebra, Vieques, St. Thomas, St. John, and St. Croix), and Fig. 20.2g (Guam and Tutuila).

20.2.4 Determination of Seismic Design Category (SDC)

Structures shall be assigned SDCs, which are classified as A, B, C, D, E, and F and are determined
from Tables 20.5 and 20.6. These have no relation to the site class types that are also named A, B,
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Table 20.4 Site Classification

Average Properties in Top 100 ft, as per ASCE 7-10 Section 20.4

Site
Class

Soil Profile
Name

Soil Shear Wave

Velocity, Vs (ft/s)

Standard Penetration

Resistance, N

Soil Undrained Shear

Strength, Su (psf)

A Hard rock Vs > 5000 N/A N/A
B Rock 2500 < Vs ≤ 5000 N/A N/A
C Very dense soil and

soft rock
1200 < Vs ≤ 2500 N > 50 Su ≥ 2000

D Stiff soil 600 < Vs ≤ 1200 15 ≤ N ≤ 50 1000 ≤ Su ≤ 2000
E Soft clay soil Vs ≤ 600 N < 15 Su ≤ 1000

Any profile with more than 10 ft of soil having the following
characteristics:

1. Plasticity index (PI)> 20
2. Moisture content (𝑤) ≥ 40%

3. Undrained shear strength Su < 500 psf

F Soil requiring site
response analysis in
accordance to ASCE
7-10, Section 21.1

Where any of the following conditions is satisfied, site shall be classified
as site class F and a site response analysis in accordance with ASCE 7-10,
Section 21.1

1. Soils vulnerable to potential failure or collapse under seismic load-
ing such as liquefiable soils, quick and highly sensitive clays, and
collapsible weakly cemented soils.

Exceptions:

For structures having fundamental periods of vibration equal to
or less than 0.5 sec., site response analysis is not required to
determine spectral accelerations for liquefiable soils. Rather,
a site class is permitted to be determined in accordance with
ASCE 7-10, Section 20.3.

2. Peats and/or highly organic clays [(H> 10 ft of peat and/or highly
organic clay where H= thickness of soil]

3. Very high plasticity clays [H> 25 ft with plasticity index (PI)> 75].

4. Very thick soft/medium stiff clays (H> 120 ft) with Su < 1000 psf.

C, D, E, and F as described in Table 20.4. To determine the SDC, the values of SDS and SD1 are
utilized and the risk category must be defined.

Risk Category I, II, or III structures located where the mapped spectral response accel-
eration parameter at 1-s period, S1, is greater than or equal to 0.75 shall be assigned
to Seismic Design Category E. Risk Category IV structures located where the mapped
spectral response acceleration parameter at 1-s period, S1, is greater than or equal to
0.75 shall be assigned to Seismic Design Category F. All other structures shall be
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Figure 20.2a Long-period transition period, TL (sec), for the conterminous United
States. ASCE 7-10 Minimum Design Loads for Buildings and Other Structures, 2010.
With permission from ASCE
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Figure 20.2b Long-period transition period, TL (sec), for the conterminous United
States (continued). ASCE 7-10 Minimum Design Loads for Buildings and Other Struc-
tures, 2010. With permission from ASCE
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Figure 20.2c Long-period transition period, TL (sec), for region 1. ASCE 7-10 Minimum
Design Loads for Buildings and Other Structures, 2010. With permission from ASCE
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Figure 20.2d Long-period transition period, TL (sec), for Alaska. ASCE 7-10 Minimum
Design Loads for Buildings and Other Structures, 2010. With permission from ASCE

assigned to a Seismic Design Category based on their Risk Category and the design
spectral response acceleration parameters, SDS and SD1, determined in Section 20.2.2.
Each building and structure shall be assigned to the more severe Seismic Design Cat-
egory in accordance with Table 20.5 or 20.6, irrespective of the fundamental period of
vibration of the structure, T.

Alternate Design Category Determination
When S1 is less than 0.75, the Seismic Design Category is permitted to be determined
from Table 20.5 alone, where all of the following apply:

1. In each of the two orthogonal directions, the approximate fundamental period of
the structure, Ta, determined in accordance with Section 20.3.1 is less than 0.8 Ts,
where Ts is determined in accordance with Section 20.2.3.

2. In each of two orthogonal directions, the fundamental period of the structure used
to calculate the story drift is less than Ts.

3. The seismic response coefficient Cs is determined from Cs = SDS/(R/Ie).
4. The diaphragms are rigid; or for diaphragms that are flexible, the distance between

vertical elements of the seismic force–resisting system does not exceed 40 ft.
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Figure 20.2e Long-period transition period, TL (sec), for Hawaii. ASCE 7-10 Minimum
Design Loads for Buildings and Other Structures, 2010. With permission from ASCE

20.2.5 Summary: Procedure for Calculation of Seismic Design Category (SDC)

Step 1. Determine seismic use group as described in Section 20.2.1. (Table 20.1).
Step 2. Based on the location of the building, determine the mapped spectral accelerations for

short periods, SS, and the mapped spectral accelerations for a 1-s period. Use Fig. 20.1a
and Fig. 20.2b of Section 20.2.2.

Step 3. Use Table 20.4 to determine site class based on the soil profile name, and properties of
soil.

Step 4. Using Table 20.2, determine site coefficient Fa based on mapped maximum considered
earthquake spectral response accelerations at short periods, SS. Also, using Table 20.3
determine site coefficient F𝑣 based on mapped maximum considered earthquake spectral
response accelerations at 1-s period, S1.

Step 5. Calculate the maximum considered earthquake spectral response accelerations for short
periods for specific soil class, SMS, using Eq. 20.2a. Also calculate the maximum consid-
ered earthquake spectral response accelerations for 1-s period for specific soil class, SM1,
using Eq. 20.2b.
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Figure 20.2f Long-period transition period, TL (sec), for Puerto Rico, Culebra, Vieques,
St. Thomas, St. John, and St. Croix. ASCE 7-10 Minimum Design Loads for Buildings
and Other Structures, 2010. With permission from ASCE

Figure 20.2g Long-period transition period, TL (sec), for Guam and Tutuila. ASCE 7-10
Minimum Design Loads for Buildings and Other Structures, 2010. With permission from
ASCE
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Figure 20.3 Design response spectrum. ASCE 7-10 Minimum Design Loads for Build-
ings and Other Structures, 2010. With permission from ASCE

Table 20.5 Seismic Design Category Based on Short-Period Response Accelerations Parameter
[Table 1613.3.5(1) of IBC 2012]

Risk Category

Value of SDS I or II III IV

SDS < 0.167 g A A A
0.167 g ≤ SDS < 0.33 g B B C
0.33 g ≤ SDS < 0.50 g C C D
0.50 g ≤ SDS D D D

Table 20.6 Seismic Design Category Based on 1-s Period Response Acceleration Parameter
[Table 1613.3.5(2) of IBC 2012]

Risk Category

Value of SD1 I or II III IV

SD1 < 0.067 g A A A
0.067 g ≤ SD1 < 0.133 g B B C
0.133 g ≤ SD1 < 0.20 g C C D
0.20 g ≤ SD1 D D D
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Step 6. Using Eq. 20.1a determine design spectral response acceleration coefficient for short peri-
ods, SDS, and using Eq. 20.1b determine spectral response acceleration coefficient for 1-s
period, SD1.

Step 7. Determine SDC according to Section 20.2.4. Utilize Tables 20.5 and 20.6.

Example 20.1

Determine seismic design category for a minor storage facility building in San Francisco on soft rock.

Solution

1. According to Table 20.1, minor storage facilities buildings are classified in risk category I.
2. SS = 2.02 g (Fig. 20.1a)

S1 = 0.60 g (Fig. 20.2b)
3. According to the Table 20.4, a site with soft rock is considered to be class C.
4. According to the Table 20.2 for the site class C and SS = 2.02> 1.25, Fa = 1.0.

According to Table 20.3 for site class C and S1 = 0.60> 0.5, F𝑣 = 1.3.
5. SMS =Fa SS = (1.0)(2.02)= 2.02 g (Eq. 20.2a)

SM1 =F𝑣 S1 = (1.3)(0.60)= 0.78 g (Eq. 20.2b)

6. SDS = 2
3
SMS = 2

3
(2.02) = 1.35 g (Eq. 20.1a)

SD1 = 2
3
SM1 = 2

3
(0.78) = 0.52 g (Eq. 20.1b)

7. According to Table 20.5 for SDS = 1.35 g> 0.50 g, risk category I, and since S1 < 0.75 g, therefore
SDC is category D.

8. According to Table 20.6 for SD1 = 0.52 g> 0.20 g, risk category I, and since S1 < 0.75 g, therefore
SDC is category D.

Therefore, seismic design category D is assigned to the structure.

Example 20.2

Determine seismic design category for a hospital building in Oakland, California, on soft clay soil.

Solution

1. According to Table 20.1, hospital buildings are classified in the risk category IV.
2. SS = 2.08 g (Fig. 20.1a)

S1 = 0.92 g (Fig. 20.2b)
3. According to Table 20.4, the site class for soft soil is E.
4. According to the Table 20.2, for the site class E and SS = 2.08> 1.25, Fa = 0.9.

According to the Table 20.3, for the site class E and S1 = 0.92> 0.5, F𝑣 = 2.4.
5. SMS =Fa SS = (0.9)(2.08)= 1.87 g (Eq. 20.2a)

SM1 =F𝑣 S1 = (2.4)(0.92)= 2.21 g (Eq. 20.2b)

6. SDS = 2
3
SMS = 2

3
(1.87) = 1.25 g (Eq.20.1a)

SD1 = 2
3
SM1 = 2

3
(2.21) = 1.47 g (Eq.20.1b)

7. According to Section 20.2.4, for SDS = 1.25 g> 0.50 g, risk category IV, and since S1 > 0.75 g,
SDC is category F.

8. According to Section 20.2.4, for SD1 = 1.47 g> 0.20 g, risk category IV, and since S1 > 0.75 g,
SDC is class F.

Therefore, seismic design category F is assigned to the structure.
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20.3 ANALYSIS PROCEDURES

During the earthquake motions, the structure is subjected to the deformation that produces internal
forces and stresses. Earthquake engineering philosophy is to relate earthquake dynamic forces to
the equivalent static forces, and then using static analysis of the structure, determine deformations,
internal forces, and stresses in the structure. IBC describes two analysis procedures to determine
the equivalent static forces that will simulate an earthquake action on the structure. These are

1. The equivalent lateral force procedure (used for SDC B, C, D, E, and F).
2. The simplified analysis (used for SDC B, C, D, E, and F, and for constructions limited to two

stories in height and three stories in height for light frame constructions).

It should be noted that for the structures in SDC A, neither the simplified analysis nor the
equivalent lateral force procedure could be utilized. This type of structure should be designed so
that the lateral resisting-force system can resist the minimum design lateral force, Fx, applied at
each floor level (ASCE 7-10, Sections 11.7 and 1.4.3). The design lateral force can be determined
for this type of structure using the following equation:

Fx = 0.01𝑤x (20.9)

where 𝑤x is the portion of the dead load of the structure located or assigned to level x.

20.3.1 Equivalent Lateral Force Procedure

This procedure describes how to calculate the seismic base shear and lateral seismic forces (ASCE
7-10, Section 12.8).

Seismic Base Shear Calculation. The total seismic force that acts at the base of the structure,
called seismic base shear, can be determined according to the following equation:

V = CsW (20.10)
where

Cs = seismic response coefficient
W = effective weight of structure including total dead load and other loads listed below:

1. In areas used for storage, a minimum of 25% of the floor live load (floor live load in public
garages and open parking structures need not be included).

2. Where an allowance for partition load is included in the floor load design, the actual partition
weight or a minimum weight of 10 psf of floor area, whichever is greater (0.48 kN/m2).

3. Total operating weight of permanent equipment.
4. Twenty percent of flat roof snow load where flat snow load exceeds 30 psf (1.44 kN/m2).

Seismic Response Coefficient Calculation. The seismic response coefficient, Cs, shall be deter-
mined from:

Cs
SDS

R∕Ie
(20.11)

where
SDS = design spectral response acceleration parameter for short period as determined from

Section 20.2.2.
R = response modification factor given in Table 20.7
Ie = seismic importance factor determined from Table 20.1
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Table 20.7 Design Coefficients and Factors for Basic Seismic Force–Resisting Systems

Basic Seismic Force–Resisting System Ra 𝛀b
0

Cc
d

1. Bearing wall systems
Special reinforced concrete shear walls 5 2.5 5
Ordinary reinforced concrete shear walls 4 2.5 4
Detailed plain concrete shear walls 2 2.5 2
Ordinary plain concrete shear walls 1.5 2.5 1.5
2. Building frame systems
Special reinforced concrete shear walls 6 2.5 5
Ordinary reinforced concrete shear walls 5 2.5 4.5
Detailed plain concrete shear walls 2 2.5 2
Ordinary plain concrete shear walls 1.5 2.5 1.5
3. Moment-resisting frame systems
Special reinforced concrete moment frames 8 3 5.5
Intermediate reinforced concrete moment frames 5 3 4.5
Ordinary reinforced concrete moment frames 3 3 2.5
4. Dual systems with special moment frames
Special reinforced concrete shear walls 7 2.5 5.5
Ordinary reinforced concrete shear walls 6 2.5 5
5. Dual systems with intermediate moment frames
Special reinforced concrete shear wall 6.5 2.5 5
Ordinary reinforced concrete shear wall 5.5 2.5 4.5
6. Shear wall-frame interactive system with ordinary reinforced
concrete moment frames and ordinary reinforced concrete
shear walls

4.5 2.5 4

7. Cantilevered column systems
Special reinforced concrete moment frames 2.5 1.25 2.5
Intermediate reinforced concrete moment frames 1.5 1.25 1.5
Ordinary reinforced concrete moment frames 1.0 1.25 1.0

aResponse modification coefficient.
bOverstrength factor.
cDeflection amplification factor.
Source: ASCE 7-10 Minimum Design Loads for Buildings and Other Structures, 2010. With permission from ASCE.

The value of Cs should not exceed

Cs,max =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

SD1

T
(
R∕Ie

) for T ≤ TL (20.12a)

SD1TL

T2(R∕Ie)
for T ≤ TL (20.12b)

where
SD1 = design spectral response acceleration parameter at a period of 1.0 s, as determined from

Section 20.2.2 (ASCE 7-10, Section 11.4.4)
T = fundamental period of structure(s) determined in Section 20.3.1 (Eq. 20.15 or 20.16)

TL = lone-period transition period(s) determined in Section 20.2.3

Also, CS should not be less than:

Cs = 0.44SDSIe ≥ 0.01 (20.13)
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For structures for which the 1-s spectral response acceleration, S1, is equal to or greater than 0.6 g,
the value of the seismic coefficient, Cs, should not be taken less than

Cs,min =
0.5S1

R∕Ie
(20.14)

The response modification factor, R, is a function of several factors. Some of them are ductility
capacity and inelastic performance of structural materials and systems during past earthquakes.
Values of R for concrete structures are given in Table 20.7, and are selected by defining the type of
basic seismic force-resisting system for structures (Table 12.2-1 of ASCE 7-10).

Fundamental Period. Elastic fundamental period, T, is a function of the mass and the stiffness of
the structure. If the building is not designed, the period T cannot be precisely determined. On the
other hand, to design a building, the period of vibration should be known, and included in equations
for design. That is why building codes provide equations for calculation of approximate periods of
vibrations, Ta. Calculated approximate periods are shorter than the real periods of structure, which
leads to higher base shear values, and as a result safe design.

An approximate period of vibration, T, can be determined using the following equation:

Ta = Cth
x
n (20.15)

where hn is the height in feet above the base to the highest level of the structure, and the coefficients
Ct and x are determined from Table 20.8.

For the concrete moment-resisting frame buildings that do not exceed 12 stories in height
and have an average minimum story height of 10 ft, the approximate period of vibration, T, can be
determined using the following equation:

Ta = 0.1N (20.16)

where N is the number of stories in the building above the base.

Lateral Seismic Force Calculation. Vertical distribution of the base shear force produces seismic
lateral forces, Fx, at any floor level. Seismic lateral forces act at the floor levels because masses of
the structure are concentrated at the floor levels. It is known that the force is a product of mass and
acceleration. Earthquake motions produce accelerations of the structure and induce forces at the
places of mass concentrations (i.e., floor levels).

Table 20.8 Values of Approximate Period Parameters Ct and x (Non-Metric)

Structure Type Ct X

Moment-resisting frame systems in which the frames resist 100% of the
required seismic force and are not enclosed or adjoined by components that
are more rigid and will prevent the frames from deflecting where subjected to
seismic forces:
Steel moment-resisting frames 0.028 0.8
Concrete moment-resisting frames 0.016 0.9
Steel eccentrically braced frames 0.03 0.75
Steel buckling-restrained braced frames 0.03 0.75
All other structural systems 0.02 0.75

Source: ASCE 7-10 Minimum Design Loads for Buildings and Other Structures, 2010. With permission from ASCE.
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The lateral force that will be applied to level x of the structure, Fx, can be determined from
the following equation:

Fx = C𝑣xV (20.17)

C𝑣x =
𝑤xhk

x
n∑

i=1

𝑤ih
k
j

(20.18)

where
Cvx = vertical distribution factor

k = distribution exponent related to building period
k = 1 for building having a period of T ≤ 0.5 s
k = 2 for building having a period of T ≥ 2.5 s
k = 2, or linear interpolation between 1 and 2, for buildings having a period of 0.5 s ≤ T ≤ 2.5 s

hi, hx = height from base to level i and x
𝑤i, 𝑤x = portion of total effective seismic weight of the structure, W, located or assigned to level i or x

n = number of stories
V = total design lateral force or shear at base of the structure

20.3.2 Summary: Equivalent Lateral Procedure

Step 1. Determine seismic design category according to Section 20.2 and choose an appropriate
Ie value from Table 20.1.

Step 2. Choose R value from Table 20.7.
Step 3. Determine T using Eq. 20.15 or 20.16, as applicable.
Step 4. Calculate Cs using Eq. 20.11 and check for Cs,max (Eq. 20.12a or Eq. 20.12b) and Cs,min

(Eq. 20.13 or 20.14, whichever is applicable). Ensure that Cs,min ≤ Cs ≤ Cs,max and

if Cs > Cs,max, then choose Cs = Cs,max⋅

if Cs > Cs,min, then choose Cs = Cs,min⋅

Step 5. Calculate effective seismic weight, W, as described in Section 20.3.1.
Step 6. Calculate seismic base shear using Eq. 20.10.
Step 7. Using Eq. 20.17, calculate seismic lateral load, Fx, for every level of the structure.

20.3.3 Simplified Analysis

The simplified analysis procedure for seismic design described in Section ASCE 7-10, Section
12.14.8.1, is applicable to any structure that satisfies the following limitations and conditions:

The seismic base shear and lateral seismic forces are calculated as follows:

• The structure shall qualify for risk category I and II.
• The site class shall not be class E or F.
• The structure shall not exceed three stories in height above grade.
• The seismic force resisting system shall be either a bearing wall system, or building frame

system.
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• The structure shall have at least two lines of lateral resistance in each of two major axis
directions.
1. The seismic base shear, V, in a given direction shall be determined in accordance with

V =
FSDS

R
W (20.19)

where
SDS = 2

3
FaSs

where Fa is permitted to be taken as 1.0 for rock sites, 1.4 for soil sites, or determined in
accordance with Section 20.2.2. For the purpose of this section, sites are permitted to be
considered to be rock if there is no more than 10 ft (3 m) of soil between the rock surface
and the bottom of the spread footing or mat foundation. In calculating SDS, SS shall be in
accordance with Section 20.2.2, but need not be taken larger than 1.5.

F = 1.0 for one-story buildings above grade plane
F = 1.1 for two-story buildings above grade plane
F = 1.2 for three-story buildings above grade plane
R = response modification factor from Table 20.7 (ASCE 7-10, Table 12.2-1)
W = effective seismic weight of structure that shall include total dead and other loads listed in the

following text (ASCE 7-10, Section 12.14.8.1)

(a) In areas used for storage, a minimum of 25% of the floor live load.
Exceptions:
i. Where the inclusion of storage loads adds no more than 5% to the effective seismic

weight at that level, it need not be included in the effective seismic weight.
ii. Floor live load in public garages and open parking structures need not be included.

(b) Where provision for partitions is required by ASCE 7-10, Section 4.3.2 (Provision for
Partitions) in the floor load design, the actual partition weight, or minimum weight of
10 psf (0.48 kN/m2) of floor area, whichever is greater.

(c) Total operating weight of permanent equipment.
(d) Where the flat roof snow load, Pf, exceeds 30 psf (1.44 kN/m2), 20% of the uniform

design snow load, regardless of actual roof slope.
2. The lateral seismic forces calculation: Lateral seismic forces can be determined from

(ASCE 7-10, Section 12.14.8.2)

Fx =
FSDS

R
𝑤x (20.20)

where

Fx = seismic force applied at level x
𝑤x = portion of effective seismic weight of structure, W, at level x

20.3.4 Summary: Simplified Analysis Procedure

Step 1. Check whether the structure satisfies conditions described in Section 20.3.3 for qualifi-
cation for the simplified analysis procedure.

Step 2. Determine the value of SDS as described in Section 20.2.2.
Step 3. Choose appropriate R factor from Table 20.7.
Step 4. Determine the effective seismic weight, W, of the structure as described in Section 20.3.3.
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Step 5. Utilize Eq. 20.19 to calculate seismic base shear, V.
Step 6. Determine seismic lateral forces acting on the structure, Fx, using Eq. 20.20.

20.3.5 Design Story Shear

The seismic lateral forces will produce seismic design story shear, Vx, at any story x. They can be
determined from the following equation:

Vx =
n∑

i=1

Fi (20.21)

where
Fi = portion of seismic base shear, V, induced to level i
n = number of stories

The seismic story shear in any story x should be collected and transferred to the story below
by vertical elements of lateral force–resisting system. The distribution of story shear on vertical
elements depends on flexibility of the diaphragm, which those elements support.

There are two types of diaphragm:

1. Flexible diaphragms: A flexible diaphragm changes shape when subjected to a lateral load. Its
tension chord bends outward, and its compression chord bends inward. A flexible diaphragm
is assumed to be incapable of transmitting torsion to lateral load-resisting elements.

2. Rigid diaphragms: A rigid diaphragm does not change its plan shape when subjected to lateral
loads. It remains the same size, and the square corners remains square. There is no flexure.
Rigid diaphragms are capable of transmitting torsion to the major lateral load–resisting ele-
ments. The lateral story shear is distributed to the resisting elements in proportion to relative
rigidities of those elements.

A diaphragm is flexible when its computed maximum in-plane lateral deflection is more
than two times the average story drift of the story that supports the diaphragm. To determine if
a diaphragm is flexible, compare the in-plane deflection at the midpoint of the diaphragm to the
story drift of the adjoining vertical resisting elements under equivalent tributary load. Lateral defor-
mation of a diaphragm is maximum in-plane deflection of the diaphragm under lateral load, and
the story drift is the difference between deflection of center of masses at the top and bottom of the
story being considered.

A diaphragm that is not flexible by the above definition is rigid.
For flexible diaphragms, the seismic story shear, Vx, is distributed to vertical elements in the

story x based on the area of the diaphragm tributary to each line of resistance. The vertical elements
of the seismic-force-resisting system may be considered to be in the same line of resistance if the
maximum out-of-plane offset between such elements is less than 5% of the building dimension
perpendicular to the direction of the lateral force.

For rigid diaphragms, Vx is distributed to the vertical elements in the story x based on relative
lateral stiffnesses of vertical lateral-load resisting elements, and the diaphragm.

20.3.6 Torsional Effects

For a rigid diaphragm, eccentricity between center of mass and center of rigidity can occur. The
lateral shear force of each level is applied to the center of mass of that level. Distribution of Vx to
vertical elements can be determined when the shear force acts to the center of rigidity. When the
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shear force moves from center of mass to the center of rigidity, it produces a torsional moment.
The effect of torsional moment will increase horizontal forces on vertical elements. Forces are not
to be decreased due to torsional effects:

T = Vxe (20.22)

where
T = torsional moment

Vx = base shear at level x in any direction
E = eccentricity between center of mass and center of rigidity. It can occur in both directions:

x and y.

20.3.7 Overturning Moment

The lateral seismic force Fx produces overturning moments. Overturning moment Mx should be
calculated using the following equation:

Mx = 𝜏

n∑

i−1

Fi(hi − hx) (20.23)

where
Mx = overturning moment at level x
Fi = portion of seismic base shear, V, induced at level i

hi, hx = height from base to level i and x
𝜏 = overturning moment reduction factor
= 1.0 for top 10 stories
= 0.8 for twentieth story from the top and below
= linear interpolation between 1.0 and 0.8 for stories between twentieth and tenth stories

below top

Reduction factor 𝜏 is permitted to be taken as 1.0 for the full height of the structure.

20.3.8 Lateral Deformation of the Structure

The seismic lateral forces should be used in calculating deformations of the structure. The value
that is of interest for engineers is story drift—the difference between the deflections of the center
of mass at the top and the bottom of the story being considered. The value of story drift under
seismic forces is important from different perspectives: stability of the structure, potential damage
to nonstructural elements, and human comfort. The allowable values for story drift are shown in
Table 20.9 (Table 12.12-1 of ASCE 7-10).

For structures that can be designed based on simplified analysis procedure described in
Section 20.3.3, the drift can be taken as 1% of the story height unless a more exact analysis is
provided:

𝛥 = 0.01hx (20.24)

The value of the design story drift should be less than or equal to the value of allowable story
drift, 𝛥a, given in Table 20.9.

For all other structures that cannot be analyzed using the simplified analysis procedure, the
drift should be determined as follows:

1. Calculate the deflection 𝛿x at level x from the following equation:

𝛿x =
Cd𝛿xe

IE
(20.25)
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Table 20.9 Allowable Story Drift, 𝛥a (in.)a

Risk Category

Structure I or II III IV

Structures, other than masonry shear wall structures, four
stories or less above the base in height with interior walls,
partitions, ceilings, and exterior wall systems that have been
designed to accommodate the story drifts

0.025 hsx
c 0.020 hsx 0.015 hsx

Masonry cantilever shear wall structuresd 0.010 hsx 0.010 hsx 0.010 hsx
Other masonry shear wall structures 0.007 hsx 0.007 hsx 0.007 hsx
All other structures 0.020 hsx 0.015 hsx 0.010 hsx

ahsx is the story height below level x.
bFor seismic-force-resisting systems comprised solely of moment frames is seismic design categories D, E, and F, the allow-
able story drift shall comply with the requirements of ASCE7-10, Section 12.12.1.1.
cThere shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and exterior wall systems that
have been designed to accommodate the story drift.
dStructures in which the basic structural system consists of masonry shear walls designed as vertical elements cantilevered
from their base or foundation support that are so constructed that moment transfer between shear walls (coupling) is negligible.
Source: ASCE 7-10 Minimum Design Loads for Buildings and Other Structures, 2010. With permission from ASCE.

where
𝛿x = maximum inelastic response displacement
𝛿xe = design-level elastic lateral displacement at floor level x under seismic lateral forces
Cd = deflection amplification factor from Table 20.7
Ie = occupancy importance factor from Table 20.1

2. The design story drift can then be calculated as the difference between the deflections of the
centers of masses of any two adjacent stories. Definition of story drift is shown in Fig. 20.4.

𝛥 = 𝛿x − 𝛿x−1 (20.26)

3. Check for the P-delta effect and adjust for magnification factor if needed.

P-Delta Effect. An accurate estimate of story drift can be obtained by the P-delta analysis. In
first-order structural analysis, the equilibrium equations are formulated for the un-deformed shape
of a structure. When deformations are significant, the second-order analysis must be applied, and
the P-delta effect must be considered in determining the overall stability of the structure. The
P-delta effect does not need to be applied when the ratio of secondary to primary moment, 𝜃,
does not exceed 0.1. This ratio is given by the following equation:

𝜃 =
px𝛥 Ie

VxhsxCd
(20.27)

where
𝜃 = stability coefficient

Px = total unfactored vertical design load at and above level x (dead, floor live, and snow load)
𝛥 = design story drift (in.)

Vx = seismic shear force between level x and x–1
hsx = story height below level x (in.)
Cd = deflection amplification factor from Table 20.7 (Table 12.2-1 of ASCE7–10)
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Figure 20.4 Definition of drift.

The stability coefficient, 𝜃, should not exceed

𝜃max = 0.5
Cd𝛽

≤ 0.25 (20.28)

where 𝛽 is the ratio of shear demand to shear capacity for the story between level x and (x–1).
A conservative value of 𝛽 = 1 can be used where the ratio is not calculated.

If 𝜃 > 𝜃max, then the structure is potentially unstable, and must be redesigned. For
0.1<𝜃 <𝜃max, the interstory drift and element forces need to be computed using the P-delta effect.
The design story drift considering the P-delta effect, 𝛥p, can be calculated from

𝛥p = 𝛥
1

1 − 𝜃
(20.29)

The computed values of story drift should not exceed the allowable values described in Table 20.9.

20.3.9 Summary: Lateral Deformation of the Structure

Step 1. If the structure satisfies the limitations for the simplified analysis procedure listed in
Section 20.3.3, use Eq. 20.24 to determine the story drift.

Step 2. For structures that do not satisfy the limitations for the simplified analysis procedure
listed in Section 20.3.3, use Eqs. 20.25 to 20.27 to calculate 𝛿x, 𝛿x−1, 𝛥, 𝜃, and 𝜃max.
Check whether the P-delta effect must be considered, and adjust 𝛥 to 𝛥p using Eq. 20.29
where needed.

Step 3. Determine allowable drift from Table 20.9, and compare with the calculated design drift.
If calculated drift exceeds the allowable drift, redesign the structure.
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Example 20.3 Equivalent Lateral Procedure

Determine the design seismic force and seismic shear force for a six-story concrete special
moment-resisting frame adult education facility building located in an area of high seismic risk where
Ss = 1.5 g and S1 = 0.6 g, on soil class B. The story heights are all 12 ft, and the story weights are all
1700 Kips. Check the lateral deformation of the structure. Building elevation is given in Fig. 20.5.
The 𝛿xe is obtained from static elastic analysis using the design seismic force and is given as follows:

Floor Level 𝜹xe

6 1.26
5 0.98
4 0.71
3 0.46
2 0.24
1 0.06

W6 = 1700 K

W5 = 1700 K

W4 = 1700 K

W3 = 1700 K

W2 = 1700 K

W1 = 1700 K

6 
@

 1
2'

Figure 20.5 Example 20.3: Building elevation.

Solution

1. Risk category III, Ie = 1.25 (Table 20.1)
Ss = 1.5 g S1 = 0.6 g (Figs. 20.1 and 20.2)
Soil class B; so,:

Fa = 1.0,F𝜐 = 1.0 (Table 20.2 and 20.3)

S M S = 1.5 g, SM 1 = 0.6 g (Eq.20.2a and 20.2b)

SD S = 1.0 g (Eq.20.1a)

SD 1 = 0.4 g (Eq.20.1b) =
(2

3
× 0.6 g

)

SDC is D. (Tables 20.5 and 20.6)
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2. According to Table 20.7, for special moment-resisting frame, select R= 8.
3. Equation 20.16 is not applicable since hx > 10 ft. The period of vibration of the structure is calcu-

lated according to Eq. 20.15 as follows:

Ta = CT h3∕4
n = 0.016 × (6 × 12)0.9 = 0.75 s

4. Calculate seismic response coefficient as follows, and check for the limits:

Cs =
SDS

R∕Ie

= 1.0
8∕1.25

= 0.156

Cs,max =
SDI

(R∕Ie)T
= 0.4

(8∕1.25)0.74
= 0.083

Since S1 = 0.6 g, Eq. should be used to calculate Cs,min:

Cs,min =
0.5S1

(R∕Ie)
= 0.5 × (0.6)

8∕1.25
= 0.047

Since Cs >Cs, max, Cs = 0.083.
5. The total seismic weight is calculated as follows:

W = 𝑤1 +𝑤2 +𝑤3 +𝑤4 +𝑤5 +𝑤6 = 6 × (1700) = 10,200 K

6. Calculate the seismic base using Eq. 20.10:

V = CsW = 0.083 × 10200 = 846.6 K ≈ 847 K

7. Calculation of Fx, Vx, and Mx (Fig. 20.6). Use Eq. 20.17 to calculate the seismic lateral force, Fx,
as shown in the following table. The table also calculates the shear force for each floor level and
the overturning moments as described in Eqs. 20.21 and 20.23.

Floor
Level

Weight
Wi (K)

Height
hi (ft)

Wi hk
j
*

(K ⋅ ft) Cvx

Lateral
Force, Fx(K)

Shear
Force, Vx(K)

Overturning
Moment Mx (K ⋅ ft)

6 1,700 72 208,905 0.30 254 254 0
5 1,700 60 170,165 0.24 207 461 3,052
4 1,700 48 132,387 0.19 161 622 8,559
3 1,700 36 95,783 0.14 117 739 16,061
2 1,700 24 60,700 0.09 74 813 24,931
1 1,700 12 27,831 0.04 34 847 34,689
0 695,770 847 44,853

*To calculate K, use Section 20.3.1. For T= 0.75 s, using linear interpolation k= 1.125.

8. Calculation of drift: According to Table 20.7 for special moment-resisting frame Cd = 5.5,

Ie = 1.25 (Table20.1)

hsx = 12 ft = 144 in.

Floor Level 𝜹xe(in.) 𝜹x(in.) 𝜟 (in.) Px (K) Vx (K) 𝜽

6 1.26 5.54 1.23 1,700 254 0.013
5 0.98 4.31 1.19 3,400 461 0.014
4 0.71 3.12 1.10 5,100 622 0.014
3 0.46 2.02 0.96 6,800 739 0.014
2 0.24 1.06 0.80 8,500 813 0.013
1 0.06 0.26 0.26 10,200 847 0.005
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24931

34689

44853

Fx Vx Mx

Figure 20.6 Example 20.3: Distribution of lateral seismic force, Fx, base shear, Vx, and
overturning moment, Mx.

𝜃 =
Px𝛥Ie

VxhsxCd
𝛿 =

Cd𝛿xe

I

where

𝜃 = stability coefficient
Px = total unfactored vertical design load at and above levels

𝛽 = 1.0

𝜃max = 0.5
Cd𝛽

= 0.5
5.5 × 1.0

= 0.09 > 𝜃 in every floor level

which is acceptable. (See Eq. 20.28). Also, 𝜃 < 0.10 in every floor level, which means that the
P-delta effect can be disregarded.

9. Allowable drift, according to the Table 20.9, is 𝛥a = 0.015hsx = 0.015× (12× 12)= 2.16 in.>𝛥 in
every floor level, which is acceptable.

Example 20.4 Simplified Analysis
Calculate the seismic base shear for a two-story concrete building assuming that the first-floor weight
is 𝑤x = 35 Kips, and the second-floor weight is 40 Kips. The height of the first floor is hx = 15 ft, and
the second floor is 12 ft. The seismic force–resisting system is ordinary reinforced shear wall system.
Utilize the value of SDS from Example 20.1. Check the lateral deformation of the structure.

Solution
1. The building is classified as SDC of D, (from Example 20.1) and is two stories in height. This

building satisfies the conditions for simplified analysis methodology.
2. SDS = 1.35 g (Example 20.1).
3. The R factor is chosen from Table 20.7 based on the seismic force–resisting system of the structure.

For ordinary reinforced concrete shear wall, R is equal to 4.
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w2 = 40 K

w1 = 35 K

12
'

15
'

Figure 20.7 Example 20.4: Building elevation.

F2 = 14.9 K

F1 = 13 K 1

0

2

V = 27.8 K

14.9 K

27.8 K

27.8 K

0

178.8

597.3
Vx Mx

Figure 20.8 Example 20.4: Distribution of lateral seismic force, Fx, base shear, Vx, and
overturning moment, Mx.

4. Calculate the total gravity load (Fig. 20.7): W=𝑤1 +𝑤2 = 35+ 40= 75 Kips.
5. For two-story building, F= 1.1 as described in Section 20.3.3:

V =
FSDS

R
W = 1.1(3.5)

4
× 75 = 27.8 K (Eq. 20.19)

6. Calculate the seismic lateral forces acting at the first and second floors using Eq. 20.20 (Fig. 20.8):

F1 =
1.1SDS

R
𝑤1 = 1.1(1.35)

4
× 35 = 13 K (first floor)

F2 =
1.1SDS

R
𝑤2 = 1.1(1.35)

4
× 40 = 14.9 K (second floor)

7. Calculate the story shear force using Eq. 20.23:

V2 = 14.9 K (second floor)

V1 = 27.8 K (first floor)

8. Calculate the overturning moment using Eq. 20.24:

M2 = 0 (second floor)

M1 = 014.9 × 12 = 178.8 kip ⋅ ft (first floor)

M0 = 14 ⋅ 9(12 + 15) + 13 × 15 = 597.3 kip ⋅ ft (at the base of the structure)
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9. Determine the seismic lateral story drift using Eq. 20.24:

𝛥1 = 0.01h1 = 0.01 × 15 = 0.15 ft = 1.8 in. (first floor)

𝛥2 = 0.01h2 = 0.01 × 12 = 0.12 ft = 1.44 in. (second floor)

Risk category I
Check for allowable drift using Table 20.9:

𝛥a = 0.020hsx

where hsx is the story height below level x and

𝛥a1
= 0.020h1 = 0.020 × 15 = 0.3 ft = 3.6 in. > 1.8 in. (OK) (first floor)

𝛥a2
= 0.020h2 = 0.020 × 12 = 0.24 ft = 2.88 in. > 1.44 in. (OK) (second floor)

Example 20.5 Torsional Effects

Determine the shear forces V1 and V2 acting on the shear wall 1 and 2 of the building with the floor plan
shown in Fig. 20.9. Assume that the value of story shear, Vy, is 15 K. Consider torsional effect.

Cm

10 ft

10 ft

25 ft

25 ft

2

1
V = 15 K

x

y

30 ft 30 ft
90 ft

35 ft

Figure 20.9 Example 20.5: Floor plan.

Solution
Center of mass is in the centroid of the rigid diaphragm. The center of rigidity x can be determined as
follows (Fig. 20.10):

x = 2 × 25 × 30 + 2 × 10 × 120
2 × 25 + 2 × 20

= 55.7 ft

ex = 150∕2 − 55.7 = 19.3 ft

For the story shear force Vy = 15 K and eccentricity of 19.3 ft, the torsional moment is

T = 15 × 19.3 = 289.5 kip ⋅ ft

The shear force acting on the wall is the sum of the shear force due to story shear, Vx, and shear
force due to torsional moment, Ty.

For wall 1, shear force V1 is

V1 = 25
25 + 25 + 10 + 10

(15) = 5.4 K (due to Vy)

V1 = 2 × 25 × 25.72 + 2 × 10 × 64.32∕289.5(25 × 25.7) = 1.6 kip ⋅ ft (due to T)
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Cm

V

V1 V2

ex = 19.3 ft

T

Figure 20.10 Example 20.5: Torsional effect.

Therefore, V1 = 5.4+ 1.6= 7 K. For wall 2, shear force V2 is

V2 = 25
25 + 25 + 10 + 10

(15) = 2.1 K (due toVy)

V2 = 2 × 25 × 25.72 + 2 × 10 × 64.32∕289.5(10 × 64.3) = 1.6 kip ⋅ ft (due toT)

Therefore, V2 = 2.1+ 1.6= 3.7 K.

20.4 LOAD COMBINATIONS

A structure should be designed to resist the combined effects of loading cases. For basic load com-
binations for strength design follow IBC 2012, Section 1605.2:

1. 1.4(D + F)
2. 1.2(D + F) + 1.6(L + H) + 0.5(Lr or S or R)
3. 1.2(D + F) + 1.6(Lr or S or R) + 1.6H + (f1L or 0.5W)
4. 1.2(D + F) + 1.0W + f1L + 1.6H + 0.5(Lr or S or R)
5. 1.2(D + F) + 1.0E + f1L + 1.6H + f2S
6. 0.9D + 1.0W + 1.6H
7. 0.9(D + F) + 1.0E + 1.6H

where
f1 = 1.0 for floors in places of public assembly, for live loads in excess of 100 psf, and for parking

garages live loads
f1 = 0.5 for other live loads
f2 = 0.7 for roof configurations (such as saw tooth) that do not shed snow off structure
f2 = 0.2 for other roof configurations
D = dead load
L = live load excluding roof live load

Lr = roof live load
S = snow load
R = rain load
W = wind load
E = seismic load effect
H = soil lateral load
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Some exceptions are where the effect of H resists the primary variable load effect, in which
case a load factor of 0.9 shall be included with H where H is permanent, and H shall be set to zero
for all other conditions.

20.4.1 Calculation of Seismic Load Effect, E

Seismic load effects and combinations (ASCE 7-10, Section 12.4) can be determined from the
following two conditions:

1. The seismic load effect, E is calculated from:

E = Eh + E𝑣 = 𝜌QE + 0.2SDSD (20.30)

where
QE = effects of horizontal seismic forces from V
𝜌 = redundancy factor

SDS = design spectral response acceleration at short periods determined in Section 20.2.2
D = effect of dead load

2. When the effect of gravity and seismic ground motions are counteractive, the seismic load
effect is calculated from:

E = 𝜌QE − 0.2SDSD (20.31)

20.4.2 Redundancy Factor, 𝝆

Redundancy factor can be determined as follows (ASCE 7-10, Section 12.3.4):

1. For structures assigned to seismic design category A, B, or C, the value of the redundancy
factor, 𝜌, is 1.

2. For structures assigned to seismic design category D, E, or F, the redundancy coefficient 𝜌
shall be taken equal to 1.3.

20.4.3 Seismic Load Effect, Em

Estimated seismic load effect, Em, can be developed in a structure, and is determined from
Eq. 20.32.

When effects of gravity and seismic forces are additive, the seismic load effect, Em, should
be calculated using the following equation:

Em = 𝛺0QE + 0.2SDSD (20.32)

where 𝛺0 is the system overstrength factor given in Table 20.7. When the effects of gravity and
seismic forces counteract, the seismic load effect, Em, should be calculated using the following
equation:

Em = 𝛺0QE − 0.2SDSD (20.33)

20.5 SPECIAL REQUIREMENTS IN DESIGN OF STRUCTURES SUBJECTED TO
EARTHQUAKE LOADS

The ACI Code, Sections 4.4.6, 18.1 and 18.2, define six seismic design categories (SDCs) for
earthquake-resistant structures. These are A, B, C, D, E, and F. The classification of these zones
described in ACI Code, Section R18.1 can be given in three different categories:

1. SDCs D, E, and F indicate high seismic risk zones with strong ground shaking.
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2. SDCs C indicates moderate/intermediate seismic risk zones with moderately strong ground
shaking.

3. SDCs A and B indicate low seismic risk zones with SDC A corresponding to the lowest
seismic hazard zone.

For structures in high seismic risk (SDCs D, E, and F) special requirements in flexural design
and detailing are required. Special moment frames (ACI Code, Sections 18.6–18.9) and special
structural walls (ACI Code, Section 18.5) should be used as the structural system of a building.

For the structures in moderate seismic risk (SDC C) some special provisions are required for
satisfactory intermediate seismic performance (ACI Code, Sections 44.6.4, 4.4.6.5.1 and 4.4.6.5.2).
Structure can be designed as intermediate moment-frame or intermediate structural-walls systems.
Structures from a higher category can also be utilized.

For the structures in low seismic risk (SDC A), no special requirements in flexural design and
detailing are required (ACI Code, Section 4.4.6.3). Ordinary moment frames and ordinary structural
walls and systems should be utilized as the structural system of a building.

For structure assigned to SDC B, additional requirements apply (ACI Code, Section 4.4.6.4).
SDC B structures shall satisfy ACI Code, Chapter 18.

20.5.1 Structures in the High Seismic Risk: Special Moment Frames

A special moment frame is a structural system that is designed and detailed to sustain strong earth-
quakes. Special provisions for designing and detailing are given for

1. Flexural members of special moment frames such as members subjected to only bending.
2. Special moment-frame members subjected to bending and axial load such as columns.
3. Joints of special moment frames.

Strong column–weak girder connection. Courtesy of Murat Saatcioglu and John Gardner

20.5.1.1 Flexural Members of Special Moment Frames
20.5.1.1.1 General Requirements

1. If factored axial compressive force Pu < Ag f ′c∕10, then the member is considered to be sub-
jected to bending. Area Ag represents the gross area of the concrete member.
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2. Clear span ln ≥ 4 × effective depth (d).
3. The flexural member width-to-depth ratio, b𝑤/d ≥ 0.3.
4. Flexural member width (b𝑤) ≥ 10 in.
5. Width of member b𝑤 (Fig. 20.11) shall not exceed width of supporting member C2 + a dis-

tance on each side of supporting member equal to the smallest of (a) and (b):
a. Width of supporting member, C2.
b. 0.75 times the overall dimension to supporting member, C1.

20.5.1.1.2 Longitudinal Reinforcement Requirements. According to the ACI Code, Section
18.6.3.1, the longitudinal reinforcement at any section should satisfy the following (Fig. 20.12):

1. Longitudinal reinforcement for both top and bottom steel (As) should be in the range defined
as follows:

3
√

f ′c bd

fy

200bd
fy

⎫
⎪
⎪
⎬
⎪
⎪
⎭

≤ (As) ≤ 0.025bd (20.34)

At least two bars should be provided continuously at both top and bottom. For the statically
determined T-sections with flanges in tension, the value of b in the expression 3

√
f ′c bd∕fy

should be replaced by either 2b (width of web) or the width of the flange, whichever is smaller
(ACI Code, Section 9.6.1.2).

2. The positive moment strength at joint face should be greater or equal to 1
2

the negative moment
strength at that face of the joint (ACI Code, Section 18.6.3.2):

𝜙M+
n1
≥

1
2
𝜙M−

n1
(left joint) (20.35a)

𝜙M+
nr
≥

1
2
𝜙M−

nr
(right joint) (20.35b)

where
Mn1

= moment strength at left joint of flexural member
Mnr

= moment strength at right joint of flexural member

3. Neither the negative nor positive moment strength at any section along the member should be
less than 1

4
of the maximum moment strength provided at the face of either joint:

(𝜙M+
n or 𝜙M−

n ) ≥
1
4
(max 𝜙Mn at either joint) (20.36)

4. Anchorage of flexural reinforcement in support can be calculated using the following
equation:

ldh ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

fydb

65
√

f ′c
8db

6 in.

(20.37)

where db is the diameter of longitudinal reinforcement.
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SECTION A-A

Direction of
analysis

A

PLAN

c2

c1

Transverse reinforcement through
the column to confine beam
longitudinal reinforcement passing
outside the column core

A

bw

Not greater than the smaller
of c2 and 0.75 c1

Note:
Transverse reinforcement in column above and
below the joint not shown for clarity

Figure 20.11 Maximum effective width of wide beam and required transverse rein-
forcement. Courtesy of American Concrete Institute [1]
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M–
ne

M–
nr

M+
ne ≥       M–

ne
1
2

M+
nr ≥       M–

nr
1
2

Figure 20.12 Longitudinal reinforcement requirements.

5. Lap splices of flexural reinforcement are permitted only if hoop or spiral reinforcement is
provided over the lap length. Hoop or spiral reinforcement spacing should not exceed d/4 or
4 in., whichever is smaller. Lap splices should not be used within a joint, within a distance of
twice the member depth from the face of the joint, or at locations of plastic hinges (critical
sections).

20.5.1.1.3 Transverse Reinforcement Requirements. For the special moment-resisting frame,
plastic hinges will form at the ends of flexural members. Those locations should be specially
detailed to ensure sufficient ductility of the frame members. Transverse reinforcement gives lat-
eral support for the longitudinal reinforcement and assists concrete to resist shear. It should satisfy
the following (ACI Code, Section 18.6.4):

1. Hoops are required over a length equal to twice the member depth from the face of the support
at both ends of the flexural member. Also, hoops are required over lengths equal to twice the
member depth on both sides of the section where flexural yielding may occur, as shown in
Fig. 20.13.

2. The spacing of the hoops, s, should not exceed the smallest of the following values:
a. d/4.
b. Six times the diameter of the smallest primary flexural reinforcing bars excluding longi-

tudinal skin reinforcement.
c. 6 in.

The first hoop should be located not more than 2 in. from the face of the support.
3. Where hoops are not required, stirrups with seismic hooks at both ends should be used. Spac-

ing between stirrups should be less than or equal to d/2.

2h 2h 2h 2h

Section yields

h

Figure 20.13 Areas of the flexural member where hoops are required. (Note: These
areas do not necessarily occur at midspan.)
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2 in.

s ≤ d/2

h

2h

Figure 20.14 Transverse reinforcement requirements.

Consecutive
crossties engaging
the same
longitudinal bars
have their 90 deg
hooks on opposite
sides

Maximum spacing
between bars
restrained by legs
of Crossites
or hoops = 14 inch

Detail CDetail A

Detail B

Crosstie as
defined in ACI 25.3.5

A A
CC

B

6db
Extension

6db ≥ 3 in.
Extension

Figure 20.15 Transverse reinforcement requirements. Courtesy of American Concrete
Institute [1]

4. Transverse reinforcement should be designed to resist the design of the shear force
(Figs. 20.14 and 20.15). Design of the shear force for flexural members of special moment
frames can be determined using the following equation (Fig. 20.16):

V1 =
M−

pr + M+
pr

ln
+
𝑤ulu

2
(20.38a)

Vr =
M−

pr + M+
pr

ln
+
𝑤ulu

2
(20.38b)
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Sideways to the left

Vr

Vr

wu

V

V

M–
Prr

M+
Prr

M+
Pr

M–
Pr

Sideways to the right

n

wu

Figure 20.16 Design shear force. Courtesy of American Concrete Institute [1]

where
Vl = design shear force at left joint of flexural member
Vr = design shear force at right joint of flexural member

Mpr = probable moment strength at end of beam, determined as strength of beam with stress in rein-
forcing steel equal to 1.25fy and strength reduction factor of 𝜑= 1.0

ln = clear span of flexural member
𝑤u = factored distributed load determined by Eq. 20.39

𝑤u = 1.2D + 1.0L + 0.2S (20.39)

where

D = dead load
L = live load
S = snow load

Probable moment strength at the end of the beam, Mpr, can be calculated from the following
equation:

Mpr = As(1.25fy)
(

d − 1
2

a
)

(20.40)

where

a =
As(1.25fy)

0.85f ′c b
(20.41)

The shear strength of concrete can be taken to be 0 when the earthquake-induced shear force is
greater than or equal to 50% of the total shear force and the factored axial compressive force is less
than Agf ′c∕20, where Ag is the gross area of the beam.

20.5.1.1.4 Summary: Design of the Special Moment-Resisting Frame Members Subjected
to Bending.

Step 1. Determine the seismic design category, base shear, lateral seismic force, and seismic
shear according to 20.2 and 20.3.
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Step 2. Calculate the member forces, and use the different load combinations to determine the
values of member forces that govern the design (Section 20.4). Design for flexural rein-
forcement.

Step 3. Check whether the frame member is a flexural member and check the general require-
ments for the special moment frame member according to Section 20.5.1.1.1.

Step 4. Check the special requirements for the longitudinal reinforcement according to Section
20.5.1.1.2.

Step 5. Design the transverse reinforcement for confinement and shear resistant using Section
20.5.1.1.3.

Example 20.6

Design a beam AB on the second floor of a building, as shown in Fig. 20.17. The building is constructed
in a region of high seismic risk on soil class B. Additional information are:

BA

6 
@

 1
2'

30' 30'

Figure 20.17 Example 20.6: Building elevation.

Material properties:

Concrete: f ′c = 4000 psi,wc = 150 pcf

Steel fy = 60,000 psi

Loads:

Live loads = 40 psf

Super imposed dead load = 35 psf

Member dimensions

Beams = 20 × 24 in.

Columns = 20 × 24 in.

Slab thickness = 7 in.

Effective depth = 21.5 in.



20.5 Special Requirements in Design of Structures Subjected to Earthquake Loads 827

Solution

1. Seismic design category, base shear, lateral seismic force, and seismic shear are determined in
Example 20.3.

2. Load combinations are given as follows:

1.4D (I)

1.2D + 1.6L (II)

1.2D + 1.0E + f1L f1 = 0.5 according to Section 20.4 (III)

0.9D + 1.0E (IV)

Redundancy factor, 𝜌, cannot be taken less than 1.0. For seismic design category D to F, use
𝜌= 1.3. Under special cases, 𝜌 can be taken as 1.0 (ASCE 7-10, Section 12.3.4.2). Use 𝜌= 1.0
assuming one of the conditions is met.

Seismic load effect, E, can be determined using Eqs. 20.30 and 20.31:

E = 𝜌QE + 0.2SDSD = QE + 0.2(1.0)D = QE + 0.2D

E = 𝜌QE − 0.2SDSD = QE − 0.2(1.0)D = QE − 0.2D

Replacing the E in Eq. III gives:
1.4D + 0.5L + QE

D + 0.5L + QE

Replacing the E in Eq. IV gives:

1.1D + QE

0.7D + QE

The member forces for the beam AB on the second floor (Fig. 20.17) are calculated using
the software for load analysis, and the values of required flexural strengths are determined using
different load combinations, as shown in Table 20.10.

From the previous table 20.10, the most critical loads are chosen and summarized in
Table 20.11. Longitudinal reinforcement for the beam is also determined in Table 20.12.

Table 20.12 summarizes the reinforcement used for the beam.
3. General requirements for flexural members of special moment frame are checked as follows:

a. Clear span ≥ 4 × (effective depth)

28 ft ≥ 4
21.5
12

= 7.2 ft (OK)

b. Width-to-depth ratio ≥ 0.3

20
24

= 0.83 > 0.3 (OK)

c. Width= 20 in. ≥ 10 in. (OK)
d. Width ≤ width of supporting member + distance on each side of the supporting member not

exceeding smaller of C2 or 1.5C1

20 in. ≤ C2 + 2C2 = 3 × 24 = 72 in. (OK)

20 in. ≤ C2 + 1.5C1 = 24 + (1.5 × 26) = 63 in. (OK)
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Table 20.10 Calculated Member Forces

Location Bending Moment (kip ⋅ ft) Shear (Kip)

Load cases
D Support −95 24

Midspan 65
L Support −22 11

Midspan 15
QE Support ±290

Midspan 0 ±25
Load combinations
1.4 D Support −133 33.6

Midspan 91
1.2D + 1.6L Support −149 46.4

Midspan 102
1.4D + 0.5L + QE Support −434/146a 64.1

Midspan 98.5
D + 0.5L + QE Support −396/184a 54.5

Midspan −473
1.1D + QE Support −395/186a 51.4

Midspan −471.5
0.7D + QE Support −357/224a 41.8

Midspan 45.5

aQE has negative and positive value.

Table 20.11 Calculation of Longitudinal Reinforcement

Location Mu (kip ⋅ ft) As (in.2) Reinforcement 𝝋Mn (kip ⋅ ft)

Support (top) –434 5.20 7 no. 8 (As = 5.53 in.2) –474
Support (bottom) 224 3.00 6 no. 7 (As = 3.6 in.2) 323
Midspan 102 1.20 2 no. 7 (As = 1.2 in.2) 113

Table 20.12 Summary of Reinforcement

Reinforcement Provided

Location Top Bottom

Support 7 no. 8 (5.53 in.2) 6 no. 7 (3.6 in.2)
Midspan 2 no. 8a (1.58 in.2) 2 no. 7 (1.2 in.2)

aTwo no. 8 bars are extended from seven no. 8 support bars into the negative moment zone at midspan.
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Table 20.13 Longitudinal Reinforcement Requirements According to the Limits of the Reinforcement

Reinforcement Limits

As (in.2) Min As (in.2) Max As (in.2) Provided As (in.2) 𝝋Mn (kip ⋅ ft)

Support
(joint face)

5.53 5.53 –474

(7 no. 8 at the top)
3.6 3.6 358
(6 no. 7 at the bottom) 1.43 10.75

Midspan 1.58 1.58 –148
(2 no. 8 at the top)
1.2a 1.8a 168
(2 no. 7 at the bottom) (3 no. 7)

aSince 1.2 in.2 < min As = 1.43 in.2, use three no. 7 bars at the bottom. (As = 1.8 in.2)

4. Special requirements for longitudinal reinforcement are
a. Use Eq. 20.3.4

A−
s or A+

s ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

3
√

f ′c b𝑤d

fy
=

3
√

4000 × 20 × 21.5
60000

= 1.36 in.2

200b𝑤d

fy
= 200 × 20 × 21.5

60000
= 1.43 in.2

max As = 0.025b𝑤d = 0.025 × 20 × 21.5 = 10.75 in.2

Check the reinforcement limits against the required reinforcement, as shown in Table 20.13.

b. Positive moment strength at joint face ≥
1
2

negative moment strength at that face of the joint:

M+
n = 358 kip ⋅ ft ≥

1
2

M−
n = 1

2
474 = 237 kip ⋅ ft (OK)

c. (M−
n or M+

n ) at any section ≥
1
4

(max Mn at either joint) (ACI Code, Section 18.6.3.2):

Mn = 148 K-ft >
1
4
(474) = 119 kip ⋅ ft (OK)

Anchorage of flexural reinforcement in exterior column is determined as follows using
Eq. 20.37:

For no. 8 bars,

ldh =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

60,000 × 1.0

65
√

4000
= 14.6′′

8 × 1.0 = 8 in.
6 in.

Therefore, ldh = 14.6 in. For no. 7 bars,

ldh =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

60,000 × 0.875

65
√

4000
= 12.8 in.

8 × 0.875 = 7 in.
6 in.

Therefore, ldh = 12.8 in.
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5. Transverse reinforcement is determined as follows:

Ve =
(M±

pr)l + (M±
pr)r

ln
+
𝑤uln

2

Mpr = As(1.25 fy)
(

d − a
2

)

For six no. 7 bottom bars,

a =
As(1.25 fy)

0.85f ′c b
= 3.6(1.25 × 60)

0.85 × 4 × 20
= 3.97 in.

Mpr = As(1.25fy)
(

d − a
2

)
= 3.6(1.25 × 60)

(
21.5 − 3.97

2

)
= 5269 kip ⋅ in. = 439 kip ⋅ ft

For seven no. 8 bars,

a =
As(1.25fy)

0.85f ′c b
= 5.53(1.25 × 60)

0.85 × 4 × 20
= 6.1 in.

Mpr = As(1.25 fy)
(

d − a
2

)
= 5.53(1.25 × 60)

(
21.5 − 6.1

2

)

= 7653 kip ⋅ in. = 638 kip ⋅ ft

𝑤u = 1.2𝑤D + 0.5𝑤L = 2.78 kip∕ft

V1 =
M−

pr + M+
pr

ln
+
𝑤ulu

2
= 638 + 439

26
+ 2.78 × 26

2
= 77.6 K

Vr =
M+

pr + M−
pr

ln
+
𝑤ulu

2
= 638 + 439

26
+ 2.78 × 26

2
= 5.3 K

Maximum earthquake-induced shear force is

439 + 638
26

= 41.4 K >
77.6

2
= 38.8 K ⇒ Vc = 0

𝜙Vs = Vu − Vc

Vs =
77.6
0.75

− 0 = 104 K

Vs = 104 K(Vs,max) = 8
√

f ′c b𝑤d = 8
√

4000 × 20 × 21.5 = 217.6 K(OK)

(ACI Code, Section 11.4.7.9)

Vs = 104 K < 4
√

f ′c b𝑤d = 4
√

4000 × 20 × 21.5 = 109 K (OK)

(ACI Code, Section11.4.5.3)
Otherwise maximum stirrups spacing shall be d/4 or less.
Required spacing for no. 3 stirrups is determined as

s =
Asfyd

Vs
= (4 × 0.11) × 60 × 21.5

104
= 5.5 in.

Maximum spacing of the hoops within a distance of 2h= 2× 24= 48 in. shall not exceed the
smallest of

d
4
= 21.5

4
= 5.4 in.

Eight times the diameter of the smallest longitudinal bar= 8 × 0.875= 7 in.
Twenty-four times the diameter of the hoop bars= 24 × 0.375= 9 in. or 12 in.
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Therefore, use 10 no. 3 hoops at each end of the beam at 5 in. center to center with the first
hoop located at 2 in. from the face of the support.

At the distance 48 in. from the face of the support, shear strength is

Vu = 77.66 − 2.78 × 48
12

= 66.48 K

The shear strength contributed by the concrete is

Vc = 2 × 1 ×
√

4000 × 20 × 21.5 = 54.4 K

Vs =
66.54
0.75

− 54.4 = 34.2 K

S =
A𝑣fyd

Vs
= 4 × 0.11 × 60,000 × 21.5

34.2
= 16.3 in.

Spacing of the stirrups should not be taken greater than

s = d
2
= 21.5

4
= 10.75 in.

or

s =
Asfy
50b

= (2 × 0.11) × 60,000
50 × 20

= 26.4 in.

Therefore, use stirrups with seismic hoops spaced 5 in. center to center starting at 48 in. from
the face of the support. Figure 20.18 shows reinforcement detailing.

28 ft

50"

11 no. 3 hoops @ 5"

No. 3 stirrups @ 8"

11 no. 3 hoops @ 5"
2"

A

50"

24"

h = 24"

20"

A – A

6 no. 7

7 no. 8

7 no. 8
2 no. 8A

6 no. 7

No. 3 hoops24
"

30 ft

7 no. 8

Figure 20.18 Example 20.6: Reinforcement detailing.
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20.5.1.2 Special Moment Frame Members Subjected to Bending and Axial Loads
20.5.1.2.1 General Requirements. The requirements of this section apply to columns and other
flexural members that carry a factored axial load > Ag f ′c∕10. These members should satisfy both
of the following conditions (ACI Code, Section 18.7.2.1):

1. Shortest cross-section dimension measured on a straight line passing through the geometric
centroid ≥ 12 in.

2. The ratio of shortest cross-sectional dimension to the perpendicular dimension ≥ 0.4.

20.5.1.2.2 Longitudinal Reinforcement Requirements. According to the ACI Code, Section
18.7.3.2, the flexural strengths of columns should satisfy the following:

∑
Mnc ≥

6
5

∑
Mnb (20.42)

where
∑

Mnc = sum of nominal flexural strengths of columns framing into joint, evaluated at faces of joint∑
Mnb = sum of nominal flexural strengths of the beams framing into joint, evaluated at faces of joint

This approach, called the strong column–weak beam concept (Fig 20.19) ensures that columns
will not yield before the beams.

1. The longitudinal reinforcement ratio should satisfy the following (ACI Code, Section
18.7.4.1):

0.01 ≤ 𝜌g ≤ 0.06 (20.43)

2. In a column with circular hoops, the minimum number of longitudinal bars shall be 6 (ACI
Code, Section 18.7.4.2).

20.5.1.2.3 Transverse Reinforcement Requirements. Columns should be properly detailed to
ensure column ductility in the case of plastic hinge formation and should also have the adequate
shear strength to prevent shear failure.

Lack of transverse reinforcement. Courtesy of Murat Saatcioglu and John Gardner
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Subscripts l, r, t, and b stand for left support, right support,
top of column, and bottom of column, respectively. 

(Mnt + Mnb) ≥  (Mnl + Mnr)
Mnb Mnb

Mnt Mnt

Mnr MnrMnl
Mnl

6
5

Figure 20.19 Strong column—weak girder concept. Courtesy of Portland Cement
Association (Notes on ACI 318)

The following transverse reinforcement requirements need to be provided only over the length
l0 greater or equal to the depth of the member, 1

6
clear span, 18 in., from the each joint face and

on both sides of any section where yielding is likely to occur (ACI Code, Section 18.7.5.1). The
requirements (ACI Code, Section 18.7.5.4) are:

1. Ratio of spiral reinforcement, 𝜌s, should satisfy the following (Fig. 20.20):

𝜌s ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.12
f ′c
fyh

0.45

(
Ag

Ach
− 1

)
f ′c
fyh

(20.44)

where

fyh = yield stress of spiral reinforcement
Ach = area of core of spirally reinforced compression member measured to outside diameter of spiral
Ag = gross area of section

2. Total cross-section area of rectangular hoop reinforcement, Ash (Figure 20.21), should satisfy
the following (ACI Code, Section 18.10.7.4):

Ash ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.3
(
sbc

)( Ag

Ach
− 1

)
f ′c
fyt

0.09
sbc f ′c

fyt

(20.45)
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h2

ρs  ≥
ε1

0.12 

0.45

f 'c
fyh

f 'c
fyh

Ag
Ach

 – 1

≤ 3 in.
≥ larger of 1 in.
or 1.33 (max.
agg. size)

Clear space*

Figure 20.20 Transverse reinforcement requirements for spiral reinforcement.
Courtesy of Portland Cement Association (Notes on ACI 318)

where

fyt = yield stress of hoop reinforcement
s = spacing of transverse reinforcement

bc = cross-section dimension of column core measured center to center of confining reinforcement

3. If the thickness of the concrete outside the confining transverse reinforcement exceeds 4 in.,
additional transverse reinforcement should be provided at a spacing ≤ 12 in. Concrete cover
on additional reinforcement should not exceed 4 in.
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≤ 4 in. (see 20.4.4.1 when cover > 4 in.)
h1

Ash ≥

0.3sbc

0.09sbc

f'c
fyt

f'c
fyt

s
2h1

4

h2
4

s**≤ 

Ag
Ach

 – 1db

h 2

6 in. ≥ sx = 4 +  ≥ 4 in.14 – hx
3

6db

6 in.

s*≤

6db
sx

0

0 ≥

larger of h1 or h2

18 in.

(Clear span)
1
6

Figure 20.21 Transverse reinforcement requirements for rectangular hoop reinforce-
ment. Courtesy of Portland Cement Association (Notes on ACI 318)

4. Spacing of the transverse reinforcements along the length l0 should satisfy the following:

s ≤

⎧
⎪
⎨
⎪
⎩

h
4
(h = minimum member dimension)

6 × smallest longitudinal diameter bar
s0

(20.46)

Also,

4 in. ≤ s0 = 4 +
(

14 − hx

3

)
≤ 6 in. (20.47)
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where

s0 = longitudinal spacing of transverse reinforcement within the length l0
hx = maximum horizontal spacing of hoop or crosstie legs on all faces of the column

The remaining member length should be reinforced with the spiral or hoop transverse reinforcement
spaced as follows:

s ≤

{
6 × smallest longitudinal diameter bar
6 in.

}
(20.48)

Transverse reinforcement should be designed to resist the design shear force. Design shear force
for flexural members of special moment frames can be determined using the following equation:

Vu =
Mprt

+ Mprb

lc
(20.49)

where index t is for top and index b is for bottom of the column and lc is the length of the column.

20.5.1.2.4 Summary: Design of the Special Moment-Resisting Frame Members Subjected
to Bending and Axial Force

Step 1. Determine seismic design category, base shear, lateral seismic force, and seismic shear
according to 20.2 and 20.3.

Step 2. Calculate the member forces and using the different load combinations determine the
values of member forces that govern the design. Design the reinforcement.

Step 3. Check whether the frame member is a flexural member or whether the member is sub-
jected to the bending and axial force, and check general requirements for the special
moment-frame member according to Section 20.5.1.2.1.

Step 4. Check the special requirements for the longitudinal reinforcement according to Section
20.5.1.2.2.

Step 5. Design the transverse reinforcement for confinement and shear resistant using Section
20.5.1.2.3.

Example 20.7

Design the edge column on the second floor of a building from Example 20.6.
Given:

First Floor:

Pu = 1022 K

Mnc = 580 kip ⋅ ft

Second Floor:

Pu = 935 K

Mnc = 528 kip ⋅ ft

Mnb = 723 kip ⋅ ft
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Solution

1. The load combinations gave the following results:

Pu = 1022 K (maximum forceat the first floor)

Pu = 935 K (maximum forceat the second floor)
2.

Pu = 1022 K >
Agf ′c
10

= (24 × 24)
10

= 230 K

The member is subjected to bending and axial loads. General requirements should be checked as
follows:
a. Shortest cross-section dimension= 24 in. ≥ 12 in., which is OK.
b. The ratio of shortest cross-sectional dimension to the perpendicular dimension, 24

24
= 1 ≥ 0.4,

which is OK.
3. Longitudinal reinforcement for the column with Pu = 1022 K is eight no. 8 bars.

The reinforcement ratio is 𝜌g = 0.011< 0.06, which is OK, and > 0.01, which is also OK.
∑

Mnc ≥
6
5

∑
Mnb

For Pu = 1022 K, Mn = 580 kip ⋅ ft. For Pu = 935 K, Mn = 528 kip ⋅ ft. A minimum nominal flex-
ural strength of the beam at the joint including the slab reinforcement is Mn = 723 kip ⋅ ft.

∑
Mnc = 580 + 528 = 1108 kip ⋅ ft

∑
Mnb = 723 kip ⋅ ft

∑
Mnc = 1108 kip ⋅ ft ≥

6
5

∑
Mnb = 6

5
723 = 868 kip ⋅ ft (OK)

4. Length l0 is determined as follows:

l0 ≥

⎧
⎪
⎨
⎪
⎩

depth of the member = 24 in.
1
6

clear height = 1
6
(12 × 12) = 24 in.

18 in.

Choose l0 = 24 in.

From Eq.20.46, spacings ≤

⎧
⎪
⎪
⎨
⎪
⎪
⎩

h
4
= 24

4
= 6 in.

6 × Smallest longitudinal diameter bar = 6 × 1.0 = 6 in.

s0 = 4 +
(14 − 11

3

)
= 5 in.

Therefore, s= 5 in.
Required cross-section area of reinforcement is

Ash ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.3

(
sbc f ′c

fyt

)( Ag

Ach
− 1

)
= 0.3

(5 × 20.5 × 4
60

)(576
441

− 1
)
= 0.63 in.2

0.09
sbc f ′c

fyt
= 0.09

5 × 20.5 × 4
60

= 0.62 in.2

Choose no. 4 hoops and no. 5 crossties:

Ash = 2 × 0.2 + 0.31 = 0.71 in.2 > 0.63 in.2

Detailing of the reinforcement can be found in Fig. 20.22.
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1.5"

1.5"

24"

No. 4 hoops

No. 5 crossties

s = 5 in.

24
"

s = 6 in.

24"

24"

Figure 20.22 Example 20.7: Reinforcement detailing.

20.5.1.3 Joints of Special Moment-Resisting Frame. Joint of special moment-resisting frame
should be detailed according to ACI Code, Section 18.8, as follows:

20.5.1.3.1 Longitudinal Reinforcement Requirements. The development length ldh for a bar
with a standard 90∘ hook using normal-weight concrete, for bar size no. 3 through no. 11, should
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12db

db

dh

Figure 20.23 Standard 90∘ hooks. Courtesy of American Concrete Institute [1]

be determined according to the following (Fig. 20.23):

ldh ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

fydb

65
√

f ′c
8db

6 in.

(20.50)

where db is the diameter of longitudinal reinforcement. The 90o hook shall be located within the
confine core of the column.

The development length, ld, for a straight bar for bar sizes no. 3 through no. 11 should not be
less than the larger of:

1. 2.5 ldh if the depth of the concrete cast in one lift beneath the bar does not exceed 12 in.
2. 3.5 ldh if the depth of the concrete cast in one lift beneath the bar exceeds 12 in.

When the longitudinal reinforcement passes through the beam column joint, the column
dimension parallel to the beam reinforcement should not be less than 20 times the diameter of the
largest longitudinal beam bar for normal-weight concrete. For lightweight concrete, this dimension
should not be less than 26 times the bar diameter.

20.5.1.3.2 Shear Strength Requirements. The nominal shear strength of the joint for normal-
weight concrete should not exceed the following:

1. 20
√

f ′c Aj for joints confined by beams on all four faces.

2. 15
√

f ′c Aj for joints confined by beams on three faces or on two opposite faces.

3. 20
√

f ′c Aj for all other cases.

where Aj is the effective area, as shown in Fig. 20.24.
A beam that frames into a face is considered to provide confinement to the joint, if it

covers at least three quarters of the face of the joint. Extension of beams at least one overall
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Effective joint
area, Aj

Joint depth = h
in plane of
reinforcement
generating shear

Note:
Effective area of joint for
forces in each direction
of framing is to be
considered separately.
Joint illustrated does not
meet conditions of
18.8.3.2 and 18.8.4.1
necessary to be
considered confined
because the beams 
do not cover at least ¾
of the width of each of the
faces of the joint.

Reinforcement
generating shear

Direction of
forces generating
shear

Effective
joint width = b + h

x

x

h
b

≤ b = 2x

Figure 20.24 Effective joint area (Aj ). Courtesy of American Concrete Institute

beam depth h beyond the joint face are permitted to be considered adequate for confirming that
joint face.

Aj = joint depth × Effective depth
Joint depth= h (overall depth of column)
Effective joint width= overall width of column except where a beam frames into a wider

column.

Effective joint width ≤

{(a) Beam width + joint depth
(b)Twice the smaller perpendicular distance
from longitudianl axis of beamtocolumn side

}

Column–girder connection (joint).Courtesy of Murat Saatcioglu and John Gardner
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20.5.2 Structures at High Seismic Risk: Special Reinforced Concrete Structural Walls
and Coupling Beams (ACI Code, Section 18.10)

A wall system is a structural system that provides support for all gravity loads and all lateral loads
applied to the structure. A structural wall system is much stiffer than a frame system and its per-
formance during an earthquake is better than the performance of the frame system.

A structural wall should be properly designed to sustain all loads acting on it. Boundary
elements of structural walls are the areas around the structural wall edges, as shown in Fig. 20.25,
that are strengthen by the longitudinal and transverse reinforcement. Boundary elements increase
the rigidity and strength of wall panels. The web reinforcement is anchored into the boundary
elements.

Figure 20.26 shows the elements of the wall with openings. The vertical wall segment
bounded by two openings is called a pier. A horizontal wall section between the openings is called

w

w

Boundary
element

Boundary
element

Web (wall)

or

Figure 20.25 Boundary elements of structural wall.

Pier Pier

Pier

Coupling beam

Pier Pier

Horizontal
wall element

Figure 20.26 Elements of the wall with openings.
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a horizontal wall segment. When the openings are aligned vertically over the building height, the
horizontal wall segments between the openings are called coupling beams.

Shear wall after an earthquake. Courtesy of Murat Saatcioglu and John Gardner

In the regions of high seismic risk, structural walls that meet special reinforcement require-
ments should be used. The ACI Code, Section 18.10.1, gives provisions for the design and detailing
of structural walls. These are described in the following sections.

20.5.2.1 Reinforcement Requirements. Shear reinforcement should be provided in two orthog-
onal directions in the plane of the wall (ACI Code, Section 18.10.2.1). The minimum reinforcement
ratio for both longitudinal and transverse directions can be determined as follows:

1. If the design shear Vu > Acv𝜆
√

f ′c , the distributed web reinforcement ratios, 𝜌l and 𝜌t, should
not be less than 0.0025.

𝜌l =
Asv

Acv
= 𝜌t ≥ 0.0025 (20.51)

where

𝜌t = ratio of area of distributed transverse reinforcement parallel to plane of Acv to gross concrete
area perpendicular to that reinforcement (Fig. 20.27)

𝜌l = ratio of area of distributed longitudinal reinforcement perpendicular to that reinforcement of
Acv to gross concrete area Acv (Fig. 20.27)

Acv = gross area of concrete section (product of thickness and length of section in direction of shear
force)

Asv = projection on Acv of area of shear reinforcement crossing the plane of Acv
𝜆 = factor for lightweight aggregate concrete

2. If the design shear Vu > Acv𝜆
√

f ′c , the minimum reinforcement for ordinary structural walls
can be utilized:

Minimum vertical reinforcement ratio,𝜌l = 0.0012 for no. 5 bars and smaller

= 0.0015 for no. 6 bars and larger
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Minimum horizontal reinforcement ratio,𝜌t = 0.0020 for no. 5 bars and smaller

= 0.0025 for no. 6 bars and larger

The spacing of the reinforcement can be calculated as follows:

s = 2A1
s∕As required per(foot of wall)

where A1
s is the area of one bar (Fig. 20.27).

Maximum spacing of reinforcement is 18 in. each way according to ACI Code, Section
18.10.2.1.

If the in-plane factored shear force assigned to the wall exceeds 2Acv𝜆
√

f ′c , at least two
curtains of reinforcement should be provided, as shown in Fig. 20.27.

All continuous reinforcement in structural walls should be anchored and spliced as rein-
forcement in tension for special moment frame (ACI Code, Section 18.10.2.3).

tw

Two curtains
of reinforcement

Asn

Acv

Asv

=
Acv

Asv

=
Acv

Asn

hw

Vu

ρt

ρ

w

Figure 20.27 Reinforcement requirements. (where Asv = longitudinal area of steel,
Asn = transverse area of steel).
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20.5.2.2 Shear Strength Requirements (ACI Code, Section 18.10.4). The shear strength of the
structural wall is adequate if the following condition is satisfied:

Vu ≤ 𝜙Vn (20.52)

where

Vu = factored shear force
Vn = nominal shear strength
𝜙 = strength reduction factor

According to the ACI Code, Section 21.2.4, the strength reduction factor for shear will be 0.6 for
any structural member designed to resist earthquake effects if its nominal shear strength is less than
the shear corresponding to the development of the nominal flexural strength of the member. For all
other conditions the reduction factor for shear will be 0.75.

The ACI Code, Section 18.10.4, defines the nominal shear strength of structural walls as
follows:

Vn = Acv(𝛼c𝜆
√

f ′c + 𝜌tfy) (20.53)

where

𝛼c = 3.0 for h𝑤/l𝑤 ≤ 1.5
= 2.0 for h𝑤/l𝑤 ≥ 2.0
= linear interpolation between 3.0 and 2.0 for h𝑤/l𝑤 between 1.5 and 2.0

where

h𝑤 = height of wall
l𝑤 = length of wall

For the walls with openings, the value of h𝑤/l𝑤 shall be the larger of the ratios for the entire wall
and the segment of wall considered. This ensures that the assigned unit strength of any segment of
a wall is not larger than the unit strength for the whole wall.

If the ratio h𝑤/l𝑤 ≤ 2, reinforcement ratio 𝜌𝜐 should not be less than 𝜌n.
For the walls with openings, the nominal shear strength, Vn, for vertical and horizontal walls

segments should satisfy the following:

1. If the factored shear force is resisted by several piers, the nominal shear strength, Vn, for
all wall segments should be ≤ 8Acv

√
f ′c , where Acv is the total cross-section area of the

walls (piers) and Vn ≤ 10Acv

√
f ′c , where Acp is the cross-section area of the individual pier

considered.
2. Nominal shear strength of a horizontal wall segment and coupling beams, Vn, should be ≤

10Acv

√
f ′c , where Acw is the cross-section area of the horizontal wall segment or coupling

beam.

20.5.2.3 Design for Flexure and Axial Loads. Flexural strength of walls should be determined
according to the procedure used for columns subjected to flexure and axial loads (ACI Code, Section
18.10.5). The reinforcement in the whole cross section of the wall, including boundary elements
and web, should be included in calculations of the capacity of the wall. Openings in walls should
also be considered.
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Wall 1

T-section L-section

Wall 2

tw

tw

tw

Wall 1
Wall 2tw

Figure 20.28 Shapes of the wall flanges.

Wall 1 Wall 2

0.025 hw 
= min

bf

2B1

hw

Figure 20.29 Effective flange width, bf.

Where the wall sections intersect to form L-sections, T-sections, or other cross-section shapes
of the flanges (as shown in Fig. 20.28), the design needs to be considered. Flange width should be
determined as follows.

Effective flange width from the face of the web should extend a distance equal to or smaller
than 1

2
the distance to an adjacent wall web or 25% of the total wall height (Fig. 20.29) (ACI Code,

Section 18.10.5.2).

20.5.2.4 Special Boundary Elements of Special Reinforced Structural Walls. During an earth-
quake, a structural wall behaves as a cantilever beam (Fig. 20.30). Boundary elements can be very
heavily loaded due to earthquake loads. A plastic hinge can form at the base of the wall, which
requires special reinforcement detailing to provide necessary strength and ductility of the struc-
tural wall. According to the ACI Code, Section 18.10.6.1, there are two design approaches for
evaluating the detailing requirements of the wall boundary element. These are defined as follows:

1. Displacement-based design (ACI Code, Section 18.10.6.2). For the walls or wall piers that
are effectively continuous from the base of the structure to the top of the wall, design to have
a single critical section for flexure, and axial load compression zones should be reinforced
with special boundary elements if

c ≥
l𝑤

600(1.5𝛿u∕h𝑤)
(20.54)
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Pu

Vu

Mu

Pu

Vu

Figure 20.30 Deformation of wall due to earthquake loads.

where 𝛿u/h𝑤 ≥ 0.007

c = distance from extreme compression fiber to neutral axis, calculated for factored axial force and
nominal moment strength

l𝑤 = length of wall in direction of shear force
𝛿u = design displacement

The special boundary reinforcement should extend vertically from a critical section a dis-
tance (Fig. 20.30) given as

≥

⎧
⎪
⎨
⎪
⎩

l𝑤
Mu

4Vu

(20.55)

2. Shear-based design (ACI Code, Section 18.10.6.3). Structural walls not designed to the
displacement-based approach shall have special boundary elements at boundaries and edges
around openings of the structural wall. A special boundary element should be provided
where the maximum extreme fiber compressive stress due to factored forces, including
earthquake effects, exceeds 0.2f ′c . The boundary elements may be discontinued when the
compressive stress becomes less than 0.15f ′c .

Detailing of the special boundary elements should satisfy the following:

1. Extend horizontally from the extreme compression fiber a distance (Fig. 20.31)

≥

{
c − 0.1l𝑤
c
2

where c is the largest neutral axis depth calculated for the factored axial force and nominal
moment strength consistent with 𝛿u.

2. Transverse reinforcement should be designed by the provisions given for the special
moment-frame members subjected to bending and axial forces (Fig. 20.32).
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max

max

Pu

lw

lw

Vu

Mu

Mu

4Vu

c–o.1lw
c
2

c

NA

Figure 20.31 Area where special reinforcement requirements should be provided.

20.5.2.5 Coupling Beams. The coupling beam is the structural element that rigidly connects two
walls. In a properly designed earthquake-resistant coupled wall system, the coupled beams should
yield first, before the base of the wall where the bending moment has the highest value. Also, the
beam should have significant ductility and dissipate the energy through the inelastic deformation.

According to the ACI Code, Section 18.10.7, the coupled beams should be designed as
follows:

1. If ln/h ≥ 4, where ln is the length and h is the height of the coupled beam, design the coupled
beam to satisfy requirements given for flexural members of special moment frame (ACI Code,
Section 18.10.7.1).

2. If ln/h< 2, the beam should be reinforced with two intersecting groups of diagonally placed
bars symmetrical about the midspan. The diagonal bars are also required for coupling beam
with aspect ratio ln/h< 2 and Vu ≤ 4𝜆

√
f ′c Acw, where Acw is the area of concrete section, resist-

ing shear, of individual pier or horizontal wall segment (ACI Code, Section 18.10.7.2).

Two confinement options are described in ACI 318, as shown in Fig. 20.33. According to ACI
Code, Section 18.10.7.4(c), each diagonal element consists of a cage of longitudinal and transverse
reinforcement, as shown in Fig. 20.33a. Each cage contains at least four diagonal bars and confines
a concrete core. The requirement on side dimensions of the cage and its core is to provide adequate
toughness and stability to the core section when the bars are loaded beyond yielding. The diagonal
bar should be embedded into the wall not less than 1.25 times the development length for fy in
tension.

ACI Code, Section 18.10.7.4 describes a second option for confinement of the diagonals as
shown in Fig. 20.33b. This second option is to confine the entire beam cross section instead of
confining the individual diagonals. This option can considerably simplify field placement for hoops,
which can be challenging where diagonal bars intersect each other or the entire wall boundary.
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Reinforcement ratio ≥ 0.0025
Maximum spacing = 18 in.

Spacing = lesser of

Ash = 0.09shcf'c / fyh

min. member dimension/4

6" ≥ sx = 4 +

6db

6db
sx

6db, 3" min.

6db, 3" min.

≥ 4"
14 – hx 

3

Figure 20.32 Reinforcement details for special boundary elements. Courtesy of Port-
land Cement Association (Notes on ACI 318)

Nominal shear strength can be determined using the following equation:

Vn = 2Avd fy sin 𝛼 ≤ 10
√

f ′c Acw (20.56)

where

Avd = total area of reinforcement in each group of diagonal bars in diagonally reinforced coupling
beam

𝛼 = angle between diagonal reinforcement and longitudinal axis of diagonally reinforced coupling
beam

Transverse reinforcement for each group of diagonally placed bars should be designed as
transverse reinforcement for the members of a special moment frame subjected to bending and
axial force.

Detailing of coupling beam reinforcement should be in accordance with Fig. 20.33.
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Figure 20.33 Reinforced detailing for coupling beams with diagonally oriented rein-
forcement. Wall boundary reinforcement is shown on one side only for clarity. Courtesy
of American Concrete Institute [1]
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20.5.2.6 Summary: Design of Special Structural Wall

Step 1. Determine minimum reinforcement ratio according to Section 20.5.2.1 and design hori-
zontal and vertical reinforcement for the wall web.

Step 2. Check the shear strength of the wall according to Section 20.5.2.2.
Step 3. Design the wall for flexure and axial forces, assuming that the wall behaves as a col-

umn, and include all reinforcement in the cross section of the wall and reinforcement in
boundary elements and the web in calculations (Section 20.5.2.3).

Step 4. Check whether the boundary elements need to be specially detailed according to Section
20.5.2.4. If conditions are satisfied, design the transverse reinforcement of boundary
elements by the provisions given for the special moment frame members subjected to
bending and axial forces.

Step 5. Design the coupling beams as shown in Section 20.5.2.5.

Example 20.8

Design the wall section given in Fig. 20.34 as a special structural wall.
Given: Forces are Pu = 4000 K, Mu = 45,000 kip ⋅ ft, Vu = 900 K; boundary elements are 24 ×

24-in. columns; wall web thickness is 16 in.; wall length is 28 ft; wall height is 12 ft; normal-weight con-
crete with f ′c = 4000 psi; normal-weight concrete, and fy = 60,000 psi. Boundary elements are reinforced
with 16 no. 11 bars.

24 in.

24 in. 24 in.

24 in.

16 in.

28 ft

12 ft

Pu = 4000 K

Vu = 900 K

Mu

Figure 20.34 Example 20.8: Structural wall.
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Solution

1. Reinforcement requirements. To determine minimum reinforcement ratio check whether Vu >

Acv𝜆
√

f ′c

Acv = 16 × (28 × 12) = 5376 in.2

Acv𝜆
√

f ′c = 5376 × 1 ×
√

4000∕1000 = 340 K < Vu = 900 K

⇒ min 𝜌i =
Asv

Acv
= 𝜌t = 0.025

Minimum reinforcement in both directions, longitudinal and transverse, per foot of wall can
be determined as follows:

Acv = 16 × 12 = 192 in.2 per foot of wall

As = 0.025 × 192 = 0.48 in.2 per foot of wall

Check whether two curtains of reinforcement are needed:

2Acv𝜆
√

f ′c =
(2)(5376)(1)

√
4000

1000
= 680 K < Vu = 900 K

Two curtains of reinforcement are required.
Shear strength upper limit =𝜙8Acv

√
f ′c = 2040 K > 900 K safe.

Choose no. 5 bars:

As = 2 × (0.31) = 0.62 in.2

Spacing(s) = 0.62
0.48

× 12 = 15.5 in. < 18 in.

Choose s= 15 in. (See Fig. 20.35)
2. Shear strength requirements. Check whether the two curtains of no. 5 bars spaced 15 in. on center

can sustain applied shear force at the base. For h𝑤∕l𝑤 = 12
18

= 0.43 < 1.5,

𝛼c = 3.0 (ACI code, Section 18.10.4.1)

𝜌t =
0.62

16 × 12
= 0.003

𝜙Vn = 𝜙Acv(𝛼c

√
f ′c + 𝜌t fy)

= 0.75 × 5376(3 × 1 ×
√

4000 + 0.003 × 60,000)∕1000 = 1490 K > 900 K

Two curtains of no. 5 bars spaced 15 in. center to center can sustain applied shear force at
the base.

Check: The reinforcement ratio:

𝜌l > 𝜌t if
h𝑤
l𝑤

< 2.0 (ACI code, Section 18.10.4.3)

Since
h𝑤
l𝑤

= 0.43, 𝜌l = 𝜌t

Provide no. 5 bar spaced 15 in. in both directions (safe).
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No. 5 bars

No. 5 bars

s = 15 in.

Figure 20.35 Example 20.8: Reinforcement detailing of a wall web.

3. Design for flexure and axial forces. Wall is designed as column subjected to axial load and
bending:

Pu = 4000 K

Mu = 45,000 kip ⋅ ft

e =
Mu

Pu
= 45,000

4000
× 12 = 135 in.

Mn =
Mu

𝜙
= 45,000

0.65
= 69,230 Kip ⋅ ft

Pn =
Pu

𝜙
= 4000

0.65
= 6153 K

Total area of reinforcement consists of 32 no. 11 bars in boundary elements and 40 no. 5 bars
in the web:

As = 32 × 1.56 + 40 × 0.31 = 32.3 in.2

Ag = 5760 in.2

𝜌 = 62.3
5760

= 0.0109 > 0.01 and < 0.06 (OK)

Pn

f ′c Ag

=6153 × 1000
4000 × 5760

= 0.267
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24 in.

24 in.

No. 4 ties
No. 4 hoop

Figure 20.36 Example 20.8: Boundary element reinforcement.

From the interaction diagram,

Mn

f ′c Agh
= 0.162

Mn = 0.162 × 4000 × 5760 × 28 × 12 = 104,509 kip ⋅ ft > 69,230 kip ⋅ ft (OK)

4. Special boundary element requirements. The shear-based approach is used to determine whether
the special boundary elements are required.

Ag = 5376 in.2

Ig = 16 × (28 × 12)3

12
= 50,577,408 in.4

l𝑤
2

= 28 × 12
2

= 168 in.

Maximum compressive stress in the wall is given as

Pu

Ag
+

Mul𝑤
Ig

= 4,000,000
5376

+ 45,000,000 × 12
50,577,408

168 = 2538 psi

0.2f ′c = 0.2 × 4000 = 800 psi < 2538 psi

A special boundary element is needed. Transverse reinforcement of boundary element should
be designed as for members of special moment frame subjected to axial load and bending
(Fig. 20.36).

Use no. 4 hoops and crossties around longitudinal bars in both directions. Maximum spacing
of transverse reinforcement should be determined as follows:

smax =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.25 × (smallest member dimension) = 0.25 × 24 = 6 in.
6 × (diameter of longitudinalbar) = 6 × 1.41 = 8.5 in.

sx = 4 +
(

14 − hx

3

)
= 4 +

(14 − 6
3

)
= 6.67 in.

Use s = 6 in. (governs).
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Required cross-section area:

Ash =
0.09sbc f ′c

fy
= 0.09 × 6 × [24 − (2 × 1.5) − 0.5] × 4

60
= 0.738 in.2

Number 4 hoops with crossties around every longitudinal bar provide

Ash = 5 × 0.2 = 1.0 in.2 > 0.738 in.2 (OK)

Development length of no. 5 bars assuming that the hooks are used (ACI Code, Section
18.8.5.1) is

ldh ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

fydb

65
√

f ′c
= 60,000 × 0.625

65
√

4000
= 9.1 in.

8db = 8 × 0.625 = 5 in.
6 in.

Therefore, ldh = 9.1 in. Also ld = 3.5ldh = 3.5 × 9 = 31.5 in. the dimension of the boundary ele-
ment = 24 in. Use the hooks to anchor reinforcement (Fig. 20.37).

24 in.

s = 15"

24 in.

No. 4 crossties

No. 11 bars

No. 4 hoops

No. 5 bars

Figure 20.37 Example 20.8: Reinforcement detailing.
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20.5.3 Structures in the Areas of Moderate Seismic Risk: Intermediate Moment Frames
(ACI Code, Section 18.4)

In regions of moderate seismic risk (SDC of C), the moment frames should be designed as inter-
mediate moment frames. The ACI Code, Section 18.4, gives provisions for the design and detailing
of intermediate moment frames as follows:

20.5.3.1 Longitudinal Reinforcement Requirements. If the compressive axial load for the <
Ag f ′c∕10, the member is considered to be subjected only to bending and the following is applicable
(ACI Code, Section 18.4.2.6):

Positive moment strength at joint ≥ 1
3

negative moment strength at that face of the joint:

M+
nl ≥

1
3

M−
nl (left joint) (20.57a)

M+
nr ≥

1
3

M−
nr (right joint) (20.57b)

Neither the positive nor the negative moment strength at any section along the length of the member
should be less than 1

5
the maximum moment strength provided at the face of either joint:

𝜙M+
n or 𝜙M−

n ≥
1
5

max (𝜙Mn at either joint) (20.58)

20.5.3.2 Transverse Reinforcement Requirements
Beams. It is assumed that the plastic hinges will form at the end of the beams. According to this,
the beam ends should be specially detailed to provide the beam with necessary ductility.

Hoops should also be provided over a length equal to 2d (d is the effective depth of the beam)
measured from the face of support toward midspan. The first hoop should be located at a distance
≤ 2 in. from the face of support.

Maximum spacing of transverse reinforcement should not exceed the smallest of

Smax ≤

⎧
⎪
⎪
⎨
⎪
⎪
⎩

d
4
8 × (diameters of smallest longitudinalbarenclosed)
24 × (diameters of hoopbar)
12 in.

(20.59)

When hoops are not required, stirrups should be used. Spacing of stirrups should be ≤ d/2 through
the length of the member (ACI Code, Section 18.4.2.5).

Columns. Transverse reinforcement of columns of intermediate moment frame should be
designed with spiral reinforcement or with hoops and stirrups as follows: Spiral reinforcement
should satisfy the requirements for ordinary compression member (ACI Code, Section 25.7.3):
Hoops should be provided at both ends of the member over a length l0 measured from the face
of the joint, spaced a distance s0. (ACI Code, Section 18.4.3.3). Spacing S0 shall not exceed the
smallest of the four items listed below or

Smax ≤

⎧
⎪
⎪
⎨
⎪
⎪
⎩

8 × (diameters of smallest longitudinalbar )
24 × (diameters of hoopbar)
1
2

of smallest cross-section dimension of column

12 inch

(20.60)
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Length l0 shall not be less than the largest of the three items listed below or

l0 ≥

⎧
⎪
⎨
⎪
⎩

1
6

of clear length of member

Maximum cross-section dimension of member
18 in

(20.61)

The first hoop should be located a at distance ≤ s0/2 from the joint face. Outside the length l0,
spacing s0 should confirm to ACI Code, Section 10.7.6 and Section 9.7.6.2.2 or

s0 ≤

{d
2
24 in.

(20.62)
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P R O B L E M S

20.1 Determine seismic design category for a five-story building in the area of northern California if the soil
is hard rock.

20.2 Determine base shear for a two-story building located in the area of high seismic risk where SS = 1.3 g
and S1 = 0.6 g, on soil class B. Assume that the idealized weight of the first floor is 50 Kip and of the
second floor is 60 Kip.

20.3 Determine lateral seismic forces for the five-story building assuming that the idealized mass of each floor
is 1000 Kip. Consider the structure a building risk category III, site class C.

20.4 Design the longitudinal reinforcement for the beam on the second floor of a special moment-frame
four-story building assuming the clear span of a beam is 24 ft. Each story height is 12 ft. Beam dimen-
sions are 20 × 24 in., and the column is 24 × 24 in. Bending moments acting on the beam are given in
the following table.

Load Location Bending Moment (kip ⋅ ft)

Dead Support −70
Midspan 45

Live Support 25
Midspan 18

Earthquake Support ±180
Midspan 0



Problems 857

20.5 Design the transverse reinforcement for the beam of a special moment-resisting frame. The beam
is reinforced with five no. 8 bars and is 24 × 30 in. The load acting on the beam is WD = 3.0 kip/ft,
WL = 1.5 kip/ft, and clear span is 24 ft.

20.6 Design the reinforcement for a column on the first floor of a four-story building following the provisions
for special moment-resisting frame reinforcement. The column is 30 × 30 in. and 12 ft high. Nominal
flexural strength of the beam framing into the column Mn = 650 Kip ⋅ ft. The axial load acting on the
second-floor column is Pu = 1,920 Kip, axial load acting on the first floor is Pu = 2000 Kip, and min-
imum axial load in load combination is 1010 K. The shear force is Vu = 120 Kip. Draw the detail of
reinforcement.

20.7 Design the reinforcement for a wall having a total height of 28 ft and span of 35 ft. The total gravity load
acting on the wall is 5,200 Kip, factored moment Mu is 50,000 kip ⋅ ft, and base shear is V is 1,000 Kip.
Wall thickness is 20 in. and boundary elements are 25 × 25 in.



CHAPTER21
BEAMS CURVED
IN PLAN

Curved beams in an office building.

21.1 INTRODUCTION

Beams curved in plan are used to support curved floors in buildings, balconies, curved ramps and
halls, circular reservoirs, and similar structures. In a curved beam, the center of gravity of the loads
acting normal to the plane of curvature lies outside the line joining its supports. This situation
develops torsional moments in the beam, in addition to bending moments and shearing forces. To
maintain the stability of the beam against overturning, the supports must be fixed or continuous.
In this chapter, the design of curved beams subjected to loads normal to the plane of curvature is
presented. Analysis of curved beams subjected to loads in the plane of curvature is usually discussed
in books dealing with mechanics of solids.

Analysis of beams curved in plan was discussed by Wilson and Quereau [1]. They introduced
formulas and coefficients to compute stresses in curved flexural members. Timoshinko [2, 3] also
introduced several expressions for calculating bending stresses in square and rectangular sections.
Tables and formulas for the calculation of bending and torsional moments, shear, and deflections
for different cases of loadings on curved beams and rings are presented by Roark and Young [4].

21.2 UNIFORMLY LOADED CIRCULAR BEAMS

The first case to be considered here is that of a circular beam supported on columns placed at equal
distances along the circumference of the beam and subjected to normal loads. Due to symmetry, the

858
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Figure 21.1 Circular beam.

column reactions will be equal, and each reaction will be equal to the total load on the beam divided
by the number of columns. Referring to Fig. 21.1, consider the part AB between two consecutive
columns of the ring beam. The length of the curve AB is r(2𝜃), and the total load on each column
is Pu =𝑤ur(2𝜃), where r is the radius of the ring beam and 𝑤u is the factored load on the beam per
unit length. The center of gravity of the load on AB lies at a distance

x =
(r sin 𝜃

𝜃

)

from the center O. The moment of the load Pu about AB is

MAB = Pu × y = Pu(x − r cos 𝜃) = 𝑤ur(2𝜃)
(r sin 𝜃

𝜃
− r cos 𝜃

)

Consequently, the two reaction moments, MA and MB, are developed at supports A and B,
respectively. The component of the moment at support A about AB is MA sin 𝜃 = MB sin 𝜃. Equating
the applied moment, MAB, to the reaction moments components at A and B,

2MA sin 𝜃 = MAB = 𝑤ur(2𝜃)
(r sin 𝜃

𝜃
− r cos 𝜃

)

MA = MB = 𝑤ur2(1 − 𝜃 cot 𝜃) (21.1)
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The shearing force at support A is

VA =
Pu

2
= 𝑤ur𝜃 (21.2)

The shearing force at any point N, VN, is VA − 𝑤u (r𝛼), or

VN = 𝑤ur(𝜃 − a) (21.3)

The load on AN is 𝑤u(r𝛼) and acts at a distance equal to

Z =
r sin 𝛼∕2

𝛼∕2

from the center O. The bending moment at point N on curve AB is equal to the moment of all forces
on one side of O about the radial axis ON.

MN = VA(r sin 𝛼) − MA cos 𝛼 − (load on the curve AN)
(

Z sin
𝛼

2

)

MN = 𝑤ur𝜃(r sin 𝛼) −𝑤ur2(1 − 𝜃 cot 𝜃) cos 𝛼

− (𝑤ur𝛼)
(

r sin 𝛼∕2

𝛼∕2
× sin

𝛼

2

)

= 𝑤ur2
[
𝜃 sin 𝛼 − cos 𝛼 + (𝜃 cot 𝜃 cos 𝛼) − 2 sin2 𝛼

2

]

MN = 𝑤ur2[𝜃 sin 𝛼 + (𝜃 cot 𝜃 sin 𝛼) − 1] (21.4)

(Note that cos 𝛼 = 1 − 2 sin2 𝛼/2.) The torsional moment at any point N on curve AB is equal to
the moment of all forces on one side of N about the tangential axis at N.

TN = MA sin 𝛼 − VA × r(1 − cos 𝛼) +𝑤rr𝛼

(
r −

r sin 𝛼∕2

𝛼∕2
× cos 𝛼

2

)

= 𝑤ur2(1 − 𝜃 cot 𝜃) sin 𝛼 −𝑤ur2𝜃(1 − cos 𝛼) +𝑤ur2(𝛼 − sin 𝛼)

Tn = 𝑤ur2(𝛼 − 𝜃 + 𝜃 cos 𝛼 − 𝜃 cot 𝜃 sin 𝛼) (21.5)

To obtain the maximum value of the torsional moment TN, differentiate Eq. 21.5 with respect
to 𝛼 and equate it to 0. This step will give the value of 𝛼 for maximum TN:

sin 𝛼 = 1
𝜃
[sin2 𝜃 ± cos 𝜃

√
𝜃2 − sin2 𝜃] (21.6)

The values of the support moment, midspan moment, the torsional moment, and its angle 𝛼
from the support can be calculated from Eqs. 21.1 through 21.6. Once the number of supports n is
chosen, the angle 𝜃 is known:

2𝜃 = 2𝜋
n

and 𝜃 = 𝜋

n
and the moment coefficients can be calculated as shown in Table 21.1. Note that the angle 𝛼 is half
the central angle between two consecutive columns.

Pu(load on each column) = 𝑤ur(2𝜃) = 𝑤ur
(2𝜋

n

)

Vu(maximum shearing force) =
Pu

2
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Table 21.1 Force Coefficients of Circular Beams

Number of Supports, n 𝜽 = 𝝅
n

K1 K2 K3 𝜶∘ for Tu (max)

4 90 0.215 0.110 0.0330 19.25
5 72 0.136 0.068 0.0176 15.25
6 60 0.093 0.047 0.0094 12.75
8 45 0.052 0.026 0.0040 9.50
9 40 0.042 0.021 0.0029 8.50

10 36 0.034 0.017 0.0019 7.50
12 30 0.024 0.012 0.0012 6.25

Negative moment at any support = K1𝑤ur2 (21.7)

Positive moment at midspan = K2𝑤ur2 (21.8)

Maximum torsional moment = K3𝑤ur2 (21.9)

The variation of the shearing force and bending and torsional moments along a typical curved
beam AB are shown in Fig. 21.2.

Figure 21.2 Forces in a circular beam.
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Example 21.1

Design a circular beam supported on eight equally spaced columns. The centerline of the columns lies
on a 40-ft-diameter circle. The beam carries a uniform dead load of 6 k/ft and a live load of 4 k/ft. Use
normal-weight concrete with f ′c = 5 ksi, fy = 60 ksi, and b = 14 in.

Solution

1. Assume a beam size of 14 × 24 in. The weight of the beam is

14 × 24
12 × 12

(0.150) = 0.35 K∕ft

The factored uniform load is 𝑤u = 1.2(6 + 0.35) + 1.6(5) = 15.7 K/ft
2. Because the beam is symmetrically supported on eight columns, the moments can be calculated

by using Eqs. 21.7 through 21.9 and Table 21.1 Negative moment at any support is K1𝑤u r2 =
0.052(15.7)(20)2 = 326.6 K⋅ft. The positive moment at midspan is K2𝑤u r2 = 0.216(15.7) (20)2 =
163.3 K⋅ft. The maximum torsional moment is K3 𝑤u r2 = 0.004(15.7)(20)2 = 25.12 K⋅ft. Maxi-
mum shear is

Vu =
Pu

2
=
𝑤ur

2

(2𝜋
n

)
= (15.7)(20)

(
𝜋

8

)
= 123.3 K

3. For the section at support, Mu = 326.6 K⋅ft. Let d = 21.5 in.; then

Ru =
Mu

bd2
= 326.6 × 12,000

14(21.5)2
= 605 psi

For f ′c = 4 ksi and fy = 60 ksi, 𝜌 = 0.0126 < 𝜌max = 0.018, 𝜙 = 0.9:

As = 0.0126 × 14 × 21.5 = 3.8 in.2

4. For the section at midspan, Mu = 163.3 K⋅ft

Ru = 163.3 × 12,000
14(21.5)2

= 303 psi

𝜌 = 0.006 and As = 0.006 × 14 × 21.5 = 1.81 in.2

Use two no. 9 bars.
5. Maximum torsional moment is Tu = 25.12 K⋅ft, and it occurs at an angle 𝛼 = 9.5∘ from the support

(Table 21.1). Shear at the point of maximum torsional moment is equal to the shear at the support
minus 𝑤ur𝛼.

Vu = 123.3 − 15.7(20)
( 9.5

180
× 𝜋

)
= 71.24 K

The procedure for calculation of the shear and torsional reinforcement for Tu = 25.12 K⋅ft and
Vu = 71.24 K is similar to Example 15.2
a. Shear reinforcement is required when Vu > 𝜙Vc/2:

𝜙Vc = 2𝜙𝜆
√

fcbd = 2(0.75)(1.0)
√

4000(14 × 21.5) = 28.6 K

since 𝜙Vc∕2 = 14.3 K < Vu = 71.24 K.

Shear reinforcement is required.
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b. Torsional reinforcement is required when

Tu > Ta = 𝜙𝜆
√

f ′c

(
A2

cp

Pcp

)

Acp = x0y0 = 14 × 24 = 336 in.2

Pcp = 2(x0 + y0) = 2(14 + 24) = 76 in.

Ta =0.75 × 1 ×
√

4000

(
3362

76

)
= 70.5 K ⋅ in.

since Tu = 25.12 K ⋅ ft = 301.4 K ⋅ in. > Ta

Therefore, torsional reinforcement is required.
c. Design for shear:

i. Vu = 𝜙Vc + 𝜙Vs and 𝜙Vc = 28.6 K. Then 71.24 = 28.6 + 0.75 Vs, so Vs = 56.8 K.

ii. Maximum Vs = 8
√

f ′c bd = 8
√

4000(14 × 21.5) = 152.3 K > Vu.
iii. A𝜈

S
=

Vs

fyd
= 56.8

60 × 21.5
= 0.044 in.2∕in. (2legs)

A𝜈
2 S

= 0.022 in.2∕in. (one leg)
d. Design for torsion:

i. Choose no. 4 stirrups and a 1.5-in. concrete cover:

x1 = 14 − 3.5 = 10.5 in. y1 = 24 − 3.5 = 20.5 in.

A0 h = x1y1 = 10.5(20.5) = 215.25 in.2

A0 = 0.85A0 h = 183 in.2

ph = 2(x1 + y1) = 2(10.5 + 20.5) = 62 in.

For 𝜃 = 45∘, cot 𝜃 = 1.0.
ii. Check the adequacy of the size of the section using Eq. 15.21:

√√√√√
(

Vu

b𝑤d

)2

+

(
Tuph

1.7A2
0 h

)2

≤ 𝜙

(
Vc

b𝑤d
+ 8

√
f ′c

)

𝜙Vc = 28.6 K Vc = 38.12 K

Left − handside =

√(
71,240

14 × 21.5

)2

+
[

301,400 × 62

1.7(215.25)2

]2

= 335 psi

Right − handside = 0.75

(
38,120

14 × 21.5
+ 8

√
4000

)
= 558 psi > 335 psi

The section is adequate.
iii. Determine the required closed stirrups due to Tu from:

At

S
=

Tn

2A0 fy cot 𝜃
, Tn =

Tn

𝜙
, 𝜙 = 0.75, cot 𝜃 = 1.0

= 301.4
0.75 × 2 × 183 × 60

= 0.0183 in.2∕in. (one leg)
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iv. The total area of one leg stirrup is 0.022 + 0.0183 = 0.04 in.2/in. For no. 4 stirrups, area
of one leg = 0.2 in.2. Spacing of closed stirrups is 0.2/0.04 = 5.0 in., say, 5.5 in.

Minimum S =
ph

8
= 62

8
= 7.75 in. > 5.0 in.

Minimum
A𝑣t

S
=

50b𝑤
fy

= 50(14)
60,000

= 0.0117 in.2∕in.

This is less than the At/s provided. Use no. 4 closed stirrups spaced at 5.5 in.
e. Longitudinal bars Al equal (At/s) ph (fyv/fyl) cot2 𝜃 (Eq. 15.27).

Al = 0.018(62)
(60

60

)
= 1.13 in.2

Min.Al =
5
√

f ′c Acp

fyl
−
(

At

S

)
ph

( fy𝑣
fyl

)

=
(5
√

4000)(336)
60,000

− 0.018(62)
(60

60

)
= 0.64 in.2 < 1.0

Use Al = 1.13 in.2, with one-third at the top, one-third at middepth, and one-third at the bottom,
or 0.33 in.2 in each location. For the section at the support, As = 3.8 in.2 + 0.38 = 4.18 in.2 Choose two
no. 10 and two no. 9 bars (As = 4.53 in.2) as top bars. At middepth, use two no. 4 bars (As = 0.4 in.2).
Extend two no. 9 bars of the midspan section to the support. At middepth use two no. 4 bars (A =
0.4 in.2). Details of the section are shown in Fig. 21.3.

Circular beams in an office building.
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Figure 21.3 Example 21.1.

21.3 SEMICIRCULAR BEAM FIXED AT END SUPPORTS

If a semicircular beam supports a concrete slab, as shown in Fig. 21.4, the ratio of the length to
the width of the slab is 2r/r = 2, and the slab is considered a one-way slab. The beam will be sub-
jected to a distributed load, which causes torsional moments in addition to the bending moments
and shearing forces. The structural analysis of the curved beam can be performed in steps as
follows.

1. Load on beam: The load on the curved beam will be proportional to its distance from the
support AB. If the uniform load on the slab equals 𝑤 psf, the load on the curved beam at any
section N is equal to half the load on the area NCDE (Fig. 21.4). The lengths are CN = r sin
𝜃, OC = r cos 𝜃, and CD = (d/d𝜃)(r cos 𝜃) = (r sin 𝜃 d𝜃), and the arc NE is r d𝜃.
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Figure 21.4 Semicircular beam fixed at the supports.

The load on the curved beam per unit length is equal to

𝑤′ = 𝑤(r sin 𝜃)r sin 𝜃 d𝜃
2(r d𝜃)

= 𝑤r sin2𝜃

2
(21.10)

2. Shearing force at A: For a uniform symmetrical load on the slab, the shearing force at A is
equal to

VA = VB =
∫

𝜋∕2

0

(
𝑤r
2

sin2𝜃

)
(r d𝜃) = 𝑤r2

2

[
𝜃

2
− 1

4
sin 2𝜃

]

=
(
𝜋

8

)
𝑤r2 = 0.39𝑤r2 (21.11)

3. Bending moment at A: Taking moments about the line AB, the bending moment at A is
equal to

MA = MB =
∫

𝜋∕2

0
𝑤′(r d𝜃) × (r sin 𝜃)

=
∫

𝜋∕2

0

(
𝑤r
2

sin2𝜃

)
(r sin 𝜃)(r d𝜃) = −𝑤r3

3
(21.12)
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4. Torsional moment at support A. TA can be obtained by differentiating the strain energy of the
beam with respect to TA and equating it to 0. Considering that TA is acting clockwise at A,
then the bending moment at any section N is calculated as follows:

MN = VA(r sin 𝜃) − MA cos 𝜃 + TA sin 𝜃 −
∫

𝜃

0

(
𝑤r
2

sin2 𝜃

)
(r d𝛼) × r sin (𝜃 − 𝛼)

MN = 𝑤r3
[
𝜋

8
sin 𝜃 −

(1
6

)
(1 + cos2 𝜃)

]
+ TA sin 𝜃 (21.13)

The torsional moment at any station N on the curved beam is equal to

Tn = −VAr(1 − cos 𝜃) + MA sin 𝜃 + TA cos 𝜃 +
∫

𝜋∕2

0

(
𝑤r
2

sin2𝛼

)
(r d𝛼)

× r[1 − cos(𝜃 − a)]

TN = 𝑤r3
[
𝜋

8
(cos 𝜃 − 1) + 𝜃

4
+ 1

24
sin2𝜃

]
+ TA cos 𝜃 (21.14)

The strain energy is

U =
∫

M2
Nds

2 EI
+
∫

T2
Nds

2 GJ
(21.15)

where
ds = r d𝜃
G = modulus of rigidity
E = modulus of elasticity
I = moment of inertia of section
J = rotational constant of section
= polar moment of inertia

To obtain TA, differentiate U with respect to TA:

𝛿U

𝛿TA
=
∫

MN

EI
×

dMN

dTA
(r d𝜃) +

∫

TN

GJ
×

dTN

dTA
× (r d𝜃) = 0

dMN

dTA
= sin 𝜃 and

dTN

dTA
= cos 𝜃

Therefore,

𝛿U

𝛿TA
= r

EI∫

𝜋∕2

0
sin 𝜃

{
𝑤r2

[
𝜋

8
sin 𝜃 − 1

6

(
1 + cos2 𝜃

)]
+ TA sin 𝜃

}
d𝜃

+ r
GJ∫

𝜋∕2

0

{
𝑤r3

[
𝜋

8
(cos 𝜃 − 1) + 𝜃

4
+ 1

24
sin2𝜃

]
+ TA cos 𝜃

}
cos 𝜃 × d𝜃 = 0

and
r

EI

[
𝑤r3

(
𝜋2

32
− 2

9

)
+ TA

(
𝜋

4

)]
+ r

GJ

[
𝑤r3

(
𝜋2

32
− 2

9

)
+ TAłeft(𝜋

4

)
= 0
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Table 21.2 Values of K′ and 𝜆 for Different Values of y/x

y/x 0.5 1.0 1.1 1.2 1.25 1.3 1.4 1.5 1.6
K′ 0.473 0.141 0.154 0.166 0.172 0.177 0.187 0.196 0.204
𝜆 0.102 1.37 1.52 1.68 1.76 1.85 2.03 2.22 2.43
y/x 1.7 1.75 2.0 2.5 3.0 4.0 5.0 6.0 10
K′ 0.211 0.214 0.229 0.249 0.263 0.281 0.291 0.300 0.312
𝜆 2.65 2.77 3.39 4.86 6.63 11.03 16.5 23.3 62.1

Let EI/GJ = 𝜆; then

TA

(
𝜋

4

)
(1 + 𝜆) = 𝑤r3

[(
2
9
− 𝜋2

32

)
+ 𝜆

(
2
9
− 𝜋2

32

)]

= 𝑤r3

(
2
9
− 𝜋2

32

)
(1 + 𝜆) = −0.0862𝑤r3(1 + 𝜆)

Therefore,
TA = −0.11𝑤r3 (21.16)

Substituting the value of TA in Eq. 21.13, the bending moment at any point N is equal to

MN = 𝑤r3
[
𝜋

8
sin 𝜃 − 1

6

(
1 + cos2 𝜃

)
− 0.11sin 𝜃

]
(21.17)

Substituting the value of TA in Eq. 21.14,

TN = 𝑤r3
[
𝜋

8
(cos 𝜃 − 1) + 𝜃

4
+ 1

24
sin 2𝜃 − 0.11 cos 𝜃

]
(21.18)

5. The value of G/E for concrete may be assumed to be equal to 0.43. The value of J for a
circular section is (𝜋/2)r4, whereas J for a square section of side x is equal to 0.141x4. For
a rectangular section with short and long sides x and y, respectively, J can be calculated as
follows:

J = K′ × y3 (21.19)

The values of K′ are calculated as follows:

K′ = 1
16

[
16
3

− 3.36
x
y

(
1 − x4

12y4

)]
(21.20)

whereas

𝜆 = EI
GJ

=
( 1

0.43

)(
xy3

12

)(
1

K′yx3

)
= 1

5.16 K′

(y

x

)2

Values of K′ and 𝜆 are both shown in Table 21.2.

Example 21.2

Determine the factored bending and torsional moments in sections C and D of the 10-ft-radius semicir-
cular beam ADCB shown in Fig. 21.5. The beam is part of a floor slab that carries a uniform factored
load of 304 psf (including self-weight).
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Figure 21.5 Example 21.2.

Solution

1. Factored load 𝑤u = 304 psf.
2. For the section at C, 𝜃 = 𝜋/2 and 𝑤u r3 = 0.304(10)3 = 304. From Eq. 21.17,

Mc = 304
[
𝜋

8
sin
𝜋

2
− 1

6

(
1 + cos2 𝜋

2

)
− 0.11sin

𝜋

2

]
= 35.3 K ⋅ ft

From Eq. 21.18,

Tc = 304
[
𝜋

8

(
cos

𝜋

2
− 1

)
+ 𝜋

8
+ 1

24
sin𝜋 − 0.11 cos

𝜋

2

]
= 0

3. For the section at D, 𝜃 = 𝜋/4.

MD = 304
[
𝜋

8
sin
𝜋

4
− 1

6

(
1 + cos2 𝜋

4

)
− 0.11sin

𝜋

4

]
= −15.2 K ⋅ ft

TD = 304
[
𝜋

8

(
cos

𝜋

4
− 1

)
+ 𝜋

16
+ 1

24
sin
𝜋

2
− 0.11 cos

𝜋

4

]
= 13.7 K ⋅ ft

4. Maximum shearing force occurs at the supports.

VA = 0.39𝑤ur2 = 0.39(0.304)(100) = 11.9 K

Maximum positive moment occurs at C, whereas the maximum negative moment occurs at the
supports.

MA = −
𝑤ur3

3
= −304

3
= 101.3 K ⋅ ft

5. Design the critical sections for shear, bending, and torsional moments, as explained in
Example 21.1.

21.4 FIXED-END SEMICIRCULAR BEAM UNDER UNIFORM LOADING

The previous section dealt with a semicircular beam fixed at both ends and subjected to a vari-
able distributed load. If the load is uniform, then the beam will be subjected to a uniformly dis-
tributed load 𝑤 K/ft, as shown in Fig. 21.6. The forces in the curved beam can be determined as
follows:
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Figure 21.6 Semicircular beam under uniform load.

1. Shearing force at A:

VA = VB =
∫

𝜋∕2

0
𝑤r d𝜃 = 𝑤r

𝜋

2
= 1.57𝑤r (21.21)

2. Bending moment at A:

MA = MB =
∫

𝜋∕2

0
𝑤(r d𝜃) × (r sin 𝜃) = 𝑤r2 (21.22)
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3. Bending moment at any section N on the curved beam when the torsional moment at A (TA)
acts clockwise:

MN = VA(r sin 𝜃) − MA cos 𝜃 + TA sin 𝜃 −
∫

𝜃

0
(𝑤r d𝛼)[r sin(𝜃 − a)]

= 𝜋

2
𝑤r2sin 𝜃 −𝑤r2cos 𝜃 + TA sin 𝜃 − [𝑤r2 −𝑤r2cos 𝜃]

MN = 𝑤r2
[
𝜋

2
sin 𝜃 − 1

]
+ TA sin 𝜃 (21.23)

4. Torsional moment at any section N:

TN = −VAr(1 − cos 𝜃) + MA sin 𝜃 + TA cos 𝜃 +
∫

𝜃

0
(𝑤r d𝛼)r[1 − cos(𝜃 − 𝛼)]

= −𝜋
2
𝑤r2 + 𝜋

2
𝑤r2 cos 𝜃 + TA cos 𝜃 + MA sin 𝜃 +𝑤r2𝜃 −𝑤r2 sin 𝜃

Substitute MA = 𝑤r2:

TN = 𝑤r2
[
𝜋

2
cos 𝜃 − 𝜋

2
+ 𝜃

]
+ TA cos 𝜃 (21.24)

5. The strain energy expression was given in the previous section:

U =
∫

M2
Nds

2 EI
+
∫

T2
Nds

2 GJ
(21.25)

To obtain TA, differentiate U with respect to TA:
𝛿U

𝛿TA
=
∫

MN

EI
×

dMN

dTA
(r d𝜃) +

∫

TN

GJ
×

dTN

dTA
× (r d𝜃) = 0

dMN

dTA
= sin 𝜃 and

dTN

dTA
= cos 𝜃 (from the preceding equations)

𝛿U

𝛿TA
= r

EI∫

𝜋∕2

0

[
𝑤r2

(
𝜋

2
sin − 1

)
+ TA sin 𝜃

]
sin 𝜃 d𝜃

+ r
GJ∫

𝜋∕2

0

[
𝑤r2

(
𝜋

2
cos 𝜃 − 𝜋

2
+ 𝜃

)
+ TA cos 𝜃

]
cos 𝜃 d𝜃 = 0

The integration of the preceding equation produces the following:

𝛿U
𝛿TA

= r
EI

[
𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA

]
+ r

GJ

[
𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA

]
= 0

and

r

[
𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA

] ( EI
GJ

+ 1
)
= 0

Because EI/GJ is not equal to zero,

𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA = 0

and

TA = −𝑤r2
( 4
𝜋

)(
𝜋2

8
− 1

)
= −0.3𝑤r2 (21.26)



872 Chapter 21 Beams Curved in Plan

6. Substitute TA in Eq. 21.23:

MN = 𝑤r2
[(
𝜋

2
sin 𝜃 − 1

)
−
(
𝜋

2
− 4
𝜋

)
sin 𝜃

]

= 𝑤r2
( 4
𝜋

sin 𝜃 − 1
)

(21.27)

TN = 𝑤r2
[(
𝜋

2
cos 𝜃 + 𝜃 − 𝜋

2

)
−
(
𝜋

2
− 4
𝜋

)
cos 𝜃

]

= 𝑤r2
(
𝜃 − 𝜋

2
+ 4
𝜋

cos 𝜃
)

(21.28)

The values of the bending and torsional moments at any section N are independent of 𝜆 (1
= EI/GJ).

7. Bending and torsional moments at midspan, section C, can be found by substituting 𝜃 = 𝜋/2 in
Eqs. 21.27 and 21.28:

Mc = 𝑤r2
( 4
𝜋
− 1

)
= 0.273𝑤r2 (21.29)

Tc = 𝑤r2
(
𝜋

2
− 𝜋

2
+ 0

)
= 0 (21.30)

21.5 CIRCULAR BEAM SUBJECTED TO UNIFORM LOADING

The previous section dealt with a semicircular beam subjected to a uniformly distributed load. The
forces acting on the beam at any section vary with the intensity of load, the span (or the radius of
the circular beam), and the angle 𝛼 measured from the centerline axis of the beam.

Considering the general case of a circular beam fixed at both ends and subjected to a uniform
load𝑤 (K/ft), as shown in Fig. 21.7, the bending and torsional moments can be calculated from the
following expressions:

1. The moment at the centerline of the beam, Mc, can be derived using the strain energy expres-
sion, Eq. 21.25, and can be expressed as follows:

Mc =
𝑤r2

K4
[𝜆(K1 + K2 − K3) + (K1 − K2)] (21.31)

where
𝜆 = EI/GJ

K1 = 2(2 sin 𝜃–𝜃)
K2 = 2 sin 𝜃 cos 𝜃 = sin 2𝜃
K3 = 4𝜃 cos 𝜃
K4 = 2𝜃(𝜆 + 1)–(𝜆–1) sin 2𝜃
2𝜃 = total central angle of the ends of the beam, angle AOB (Fig. 19)

The torsional moment at the centerline section, Tc, is 0.
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Curved-beam bridge, Washington, D.C.

2. The moment at any section N on the curved beam where ON makes an angle 𝛼 with the
centerline axis (Fig. 21.7) is

MN = Mc cos 𝛼 −𝑤r2(1 − cos 𝛼) (21.32)

3. The torsional moment at any section N on the curved beam as a function of the angle 𝛼 was
derived earlier:

TN = Mc sin 𝛼 −𝑤r2(𝛼 − sin 𝛼) (21.33)

4. To compute the bending moment and torsional moment at the supports, substitute 𝜃 for 𝛼 in
the preceding equations:

MA = Mc cos 𝜃 −𝑤r2(1 − cos 𝜃) (21.34)

TA = Mc sin 𝜃 −𝑤r2(𝜃 − sin 𝜃) (21.35)
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Figure 21.7 Circular beam subjected to uniform load, showing the bending moment
diagram (BMD) and the torsional moment diagram (TMD).
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Example 21.3

A curved beam has a quarter-circle shape in plan with a 10 ft radius. The beam has a rectangular section
with the ratio of the long to the short side of 2.0 and is subjected to a factored load of 8 K/ft. Determine
the bending and torsional moments at the centerline of the beam, supports, and maximum values.

Solution

1. For a rectangular section with y/x = 2, 𝜆 = EI/GJ = 3.39 (Table 21.2).
2. The bending and torsional moments can be calculated using Eqs. 21.31 through 21.35 for 𝜃 = 𝜋/4.

From Eq. 21.31,

K1 = 2
(

2sin
𝜋

4
− 𝜋

4

)
= 1.2576

K2 = sin
𝜋

2
= 1.0

K3 = 4
(
𝜋

4

)
cos

𝜋

4
= 2.2214

K4 = 2
(
𝜋

4

)
(3.39 + 1) − (3.39 − 1)sin

𝜋

2
= 4.506

Mc =
𝑤r2

4.506
[3.39(1.2576 + 1.0 − 2.2214) + (1.2576 − 1.0)]

= 0.0844𝑤r2

For 𝑤 = 8 K⋅ft and r = 10 ft, Mc = 64 K⋅ft; Tc = 0
3. MN = Mc cos 𝛼−𝑤r2 (1−cos 𝛼) = 𝑤r2(1.08 cos 𝛼−1)

TN = Mcsin 𝛼 −𝑤r2(𝛼 − sin 𝛼) = 𝑤r2(1.08 sin 𝛼 − 𝛼)

For the moments at the supports, 𝛼 = 𝜃 = 𝜋/4.

MA = 𝑤r2
(

1.08 cos
𝜋

4
− 1

)
= −0.236𝑤r2

= −0.236 × 8 × (10)2 = −189 K ⋅ ft

TA = 𝑤r2
(

1.08 sin
𝜋

4
− 𝜋

4

)
= 0.022𝑤r2 = −17.4 K ⋅ ft

For MN = 0, 1.08 cos 𝛼−1 = 0, or cos 𝛼 = 0.926 and 𝛼 = 22.2∘ = 0.387 rad. To calculate TN,max,
let dTN/d𝛼 = 0, or 1.08 cos 𝛼–1 = 0. Then cos 𝛼 = 0.926 and 𝛼 = 22.2∘.

TN(max) = 𝑤r2(1.08 sin 22.2 − 0.387) = 0.0211𝑤r2

TN,max = 0.0211 − 800 = 16.85 K ⋅ ft

21.6 CIRCULAR BEAM SUBJECTED TO A CONCENTRATED LOAD AT MIDSPAN

If a concentrated load is applied at the midspan of a circular beam, the resulting moments vary with
the magnitude of the load, the span, and the coefficient 𝜆 = EI/GJ. Considering the general case of
a circular beam fixed at both ends and subjected to a concentrated load P at midspan (Fig. 21.8),
the bending and torsional moments can be calculated from the following expressions:
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Figure 21.8 Circular beam subjected to a concentrated load at midspan, showing the
bending moment diagram (BMD) and the torsional moment diagram (TMD).

1. The moment at the centerline of the beam, section C, can be expressed as follows:

Mc =
𝜆(2 − 2 cos 𝜃 − sin2 𝜃) + sin2 𝜃

2𝜃(𝜆 + 1) − (𝜆 − 1)sin 2𝜃
(Pr)

Mc =
Pr
K3

(𝜆K1 + K2) (21.36)

where
𝜆 = EI/GJ

K1 = (2−2 cos 𝜃−sin2𝜃)
K2 = sin2𝜃

K3 = 2𝜃(𝜆 + 1)−(𝜆−1) sin2𝜃

The torsional moment at the centerline is Tc = 0.



21.6 Circular Beam Subjected to a Concentrated Load at Midspan 877

2. The bending and torsional moments at any section N on the curved beam where ON makes
an angle 𝛼 with the centerline axis are calculated as follows:

MN = Mc cos 𝛼 −
(P

2
r
)

sin 𝛼 (21.37)

TN = Mc sin 𝛼 −
(P

2
r
)
(1 − cos 𝛼) (21.38)

3. To compute the bending and torsional moments at the supports, substitute 𝜃 for 𝛼.

MA = Mc cos 𝜃 −
(P

2
r
)

sin 𝜃 (21.39)

TA = Mc sin 𝜃 −
(P

2
r
)
(1 − cos 𝜃) (21.40)

Example 21.4

Determine the bending and torsional moments of the quarter-circle beam of Example 21.3 if 𝜆 = 1.0
with the beam subjected to a concentrated load at midspan of P = 20 K.

Solution

1. Given: 𝜆 = 1.0 and 𝜃 = 𝜋/4. Therefore,

Mc =
(Pr

2

)(1 − cos 𝜃
𝜃

)

(Eq. 21.36) and Tc = 0. For 𝜃 = 𝜋/4,

Mc = 0.187 Pr = 0.187(20 × 10) = 37.4 K ⋅ ft

2. From Eqs. 21.39 and Eqs. 21.40,

MA = 0.187 Pr cos
𝜋

4
− Pr

2
sin
𝜋

4
= −0.22 Pr

= −0.22 × (200) = −44 K ⋅ ft

TA = 0.187 Pr sin
𝜋

4
− 0.5 Pr

(
1 − cos

𝜋

4

)
= −0.0142 Pr

= −0.0142 × 200 = −2.84 K ⋅ ft

3. MN = 0 when

Mc cos 𝛼 − Pr
2

sin 𝛼 = 0

0.187 Pr cos 𝛼 − 0.5 Pr sin 𝛼 = 0

tan𝛼 = 0.374 and 𝛼 = 20.5∘ (Eq. 21.37)

Tn = 0 when Mc sin𝛼−(P/2) r(1−cos𝛼) = 0 (Eq. 21.38), from which 𝛼 = 37.7∘.
4. To compute Tmax, let dTN/d𝛼 = 0 (Eq. 21.38).

0.187 Pr cos 𝛼 − 0.5 Pr sin 𝛼 = 0, tan 𝛼 = 0.374

and 𝛼 = 20.5∘. Substitute 𝛼 = 20.5∘ in Eq. 21.38 to get Tmax = 0.035Pr = 7 K⋅ft.
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21.7 V-SHAPE BEAMS SUBJECTED TO UNIFORM LOADING

Beams that have a V-shape in plan and are subjected to loads normal to the plane of the beam may be
analyzed using the strain–energy principles. Figure 21.9 shows a typical bending moment diagram
for a V-shape beam subjected to a uniform load𝑤. Considering the general case of a V-shape beam
fixed at both ends and subjected to a uniform load𝑤 (K/ft), the bending and torsional moments can
be calculated from the following expressions:

1. The moment at the centerline of the beam, section C, is calculated as follows:

Mc = (𝑤a2)

[
sin2 𝜃

6
(
sin2 𝜃 + 𝜆 cos2 𝜃

)

]

(21.41)

Figure 21.9 V-shape beam under uniform load.
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90∘ V-shape beams, London, Ontario, Canada.

where
𝜆 = EI/GJ
a = half total length of beam (length AC)
𝜃 = half angle between two sides of V-shape beam

The torsional moment at the centerline section is

Tc =
Mc

sin 𝜃
cos 𝜃 = Mc cot 𝜃 (21.42)

2. The bending and torsional moments at any section N along half the beam AC or BC at a
distance x measured from section C are calculated as follows:

MN = Mc −𝑤
x2

2
(21.43)

TN = Tc =
Mc

sin 𝜃
× cos 𝜃 = Mc cot 𝜃 (21.44)

To compute the moments at the supports, let x = a. Then

MA = Mc −𝑤
a2

2
TA = Tc = Mc cot 𝜃

Example 21.5

Determine the bending and torsional moments in a V-shape beam subjected to a uniform load of 6 K/ft.
The length of half the beam is a = 10 ft and the angle between the V-shape members is 2𝜃 = 𝜋/2. The
beam section is rectangular with a ratio of long side to short side of 2.
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Apartment building.

Solution

1. For a rectangular section with the sides ratio, y/x = 2, 𝜆 = 3.39. For this beam 𝜃 = 𝜋/4.

Mc =
𝑤a2

6

(
sin2 𝜃

sin2 𝜃 + 𝜆 cos2 𝜃

)

Mc =
𝑤a2

6

( 0.5
0.5 + 3.39 × 0.5

)
= 0.038𝑤a2

= 0.038 × 6(10)2 = 22.8 K ⋅ ft

2.
MA = Mc −𝑤

a2

2
= 0.038𝑤a2 − 0.5𝑤a2 = −0.462𝑤a2

= −277.2 K ⋅ ft

MN = 0 when Mc −𝑤
x2

2
= 0

or 0.038 𝑤a2−0.5 𝑤x2 = 0, so x = 0.276a = 2.76 ft measured from c.
3. TA = 0.038 𝑤a2 = 0.038 × 600 = 22.8 K⋅ft

TC = MC cot 𝜃
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21.8 V-SHAPE BEAMS SUBJECTED TO A CONCENTRATED LOAD AT THE CENTERLINE
OF THE BEAM

The general equations for computing the bending and torsional moments in a V-shape beam fixed
at both ends and subjected to a concentrated load P at the centerline of the beam (Fig. 21.10) are
as follows:

1. The moment at the centerline of the beam, section C, for any value of 𝜆, is

Mc =
(Pa

4

)(
sin2 𝜃

sin2 𝜃 + 𝜆 cos2 𝜃

)
(21.45)

Figure 21.10 V-shape beam under concentrated load.
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where
𝜆 = EI/GJ
a = half total length of beam (part AB or BC)
𝜃 = half angle between two sides of V-shape beam

The torsional moment at the centerline section is

Tc =
Mc

sin 𝜃
cos 𝜃 = Mc cot 𝜃 (21.46)

2. The bending and torsional moments at any section N along half the beam AC or BC at a
distance x measured from C are calculated as follows:

MN = Mc −
Px

1
2

(21.47)

TN = Tc = Mc cot 𝜃 (21.48)

The moments at the supports are determined by assuming x = a:

MA = Mc −
Pa
1
2

(21.49)

TA = Tc = Mc cot 𝜃 (21.50)

Example 21.6

Determine the bending and torsional moments in a V-shape beam subjected to a concentrated load P =
30 K acting at the centerline of the beam. Given: 𝜃 = 𝜋/4, y/x = 2.0, and a = 12 ft.

Solution

1. For a rectangular section with y/x = 2.0, 𝜆 = 3.39.
2.

MC = Pa
4

(
sin2𝜋∕4

sin2𝜋∕4 + 3.39 cos2𝜋∕4

)
= 0.057(Pa)

= 0.057 × 30 × 12 = 20.5 K ⋅ ft

MA = Mc −
Pa
1
2

= (0.057 − 0.5)Pa = −0.443(Pa)

= −0.0443 × 360 = −159.5 K ⋅ ft

MN = 0 when Mc −
Px

1
2

= 0

Hence, 0.057Pa–0.5Px = 0 and x = 0.114a = 0.114 × 12 = 1.37 ft measured from c.
3. TA = Tc = TN = Mc cot 𝜋

4
= 0.057(Pa) = 20.5 K ⋅ ft

Example 21.7

Determine the bending and torsional moments in the beam of Example 21.6 if the angle 𝜃 is 𝜋/ 2 (a
straight beam fixed at both ends).
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Solution
Given 𝜃 = 𝜋/2 and the span L = 2a = the distance between the two supports. The bending moment at
the centerline is

Mc =
Pa
4

(1
1

)
= Pa

4
= PL

8
= +90 K ⋅ ft

MA = Mc −
Pa
2

= PL
8

− P
2

(L
2

)
= −PL

8
= −90 K ⋅ ft

TA = Tc = 0

These values are similar to those obtained from the structural analysis of the fixed-end beam subjected
to a concentrated load at midspan.

Example 21.8

The beam shown in Fig. 21.11 has a V-shape in plan and carries a uniform dead load of 3.5 k/ft and a
live load of 3 K/ft. The inclined length of half the beam is a = 10 ft and 𝜃 = 60∘. Design the beam for
shear, bending, and torsional moments using f ′c = 4 ksi and fy = 60 ksi.

Solution

1. 𝑤u = 1.2 D + 1.6 L = 1.2 × 3.5 + 1.6 × 3 = 9.0 K/ft.
2. Assuming a rectangular section with a ratio of long to short side of y/x = 1.75, the value of 𝜆 is

2.77 (from Table 21.2). For 𝜃 = 60∘ = 𝜋/3,

Mc =
𝑤ua2sin2 𝜃

6(sin2 𝜃 + 𝜆 cos2 𝜃)
= 9(100)(0.75)

6(0.75 + 2.77 × 0.25)
= +78 K ⋅ ft

MA = Mc −𝑤u
a2

2
= 78 − 9 (100

2
) = −372 K ⋅ ft

TA = Mc cot 𝜃 = 78 × 0.577 = 45 K ⋅ ft = 540 K ⋅ in.

Tc(at x = 0) = Mc cot 𝜃 = 45 K ⋅ ft = 540 K ⋅ in.

VA = 9 × 10 = 90 K

The bending moment is zero at MN = 0 = Mc−𝑤u x2/2. Hence, 78 − 9
2
x2 = 0 and x = 4.16 ft

measured from c. The bending moment diagram is shown in Fig. 21.11.
3. Design for a bending moment, Mu, equal to –372 K⋅ft.

a. For f ′c = 4 ksi, fy = 60 ksi, 𝜌max = 0.0018, choose 𝜌 = 0.015, Ru = 702 psi and 𝜙 = 0.9
(Appendix A).

bd2 =
Mu

Ru
= 372 × 12

0.705
= 6332 in.3

For a ratio,
y

x
= d + 3

b
= 1.75

as assumed, then d = 21.4 in. and b = 13.8 in. Use a section 14 × 24 in.

As = 𝜌maxbd = 0.015(14 × 21.4) = 4.5 in.2
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Figure 21.11 Example 21.8.

b. For the section at midspan, Mu = 78 K⋅ft and actual d = 21.5 in.

Ru =
Mu

bd2
= 78,000 × 12

14 × (21.5)
= 145 psi

𝜌 < 𝜌min = 0.0033

Use As = 0.0033 × 14 × 21.5 = 1.0 in.2.
c. Design for torsional moment and shear: Tu = 45 K⋅ft for all sections.

Vu(at distanced) = 90 − 21.5
12

× 9 = 74.0 K

The design procedure will be similar to that of Example 21.1. Details of the final section are shown
in Fig. 21.12.
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Figure 21.12 Example 21.8.

SUMMARY

Sections 21.1–21.5

In a curved beam in plan, the center of gravity of normal loads lies outside the line joining the sup-
ports developing torsional moments. The analysis of uniformly loaded circular beams is presented
in these sections.
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Section 21.6

The analysis of circular beams subjected to concentrated loads is presented in this section.

Section 21.7

V-shaped beams subjected to gravity loads may be analyzed using the strain–energy principles.
Equations to calculate the torsional moments of these types of beams are presented.
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P R O B L E M S

21.1 A circular beam is supported on six equally spaced columns, and its centerline lies on a circle 20 ft in
diameter. The beam carries a uniform dead load of 9.8 K/ft and a live load of 5 K/ft. Design the beam
using f ′c = 4 ksi, fy = 60 ksi, and b = 14 in.

21.2 Design a semicircular beam fixed on both ends. The center of columns lies on a circle 12 ft in diameter.
The beam carries uniform dead and live loads of 4.9 and 3 K/ft, respectively. Use f ′c = 4 ksi, fy = 60 ksi,
and b = 20 in.

21.3 Determine the factored bending and torsional moment at sections C and D of the fixed-end beam shown
in Fig. 21.5 if the diameter of the circle is 30 ft. The beam is part of a floor slab that carries a uniform
dead load (including its own weight) of 126 psf and a live load of 120 psf.

21.4 A quarter-circle cantilever beam has a radius of 8 ft and carries a uniform dead load of 6.4 K/ft and
a concentrated live load of 4.25 K at its free end. Design the beam using f ′c = 4 ksi, f ′y = 60 ksi, and
b = 14 in.

21.5 Design the beam shown in Fig. 21.11 if the inclined length of half the beam is a = 8 ft. The beam has a
60∘ V-shape in plan and carries uniform dead and live loads of 3.8 and 4 K/ft. Assume the ratio of the
long to the short side of the rectangular section is 2. Use f ′c = 4 ksi and fy = 60 ksi.
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Benicia-Martinez Bridge, California.

22.1 INTRODUCTION

In the United States highway bridges are generally designed based on AASHTO LRFD bridge
design specifications and railroad bridges, are designed based on specifications of the American
Railway Engineering Association (AREA). This chapter covers bridge designs in accordance
with the American Association of State Highway and Transportation Officials (AASHTO) LRFD
Bridge Design Specification, 7th edition [1]. The design provisions of these specifications employ
the Load and Resistance Factor Design (LRFD) methodology. The factors have been developed
from the theory of reliability based on current statistical knowledge of loads and structural
performance. A written form of bridge design specifications had started in the early 1920s, and
the current form of specifications has developed for over 90 years. Like all other codes and
specifications, the AASHTO specifications set forth as the minimum requirements consistent
with the current engineering practice and are applicable to ordinary highway bridges up to span
lengths of 500 ft.

This chapter is intended to provide guidance on the AASHTO LRFD Bridge Design Specifi-
cations, and the readers are assumed to have knowledge of the reinforced and prestressed concrete
design. The scope is limited to short- and medium-span bridges with a practical maximum span
length of about 180 ft. Girder bridges are the most numerous of all highway bridges in the United
States and are important structures because they are used so frequently. Bridge structures of span
length up to 250 ft comprise approximately 80% of the U.S. bridge inventory and are the most
common bridges designed by practitioners [2]. Construction methods of short- and medium-span
precast concrete girder bridges usually consist of building with precast pretensioned beams that
are transported to a site and erected. A cast-in-place deck slab is added as either noncomposite or
composite to provide for continuity.

887
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22.2 TYPICAL CROSS SECTIONS

Typical cross sections of precast prestressed girders commonly used for short- and medium-span
bridges have been developed and standardized by AASHTO and PCI for highway bridges. The
dimensions, sectional properties, and span range of these standard AASHTO-PCI girders are intro-
duced in this section.

22.2.1 AASHTO Solid and Voided Slab Beams

Solid and voided slab beams (Fig. 22.1) are typically used for short-span bridges ranging up to
55 ft based on simple span, HS-25 (highway semitrailer with the first two axles weighing 25 tons)
loading and f ′c = 7000 psi. Dimensions and properties of AASHTO solid and voided slab beams
are given in Tables 22.1 and 22.2, respectively.

L

H LC

L1 L2 L2 L1

Figure 22.1 Cross section of AASHTO solid and voided slab beams.

Table 22.1 Dimensions (inches) of AASHTO Solid and Voided Slab

Type L H L1 L2 No. of Voids D1 D2

SI-36 36 12 — — 0 — —
SII-36 36 15 10.5 7.5 2 8 —
SIII-36 36 18 10.5 7.5 2 10 —
SIV-36 36 21 10.0 8.0 2 12 —
SI-48 48 12 — — 0 — —
SII-48 48 15 10.0 14.0 3 8 8
SIII-48 48 18 9.5 14.5 3 10 10
SIV-48 48 21 10.0 14.0 3 12 10

Table 22.2 Properties of AASHTO Solid and Voided Slab

Type Area (in.2) Ybottom (in.) Inertia (in.4) Weight (kip/ft) Max. Span (ft)

SI-36 432 6.0 5,184 0.450 40
SII-36 439 7.5 9,725 0.457 47
SIII-36 491 9.0 16,514 0.511 52
SIV-36 530 10.5 25,747 0.552 57
SI-48 576 6.0 6,912 0.600 42
SII-48 569 7.5 12,897 0.593 49
SIII-48 628 9.0 21,855 0.654 53
SIV-48 703 10.5 34,517 0.732 57
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22.2.2 AASHTO Box Beams

Box beams (Fig. 22.2) are typically used for short- to medium-span bridges ranging up to 125 ft
based on simple span, HS-25 loading, and f ′c = 7000 psi.

Dimensions of AASHTO box beams are given in Table 22.3 and properties are given in
Table 22.4.

22.2.3 AASHTO I-Beams

I-beams (Fig. 22.3) are the most common composite bridge deck in the United States, typically
used for medium-span bridges ranging up to 170 ft based on simple span, HS-25 loading, and f ′c =
7000 psi. Dimensions and properties of I-beams are shown in Tables 22.5 and 22.6, respectively.

W

H

5”
5.

5”
5.

5”

3”
3”

Figure 22.2 Cross section of AASHTO box beams.

Table 22.3 Dimensions (in.) of AASHTO Box Beams

Type W H

BI-36 36 27
BI-48 48 27
BII-36 36 33
BII-48 48 33
BIII-36 36 39
BIII-48 48 39
BIV-36 36 42
BIV-48 48 42

Table 22.4 Properties of AASHTO Box Beams

Type Area (in.2) Ybottom (in.) Inertia (in.4) Weight (kip/ft) Max. Span (ft)

BI-36 560.5 13.35 50,334 0.584 92
BI-48 692.5 13.37 65,941 0.721 92
BII-36 620.5 16.29 85,153 0.646 107
BII-48 752.5 16.33 110,499 0.784 108
BIII-36 680.5 19.25 131,145 0.709 120
BIII-48 812.5 19.29 168,367 0.846 125
BIV-36 710.5 20.73 158,644 0.740 124
BIV-48 842.5 20.78 203,088 0.878 127
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B1 B1

B6

B2

D5

B3
B3 B4 B5

B4

B6

B2

Types I–IV Types I–IV

D2 D2

D4

D
1

D
1

D5

D6

D3
D4

D6

Figure 22.3 Cross section of AASHTO I-beams.

Table 22.5 Dimensions (inches) of AASHTO I-Beams

Type D1 D2 D3 D4 D5 D6 B1 B2 B3 B4 B5 B6

I 28.0 4.0 0.0 3.0 5.0 5.0 12.0 16.0 6.0 3.0 0.0 5.0
II 36.0 6.0 0.0 3.0 6.0 6.0 12.0 18.0 6.0 3.0 0.0 6.0
III 45.0 7.0 0.0 4.5 7.5 7.0 16.0 22.0 7.0 4.5 0.0 7.5
IV 54.0 8.0 0.0 6.0 9.0 8.0 20.0 26.0 8.0 6.0 0.0 9.0
V 63.0 5.0 3.0 4.0 10.0 8.0 42.0 28.0 8.0 4.0 13.0 10.0
VI 72.0 5.0 3.0 4.0 10.0 8.0 42.0 28.0 8.0 4.0 13.0 10.0

Table 22.6 Properties of AASHTO I-Beams

Type Area (in.2) Ybottom (in.) Inertia (in.4) Weight (kip/ft) Max. Span (ft)

I 276 12.59 22,750 0.287 48
II 369 15.83 50,980 0.384 70
III 560 20.27 125,390 0.583 100
IV 789 24.73 260,730 0.822 120
V 1,013 31.96 521,180 1.055 145
VI 1,085 36.38 733,320 1.130 167
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Figure 22.4 Cross section of AASHTO bulb-tees.

Table 22.7 Properties of AASHTO Bulb-Tees

Type H (in.) H𝒘 (in.) Area (in.2) Ybottom (in.) Inertia (in.4) Weight (kip/ft) Max. Span (ft)

BT-54 54 36 659 27.63 268,077 0.686 114
BT-63 63 45 713 32.12 392,638 0.743 130
BT-72 72 54 767 36.60 545,894 0.799 146

22.2.4 AASHTO-PCI Bulb-Tee

Bulb-tees (Fig. 22.4) are typically used for medium-span bridges ranging up to 150 ft based on
simple span, HS-25 loading, and f ′c = 7000 psi. Dimensions and properties of bulb-tees are given
in Table 22.7.

22.3 DESIGN PHILOSOPHY OF AASHTO SPECIFICATIOINS

The LRFD philosophy deals with the probability of the occurrence of an event in which the loads
will be greater than the resistance of a structure. The LRFD method employs limit states and design
criteria to ensure that a limit state is violated only with an acceptably small probability [3]. A
limit state in other words can be defined as the boundary between acceptable and unacceptable
performance of structures [4].

The following limit states must be considered in designing bridges by LRFD methods [1]:

Strength I: Basic combination relating to the normal vehicular use of the bridge without
wind.
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Strength II: Load combination relating to the use of the bridge by owner-specified special design
vehicles, evaluation permit vehicles, or both without wind.

Strength III: Load combination relation to the bridge exposed to wind velocity exceeding
55 mph.

Strength IV: Load combination relation to very high dead load to live load force effect ratios.
Strength V: Load combination relating to normal vehicular use of the bridge with wind velocity

of 55 mph.
Extreme Event I: Load combination including earthquake.
Extreme Event II: Load combination in relation to ice load, collision vessels and vehicles, and

certain hydraulic events with a reduced live load other than that which is part of the vehicular
collision load.

Service I: Load combination relation to the normal operational use of the bridge with a 55-mph
wind and all loads taken at their nominal values. Also related to deflection control in buried
metal structures, tunnel liner plate, and thermoplastic pipe, to control crack width in rein-
forced concrete structures, and for transverse analysis relation to tension in concrete segmen-
tal girders. This load combination should also be used for the investigation of slope stability.

Service II: Load combination intended to control yielding of steel structures and slip of
slip-critical connections due to vehicular live load.

Service III: Load combination for longitudinal analysis in relation to tension in prestressed
concrete superstructures with the objective of crack control and to principal tension in the
webs of segmental concrete girders.

Service IV: Load combination relating only to tension in prestressed concrete columns with the
objective of crack control.

Fatigue: Fatigue and fracture load combination in relation to repetitive gravitational vehicular
live load and dynamic responses under a single design truck having the axle spacing specified
in Section 22.4.3 of this chapter.

22.4 LOAD FACTORS AND COMBINATIONS (AASHTO 3.4)

A general statement to assure safe design is that the resistance of the bridge systems or components
supplied exceeds the demands put on them by applied loads, that is,

Resistance ≥ effect of the loads

Unpredictability of the reliability on both sides of the inequality is taken into account by
multiplying factors. The resistance side is multiplied by a resistance factor𝜙, whose value is usually
less than 1, and the load side is multiplied by a load factor 𝛾 , whose value is usually greater than 1.
These factors are based on statistical data [2].

The basic design expression in the AASHTO LRFD that must be satisfied for all limit states
is given as

Q =
∑

𝜂i 𝛾i Qi ≤ 𝜙Rn (22.1)

where
Q = total force effect
𝜂i = load modifier specified in Section 22.4.1
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Qi = force effects from loads specified in Section 22.4.2
𝛾 i = load factors specified in Tables 22.8 and 22.9

Rn = nominal resistance
𝜙 = statistically based resistance factor applied to nominal resistance

22.4.1 Load Modifier (AASHTO 1.3.2.1)

The load modifier is a factor that takes into account the ductility, redundancy, and operational
importance of the bridge. It is given as:

For a load for which a maximum value of 𝛾 i is appropriate:

𝜂i = 𝜂D 𝜂R 𝜂I ≥ 0.95 (22.2)

For a load for which a minimum value of 𝛾 i is appropriate:

𝜂i =
1

𝜂D 𝜂R 𝜂I
≤ 1.0 (22.3)

where
𝜂i = load modifier
𝜂I = factor relating to operational importance
𝜂D = factor relating to ductility
𝜂R = factor relating to redundancy

22.4.1.1 Ductility (AASHTO 1.3.3). The structural system of a bridge shall be proportioned and
detailed to ensure the development of significant and visible inelastic deformations at the strength
and extreme event limit states before failure.

The values to be used for the strength limit state are:

𝜂D ≥ 1.05 for nonductile components and connections

= 1.00 for conventional designs and details complying with AASHTO specifications

≥ 0.95 for components and connections for which additional ductility − enhancing

measures have been specified beyond those required by the specifications

For all other limit states:
𝜂D = 1.00

22.4.1.2 Redundancy (AASHTO 1.3.4). Redundancy in a bridge system increases its margin of
safety, and it is reflected in the strength limit state by redundancy factors given as

𝜂R ≥ 1.05 for nonredundant members

= 1.00 for conventional level of redundancy

≥ 0.95 for exceptional levels of redundancy

For all other limit states:
𝜂R = 1.00

22.4.1.3 Operational Importance (AASHTO 1.3.5). Operational importance shall apply to the
strength and extreme event limit states only. Bridges can be considered of operational importance if
they are on the shortest path between residential areas and a hospital or school or provide access for
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police, fire, and rescue vehicles to homes, businesses, and industrial plants [2]. Such classification
should be based on social/survival and/or security/defense requirements [1].

For the strength limit state:

𝜂I ≥ 1.05 for important bridges

= 1.00 for typical bridges

≥ 0.95 for relatively less important bridges

For all other limit states:
𝜂I = 1.00

22.4.2 Load and Load Designation (AASHTO 3.3.2)

In AASHTO LRFD bridge design specifications, loads are classified as permanent and transient.
The following permanent and transient loads and forces are used in Tables 22.8 and 22.9 for the
load combinations and corresponding factors:

Permanent Loads
DD Downdrag
DC Dead load of structural components and nonstructural attachment
DW Dead load of wearing surfaces and utilities
EH Horizontal earth pressure load
EL Accumulated locked-in force effects resulting from the construction

process, including the secondary forces from posttensioning
ES Earth surcharge load
EV Vertical pressure from dead load of earth fill

Transient Loads
BR Vehicular braking force
CE Vehicular centrifugal force
CR Creep
CT Vehicular collision force
CV Vessel collision force
EQ Earthquake
FR Friction
IC Ice load
IM Vehicular dynamic load allowance
LL Vehicular live load
LS Live-load surcharge
PL Pedestrian live load
SE Settlement
SH Shrinkage
TG Temperature gradient
TU Uniform temperature
WA Water load and stream pressure
WL Wind on live load
WS Wind on structure

22.4.3 Load Combinations and Load Factors (AASHTO 3.4.1.1)

The load factors for various load combinations and permanent loads are given by AASHTO
and reproduced in Table 22.8 and Table 22.9, respectively. Note that both a maximum and a
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Table 22.8 Load Combinations and Load Factors

DC
DD LL
DW IM
EH CE
EV BR TU
ES PL CR Use One of These at a Time

Load
Combination
Limit State EL LS WA WS WL FR SH TG SE EQ IC CT CV

Strength I
(unless noted)

𝛾P 1.75 1.00 — — 1.00 0.50/1.20 𝛾TG 𝛾SE — — — —

Strength II 𝛾P 1.35 1.00 — — 1.00 0.50/1.20 𝛾TG 𝛾SE — — — —
Strength III 𝛾P — 1.00 1.40 — 1.00 0.50/1.20 𝛾TG 𝛾SE — — — —
Strength IV 𝛾P — 1.00 — — 1.00 0.50/1.20 — — — — — —
Strength V 𝛾P 1.35 1.00 0.40 1.00 1.00 0.50/1.20 𝛾TG 𝛾SE — — — —
Extreme Event I 𝛾P 𝛾EQ 1.00 — — 1.00 — — — 1.00 — — —
Extreme Event II 𝛾P 0.50 1.00 — — 1.00 — — — — 1.00 1.00 1.00
Service I 1.00 1.00 1.00 0.30 1.00 1.00 0.50/1.20 𝛾TG 𝛾SE
Service II 1.00 1.30 1.00 — — 1.00 0.50/1.20 — —
Service III 1.00 0.80 1.00 — — 1.00 0.50/1.20 𝛾TG 𝛾SE
Service IV 1.00 — 1.00 0.70 — 1.00 0.50/1.20 — 1.0
Fatigue–LL, IM,

and CE Only
— 0.75

Source: AASHTO LRFD Bridge Design Specifications, 2014. Used by permission.

Table 22.9 Load Factors for Permanent Loads, 𝛾p

Load FactorType of Load, Foundation Type, and
Method Used to Calculate Downdrag Maximum Minimum

DC: Component and attachments 1.25 0.90
DC: Strength IV only 1.50 0.90
DD: Downdrag

Piles, 𝛼 Tomlinson method 1.40 0.25
Piles, 𝜆 Method 1.05 0.30
Drilled shafts, O’Neill and Rees (1999) 1.25 0.35

DW: Wearing surfaces and utilities 1.50 0.65
EH: Horizontal earth pressure

Active 1.50 0.90
At rest 1.35 0.90
AEP for anchored walls 1.35 N/A

EL: Locked-in erection stresses 1.00 1.00
EV: Vertical earth pressure

Overall stability 1.00 N/A
Retaining walls and abutments 1.35 1.00
Rigid buried structure 1.30 0.90
Rigid frames 1.35 0.90
Flexible buried structures other than metal box culverts 1.95 0.90
Flexible metal culverts 1.50 0.90

ES: Earth surcharge 1.50 0.75

Source: AASHTO LRFD Bridge Design Specifications, 2014. Used by permission.
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minimum factor for the permanent loads are specified in Table 22.9. The minimum factors are
to be used in the strength limit states to produce maximum effects of live load. In other words,
when the effect of live load is opposite to that of permanent load, the minimum combinations are
to be used.

22.5 GRAVITY LOADS

Gravity loads include permanent and live loads that are caused by the self-weight of the bridge and
the weight of objects on the bridge. Such loads are applied in a downward direction (toward the
center of the earth).

22.5.1 Permanent Loads (AASHTO 3.5)

Permanent loads include dead loads and earth loads that remain on the bridge for the entire service
life. Such loads include DC, DW, EV, EH, ES, and DD specified in Section 22.4.2.

22.5.2 Live Loads (AASHTO 3.6)

The scope is limited to gravity live loads, which include vehicular live load (LL) and pedestrian
live load (PL).

22.5.2.1 Vehicular Live Load (AASHTO 3.6.1.1). A typical bridge is designed for several lon-
gitudinal traffic lanes of equal width that are defined as traffic lane and design lane. The traf-
fic lane is the amount of traffic that the traffic engineer plans to route across the bridge whose
width is associated with a traffic lane of, typically, 10 to 14 ft. The design lane is the number
of lane designation that the bridge engineer uses for live-load placement to produce maximum
load effects.

Generally, the number of design lanes should be determined by taking the integer pat of the
ratio 𝜔/12.0, where 𝜔 is the clear roadway width in feet between curbs and/or barriers. Engineering
judgment shall be used to ensure that the number of design lanes is not less than the number of traffic
lanes. In case where the traffic lanes are less than 12.0 ft wide, the number of design lanes shall be
equal to the number of traffic lanes, and the width of the design lane shall be taken as the width
of the traffic lane. Possible future changes in the physical or functional clear roadway width of the
bridge should be considered. Roadway widths from 20.0 to 24.0 ft shall have two design lanes, each
equal to one-half the roadway width.

22.5.2.2 Multiple Presence of Live Load (AASHTO 3.6.1.2). The extreme live-load effect shall
be determined by considering each possible combination of number of loaded lanes multiplied
by a corresponding multiple presence factor to account for the probability of simultaneous lane
occupation by full HL-93 design live load. Multiple presence factors have been included in the
equations for distribution factors and, therefore, shall not be applied in conjunction with load
distribution factors except where a lever rule is used. The multiple presence factors are given
in Table 22.10.

22.5.2.3 Design Vehicular Live Load (AASHTO 3.6.1.2). Although the automobile is the most
common vehicular live load on most bridges, trucks cause the critical load effects. Therefore,
AASHTO design live loads attempt to model the truck traffic that may occur independent of or
combined with other truck loads.
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Table 22.10 Multiple Presence Factors m

Number of Loaded Lanes Multiple Presence Factors, m

1 1.20
2 1.00
3 0.85
>3 0.65

Vehicular live loading that AASHTO employs is HL-93 (highway loading developed/adopted
in 1993), which was previously called HS20-44 (highway semitrailer with weight of 20 tons
adopted in 1944). This model consists of three types of different live loads, namely, a design truck,
a tandem, and a design lane load.

22.5.2.3.1 Design Truck (AASHTO 3.6.1.2.2). The weights and spacing of axles and wheels for
the design truck are shown in Fig. 22.5. The spacing between the two 32.0-K axles shall be varied
between 14.0 and 30.0 ft to produce extreme force effects. A dynamic load allowance, IM, shall be
considered.

22.5.2.3.2 Design Tandem (AASHTO 3.6.1.2.3). The design tandem shall consist of a pair of
25.0-K axles spaced 4.0 ft apart. The transverse spacing of wheels shall be taken as 6.0 ft, shown
in Fig. 22.6. A dynamic load allowance, IM, shall be considered.

22.5.2.3.3 Design Lane Load (AASHTO 3.6.1.2.4). The design lane load shall consist of a load of
640 lb per linear foot (or 0.64 klf) of design lane uniformly distributed in the longitudinal direction.
Transversely, the design lane load shall be assumed to be uniformly distributed over a 10.0-ft width
(Fig. 22.7). No dynamic load allowance shall be applied.

8 K

10 ft

6 ft2 ft

32 K 32 K

14 ft 14–30 ft

Figure 22.5 Characteristics of the design truck (HL-93) specified by AASHTO.
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Figure 22.6 Characteristics of the design tandem specified by AASHTO.

Design lane load
= 10 ft

Plan View
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Traffic direction

Figure 22.7 Characteristics of design lane load specified by AASHTO.

22.5.2.3.4 Live-Load Combinations for Design (AASTO 3.6.1.3). AASHTO specifies the three
basic types of loadings described above are to be combined in the following three combinations to
produce maximum load effects:

1. The effect of the design tandem combined with the effect of design lane load.
2. The effect of one design truck with the various axle spacing combined with the effect of

design lane load.
3. For negative moment between points of contraflexure under a uniform load on all spans, and

reaction at interior piers only, 90% of the effect of two design trucks spaced a minimum of
50.0 ft between the load axle of one truck and the rear axle of the other truck, combined with
90% of the effect of the design lane load. The distance between the 32.0-K axles of each truck
shall be taken as 14.0 ft.
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32 K 32 K 8 K

32 K 32 K 8 K

0.64 klf

0.64 klf

0.64 klf

14  to 30 ft 14 ft

32 K8 K 32 K
14 ft 14 ft 14 ft 14 ft>= 50 ft

Live loading
combinations

Design
tandem

Uniform lane
loading: 0.64 klf

Design truck
(HL 93)

(a) Design tandem + design lane loading

25 K 25 K
4 ft

(b) Design truck + design lane loading

(c) Negative moment

Figure 22.8 The AASHTO HL-93 design loadings and load combinations.

The loads are placed in such a way as to generate maximum live-load effects in the combina-
tions described above, among which the critical condition governs the design. These combinations
are summarized in Fig. 22.8.

22.5.2.3.5 Fatigue Load (AASHTO 3.6.1.4). One truck design with the variable axle spacing set
at 30 ft shall be considered in the fatigue and fracture limit state to take into account the cyclic live
loading. The dynamic load allowance must be included.

Since the fatigue and fracture limit state is defined in terms of accumulated stress-range cycles,
load should be specified along with the frequency of load occurrence, namely, average daily truck
traffic (ADTT).

22.5.2.4 Pedestrian Loads (AASHTO 3.6.1.6). A pedestrian load of 75 lb per liner foot (or
0.075 ksf) shall be applied to all sidewalks wider than 2.0 ft concurrently with the vehicular
load.

If bridges are designed for only pedestrian and/or bicycle traffic, then 85 lb per liner foot
(or 0.085 ksf) live load shall be applied. Pedestrian and/or bicycle bridges shall be designed for
maintenance truck and/or other incidental vehicles that are intended to used.

22.5.2.5 Dynamic Load Allowance: IM (AASHTO 3.6.2). Roadway roughness and irregu-
larity induces the vehicle suspension systems to oscillate compression and extension. Axle force
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Table 22.11 Dynamic Load Allowance, IM

Component IM (%)

Deck joint—all limit states 75
All other components

• Fatigue and fracture limit state
• All other limit state

15
33

can be greater or less than the static weight when the acceleration is upward or downward,
respectively [2].

Dynamic effects due to moving vehicles may be attributed to two sources:

1. Dynamic response of the wheel assembly is called the Hammering effect, and it may occur
due to riding surface discontinuities, such as deck joints, cracks, potholes, and delimitations.

2. Dynamic response of the bridge as a whole to passing vehicles, which may be due to long
undulations in the roadway pavement, such as those caused by settlement of fill, or to resonant
excitation as a result of similar frequencies of vibration between bridge and vehicle.

The factor to be applied to the static load shall be taken as 1+ IM/100, and factors are given
in Table 22.11.

22.5.3 Static Analysis (AASHTO 4.6)

A bridge deck is the medium through which all bridge loads are transferred to other subsequent
components. A concentrated load placed on a bridge deck is distributed over an area larger than the
actual contact area. Thus, a larger portion of the deck will resist the load [3].

Bridge decks can be classified as follows based on applicability of analytical method:

1. Decks (AASHTO 4.6.2.1)
2. Beam–slab bridge (AASHTO 4.6.2.2)

Several analysis methods are available to determine load distribution in bridge decks among
which are classical methods, computer methods, and approximate methods. In this chapter, a
beam–slab bridge with an approximate method will be described. It is summarized in following
steps:

1. Moments and shears at any section are first determined assuming a fully loaded lane.
2. These loads are multiplied by the approximate distribution factor to determine the moment

and shear in a particular beam, girder, or strip of slab.

22.5.3.1 Load Distribution Factors in Beam-Slab Bridges (AASHTO 4.6.2.2). Table 22.12
shows common deck superstructure for which equations for the beam distribution factors have
been developed by AASHTO. Corresponding distribution factors for moments in interior beams
are reproduced in Table 22.13, and readers are encouraged to refer to AASHTO Table 4.6.2.2.d-1,
Table 4.6.1.1.3.a-1, and Table 4.6.2.2.3b-1 for distribution factors for moment in exterior beams,
for shear in interior beams, and for shear in exterior beams, respectively.
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Table 22.12 Common Deck Superstructures

Supporting Components Type of Deck Typical Cross Section

Steel beam Cast-in-place concrete slab, precast
concrete slab, steel grid,
glued/spiked panels, stressed
wood

(a)

Closed steel or precast concrete
boxes

Cast-in-place concrete slab

(b)

Open steel or precast concrete boxes Cast-in-place concrete slab, precast
concrete deck slab

(c)

Cast-in-place concrete multicell box Monolithic concrete

Cast-in-place concrete tee beam Monolithic concrete

(e)

Precast solid, voided, or cellular
concrete boxes with shear keys

Cast-in-place concrete overlay

( f )

Precast solid, voided, or cellular
concrete box with shear keys and
with or without transverse
posttensioning

Integral concrete

(g)

P/T

Precast concrete channel sections
with shear keys

Cast-in-place concrete overlay

(h)

Precast concrete double tee section
with shear keys and with or
without transverse posttensioning

Integral concrete

(i)
P/T

Precast concrete tee section with
shear keys and with or without
transverse posttensioning

Integral concrete
P/T

( j)

Precast concrete I or bulb-tee
sections

Cast-in-place concrete, precast
concrete

(k)

Wood beams Cast-in-place concrete or plank,
glued/spiked panels, or stressed
wood

(l)

Source: AASHTO LRFD Bridge Design Specifications, 2014. Used by permission.
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Table 22.13 Distribution of Live Load per Lane for Moment in Interior Beams

Type of Superstructure

Applicable
Cross Section
from Table 22.11 Distribution Factors

Range of
Applicability

Wood deck on wood or
steel beams

a, l See 22.12

Concrete deck on wood
beams

l One design lane loaded:
S/12.0

Two or more design lanes loaded:
S/10.0

S ≤ 6.0

Concrete deck, filled
grid, partially filled
grid, or unfilled grid
deck composite with
reinforced concrete
slab on steel or
concrete beams;
concrete T-beams,
T- and double
T-sections

a, e, k, and also
i, j if
sufficiently
connected to
act as unit

One design lane loaded:

0.06 +
( S

14

)0.4(S
L

)0.3
( Kg

12.0Lt3
s

)0.1

Two or more design lanes loaded:

0.075 +
( S

9.5

)0.6(S
L

)0.2
(

Kg

12.0Lt3
s

)0.1

3.5 ≤ S ≤ 16.0
4.5 ≤ ts ≤ 12.0
20 ≤ L ≤ 240

Nb ≥ 4
10,000 ≤ Kg ≤

7,000,000

Use lesser of the values obtained from the
equation above with Nb = 3 or the lever rule

Nb = 3

Cast-in-place concrete
multicell box

d One design lane loaded:

(
1.75 + S

3.6

) ( 1
L

)0.35
(

1
Nc

)0.45

Two or more design lanes loaded:

0.075 +
( S

9.5

)0.6(S
L

)0.2
( Kg

12.0Lt3
s

)0.1

7.0 ≤ S ≤ 13.0
60 ≤ L ≤ 240

Nc ≥ 3
If Nc > 8 use

Nc = 8

Concrete deck on
concrete spread box
beams

b, c One design lane loaded:
( S

3.0

)0.35( Sd
12.0L2

)0.25

Two or more design lanes loaded:
( S

9.6.35

)0.6( Sd
12.0L2

)0.125

6.0 ≤ S ≤ 18.0
20 ≤ L ≤ 140
18 ≤ d ≤ 65

Nb ≥ 3

Use lever rule S> 18.0

Concrete beams used in
multibeam decks

f One design lane loaded:

k
( b

33.3L

)0.5( I
12.0L2

)0.125

where k= 2.5(Nb )−0.2 ≥ 1.5

35 ≤ b ≤ 60
20 ≤ L ≤ 120
5 ≤ Nb ≤ 20

g if sufficiently
connected to
act as a unit

Two or more design lanes loaded:

k
( bS

305

)0.6( b
12.0L

)0.2( I
J

)0.06

(continued)
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Table 22.13 (Continued)

Type of Superstructure

Applicable
Cross Section
from Table 22.11 Distribution Factors

Range of
Applicability

h Regardless of number of
loaded lanes:
S/D

NL ≤ 6

g, i, and j if
connected only
enough to
prevent relative
vertical
displacement
at the interface

where

C=K(W/ L) ≤ K
D= 11.5−NL + 1.4NL (1− 0.2C)2

When C ≤ 5,

D= 11.5−NL when C > 5

K =
√

(1 + 𝜇)I
J

For preliminary design, the following
values of K may be used
Beam type K
Nonvoided rectangular beams: 0.7
Rectangular beams with circular voids: 0.8
Box section beams: 1.0
Channel beams: 2.2
T-beam: 2.0
Double T-beam: 2.0

Open steel grid deck on
steel beams

a One design lane loaded:

(S/7.5) If tg < 4.0
(S/10.0) If tg ≥ 4.0

Two or more design lanes loaded:

(S/8.0) If tg < 4.0
(S/10.0) If tg ≥ 4.0

S ≤ 6.0

S ≤ 6.0

Concrete Deck on
Multiple steel Box
Girders

b,c Regardless of number of loaded lanes:

0.05 + 0.85
NL

Nb

+ 0.425
NL

0.5 ≤
NL

Nb

≤ 1.5

Source: AASHTO LRFD Bridge Design Specifications, 2014. Used by permission.

22.5.3.2 Live-Load Moments and Shears in Simply Supported Spans. The maximum bending
due to the uniform lane loading of 0.64 kip/ft occurs at midspan and may be computed from the
following expressions:

Maximum MLL = 0.64(x) (L − x)
2

kip ⋅ ft (22.4)

where
x = distance from left support, ft
L = beam span, ft
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Bending moments due to the design truck and the design tandem are to be computed using
the influence line. Equations of moments and shears due to live-load trucks for simple span bridges
are available in many references, and readers are encouraged to refer to References 2, 3, 4, and 5
for more details.

The maximum bending moments may be computed from the following expressions [4]:

Maximum MLL = P
(9

8
L + 24.5

L
− 17.50

)
kip − ft (22.5)

where
P = one axle load= 16.0 kips
L = beam span, ft

The maximum bending moments due to the design tandem may be computed from the following
expressions [4]:

Maximum MLL = 50
(L

4
− 1 − 3

L

)
kip − ft (22.6)

where L is the beam span in feet.

22.5.3.3 Wind Loads (AASHTO 4.6.2.7). Wind load is dynamic load. However, it is generally
approximated as a uniformly distributed static load on the exposed area of a bridge. This area is
taken as the combined surfaces of both the superstructure and the substructure including, floor
systems and railings as seen in the elevation 90∘ to the longitudinal axis of the structure. Design
wind load is based on an assumed “base wind velocity” of 100 mph [9].

22.5.3.4 Seismic Lateral Load Distribution (AASHTO 4.6.2.8). For most prestressed struc-
tures, where the superstructure is not integral with the substructure, seismic forces do not affect
beam design [9]. Details of analysis methods are beyond the scope of this chapter.

22.5.3.5 Effective Flange Width (AASHTO 4.6.2.6). For interior beams, the effective flange
width may be taken as the least of:

• One-quarter of the effective span length.
• 12.0 times the average depth of the slab, plus the greater of web thickness or one-half the

width of the top flange of the girder.
• The average spacing of adjacent beams.

For exterior beams, the effective flange width may be taken as one-half the effective width of
the adjacent interior beam, plus the least of:

• One-eighth of the effective span length.
• 6.0 times the average depth of the slab, plus the greater of one-half the web thickness or

one-quarter of the width of the top flange of the basic girder.
• The width of the overhang.
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22.6 DESIGN FOR FLEXURAL AND AXIAL FORCE EFFECTS (AASHTO 5.7)

22.6.1 Flexural Members (AASHTO 5.7.3)

For rectangular or flanged section subjected to flexure about one axis where the approximate rect-
angular stress distribution is used and for which fpe is not less than 0.5 fpu, the average stress in
prestressing steel, fps, may be taken as:

fps = fpu

(
1 − k

c
dp

)
(22.7)

where

k = 2

(
1.04 −

fpy

fpu

)
(22.8)

Values of fpy/fpu and k are determined in the Table 22.14.
For T-section behavior:

c =
Apsfpu + Asfs − A′

sf
′
s − 0.85(b − b𝑤)hf

0.85f ′c𝛽b𝑤 + kAps(fpu∕dp)
(22.9)

For rectangular section behavior:

c =
Apsfpu + Asfs − A′

sf
′
s

0.85f ′c𝛽b + kAps(fpu∕dp)
(22.10)

where
Aps = area of prestressing steel (in.2)
fpu = specified tensile strength of prestressing steel (ksi)
fpy = yield strength of prestressing steel (ksi)
As = area of mild steel tension reinforcement (in.2)
A′

s = area of compression reinforcement (in.2)
fs = stress in mild steel tension reinforcement at nominal flexural resistance (ksi)
f ′s = stress in mild steel compression reinforcement at nominal flexural resistance (ksi)
b = width of compression flange (in.)

b𝑤 = width of web (in.)
hf = depth of compression flange (in.)
dp = distance from extreme compression fiber to centroid of prestressing tendons (in.)
c = distance between neutral axis and compressive fiber (in.)
𝛽1 = stress block factor

22.6.2 Flexural Resistance (AASHTO 5.7.3.2)

The factored resistance Mr shall be taken as

Mr = 𝜙Mn (22.11)

Table 22.14 Values of fpy/fpu and k

Type of Tendon fpy /fpu Value of k

Low relaxation strand 0.9 0.28
Stress-relieved strand and type 1 high-strength bar 0.85 0.38
Type 2 high-strength bar 0.80 0.48
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where
M n = nominal resistance (kip ⋅ in)
𝜙 = resistance factor as specified in AASHTO 5.5.4.2

22.6.3 Limits for Reinforcement (AASHTO 5.7.3.3)

22.6.3.1 Maximum Reinforcement (AASHTO 5.7.3.3.1). This provision was been deleted from
the AASHTO specification in 2005. The current provisions of LRFD eliminate this limit and unify
the design of prestressed and nonprestressed tension- and compression-controlled members. Below
a net tensile strain in the extreme tension steel of 0.005, as the tension reinforcement quantity
increases, the factored resistance of prestressed and nonprestressed sections is reduced in accor-
dance with AASHTO 5.5.4.2.1. This reduction compensates for decreasing ductility with increasing
overstrength. Only the addition of compression reinforcement can result in an increase in the
factored flexural resistance of the section.

22.6.3.2 Minimum Reinforcement (AASHTO 5.7.3.3.2). The amount of prestressed and nopre-
stressed tensile reinforcement shall be adequate to develop a factored flexural resistance, Mr, at least
equal to the lesser of:

• 1.2 times the cracking moment, Mcr, determined on the basis of elastic stress distribution and
the modulus of rupture, fr, of the concrete, where Mcr may be taken as

Mcr = Sc(fr + fcpe) − Mdnc

(
sc

snc
− 1

)
≥ Scfr (22.12)

where
f cpe = compressive stress in concrete due to effective prestress forces only at extreme fiber of

section where tensile stress is caused by externally applied loads (ksi)
Mdnc = total unfactored dead load moment acting on the monolithic or noncomposite section

(kip⋅ft)
Sc = section modulus for the extreme fiber of composite section where tensile stress is

caused by externally applied loads (in.3)
Snc = section modulus for the extreme fiber of monolithic or noncomposite section where

tensile stress is caused by externally applied loads (in.3)

• 1.33 times the factored moment required by the applicable strength load combinations
specified in Table 22.8.

22.7 DESIGN FOR SHEAR (AASHTO 5.8)

The AASHTO specifications direct a designer to use the sectional model to design for shear and
torsion when it is reasonable to assume that plane sections remain plane after loading. The resis-
tance of members in shear or in shear combined with torsion may be determined by satisfying
the conditions of force equilibriums and strain compatibility by utilizing experimentally verified
stress–strain curves for reinforcement and for diagonally cracked concrete.

The sectional model is appropriate for the design of typical bridge girders, slab, and other
regions of components where the assumptions of traditional engineering beam theory are valid.

Components in which the distance from the point of zero shear to the face of the support
is less than 2d, or components in which a load causing more than 1

2
of the shear at a support is

closer than 2d from the face of the support, may be considered to be deep components and shall be
designed for shear and torsion using the strut-and-tie model (AASHTO 5.8.1.1).
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Where the plane sections assumption of flexural theory is not valid, regions of members
shall be designed for shear and torsion using the strut-and-tie model. Some of the examples are
regions adjacent to abrupt changes in cross section, openings, dapped ends, deep beams, and corbels
(AASHTO 5.8.1.2).

Interfaces between elements shall be designed for shear transfer (AASHTO 5.8.1.3).

22.7.1 Shear Design Procedures (AASHTO 5.8.1)

There are two recommended approach by AASHTO LRFD 2014 to design for shear: The
Strut-and-Tie Model, which was explained in Chapter 8, and the Modified Compression Field
Theory (MCFT).

AASHTO LRFD 2014, also, recommends a simplified approach based on the Modified
compression field theory. The MCFT and the simplified MCFT approaches are discussed in
Sections 22.7.2 through 22.7.10.

22.7.2 Approach 1: MCFT

Modified Compression Field Theory, unlike Strut-and-Tie Model, which is discussed at member
level, presents its equation at sectional level. This model was developed by Collins and Mitchell
[11]. In general, the following equation must be satisfied at each section:

Vr = 𝜙Vn ≥ Vu (22.13)

where
Vr = design shear resistance
Vn = nominal shear resistance
Vu = factored shear force
𝜙 = resistance factor for shear: 0.9 for normal-weight concrete, 0.7 for lightweight concrete

The shear design procedure using the modified compression field theory consists of the fol-
lowing steps:

1. Determine the factored shear Vu and moment Mu envelopes due to the strength limit states at
the point of interest.

2. Compute the nominal shear stress 𝑣u and obtain the shear stress ratio 𝑣u∕f ′c .
3. Estimate a value of 𝜃 and calculate the longitudinal strain 𝜀x.
4. Use the calculated values of 𝑣u∕f ′c and 𝜀x to determine 𝜃 from Table 22.15 and compare

with the estimated value in step 3. If different, recalculate and iterate step 4 until the
estimated value of 𝜃 agrees with the value from Table 22.15. Select corresponding value
of 𝛽.

5. Calculate the required web reinforcement strength Vs and the required spacing of stirrups.

22.7.3 Shear Stress on Concrete (AASHTO 5.8.2.9)

The shear stress on the concrete shall be determined as

𝑣u =
|Vu − 𝜙Vp|

𝜙b𝑣d𝑣
(22.14)
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Table 22.15 Values of 𝜃 and 𝛽 for Sections with Transverse Reinforcement

Vu

f′c

𝜺x × 1000

≤ −0.20 ≤ −0.10 ≤ −0.05 ≤ 0 ≤ 0.125 ≤ 0.25 ≤ 0.50 ≤ 0.75 ≤ 1.00

≤ 0.075 22.3 20.4 21.0 21.8 24.3 26.6 30.5 33.7 36.4
6.32 4.75 4.10 3.75 3.24 2.94 2.59 2.38 2.23

≤ 0.100 18.1 20.4 21.4 22.5 24.9 27.1 30.8 34.0 36.7
3.79 3.38 3.24 3.14 2.91 2.75 2.50 2.32 2.18

≤ 0.125 19.9 21.9 22.8 23.7 25.9 279. 31.4 344.4 37.0
3.18 2.99 2.94 2.87 2.74 2.62 2.42 2.26 2.13

≤ 0.150 21.6 23.3 24.2 25.0 26.9 28.8 32.1 34.9 37.3
2.88 2.79 2.78 2.72 2.60 2.52 2.36 2.21 2.08

≤ 0.175 23.2 24.7 25.5 26.2 28.0 29.7 32.7 35.2 36.8
2.73 2.66 2.65 2.60 2.52 2.44 2.28 2.14 1.96

≤ 0.200 24.7 26.1 26.7 27.4 29.0 30.6 32.8 34.5 36.1
2.63 2.59 2.52 2.51 2.43 2.37 2.14 1.94 1.79

≤ 0.225 26.1 27.3 27.9 28.5 30.0 30.8 32.3 34.0 35.7
2.53 2.45 2.42 2.40 2.34 2.14 1.86 1.73 1.64

≤ 0.250 27.5 28.6 29.1 29.7 30.6 31.3 32.8 34.3 35.8
2.39 2.39 2.33 2.33 2.12 1.93 1.70 1.58 1.50

Source: AASHTO LRFD Bridge Design Specifications, 2014. Used by permission.

where
b𝑣 = effective web width taken as minimum web width, measured parallel to neutral axis, between

resultants of tensile and compressive forces due to flexure, or for circular sections, diameter of
section, modified for presence of ducts where applicable (in.).

d𝑣 = effective shear depth taken as distance, measured perpendicular to neutral axis, between
resultants of tensile and compressive forces due to flexure; it need not be taken to be less than
the greater of 0.9de or 0.72h (in.).

22.7.4 Longitudinal Strain (AASHTO 5.8.3.4.2)

For sections containing at least the minimum amount of transverse reinforcement required by the
code, the values of 𝛽 and 𝜃 shall be as specified in Table 22.15. In using this table, 𝜀x shall be taken
as the calculated longitudinal strain at the middepth of the member when the section is subjected
to Nu, Mu, and Vu as in Fig. 22.9. Longitudinal strain, 𝜀x shall be determined as

𝜀x =
(|Mu|∕d𝑣)0.5Nu + 0.5|Vu − Vp| cot 𝜃 − Apsfpo

2(EsAs + EpAps)
(22.15)

The initial value of 𝜀x should not be taken greater than 0.001.
For sections containing less than the minimum amount of transverse reinforcement required

by the code, the values of 𝛽 and 𝜃 shall be as specified in Table 22.16. In using this table, 𝜀x shall be
taken as the largest calculated longitudinal strain that occurs within the web of the member when
the section is subjected to Nu, Mu, and Vu as in Fig. 22.10:

𝜀x =
(|Mu|∕d𝑣) 0.5Nu + 0.5|Vu − Vp| cot 𝜃 − Apsfpo

EsAs + EpAps
(22.16)
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Figure 22.9 Illustration of shear parameters for section containing at least the mini-
mum amount of transverse reinforcement, Vp=0. AASHTO LRFD Bridge Design Spec-
ifications, 2014. Used by permission

Table 22.16 Values of 𝜃 and 𝛽 for Sections with Less Than Minimum Transverse Reinforcement

𝜺x × 1000sxe
(in.) ≤ −0.20 ≤ −0.10 ≤ −0.05 ≤ 0 ≤ 0.125 ≤ 0.25 ≤ 0.50 ≤ 0.75 ≤ 1.00 ≤ 1.50 ≤ 2.00

≤ 5 25.4 25.5 25.9 26.4 27.7 28.9 30.9 32.4 33.7 35.6 37.2
6.36 6.06 5.56 5.15 4.41 3.91 3.26 2.86 2.58 2.21 1.96

≤ 10 27.6 27.6 28.3 29.3 31.6 33.5 36.3 38.4 40.1 42.7 44.7
5.78 5.78 5.38 4.89 4.05 3.52 2.88 2.50 2.23 1.88 1.65

≤ 15 29.5 29.5 29.7 31.1 34.1 36.5 39.9 42.4 44.4 47.4 49.7
5.34 5.34 5.27 4.73 3.82 3.28 2.64 2.26 2.01 1.68 1.46

≤ 20 31.2 31.2 31.2 32.3 36.0 38.8 42.7 45.5 47.6 50.9 53.4
4.99 4.99 4.99 4.61 3.65 3.09 2.46 2.09 1.85 1.52 1.31

≤ 30 34.1 34.1 34.1 34.2 38.9 42.3 46.9 50.1 53.7 56.3 59.0
4.46 4.46 4.46 4.43 3.39 2.82 2.19 2.00 1.66 1.30 1.10

≤ 40 36.6 36.6 36.6 36.6 41.2 45.0 50.2 53.7 56.3 60.2 63.0
4.06 4.06 4.06 4.06 3.20 2.62 2.00 1.66 1.43 1.14 0.95

≤ 60 40.8 40.8 40.8 40.8 44.5 49.2 55.1 58.9 61.8 65.8 68.6
3.50 3.50 3.50 3.50 2.92 2.32 1.72 1.40 1.18 0.92 0.75

≤ 80 44.3 44.3 44.3 44.3 47.1 52.3 58.7 62.8 65.7 69.7 72.4
3.10 3.10 3.10 3.10 2.71 2.11 1.52 1.21 1.01 0.76 0.62

Source: AASHTO LRFD Bridge Design Specifications, 2014. Used by permission.
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Figure 22.10 Longitudinal strain, 𝜀x, for sections containing less than the minimum
amount of transverse reinforcement. AASHTO LRFD Bridge Design Specifications,
2014. Used by permission
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The initial value of 𝜀x should not be taken greater than 0.002. If the value of 𝜀x from Eq. (22.15) or
(22.16) is negative, the strain shall be taken as

𝜀x =
(|Mu|∕d𝑣) 0.5Nu + 0.5|Vu − Vp| cot 𝜃 − Apsfpo

2(EcAc + EsAs + EpAps)
(22.17)

where
Ac = area of concrete on flexural tension side of member as shown in Fig. 22.9 (in.2)

Aps = area of prestressing steel on flexural tension side of member, as shown in Fig. 22.7 (in.2)
As = area of nonprestressed steel on flexural tension side of member at section under consideration,

as shown in Fig. 22.7 (in.2)
fpo = parameter taken as modulus of elasticity of prestessing tendons multiplied by the locked-in

difference in strain between the prestessing tendons and the surrounding concrete (ksi). For
usual levels of prestressing, a value of 0.7 fpu will be appropriate for both pretensioned and
posttensioned members (ksi)

Nu = factored axial force, taken as positive if tensile and negative if compressive (kip)
Mu = factored moment, not to be taken less than Vu d𝑣 (kip-in.)
Vu = factored shear force (kip)

In order to determine 𝜃 and 𝛽 in members with no transverse steel reinforcement or with web
reinforcement less than the minimum required, the crack spacing parameter in Table 22.16, sxe, is
needed; it can be estimated as

12 ≤ sxe = sx
1.38

ag + 0.63
≤ 80 in. (22.18)

where
ag = maximum aggregate size (in.)
sx = lesser of either d𝑣 or maximum distance between layers of longitudinal crack control

reinforcement, where the area of the reinforcement in each layer is not less than 0.003b𝑣sx, as
shown in Fig. 22.9 (in.)

22.7.5 Approach 2: Simplified MCFT

AASHTO LRFD 2014 introduces a more simplified version of MCFT, which is explained in this
section. In this method, the shear design will follow the same procedure described in Section 22.7.2
with the exception that 𝛽 and 𝜃 in steps 3 and 4 to be calculated directly as described next.

For sections containing at least the minimum amount of transverse reinforcement required by
the AASHTO code, the values of 𝛽 shall be specified as follows:

𝛽 = 4.8
1 + 750𝜀s

(22.19)

For sections containing less than the minimum amount of transverse reinforcement required
by the AASHTO code, the values of 𝛽 shall be specified as follows:

𝛽 = 4.8
1 + 750𝜀s

51
39 + Sxe

(22.20)

where Sxe can be calculated from Eq. (22.18).
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θ

(a)

sx

sin θ

Flexural
compression zone

sx = dv

(b)

θ

sx = dv

sx

sin θ
AS > 0.003bxsx

Figure 22.11 Definition of crack spacing parameter sx. (a) Member without transverse
reinforcement and with concentrated longitudinal reinforcement and (b) member without
transverse reinforcement but with well-distributed longitudinal reinforcement. AASHTO
LRFD Bridge Design Specifications, 2014. Used by permission.

The value of 𝜃 shall be calculated as follows:

𝜃 = 29 + 3500𝜀s (22.21)

where 𝜀s is the calculated longitudinal strain at the middepth of the member when the section
is subjected to Nu, Mu and Vu. Longitudinal strain, 𝜀s, can be calculated using the following
equation:

𝜀s =
(|M|u)

d𝑣
+ 0.5Nu + |Vu − Vp| − Apsfpo

(EsAs + EpAps)
(22.22)

According to AASHTO, 𝜀s should not be greater than 6× 10−2. Two different approaches are sug-
gested when the value of 𝜀s is negative: 𝜀s can be taken equal to zero in the design procedure to be
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on the safe side, or can be obtained from the following equation:

𝜀s =
(|M|u)

d𝑣
+ 0.5Nu + |Vu − Vp| − Apsfpo

(EcAcf + EsAs + EpAps)
> −0.0004 (22.23)

where Acf is the area of the section on the flexural tension side of the member.

22.7.6 Nominal Shear Resistance (AASHTO 5.8.3.3)

The nominal shear resistance, Vn, at a given section for the sectional design model is expressed as
the sum of contribution from the concrete, the transverse reinforcement, and the transverse com-
ponent of the prestressing force and shall be determined as the lesser of

Vn = Vc + Vs + Vp (22.24)

Vn = 0.25f ′c b𝑣d𝑣 + Vp (22.25)

in which

Vc = 0.0316𝛽
√

f ′c b𝑣d𝑣 (22.26)

Vs =
A𝑣fyd𝑣 (cot 𝜃 + cot 𝛼)

s
(22.27)

where
b𝑣 = effective web width taken as minimum web width within depth d𝑣 (in.)
d𝑣 = effective shear depth (in.)

s = spacing of stirrups (in.)
𝛽 = factor indicating ability of diagonal compressive stresses
𝛼 = angle of inclination of transverse reinforcement to longitudinal axis in degree

A𝑣 = area of shear reinforcement within distance s (in.2)
Vp = component in direction of applied shear of effective prestressing force: positive if resisting

applied shear (kip)

Vp = F sin 𝛼 (22.28)

where 𝛼 is the angle of inclination of the prestressing force with respect to the longitudinal axis of
the beam.

22.7.7 Regions Requiring Transverse Reinforcement (AASHTO 5.8.2.4)

Except for slabs, footings, and culverts, transverse reinforcement shall be provided where

Vu > 𝜙0.5(Vc + Vp) (22.29)

22.7.8 Minimum Transverse Reinforcement (AASHTO 5.8.2.5)

Except for segmental posttensioned concrete box girder bridges, the area of steel shall satisfy

A𝑣 > 0.0316
√

f ′c
b𝑣s

fy
(22.30)
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where
A𝑣 = area of transverse reinforcement within distance s (in2.)
b𝑣 = width of web adjusted for presence of ducts

s = spacing of transverse reinforcement (in.)
fy = yield strength of transverse reinforcement (ksi)

22.7.9 Maximum Spacing of Transverse Reinforcement (AASHTO 5.8.2.7)

The spacing of the transverse reinforcement shall not exceed the maximum permitted spacing, smax,
determined as

If 𝑣u < 0.125f ′c , then
smax = 0.8d𝑣 ≤ 24.0 in. (22.31)

If 𝑣u ≥ 0.125f ′c , then
smax = 0.4d𝑣 ≤ 12.0 in. (22.32)

22.7.10 Minimum Longitudinal Reinforcement (AASHTO 5.8.3.5)

At each section the tensile capacity of the longitudinal reinforcement on the flexural tension side
of the member shall be proportioned to satisfy

Apsfps + Asfy ≥
Mu

d𝑣𝜙f
+ 0.5

Nu

𝜙c
+
(||||

Vu

𝜙𝑣
− Vp

||||
− 0.5Vs

)
cot 𝜃 (22.33)

where
Vs = shear resistance provided by transverse reinforcement at section under investigation

except Vs shall not be taken as greater than Vu /𝜙 (kip)
𝜃 = angle of inclination of diagonal compressive stresses used in determining nominal shear

resistance of section under investigation
𝜙f 𝜙𝑣 𝜙c = resistance factors as appropriate for moment, shear, and axial resistance

22.8 LOSS OF PRESTRESS (AASHTO 5.9.5)

22.8.1 Total Loss of Prestress (AASHTO 5.9.5.1)

Loss of prestress can be characterized as that due to instantaneous loss and time-dependent loss.
Losses due to anchorage set, friction, and elastic shortening are instantaneous. Losses due to creep,
shrinkage, and relaxation are time dependent.

Total losses = instantaneous losses + time − dependent losses

In pretensioned members:
𝛥fpT = 𝛥fpES + 𝛥fpLT (22.34)

In posttensioned members:

𝛥fpT = 𝛥fpF + 𝛥fpA + 𝛥fpES + 𝛥fpLT (22.35)
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where
𝛥fpT = total losses (ksi)
𝛥fpF = losses due to friction (ksi)
𝛥fpA = losses due to anchorage set (ksi)
𝛥fpES = sum of all losses or gains due to elastic shortening or extension at time of application of

prestress and/or external loads (ksi)
𝛥fpLT = losses due to long-term shrinkage and creep of concrete and relaxation of the steel (ksi)

22.8.2 Instantaneous Losses (AASHTO 5.9.5.2)

22.8.2.1 Anchorage Set (AASHTO 5.9.5.2.1). Anchorage set loss is caused by the movement
of the tendon prior to seating of the wedges or the anchorage gripping device. The magnitude
of the anchorage set depends on the prestressing system used and shall be the greater of that
required to control the stress in the prestressing steel at transfer or that recommended by the
manufacturer of the anchorage. A common value for anchor set is 0.375 in. and can be as low
as 0.0625 in.

22.8.2.2 Friction (AASHTO 5.9.5.2.2). Losses due to hold-down devices for draping or harping
tendons in pretensioned members should be considered.

Elastic Shortening (AASHTO 5.9.5.2.3). The loss due to elastic shortening in pretensioned mem-
bers shall be taken as

𝛥fpES =
Ep

Ect
fcgp (22.36)

where
fcgp = concrete stress at center of gravity of prestressing tendons due to prestressing force

immediately after transfer and self-weight of member at section of maximum moment (ksi)
Ep = modulus of elasticity of prestressing steel (ksi)
Ect = modulus of elasticity of concrete at transfer or time of load application (ksi)

22.8.3 Approximate Estimate of Time-Dependent Losses (AASHTO 5.9.5.3)

The long-term prestress loss due to creep and shrinkage of concrete and relaxation of steel may be
estimated using

𝛥fpLT = 10.0
fpiAps

Ag
𝛾h𝛾st + 12.0𝛾h𝛾st + 𝛥fpR (22.37)

in which
𝛾h = 1.7 − 0.01H (22.38)

𝛾st =
5

1 + f ′ci

(22.39)



22.9 Deflections (AASHTO 5.7.3.6) 915

where
Fpi = prestressing steel stress immediately prior to transfer (ksi)
H = average annual ambient relative humidity (%)
𝛾h = correction factor for relative humidity of ambient air
𝛾st = correction factor for specified concrete strength at time of prestress transfer to concrete

member

22.8.4 Refined Estimate of Time-Dependent Losses (AASHTO 5.9.5.4)

The refined method can provide a better estimate of total losses than the approximate method
described in the previous section. It is beyond the scope of this book, and readers are encouraged
to reference the AASHTO and other references.

22.9 DEFLECTIONS (AASHTO 5.7.3.6)

Deflection and camber calculations shall consider dead load, live load, prestressing, erection loads,
concrete creep and shrinkage, and steel relaxation (AASHTO 5.7.3.6.2).

It is convenient to consider the total deflections of a prestressed beam as consisting of two
parts: instantaneous deflection and long-term deflection. The instantaneous deflection is elastic
and is caused by live loads and it does not vary with time. The long-term deflection is caused by
sustained loads and increases with time due to creep.

The AASHTO allows to compute the instantaneous deflections using modulus of elasticity for
concrete and taking the moment of inertia as either the gross moment of inertia, Ig, or an effective
moment of inertia, Ie, given as follows:

Ie =
(

Mcr

Ma

)3

Ig +
[

1 −
(

Mcr

Ma

)]
Icr ≤ Ig (22.40)

in which

Mcr = fr
Ig

yt
(22.41)

where
Mcr = cracking moment (kip in.)

fr = modulus of rupture of concrete
yt = distance from neutral axis to extreme tension fiber (in.)

Ma = maximum moment in component at stage for which deformation is computed (kip in.)

The AASHTO also allows the long-term deflection to be taken as the instantaneous deflection
multiplied by the following factor:

• If the instantaneous deflection is based on Ig: 4.0
• If the instantaneous deflection is based on Ie: 3.0 − 1.2(A′

s∕As) ≥ 1.6

where
A′

s = area of compression reinforcement (in.2)
As = area of nonprestressed tension reinforcement (in.2)
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BRIDGE DESIGN EXAMPLE

The design example is intended to provide guidance on the application of the AASHTO LRFD
Bridge Design Specifications when applied to a very common type of composite deck superstructure.
Design the simply supported pretension prestressed concrete girder bridge of Fig. 22.12 with a span
length of 100 ft center-to-center bearings of an HL-93 live load.

1’ Min

1’–5”

34’–10”

4’–0”

2’
–
8”

6’
–

0”

8”

T
yp

Typ
Note:
1” minimum hounch at abuntment bearing and varies along profile to allow for camber.

T
yp

M
in

Shoulder

Concrete barrier
732, Typ

12’–0”

PG

12’–0”

8”

– 2% – 2%

4’–0” 1’–5”

3’–11”

Shoulder

6”

Typ

groove, Typ

See Note

CL

CL

Girder, CL Bridge

3 spacings @ 9’–0” = 27’–0”
TypAASHTO – PCI

BT – 63, Typ

¾” Drip

Figure 22.12 Prestress concrete girder bridge design example: cross section of bridge
with AASHTO-PCI bulb tee (BT-63).

The roadway width is 32 ft curb to curb. The bridge is to carry interstate traffic over a highway
with minimum clearance of 16′−6′′.

Follow AASHTO LRFD Bridge Design Specification, 7th edition [1].

BRIDGE GEOMETRY DATA GIVEN

𝑤= 28 ft Roadway width
L= 100 ft Bridge span length
𝑤bridge = 34.83 ft Bridge width= bridge width+2(barrier)
𝑤barrier-bottom = 1.417 ft Bottom of concrete barrier width
hbarrier-top = 1 ft Top of concrete barrier width
hbarrier = 2.67 ft Height of barrier
toh_ext = 8 in. Exterior overhang thickness
toh_ext = 12.5 in. Interior overhang thickness
Loh = 2.17 ft Length of overhang
og = 4 Number of girder
nb = 2 Number of barrier
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MATERIAL PROPERTIES

PS Steel
Low relaxation, 0.5-in.-diameter seven-wire strands are used for the problem. Stress limits and prop-
erties of prestressing tendons are to be taken as follows (AASHTO Table 5.9.3):

fpu = 270 ksi Prestressed steel ultimate strength
fpy = 0.9 fpu fpy = 243 ksi Prestressed steel yield strength
fpe = 0.8 fpy fpe = 194.4 ksi Strength at service limit state after all losses
fpbt = 0.9 fpy fpbt = 218.7 ksi Strength at immediately prior to

seating—short-term fpbt may be allowed
fpi = 202.5 ksi Strength at service limit state before losses
Eps = 28500 ksi Modulus of elasticity of strands
Aps−single = 0.153 in.2 Area of 0.5′′ diameter strand
em = 27.59 in. Eccentricity of PS force at midspan
eend = 14.17 in. Eccentricity of PS force at end span

Reinforcing Steel

fy = 60 ksi Yield strength of reinforcing steel
ES = 29,000 ksi Modulus of elasticity of reinforcing steel

Bulb-Tee Girder (BT) (Section 22.1.4)

𝛾c = 150 pcf Normal-weight concrete
fc_BT = 8.0 ksi 28-day compressive strength of bulb-tee
fci_BT = 6.0 ksi Initial strength at time of initial prestressing of bulb-tee

Eci_girder = 33,000(0.15)1.5
√

f ′ci_BTksi′ Modulus of elasticiry of bulb-tees at time of initial
prestressing

Eci_girder = 4696 ksi

Ec_girder = 33,000(0.15)1.5
√

f ′c_BTksi′ Elastic modulus of bulb-tee after concrete hardening

Ec_girder = 5422 ksi

Deck Slab (DS)

𝛾c = 150 pcf Normal-weight concrete
f ′c_deck = 4 ksi 28-day compressive strength of deck slab
fci_deck = 3.6 ksi Initial strength of deck slab

Eci_deck = 33000(0.15)1.5
√

f ′ci_deckksi′ Modulus of elasticiry of deck slab

Eci_deck = 3637 ksi

Ec_deck = 33000(0.15)1.5
√

f ′c_deckksi′ Elastic modulus of deck slab after concrete hardening

Ec_deck = 3834 ksi
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TYPICAL SECTION SELECTION

A precast pretensioned AASHTO-PCI bulb-tee girder (Fig. 2.4) was selected and to be made a com-
posite with the deck.

ttop_flange = 3.5 in. Thickness of top flange
tbottom_flange = 6 in. Thickness of bottom flange
tweb = 6 in. Web thickness
btop_flange = 3.5 ft Width of top flange
bbottom_flange = 26 in. Width of bottom flange

1. Select minimum depth (including deck thickness)

(Ref: AASHTO 2.5.2.6.3, Table 2.5.2.6.3-1—Simple Span)
Choose 0.045L for a prestressed concreate beam:

Ds_ min = 0.045L = 0,045(100 ft) = 54 in. (depth of prestress concrete beam)

Assume

ts = 8 in. (thickness of top slab)

hgirder = Ds_ min − ts = 54 in. − 8 in. = 46 in. (minimum depth of beam)

Choose BT-63:

H = 63 in. if (H > h‘girder’“ok”,Reselect”) = “Ok”

A minimum 1′′ thick haunch will be used:

thaunch = 1 in.

Therefore, total structure depth is

DS = H + ts + thaunch = 63 in. + 8 in. + 1 in. = 72 in.

2. Select Girder Spacing

Recommendation: S< 2Ds S is a center-to-center girder spacing
OH< 2S OH is overhang length

Try

S = 9 ft

if (S ≤ 2Ds, “OK”, “NG”) = “OK”

A length of overhang is computed as

OH =
𝑤bridge − (ng − 1)S

2
= 34.83 ft + (4 − 1)9 ft

2
= 3.915

if (OH ≤ 2S, “OK”, “NG”) = “OK”
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3. Check Minimum Thickness (AASHTO 5.14.1.2.2)
The thickness of any part of precast concrete beams shall not be less than:

Top flange= 2.0 in. if (ttop_flange ≥ 2 in., “OK”, “NG”) = “OK”
Web, non-posttensioned= 5.0 in. if (tbottom_flange ≥ 5 in., “OK”, “NG”) = “OK”
Bottom flange= 5.0 in. if (tweb ≥ 5 in., “OK”, “NG”)= “OK”

4. Effective Flange Width (Ref. (Section 22.5.3.5) & AASHTO 4.6.2.6.1)

OH = 3.915 ft (Length of overhang)

Interior Girder

beff_int = min

(
Leff

4
, 12ts + max

(
tweb,

ttop_flange

2

)
, S

)

where

Leff = L= 100 ft Effective span length
ts = 8 in. Average depth of the slab
tweb = 6 in. Web thickness
S= 9 ft Centerline-to-centerline spacing of interior girders
ttop_flange= 3.5 ft Width of the top flange of the girder

Therefore, effective flange width of the composite section for an interior girder is
computed as

beff_int = min

(
Leff

4
, 12ts + max

(
tweb,

ttop_flange

2

)
, S

)

= min
(100 ft

4
, 12 (8 in.) + max

(
6,

3.5 in.
2

)
, 9 ft

)
= 8.5 ft

Exterior Girder

beff_ext = min

(
Leff

8
, 6ts + max

(
tweb

2
,

ttop_flange

4

)
, OH

)

where
OH = 3.915 ft (length of overhang)

Therefore, effective flange width of the composite section for an exterior girder is
computed as

beff_int = min

(
Leff

8
, 6ts + max

(
tweb

2
,

ttop_flange

4

)
, OH

)

= min
(100 ft

8
, 6 (8 in.) + max

(6
2
,

3.5 in.
4

)
, 3.915 ft

)
= 3.915 ft

5. Select Resistance Factors (AASHTO 5.5.4.2)

For tension-controlled prestressed concrete sections 1.0
For shear and torsion (normal-weight concrete) 0.9
For compression in anchorage zones (normal-weight concrete) 0.8
For tension in steel in anchorage zones 1.0
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Figure 22.13 Typical sections of (a) BT-63 and (b) composite section.

SECTION PROPERTIES (AASHTO PCI BT-63) (FIG. 22.13)

1. BT-63 Section Properties

Ag = 713 in.2 Area of BT-63 girder
Ig = 392638 in.4 Moment inertial of BT-63 girder
Hg = 5.25 ft Height of BT-63 girder
ybg = 32.12 in. Center of gravity of BT-63 girder from the bottom
ytg =H− ybg = 30.88 in. Center of gravity of BT-63 girder from the top

Sbg =
Ig

ybg
= 12224 in.3 Bottom section modulus of BT-63 girder

Stg =
Ig

ytg
= 12715 in.3 Top section modulus of BT-63 girder

2. Composite Section Properties

thaunch = 1 in. Thickness of haunch may be neglected conservatively in section properties
Ds = 6 ft Depth of composite section

To transform the cast-in-place deck slab into equivalent girder concrete, the following mod-
ular ratio will be applied:

n =
Ec_deck

Ec_girder
= 0.707

Section properties for the composite section are calculated below.

Adeck = nbeff_intts = (0.707)(8.5 ft)(8 in.) = 577 in.2

(Area of transformed deck)
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Ahaunch = nbtop_flangethaunch = (0.707)(3.5 ft)(1 in.) = 29.7 in.2

(Area of transformed haunch)

Agc = Adeck = Ahaunch + Ag = 577 + 29.7 + 713 = 1319.7 in.2

(Area of transformed composite section)

Centroids of the composite section are calculated as below:

ytc =
[Ag(ytg + thaunch + ts)] +

[
Ahaunch

(
ts +

1
2
thaunch

)]
+
(

Adeck
1
2
ts
)

Agc

=

[
(577) (30.88 + 1 + 8) + (29.7)

(
8 + 1

2

)
+
(

577 8
2

)]

1319.7

= 23.49 in.

ybc = Ds − ytc = 72 − 23.49 = 48.51 in.

yic = ytc − thaunch − ts = 23.49 − 1 − 8 = 14.49 in.

Ideck = 1
12
(beff_intt

3
s ) =

1
12
(8.5 × 12)(8)3

= 4.352 × 103 in.4

Moment of inertia of deck

Ihaunch = 1
12
(OHt3

haunch) =
1

12
(3.915 × 12)(1)3

= 3.915 in.4
Moment of inertia of haunch

Igc = Ideck + Adeck

(
ytc −

1
2
ts
)
+ Ihaunch

+Ahaunch

(
ytc − ts −

1
2
thaunch

)2

Moment of inertia of composite section

= 4352 + (577)
(

23.49 − 8
2

)2
+ 3.9

+ 29.7
(

23.49 − 8 − 1
2

)2

+ 39.263 + (577)(48.51 − 30.88)2
= 844465 in.4

Stc =
Igc

ytc
= 844,456

23.49
= 35,956 in.3 Section modulus to top of deck

Sbc =
Igc

ybc
= 844,456

48.51
= 17,407 in.3 Section modulus to bottom of girder

Sic =
Igc

yic
= 844,456

14.99
= 58,294 in.3 Section modulus to bottom of deck

LOADS ANALYSIS

Dead Loads

1. Interior Girders
DC1: Dead load of structural components

𝛾c = 150 pcf
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𝑤slab_int = 𝛾ctsbeff_int = (0.15)
(

8
12

)
(8.5) = 0.85 klf Self-weight of slab at interior girders

𝑤haunch_int = 𝛾cbtop_flangethaunch

= (0.15)(3.5)
(

1
12

)
= 0.44 klf

Self-weight of haunch at interior girders

𝑤g_int = 𝛾cAg = (0.15)
(

713
144

)
= 0.743 klf Self-weight of interior girder

Typically, intermediate diaphragm should be provided for later stability. However, intermediate
diaphragm weight is ignored in calculations for simplicity.

𝑤DC1_int = 𝑤slab_int +𝑤haunch_int +𝑤g_int = 0.85 + 0.044 + 0.793 = 1.636 klf

Uniform weight of dead loads at interior girder includes girder, deck, and haunch

where

𝛾c = 150 pcf Unit weight of concrete

ts = 8 in. Thickness of deck

thaunch = 1 in. Thickness of haunch

teff_in = 8.5 ft Effective width of deck

ttop_flange = 3.5 ft Effective flange width

DC2: Dead load of structural components and attachment after girder hardened

𝑤barrier =
nb

ng
𝛾c

[
𝑤barrier_top +𝑤barrier_bottom

2
bbarrier − (1.5 ft − 4 in.)

]

= 2
4
(0.15)

[1 + 1.417
2

(2.67) − (1.5)
( 4

12

)]
= 0.205 klf

Weight of concrete barrier distributed equally to all girders. If there are fences or other attach-
ment, weight should be adjusted.

𝑤DC2_int = 𝑤barier = 0.205 klf

DW: Added dead loads and future utilities.

𝛾AC_wearing = 35 pcf Assume 35 psf AC overlay

𝑤AC_wearing = 𝛾AC_wearing (𝑤bridge − 2𝑤barrier_bottom)
= (0.035)[34.83− 2(1.417)]

𝑤AC_wearing = 1.12 klf Weight of AC wearing

𝑤DW_int =
𝑤AC_wearing

ng
= 1.12

4
= 0.28 klf Weight of AC wearing distributed

equally to all girders
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2. Exterior Girders
DC1: Dead load of structural components

𝑤slab_ext = 𝛾ctc
(S

2
+ OH

2

)

= (6.15)
( 8

12

)(9
2
+ 3.915

2

)

= 0.646 klf

Weight of slab at exterior girders

𝑤haunch_ext = 𝑤haunch_int = 0.044 klf Weight of haunch at exterior girders

𝑤oh = 𝛾c

(
toh_ext + toh_int

2

)
Loh

= (0.15)
(0.67 + 1

2

)
(3.915) = 0.278 klf

Weight of overhang

𝑤DC1_ext = 𝑤slab_ext +𝑤haunch_ext𝑤g_int
= 0.646 + .044 + 0.743
= 1.432 klf

Uniform weight of dead loads at exterior
girder includes: girder, deck, and haunch

DC2: Dead load of structural components and attachment after girder hardened

𝑤DC2_ext = 𝑤DC2_int = 0.205 klf Weight of concrete barrier

DW: Added dead load and future utilities

𝑤Dw_ext = 𝑤DW_int = 0.28 klf Weight of AC wearing

LIVE-LOAD FORCE EFFECTS

1. Select number of lanes, NL

NL = floor
(
𝑤

12 ft

)
= 2 Number of live-load lanes is taken care of by

live-load distribution factors.
AASHTO 3.6.1.1.2

2. Multiple presence factor, m (AASHTO 3.6.1.1.2, Table 3.6.1.1.2-1)
The effect of multiple presence factor is incorporated into distribution factors.

No. of loaded lanes m
m= 1 1 1.2

2 1
3 0.85
> 3 0.65

3. Dynamic allowance, IM (AASHTO 3.6.2.1)

Component IM (%)
IM= 33% Deck joints 75

Fatigue 15
All other 33
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4. Distribution factors for moment (AASHTO 4.6.2.2.1-1)
Cross section, k (Table 2.2, Table 4.6.2.2.1-1)

Ig = 392638 in.4 Moment of inertia of girder

Ag = 713 in.2 Area of girder

eg = ytg + thaunch +
1
2
ts = 30.88 + 1 + 8

2
= 35.88 in.

Distance between the center of gravity of the
basic girder and the center of gravity of deck

Kg = n(Ig + Age2
g)

= (0.707)[392638 + (713)(35.88)2]
= 926,689 in.4

Stiffness factor (Eq. 4.6.2.2.1-1)

Interior Girders (AASHTO 4.6.2.2.1-1)

a. For one design lane loaded:

DMint1 = 0.06 +
( S

14 ft

)0.4(S
L

)0.3
[

Kg

12 ft
(
t3
s

)

]0.1

= 0.06 +
( 9

14

)0.4( 9
100

)0.3
(

926,689
12 × 83

)0.1

DMint1 = 0.584 lane

b. For two or more design lanes loaded:

DMint2 = 0.075 +
( S

9.5 ft

)0.6(S
L

)0.2
[

Kg

12 ft
(
t3
s

)

]0.1

= 0.075 +
( 9

9.5

)0.6( 9
100

)0.2
(

926,689
12 × 83

)0.1

DMint2 = 0.845 lane ∗ Controls

Distribution factors for moment at the interior girder:

DMint = max(DMint1,DMint2) = 0.845 lane Therefore,use DF_MI = 𝟎.𝟖𝟒𝟓 lane

Exterior Girders (Fig. 22.14) (AASHTO 4.6.2.2.1-1)

a. For one design lane loaded Lever Rule:

d1 = S + OH −𝑤barrier_bottom − 2 ft = 9 + 3.915 − 1.417 − 2 = 9.498 ft

Distance from hinge point to a wheel closer to barrier:

d2 = d1 − 6 ft = 9.498 − 6 = 3.498 ft

Distance from hinge point to a wheel closer to the hinge point:

R =
[

P
2

(
d1 + d2

S

)]
= P

2

(9.498 + 3.498
9

)
= 0.72P

Resultant force at exterior girder:

DMext1 = mR DMext1 = 0.72 lane ∗ Controls
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b. For two or more design lanes loaded:

de = OH −𝑤barries_bottom = 3.915 − 1.417 = 2.498 ft

e = 0.77 +
de

9.1 ft
= 0.77 + 2.498

9.1
= 1.045 ft

DMext2 = e.DMin2 = 1.045 × 0.845 = 0.883

Distribution factors for moment at the exterior girder:

DMext = max(DMext1,DMext2) = 0.883 lane Therefore,use DF_ME = 𝟎.𝟖𝟖𝟑 lane

5. Distribution factors for shear

Interior Girders (AASHTO 4.6.2.2.3a)
a. For one design lane loaded:

DVint1 = 0.36 + S
25 ft

= 0.36 + 9
25

= 0.72 lane

b. For two or more design lanes loaded:

DVint2 = 0.2 +
( S

12 ft

)
−
( S

35 ft

)2
= 0.2 +

( 9
12

)
−
( 9

35

)2
= 0.884 lane ∗ Controls

Distribution factors for shear at the interior girder:

DVint = max(DVint1,DVint2) = 0.884 lane Therefore,use DF_VI = 𝟎.𝟖𝟖𝟒 lane

Exterior Girders (AASHTO 4.6.2.2.3b)
a. For one design lane loaded:

DVext1 = 1.2 ∗ Controls

e = 0.6 +
de

10 ft
= 0.6 + 2.998

10
= 0.85 lane

d1

Assumed hinge
point

P/2 P/2

R

d2 6’ 2’ dCB

S dOH

Figure 22.14 FBD of lever rule.
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b. For two or more design lanes loaded:

DVext2 = e.DVint2 = 0.85(0.884) = 0.751

Distribution factors for shear at the exterior girder:

DVext = max(DVext1,DVext2) = 1.2 lane Therefore,use DF_VE = 1.2 lane

6. Skew correction factor for shear (AASHTO 4.6.2.2.3c)

𝜃 = 0 Exterior and first interior beams on the obtuse side

SC = 1.0 + 0.2

[
12Lt3

s

Kg

]0.3

tan𝜃 = 1.0 + 0.2

[
12 × 100 × 83

926,689

]
tan (0) = 1

Typically, maximum moments and shears are governed by live (truck) loads. In this case, inte-
rior girders will likely govern the design and a sample calculation will be performed for an
interior girder design only.

MOMENT DEMANDS

The maximum moments due to dead loads and live loads occur at the midspan. Calculate the maxi-
mum moment due to dead loads.

Unfactored Moment

1. Dead Load

x= 0.5L= 50 ft Distance at midspan from the left of the bridge

WDC1_NC = 𝑤g_int = 0.743 klf Dead-load unit weight due to noncomposite
section (DC1): girder only

MDC1_NC =
𝑤DC1_NCx(L − x)

2

= (0.743)(50)(100 − 50)
2

= 928.4 kip ⋅ ft

Maximum moment due to noncomposite
section

𝑤DC1_C = 𝑤slab_int +𝑤haunch_int

= 0.85 + 0.044 = 0.894 klf
Dead-load unit weight due to composite
section (DC1): deck slab and haunch

MDC1_C =
𝑤DC1_Cx(l − x)

2

= (0.894)(50)(100 − 50)
2

= 1117.2 kip ⋅ ft

Maximum moment acting on hardened girder:
composite section

The maximum moment due to DC1: girder, deck, and haunch

MDC1 = MDC1_NC + MDC1_C = 928.4 + 1117.2 = 2045.6 kip ⋅ ft

The maximum moment due to DC2: railing and future utilities

MDC2 =
𝑤DC2_intx(L − x)

2
= (0.205)(50)(100 − 50)

2
= 255.6 kip ⋅ ft



22.9 Deflections (AASHTO 5.7.3.6) 927

The maximum moment due to DW: future wearing surface (AC overlay)

MDW =
𝑤DW_intx(L − x)

2
= (0.28)(50)(100 − 50)

2
= 350 kip ⋅ ft

2. Live Load
Maximum moment due to uniform lane load of 0.64 klf:

MuniformLL = (0.64 klf)x(L − x)
2

= (0.64)(50)(100 − 50)
2

= 800 kip ⋅ ft

Maximum moment due to design truck of HL-93 without dynamic load allowance

MHL93 = 16 kip

(
9
8

L + 24.5ft2

L
− 17.5 ft

)
= 16

(9
8
(100) + 24.5

100
− 17.5

)

= 1523.9 kip ⋅ ft

Maximum moment due to design tandem without dynamic load allowance

MTandem = 50 kip

(
L
4
− 1 ft − 3ft2

L

)
= 50

(100
4

− 1 − 3
100

)
− 1198.5 kip ⋅ ft

Mtruck = Max(MHL93,MTandem) = max(1523.9, 1198.5) = 1523.9 kip ⋅ ft

Therefore, design truck will govern the maximum moment [combination (b) in Fig. 22.8].

Pedestrian Live Load (AASHTO 3.6.1.6)
Pedestrian load of 0.075 klf shall be applied to all sidewalks wider than 2.0 ft with vehicular live load
in vehicle lane.

If no side walk provided, therefore, no pedestrian live load is applied.
The maximum moment due to live load including the effects of dynamic load allowance and

load distribution factor is calculated below:

MLL = DMint{MuniformLL + [(1 + IM)Mtruck]} = 0.845[800 + (1 + 0.33)1523.9] = 2389.7 kip ⋅ ft

FACTORED MOMENTS

Factored Moments

Load Factor Combinations:
Use for girder design-working stress

Strength I 1.25(DC)+ 1.5 (DW)+ 1.75(LL+ IM)
Service I 1.0[DC+DW+ (LL+ IM)]; HL 93 only
Service III 1.0[DC+DW+ 0.8(LL+ IM)]; HL 93 only

Strenght I = 1.25(MDC1 + MDC) + 1.5(MDW) + 1.75(MLL)

= 1.25(2045.6 + 255.6) + 1.5(350) + 1.75(2389.7) = 7583 kip ⋅ ft

Service I = 1.0(MDC1 + MDC2 + MDW + MLL) = 1.0(2045.6 + 255.6 + 350 + 2389.7)

= 5041 kip ⋅ ft

Service III = 1.0(MDC1 + MDC2 + MDW + 0.8MLL)

= 1.0[2045.6 + 255.6 + 350 + 0.8(2389.7)] = 4563 kip ⋅ ft
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WORKING STRESS DESIGN

Allowable Stress (AASHTO Table 5.9.4.1.2-1, Table 5.9.4.2.1-1, and Table 5.9.4.2.2-1)

1. Temporary tensile stress limit in prestressed concrete before losses, fully prestressed
components

In area with bonded reinforcement sufficient to resist the tensile force in the concrete com-
puted assuming an uncracked section shall be 0.24

√
f ′Cl (ksi).

fti_a = 0.24
√

fci_BTksi = 0.24
√

6 = 0.588 ksi

2. Compressive stress limits in prestressed concrete at service limit state after losses, fully pre-
stressed components

fci_a = 0.6f ′ci_BT = 3.6 ksi Temporary compressive sress limit before
losses, fully prestressed components

fc1_a = 0.6f ′c_BT = 0.6(8) = 4.8 Final compressive stress limit due to effective
prestress, permanent loads, transient loads
during shipping and handling

fc_deck_a = 0.6f ′c_deck = 0.6(4) = 2.4 ksi Final compressive stress limit due to deck slab,
effective prestress, permanent, transient
loads during shipiing and handling

fc2_a = 0.45f ′c_BT = 0.45(8) = 3.6 ksi Final compressive limit stress at service limit
state after losses due to effective prestress
and permanent loads

fc3_a = 0.4f ′c_BT = 0.4(8) = 3.2 ksi Final compression − live load+ one-half the
sum of effective prestress and permanent
loads

3. Tensile stress limits in prestressed concrete at service limit state after lossess, fully prestressed
components

For components with bonded prestressing tendons that are subjected to not worse than mod-
erate corrosion conditions shall be

ftf_a = 0.19
√

f ′c_BT ksi = 0.19
√

8 = 0.537 ksi

The minimum value of prestress force Ff to ensure that the tension in the bottom fiber of the
girder at midspan does not exceed the allowable stress of ftf (ksi) in the composite section
under final service condition can be expressed as follows:

fbg =
−Ff

Ag
−

Ff em

Sbg
+

MDC1 + MDC2

Sgb
+

MDW + 0.8MLL

Sbc
≤ ftf_a

where

em = 27.59 in. Distance from center of gravity of girder to
centroid of pretensioned strands

MDC1 = 2045.6 kip ⋅ ft Moment due to self-weight of girder
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MDC2 = 255.628 kip ⋅ ft Moment due to dead load of wet concrete:slab
+ haunch

MDW = 349.956 kip ⋅ ft Moment due to added dead load after girder
hardens

MLL = 2389.7 kip ⋅ ft Moment due to live load+ dynamic load
allowance (Service III)

Ff =
0.537 ksi −

(MDC1 + MDC2)12 in.∕ft

Sbg
−

(MDW + 0.8MLL)12 in.∕ft

Sbc

−1∕Ag − em∕Sbg

=
[

0.537 − (2045.6 + 255.6) (12)∕17409 − [350 + 0.8(2389.7)](12)
−1∕713 − 27.59∕12229

]
= 896.6 kip ⋅ ft

Stress in strands after all losses. Typically assume 𝛥fpT= 35.0 ksi, and this value will be
refined.

𝛥fpT = 35 ksi

fe = fpe − 𝛥fpT = 194.4 − 35 = 159.4 ksi

Aps =
Ff

fe
= 896.6

159.4
= 5.625 in.2 Total area of strands required

NPs = ceil

( Aps

Aps_single

)
= ceil

(5.625
0.153

)
= 37; use Nps = 38

Total number of 0.5 in. diameter stands required. Even number of strands may be used as shown
in Figure 22.15 under strand pattern.

4. Strand Pattern

At Midspan At End Section
Ny_m = 172 in. Ny_e = 682 in.

ym =
Ny_m

Nps
= 172

38
= 4.526 in. yend =

Ny_e

Nps
= 682

38
= 17.947 in.

em = ybg − ym = 32.12− 4.526= 27.59 in. eend = ybg − yend = 32.12− 17.947= 14.17 in.

5. Prestress Losses

a. Instantaneous Losses, Inst_Loss (AASHTO 5.9.5.2)

Instantaneous losses are losses due to anchorage set, friction, and elastic shortening.

Friction
The only friction loss possible in a pretensioned member is at holddown devices for
draping or harpening tendons. The LRFD specifications specify the consideration of
these losses.

Elastic Shortening, 𝛥fES (AASHTO 5.9.5.2.3)

Ep = 28500 ksi Modulus of elasticity of prestressing steel
Eci = Eci_girder = 4.696 × 103 ksi Modulus of elasticity of concrete at transfer
Mg = MDC1_NC = 928.385 kip ⋅ ft Midspan moment due to member self-weight
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At Midspan At End Section
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Figure 22.15 Strand pattern.

𝛥fpES =
Apsfpbt(Ig + e2

mAg) − emMgAg

Aps(Ig + e2
mAg) + AgIg(Eci∕Ep)

AASHTO 5.9.5.2.3a − 1

= (5.625)(218.7)[392, 638 + 27.592(713)] − 29.59(928.4)(713)
(5.625)[392, 638 + 27.592(713)] + (713)(392638)(4696∕28500)

𝛥fpES = 18.129 ksi

Inst_Loss = 𝛥fpES = 18.129 ksi

b. Time-Dependent Losses, Longterm_Loss (AASHTO 5.9.5.2)

Long-term loss is loss due to creep and shrinkage of concrete and relaxation of steel
Shrinkage Losses, 𝛥fES (AASHTO.5.9.5.4.2)

𝛥fpR = 2.4 ksi
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Average annual ambient relative humidity is given as

H = 80%

Then

𝛾h = 1.7 − 1.0H = 1.7 − 1.0(0.8) = 0.9

𝛾st =
5

(1 + f ′ci_BT in.2∕kip)
= 5

1 + 6
= 0.714

𝛥fpLT = 10

( fpiAps

Ag

)
𝛾h𝛾st + 12𝛾h𝛾st (ksi) + 𝛥fpR (AASHTO. 5.9.5.2.3a − 1)

= 10

(
(202.5) (5.625)

713

)
(0.9)(0.714) + 12(0.9)(0.714) + 2.4 = 20.384 ksi

Time_Depend_Loss = 𝛥fpLT = 20.384 ksi

𝛥pT = Inst_Loss + Time_depend_Loss = 18.1 + 20.4 = 38.5 ksi

6. Check Girder Stresses at Transfer

Initial Prestressing Force

fpi = 0.75fpu − 𝛥fpES = 0.75(270) − 18.1 = 184.371 ksi Effective stress at transfer∶

Fpi = fpiAps = 184.371(5.625) = 1037 K

a. Tensile stess at the top of girder at midspan:

Mgirder = MDC1_NC = 928.385 kip ⋅ ft Moment of girder

fti =
−Fi

Ag
+

Fiem

Sbg
−

Mgirder

Sbg
= −1037

713
+ 1037(27.59)

12715
− 928.4

12715

= −0.08 < fti_a = 0.588 ksi ⇒ OK

where
em = 27.594 in.

b. Compressive stress at the bottom of girder at midspan:

fbi =
−Fi

Ag
−

Fiem

Sbg
+

Mgirder

Sbg
= −1037

713
− 1037(27.594)

12,224
+ 928.4

12,224

= −2.884 ksi < fci_a = −3.6 ksi ⇒ OK

Negative sign indicates compression.

c. Tensile stress at the top of girder at the end of the section. Moment due to self-weight is
zero.

fti =
−Fi

Ag
+

Fieend

Stg
− 0

Stg
= −1037

713
+ 1037(14.17)

12715
= −0.299 ksi < fti_a

= 0.588 ksi ⇒ OK
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d. Compressive stress at the bottom of girder at the end of the section. Moment due to
self-weight is zero.

fti =
−Fi

Ag
−

Fieend

Stg
− 0

Stg
= −1037

713
+ 1037(14.17)

12715
= −2.61 ksi > fci_a

= −3.6 ksi ⇒ OK

7. Check Girder Stresses after Total Losses

Final Prestressing Force after total losses

fpf = 0.75fpu − 𝛥fpT = 0.75(270) − 38.5 = 167.5 ksi Effective stress at transfer

Ff = fpfAps = 167.5(5.625) = 942 K

a. Compressive stess at the top of girder at midspan due to effective stress and permanent
loads (Service I)

ftf =
−Ff

Ag
+

Ff em

Stg
−

MDC1 + MDC2

Stg
−

MDW + MLL

Sic

= −942
713

+ 942(27.59)
12,715

− 2045.6 + 255.6
12,715

− 350 + 2389.7
58,294

= −2.013 ksi > fc1_a

= −3.6 ksi ⇒ OK

b. Tensile stress at the bottom of girder at midspan due to effective stress and permanent loads
(Service III)

fbf =
−Ff

Ag
−

Ff em

Sbg
+

MDC1 + MDC2

Sbg
+

MDW + 0.8MLL

Sbc

= −942
713

− 942(27.59)
12,224

+ 2045.6 + 255.6
12,224

+ 350 + 0.8(2389.7)
17,407

= 0.37 ksi < ftf_a

= 0.537 ksi ⇒ OK

c. Compressive stress at the top of deck due to added dead load and live load

ftc =
−(MDW + MLL)

Stc
= −(350 + 2389.7)

35,956
= −0.91 > fc_deck_a

= −2.4 ksi ⇒ OK

Therefore, thirty-eight-0.5-in.-diameter low-relaxation strands satisfy service limit
state.

STRENGTH LIMIT STATE—FLEXURE IN POSITIVE MOMENT

Maximum factored moment for strength I is

Mu = Strenght I = 7583 kip ⋅ ft

1. Find stress in prestressing steel-bonded tendons:

fps = fpu

(
1 − k

c
dp

)
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where

k = 2
(

1.04 − fpy

fpu

)
= 2

(
1.04 − 243

270

)

= 0.28
Aps = 5.625 in.2 Area of prestressing strands

A′
s = 0 Area of compressive steel

As = 0 Area of reinforcing steel at the bottom of girder;
assume fully prestressed

fpu = 270 ksi fy = 60 ksi f ′s = 60 ksi

b = beff_int = 8.5 ft Width of compression face of member

dp =Ds − ym = 67.474 in. Distance from extreme fiber to cg of PS strands

ds =Ds − 3 in.= 69 in. Distance from extreme fiber to cg of mild
reinforcement

d′
s = 0 in. Distance from extreme fiber to cg of compression

reinforcement, assume no compression steel

hf = ts = 8 in. Depth of compression flange= thickness of deck

𝛽1 = 0.85 − 0.05(f ′c_BT − 4 ksi) 1
ksi

= 0.85− 0.05(8− 4)= 0.65

Assume rectangular section behavior, b= b𝑤:

b𝑤 = b = 102 in.

crec =
Apsfpu + Asfy − A′

sf
′
s

0.85f ′c_BT𝛽1b𝑤 + kAps(fpu∕dp)

= (5.625)(270) + 0 + 0
0.85(8)(0.65)(102) + 0.28(5.625)(270∕67.47)

= 3.322 in.

if (crec ≤ hf , “Assumption − correct”, “NG, try” T − Section − behavior”)

= “Assumption − correct”

CT =
Apsfpu + Asfy − A′

sf
′
s − 0.85f ′c_BT(b − b𝑤)hf

0.85f ′c_BT𝛽1b𝑤 + kAps(fpu∕dp)

= 3.322 in. (Assume T − section behavior)

Use
c = crec = 3.322 in.

Therefore,

fps = fpu

(
1 −

kcrec

dp

)
= 270

(
1 − 0.28 (3.322)

67.47

)
= 266.3 ksi

2. Factored flexural resistance—flanged section

𝜙f = 1.0 For tension-controlled prstrestressed concrete section, AASHTO
Table 5.5.4.2.2-1
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a = 𝛽1c = (0.65)(3.322) = 2.159 in.

Mn = Apsfps

(
dp −

1
2

a
)
+ Asfy

(
ds −

1
2

a
)
− A′

sf
′
s

(
d′

s −
1
2

a
)

+ 0.85f ′c_BT(b − b𝑤)hf

(1
2

a − 1
2
hf

)

= (5.625)(266.3)
(

67.47 − 2.159
2

)
+ 0 + 0 + 0 = 8287 kip ⋅ ft

𝜙Mn = 𝜙f Mn = (1.0)(8287) = 8287 kip ⋅ ft

Check_flexure = if (𝜙Mn ≥ Mu, “OK”, “NG”) = “OK”

3. Check maximum and minimum reinforcement

a. Maximum reinforcement (AASHTO 5.7.3.3.1): Provision deleted in 2005.

b. Minimum reinforcement (AASHTO 5.7.3.3.2): At any section of a flexural component,
the amount of prestressed and non-prestressd tensile reinforcement shall be adequate to
devleop a factored flexural resistance, Mr, at least equal to the lesser of:

i. 1.2Mcr:

Mcr = Sc(fr + fcpe) − Mdnc

(
Sc

Snc
− 1

)
≥ Sc fr

where

fcpe =
−Ff

Ag
−

Ff em

Sbg

= −942
713

− 942(27.59)
12,224

= −3.488 ksi

Compressive stress in concrete due to effective
prestress forces only at extreme fiber of section
where tensile stress is caused by extremely applied
loads

fr = 0.37
√

(f ′c_BTksi = 1.047 Modulus of rupure, AASHTO 5.4.2.6

Mdnc =MDC1 = 2045.6 kip ⋅ ft Total unfactored dead-load moment acting on the
noncomposite section

Sc = Sbc = 17407 in.3 Section modulus for the extreme fiber of the
composite section where tensile stress is caused by
extrernally applied loads

Snc = Sbg = 12224 in.3 Section modulus for the extreme fiber of the
monolithic or noncomposite section where tensile
stress is caused by externally applied loads

Mcr = max

[[
Sc

(
fr + fcpe

)
− Mdnc

(
Sc

Snc
− 1

)]
, Scfr

]

= max

[[
(17,405) (1.047 − 3.498) − 2045.6(12)

(
17,407
12,224

)
− 1

]
,

(17,407) (1.047)
]
= 1518 kip ⋅ ft

1.2Mcr = 1821.6 kip ⋅ ft
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ii. 1.33 times the factored moment required moment demand:

1.33Mu = 10,085.8 kip ⋅ ft

Mr = min(1.2Mcr, 1.33Mu) = min (1821.6,10085.8) = 1821.6 kip ⋅ ft

if (𝜙Mn ≥ Mr, “OK”, “NG”) = “OK”
√

b2 − 4ac

Therefore, provided section with thirty-eight-0.5-in. prestressing stands satisfy strength
limit state.

SHEAR DESIGN

A sample calculation is shown at the critical point for shear where Ds/2= 36 in. from the face of
support.

x =
Ds

2
= 6

2
= 3 ft

1. Shear Demands

Maximum shear due to dead load at the critical section is calculated below.

𝑤DC = 𝑤DC1_int +𝑤DC2_int = 1.636 + 0.205 = 1.841 klf

VDC =
𝑤DC(L − x)

2
= 1.841(100 − 3)

2
= 89.3 K Shear due to dead and added dead loads

VDW =
𝑤DW_int(L − x)

2
0.28(100 − 3)

2
= 13.6 K Shear due to future wearing surface and

utilities

The maximum shear due to live load including the effects of dynamic load allowance and load
distribution factor is calculated below:

Maximum shear due to uniform lane load of 0.64 klf:

VuniformLL =
[
0.64 klf

(L
2
− x

)]
= 0.64

(100
2

− 3
)
= 30.1 K

Maximum shear due to design truck of HL-93 without dynamic load allowance:

VHL93 = 16 K
[
4.5

(
1 − x

L

)
− 42 ft

L

]
= 16

[
4.5

(
1 − 3

100

)
− 42

100

]
= 63.1 K

Maximum shear due to design tandem without dynamic load allowance:

VTandem = 50 K
(

1 − x
L
− 2 ft

L

)
= 50

(
1 − 3

100
− 2

100

)
= 47.5 K

Vtruck = max(VHL93,VTandem) = max(63.1, 47.5) = 63.1 K

Design truck governs the shear demand and the controlling maximum live-load shear and the
factored shear are computed, respectively:

VLL = DVint[VuniformLL + (1 + IM)Vtruck] = 0.884[30.1 + (1 + 0.33)(63.1)] = 100.8 K

Vu = 1.25VDC + 1.5VDW + 1.75VLL = 1.25(89.3) + 1.5(13.6) + 1.75(100.8) = 308.4 K
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Mu corresponding to Vu at this section is calculated as below:

MDC =
𝑤DCx2

8
= 1.841(3)2

8
= 2.071 kip ⋅ ft MDW =

𝑤DW_intx
2

8
= 0.28(3)2

8
= 0.315 kip ⋅ ft

Maximum moment due to uniform lane load of 0.64 klf:

MuniformLL = (0.64 klf)x(L − x)
2

= 0.64(3)(100 − 3)
2

= 93.1 kip ⋅ ft

Maximum moment due to design truck of HL-93 without dynamic load allowance:

MHL93 = 16 K
[
4.5

(
1 − x

L

)
− 42 ft

L

]
= 16

[
4.5

(
1 − 3

100

)
− 42

100

]
= 189.4 kip ⋅ ft

Maximum moment due to design tandem without dynamic load allowance:

MTandem = (50 K)x
(

1 − x
L
− 2 ft

L

)
= 50(3)

(
1 − 3

100
− 2

100

)
= 142.5 kip ⋅ ft

Controlling maximum live load moment:

MTruck = max(MHL93, MTandem) = max(189.4, 142.5) = 189.4 kip ⋅ ft

The maximum moment due to live load, including the effects of dynamic load allowance and
load distribution factor is calculated below:

MLL = DMint{MuniformLL + [(1 + IM)Mtruck]} = 0.845[93.1 + (1 + 0.33)189.4]

= 291.6 kip ⋅ ft

The factored maximum moment demands corresponding to the maximum shear demands:

Mu = 1.25MDC + 1.5MDW + 1.75MLL = 1.25(2.1) + 1.5(0.3) + 1.75(291.6)

= 513.4 kip ⋅ ft

2. Norminal Shear Resistance

The nominal shear resistance Vn shall be the lesser of:

Vn = Vc + Vs + Vp (AASHTO 5.8.3.3 − 1)

Vn = 0.25f ′c_BTb𝑣d𝑣 + Vp (AASHTO 5.8.3.3 − 2)

The shear resistance provided by concrete:

Vc = 0.0316𝛽
√

f ′c_BTb𝑣d𝑣 (AASHTO 5.8.3.3 − 3)

The shear resistance provided by transverse reinforcement:

Vs =
A𝑣fyd𝑣(cot𝜃 + cot𝛼)sin𝛼

s
where

b𝑣 = 6.5 in. Minimum web width, measured parallel to the neutral axis,
between the resultants of the tensile and compressive forces
due to flexure

Lcr = x= 36 in. Critical section for shear design
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Figure 22.16 Prestressing strand profile.

h=Ds = 72 in. Depth of composite section

ycr = 11.25 in. From Figure 22.16. e0 is calculated to be 11.25 in at 36′′ from
the face of support.

de = h − ycr = 72 − 11.25 = 60.75

d𝑣 = de −
a
2
= 60.75 − 2.159

2
= 59.67 in.

and d𝑣 need not to be smaller than 0.9de or 0.72h:

d𝑣 ≥ max(0.9de, 0.72h)

dv_ min = max(0.9de, 0.72h) = max[0.9(60.75), 0.72(72)] = 54.675 in.

Therefore, use
d𝑣 = 59.7 in.

3. Prestress contribution to shear resistance

Vertical component of prestressing force is calculated as:

Vp =
Nps_harped

Nps
Ff sin𝜙

where

Nps_harped = 10 Number of harped strands

Nps = 38 Total number of strands

Ff = 942.174 K

𝜓 = tan−1
(52.47 − 6

360

)
= 7.36𝜋

180
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Therefore,

Vp =
Nps_harped

Nps
Ff sin𝜓 = 10

38
(942.2)sin (7.36) = 31.762 K

4. Shear stress on the concrete

𝑣u =
Vu − 𝜙𝑣Vp

𝜙𝑣b𝑣d𝑣
where,

𝜙𝑣 = 0.9

b𝑣 = 6.5 in.

Vu = 308.4 kip

Vp = 31.762 kip

𝑣u =
Vu − 𝜙𝑣Vp

𝜙𝑣b𝑣d𝑣
= 308.4 − 0.9(31.8)

0.9(6.5)(59.67)
= 0.801 ksi and

𝑣u

f ′c_BT

= 0.1

Thus, maximum stirrups spacing, s<= 0.8d𝑣 <= 24 in.

smax =
⎧
⎪
⎨
⎪
⎩

min
(
0.8d𝑣, 24 in.

)
− if

(
𝑣u

f ′c_BT

< 0.125

)

min(0.8d𝑣, 12 in.) − otherwise

smax = 24 in.

For the calculation of shear strength of concrete and stirrups spacing 𝜃 and 𝛽 need to be deter-
mined. Two approaches will be shown next:

Approach 1 𝜷 and 𝜽-MCFT.

First Iteration
Assume 𝜃 value

𝜃assume = 25∘

thus
cot (𝜃assume) = 2.145

According to AASHTO, the effective value of fpo can be

fso = 0.70fpu = 0.7(270) = 189 ksi

Assuming the section contains at least the minimum transverse reinforcement as specified in
AASHTO 5.8.2.5:

𝜀x =
(Mu∕d𝑣) + 0.5(Vu − Vp)cot (𝜃assume) − Apsfso

2(EsAs + EpsAps)
(AASHTO .5.8.3.4.2 − 1)

where

Mu = 513.4 kip ⋅ ft
Vu = 308.4 K
Vp = 31.762 K
Nu = 0
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A𝑣 = 0.22 in.2 Area of shear reinforcement within a distance s. Assume no. 3 bar (2 legs)
As = 0
Aps = 5.625 in.2

𝜀x =
(Mu∕d𝑣) + 0.5(Vu − Vp)cot (𝜃assume) − Apsfso

2(EsAs + EpsAps)

×
(513.4∕59.67) + 0 + 0.5(308.4 − 31.8)(2.145) − 5.625(189)

2(0 + 28500(5.625))

= −2.069 × 10−3

1000𝜀x = −2.069

Since 𝜀x is negative, it shall be computed from Eq. 22.17:

𝜀x =
Mu∕d𝑣 + 0.5Nu + 0.5(Vu − Vp)cot (𝜃assume) − Aps ⋅ fps

2(EcAc + EsAs + EpsAps)

where

Ac = Ag = 713 in.2

Ec = Ec_girder = 5.422 × 103

𝜀x =
(Mu∕d𝑣) + 0.5Nu + 0.5(Vu − Vp)cot (𝜃assume) − Apsfso

2(EcAc + EsAs + EpsAps)

=
(513.4∕59.67) + 0 + 0.5(308.4 − 31.8)(2.145) − 5.625(189)

2[(5422)(713) + 0 + (28500)(5.625)]

= −0.082 × 10−3

1000𝜀x = −0.082

From Table AASHTO 5.8.3.4.2-1 reproduced in Table 2.15:

𝜃 = 20.4∘ 𝛽 = 4.75

Since 𝜃 is different from 𝜃assumed, a second iteration is needed.

Second Iteration
Assume 𝜃 value:

𝜃assume = 20.4∘

thus,

cot (𝜃assume) = 2.689

𝜀x =
(Mu∕d𝑣) + 0.5Nu + 0.5(Vu − Vp)cot (𝜃assume) − Apsfso

2(EcAc + EsAs + EpsAps)

=
(513.4∕59.67) + 0 + 0.5(308.4 − 31.8)(2.689) − 5.625(189)

2[(5422)(713) + 0 + (28500)(5.625)]

= −0.073 × 10−3 ⇒ 1000𝜀x = −0.073



940 Chapter 22 Prestressed Concrete Bridge Design

From Table AASHTO 5.8.3.4.2-1 reproduced in Table 22.15, the 𝜃 value converged with assumed
value. Therefore, use

𝜃 = 20.4∘ 𝛽 = 4.75

Vc = 0.0316𝛽

√
f ′c_BT ksi

in.2
b𝑣d𝑣 Shear strength provided by concrete

= 0,0316(4.75)
√

8 = 164.7 K (AASHTO 5.8.3.3-3)

Mininmum strength needs to be provided by stirrups:

Vs =
(

Vu

𝜙𝑣
− Vc − Vp

)
=
(308.4

0.9
− 164.7 − 31.8

)
= 146.109 K

Using no. 3 stirrups with A𝑣 = 0.22 in.2:

s =
A𝑣fyd𝑣

Vs
cot𝜃 = (0.22)(60)(59.67)

146.1
(2.689) = 14.503 in.

Therefore, provide no. 3 U-shaped stirrups at a spacing of 14 in. at this section. Calculations at other
sections are similar and should be performed to optimize design.

Approach 2 𝜷 and 𝜽-Simplified MCFT.
Calculating 𝛽 and 𝜃 using simplified MCFT:

As calculated before, at critical section:

Vu = 1.25VDC + 1.5VDW + 1.75VLL = 1.25(89.3) + 1.5(13.6) + 1.75(100.8) = 308.4 kip

Mu = 1.25MDC + 1.5MDW + 1.75MLL = 1.25(2.1) + 1.5(0.3) + 1.75(291.6) = 513.4 kip ⋅ ft

Vp = 31.762 kips − 5.625(189)

d𝑣 = 59.7 in.

b𝑣 = 6.5 in.

h = Ds = 72 in.

𝜀s =

(||Mu
||

d𝑣
+ 0.5Nu + |Vu − Vp| − Apsfpo

)

(EsAs + EpAps)
=

513.4
59.7

+ |308.4 − 31.762| − 5.625(189)

[(5422)(713) + (28500)(5.625)]

= −1.93 × 10−4

Since 𝜀s is negative, two approaches can be used:

a. Calculating 𝜀s using Eq. (22.22):

𝜀s =

(||Mu
||

d𝑣
+ 0.5Nu + |Vu − Vp| − Apsfpo

)

(EcAcf + EsAs + EpAps)

=

513.4
59.7

+ |308.4 − 31.762| − 5.625(189)

[(5422)(234) + 0 + (28500)(5.625)]
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= −5.44 × 10−4 < −0.0004 → NOT OK → 𝜀s = −0.0004

where

Acf = b𝑣 ×
h
2
= 6.5 × 72

2
= 234 in.2

𝛽 = 4.8
1 + 750𝜀s

= 4.8

1 − 750 × 4 × 10−4
= 6.86

𝜃 = 29 + 3500𝜀s = 29 − 0.0004 × 3500 = 27.6∘ → cot𝜃 = 1.91

Vc = 0.0316𝛽
√

f ′c b𝑣d𝑣 = 0.0316(6.86)
√

8(6.5)(59.7) = 238 kip

Vs =
(

Vu

𝜙𝑣
− Vc − Vp

)
=
(308.4

0.9
− 238 − 31.762

)
= 72.9 kip

Using no. 3 stirrups with A𝑣 = 0.22 in.2

s =
A𝑣fyd𝑣

Vs
cot𝜃 = (0.22)(60)(59.67)

72.9
(1.91) = 20.6 in.

Therefore, provide no. 3 U-shaped stirrups at a spacing of 20 in. at this section. Calculations
at other sections are similar and should be performed to optimize design.

b. Assuming 𝜀s = 0:

𝛽 = 4.8
1 + 750𝜀s

= 4.8
1 + 0

= 4.8

𝜃 = 29 + 3500𝜀s = 29∘ → cot𝜃 = 1.8

Vc = 0.0316𝛽
√

f ′c b𝑣d𝑣 = 0.0316(4.8)
√

8(6.5)(59.7) = 166.5 kip

Vs =
(

Vu

𝜙𝑣
− Vc − Vp

)
=
(308.4

0.9
− 166.5 − 31.762

)
= 144.4 kip

Using #3 stirrups with A𝑣 = 0.22 in2.

s =
A𝑣fyd𝑣

Vs
cot𝜃 = (0.22)(60)(59.67)

144.4
(1.8) = 9.8 in.

Therefore, provide no. 3 U-shaped stirrups at a spacing of 10 in. at this section. Calculations
at other sections are similar and should be performed to optimize design.

The following table is provided to show a comparison between the MCFT approaches, the
simplified MCFT with calculated 𝜀s value according to Eq. (22.22) and with 𝜀s assumed to be
is zero.
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Summary of Shear Design with Three Different Approaches

Calculated Parameter

Modified
Compression Field

Theory (MCFT)
Simplified MCFT with

Calculated Negative 𝜺s

Simplified MCFT with
𝜺s =0

Cot 𝜃 2.689 1.91 1.8
𝛽 4.75 6.8 4.8

Vc (kips) 164.7 238 166.5
Vs (kips) 146.1 72.9 144.4

S (in.) 14 20 10

By comparing these three methods, it can be observed that the simplified MCFT, when 𝜀s is
zero gives the most conservative stirrups spacing.

ANCHORAGE ZONE DESIGN (AASHTO 5.10.10)

Factored Bursting Resistance (AASHTO. 5.10.10.1)
The bursting resistance of the pretensioned anchorage zones provided by vertical reinforcement in
the ends of pretensioned beams at the service limit state shall be taken as

Pr = fsAs

where
fs = stress in steel not exceeding 20 ksi
As = total area of transverse reinforcement within h/4 of end of beam
The resistance shall not be less than 4% of the prestressing force before transfer:

Fpbt = fpbt Aps = (218.7)(5.625)= 1230.2 K Prestressing force before transfer

Pr = 0.04 ‘2367890-Fpbt = 0.04(1230.2)= 49.2 K Minimum bursting resistance

As =
(

Pr

20 K

)
in.2 = 49.2

20
= 2.46 in.2

within
h
4
= 18 in.

Steel area of transverse reinforcement
within h/4 of end beam

A𝑣 = 0.4 in.2 Try #4 stirrup

Ns =
As

A𝑣
= 2.46

0.11
= 6.151 Number of stirrups required within

distance of 18 in.

CONFINEMENT REINFORCEMENT (AASHTO 5.10.10.2)

Confinement Reinforcement (AASHTO 5.10.10.2)
For a distance of 1.5 h from the end of the beam, reinforcement not less than no. 3 bars at 6 in. shall
be placed to confine the prestressing steel in the bottom flange.

1.5 h = 108 in.

Use seven no. 4 stirrups within 18 in. to resist bursting force.

REINFORCEMENT DETAILS

The details for the girder reinforcement is shown in Figs. 22.17, 22.18, and 22.19.
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CHAPTER23
REVIEW PROBLEMS ON CONCRETE
BUILDING COMPONENTS

In order to achieve the desired strength of concrete in structural elements, it is particularly important
to follow the proper procedure of determining member dimensions and the necessary reinforcement
required. This chapter mainly focuses on the general process of designing various building compo-
nents, such as slabs, beams, columns, and footings, with compliance to ACI Code 318-14. The first
step is to calculate the required strength of each of these elements by multiplying the actual applied
loads by load factors. These loads then develop external forces, such as bending moment, shear,
axial forces, or torsion, depending on how these loads are being applied to the structure. Once the
strength requirements are determined, the proper reinforcement, along with the appropriate dimen-
sions of each element, can then be developed. The final design of structural elements must account
for three main items: structural safety, deflection, and cracking conditions.

Example 23.1

A simply supported beam has a 30 ft span and carries a service uniform dead load of 2 K/ft (including
self-weight) and a uniform live load of 0.5 K/ft.

Given: b = 14 in., d = 26 in., fc
′ = 5 ksi, fy = 60 ksi.

a. Design the section for flexural reinforcement.
b. Design for shear reinforcement.
c. Check for development length.

Solution:

a. Design the section for flexural reinforcement

Check for minimum thickness to satisfy the deflection criterion: (ACI Code, Section 24.2.3.1)
Minimum thickness for simply supported beams =L16=30 × 1216 = 22.5 in. < 29 in. (OK)
Determine the design moment strength: (ACI Code, Section 5.3.1)

Mu = 1.2MDL + 1.6MLL

Mu = 1.2
𝑤DL × L2

8
+ 1.6

𝑤LL × L2

8

Mu = 1.2
2 × 302

8
+ 1.6

0.5 × 302

8
Mu = 360 K ⋅ ft = 4, 320 K ⋅ in.

945
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Check maximum moment: (ACI Code, Section 21.2.2)
Determine cmax From Figure 23.1 in order to calculate As, max

0.003
cmax

= 0.005
d − cmax

0.003
cmax

= 0.005
26 − cmax

cmax = 9.75 in.

amax = 𝛽1cmax = 0.80 × 0.80 = 7.80 in.

As max =
0.85f ′c bamax

fy
= 0.85(5)(14)(7.80)

60
= 7.74 in.2

Mu max = 𝜙As max fy
(

d −
amax

2

)
= (0.9)(7.74)(60)

(
26 − 7.80

2

)
= 9231K ⋅ in. = 769K ⋅ ft

As

0.003

0.005
14″

26″

Figure 23.1 Strain diagram for the cross section.

Since Mu ≤ Mu max, design as single Reinforced Beam

Find the required area of steel:

Mu = 𝜙As fy
(

d − a
2

)
, where a =

As fy
0.85f ′c b

Mu = 𝜙As fy

(
d −

As fy
1.75f ′c b

)

4320 = (0.9)As(60)
(

26 −
As (60)

1.7(5)(14)

)

As = 3.28 in.2, use 5 no.8 bars (As = 3.93 in.2)
Check As, min: (ACI Code, Section 9.6.1.2)

As min is the larger of

⎧
⎪
⎪
⎨
⎪
⎪
⎩

3
√

f ′c
fy

b𝑤d =
3
√

5000
60000

(14) (26) = 1.29 in.2

200b𝑤d

fy
= 200(14)(26)

(60000)
= 1.21 in.2

As > As, min OK
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Beam details are shown in Figure 23.2.

14″

3″

5 no. 8

26″

Figure 23.2 Detail of the beam.

b. Design for shear reinforcement

Calculate the factored shear from external loading:

𝑤u = 1.2𝑤DL + 1.6𝑤LL = 1.2(2) + 1.6(0.5) = 3.2K∕ft

Vu =
𝑤uL

2
= (3.2)(30)

2
= 48K

Calculate Vu at distance d from face of support: (ACI Code, Section 9.4.3.2)

Vud = Vu −𝑤u

( d
12

)
= 48 − 3.2

(26
12

)
= 41.07K

Calculate 𝜙Vc,
𝜙Vc

2
,Vc1,𝑣c2: (ACI Code, Section 22.5.5.1)

𝜙Vc = 𝜙

(
2𝜆

√
f ′c
)

b𝑤d = 0.75(2)(1)
√

5000 (14)(26) = 38.60K

𝜙Vc

2
= 19.30K

Vc1 = 4
√

f ′c b𝑤d = 4
√

5000(14)(26) = 102.9K

Vc2 = 8
√

f ′c b𝑤d = 8
√

5000(14)(26) = 205.9K

Calculate Vs: (ACI Code, Section 9.5.1.1)

Vs =
Vud − 𝜙Vc

𝜙
= 41.07 − 38.60

0.75
= 3.28K

Calculate maximum bar spacing for no. 3 stirrups: (ACI Code, Section 9.7.6.2.2)
Zone 1 (zone for Vu between 𝜙Vc, and 𝜙Vc

2
)

s1 = 24 in.

s2 = d
2
= 26

2
= 13 in. → Controls

s3 =
A𝑣 fy
50b𝑤

= (2 × 0.11)(60000)
(50)(14)

= 18.9 in.
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Zone 2 (zone for Vu > 𝜙Vc) and Vs < Vc1

s1 = 24 in.

s2 = d
2
= 26

2
= 13 in. → Controls

s3 =
A𝑣 fy
50b𝑤

= (2 × 0.11)(60000)
(50)(14)

= 18.9 in.

s4 =
A𝑣 fyd

Vs

= (2 × 0.11)(60)(26)
(3.28)

= 104.7 in.

Using similar triangles from Figures 23.3

48
180

= 19.30
x1

x1 = 72.40 in.

48
180

= 38.60
x2 + 72.40

x2 = 72.40 in.

x3 = 180 − 72.40 − 72.40 = 35.20 in.

First stirrup at face of support
Second stirrup at s/2 = 13/2 = 6.5 in.
8 stirrups at 13 in.→ 110.5 in.

35.20″

Zone II

Vu = 48 K

ϕVc = 36.60 K

ϕVc

Zone I

72.40″

180″

72.40″

= 19.30 K
2

Figure 23.3 Shear reinforcement distribution diagram from the face to midspan of
beam.

c. Check development length

Calculate the development length for tension bar ld.
Check if conditions for spacing and cover are met to select an equation: (ACI Code,

Section 25.4.2.2)

db = 1 in.

clear cover = 2.5 in. > db

clear spacing = 14 − 6
4

− 1 = 1 in. ≥ db
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Conditions are met. Use ld =
𝛹t𝛹e fy

20𝜆
√

f ′c
db

Determine the multiplication factors: (ACI Code, Section 25.4.2.4)

𝛹t = 1.0 (bottom bars)

𝛹e = 1.0 (no coating)

𝛹t𝛹e < 1.7OK

𝜆 = 1.0 (normal-weight concrete)
√

f ′c =
√

5000 = 70.7psi < 100psi

Calculate ld (ACI Code, Section 25.4.2.2)

ld =
𝛹t𝛹e fy

20𝜆
√

f ′c
db = (1)(1)(60, 000)

20(1)
√

5000
(1) = 42.4 in. = 43 in ≥ 12 in.

Example 23.2

A series of reinforced concrete beams spaced at 8′ 10′′ on center is shown in Figure 23.4. The beams
have a 15 ft span and support a 5 in. thick reinforced concrete slab.

Given: service dead load = 2 K/ft, service live load = 0.5 K/ft, b = 10 in., d = 18 in., fc
′ = 3 ksi,

fy = 60 ksi.

a. Design the middle beam section for flexural reinforcement.
b. Design middle beam section for shear reinforcement.
c. Check for development length.

Solution:

a. Design the section for flexural reinforcement

Check for minimum thickness to satisfy the deflection criterion: (ACI Code, Section 24.2.3.1)
Minimum thickness for simply supported beams =L/16=(15 × 12)/16=11.25 in. < 18 in. (OK)
Calculate effective width of the flange be: (ACI Code, Section 6.3.2.1)

be =
L
4
= 15 × 12

4
= 45 in.

be = 16hf + b𝑤 = 16(5) + 10 = 90 in.

be = ln + b𝑤 = 106 in.

Choose smallest: be = 45 in.
Determine the design moment strength: (ACI Code, Section 5.3.1)

Mu = 1.2MDL + 1.6MLL

Mu = 1.2
𝑤DL × L2

8
+ 1.6

𝑤LL × L2

8

Mu = 1.2
21152

8
+ 1.6

0.56152

8

Mu = 90K ⋅ ft = 1080K ⋅ in.
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8′ 8′

106″

10″ 10″ 10″

5″

(a)

(b)

106″ 106″

15′

Figure 23.4 Series of simply supported beams.

Check for the position of the neutral axis:

Muf = 𝜙Asy fy

(
d −

hf

2

)
, where Asf =

0.85f ′c hf b

fy

Muf = 𝜙0.85f ′c hf be

(
d −

hf

2

)
= 0.9(0.85)(3)(5)(45)

(
d − 5

2

)

= 8004K ⋅ in. = 667K ⋅ ft > Mu = 90 K ⋅ ft

∴ the neutral axis lies within the flange, rec tan gular analysis.

Calculate the required As

a =
As fy

0.85f ′c be

= (1.57)(60)
(0.85)(3)(45)

= 0.82 in. < 5 in.

Mu = 𝜙As fy
(

d − a
2

)
, where 0.85 f ′c abe = As fy → a =

As fy
0.85f ′c be
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Mu = 𝜙As fy

(
d −

As fy
2 ∗ 0.85f ′c be

)

1080 = (0.90)As(60)
(

18 −
As fy

1.7 (3) (45)

)

As = 1.13 in.2, use 2 no. 7 bars (As = 1.20 in.2)

Check that 𝜌𝑤 =
As

b𝑤d
= 1.57

(10)(18)
= 0.0087 ≥ 𝜌 min = 0.00333

Check for 𝜙 ∶ 𝜀t ∶ a = 0.82 in., c = 0.82
0.85

= 0.96 in., dt = d = 22.5 in.

𝜀t =
0.003(d − c)

c
= 0.003(18 − 0.96)

0.96
= 0.053 > 0.005, 𝜙 = 0.9

Beam details are shown in Figure 23.5.

45″

10″

5″

3″

18″

2 no. 7

Figure 23.5 Detail of the beam.

b. Design for shear reinforcement

Calculate the factored shear from external loading:

𝑤u = 1.2𝑤DL + 1.6𝑤LL = 1.2(2) + 1.6(0.5) = 3.2 K∕ft

Vu =
𝑤uL

2
= (3.2)(15)

2
= 24K

Calculate Vu at distance d from face of support: (ACI Code, Section 9.4.3)

Vud = Vu −𝑤u

( d
12

)
= 24 = 3.2

(18
12

)
= 19.20K

Calculate 𝜙Vc,
𝜙Vc

2
, Vc1, Vc2: (ACI Code, Section 22.5.5.1)

𝜙Vc = 𝜙

(
2𝜆

√
f ′c
)

b𝑤d = 0.75(2)(1)
√

3000 (10)(18) = 14.80 K

𝜙Vc

2
= 7.40 K

Vc1 = 4
√
(f ′c ) b𝑤 d = 4

√
3000 (10)(18) = 39.4 K

Vc2 = 8
√

f ′c b𝑤d = 8
√

3000(10)(18) = 78.8 K
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Calculate Vs: (ACI Code, Section 9.5.1.1)

Vs =
Vud − 𝜙Vc

𝜙
= 19.20 − 14.79

0.75
= 5.88 K

Calculate maximum spacing using no. 3 stirrups: (ACI Code, Section 9.7.6.2)
Zone 1 (zone for Vu between 𝜙Vc, and 𝜙Vc

2
)

s1 = 24 in.

s2 = d
2
= 18

2
= 9 in. → Controls

s3 =
A𝑣 fy
50b𝑤

= (2 × 0.11)(60000)
(50)(10)

= 26.4 in.

Zone 2 (zone for Vu > 𝜙Vc) and Vs < Vc1

s1 = 24 in.

s2 = d
2
= 18

2
= 9 in.→ Controls

s3 =
A𝑣 fy
50b𝑤

= (2 × 0.11)(60000)
(50)(10)

= 26.4 in.

s4 =
A𝑣 fyd

Vs
= (2 × 2.11)(60)(18)

(2.83)
= 83.8 in.

Using similar triangles from Figure 23.6

24
90

= 7.40
x1

x1 = 27.75 in.

24
90

= 14.80
x2 + 27.75

x2 = 27.75 in.

x3 = 90 − 27.75 − 27.75 = 34.50 in.

34.50″

Zone II

Vu = 24 K

ϕVc = 14.80 K

ϕVc

Zone I

27.75″

90″

27.75″

= 7.40 K
2

Figure 23.6 Shear reinforcement distribution diagram from the face to midspan of
beam.
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First stirrup at face of support
Second stirrup at s/2 = 9/2 = 4.5 in.
Seven stirrups at 9 in.→ 67.5 in.

c. Check development length

Calculate the development length for tension bar ld
Check if conditions for spacing and cover are met to select an equation: (ACI Code,
Section 25.4.2.2)

db = 1 in.

clear cover = 3 in. > db

clear spacing = 10 − 7
1

− 1 = 2 in. > db

Conditions are met, use ld =
𝛹t𝛹e fy

20𝜆
√

f ′c
db

Determine the multiplication factors: (ACI Code, Section 25.4.2.4)

𝛹t = 1.0 (bottom bars)

𝛹e = 1.0 (no coating)

𝛹t𝛹e < 1.7 OK

𝜆 = 1.0 (normal − weight concrete)
√

f ′c =
√

3000 = 54.8 psi < 100 psi

Calculate ld: (ACI Code, Section 25.4.2.2)

ld =
𝛹t𝛹e fy

20𝜆
√

f ′c
db = (1)(1)(60, 000)

20(1)
√

3000
(1) = 54.8 in. = 55 in. ≥ 12 in.

Example 23.3

A simply supported beam has a 25 ft span and carries a service uniform dead load of 3 K/ft (including
self-weight) and a uniform live load of 1 K/ft.

Given: b = 12 in., d = 20 in., d′ = 2.5 in., fc
′ = 3 ksi, fy = 60 ksi.

a. Design the section for flexural reinforcement.
b. Design for shear reinforcement.
c. Check development length.

Solution:

a. Design the section for flexural reinforcement

Check for minimum thickness to satisfy the deflection criterion: (ACI Code, Section 24.2.3.1)
Minimum thickness for simply supported beam = 25

16
= 25×12

16
= 18.75 in. ≤ 25 in. (OK)
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Determine the design moment strength: (ACI Code, Section 5.3.1)

Mu = 1.2MDL + 1.6MLL

Mu = 1.2
𝑤DL × L2

8
+ 1.6

𝑤LL × L2

8

Mu = 1.2
31252

8
+ 1.6

11252

8

Mu = 406.25 K ⋅ ft = 4, 875 K ⋅ in.

Check maximum moment: (ACI Code, Section 21.2.2)
Using similar triangles from Figure 23.7

0.003
cmax

= 0.005
d − cmax

0.003
cmax

= 0.005
20 − cmax

cmax = 7.50 in.

amax = 𝛽1cmax = 0.85 × 0.85 = 6.38 in.

As max =
0.85f ′c bamax

fy
= 0.85(3)(12)(6.38)

60
= 3.25 in.2

Mu max = 𝜙As max fy
(

d −
amax

2

)
= (0.9)(3.25)(60)

(
20 − 6.38

2

)

= 2951.73 K ⋅ in. = 245.98 K ⋅ ft

Mu max < Mu, Compression steel is needed

As

As′

0.003

0.005
12″

20″

Figure 23.7 Strain diagram for the cross section.

Find the required area of steel:

Mu1 = Mu max = 245.98 K ⋅ ft

As1 = As max = 3.25 in.2

Mu2 = Mu − Mu1 = 406.25 − 245.98 = 160.27 K ⋅ ft
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As2 =
Mu2

𝜙fy(d − d′)
= (160.27)(12)

(0.9)(60)(20 − 2.5)
= 2.04 in.2

As total = As1 + As2 = 3.25 + 2.04 = 5.29 in.2 (6 no. 9 bars)

f ′s = 87000

(
cmax − d′

cmax

)
= 87000

(7.5 − 2.5
2.5

)
= 58, 000 psi < fy = 60, 000 psi

A′
s f ′s = As2 fy

A′
s =

As2 fy
f ′s

= (2.04)(60)
58

= 2.11 in.2 (3 no. 8 bars, As = 2.35 in.2)

Beam reinforcement details are shown in Figure 23.8.

12″

2.5″

6 no. 9

3 no. 8

20″

4.5″

Figure 23.8 Cross sectional details.

b. Design for shear reinforcement

Calculate the factored shear at support from external loading:

𝑤 = 1.2𝑤DL + 1.6𝑤LL = 1.2(3) + 1.6(1) = 5.2 K∕ft

Vu =
𝑤uL

2
= (5.2)(25)

2
= 65 K

Calculate Vu at distance d from face of support: (ACI Code, Section 9.4.3)

Vud = Vu −𝑤u

( d
12

)
= 65 − 5.2

(20
12

)
= 56.33 K

Calculate 𝜙Vc,
𝜙Vc

2
, Vc1, Vc2: (ACI Code, Section 22.5.5.1)

𝜙Vc = 𝜙

(
2𝜆

√
f ′c
)

b𝑤d = 0.75(2)(1)
√

3000 (12)(20) = 19.72 K

𝜙Vc

2
= 9.86 K

Vc1 = 4
√

f ′c b𝑤d = 4
√

3000(12)(20) = 52.58 K

Vc2 = 8
√

f ′c b𝑤d = 8
√

3000(12)(20) = 105.16 K
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Calculate Vs: (ACI Code, Section 9.5.1.1)

Vs =
Vud − 𝜙Vc

𝜙
= 56.33 − 19.72

0.75
= 48.82 K

Calculate maximum spacing: (ACI Code, Section 9.7.6.2)

Zone 1 (zone for Vu between 𝜙Vc, and 𝜙Vc

2
)

s1 = 24 in.

s2 = d
2
= 20

2
= 10 in. → Controls

s3 =
A𝑣 fy
50b𝑤

= (2 × 0.11)(60000)
(50)(12)

= 22 in.

Zone 2 (zone for Vu > 𝜙Vc) and Vs < Vc1

s1 = 24 in.

s2 = d
2
= 20

2
= 10 in.

s3 =
A𝑣 fy
50b𝑤

= (2 × 0.11)(60000)
(50)(12)

= 22 in.

s4 =
A𝑣 fyd

Vs
= (2 × 0.11)(60)(20)

(48.82)
= 5.4 in. → Use 5.4 in. Controls

Using similar triangles from Figure 23.9

65
150

= 9.86
x1

x1 = 22.75 in.

65
150

= 19.72
x2 + 22.75

104.50″

Zone II

ϕVc

Zone I

150″

= 9.86 K
2

ϕVc = 19.72 K

Vu = 65 K

22.75″ 22.75″

Figure 23.9 Shear reinforcement distribution diagram from the face to midspan of
beam.
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x2 = 22.75 in.

x3 = 150 − 22.75 − 22.75 = 104.50 in.

1st stirrup at face of support
2nd stirrup at s/2 = 5/2 = 2.5 in.
21 stirrups at 5 in. → 107.5 in.
2 stirrups at 10 in. → 127.5 in.

c. Check development length

Calculate the development length in compression ldc (ACI Code, Section 25.4.9)

ldc = largest of

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.02fy

𝜆
√

f ′c
db = 0.02 (60, 000)

(1)
√

3000
(1) = 21.9 in. = 22 in.

(0.0003fy)db = (0.0003 x 60, 000)(1) = 18 in.
8 in.

Therefore ldc = 22 in.

Calculate the development length for tension bar ld .
Check if conditions for spacing and cover are met to select an equation. (ACI Code, Section

25.4.2.2)

db = 1 in.

Since clear cover = 2.5 in. > db

and clear spacing = 12 − 6
2

− 1.128 = 1.9 in. ≥ db

then conditions are met to use ld =
𝛹t𝛹e fy

20𝜆
√

f ′c
db

Determine the multiplication factors: (ACI Code, Section 25.4.2.4)

𝛹t = 1.0 (bottom bars)

𝛹e = 1.0 (no coating)

𝛹t𝛹e < 1.7 OK

𝜆 = 1.0 (normal − weight concrete)
√

f ′c =
√

3000 = 54.8 psi < 100 psi

Calculate ld: (ACI Code, Section 25.4.2.2)

ld =
𝛹t𝛹e fy

20𝜆
√

f ′c
db = (1)(1)(60, 000)

20(1)
√

3000
(1.128) = 61.8 in. = 62 in. ≥ 12 in.

Example 23.4

A simply supported one-story building frame is shown in Figure 23.10. The building is 16 ft high and
has a 33 ft x 11 ft slab.

a. Design the slab.
b. Design the beam along points A and C.
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G

J

A

F

E

B

H

I

N

D

C

16′

33′

11′

Figure 23.10 One story building.

c. Design the column at point C.
d. Design the footing at point C.

Given:
DL = 45 psf, self weight not included
LL = 75 psf
fc
′ = 4 ksi

fy = 60 ksi
Normal weight concrete

Slab

Mu for a 1 ft width of slab = 3 K ⋅ ft

For Beam AC (See Figure 2)

L = 33 ft
b𝑤 = 12 in.
Vu = 21.84 k
Mu at A and C = −21.57 K.ft
Mu at B = 100.90 K.ft

Column C

b × h = 12 in. × 12 in.
Lc = 16 ft
Mu(N − S) = 2.98 K.ft
Mu(E − W) = 11.65 K.ft
Pu = 27.45 K

Footing at C

Service DL = 30 K
Service LL = 8 K
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Allowable soil pressure = 4 ksf

𝛾soil = 130 pcf

Note: All moments and shear values are calculated using ADAPT-BUILDER software.

Solution:

a. Design the Slab
1. Assume a slab thickness. For fy = 60 ksi, the minimum depth to control deflection is L/20 =

11(12)/20 = 6.6 in. Assume a total depth of h = 7 in. and assume d = 6 in. (to be checked later).

2. Calculate As: For Mu = 3 K ⋅ ft, b = 12 in., and d = 6 in., Ru =
Mu

bd2
= 3(12, 000)

(12)(6)2
=

83.33 psi. From tables in Appendix A, 𝜌 = 0.0023 < 𝜌max = 0.01806, 𝜙 = 0.9.

∴ As = 𝜌bd = 0.0023(12)(6) = 0.17 in.2

Choose no. 4 bars, Ab = 0.2 in.2, and S =
12Ab

As

= 12(0.2)
0.17

= 14.12 in.

Check actual d = 7 − 3
4
− 4

16
= 6 in. (acceptable)

Let S = 14 in. and As = 0.17 in.2

3. Check the moment capacity of the final section.

As =
12
14

(0.2) = 0.1714 in.2

a =
As fy

0.85f ′c b
= 0.1714(60)

(0.85)(4)(12)
= 0.2521 in.

𝜙Mn = 𝜙As fy
(

d − a
2

)
= (0.9)(0.1714)(60)

(
6 − 0.2521

2

)
= 54.37 K ⋅ in.

= 4.53 K ⋅ ft > Mu = 3 K ⋅ ft

4. Check main reinforcement maximum spacing. (ACI Code, Section 7.7.2.3)

s = 3h = 3 ∗ 7 = 21 in.

s = 18 in.

Use no. 4 bars spaced at 14 in.

5. Calculate the shrinkage reinforcement normal to the main steel.
For fy = 60 ksi, 𝜌min = 0.0018 (ACI Code, Section 7.6.1.1)

Ash = 𝜌bh = 0.0018(12)(7) = 0.15 in.2

Choose no. 4 bars, Ab = 0.2 in.2, and S =
12Ab

As
= 12(0.2)

0.1512
= 15.9 in.

Let S = 15 in. and As = 0.15 in.2

6. Check the shrinkage reinforcement maximum spacing (ACI Code, Section 7.7.6.2)

s = 5h = 5 ∗ 7 = 35 in.

s = 18 in.

Use no. 4 bars spaced at 15 in.
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b. Design Beam AC
The shear and bending moment diagram is shown in Figure 23.11

Clear span = Ln = L − 2
(column width

2

)
= 33 − 2 = 31 ft

Minimum thickness = L
16

= 33 × 32
16

= 24.75 in. = 25 in.

d = h −
(

clear cover + 1
2

db

)
= 25 − 2 − 0.5 = 22.5 in.

1. Determine the effective flange width be. The effective flange width is the smallest of:

be = b𝑤 + L
12

= 12 + 33 ∗ 12
12

= 45 in.

be = b𝑤 + 6hf = 12 + (6 ∗ 7) = 54 in.

be = b𝑤 +
Ln

2
= 12 + 31 ∗ 12

2
= 186 in.

Therefore, be = 45 in. (ACI Code, Section 6.3.2.1)

32′

B CA

32′

B CA

32′

B CA

21.84 K

–21.57 K.ft –21.57 K.ft

100.90 K.ft

–21.84 K

Figure 23.11 Shear and moment diagram for beam AC.
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2. Check for the position of the neutral axis.

Muf = 𝜙Asf fy

(
d −

hf

2

)
, where Asf =

0.85fc
′hf be

fy

Muf = 𝜙0.85fc
′hf be

(
d −

hf

2

)
= 0.9(0.85)(4)(7)(45)

(
22.5 − 7

2

)

= 18314.10 K ⋅ in. = 1526.18 K ⋅ ft > Mu = 100.90 K ⋅ ft

Therefore, the neutral axis lies within the flange; treat as a rectangular section for analysis
3. Calculate As at the center of the beam (in tension).

Mu = 𝜙As fy
(

d − a
2

)
, where 0.85fc

′abe = As fy → a =
As fy

0.85fc
′be

Mu = 𝜙As fy

(
d −

As fy

2x0.85fc
′be

)

100.90(12) = 0.9 ∗ As ∗ 60

(
22.5 −

Asx60

1.7x4x45

)

As = 1.01 in.2, Provide 2 no. 7 bars, As = 1.20 in.2

4. Check the depth of the stress block. If the section behaves as a rectangular one, then the stress
block lies within the flange.

a =
As fy

0.85f ′c be

= (1.57)(60)
(0.85)(4)(45)

= 0.62 in. < slab thickness (7 in.)

5. Check that:

𝜌𝑤 =
As

b𝑤d
= 1.57

(12)(22.5)
= 0.0058 ≥ 𝜌min = 0.00333

6. Check 𝜀t ∶ a = 0.62 in., c = 0.62
0.85

= 0.73 in., dt = d = 22.5 in.

𝜀t =
0.003(d − c)

c
= 0.003(22.5 − 0.73)

0.73
= 0.089 > 0.005, 𝜙 = 0.9

7. Calculate As at the face of the column (in compression).

Mu = 𝜙As fy
(

d − a
2

)
, where 0.85fc

′ab𝑤 = As fy → a =
As fy

0.85fc
′b𝑤

Mu = 𝜙As fy

(

d −
As fy

2
(
0.85f c′b𝑤

)

)

21.57(12) = 0.9(As)(60)

(

22.5 −
(
As

)
(60)

(1.7)(4)(12)

)

As = 0.21 in.2, Provide 2 no. 3 bars, As = 0.22 in.2



962 Chapter 23 Review Problems on Concrete Building Components

45′

12′

2 no. 3

2 no. 3

Section A

25′

7′

45′

12′

2 no. 8

2 no. 3

Section B

25′

7′

Figure 23.12 Detail of the beam at sections A and B.

8. Detail the sections (Figure 23.12).
9. Design for shear reinforcement.

Calculate the factored shear from external loading:

Vu = 21.84 K

Vu =
𝑤uL

2
→ 21.84 =

𝑤u(32)
2

𝑤u = 1.37 K∕ft

Calculate Vud at distance d from face of support: (ACI Code, Section 9.4.3)

Vud = Vu −𝑤u

( d
12

)
= 21.84 − 1.37

(22.5
12

)
= 19.3 K

Calculate 𝜙Vc and 𝜙Vc

2
: (ACI Code, Section 22.5.5.1)

𝜙Vc = 𝜙

(
2𝜆

√
f ′c
)

b𝑤d = 0.75(2)(1)
√

4000 (12)(22.5) = 25.61 K

𝜙Vc

2
= 12.81 K

Since
𝜙Vc

2
≤ Vud ≤ 𝜙Vc, use minimum shear reinforcement

Calculate maximum spacing. (ACI Code, Section 9.7.6.2)
Select the smallest of:

s1 = 24 in.

s2 = d
2
= 22.5

2
= 11.25 in.

s3 =
A𝑣 fy
50b𝑤

= (2 × 2.11)(60000)
(50)(12)

= 22 in.

Therefore use = 11 in
Using similar triangles (Figure 23.13)

21.84
192

= 12.81
x1

x1 = 112.59 in.

x2 = 192 − 112.59 = 79.41 in.
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79.40″

Minimum reinforcement No reinforcement

Vu = 21.84 K

Vc = 12.81 K
2

ϕ

112.60″

192″

Figure 23.13 Shear distribution diagram from the face to midspan of beam.

First no. 3 stirrup at s/2 = 11/2 = 5.5 in.
Seven no. 3 stirrups at 11 in. = 77 in.
Total = 77 + 5.5 in. = 82.5 in.

79.41″

Minimum reinforcement No reinforcement

112.59″

192″

192″12″

11″5.5″

25″

Figure 23.14 Bar distribution for shear reinforcement.

10. Check development length
The development length ld for no. 3 tension bars at support A can be determined as follows:
Check if conditions for spacing and cover are met to select an equation. (ACI Code,
Section 25.4.2.2)
db = 0.375 in.

Since clear cover = 2 in. > db

and clear spacing = 12 − 5
1

− 0.375 = 6.625 in. > 2db

Condition met. Use ld =
fy𝛹t𝛹e

20𝜆
√

fc
′
(db)
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Determine the multiplication factors. (ACI Code, Section 25.4.2.4)

𝛹t = 1.3 (top bars)

𝛹e = 1.0 (no coating)

𝛹t𝛹e < 1.7 OK

𝜆 = 1.0 (normal − weight concrete)
√

f ′c =
√

4000 = 63.2 psi < 100 psi ok

Calculate ld from: (ACI Code, Section 25.4.2.2)

ld =
fy𝛹t𝛹e

20𝜆
√

fc
′
(db) =

(60000)(1.3)(1)

20(1)
√

4000
(0.375) = 23.12 in. ≥ 12 in.

Check for the compression development length ldc.
Compressive reinforcement at the face of the support (no. 3 bars) has the larger of the

following development lengths, but cannot be less than 8 in.

ldc =
0.02fy

𝜆
√

fc
′
(db) =

(0.02)(60000)

(1)
√

4000
(0.375) = 7.12 in.

Minimum ldc = 0.0003(db)(fy) = 0.0003(0.375)(60000) = 6.75 in.
Therefore, ldc = 8 in.
The development length ld for the positive-moment reinforcement (2 no. 8 bars) can be

determined as follows:
Check if conditions for spacing and cover are met to select an equation. (ACI Code, Section

25.4.2.2)

db = 1 in.

clear cover = 2 in. > db

clear spacing = 12 − 5
1

− 1 = 6 in. > 2db

Condition met. Use ld =
fy𝛹t𝛹e

20𝜆
√

fc
′
(db)

Determine the multiplication factors. (ACI Code, Section 25.4.2.4)

𝛹t = 1.3 (bottom bars)

𝛹t = 1.0 (no coating)

𝛹t𝛹e < 1.7 OK

𝜆 = 1.0 (normal − weight concrete)
√

f ′c =
√

4000 = 63.2 psi < 100 psi ok

Calculate ld from: (ACI Code, Section 25.4.2.2)

ld =
fy𝛹t𝛹e

20𝜆
√

fc
′
(db) =

(60000)(1)(1)

20(1)
√

4000
(1) = 47.43 in. ≥ 12 in.
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c. Design the Column at C
1. Calculate effective length factors (assume column is fixed at both ends):

𝛹A = 𝛹B =

𝛴EcIc

Lc

𝛴EbIb

Lb

= 0, since fixed at both ends

2. Find k:
Using the Alignment Charts (Figure 12.3), k = 0.5

3. Check Slenderness of Column West/East side (unbraced frame): (ACI Code, Section 6.2.5)
kLu

r
≤ 22

Lu = (16 ft) − 6
(25

12

)
− 4 ft = 9.92 ft

r = 0.3h = 0.3
(12

12

)
= 0.3 ft

kLu

r
= 0.50(9.92)

0.3
= 16.53

16.53 ≤ 22

∴ Slenderness effects permitted to be neglected → short column.
4. Column design calculations—west/east side direction

Mu (K.ft) 11.65
Pu (K) 27.45
h (in.) 12

Ag = (12 in.)(12 in.) = 144 in.2

𝛾h = 12 – (2 in. cover) – (2 in. cover) = 8 in.

𝛾 = 𝛾h
h

= 8
12

= 0.67

𝜙 = 0.65 (ACI 21.2.1)

Mn = (11.65 K ⋅ ft) (12)
0.65

= 215.08 K ⋅ in.

Rn =
Pne

f ′c Agh
→ Pne = Mn

Rn = 215.08
4(144)(12)

= 0.03

Pn =
Pu

𝜙
= 27.45

0.65
= 42.23 K

Kn =
Pn

f ′c Ag

= 42.23
4(144)

= 0.07

From Figure 11.16 charts (c) and (d) in the textbook, 𝜌g = 0.01

As = 𝜌gAg = 0.01(144 in.2) = 1.44 in.2 use 4 no.6 bars; db = 0.75 in.

0.01Ag ≤ As ≤ 0.08Ag (ACI Code, Section 10.6.1.1)
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5. Column design calculations—north/south direction:

M (K.ft) 2.98
Pu (K) 27.45
h (in.) 12

Mn =
(2.98 K ⋅ ft)

(
12 in

ft

)

0.65
= 55.01 K ⋅ in.

Rn = 55.01
4(144)(12)

= 0.007

Kn =
Pn

f ′c Ag

= 42.23
4(144)

= 0.07

From Figure 11.16 charts (c) and (d), 𝜌g = 0.01

As = 𝜌gAg = 0.01(144 in.2) = 1.44 in.2 → 4 # 6 bars; db = 0.75 in.

0.01Ag ≤ As ≤ 0.08Ag

6. Design for ties: (ACI Code, Section 25.7.2)
No. 3 ties for longitudinal reinforcement bars size no. 10 or smaller → dtie = 0.375 in.
Vertical spacing of ties shall be the smallest of:
16dbar = 16(0.75 in.) = 12 in. (governs)
48dtie = 48(0.375in.) = 18 in.
Least dimension of compression member = 12 in.

7. Check for splice length in compression:

lsc = 0.0005fydb = 0.0005(60000)(0.75) = 22.5 in. ≥ 12 in. (ACI 25.5.5.1)

8. Check for splice length in tension (ACI Code, Section 25.4.2.4)

Since
As provided

As required
< 2, use Class B splice: 1.3ld (ACI Code, Section 25.5.2.1)

1.3ld = 1.3

(
fy𝜓t𝜓e

20𝜆
√

f ′c

)

db = (1.3) 60000(1)(1)

(20)(1)(
√

4000
(0.75) = 46.25 in. ≥ 12 in.

9. Details of column cross section is shown in Figure 23.15

12″

12″8″ 4 no. 6

2″

2″

Figure 23.15 Cross section details of column C.
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d. Design the Footing at C
1. Calculate the effective soil pressure.

Assume a total depth of footing 1.5 ft
The weight of the footing is 1.5 × 150 = 225 psf
(Assume concrete unit weight = 150 pcf)
The weight of soil above the footing is (4 − 1.5) × 130 = 325 psf
(Assume soil unit weight = 130 pcf)
Effective soil pressure = 4 − 225∕1000 − 325∕1000 = 3.45 ksf

2. Calculate the area of the footing:
Actual loads = DL + LL = 30 + 8 = 38 K
Area of footing = 38

3.45
= 11.01 ft2

Side of footing = 3.32 ft, use 4 ft
3. Calculate net upward pressure equals (factored load)/(area of footing):

Pu = 1.2DL + 1.6LL

Pu = 1.2(30) + 1.6(8) = 48.80 K

Net upward pressure, qu =
Pu

A
= 48.80

(4 × 4p)
= 3.05 ksf

4. Check depth due to two-way shear. Assume bar no. 8 bars both ways. Calculate d to the centroid
of the top steel layer:

d = 18 − 3(cover) − 1.5(bar diameters) = 13.5 in.

b0 = 4(c + d) = 4(12 + 13.5) = 102 in.

c + d = 12 + 13.5 = 25.5 in. = 2.125 ft

Vu2 = Pu − qu(c + d)2 = 48.80 − 48.8(2.125)2 = 35.03 K

Required d1 =
Vu2

4𝜙𝜆
√

fc
′b0

= 35.03 (1000)

4(0.75)(1)
√

4000(102)
= 1.81 in.

𝛽 = L
W

= 4
4
= 1 (Eq. 13.9)

since 𝛽 ≤ 2

Required d2 = 35.03 (1000)

0.75
(

20×13.5
102

+ 2
)
(
√

4000)(102)
= 1.56 in. (not critical)

(𝛼s = 20 for corner columns.) Thus, the assumed depth is adequate.

5. Check depth due to one-way shear. The critical section is at distance d from the face of the
column:

Distance to critical section =
(L

2
− c

2
− d

)
=
(4

2
− 1

2
− 13.5

12

)
= 0.375 ft

Vu1 = qub
(L

2
− c

2
− d

)
= 3.05 × 4 × 0.375 = 4.58 K

The depth required for one-way shear is

d =
Vu1

2𝜙𝜆
√

fc
′b

= 4.58 (1000)

2(0.75)(1)
√

4000(4 × 12)
= 1.00 in. < 13.5
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6. Calculate the bending moment and steel reinforcement. The critical section is at the face of the
column.

The distance from the edge of footing is
(

L

2
− c

2

)
= 4

2
− 1

2
= 1.5 ft

Mu = 0.5qu

(L
2
− c

2

)2

(b) = 0.5(3.05)(1.5)2(4) = 13.73 K ⋅ ft

Ru =
Mu

bd2
= 13.73 (12000)

(4 × 12) (13.5)2
= 18.83 psi

𝜌 =
0.85 f ′c

fy

⎡
⎢
⎢
⎣
1 −

√

1 −
2Ru

𝜙0.85f ′c

⎤
⎥
⎥
⎦

𝜌 = 0.85 × 4000
60000

[

1 −
√

1 − 2 × 18.83
0.9 × 0.85 × 4000

]

= 0.0003

As = 𝜌 bd = (0.0003)(4.00)(13.5) = 0.23 in.2

Minimum As (shrinkage steel) = (0.0018 )(4.00)(13.5) = 1.17 in.2

Minimum As (flexure) = (0.0033)(4.00)(13.5) = 2.14 in.2

Therefore, S = 2.14 in.2. Use 11 no. 4 bars (Ss = 2.16 in.2)
Determine bar spacing s = (4×12)− 6

10
= 4.2 in.

Use no. 11 @ 4 in. c/c both directions
7. Check bearing stress:

(a) Bearing strength, N1, at the base of the column is:

A1 = c1 ∗ c2 = 12 × 12 = 144 in.2

N1 = 𝜙(0.85f ′c )A1 = (0.65)(0.85 × 4)(144) = 318.24 K

(b) Bearing strength, N2, of footing is:

N2 = N1

√
A2

A1
≤ 2N1

A2 = 4 × 4 × 144 = 2304 in.2

A1 = 12 ∗ 12 = 144 in.2

N2 = N1

√
2304
144

= 4N1

therefore, N2 = 2N1 = 636.48 K

Pu < N2 therefore bearing is adequate

The minimum area of dowels required is 0.005A1 = 0.005(12 × 12) = 0.72 in.2. The min-
imum number of bars is four, so use four no. 4 bars placed at the four corners of the column.

(c) Development length of dowels in compression:

ldc =

(
0.02fy

𝜆
√

f ′c

)

db =

(
(0.02) (60000)

(1)
√

4000

)

0.50 = 9.49 in. = 9.5 in. (controls)
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Therefore, use four no. 4 dowels extending 9.5 in. into column and footing. Note that ldc
is less than d of 13.5 in., which is adequate.

8. The development length of main bars in the footing for no. 4 bars is ld = 19db = 9.5 in. (refer
to Chapter 7), provided ld = L

2
− c

2
− 3 in. = 15 in.

Details of the footing are shown in Figure 23.16.

12″

d

18″

9.5″

4.5″

3″, Typ

4 no. 4 dowel bars

11 No. 4 bars each direction

One-way
shear section

(a)

(b)

4′ 0″

c + d

d/2 d/2

4′ 0″

Figure 23.16 Footing details



CHAPTER24
DESIGN AND ANALYSIS
FLOWCHARTS

To help the student and design engineer to prepare their own programs, flowcharts are given for
most chapters.

1. Flowcharts 24.1, 24.2, and 24.3 explain the analysis of single, double, and T-sections
(Chapter 3).

2. Flowcharts 24.4, 24.5, and 24.6 explain the design of single, double, and T-sections
(Chapter 4).

3. Flowchart 24.7 explains shear design (Chapter 5).
4. Flowchart 24.8 explains the calculation of development length (Chapter 7).
5. Flowchart 24.9 explains the analysis of rectangular columns at balanced condition

(Chapter 11).
6. Flowchart 24.10 explains the analysis of rectangular columns (Chapter 11).
7. Flowchart 24.11 explains the design of rectangular or square footings (Chapter 13).
8. Flowchart 24.12 explains the design for combined shear and torsion (Chapter 15).
9. Flowchart 24.13 explains Two-way slabs by the direct design method (Chapter 17).

10. Flowchart 24.14 explains general bridge superstructure design (Chapter 22).
11. Flowchart 24.15 explains bridge prestressing losses calculation (Chapter 22).
12. Flowchart 24.16 explains bridge live-load distribution factor calculation (Chapter 22).
13. Flowchart 24.17 explains bridge deck slab design (Chapter 22).
14. Flowchart 24.18 explains bridge flexure design (Chapter 22).
15. Flowchart 24.19 explains bridge shear design (Chapter 22).

970
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Given: b, d, As, f ′c, fy
Required: ϕMn

a = As  fy /(0.85f ′cb)
c = a/β1

Let ρ = As/bd

Increase ρ

ρ > ρmin
(1)

ρ ≤ ρmax
(2)

No

No

Yes

Yes

End

Reduce ρ

Flowchart 24.1 Analysis of single reinforced rectangular section.

1. 𝜌min = 3
√

f ′c
fy
≥

200
fy

2. 𝜌b = (0.85𝛽1)
(

f ′c
fy

)(
87

87 + fy

)

𝜌max =
(0.003 + fy∕Es

0.008

)
𝜌b
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Let ρ = As/bd, ρ′ = A′s/bd

Given: b, d, d′, A′s, A′s, A′c,  fy
Required: ϕMn

a = (As–A′s)fy/(0.85f ′cb)

a =
(As fy – A′s f ′s)

0.85f′cb

ρmin ≤ ρ – ρ′≤ ρmax

f ′s < fy f ′s < fy

ρ ≥ ρmin

ρ–ρ′ ≥ K
(1)

No

No Yes

Yes

Change ρ

End

ϕ = 0.65 (other
members) 

ϕ = 0.65 + (εt – 0.002)(250/3)
(other members)

ϕ Mn = ϕ[As fy – A′s f ′s)(d-a/2) + A′s f ′s(d-d ′)

ϕ = 0.9

εt ≤ 0.002

εt ≥ 0.005

εt = 0.003 (dt-c)/c

No

Yes

Yes

No

No

Yes

Increase ρ

Solve for c:
A1c2 + A2c + A3 = 0
A1 = 0.85β1 f ′cb
A2 = A′s(87 – 0.85f ′c) – Asfy
A3 = –87A′sd′

Calculate f′s < fy;
ε′s = 0.003(c– d′)/c

c– d
c

 f′s = Esε′s = 87

Flowchart 24.2 Analysis of double reinforced rectangular section.

1. K = (0.85𝛽1)
(

f ′c
fy

)(
d′

d

)(
87

87−fy

)

2. Refer to Flowchart 24.1 to calculate 𝜌min and 𝜌max.
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Yes

Yes

Yes

Yes

No

No

No

Enlarge
section

End

End

Rectangular analysis
a = a′

T-section analysis

Increase As

Reduce As

No

As ≤ As, max
(1)

As ≥ As, min
(2)

For T-section, be is the smallest value of: Span/4 or center to
center of adjacent slabs or (bw + 16t); t = slab thickness.
For L-section, be is the smallest value of: Span/12 or half clear
distance to next web + web width or (bw + 6t); t = slab thickness

Let a′ = As fy/(0.85 f ′cbe)

a′ ≤ t

Flowchart 24.3 Analysis of T- and L-sections.

1. As,max = 0.6375
(

f ′c
fy

)
[t(b − b𝑤) + 0.375b𝑤𝛽1d]

2. As,min =
[

3
√

f ′c
fy

]
b𝑤d ≥

[
200
fy

]
b𝑤d
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Change section 

End

Given: Mu, f ′c, fy
Required: As

b and d are given 
Yes

Yes

No

No

Calculate
Ru = Mu/(bd2)

ρ =
0.85f ′c

fy

As =ρbd

Assume b (12-20) in.
Or d / b  2 

d = Mu/Rub

As =ρbd
Choose bars

h = d + 2.5 in. (one row of bars)
h = d + 3.5 in. (two rows of bars)
Round h to the next higher inch. 

Flowchart 24.4 Design of single reinforced rectangular section.

1. Refer to Flowchart 24.1 to calculate 𝜌min and 𝜌max.
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Calculate ρmin and ρmax
(1)

Check if comp. steel yields.
Let a = As1fy /0.85f ′cb

c = a/β1
Calculate f ′s = 87(c - d′)/c 

Given: Mu, b, d, d′,  f ′c, fy
Required: As, A′s

Calculate Ru, max
Ru, max = ϕρmax fy(1-ρmax fy/1.7f ′c)

Calculate ϕ Mn = Mu1 as singly reinforced
Mu1 = Ru, max bd2

Mu ≥ Mu1

Mu2 = Mu - Mu1

As1 = ρmaxbd 

As2 = Mu2/ϕfy(d - d′)

No

No

No

Yes

Yes

Yes

Total As = As1 + As2
As ≤ As max

Change
section

f ′s ≥ fy  

f ′s < fy
A′s = As2 fy/f ′s

f ′s = fy
A′s = As2

εt = 0.003(dt - c)/c
εt = 0.005

End End

Comp. steel is not
required

Go to Flowchart 23.4

Flowchart 24.5 Design of rectangular sections with compression steel.

Refer to Flowchart 24.1 to calculate 𝜌min and 𝜌max.
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Given: Mu, b, bw, d, t, f ′c, fy
Required: As

Calculate Mu,ft (total flange).
a = t

Cft = 0.85ϕf ′cbt
Mu,ft = ϕCft(d – t/2)

Muf = ϕCf (d – t/2)
Muw (web) = Mu – Muf

Ruw = Muw/bwd2

No

No

No

Change section

d is given

Assume a = t

Rectangular section
design, a ≤ t

T-section design,
a > t

Yes

Yes

Yes

As = ρbd

As = Asf + Asw
Asw = ρwbwd

As,min ≤ As ≤ As,max
or

εt = (dt – c)/c ≥ 0.005

As is OK

Mu ≤ Mu,ft

Ru = Mu/bd2

ρ = (0.85f ′c/fy) [1 –   1 – 2Ru/0.85ϕf ′c]

ρw = (0.85f ′c/fy) [1 –   1 – 2Ruw/0.85ϕf ′c]

Cf = 0.85f ′ct(b – bw)
Asf = Cf /fy

d = Mu/ϕ(0.85f ′cbt) + t/2

As = Mu/[ϕfy(d – t/2)]

As = Mu/[ϕfy(d – a/2)]

If steel is high, assume
a < t or a ≈ t/2 

d = Mu/(0.85ϕf ′cba) + a/2

Flowchart 24.6 Design of T- or L-sections.
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End
End

Given: bw, d, f ′c, fy, Vu
Required: Shear reinforcement

No Yes

NoYes

No

No

Yes

Yes

Vu ≥ ϕVc/2 

S ≤ d/4 ≤ 12 in. S ≤ d/2 ≤ 24 in.
S ≤ Av fy/50bw

Vs = (Vu – ϕVc)/ϕ 

Vs > 4Vc

Vu > ϕVc

Vs > 2Vc

No shear
reinforcement

is required 

Increase
section

Av = VsS / fyd
Or

S = Av fyd/Vs

ϕVc = ϕ2λ    f ′cbwd
ϕ = 0.75

Choose minimum
shear reinforcement.

Av ≥ 50bwS/fy
Av = 0.75  f ′c(bwS/fy)

S ≤ d/2 ≤ 24 in.
Minimum stirrups

no. 3 at Smax

Flowchart 24.7 Shear design.
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f ′c ≤ 100 psi

1dc = (0.02db fy)/λ    f ′c
1dc = 0.0003db fy

 (for no. 7 and large bars)
1d1/db = ψtψe fy/20λ    f ′c
(for no. 6 and small bars)
1d1/db = ψtψe fv /25λ    f ′c

Tension bars 

Given: bw, d, f ′c, fy, bars
Required: Development length

1d = 1.51d1 ≥ 12 in. 1d = 1d1 ≥ 12 in.

1d = 1dc*(Rs or Rs1, if applicable)
1d ≥ 8 in.

Compression bars 

Rs = As (required)/As (provided)
Rs1 = 0.75 for spiral columns 

Is
c ≥ db
s ≥ db

or s > 2db
(1)

No Yes

Flowchart 24.8 Calculation of development length.

1. c= clear cover

s= clear spacing
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End

Given: b, d, d′, As, A′s, f ′c, fy
Required: Pb, Mb, eb

cb = 87d/(87 + fy)
ab = β1cb

Cs = A′s( f ′s – 0.85f ′c)
Cc = 0.85f ′cab
T = As fy 

f ′s = [87(cb – d′)/cb]
f ′s ≤ fy (ksi) 

Mb = Cc(d – ab/2 – d″) + Cs(d – d″ – d″) + Td″ 

Pb = Cc + Cs – T

eb = Mb/Pb

Flowchart 24.9 Balanced load, moment, and eccentricity for rectangular column
sections. (Use ksi for f ′c and fy; d′′ =distance from the plastic centroid to As.)
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End

Given: b, d, d′, As, e
Required: Pn, Mn

No Yes
e > eb

Compression failure
fs < fy
a > ab

ϕ = 0.65 

Tension failure
fs = fy
a < ab

0.65 ≤ ϕ ≤ 0.9

Assume f ′s = fy

Solve for a:
Aa2 + Ba + C = 0
A = 0.425f ′cb
B = 2A(e′ – d)
C = A′ s( f ′s – 0.85 f ′c)(e′ – d + d′) – As fye′

e′  = e + d′, c = a/β1

Solve for a:
Aa3 + Ba2 + Ca + D = 0
A = 0.85f ′cb/2
B = 0.85f ′cb(e′ – d)
C = A′s( fy – 0.85 f ′c)(e′ – d + d′ ) – 87As e′ 
D = – 87As e′ β1d 
e′  = e + d″, c = a/β1
Solve by trial or calculator

No Yesε′s ≥ εy
(1)

f ′s = [87(c – d ′ )/c] ≤ fy 

f ′s = [87(c – d′ )/c] ≤ fy
fs = [87(d – c)/c] ≤ fy  

T = As fy 

T = As fs

f ′s = fy

Cc = 0.85 f ′cab
Cs = A′s( f′s – 0.85 f ′c) ≥ 0

Pn = Cc + Cs – T
Mn = Pne

Flowchart 24.10 Analysis of rectangular columns. (Use ksi for f ′c and fy.)

1. 𝜀′s = 0.003
(

c−d′

c

)
; 𝜀y =

fy
Es
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Check two-way shear: d2 is the largest value of:
d2 =   Vu2/(4λ    f′c b0)
          Vu2/λ[αsd/b0) + 2]   f′c b0

          Vu2/λ[(4/β + 2]    f′c b0

αs = 40, 30, 20 for interior, edges, and corner columns
b0 = 4(c + d) for square columns
b0 = 2(c1+ d) + 2(c2 + d ) for rectangular columns
 ϕ = 0.75

Long direction MuL = 0.5qu (L/2 – c/2)2

Short direction MuS = 0.5qu (B/2 – c/2)2

Calculate AsL and AsS
Choose bars and check ld

Assume footing depth h (in.)
Let Wc = 150 pcf, Ws = 100 pcf 

Pu = 1.2 PD + 1.6PL
qu = Pu/A
Let average d = h – 4.5 in.

Check one-way shear:
d1 = Vu1/(2λ   f ′c b)

Footing area A = (PD + PL)/qe
Side =   A for square footing
Or L x B for rectangular footing
Choose L/B < 2

Given: PD, PL, H, qa, f ′c, fy
Column size c, and bars 

qe = qa – h(150)/12 – (H– h)(100)/12 psf 

Pn > N1

Dowel bars
Min. Asd = 0.005A1

Use 4 bars

Pex = Pu – N1

Asd = Pex/fy ≥ 0.005A1

Choose dowel bars and check ld in compression.

Yes No

End

d = the larger of d1 and d2
h′ = d + 4.5≥h
If h′<h, increase h and repeat.

N1 = ϕ(0.85f ′c)A1 (column)

N2 = N1(  A2/A1) 2N1

ϕ = 0.65

Flowchart 24.11 Design of rectangular or square footings.
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Given: b, h, Vu, Tu
Required: Closed stirrups and A1

Let x0 = b, y0 = h, ϕ = 0.75
Let x1 = (b – 3.5 in.), y1 = (h – 3.5 in.)

Spacing of stirrups = area of bar/Atot
Max. S = Ph/8 ≤12 in.

Let Q = (ϕλ   f ′c )A
2
cp/Pcp

Acp = x0y0, Pcp = 2(x0 + y0)
A0 = 0.85 x1y1 = 0.85A0h
Ph = 2(x1 + y1)

Tu is neglected.
Check for Vu

(Flowchart 22.7)Use Tu
Tu = 4Q

for compability Tu

Increase
section 

Total area of closed stirrups
Avt = 2At + Av
Avt ≥ (50bwS/fyt)
(Av from shear)

At/S = Tn/(2A0fyt cot θ)

End

Tu > 4Q 

Tu > Q 

A1 = (At/S) Ph( fyt/fy) cot2 
θ

A1,min = (5   f ′c  Acp)/fy – (At/S) ph ( fyt/fy)
A1,min ≥ 25bw / fyt
Min. bar diameter = 0.042S ≥ no. 3

(Vu/bwd)2 + (TuPh/1.7A2
oh)2 ≤ ϕ[(Vc / bwd) + (8   f ′c)] 

Yes No

YesNo

Yes No

Flowchart 24.12 Design for combined shear and torsion.
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Limitations
are satisfied

Yes

No
DDM cannot

be used

1 2

Slabs with interior and
exterior beam

Slab without beams
(flat plates and flat slabs)

Minimum of
three continuous

spans in each
direction 

Panels
must be

rectangle
or square
Ll/ls ≤ 2.0

Adjacent span in
each direction
must not differ

by more than one
third the longer

span

Column must not
offset by more than
10% of span length

in either axis between
centerline of

successive column

All loads
should be
uniform and
LL/DL < 2.0

If beams r are
present all sides

Direct Design Method

Check Limitation Requirements

0.2 < < 5.
αf1 l

2
2

αf 2 l
2
1

Flowchart 24.13a Two-way slab—DDM.
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1

Slab without beams
(flat plates and

flat slabs)

Calculate slab thickness
hmn according to ACI

Table 8.3.1.1

Calculate Factored 
load Wu

Check for one-way
shear and two-way

shear

Calculate static moment
M0 in both directions

A1 B1

No Ok

If satisfied
yes

Two-way
shear

One-way
shear

Calculate Vu
at distance d
from the face

of column

Calculate
Punching
shear Vu

at distance d/2
from the face

of column

ϕVu >Vc

According to ACI 22.6.5.2,
Vc should be

smallest of three: 

=
αsd + 2
b0

λ  f′c b0d

 f′c b0dVc =  2 + 4
β

λ

 f′c b0d= 4λ

ϕVc = 2λ f′c′ bd0 >Vu

Increase depth
of slab or f ′c

Flowchart 24.13b Two-way slab—DDM.
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b = width of strip

Spacing ≥ 2h or 18 in.
whichever is smaller

Column strip shall be
proportioned to resist % of
interior negative moment

(ACI 8.10.5.1) 

Middle strip shall be
proportioned to resist
(100 – column strip

proportion % of interior
negative moment)

Column strip shall be
proportioned to resist %

of exterior negative
moment (ACI 8.10.5.2)

Middle strip shall be
proportioned to resist
(100 – column strip

proportion % of exterior
negative moment)

Column strip shall be
proportioned to resist % of
interior positive moment

(ACI 8.10.5.5) 

Middle strip shall be
proportioned to resist
(100 – column strip

proportion % of interior
positive moment)

Column strip shall be
proportioned to resist %

of exterior positive
moment (ACI 8.10.5.5)

Middle strip shall be
proportioned to resist
(100 – column strip

proportion % of exterior
positive moment)

If panel is exterior M0 shall
be distributed (ACI 8.10.4.2)

A1 B1

If panel is interior, M0
shall be distributed for both

directions Mn = 0.65M0,
Mp = 0.35M0 (ACI 8.10.4.1)

d = depth of slab,Ru =
Mu

bd2

As = ρbd

Flowchart 24.13c Two-way slab—DDM.
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Two-way
shear 

Calculate
punching

shear Vu at
distance d/2

from the face
of column

One-way
shear

Calculate Vu at
distance d

from the face
of column

2

Slab with interior and
exterior beams

Calculate slab thickness
hmn according to

ACI 8.3.1.2

Calculate factored load
Wu

Check for one-way
shear and two-way

shear

Calculate static moment
M0 in both directions

A2 B2

Increase depth
of slab or f ′c

If satisfied
Yes

No Check

EcbIb

EcsI′s

Calculate h
according to ACI

Table 8.3.1.1 

ϕVu >Vc

αfm≤.2

αfm≥2.0

0.2≤αfm≤ 2.0

αfm = Average

α =

ϕVc = 2λ f′c′ bd0 >Vu

0.8 +
200,000

≥ 5 in.

fyln
h =

36 + 5β (αfm– 0.2)

0.8 +
200,000

≥ 3 in.

fyln
h =

36 + 9β

According to ACI 22.6.5.2,
Vc should be smallest of three

 f′c b0d

 f′c b0d

Vc =  2 +

=

4

4λ

β

λ

αsd + 2
b0

λ  f′c b0d

Flowchart 24.13d Two-way slab—DDM.
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If panel is interior, M0
shall be distributed for both

directions AS
Mn = 0.65M0, Mp = 0.35M0

(ACI 8.10.4.1)

If panel is exterior M0
shall be distributed

(ACI 8.10.4.2)

A2 B2

Column strip shall be
proportioned to resist
 % of interior negative
moment (ACI 8.10.5.1)

Middle strip shall be
proportioned to resist (100
– column strip proportion

% of interior negative
moment)

Column strip shall be
proportioned to resist
% exterior negative

moment (ACI 8.10.5.2)

Middle strip shall be
proportioned to resist
(100 – column strip

proportion % of exterior
negative moment)

Column strip shall be
proportioned to resist % of
 interior positive moment

(ACI 8.10.5.5) 

Middle strip shall be
proportioned to resist

(100 – column
strip proportion

% of interior positive
moment)

Column strip shall be
proportioned to resist
% of exterior positive

moment (ACI 8.10.5.2)

Middle strip shall be
proportioned to resist
(100 – column strip

proportion % of exterior
positive moment)

d = depth of slab, b = width
of strip 

Spacing ≤ 2hs or 18 in.
whichever is smaller

α (l2/l1) > 1.0, 85% of the moments in column strip is assigned to bean, 15% to slab in column strip

Ru =
Mu

bd2

AS = ρbd

For distribution of panel moments in the transverse direction, calculate α (l2/l1), α =  
EcbIb

EcsIs

Flowchart 24.13e Two-way slab—DDM.
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Yes

Start

Assume girder size based on span and girder 

Determine applied dead load for the interior and exterior

Determine live-load distribution factors for the interior and exterior

Determine unfactored and factored force

Determine prestressing

Determine long-term and short-term prestressing

Check allowable

Design for flexure under service limit

Design for flexure under strength limit

Design for shear under strength limit

Check

Does the girder pass
all design checks and
is the selected girder

most optimum
design?

End

Select a different
size or change
strand arrangement

No

Flowchart 24.14 Bridge superstructre design.
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End

Determine final stress in strands as stress immediately
prior to transfer minus sum of instantaneous loss and

time-dependent losses after transfer

Start

Determine the stress limit immediately prior to transfer
in the perstressing strands for the prestressing

 steel used (5.9.3)

Determine instantaneous losses (S5.9.5.2) for pretensioned
members—only elastic shortening is considered (S5.9.5.2.3a)

Determine shrinkage lossDetermine the lump-sum
time-dependent losses

Will the lump-sum method or
the refined method for time-
dependent losses be used?

Determine relaxation loss
at transfer (S5.9.5.4.4b)

Determine creep loss (S5.9.5.4.3)

Determine losses due to
relaxation after transfer

Determine total time-dependent
losses after transfer by adding creep,

shrinkage, and relaxation loses

Determine time-dependent losses after
transfer as the total time-dependent

losses minus relaxation losses at transfer

Determine stress in strands immediately after transfer as
the stress prior to transfer minus instantaneous losses

Flowchart 24.15 Bridge prestressing losses calculation.
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Design for flexure under strength limit 

Design for shear under strength limit 

End

Apply skew correction factor (S4.6.2.2.3c) 

Determine the controlling distribution factors for moment and shear for the

Repeat the calculations for moment and shear for the exterior (S4.6.2.2.2d & S4.6.2.2.3b)

Design for flexure under service limit 

Start

Determine the type of cross section, Table 12 (CH.22)

Determine LL distribution factors for moment for the interior girder
under single-lane and multilane loading (S4.6.2.2.2b)

Determine LL distribution factors for shear for the interior girder
under single-lane and multilane loading (S4.6.2.2.3a)

Determine Kg factor

Flowchart 24.16 Bridge live-load distribution factor calcualtion.
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Determine dead-load positive and negative

Determine factored moment (S3.4)

Design main reinforcement for flexure (S5.7.3)

Check shrinkage and temperature reinforcement (S5.10.8)

End

Start

Determine a deck slab thickness based on
girder spacing and girder top flange width

(S9.7.1.1)

Determine the location of the critical section for negative moment
based on the girder top flange width (S4.6.2.1.6)

Determine live-load positive and negative moment

Determine distribution reinforcement (S9.7.3.2)

Flowchart 24.17 Bridge deck slab design.



992 Chapter 24 Design and Analysis Flowcharts

Check maximum
and minimum
reinforcement
(S5.7.3.3.2)

Calculate factored flexure resistance, Mr, at points of maximum moment (S5.7.3.1)

Check the
nominal

capacity against
Mu

Select a different
girder size or
change strand
arrangement

Select a different
girder size or
change strand
arrangement

Determine compression and tension stress limits at transfer

Determine final stress compression and tension stress limits 

Calculate initial service moment stress in the top and bottom of the prestressed girder 

Calculate initial service moment stress in the top and bottom of the prestressed girder 

Design the longitudinal steel at top of girder 

Are service
stresses within
stress limits?

Select a different
girder size or
change strand
arrangement

Calculate camber & check live-load deflection End

No

Yes

No

Yes

No

Yes

Flowchart 24.18 Flexure design.
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End

End
Provide additional

longitudinal
reinforcement

Can longitudinal
reinforcement resist

required tension?

Can transverse
reinforcement, Vs, be

increased, thereby reducing T,
i.e., the longitudinal steel

reinforcement?

Start

Determine dv and bv.
Calculate Vp.

Calculate shear stress ratio vu/f ′c.

If section is within the transfer length of any strands, then
calculate the effective value of fpo, else assume fpo = 0.7fpu

Calculate εx

Yes

No

No

Determine transverse reinforcement, Vs, to
ensure:

Vu ≤ ϕ (Vc + Vs + Vp)

Flowchart 24.19 Shear design.
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Table A.1 Values of Ru and a/d for f ′c = 3000psi (𝜀t ≥ 0.005, 𝜙=0.9 and d=dt)

fy =40 ksi fy =50 ksi fy =60 ksi fy =75 ksi
100
𝝆 Ru a/d Ru a/d Ru a/d Ru a/d

0.2 71 0.031 88 0.039 106 0.047 131 0.059
0.3 105 0.047 131 0.059 156 0.071 192 0.089
0.4 140 0.062 173 0.078 206 0.094 254 0.118
0.5 173 0.078 214 0.098 254 0.118 310 0.148
0.6 206 0.094 254 0.118 301 0.141 368 0.177

0.7 238 0.110 293 0.138 347 0.165 421 0.207
0.8 270 0.126 332 0.157 391 0.189 475 0.236
0.9 301 0.142 369 0.177 434 0.213 524 0.266
1.0 332 0.157 406 0.196 476 0.238 572 0.295
1.1 362 0.173 441 0.216 517 0.260 620 0.325

1.2 390 0.188 476 0.235 556 0.282 615 0.319
1.3 420 0.204 510 0.255 594 0.306 (𝜌max = 1.082)
1.4 450 0.220 543 0.274 631 0.330
1.5 476 0.236 575 0.294 667 0.353
1.6 504 0.252 607 0.314 700 0.376

1.7 530 0.267 615 0.319
1.8 556 0.282 (𝜌max = 1.356)
1.9 582 0.298
2.0 607 0.314
2.1 630 0.330

615 0.319
(𝜌max = 1.624)

615 0.319
(𝜌max = 2.031)

Note: Last values are the maximum for 𝜀t = 0.005.
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Table A.2 Values of Ru and a/d for f ′c = 4000psi (𝜀t ≥ 0.005, 𝜙= 0.9 and d=dt)

fy = 40 ksi fy =50 ksi fy =60 ksi fy =75 ksi
100
𝝆 Ru a/d Ru a/d Ru a/d Ru a/d

0.2 71 0.024 89 0.029 106 0.035 132 0.044
0.3 106 0.036 132 0.044 158 0.053 194 0.066
0.4 140 0.047 175 0.059 208 0.071 257 0.088
0.5 175 0.059 217 0.074 258 0.089 317 0.110
0.6 208 0.071 260 0.088 307 0.106 378 0.132

0.7 242 0.083 300 0.103 355 0.123 434 0.154
0.8 274 0.094 340 0.118 400 0.141 490 0.176
0.9 307 0.106 378 0.132 447 0.158 545 0.198
1.0 340 0.118 419 0.147 492 0.176 600 0.220
1.1 370 0.130 455 0.161 536 0.194 650 0.242

1.2 400 0.141 492 0.176 580 0.212 702 0.264
1.3 432 0.153 530 0.191 620 0.230 752 0.286
1.4 462 0.165 565 0.206 662 0.247 801 0.308
1.5 492 0.177 600 0.221 700 0.265
1.6 522 0.188 635 0.236 742 0.282 820 0.319

(𝜌max = 1.445)

1.7 550 0.200 670 0.250 780 0.300
1.8 580 0.212 702 0.265 818 0.318
1.9 607 0.224 735 0.280
2.0 635 0.236 768 0.294
2.1 662 0.248 800 0.309

2.2 690 0.260 820 0.319
2.3 717 0.271 (𝜌max = 1.806)
2.4 742 0.282
2.5 767 0.294
2.6 792 0.306

2.7 817 0.318
820 0.319

(𝜌max = 2.167)
820 0.319

(𝜌max = 2.715)

Note: Last values are the maximum for 𝜀t = 0.005.
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Table A.3 Values of Ru and a/d for f ′c = 5000psi (𝜀t ≥ 0.005, 𝜙=0.9 and d=dt)

fy =40 ksi fy = 50 ksi fy = 60 ksi fy =75 ksi
100
𝝆 Ru a/d Ru a/d Ru a/d Ru a/d

0.2 71 0.019 89 0.024 106 0.028 132 0.035
0.3 106 0.029 133 0.036 159 0.042 196 0.052
0.4 141 0.038 176 0.047 210 0.056 260 0.070
0.5 176 0.047 218 0.060 260 0.070 322 0.088
0.6 210 0.056 260 0.071 310 0.085 384 0.106

0.7 244 0.066 302 0.083 360 0.100 442 0.123
0.8 277 0.075 343 0.094 408 0.113 500 0.141
0.9 310 0.085 383 0.106 455 0.127 556 0.159
1.0 343 0.094 424 0.118 502 0.141 612 0.177
1.1 375 0.104 463 0.130 550 0.155 667 0.195

1.2 408 0.113 500 0.141 593 0.169 722 0.212
1.3 440 0.123 540 0.153 637 0.183 776 0.230
1.4 470 0.132 578 0.165 681 0.198 830 0.247
1.5 502 0.141 615 0.177 724 0.212 875 0.265
1.6 532 0.150 652 0.188 766 0.226 920 0.282

1.7 563 0.160 688 0.200 808 0.240 970 0.300
1.8 593 0.169 724 0.212 848 0.254
1.9 623 0.179 760 0.224 890 0.268 975 0.300
2.0 652 0.188 794 0.235 927 0.282 (𝜌max = 1.704)
2.1 681 0.198 830 0.247 965 0.292

2.2 710 0.207 862 0.259 1003 0.311
2.3 738 0.217 894 0.271
2.4 766 0.226 927 0.282
2.5 794 0.235 958 0.294
2.6 821 0.244 990 0.306 975 0.300

(𝜌max = 2.123)

2.7 848 0.254
2.8 875 0.263
2.9 900 0.272
3.0 127 0.282
3.1 952 0.292

975 0.300
(𝜌max = 2.551)

975 0.300
(𝜌max = 3.18)

Note: Last values are the maximum for 𝜀t = 0.005.
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Table A.4 Values of 𝜌max, Ru,max, 𝜌b, 𝜌min

𝝆b =𝟎.𝟖𝟓 𝜷𝟏(f ′c ∕ f y)[𝟖𝟕∕(𝟖𝟕 + f y)] 𝝆max = (𝟎.𝟎𝟎𝟑+ f y ∕Es)𝝆b ∕ 𝟎.𝟎𝟎𝟖 Ru =𝝓𝝆f y[𝟏−𝝆f y ∕ 𝟏.𝟕f ′c]

fy = 40 ksi fy = 50 ksi

f ′c 100max Ru, max 100 100 100 Ru, max 100 100
psi 𝝆max psi 𝝆b 𝝆min 𝝆max psi 𝝆b 𝝆min

3000 2.031 615 3.71 0.50 1.624 615 2.75 0.40
4000 2.715 820 4.96 0.50 2.167 820 3.67 0.40
5000 3.180 975 5.81 0.53 2.551 975 4.32 0.42
6000 3.575 1108 6.53 0.58 2.864 1108 4.85 0.47

fy = 60 ksi fy = 75 ksi

f ′c 100 Ru, max 100 100 100 Ru max 100 100
psi 𝝆max psi 𝝆b 𝝆min 𝝆max psi 𝝆b 𝝆min

3000 1.356 615 2.14 0.33 1.082 615 1.55 0.27
4000 1.806 820 2.85 0.33 1.445 820 2.07 0.27
5000 2.123 975 3.35 0.35 1.704 975 2.44 0.28
6000 2.389 1108 3.77 0.39 1.920 1108 2.75 0.31

Note: 𝜌max values are for 𝜀t = 0.005 and 𝜑= 0.9.

Table A.5 Suggested Design Steel Ratios, 𝜌s, and Comparison with Other Steel Ratios

f′c fy 100 100 100 Ru for Ratio Ratio Weight of 𝝆s
psi ksi 𝝆b 𝝆max 𝝆s 𝝆s (psi) 𝝆s/𝝆b 𝝆s/𝝆max (lb/ft3 of concrete)

3000 40 3.71 2.031 1.4 450 0.377 0.689 7
50 2.75 1.624 1.2 476 0.436 0.739 6
60 2.15 1.356 1.2 556 0.558 0.885 6

4000 40 4.96 2.715 1.4 462 0.282 0.516 7
50 3.67 2.167 1.4 565 0.381 0.646 7
60 2.85 1.806 1.4 662 0.491 0.775 7

5000 40 5.81 3.180 1.6 532 0.275 0.503 8
50 4.32 2.551 1.6 652 0.370 0.627 8
60 3.35 2.123 1.6 766 0.478 0.754 8

Note: 𝜌max values are for 𝜀t = 0.005 and 𝜑= 0.9.

Table A.6 Minimum Thickness of Beams and One-Way Slabs

Yield
Strength Simply One End Both Ends

Member fy (ksi) Supported Continuous Continuous Cantilevel

Solid one-way slabs 40 L/25 L/30 L/35 L/12.5
50 L/22 L/27 L/31 L/11
60 L/20 L/24 L/8 L/10

Beams or ribbed one-way slabs 40 L/20 L/23 L/26 L/10
50 L/18 L/20.5 L/23.5 L/9
60 L/16 L/18.5 L/21 L/8
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Table A.7 Minimum Beam Width (in.) (Using Stirrups)

Number of Bars in Single Layer of Reinforcement

2 3 4 5 6 7 8
Size of
Bars

Add for
Each Added

Bar (in.)

No. 4 6.1 7.6 9.1 10.6 12.1 13.6 15.1 1.50
No. 5 6.3 7.9 9.6 11.2 12.8 14.4 16.1 1.63
No. 6 6.5 8.3 10.0 11.8 13.5 15.3 17.0 1.75
No. 7 6.7 8.6 10.5 12.4 14.2 16.1 18.0 1.88
No. 8 6.9 8.9 10.9 12.9 14.9 16.9 18.9 2.00
No. 9 7.3 9.5 11.8 14.0 16.3 18.6 20.8 2.26
No. 10 7.7 10.2 12.8 15.3 17.8 20.4 22.9 2.54
No. 11 8.0 10.8 13.7 16.5 19.3 22.1 24.9 2.82
No. 14 8.9 12.3 15.6 19.0 22.4 25.8 29.2 3.39
No. 18 10.5 15.0 19.5 24.0 28.6 33.1 37.6 4.51

Table A.8 Values of bd2 (in.3) where bd2 =
[

Mu

Ru

(
lb ⋅ in.

psi

)]

Values of b (in.)

d (in.) 6 7 8 9 10 11 12 13 14 15 16 20

4 96 112 128 144 160 176 192 208 224 240 256 320
4.5 122 142 162 182 202 223 244 264 284 305 325 405
5 150 175 200 225 250 275 300 325 350 375 400 500
5.5 182 212 242 273 303 333 364 394 424 455 485 605
6 216 252 288 324 360 396 432 468 504 540 576 720
6.5 255 297 340 382 425 467 510 552 595 637 680 850
7 294 343 392 441 490 539 588 637 686 735 784 980
8 384 448 512 576 640 704 768 832 896 960 1024 1280
9 486 567 648 729 810 891 972 1053 1134 1215 1296 1620

10 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 2000
11 726 847 968 1089 1210 1331 1452 1573 1694 1815 1936 2420
12 864 1008 1152 1296 1440 1584 1728 1872 2016 2160 2304 2880
13 1014 1183 1352 1521 1690 1859 2028 2197 2366 2535 2704 3380
14 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3920
15 1350 1575 1800 2025 2250 2475 2700 2925 3150 3375 3600 4500
16 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096 5120
17 1734 2023 2312 2601 2890 3179 3468 3757 4046 4335 4624 5780
18 1944 2268 2592 2916 3240 3564 3888 4212 4536 4860 5184 6480
19 2166 2527 2888 3249 3610 3971 4332 4693 5054 5415 5776 7220
20 2400 2800 3200 3600 4000 4400 4800 5200 5000 6000 6400 8000
21 2646 3087 3528 3969 4410 4851 5292 5733 6174 6615 7056 8820
22 2904 3388 3872 4356 4840 5324 5808 6292 6776 7260 7744 9680
23 3174 3703 4232 4761 5290 5819 6348 6877 7406 7935 8464 10,580
24 3456 4032 4608 5184 5760 6336 6912 7488 8064 8640 9216 11,520
28 4704 5488 6272 7056 7840 8624 9408 10,192 10,976 11,760 12,544 15,680
30 5400 6300 7200 8100 9000 9900 10,800 11,700 12,600 13,500 14,400 18,000
34 6936 8092 9248 10,404 11,560 12,716 13,872 15,028 16,184 17,340 18,496 23,120
40 9600 11,200 12,800 14,400 16,000 17,600 19,200 20,800 22,400 24,000 25,600 32,000
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Table A.9 Rectangular Sections with Compression Steel Minimum Steel Percentage 100(𝜌− 𝜌′) for
Compression Steel to Yield

(𝝆−𝝆′)≥ 𝟎.𝟖𝟓𝜷𝟏
f ′c
f y

× d′

d
× 𝟖𝟕
𝟖𝟕− f y

( f c and f y in ksi)

fy

f′c (psi) 𝜷1 d′/d 40 ksi 50 ksi 60 ksi 75 ksi

3000 0.85 0.10 1.00 1.02 1.16 2.09
4000 0.85 0.10 1.33 1.35 1.55 2.78
5000 0.80 0.10 1.57 1.59 1.81 3.27
6000 0.75 0.10 1.78 1.81 2.06 3.71
3000 0.85 0.12 1.20 1.22 1.39 2.51
4000 0.85 0.12 1.60 1.62 1.86 3.34
5000 0.80 0.12 1.88 1.91 2.17 3.92
6000 0.75 0.12 2.14 2.17 2.47 4.45
3000 0.85 0.15 1.50 1.53 1.74 3.14
4000 0.85 0.15 2.00 2.03 2.33 4.17
5000 0.80 0.15 2.36 2.39 2.72 4.91
6000 0.75 0.15 2.67 2.72 3.09 5.57

Note: Minimum (𝜌− 𝜌′) for any value of d′/d= 10× (d′/d)× value shown in table with d′/d= 0.10.

Table A.10 Modulus of Elasticity of Concrete, Ec (ksi)

Concrete Unit Weight of Concrete (psi)
Cylinder
Strength (f′c) 90 100 110 125 145

3000 1540 1800 2080 2520 3150
4000 1780 2090 2410 2920 3640
5000 1990 2330 2690 3260 4060
6000 2185 2560 2950 3580 4500
7000 2360 2760 3190 3870 4800
8000 2520 2950 3410 4130 5200

Note: Ec = 33W1.5
√

f ′c
Ec = 57, 000

√
f ′c = W = 145psf (normal − weight concrete)

Table A.11(a) Values of 𝓁d/db for Various Values of f ′c and fy (Tension Bars)

fy =40 ksi fy =60 ksi

≤ No. 6 Bars ≥ No. 7 Bars ≤ No. 6 Bars ≥ No. 7 Bars

f′c Conditions Conditions Conditions Conditions
(ksi) Met Others Met Others Met Others Met Others

3 29.3 43.9 36.6 54.8 43.9 65.8 54.8 82.2
4 25.3 38.0 31.7 47.5 38.0 57.0 47.5 71.2
5 22.7 34.0 28.3 42.5 34.0 51.0 42.5 63.7
6 20.7 31.0 25.9 38.8 31.0 46.5 38.8 58.1
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Table A.11(b) Development Length 𝓁d for Tension Bars and fy =60 ksi (𝜓 t =𝜓e = 𝜆= 1)

Development Length 𝓵d (in.)—Tension Bars

f′c = 3ksi f′c = 4ksi
Bar

Bar Diameter Conditions Conditions
Number (in.) Met Others Met Others

3 0.375 17 25 15 21
4 0.500 22 33 19 29
5 0.625 28 41 24 36
6 0.750 33 50 29 43
7 0.875 48 72 42 63
8 1.000 55 83 48 72
9 1.128 62 93 54 81

10 1.270 70 105 61 92
11 1.410 78 116 68 102

Table A.12 Designations, Areas, Perimeters, and Weights of Standard U.S. Bars

Unit
Cross- Weight

Bar Diameter Sectional Perimeter per Foot Diameter Area
No. (in.) Area (in.2) (in.) (lb) (mm) (mm2)

2 1
4
= 0.250 0.05 0.79 0.167 6.4 32

3 3
8
= 0.375 0.11 1.18 0.376 9.5 71

4 1
2
= 0.500 0.20 1.57 0.668 12.7 129

5 5
8
= 0.625 0.31 1.96 1.043 15.9 200

6 3
4
= 0.750 0.44 2.36 1.502 19.1 284

7 7
8
= 0.875 0.60 2.75 2.044 22.2 387

8 1= 1.000 0.79 3.14 2.670 25.4 510

9 1 1
8
= 1.128 1.00 3.54 3.400 28.7 645

10 1 1
4
= 1.270 1.27 3.99 4.303 32.3 820

11 1 3
8
= 1.410 1.56 4.43 5.313 35.8 1010

14 1 3
4
= 1.693 2.25 5.32 7.650 43.0 1450

18 2 1
4
= 2.257 4.00 7.09 13.600 57.3 2580
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Table A.13 Areas of Groups of Standard U.S. Bars in Square Inches

Number of Bars

Bar
Number

1 2 3 4 5 6 7 8 9 10 11 12

3 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 1.00 1.10 1.21 1.32
4 0.20 0.39 0.58 0.78 0.98 1.18 1.37 1.57 1.77 1.96 2.16 2.36
5 0.31 0.61 0.91 1.23 1.53 1.84 2.15 2.45 2.76 3.07 3.37 3.68
6 0.44 0.88 1.32 1.77 2.21 2.65 3.09 3.53 3.98 4.42 4.84 5.30
7 0.60 1.20 1.80 2.41 3.01 3.61 4.21 4.81 5.41 6.01 6.61 7.22
8 0.79 1.57 2.35 3.14 3.93 4.71 5.50 6.28 7.07 7.85 8.64 9.43
9 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

10 1.27 2.53 3.79 5.06 6.33 7.59 8.86 10.16 11.39 12.66 13.92 15.19
11 1.56 3.12 4.68 6.25 7.81 9.37 10.94 12.50 14.06 15.62 17.19 18.75
14 2.25 4.50 6.75 9.00 11.25 13.50 15.75 18.00 20.25 22.50 24.75 27.00
18 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 48.00

Table A.14 Areas of Bars in Slabs (Square Inches per Foot)

Bar Number
Spacing
(in.) 3 4 5 6 7 8 9 10 11

3 0.44 0.78 1.23 1.77 2.40 3.14 4.20 5.06 6.25
3 1

2
0.38 0.67 1.05 1.51 2.06 2.69 3.43 4.34 5.36

4 0.33 0.59 0.92 1.32 1.80 2.36 3.00 3.80 4.68
4 1

2
0.29 0.52 0.82 1.18 1.60 2.09 2.67 3.37 4.17

5 0.26 0.47 0.74 1.06 1.44 1.88 2.40 3.04 3.75
5 1

2
0.24 0.43 0.67 0.96 1.31 1.71 2.18 2.76 3.41

6 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.53 3.12
6 1

2
0.20 0.36 0.57 0.82 1.11 1.45 1.85 2.34 2.89

7 0.19 0.34 0.53 0.76 1.03 1.35 1.71 2.17 2.68
7 1

2
0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.02 2.50

8 0.17 0.29 0.46 0.66 0.90 1.18 1.50 1.89 2.34
9 0.15 0.26 0.41 0.59 0.80 1.05 1.33 1.69 2.08

10 0.13 0.24 0.37 0.53 0.72 0.94 1.20 1.52 1.87
12 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56



Appendix A Design Tables (U.S. Customary Units) 1003

Table A.15 Common Styles of Welded Wire Fabric

Steel Area (in.2 ft) Weight
Approx.

Style Designation Longitudinal Transverse lb/100 ft2

6× 6—W1.4×W1.4 0.03 0.03 21
6× 6—W2×W2 0.04 0.04 29
6× 6—W2.9×W2.9 0.06 0.06 42
6× 6 —W4×W4 0.08 0.08 58
6× 6—W5.5×W5.5 0.11 0.11 80
4× 4—W1.4×W1.4 0.04 0.04 31
4× 4—W2×W2 0.06 0.06 43
4× 4—W2.9×W2.9 0.09 0.09 62
4× 4—W4×W4 0.12 0.12 86

Table A.16 Size and Pitch of Spirals

f′c (psi)
fy
(ksi)

Diameter of
Column (in.)

Outside to
Outside of
Spiral (in.) 3000 4000 5000

40 14, 15 11, 12 3
8
− 1 3

4
1
2
− 2 1

2
1
2
− 1 3

4

16 13 3
8
− 1 3

4
1
2
− 2 1

2
1
2
− 2

17–19 14–16 3
8
− 1 3

4
1
2
− 2 1

2
1
2
− 2

20–23 17–20 3
8
− 1 3

4
1
2
− 2 1

2
1
2
− 2

24–30 21–27 3
8
− 2 1

2
− 2 1

2
1
2
− 2

60 14, 15 11, 12 3
8
− 2 3

4
3
8
− 2 1

2
− 2 3

4

16–23 13–20 3
8
− 2 3

4
3
8
− 2 1

2
− 2 3

4

24–29 21–26 3
8
− 3 3

8
− 2 1

4
1
2
− 3

30 27 3
8
− 3 3

8
− 2 1

4
1
2
− 3 1

4
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Table B.1 Values of Ru and a/d for f ′c = 21MPa (Ru in MPa), (𝜀t ≥0.005, 𝜙= 0.9 and d=dt)

fy =280 MPa fy =350 MPa fy =420 MPa fy = 520 MPa
100
𝝆 Ru a/d Ru a/d Ru a/d Ru a/d

0.2 0.50 0.031 0.62 0.039 0.75 0.047 0.92 0.059
0.3 0.74 0.046 0.92 0.059 1.10 0.071 1.35 0.089
0.4 0.98 0.062 1.22 0.078 1.45 0.094 1.79 0.118
0.5 1.21 0.078 1.50 0.098 1.79 0.118 2.18 0.148
0.6 1.45 0.094 1.79 0.118 2.12 0.141 2.59 0.177

0.7 1.68 0.110 2.06 0.138 2.44 0.165 2.96 0.207
0.8 1.90 0.126 2.33 0.157 2.75 0.189 3.34 0.236
0.9 2.12 0.142 2.59 0.177 3.05 0.213 3.68 0.266
1.0 2.33 0.157 2.84 0.196 3.35 0.238 4.02 0.295
1.1 2.55 0.173 3.10 0.216 3.64 0.260 4.36 0.325

1.2 2.74 0.188 3.35 0.235 3.91 0.280 4.32 0.319
1.3 2.95 0.204 3.59 0.255 4.18 0.306 (𝜌max = 1.085)
1.4 3.16 0.220 3.82 0.274 4.44 0.330
1.5 3.35 0.236 4.04 0.294
1.6 3.54 0.252 4.27 0.314

1.7 3.73 0.267 4.32 0.319
1.8 3.91 0.282 (𝜌max = 1.37)
1.9 4.09 0.298
2.0 4.27 0.314

2.1 4.43 0.330 4.32 0.319
(𝜌max = 1.63)

4.32 0.319
(𝜌max = 2.04)

Note: Last values are the maximum for 𝜀t = 0.005.
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Table B.2 Values of Ru and a/d for f ′c = 28MPa (Ru in MPa), (𝜀t ≥0.005, 𝜙= 0.9 and d=dt)

fy =280 MPa fy = 350 MPa fy =420 MPa fy =520 MPa
100
𝝆 Ru a/d Ru a/d Ru a/d Ru a/d

0.2 0.50 0.024 0.63 0.029 0.75 0.025 0.93 0.044
0.3 0.74 0.036 0.93 0.044 1.11 0.053 1.36 0.066
0.4 0.98 0.047 1.23 0.059 1.46 0.071 1.81 0.088
0.5 1.23 0.059 1.53 0.074 1.81 0.089 2.23 0.110
0.6 1.46 0.071 1.83 0.088 2.16 0.106 2.66 0.132

0.7 1.70 0.083 2.11 0.103 2.50 0.123 3.05 0.154
0.8 1.93 0.094 2.39 0.118 2.81 0.141 3.45 0.176
0.9 2.16 0.106 2.66 0.132 2.14 0.158 3.83 0.198
1.0 2.39 0.118 2.95 0.147 3.46 0.176 4.22 0.220
1.1 2.60 0.130 3.20 0.161 3.77 0.194 4.57 0.242

1.2 2.81 0.141 3.46 0.176 4.08 0.212 4.94 0.264
1.3 3.04 0.153 3.73 0.191 4.36 0.230 5.29 0.286
1.4 3.25 0.165 3.97 0.206 4.65 0.247
1.5 3.46 0.177 4.22 0.221 4.92 0.265
1.6 3.67 0.188 4.46 0.236 5.22 0.282 5.77 0.319

(𝜌max = 1.45)

1.7 3.87 0.200 4.71 0.250 5.48 0.300
1.8 4.08 0.212 4.94 0.265 5.75 0.318
1.9 4.27 0.224 5.17 0.280
2.0 4.46 0.236 5.40 0.294
2.1 4.65 0.248 5.62 0.309

2.2 4.85 0.260 5.77 0.319
2.3 5.04 0.271 (𝜌max = 1.82)
2.4 5.22 0.282

2.5 5.39 0.294
2.6 5.57 0.306
2.7 5.74 0.318
2.8 5.92 0.330 5.77 0.319

(𝜌max = 2.18)

5.77 0.319
(𝜌max = 2.73)

Note: Last values are the maximum for 𝜀t = 0.005.
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Table B.3 Values of Ru and a/d for f ′c = 35MPa (Ru in MPa), (𝜀t ≥ 0.005, 𝜙= 0.9 and d=dt)

fy =350 MPa fy =420 MPa fy =520 MPa
100
𝝆 Ru a/d Ru a/d Ru a/d

0.2 0.63 0.024 0.75 0.028 0.93 0.035
0.3 0.93 0.036 1.12 0.042 1.38 0.052
0.4 1.24 0.047 1.48 0.056 1.83 0.070
0.5 1.53 0.060 1.83 0.070 2.26 0.088
0.6 1.83 0.071 2.18 0.085 2.70 0.106

0.7 2.12 0.083 2.53 0.100 3.11 0.123
0.8 2.41 0.094 2.87 0.113 3.52 0.141
0.9 2.69 0.106 3.20 0.127 3.91 0.159
1.0 2.98 0.118 3.53 0.141 4.30 0.177
1.1 3.26 0.130 3.87 0.155 4.69 0.195

1.2 3.52 0.141 4.17 0.169 5.08 0.212
1.3 3.80 0.153 4.48 0.183 5.46 0.230
1.4 4.06 0.165 4.79 0.198 5.84 0.247
1.5 4.32 0.177 5.09 0.212 6.15 0.265
1.6 4.58 0.188 5.39 0.226 6.47 0.282

1.7 4.84 0.200 5.68 0.240 6.82 0.300
1.8 5.09 0.212 5.96 0.254
1.9 5.34 0.224 6.26 0.268 6.85 0.3192
2.0 5.58 0.235 6.52 0.282 (𝜌max = 1.71)
2.1 5.84 0.247 6.78 0.296

2.2 6.06 0.259
2.3 6.29 0.271
2.4 6.52 0.282
2.5 6.74 0.294

6.85 0.319
(𝜌max = 2.16)

6.85 0.319
(𝜌max = 2.57)

Note: Last values are the maximum for 𝜀t = 0.005.
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Table B.4 Values of 𝜌max, Ru, max, 𝜌b, 𝜌min

𝝆b =𝟎.𝟖𝟓𝜷𝟏(f
′
c∕f y)[𝟖𝟕∕(𝟖𝟕+ f y)] 𝝆max =(𝟎.𝟎𝟎𝟑+ f y∕Es)𝝆b∕𝟎.𝟎𝟎𝟖 Ru = 𝝓𝝆f y[𝟏−𝝆f y∕𝟏.𝟕f ′c]

fy =280 MPa fy =350 MPa

f′c MPa 100 𝝆max Ru, maxMPa 100 𝝆b 100 𝝆min 100 𝝆max Ru, max MPa 100 𝝆b 100 𝝆min

21 2.031 4.32 3.71 0.50 1.624 4.32 2.75 0.40
28 2.715 5.77 4.96 0.50 2.167 5.77 3.67 0.40
35 3.180 6.85 5.81 0.53 2.551 6.85 4.32 0.42
42 3.575 7.78 6.53 0.58 2.864 7.78 4.85 0.47

fy =420 MPa fy =525 MPa

f′c MPa 100 𝝆max Ru, maxMPa 100 𝝆b 100 𝝆min 100 𝝆max Ru, max MPa 100 𝝆b 100 𝝆min

21 1.356 4.32 2.14 0.33 1.082 4.32 1.55 0.27
28 1.806 5.77 2.85 0.33 1.445 5.77 2.07 0.27
35 2.123 6.85 3.35 0.35 1.704 6.85 2.44 0.28
42 2.389 7.78 3.77 0.39 1.920 7.78 2.75 0.31

Note: 𝜌max values are for 𝜀t = 0.005 and 𝜑= 0.9.

Table B.5 Suggested Design Steel Ratios, 𝜌s, and Comparison with Other Steel Ratios

f′c fy 100 100 100 Ru for Ratio Ratio Weight of 𝝆s
MPa MPa 𝝆b 𝝆max 𝝆s 𝝆s (MPa) 𝝆s/𝝆b 𝝆s/𝝆max (kg/m3 of concrete)

21 280 3.71 2.04 1.4 3.16 0.377 0.689 112
350 2.75 1.63 1.2 3.35 0.436 0.739 96
420 2.15 1.37 1.2 3.91 0.558 0.885 96

28 280 4.96 2.73 1.4 3.25 0.282 0.516 112
350 3.67 2.18 1.4 3.97 0.381 0.646 112
420 2.85 1.81 1.4 4.65 0.491 0.775 112

35 280 5.81 3.20 1.6 3.72 0.275 0.503 128
350 4.32 2.57 1.6 4.58 0.370 0.627 128
420 3.35 2.16 1.6 5.39 0.478 0.754 128

Note: 𝜌max values are for 𝜀t = 0.005 and 𝜑= 0.9.

Table B.6 Minimum Thickness of Beams and One-Way Slabs

Yield
Strength Simply One End Both Ends

Member fy (MPa) Supported Continuous Continuous Cantilever

Solid one-way slabs 280 L/25 L/30 L/35 L/12.5
350 L/22 L/27 L/31 L/11
420 L/20 L/24 L/28 L/10

Beams or ribbed one-way slabs 280 L/20 L/23 L/26 L/10
350 L/18 L/20.5 L/23.5 L/9
420 L/16 L/18.5 L/21 L/8
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Table B.7 Rectangular Sections with Compression Steel. Minimum Steel Percentage 100 (𝜌− 𝜌′) for
Compression Steel to Yield

(𝝆−𝝆′)≥ 𝟎.𝟖𝟓𝜷1

(
f ′c
f y

)
×
(

d′

d

)
× 𝟔𝟎𝟎
𝟔𝟎𝟎− f y

, (f y , f
′
c in MPa)

f′c fy fy fy
MPa 𝜷1 d′/d 300 MPa 400 MPa 500 MPa

21 0.85 0.10 1.20 1.35 2.16
28 0.85 0.10 1.45 1.63 2.60
35 0.80 0.10 1.59 1.80 2.85
42 0.75 0.10 1.70 1.91 3.06
21 0.85 0.12 1.45 1.63 2.60
28 0.85 0.12 1.73 1.95 3.12
35 0.80 0.12 2.02 2.27 3.64
42 0.75 0.12 2.04 2.29 3.67
21 0.85 0.15 1.81 2.03 3.25
28 0.85 0.15 2.17 2.44 3.90
35 0.80 0.15 2.38 2.68 4.28
42 0.75 0.15 2.55 2.87 4.59

Note: Minimum (𝜌− 𝜌′) for any value of d′/d= 10× (d′/d)× value shown in table with d′/d= 0.10.

Table B.8 Modulus of Elasticity of Normal-Weight Concrete

General: Ec = 0.043W1.5
√

f′c MPa

For Normal-Weight Concrete, W= 2350 kg/m3: Ec = 4730
√

f′c MPa

f′c MPa Ec (kN/mm2)

17.5 20.0
21.0 22.5
28.0 25.0
35.0 29.0
42.0 32.0
49.0 33.5
56.0 36.5

Table B.9(a) Values of 𝓁d /db for Various Values of f ′c and fy(Tension Bars)

fy =300 MPa fy = 400 MPa

≤ 20 M Bars ≥ 25 M Bars ≤ 20 M Bars ≥ 25 M Bars

f′c Conditions Conditions Conditions Conditions
MPa Met Others Met Others Met Others Met Others

20 34.0 50.5 42.0 63.0 45.0 67.0 56.0 84.0
30 27.5 41.5 34.5 51.5 36.5 55.0 46.0 68.5
35 25.5 38.5 32.0 47.5 34.0 51.0 42.5 63.5
40 23.5 35.5 29.5 44.5 31.5 47.5 39.5 59.5
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Table B.9(b) Development Length 𝓁d/db for Tension Bars and fy = 400 MPa (𝛼 = 𝛽 = 𝜆=1.0)

Development Length 𝓵d/dd (mm)—Tension Bars

f′c = 20 MPa f′c = 30 MPa

Bar Number Bar Diameter (mm) Conditions Met Others Conditions Met Others

10M 11.3 Ê510 Ê765 Ê415 Ê620
15M 16.0 Ê720 1080 Ê585 Ê875
20M 19.5 Ê880 1320 Ê710 1070
25M 25.2 1410 2120 1160 1740
30M 29.9 1675 2510 1375 2065
35M 35.7 2000 3000 1640 2465

Table B.10 Designations, Areas, and Mass of Bars

Nominal Dimensions

Bar Number Diameter (mm) Area (mm2) Mass (kg/m)

10 9.5 71 0.560
13 12.7 129 0.994
16 15.9 199 1.552
19 19.1 284 2.235
22 22.2 387 3.042
25 25.4 510 3.973
29 28.7 645 5.060
32 32.3 819 6.404
36 35.8 1006 7.907
43 43.0 1452 11.38
57 57.3 2581 20.24

ASTM A615 M Grade 300 is limited to sizes no. 10 through no. 19; otherwise, grades are 400 or 500 MPa. (These bars are
soft conversion of no. 3 to no. 18 in U.S. customary units.)

Table B.11 ASTM Standard Metric Reinforcing Bars

Nominal Dimensions

Bar-Size Designation (number) Diameter (mm) Area (mm2) Mass (kg/m)

10M 11.3 100 0.785
15M 16.0 200 1.570
20M 19.5 300 2.355
25M 25.2 500 3.925
30M 29.9 700 5.495
35M 35.7 1000 7.850
45M 43.7 1500 11.775
55M 56.4 2500 19.625

ASTM A615M grade 300 is limited to size 10 M through 20 M; otherwise, grades are 400 or 500 MPa.
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Table B.12 Areas of Group of Bars (mm2)—Metric

Bar Number Number of Bars

Metric 1 2 3 4 5 6 7 8 9 10

10 71 142 213 384 355 426 497 568 639 710
13 129 258 387 516 645 774 903 1032 1161 1290
16 199 398 597 796 995 1194 1393 1592 1791 1990
19 284 568 852 1136 1420 1704 1988 2272 2556 2840
22 387 774 1161 1548 1935 2322 2709 3096 3483 3870
25 510 1020 1530 2040 2550 3060 3570 4080 4590 5100
29 645 1290 1935 2580 3225 3870 4515 5160 5805 6450
32 819 1638 2457 3276 4095 4914 5733 6552 7371 8190
36 1006 2012 3018 4024 5030 6036 7042 8048 9054 10060



APPENDIXC
STRUCTURAL AIDS

Table C.1 Simple Beams (Cases 1–20)
Table C.2 Cantilever Beams (Cases 21–24)
Table C.3 Propped Beams (Cases 25–32)
Table C.4 Fixed-End Beams (Cases 33–40)
Table C.5 Moments in Two Unequal Spans and Values of the Coefficient K (Cases 1–3)
Table C.6 Moments in Three Unequal Spans and Values of the Coefficient K (Cases 4–6)
Table C.7 Maximum and Minimum Moments in Equal-Span Continuous Beams (Cases 7–8)
Table C.8 Moments in Unequal-Span Continuous Beams Subjected to Unequal Loads (Case 9)

Note: SS stands for shearing force diagram. BD stands for bending moment diagram.

Bending moments are drawn on the tension sides of beams.

Moments, shearing forces, and deflections for any combination of loadings are obtained by superposition.
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Table C.1 Simple Beams (𝑤= Load/Unit Length)

1. Uniform load:

W = total load = 𝑤L

RA = RB = VA = VB = W
2

Mx =
Wx
2

(
1 − x

L

)

Mmax = WL
8

(at center)

𝛥max = 5
384

× WL3

EI
(at center)

2. Uniform partial load:

W = total load = 𝑤b

RA = VA = W
L

(b
2
+ c

)

RB = VB = W
L

(b
2
+ a

)

Mmax = W
2b

(x2 − a2) when x = a +
RAb

W

𝛥max = W
384EI

(8L3 − 4Lb2 + b3) when a = c

3. Uniform partial load at one end:

W = total load = 𝑤a

RA = VA = W
(

1 − a
2L

)

RB = VB = Wa
2L

Mmax = Wa
2

(
1 − a

2L

)2
when x = a

(
1 − a

2L

)

𝛥 = WL4

24aEI
n2[2m3 − 6m2 + m(4 + n2) − n2]

when x ≥ a

𝛥 = WL4m
24aEI

[n2(2 − n)2 − 2nm2(2 − n) + m3] when x < a

(continued)
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Table C.1 (Continued)

4. Triangular load on span with maximum value at one end:

W = total load = 𝑤L
2

RA = VA = W
3

RB = VB = 2W
3

Mx =
Wx
3

(
1 − x2

L2

)

Mmax = 0.128WL when x = 0.5774L

𝛥max = 0.01304WL3

EI
when x = 0.5193L

5. Triangular load with maximum value at midspan:

W = total load = 𝑤L
2

RA = RB = VA = VB = W
2

Mx = Wx

(
1
2
− 2x2

3L2

)

Mmax = WL
6

(at midspan)

𝛥max = WL3

60EI
(at midspan)

6. Moments at ends:

RA = RB = VA = VB =
MA − MB

L

𝛥max(at midspan) = ML2

8EI
when MA = MB

𝛥(at midspan) =
MAL2

16EI
when MB = 0

𝛥(at midspan) =
MBL2

16EI
when MA = 0
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Table C.1 (Continued)

7. External moment at any point:

RA = −RB = VA = VB = M
L

MCA = Ma
L

MCB = Mb
L

𝛥c =
−Mab
3EIL

(a − b)

8. Concentrated load at midspan:

RA = RB = VA = VB = P
2

Mmax = PL
4

(at midspan)

𝛥max = PL3

48EI
(at midspan)

9. Concentrated load at any point:

RA = VA = Pb
L

RB = VB = Pa
L

Mmax = Pab
L

(at point load)

𝛥c =
Pa2b2

3EIL
(at point load)

𝛥max = PL3

48EI

[
3a
L

− 4
( a

L

)3
]

(when a ≥ b)

at x =
√

a(b + L)∕3

(continued)
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Table C.1 (Continued)

10. Two symmetrical concentrated loads:

RA = RB = VA = VB = P

Mmax = Pa

𝛥max = PL3

6EI

[
3a
4L

−
( a

L

)3
]

(at midspan)

11. Two concentrated loads:

RA = VA = P(b + 2c)
L

RB = VB = P(b + 2a)
L

MC = Pa(b + 2c)
L

MD = Pc(b + 2a)
L

12. Two concentrated loads at one-third points:

RA = RB = VA = VB = P

Mmax = PL
3

𝛥max = 23PL3

648EI
(at midspan)
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Table C.1 (Continued)

13. Three concentrated loads at one-fourth points:

RA = RB = VA = VB = 3P
2

MC = ME = 3PL
8

MD = PL
2

𝛥max = 19PL3

384EI
(at midspan)

14. Three concentrated loads as shown:

RA = RB = VA = VB = 3P
2

MC = ME = PL
4

MD = 5PL
12

𝛥max = 53PL3

1296EI
(at midspan)

15. Uniformly distributed load and variable end moments:

W = total load = 𝑤L

RA = VA = W
2

+
M1 − M2

L

RB = VB = W
2

−
M1 − M2

L

M3 = WL
8

−
M1 + M2

2
+

(M1 − M2)2

2WL

at x = L
2
+

M1 − M2

W

𝛥x =
Wx

24EIL

[
x3 −

(
2L +

4M1

W
−

4M2

W

)
x2 +

12M1L

W
x + L3 −

8M1L2

W
−

4M2L2

W

]

(continued)
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Table C.1 (Continued)

16. Concentrated load at center and variable end moments:

RA = VA = P
2
+

M1 − M2

L

RB = VB = P
2
−

M1 − M2

L

M3 = PL
4

−
M1 + M2

2
(at midspan)

Mx =
(

P
2
+

M1 − M2

L

)
x − M1 when x <

L
2

Mx =
P
2
(L − x) +

(M1 − M2)
L

x − M1 when x >
L
2

𝛥x =
Px

48EI

{
3L2 − 4x2 − 8 (L − x)

PL
[M1(2L − x) + M2(L + x)]

}
whenx <

L
2

17. One concentrated moving load:

RAmax = VAmax = P at x = 0

RBmax = VAmax = P at x = L

Mmax = PL
4

at x = L
2

Mx =
P
L
(L − x)x

18. Two equal concentrated moving loads:

RAmax = VAmax = P
(

2 − a
L

)
at x = 0

Mmax = P
2L

(
L − a

2

)2

when a < 0.586L under load1at x = 1
2

(
L − a

2

)
.

Mmax = PL
4

when a > 0.5L with one load at midspan.
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Table C.1 (Continued)

19. Two unequal concentrated moving loads:

RAmax = VAmax = P1 + P2

(L − a
L

)
at x = 0

Mmax = (P1 + P2)
x2

L

under load P1at x = 1
2

(
L −

P2a

P1 + P2

)

Mmax =
P1L

4
may occur with larger load at center of span and other load off span

20. General rules for simple beams carrying moving concentrated
loads Vmax occurs at one support and other loads on span (trial
method). For Mmax: place centerline of beam midway between
center of gravity of loads and nearest concentrated load. Mmax
occurs under this load (here P1).

Table C.2 Cantilever Beams

21. Uniform load:

W = total load = 𝑤L

RA = VA = W

MA = WL
2

(at support A)

Mx =
Wx2

2L

𝛥Bmax = WL3

8EI

𝛥x =
W

24EIL
(x4 − 4L3x + 3L4)

(continued)
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Table C.2 (Continued)

22. Partial uniform load starting from support:

W = total load = 𝑤a

RA = VA = W

MA = Wa
2

(at support A)

Mx =
Wx2

2a

𝛥C = Wa3

8EI

𝛥Bmax = Wa3

8EI

(
1 + 4b

3a

)

23. Concentrated load:

RA = VA = P

Mmax = Pa (at support A)

Mx = Px

𝛥C = Pa3∕3EI

𝛥Bmax = Pa3

3EI

(
1 + 3b

2a

)
(at free end)

24. Concentrated load at free end:

RA = VA = P

Mmax = PL (at A)

Mx = Px

𝛥Bmax = PL3

3EI

𝛥x =
P

6EI
(2L3 − 3L2x + x3)
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Table C.3 Propped Beams

25. Uniform load:

W = total load = 𝑤L

RA = VA = 5W
8

RB = VB = 3W
8

MA = −WL
8

MC = 9WL
128

(
at x = 3

8
L
)

𝛥x =
WL3

48EI
(m − 3m3 + 2m4) where m = x

L

𝛥max = WL3

185EI
at a distance x = 0.4215L (from support B)

26. Partial uniform load starting from hinged support:

W = 𝑤b n = b
L

RA = VA = Wn
8

(6 − n2)

RB = VB = W
8
(n3 − 6n + 8)

MA = −Wb
8

(2 − n2) MC = Wb
8

(6n − n3 − 4)

𝛥x =
WbL2

48EI
[(n2 − 6)m3 − (3n2 − 6)m2] when x ≤ a

𝛥x =
WL4

48bEI
[2P4 − p3n(n3 − 6n + 8) + Pn2(3n2 − 8n + 6)] when

x ≥ a and P = L − x
L

27. Partial uniform load starting from fixed end:

W = 𝑤a n = a
L

RA = VA = W
8
[8 − n2(4 − n)]

RB = VB = Wn2

8
(4 − n) Y = b + an2(4 − n)

MA = −
Wa

8
(2 − n)2

Mmax = Wa
8

{

−
[
8 − n2 (4 − n)

]2

16
+ 4 − n(4 − n)

}

𝛥C = Wa3

48EI
(6 − 12n + 7n2 − n3)

(continued)
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Table C.3 (Continued)

28. Triangular load on all span L:

W = total load = 𝑤L
2

RA = VA = 4
5

W RB = W
5

= VB

MA = − 2
15

WL

MC = + 3
50

WL

𝛥max = WL3

212EI
(at x = 0.447L)

29. Triangular load on part of the span:

W = 𝑤a
2

RB = VB = Wa2

20L3
(5L − a)

RA = W − RB

MA = Wa
60L2

(3a2 − 15aL + 20L2)

Maximum positive moment at S = b + a2

2L

√
1 − a

5L

Mmax(positive at) D ∶

MD = RBS − WL
3a3

(−b + S)3

30. Concentrated load at midspan:

RA = VA = 11P
16

RB = VB = 5P
16

MA = −3PL
16

MC = 5PL
32

𝛥C = 7PL3

768EI

𝛥max = PL3

107EI
(at x = 0.447L from B)
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Table C.3 (Continued)

31. Concentrated load at any point:

RA = VA = P − RB RB = VB = Pa2

2L3
(b + 2L)

MA = −Pb(L2 − b2)
2L2

MAmax = 0.193PL when b = 0.577L

MC = Pb
2

(
2 − 3b

L
+ b3

L3

)

MCmax = 0.174PL when b = 0.366L

𝛥C = Pa3b2

12EIL3
(4L − a)

32. Two concentrated loads at one-third points:

RA = VA = 4P
3

RB = VB = 2P
3

MA = −PL
3

MC = PL
9

MD = 2PL
9

𝛥max = PL3

65.8EI

occurs at point = 0.423L from support B
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Table C.4 Fixed-End Beams

33. Uniform load:

W = total load = 𝑤L

RA = VA = RB = VB = W
2

MA = MB = −WL
12

(at support)

MCmax = WL
24

(at midspan)

𝛥max = WL3

384EI
(at midspan)

𝛥x =
Wx3

24EIL
(L − x)2 (from A or B)

34. Uniform partial load at one end:

W = total load = 𝑤a m = a
L

RA = VA = W(m3 − 2m2 + 2)
2

RB = VB = Wm2(2 − m)
2

= W − RA

MA = WLm
12

(3m2 − 8m + 6)

MB = WLm2

12
(4 − 3m)

Mmax = WLm2

12

(
−3

2
m5 + 6m4 − 6m3 − 6m2 + 15m − 8

)

when x = a
2
(m3 − 2m2 + 2)

𝛥max = WL3

333EI

𝛥C = WL3

384EI
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Table C.4 (Continued)

35. Triangular load:

W = 𝑤L
2

RA = VA = 0.7W

RB = VB = 0.3W

MA = WL
10

MB = WL
15

𝛥max = WL3

382EI
(at x = 0.55L from B)

MC(maximum positive moment) = + WL
23.3

(at 0.55L from B)

36. Triangular load on part of the span:

W = 𝑤a
2

RB = VB = Wa2

10L3
(5L − 2a)

RA = W − RB

MA = Wa
30L2

(3a2 + 10bL)

MB = Wa
30L2

(−3a2 + 5aL)

Maximum positive moment at S = b + a2

3.16L

√

5 − 2a
L

MD = RBS − WL
3a3

(a + S − L)3 − MB

37. Triangular load, maximum intensity at midspan:

W = total load = 𝑤L
2

RA = RB = W
2

MA = MB = − 5
48

WL

MC(maximum positive) = WL
16

𝛥max = 1.4WL3

384EI
(at midspan)

(continued)
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Table C.4 (Continued)

38. Concentrated load at midspan:

RA = VA = RB = VB = P
2

MA = MB = MC = −PL
8

𝛥max = PL3

192EI
(at midspan)

𝛥x =
Px2

48EI
(3L − 4x)

(
x <

L
2

)

39. Two symmetrical concentrated loads:

RA = VA = RB = VB = P

MA = MB = −Pa(L − a)
L

MC = MD = Pa2

L

𝛥max = PL3

6EI

[
3a2

4L2
−
( a

L

)3
]
(at midspan)

If a = L
3
,

MA = MB = 2
9

PL

𝛥max = 5PL3

648EI
(at centerline)

If a = L
4
,

MA = MB = 3
16

PL

𝛥max = PL3

192EI
(at centerline)
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Table C.4 (Continued)

40. Concentrated load at any point:

RA = VA = P
( b

L

)2 (
1 + 2a

L

)

RB = VB = P
( a

L

)2 (
1 + 2b

L

)

MA = −Pab2

L2
MB = −Pba2

L2
MC = 2Pa2b2

L3

𝛥C = Pa3b3

3EIL3
(at point C)

𝛥max = 2Pa2b3

3EI(3L − 2a)2
when x = 2bL

3L − 2a
and b > a

Table C.5 Moments in Two Unequal Spans and Values of the Coefficient K (𝑤=Unit Load/Unit Length)

1. Load on short span:

MB =
𝑤L3

2

8(L1 + L2)
=
𝑤L2

2

K

L2/L1 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
K 46.0 40.0 34.7 28.0 24.0 21.4 19.5 18.0 16.9 15.9

2. Load on long span:

MB =
𝑤L3

1

8(L1 + L2)
=
𝑤L2

1

K

L2/L1 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
K 9.6 10.0 10.4 11.2 12.0 12.8 13.6 14.4 15.2 15.9

3. Both spans loaded with 𝑤1 L1 and 𝑤2 on L1:

MB =
𝑤1L3

1 +𝑤2L3
2

8(L1 + L2)
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Table C.6 Moments in Three Unequal Spans and Values of the Coefficient K (𝑤=Load/Unit Length)

4. Load on span CD:

MB =
wL𝟐

3

K
MC =

wL𝟐
𝟑

K
L2/L3 (positive) (negative)

0.25 100.0 9.9
0.30 90.9 10.3
0.40 76.3 11.0
0.50 70.4 11.7
0.60 65.8 12.3
0.70 62.9 13.0
0.80 61.7 13.7
1.00 59.9 14.9

5. Load on middle span:

MB = MC =
wL𝟐

𝟐

K
L2/L1 (negative)

0.25 43.5
0.30 38.5
0.40 32.3
0.50 27.8
0.60 25.6
0.70 23.3
0.80 22.2
1.00 20.0

6. Load on span AB:

MB =
wL𝟐

𝟏

K
MC =

wL𝟐
𝟏

K
L2/L1 (negative) (positive)

0.25 9.9 100.0
0.30 10.3 90.9
0.40 11.0 76.3
0.50 11.7 70.4
0.60 12.3 65.8
0.70 13.0 62.9
0.80 13.7 61.7
1.00 14.9 59.9
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Table C.7 Maximum and Minimum Moments in Equal-Span Continuous Beams

7. Uniform loads:

M = 𝑤L2

K

where w = (D.L.+L.L.) D.L.=Uniform dead load L.L.=Uniform live load
per unit length

Values of coefficient K

First span AB Second support B
(positive moment) (negative moment)

Ratio Number of spans Number of spans
DL/w 2 3 4 5 2 3 4 5

0.0 10.5 10.0 10.2 10.1 8.0 8.6 8.3 8.3
0.1 10.8 10.2 10.4 10.3 8.0 8.7 8.4 8.5
0.2 11.1 10.4 10.6 10.6 8.0 8.8 8.5 8.6
0.3 11.4 10.6 10.9 10.8 8.0 9.0 8.6 8.7
0.4 11.8 10.9 11.1 11.0 8.0 9.1 8.6 8.8
0.5 12.1 11.1 11.4 11.3 8.0 9.2 8.8 8.9
0.6 12.5 11.4 11.7 11.6 8.0 9.4 8.9 9.0
0.7 12.9 11.6 12.0 11.9 8.0 9.5 9.0 9.1
0.8 13.3 11.9 12.3 12.2 8.0 9.7 9.1 9.2
0.9 12.8 12.2 12.6 12.5 8.0 9.8 9.2 9.4
1.0 14.3 12.5 13.0 12.8 8.0 9.9 9.3 9.5

Second span BC
(positive moment)

Third
support C
(negative
moment)

Third span CD
(positive
moment) Interior

span
Interior
supportRatio

DL/w
Number of spans Spans Span (positive (negative
3 4 5 4 5 5 moment) moment)

0.0 13.4 12.4 12.7 9.3 9.0 11.7 12.0 8.8
0.1 14.3 13.2 13.5 9.7 9.3 12.3 12.6 9.1
0.2 15.4 14.0 14.3 10.0 9.6 12.9 13.3 9.8
0.3 16.7 14.9 15.3 10.4 9.9 13.6 14.1 9.5
0.4 18.2 16.0 16.5 10.8 10.2 14.3 15.0 9.9
0.5 20.0 17.2 17.9 11.5 10.5 15.2 16.0 10.1
0.6 22.2 18.7 19.5 11.7 10.9 16.2 17.2 10.5
0.7 25.0 20.4 21.4 12.2 11.3 17.3 18.4 10.8
0.8 28.6 22.4 23.8 12.7 11.7 18.5 20.0 11.2
0.9 33.3 24.9 26.6 13.3 12.2 20.0 21.8 11.6
1.0 40.0 28.3 30.0 14.0 12.7 21.7 24.0 12.0

(continued)
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Table C.7 (Continued)

Example: K values

1.
DL
𝑤

= 0.4

2.
DL
𝑤

= 1.0

8. Concentrated loads:

P′ = concentrated dead load

P′′ = concentrated live load

M =
(

P′

K1
+ P′′

K2

)
L

First Span AB Second Support B
K1 (DL) K2 (LL) K1 (DL) K2 (LL)

Number of Spans 2 3 4 2 3 4 2 3 4 2 3 4
Central load 6.40 5.71 5.89 4.92 4.70 4.76 5.35 6.67 6.22 5.33 5.71 5.53
One-third-point loads 4.50 4.09 4.20 3.60 3.46 3.50 3.00 3.75 3.50 3.00 3.21 3.11
One-fourth-point loads 3.67 3.20 3.34 2.61 2.46 2.50 2.13 2.67 2.49 2.13 2.28 2.21

Second Span BC Third Support C

K1 K2 K1 K2

Number of Spans 3 4 3 4 4 4
Central load 10.00 8.61 5.71 5.46 9.33 6.22
One-third-point loads 15.00 9.00 5.00 4.50 5.25 3.50
One-fourth-point loads 8.00 6.05 3.20 3.01 3.72 2.49
Example: K values

K1(dead load) MAB(max) =
(

P′

5.71
+ P′′

4.7

)
L

−MB(max) =
(

P′

6.67
+ P′′

5.71

)
L

K2(live load) MBC(max) =
(

P′

10
+ P′′

5.71

)
L
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Table C.8 Moments in Unequal-Span Continuous Beams Subjected to Unequal Loads
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A
AASHTO, 4, 7
AASHTO model, 45

creep calculation, 47
shrinkage calculation, 46

ACI Code, 3, 4
design concept, 4
system of units, 5

ACI 209 model, 27
creep calculation, 29
shrinkage calculation, 27

Active soil pressure, 493
Admixtures, 25
Aggregates, 15, 69, 70

maximum size, 69
Alignment charts, 422
ANSI, 6
Areas of reinforcing bars, 73, 75
ASTM, 4, 16, 73, 74
Axial compression, 194, 358
Axial tension, 195, 402

B
Balanced section, 88
B3 model, 30

creep calculation, 33
shrinkage calculation, 30

Balanced strain condition, 88, 99

Bar cutoff, 281
Bar dimensions and weights, 75
Bar grades, 73, 74
Bars, areas, 1001, 1010

English units, 10
metric units, 10

Bars, bundles, 113, 157, 266, 276
Beams, 83, 152

analysis, 84
balanced, 88
compresion reinforcement, 116
compressive stress distribution, 84
control of cracking, 226
cracking moment, 228
curved, 858
doubly reinforced, 116, 119, 162
I-section, 127
irregular shapes, 137
maximum steel ratio, 101, 114, 157
minimum overall depth, 157
minimum steel ratio, 109, 112
neutral axis, 84, 87, 94, 105, 119,

163
shallow, 199
shear and diagonal tension, 188
singly reinforced, 99, 114
spandrel, 137
special shapes, 137
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Beams (continued)
stress distribution, 84, 94, 127
T-section, 127

Bearing capacity, 310, 445, 456
Bearing strength, 291, 456, 459
Biaxial bending, 397

Bresler equation, 402
Bond, 257

anchorage, 199, 201, 259
critical sections, 198, 268
development length, 261

Bresler equation, 402
Bridge design, 887

design philosophy, 891
load factors and combination, 892
vehicular loads, 896
design for flexure, 905
shear design, 906
loss of prestress, 913
deflection, 915

Buckling, 343, 429
Building code, 4

C
CEB 90 model, 36

creep calculation, 37
shrinkage calculation, 36

CEB 90–99 model, 39
creep calculation, 41
shrinkage calculation, 39

Cement, 15
Circular beam, 858
Circular columns, 347

balanced, 381
compression controls, 370
tension controls, 367
Whitney equation, 96, 375

Codes, 4
ACI, 4
others, 4

Columns, 9, 342
axially loaded, 342
balanced condition, 359
biaxial bending, 397
braced, 344, 422, 429
capital, 610

circular, 347
composite, 344
compression failure, 358, 370
design charts, 387
eccentricity, 357, 363
effective length factor, 421
Euler buckling load, 429
interaction curves, 387, 398
lateral ties, 343
long, 349
minimum eccentricity, 358, 376, 392, 428
pedestal in footings, 456, 459
plastic centroid, 357, 363
radius of gyration, 349, 421
slenderness ratio, 343, 349, 421, 427
spacing of ties, 278, 345, 347
spiral columns, 347, 349
strength, 370
tied columns, 278, 343, 349
trial solution, 370
unbraced, 344, 422, 430

Coefficient of expansion, 25
Combined footings, 445
Combined shear and torsion, 529

beams, 188
Compressive stress, 17, 19

in cubes, 17
in cylinders, 17, 19

Compressive stress distribution, 88
Concrete, 15

admixtures, 16, 25
bond strength, 257
coefficient of expansion, 25
compressive strength, 17
constituents, 16
cover, 155
creep, 25
cube strength, 17
curing, 16
cylinder strength, 17
fibrous, 72
high-performance, 70
High strength, 70
lightweight, 70, 71
maximum strain, 18, 19, 84, 99
modular ratio, 24
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modulus of elasticity, 22
modulus of rupture, 21
plain, 21, 69
Poisson’s ratio, 23
shear modulus, 24
shrinkage, 24
stress-strain diagram, 18
tensile strength, 19
water content, 24

Continuous beams, 555
Continuous one-way slabs, 329
Coulomb’s theory, 493, 496
Cracks, 192

code equations, 245
control of, 245
main, secondary, shrinkage, 244
maximum width, 245

Creep, 25
coefficient, 29, 35, 37, 41, 43, 47
definition, 25
factors affecting, 26
magnitude, 26
strain, 26

Crushing strain, 19
Cube strength, 17
Curvature, 427, 432

double, 427
single, 427

Cylinder strength, 17

D
Dead load factor, 91
Deep beams, 290

ACI design procedure, 293
AASHTO LRFD, 301

B-and D-regions, 290
critical section, 329
Reinforcement, 299
Shear strength, 294
shear reinforcement, 309
strut-and-tie model, 290

Deflection, 226
compression steel, 233
cracked section for, 233
effective moment of inertia, 230
instantaneous, 237

limitations, 234
long-time, 233

Design loads, 6
Detailing, 329
Development length, 257

anchorage length, 259, 261, 273
bundled bars, 266
compression bars, 264
critical sections, 268
tension bars, 261
top bars, 259, 284

Diagonal tension, 188
Differential settlement, 443, 458
Direct design method, 616, 629

coefficients, 633
effect of pattern loading, 636
longitudinal distribution of moment,

630
transverse distribution of moment, 634

Distribution of soil presure 448
Doubly reinforced concrete sections,

116, 162
Dowels in footings, 458
Drainage, 502
Drop panel, 610, 614, 621, 668
Ductility index, 588

E
Earthquake, 786
Earth pressure, 92

active soil pressure, 493
passive soil pressure, 493
theories, 492

Effective depth, 91, 101, 116, 157
Effective flange width, 127

L-sections, 137
T-sections, 128

Effective surcharge, 497
Effective length of columns, 422
Effective moment of inertia, 230
End anchorage, 295, 734, 777
Equilibrium conditions, 91, 362
Equivalent frame method, 681
Equivalent stress block, 94, 129
Euler buckling load, 429
Expansion, 24
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F
Factored loads, 91
Failure, 86, 88

balanced section, 88, 99
bending, 99
diagonal tension, 320
punching shear, 452
torsion, 523

Fib-mc 2010 model 43
creep calculating 43
shrinkage calculating 43

Flat plate, 326, 427, 611, 621
Flat slab, 610, 625
Flexural bond, 254
Flexural Failure, 88
Floor system, 324, 335, 614

concrete joist, 336
flat plate, 611, 614
flat slab, 610, 614, 621
one-way joist, 324, 335
one-way slab, 227, 324, 339
ribbed slab, 324, 336
slab-beam, 558, 681
two-way slab, 610

Footings, 443
allowable soil pressure, 450
bearing stress, 456
one-way shear, 451
on piles, 483
punching shear, 452
soil pressure, 448

Footings, types, 446
combined, 472
exterior column, 474
interior column, 475
isolated, 445
pile, 483
plain, 459
rectangular, 445
trapezoidal, 445
wall, 443, 445, 460

Frames, 555, 561
braced, 422, 428
unbraced, 423, 429

Friction coefficient, 741
Friction losses in prestressing force, 740

G
GL 2000 model, 33

creep calculation, 34
shrinkage calculation, 34

Gravity retaining wall, 490
Gross moment of inertia, 230

H
High-performance concrete, 70
Hooks, 272
Hoop, 344, 533

I
Impact, 6
Inertia, moment of, 230
Inflection points, 268
Initial modulus, 22
Interaction diagram, 358, 376, 387
Interaction surface, 399

J
Joints, 26, 179, 290, 562, 820

L
Lateral ties, 257, 578
Limit analysis, 582
Load factors, 8, 91

dead load, 8, 91
live load, 8, 91
wind load, 6, 92

Longitudinal reinforcement(torsion), 534
LRFD, 9
L-shaped sections, 137, 343

M
Magnification factor, 428
Middle strip, 619
Modes of failure, 18, 65
Modular ratio, 24, 228
Modulus of elasticity, 22

in direct compression, 22
normal-weight concrete, 23
steel, 75

Modulus of rupture, 21
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Moment of inertia, 230
Compression member, 426
effective, 230
gross, 228
polar, 528, 661

Moment magnification factor, 429, 430
Moment redistribution, 539, 596

N
Neutral axis, 84, 87, 105
Nominal moment capacity, 100, 161, 400, 757
Nominal strength, 8

column strength, 391
flexural strength, 90, 94
shear strength, 543, 626, 629

O
One-way slabs, 227, 324
Overreinforced, 99, 579, 732
Overturning moment, 810

P
Passive soil pressure, 493
Pattern loading, 636
Pile caps, 446
Plastic centroid, 356
Plastic design, 556, 579
Plastic hinges, 560, 579
Polar moment of inertia, 528, 662, 867
Posttensioning, 724
Prestress, 724, 736

design approach, 756
losses, 737
partial, 760
strands, 737

Pretensioning, 726

R
Radius of gyration, 349, 421
Rectangular sections, 110, 114, 116, 123, 152,

162
balanced, 99
compression control, 88
tension control case, 88

Redistribution of moments, 539, 556, 596
Reinforcing steel, 72

anchorage, 201
areas, 72, 75
balanced section, 88
bar sizes, 72
deformed bars, 72
development length, 257
flexural bond, 258
grades, 72, 74
hooks, 272
maximum percentage, 101
modulus of elasticity, 228
sizes, 72
spacing, 114, 128, 155
spiral, 278, 344
splices, 263, 276
stirrups, 76, 195, 198, 200
strands, 74, 736
tie spacings, 279, 350
wire fabric, 74
yield strength, 74

Retaining walls, 490
cantilever, 490
gravity, 490

Rotation capacity, 196, 579

S
Safety provisions, 8

capacity reduction factors, 8, 91
load factors, 91

Secant modulus, 22
Seismic design, 786

acceleration, 786
base shear, 804
boundary elements, 841
category, 786
coupling beam, 841, 847
design category, 786
design response spectrum, 787
flexural design, 820
fundamental period, 789
intermediate moment frame, 805, 820, 855
International Building Code (IBC), 786
longitudinal reinforcement, 821
redundancy coefficient, 819
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Seismic design (continued)
seismic response coefficient, 799
shear walls, 805, 811, 815, 842
simplified analysis, 812, 815
special moment frames, 805, 813
strong column-weak girder, 820,

832
Semicircular beam, 865
Shear, 188

failure, 88, 191
footings, 449
punching, 449, 452
stirrups, 192, 195, 198
stress, 188
thickness, footings, 455, 459, 483
wall footing, 443, 445, 461

Shear head, 626
Shear modulus, 24
Shear reinforcement, 188

in beams, 188
design procedure, 198
inclined stirrups, 195
minimum reinforcement area,

198
torsion, 191, 201

Shear strength of beams, 193
critical section, 198
diagonal tension, 188, 191
stress distribution, 188

Shrinkage, 24
in concrete, 24
and creep, 25

Sideway, 825
Slabs, 324, 610

bending moments, 326
concrete cover, 337
continuous, 328, 333
design, 328, 426, 610, 614
flat, 621
hollow, 335
minimum steel ratio, 329
minimum thickness, 227, 328, 620
one-way, 324
reinforcement, 328
ribbed slab, 324, 328, 611
solid, 326

two-way, 610
waffle, 611, 614, 634, 672

Slenderness ratio, 343, 420
Spirals, 93, 195, 278, 345
Splices, 263, 276
Split cylinder, 18, 20
Square footings, 454

depth, 451, 452
design consideration, 449
moments, 455
reinforcement, 455

Stirrups, 192, 198
ACI Code, minimum, 198
closed, 201, 274
design, vertical, 201
maximum spacing, 200, 262
minimum area, 198
vertical, 201

Stress–strain curve, 18, 23
concrete, 19, 23
steel, 72

Strut-and-tie method, 290
design procedure, 305
design requirements, 295

T
Tables:

Appendix A, 994
Appendix B, 1004
Appendix C, 1012

T-beams, 127
analysis, 127
effective width, 127
strength, 129

Temperature and shrinkage reinforcement,
328

Tension-controlled, 90
Ties (columns), 345
Time-dependent deflection, 233
Time-dependent losses, 740
Top bar (development length), 262
Torsion, 523

analysis, elastic, 529
analysis, ultimate, 529
in circular sections, 528
combined shear and torsion, 529
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equations, 534
longitudinal reinforcement, 534
reinforcement, 534, 540
spandrel beam, 539
stirrup design, 541
Strength, 534
strength reducation factor, 93
stresses, 525

Tranverse reinforcement, 823
T-section, 109, 127
Two-way action (shear), 452, 629
Two-way slabs, 610

U
Unbraced frames, 344
Units, 5

metric, 5, 1004
U.S. customary, 5, 994

Unit weight, 69, 1001

V
Virtual work method, 582
V-shape beam, 878

W
Waffle slab, 611, 614, 634, 672
Wall footings, 445, 459
Walls, 490

basement walls, 491, 513
retaining walls, 490

Water–cement ratio, 15
Welded wire fabric, 74, 76
Wind load factor, 6

Y
Yield line method, 618
Yield point, 77
Yield strength, 72, 74, 75
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