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PREFACE

The main objective of a course on structural concrete design is to develop, in the engineering stu-
dent, the ability to analyze and design a reinforced concrete member subjected to different types of
forces in a simple and logical manner using the basic principles of statistics and some empirical for-
mulas based on experimental results. Once the analysis and design procedure is fully understood,
its application to different types of structures becomes simple and direct, provided that the student
has a good background in structural analysis.

The material presented in this book is based on the requirements of the American Con-
crete Institute (ACI) Building Standard 318-14, International Building Code IBC-2012, American
society of Civil Engineers Load Standards ASCE 7-10, and AASHTO LRFD Bridge Design Spec-
ifications. Also, information has been presented on material properties, including volume changes
of concrete, stress—strain behavior, creep, and elastic and nonlinear behavior or reinforced concrete.

Concrete structures are widely used in the United States and almost all over the world. The
progress in the design concept has increased in the last few decades, emphasizing safety, service-
ability, and economy. To achieve economical design of a reinforced concrete member, specific
restrictions, rules, and formulas are presented in the codes to ensure both safety and reliability of
the structure. Engineering firms expect civil engineering graduates to understand the code rules and,
consequently, to be able to design a concrete structure effectively and economically with minimum
training period or overhead costs. Taking this into consideration, this book is written to achieve the
following objectives:

1. To present the material for the design of reinforced concrete members in a simple and logical
approach.

2. To arrange the sequence of chapters in a way compatible with the design procedure of actual
structures.

3. To provide a large number of examples in each chapter in clear steps to explain the analysis
and design of each type of structural member.

4. To provide an adequate number of practical problems at the end of most chapters to achieve
a high level of comprehension.

xiii
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5. To explain the failure mechanism of a reinforced concrete beam due to flexure and to develop
the necessary relationships and formulas for design.

6. To explain why the code used specific equations and specific restrictions on the design
approach based on either a mathematical model or experimental results. This approach will
improve the design ability of the student.

7. To provide adequate number of design aids to help the student in reducing the repetitive
computations of specific commonly used values.

8. To enhance the student’s ability to use a total quality and economical approach in the design
of concrete structures and to help the student to design reinforced concrete members with
confidence.

9. To explain the nonlinear behavior and the development of plastic hinges and plastic rotations
in continuous reinforced concrete structures.

10. To provide review problems for concrete building component design in Chapter 23.

11. To provide a summary at the end of most chapters to help the student to review the materials
of each chapter separately. Also to design and analysis flowcharts in Chapter 24.

12. To provide new information on the design of special members, such as beams with variable
depth (Chapter 5), deep beams using ACI and AASHTO design methods (Chapter 8), stairs
design (Chapter 18), seismic design utilizing IBC 2012 and ASCE 7-10 (Chapter 20), beams
curved in plan (Chapter 21), and bridge design according to AASHTO (Chapter 22).

13. To present information on the design of reinforced concrete frames, principles of limit design,
and moment redistribution in continuous reinforced concrete structures.

14. To present examples on prediction of creep and shrinkage of concrete using the ACI and
AASHTO codes.

15. To provide examples in SI units in all chapters of the book. Equivalent conversion factors
from customary units to SI units are also presented. Design tables in SI units are given in
Appendix B.

16. References are presented at the end of most chapters.

The book is an outgrowth of the authors’ lecture notes, which represent their teaching and
industrial experience over the past 35 years. The industrial experience of the authors includes the
design and construction supervision and management of many reinforced, prestressed, and precast
concrete structures. This is in addition to the consulting work they performed for international
design and construction firms, professional registration in the United Kingdom, Canada, and other
countries, and a comprehensive knowledge of other European codes on the design of concrete
structures.

The book is written to cover two courses in reinforced concrete design. Depending on the
proficiency required, the first course may cover Chapters 1 through 7, 9, 10, 11, 13, 23, and 24,
whereas the second course may cover the remaining chapters. Parts of the late chapters may also
be taught in the first course as needed. A number of optional sections have been included in var-
ious chapters. These sections are indicated by an asterisk (*) in the Contents and may easily be
distinguished from those that form the basic requirements of the first course. The optional sections
may be covered in the second course or relegated to a reading assignment. Brief descriptions of the
chapters are given below.

The first chapter of the book presents information on the historical development of concrete,
codes of practice, loads and safety provisions, and design philosophy and concepts. The second
chapter deals with the properties of concrete as well as steel reinforcement used in the design
of reinforced concrete structures, including stress—strain relationships, modulus of elasticity and
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shear modulus of concrete, shrinkage, creep, fire resistance, high-performance concrete, and fibrous
concrete. Because the current ACI Code emphasizes the strength approach based on strain limits,
this approach has been adopted throughout the text. Chapters 3 and 4 cover the analysis and design
of reinforced concrete sections based on strain limits. The behavior of reinforced concrete beams
loaded to failure, the types of flexural failure, and failure mechanism are explained very clearly. It
is essential for the student to understand the failure concept and the inherent reserve strength and
ductility before using the necessary design formulas.

Chapter 5 covers shear design, including members with variable depth in actual structure.

Chapter 6 deals with the serviceability of reinforced concrete beams, including deflection and
control of cracking. Chapter 7 covers bond and development length. Chapter 8 covers the design
of deep beams utilizing the ACI and AASHTO strut-and-tie approach.

Chapter 9 covers the design of one-way slabs, including joist-floor systems. Distributions of
loads from slabs to beams and columns are also presented in this chapter to enhance the student’s
understanding of the design loads on each structural component. Chapters 10, 11, and 12 cover the
design of axially loaded, eccentrically loaded, and long columns, respectively. Chapter 10 allows
the student to understand the behavior of columns, failure conditions, tie and spiral design, and
other code limitations. After absorbing the basic information, the student is introduced in Chapter
11 to the design of columns subjected to compression and bending. New mathematical models
are introduced to analyze column sections controlled by compression or tension stresses. Biaxial
bending for rectangular and circular columns is presented. The design of long columns is discussed
in Chapter 12 using the ACI moment-magnifier method.

Chapters 13 and 14 cover the design of footings and retaining walls, then Chapter 15 covers
the design of reinforced concrete sections for shear and torsion. Torsional theories and ACI Code
design procedure are explained. Chapter 16 deals with continuous beams and frames. A unique
feature of this chapter is the introduction of the design of frames, frame hinges, the limit state design
collapse mechanism, rotation and plastic hinges, and moment redistribution. Adequate examples
are presented to explain these concepts.

The design of two-way slabs is introduced in Chapter 17. All types of two-way slabs, includ-
ing waffle slabs, are presented with adequate examples. A summary of the design procedure is
provided with tables and diagrams. Chapter 18 covers the design of reinforced concrete stairs.
Slab-type and stepped-type stairs are explained. The second type, although quite common, has
not been covered in any text. Chapter 19 covers an introduction to prestressed concrete. Methods
of prestressing, fully and partially prestressed concrete design, losses, and shear design are pre-
sented with examples. Chapter 20 presents the seismic design and analysis of members utilizing
the IBC 2012, ASCE 7-10, and the ACI Code. Chapter 21 deals with the design of curved beams.
In actual structures curved beams are used frequently. These beams are subjected to flexure, shear,
and torsion. Chapter 22 covers prestressed concrete bridge design based on the AASHTO LRFD
bridge design specifications with design examples. Chapter 23 deals with sample problems review
for concrete building component design. Chapter 24 provides flow charts to help the students and
engineers to better understand the design and analysis of concrete structure.

In Appendixes A and B, design tables using customary units and SI units are presented.

Finally, the book is written to provide basic reference materials on the analysis and design of
structural concrete members in a simple, practical, and logical approach. Because this is a required
course for seniors in civil engineering, we believe this book will be accepted by reinforced concrete
instructors at different universities as well as designers who can make use of the information in their
practical design of reinforced concrete structures.
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A companion Web site for the book is available at www.wiley.com/college/hassoun. This
Web site contains MSExcel spreadsheets that enable students to evaluate different design aspects
of concrete members in an interactive environment and a solutions manual for instructors.

Our appreciation and thanks go out to Radwa Sakr for the boundless time she spent in helping
in the revision of this manuscript and her contributions to the sample problem review chapter. Our
thanks also go to Peter Gomez for his contribution to the deep beam chapter, Armando Prada for
his contribution to the creep and shrinkage chapter, Peter Park for his contribution to the bridge
design chapter, and Pamela Gagnier for her comments on foundation design. We would like to
thank Farzam Tondnevis for his constructive comments on the seismic chapter and Maryam Fakhari
for reviewing the creep and shrinkage chapter. Also, our appreciation and thanks go to Abdullah
Fayyaz, Najah Elias, Snezana Ristanovic, Rashmi Ganeriwal, and Vickie Estrada for their contri-
butions to previous editions of the book.

Our sincere thanks go out to Ahmet Pamuk, Florida State University; Nadim Wehbe,
South Dakota State University; M. Issa, University of Illinois at Chicago; and Faisal Wafa, King
Abdul-Aziz University, for their constructive comments. Our thanks to Basile Rabbat for many
discussions on the code interpretation. Special thanks are due to the civil engineering students at
South Dakota State University and San Jose State University for their feedback while using the
manuscript.
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ation to John Gardner and Murat Saatcioglu from the University of Ottawa, Canada, for the photos
provided in the seismic chapter.
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Depth of the equivalent rectangular concrete stress block

Value of a for a balanced condition

Effective tension area of concrete surrounding one bar. (This value is used for control of cracking.)
Area of individual bar

Area of core of spirally reinforced column

Gross area enclosed by outside perimeter of cross section

American Concrete Institute

Gross (total) area of cross section

Total area of longitudinal torsion steel

Gross area enclosed by shear flow 0.85 A,

Area enclosed by centerline of the outmost closed transverse torsional reinforcement
Area of prestressed reinforcement in the tension zone

Area of flexural tension steel

Area of compression steel

Area of balanced steel

Total steel area in the section (column)

Area of reinforcement to develop compressive strength of overhanging flanges in T- or L-sections
Area of one leg of close stirrups used to resist torsion

Transformed concrete area

Total area of shear reinforcement within a spacing S

Loaded area

Maximum area of supporting surface geometrically similar and concentric with the loaded area
Width of compression zone at extreme fiber

Effective width of flange

Perimeter of critical section for punching shear

Width of beam web

Distance from extreme compression fiber to neutral axis

Side of rectangular column measured transverse to the span

Cross-sectional constant Y. (1 — 0.63x/y)x>y/3; compression force
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Notation

Compression force in a concrete section with a depth equal to a
Correction factor applied to the maximum end moment in columns

Creep coefficient = creep strain per unit stress per unit length

Force in compression steel

Factor relating shear and torsional stress properties = b, d/Y. x>y
Compression force in web

Force in the compression steel

Distance from extreme compression fiber to centroid of tension steel
Distance from extreme compression fiber to centroid of compression steel
Nominal diameter of reinforcing bar

Distance from tension extreme fiber to center of bar closest to that fiber, used for crack control
Distance from extreme compression fibers to extreme tension steel

Dead load, diameter of a circular section

Eccentricity of load

Eccentricity of load with respect to centroid of tension steel

Modulus of elasticity, force created by earthquake

Modulus of elasticity of concrete = 33w'5/f/

Modulus of elasticity of beam concrete

Modulus of elasticity of column concrete

Modulus of elasticity of slab concrete

Flexural stiffness of compression member

Modulus of elasticity of steel =29 x 10° psi = 2 x 10> MPa

Flexural stress

Maximum flexural compressive stress in concrete due to service loads
Allowable compressive stress in concrete (alternate design method)
28-day compressive strength of concrete (standard cylinder strength)
Compressive strength of concrete at transfer (initial prestress)
Compressive stress in concrete due to prestress after all losses
Compressive stress in concrete at extreme fiber due to the effective prestressing force after all losses
Stress in prestress steel at nominal strength

Tensile strength of prestressing tendons

Yield strength of prestressing tendons

Modulus of rupture of concrete = 7.544/f!psi
Stress in tension steel due to service load

Stress in the compression steel due to service load
Effective stress in prestressing steel after all losses
Tensile stress in concrete

Specified yield strength of steel reinforcement
Specified yield strength of transverse reinforcement
Loads due to weight and pressure of fluids
Nominal strength of a strut, tie, or nodal zone
Nominal strength of a strut

Nominal strength of a tie

Shear modulus of concrete (in torsion) = 0.45E,
Total depth of beam or slab or column

Depth of flange in flanged sections

Total depth of shearhead cross section

Lateral earth pressure

Moment of inertia
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Moment of inertia of gross section of beam about its centroidal axis
Moment of inertia of gross section of column

Moment of inertia of cracked transformed section

Effective moment of inertia, used in deflection

Moment of inertia of gross section neglecting steel

Moment of inertia of gross section of slab

Moment of inertia of steel reinforcement about centroidal axis of section
Polar moment of inertia

kip = 10001b, a factor used to calculate effective column length
Flexural stiffness of beam

Flexural stiffness of column

Flexural stiffness of equivalent column

Flexural stiffness of slab

Torsional stiffness of torsional member

Kilonewton

Kip per square inch

Length of compression member in a frame

Clear span

Unsupported length of column

Live load, span length

Roof live load

I Development length

L, Development length in compression

Lan Development length in tension of a standard hook

I Basic development length of a standard hook

[ Clear span

[ Unsupported length of compression member

Length of shearhead arm

L Span length in the direction of moment

L, Span length in direction transverse to span /

M Bending moment

M, Smaller factored end moment at end of column

M, Larger factored end moment at end of column
M(l
M,
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Maximum service load moment

Balanced moment in columns, used with P,
Factored moment amplified for long columns
Cracking moment

Moment causing flexural cracking at a section
Factored modified moment

M, Nominal moment strength = M, /¢

M) Nominal moment strength using an eccentricity e’

M, Total factored moment

M, Plastic moment

M, Moment strength due to factored loads

M, Part of M, when calculated as singly reinforced

M, Part of M, due to compression reinforcement or overhanging flanges in T- or L-sections
M, Moment strength using an eccentricity ¢/

M Shearhead moment resistance

M, Factored end moment in nonsway frame at which M, acts
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Notation

Factored end moment in sway frame at which M, acts

Minimum value of M, in columns

Factored end moment in nonsway frame at which M, acts

Factored end moment in sway frame at which M, acts

Modular ratio = E/E,

Normal force

Factored normal load

Normal force in bearing at base of column

Neutral axis

Pounds per square inch

Outside perimeter of gross area = 2(x, + y,)

Unfactored concentrated load

Balanced load in column (at failure)

Euler buckling load

Nominal axial strength of column for a given e

Perimeter of shear flow in area A

Axial strength of a concentrically loaded column

Prestressing force in the tendon at the jacking end

Factored load = ¢P,,

Prestressing force in the tendon at any point x

Soil-bearing capacity

Allowable bearing capacity of soil

Ultimate bearing capacity of soil using factored loads

Stability index for a story

Radius of gyration, radius of a circle

Resultant of force system, reduction factor for long columns, or R = R, /¢, also rain load

A factor = M, /bd*

Snow loads

Spacing between bars, stirrups, or ties

International System of Units

Thickness of a slab

Torque, tension force

Nominal torsional strength provided by concrete

Cracking torsional moment

Nominal torsional strength provided by concrete and steel

Nominal torsional strength provided by reinforcement

Torque provided by factored load = ¢7,

Bond stress

Design strength required to resist factored loads

Shear stress produced by working loads

Shear stress of concrete

Shear stress at which diagonal cracks develop

Horizontal shear stress

Shear stress produced by a torque

Shear stress produced by factored loads

Unfactored shear force

Shear strength of concrete

Nominal shear strength of concrete when diagonal cracking results from combined shear and
moment

Nominal shear strength of concrete when diagonal cracking results from excessive principal tensile
stress in web
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XXi

Shear force at section due to unfactored dead load (d = distance from the face of support)

Nominal shear strength = V.4V,

Vertical component of effective prestress force at section

Shear strength carried by reinforcement

Shear force due to factored loads

Width of crack at the extreme tension fiber, unit weight of concrete

Factored load per unit length of beam or per unit area of slab

Wind load or total load

Length of the short side of a rectangular section

Length of the short side of a rectangular closed stirrup

Same as y,, except to extreme bottom fibers

Length of the long side of a rectangular section

Distance from centroidal axis of gross section, neglecting reinforcement, to extreme top fiber

Length of the long side of a rectangular closed stirrup

Angle of inclined stirrups with respect to longitudinal axis of beam, ratio of stiffness of beam to
that of slab at a joint

Ratio of flexural stiffness of columns to combined flexural stiffness of the slabs and beams at a
joint; (X K. )/2(K;+ K})

Ratio of flexural stiffness of equivalent column to combined flexural stiffness of the slabs and
beams at a joint: (K, )/ 2 (K, + K,)

(Ecblb/EcxIs)

ayin direction 7,

a,in direction £,

Average value of a for all beams on edges of a panel

Ratio of stiffness of shearhead arm to surrounding composite slab section

Ratio of long to short side of rectangular footing, measure of curvature in biaxial bending

Ratio of a/c, where a = depth of stress block and ¢ = distance between neutral axis and extreme
compression fibers. (This factor is 0.85 for f/ < 4000 psi and decreases by 0.05 for each
1000 psi in excess of 4000 psi but is at least 0.65.)

Ratio of unfactored dead load to unfactored live load per unit area

Ratio of long to short sides of column or loaded area

Ratio used to account for reduction of stiffness of columns due to sustained lateral load

Ratio of maximum factored dead load moment to maximum factored total moment

Ratio of torsional stiffness of edge beam section to flexural stiffness of slab: E  C/2E I,

Distance between rows of reinforcement on opposite sides of columns to total depth of column h

Fraction of unbalanced moment transferred by flexure at slab—column connections

Factor for type of prestressing tendon (0.4 or 0.28)

Fraction of unbalanced moment transferred by eccentricity of shear at slab—column connections

Magnification factor

Moment magnification factor for frames braced against sidesway

Moment magnification factor for frames not braced against sidesway

Deflection

Strain

Strain in concrete

Strain in steel

Strain in compression steel

Yield strain = f|/E

Slope angle

Multiplier factor for reduced mechanical properties of lightweight concrete

Multiplier for additional long-time deflection

Poisson’s ratio; coefficient of friction



XXii Notation

¢ Parameter for evaluating capacity of standard hook

T Constant equal to approximately 3.1416

p Ratio of the tension steel area to the effective concrete area = A /bd

o Ratio of compression steel area to effective concrete area = A’ /bd

P p—r

P Balanced steel ratio

Py Ratio of total steel area to total concrete area

Pp Ratio of prestressed reinforcement A ,/bd

Py Ratio of volume of spiral steel to volume of core

Puw A/b,d

¢ Strength reduction factor

v, Factor used to modify development length based on reinforcement coating
v, Factor used to modify development length based on reinforcing size

v, Factor used to modify development length based on reinforcement location
0] Tension reinforcing index = pfy/j’ c

104 Compression reinforcing index = p'f, /f;

o, Prestressed steel index = p,f,, /f!

@y, Prestressed steel index for flanged sections

o Tension reinforcing index for flanged sections

!, Compression reinforcing index for flanged sections computed as for @, w,,, and @'



To Convert to Multiply By

1. Length
Inch Millimeter 254
Foot Millimeter 304.8
Yard Meter 0.9144
Meter Foot 3.281
Meter Inch 39.37

2. Area
Square inch Square millimeter 645
Square foot Square meter 0.0929
Square yard Square meter 0.836
Square meter Square foot 10.76

3. Volume
Cubic inch Cubic millimeter 16390
Cubic foot Cubic meter 0.02832
Cubic yard Cubic meter 0.765
Cubic foot Liter 28.3
Cubic meter Cubic foot 35.31
Cubic meter Cubic yard 1.308

4. Mass
Ounce Gram 28.35
Pound (Ib) Kilogram 0.454
Pound Gallon 0.12
Short ton (2000 Ib) Kilogram 907
Long ton (22401b) Kilogram 1016
Kilogram Pound (Ib) 2.205
Slug Kilogram 14.59

(continued)

Xxiii
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Conversion Factors

To Convert to Multiply By
5. Density
Pound/cubic foot Kilogram/cubic meter 16.02
Kilogram/cubic meter Pound/cubic foot 0.06243
6. Force
Pound (Ib) Newton (N) 4.448
Kip (1000 Ib) Kilonewton (kN) 4.448
Newton (N) Pound 0.2248
Kilonewton (kN) Kip (K) 0.225
7. Force/length
Kip/foot Kilonewton/meter 14.59
Kilonewton/meter Pound/foot 68.52
Kilonewton/meter Kip/foot 0.06852
8. Force/area (stress)
Pound/square inch (psi) Newton/square centimeter 0.6895
Pound/square inch (psi) Newton/square millimeter (MPa) 0.0069
Kip/square inch (ksi) Meganewton/square meter 6.895
Kip/square inch (ksi) Newton/square millimeter 6.895
Pound/square foot Kilonewton/square meter 0.04788
Pound/square foot Newton/square meter 47.88
Kip/square foot Kilonewton/square meter 47.88
Newton/square millimeter ~ Kip/square inch (Ksi) 0.145
Kilonewton/square meter  Kip/square foot 0.0208
Kilonewton/square meter ~ Pound/square foot 20.8
9. Moments
Foot-kip Kilonewton-meter 1.356
Inch-kip Kilonewton-meter 0.113
Inch-kip Kilogram force-meter 11.52
Kilonewton-meter Foot-kip 0.7375




Structural Concrete






-

CHAPTER 1

AR

”
4
%
2
-
7
Z
%
]
%
»
?
#

INTRODUCTION

AR

AELERRAN

ag  GW

= =1k B

Water Tower Place, Chicago, 74 stories, tallest
concrete building in the United States.

1.1 STRUCTURAL CONCRETE

The design of different structures is achieved by performing, in general, two main steps: (1) deter-
mining the different forces acting on the structure using proper methods of structural analysis and
(2) proportioning all structural members economically, considering the safety, stability, serviceabil-
ity, and functionality of the structure. Structural concrete is one of the materials commonly used
to design all types of buildings. Its two component materials, concrete and steel, work together to

form structural members that can resist many types of loadings. The key to its performance lies

in strengths that are complementary: Concrete resists compression and steel reinforcement resists
tension forces.

The term structural concrete indicates all types of concrete used in structural applications.
Structural concrete may be plain, reinforced, prestressed, or partially prestressed concrete; in addi-

tion, concrete is used in composite design. Composite design is used for any structural member,
such as beams or columns, when the member contains a combination of concrete and steel shapes.

1.2 HISTORICAL BACKGROUND

The first modern record of concrete is as early as 1760, when John Smeaton used it in Britain
in the first lock on the river Calder [1]. The walls of the lock were made of stones filled in with

1
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concrete. In 1796, J. Parker discovered Roman natural cement, and 15 years later Vicat burned a
mixture of clay and lime to produce cement. In 1824, Joseph Aspdin manufactured portland cement
in Wakefield, Britain. It was called portland cement because when it hardened it resembled stone
from the quarries of the Isle of Portland.

In France, Francois Marte Le Brun built a concrete house in 1832 in Moissac in which he used
concrete arches of 18-ft span. He used concrete to build a school in St. Aignan in 1834 and a church
in Corbariece in 1835. Joseph Louis Lambot [2] exhibited a small rowboat made of reinforced
concrete at the Paris Exposition in 1854. In the same year, W. B. Wilkinson of England obtained a
patent for a concrete floor reinforced by twisted cables. The Frenchman Frangois Cignet obtained
his first patent in 1855 for his system of iron bars, which were embedded in concrete floors and
extended to the supports. One year later, he added nuts at the screw ends of the bars, and in 1869,
he published a book describing the applications of reinforced concrete.

Joseph Monier, who obtained his patent in Paris on July 16, 1867, was given credit for the
invention of reinforced concrete [3]. He made garden tubs and pots of concrete reinforced with
iron mesh, which he exhibited in Paris in 1867. In 1873, he registered a patent to use reinforced
concrete in tanks and bridges, and four years later, he registered another patent to use it in beams
and columns [1].

In the United States, Thaddeus Hyatt conducted flexural tests on 50 beams that contained
iron bars as tension reinforcement and published the results in 1877. He found that both concrete
and steel can be assumed to behave in a homogeneous manner for all practical purposes. This
assumption was important for the design of reinforced concrete members using elastic theory. He
used prefabricated slabs in his experiments and considered prefabricated units to be best cast in
T-sections and placed side by side to form a floor slab. Hyatt is generally credited with developing
the principles upon which the analysis and design of reinforced concrete are now based.

A reinforced concrete house was built by W. E. Ward near Port Chester, New York, in 1875. It
used reinforced concrete for walls, beams, slabs, and staircases. P. B. Write wrote in the American
Architect and Building News in 1877 describing the applications of reinforced concrete in Ward’s
house as a new method in building construction.

E. L. Ransome, head of the Concrete Steel Company in San Francisco, used reinforced con-
crete in 1879 and deformed bars for the first time in 1884. During 1889 to 1891, he built the
two-story Leland Stanford Museum in San Francisco using reinforced concrete. He also built a
reinforced concrete bridge in San Francisco. In 1900, after Ransome introduced the reinforced
concrete skeleton, the thick wall system started to disappear in construction. He registered the
skeleton type of structure in 1902 using spiral reinforcement in the columns, as was suggested by
Armand Considére of France. A. N. Talbot, of the University of Illinois, and F. E. Turneaure and
M. O. Withney, of the University of Wisconsin, conducted extensive tests on concrete to determine
its behavior, compressive strength, and modulus of elasticity.

In Germany, G. A. Wayass bought the French Monier patent in 1879 and published his book
on Monier methods of construction in 1887. Rudolph Schuster bought the patent rights in Austria,
and the name of Monier spread throughout Europe, which is the main reason for crediting Monier
as the inventor of reinforced concrete.

In 1900, the Ministry of Public Works in France called for a committee headed by Armand
Considére, chief engineer of roads and bridges, to establish specifications for reinforced concrete,
which were published in 1906.

Reinforced concrete was further refined by introducing some precompression in the tension
zone to decrease the excessive cracks. This refinement was the preliminary introduction of par-
tial and full prestressing. In 1928, Eugene Freyssinet established the practical technique of using
prestressed concrete [4].
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n 1905, Montreal, Canada.

The Barkwick House, a three-story concrete building built i

From 1915 to 1935, research was conducted on axially loaded columns and creep effects
on concrete; in 1940, eccentrically loaded columns were investigated. Ultimate-strength design
started to receive special attention, in addition to diagonal tension and prestressed concrete. The
American Concrete Institute Code (ACI Code) specified the use of ultimate-strength design in 1963
and included this method in all later codes. The method is called in the current ACI code the strength
design method. Building codes and specifications for the design of reinforced concrete structures
are established in most countries, and research continues on developing new applications and more
economical designs.

1.3 ADVANTAGES AND DISADVANTAGES OF REINFORCED CONCRETE

Reinforced concrete, as a structural material, is widely used in many types of structures. It is com-
petitive with steel if economically designed and executed.
The advantages of reinforced concrete can be summarized as follows:

It has a relatively high compressive strength.

It has better resistance to fire than steel.

It has a long service life with low maintenance cost.

In some types of structures, such as dams, piers, and footings, it is the most economical
structural material.

5. It can be cast to take the shape required, making it widely used in precast structural compo-
nents. It yields rigid members with minimum apparent deflection.

Eal A
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The disadvantages of reinforced concrete can be summarized as follows:

1. It has a low tensile strength of about one-tenth of its compressive strength.
It needs mixing, casting, and curing, all of which affect the final strength of concrete.

g

3. The cost of the forms used to cast concrete is relatively high. The cost of form material and
artisanry may equal the cost of concrete placed in the forms.

4. It has a low compressive strength as compared to steel (the ratio is about 1:10, depending on
materials), which leads to large sections in columns of multistory buildings.

5. Cracks develop in concrete due to shrinkage and the application of live loads.

1.4 CODES OF PRACTICE

The design engineer is usually guided by specifications called the codes of practice. Engineering
specifications are set up by various organizations to represent the minimum requirements neces-
sary for the safety of the public, although they are not necessarily for the purpose of restricting
engineers.

Most codes specify design loads, allowable stresses, material quality, construction types, and
other requirements for building construction. The most significant standard for structural concrete
design in the United States is the Building Code Requirements for Structural Concrete, ACI 318,
or the ACI Code. Most of the design examples of this book are based on this standard. Other codes
of practice and material specifications in the United States include the International building Code
(IBC), The American Society of Civil Engineers standard ASCE 7, The American Association of
State Highway and Transportation Officials (AASHTO) specifications, and specifications issued
by the American Society for Testing and Materials (ASTM), the American Railway Engineering
Association (AREA), and the Bureau of Reclamation, Department of the Interior.

1.5 DESIGN PHILOSOPHY AND CONCEPTS

The design of a structure may be regarded as the process of selecting the proper materials and pro-
portioning the different elements of the structure according to state-of-the-art engineering science
and technology. In order to fulfill its purpose, the structure must meet the conditions of safety, ser-
viceability, economy, and functionality. This can be achieved using design approach-based strain
limits in concrete and steel reinforcement.

The unified design method (UDM) is based on the strength of structural members assuming a
failure condition, whether due to the crushing of the concrete or to the yield of the reinforcing steel
bars. Although there is some additional strength in the bars after yielding (due to strain hardening),
this additional strength is not considered in the analysis of reinforced concrete members. In this
approach, the actual loads, or working loads, are multiplied by load factors to obtain the factored
design loads. The load factors represent a high percentage of the factor for safety required in the
design. Details of this method are presented in Chapters 3, 4, and 11. The ACI Code emphasizes
this method of design, and its provisions are presented in the body of the Code. The reason for
introducing this approach by the ACI Code relates to the fact that different design methods were
developed for reinforced and prestressed concrete beams and columns. Also, design procedures for
prestressed concrete were different from reinforced concrete. The purpose of the Code approach is
to simplify and unify the design requirements for reinforced and prestressed flexural members and
compression members.
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A second approach for the design of concrete members is called the strut-and-tie method
(STM). The provisions of this method are introduced in the ACI Code, Chapter 23. It applies effec-
tively in regions of discontinuity such as support and load applications on beams. Consequently,
the structural element is divided into segments and then analyzed using the truss analogy approach,
where the concrete resists compression forces as a strut, while the steel reinforcement resists tensile
forces as a tie.

A basic method that is not commonly used is called the working stress design or the elastic
design method. The design concept is based on the elastic theory assuming a straight-line stress dis-
tribution along the depth of the concrete section under service loads. The members are proportioned
on the basis of certain allowable stresses in concrete and steel. The allowable stresses are fractions
of the crushing strength of concrete and yield strength of steel. This method has been deleted from
the ACI Code. The application of this approach is still used in the design of prestressed concrete
members under service load conditions, as shown in Chapter 19.

Limit state design is a further step in the strength design method. It indicates the state of the
member in which it ceases to meet the service requirements such as losing its ability to withstand
external loads or suffering excessive deformation, cracking, or local damage. According to the limit
state design, reinforced concrete members have to be analyzed with regard to three limiting states:

1. Load-carrying capacity (safety, stability, and durability)
2. Deformation (deflections, vibrations, and impact)
3. Formation of cracks

The aim of this analysis is to ensure that no limiting state will appear in the structural member
during its service life.

1.6 UNITS OF MEASUREMENT

Two units of measurement are commonly used in the design of structural concrete. The first is the
U.S. customary system (lying mostly in its human scale and its ingenious use of simple numerical
proportions), and the second is the SI (Systeme International d’Unités), or metric, system.

The metric system is expected to be in universal use within the coming few years. The United
States is committed to changing to SI units. Great Britain, Canada, Australia, and other countries
have been using SI units for many years.

The base units in the SI system are the units of length, mass, and time, which are the meter
(m), the kilogram (kg), and the second (s), respectively. The unit of force, a derived unit called the
newton (N), is defined as the force that gives the acceleration of one meter per second (1 m/s?) to
a mass of one kilogram, or 1 N =1kg x m/s?.

The weight of a body, W, which is equal to the mass, m, multiplied by the local gravitational
acceleration, g (9.81m/s?), is expressed in newtons (N). The weight of a body of 1kg mass is
W=mg=1kgx9.81 m/s>=9.81N.

Multiples and submultiples of the base SI units can be expressed through the use of prefixes.
The prefixes most frequently used in structural calculations are the kilo (k), mega (M), milli (m),
and micro (p). For example,

1 km = 1000 m 1 mm = 0.001 m lym=10"m
1 kN =1000 N 1 Mg =1000kg = 10° g
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1.7 LOADS

Structural members must be designed to support specific loads.

Loads are those forces for which a given structure should be proportioned. In general, loads
may be classified as dead or live.

Dead loads include the weight of the structure (its self-weight) and any permanent material
placed on the structure, such as tiles, roofing materials, and walls. Dead loads can be determined
with a high degree of accuracy from the dimensions of the elements and the unit weight of materials.

Live loads are all other loads that are not dead loads. They may be steady or unsteady or mov-
able or moving; they may be applied slowly, suddenly, vertically, or laterally, and their magnitudes
may fluctuate with time. In general, live loads include the following:

» Occupancy loads caused by the weight of the people, furniture, and goods

» Forces resulting from wind action and temperature changes

» The weight of snow if accumulation is probable

» The pressure of liquids or earth on retaining structures

» The weight of traffic on a bridge

» Dynamic forces resulting from moving loads (impact), earthquakes, or blast loading

The ACI Code does not specify loads on structures; however, occupancy loads on differ-
ent types of buildings are prescribed by IBC-2012 and the American National Standards Institute
(ANSI) [5]. Some typical values are shown in Table 1.1. Table 1.2 shows the weights and specific
gravity of various materials.

Table 1.1 Typical Uniformly Distributed Design Loads

Design Live Load

Occupancy Contents Ib/ft2 kN/m?
Assembly hall Fixed seats 60 29
Movable seats 100 4.8
Hospital Operating rooms 60 2.9
Private rooms 40 1.9
Hotel Guest rooms 40 1.9
Public rooms 100 4.8
Balconies 100 4.8
Housing Private houses and apartments 40 1.9
Public rooms 100 4.8
Institution Classrooms 40 1.9
Corridors 100 4.8
Library Reading rooms 60 29
Stack rooms 150 7.2
Office building Offices 50 24
Lobbies 100 4.8
Stairs (or balconies) 100 4.8
Storage warehouses Light 100 4.8
Heavy 250 12.0
Yards and terraces 100 4.8
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Table 1.2 Density and Specific Gravity of Various Materials

Density
Material Ib/ft3 kg/m? Specific Gravity
Building materials
Bricks 120 1924 1.8-2.0
Cement, portland, loose 90 1443 —
Cement, portland, set 183 2933 2.7-3.2
Earth, dry, packed 95 1523 —
Sand or gravel, dry, packed 100-120 1600-1924 —
Sand or gravel, wet 118-120 1892-1924 —
Liquids
Oils 58 930 0.9-0.94
Water (at 4°C) 62.4 1000 1.0
Ice 56 898 0.88-0.92
Metals and minerals
Aluminum 165 2645 2.55-2.75
Copper 556 8913 9.0
Iron 450 7214 7.2
Lead 710 11,380 11.38
Steel, rolled 490 7855 7.85
Limestone or marble 165 2645 2.5-2.8
Sandstone 147 2356 2.2-2.5
Shale or slate 175 2805 2.7-2.9
Normal-weight concrete
Plain 145 2324 2224
Reinforced or prestressed 150 2405 2.3-2.5

AASHTO and AREA specifications prescribe vehicle loadings on highway and railway
bridges, respectively. These loads are given in References 6 and 7.

Snow loads on structures may vary between 10 and 40 1b/ft> (0.5 and 2 kN/m?), depending on
the local climate.

Wind loads may vary between 15 and 30 Ib/ft>, depending on the velocity of wind. The wind
pressure of a structure, F, can be estimated from the equation

F = 0.00256C, V* (1.1)

where
V = velocity of air (mi/h)
C, = shape factor of structure
F = dynamic wind pressure (Ib/ft%)

As an example, for a wind of 100 mi/h with C, = 1, the wind pressure is equal to 25.6 Ib/ft>. It is
sometimes necessary to consider the effect of gusts in computing the wind pressure by multiplying
the wind velocity in Eq. 1.1 by a gust factor, which generally varies between 1.1 and 1.3.

The shape factor, C,, varies with the horizontal angle of incidence of the wind. On vertical
surfaces of rectangular buildings, C, may vary between 1.2 and 1.3. Detailed information on wind
loads can be found in Reference 5.
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1.8 SAFETY PROVISIONS

Structural members must always be proportioned to resist loads greater than the service or actual
load in order to provide proper safety against failure. In the strength design method, the mem-
ber is designed to resist factored loads, which are obtained by multiplying the service loads by
load factors. Different factors are used for different loadings. Because dead loads can be esti-
mated quite accurately, their load factors are smaller than those of live loads, which have a high
degree of uncertainty. Several load combinations must be considered in the design to compute
the maximum and minimum design forces. Reduction factors are used for some combinations of
loads to reflect the low probability of their simultaneous occurrences. The ACI Code presents
specific values of load factors to be used in the design of concrete structures (see Chapter 3,
Section 3.5).

In addition to load factors, the ACI Code specifies another factor to allow an additional reserve
in the capacity of the structural member. The nominal strength is generally calculated using an
accepted analytical procedure based on statistics and equilibrium; however, in order to account
for the degree of accuracy within which the nominal strength can be calculated, and for adverse
variations in materials and dimensions, a strength reduction factor, ¢, should be used in the strength
design method. Values of the strength reduction factors are given in Chapter 3, Section 3.6.

To summarize the above discussion, the ACI Code has separated the safety provision into
an overload or load factor and to an undercapacity (or strength reduction) factor, ¢. A safe design
is achieved when the structure’s strength, obtained by multiplying the nominal strength by the
reduction factor, ¢, exceeds or equals the strength needed to withstand the factored loadings (service
loads times their load factors). For example,

M, < ¢pM, and V, < ¢V,

u — n

(1.2)

where
M,, V, = external factored moment and shear forces, respectively
M, , V, = nominal flexural strength and shear strength of member, respectively

n’ n

Given a load factor of 1.2 for dead load and a load factor of 1.6 for live load, the overall safety
factor for a structure loaded by a dead load, D, and a live load, L, is

12D+ 1.6L (1 1.2+ 1.6(L/D) (1
Factor of safety = —— | = | = ————— | — 1.3
Y= DL (¢> 1+(L/D) \¢ (1.3)
The factors of safety for the various values of ¢ and L/D ratios are as follows:
¢ 0.9 0.8 0.75
L/D 0 1 2 3 0 1 2 3 0 1 2 3

Factor of safety 1.33 156 1.63 1.67 1.50 174 1.83 1.88 1.6 187 196 2

For members subjected to flexure (beams), with tension-controlled sections, ¢ = 0.9, and the
factor of safety ranges between 1.33 for L/D =0 and 1.67 for L/D =3. These values are less than
those specified by the ACI Code 318 Appendix C of 1.56 for L/D =0 and 1.81 for L/D = 3.0 based
on load factors of 1.4 for dead load and 1.7 for live load. This reduction ranges between 17 and
8%, respectively.
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For members subjected to axial forces (spiral columns), ¢ =0.75, and the factor of safety
ranges between 1.60 for L/D =0 and 2 for L/D = 3. The increase in the factor of safety in columns
reflects the greater overall safety requirements of these critical building elements.

A general format of Eq. 1.2 may be written as [8]

¢R > v, Z(viQi) (1.4)

where

R, =nominal strength of structural number

) = undercapacity factor (Reduction factor <1.0)
Y Q; = sum of load effects

v; = overload factor

v, = analysis factor (>1.0)

The subscript i indicates the load type, such as dead load, live load, and wind load. The analysis
factor, v, is greater than 1.0 and is introduced to account for uncertainties in structural analysis.
The overload factor, v;, is introduced to account for several factors such as an increase in live load
due to a change in the use of the structure and variations in erection procedures. The design concept
is referred to as load and resistance factor design (LRFD).

1.9 STRUCTURAL CONCRETE ELEMENTS

Structural concrete can be used for almost all buildings, whether single story or multistory. The
concrete building may contain some or all of the following main structural elements, which are
explained in detail in other chapters of the book:

« Slabs are horizontal plate elements in building floors and roofs. They may carry gravity loads
as well as lateral loads. The depth of the slab is usually very small relative to its length or
width (Chapters 9 and 17).

e Beams are long, horizontal, or inclined members with limited width and depth. Their main
function is to support loads from slabs (Chapters 3, 4, and 8).

¢ Columns are critical members that support loads from beams or slabs. They may be subjected
to axial loads or axial loads and moments (Chapters 10, 11, and 12).

o Frames are structural members that consist of a combination of beams and columns or slabs,
beams, and columns. They may be statically determinate or statically indeterminate frames
(Chapter 16).

» Footings are pads or strips that support columns and spread their loads directly to the soil
(Chapter 13).

o Walls are vertical plate elements resisting gravity as well as lateral loads as in the case of
basement walls (Chapter 14).

e Stairs are provided in all buildings either low or high rise (Chapter 18).

1.10 STRUCTURAL CONCRETE DESIGN

The first step in the design of a building is the general planning carried out by the architect to
determine the layout of each floor of the building to meet the owner’s requirements. Once the
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architectural plans are approved, the structural engineer then determines the most adequate struc-
tural system to ensure the safety and stability of the building. Different structural options must be
considered to determine the most economical solution based on the materials available and the soil
condition. This result is normally achieved by:

1. Idealizing the building into a structural model of load-bearing frames and elements
2. Estimating the different types of loads acting on the building

3. Performing the structural analysis using computer or manual calculations to determine the
maximum moments, shear, torsional forces, axial loads, and other forces

4. Proportioning the different structural elements and calculating the reinforcement needed

5. Producing structural drawings and specifications with enough details to enable the contractor
to construct the building properly

1.11 ACCURACY OF CALCULATIONS

In the design of concrete structures, exact calculations to determine the size of the concrete elements
are not needed. Calculators and computers can give an answer to many figures after the decimal
point. For a practical size of a beam, slab, or column, each dimension should be approximated
to the nearest 1 or 1/ in. Moreover, the steel bars available in the market are limited to specific
diameters and areas, as shown in Table 1, Appendix 1. The designer should choose a group of bars
from the table with an area equal to or greater than the area obtained from calculations. Also, the
design equations in this book based on the ACI Code are approximate. Therefore, for a practical
and economical design, it is adequate to use four figures (or the full number with no fractions if
it is greater than four figures) for the calculation of forces, stresses, moments, or dimensions such
as length or width of a section. For strains, use five or six figures because strains are very small
quantities measured in a millionth of an inch (e.g., a strain of 0.000358 in./in.). Stresses are obtained
by multiplying the strains by the modulus of elasticity of the material, which has a high magnitude
(e.g., 29,000,000 Ib/in.?) for steel. Any figures less than five or six figures in strains will produce
quite a change in stresses.

Examples

For forces, use 28.45 K, 2845 1b, 567.8 K (four figures).
For force/length, use 2.451 K/ft or 2451 Ib/ft.

For length or width, use 14.63 in., 1.219 ft (or 1.22 ft).
For areas, use 7.537 in.2, and for volumes, use 48.72 in.3.
For strains, use 0.002078.

1.12 CONCRETE HIGH-RISE BUILDINGS

High-rise buildings are becoming the dominant feature of many U.S. cities; a great number of these
buildings are designed and constructed in structural concrete.

Although at the beginning of the century the properties of concrete and joint behavior of steel
and concrete were not fully understood, a 16-story building, the Ingalls Building, was constructed
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Table 1.3 Examples of Reinforced Concrete Skyscrapers

Height

Year Structure Location Stories ft m

1965 Lake Point Tower Chicago 70 645 197
1969 One Shell Plaza Houston 52 714 218
1975 Peachtree Center Plaza Hotel Atlanta 71 723 220
1976 Water Tower Place Chicago 74 859 262
1976 CN Tower Toronto — 1465 447
1977 Renaissance Center Westin Hotel Detroit 73 740 226
1983 City Center Minneapolis 40 528 158

in Cincinnati in 1902 with a total height of 210 ft (64 m). In 1922, the Medical Arts Building, with
a height of 230 ft (70 m), was constructed in Dallas, Texas. The design of concrete buildings was
based on elastic theory concepts and a high factor of safety, resulting in large concrete sections in
beams and columns. After extensive research, high-strength concrete and high-strength steel were
allowed in the design of reinforced concrete members. Consequently, small concrete sections as
well as savings in materials were achieved, and new concepts of structural design were possible.

To visualize how high concrete buildings can be built, some structural concrete skyscrapers
are listed in Table 1.3. The CN Tower is the world’s tallest free-standing concrete structure.

The reader should realize that most concrete buildings are relatively low and range from one to
five stories. Skyscrapers and high-rise buildings constitute less than 10% of all concrete buildings.

Photos of some different concrete buildings and structures are shown here.

Renaissance Center, Detroit, Michigan. Marina City Towers, Chicago, Illinois.
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Reinforced concrete grain silo using the slip form system. Brookings, South Dakota.
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IBM Building, Montreal Canada (the highest concrete
building in Montreal, with 50 stories).

2.1 FACTORS AFFECTING STRENGTH OF CONCRETE

In general, concrete consists of coarse and fine aggregate, cement, water, and—in many cases—
different types of admixture. The materials are mixed together until a cement paste is developed,
filling most of the voids in the aggregates and producing a uniform dense concrete. The plastic
concrete is then placed in a mold and left to set, harden, and develop adequate strength. For the
design of concrete mixtures, as well as composition and properties of concrete materials, the reader
is referred to Refs. 1 through 6.

The strength of concrete depends upon many factors and may vary within wide limits with the
same production method. The main factors that affect the strength of concrete are described next.

2.1.1 Water-Cement Ratio

The water—cement ratio is one of the most important factors affecting the strength of concrete. For
complete hydration of a given amount of cement, a water—cement ratio (by weight) equal to 0.25 is
needed. A water—cement ratio of about 0.35 or higher is needed for the concrete to be reasonably
workable without additives. This ratio corresponds to 4 gal of water per sack of cement (94 1b)
(or 17.81b per 50 kg of cement). Based on this cement ratio, a concrete strength of about 6000 psi
may be achieved. A water—cement ratio of 0.5 and 0.7 may produce a concrete strength of about
5000 and 3000 psi, respectively.

15
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2.1.2 Properties and Proportions of Concrete Constituents

Concrete is a mixture of cement, aggregate, and water. An increase in the cement content in the
mix and the use of well-graded aggregate increase the strength of concrete. Special admixtures are
usually added to the mix to produce the desired quality and strength of concrete.

2.1.3 Method of Mixing and Curing

The use of mechanical concrete mixers and the proper time of mixing both have favorable effects on
strength of concrete. Also, the use of vibrators produces dense concrete with a minimum percentage
of voids. A void ratio of 5% may reduce the concrete strength by about 30%.

The curing conditions exercise an important influence on the strength of concrete. Both mois-
ture and temperature have a direct effect on the hydration of cement. The longer the period of moist
storage, the greater the strength. If the curing temperature is higher than the initial temperature of
casting, the resulting 28-day strength of concrete is reached earlier than 28 days.

2.1.4 Age of Concrete

The strength of concrete increases appreciably with age, and hydration of cement continues for
months. In practice, the strength of concrete is determined from cylinders or cubes tested at the
age of 7 and 28 days. As a practical assumption, concrete at 28 days is 1.5 times as strong as at
7 days: The range varies between 1.3 and 1.7. The British Code of Practice [2] accepts concrete
if the strength at 7 days is not less than two-thirds of the required 28-day strength. For a normal
portland cement, the increase of strength with time, relative to 28-day strength, may be assumed as
follows:

Age 7days 14days 28days 3months 6months 1year 2years 5years

Strength ratio 0.67 0.86 1.0 1.17 1.23 1.27 1.31 1.35

2.1.5 Loading Conditions

The compressive strength of concrete is estimated by testing a cylinder or cube to failure in a few
minutes. Under sustained loads for years, the compressive strength of concrete is reduced by about
30%. Under 1day sustained loading, concrete may lose about 10% of its compressive strength.
Sustained loads and creep effect as well as dynamic and impact effect, if they occur on the structure,
should be considered in the design of reinforced concrete members.

2.1.6 Shape and Dimensions of Tested Specimen

The common sizes of concrete specimens used to predict the compressive strength are either 6 X
12-in. (150 x 300-mm) or 4 X 8-in. (100 X 200-mm) cylinders or 6-in. (150-mm) cubes. When a
given concrete is tested in compression by means of cylinders of like shape but of different sizes,
the larger specimens give lower strength indexes. Table 2.1 [4] gives the relative strength for various
sizes of cylinders as a percentage of the strength of the standard cylinder; the heights of all cylinders
are twice the diameters.

Sometimes concrete cylinders of nonstandard shape are tested. The greater the ratio of spec-
imen height to diameter, the lower the strength indicated by the compression test. To compute the
equivalent strength of the standard shape, the results must be multiplied by a correction factor.
Approximate values of the correction factor are given in Table 2.2, extracted from ASTM C 42/C
42 M. The relative strengths of a cylinder and a cube for different compressive strengths are shown
in Table 2.3.
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Table 2.1 Effect of Size of Compression Specimen on Strength of
Concrete

Size of Cylinder

in. mm Relative Compressive Strength
2x4 50 x 100 1.09
3x6 75 x 150 1.06
6x12 150 x 300 1.00
8x 16 200 x 400 0.96
12 x24 300 x 600 0.91
18 x 36 450 x 900 0.86
24 x 48 600 x 1200 0.84
36 X 72 900 x 1800 0.82

Table 2.2 Strength Correction Factor for Cylinders of Different Height-Diameter Ratios

Ratio 2.0 1.75 1.50 1.25 1.10 1.00 0.75 0.50

Strength correction factor 1.00 0.98 0.96 0.93 0.90 0.87 0.70 0.50
Strength relative to standard cylinder 1.00 1.02 1.04 1.06 1.11 1.18 1.43 2.00

Table 2.3 Relative Strength of Cylinder versus Cube [6]

Compressive strength (psi) 1000 2200 2900 3500 3800 4900 5300 5900 6400 7300

(N/mm?) 7.0 15.5 20.0 245 27.0 245 37.0 415 450 515
Strength ratio of cylinder to cube 0.77 0.76 0.81 0.87 091 093 094 095 096 0.96

2.2 COMPRESSIVE STRENGTH

In designing structural members, it is assumed that the concrete resists compressive stresses and
not tensile stresses; therefore, compressive strength is the criterion of quality concrete. The other
concrete stresses can be taken as a percentage of the compressive strength, which can be easily
and accurately determined from tests. Specimens used to determine compressive strength may be
cylindrical, cubical, or prismatic.

Test specimens in the form of a 6-in. (150-mm) or 8-in. (200-mm) cube are used in Great
Britain, Germany, and other parts of Europe.

Prism specimens are used in France, Russia, and other countries and are usually 70 X 70 X
350 mm or 100 x 100 x 500 mm. They are cast with their longer sides horizontal and are tested,
like cubes, in a position normal to the position of cast.

Before testing, the specimens are moist cured and then tested at the age of 28 days by gradually
applying a static load until rupture occurs. The rupture of the concrete specimen may be caused
by the applied tensile stress (failure in cohesion), the applied shearing stress (sliding failure), the
compressive stress (crushing failure), or combinations of these stresses.

The failure of the concrete specimen can be in one of three modes [5], as shown in Fig. 2.1.
First, under axial compression, the specimen may fail in shear, as in Fig. 2.1a. Resistance to failure
is due to both cohesion and internal friction.
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Figure 2.1 Modes of failure of standard concrete cylinders.

The second type of failure (Fig. 2.1b) results in the separation of the specimen into columnar
pieces by what is known as splitting, or columnar, fracture. This failure occurs when the strength
of concrete is high, and lateral expansion at the end bearing surfaces is relatively unrestrained.

The third type of failure (Fig. 2.1¢) is seen when a combination of shear and splitting failure
occurs.

2.3 STRESS-STRAIN CURVES OF CONCRETE

The performance of a reinforced concrete member under load depends, to a great extent, on the
stress—strain relationship of concrete and steel and on the type of stress applied to the member.
Stress—strain curves for concrete are obtained by testing a concrete cylinder to rupture at the age of
28 days and recording the strains at different load increments.

Standard capped cylinders ready for testing.
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Figure 2.2 Typical stress—strain curves of concrete.

Figure 2.2 shows typical stress—strain curves for concretes of different strengths. All curves
consist of an initial relatively straight elastic portion, reaching maximum stress at a strain of about
0.002; then rupture occurs at a strain of about 0.003. Concrete having a compressive strength
between 3000 and 6000 psi (21 and 42 N/mm?) may be adopted. High-strength concrete with a
compressive strength greater than 6000 psi (6000 to 15,000 psi) is becoming an important building
material for the design of concrete structures.

2.4 TENSILE STRENGTH OF CONCRETE

Concrete is a brittle material, and it cannot resist the high tensile stresses that are important when
considering cracking, shear, and torsional problems. The low tensile capacity can be attributed to
the high stress concentrations in concrete under load, so that a very high stress is reached in some
portions of the specimen, causing microscopic cracks, while the other parts of the specimen are
subjected to low stress.

Direct tension tests are not reliable for predicting the tensile strength of concrete, due to
minor misalignment and stress concentrations in the gripping devices. An indirect tension test in
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Figure 2.3 Cylinder splitting test [6]: (@) configuration of test, (b) distribution of
horizontal stress, and (c) cylinder after testing.

the form of splitting a 6 X 12-in. (150 X 300-mm) cylinder was suggested by the Brazilian Fernando
Carneiro. The test is usually called the splitting test. In this test, the concrete cylinder is placed
with its axis horizontal in a compression testing machine. The load is applied uniformly along
two opposite lines on the surface of the cylinder through two plywood pads, as shown in Fig. 2.3.
Considering an element on the vertical diameter and at a distance y from the top fibers, the element
is subjected to a compressive stress

2P D?
=— — -1 2.1
e 7LD (y (D—-y) > &b
and a tensile stress op
= = 2.2
fSp LD (2.2)

where P is the compressive load on the cylinder and D and L are the diameter and length of the
cylinder. For a 6 X 12-in. (150 X 300-mm) cylinder and at a distance y=D/2, the compression
strength is f, = 0.0265 P, and the tensile strength is f, = 0.0088P = £, /3.

Concrete cylinder splitting test.
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The splitting strength of f{, can be related to the compressive strength of concrete in that it

varies between six and seven times \/]TC’ for normal concrete and between four and five times 4/f; for
lightweight concrete. The direct tensile stress, f;, can also be estimated from the split test: Its value
varies between 0.5f;, and 0.7f,. The smaller of these values applies to higher strength concrete.
The splitting strength, £, can be estimated as 10% of the compressive strength up to f; = 6000 psi
(42 N/mm?). For higher values of compressive strength, Jip can be taken as 9% of f;.

In general, the tensile strength of concrete ranges from 7 to 11% of its compressive strength,
with an average of 10%. The lower the compressive strength, the higher the relative tensile strength.

2.5 FLEXURAL STRENGTH (MODULUS OF RUPTURE) OF CONCRETE

Experiments on concrete beams have shown that tensile strength in bending is greater than the
tensile stress obtained by direct or splitting tests. Flexural strength is expressed in terms of the
modulus of rupture of concrete (f,), which is the maximum tensile stress in concrete in bending.
The modulus of rupture can be calculated from the flexural formula used for elastic materials,
f.=Mcll, by testing a plain concrete beam. The beam, 6 X 6 X 28in. (150 X 150 x 700 mm), is
supported on a 24-in. (600-mm) span and loaded to rupture by two loads, 4 in. (100 mm) on either
side of the center. A smaller beam of 4 X 4 X 201in. (100 X 100 X 500 mm) on a 16-in. (400-mm)
span may also be used.

The modulus of rupture of concrete ranges between 11 and 23% of the compressive strength.
A value of 15% can be assumed for strengths of about 4000 psi (28 N/mm?). The ACI Code, Section
19.2.3.1, prescribes the value of the modulus of rupture as

£ =7.52/f (psi) = 0.6241/f/(N/mm>) (2.3)
where the modification factor A for type of concrete (ACI Table 19.2.4.2) is given as

1.0  for normal-weight concrete
A=1<0.85 for sand — lightweight concrete
0.75 for all — lightweight concrete

Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric fractions,
for concrete containing normal-weight fine aggregate and a blend of lightweight and normal-weight
coarse aggregate.

The modulus of rupture as related to the strength obtained from the split test on cylinders may
be taken as f, = (1.25 to 1.50)f{,..

2.6 SHEAR STRENGTH

Pure shear is seldom encountered in reinforced concrete members because it is usually accompanied
by the action of normal forces. An element subjected to pure shear breaks transversely into two
parts. Therefore, the concrete element must be strong enough to resist the applied shear forces.

Shear strength may be considered as 20 to 30% greater than the tensile strength of concrete,
or about 12% of its compressive strength. The ACI Code, Section 22.6.6.1, allows a nominal shear
stress of 2&\/]? psi (O.l7ﬂ\/f£ N/mm?) on plain concrete sections. For more information, refer to
Chapter 5.
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2.7 MODULUS OF ELASTICITY OF CONCRETE

One of the most important elastic properties of concrete is its modulus of elasticity, which can
be obtained from a compressive test on concrete cylinders. The modulus of elasticity, E., can be
defined as the change of stress with respect to strain in the elastic range:

__unitstress
¢ unitstrain

The modulus of elasticity is a measure of stiffness, or the resistance of the material to defor-
mation. In concrete, as in any elastoplastic material, the stress is not proportional to the strain,
and the stress—strain relationship is a curved line. The actual stress—strain curve of concrete can be
obtained by measuring the strains under increments of loading on a standard cylinder.

The initial tangent modulus (Fig. 2.4) is represented by the slope of the tangent to the curve
at the origin under elastic deformation. This modulus is of limited value and cannot be determined
with accuracy. Geometrically, the tangent modulus of elasticity of concrete, E, is the slope of the
tangent to the stress—strain curve at a given stress. Under long-time action of load and due to the
development of plastic deformation, the stress-to-total-strain ratio becomes a variable nonlinear

(2.4)

quantity.
df.
E(,‘ = —i
ds.
@ (© ©®)
f
fe
2
o
&
, £ = Elastic strain
fe/2 & = Plastic strain
o Tt gy
/
/
/
/
/ L
Strain
=1 €c -

Figure 2.4 Stress-strain curve and modulus of elasticity of concrete. Lines a-d repre-
sent (a) initial tangent modulus, (b) tangent modulus at a stress, f,, (c) secant modulus

at a stress, f,, and (d) secant modulus at a stress /2.
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For practical applications, the secant modulus can be used. The secant modulus is represented
by the slope of a line drawn from the origin to a specific point of stress (B) on the stress—strain curve
(Fig. 2.4). Point B is normally located at f! /2.

The ACI Code, Section 19.2.2.1, gives a simple formula for calculating the modulus of elas-
ticity of normal and lightweight concrete considering the secant modulus at a level of stress, f.,
equal to half the specified concrete strength, f/,

E. = 33w \/f! psi(w in pef) = 0.043w"v/f! N/mm? (2.5)

where w = unit weight of concrete [between 90 and 160 1b/ft® (pcf) or 1400 to 2600 kg/m?] and
S = specified compressive strength of a standard concrete cylinder. For normal-weight concrete,
w is approximately 145 pcf (2320 kg/m?); thus,

E. = 57,600\/f! psi = 4780/’ MPa (2.6)

The ACI Code allows the use of E,. = 57,000\/f7 (psi) = 47004/f! MPa. The module of elas-
ticity, E,, for different values of f/ are shown in Table A.10.

2.8 POISSON’S RATIO

Poisson’s ratio u is the ratio of the transverse to the longitudinal strains under axial stress within
the elastic range. This ratio varies between 0.15 and 0.20 for both normal and lightweight con-
crete. Poisson’s ratio is used in structural analysis of flat slabs, tunnels, tanks, arch dams, and other
statically indeterminate structures. For isotropic elastic materials, Poisson’s ratio is equal to 0.25.
An average value of 0.18 can be used for concrete.

P

Test on a standard concrete cylinder to determine the modulus of elasticity of concrete.
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2.9 SHEAR MODULUS

The modulus of elasticity of concrete in shear ranges from about 0.4 to 0.6 of the corresponding
modulus in compression. From the theory of elasticity, the shear modulus is taken as follows:

E,
G, =—"2 (2.7)
2(1 4+ )

where y = Poisson’s ratio of concrete. If 4 is taken equal to é, then G, = 0.43E, = 24,500 \/f_c’ .

2.10 MODULAR RATIO

The modular ratio 7 is the ratio of the modulus of elasticity of steel to the modulus of elasticity of
concrete: n=E/E,.

Because the modulus of elasticity of steel is considered constant and is equal to 29 x 10° psi
and E. = 33w'>\/f!,

6
_ 29 x 10 (2.8)
33w!Sy/f!
For normal-weight concrete, E, = 57,0004/f; hence, n can be taken as
n= @(fg in psi) = ﬂ(fg in N/mm?) (2.9)
! i

A A

The significance and the use of the modular ratio are explained in Chapter 6.

2.11 VOLUME CHANGES OF CONCRETE

Concrete undergoes volume changes during hardening. If it loses moisture by evaporation, it
shrinks, but if the concrete hardens in water, it expands. The causes of the volume changes in
concrete can be attributed to changes in moisture content, chemical reaction of the cement with
water, variation in temperature, and applied loads.

2.11.1 Shrinkage

The change in the volume of drying concrete is not equal to the volume of water removed [6].
The evaporation of free water causes little or no shrinkage. As concrete continues to dry, water
evaporates and the volume of the restrained cement paste changes, causing concrete to shrink,
probably due to the capillary tension that develops in the water remaining in concrete. Emptying
of the capillaries causes a loss of water without shrinkage, but once the absorbed water is removed,
shrinkage occurs.

Many factors influence the shrinkage of concrete caused by the variations in moisture condi-
tions [5]:

1. Cement and Water Content. The more cement or water content in the concrete mix, the greater
the shrinkage.

2. Composition and Fineness of Cement. High-early-strength and low-heat cements show more
shrinkage than normal portland cement. The finer the cement, the greater the expansion under
moist conditions.
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3. Type, Amount, and Gradation of Aggregate. The smaller the size of aggregate particles, the
greater the shrinkage. The greater the aggregate content, the smaller the shrinkage [7].

4. Ambient Conditions, Moisture, and Temperature. Concrete specimens subjected to moist con-
ditions undergo an expansion of 200 to 300 x 1075, but if they are left to dry in air, they shrink.
High temperature speeds the evaporation of water and, consequently, increases shrinkage.

S. Admixtures. Admixtures that increase the water requirement of concrete increase the shrink-
age value.

6. Size and Shape of Specimen. As shrinkage takes place in a reinforced concrete member, ten-
sion stresses develop in the concrete, and equal compressive stresses develop in the steel.
These stresses are added to those developed by the loading action. Therefore, cracks may
develop in concrete when a high percentage of steel is used. Proper distribution of reinforce-
ment, by producing better distribution of tensile stresses in concrete, can reduce differential
internal stresses.

The values of final shrinkage for ordinary concrete vary between 200 and 700 x 1076, For
normal-weight concrete, a value of 300 x 10~% may be used. The British Code [8] gives a value of
500 x 107, which represents an unrestrained shrinkage of 1.5 mm in a 3-m length of thin, plain
concrete sections. If the member is restrained, a tensile stress of about 10 N/mm? (1400 psi) arises.
If concrete is kept moist for a certain period after setting, shrinkage is reduced; therefore, it is
important to cure the concrete for a period of no fewer than 7 days.

Exposure of concrete to wind increases the shrinkage rate on the upwind side. Shrinkage
causes an increase in the deflection of structural members, which in turn increases with time.
Symmetrical reinforcement in the concrete section may prevent curvature and deflection due to
shrinkage.

Generally, concrete shrinks at a high rate during the initial period of hardening, but at later
stages the rate diminishes gradually. It can be said that 15 to 30% of the shrinkage value occurs in
2 weeks, 40 to 80% occurs in 1 month, and 70 to 85% occurs in 1 year.

2.11.2 Expansion Due to Rise in Temperature

Concrete expands with increasing temperature and contracts with decreasing temperature. The
coefficient of thermal expansion of concrete varies between 4 and 7 X 107 per degree Fahren-
heit. An average value of 5.5 X 107 per degree Fahrenheit (12 x 10~ per degree Celsius) can be
used for ordinary concrete. The British Standard Institution [8] suggests a value of 10> per degree
Celsius. This value represents a change of length of 10 mm in a 30-m member subjected to a change
in temperature of 33°C. If the member is restrained and unreinforced, a stress of about 7 N/mm?
(1000 psi) may develop.

In long reinforced concrete structures, expansion joints must be provided at lengths of 100 to
200 ft (30 to 60 m). The width of the expansion joint is about 1 in. (25 mm). Concrete is not a good
conductor of heat, whereas steel is a good one. The ability of concrete to carry load is not much
affected by temperature.

2.12 CREEP

Concrete is an elastoplastic material, and beginning with small stresses, plastic strains develop
in addition to elastic ones. Under sustained load, plastic deformation continues to develop over a
period that may last for years. Such deformation increases at a high rate during the first 4 months
after application of the load. This slow plastic deformation under constant stress is called creep.
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(&1 + agy)

7
(a) () (c) (d)

Figure 2.5 Deformation in a loaded concrete cylinder: (a) specimen unloaded, (b) elas-
tic deformation, (c) elastic plus creep deformation, and (d) permanent deformation after
release of load.

Figure 2.5 shows a concrete cylinder that is loaded. The instantaneous deformation is &,
which is equal to the stress divided by the modulus of elasticity. If the same stress is kept for a
period of time, an additional strain, €,, due to creep effect, can be recorded. If load is then released,
the elastic strain, €, will be recovered, in addition to some creep strain. The final permanent plastic
strain, €5, will be left, as shown in Fig. 2.5. In this case, €5 =(1 — a)e,, where « is the ratio of
the recovered creep strain to the total creep strain. The ratio @ ranges between 0.1 and 0.2. The
magnitude of creep recovery varies with the previous creep and depends appreciably upon the
period of the sustained load. Creep recovery rate will be less if the loading period is increased,
probably due to the hardening of concrete while in a deformed condition.

The ultimate magnitude of creep varies between 0.2 X 107% and 2 x 107® per unit stress
(Ib/in.?) per unit length. A value of 1 x 107° can be used in practice. The ratio of creep strain to
elastic strain may be as high as 4.

Creep takes place in the hardened cement matrix around the strong aggregate. It may be
attributed to slippage along planes within the crystal lattice, internal stresses caused by changes in
the crystal lattice, and gradual loss of water from the cement gel in the concrete.

The different factors that affect the creep of concrete can be summarized as follows [9]:

1. Level of Stress. Creep increases with an increase of stress in specimens made from concrete
of the same strength and with the same duration of load.

2. Duration of Loading. Creep increases with the loading period. About 80% of the creep occurs
within the first 4 months; 90% occurs after about 2 years.

3. Strength and Age of Concrete. Creep tends to be smaller if concrete is loaded at a late age.
Also, creep of 2000 psi (14 N/mm?)-strength concrete is about 1.41 x 1075, whereas that
of 4000 psi (28 N/mm?)—strength concrete is about 0.8 X 107° per unit stress and length
of time.

4. Ambient Conditions. Creep is reduced with an increase in the humidity of the ambient air.

5. Rate of Loading. Creep increases with an increase in the rate of loading when followed by
prolonged loading.

6. Percentage and Distribution of Steel Reinforcement in Reinforced Concrete Member. Creep
tends to be smaller for higher proportion or better distribution of steel.

7. Size of Concrete Mass. Creep decreases with an increase in the size of the tested specimen.
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8. Type, Fineness, and Content of Cement. The amount of cement greatly affects the final creep
of concrete, as cement creeps about 15 times as much as concrete.

9. Water—Cement Ratio. Creep increases with an increase in the water—cement ratio.

10. Type and Grading of Aggregate. Well-graded aggregate will produce dense concrete and con-
sequently a reduction in creep.

11. Type of Curing. High-temperature steam curing of concrete, as well as the proper use of a
plasticizer, will reduce the amount of creep.

Creep develops not only in compression but also in tension, bending, and torsion.

The ratio of the rate of creep in tension to that in compression will be greater than 1in the
first 2 weeks, but this ratio decreases over longer periods [5].

Creep in concrete under compression has been tested by many investigators. Troxell, Raphale,
and Davis [10] measured creep strains periodically for up to 20 years and estimated that of the total
creep after 20 years, 18 to 35% occurred in 2 weeks, 30 to 70% occurred in 3 months, and 64 to
83% occurred in 1 year.

For normal concrete loaded after 28 days, C, = 0.13 \3/; where C, = creep strain per unit stress
per unit length. Creep augments the deflection of reinforced concrete beams appreciably with time.
In the design of reinforced concrete members, long-term deflection may be critical and has to be
considered in proper design. Extensive deformation may influence the stability of the structure.

Sustained loads affect the strength as well as the deformation of concrete. A reduction of up
to 30% of the strength of unreinforced concrete may be expected when concrete is subjected to a
concentric sustained load for 1 year.

The fatigue strength of concrete is much smaller than its static strength. Repeated loading
and unloading cycles in compression lead to a gradual accumulation of plastic deformations. If
concrete in compression is subjected to about 2 million cycles, its fatigue limit is about 50 to 60%
of the static compression strength. In beams, the fatigue limit of concrete is about 55% of its static
strength [11].

2.13 MODELS FOR PREDICTING SHRINKAGE AND CREEP OF CONCRETE

Seven models were described in this chapter for the prediction of shrinkage and creep of concrete.
These include ACI 209R-92, B3, GL-2000, CEB 90, CEB MC 90-99, fib MC 2010, and AASHTO.

2.13.1 ACI 209R-92 Model

The American Concrete Institute recommends the ACI 209R-92 as one of four models [12].
Branson and Christianson [13] first developed this model in 1970. The ACI 209 model was used
for many years in the design of concrete structures. The model is simple to use but limited in its
accuracy.

Shrinkage Calculation. Calculation of shrinkage using the ACI 209R-92 model can be per-
formed if the following parameters and conditions are known: curing method (moist-cured or
steam-cured concrete), relative humidity, H, type of cement, specimen shape, ultimate shrinkage
strain, £g,,, age of concrete after casting, ¢, age of the concrete drying commenced, usually taken
as the age at the end of moist curing, z,.
The shrinkage strain is defined as
-1

]T_Ct)KssKshfshu (2.10)

6Sh(t’ tC) =
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where
t = age of concrete after casting (days)
t. = age of the concrete drying commenced (days)
J = constant in determining shrinkage strain, depends on curing method shape and size factors
according to Table 2.4
K, = shape and size correction factor for shrinkage according to Eq. 2.11
K, = relative humidity correction factor for shrinkage according to Eq. 2.12
&4,y = ultimate shrinkage strain 780 X 10~ (in./in.) or (mm/mm) (for both moist- and steam-cured
concrete)

Shape and size correction factor for shrinkage should be calculated as follows:

For t —1t, < one year
123-0.152 (¥
=9
4
s

1.23 0,006 (

) (in. — Ib)

A ) D

Ss

(2.11a)

S

For t —t. > one year

1.17—0.116(%) (in. — Ib)
Ky =1 (2.11b)
1.17 — 0.00456 (%) (ST)

Y

where
V = volume of the specimen (in.> or mm?)
S = surface of the specimen (in.> or mm?)

Relative humidity correction factor for shrinkage is

K. = 1.40 — 0.01H for 40% < H < 80% 2.12)
7 13.00 - 0.03H  for 81% < H < 100% ’

where

H = relative humidity (%)

Table 2.4 Values of Constant f as a Function of Curing

Method
Conditions f
Moist-cured concrete (7 days min.) 35
Steam-cured concrete (3 days min.) 55
If shape and size effects are 260360V (in.—1b)

considered for both curing condition
266[1.42><10‘2(V/S)] (SD

Note: In practice, f = 35 and f = 155 are commonly used.
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Creep Calculation. The total load-dependent strain at time ¢, €;. (¢, t,) of a concrete member
uniaxially loaded at time #, with a constant stress ¢ may be calculated as follows:

£..(1,1y) = gty) + £.(1, 1) (2.13)

where
g,(t,) = initial elastic strain at loading
€.(t, t,) = creep strain at time 7>

o

g,(ty) = (2.14)
cmt,
c
et ty) = C.(0) (2.15)
cmt,
where
E. 1, = modulus of elasticity at age of loading (MPa) as given in Eq. 2.17

C.(f) = creep coefficient at time £, as given in Eq. 2.19

Usually, the total load-dependent strain is presented with compliance function, also called creep
function, J(¢, t,), which represents the total load-dependent strain at time ¢ produced by a unit
constant stress that has been acting since time ,,.

J) = # (2.16)
cmt,
_ 33(7,)3/2\/]‘;{00) (in. — 1b) 2.17)
cmty 0.043(y)*2+/f!(t,) (SI) '

where

y = concrete unit weight (kg/m?) or (Ib/ft%)
f1(t,) = mean concrete compressive strength at age of loading (MPa) or ksi

/ ly
ty) = —_— 2.18

fc(O) fcnga+bt0 ( )
where f,, is the average 28-day concrete compressive strength (MPa) a and b are constants accord-

ing to Table 2.5.

Creep coefficient, C.(f), can be determined as follows:
(1 = 1)

C.(t, 1)) = C. KK K (2.19)

10 + (1 — 15)00 "

Table 2.5 Constants a and b as Function of Cement Type and Curing
Method

Type of Cement Moist-Cured Concrete Steam-Cured Concrete

I a=4 b=0.85 a=1 b=0.95
I a=230 b=092 a=070 b=0.98
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Table 2.6 Correction Factors for Age of Loading and Relative Humidity

Curing Method  {, (days) H K., K.,
Moist cured > 1day >40%  N/A N/A
> 7 days >40%  1.25(t)) %1% 1.27-0.0067H
Steam cured > 1day >40%  1.13(1))"%%  1.27-0.0067H
> 7days >40% N/A N/A

Table 2.7 Correction Factors for Shape and Size

t—t, K, (in. —Ib) K, (S))

< lyear 1.14—0.092(%) 1.14—0.00363(‘—;)
> 1year 1.10—0.068(‘—;) 1.10—0.00268(%)

where
1, = age of concrete at loading (days)
t = age of concrete (days)
C,, = ultimate creep coefficient =2.35
K, = relative humidity correction factor for creep determined from Table 2.6
K., = age at loading correction factor determined from Table 2.6
K, = shape and size correction factor for creep determined from Table 2.7

2.13.2 B3 Model
The model was developed by Bazant and Baweja [14] and is described by ACI [12].

Shrinkage Calculation. Required parameters for calculation of shrinkage strain using the B3
model are concrete mean compressive strength at 28 days, curing conditions, cement type, relative
humidity, water content in concrete, and specimen shape.

The shrinkage strain can be estimated using the following equation:

&5(1) = (Egh)(Kj)S(1) (2.20)
where

&4, = ultimate shrinkage strain according to Eq. 2.21
K, = humidity function for shrinkage according to Table 2.9
S(#) = time function for shrinkage according to Eq. 22.27

Ultimate shrinkage strain can be calculated using the following equation:

E
Eshu = ~Esu cmeo? (2.21)
em(t,+7g,)
{—a1a2 [0.025(0)* (1, )" +270] x 107°  (in. — Ib)
Esu =

2.22
~ 6, [0.019()> (fopy, )70 +270] x 107 (SD) 222)
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Table 2.8 Correction Factor a, as
Function of Cement Type

Type of Cement a,

I 1.00
I 0.85
il 1.10

Table 2.9 Correction Factor a, as
Function of Type of Curing

Type of Curing a,

Steam cured 0.75
Water cured or H=100% 1.00
Sealed during curing 1.20

where
a,; = type of cement correction factor according to Table 2.8
a, = curing condition correction factor according to the Table 2.9
w = water content (kg/m?) or (Ib/yd?)
Jem,, = mean compressive concrete strength at 28 days (MPa) or (psi)

E1n607/ Ecmutr,,) = @ factor that accounts for the time dependence of ultimate shrinkage of concrete

Type of cement correction factor @; can be determined using Table 2.8.
Curing condition correction factor a, can be determined using Table 2.9.
Humidity function for shrinkage, K),, should be determined according to Table 2.10.

570001/fos  (in. — Ib)
cm28 = - (223)
47354/ femas (SD)
Egmgor = (1.167) /2 E o (2.24)
12
tc + Tsh
Eo o= E., (2.25)
(1) (4 +0.85 (1, + 7y,) ) “
2
190.812008(f, o) ™0% [st (% )] (in. — Ib)
v = S (2.26)
0.08517008(f, =025 [2ks <§ )] (SD)

where H is relative humidity (%).
Time function for shrinkage, S(¢), should be calculated according to the following equation:

r—t

S(?) = tanh < (2.27)
Tsh
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Table 2.10 Humidity Function for Shrinkage, K,,

Humidity K,

H<98% 1 — (H/100)
H=100% -0.2

98% < H < 100% Linear interpolation

Table 2.11 Correction Factor K as Function
of Cross-Sectional Shape

Cross-Sectional Shape K,

Infinite slab 1.00
Infinite cylinder 1.15
Infinite square prism 1.25
Sphere 1.30
Cube 1.55

where
t = age of concrete (days)
t. = age of concrete drying commenced (days)
t—t, = time from end of initial curing
T, = shrinkage half-time (days) according to Eq. 2.26
E. . »s = modulus of elasticity of concrete at 28 days (MPa or psi)
K, = cross-sectional shape correction factor according to Table 2.11

If type of member is not defined, K, can be assumed to be 1.

Creep Calculation. The creep function, also called creep compliance, J(t, #,) is given by Eq. 2.28:
J([, to) =q+ Co(t, to) + Cd(t’ to, tc) (228)

where

q, = instantaneous strain, given in Eq. 2.29
Cy(t, ty) = compliance function for basic creep composed of three terms, an aging viscoelastic
term, a nonaging viscoelastic term, and an aging flow term given in Eq. 2.30
C,(t, t,, t.) = compliance function for drying creep, given in Eq. 2.38

0.6
q, = (2.29)
Ecm28
The compliance function for basic creep, Cy(t, t), should be calculated as follows:
t
Co(t: 1g) = q20(1, 1p) + g3In[1 + (1 = 1)*'] + g4In <t_) (2.30)
0

where
q, = aging viscoelastic compliance parameter
Q(t, t,) = binomial integral
g5 = nonaging viscoelastic compliance parameter
q, = flow compliance parameter
1, = age of concrete at loading (days)
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_ [86.8(0) " (fu, )" x 107 (in. —Ib)
= 18540005 ()00 x 1070 (SD)
where c is the cement content (kg/m?).

i) 7 ~1/7)
0 (1o) (’°)] to

(1, 19) = Qs(tp) [1 + W

where
1
1n) =
O (to) 0.086(15)2/? + 1.21(1,)*/°
In[1 + (z — t,)"!
2t 1) = n[l+ (—1y)""]

\/%

rty) = 1.7(5)*"* + 8
4
93 = 0.29¢, <% )

-0.7
0.14<ﬂ> %1076 (in. — Ib)
_ c
44 a\~07 i
20.3(-) %1075 (SI)
C
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2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

The compliance function for drying creep, C (%, t,, t.), should be calculated as follows:

C(1, 10, 1) = g5 \/exp[—8H ()] — exp[—8H (1;)]

where g5 is a drying creep compliance parameter that can be calculated from the equation

0.757 |4y, X 10°]700
q =
’ fomsg

where £y,
of pore relative humidity.

Hi)=1- [(1—%)5@)}

H(y) =1— [(1 - 1%O)S(to)]

where S(¢) is given by Eq. 2.27 and

fo — 1.
S(ty) = tanh
Tsh

and Ty, is given by Eq. 2.26.

2.13.3 GL 2000 Model

(2.38)

(2.39)

is the ultimate shrinkage strain, given by Eq. 2.21. H(¢#) and H(t,) are spatial averages

(2.40)

(2.41)

(2.42)

The GL 2000 model was developed by Gardner et al. and is described in Refs. [12] and [15].
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Shrinkage Calculation. Parameters required for calculation of shrinkage strain using the GL
2000 model are mean 28-day concrete compressive strength, f., ., relative humidity, H, age of
concrete at the beginning of shrinkage, 7., type of cement, and specimen shape.

The shrinkage strain can be calculated using the following equation:

et) = egquPW)P(t —1.) (2.43)
where
€4, = ultimate shrinkage strain according to Eq. 2.44

P(h) = correction term for effect of humidity according to Eq. 2.45
p(t —t.) = correction term for effect of time of drying according to Eq. 2.46

Ultimate shrinkage strain should be calculated from the following equation:

1/2
(900) K( 4350) X 107 (in. — Ib)
Eshy = s (2.44)
(900)1<< 30 ) x107%  (SD)
Cimyg
where
K = shrinkage constant, which depends on cement type as shown in Table 2.12
Jem,, = mean 28-day concrete compressive strength (MPa) or psi
Shrinkage constant K can be determined from Table 2.12.
Correction term for effect of humidity, f(%), should be calculated as shown:
ﬂ(h)—1—118< il )4 (2.45)
B “\100 ‘

where H is the relative humidity (%).
Correction term for effect of time, f(f —¢.), should be determined as follows:

1/2
t—t, .
( 2) (in. — 1b)
Ble—1)= t—t.+77(V/S) (2.46)

1/2
t—t. (SD)
t—1,+0.12(V/S)>

t = age of concrete after casting (days)
t. = age of concrete at the beginning of shrinkage (days)
VIS = volume-to-surface area ratio (mm or in.)

where

Table 2.12 Shrinkage Constant K as
Function of Cement Type

Type of Cement K
I 1.00
I 0.75

I 1.15
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Creep Calculation. The creep compliance is composed of two parts: the elastic strain and the
creep strain according to the following equation:

1 N Pas(t, 1p)

J(t, 1)) = (2.47)
cmt, Ecm28
where
E 1, = modulus of elasticity of concrete at loading (MPa or psi)
E.p,,, = modulus of elasticity of concrete at 28 days (MPa or psi)
bag(t, ty) = creep coefficient
500,000 + 52,0004/ in. —1b
ot — ’ + ” f;;mto (ln ) (248)
0 3500 + 4300+ /fcmto (SD

where f.,, is the concrete mean compressive strength at loading (MPa or psi), which can be deter-

mined as follows:
3/4

lo
Jemy = Jems 0575 e (2.49)
Coefficients a and b are related to the cement type as shown in Table 2.13.
Eem,, = 3500 + 43004 /fom,, (2.50)

Creep coefficient, ¢(t, t,), can be calculated as shown:

(t_t0)0~3 7 0.5 _— 0.5
() [2<<>—14 +(z) (F5)

0.5

t—1

+2.5 (1 - 1.0861?) — (in. — Ib)
t—ty+77(V/S)

Pag(t, tg) = 1 i (t- to)os N -ty \"F =
P12\ o1 )T (%) (W)

0.5
r—1
+2.5 (1 - 1.0864?) — (SD
t =ty +0.12(V/S)

L

If ty=1, then ¢(,)=1 (2.52)

Table 2.13 Coefficient a and b as Function of

Cement Type
Cement Type a b
I 2.8 0.77
I 34 0.72

111 1.0 0.92
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0.5 0.5
to - tc .
If ty>1t. then ¢(t.)=|1- > (in. — 1b)
ty—t.+T77(V/S)

057103

(i)
If ty>1t, then ¢t,)=|1- (ST)

fo— 1, + 0.12(V/S)>

H

h=— 2.53
100 (253)

where H is the relative humidity (%).

2.13.4 CEB 90 Model
The CEB 90 model was developed by Muller and Hillsdorf [16].

Shrinkage Calculation. Parameters required for calculation of shrinkage strain using the CEB 90
model are mean 28-day concrete compressive strength f., , relative humidity H, age of concrete
at the beginning of shrinkage z., type of cement, and specimen shape.

The strain due to shrinkage may be calculated from the following equation:

Es(tﬂ tc) = gcsoﬁs(t - tc) (254)

where

€., = notional shrinkage coefficient according to Eq. 2.55

p,(t, t.) = coefficient describing development of shrinkage with time according to Eq. 2.58

Notional shrinkage coefficient is

Ecs, = E5(fem,e)PrH (2.55)

where
€,(fem,,) = concrete strength factor on shrinkage according to Eq. 2.56
Pru = relative humidity factor on notional shrinkage coefficient according to Table 2.14

Concrete strength factor on shrinkage, €(f.,,,, ), can be calculated as

160 + 10 (B, <9 fl) x 107 (in. - Ib)

1450

€(femy,) = (2.56)

ﬂmzs -6
160 + 10 (B,.) <9_W> X107 (SD)

Table 2.14 Determination of Coefficient g,

Humidity Bru

40% < H < 99% —1.55%
H>99% 0.25

arh
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Table 2.15 Coefficient g,

Type of Cement European Type American Type Bsc
Slow hardening SL II 4
Normal/rapid hardening R I 5
Rapid hardening, high strength RS III 8
where

p. = coefficient that depends on type of cement according to Table 2.15.
Jem,, = mean 28-day concrete compressive strength (MPa or psi)

Coefficient f, dependent on humidity, gy, should be determined according to Table 2.15,
where

Ban =1 - (1%)3 (2.57)

The development of shrinkage with time is given by

! _2’6 (in. — 1b)
350(h,/4)" + (1 —1t.)

Bt —1)= m— (2.58)
t—1
: (SD
0.56(h,/4)> + (t—1.)
where
t = age of concrete (days)
t. = age of concrete at the beginning of shrinkage (days)
h, = effective thickness to account for volume/surface ratio (mm)
Effective thickness, #,, can be determined as follows:
2A
h, = £ = 2—V (2.59)
u S

where

A, = cross section of the structural member (mm? or in.?)
u = perimeter of the structural member in contact with the atmosphere (mm or in.)

Creep Calculation. Creep compliance represents the total stress-dependent strain per unit stress.
It can be calculated as

1 N P, 1)

cmt, CMog

J(t, 1)) = (2.60)
where

E. ., = modulus of elasticity at time of loading 7, (MPa or psi)
E.p,, = modulus of elasticity at 28 days (MPa or psi)
ba5(t, t,) = creep coefficient

28
Ecmty = Ecm, €XP [0-55 (1 - T)] (2.61)
0



38 Chapter 2 Properties of Reinforced Concrete

Table 2.16 Coefficient S as Function of Cement Type

Cement Type European Type U.S. Type S

Slow hardening SL I 0.38
Normal/rapid hardening R I 0.25
Rapid hardening high strength RS 1 0.20

where S is the coefficient that depends on cement type and can be determined from Table 2.16.

5[ fem
3,118,310\/ = (in, — Ib
. 1250 (n-—10)

Creep coefficient, ¢(t, t,), can be evaluated from the given equation:

Pag(t, 19) = PPt — 1)

where
¢, = notional creep coefficient
p.(t.ty) = equation describing development of creep with time after loading

$o = PruPem,, ) B(1)

where ¢gy is the relative humidity factor on the notional creep coefficient given by

1 —H/100
1+ 1= H/100 (in. — Ib)
B 0.46+/h, /4
Pru = 1—H/100
1+ (SI)

0.46+/h,/100

Eas,(fem,,) 18 the concrete strength factor on the notional creep coefficient given by

— 33 (n—1b
\fomy, /1450
5.3 D

\ffemy, /10

p (1) is the age of concrete at loading factor on the notional creep coefficient given by

1

o) = ———
Pl 0.1+1?

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

An equation describing development of creep with time after loading, f.(t, t,), can be calculated

using the following equation:

. =1y 03
Pliefo) = <ﬁ+—>

(2.68)
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37.5h, [1 4+ (0.012H)"*] 4+ 250 < 1500 days ~ (in. — Ib
ﬂH={ [1+( )" ys  ( ) (2.69)

1.5h,[1 + (0.012H)'®] + 250 < 1500 days (SDH

2.13.5 CEB MC 90-99 Model
The CEB MC 90-99 is a modification of the CEB 90 and is described in Ref. 17.

Shrinkage Calculation. In this new model, total shrinkage contains an autogenous and drying
shrinkage component. In high-performance concrete, autogenous shrinkage is significant and needs
to be considered in prediction of shrinkage. This new approach was necessary so that shrinkage of
normal as well as high-performance concrete can be predicted with sufficient accuracy [1].

Total shrinkage strain can be calculated using the following equation:

£,(t,1,) = £,(1) + £4,(1,1,) (2.70)

where
€,,(t) = autogenous shrinkage at time ¢
£44(t, t.) = drying shrinkage at time ¢

Autogenous shrinkage, €,,(?), should be calculated as follows:

Eas (D) = €45 (Femy, ) Pas (1) (2.71)

where
€ cas, (fem,, ) = notional autogenous shrinkage coefficient according to Eq. 2.72
f.(t) = function to describe the time-development of autogenous shrinkage, from Eq. 2.73

Notional autogenous shrinkage coefficient, €., (f.m), can be calculated as

Fomy, /1450 \
—a, | —2——) x10™° (in.—1Ib
Fas < 6+ fomy /1450) (in. = 1)

Fomy /10 N\
_aas ———————————————————

(2.72)
517 /10) x 107° (SD

€as, (fcng) =

where
a,, = coefficient that depends on type of cement
= 800 for slowly hardening cements (SL)
= 700 for normal or rapidly hardening cements (N or R)
= 600 for rapidly hardening high-strength cements (RS)

€45, (fem,,) = mean compressive strength of concrete at an age of 28 days (MPa or psi)

Function f,.(¢) should be calculated using the following equation:
Ba(t) = 1 — exp[—0.2()°] (2.73)

where ¢ is the age of concrete (days).
Drying shrinkage, £,4(t, t.), can be estimated by the equation

gds(t’ tc) = 6(130 (fcm28 )ﬂRH(H)ﬁds(t - tc) (274)
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where
€45, (fem,,) = notional drying shrinkage coefficient according to Eq. 2.75
Pru(H) = coefficient to take into account the effect of relative humidity on drying shrinkage
according to Eq. 2.76
p4,(t —t.) = function to describe the time development of drying shrinkage according to Eq. 2.78

Notional drying shrinkage coefficient, €4, (fn,, ). may be calculated from the following
equation:

[(220 + 110y, )exp(— 0y, fum,, /1450)] X 107 (in. — Ib)

Easy Uemy,) = {[(220 + 1100t )eXP(= g, fom,, /10)] X 1076 (SD) 275

Myg

where
a,, = coefficient that depends on type of cement
= 3 for slowly hardening cements (SL)
= 4 for normal or rapidly hardening cements (N or R)
= 6 for rapidly hardening high-strength cements (RS)
= coefficient that depends on type of cement
= (.13 for slowly hardening cements (SL)
= 0.12 for normal or rapidly hardening cements (N or R)
= (.12 for rapidly hardening high-strength cements (RS)

S

Ay

Coefficient fzy(H) should be calculated as follows:

H 3
155 (1= (555) | for 40% < H < 99%
b 55[ (700 ] or 40% < H < 99% X f, 076

0.25 for H > 99% X f;,
where

H = ambient relative humidity (%)
By, = coefficient to take into account the self-desiccation in high-performance concrete

It can be determined as follows:

<3.5 x 1450

Jem
B
35
<10 (SD)
Jemyg
Function f4(¢ — t.) may be estimated as follows:

0.5
t—1. .
( - ) (in. — Ib)
350(h,/4)" + (1 —1.) o (2.78)

( t _;C ) D)
0.56(h,/4)" + (t —1.)

0.1
> <1.0 (in.—1b)

B, = 2.77)

ﬁds(t - tc) =
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where
t. = concrete age at the beginning of drying (days)
h, = 2A _/u=notional size of member (mm), where A, is the cross section (mm?) and u is the
perimeter of the member in contact with the atmosphere (mm)

Creep Calculation. Total stress-dependent strain per unit stress, also called creep compliance or
creep function, can be determined as follows:

1 + Pag(2, 1)

J(@t, 1)) = (2.79)
cmt, Ecng
where
E. ., = modulus of elasticity at age of loading (MPa or psi)
E.,,, = modulus of elasticity at day 28 (MPa or psi)
by (1, 1, ) = creep coefficient

28

Eemi, = Ecm,,exp|0.55| 1 - . (2.80)
0

where § is the coefficient that depends on cement type and compressive strength and can be deter-

mined from Table 2.17.
3 fcng .
3,118,310 =1
. A18310Y 5 (n—1)

—_ (2.81)

Creep coefficient, ¢(, t,), can be evaluated from the given equation:

o1, 1) = PoP.(1,1y) (2.82)
where

¢, = notional creep coefficient
p(t, t, ) = equation describing development of creep with time after loading

b0 = PruP femy, )P(10) (2.83)

Table 2.17 Coefficient S as Function of Cement Type and
Compressive Strength

f Type of Cement S

CMmyg

< 60MPa (8700 psi) Rapidly hardening high strength (RS) 0.20
< 60MPa (8700 psi) Normal or rapidly hardening (N or R) 0.25
< 60MPa (8700 psi) Slow hardening (SL) 0.38
> 60MPa (8700 psi) All types? 0.20

4Case not considered in CEB MC 90-99.
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where ¢y is the relative humidity factor on the notional creep coefficient given as
[ 1 —H/100
I+ ———

a | a, (in. — 1b)
0.46+/h,/4

Pru = L H/100 (2.84)
1+ ;al @ (SD)
0.464/h,/100
where _
- 0.7
3.5 %1450 (in. — Ib)
fcmzs
a =3 0 (2.85)
35 ] (s
L -fcmzs
(T 0.2
3.5f>< 1450] (in. — 1b)
x=1 . o (2.86)
3
ST
L/ cmog
B(fem,,) 1s the concrete strength factor on the notional creep coefficient,
33 (in. — 1b)
\/Sem,, /1450
P(fem,y) = (2.87)
28 53 S
\ffemy, /10
p(t,) is the age of concrete at loading factor on the notional creep coefficient,
1
plig) = —— (2.88)
0.1+1,
where "
t=tor [Lu + 1] > 0.5 days (2.89)
2+ bor

1, = age of concrete at loading (days)
to,r = age of concrete at loading adjusted according to the concrete temperature; for
T=20°C, fo,r corresponds to £,
a = coefficient that depends on type of cement
= —1 for slowly hardening cement
= ( for normal or rapidly hardening cement
= 1 for rapidly hardening high-strength cement

An equation describing development of creep with time after loading, f.(z, f,), can be calcu-
lated using the following equation:

i) = [ ——" h 2.90
ﬂc(’o)—<ﬂH+—t_t0> (2.90)
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5 = 37.5h, [1 4 (0.012H)"®] + 250a; < 1500a; (in. — Ib) 291)
B\ 1.58,[1 + (0.012H)'8] + 250a; < 1500a;  (SI) '
0.5
[3.5f>< 1450] (in. — Ib)
BT 3 6 (2.92)
(SD)
=

2.13.6 fib MC 2010 Model

The fib MC 2010 model is a modification of the CEB MC 90-99 model and is described in
Ref. 18.

Shrinkage Calculation. The equations utilized by the fib MC 2010 shrinkage prediction model
are similar to those of the CEB MC 90-99 model. Shrinkage predictions according to the fib MC
2010 model can be calculated as described in the Shrinkage Calculation area of Section 2.13.5.

Creep Calculation. The creep compliance, or the total stress-dependent strain per unit stress is
calculated by the following equation:

L $(t. 1)

J(t,ty) = (2.93)
E;(1) E
where
E_; = elastic modulus at 28 days according to Equation 2.94
E(t,) = elastic modulus at age of loading according to Equation 2.95
¢(t,t,) = creep coefficient found by Equation 2.96
1, = age of concrete at time of loading (days)
t = age of concrete (days)
The elastic modulus of concrete at 28 days can found by the expression:
3 fcm .
3,118,310 1450 (in. — 1b)
E, = (2.94)

c
21,500{/ flc—g (SD)

fem = mean compressive strength of concrete at 28 days of age (MPa or psi)

where

The elastic modulus at the age of loading can be predicted from the following expression:

E(ty) = Eexp|0.58] 1 — <278> (2.95)
0
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where
S = coefficient that depends on type of cement and compressive strength
=0.20 for £, < 60 MPa (8700 psi) and rapidly hardening high-strength cement (Type III)
= 0.25 for f,,,, < 60 MPa (8700 psi) and normal and rapidly hardening cement (Type I)

= 0.38 for f,,, < 60 MPa (8700 psi) and slow-hardening cement (Type II)

cm —

= 0.20 for f,,, > 60 MPa (8700 psi) and all types of cement

The creep coefficient, ¢(t, #,), may be found using the following expression:

D1, 10) = (1, 19) + P (2, 1) (2.96)

where
¢, (t,15) = basic creep coefficient found from Equation 2.97
¢4 (t,1y) = drying creep coefficient found from Equation 2.101

The basic creep coefficient, ¢,.(1, 1), can be found from the following expression:

Due(t,10) = Bpeem)Bre (2, 1) (2.97)
with
286 (in.—1b)
(fem)"
Boe(for) = cm (2.98)
1.8
o7 (SI)
(fcm) '
30 ?
Bt 1)) = In [(t— + 0.035> (t—1y)+ 1] (2.99)
0,adj
where
I,.qj = modified age of loading accounting for the effect of creep due to the type of cement according
to Equation 2.100.
to adj = tOT L + 1 ’ Z 05 dayS (2100)
-ad) > 2 + tO,Tl.z
where

1o, 7 = age of concrete at loading adjusted according to the concrete temperature;
for T=20°C, ty, 7 corresponds to £,
a = coefficient, which depends on the type of cement
= —1 for slowly hardening or Type II cement
= 0 for normal or rapidly hardening or Type I cement
= 1 for rapidly hardening high-strength or Type III cement

The drying creep coefficient, (2, ), may be calculated using the expression:

¢dc(t’ tO) = ﬁdc(fcm) . ﬂ(RH) . ﬁdc(t()) . ﬁdc(t’ tO) (2101)
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with
437’3133 (in.~Ib)
Bac(fem) = 9 Vfem) (2.102)
412 I
(fcm)]'4 (S )
1 - k2
M (in.—1b)

P(RH) = 1 (2.103)

ty) = ——— 2.104
o) = G (2.104)

Pac(tty) = drying creep development with time calculated by Equation 2.105:

7(ty)
Bac(ts 1) = (i) (2.105)
R NS '
where
1
rty) = ———5— (2.106)
23+ =
V00.adj
38.1h +250a,.,, < 1500a,,, (in.—Ib)
_ fem fom 2.107
P {1.5 - h +250ay, < 15000, (SI) ( )
where
0.5
<5ﬁ75 ) (in.—Ib)
Aoy = e (2.108)
35\
<—> (SD)
Jem
where

fem = mean compressive strength of concrete at 28 days of age (MPa or psi)
RH = relative humidity of the ambient environment (%)
h =2A_/u is the notional size of member (mm or in.), where A, is the area of the cross section
(mm? or in.?) and u is the perimeter of the member in contact with the atmosphere (mm or in.)

2.13.7 The AASHTO Model

The model is described by AASHTO LRFD (Section 5.4.2.3.3) bridge design specifications in
Ref. 19.
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Shrinkage Calculation. Parameters required for calculation of shrinkage strain using the
AASHTO model are: curing method (moist-cured or steam-cured concrete), 28-day concrete
compressive strength, f.,, , relative humidity, H, drying time of concrete, 7, type of cement, and
specimen shape.

The strain due to shrinkage may be calculated from the following equation:

Egn = kykingkrkig(0.48 x 1072) (2.109)

where
t = drying time (day)
k, = size factor for shrinkage specified in Eq. 2.111
k;, = humidity factor for shrinkage specified in Eq. 2.112
k; = factor for the effect of concrete strength specified in Eq. 2.113
k.4 = time development factor

Time development factor for shrinkage should be calculated as follows:

t . e
(f/ in psi) (in.—1b)
61 — (4/1000) f! + t) ¢
ki = (4/1000)¢ (2.110)
t .
_ f! in MPa) (SI
<61—0.58fg+z> (f; in MPa) (S1)
Size factor for shrinkage should be calculated as follows:
t/ (26e°3507/9 +1) | 11064 — 94 (V/S)
(in. — 1b)
t/(45+1) 923
k, = (2.111)
1/ (2671209 4 1) | 11064 — 3.70(V/S) .
t/(45+1) 923 D

where
V = volume of the specimen (in.?)
S = surface of the specimen (in.?)
!, = specified compressive strength of concrete at time of prestressing for pretension members and
at time of initial loading for non-prestressed member. If concrete age at time of initial loading
is unknown at design time, f! shall be taken as 0.80f! (ksi or MPa)

Humidity factor for shrinkage is

kps = [2.0 — 0.014H] (2.112)
where H is the relative humidity (%).
5 .
—_— .—1b
1+fL (in )
kf = (2.113)
35
(SD

7+f
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Creep Calculation. The creep compliance represents the total stress-dependent strain per unit
stress. It can be calculated as

1 ll/(ta t())
Jt,t) = —+ —— 2.114
(1, 1p) E. E, ( )
where
y(t, t, ) = creep coefficient as given in Eq. 2.115

E_. = modulus of elasticity at 28 days (ksi) as given in Eq. 2.120

The creep coefficient may be calculated from the following equation:
w(t,19) = 1.9k ky kekigty O (2.115)

where
t = maturity of concrete (day)
t, = age of concrete when load is initially applied (day)
k; = factor for the effect of concrete strength as given in Eq. 2.116
k, = factor for the effect of the volume-to-surface ratio of the component as given in Eq. 2.117
ki, = humidity factor for creep
k.4 = time development factor

The factor for the effect of concrete strength should be calculated as follows:

5

ke = ¢ (2.116)
35
T+f 5D

where f; is the specified concrete compressive strength at time of initial loading.
The factor for the effect of the volume-to-surface ratio of the component should be calculated

as follows:
45 = 0. > 1. in. —
k = 1.45-0.13(V/S) > 1.0 (in. — Ib) 2.117)
1.45 -0.0051(V/S) > 1.0  (SD
where
V = volume of the specimen (in.?)
S = surface of the specimen (in.?)
Humidity factor is given by following equations:
k. = 1.56 — 0.008H (2.118)
Time development factor:
t .
_— in. —1b
(61 —4f" + t> ( )
= “ (2.119)

td — P
_—— SI
(61—0.58fc’i+t> D
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The modulus of elasticity at 28 days should be calculated as follows:

{33000wg-5\/f7 (in. — Ib)

0.043!>/f!  (SI)

(2.120)

where
w, = concrete unit weight (kip/ft®) or kg/m3
f! = specified concrete compressive strength at 28 days (ksi or MPa)

Example 2.1 (in.—Ib Units)

Calculate the shrinkage strain and creep compliance and coefficient for the concrete specimen given
below. Use the ACI 209R-92 model.
Given factors:

Humidity =75%
h,=2VIS=2A_/u=3in.
Jemy, = 6556 psi
w=23451b/yd?
wlc=0.46
alc=3.73
t=35days
1o =28 days
t. =8 days
y = 146 Ib/ft3
Cement type 111
Moist-cured concrete
Solution
Shrinkage Calculation
t—t.
eq(t, 1) = mKSSKShsshu
€4 = 780 x 107% in. /in.

According to Table 2.4, f=35

Y o 1sin.
5

K, =123-0152 (%) = 1.23 - 0.152(1.5) = 1.002

For H=75%,
Ky, =1.40-0.01H = 1.40 — 0.01(75) = 0.65
L[( K. ¢
fH(—1,) s shosh
_ 35-8
35+ (35-79)

gsh(t’ tc) =

(1.002)(0.65)(780 X 107%) = 222.3 x 1075 in. /in.
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Creep Calculation

1+ C.(0)
E

cmt,

J(t, 1) =

Determination of Ecmto:

a=230 b =0.92 (Table 2.5)

! tO 28 .
/(1) = — 6556 = 6542
Jelto) = femy 0 23+0.92 28 pst

Eqmy, = 33(r)"?1/£1(19) = 33(146)"/%V/6542 = 4,708,673 psi

Determination of C.(f):
C,, =235
K, = 1.27 —0.0067(H) = 1.27 — 0.0067(75) = 0.768
K., = 1.25(t;)™"""% = 1.25(28)7"!1% = 0.844

K, = 1.14—0.092(%) = 1.14 - 0.138 = 1.002
t — 1,)0:00 — 28)0.60
C.(n= U g gk oo 39228

= = T ___235x%0.768 x 0.844 x 1.002 = 0.37
10 + (1 — 1,)060 ~ 7 ehTeales T 4 (35 — 28)060

1+ C.(t
It 1) = (D 14037

Ey, 4708673

=0.29 x 107 psi~!

49

Example 2.2 (in.—Ib Units)

2.1.

Solution

Shrinkage Calculation

63-(l) = (Eshu)(Kh)S(t)
Determination of e, :

a; =1.10 (Table 2.8)
@, =10 (Table 2.9)
Ecm607

_suE

em(z+7g,)

Eshu =

Eq = —00,[0.0250) ! ()72 +270] x 107°

E, s = 57000y [ = 57.0001/6556 = 4,615,240 psi
k, = 1.0

= —(1.10)(1.0)[0.025(345)*1(6556)~"%% + 270] x 107® = =798 x 107° in. /in.

Using the B3 model, calculate the shrinkage strain and creep function for the specimen given in Example
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(Since the type of member is not defined)

. . VAT
T = 190.800) 0% (o) [24, (5 ) |

= 190.8(8) "% (6556) "> [2(1)(1.5)]
= 161.58 days

E o7 = (1.167) 1/2Ecm28
= (1.167) 2(4,615,240) = 4,985,741 psi

1
. ~ fo+ Ty, /2E B 8+ 161.58 1/2(4615 240)
em(t+7y,) 4 +0.85 (l‘(. + Tgh) cm28 4 + 0.85(8 +161.58 ’ ’

= 4,937,886 psi

E
Eemon_ _ _ 798 5 10-6)4985.741

e T 4,037,886

=806 x 107 in. /in.

Determination of K,
According to the Table 2.10, for H=75%

H \’ 75 \°
K =1—(—) =1—<—) =0.578
h 100 100

Determination of S(¢):

[i=1, 358
S(t) = tanh = tanh [ 2228 — 0.387
(0) = tanh 4 [ == = tanh y/1675g

£,(1) = (£4,,)(K,)S(1) = (806 x 1070)(0.578)(0.387) = 180 x 107° in. /in.

Creep Calculation

J(@, 1)) = q, + Cy(t,1y) + Cy(t, 1y, 1)

Determination of ¢;:

0.6 0.6 7
N Ey | 4615240 Pt
Calculation of Cy(t, t,):
w 345 3
=W _ 2% 750 1b/yd
T wjc T 046 /y

q> = 86.8(0)"*(f, ) "% x 107° = 86.8(750)*(6556) ™" x 107°
=0.873x107°

1 1
1) = = =0.182
2 (to) 0.086(15)2/% + 1.21(15)*/9 ~ 0.086(28)2/9 + 1.21(28)*/°

In[1 +(t—1)"'1 _In[1+ (35 —28)"']
Vi Vs

r(ty) = 1.7(t)*"? + 8 = 1.7(28)*'12 + 8 = 10.54

Z(t, ty) = =0.150
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—1/r(ty)
=0.182 [1 +

Y (r )’“”

(1, 19) = Q1) 1 +

0.18210‘54 —1/10.54
0.150“’54]

g5 = 0.29q2( - ) = 0.29(0.873 x 1076)(0.46)* = 0.011 x 10

-0.7
4= 0.14(%) x 1070 = 0.14(3.73)°7 x 107 = 5.57 x 107

Cy(t, 1g) = 42 0(t. 1) + qsIn[1 + (1 — 1)*11 + g,In <ti>
0

= (0.873 x 1076)(0.148) + (0.011 X 10~%)In[1 + (35 — 28)°1] + (5.57 X 10 )ln<3§>

=0.15x107° ps1_
Calculation of C(1,1.t,):

0.757|€, X 10°]7%6 0757|806 x 107° x 10°|~0

o, B 6556

qs = =2.08x107°

S(t) = 0.387

[t -1, 28-38
S(,) = tanh = tanh |/ —=—> = 0.338
(tg) = tanh 4 [ == = tanh /70753

H=1- [(1 - m)sm] —1- [(1 - %)0.387] — 0.903

H(i) =1 - [<l—m>5(t0)] [(l—ﬁ>0338] =00916
C,(t,19,1.) = gs\/exp[—8H(t)] — exp[—8H(1,)]
= (2.08 x 107%)1/exp[—8 x 0.903] — exp[—8 X 0.916] = 0.0176 x 107 psi~!
J(t, 1)) = q, + Cy(t, ty) + Cy(t, 1y, 1,.)
= (1.3%x107) + (0.15x 107%) + (0.0176 x 107°) = 0.298 x 107° psi~"

Creep coefficient

c(t.1g) = J(t, 1)) E g — 1 = (0.298 x 107°)(4615240) — 1 = 0.375

Example 2.3 (in.—Ib Units)

Using the GL 2000 model, calculate the shrinkage strain and creep compliance and coefficient for the
specimen given in Example 2.1.

Solution

Shrinkage Calculation

£,(1) = £ B(MP( — 1)
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Calculation of £,
K =1.15 (Table 2.12)

4350

CiMyg

1/2
1/2
) x 1076 = (900)(1.15)(%) x 1070 = 843 x 10~ in. /in.

Egu = (900)K <

Calculation of f(h):
4 4

Blhy=1— 1.18(i) —1- 1.18( IR ) = 0.627

100 100
Calculation of p(¢—1,):

1t v 358 2
pe-t)=|———F—F= ] = <—_2> =0.367
1=t +77(V/S) 35 -8+ 77(1.5)

£,(1) = £4, B — 1.) = (843 x 107°)(0.627)(0.367) = 194 x 10~ in. /in.

Creep Calculation
1 Pag(t, 1)
+
E

cmt, CMyg

J(t, 1) =

Calculation of £, and E, :

1y = 28days = E, = E,

— Hemyg

E . = 500,000 + 52,000 /e, = 500,000 + 52000V 6556 = 4,710,395 psi

cm,
Calculation of ¢(t,1,):
ty = 28 > t. = 8 days

. 0573 05703
th—1t. - ’
P =|1-| ———= =[1- (—28 8 2) = 0.824
to—t.+77(V/S) 28 — 8 4+ 77(1.5)
H 75
h= 100 100 075

) (- t0)0'3 N =\
bosis15) = B(L.) l2<m * (5) <W>

0.5
) r—ty
+25(1-1.0860°) | ——————
t—1ty,+77(V/S)

(35 —28)"3 7\, 35-28 \%°
0824 |2 —=2—= s _35-28
[ <(35—28)0»3+ )" (35) (35—28+7>

0.5
+2.5(1 — 1.086(0.75)) ( 35— 28 > ] = 0.636

35 - 28 4+ 77(1.5)%

1 +¢28(t,t0)_ 1 L 0.636
E T 4,710,394 4,710,395

Ciyg

J(t,1y) = =0.347 x 107° psi~!

cmt,
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Example 2.4 (in.—Ib Units)

Using the CEB 90 model, calculate the shrinkage strain and creep compliance and coefficient for the
specimen given in Example.2.1

Solution

Shrinkage Calculation
65(1, te) = (6cso)ﬂs(t - Z‘c)

Calculation of Eg)

ecso =& cmZS)ﬁRH

fo =8
)= {160 + 10 (4, o Loma \] g

E‘Y(f(.:mzs - ﬂSC 1450
~ 6556 o e
- [160+10(8) (9 —1450)]><10 = 5183 x 1075 in./in.

For H=75%,

e = —1.55P.4
H\° 75 \*
=1—(—) =1—<—) =0.578
Bun 100 100
P = —1.558,, = —1.55 x 0.578 = —0.896

Ees, = £3(fumy ) Br) = (518.3 X 107°)(~0.896) = —464.4 x 107 in. /in.

Calculation of S (t—t.):

24, )
h, = =2x15=3.0in.
u

e

; ¢ 350(h,/4)? + (t—1,) 350(2 )2 +(35-18)
4

£,(1,1,) = (£ )B,(t — 1,) = (—464.2 X 107°)(0.347) = =161 x 10~ in. /in.

Creep Calculation
1 ¢28 (t7 t())
+
E

cmt, CMyg

J(t, 1) =
Calculation of £, and E, :

tp =28 days = E ., = E

T Homyg

I 6556

3 cm

E._ = 3,118,310‘/ 2 = 31183101 220 = 5,156,356 psi
ey 1450 1450 pst

Calculation of ¢(, 1,)):

1 - H/100 1 —75/100
AL /10 _,

+ = =1.
0.46/h, /4 0.46+/3/4

by = 1 598
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53 53
P(Fem,) = = =249
\/fc i,/ 1450 1/6556/1450

1 1
(ty) = = = 0.488
P =514 02 0.1 +28%2

bo = PruP(fum, )B(t) = (1.598)(2.49)(0.488) = 1.94
By = 37.5h,[1 + (0.012H)'8] + 250 = 37.5(3)[1 + (0.012 x 75)'8] + 250
=379.4 < 1500 days

_ 0.3 03
ﬂc(t’to) = <&> = (&) =03

By + 11, 379.4+ 35— 28
hrs (1. 1) = doB.(1.15) = 1.94 % 0.3 = 0.582
1 @(t, 1) 1 0.582 6 o1
J(t, 1)) = + = =0.307x 10
(t:10) Eemy . Eom, 5156336 5,156,356 Pt

Example 2.5 (in.—Ib Units)

Use the CEB MC 90-99 model to calculate the shrinkage strain and creep compliance and coefficient
for the specimen given in Example 2.1.

Solution
Shrinkage Calculation

gyt 1) = €,,(t) + €4,(1,1.)
Calculation of €,,(1):

a,, = 600 for rapidly hardening high — strength cements

fomy /1450 \**
= 2T ) x10-
6as” (f;:ng) as 6 +f;;m28/1450

= 400(%)25 x 107 = —72.64 x 107 in. /in.
(1) = 1 —exp(=0.2()*%) = 1 — exp(—0.2(35)"7) = 0.694
E40(1) = €4, (fimy )Bus (1) = (=72.64 X 107°)(0.694) = —50.41 X 10~° in. /in.
Calculation of g4 (1, t,.):

QAgs

, = 6 for rapidly hardening high — strength cements

ag, = 0.12 for rapidly hardening high — strength cements

€y, (omy,) = [(220 + 110, ) eXp(—ay fum,, /1450)] X 107°

= [(220 + 110 x 6)exp(—0.12 X 6556/1450)] x 107 = 511.5 x 10~ in. /in.
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0.1
0.1
B, = 35 x 1450 =<w> =123>1.0
Fom 6556

fy =10

P = —1.55 [1 - (%)3] =-155 [1 - (%)3] = ~0.896

0.5
t—t,
Pa(t —1) = 2
350(h,/4)" + (1 —1,)

0.5

= 35 -8 =0.347

350<%>2+(35—8)

€451, 1) = g, (fem, ) Pru () Bas(t — 1)
= (511.5 x 1076)(=0.896)(0.347) = —159 x 10~ in. /in.

£,(t,1,) = £,,(D) + £4(t,1.) = (=50.41 x 107%) + (=159 x 107®) = =209 x 107° in. /in.

Creep Calculation

11
J(t1g) = 1 + Pag(2, 1)
Ecmto CMmyg
Calculation of £, and E, :
fp =28 days = E = Ep,

I 6556

3 szs 3 .

Eomy = 31183104 =3.1183107/ 220 = 5,156,356
et 1450 1450 pst

Calculation of ¢(t, t;):

- 0.7
3.5 x 1450 3.5 x 14501°%7
“= f—] ol i B
[ 02 0.2
3.5 x 1450 3.5 % 14507
q = 222101 [—] =095
Jomn ] 6556
[ 1-H/100 1-75/100
ey = —— L g = |1+ —L=0.84] 0.950 = 1.427
| 0.467/h,/100 0.46y/3/4
53 5.3
Bem,,) = =

= =249
\/fcng/1450 1/6556/1450

9 9
fy=tlor | =5 +1| =28 |———— +1| =32.5> 0.5 days
oo [2 02 ] [2+281-2 ] '

55
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1 1
Bliy) = = = 0.475
CT01+0% T 014325

by = DrirP(fumy, JB(1) = 1.427 X 2.49 X 0.475 = 1.69

=0.88

0.5
v = |35x1450 | _ [3.5><1450 03
N “ L6556

Py = 37.5h,[1 + (0.012H)"®] + 2500,
=37.5%3x[1+(0.012%75)'3] + 250 x 0.88 = 349.34 < 1500 x 0.880 = 1320
0.3
t—t - 03
B.(t,1) = <—°> — (&) = 0.308
By +t—t, 349.38 4 35 — 28
Bag(t, ty) = Pof.(t, 1,) = 1.68 X 0.308 = 0.52

1 +¢(t,to)_ 1 0.52
E "~ 5,156,356 5,156,356

CMyg

J(t, 1)) = =0.295 x 107° psi~!

E

cmt,

Example 2.6 (in.—Ib Units)

Use the fib MC 2010 model to calculate the shrinkage strain and creep compliance and coefficient for
the specimen given in Example 2.1.

Solution

Shrinkage Calculation
The equations utilized by the fib MC 2010 shrinkage prediction model are similar to those of the CEB
MC 90-99 model. Refer to Example 2.5 Shrinkage Calculation section for shrinkage prediction.

Creep Calculation

1 ¢, 1)
E(ty) i

ci

J(t, 1)) =

Calculation of E(#,) and E:

ty = 28 days = E(t)) = E

E; = 3,118,310¢/ Jon__ 31183107/ 220 _ 5156356 psi
1450 1450

Calculation of ¢(t, t,):

58.6 58.6
i = = =0.125
ﬂbn (fcm) (fcm)oj (6556)07

a = 1 for type III cement

a

> 0.5 days

1 =1 —9 1
0agi = for | 337 "0 +

1
9
=28. |——— + 1| =32.5days > 0.5 days

[2+281-2 ] Y Y
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2
Bt 1y) = In l( 30 +0.035> ~(t—to)+1]

0.adj

30 2
—In [(% +o.035> -(35-28) + 1] =2

Bt 10) = BooForn) - Bt 1) = (0.125)(2) = 0.25
437,333 _ 437333 _

Pacfem) = o) - (6556)!4
RH 75
PRH) = (-5 (-5) ~ 059
3 h 3 3
(8 o1 (3)
P (ty) = ! = ! = 0475
dc\*0 0.1 +t0,adj0'2 0.1 + 32.50.2 ’
1 1
y(ty) = 3 5= S =0.343

0.5 05
5075 5075
w=(22) =(Z2) =0880
e <fcm > <6556)

B, = 38.1 - h+250ay, < 1500,

= 38.1(3) 4+ 250(0.880) < 1500(0.880)
= 334 <1320

-w) ] [ _es-28)
By + (t — 1) T 13344+ (35-128)
d)dc(ts t()) = ﬂdc(fcm) : ﬁ(RH) : ﬁdc(to) : ﬁdc(ts to)

= (1.98)(0.59)(0.475)(0.264) = 0.146

¢(t, to) = ‘i’bc(t’ to) + ¢dc(t’ lo)
=0.25+0.146 = 0.396

1,1
LI é(1, 1))
Eci(to) Eci

__ L. 03%
5,156,356 5,156,356

0.343
Pac(t,ty) = l ] =0.264

It 1) =

=0.271 x 107° psi~

Example 2.7 (in.—Ib Units)

Using the AASHTO model, calculate the shrinkage strain and creep compliance and coefficient for the
specimen given in Example 2.1.
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Solution

Shrinkage Calculation
For moist-cured concrete, £, should be taken as

g = KK KK g (048 X 107°)
Determination of K:

. lt/ (26e°~36<V/5>+t)] [1064—94 (V/S)]

t/(45+1) 923

] = 1.005

35/ (26319 1 35) | 11064 — 94(1.5)
a 35/(45 +35) [ 923

Determination of Kj:
For H=75%,
K, =2.00-0.014H = 0.95

Determination of Kf:
Let . = f! = 6556 psi
5

K, =

T+ fy

F_ =6556 psi (at time of initial loading =, = 28 days)
5
K, = ——— =0.66
77 146556
Calculation of K :
4 = 0.50

K = = =
4T 61 —4f +1 61 —4(6556) + 35
€4, = (1.005)(0.95)(0.66)(0.50)(0.48 x 10™%) = 151.2 x 107 in. /in.

Creep Calculation
The creep coefficient should be taken as

w(t. 1)) = L9KK, KK 150"

Values of k4 and k. are same as shrinkage calculation.
Determination of k:

k = 1.45-0.13 (%) > 1.0

=1.45-0.13(1.5) = 1.26
Determination of k.
k. = 1.56 — 0.008H = 1.56 — 0.008(75) = 0.96
Calculation of y (¢, t,):
w(t, 1) = 1.9(1.26)(0.96)(0.66)(0.50)(28)~*!8 = 0.512
Determination of E :

o, = 2405kg/m’ = 0.145Kcf

E, = 33000w'3\/f!
E, = 4665 4 ksi
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Calculation of J(z, t,)):

1,1
J(t, 1) = Ei + y

1 0.512

_ _ 6 il
= 16654 T 26654  24x 107

Example 2.8 (SI Units)

Calculate the shrinkage strain and creep compliance and coefficient for the concrete specimen given
below. Use the ACI 209R-92 model.
Given factors:

Humidity =75%

h, =2V/S=2Ac/u=76 mm
Jem,, = 45.2MPa
w=207.92kg/m3
w/c=0.46

a/c=3.73

t=35days

1, =28 days

t. =8 days

y =2405kg/m3
Cement type III
Moist-cured concrete

Solution
Shrinkage Calculation

gsh(t’ tc) = fT_Ct)KssKshgshu
c

Egu = 780 X 107° mm/mm

According to Table 2.4, f=35.

K=38mm

K, = 1.23 - 0.006 (

“rl<

) = 1.23 = 0.006(38) = 1.002

For H=75%,
Ky, =1.40-0.01H = 1.40 - 0.01(75) = 0.65

-1
tt)=—K K, &,
Esh( C) f+(t—tc) ssBsh€shu
=228 (1002)(0.65)(780 x 107%) = 221.3 x 105 mm /mm
35+(35-8) ' '
Creep Calculation
1+C.()
J(t, 1) = ————

cmt,
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Determination of E :
0

a=2.30 b=0.92 (Table 2.5)

1 28
FL(t0) = fr —

=452 — 45.1 MP.
a+ b, 23+0.92 %28 :

Ep, = 0.043(;/)3/2\/)‘6’(7%) = 0.043(2405)*/24/45.1 = 34058.8 MPa
Determination of C_(t):
C,, =235
K., = 1.27 — 0.0067(H) = 1.27 — 0.0067(75) = 0.768
K., = 1.25(t,) %""® = 1.25(28)7%!18 = (0.844

K. = 1.14 - 0.0035 (%) = 1.14 - 0.0035(38) = 1.007

r—1,)"% 35 — 28060
C.(1) = (70)CcchhKcaKCS = B2 " 350768 % 0.844 X 1.00 = 0.37
10 + (7 — 1) 10 + (35 — 28)0:60
1+C.(¢
J(t. 1) = ) _ 14037 _ 6551076 Mpa-!

E T 34058.8

cmt,

Example 2.9 (SI Units)

Using the B3 model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.

Solution

Shrinkage Calculation
£,(t) = (€4, )(K})S()

Determination of g,:
a; = 1.10 (Table 2.8)
a, = 1.0 (Table 2.9)

= —¢ Ecm607
shu = T €su
E em(t,+7g,)

£

£q = —a,0,[0.019w)*! (f,, )% +270] x 107°
= —(1.10)(1.0)[0.019(207.92)*! (45.2)~%28 +270] x 10~® = —827 x 10~°® mm/mm
E,ps = 4735V fums = 47351/45.2 = 31833.9 MPa
k,=1.0

(Since the type of member is not defined)

- : VAT
Ty = 0.085(1) " ()% 2, (5 )]

T,, = 0.085(8)""%(45.2)™%[2(1)(38)]
= 160.3 days
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1
E 07 = (1.167) /2Ecm28

C

= (1.167) /2(31833.9) = 34389.5 MPa

1/ /2
[+ Ty 8+ 160.3
Eyon,=|—""0 E, ns = (31833.9)
(tra) <4 085 (1. + o) > 28 (4 10858 + 160.3))

= 34055.9 MPa
Ecme07 _6,34389.5 P
Eshu = € = _(_827 x 10 ) =835.1x10 mm/mm
cm(f . +7g,) 34055.9

Determination of K;:
According to the Table 2.10, for H=75%

3 3
Kh=1—(i) =1—(£) =0.578
100 100

[35-8
=0.389
160.3

£,(1) = (£4,,)(K,)S(1) = (835.1 X 107°)(0.578)(0.389) = 187.8 x 10~° mm/mm

Determination of S():

S(#) = tanh

Creep Calculation:
J(t,ty) = q, + Cy(t, ty) + C (2, 1y, 1)

Determination of ¢;:

q, = Eof 312363 5 = 1885107 ® MPa~!
Calculation of Cy(t,ty):
c= wi/c = % =452 kg/m’
4y = 185.4(0)" (f, )77 x 1070 = 185.4(452)*3(45.2)™*9 x 107°
=127.7x107°
1 1

() = - =0.182
Or(to) 0.086(1)>/° + 1.21(1,)*/° ~ 0.086(28)>/° + 1.21(28)*/°
In[1+ (1= 1,)*'] _ In[1+ (35 —28)"']

Z(t,t,) = = =0.150
Vi \/28
r(ty) = L7(t)""? + 8 = 1.7(28)"'2 + 8 = 10.54
—1/r(t)
r(ty) —1/10.54
O ()™ 0.18210%4
0t 1g) = Qp(tp)| 1 + - ——— 201y = 0.182[1 + W] =0.148

4
gs = 0.29%(@) = 0.29(127.7 x 10-5)(0.46)* = 1.66 x 10~
C
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a -0.7 6
s = 20.3(2) x 1076 = 20.3(3.73)°7 x 107° = 8.08 x 107°
t
Co(t: 1) = ¢, 0(t, 1y) + g5In[1 + (¢ — 1)*'] + g,In (7)

0

= (127.6 X 1076)(0.148) + (1.66 x 10~)In[1 + (35 — 28)*] + (8.08 x 10~%)In (%)

=22.01x107° MPa™'
Calculation of Cy(1,1,t,):

0757y, X 10°]7%0.757]835.1 x 107° x 106|096

- =295.7x 107°
% Jomn 452 97X
S(f) = 0.389
tO - tc 28 — 8
S(t,) = tanh =tanh4/ —— =0.339
0 V T, V 1603
H=1- [(1 - %) S(t)] =1- [(1 - %) 0.389] =0.903
Hay = 1= [(1= L) sap] = 1-[(1- 25 ) 0339] = 0915

C(t.15.1,) = gs1/exp[—8H ()] — exp[—8H(1,)]

= (295.7 x 107°)/exp[—8 x 0.903] — exp[—8 x 0.915] = 2.42 x 107° MPa™!

J(t,15) = q, + Cy(t,1y) + C(t, 1y, 1.)
= (18.85x 107%) + (22.01 X 107%) + (2.42 x 107°) = 43.28 x 10~ MPa™!

Creep coefficient:

c(t,15) = J(t,10)Eoppg — 1 = (43.3 X 1070)(31833.9) — 1 = 0.38

Example 2.10 (SI Units)

Using the GL 2000 model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.

Solution
Shrinkage Calculation:

£,(1) = g B(MP(1 —1.)
Calculation of ey,

K = 1.15 (Table 2.12)

1/2
1/2
Eg = (900)K< 30 > x107° = (900)(1.15)(%) x 107 = 843.2 x 107 mm/mm

Ciyg
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Calculation of f(h):

Blh) =1 — 1.18(%)4 —1- 1.18(%)4 = 0.627

Calculation of f(t—t,):

r—t 2 358 172
plt—1,) = <) = < - 2) =0.367
t—1.+0.12(V/S) 35— 8 +0.12(38)

BBt —1,) = (843.2 X 1070)(0.627)(0.367) = 194 x 107 mm/mm

es(t) = Eshu

Creep Calculation
b(t, ¢,
1 ( 0)

cmt, Cmyg

J(t,1,) =

Calculation of £, and E, :

lp=28days > E., =E

T Homyg

E 1, = 3500 + 43004 /fem,, = 3500 + 4300V 45.2 = 32409.3 MPa

Calculation of (¢, 1,):
ty =28 > t, = 8 days

0573 05103
Ih—1. — ’
p)=|1- 0« 5 = 1—< 288 2) =0.824
to— 1, +0.12(V/S) 28 — 8 +0.12(38)
B T 95
100 ~ 100

) (t— t0)0'3 7 0.5 11, 0.5

0.5
5 t—1,
+2.5(1 — 1.086h") >
t—t,+0.12(V/S)

(35 — 28)%3 77\%/ 35-28 \%
—084 o (=27 (1) 35-28
[ <(35 BETIOENE VY <28) (35 —28+7>

0.5
+2.5(1 — 1.086(0.75)%) < 35— 28 > =0.636
35 — 28 4+ 0.12(38)°

1,1,
L Pt 1 0636 _ oo 076 Mpa-!
E o, 324093 " 324093

cmt, cm,

J(t 1) =

Example 2.11 (SI Units)

Using the CEB 90 model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.
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Solution
Shrinkage Calculation

£.(t,1,) = (e )B,(1.1,)

Calculation of & :

B =38
(Fom,) = 160 +10 (B.) 9—fszx x 107°
& cmyg/ T sc 10
- [160+ 10(8) (9 - %)] x 107° = 518.4 x 10~5 mm/mm

For H=75%,

Prua = —1.55fn
3 3
Pun=1- (1) =1~ (1) =0578
100 100
Brw = —1.55B, = —1.55 X 0.578 = —0.896

Eoqy = &(fumy ) (Brir) = (518.4 X 107°)(=0.896) = —464.5 X 10~° mm/mm
Calculation of g (t—1,):

24,
h, = =76 mm
u

e

Bt —1)= i =\/ 35 -8 =0.343
s\ e 0.56(h, /42 + (1) \ 0.56(76/42 + 35-8)

&,(t,1.) = (€5 )B,(1 — 1.) = (—464.5 X 107%)(0.343) = —159.3 x 10~® mm/mm
Creep Calculation

L + brg(t, 1)

cmt, CMyg

J(@, 1)) =

Calculation of E, and E

cmt,, Cmyg *

lp =28 days > E ., =E

T Hemyg

Eon. = 21,5001/~ = 21,5007/ 222 = 35,548 MPa
& 10 10

Calculation of ¢(t, t,):
1—-H/100 _ 1 -75/100

¢RH =1+ =1+ = 1.596
0.46+/h,/100 0.46+/76/100
Plfn) = 53 _ 53 549
\/fcmzx/lo V/452/10
Blty) = ——— = — L _0us8

0.1+4% 01428
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b0 = PruB(fom, )BLy) = (1.596)(2.49)(0.488) = 1.939
By = 1.5h,[1 + (0.012H)"*] + 250 = 1.5(76)[1 + (0.012 x 75)'¥] + 250
=381 < 1500 days

_ 0.3 0.3
B.(t,1) = <&> = (M) =03

By +t—1, 381 +35-28
@(t,ty) = Bt 1)) = 1.939 x 0.3 = 0.582
1 P(t, 1) 1 0.582 6 _
J(t, 1) = = =44.5x 107°MP
) = E T 35,548 T 35548 :

Example 2.12 (SI Units)

Use the CEB MC 90-99 model to calculate the shrinkage strain and creep function for the specimen
given in Example 2.8.

Solution

Shrinkage Calculation

et 1) = ,,(t) + £44(2, 1)
Calculation of g, (0):

a,, = 600 for rapidly hardening high — strength cements

)= Jemy /10 2'5><10—6
Easo cmyg/ T Ays 6+fcm28/]0

452710 \* .
=-600( ——— ) x10°=-726x10"°
<6 +45.2/10> mm/mm

B() = 1 —exp(=0.2()*%) = 1 — exp(=0.2(35)"°) = 0.694
E4s(1) = €45, (fom, )Bos (D) = (=72.6 X 107°)(0.694) = —50.4 X 10~° mm/mm
Calculation of €4 (t, t,):

ag,, = 6 for rapidly hardening high — strength cements
ag, = 0.12 for rapidly hardening high — strength cements
Eds, femy,) = [(220 + 110ay, Jexp(—ay, fom,, /10)] X 1076
= [(220 + 110 x 6)exp(—0.12 x 45.2/10)] x 107% = 511.6 X 10~® mm/mm

0.1
35 35 \0!
= =(=2) =097<1.0
P <fcm28> (45.2) -

For 40% <H="75% <99% (0.97) =96.5%,

Py = —1.55 [1 - (11(-)1_0)3] =155 [1 - (%)2] = —0.896
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0.5
t—t,
Bas(t —1.) = >
350(h,/100)" + (t — 1,)

05
= < 35 _2 8 > =0.343
350(76/100)" + (35 — 8)

E45(t, 1) = €5, (femy ) Pru () Bys(t — 1)
= (511.6 x 107°)(—0.896)(0.343) = —157.2 x 10~® mm/mm

£,(t,1.) = £,,(D) + £4,(t,2.) = (=50.4 X 107°) + (=157.2 x 107®) = =207.6 x 10~° mm/mm

Creep Calculation

1 n brg(t, 1)

cmt, Cimyg

J(t, 1)) =

Calculation of E,,, and E,

Cimyg *

1y = 28 days = E, E

cmt, — Tomyg

3 [ fem 452
E_ =21,5001— =21 ) —= = 48 MP
ey , 0 ,500 T 35,548 MPa

Calculation of ¢(t, to):

a = ] [452] = 0.836

szg

= | 1 [452] = 0.950

[ 1-H/100 —75/100
Gru= |1+ A0 =1+ / —— —0.836 0.950 = 1.423
0.46¢/n, /10 046\/76/10
53 53
B(fomy) = = = 2.49

\/fcm /10 /452710

9 9
fo=tor|——— +1| =28|—— +1[=325>05days
’ ”lzﬂg ] [2+281-2 ] Y

1 1
plty) = = = 0.475
01442 0143250

Py = PP (fum, )B(tg) = 1.423 X 2.49 X 0.475 = 1.683

0.5

35 35 193

n=|; - ﬁ] — 0.880
CMyg

By = 1.5h,[1 + (0.012H)"*] + 250«

=1.5x 76 x[1 +(0.012 x 75)'¥] + 250 x 0.88 = 351 < 1500 x 0.880 = 1320
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— 0.3 03
ﬂc(,,t0)=<ﬁ> (2522 )" —0s07

By +1—1, 351 +35-128
Bt 1y) = oP.(1, 15) = 1.683 x 0.307 = 0.517
1,1,
J(t, 1) = 1 Pl 1 0517 _ 4368 x 106 MPa~"!
E, — Em, 35548 35548

Example 2.13 (SI Units)

Use the fib MC 2010 model to calculate the shrinkage strain and creep function for the specimen given
in Example 2.8.

Solution

Shrinkage Calculation
The equations utilized by the fib MC 2010 shrinkage prediction model are similar to those of the CEB
MC 90-99 model. Refer to Example 2.12 Shrinkage Calculation section for shrinkage prediction.

Creep Calculation

1 (2, 1)
E (1) - E

ci

J(t, 1)) =

Calculation of E(#,) and E;:
ty = 28 days = E(t)) = E

: [fem
E, =21,500 158 = 21,5004 % = 35,548 MPa

Calculation of ¢(t.t,):

1.8 1.8
= = =0.125
Bocferm) ()7 (45.2)07

a =1 for type III cement

9 [
foadj = for [T()T]z + 1] > 0.5 days

1
=28 [L + 1] = 32.5 days > 0.5 days

2 +28'2
2

Byt 1) = In l( 30 +0.o35> ~(t—t0)+1]

0,adj

30 2

—In [(% +0.035> (35— 28) + 1] =2

Gu(t.10) = Bou(fu) - Bou(ts 1) = (0.125)(2) = 0.25
by M2 412

(-%) (-%)
100 _ 100

3 h 3 76

\/0.1 Lo \/0.1 I

B(RH) = =0.59
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1 1

Bu(to) = = = 0475
COTT00 + 1,7 0.1+ 32.5°2
1 1
y(ty) = PURE o T 0.343
= V10,adj = 325

0.5 05
35 35
Ay = <fc_m> = (4—5'2> = 0.880

By =15 h+250-a, < 1500 - ay,,
= 1.5+ (76) +250 - (0.880) < 1500 - (0.880)

= 334 < 1320
7l 0343
(r—1,) (35 —28)
Lty = | ——— = |l =0.264
Paclt o) lﬂh+(t—to) [334+(35—28)

Dac(t19) = Bac(em) - BRH) + By (to) - Pyc (. 1)
= (1.98)(0.59)(0.475)(0.264) = 0.146
@1, 19) = P, 1) + Py (1, 1)
=0.25 +0.146 = 0.396

1 ¢(t7 t(])
J(t,ty) =
1) E (1) Eg
L0939 3957% 10 MPa!

T 35548 ' 35,548

Example 2.14 (SI Units)

Using the AASHTO model, calculate the shrinkage strain and creep function for the specimen given in
Example 2.8.

Solution

Shrinkage Calculation
For moist-cured concrete, €, should be taken as

Esh = KsKthfth(0-48 X 10_3)

Determination of K :

K =

B}

1/ (262925 1) | 11064 — 3.7 (V/S)
t/(45+1) [ 923 ]

] = 1.009 ~ 1.00

35/ (2601469 4 35) | 1064 — 3.7 (38)
B 35/(45 +35) [ 923

Determination of K :
For H=75%,

K., =1[2.00-0.014H] = 0.95
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Determination of Kf:

35
= =0.95
/ 7 +fci
f; =45.2 MPa (at time of initial loading = ¢, =28 days)
35
K, = =0.
1= 75452 00

Calculation of K :

Kq = L = 35 =0.50
61— 058/ +1 61— 0.58 (45.2) + 35

£ = (1.0)(0.95)(0.67)(0.50)(0.48 x 107) = 153 x 10~° mm/mm

Creep Calculation
The creep coefficient should be taken as

w(t.1y) = 1.9K K, KoK 4150

Values of k4 and k, are same as shrinkage calculation.
Determination of k:

k, = 1.45 — 0.005 (%) > 1.0

= 1.45-0.005(38) = 1.26
Determination of k.
k. = 1.56 — 0.008H = 1.56 — 0.008(75) = 0.96
Calculation of y(t, t,):
w(t, 15) = 1.9(1.26)(0.96)(0.67)(0.50)(28) 118 = 0.52

Determination of E,.: ;
o, =240kg/m’ = 0.15 Kcf

E, = 0.043(2405)'31/45.2

= 34,097 MPa
Calculation of J(t, t,):

1 wtt)
(1) = 7+ E—°
| 0.52 e
=1 192 _iex10MP
34,006 T 34.097 a

2.14 UNIT WEIGHT OF CONCRETE

The unit weight, w, of hardened normal concrete ordinarily used in buildings and similar structures
depends on the concrete mix, maximum size and grading of aggregates, water—cement ratio, and
strength of concrete. The following values of the unit weight of concrete may be used:

1. Unit weight of plain concrete using maximum aggregate size of % in. (20mm) varies
between 145 and 150 Ib/ft® (2320 to 2400 kg/m?). For concrete of strength less than 4000 psi
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(280kg/cm?), a value of 1451b/ft? (2320 kg/m?) can be used, whereas for higher strength
concretes, w can be assumed to be equal to 150 Ib/ft® (2400 kg/m?).

2. Unit weight of plain concrete of maximum aggregate size of 4 to 6in. (100 to 150 mm) varies
between 150 and 160 Ib/ft> (2400 to 2560 kg/m?). An average value of 155 Ib/ft?> may be used.

3. Unit weight of reinforced concrete, using about 0.7 to 1.5% of steel in the concrete section,
may be taken as 150 Ib/ft® (2400 kg/m?). For higher percentages of steel, the unit weight, w,
can be assumed to be 155 Ib/ft> (2500 kg/m?).

4. Unit weight of lightweight concrete used for fireproofing, masonry, or insulation purposes
varies between 20 and 90 1b/ft® (320 and 1440kg/m?). Concrete of upper values of 90 pcf or
greater may be used for load-bearing concrete members.

The unit weight of heavy concrete varies between 200 and 270 Ib/ft* (3200 and 4300 kg/m?).
Heavy concrete made with natural barite aggregate of 1% in. maximum size (38 mm) weighs about

2251b/ft> (3600 kg/m?). Iron ore sand and steel-punchings aggregate produce a unit weight of
270 1b/ft? (4320 kg/m?) [20].

2.15 FIRE RESISTANCE

Fire resistance of a material is its ability to resist fire for a certain time without serious loss of
strength, distortion, or collapse [21]. In the case of concrete, fire resistance depends on the thick-
ness, type of construction, type and size of aggregates, and cement content. It is important to
consider the effect of fire on tall buildings more than on low or single-story buildings because
occupants need more time to escape.

Reinforced concrete is a much better fire-resistant material than steel. Steelwork heats rapidly,
and its strength drops appreciably in a short time. Concrete itself has low thermal conductivity. The
effect of temperatures below 250°C is small on concrete, but definite loss is expected at higher
temperatures.

2.16 HIGH-PERFORMANCE CONCRETE

High-performance concrete may be assumed to imply that the concrete exhibits combined prop-
erties of strength, toughness, energy absorption, durability, stiffness, and a relatively higher duc-
tility than normal concrete. This improvement in concrete quality may be achieved by using a
new generation of additives and superplasticizers, which improves the workability of concrete
and, consequently, its strength. Also, the use of active microfillers such as silica fume, fly ash,
and polymer improves the strength, porosity, and durability of concrete. The addition of different
types of fiber to the concrete mix enhances many of its properties, including ductility, strength,
and toughness.

Because it is difficult to set a limit to measure high-performance concrete, one approach is
to define a lower bound limit based on the shape of its stress—strain response in tension [22]. If
the stress—strain relationship curve shows a quasi-strain-hardening behavior—or, in other words,
a postcracking strength larger than the cracking strength with an elastic-plastic behavior—then
high performance is achieved [22]. In this behavior, multicracking stage is reached with high
energy-absorption capacity. Substantial progress has been made recently in understanding the
behavior and practical application of high-performance concrete.
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Casting and finishing precast concrete wall panels.

2.17 LIGHTWEIGHT CONCRETE

Lightweight concrete has been made lighter than conventional normal-weight concrete and, con-
sequently, it has a relatively lower density. Basically, reducing the density requires the inclusion of
air in the concrete composition. This, however, can be achieved in four distinct ways:

1. By omitting the finer sizes from the aggregate grading, thereby creating what is called no-fines
concrete. It is a mixture of cement, water, and coarse aggregate only (% - %), mixed to pro-
duce concrete with many uniformly distributed voids.

2. By replacing the gravel or crushed rock aggregate with a hollow cellular or porous aggregate,
which includes air in the mix. This type is called lightweight aggregate concrete. Lightweight
aggregate may be natural, such as pumice, pozzolans, and volcanic slags; artificial (from

industrial by-products), such as furnace clinker and foamed slag; or industrially produced,
such as perlite, vermiculite, expanded clay, shale, and slate.
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3. By creating gas bubbles in a cement slurry, which, when it sets, leaves a spongelike structure.
This type is called aerated concrete.

4. By forming air cells in the slurry by chemical reaction or by vigorous mixing of the slurry with
a preformed stable foam, which is produced by using special foam concentrate in a high-speed
mixer. This type is called cellular concrete.

Structural lightweight concrete has a unit weight that ranges from 90 to 115 Ib/ft}, compared
with 145 Ib/ft® for normal-weight concrete. It is used in the design of floor slabs in buildings and
other structural members where high-strength concrete is not required. Structural lightweight con-
crete can be produced with a compressive strength of 2500 to 5000 psi for practical applications.

2.18 FIBROUS CONCRETE

Fibrous concrete is made primarily of concrete constituents and discrete reinforcing fibers. The
brittle nature of concrete and its low flexural tensile strength are major reasons for the growing
interest in the performance of fibers in concrete technology. Various types of fibers—mainly steel,
glass, and organic polymers—have been used in fibrous concrete. Generally, the length and diam-
eter of the fibers do not exceed 3 in. (75 mm) and 0.04 in. (1 mm), respectively. The addition of
fibers to concrete improves its mechanical properties, such as ductility, toughness, shear, flexural
strength, impact resistance, and crack control. A convenient numerical parameter describing a fiber
is its aspect ratio, which is the fiber length divided by an equivalent fiber diameter. Typical aspect
ratios range from about 30 to 150, with the most common ratio being about 100. More details on
fibrous concrete are given in Reference 23.

2.19 STEEL REINFORCEMENT

Reinforcement, usually in the form of steel bars, is placed in the concrete member, mainly in the
tension zone, to resist the tensile forces resulting from external load on the member. Reinforcement
is also used to increase the member’s compression resistance. Steel costs more than concrete, but it
has a yield strength about 10 times the compressive strength of concrete. The function and behavior
of both steel and concrete in a reinforced concrete member are discussed in Chapter 3.

Longitudinal bars taking either tensile or compression forces in a concrete member are called
main reinforcement. Additional reinforcement in slabs, in a direction perpendicular to the main
reinforcement, is called secondary, or distribution, reinforcement. In reinforced concrete beams,
another type of steel reinforcement is used, transverse to the direction of the main steel and bent
in a box or U shape. These are called stirrups. Similar reinforcements are used in columns, where
they are called ties.

2.19.1 Types of Steel Reinforcement
Different types of steel reinforcement are used in various reinforced concrete members. These types

can be classified as follows:

Round Bars. Round bars are used most widely for reinforced concrete. Round bars are available
in a large range of diameters, from i in. (6 mm) to 1% in. (36 mm), plus two special types, 1% in.

(45 mm) and 2% in. (57 mm). Round bars, depending on their surfaces, are either plain or deformed
bars. Plain bars are used mainly for secondary reinforcement or in stirrups and ties. Deformed bars
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have projections or deformations on the surface for the purpose of improving the bond with concrete
and reducing the width of cracks opening in the tension zone.

The diameter of a plain bar can be measured easily, but for a deformed bar, a nominal diameter
is used that is the diameter of a circular surface with the same area as the section of the deformed bar.
Requirements of surface projections on bars are specified by ASTM specification A 305 or A 615.
The bar sizes are designated by numbers 3 through 11, corresponding to the diameter in one-eighths
of an inch. For instance, a no. 7 bar has a nominal diameter of % in. and a no. 4 bar has a nominal

diameter of < in. The two largest sizes are designated no. 14 and no. 18, respectively. American
standard bar marks are shown on the steel reinforcement to indicate the initial of the producing mill,
the bar size, and the type of steel (Fig. 2.6). The grade of the reinforcement is indicated on the bars
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Figure 2.6 Some types of deformed bars and American standard bar marks.
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by either the continuous-line system or the number system. In the first system, one longitudinal
line is added to the bar, in addition to the main ribs, to indicate the high-strength grade of 60 ksi
(420 N/mm?), according to ASTM specification A 617. If only the main ribs are shown on the
bar, without any additional lines, the steel is of the ordinary grade according to ASTM A 615 for
the structural grade (f, =40ksi, or 280 N/mm?). In the number system, the yield strength of the
high-strength grades is marked clearly on every bar. For ordinary grades, no strength marks are
indicated. The two types are shown in Fig. 2.6.

Welded Fabrics and Mats. Welded fabrics and mats consist of a series of longitudinal and trans-
verse cold-drawn steel wires, generally at right angles and welded together at all points of intersec-
tion. Steel reinforcement may be built up into three-dimensional cages before being placed in the
forms.

Prestressed Concrete Wires and Strands. Prestressed concrete wires and strands use special
high-strength steel (see Chapter 20). High-tensile steel wires of diameters 0.192in. (5 mm) and
0.276 in. (7 mm) are used to form the prestressing cables by winding six steel wires around a seventh
wire of slightly larger diameter. The ultimate strength of prestressed strands is 250 or 270 ksi.

2.19.2 Grades and Strength

Different grades of steel are used in reinforced concrete. Limitations on the minimum yield strength,
ultimate strength, are explained in ASTM specifications for reinforcing steel bars (Table 2.18). The
properties and grades of metric reinforcing steel are shown in Tables 2.19 and 2.20.

ACI Code, Section 20.2.2.4 and 20.2.25 defines the types of nonprestressed bars and wires
to be specified in two tables one is used for deformed bars while the other for plain reinforcement.

Table 2.18 Grade of ASTM Reinforcing Steel Bars

Steel Minimum Yield Strength f, Ultimate Strength f,

ksi MPa ksi MPa

Billet steel

Grade 40 40 276 70 483
60 60 414 90 621
75 75 518 100 690
80 [24] 80 550 — —

Rail steel

Grade 50 50 345 80 551
60 60 414 90 621

Deformed wire

Reinforcing 75 518 85 586

Fabric 70 483 80 551

Cold-drawn wire

Reinforcing 70 483 80 551

Fabric 65 448 75 518

Fabric 56 386 70 483
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Table 2.19 ASTM 615 M (Metric) for Reinforcing Steel Bars

Bar No. Diameter (mm) Area (mm?) Weight (kg/m)

10M 11.3 100 0.785
15M 16.0 200 1.570
20M 19.5 300 2.355
25M 25.2 500 3.925
30M 29.9 700 5.495
35M 35.7 1000 7.850
45M 43.7 1500 11.770
55M 56.4 2500 19.600

Table 2.20 ASTM Metric Specifications

ASTM Bar Size No.
MPa ksi Grade
A615M 10, 15, 20 300 43.5
Billet steel 10-55 400 58.0
35, 45, 55 500 72.5
A616 M 10-35 350 50.75
Rail steel 10-35 400 58.0
A617M 10-35 300 43.5
Axle steel 10-35 400 58.0
A706 10-55 400 58.0
Low alloy

The code defines the type of structure and the recommended type of steel to be used. These are
shown in Table 2.21 and Table 2.22.

2.19.3 Stress-Strain Curves

The most important factor affecting the mechanical properties and stress—strain curve of the steel
is its chemical composition. The introduction of carbon and alloying additives in steel increases
its strength but reduces its ductility. Commercial steel rarely contains more than 1.2% carbon; the
proportion of carbon used in structural steels varies between 0.2 and 0.3%.

Two other properties are of interest in the design of reinforced concrete structures; the first
is the modulus of elasticity, E;. It has been shown that the modulus of elasticity is constant for all
types of steel. The ACI Code has adopted a value of E; =29 x 10° psi (2.0 x 10° MPa).

The modulus of elasticity is the slope of the stress—strain curve in the elastic range up to the
proportional limit; E; = stress/strain. Second is the yield strength, f,. Typical stress—strain curves
for some steel bars are shown in Fig. 2.7. In high-tensile steel, a definite yield point may not show
on the stress—strain curve. In this case, ultimate strength is reached gradually under an increase of
stress (Fig. 2.7). The yield strength or proof stress is considered the stress that leaves a residual
strain of 0.2% on the release of load, or a total strain of 0.5 to 0.6% under load.
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Table 2.22 Nonprestressed Plain Spiral Reinforcement

77

Maximum Value Of
fy or fyt Permitted

Applicable ASTM Specification

for Design
Usage Application Calculations, psi Plain Bars Plain Wires
Lateral support of Spirals in 100,000 A615, A706, A955, A1064, A1022
longitudinal bars or special seismic A1035
concrete confinement systems
Spirals 100,000 A615, A706, A955, A1064, A1022
A1035
Shear Spirals 60,000 A615, A706, A955, A1064, A1022
A1035
Torsion in Spirals 60,000 A615, A706, A955, A1064, A1022
nonprestressed beams A1035
140 99
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Figure 2.7 Typical stress—strain curves for some reinforcing steel bars of different

grades. Note that 60-ksi steel may or may not show a definite yield point.
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SUMMARY

Section 2.1

The main factors that affect the strength of concrete are the water—cement ratio, properties and
proportions of materials, age of concrete, loading conditions, and shape of tested specimen.

f1(cylinder) = 0.85f(cube) = 1.10f(prism)
Sections 2.2-2.6

1. The usual specimen used to determine the compressive strength of concrete at 28 days is a 6 X
12-in. (150 x 300-mm) cylinder. Compressive strength between 3000 and 6000 psi is usually
specified for reinforced concrete structures. Maximum stress, f!, is reached at an estimated
strain of 0.002, whereas rupture occurs at a strain of about 0.003.

2. Tensile strength of concrete is measured indirectly by a splitting test performed on a standard
cylinder using formula f, = 2P/zLD. Tensile strength of concrete is approximately 0.1f/.

3. Flexural strength (modulus of rupture, f,) of concrete is calculated by testing a 6 X 6 X 28-in.

plain concrete beam, f, = 7.5/1\/f_c’ (psi), where A is a modification factor related to unit
weight of concrete.

4. Nominal shear stress is 2/1\/176’ (psi).

Sections 2.7-2.9

The modulus of elasticity of concrete, E. for unit weight w between 90 and 160 pcf, is E,. =

33w S+/f! (psi) = 0.043w'5/f! MPa.

For normal-weight concrete, w = 145 pcf.
E.=57,600vf  or  E,=57,000\/f =4700\/f MPa
The shear modulus of concrete is G. =E_./2(1 + 1) =0.43 E, for a Poisson ratio y = é. Poisson’s
ratio, p, varies between 0.15 and 0.20, with an average value of 0.18.
Section 2.10
Modular ratiois n = E,/E,. = 500/ \/j? , where f] is in pounds per square inch.

Section 2.11

1. Values of shrinkage for normal concrete fall between 200 X 107% and 700 X 1075, An average
value of 300 x 10~ may be used.

2. The coefficient of expansion of concrete falls between 4 X 1076 and 7 x 107/°F.

Section 2.12-2.13

The ultimate magnitude of creep varies between 0.2 107 and 2 x 10 per unit stress per unit
length. An average value of 1x 107® may be adopted in practical problems. Of the ultimate
(20-year) creep, 18 to 35% occurs in 2 weeks, 30 to 70% occurs in 3 months, and 64 to 83% occurs
in 1 year.
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Section 2.14

The unit weight of normal concrete is 145 pcf for plain concrete and 150 pcf for reinforced concrete.

Section 2.15

Reinforced concrete is a much better fire-resistant material than steel. Concrete itself has a low
thermal conductivity. An increase in concrete cover in structural members such as walls, columns,
beams, and floor slabs will increase the fire resistance of these members.

Sections 2.16-2.18

1. High-performance concrete implies that concrete exhibits properties of strength, toughness,
energy absorption, durability, stiffness, and ductility higher than normal concrete.

2. Concrete is made lighter than normal-weight concrete by inclusion of air in the concrete com-

position. Types of lightweight concrete are no-fines concrete, lightweight aggregate concrete,
aerated concrete, and cellular concrete.

3. Fibrous concrete is made of concrete constituents and discrete reinforcing fibers such as steel,

glass, and organic polymers.

Section 2.19

The grade of steel mainly used is grade 60 (f, =60ksi). The modulus of elasticity of steel is

ES

w

N SN A

11.
12.

=29 x 10° psi (2 x 10° MPa).
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PROBLEMS

Explain the modulus of elasticity of concrete in compression and the shear modulus.

Determine the modulus of elasticity of concrete by the ACI formula for a concrete cylinder that has a
unit weight of 120 pcf (1920 kg/m?®) and a compressive strength of 3000 psi (21 MPa).

Estimate the modulus of elasticity and the shear modulus of a concrete specimen with a dry density of
150 pef (2400 kg/m?) and compressive strength of 4500 psi (31 MPa) using Poisson’s ratio, u =0.18.

What is meant by the modular ratio and Poisson’s ratio? Give approximate values for concrete.
What factors influence the shrinkage of concrete?

What factors influence the creep of concrete?

What are the types and grades of the steel reinforcement used in reinforced concrete?

On the stress—strain diagram of a steel bar, show and explain the following: proportional limit, yield
stress, ultimate stress, yield strain, and modulus of elasticity.

Calculate the modulus of elasticity of concrete, E,, for the following types of concrete:
E, = 33w/ (ft)
= 0.043w" 3 V/f(ST)

Density Strength f!
160 pcf 5000 psi
145 pef 4000 psi
125 pcf 2500 psi
2400 kg/m? 35MPa
2300 kg/m? 30 MPa

2100 kg/m? 25 MPa




Problems

81

2.10 Determine the modular ratio, n, and the modulus of rupture for each case of Problem 2.9. Tabulate your
results.

£ =75M/f (psi) f. =0.6241/f/(MPa)

2.11 A 6 X 12-in. concrete cylinder was tested to failure. The following loads and strains were recorded:

Load, kips Strain x 10~* Load, kips Strain x 10~*

0.0 0.0 72 10.0
12 1.2 84 13.6
24 2.0 96 18.0
36 32 108 30.0
48 5.2 95 39.0
60 7.2 82 42.0

. Draw the stress—strain diagram of concrete and determine the maximum stress and corresponding

strain.

b. Determine the initial modulus and secant modulus.

. Calculate the modulus of elasticity of concrete using the ACI formula for normal-weight concrete

and compare results.
E, = 57,000/ psi
= 47301/f/ MPa

2.12 Calculate the shrinkage strain, creep compliance, and creep coefficient using the ACI 209R-92 model
for a 6 X 12-in. steam-cured concrete cylinder made with type III portland cement. Given:

H 20 %

h, =2VIS 6 in.
—_— 4021 psi

w 345 Ib/yd?
w/c 0.4

alc 3.25

t 400 days
f 28 days
L. 1 days
Y 146 1b/ft3

2.13 Calculate the shrinkage strain, creep compliance, and creep coefficient for problem 2.12 using the GL
2000 Model.

2.14 Calculate the shrinkage strain, creep compliance, and creep coefficient for problem 2.12 using the fib
MC 2010 Model.

2.15 A concrete specimen has the following properties: Relative Humidity = 50%; h, = 2V/S = 35 mm; f,,,»5
= 33.9 MPa; cement content (c) = 350 kg/m?, w/c = 0.49, a/c = 4.814, t, = 7 days, y = 2296.74 kg/m?.
The specimen is made with Type I portland cement and was moist-cured.

a.

b.

Calculate the creep compliance utilizing the ACI 209R-92 and fib MC 2010 models at ages of: 14,
90,365,2190 and 3650 days.

Create a plot showing the ACI 209R-92 and fib MC 2010 creep compliance predictions versus loading
duration up tp 3650 days.

Comment on the trend of both models.
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2.16 A concrete specimen has the following properties: Relative humidity = 50%; h, = 2V/S = 51 mm; f,,, 55
= 16.5 MPa; cement content (¢) = 320 kg/m3, w/c =0.59, a/c = 5.669, t, = 28 days, y =2296.74 kg/m3.
The specimen is made with Type I portland cement and was moist-cured.
a. Calculate the shrinkage strain using the B3 and the GL 2000 models at ages of: 56, 90, 365, 2190,
and 3650 days.

b. Create a plot showing the B3 and GL 2000 shrinkage strain predictions versus age up to 3650 days.
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3.1 INTRODUCTION

The analysis and design of a structural member may be regarded as the process of selecting the
proper materials and determining the member dimensions such that the design strength is equal or
greater than the required strength. The required strength is determined by multiplying the actual
applied loads, the dead load, the assumed live load, and other loads, such as wind, seismic, earth
pressure, fluid pressure, snow, and rain loads, by load factors. These loads develop external forces
such as bending moments, shear, torsion, or axial forces, depending on how these loads are applied
to the structure.

In proportioning reinforced concrete structural members, three main items can be investi-
gated:

1. The safety of the structure, which is maintained by providing adequate internal design
strength.

2. Deflection of the structural member under service loads. The maximum value of deflection
must be limited and is usually specified as a factor of the span, to preserve the appearance of
the structure.

3. Control of cracking conditions under service loads. Visible cracks spoil the appearance of
the structure and also permit humidity to penetrate the concrete, causing corrosion of steel
and consequently weakening the reinforced concrete member. The ACI Code implicitly limits
crack widths to 0.016 in. (0.40 mm) for interior members and 0.013 in. (0.33 mm) for exterior
members. Control of cracking is achieved by adopting and limiting the spacing of the tension
bars (see Chapter 6).

It is worth mentioning that the strength design approach was first permitted in the United
States in 1956 and in Britain in 1957. The latest ACI Code emphasizes the strength concept based
on specified strain limits on steel and concrete that develop tension-controlled, compression-
controlled, or transition conditions.
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3.2 ASSUMPTIONS

Reinforced concrete sections are heterogeneous (nonhomogeneous), because they are made of two
different materials, concrete and steel. Therefore, proportioning structural members by strength
design approach is based on the following assumptions:

1. Strain in concrete is the same as in reinforcing bars at the same level, provided that the bond
between the steel and concrete is adequate.

2. Strain in concrete is linearly proportional to the distance from the neutral axis.

3. The modulus of elasticity of all grades of steel is taken as E; = 29 x 10 Ib/in.? (200,000 MPa
or N/mm?). The stress in the elastic range is equal to the strain multiplied by E,.

4. Plane cross sections continue to be plane after bending.

5. Tensile strength of concrete is neglected because (a) concrete’s tensile strength is about 10%
of its compressive strength, (b) cracked concrete is assumed to be not effective, and (c) before
cracking, the entire concrete section is effective in resisting the external moment.

6. The method of elastic analysis, assuming an ideal behavior at all levels of stress, is not valid.
At high stresses, nonelastic behavior is assumed, which is in close agreement with the actual
behavior of concrete and steel.

7. At failure the maximum strain at the extreme compression fibers is assumed equal to 0.003
by the ACI Code provision.

8. For design strength, the shape of the compressive concrete stress distribution may be assumed
to be rectangular, parabolic, or trapezoidal. In this text, a rectangular shape will be assumed
(ACI Code, Section 22.2).

3.3 BEHAVIOR OF SIMPLY SUPPORTED REINFORCED CONCRETE BEAM
LOADED TO FAILURE

Concrete being weakest in tension, a concrete beam under an assumed working load will defi-
nitely crack at the tension side, and the beam will collapse if tensile reinforcement is not provided.
Concrete cracks occur at a loading stage when its maximum tensile stress reaches the modulus of
rupture of concrete. Therefore, steel bars are used to increase the moment capacity of the beam;
the steel bars resist the tensile force, and the concrete resists the compressive force.

To study the behavior of a reinforced concrete beam under increasing load, let us examine
how two beams were tested to failure. Details of the beams are shown in Fig. 3.1. Both beams had
a section of 4.5 x 8in. (110 X 200 mm), reinforced only on the tension side by two no. 5 bars.
They were made of the same concrete mix. Beam 1 had no stirrups, whereas beam 2 was provided
with no. 3 stirrups spaced at 3 in. The loading system and testing procedure were the same for both
beams. To determine the compressive strength of the concrete and its modulus of elasticity, E,, a
standard concrete cylinder was tested, and strain was measured at different load increments. The
following observations were noted at different distinguishable stages of loading.

Stage 1. At zero external load, each beam carried its own weight in addition to that of the load-
ing system, which consisted of an I-beam and some plates. Both beams behaved similarly at this
stage. At any section, the entire concrete section, in addition to the steel reinforcement, resisted
the bending moment and shearing forces. Maximum stress occurred at the section of maximum
bending moment—that is, at midspan. Maximum tension stress at the bottom fibers was much less
than the modulus of rupture of concrete. Compressive stress at the top fibers was much less than
the ultimate concrete compressive stress, f7. No cracks were observed at this stage.
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Figure 3.1 Details of tested beams: (a) beam 1, (b) beam 2, and (c) loading system.

All beams are symmetrical about the centerline.
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Two-span continuous reinforced concrete beam loaded to failure.

Failure conditions at the positive- and negative-moment sections in a continuous reinforced concrete beam.
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Stage 2. This stage was reached when the external load, P, was increased from O to P, which
produced tensile stresses at the bottom fibers equal to the modulus of rupture of concrete. At this
stage the entire concrete section was effective, with the steel bars at the tension side sustaining a
strain equal to that of the surrounding concrete.

Stress in the steel bars was equal to the stress in the adjacent concrete multiplied by the
modular ratio, n, is the ratio of the modulus of elasticity of steel to that of concrete. The compressive
stress of concrete at the top fibers was still very small compared with the compressive strength, f.
The behavior of beams was elastic within this stage of loading.

Stage 3. When the load was increased beyond P, tensile stresses in concrete at the tension zone
increased until they were greater than the modulus of rupture, f,, and cracks developed. The neutral
axis shifted upward, and cracks extended close to the level of the shifted neutral axis. Concrete in
the tension zone lost its tensile strength, and the steel bars started to work effectively and to resist
the entire tensile force. Between cracks, the concrete bottom fibers had tensile stresses, but they
were of negligible value. It can be assumed that concrete below the neutral axis did not participate
in resisting external moments.

In general, the development of cracks and the spacing and maximum width of cracks depend
on many factors, such as the level of stress in the steel bars, distribution of steel bars in the section,
concrete cover, and grade of steel used.

At this stage, the deflection of the beams increased clearly because the moment of inertia of
the cracked section was less than that of the uncracked section. Cracks started about the midspan of
the beam, but other parts along the length of the beam did not crack. When load was again increased,
new cracks developed, extending toward the supports. The spacing of these cracks depends on the
concrete cover and the level of steel stress. The width of cracks also increased. One or two of the
central cracks were most affected by the load, and their crack widths increased appreciably, whereas
the other crack widths increased much less. It is more important to investigate those wide cracks
than to consider the larger number of small cracks.

If the load were released within this stage of loading, it would be observed that permanent fine
cracks of no significant magnitude were left. On reloading, cracks would open quickly because the
tensile strength of concrete had already been lost. Therefore, it can be stated that the second stage,
once passed, does not happen again in the life of the beam. When cracks develop under working
loads, the resistance of the entire concrete section and gross moment of inertia are no longer valid.

At high compressive stresses, the strain of the concrete increased rapidly, and the stress of
concrete at any strain level was estimated from a stress—strain graph obtained by testing a standard
cylinder to failure for the same concrete. As for the steel, the stresses were still below the yield
stress, and the stress at any level of strain was obtained by multiplying the strain of steel, €, by the
modulus of elasticity of steel, E,.

Stage 4. In beam 1, at a load value of 95001b (42.75 kN), shear stress at a distance of about the
depth of the beam from the support increased and caused diagonal cracks at approximately 45°
from horizontal in the direction of principal stresses resulting from the combined action of bending
moment and shearing force. The diagonal crack extended downward to the level of the steel bars
and then extended horizontally at that level toward the support. When the crack, which had been
widening gradually, reached the end of the beam, a concrete piece broke off and failure occurred
suddenly (Fig. 3.2). The failure load was 13,600 1b (61.2 kN). Stresses in concrete and steel at the
midspan section did not reach their failure stresses. (The shear behavior of beams is discussed in
Chapter 8.)

In beam 2, at a load of 11,0001b (49.5kN), a diagonal crack developed similar to that of
beam 1; then other parallel diagonal cracks appeared, and the stirrups started to take an effective
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Figure 3.2 Shape of beam 1 at shear failure (top) and beam 2 at bending moment
failure (bottom).
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part in resisting the principal stresses. Cracks did not extend along the horizontal main steel bars,
as in beam 1. On increasing the load, diagonal cracks on the other end of the beam developed at a
load of 13,2501b (59.6 kN). Failure did not occur at this stage because of the presence of stirrups.

Stage S. When the load on beam 2 was further increased, strains increased rapidly until the max-
imum carrying capacity of the beam was reached at ultimate load, P, = 16,2001b (72.9 kN).

In beam 2, the amount of steel reinforcement used was relatively small. When reached, the
yield strain can be considered equal to yield stress divided by the modulus of elasticity of steel,
€= fy/Es; the strain in the concrete, €., was less than the strain at maximum compressive stress,
/7. The steel bars yielded, and the strain in steel increased to about 12 times that of the yield strain
without increase in load. Cracks widened sharply, deflection of the beam increased greatly, and the
compressive strain on the concrete increased. After another very small increase of load, steel strain
hardening occurred, and concrete reached its maximum strain, €/, and it started to crush under load;
then the beam collapsed. Figure 3.2 shows the failure shapes of the two beams.

3.4 TYPES OF FLEXURAL FAILURE AND STRAIN LIMITS

3.4.1 Flexural Failure

Three types of flexural failure of a structural member can be expected depending on the percentage
of steel used in the section.

1. Steel may reach its yield strength before the concrete reaches its maximum strength, Fig. 3.3a.
In this case, the failure is due to the yielding of steel reaching a high strain equal to or
greater than 0.005. The section contains a relatively small amount of steel and is called a
tension-controlled section.

2. Steel may reach its yield strength at the same time as concrete reaches its ultimate strength,
Fig. 3.3b. The section is called a balanced section.

3. Concrete may fail before the yield of steel, Fig. 3.3¢, due to the presence of a high percentage
of steel in the section. In this case, the concrete strength and its maximum strain of 0.003 are
reached, but the steel stress is less than the yield strength, that is, f; is less than £,.. The strain in
the steel is equal to or less than 0.002. This section is called a compression-controlled section.
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Figure 3.3 Stress and strain diagrams for (a) tension-controlled, (b) balanced, and

(c) compression-controlled sections.
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It can be assumed that concrete fails in compression when the concrete strain reaches 0.003.
A range of 0.0025 to 0.004 has been obtained from tests and the ACI Code, Section 22.2.2.1,
assumes a strain of 0.003.

In beams designed as tension-controlled sections, steel yields before the crushing of concrete.
Cracks widen extensively, giving warning before the concrete crushes and the structure collapses.
The ACI Code adopts this type of design. In beams designed as balanced or compression-controlled
sections, the concrete fails suddenly, and the beam collapses immediately without warning. The
ACI Code does not allow this type of design.

3.4.2 Strain Limits for Tension and Tension-Controlled Sections

The design provisions for both reinforced and prestressed concrete members are based on the con-
cept of tension or compression-controlled sections, ACI Code, Section 21.2. Both are defined in
terms of net tensile strain (NTS), (g,, in the extreme tension steel at nominal strength, exclusive of
prestress strain. Moreover, two other conditions may develop: (1) the balanced strain condition and
(2) the transition region condition. These four conditions are defined as follows:

1. Compression-controlled sections are those sections in which the net tensile strain, NTS, in the
extreme tension steel at nominal strength is equal to or less than the compression-controlled
strain limit at the time when concrete in compression reaches its assumed strain limit of 0.003,
(e, = 0.003). For grade 60 steel, (f, = 60 ksi), the compression-controlled strain limit may be
taken as a net strain of 0.002, Fig. 3.4a. This case occurs mainly in columns subjected to axial
forces and moments.

2. Tension-controlled sections are those sections in which the NTS, ¢,, is equal to or greater
than 0.005 just as the concrete in the compression reaches its assumed strain limit of 0.003,
Fig. 3.4c.

3. Sections in which the NTS in the extreme tension steel lies between the compression-
controlled strain limit (0.002 for f, = 60 ksi) and the tension-controlled strain limit of 0.005
constitute the transition region, Fig. 3.4b.

4. The balanced strain condition develops in the section when the tension steel, with the first
yield, reaches a strain corresponding to its yield strength, f or £, = f,/E|, just as the maximum
strain in concrete at the extreme compression fibers reaches 0.003, Fig. 3.5.

(a) (b) ()

£.=0.003 £.=0.003 £.=0.003
] <3
€ R o
h d, SN
[ ] [ ] L] [ ]
[ ] [ ] L] [ ]
&< f—) g—‘ < g,<0.005 £ >0.005
Ex s 1
b .
For f, = 60 ksi £,<0.002 0.002 < &< 0.005 £ 20.005

Figure 3.4 Strain limit distribution, ¢, >c,>c,: (@) compression-controlled section,
(b) transition region, and (c) tension-controlled section.
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Figure 3.5 Balanced strain section (occurs at first yield or at distance d,).

Table 3.1 Strain Limits of Figure 3.4

Section Condition Concrete Strain Steel Strain Notes (f, = 60 ksi)
Compression controlled 0.003 €< f/E, £,<0.002

Tension controlled 0.003 g,>0.005 €,>0.005
Transition region 0.003 f/E, < g, <0.005 0.002 < g, < 0.005
Balanced strain 0.003 e,= fE, g, =0.002
Transition region (flexure) 0.003 0.004 < g, < 0.005 0.004 < g, < 0.005

In addition to the above four conditions, Section 9.3.3.1 of the ACI Code indicates that the
net tensile strain, &,, at nominal strength, within the transition region, shall not be less than 0.004
for reinforced concrete flexural members without or with an axial load less than 0.10 f/A,, where
A, = gross area of the concrete section.

Note that d, in Fig. 3.4, is the distance from the extreme concrete compression fiber to the
extreme tension steel, while the effective depth, d, equals the distance from the extreme concrete
compression fiber to the centroid of the tension reinforcement, Fig. 3.5. These cases are summarized
in Table 3.1.

3.5 LOAD FACTORS

The types of loads and the safety provisions were explained earlier in Sections 1.7 and 1.8.

For the design of structural members, the factored design load is obtained by multiplying the
dead load by a load factor and the specified live load by another load factor. The magnitude of the
load factor must be adequate to limit the probability of sudden failure and to permit an economical
structural design. The choice of a proper load factor or, in general, a proper factor of safety depends
mainly on the importance of the structure (whether a courthouse or a warehouse), the degree of
warning needed prior to collapse, the importance of each structural member (whether a beam or
column), the expectation of overload, the accuracy of artisanry, and the accuracy of calculations.

Based on historical studies of various structures, experience, and the principles of probability,
the ACI Code adopts a load factor of 1.2 for dead loads and 1.6 for live loads. The dead-load factor
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is smaller because the dead load can be computed with a greater degree of certainty than the live
load. Moreover, the choice of factors reflects the degree of the economical design as well as the
degree of safety and serviceability of the structure. It is also based on the fact that the performance
of the structure under actual loads must be satisfactorily within specific limits.

If the required strength is denoted by U (ACI Code, Section 5.3.1), and those due to wind and
seismic forces are W and E, respectively, according to the ACI and ASCE 7-10 Codes, the required
strength, U, shall be the most critical of the following factors:

1. In the case of dead, live, and wind loads,

U=14D (3.1a)
U=12D+1.6L (3.1b)
U=12D+1.0L+ 1.0W (3.1¢)
U=09D+1.0W (3.1d)
U=12D+ (1.0L or 0.5W) (3.1e)
2. In the case of dead, live, and seismic (earthquake) forces, E,
U=12D+1.0L+ 1.0E (3.2a)
U=09D+ 1.0E (3.2b)

3. For load combination due to roof live load, L,, rain load, R, snow load, S, in addition to dead,
live, wind, and earthquake load,

U=12D+1.6L+0.5(L, or SorR) (3.3a)
U=12D+1.6(L,or SorR)+ (1.0L or 0.5W) (3.3b)
U=12D+1.0W + 1.0L + 0.5(L, or S or R) (3.30)
U=12D+1.0E+1.0L+0.2§ (3.3d)
4. Where fluid load F is present, it shall be included as follows:
U=14D+F) (3.4a)
U=12D+12F+1.6L+0.5(L, or S or R) (3.4b)
U=12D+12F+(L+0.5W)+1.6(L, or Sor R) (3.40)
U=12D+12F+1.0W+L+0.5(L, or SorR) (3.4d)
U=12D+12F+10E+L+0.2S (3.4e)
U=09D+F)+1.0E (3.41)

5. When the load H (load due to lateral earth pressure, groundwater pressure, or pressure of bulk
material) is present, it shall be included as follows:

a. Include H with load factor 1.6, where effect of H adds to the primary variable load effect.
b. Include H with load factor 0.90, where effect of H resist to the primary variable load effect

U = primary permanent loads + 1.6H (3.5a)
U = primary permanent loads — 0.9H (3.5b)



3.6 Strength Reduction Factor ¢ 93

It is to noted that

1. The load factor Lin Egs. 3.1c, 3.1e, 3.2a, 3.3b, 3.3c, and 3.3d shall be permitted to be reduced
to 0.5L, except for garages, areas occupied as places of public assembly, and all areas where
the live load L is greater than 100 pounds per square foot (psf).

2. Where W is based on service wind loads, 1.6W shall be used in place of 1.0W in Egs. 3.1c,
3.1d, and 3.3c and 0.8W shall be used in place of 0.5W in Egs. 3.1e and Eqgs. 3.3b.

3. If the service level of the seismic load E'is used, 1.4E shall be used in place of 1.0E in Egs. 3.2a
and b and 3.3d.

4. In a flood zone area, the flood load or load combinations of ASCE shall be used.

5. Impact effects shall be included with the live load L.

The ACI Code does not specify a value for impact, but AASHTO specifications give a simple
factor for impact, /, as a percentage of the live load L as follows:

50
= <30 3.6
125+8 — % (36)

where [ is the percentage of impact, S is the part of the span loaded, and live load including impact
is L(1 + 1).

When a better estimation is known from experiments or experience, the adjusted value shall
be used.

3.6 STRENGTH REDUCTION FACTOR ¢

The nominal strength of a section, say M, for flexural members, calculated in accordance with the
requirements of the ACI Code provisions must be multiplied by the strength reduction factor, ¢,
which is always less than 1. The strength reduction factor has several purposes:

1. To allow for the probability of understrength sections due to variations in dimensions, material
properties, and inaccuracies in the design equations.

2. To reflect the importance of the member in the structure.
3. To reflect the degree of ductility and required reliability under the applied loads.

The ACI Code, Table 21.2.1, specifies the following values to be used:

For tension-controlled sections ¢$=0.90
For compression-controlled sections

a. with spiral reinforcement ¢=0.75

b. other reinforced members ¢ =0.65
For plain concrete ¢ =0.60
For shear and torsion ¢ =0.75
For bearing on concrete ¢ =0.65
For strut and tie models ¢ =0.75

A higher ¢ factor is used for tension-controlled sections than for compression-controlled
sections, because the latter sections have less ductility and they are more sensitive to variations in
concrete strength. Also, spirally reinforced compression members have a ¢ value of 0.75 compared
to 0.65 for tied compression members; this variation reflects the greater ductility behavior of spirally
reinforced concrete members under the applied loads. In the ACI Code provisions, the ¢ factor is
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based on the behavior of the cross section at nominal strength, (P,, M,,), defined in terms of the
NTS, ¢,, in the extreme tensile strains, as given in Table 3.1. For tension-controlled members,
¢ = 0.9. For compression-controlled members, ¢ = 0.75 (with spiral reinforcement) and ¢ = 0.65
for other members.

For the transition region, ¢» may be determined by linear interpolation between 0.65 (or 0.75)
and 0.9. Figure 3.6a shows the variation of ¢ for grade 60 steel. The linear equations are as follows:

0.75 + (st — 0.002) (50) (for spiral members) (3.7

=065 + (¢, - 0.002) (%) (for other members) (3.8)

Alternatively, ¢ may be determined in the transition region, as a function of (¢/d,) for grade
60 steel as follows:

0.75+0.15 L _3 (for spiral members) 3.9)

b= c/d, 3
0.65 + 0.25 L _2 (for other members) (3.10)

c/d, 3

where c is the depth of the neutral axis at nominal strength (¢, in Fig. 3.4). At the limit strain of
0.002 for grade 60 steel and from the triangles of Fig. 3.4a, c/d, = 0.003/(0.002 +0.003) = 0.6.
Similarly, at a strain, £, = 0.005, c/d, = 0.003/(0.005 +0.003) = 0.375. Both values are shown in
Fig. 3.6.

For reinforced concrete flexural members, the NTS, ¢,, should be equal to or greater than
0.004 (ACI Code, Section 22.2.2). In this case,

250
3
Figure 3.6b shows the range of ¢ for flexural members. For grade 60 steel, the range varies

between 0.9 for €, > 0.005 and 0.82 for £, = 0.004. Other values of ¢ can be obtained from Eq. 3.11
or by interpolation.

¢ = 0.65 + (¢, — 0.002) ( ) =0.82 3.11)

3.7 SIGNIFICANCE OF ANALYSIS AND DESIGN EXPRESSIONS

Two approaches for the investigations of a reinforced concrete member will be used in this book:

Analysis of a section implies that the dimensions and steel used in the section (in addition to
concrete strength and steel yield strength) are given, and it is required to calculate the internal
design moment capacity of the section so that it can be compared with the applied external
required moment.

Design of a section implies that the external required moment is known from structural analysis,
and it is required to compute the dimensions of an adequate concrete section and the amount
of steel reinforcement. Concrete strength and yield strength of steel used are given.

3.8 EQUIVALENT COMPRESSIVE STRESS DISTRIBUTION

The distribution of compressive concrete stresses at failure may be assumed to be a rectangle,
trapezoid, parabola, or any other shape that is in good agreement with test results.
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Figure 3.6 (a) Variation of ¢, with the net tensile strain for grade 60 steel and for pre-

stressed steel [1]; (b) variation of ¢ and strain limit in flexural member with 7, = 60 ksi.

When a beam is about to fail, the steel will yield first if the section is underreinforced, and in
this case the steel is equal to the yield stress. If the section is overreinforced, concrete crushes first
and the strain is assumed to be equal to 0.003, which agrees with many tests of beams and columns.
A compressive force, C, develops in the compression zone and a tension force, 7, develops in the
tension zone at the level of the steel bars. The position of force 7 is known because its line of
application coincides with the center of gravity of the steel bars. The position of compressive force
Cis not known unless the compressive volume is known and its center of gravity is located. If that is
done, the moment arm, which is the vertical distance between C and 7, will consequently be known.
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Figure 3.7 Forces in a rectangular section.

In Fig. 3.7, if concrete fails, £, = 0.003, and if steel yields, as in the case of a balanced section,
fi=1f,

The compression force C is represented by the volume of the stress block, which has the
nonuniform shape of stress over the rectangular hatched area of bc. This volume may be considered
equal to C = bc(a; f!), where a; f! is an assumed average stress of the nonuniform stress block.

The position of compression force C is at a distance z from the top fibers, which can be
considered as a fraction of the distance ¢ (the distance from the top fibers to the neutral axis), and z
can be assumed to be equal to a,c, where a, <1. The values of @, and @, have been estimated from
many tests, and their values, as suggested by Mattock, Kriz, and Hognestad [2], are as follows:

a; =0.72 for f/ <4000 psi (27.6 MPa); it decreases linearly by 0.04 for every 1000 psi
(6.9MPa) greater than 4000 psi

a, =0.425 for f/ < 4000 psi (27.6 MPa); it decreases linearly by 0.025 for every 1000 psi
greater than 4000 psi

The decrease in the value of a; and «a, is related to the fact that high-strength concretes show more
brittleness than low-strength concretes [3].

To derive a simple rational approach for calculations of the internal forces of a section, the
ACI Code adopted an equivalent rectangular concrete stress distribution, which was first proposed
by C.S. Whitney and checked by Mattock and others [2]. A concrete stress of 0.85 f is assumed to
be uniformly distributed over an equivalent compression zone bounded by the edges of the cross
section and a line parallel to the neutral axis at a distance a = f,c from the fiber of maximum
compressive strain, where ¢ is the distance between the top of the compressive section and the
neutral axis (Fig. 3.8). The fraction f#, is 0.85 for concrete strengths f. < 4000 psi (27.6 MPa) and
is reduced linearly at a rate of 0.05 for each 1000 psi (6.9 MPa) of stress greater than 4000 psi
(Fig. 3.9), with a minimum value of 0.65.

The preceding discussion applies in general to any section, and it is not confined to a rectangu-
lar shape. In the rectangular section, the area of the compressive zone is equal to ba, and every unit
area is acted on by a uniform stress equal to 0.85f/, giving a total stress volume equal to 0.85f ab,
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Figure 3.10 Forces in a nonrectangular section.

which corresponds to the compressive force C. For any other shape, the force C is equal to the area
of the compressive zone multiplied by a constant stress equal to 0.85f].

For example, in the section shown in Fig. 3.10, the force C is equal to the shaded area of the
cross section multiplied by 0.85f!:

C=0.85f/(6x3+10x2)=323f1b

The position of the force C'is at a distance z from the top fibers, at the position of the resultant force
of all small-element forces of the section. As in the case when the stress is uniform and equals
0.85f/, the resultant force C is located at the center of gravity of the compressive zone, which has
a depth of a.

In this example, z is calculated by taking moments about the top fibers:

3
<6><3><5>+10><2(1+3) 107

¢ 6x3+10x2 33~ 2820
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3.9 SINGLY REINFORCED RECTANGULAR SECTION IN BENDING

We explained previously that a balanced condition is achieved when steel yields at the same time
as the concrete fails, and that failure usually happens suddenly. This implies that the yield strain
in the steel is reached (e, =/f,/E}) and that the concrete has reached its maximum strain of 0.003.
The percentage of reinforcement used to produce a balanced condition is called the balanced steel
ratio, p,,. This value is equal to the area of steel, A, divided by the effective cross section, bd:

_ Ag(balanced)

Pp bd

where

b = width of compression face of member
d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement

Two basic equations for the analysis and design of structural members are the two equations
of equilibrium that are valid for any load and any section:

1. The compression force should be equal to the tension force; otherwise, a section will have
linear displacement plus rotation:
cC=T (3.12)

2. The internal nominal bending moment, M,,, is equal to either the compressive force, C, mul-
tiplied by its arm or the tension force, 7, multiplied by the same arm:

M,=Cd—-2)=T(d-2)
(M, = ¢M,, after applying a reduction factor ¢) (3.13)

The use of these equations can be explained by considering the case of a rectangular section with
tension reinforcement (Fig. 3.8). The section may be balanced, underreinforced, or overreinforced,
depending on the percentage of steel reinforcement used.

3.9.1 Balanced Section

Let us consider the case of a balanced section, which implies that at maximum load the strain in
concrete equals 0.003 and that of steel equals the first yield stress at distance d, divided by the
modulus of elasticity of steel, f,/E,. This case is explained by the following steps.

Step 1. From the strain diagram of Fig. 3.11,
¢, 0.003
d—c, N/E;
From triangular relationships (where ¢, is ¢ for a balanced section) and by adding the numer-
ator to the denominator,

Cp 0.003

d, ~ 0.003+7,/E,
Substituting E, = 29 x 10° ksi,

_ 87 L
cp = (87 +.fy> d, (fyinksi) (3.14)

where fy is in ksi.
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0851,

2
C =0.85flab

——>=T=Af,

Figure 3.11 Rectangular balanced section.

Step 2. From the equilibrium equation,
C=T 0.85f!ab = Af, (3.15)
Afy
a=—:r
0.85f!b

Here, a is the depth of the compressive block, equal to ¢, where f, = 0.85 for f! < 4000 psi
(27.6 MPa) and decreases linearly by 0.05 per 1000 psi (6.9 MPa) for higher concrete strengths
(Fig. 3.9). Because the balanced steel reinforcement ratio is used,

_ Ag(balanced) Ay,

(3.16)

= 3.17
Pp bd bd ( )
and substituting the value of A, in Eq. 3.15,
0.85f.ab = f,p,bd
Therefore,
0.85f! 0.85f! Bren)
= a = C
Pb 7d f,d 16
Substituting the value of ¢, from Eq. 3.14, the general equation of the balanced steel ratio becomes
4
c (87 d,
pp = 0.850,— < > <—> (3.18)
5y \87+f, d

The value of d, is equal to d when only one single layer of steel is provided.

Step 3. The internal nominal moment, M,, is calculated by multiplying either C or T by the dis-
tance between them:
M,=Cd-2)=T(d-2) (3.13)

For a rectangular section, the distance z=a/2 as the line of application of the force C lies at the
center of gravity of the area ab, where

Ay
a =
0.85/'b

1 1
M, = (——):T( ——>
,=Cld >4 d 54
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For a balanced or an underreinforced section, T=A,f,. Then
M, =Af, (d- %a) (3.19)

To get the usable design moment @ M,,, the previously calculated M, must be reduced by the capac-
ity reduction factor, ¢,

oM =¢Afy(d—9> — A f, (d—As—f*"> (3.19a)
" s 2 . 1.7f!b
Equation 3.19a can be written in terms of the steel percentage p:
p= i A, = pbd
bd y
OM,, = ¢ f, pbd <d - ll)l;;i‘?b) = (j)pfybd2 (1 - %) (3.20)
Equation 3.20 can be written as
®M, = R, bd* (3.21)
where of
y
R, = ¢pf, <1 - Tf[) (3.22)

The ratio of the equivalent compressive stress block depth, a, to the effective depth of the section,
d, can be found from Eq. 3.15:

O.85fc’ab = pbdfy
ol

a
a_ 3.23
d~ 0.85f (023)

3.9.2 Upper Limit of Steel Percentage

The upper limit or the maximum steel percentage, p,,.., that can be used in a singly reinforced
concrete section in bending is based on the net tensile strain in the tension steel, the balanced steel
ratio, and the grade of steel used. The relationship between the steel percentage, p, in the section
and the net tensile strain, ¢,, is as follows:

<0.oo3 +/,/E,
g=|——"7—"

) —0.003 (3.24)
p/py

For f} = 60 ksi, and assuming fy/ES = 0.002,

£ = <O'005> —0.003 (3.25)
/Py
These expressions are obtained by referring to Fig. 3.12. For a balanced section,
ap _ Asbfy _ beyd

Cp = - 7 - !
pr 0.85fbp,  0.85f/p
Similarly, for any steel ratio, p,
rfd
€= ——— and _ =
0.85£:5 Ch Py
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0.003 0.003
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| dsd, -
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€ f}'/ES -
Tension-controlled Balanced
b

Figure 3.12 Strains in tension-controlled and balanced conditions. (d =d, one layer of
steel).

Divide both sides by d to get

c p Cp
c= (p_b> (3> (3.26)
From the triangles of the strain diagrams,
¢ _ _0.003
d 0.003 +¢,
g = 0(;(}(;3 —0.003 (3.27)
Similarly,
S _ 0.003 (3.28)

d  0.003+f,/E,

s

Substituting Eq. 3.28 into Eq. 3.26

c_ (L) ()= (2) (0003
d - <ph> (d ) - (pb> <0.oo3 +fy/ES> (From Eq. 3.26)

Substitute this value in Eq. 3.27 to get

0.003 + £, /E,
g = 0.003 _ 0.003 = [—J] —0.003 (From Eq. 3.27)
c/d /Py
For grade 60 steel, fy = 60ksi, E, = 29,000 ksi, and fy/ES = 0.00207, then
&= <0'00507> —0.003 (From Eq. 3.25)
P/ Py

To determine the upper limit or the maximum steel percentage, p, in a singly reinforced con-
crete section, refer to Fig. 3.6. It can be seen that concrete sections subjected to flexure or axial load
and bending moment may lie in compression-controlled, transition, or tension-controlled zones.
When g, < 0.002 (or c¢/d, > 0.6), compression controls, whereas when g, > 0.005 (or c/d, < 0.375),
tension controls. The transition zone occurs when 0.002 < g, < 0.005 or 0.6 > ¢/d, > 0.375.
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For members subjected to flexure, the relationship between the steel ratio, p, was given in

Eq. 3.24:
0.003 + 1, /E,
g, +0.003 = 0.003 +£,/Es (3.24)
p/py
o 0.003 +f,/E
. + s
LT Tl (3.29)
P 0.003 + ¢,
For f) = 60ksi and E; = 29,000 ksi, fy/ES may be assumed to be 0.00207.
~ _ _0.00507 (3.30)
pp  0.003 + ¢,
The limit for tension to control is g, > 0.005 according to ACI. For &, = 0.005, Eq. 3.30 becomes
p 0005 5
L= =-2-0625 3.30
», 0008 8 (3.302)

or p < 0.63375 p,, for tension-controlled sections if £, = 0.00507 =f/E,. Both values can be used
for practical analysis and design. The small increase in p will slightly increase the moment capacity
of the section. For example, if f! = 4 ksi and f, = 60ksi, p, = 0.0285 and p < 0.01806 for tension
to control (as in the case of flexural members). The ¢ factor in this case is 0.9. This value is less
than p_ .. = 0.75p, = 0.0214 allowed by the ACI Code for flexural members when ¢ = 0.9 can
be used.

Design of beams and other flexural members can be simplified using the limit of &, = 0.005.

p _ 0.003+F/E,

— = 3.31
P 0.008 3D
In this case, p = p,,.x = upper limit for tension-controlled sections.
0.003 + f,/E,
Prnax = <T08y> Py (3.31a)

Note that when p used < p,,.., tension controls and ¢ = 0.9. When p > p,....., the section will be in
the transition region with ¢ < 0.9.
And for f;, = 60ksi and f,/E; = 0.00207,

Pmax _ 63375 (3.32)
Pp
This steel ratio will provide adequate ductility before beam failure.
Similarly,
0.5474p, for f, =40ksi (3.32a)
Pmax = 1 0-5905p,, for f, = S50ksi (3.32b)
0.6983p,, for f, =75 ksi (3.32¢)

It was established that M, = R, bd* (Eq. 3.21), where R, = dpfy(1 — pf\,/l.7fcf) (Eq. 3.22).
Once f/ and f, are known, then p,, p, R,, and bd 2 can be calculated. For example, for f/ = 4 ksi,
fy = 60ksi, ¢ = 0.9, g, = 0.005, and one row of bars in the section,

pp, = 0.0285 p = 0.01806 R, =820 psi
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Table 3.2 Values of p,,,, and R, =M, /bd? for Flexural Tension-Controlled
Sections with One Row of Bars, ¢, = 0.005

f (ksi) £, (ksi) o Pmax = 063375 p, R, (psi) (Eq. 3.22)
3 60 0.0214 0.01356 615
4 60 0.0285 0.01806 820
5 60 0.0335 0.02123 975
6 60 0.0377 0.02389 1109

Note that for one row of bars in the section, it can be assumed that d =d, =h — 2.5 in., whereas
for two rows of bars, d=h —3.5in., and d,=h —2.5in. =d +1.0in. (Refer to Figs. 3.4 and 3.5 and
Section 4.3.3.)

Table 3.2 gives the values of p, p,,, and R, =M, /bd? for flexural tension-controlled sections
with one row of bars.

For reinforced concrete flexural members with p>p .., € will be less than 0.005.
Section 9.3.3.1 of the ACI Code specifies that g, should not be less than 0.004 in the transition
region to maintain adequate ductility and warning before failure.

For this limitation of €, = 0.004, the general equation (3.29) becomes

p _ 0003+f/E,

— = 333
Pp 0.007 (3.33)
Forfy = 60 ksi,
p _ 0.003 4+ 0.00207
—="——"""=0.724 3.34
o 0.007 (3.34)
and the limit in the transition region is
Pmax ¢ = 0.724 p,, (3.34a)
Note that the ¢ here refers to the transition region. In this case, limit of ¢, is
¢, = 0.65 + (¢, — 0.002) (?) ~0.817 < 0.9 (3.35)

For f, = 60ksi and f] = 4ksi, p, = 0.0285, p,.x, = 0.02063, R, = 1012 psi (from Eq. 3.22), and
R,=¢R, =0.817(1012) = 826 psi.

This steel ratio in Eq. 3.33 is the upper limit (p,,,, ;) for a singly reinforced concrete section
in the transition region with ¢ < 0.9.

It can be noticed that the aforementioned R, = 826 psi calculated for £, = 0.004 is very close to
R, =820 psi for p,, = 0.63375p, and ¢ = 0.9. Therefore, adding reinforcement beyond p,,,,, (for
g, =0.005, Table 3.2) reduces ¢ because of the reduced ductility resulting in little or nonsubstantial
gain in design strength. Adding compression reinforcement in the section is a better solution to
increase the design moment, keeping the section in the tension-controlled region with ¢ = 0.9.
(Refer to Section 3.14.)

Table 3.3 gives the values of p,(limit), p,, and R, for flexural members in the transition region
for f, = 60 ksi and £, = 0.004 and one row of bars. In this case ¢ =0.817 (Eq. 3.35) and p/p;, =0.724.
It is clear that for f, = 60 ksi, the design R, in both cases, when €, = 0.005 with ¢» = 0.9 and when
€max = 0.004 with ¢ = 0.816, are quite close.
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Table 3.3 Values of p, and R, for Sections in Transition
Region with ¢, = 0.004, fy = 60ksi, and One
Row of Bars (¢ = 0.817)

f! (ksi) Pp p; (limit) R, (psi)
3 0.0214 0.0155 617
4 0.0285 0.0206 822
5 0.0335 0.0243 980
6 0.0377 0.0273 1116

Example 3.1

For the section shown in Fig. 3.13, calculate

a. The balanced steel reinforcement

b. The maximum reinforcement area allowed by the ACI Code for a tension-controlled section and
in the transition region

c. The position of the neutral axis and the depth of the equivalent compressive stress block for the
tension-controlled section in b.

Given: f! = 4 ksi and f,, = 60 ksi.

s |
TW// R =
Iu //f - -EQM*;,NL

Figure 3.13 Example 3.1.

Solution

B L 87
a. Py = 0.85/31.}3 (87 +J§,>

Because f! = 4000 psi, §; = 0.85:

p, = (0.85) (64—0) <%) — 0.0285
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The area of steel reinforcement to provide a balanced condition is
Ay, = p,bd = 0.0285 X 16 x 25.5 = 11.63 in.”
b. For a tension-controlled section, p,,, = 0.63375, p, = 0.63375 x 0.0285 = 0.01806 or, from
Eq. 3.32,
A, ax = Pmaxbd = 0.01806 X 16 x 25.5 = 7.37 in.2 for¢p=0.9
For the transition region, p,.., = 0.724 p, = 0.0206. For the case of €, = 0.004, A, ,.x; =
0.0206(16 x 25.5) = 8.41in.2 for ¢ = 0.817

c. The depth of the equivalent compressive block using A; .. 1S
As maxf,‘v 7.37 X 60
Anax = / =
0.85f/b 0.85x4x16
The distance from the top fibers to the neutral axis is ¢ = a/g, . Because f/ = 4000 psi, #, =0.85;
thus,

=8.13in.

c= 813 _ 9.56in.
0.85

or c/d = 0.375 and ¢ = 0.375(25.5) = 9.56 in.

Example 3.2

Determine the design moment strength and the position of the neutral axis of the rectangular section
shown in Fig. 3.14 if the reinforcement used is three no. 9 bars. Given: f = 3 ksi and f,, = 60 ksi.

2.55
ksi
L L i fi#
%7/ —mmat
588" = C=085f.ab
/ /A_A% Y =180k
T 74'_TA —Fa’—“— 2.94”
21" 18.06"
3#9
41 o o o+ — _— T=Af,=180k
£,=0.0061
e—] 2" ———
Figure 3.14 Example 3.2.
Solution

1. The area of three no. 9 bars is 3.0in.2
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2. pmax = 0.01356 > p, tension-controlled section, ¢ = 0.9 or check ¢,:
Ay 3(60)

- - = 5.88in.
T 085/b  085x3x 12 n
c= é =6.92in.
d =d=21in.
= (M) 0.003
6.92

=0.0061 > 0.005, ¢ =09

or di =033<0375 (OK)
t
1
3 M, = 9., (4 - 3a)
AT
a= sfr 3060 _ 5.88in.
085/b  085x3x 12

oM, =0.9x3.0x60 (21 - %) = 2926 K -in. = 243.8K - ft

Discussion
In this example, the section is tension controlled, which implies that the steel will yield before the

concrete reaches its maximum strain. A simple check can be made from the strain diagram (Fig. 3.14).
From similar triangles,

€, ¢ 5 60

o _ d e =229 _ 40007

e, d-c " T E T 29000

e, = =992 000207 = 0.00102
cT21-692

which is much less than 0.003. Therefore, steel yields before concrete reaches its limiting strain of 0.003.

Example 3.3
Repeat Example 3.2 using three no. 10 bars as the tension steel (Fig. 3.15).

- o & 2.55 ksi _L;

1"“““—“[— —‘i T T T 17265
3#10 l
..__'._._.H_ - -— T=Af,=2286k

£,=0.04168
2]

C =0.85flab
=228.6 k

Figure 3.15 Example 3.3.
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Solution
1. Check ¢,

A f,

a= o = 38160 o i,

0.85f/b 0.85x3x12

a . . c

€=08 = 8.79 in. d,=d=21in. Z =0.419 > 0.375
d, — -

e, = (250003 = (M) 0.003 = 0.004168

c 8.79
This value is less than 0.005 but greater than 0.004 (transition region), ¢» < 0.9.

250

¢ = 0.65 + (¢, — 0.002) <T> = 0.831

2. Calculate pM,,:

oM, = 0.831(3.81)(60) [21 - %] =3278K -in. = 273K - ft
Discussion
For a tension-controlled section, £, = 0.005 and p = 0.63375, p, = 0.01356 (Table 3.2), ¢ = 0.9.

A, max = 0.01356(12 x 21) = 3.417 in.* < 3.81in.2

go 3AITX60 _ o
T 085x3x12 T

OM, = 0.9 3.417 X 60 (21 - 677) —2714K - ft

which is close to the above ¢M,,. This is a somewhat conservative approach.

3.10 LOWER LIMIT OR MINIMUM PERCENTAGE OF STEEL

If the factored moment applied on a beam is very small and the dimensions of the section are
specified (as is sometimes required architecturally) and are larger than needed to resist the fac-
tored moment, the calculation may show that very small or no steel reinforcement is required. In
this case, the maximum tensile stress due to bending moment may be equal to or less than the
modulus of rupture of concrete f, = 17.5 \/f_c’ . If no reinforcement is provided, sudden failure will
be expected when the first crack occurs, thus giving no warning. The ACI Code, Section 9.6.1,
specifies a minimum steel area, A,,

3V (200)
A= b,d>|==)b,d
,min ( £7 > ‘f;, w

or the minimum steel ratio, p.,;, = (3 \/]TLf /1) = 200/f,, where the units of f! and f, are in psi.
This p ratio represents the lower limit. The first term of the preceding equation was specified to
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accommodate a concrete strength higher than 5 ksi. The two minimum ratios are equal when f! =
4440 psi. This indicates that

200 for f! < 4500 psi

Pmin = 3 /
J: for f! > 4500 psi

For example, if f, = 60ksi, p;, = 0.00333 when f! < 4500 psi, whereas p,,;, = 0.00353 when
1 '=5000 psi and 0.00387 when f] = 6000 psi.

In the case of a rectangular section, use b=b,, in the preceding expressions. For statically
determinate T-sections with the flange in tension, as in the case of cantilever beams, the value of
Aj, min must be equal to or greater than following equation:

A in = (i]T) ) > 220

fy Iy
where
x = 2b, or b whichever is smaller
b,, = width of web
by = width of flange

For example if bf =48in., b, = 16in., d = 201in., £, = 4000 psi, andfy = 60,000 psi, then

34/4000
A= 2)(20) = 2.02 in.?
s,min ( 80000 )(3 )(20) 02in

200(32)(2
% = 2.13in.% (controls)
Aj i = 2.13in”

3.11 ADEQUACY OF SECTIONS

A given section is said to be adequate if the internal moment strength of the section is equal to
or greater than the externally applied factored moment, M,,, or ¢M, > M,,. The procedure can be
summarized as follows:
1. Calculate the external applied factored moment, M,,.
M, =12Mp+ 1.6M;

2. Calculate ¢M,, for the basic singly reinforced section:
a. Check that p;, <p < ppax-
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0.85f",
% - O.SSf'(‘ab
d — — — -
A.Y
- 4+ — - > T=4Ay
£,20.005
b

Figure 3.16 Tension-controlled rectangular section.

b. Calculate a = A, f,/(0.85f.b) and check &, for ¢.
c. Calculate pM, = QA f,(d — al2).
3. If M, >M,,, then the section is adequate; Fig. 3.16 shows a typical tension-controlled section.

Example 3.4

An 8-ft-span cantilever beam has a rectangular section and reinforcement as shown in Fig. 3.17. The
beam carries a dead load, including its own weight, of 1.5 K/ft and a live load of 0.9 K/ft. Using f/ = 4 ksi
and f, = 60ksi, check if the beam is safe to carry the above loads.

55" )
—F— 1 e-o 7
3#7 |
15.5" 80" |
g

Figure 3.17 Example 3.4.

Solution

1. Calculate the external factored moment:
W,=12D+1.6L=12(1.5)+ 1.6(0.9) = 3.24 K /ft

82

2
M, = Wu% =3245 = 10368 K - ft = 1244 K - in.
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2. Check ¢;:
Af,
g b 18X60 o
0.85f/b 085x4x8
c=-2 =467in. d=d=155in. <=03<0375
0.85 d,
Also,
d - _
e, = (275)0.003 = (M> 0.003 = 0.007 > 0.005, ¢ = 0.9
c 4.67
or check A
, 1.8
=2 1% 00145 <p_ =0.01806
P = pd T 8x155 Pmax

(from Table 3.2). Therefore, it is a tension-controlled section and ¢ =0.9.
3. Calculate pM,:

OM, = pA, f, (d— %a)

= 0.9(1.8)(60) (15.5 - %) = 1312K - in. > M,

Then the section is adequate.

Example 3.5

A simply supported beam has a span of 20 ft. If the cross section of the beam is as shown in Fig. 3.18,
f! = 3ksi, and f, = 60ksi, determine the allowable uniformly distributed service live load on the beam
assuming the dead load is that due to beam weight. Given: b = 121n., d = 17 in., total depth & = 201in.,
and reinforced with three no. 8 bars (A, = 2.37 in.2).

17"
7 %A

I 20'0" I

3#8
*—o—o—
30
T 12
Figure 3.18 Example 3.5.
Solution
1. Determine the design moment strength:
A, 3x0.79
=-—== — =0.0116
= %d” 12x17
Pmax = 0.01356 (Table 3.2)

P < Prnax
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Therefore, it is a tension-controlled section and ¢ = 0.9.
Also, p> p.i = % =0.00333.

2. dM, = PA_f, <d _ A >
" . 1.7f!b
=09x237x60 (17 - %) = 1878 K -in. = 156.5K - ft
3. The dead load acting on the beam is self-weight (assumed):
_12x20

wp = =22= x 150 = 250 1b/ft = 0.25 K/ft

where 150 is the weight of reinforced concrete in pcf.
4. The external factored moment is

M, = 12M, + 1.6M,
— 12 (% X20°) +1.6 (% x20°) =150+ 80w,

where w; is the uniform service live load on the beam in K/ft.
5. Internal design moment equals the external factored moment:
156.5=15.0+80w; and w, =1.77K/ft

The allowable uniform service live load on the beam is 1.77 K/ft.

Example 3.6 Minimum Steel Reinforcement

Check the design adequacy of the section shown in Fig. 3.19 to resist a factored moment M, = 30K - ft,
using f; = 3 ksi and f, = 40ksi.

1 81/

3#4
1o
25"

T 10—

Figure 3.19 Example 3.6.

Solution

1. Check p provided in the section:

A, 3x02
=

= = 0.00333
bd 10x18
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2. Check p;, required according to the ACI Code:

20

o = f_o = 0.005 > p = 0.00333
3

Therefore, use p=p,;, = 0.005.
Ay min = Pminbd = 0.005 x 10 x 18 = 0.90 in.”

Use three no. 5 bars (A, =0.91 in.?) because three no. 4 bars are less than the minimum specified
by the code.

3. Check moment strength: ¢pM, = PA, fy(d —al2).
e Ahy_091x40
0.85f/b  0.85x3x10

OM, = 0.9 %091 ><4o(18— %) = 566K -in. = 472K - ft

= 1.431in.

4. An alternative solution; for three no. 4 bars, A, = 0.6 in.2 is

A f,
go b 06x40 oo,

0.85f/b 0.85x3x10

om, =22 ><0.6><40<18— %) —3155K - ft
12 2

A. required for 30K - ft = —2— x 0.6 = 0.57 in.2

s o4 T 3155 T
The minimum A, required according to the ACI Code, Section 9.6.1, is at least one-third greater

than 0.57 in.”:
Minimum A, required = 1.33 X 0.57 = 0.76 in.”

which exceeds the 0.6in.> provided by the no. 4 bars. Use three no. 5 bars, because A, = 0.91in.” is
greater than the 0.76 in.? required.

3.12 BUNDLED BARS

When the design of a section requires the use of a large amount of steel—for example, when p, .,
is used—it may be difficult to fit all bars within the cross section. The ACI Code, Section 25.6.1.1,
allows the use of parallel bars placed in a bundled form of two, three, or four bars, as shown in
Fig. 3.20. Up to four bars (no. 11 or smaller) can be bundled when they are enclosed by stirrups.
The same bundled bars can be used in columns, provided that they are enclosed by ties. All
bundled bars may be treated as a single bar for checking the spacing and concrete cover require-
ments. The single bar diameter shall be derived from the equivalent total area of the bundled bars.

2 r %
£ - 3

Figure 3.20 Bundled bar arrangement.
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Summary: Singly Reinforced Rectangular Section

The procedure for determining the design moment of a singly reinforced rectangular section accord-
ing to the ACI Code limitations can be summarized as follows:

1. Calculate the steel ratio in the section, p =A/bd.

2. Calculate the balanced and maximum steel ratios, Eqs. 3.18 and Eqgs. 3.31 or Table 3.2, for
tension-controlled section. Also, calculate p;, = 200/f, when f! < 4500 psi (f; and f, are in

psi units) and p;, = 34//¢/f, when f/ > 4500 psi.

3. If poin <P < Prax» then the section meets the ACI Code limitations for tension-controlled
section. If p < p,.;,, the section is not acceptable (unless a steel ratio p > p,;, is used). If p <
Pmaxs @ = 0.9 (¢, < 0.005); otherwise use Fig. 3.6.

4. Calculate a = ASfy/O.85fC’b, ¢, &, and ¢.

5. Calculate ¢ M, = A, f, (d —al2).

Flowcharts representing this section and other sections are given at www.wiley.com/college/
hassoun.

3.13 SECTIONS IN THE TRANSITION REGION (¢ < 0.9)

In the case when the NTS, g,, in the extreme tension steel lies between the compression-controlled
strain limit (0.002 for f, = 60ksi) and the tension-controlled strain limit of 0.005, the strength
reduction factor, ¢, will be less than 0.9. Consequently, the design moment strength of the section
¢M, will be smaller than ¢pM, with ¢ = 0.9 (refer to Fig. 3.6). In the transition region, ¢, should
not be less than 0.004 for flexural members (ACI Code, Section 21.2). (See Example 3.8.)

Example 3.7

Determine the design moment strength of a rectangular concrete section reinforced with four no. 9 bars
in one row (Fig. 3.21).

0.003

16.5"

4#9
25" &

12"

Figure 3.21 Example 3.7 (d=d,).

Given: b = 12in.,d = 16.5in., h = 191in., f/ = 4 ksi, andfy = 60 ksi.
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Solution

1. By the ACI Code provisions, for f! = 4ksi, f, = 60ksi, and tension-controlled conditions
(pp = 0.0285 and p,,,, = 0.01806), check p=A/bd = 4/(12 X 16.5) = 0.02020> p,.,.. This
indicates that the section is in the transition region and ¢ < 0.9.

2. Calculate a, ¢, and ¢,:

e Aty 4x60
0.85f/b  0.85x4x 12

= 5.882in.

a . . C
C=085 = 6.92in. d,=d=16.5in. Z =0.42 > 0.375

d - _
= ( - c> 0.003 = <%) 0.003 = 0.004153 > 0.004

¢ = 0.65 + (¢, — 0.002) <?) =0.829

3. Calculate:
oM, = 4., (4~ a)

16,5 — 5.882/2
- 0.829(4)(60)7/ = 2049K - ft

Discussion

A slightly conservative approach can be used assuming tension-controlled section, p=p, .. = 0.01806
and ¢ = 0.9. A .. = 0.01806(12 x 16.5) = 3.576 in.2, @ = 5.2591n., and ¢pM, = 223.2 K-ft (almost
equal to the above ¢pM,).

Example 3.8 Two Rows of Bars

Determine the design moment strength of a rectangular concrete section reinforced with six no. 9 bars
in two rows (Fig. 3.22).

0.003
C
d=235" 4
649
e e e
3.5;‘\_ e o o 55 =
L

dp=27-25=245"

Figure 3.22 Example 3.8.

Given: b= 12in.,d =23.5in., h =271in., d, = 24.5in., f/ = 4 ksi, andfy = 60ksi.



116 Chapter 3 Flexural Analysis of Reinforced Concrete Beams

Solution

1. For tension-controlled condition, €, = 0.005, p,,... = 0.01806 (Table 3.2), and p, = 0.0285. Check
A 6

bd ~ 12x235
Section is in the transition region.

p= =0.02128 > p,..

2. Calculate a, c, and €,:

AA‘fy _ 6 x 60

a= = = 8.824 in.
0.85fb  0.85x4x 12

c=-2=1038in. d =h-25=27-25=245
0.85
C

I= 0.424 > 0.375

t

! 10.38

250
3

d —_ —
. - < : C) 0.003 = (M) 0.003 = 0.00408 > 0.004
C

¢ = 0.65 + (¢, — 0.002) ( ) —0.823
3. Calculate:

oM, = 9A,f, (d - %a)

23.5-8.824/2
= 0.823(6)(60)T/ — 471K - fi
Discussion
For a tension-controlled section limitation, p,,. = 0.01806 and R, = 820 psi,

(23.5)°
12

This is a conservative value: It is advisable to choose adequate reinforcement to produce
tension-controlled condition with ¢ = 0.9.

=4528K - ft

$M, = R bd> = 0.82(12)

3.14 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

In concrete sections proportioned to resist the bending moments resulting from external loading
on a structural member, the internal moment is equal to or greater than the external moment, but a
concrete section of a given width and effective depth has a minimum capacity when p,,,, is used.
If the external factored moment is greater than the design moment strength, more compressive and
tensile reinforcement must be added.

Compression reinforcement is used when a section is limited to specific dimensions due
to architectural reasons, such as a need for limited headroom in multistory buildings. Another
advantage of compression reinforcement is that long-time deflection is reduced, as is explained
in Chapter 6. A third use of bars in the compression zone is to hold stirrups, which are used to
resist shear forces.

Two cases of doubly reinforced concrete sections will be considered, depending on whether
compression steel yields or does not yield.
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3.14.1 When Compression Steel Yields

Internal moment can be divided into two moments, as shown in Fig. 3.23. Let M,,; be the moment
produced by the concrete compressive force and an equivalent tension force in steel, A;;, acting as a
basic section. Then M, is the additional moment produced by the compressive force in compression
steel A/ and the tension force in the additional tensile steel, A,,, acting as a steel section.

The moment M, is that of a singly reinforced concrete basic section,

T,=C, (3.36)
A f,=C.=085flab (3.37)
A, f.
o (3.38)
0.85fb
a
Mu, - ¢As1fy (d - E) (339)

The restriction for M,,; is that p = A;,/bd shall be equal to or less than p,,,, for singly reinforced
tension-controlled sections, as given in Eq. 3.31a.

o N o
o —— o1 T T ===—t<1-C, a/2
T A a —
s C l CC
d _l,_________l/\___
As
4o o oo ————
T=Af,
le—— D ——»

/ T a/2 d o — (——
« B= A C= A,
n B
= ] + %
o) |
| k)
E N
As1 J l As2
+——o———1 —— > — —— — ' —
T1 = As1fy T2 = Asty
M,y = ¢Auf,(d— a/2) My2 = ¢Axf (d — d')

Figure 3.23 Rectangular section with compression reinforcement.
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Consider the moment M,, and assume that the compression steel designated as A’ yields
M, = PA, f(d - d) (3.40a)
M, = ¢A§fy(d -d) (3.40b)

In this case A, = A}, producing equal and opposite forces, as shown in Fig. 3.23. The total
resisting moment, M, is then the sum of the two moments M,,; and M ,:

$M, =M, +M, = [Aslfy <d— g) +ALf(d - d) (3.41)

The total steel reinforcement used in tension is the sum of the two steel amounts A,; and A,,.
Therefore,

A, =A, +A, =A, +A] (3.42)
and
A, =A, - A
Then, substituting A, — A/, for A, in Egs. 3.38 and 3.41,
(A — ADS,
= (3.43)
0.85/7b
M, = ¢ [(As —AN, (d— %) +A;f,,(d—d')] (3.44)
and 0.003 + f,/E
— < — - s 3.45
(P=P) < Pmax = P < 0.008 > (3.45)

For f,, = 60ksi, p— p' <0.63375 p,,¢p = 0.9, and ¢, = 0.005. Equation 3.45 must be fulfilled in
doubly reinforced concrete sections, which indicates that the difference between total tension steel
and the compression steel should not exceed the maximum steel for singly reinforced concrete
tension-controlled sections. Failure due to yielding of the total tensile steel will then be expected,
and sudden failure of concrete is avoided.

If py = p— p' > prax- the section will be in the transition region with a limit of p— p’ < p..;
(Eq. 3.34a). In this case, ¢ < 0.9 for M,,; and ¢ = 0.9 for M,,. Equation 3.44 becomes

oM, = ¢ [(AS —A)f, <d - %a)] +0.9A!f,(d — d') (3.44a)

Note that (A, — A}) < prax (D).

In the compression zone, the force in the compression steel is C; = A{(f, — 0.85f;), taking
into account the area of concrete displaced by A’. In this case,

T=A,f,=C,+C,=085fab+Al(f, - 0.85f))
and
A fy = ALf, + 0.85fA5 = 0.85flab = C, = A, f, (for the basic section)
Dividing by bdf,,
! fc, Asl
p—p <1 —0-85J7y> =p; where p; = o < Prmax
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P 0.003 +1,/E,
p—r <1 - 0-857 < Prmax = P TOE: (3.46)
3 .

Although Eq. 3.46 is more accurate than Eq. 3.45, it is quite practical to use both equations to
check the condition for maximum steel ratio in rectangular sections when compression steel yields.

For example, if f/ = 3 ksi and f,, = 60ksi, Eq. 3.46 becomes p —0.9575 p' <0.016;iff! = 4 ksi
and f, = 60ksi, then p — 0.9433 p’ < 0.02138.

The maximum total tensile steel ratio, p, that can be used in a rectangular section when com-
pression steel yields is as follows:

Therefore,

Maxp = pa + 0’ (3.47)

where p,,,, 1s maximum tensile steel ratio for the basic singly reinforced tension-controlled concrete
section. This means that maximum total tensile steel area that can be used in a rectangular section
when compression steel yield is as follows:

Max A; = bd(py,y + 0) (3.47a)

In the preceding equations, it is assumed that compression steel yields. To investigate this
condition, refer to the strain diagram in Fig. 3.24. If compression steel yields, then

From the two triangles above the neutral axis, substitute £, = 29,000 ksi and let f} be in ksi.
Then

c _ 0.003 87
d 0.003-f/E  87—f,
87 /
c= <87——fy> d (3.48)
From Eq. 3.37,
A fy = 0.85f!ab
but

As, = As _A; and Pr=p—pP

As
—— 1O Wt e ——

O o R

Figure 3.24 Strain diagram in doubly reinforced section.
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Table 3.4 Values of K for Different f; and f,

f! (ksi) f, (ksi) K K (ford’ =2.5in.)
3 40 0.1003d'/d 0.251/d
3 60 0.1164d'/d 0.291/d
4 60 0.1552d'/d 0.388/d
5 60 0.1826d'/d 0.456/d

Therefore, Eq. 3.37 becomes (A, — A)f, = 0.85f/ab:
(p — p)bdf, = 0.85f ab

p—p =085 <%’> (%)

a=pic=p (8782f>d/

y

s ossp () (4) (87
i =omn (£) (£) (522) -x ot

The quantity p — p’ is the steel ratio, or (A, — A%)/bd = A, /bd = p, for the singly reinforced basic
section.

If p — p’ is greater than the value of the right-hand side in Eq. 3.49, then compression steel will
also yield. In Fig. 3.25 we can see that if A, is increased, 7} and, consequently, C; will be greater
and the neutral axis will shift downward, increasing the strain in the compression steel and ensuring
its yield condition. If the tension steel used (A, ) is less than the right-hand side of Eq. 3.49, then
T, and C, will consequently be smaller, and the strain in compression steel, £/, will be less than
or equal to €, because the neutral axis will shift upward, as shown in Fig. 3.25¢, and compression
steel will not yield.

Therefore, Eq. 3.49 can be written

Also,

Therefore,

o d 81
—p' 20850 x — X =K
p—p 20854 5 axsog
where f; is in ksi, and this is the condition for compression steel to yield.
For example, the values of K for different values of £/ and f, are as shown in Table 3.4.

(3.49a)

Example 3.9

A rectangular beam has a width of 12 in. and an effective depth of d = 22.5 in. to the centroid of tension
steel bars. Tension reinforcement consists of six no. 9 bars in two rows; compression reinforcement
consists of two no. 7 bars placed as shown in Fig. 3.26. Calculate the design moment strength of the
beam if f/ = 4 ksi and f, = 60 ksi.
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- oo o1

£ > &, —

. !
> Shift of NA

>
k

2

Figure 3.25 Yielding and nonyielding cases of compression reinforcement. Diagram
(d), a closeup of (a), shows how the neutral axis responds to an increase in A; ;.

!

ad=225"

1//
3

|
4

N.A

4+ 1
6#9
j e o o
® ® [ ]

e 10"

2#7

ﬂ "
2

Figure 3.26

& = 0.003

1//
2;

c=18.3"

5.8"

Example 3.9.

121
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Solution

1. Check if compression steel yields:

. A 6.0
A, =6.0in? == __ 2= =00222
+= 6.0 P=pd " Taxzs - 00
A 1.2
Al =12in? =L =2 —0.00444
¢ m P = d T 12x225

A —A =48in?  p—p =001778

For compression steel to yield,

fod 81
p—p >0.856=x%x — x
5,7 d T 81—,

Let 8, be 0.85 because f! = 4000 psi; therefore,

- 0559 () (535) (77 =5) 0017

p—p =0.01778 > 0.0175
Therefore, compression steel yields.

2. Check that p— p’ < p,..« (Eq.3.45): For f! = 4ksiand Sy, =060ksi, p, =0.0285 and p,,,,, =0.01806
(Table 3.2). Then p— p' =0.01778 < p,,..«» and ¢ = 0.9 (a tension-controlled condition).
3. @M, can be calculated by Eq. 3.44:

oM, = ¢ [(As —A)) g, (- %) +Af(d - d’)]

A -ADL 48 %60
T 085f/b  0.85x4x12

oM, = (0.9) [4 8 x 60 (22 5 %) +1.2%60(22.5 — 2.5)]

=6213K-in. =517.8K - ft

=K

=7.061n.

4. An alternative approach for checking if compression steel yields can be made as follows:

a 7 06
c= @ 0 35 = 8.3in.
, 58 1 60
2% 50.003 = 0.0021 =2 =2 _0.00207
&=33% &= E T 29.000

Because ¢! exceeds €, compression steel yields.
5. Check ¢,: ¢ =8.31n.,d, =26 -2.5=23.51n.

<23.5 -83
g =—"T75—

53 ) 0.003 = 0.0055 > 0.005

or
2 =0.353 <0375 (OK)

6. The maximum total tension steel for this section, max A_, is equal to
Max A, = bd(p,,, + p') = 12 x 22.5(0.01806 + 0.00444)

=6.08in’A, = 6.0in.”> (used in the section)
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3.14.2 When Compression Steel Does Not Yield
As was explained earlier, if

’ food 87

p—p <O.85ﬁ1><fy>< 7 X87—fy K

then compression steel does not yield. This indicates that if p — p’ < K, the tension steel will yield

before concrete can reach its maximum strain of 0.003, and the strain in compression steel, £, will

not reach ¢, at failure (Fig. 3.25). Yielding of compression steel will also depend on its position

relative to the extreme compressive fibers @' . A higher ratio of d’/c will decrease the strain in the
compressive steel, £/, as it places compression steel A, nearer to the neutral axis.

If compression steel does not yield, a general solution can be performed by analysis based on

statics. Also, a solution can be made as follows: Referring to 3.23 and 3.24,

L L —_
€/ =0.003 <C d ) f! = E,&/ = 29,000(0.003) <C d ) =87 <C d )
C C

(3.50)

c

Let C, = 0.85f!p,cb:

C,=Al(f —085f)=A! [87 <C ‘Cd/> - 0.85ﬁf]

Because T=A, f,=C,+ C,, then

A f, = (0.85f.p,cb) + A [87 (C _Cd' > - o.ssfg]
Rearranging terms yields
(0.85f/B,b)c? + [(8TAL) — (0.85f/A) — A, f,Jc — 8TAld' =0
This is similar to A,c¢? + A,c + A5 = 0, where
A, =0.85f/p,b
A, = AL(87 —0.85f)) — Asfy

1
e=5r [—A2 L Ja —4A1A3] @351)

Once c is determined, then calculate f], a, C., and C:

c—d
¢

Solve for c:

1l =87 [ ] a=pc C.=0.85flab C,=A.Lf -0.85f)

oM, = ¢ [cc <d - %a) +Cd~- d’)] (3.52)

When compression steel does not yield, f; < f,, and the maximum total tensile steel reinforce-
ment needed for a rectangular section is

/ 1!
Max A, = py masbd +A;JJ% = bd <pwmx + 2 ff‘ ) (3.53)
y y
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Using steel ratios and dividing by bd:

Maxp = XA A (3.54)
Xp = — .
axp bd Pwmax T P 7,
or
5
<p - plf_‘> < Pw,max (355)
y

where py, .. 1S the maximum steel ratio for the tension-controlled singly reinforced web section

of the T-beam (Eq. 3.31).

In this case,

Af—Alf
= Ady — Al ,“f“ (3.56)
0.85/b
! ! 1 ! ! !
¢Mn=¢[(ASfy—ASfS)<d—§a>+Asfs(d—d)] (3.57)

In summary, the procedure for analyzing sections with compression steel is as follows:

. Calculate p, p’, and p — p’. Also calculate p,,, and p,;,.
. Calculate

<=0 (7) (27) ()
y y

Use ksi units.

. If p—p' > K, then compression steel yields, and f{ = f,; if p — p’ <K, then compression steel

does not yield, and f] = fy-

. If compression steel yields, then

a. Check that p,, .« >p—p" > py min (to use ¢ = 0.9) or check £, > 0.005, where p,, i,
is the minimum steel ratio for the tension-controlled singly reinforced web section of the
T-beam.

b. Calculate .
_ (Av - As)fy

0.85f!b
c. Calculate

oM, = [(AS —ANS, <d - %a) +ALf(d - d’)]

d. The maximum A; that can be used in the section is Max A, =bd(p,,.x + p') > A, (used).

. If compression steel does not yield, then

a. Calculate the distance to the neutral axis ¢ by using analysis (see next Example 3.10) or
by using the quadratic equation 3.51.

b. Calculate )
fl =87 <C_d > (ksi)
C

c. Check that p — p'f{ /f, < py, nax OF max A that can be used in the section is greater than
or equal to the A; used.

plfl
Max A, = bd <pw’ max F f—s> > A, (used)

y
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d. Calculate

Af,—ALS!
:W or a=ﬂ1C

e. Calculate

oM, = ¢ [(Af, —ALf)) (- 3a) + ALfld = )

Example 3.10

Determine the design moment strength of the section shown in Fig. 3.27 using f/ = 5 ksi, f, = 60ksi,
Al =2.371in.2 (three no. 8 bars), and A, = 7.62in.? (six no. 10 bars).

0.85f! _L___

\ o7
2.8" 2 -—
— cc= Cs = ]224 K
333.2K
22.5”4 r______?';_. —— 20
6#10
o o o | o _ 9 >
3y o o o Ty = Auf,=3332K T,= A,f, =122.4K
T & = f,/E
tt—— 14" ————p
Figure 3.27 Example 3.10 analysis solution.
Solution
1. Calculate p and p’:
A 7.62 Af 2.37
="=_—_—""_=0.0242 =2 =_"""__ =0.00753
P = %d T 14x225 7 = hd T 14x225
p—p =0.01667

2. Apply Eq. 3.50, assuming g, = 0.8 for f/ = 5000 psi.

K = 0.85p, x% ‘Z 8787f —0.85x0.8 (65—0) (22—5> (878760) = 0.0203

(or from Table 3.4, K = 0.456/d = 0.0203):
p—p =0.01667 < 0.0203

Therefore, compression steel does not yield, and f] < 60 ksi.
For f! = 5ksi andfy = 60ksi, find p, = 0.0335 and p,,,, = 0.02123 (Table 3.2); then check
(p = p') < pmax- therefore ¢ = 0.9, and the section is at a tension-controlled condition.
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3. Calculate M, by analysis. Internal forces:
C.=0.85flab a=p,c=08c
C,=0.85%x5(0.8c)x 14 =47.6c¢
C, = force in compression steel
= Al f! — force in displaced concrete
= Al(f] - 0.85f))

From strain triangles,

o
e;=0.003<c d)
C

f! = E,el(since steel is in the elastic range)

0.003 (¢ —d') _87(c—d')
c B c

= 29,000 (ksi)

Therefore,

c—d
c

—10.07

C, =237 [87 — (0.85 % 5)| (kips) =

206.2 (¢ — 2.5)
C

T=T+T,=A, +Apf, =A,f, =7.62(60) = 457.2 kips
4. Equate internal forces to determine the position of the neutral axis (the distance c):

T=C=C,+C,

206.2(c — 2.
4572 = 47.6¢ + 20229 _ 147
c
> —548¢-10.83=0
c=70in. a=0.8c=5.6in.
Equation 3.51 can also be used to calculate ¢ and a.
5. Calculate f/, C,, and Ci:
87(c—2.5 87(7.0-2.5
g 8e=29) _ 8N ) _ 55.9ksi

c 7.0
which confirms that compression steel does not yield.

C, = 47.6¢ = 47.6(7.0) = 333.2 kips
C, = Alf - 10.07 = 2.37(55.90) — 10.07 = 122.40 kips

6. To calculate ¢pM,,, take moments about the tension steel A,:
oM, = ¢ [cc (d - %a) +C,(d - d’)] = 0.9[333.2(22.5 — 2.8) + 122.40(22.5 — 2.5)]
—8110.8K - in. = 675.9K - ft

7. Check that p — p'f] /f, < Py yar (EQ. 3.55):

0.0242 — 0.00754 (52—(')9> =0.0171 < p,, = 0.02123



3.15

Analysis of T- and |-Sections 127

The maximum total tension steel that can be used in this section is calculated by Eq. 3.50:

/£
Max A, = bd (pwmax + Pls >
B

0.00753 x 55.9
60
8. Let ¢, be checked as follows: c =7.0in., d, = 23.5in.

= 14(22.5) (0.02123 + ) =89in2>7.62in2  (OK)

c
—=0.3<0.375
d

t
or

d - -
= ( t C) 0.003 = (23-57 7 ) 0.003 = 0.0071 > 0.005
C

Tension-controlled section.

3.15 ANALYSIS OF T- AND I-SECTIONS

3.15.1 Description

It is normal to cast concrete slabs and beams together, producing a monolithic structure. Slabs have
smaller thicknesses than beams. Under bending stresses, those parts of the slab on either side of the
beam will be subjected to compressive stresses, depending on the position of these parts relative to
the top fibers and relative to their distances from the beam. The part of the slab acting with the beam
is called the flange, and it is indicated in Fig. 3.28a by area bt. The rest of the section confining the
area (h —1)b,, is called the stem, or web.

In an I-section there are two flanges, a compression flange, which is actually effective, and
a tension flange, which is ineffective because it lies below the neutral axis and is thus neglected
completely. Therefore, the analysis and design of an I-beam is similar to that of a T-beam.

3.15.2 Effective Width

In a T-section, if the flange is very wide, the compressive stresses are at a maximum value at points
adjacent to the beam and decrease approximately in a parabolic form to almost O at a distance x
from the face of the beam. Stresses also vary vertically from a maximum at the top fibers of the
flange to a minimum at the lower fibers of the flange. This variation depends on the position of the
neutral axis and the change from elastic to inelastic deformation of the flange along its vertical axis.

An equivalent stress area can be assumed to represent the stress distribution on the width b
of the flange, producing an equivalent flange width, b,, of uniform stress (Fig. 3.28c¢).

Analysis of equivalent flange widths for actual T-beams indicates that b, is a function of span
length of the beam. Other variables that affect the effective width b, are (Fig. 3.29):

» Spacing of beams

« Width of stem (web) of beam b,,

« Relative thickness of slab with respect to the total beam depth

« End conditions of the beam (simply supported or continuous)

« The way in which the load is applied (distributed load or point load)

» The ratio of the length of the beam between points of zero moment to the width of the web
and the distance between webs
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Figure 3.28 (a) T-section and (b) |-section, with (c) illustration of effective flange
width b,,.

The ACI Code, Section 6.3.2.1, prescribes the following limitations on the effective flange
width b,, considering that the span of the beam is equal to L:

1. b,=L/4
2. b,=16t+b,
3. b, =b, where b is the distance between centerlines of adjacent slabs

The smallest of the aforementioned three values must be used.

These values are conservative for some cases of loading and are adequate for other cases. Anb
similar effective width of flange can be adopted for I-beam sections. Investigations indicate that the
effective compression flange increases as load is increased toward the maximum value [7]. Under
working loads, stress in the flange is within the elastic range.
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Figure 3.29 Effective flange width of T-beams.

A T-shaped or I-shaped section may behave as a rectangular section or a T-section. The two
cases are investigated as follows.

3.15.3 T-Sections Behaving as Rectangular Sections

In this case, the depth of the equivalent stress block ‘a’ lies within the flange, with extreme position
at the level of the bottom fibers of the compression flange (a < 7). When the neutral axis lies within
the flange (Fig. 3.30a), the depth of the equivalent compressive distribution stress lies within the
flange, producing a compressed area equal to b,a. The concrete below the neutral axis is assumed to
be ineffective, and the section is considered singly reinforced, as explained earlier, with b replaced
by b,. Therefore,

Agf,
a=— (3.58)
0.85f'b,
and g
oM, = ¢a. 1, (d-5) (3.59)

If the depth a is increased such that a =1, then the factored moment capacity is that of a singly
reinforced concrete section:

OM, = A, f, (d - %) (3.60)
In this case Af 0.85%
sJy . t
f=—— A, = 0.85/chet (3.61)
0.85f!b, : f,

In this analysis, the limit of the steel area in the section should apply: A; <A; .., and g, > 0.005.

3.15.4 Analysis of a T-Section

In this case the depth of the equivalent compressive distribution stress lies below the flange; con-
sequently, the neutral axis also lies in the web. This is due to an amount of tension steel A; more
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Figure 3.30 Rectangular section behavior (@) when the neutral axis lies within the
flange and (b) when the stress distribution depth equals the slab thickness.
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Figure 3.31 T-section behavior.

than that calculated by Eq. 3.61. Part of the concrete in the web will now be effective in resisting
the external moment. In Fig. 3.31, the compressive force C is equal to the compression area of the
flange and web multiplied by the uniform stress of 0.85f:

C =0.85f/[b,t + b,(a—1)]

The position of C'is at the centroid of the T-shaped compressive area at a distance z from top fibers.
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The analysis of a T-section is similar to that of a doubly reinforced concrete section, consid-

ering an area of concrete (b, — b,,)t as equivalent to the compression steel area A’. The analysis is
divided into two parts, as shown in Fig. 3.32:

1. A singly reinforced rectangular basic section, b,,d, and steel reinforcement A, . The compres-
sive force, C, is equal to 0.85 f!ab,,, the tensile force, T, is equal to A, f,, and the moment
arm is equal to d — a/2.

2. A section that consists of the concrete overhanging flange sides 2 X [(b, — b,,)t]/2 developing
the additional compressive force (when multiplied by 0.85f] ) and a moment arm equal to

d—1/2. If A is the area of tension steel that will develop a force equal to the compressive
strength of the overhanging flanges, then

Ay f, = 0857 (b, = bt
0.85¢/t(b, — b,,)

Ay = (3.62)
f 5
The total steel used in the T-section A; is equal to A, | + A, or
Asl = As - Asf (363)

The T-section is in equilibrium, so C; =T, C;=T,,and C=C, +C, =T, + T, =T. Con-
sidering equation C; =T for the basic section, then A, f, = 0.85 flab,, or (A; — Ay)f, = 0.85
flab,, ; therefore,

(Ay = Ay

3.64
0.85f'b,, (3-64)
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Note that b,, is used to calculate a. The factored moment capacity of the section is the sum
of the two moments M,, | and M,,:

d)Mn = Mul + Mu2

= o0 (4= ) = 0005 (4-2)

where
Ag=@A~-Ay) and  a= %22:3
M= At (d-3)
o =400 (4-5) rhat o 5)

Considering the web section b,,d, the net tensile strain (NTS), ,, can be calculated from a, ¢, and
d, as follows:

If c=alp, (from Eq. 3.64) and d,=h—-2.51in., then &, = 0.003 [(d, — c)/c]. For tension-
controlled section in the web, £, > 0.005.

The design moment strength of a T-section or I-section can be calculated from the preceding
equation 3.65. It is necessary to check the following:

1. The total tension steel ratio relative to the web effective area is equal to or greater than p,;,:

A
Pw = —d > Pmin

"~ b,d
3 !
pun = e, 200 (3.66)
5 5

2. Also, check that the NTS is equal to or greater than 0.005 for tension-controlled sections.

3. The maximum tension steel (Max A;) in a T-section must be equal to or greater than the steel
ratio used, A, for tension-controlled sections, with ¢ = 0.9.

Max A; = Ag(flange) + pax (D, d)(Web) (3.67)
Max A, = <%> [0.85£.1(b — b)) + prmax (b, d) (3.68)
y

In steel ratios, relative to the web only, divide Eq. 3.67 by b,,d:
A Ay
Puw = bod < Pmax bod (3.69)
or
Puw = Py < Pmax(Web) (3.70)

where p,,, 1S the maximum steel ratio for the basic singly reinforced web section (Table 3.2), and
pf == ASf/ b wd .



3.15 Analysis of T- and |-Sections 133

A general equation for calculating (Max A;) in a T-section when a <t can be developed as
follows:
C = 0.85f/[(b, — b,)t + ab,,)

For €. = 0.003 and &, = 0.005, then c/d = 0.003/(0.003 +0.005) = 0.375 (for the web). Hence,
a=p,c=0.375p,d
The maximum steel area is equal to C/fy and, therefore,

0.85f!
Max A, = - [(b, = b,)t+0.3756,b,d] (3.71)
y
where Max A, is the maximum tension steel area that can be used in a T-section when a > . For
example, for f/ = 3 ksi and f,, = 60 ksi, the preceding equation is reduced to:

Max A, = 0.0425[(b, — b,,)t + 0.319b,d] (3.72)
For f/ = 4 ksi and f, = 60ksi,
Max A, = 0.0567[(b, — b,,)t + 0.319b,,d] (3.73)

In summary, the procedure to analyze a T-section, which can also be utilized for inverted
L-section, described later in Section 3-17, is as follows:

1. Determine the effective width of the flange b, (refer to Section 3.15.3). Calculate p,,,, and
Pmin (Or take from tables).

2. Check if a <t as follows: a = A f,/(0.85f!b,).
3. If a<t,itis arectangular section analysis.

a. Calculate M, = q’)Axfy(d— al2). Note that c=a/f, and €, = 0.003(d, — ¢)/c > 0.005 for
tension-controlled section and ¢ = 0.9.

b. Check that p,,=A/b,,d> p,in-

¢. Max A, can be calculated from Eq. 3.68 and should be > A, used. When a < ¢, normally
this condition is met.

4. If a’ > 1, it is a T-section analysis:
a. Calculate A = 0.85f/1(b, — b,,)/ fy-
b. Check that (p,, — py) < pay (relative to the web area), where

As d Asf
= — an =
=7 d = pod

Or check that Max A; >A_ used in the section, for ¢ = 0.9, (Eq. 3.71).
c. Check that p,,=A /b, d> p,;,. This condition is normally met when a > 1.
d. Calculate a = (A; — Ay)f,/0.85f/b,, (for the web section).
e. Calculate ¢ M, from Eq. 3.65.

Example 3.11

A series of reinforced concrete beams spaced at 7 ft, 10 in. on centers have a simply supported span of
15 ft. The beams support a reinforced concrete floor slab 4 in. thick. The dimensions and reinforcement
of the beams are shown in Fig. 3.33. Using f/ =3ksi and f, = 60Kksi, determine the design moment
strength of a typical interior beam.
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Figure 3.33 Example 3.11: (a) Plan of slab-beam roof and (b) section A-A.
Solution

1. Determine the effective flange width b,. The effective flange width is the smallest of
L 15 .
be: Z = ZX12=4511'1.
b,=16t+b, =(16x4)+ 10 =74in.
b, = Centertocenterofadjacentslabs = (7 X 12) + 10 = 94 in.

Therefore, b, = 45 in. controls.
2. Check the depth of the stress block. If the section behaves as a rectangular one, then the stress
block lies within the flange (Fig. 3.30). In this case, the width of beam used is equal to 45 in.
Lo b 237x60
0.85f!b, 0.85x3x45
Therefore, it is a rectangular section.
3. Check that

=1.24in. <t

AS

7= iy = 0.00333

pw =
2.37

= = 0.0148 > 0.00333
10x 16
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4. Check €,: a =1.24in., ¢ = 1.24/0.85 = 1.461in.,d,=d = 16in.

_0.003(d, —¢) _ 0.003(16 — 1.46)

gl
c 1.46

=0.0299 > 0.005,¢ = 0.9
5. Calculate:
¢M,, = PpAf,(d —a/2) = 0.92.37)(60)(16 — 1.24/2)
=1968 K -in. = 164 K - ft.

6. You may check that A  used is less than or equal to Max A, (Eq. 3.72), which is not needed when
a<t

Max A, = 0.0425[(45 — 10) + 0.31 x 10 x 16] = 8.11in.%; A, =2.37in.? < Max A

Example 3.12
Calculate the design moment strength of the T-section shown in Fig. 3.34 using f/ = 3.5ksi and

f, = 60ksi.
4.3"
| " o
{ N 36 ul i 0.85¢/ $
v %% 5.06" C=0.85f,
f [ N B6x8+10x1.3)
1 - NA T =360 K
1.3"
6#9
L N J
e Tees T L > T-Af, =360K
? ‘«] 0"
Figure 3.34 Example 3.12.
Solution

1. Given b=h, =36in., b, = 10in.,d = 17in., and A, = 6.0in.%, check if a <1:
Lo Ao 6x60
085fb  0.85%3.5x36

Since a > t, it is a T-section analysis.
2. Find:

=3.361in.

_0.85f/(b—b,) 0.85x3.5%x3(36 —10)
sf — fy - 60
=6-23.87=2.13in.2

3. Check &, a (web)=A,,f,/(0.85f!b,) = 2.13 X 60/(0.85 x 3.5 x 10) = 4.3in. ¢ = 4.3/0.85 =
5.06in., d, = 20.5-2.5 = 18in.., and c/d, = 0.281 < 0.375. Or ¢, = 0.003(d, — c)/c = 0.0077 >
0.005, then ¢ = 0.9

=3.87in% (A, — A,) = A, (web)
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=0.00333:
A =0.00333 x 10 x 17 = 0.57 in.?

§,min

5. Calculate ¢ M, using Eq. 3.65:

o, = [ (.= 405, (4 3a) + 45, (- 51)]

4. Check that A > A

s, min> Prnin

=09[2.13x60 (17~ %) +387x60(17- %)]

=4947K-in. = 4123 K- ft

Another approach to check whether a < #is to calculate the tension force, T=A_ f,, and compare
it to the compressive force in the total flange (Fig. 3.34): '

T =A,f, = 60x 60 =360 K
C = 0.85//th, = 0.85x3.5x3x 36 = 321.3K

Since T exceeds C, then a <t, and the section acts as a T-section.
An additional area of concrete should be used to provide the difference of (360 —-321.3) =
38.7 K. This area has a width of 10in. and a depth of y. Therefore,

b,y(0.85f7) =38.7K or 10(y)(0.85 x 3.5) =38.7K

where y = 1.3in.,and a=y+1¢=1.3+3 =4.31in., as calculated earlier.

3.16 DIMENSIONS OF ISOLATED T-SHAPED SECTIONS

In some cases, isolated beams with the shape of a T-section are used in which additional compres-
sion area is provided to increase the compression force capacity of sections. These sections are
commonly used as prefabricated units.

The ACI Code, Section 6.3.2.2, specifies the size of isolated T-shaped sections as follows:

1. Flange thickness, ¢, shall be equal to or greater than one-half of the width of the web, b,,.

2. Total flange width b shall be equal to or less than four times the width of the web, b,
(Fig. 3.35).

b<4b,

t = b,/2 A,
po— v_.‘.‘_Fv;

—— by |

Figure 3.35 Isolated T-shaped sections.
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3.17 INVERTED L-SHAPED SECTIONS

In slab—beam girder floors, the end beam is called a spandrel beam. This type of floor has part of
the slab on one side of the beam and is cast monolithically with the beam. The section is unsymmet-
rical under vertical loading (Fig. 3.36a). The loads on slab S, cause torsional moment uniformly
distributed on the spandrel beam B,. Design for torsion is explained later. The overhanging flange
width b — b, of a beam with the flange on one side only is limited by the ACI Code, Section 6.3.2.1,
to the smallest of the following:

1. b,=L/12.
2. b,=61+b,.
3. b,=b.

If this is applied to the spandrel beam in Fig. 3.36b, then

1. b,=(20 x 12)/12 = 20 in. (controls).
b,=6x6+12 =48in.
3. b,=35%x12+12 =56in.

N

Therefore, the effective flange width is » = 32 in., and the effective dimensions of the spandrel
beam are as shown in Fig. 3.36d.

3.18 SECTIONS OF OTHER SHAPES

Sometimes a section different from the previously defined sections is needed for special require-
ments of structural members. For instance, sections such as those shown in Fig. 3.37 might be used
in the precast concrete industry. The analysis of such sections is similar to that of a rectangular
section, taking into consideration the area of the removed or added concrete. The next example
explains the analysis of such sections.

Example 3.13

The section shown in Fig. 3.38 represents a beam in a structure containing prefabricated elements. The
total width and total depth are limited to 14 and 21 in., respectively. Tension reinforcement used is four
no. 9 bars. Using f/ = 4ksi and f, = 60 ksi, determine the design moment strength of the section.

Solution

1. Determine the position of the neutral axis based on 7'= 4 X 60 = 240 K:
240 = 0.85f/[2(4 X 5) + 14(a — 4)]

where a is the depth of the equivalent compressive block needed to produce a total compressive
force of 240 K.
If 240 = (0.85 x 4) (40414 a —56), then a = 6.18 in. and ¢ =a/0.85 = 7.28 in.

2. Calculate M, by taking moments of the two parts of the compressive forces (each by its arm),
about the tension steel:

C} = compressive force on the two small areas, 4 x 5 in.
=0.85x4(2x4x5)=136 K

C| = compressive force on area, 14 X 2.185
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Figure 3.36 Slab-beam-girder floor, showing (a) plan, (b) section including spandrel
beam, (c) dimensions of the spandrel beam, and (d) its effective flange width.
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Figure 3.37 Sections of other shapes.
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Figure 3.38 Example 3.13: (a) balanced and (b) underreinforced sections.

=0.85x4x14x2.185=104K
M, =Ci(d-2)+C/(d-5.10)

=136x16.5+104x13.4 =3637.6K -in. =303.1 K - ft

3. Calculate ¢ M, e, = 0.003(d, — c)/c, where d, = 18.5in.:

g, =0.003(18.5 — 7.28)/7.28 = 0.004624 < 0.005 but > 0.004
Since 0.004 < g, < 0.005 the section is in the transition region and ¢ < 0.9:
¢ =0.48 + 83¢, = 0.864
oM, = 0.864(303.1) = 261.9K - ft

3.19 ANALYSIS OF SECTIONS USING TABLES

Reinforced concrete sections can be analyzed and designed using tables shown in Appendix A (for
U.S. customary units) and Appendix B (for SI units). The tables give the value of R, as related to
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the steel ratio, p, in addition to the maximum and minimum values for p and R,,. When the section
dimensions are known, R, is calculated; then p and A, are determined from tables. The values in
the tables are calculated based on tension-controlled sections with ¢p = 0.9. If ¢ is less than 0.9
(transition region), the values of R, should be multiplied by the ratio ¢/0.9.

M ol
M =Rbd>? R =—%=g¢pf [1-—
oM, =R, =7 ¢p}3< 1.7fg)

A
A, = pbd d ==
=P an p=1

For any given value of p, R, can be determined from tables. Then ¢ M, can be calculated. The
values of p and R, range between a minimum value of R, (min) when p minimum is used to a
maximum value as limited by the ACI Code, when p is equal to p (max), for tension controlled
sections with ¢p = 0.9.

The use of tables will reduce the manual calculation time. The next example explains the use
of tables.

Example 3.14

Calculate the design moment strength of the section shown in Example 3.2, Fig. 3.14, using tables. Use
b=12in.,d=21in., f! = 3ksi,f, = 60ksi, and three no. 9 bars.

Solution
1. Using three no. 9 bars, A, = 3.0 in.2, p=A/bd = 3.0/(12 x 21) = 0.0119. From Table 3.2,

Pmax = 0.01356 > p used. Therefore, ¢ = 0.9, and it is a tension-controlled section.
From Table A1, for p =0.0119, 1150 = 3 ksi and f, = 60 ksi, get R, = 553 psi (by interpolation).

2. Calculate ¢ M, =R, bd? = 0.553 (12)(21)? = 2926 K-in. = 243 .8 K-ft.

3.20 ADDITIONAL EXAMPLES

The following examples are introduced to enhance the understanding of the analysis and design
applications.

Example 3.15

Calculate the design moment strength of the precast concrete section shown in Fig. 3.39 using f/ = 4 ksi
and f, = 60ksi.

|<—f 14" —>‘

* A
6.3"
4
19”
5#9 \

}‘ 20" >| T

Figure 3.39 Example 3.15.



3.20 Additional Examples 141

Solution

1. The section behaves as a rectangular section with b = 141in. and d = 21.5 in. Note that the width
b is that of the section on the compression side.

2. Check that p=A/bd = 5/(14 x 21.5) = 0.01661, which is less than the maximum steel ratio of
0.018 for tension-controlled sections. Therefore, ¢ = 0.9. Also p> p_.. = 0.00333. Therefore,
p is within the limits of a tension-controlled section.

3. Calculate a : a = A, f,/(0.85f/b) = 5x 60/(0.85 x 4 x 14) = 6.3 in.

OM, = GA, f, (d—%) =0.9><5><60<21 5-%) = 4954.5K -in = 412.9K - ft

Example 3.16

A reinforced concrete beam was tested to failure and had a rectangular section, b = 14 in. and d = 18.5 in.
At failure moment, the strain in the tension steel was recorded and was equal to 0.004106. The strain in
the concrete at failure may be assumed to be 0.003. If ! = 3ksi and S, = 60ksi, it is required to:

1. Check if the tension steel has yielded.

2. Calculate the steel area provided in the section to develop the above strains. Then calculate the
applied moment.

3. Calculate the design moment strength based on the ACI Code provisions. (Refer to Fig. 3.40.)

Solution

1. Check the strain in the tension steel relative to the yield strain. The yield strain e, = f,/E
60/29,000 = 0.00207. The measured strain in the tension steel is equal to 0. 004106 Wthh is
much greater than 0.00207, indicating that the steel bars have yielded and in the elastoplastic
range. The concrete strain was 0.003, indicating that the concrete has failed and started to crush.
Therefore, the tension steel has yielded.

2. Calculate the depth of the neutral axis ¢ from the strain diagram (Fig. 3.40). From the triangles of
the strain diagram,

c 0.003
d  0.003 + 0.004106

a=f,c=0.85x781 =6.641n.

3

- 18. (—
and c 8.5 7106

) —781in.

The compression force in the concrete, C, = 0.85,
flab=0.85X3%x6.64 x 14 =237K
The tension steel A; = C /f, = 237/60 = 3.95 in.2 (section has five no. 8 bars):

Mn=AA_fy(d—%> =3.95x60(185—%) = 3597.6K - in = 299.8 K - ft

3. Check g, = 0.003(d, — c)/c.
c="78lin. d=h—-25in.=22-25=19.5in.
Therefore, £, =0.003(19.5 =7.81)/7.81 = 0.0045, which is less than 0.005 for tension-controlled sections
but greater than 0.004. Section is in the transition region, and ¢ < 0.9:
¢ =048 +83¢, =0.853
The allowable design moment=¢ M, = 0.863 x 299.8 = 255.6 K - ft.
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Discussion

From Table 3.2, p, = 0.0214 and p,,,, = 0.01356. For comparison, A, (max) = 0.01356(14 x 18.5)
3.51in.2 for ¢ = 0.9, and A, (balanced) = 5.54in.%. The ratio of A /A

Flexural Analysis of Reinforced Concrete Beams
Over-reinforced
Ay =5.54 in?
1 <«—— A, =3.95in?
Under- } o 4 max = 3.51 in?
reinforced smax
_ - 2
A nin = 0.86 in”
A Stress %
60 + ;
ksi o
Ly
b
I
[
I
i
I
¥ Steel
i ee
aij b > e,
AN Strain
0.00207 0.004106
1% yield
Example 3.16.

AJAg =0.713.If A, =A,,,, = 3.51in.% is used with ¢ = 0.9, then

and

60

a=351x%x m =59in.
59
OM, = 0.9 % 3.51 X 60 (18.5 -

= 3.95/3.51 = 1.125 and

s, max

) =20472K -in. = 2456 K - ft

which is equal to 96% of the moment calculated above. Figure 3.40 shows the behavior of the
tested beam.

3.21 EXAMPLES USING SI UNITS

The following equations are some of those mentioned in this chapter but converted to SI units. The
other equations, which are not listed here, can be used for both U.S. Customary and SI units. Note
that f] and f, are in MPa (N/mm?):

Py = 0.85p, <

f
7,

600
600 + ,

) (w7)
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For tension-controlled condition,
B (0.003 +f,/E)py,
Pmax = 0.008

4 '
o £) (£) () -
fy d 600 —fy
Example 3.17

Determine the design moment strength and the position of the neutral axis of a rectangular section that
has b = 300 mm, d = 500 mm, and is reinforced with five 20-mm-diameter bars. Given f; = 20 MPa and
Jf, =400 MPa.

Solution

1. Area of five 20-mm bars is 1570 mm?:
_A 1570
?=bd = 300 x 500

For f/ =20MPa and f, = 400MPa, p, = 0.0217 and p,,, = 0.01356. Note that
E; = 200,000MPa and f/E; = 0.002. Because p<p,,, it is a tension-controlled section
with ¢ = 0.9. Also p>p,....

2. Calculate the design moment strength:

$M, = pAf, (d— 1a)

—

- L4 0.0035

y

= 0.01047

Pmin

2
Af,
a= Y 1570x —299 123 mm
0.85/7b 0.85 x 20 X 300
123

dM, = 0.9 x 1570 x 400 (500 - T) x 107° = 247.8 KN - m

Note that the moment was multiplied by 107° to get the answer in KN-m. The distance to the
neutral axis from the compression fibers (¢) =a/f;, where f, = 0.85 for f/ = 30 MPa. Therefore,
¢ =123/0.85 = 145 mm.

Example 3.18

A 2.4-m-span cantilever beam has a rectangular section with » = 300 mm, d = 490 mm, and is reinforced
with three bars, 25 mm in diameter. The beam carries a uniform dead load (including its own weight) of
25.5kN/m and a uniform live load of 32 kN/m. Check the adequacy of the section if £/ = 30 MPa and
f, =400 MPa.

Solution

1. U=12D+1.6L=1.2x25.5+1.6 x 32 =81.8 KN/m. External factored moment=M, = UL%2 =
81.8(2.4%)/2 = 235.6 KN-m.

2. Calculate the design moment strength:

A
A = 1470mm?  p= = 1470

bd = 300xa90 = 01
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!
¢ 600
P 085ﬂ1<fv>(600+fy> 0.0325

0.005 5 14
= (2992 ) — (2)(0.0325) = 0.0203 p,. = —= =0.0035
Pmax (o.oos)”b <8 )( ) Pmin = 300

Since p<p . but >p . . it is a tension-controlled section and ¢ = 0.9. Let a=A_f,/
(0.85f, b) = 1470 x 400/(0.85 x 30 X 300) = 77 mm, ¢ = 90 mm. Also ¢M, = A, f,(d — a/2) =
0.9 x 1470 x 400(490-77/2) x 107% = 238 9KN-m. Also ¢, = 0.003(d, —c)/c = 0.003
(490 —90)/90 = 0.01333 > 0.005, ¢ = 0.9 as assumed.

3. The internal design moment strength is greater than the external factored moment. Therefore, the
section is adequate.

Example 3.19

Calculate the design moment strength of a rectangular section with the following details: » = 250 mm,
d =440 mm, d' = 60 mm, tension steel is six bars 25 mm in diameter (in two rows), compression steel
is three bars 20 mm in diameter, f/ = 20MPa, and f} = 350 MPa.

Solution

1. Check if compression steel yields:

A, =490 x 6 =2940mm?> A/ =314x3=942mm*> A, —A’ = 1998 mm’

2940 942
= —— =0.0267 "= ——— =0.00856
P~ 250 x 440 P = 250 x 440
p—p =0.01814
For compression steel to yield:
20 60 \ /600
7 2085x085x (= ) (135 ) ((go0 —350) = 001351
por = 350/ \ 440/ \600
p—p =0.01814 > 0.01351.
Therefore, compression steel yields.
2. Calculate M,,:
A —-A/
a= = > = 1998 = 164 mm
0.85f/b  0.85x20x 250

M, = [1998 X 350 <44o - %) +942 X 350(440 — 60)] x 1070 = 417.3KN - m

3. Check ¢ based on g, > 0.005.
0.003(d, —
5[=+c) a =164 mm c:%:NSmm

d,=h—-65mm=d+25mm for two rows of tension bars
d, = 440 4+ 25 = 465 mm

Let g, = 0.003(465 —193)/193 = 0.04228, which is less than 0.005, but greater than the 0.004
limit. Also ¢ = 0.48 +83 X ¢,, = 0.831, and ¢pM, = 0.831 (417.3) = 346.8 KN-m.
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Flowcharts for the analysis of sections are given at www.wiley.com/college/hassoun.

Sections 3.1-3.8

1.

S.

The type of failure in a reinforced concrete flexural member is based on the amount of tension
steel used, A;.

Load factors for dead and live loads are U = 1.2 D +1.6L. Other values are given in the text.

The reduction strength factor for beams ¢ = 0.9 for tension-controlled sections with
g,2>0.005.

An equivalent rectangular stress block can be assumed to calculate the design moment
strength of the beam section, ¢pM,,.

Design provisions are based on four conditions, Section 3.5.

Sections 3.9-3.13: Analysis of a Singly Reinforced Rectangular Section

Given: f/, f;, b, d, and A;. Required: the design moment strength, ¢M,,.

To determine the design moment strength of a singly reinforced concrete rectangular section:

. Calculate the compressive force, C = 0.85f/ab and the tensile force, T=Asfy. Calculate a =

A f,/(0.85f!b).

. Calculate ¢pM, =pC(d —al2)=¢dT(d—al2)=pA,f,(d—al2). Check ¢, = 0.003(d, —c)/

¢ > 0.005 for ¢ = 0.9 (tension-controlled section). (See Section 3.6.)

. Calculate the balanced, maximum, and minimum steel ratios:

! 0.003 E
p, = 0.858, (é) (L) - ( + 1,/ Epy
5/ \8T+f, 0.008
02

Pmin = — for fI <4.5ksi

fy

where f and f, are in ksi. (See Section 3.9.2.) The steel ratio in the section is p = A /bd. Check
that Pmin <p< Pmax-

. Another form of the design moment strength is

M, = pf,(bd®) <1 _% ) = R, bd*

171!
oy
Rn=pfV [1— <sz>:| and Ru:d)Rn
. For f, = 60ksi and f! = 3 ksi (Table 3.2), p,,x = 0.01356, p,;, = 0.00333, R, = 686 psi, and
R, =615 psi.

For f, = 60ksi and f! = 4ksi, py, = 0.01806, p,;, = 0.00333, R, = 911psi, and
R, = 820 psi.

Section 3.14: Analysis of Rectangular Section with Compression Steel

Given: b, d, d', A, f!, and f,. Required: the design moment strength, ¢$M,,.
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Calculate p=A,/bd, p' =A,/bd, and (p — p’).

Calculate py,, pp.«. and p,,;, as given above (or see Section 3.10).
Calculate K = 0.854,(f!/f,)(d’ /d)[87/(87 = f,)]. (f! and f, are in ksi.)
When compression steel yields,

a. Check that p > pin-

b. Check that p— p’ > K for compression steel to yield. If not, then compression steel does
not yield.

If compression steel yields, then f] = f,.
Check that p<(ppax +2") 0or (p—p') < Prax-
a=(A; =AY, /(0.85£D).
CMWMm¢Mh=¢mfﬂﬁm«d—%a)+@ﬁﬁu—dq
If p—p' > prax DUt <pp.., (for the transition region), then ¢ < 0.9 for M, and ¢ = 0.9
for M, (Eq. 3.44a).
5. When compression steel does not yield,
a. Compression steel does not yield when p — p’ < K. The value of f] is not known.
b. Calculate ¢ = distance to the neutral axis from the compression fibers as follows:

Ac? +A)c+A;=0

Ealt ol A

w® - 0

where
A, = AL(87 — 0.85f,) — Asfy
Ay =-87Ald
Solve for c. An alternative solution to calculate c is as follows:
C+C' =T
87 (c—d')
C = 0.85f/(p,cb — Al) C'=A ——— ) -0.85f/A!
c
and
T=A, f)
Solve for c.
c. Calculate f{ = 87(c — d')/c < f,(in.ksi).
d. Check that p < [pya, + 0’ (f /f;)] or
!
Ay < proax(bd) + A} (ji) .
5y
e. Calculate a: .
Asfy - Asfs
= —— or a=pfc
0.85f!b

f. Calculate M,
oM, = ¢ [(Af, —ALr)) (a- 3a) +ALf@ =)
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Note that (A,f,—ALf)=A, =A,—Ay=A,—ALf/f,) and Anf,=Alfl. Also, a=
Ay £,/(0.85fb).

Sections 3.15-3.17: Analysis of T-Sections

Given: f!,f,,A,, and section dimensions. Required: design moment strength, ¢M,,. Two possible
cases may develop. (Determine the effective flange width, b,, first.)

Case 1

1. If a <t (the slab thickness), then it is a T-section shape but acts as a singly reinforced rectan-
gular section using b = b, (the flange effective width) to calculate ¢pM,,.

’ AS fy
a = <t
0.85f!b,
Or, check that A, (the area of concrete in compression) =A, f,/(0.85f)) < bt. If A, > bt,
then it is a T-section analysis.

2. Ifa’ <tor A, < bt, then @’ =a and pM, = PpA; f,(d — a/2).
Check that p,, (steel ratio in web) =A/b,,d > pin-
4. Check that A, <Max A, from Eq. 3.71. (Normally, this is OK for this case.)

0.85f!
Max A, = <f_> (b, — b, )t +0.375p,b,d]
g
5. Check that g, > 0.005 for ¢ = 0.9. (Normally this is OK for this case.)
6. The effective flange width b =b, is the smallest of
a. Span/4
b. Center to center of adjacent slabs

c. b, +16t, where ¢ = slab thickness

ol

Case 2

1. When a>tor A, > bt, it is a T-section analysis.
2. For the flange, C; = 0.85ft(b — b)) = Ayf,, calculate Ay = C/f,.
3. For the web,

A, = tensionsteelintheweb = A, — A

Ay =AY,
~0.85fb,
C,,(web) = 0.85f/ab,, = Af,

¢M, = M, (web) + M,(flange)] = ¢ [Cw (d - %a) +C (d - %t)] .
= [o.ssf;abw <d - %a) +0.85("t(b — b,,) (d - %z)] :

=0 [(4 = A}, (a=50) +Aas; (4 57)]
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5. Check that g, > 0.005 for tension-controlled section and ¢ = 0.9. (See Example 3.12.)
6. Check that A;, min <A < A[ ... (See case 1.)

Sections 3.18-3.21

1. Analysis of nonuniform sections is explained in Example 3.13.
2. Tables in Appendix A may be used for the analysis of rectangular sections.
3. Examples in SI units are introduced.

REFERENCES

. E. Hognestad, N. W. Hanson, and D. McHenry. “Concrete Distribution in Ultimate Strength Design.” ACI

Journal 52 (December 1955): 455-479.

. A. H. Mattock, L. B. Kriz, and E. Hognestad. “Rectangular Concrete Stress Distribution in Ultimate

Strength Design.” ACI Journal (February 1961): 875-929.

. J.R.Janney, E. Hognestad, and D. McHenry. “Ultimate Flexural Strength of Prestressed and Conventionally

Reinforced Concrete Beams.” ACI Journal (February 1956): 601-620.

. A. H. Mattock and L. B. Kriz. “Ultimate Strength of Nonrectangular Structural Concrete Members.” ACI

Journal 57 (January 1961): 737-766.

. American Concrete Institute (ACI). Building Code Requirements for Structural Concrete. ACI Code

318-14. ACI, Detroit, MI, 2014.

. UNESCO. Reinforced Concrete, An International Manual. Butterworth, London, 1971.
. M. N. Hassoun. “Ultimate-Load Design of Reinforced Concrete,” In View Point Publication, Cement and

Concrete Association, London, 1981.

. ASCE 7-10, Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engi-

neering, (ASCE), Reston, VA, 2010.

PROBLEMS

3.1 Singly reinforced rectangular sections. Determine the design moment strength of the sections given in

the following table, knowing that f/ = 4 ksi and f‘ = 60 ksi. (Answers are given in the right column.)

No. b (in) d(in.) A, (in.2) oM, (K-ft)

a 14 22.5  5.08 (4 no. 10) 441.2
b 18 28.5  7.62 (6 no. 10) 849.1
c 12 23,5 4.00 (4no.9) 370.1
d 12 185 3.16 (4 no. 8) 230.0
e 16 245  6.35(5no. 10) 600.0
f 14 26.5 5.00(5no.9) 525.3
g 10 17.5  3.00 (3 no.9) 200.5
h 20 31,5 4.00 (4 no.9) 535.2

For problems in SI units, 1in. = 25.4 mm, 1in.2 = 645 mm?,
1 ksi = 6.9 MPa (N/mm?), and 1 M, (K-ft) = 1.356 kKN-m.
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3.2 Rectangular section with compression steel. Determine the design moment strength of the sections given
in the following table, knowing that f! = 4ksi, f} =60ksi, and & = 2.5 in. (Answers are given in the right

column. In the first four problems, f] = fy)

No. b (in) d(in.) A, (in.2) Al(in.2) oM, (K-ft)
a 15 22.5 8.00 (8 no. 9) 2.00 (2 no. 9) 692.2
b 17 24.5 10.08 (8 no. 10)  2.54 (2 no. 10) 950.0
c 13 2 7.00 (7n0.9)  1.80 (3 no. 7) 590.2
d 10 21.5 5.08 (4 no.10) 1.20 (2 no.7) 418.2
e 14 20.5 7.62 (6 no. 10) 2.54 (2 no. 10) 597.9
f 16 20.5 9.00 (9 no. 9) 4.00 (4 no.9) 716.3
g 20 18.0 12.00 (12n0.9) 6.00 (6 no.9) 820.3
h 18 20.5 10.16 (8 no. 10)  5.08 (4 no. 10) 813.7

For problems in STunits: 1 in. =25.4 mm, I in.? = 645 mm?, 1 ksi = 6.9 MPa (N/mm?),

and 1M, (K-ft) = 1.356 kKN-m.

3.3 T-sections. Determine the design moment strength of the T-sections given in the following table, know-
ing that f = 3 ksi and f, = 60ksi. (Answers are given in the right column. In the first three problems,

a<t.)

No. b(in) b, (in) t(in) d(in.) A, (in.2) M, (K-ft)
a 54 14 3 175  5.08 (4 no. 10) 374.8
b 48 14 4 16.5 4.0 (4 no. 9) 279.4
c 72 16 4 18.5  10.16 (8 no. 10) 769.9
d 32 16 3 155 6.0 (6 no. 9) N.G.
e 44 12 4 20.5 8.0 (8 no. 9) 660.1
f 50 14 3 16.5 7.0 (7 no. 9) 466.8
g 40 16 3 165  6.35(5no. 10) 415.0
h 42 12 3 17.5 6.0 (6 no. 9) 425.8

For problems in S units: 1 in. =25.4 mm, 1 in.2 = 645 mm?, 1 ksi = 6.9 MPa (N/mm?),

and 1M, (K- ft) = 1.356 kN-m. Answer = 325.5 K-ftif p_ . is used.

3.4 Calculate p,,

pmax’

R,(max), R

u’

(300 mm) and an effective depth of d = 20 in. (500 mm) for the following cases:

a. f/ = 3ksi, f, = 40ksi, A = four no. 8 bars
b. fc’ = 4 ksi, f, = 60ksi, A, = four no. 7 bars
c. fl=4 ksi,fy = 75ksi, A; = four no. 9 bars
d. f! = 5ksi, f, = 60ksi, A, = four no. 9 bars

e. f/ =30 MPa, f, = 400 MPa, A, = 3 x 30 mm
f. f/ =20 MPa, f, = 300 MPa, A, = 3 X 25mm
g f/ =30MPa,f, = 500MPa, A, = 4 X 25mm
h. f/ = 25 MPa, f, = 300 MPa, A, = 4 X 20 mm

ald, and max (a/d) for a rectangular section that has a width of b =12 in.
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Using the ACI Code requirements, calculate the design moment strength of a rectangular section that has
a width of » =250 mm (101n.) and an effective depth of d = 550 mm (22in.) when f = 20 MPa(3 ksi),
fy = 420 MPa (60 ksi), and the steel used is as follows:

a. 4 X 20mm
3 X 25mm
4 x 30 mm
2 no. 9 bars

gEoF

e. 6 no. 9 bars

A reinforced concrete simple beam has a rectangular section with a width of » = 8 in. (200 mm) and effec-

tive depth of d = 18 in. (450 mm). At design moment (failure), the strain in the steel was recorded and was

equal to 0.0015. (The strain in concrete at failure may be assumed to be 0.003) Use f! = 3 ksi(20 MPa)
and f, = 50ksi (350 MPa) for all parts.

a. Check if the section is balanced, tension controlled, or compression controlled.

b. Determine the steel area that will make the section balanced.

c. Calculate the steel area provided in the section to produce the aforementioned strains and then cal-
culate its moment. Compare this value with the design moment strength allowed by the ACI Code
USing Pmax-

d. Calculate the design moment strength of the section if the steel percentage used is p = 1.4%.

A 10-ft.- (3-m)-span cantilever beam has an effective cross section (bd) of 12 x 24 in. (300 X 600 mm)

and is reinforced with five no. 8 (5 X 25 mm) bars. If the uniform load due to its own weight and the dead

load are equal to 685 Ib/ft (10 kN/m), determine the allowable uniform live load on the beam using the

ACT load factors. Given: f] = 3 ksi (20 MPa) and f, = 60ksi (400 MPa).

The cross section of a 17-ft (5-m)-span simply supported beam is 10 X 28 in. (250 x 700 mm), and it

is reinforced symmetrically with eight no. 6 bars (8 X 20mm) in two rows. Determine the allowable

concentrated live load at midspan considering the total acting dead load (including self-weight) is equal
to 2.55 K/ft (37 kN/m). Given: f! = 3 ksi (20 MPa) and f, = 40ksi (300 MPa).

Determine the design moment strength of the sections shown in Fig. 3.41. Neglect the lack of symmetry

in (b). Given: f! = 4 ksi (30 MPa) and f) = 60ksi (400 MPa).

A rectangular concrete section has a width of b = 12in. (300 mm), an effective depth of d = 18in.

(450 mm), and &’ = 2.5in. (60 mm). If compression steel consisting of two no. 7 bars (2 X 20 mm) is

used, calculate the allowable moment strength that can be applied on the section if the tensile steel, A,

is as follows:

a. Four no. 7 (4 X 20 mm) bars

b. Eight no. 7 (8 X 20 mm) bars

Given: f/ = 3 ksi (20 MPa) and f} = 40ksi (300 MPa).

A 16-ft- (4.8-m-)span simply supported beam has a width of » = 12 in. (300 mm), d = 22 in. (500 mm),

d’ =2.5in. (60mm), and A} = three no. 6 bars (3 X 20 mm). The beam carries a uniform dead load of

2 K/ft (30 kN/m), including its own weight. Calculate the allowable uniform live load that can be safely

applied on the beam. Given: f = 4 ksi (20 MPa) and f) = 60 ksi (400 MPa). (Hint: Use p,,, for the basic

section to calculate M,,.)

Check the adequacy of a 10-ft- (3-m)-span cantilever beam, assuming a concrete strength of f/ = 4 ksi

(30 MPa) and a steel yield strength of f,, = 60 ksi (400 MPa) are used. The dimensions of the beam section

are b = 10in. (250 mm), d = 20in. (500 mm), &' = 2.5 in. (60 mm), A, = six no. 7 bars (6 x 20 mm),

Al = twono. 5 bars (2 X 15 mm). The dead load on the beam, excluding its own weight, is equal to 2 K/ft

(30kN/m), and the live load equals 1.25 K/ft (20kN/m). (Compare the internal M, with the external

factored moment.)

A series of reinforced concrete beams spaced at 9 ft (2.7 m) on centers are acting on a simply supported

span of 18 ft (5.4 m). The beam supports a reinforced concrete floor slab 4 in. (100 mm) thick. If the width

of the web is b, = 10in. (250 mm), d = 18 in. (450 mm), and the beam is reinforced with three no. 9 bars

(3 x 30 mm), determine the moment strength of a typical interior beam. Given: f = 4 ksi (30 MPa) and

f, = 60ksi (400 MPa).
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Figure 3.41 Problem 3.9.

3.14 Calculate the design moment strength of a T-section that has the following dimensions:
e Flange width = 30in. (750 mm)
» Flange thickness = 3 in. (75 mm)
e Web width = 101in. (250 mm)
« Effective depth (d) = 18in. (450 mm)
» Tension reinforcement: six no. 8 bars (6 X 25 mm)
e f!/ =3 ksi (20 MPa)
* f, = 60ksi (400 MPa)
3.15 Repeat Problem 3.14 if d = 24 in. (600 mm).
3.16 Repeat Problem 3.14 if the flange is an inverted L shape with the same flange width projecting from one

side only. (Neglect lack of symmetry)



CHAPTER 4

FLEXURAL
DESIGN OF
REINFORCED
CONCRETE
BEAMS

4.1 INTRODUCTION

Reinforced concrete office building, Amman, Jordan.

In the previous chapter, the analysis of different reinforced concrete sections was explained. Details
of the section were given, and we had to determine the design moment of the section. In this chapter,
the process is reversed: The external moment is given, and we must find safe, economic, and prac-
tical dimensions of the concrete section and the area of reinforcing steel that provides adequate

internal moment strength.

4.2 RECTANGULAR SECTIONS WITH TENSION REINFORCEMENT ONLY

From the analysis of rectangular singly reinforced sections (Section 3.9), the following equations
were derived for tension-controlled sections, where f; and f; are in ksi:

For fy =60Kksi,

Also,

152

T 87 >
P =0.85ﬂ—(
b ', \87+f,

0.003 +f,/E,
Pmax = Pb 0.008

P = 0.63375p,(or 0.634p,)

0.5474p,, for f, = 40ksi
Pmax § 0.-5905p,  for f, = 50ksi
0.6983p;, for f, = 75ksi

(3.18)

(3.31)
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Table 4.1 Suggested Design Steel Ratios, p

Ratio Ratio R, R, max
f (ksi) T, (ksi) % pp % Prmax % pg PPy Ps! Pmax (psi) (psi)
3 40 3.71 2.031 1.4 0.38 0.69 450 614
60 2.14 1.356 1.2 0.56 0.89 556 615
4 60 2.85 1.806 1.4 0.49 0.78 662 820
75 2.07 1.445 1.2 0.58 0.83 702 820
5 60 3.35 2.123 1.6 0.48 0.75 766 975
75 2.43 1.700 1.4 0.58 0.82 830 975
Table 4.2 Relation between ¢,, p/p,, ¢, and ¢ /e ( =60ksi)
& 0.004 0.005 0.006 0.007 0.0075 0.008 0.009 0.010 0.040
plpy, 0.714 0.625 0.555 0.500 0.476 0.454 0.417 0.385 0.117
gle, 2.0 2.5 3.0 35 375 4.0 4.5 5.0 20
o) 0.82 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

The value of #, in p,, is 0.85 when f < 4000 psi (30 N/mm?) and decreases by 0.05 for every
increase of 1000 psi (7 N/mm?) in concrete strength. The steel percentage of balanced section, p,,
and the maximum allowable steel percentage, p,,,«» can be calculated for different values of f/ and
fy, as shown in Table 4.1 or A.4.

It should be clarified that the designer has a wide range of choice between a large concrete
section and relatively small percentage of steel, p, producing high ductility and a small section
with a high percentage of steel with low ductility. A high value of the net tensile strain, ¢,, indi-
cates a high ductility and a relatively low percentage of steel. The limit of the net tensile strain
for tension-controlled sections is 0.005, with ¢ =0.9. The strain limit of 0.004 can be used with a
reduction in . If the ductility index is represented by the ratio of the net tensile strain, ¢,, to the yield
strain, e, =f,/E;, the relationship between ¢, p/p,, ¢, and € /e is shown in Table 4.2 for f, = 60 ksi.
Also, the ACI Code, Section 6.6.5.1, indicates that €, should be > 0.0075 for the redlstrlbutlon of
moments in continuous flexural members producing a ductility index of 3.75. It can be seen that
adopting €, > 0.005 is preferable to the use of a higher steel ratio, p/p,, with £, = 0.004, because the
increase in M,, is offset by a lower ¢. The value of &, =0.004 represents the use of minimum steel
percentage of 0.00333 for f! = 4ksi and f, =60ksi. This case should be avoided. The value of ¢

between &, =0.005 and &, =0.004 can be calculated from Eq. 3.8: ¢ = 0.65 + (¢, — 0.002) 250)
The design moment equations were derived in the previous chapter in the following forms:

¢M, =M, = R, bd* (3.21)
where f
p
Ru - d)pf; < 1. 7f,> ¢Rn (322)

where ¢ = 0.9 for tension-controlled sections and ¢ < 0.9 for sections in the transition region:

dM, =M, = pAf, (d— Ady > (3.19a)
no sy 1.71!b '
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Also,

2 Pl
oM, = M, = ¢pf,bd <1 1.7ﬂ> (3.20)

We can see that for a given factored moment and known f/ and f, there are three unknowns in
these equations: the width, b, the effective depth of the section, d, and the steel ratio, p. A unique
solution is not possible unless values of two of these three unknowns are assumed. Usually, p is
assumed (e.g., using p,,.,), and b can also be assumed.

Based on the preceding discussion, the following cases may develop for a given M, f/,
and f:

1. If p is assumed, then R, can be calculated from Eq. 3.22, giving bd> = M, /R,. The ratio of
d/b usually varies between 1 and 3, with a practical ratio of 2. Consequently, b and d can
be determined, and A, = pbd. The ratio p for a singly reinforced rectangular section must be
equal to or less than p,,,, as given in Eq. 3.31. It is a common practice to assume a value of
p that ranges between % Pmax and % pp,- Table 4.1 gives suggested values of the steel ratio p to
be used in singly reinforced sections when p is not assigned. For example, if f, = 60 ksi, the
value p, = 1.4% is suggested for f! = 4ksi, 1.6% for f! = 5ksi, and 1.2% for f] = 3ksi. The
designer may use p up to p,,., Which produces the minimum size of the singly reinforced
concrete section. Using p,;, will produce the maximum concrete section. If b is assumed in
addition to p, then d can be determined as

d= M, 4.1)
“\VRob '

u

If d/b=2, then d = y/2M,, /R, and b =d/2, rounded to the nearest higher inch.
2. If b and d are given, then the required reinforcement ratio p can be determined by rearranging

Eq. 3.20 to obtain
085t [ 4M,
p= =4/l - —— 4.2)
fy 1.7¢f!bd?

0857 | 2R,
- — 1= (4.2a)
| O.SSfJ
or f/
=< 10.85 - 1/(0.85)> — ]
p f[ V(085" -0
where
1.7\ M, 1.7
R = =2 \R 4.3
¢ <¢ﬂ>bd2 <¢ﬂ> ‘ @3

A, = pbd = <JJ;> bd [0.85 —1/(0.85)" — Q] (4.4)

y
where all units are in kips (or pounds) and inches and Q is dimensionless. For example, if
M,=2440 K - in., b=12in., d=18in., f! = 3ksi, andfy=60ksi, then p=0.01389 (from
Eq. 4.2) and A, = pbd = 0.01389(12)(18) =3.0in.2, or directly from Eq. 4.4, Q0 =0.395 and
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A,=3.0in.2 When b and d are given, it is better to check if compression steel is or is not

required because of a small d. This can be achieved as follows:
Calculate p,,x and R, (max) = ¢pafy[1 = (Pmaxfy /171

a.
b.

d.

3. If p and b are given, calculate R,

Calculate ¢ M, (max) = R, bd*, the design moment strength of a singly reinforced concrete

section.

If M, < M, .x» then no compression reinforcement is needed. Calculate p and A, from

the preceding equations.

If M, > M,

n, max>

explained in Section 4.4.

Then calculate d from Eq. 4.1:

R, = ¢pf, <1

d= M,
“\Rb

and

u

A, = pbd

4.3 SPACING OF REINFORCEMENT AND CONCRETE COVER

4.3.1 Specifications

Figure 4.1 shows two reinforced concrete sections. The bars are placed such that the clear spacing
shall be at least the greatest of 1in. (25 mm), nominal bar diameter D, and (4/3)d

Stirrups

Stirup diameter

then compression steel is needed. In this case, the design procedure is

-2
1.7f!

agg

N N

TG

Figure 4.1

hy ol
DspPisp
—] —tb;
(-
\ D

Stirup diameter

Concrete cover

[t [y et

Concrete cover

<—b2————>

©)

Spacing of steel bars in (a) one row or (b) two rows.
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maximum size of the aggregate), (ACI Code, Section 25.2.1). Vertical clear spacing between bars in
more than one layer shall not be less than 1 in. (25 mm), according to the ACI Code, Section 25.2.2.
Also for reinforcement of more than two layers, the upper layer reinforcement shall be placed
directly above the reinforcement of the lower layer.

The width of the section depends on the number, 7, and diameter of bars used. Stirrups are
placed at intervals; their diameters and spacings depend on shear requirements, to be explained
later. At this stage, stirrups of %in. (10 mm) diameter can be assumed to calculate the width of
the section. There is no need to adjust the width, b, if different diameters of stirrups are used. The
specified concrete cover for cast-in-place and precast concrete is given in the ACI Code, Section
20.6.1. Concrete cover for beams and girders is equal to %in. (38 mm), and that for slabs is equal

to % in. (20 mm), when concrete is not exposed to weather or in contact with the ground.

4.3.2 Minimum Width of Concrete Sections
The general equation for the minimum width of a concrete section can be written in the form
bpin = nD + (n — 1)s + 2(stirrup diameter) + 2(concrete cover) (4.5a)

where
n = number of bars
D = diameter of largest bar used
s = spacing between bars (equal to D or 1 in., whichever is larger)

If the stirrup’s diameter is taken equal to %in. (10mm) and concrete cover equals %in.
(38 mm), then

bpin = 1D + (n — 1)s +3.751n. (95mm) (4.5b)

min
This equation, if applied to the concrete sections in Fig. 4.1, becomes

b, =3D + 25 + 3.75in. (95 mm)

by, = 4D + 35 + 3.75in. (95 mm)
To clarify the use of Eq. 4.5, let the bars used in sections of Fig. 4.1 be no. 10 (32-mm) bars. Then

_ J5x1.27+3.75 =10.10in. (s = D) say, 11in.
T 5% 32495 =225 mm say, 250 mm

_J7x1.27+3.75=12.64in.(s = D) say, 13 in.
27\ 7%x32+495=319mm say, 320 mm

If the bars used are no. 6 (20 mm), the minimum widths become

_[3x075+2x1+375=80in.  (s=1in)
P 13%2042%x25+95=205mm  say,210mm

_ J4x075+3x1+3.75=9.75in. say, 10in.
27 14x20+3%25+95=250mm

The width of the concrete section shall be increased to the nearest inch. Table 1 gives the
minimum beam width for different numbers of bars in the section.
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4.3.3 Minimum Overall Depth of Concrete Sections

The effective depth, d, is the distance between the extreme compressive fibers of the concrete
section and the centroid of the tension reinforcement. The minimum total depth is equal to d plus
the distance from the centroid of the tension reinforcement to the extreme tension concrete fibers,
which depends on the number of layers of the steel bars. In application to the sections shown in
Fig. 4.1,

h =d; + %D + %in. + concrete cover(1.51n.)

=d, + %D + 1.857in.(50 mm)
for one row of steel bars and

hy=d,+05+D+ %in. + concrete cover (1.51n)

=d, + D +2.375in. (60 mm)

for two layers of steel bars. The overall depth, 4, shall be increased to the nearest half inch (10 mm)
or, better, to the nearest inch (20mm in SI). For example, if D=1in. (25mm), d; =18.9in.
(475 mm), and d, = 20.1 in. (502 mm),

Minimum A; = 18.94+ 0.5+ 1.875 =21.2751n.

say, 21.51n. or 22 in.,
h; =475+ 13 4+ 50 = 538 mm

say, 540 mm or 550 mm, and
Minimum h, = 20.1 4+ 1.0 + 2.375 = 23.475in.

say, 23.51n. or 24 in.,
hy =502 + 25 + 60 = 587 mm

say, 590 mm or 600 mm.

If no. 9 or smaller bars are used, a practical estimate of the total depth, 4, can be made as
follows:
_ {d +2.5in. (65 mm) for one layer of steel bars

"~ | d+3.5in.(90 mm) for two layers of steel bars

For more than two layers of steel bars, a similar approach may be used.

It should be mentioned that the minimum spacing between bars depends on the maximum
size of the coarse aggregate used in concrete. The nominal maximum size of the coarse aggregate
shall not be larger than one-fifth of the narrowest dimension between sides of forms, or one-third
of the depth of slabs, or three-fourths of the minimum clear spacing between individual reinforcing
bars or bundles of bars (ACI Code, Section 26.4.2.1).

Example 4.1

Design a simply reinforced rectangular section to resist a factored moment of 361 K-ft using the maxi-
mum steel percentage p,,.. for tension-controlled sections to determine its dimension. Given: f] = 3ksi
and f, = 60 ksi.
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Solution
For f! = 3ksi, fy =60ksi, and p, =0.85, p,,, for a tension-controlled section is calculated as follows

(¢=0.9):
_ I 87
=09 () [557

= (0.85) <%) (184—77) —0.0214

0.003 +, /E,
P = 0 <W> = 0.63375p, = 0.01356 (Table 4.1)
Prmaxly
Ru,max = ¢pmaxfy <1 - Tﬂ)
= 0.9 x 0.01356 X 60 X (1 - W) = 0.615ksi

(Or, use the tables in Appendix A or Table 4.1.)
Since M, = RubdQ,

M 361 12\ _ 4332 :
bl = = = ( )= = 7043in?
R, 0615 /)~ 0,615 "
Thus, for the following assumed b, calculate d and A, = pbd:
0.85f! 4M,
p= -4/l - ——
1 L7f!bd?

b =10in. d =126.5in. A, =3.59in.?

b =12in. d=1242in. A, =394 in.2 sixno. 8 bars (A, =4.71 in.2)

b=14in. d=224in. A, =495in2 five no. 9 bars (A, =5.0in.%)
2

b =16in. d =21.0in. A, =4.55in.
The choice of the effective depth d depends on three factors:

1. Width b Required. A small width will result in a deep beam that decreases the headroom available.
Furthermore, a deep narrow beam may lower the design moment strength of the structural member
due to possible lateral deformation.

2. Amount and Distribution of Reinforcing Steel. A narrow beam may need more than one row of
steel bars, thus increasing the total depth of the section.

3. Wall Thickness. If cement block walls are used, the width b is chosen to be equal to the wall thick-
ness. Exterior walls in buildings in most cases are thicker than interior walls. The architectural
plan of the structure will show the different thicknesses.

A reasonable choice of d/b varies between 1 and 3, with practical value about 2. It can be seen from
the previous calculations that the deeper the section, the more economical it is, as far as the quantity of
concrete used, expressed by the area bd of a 1-ft length of the beam. Alternatively, calculate bd®> = M, /R,
and then choose adequate » and d.

The area of the steel reinforcement, A, is equal to pbd. The area of steel needed for the different
choices of b and d for this example was shown earlier. Because the steel percentage required is constant
(Pmax =0.01356), A; is proportional to bd. For a choice of a 12X24.2-in. section, the required A; is
4.651n.2 Choose six no. 8 bars in two rows (actual A, =4.71in.?). The minimum b required for three
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Figure 4.2 Example 4.1.

no. 8 bars in one row is 8.9 in. < 12in., and total 7 =24.2 + 3.5 =27.7 in., say, 28 in. (actual d =24.6 in.).
Another choice is a section with a 14 X 22.4-in. section with a total depth (#) of 25in. and five no. 9
bars in one row. The choice of bars depends on:

1. Adequate placement of bars in the section, normally in one or two rows, fulfilling the restrictions
of the ACI Code for minimum spacing between bars.

2. The area of steel bars chosen closest to the required calculated steel area.

The final section is shown in Fig. 4.2.

Example 4.2
Design a simply reinforced rectangular section with p of about 1%. Given: f = 3ksi and f, = 60 ksi.

Solution

1. For f/ = 3ksi and f, = 60 ksi, p,,,, = 0.01356.
Since p < 0.01356, the section is tensioned controlled, and ¢ =0.9,

pfy
0.01 x 60
©17x3
(From the tables in Appendix A, for p=0.01, R, =476 psi.)
2. bd*=M,/R,=4332/0.476 =9100in.> Choosing b= 14 in. and d =25.5 in.,

=0.9%0.01 x 60 (1 ) = 0.476ksi

A, = pbd = 0.01 X 14 x 25.5 = 3.57in.
Choose four no. 9 bars in one layer; A, =4.00 in.2:
bpin =nD+ (n—1)s+3.75
=7x%x1.1284+3.75=11.7in. < 14in. (width is sufficient)
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Figure 4.3 Example 4.2.

i = d + g +1.875 (assume 1.5in cover)

=255+ % +1.875 =27.94in. say,28in. (d =25.5in.)

The final cross section is shown in Fig. 4.3.

Example 4.3

Find the necessary reinforcement for a given section that has a width of 10in. and a total depth of 20 in.
(Fig. 4.4) if it is subjected to an external factored moment of 163 K-ft. Given: f] = 4ksi and f, = 60 ksi.

A
'\ /
17.5"
20"
3#8

L le—o o

' 25"
10—

Figure 4.4 Example 4.3.
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Solution

1. Assuming one layer of no. 8 steel bars (to be checked later), d=20— 0.5 — 1.875=17.625 in. (or
d=20-2.5in.=17.51n.).
2. Check if the section is adequate without compression reinforcement. Compare the moment

strength of the section (using p,,, for the tension-controlled condition). For f! = 4ksi and
J, =60ksi, py,,, =0.01806:

Prmaxfy .
Ry max = PPmaxfy | 1 — sz =820psi (from Table 4.1)
The moment strength of a singly reinforced basic section is
oM, =R _ bd>=0.82(10)(17.5)

n,max u,max

=2511K-in. > 163 x 12 = 1956K - in.

Therefore, p < p,,,, and the section is singly reinforced and is tension controlled (¢ = 0.9).
3. Calculate p from Eq. 4.2 or 4.3:

1.7 M, 1.7 1956
(1)« = X =0.302
¢ <¢ﬂ> bd? (0.9><4) (10><17.52>

!
p= J]% [0.85 -1/ (0.85)* — Q] =0.0134 < p,., (tension — controlled condition)

Yy

A, = pbd=0.0134(10)(17.5)=2.345in.? Use three no. 8 bars (A, =235 in.2) in one row,
bi» < 10in. The final section is shown in Fig. 4.4.

Example 4.4

Find the necessary reinforcement for a given section, b = 15 in., if it is subjected to a factored moment
of 313 K - ft. Use f7 = 4ksi andfy =60 ksi.

Solution
1. Forf! = 4ksiand f, =60ksi, and from Table 4.1, p, =0.0285, p,,,,, = 0.01806 (tension-controlled
section), R, /. unax = 820 psi.
2. Using p,, =0.01806 and R, = 820 psi,
pi? = M _ 330D sy
R 0.820

u

For b=15in. and d=17.50,
A, = pbd = 0.01806(15)(17.5) = 4.74in.?

Choose four no. 10 bars, A, =5.08 in.2>4.741in.? Bars can be placed in one row, b_. = 12.7 in.

in Table A.7. Total depth (h) =17.5+2.5=20 in.

min

Discussion
1. Since a steel area of 5.08in.”> used is greater than 4.74in.? required (the limit for a
tension-controlled section with ¢ =0.9), the section is in the transition zone. Actually,
the section is underreinforced and the nominal moment M, =Af (d—a/2)=368.6 K- ft
(A;=5.08 in.2 and a=5.976in.). If ¢ = 0.9 is used, then oM, =331.7 K-ft.
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2. The ACI Code indicates that for sections in the transition zone, ¢ < 0.9, and €, > 0.004. Checking
e,=[0.005/(p/p,)]1 —0.003,

=208 01935 L =0679
5x175 ”
¢ = (M) — 0.003 = 0.004467 > 0.004
0.679

Or, alternatively, calculate a = 5.08 x60/(0.85 x4 X15)=5.976,c=a/0.85=7.03,d,=d=17.5in.
Then g, =0.003(d, — ¢)/c = 0.004467. Calculate

250
3
M, = 0.856(368.6) = 315.4K - ft

¢ = 0.65+ (¢, — 0.002) ( ) = 0.856

3. It can be noticed that, despite an additional amount of steel, 5.08 — 4.67 =0.41 in.? (or about 9%),
the design moment strength remained the same. This is because the strength reduction factor, ¢,
was decreased. Therefore, the design of sections within the tension-controlled zone with ¢ =0.9
gives a more economical design based on the ACI Code limitations.

4.4 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

A singly reinforced section has its moment strength when p,,, of steel is used. If the applied fac-
tored moment is greater than the internal moment strength, as in the case of a limited cross section,
a doubly reinforced section may be used, adding steel bars in both the compression and the tension
zones. Compression steel will provide compressive force in addition to the compressive force in
the concrete area.

4.4.1 Assuming One Row of Tension Bars

The procedure for designing a rectangular section with compression steel when M,,, f/, b, d, and d'
are given can be summarized as follows:

1. Calculate the balanced and the maximum steel ratio, p,,,,, using Egs. 3.18 and Eqs. 3.31:
/
ol 87
=0.856,—
Pb b 7 <87 n fy )

Calculate A; ,x = A, = P bd (maximum steel area as singly reinforced).
2. Calculate R, using p.c (¢ =0.9):

pmava
R . = ol 1l — —
1, max ¢pmdxf; < 17fC/ >

(R, max can be obtained from the tables in Appendix A or Table 4.1.)

3. Calculate the moment strength of the section, M,,, as singly reinforced using p,,,, and R

Mul = Ru,maxbd2

i, max*
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10.

If M,,; <M, (the applied moment), then compression steel is needed. Go to the next step.
If M, > M,, then compression steel is not needed. Use Eq. 4.2 to calculate p and A = pbd,
as explained earlier.

Calculate M, , =M, —M,,;, the moment to be resisted by compression steel.

. Calculate Ay, from M,, = pA,f,(d —d").

Then calculate the total tension reinforcement, A,:
Calculate the stress in the compression steel as follows:
a. Calculate f{ = 87[(c — d')/clksi < f, (f; cannot exceed f,).

b. Or, & can be calculated from the strain diagram, and f{ = (¢} - E,). If &{ > ¢, then com-
pression steel yields and f{ = f,.

c. Calculate Af from M, = pAf{(d — d'). It f] = f,, then A{ = A, . If f] < f,, then A{ > A,
and A} = A, (f, /).

Choose bars for A, and A’ to fit within the section width, b. In most cases, A, bars will be

placed in two rows, whereas A, bars are placed in one row.

Calculate h =d + 2.5 in. for one row of tension bars and 2 =d + 3.5 in. for two rows of tension

steel. Round / to the next higher inch. Now check that |p — p/(f{ /f;)| < ppax using the new

d or check that A, = bd|pa + 0 (f{ /)] = A, (used):

!/

_As d )= 8
P=%a " P T b

This check may not be needed if p,,, is used in the basic section.

If desired, the design moment strength of the final section, ¢M,,, can be calculated and com-
pared with the applied moment, M,: M, > M,. Note that a steel ratio p smaller than p,,,
can be assumed in step 1, say p=0.6p, or p=0.9p,,.., so that the final tension bars can be
chosen to meet the given p,,,, limitation.

The strain at the bars level can be checked as follows:

d —
g, = ( ’ C) 0.003 > 0.005
C

4.4.2 Assuming Two Rows of Tension Bars

In the case of two rows of bars, it can be assumed that d =h-3.5in.and d,=h —2.5in.=d+ 1.0 in.

Two approaches may be used to design the section.

. One approach is to assume a strain at the level of the centroid of the tension steel equal to

0.005 or €,=0.005 (at the d level). In this case, the strain in the lower row of bars is greater
than 0.005: €, = (d, — ¢/c)0.003 > 0.005, which still meets the ACI Code limitation. For this
case, follow the above steps 1 to 9. Example 4.6, solution 1, explains this approach.

A second approach is to assume a strain €,=0.005 at the level of the lower row of
bars, d,. In this case, the strain at the level of the centroid of bars is less than 0.005:
g,=[(d, —¢)/c]0.003 < 0.005, which is still acceptable. Example 4.6, solution 2, explains
this approach. The solution can be summarized as follows:

a. Calculate d,=h — 2.51n. and then form the strain diagram and calculate ¢, the depth of

the neutral axis:
0.003
c=——]4d,
<0.003 + e,)
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For g, =0.005,
c= (%)d, and a=fc

=2

. Calculate the compression force in the concrete:
Cl = 085‘f;‘,ab = T1 = ASl.fV

Determine A,,. Calculate M, = ¢ A, f\(d —al2); py = A, /bd, $=0.9.
. Calculate M, =M, — M,,; assume d’ =2.5in.
. Calculate Ay,: M, = Apf(d—d'), f. =f,.¢ = 0.9. Total A, =A,; +A,,.
. Check if compression steel'yields similar to step 6 in Section 4.4.1.

=" <)

Example 4.5

A beam section is limited to a width b= 101in. and a total depth 2#=221in. and has to resist a factored
moment of 226.5 K - ft. Calculate the required reinforcement. Given: f/ = 3ksi and Jy=50Kks1.

Solution

1. Determine the design moment strength that is allowed for the section as singly reinforced based
on tension-controlled conditions. This is done by starting with p,,,,,. For f/ = 3ksi and f, = 50 ksi
and from Egs. 3.18, 3.22, and 3.31,

p, = 0.0275 =0.01624 R, =614psi

pmax
M,=Rpbd> b=10in. d=22-3.5=185in.
M, =226.5x 12 = 2718K - in.

(This calculation assumes two rows of steel, to be checked later.) Assume M,; = 0.614 X 10 X
(18.5)2=2101 K-in.=max @M,, as singly reinforced. Design M, =2718 K-in.>2101 K-in.
Therefore, compression steel is needed to carry the difference.

2. Compute A, M, and M ,:
Ay = prabd = 0.01624 x 10 X 18.5 = 3.0in.”
M, =2101K - in.
M,=M,—M, =2718 —2102 = 617K - in.

3. Calculate A, and A!, the additional tension and compression steel due to M,,. Assume d’ =2.5in.;
M,=¢ A f, (d=d):

M, 617

Ap = = = 0.861in.2
2T ghd-d)  09x50(185 - 2.3) n

Total tension steel is equal to A :
A=A, ,+A,=30+0.86=3.86in>

The compression steel has A’ = 0.86in.% (in A’ yields).
4. Check if compression steel yields:

. L 50
Y729,000 ~ 29,000

=0.00172
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L 4,‘ 2.55 ksi
0.003}<~ i
] i o Y Cr= AT,
L2 !
& ©
|
°
T2 = A52 f‘/
Figure 4.5 Example 4.5: Doubly reinforced concrete section.
Leta = (A,,f,)/(0.85f!b) = (3.0 x 50)/(0.85 x 3 X 10) = 5.88 in.
c(distance to neutral axis) = a _ >.88 =6.92in.
g, 085
€} = strain in compression steel (from strain triangles)
6.92 -2.5
=0. ——==) =0.00192 =0.00172
0.003 x (2==222) 92 > &, = 0.00
5. Check g,:
3
= —— =0.016216
P 10% 185

P 05897 f, =50
Py ’

From Eq. 3.24, ¢, = 0.005 is assumed at the centroid of the tension steel for p, . and R, used.
Calculate €, (at the lower row of bars):

d, =22-25=195in.

d —
g, = < ’ C> 0.003
C

B ( 19.5-6.92
B 6.92

= 0.00545 > 0.005

) 0.003

as expected.

6. Choose steel bars as follows: A, =3.86in.2 Choose five no. 8 bars (A, = 3.95in.2) in two rows, as
assumed; A’ = 0.86in.2 Choose two no. 6 bars (A’ = 0.88in.?).

7. Check actual d: Actual d =22 —(1.54+0.375+ 1.5) =18.625in. It is equal approximately to the
assumed depth. The final section is shown in Fig. 4.5.
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Example 4.6

A beam section is limited to =12 in. and a total depth 4 =201n. and is subjected to a factored moment
M, =298.4 K-ft. Determine the necessary reinforcement using f/ = 4ksi and f, = 60ksi. (Refer to
Fig. 4.6.) '

Solution 1: Two Solutions Are Presented

1. Determine the maximum moment capacity of the section as singly reinforced based on
tension-controlled conditions. For f/ = 4ksi and f, =60ksi, p,, =0.01806 and R, =820psi
(Table 4.1). Assuming two rows of bars, d =20 —=3.5=16.51in.:

MaxM,, =R, bd® = 0.82(12)(16.5)> = 2679K - in. = 223.25K - ft

The design moment M, =298.4x12=3581 K-in.>M,
needed.

2. Calculate A

umax

15 therefore, compression steel is

M, Ay, and Ag:
A, = p, bd = 0.01806(12)(16.5) = 3.576in.2
M, =M, —M, = 3581 — 2679 = 902K - in.
M, =¢A,f(d~d) (assume d' =2.5in.)

s1»

902 = 0.94,(60)(16.5 — 2.5),A, = 1.19in.?
Total A, =A,, +A, =3.576 +1.19 =4.77in.> (five no. 9 bars)
3. Check if compression steel yields by Eq. 3.46 Compression steel yields if

ek mossp (4 (87
sesms () ()

K = (0.85) (%) (%) (g) = 0.0235

l 0.003 0.003

- — — —o ¢ ‘
248 J! :

e
|
Z
>
|
|

d=165"— >l

. 5 ﬁ9 . 0.005 0.004546
- s [
31 0.00548 0.005
T Solution 1 Solution 2

12" ——>

Figure 4.6 Example 4.6.
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, Ay 3.576

P=P = 7= = 51 o

bd  (12)(16.5)

Therefore, compression steel does not yield: f; <[y
4. Calculate f] : f] = 87[(c —d')/c] < f,. Determine ¢ from A;: A, =3.576in.2,

=0.01806 < K

Aaly  3.576x60

- - = 5.26in.
T 085b T 085x4x12 n
a 5.26 .
=2 _220 _619in.
‘T 5 T 085 n
/1 =87x (‘“271_925) = 51.8ksi < 60ksi

5. Calculate A} from M, = @A!f/(d — d'):
902 = 0.9A4/(51.8)(16.5 — 2.5)

Thus, A’ = 1.38in.2, or calculate A’ from A/ = Ap(h /1) = 1.38in.2 (two no. 8 bars). Note
that the condition [p — p'(f{ /£,)] = (p — p') < ppux is already met:

1 1 3.576
L )= —A. -A)=———_ =0.01806
<” "y pah A = 1516

as assumed in the solution.

6. These calculations using p,,.. and R, are based on a strain of 0.005 at the centroid of the tension
steel:

d,—c
g,(at bottom row) = —Q 0.003

d,=20-25=175in. ¢ = (17'56%) 0.003 = 0.00548 > 0.005
as expected.
Solution 2
Assuming two rows of tension bars and a strain at the lower row, £, =0.005, the solution will be as
follows:

1. Calculate d, =20 —2.5=17.5 in. From the strain diagram,

©_ 0003 _ 0003 _ ..

d, 0003+¢,  0.008
¢ =0.375(17.5) = 6.5625in. a = 0.85¢ = 5.578in.

2. The compression force in the concrete = C; =0.85 fab,
C, =0.85(4)(5.578)(12) = 227.6K = T (as singly reinforced)
c, T
A, ==t =02 2276 _39934,2
hh e
d=20-3.5=16.5in.

M, = ¢A,f, (d - g) = 0.9(3.793)(60) (16.5 - @) = 2808K - in.

=234K - ft
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R My _ 28083
T pd2 T 12(16.5)2

= 0.86ksi = 860 psi

A 0.01916
P pa T

3. Since M, =3581K-in.>M,

M,, = 3581 — 2808 = 773K - in.
M, =094, f,d~d)

|» compression steel is needed:

773 = 0.94,,(60)(16.5 — 2.5) A, = 1.022in.2
Total A, =A, +A,, =3.793 + 1.022 = 4.815in.2

Use five no. 9 bars.
4. Check if compression steel yields as in step 3 in the first solution:

K =0.0235(p— p') = p; = 0.01916 < K

Compression steel does not yield:

—-d 6.56 —2.5
r—g7( & =
f=s () = (2%

) 87 = 53.84ksi
Cc

Calculate A ,:
M, = pALfl(d —d)
773 = 0.9A/(53.84)(16.5 - 2.5) Al = 1.14in.2

Use two no. 7 bars (A = 1.2in.2).

5. Check the design moment strength:
A, =50in? Al =12in? A, =(A,-A)=38in’

oM, = [Asl g (d— g) +A;f;(d—d’)]

—0.9 [3.8 (60) <16.5 - @) +1.2(53.84)(16.5 — 2.5)

=3627.6K -in. = 302.3K - ft

which is adequate. Note that the strain €, at the centroid level of the tension steel is less
than 0.005:

€, = (d — ) 0.003 = (%) 0.003 = 0.004546

Both solutions are adequate.

Discussion

1. In the first solution, the net tensile strain £, =0.005 was assumed at the centroid of the tension
steel. In this case p,, and R, .. can be determined from Table 4.1 or tables in Appendix A.
The strain in the lower row of bars will always be greater than 0.005, which meets the ACI Code
requirement.

2. In the second solution, the strain limit £, =0.005 is assumed at the lower row. In this case, the
strain at the centroid of the two rows of bars will be less than 0.005 and its value depends on the
depth of the section. Moreover, p and R, for this case are not known and their values depend on
the effective depth d.
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3. Comparing the two solutions, the neutral axis depth, C,, in solution 1 is slightly smaller than ¢,
for the second solution because of the strain limitations, producing a smaller A ; and then higher
A,. Total A, will normally be very close. It is clear that solution 1 is easier to use because of the
use of tables.

4. Note that solution 1 can have the same results as solution 2 by calculating A | asfollows: A, =p, ..
bd,=0.01806 (12 x17.5)=3.793in.2, which is the same A_; calculated in solution 2, producing
£,=0.005 at the lower row of bars.

4.5 DESIGN OF T-SECTIONS

In slab—beam—girder construction, the slab dimensions as well as the spacing and position of beams
are established first. The next step is to design the supporting beams, namely, the dimensions of the
web and the steel reinforcement. Referring to the analysis of the T-section in the previous chapter,
we can see that a large area of the compression flange, forming a part of the slab, is effective in
resisting a great part or all of the compression force due to bending. If the section is designed on
this basis, the depth of the web will be small; consequently, the moment arm is small, resulting in
a large amount of tension steel, which is not favorable. Shear requirements should be met, and this
usually requires quite a deep section.

In many cases web dimensions can be known based on the flexural design of the section at
the support in a continuous beam. The section at the support is subjected to a negative moment, the
slab being under tension and considered not effective, and the beam width is that of the web.

In the design of a T-section for a given factored moment, M,,, the flange thickness, #, and width,
b, would have been already established from the design of the slab and the ACI Code limitations
for the effective flange width, b, as given in the previous chapter Section 3.15.2. The web thickness,
b,,, can be assumed to vary between 8 and 20 in., with a practical width of 12 to 16 in. Two more
unknowns still need to be determined, d and A;. Knowing that M, f/, and f, are always given, two
cases may develop as follows: )

1. When d is given and we must calculate A:

a. Check if the section acts as a rectangular or T-section by assuming @ =t and calculating
the moment strength of the whole flange:

&M, ((flange) = $(0.85() )bt <d - %z) 4.7)

IftM,> ¢ My, thena>t. If M, < pM, then a <1, and the section behaves as a rectan-
gular section.

b. If a <1, then calculate p using Eq. 4.2, and A; = pbd. Check that p,, >p, .-

c. If a>1t determine Ay for the overhanging portions of the flange, as explained in

Section 3.15.4:
_ 0.85f!(b — b))t

ASf f:v

(4.8)

1
My, = pAf, (d - Et) 4.9)
The moment resisted by the web is

Mul = Mu - Mu2
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Calculate p; using M,

ul»

b,,, and d in Eq. 4.2 and determine A, = p,b,,d:
Total A, = A, + Ay

Then check that Ay <A .., as explained in Section 3.15. Also check that p , = A/(b,,d)
mein'
d. If a=t, then A; = ¢(0.85/))bt/f,.
2. When d and A, are not known, the design may proceed as follows:

a. Assume a =t and calculate the amount of total steel, A, needed to resist the compression
force in the whole flange, bt:

(0.85f!)bt
= ——— (4.10)
f;?
b. Calculate d based on A; and a =t from the equation
1
A@,=(pA§J;<d-§z) @.11)

If the depth, d, is acceptable, then A;=A, and h=d+2.5in. for one row of bars or
h=d+3.5in. for two rows of bars.
c. If anew d, is adopted greater than the calculated d, then the section behaves as a rectan-
gular section, and p can be calculated using Eq. 4.2; A, = pbd < A;.
d. If a new d, is adopted that is smaller than the calculated d, then the section will act as a
T-section, and the final A; will be greater then Ag,. In this case, proceed as in step 1(c) to
calculate A.

Example 4.7
The T-beam section shown in Fig. 4.7 has a web width, b, of 101in., a flange width, b, of 401n., a flange

s Yo

thickness of 4in., and an effective depth, d, of 14.5in. Determine the necessary reinforcement if the
applied factored moment is 3350 K-in. Given: f! = 3ksi and J, =60 ksi.

Solution
1. Check the position of the neutral axis; the section may be rectangular. Assume the depth of com-
pression block a is 4 in.; that is, a =t=41in. Then

¢Mﬁ=¢m8ybm<d—%0=AEMK-mJ>Mu=3%OKdm

e e |

4// — _
1 3 e
7 s
. =9
b 145 ¥ o
6#8 J - |l
e e} 00 v 0 Xy _
[ ] [ I T
P

Figure 4.7 Example 4.7: T-section.
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The design moment that the concrete flange can resist is greater than the factored applied
moment. Therefore, the section behaves as a rectangular section.

2. Determine the area of tension steel, considering a rectangular section, b =40 in.:
¢M, 3,350,000
bd®> 40 x 14.5%
From Eq. 4.2 or from tables in Appendix A, for R, =398 psi and p=0.00817,

A, = pbd = 0.00817 x 40 x 14.5 = 4.74in.?

R, =

= 398psi

Use six no. 8 bars, A, =4.74 in.2 (in two rows).

3. Check that p,, =A /b, d > pin; p,, =4.74/(10%x14.5)=0.0327 > p,.., =0.00333. Note that the A
used is less than A . of 7.06in.? calculated by Eq. 3.72.

Also, a=2.788in., c=3.281n.,d,=14.5 in,
and €, =0.003(d, — ¢)/c=0.01 > 0.005, which is OK.

Example 4.8
The floor system shown in Fig. 4.8 consists of 3-in. slabs supported by 14-ft-span beams spaced 10 ft
on center. The beams have a web width, b, of 14 in. and an effective depth, d, of 18.5in. Calculate the

s Vs

necessary reinforcement for a typical interior beam if the factored applied moment is 5080 K - in. Use
Jo = 3ksi and f, =60 ksi.
Solution

1. Find the beam flange width: The flange width is the smallest of

b=16t+b,=3x16+ 12 =60in.

and
span 14 x 12

4 4
Center-to-center spacing of adjacent slabs is 10 X12=1201in. Use b=42 in.
2. Check the position of the neutral axis assuming a =t:

b= =42in.

¢M, (based on flange) = ¢ X 0.85fbt (d — %,)

=09x0.85x3%x42x%x3(18.5—-1.5)=4916K - in.
The applied moment is M, =5080 K - in. > 4916 K - in.; the beam acts as a T-section, so a > t.

j j

- 100"

- S I ,
P % |

‘

14" o0 71411|A o 0" 14" ft—

Figure 4.8 Example 4.8: Effective flange width.
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0.85f/

37 3
l l !< 42" ,]| ‘ l‘_w'*.‘i«w'/—‘
22777777 722222777 222772 —
18~5”T A in.2 ///) Ci T <

A
PR 0 S LD B N Y N T e
T, Ay =3.57in T,
— 14" }c—— —»* 14" }4—

Figure 4.9 Analysis of Example 4.8.

3. Find the portion of the design moment taken by the overhanging portions of the flange (Fig. 4.9).
First calculate the area of steel required to develop a tension force balancing the compressive force
in the projecting portions of the flange:

B 0.85f1(b — b, )t _ 0.85X3x(42-14)x3
sf — fv - 60

Here, ¢ M, =M, +M,,, that is, the sum of the design moment of the web and the design
moment of the flanges:

=3.57in’.

M= pAgf, (4= 31)

= 0.9 % 3.57 X 60 <18.5 - %) = 3277K - in.

4. Calculate the design moment of the web (as a singly reinforced rectangular section):
M,=M,-M,=5080—-3277 = 1803K - in.
_ M, 1,803,000
Y (bd?)  14x(18.5)?
From Eq. 4.2 or the tables in Appendix A, for R, =376 psi, p; =0.0077:
A, = pb,d = 0.0077(14)(18.5) = 1.99in.?

R

= 376psi

Total A, = A; + A, = 3.57+ 1.99 = 5.56in.>  (uses ix n0.9 bars in two rows)
Total 2 5=18.5+3.5=22in. Calculate A, for T-sections using Eq. 3.72:

MaxA, = 7.02in.2 > 5.56in.?

5. Check g,: a=1.99x60/(0.85 %3 x14)=3.34in., c=3.93in., and d,=19.5in. Then £,=0.003
(d, = c)lc=0.0119> 0.005, tension-controlled section (¢ =0.9).

Example 4.9

In a slab—beam system, the flange width was determined to be 48 in., the web width was b, = 161in., and

the slab thickness was r=41in. (Fig. 4.10). Design a T-section to resist an external factored moment of
M, =812 K - ft. Use f/ = 3ksi and f, = 60 ksi.

Solution

1. Because the effective depth is not given, let a = and calculate A, for the whole flange:
_ 0.85f'bt 0.85(3)(48)(4)

“= = o =8.16in.
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. o .

l As
S -

[ 16 "

Figure 4.10 Example 4.9.

Let M, = ¢ A f,(d — t/2) and calculate d:
812 x 12 = 0.9(8.16)(60) (d - %) d=241in.

Now, if an effective d =24.11n. is chosen, then A, =A =8.16 in.2
2. If adepth d>24.11in. is chosen, say 26.5in., then a <t and it is a rectangular analysis. The steel
ratio can be calculated from Eq. 4.2 with p=0.00574 and A, = pbd =0.00574 x 48 X 26.5 =
7.3in.2 (six no. 10 bars in two rows, A, =7.621in.2).
3. If a depth d < 24.1 in. is chosen, say, 23.5in., then a > ¢, and the section behaves as a T-section.
Calculate
B 0.85f!t(b —b,,) _0.85(3)(4)(48 — 16)

=5.44in.2
sf fy 60 mn

M, = pAyf, (d - %t) = 0.9(5.44)(60) (23.5 - %) = 6316K - in.

M, =812x 12— 6316 = 3428K - in.

4. For the basic singly reinforced section, b, =16in., d=23.5in., and M, =3428 K-in,
R, =387 psi. Calculate p, from Eq. 4.2 to get p; =0.0079:

A, = p,b,d =0.0079(16)(23.5) = 2.97 in.?
Total A, =Ay+ A, =544 +297 =841in> (sevenno.l10 bars in two rows,
A, =8.89in.?)

S. Check €,: a =2.97 x 60/(0.85 x 3 x 16) = 4.3681n., ¢ = a/0.85 = 5.14in., d,=24.51in., and
£,=0.003 (d, — c)/c=0.0113>0.005, a tension-controlled section.

6. Calculate the total max A; that can be used for the T-section by Eq. 3:
MaxA, =
= 0.0425[(b — bw)t + 0.319bwd] = 10.54in.>
A (used) < maxA,

7. Note: If there are no restrictions on the total depth of the beam, it is a common practice to adopt
the case when a <t (step 2). This is because an increase in d produces a small increase in concrete
in the web only while decreasing the quantity of A, required.
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4.6 ADDITIONAL EXAMPLES

The following design examples give some practical applications and combine structural analysis
with concrete design of beams and frames.

Example 4.10

For the precast concrete I-section shown in Fig. 4.11, calculate the reinforcement needed to support a
factored moment of 360 K-ft. Use £/ = 4ksi and f, = 60 ksi.

Solution

Determine if the force in the flange area 14 x 5 in. will be sufficient to resist a factored moment of 360
K-ft. Letd =23.5 in. Force in flange (C,.) = 0.85 X f! (flange area) = 0.85 x 4 X (14 x 5) =238 K located
at 2.51n. from the top fibers and a=51n.:

dM, = 0.9C, (d - g) =09 x 238% = 374.9K - ft
which is greater than the applied moment of 360 K-ft. Therefore, a < 5in.:

M, = PAf, <d - %a)

360 x 12 = 0.9A4_(60) [ 23.5 o4,
X 12 = 0.94,(60) T 17x14x 14
where
Af,
a =
0.85f'b

Solve to get A, =3.79in.2 Or use Eq. 4.2 to get p=0.01152 and A, =0.01152 % 14x23.5=3.79in.?
Use three no. 10 bars in one row, as shown in Fig. 4.11.
For similar T-sections or I-sections, it is better to adopt a section with a flange size to accommodate
the compression force, C.. In this case, a is less than or equal to the flange depth. The bottom flange is
in tension and not effective.

5n
A
| 4 16"
3#10 s
. R e —
® [ ] 55

<t 14" > T

Figure 4.11 Example 4.10.




4.6 Additional Examples 175

Example 4.11

The simply supported beam shown in Fig. 4.12 carries a uniform dead load of 2.8 K/ft (including
self-weight) in addition to a service load of 1.6 K/ft. Also, the beam supports a concentrated dead load
of 16 K and a concentrated live load of 7 K at C, 10 ft from support A.

a. Determine the maximum factored moment and its location on the beam.

b. Design a rectangular section to carry the loads safely using a steel percentage of about 1.5%,
b=20in., f = 4ksi, and f, = 60 ksi.

Solution
a. Calculate the uniform factored load: w, =1.2(2.8) + 1.6(1.6) =5.91 K/ft. Calculate the concen-
trated factored load: P, = 1.2(16) + 1.6(7) = 30.4 K. Calculate the reaction at A by taking moments
about B:

30/2  30.4(20)
R, = 5.91(30)=L=
4 = 59130 = + =

Ry =5.91(30) + 30.4 — 108.92 = 98.78 K

=108.92K

Maximum moment in the beam occurs at zero shear. Starting from B,
V=0=9878-591x and x=16.711t from B at D
M, (atD) = 98.72(16.71) — 5.91(16.71) (%) = 8255K - ft (design moment)

M, (atC) = 98.78(20) — 5.91(20) (22—0> =793.6K - ft

iPL =7K
wp = 2.8 K/ft w, = 1.6 K/ft
lPD =16 K
AEIIIIIIIIIIIIIIlll‘Iilllllllllllllulllll]lllllll B
C
=|< 20’ >
108.9
Shearing 49.82
force +
diagram 19.42 < x = 16.71" =3 26.5"
8#9
D ([ XX XX J
< 13.29’ > - XX XX INEEd
’ «— 20" —> T
P 98.78 Section at D
Bending
moment
diagram 7937 825.5
+

Figure 4.12 Example 4.11.
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b. Design of the section at D: For f! = 4ksi and f, = 60 ksi, p,,,, =0.01806 and p,,;, =0.00333, and
the design steel ratio of 1.5% is within the limits. For p=0.015, R, =700 psi (from Table A.2) or
from Eq. 3.22:

M,=R,bd*> or 825.5x12=0.720)d’

Solve to get d=26.61n.:
A, =0.015x 20 X 26.6 = 7.98in.?

Choose eight no. 9 bars in two rows (area 8in.?), five in the lower row plus three in
the upper row. Minimum b for five no. 9 bars in one row is 14in. (Table A.7). Total depth
h=26.6+3.5=30.1in. Use h=301n. Actual d =30 —3.5=26.5in. Check the moment capacity
of the section, a = 8 X 60/(0.85 x 4 x 20) = 7.061in.:

26.5—-7.06/2
OM, = 0.9 x § x 60T/ — 826.9K - ft
which is greater than 825.5 K - ft. Check that A, =8in.? is less than A, :
A max = 0.01806 X 20 X 26.5 = 9.57 in.?

s,max

which exceeds 8 in.” The final section is shown in Fig. 4.12.

Example 4.12

The two-hinged frame shown in Fig. 4.13 carries a uniform service dead load (including estimated
self-weight) of 2.33 K/ft and a uniform service live load of 1.5 K/ft on frame beam BC. The moment at
the corner B (or C) can be evaluated for this frame dimension, M, =M, =— wl?/18.4, and the reaction
at A or D equals wL/2. A typical section of beam BC is shown; the column section is 16 X21 in. It is
required to:

a. Draw the bending moment and shear diagrams for the frame ABCD showing all critical values.

b. Design the beam BC for the factored moments, positive and negative, using f/ = 4ksi and
S, =60ksi. Show reinforcement details.

Solution

a. Calculate the forces acting on the frame using a computer program or the values mentioned pre-
viously.
Factored load (w,)=1.2(2.33) + 1.6(1.5) = 5.2 K/ft.
Because of symmetry My =M = — wl?/18.4 = — 5.2(40)*/18.4 = — 452.2 K-ft.
Positive moment at midspan (E) = w, L*/8 + My =5.2(40)*/8 —452.2 = 587.8 K-ft.
Vertical reaction at A=R, =R, =w,L/2=5.2(40)/2 =104 K. Horizontal reaction at A=H, =

Mp/h=452.2/16=28.26 K.

The moment and shear diagrams are shown in Fig. 4.13.
Determine the location of zero moment at section F on beam BC by taking moments about F:

104(y) — 28.26(16) — 5.2(y)2/2 =0 y=4.963ft say,5ft from joint B

b. Design of beam BC:
1. Design of section E at midspan: M, =4 587.8 K-ft. Assuming two rows of bars, d=21
—3.5=17.51in. Calculate the moment capacity of the flange using a=5.0in.:
oM, (flange) = $(0.85¢")ab (d - %)

=0.9(0.85 x 4) X (5 x 60) x % =1147.5K - ft

which is greater than the applied moment; therefore, a <5.0 in.
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4522 K-ft 4522 K-ft
1.5 K/ft
I
4522 T T Y « 0 33104
E C
587.8 K-ft
28.26 «— D ) «—H,
Moment diagram 40’ *
T Loads on main frame T
104 K 104K R, Rp
104K
t11i S S
B 28.26 K E ”
5
= 16"
A 28.26 l
Shear diagram < 16" >

Typical section (BC)

Stirrup holders

‘L,, 7 < 5 =
Bl - . Ens =
T#9
+—— Stirrups 21"
8#9
e o
2#7 Y
— 15— 16—
Section at B Section at E
(or C) (at midspan)
THO— F 2#5 t
+ : - _ 1l ___- 1] T
: \ <Z 21"
—— 5 z 4
B 44#9 'FStilTupSA 48#9 E
Ties —H 5 >{ .
Beam reinforcement details
l<—— Column
_..J_J\/i
21>}

Figure 4.13 Example 4.12.
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Assume a = 2.01in. and calculate As:
a
. =ons 4= 2)
587.8x12=09%x60A,(17.5-1.0) and A, = 7.92in.?

Check assumed a = Asfy/(O.SSfC'b) =7.92x60/(0.85 x4 x 60) = 2.33in. Revised As=
587.8x 12/(0.9 x 60 % 16.33)=7.99in.2 Check revised a: a=7.99%2.33/7.92=2.35in.,
which is very close to 2.33 in.

Alternatively, Eq. 4.2 can be used to get p and As. Choose eight no. 9 bars in two rows
(area = 8.0in.2), (b, = 11.81n.). Extend four no. 9 bars on both sides to the columns. The
other four bars can terminate where they are not needed, beyond section F; see the longitudinal
section in Fig. 4.13.

2. Design of section at B: M, = —452.2 K-ft. The section acts as a rectangular section, b= 161in.
and d =17.5 in. The main tension reinforcement lies in the flange:

=0.01806 and R = 820psi (Table 4.1)
Check the maximum moment capacity of the section as singly reinforced:
0.82(16)(17.5)?
oM =R pg? = 2S21OUTS)

n,max u,max 1 2

Pmax u,max

=334.8K - ft

which is less than the applied moment. Compression steel is needed:
A, = 0.01806(16)(17.5) = 5.06in.?

M, =4522-3348 =1174K - ft
MuZ = ¢As2fy(d - d/)
Assumed’ = 2.51n.

1174 x 12 = 0.94,,(60)(17.5-2.5) and A, = 1.74in>

Total tension steel = 5.06 4+ 1.74 = 6.8 in.2 Use seven no. 9 bars in two rows (area used 7.01in.%, which is
adequate). For compression steel, use two no. 9 bars (area 2.0in.?), extended from the positive-moment
reinforcement to the column. Actually, four no. 9 bars are available; see the longitudinal section in
Fig. 4.13.

The seven no. 9 bars must extend in the beam BC beyond section F into the compression zone and
also must extend into the column BA to resist the column moment of 452.2 K - ft without any splices at
joints B or C.

Check if compression steel yields by using Eq. 3 or Table 3. Assume K=0.01552 (d'/d)=
0.1552(2.5)/(17.5)=0.02217 > p, =0.01806. Therefore, compression steel yields, and f! = 60ksi, as
assumed.

Stirrups are shown in the beam to resist shear (refer to Chapter 8), and two no. 5 bars were placed
at the top of the beam to hold the stirrups in position. Ties are used in the column to hold the vertical
bars (refer to Chapter 10). To determine the extension of the development length of bars in beams or
columns, refer to Chapter 7.

4.7 EXAMPLES USING S| UNITS

Example 4.13

Design a singly reinforced rectangular section to resist a factored moment of 280 kN - m using the
maximum steel percentage for tension-controlled sections. Given: f = 20N/ mm?, f,=400 N/mm?, and
b =250 mm. '
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Solution

. 600
e s [] ()
Yy y

20 600
= 0.85 X 0.85 x = <—) = 0.0217
X083 X760 * \ 600 + 400
0.003 + 1, /E, £
= —=— E =2 MPa X — 0.002
Prmax < 0.008 > Py s 00, 000 a ES 0.00
= 0.625p, = 0.01356

=09

pmaxfy

|- 0.01356 x 400

=0.9x0.01356x400( —

) = 4.1 N/mm?(MPa)

M, = R,bd*

M 6
Jo Mo [280x10° _
Rb 4.1x250

A, = pbd = 0.01356 X 250 X 523 = 1772 mm* = 17.72 cm?

Choose four bars, 25 mm diameter, in two rows.
Provided A; =4 x4.9=19.6 cm?. Total depth is

h =d+25mm + 60 mm
=523 4+ 25 + 60 = 608 mm say, 610 mm (or 600 mm)
Check minimum width:
bin =2D 4+ 1S +95mm = 3 X 25 + 95 = 170 mm < 250 mm

Bars are placed in two rows.

Example 4.14

Calculate the required reinforcement for a beam that has a section of 5>=300mm and a total depth
h=600mm to resist M, = 696 kN - m. Given: f/ = 30 N/mm? and f, =420 N/mm?.

Solution

1. Determine the design moment strength of the section using p,,,, (for tension-controlled section,

$=0.9):
_ fi 600
Py = (0.85)8 [f}] <600 +f,>

30 600
=0.85 X 0.85 x ~2 <—
XD-83X 756 %\ 600 + 1020

420

) = 0.0304
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0.003 +f,/E,
Do = <—> p, = 0.6375p, = 0.01938

0.008
pmaxfy
Rumax = ¢pmaxfr (1 - Tf’)
— 0.9 % 0.01938 x 420 (1 - %) — 6.16 N/mm?(MPa)

d = h — 85 mm(assumingtworowsofbars)
=600 -85 =515mm
$M,, = R bd*> = 6.16 x 300 x (515)> X 107° = 490kN - m

This is less than the external moment; therefore, compression reinforcement is needed.
2. Calculate A, M,,;, and M :

st> My
A = praxbd = 0.01938 x 300 x 515 = 2994 mm?
M,=M,—M, =696 —490 = 206kN - m
3. Calculate A, and A} due to M,,. Assume d’ = 60 mm:
M, = pA,f(d~d)
206 x 10° = 0.94,, x 420(515 — 60) A, = 1198 mm?>

Total tension steel is 2994 + 1198 = 4192 mm?.
4. Compression steel yields if

fLod 600
—p =p, 20856, x = x =X =
p p pl = ﬂl f;, d 600 _f;,

30 60 600
K =(0.85° X — X — X ————— = 0.020
(0-85)"% 150 % 515 % 500 — 420

Because p — p' = p,,. = 0.01938 < 0.020, compression steel does not yield.
5. Calculate
Aty
a=—r
0.85f/b
_2994(420)
~ 0.85x30%300

c= ﬁ =193.4mm d =60mm

f;=600<

= 164.4mm

—_J
c—d > = 414N/mm>
C

420
A=A, (M) = 1215 mm?

6. Choose steel bars as follows: For tension, choose six bars 30 mm in diameter (30 M). The A; pro-
vided (4200 mm) is greater than A, as required. For compression steel, choose three bars 25 mm
in diameter (25 M) (Table B.11):

Al = 1500 mm?* > 1215 mm?
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Sections 4.1-4.3: Design of a Singly Reinforced Rectangular Section

Given: M,, (external factored moment), f! (compressive strength of concrete), and f, (yield stress
of steel). )

ol

Case 1 When b, d, and A, (or p) are not given:

. Assume p i < p < prax- Choose p.. for a minimum concrete cross section (smallest) or

choose p between py,,,/2 and p,/2 for larger sections. For example, if f, =60ksi, you may
choose

p=12% R,=618psi forf =3ksi

p=14% R,=736psi forf. =4ksi

p=14% R,=75Tpsi forfl =5ksi
For any other value of p, R, = pf,[1 — (pfy/1.7fc’)], and R, = ¢R,,.
Calculate bd> = M, /R, (¢ =0.9) for tension-controlled sections.

Choose b and d. The ratio of d to b is approximately 1 to 3, or d/b =2.0.

Calculate A; = pbd; then choose bars to fit in b in either one row or two rows. (Check b,
from the tables.)

. Calculate

= d+2.5in. (for one row of bars)
~ \d+3.5in. (for two rows of bars)

Here, b and i must be to the nearest higher inch. Note: If h is increased, calculate new d=h
—2.5 (or 3.5) and recalculate A, to get a smaller value.

Case 2 When p is given, d, b, and A, are required. Repeat steps 1 through 5 from Case 1.
Case 3 When b and d (or h) are given, A, is required.

Calculate R, =M, /¢pbd* (¢ =0.9).

Calculate
<O.85ﬂ ) 2R,
p= 1—4/1-
1y 0.85f!

(or get p from tables or Eq. 4.2).
Calculate A, = pbd, choose bars, and check b
Calculate 4 to the nearest higher inch (see note, Case 1, step 5).

min*

Case 4 When b and p are given, d and A are required.

. Calculate

R, = of, <1 > R, = ¢R, (¢ = 0.9)

LA
Calculate

MM
d ¢R,b
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3. Calculate A, = pbd, choose bars, and check b

4. Calculate A to the nearest higher inch (see note, Case 1, step 5). Note: Equations that may be
used to check the moment capacity of the section after the final section is chosen are

min*

) ) Ay \ Al
M, = ¢M, = PA,f, (d - 1.7fgb> = A <1 ) W>

= $of, (bd?) (1 -2 :;) — R bd?

c

Section 4.4: Design of Rectangular Sections with Compression Steel

Given: M, b, d, d’,fc’,fy, and ¢p=0.9.
Required: A, and A.

1. General
a. Calculate p,,, and p,;, as singly reinforced from equations (or from tables).

b. Calculate R, ,.x = Pmaxfy [1 - <p{"Tf]j‘>] (orusetables).

c. Calculate the maximum capacity of the section as singly reinforced:
M, = ¢R,, 1. bd”
d. If M, > ¢M,, then compression steel is needed. If M, <M, it is a singly reinforced
section.
2. If M, > ¢$M, and compression steel is needed:
a. Let M, = R, . bd”.
b. Calculate A;; = p,,.«Pd (basic section).
c. Calculate M,, =M, — M, (steel section).
3. Calculate A, and A!, as the steel section:
a. M,=¢A,f(d—d).
b. Calculate total tension steel: A,=A,; +A,,.
4. Calculate A} (compression steel area):
a. Calculate a = A, f,/0.85fb and c = alp,.
b. Calculate f{ = 87[(c — d')/c] < f,.
Iff{ > f,, then f{ = f, and A} = A,.
Iff! <, then A! = A, (f" )

7
c¢. Check that total steel area (A;) > max Aj, or check £, >0.005:
f/
-
Iy

Section 4.5: Design of T-Sections

Given: Mu,fc’,fy, b, t, and b,
Required: A, and d (if not given).
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There are two cases:
Case 1 When d and A, (or p) are not given:

. Let a <t (as singly reinforced rectangular section). If a =t is assumed, then

M,, = (totalflange) = ¢(0.85f,)bt (d - %) = PAJ,y <d - é)

Solve for d and then for A:
M t M

u u

4= Jossmm T T of,(d—1/2)

. If a is assumed to be less than ¢, then

M, a M,
d=— et o and A =

$(0.85f))ba ~ ¢fi(d—a/2)

Case 2 When d is given and A; is required (one unknown):

. Check if ‘a’ is greater or less than ¢ by considering the moment capacity of the flange (b1).

(lange)pM,, = ¢(0.85 )bt (d - %)

If ¢ M, > M, (external), then a < ¢ (rectangular section).
If ¢ M, <M, (external), then a >t (T-section).

. If a<t, calculate R, = M,/ ¢ bd* and then calculate p (or determine p from tables or Eq. 4.2):

0.85f 2R,
p= 1—4/1-
1y 0.85f!

Then calculate A, = pbd.

. Ifa>t

a. Calculate Cyand Ag:
Ay = 0857220 = (fange)
sf N c f;} A]cy
Then calculate M, (flange) = ¢C[(d — 1/2).

b. Calculate M, (web)=M, — M. Calculate R,; (web) =M, /(¢$b,d,); then find p,, (use
the equation or tables). Calculate A, (web)=p,b,d.

c. Total Ay =A (flange) + A, (web). Total A; must be less than orequal to A |, and greater

than or equal to A ;.
0.8f! 2R,
Pw = 1 - 1-
5y 0.85f!

e. Check thatp,, =A/b,d> p,;, (p,, = steel ratio in web) or A; > A |, where A
(b,,d). Check that A; <max Aj, or check €, =(d,—c)/c 20.005.

s, min — Pmin
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PROBLEMS

4.1 Based on the information given in the accompanying table and for each assigned problem, design a
singly reinforced concrete section to resist the factored moment shown in boldface. Use f! = 4 ksi and
f,=60ksi and draw a detailed, neat section.

No. M, (K-ft) b (in.) d (in.) p%
a 2727 12 21.5 —
b 969.2 18 32.0 —
c 816.0 16 — 1.70
d 657.0 16 — 1.50
e 559.4 14 — 1.75
f 254.5 10 215 —
g 451.4 14 — 1.80
h 832.0 18 28.0 —
i 345.0 15 — 1.77
i 510.0 0.5d — P
k 720.0 — 2.5b 1.80
1 605.0 — 1.5b 1.80

For problems in SI units, 1in.=25.4 mm, 1ksi = 6.9 MPa (N/mm?),
and 1 M, (K-ft) =1.356 kN-m.

4.2 Based on the information given in the following table and for each assigned problem, design a rectangular
section with compression reinforcement to resist the factored moment shown. Use f] = 4 ksi, fy =60 ksi,
and d’ =2.5in. Draw detailed, neat sections.

No. M, (K-f) b (in.) d (in.)
a 554 14 20.5
b 790 16 24.5
c 448 12 18.5
d 520 12 20.5
e 765 16 20.5
£ 855 18 22.0
g 555 16 18.5
h 300 12 16.5
i 400 16 16.5
i 280 12 16.5
k 290 14 14.5
1 400 14 17.5

For problems in SI units, 1in.=25.4mm, 1 ksi=6.9 MPa (N/mm?),
and 1 M, (K-ft) = 1.356 kKN-m.

4.3 Based on the information given in the following table and for each assigned problem, calculate the tension
steel and bars required to resist the factored moment shown. Use fc’ =3ksiand f) =60 ksi. Draw detailed,
neat sections.
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No. M, (K-ft) b (in.) b, (in.) t (in.) d (in.) Notes

a 394 48 14 3 18.5

b 800 60 16 4 19.5

c 250 44 15 3 15.0

d 327 50 14 3 13.0

e 577 54 16 4 18.5

f 559 48 14 4 17.5

g 388 44 12 3 16.0

h 380 46 14 3 15.0

i 537 60 16 3 16.5

] 515 54 16 3 17.5

k 361 44 15 3 15.0

1 405 50 14 3 15.5

m 378 44 16 3 — Leta=t

n 440 36 16 4 — Leta=t

0 567 48 12 3 — Let A, =6.0in.2
P 507 46 14 3 — LetA,=7.0in.2

For problems in SI units, 1in.=25.4 mm, 1 ksi=6.9 MPa (N/mm?),
and 1 M, (K-ft)=1.356 kN-m.

4.4 Design a singly reinforced rectangular section to resist a factored moment of 232 K - ft (320 kN-m) if
Sl =4ksi (28 MPa), f, =60ksi (420 MPa), and b =10 in. (250 mm) using (a) p,,,,» (b) p=0.016, and (c)
p=0.012.

4.5 Design a singly reinforced section to resist a factored moment of 186 K - ft (252 kKN - m) if b=121in.
(275 mm), d=201n. (500 mm), f; = 3 ksi(20 MPa), and f, =40ksi (300 MPa).

4.6 Determine the reinforcement required for the section given in Problem 4.5 when f/ = 4 ksi(30 MPa) and
J, =60ksi (400 MPa).

4.7 A simply supported beam has a 20-ft (6-m) span and carries a uniform dead load (DL) of 800 1b/ft (12
kN/m) and a concentrated live load (LL) at midspan of 9 kips (40 kN) (Fig. 4.14). Design the beam if
b=12in. (300 mm), f/ = 4ksi(30 MPa), and S, =60ksi (400 MPa). (Beam self-weight is not included in
the dead load.)

4.8 A beam with a span of 24 ft (7.2 m) between supports has an overhanging extended part of 8 ft (2.4 m)
on one side only. The beam carries a uniform dead load of 2.3 K/ft (30 kN/m) (including its own weight)
and a uniform live load of 1.3 K/ft (18 kN/m) (Fig. 4.15). Design the smallest singly reinforced rect-
angular section to be used for the entire beam. Select steel for positive and negative moments. Use
fl =4ksi(30MPa), f, =60ksi (400 MPa), and b= 12in. (300 mm). (Determine the maximum positive
and maximum negative moments by placing the live load once on the span and once on the overhang-
ing part.)

LL = 9 k (40 kN)
l / DL = 0.8 K/ft (12 kN/m)
A l i I i IR ! ! ! ! |B
B A
» 100 10 -
| (3 m) | (3m) |

Figure 4.14 Problem 4.7.
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DL = 2.3K/ft (34 kKN/m)
LL=13K/ft (20kN/m) B

AL+ ¢+ ¥ v ¥ § ¥ ¥ v ¥ v ¥ ¥ v

|‘ 24 J 8 =
| (7.2 m) I

Figure 4.15 Problem 4.8.

N 5 |

10" (250 mm)

JT

| 10/
l (3 m)

Figure 4.16 Problem 4.10.

4.9 Design a 15-ft (4.5-m) cantilever beam of uniform depth to carry a uniform dead load of 0.88 K/ft
(12 kN/m) and a live load of 1.1 K/ft (15 kN/m). Assume a beam width »=14in. (350 mm), f! =
4 ksi(30 MPa), and f, = 60 ksi (400 MPa).

4.10 A 10-ft (3-m) cantilever beam carries a uniform dead load of 1.50 K/ft (20 kN/m) (including its own
weight) and a live load of 0.77 K/ft (10 kN/m) (Fig. 4.16). Design the beam using a variable depth.
Draw all details of the beam and reinforcement. Given: f, = 3 ksi(20 MPa), J, =40ksi (300 MPa), and
b=121in. (300 mm). Assume % at the free end is 10in. (250 mm).

4.11 Determine the necessary reinforcement for a concrete beam to resist an external factored moment of 290
K-ft (400 kN-m) if »=12in. (300 mm), d=19in. (475 mm), d’' =2.5in. (65 mm), f! = 3 ksi(20 MPa),
and f, = 60 ksi (400 MPa).

4.12 Design a reinforced concrete section that can carry a factored moment of 260 K-ft (360 kN-m) as:

a. Singly reinforced, » = 10in. (250 mm)

b. Doubly reinforced, 25% of the moment to be resisted by compression steel, b =101in. (250 mm)

c. T-section, which has a flange thickness of 3 in. (75 mm), flange width of 20 in. (500 mm), and web
width of 10 in. (250 mm)

Then f! = 3ksi(20 MPa) and fy = 60 ksi(400 MPa) for all problems.

Determine the quantities of concrete and steel designed per foot length (meter length) of beams. Also,
determine the cost of each design if the price of the concrete equals $50/yd? (67/m?) and that of steel is
$0.30/1b ($0.66/kg). Tabulate and compare results.

4.13 Determine the necessary reinforcement for a T-section that has a flange width b =40in. (1000 mm),
flange thickness =4 in. (100 mm), and web width b, = 10in. (250 mm) to carry a factored moment of
545 K-ft (750 kN-m). Given: f = 3ksi(20 MPa) and f, = 60 ksi (400 MPa).

4.14 The two-span continuous beam shown in Fig. 4.17 is subjected to a uniform dead load of 2.6 K/ft (includ-
ing its own weight) and a uniform live load of 3 K/ft. The reactions due to two different loadings are
also shown. Calculate the maximum negative factored moment at the intermediate support B and the
maximum positive factored moment within the span AB (at 0.42L from support A), design the critical
section at B and D, and draw the reinforcement details for the entire beam ABC.
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Figure 4.17 Problem 4.14.

LL K/ft

DL K/ft
/ (125 mm)
P (18 m) s
P 1 1§ 1 - 60 ~ l
© L |
(475 mm) 19"
D R<—Ho re—— 28" 16" e—
4 (700 mm) (400 mm)
Ra ( 1038é/m) Ro Typical section of BC

Figure 4.18 Problem 4.15.
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Given: L=20ft, b=121in., and h=241in. Use d = 18 in. for one row of bars and d = 17 in. for two rows.

Assume f! = 4 ksi and f,, = 60 ksi.

4.15 The two-hinged frame shown in Fig. 4.18 carries a uniform dead load of 3.93 K/ft and a uniform live
load of 2.4 K/ft on BC. The reactions at A and D can be evaluated as follows: HA = HD = wL/9 and
RA=RD = wlL/2, where w is the uniform load on BC. A typical cross section of the beam BC is also

shown. It is required to:

a. Draw the bending moment diagram for the frame ABCD.

b. Design the beam BC for the applied factored moments (positive and negative).
c. Draw the reinforcement details of BC.

Given: f; = 4ksi and f,, = 60 ksi.



CHAPTER 5

SHEAR AND
DIAGONAL TENSION

Office building, Chicago, Illinois.

5.1 INTRODUCTION

When a simple beam is loaded, as shown in Fig. 5.1, bending moments and shear forces develop
along the beam. To carry the loads safely, the beam must be designed for both types of forces.
Flexural design is considered first to establish the dimensions of the beam section and the main
reinforcement needed, as explained in the previous chapters.

The beam is then designed for shear. If shear reinforcement is not provided, shear failure may
occur. Shear failure is characterized by small deflections and lack of ductility, giving little or no
warning before failure. On the other hand, flexural failure is characterized by a gradual increase
in deflection and cracking, thus giving warning before total failure. This is due to the ACI Code
limitation on flexural reinforcement. The design for shear must ensure that shear failure does not
occur before flexural failure.

5.2 SHEAR STRESSES IN CONCRETE BEAMS

The general formula for the shear stress in a homogeneous beam is

v= Q (5.1)
Ib
where
V = total shear at section considered
Q = statical moment about neutral axis of that portion of cross section lying between line
through point in question parallel to neutral axis and nearest face, upper or lower, of beam
I = moment of inertia of cross section about neutral axis
b = width of beam at given point

The distribution of bending and shear stresses according to elastic theory for a homogeneous
rectangular beam is as shown in Fig. 5.2. The bending stresses are calculated from the flexural
188
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Figure 5.1 Bending moment and shearing force diagrams for a simple beam.
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Figure 5.2 Bending and shear stresses in a homogeneous beam according to elastic
theory.

formula f= Mc/I, whereas the shear stress at any point is calculated by the shear formula of Eq. 5.1.
The maximum shear stress is at the neutral axis and is equal to 1.5v, (average shear), where
v, = V/bh. The shear stress curve is parabolic.

For a singly reinforced concrete beam, the distribution of shear stress above the neutral
axis is a parabolic curve. Below the neutral axis, the maximum shear stress is maintained down
to the level of the tension steel, because there is no change in the tensile force down to this
point and the concrete in tension is neglected. The shear stress below the tension steel is zero
(Fig. 5.3). For doubly reinforced and T-sections, the distribution of shear stresses is as shown
in Fig. 5.3.
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Figure 5.3 Distribution of shear stresses in reinforced concrete beams: (a) singly rein-
forced, (b) doubly reinforced, (c) T-section, and (d) T-section with compression steel.

It can be observed that almost all the shear force is resisted by the web, whereas the flange
resists a very small percentage; in most practical problems, the shear capacity of the flange is
neglected.

Referring to Fig. 5.1 and taking any portion of the beam dx, the bending moments at both
ends of the element, M, and M,, are not equal. Because M, > M, and to maintain the equilibrium
of the beam portion dx, the compression force C, must be greater than C, (Fig. 5.4). Consequently,
a shear stress v develops along any horizontal section a—a, or b—b, (Fig. 5.4a). The normal and
shear stresses on a small element at levels a—a,; and b—b, are shown in Fig. 5.4b. Notice that the
normal stress at the level of the neutral axis b—b, is zero, whereas the shear stress is at maximum.
The horizontal shear stress is equal to the vertical shear stress, as shown in Fig. 5.4b. When the
normal stress fis zero or low, a case of pure shear may occur. In this case, the maximum tensile
stress f; acts at 45° (Fig. 5.4¢).

The tensile stresses are equivalent to the principal stresses, as shown in Fig. 5.4d. Such prin-
cipal stresses are traditionally called diagonal tension stresses. When the diagonal tension stresses
reach the tensile strength of concrete, a diagonal crack develops. This brief analysis explains the
concept of diagonal tension and diagonal cracking. The actual behavior is more complex, and it is
affected by other factors, as explained later. For the combined action of shear and normal stresses at
any point in a beam, the maximum and minimum diagonal tension (principal stresses) f, are given
by the equation

f, = %fi (%f)2 + 02 (5.2)

where

f = intensity of normal stress due to bending
v = shear stress
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Figure 5.4 (a) Forces and stresses along depth of section, (b) normal and shear
stresses, (c) pure shear, and (d) diagonal tension.

The shear failure in a concrete beam is most likely to occur where shear forces are at max-
imum, generally near the supports of the member. The first evidence of impending failure is the
formation of diagonal cracks.

5.3 BEHAVIOR OF BEAMS WITHOUT SHEAR REINFORCEMENT

Concrete is weak in tension, and the beam will collapse if proper reinforcement is not provided.
The tensile stresses develop in beams due to axial tension, bending, shear, torsion, or a combination
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of these forces. The location of cracks in the concrete beam depends on the direction of principal
stresses. For the combined action of normal stresses and shear stresses, maximum diagonal tension
may occur at about a distance d from the face of the support.

The behavior of reinforced concrete beams with and without shear reinforcement tested under
increasing load was discussed in Section 3.3. In the tested beams, vertical flexural cracks developed
at the section of maximum bending moment when the tensile stresses in concrete exceeded the

modulus of rupture of concrete, or f, = 7.54 \/]TC’ . Inclined cracks in the web developed at a later
stage at a location very close to the support.

Aninclined crack occurring in a beam that was previously uncracked is generally referred to as
aweb-shear crack. If the inclined crack starts at the top of an existing flexural crack and propagates
into the beam, the crack is referred to as flexural-shear crack (Fig. 5.5). Web-shear cracks occur in
beams with thin webs in regions with high shear and low moment. They are relatively uncommon
cracks and may occur near the inflection points of continuous beams or adjacent to the supports of
simple beams.

Flexural-shear cracks are the most common type found in reinforced concrete beams. A flex-
ural crack extends vertically into the beam; then the inclined crack forms, starting from the top of
the beam when shear stresses develop in that region. In regions of high shear stresses, beams must
be reinforced by stirrups or by bent bars to produce ductile beams that do not rupture at a failure.

N

|
L - R

(@) ®)

Principal
tensile
stresses

7 ) |
Initial flexural }.73_,
crack
|

© @)

Figure 5.5 Shear failure: (a) general form, (b) web-shear crack, (c) flexural-shear crack,
(d) analysis of forces involved in shear (V,=interface shear, V,=shear resistance,
V, =dowel force).
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To avoid a shear failure before a bending failure, a greater factor of safety must be provided against
a shear failure. The ACI Code specifies a capacity reduction factor, ¢, of 0.75 for shear.

Shear resistance in reinforced concrete members is developed by a combination of the
following mechanisms [2] (Fig. 5.5):

» Shear resistance of the uncracked concrete, V, [3].

« Interface shear transfer, V,, due to aggregate interlock tangentially along the rough surfaces
of the crack [3].

e Arch action [4].

e Dowel action, V,, due to the resistance of the longitudinal bars to the transverse shearing
force [5].

In addition to these forces, shear reinforcement increases the shear resistance V,, which
depends on the diameter and spacing of stirrups used in the concrete member. If shear reinforce-
ment is not provided in a rectangular beam, the proportions of the shear resisted by the various
mechanisms are 20 to 40% by V_, 35 to 50% by V,, and 15 to 25% by V, [6].

5.4 MOMENT EFFECT ON SHEAR STRENGTH

In simply supported beams under uniformly distributed load, the midspan section is subjected to
a large bending moment and zero or small shear, whereas sections near the ends are subjected to
large shear and small bending moments (Fig. 5.1). The shear and moment values are both high
near the intermediate supports of a continuous beam. At a location of large shear force and small
bending moment, there will be little flexural cracking, and an average stress v is equal to V/bd.
The diagonal tensile stresses are inclined at about 45° (Fig. 5.4¢). Diagonal cracks can be expected
when the diagonal tensile stress in the vicinity of the neutral axis reaches or exceeds the tensile

strength of concrete. In general, the factored shear strength varies between 3.5 \/]76’ and 54/f. After
completing a large number of beam tests on shear and diagonal tension [1], it was found that in
regions with large shear and small moment, diagonal tension cracks were formed at an average shear
force of

V. =3.5vVf!b,d (5.3)

where b, is the width of the web in a T-section or the width of a rectangular section and d is the
effective depth of the beam.

In locations where shear forces and bending moments are high, flexural cracks are formed
first. At a later stage, some cracks bend in a diagonal direction when the diagonal tension stress
at the upper end of such cracks exceeds the tensile strength of concrete. Given the presence of
large moments on a beam, for which adequate reinforcement is provided, the nominal shear force
at which diagonal tension cracks develop is given by

V.= 1.94\fb,d (5.4)

This value is a little more than half the value in Eq. 5.3 when bending moment is very small.
This means that large bending moments reduce the value of shear stress for which cracking occurs.
The following equation has been suggested to predict the nominal shear stress at which a diagonal

crack is expected [1]:
v, = ld - (1.91\/f_g+ 2500,)%

- ) <3501/f (5.5)
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1. ACI Code, Section 22.5.5.1, adopted this equation for the nominal shear force to be resisted

by concrete for members subjected to shear and flexure only by

V,d
V.= |19V + 25000, 7~

u

b,d <3.5M\/fb,d (5.6)

where p,,=A,/b,, d and b,, are the web width in a T-section or the width of a rectangu-
lar section, and V,, and M, are the factored shearing force and bending moment occurring
simultaneously on the considered section.

The value of V,d/M, must not exceed 1.0 in Eq. 5.6. If M,, is large in Eq. 5.6, the second
term becomes small and v, approaches 1-9/1\/70/ . If M, is small, the second term becomes
large and the upper limit of 3.5/1\/]76’ controls. As an alternative to Eq. 5.6, the ACI Code,
Section 22.5.5.1, permits evaluating the shear strength of concrete as follows:

_ [2a\flb,d  (bin)
5 _{0.17/1\/Ebwd (SD) (5.7)

c

. For members subjected to axial compression force N, (ACI Code, Section 22.5.6.1) V.. shall

be calculated by:
v V,d
V.= (1.90/F + 25009, ) bud
M, =M, —N, (M) (5.8)
8
where
Pw = As/(bw d)

h = overall depth

and V,d/M, may be greater than 1.0 but V. must not exceed

V, = 350 fbud |1+ —ot (5.9)
¢ TV 5004, '

where A, is the gross area in square inches.

L

Shear failure near a middle support.



5.5 Beams with Shear Reinforcement 195
Alternatively, V., may be computed by

N,

V.=b,d <2 + O.OOIA—”> AV (5.10)

g

3. In the case of members subjected to axial tensile force N, (ACI Code, Section 22.5.7.1), V,
shall be calculated by:

N,
V. =b,d (2+0.004A—“> W (5.11)
8
where N, is to be taken as negative for tension and N, /A, is in pounds per square inch.
If V. is negative, V.. should be taken equal to zero.

5.5 BEAMS WITH SHEAR REINFORCEMENT

Different types of shear reinforcement may be used:

1. Stirrups, which can be placed either perpendicular to the longitudinal reinforcement or
inclined, usually making a 45° angle and welded to the main longitudinal reinforcement.
Vertical stirrups, using no. 3 or no. 4 U-shaped bars, are the most commonly used shear
reinforcement in beams (Fig. 5.6a).

2. Bent bars, which are part of the longitudinal reinforcement, bent up (where they are no longer
needed) at an angle of 30° to 60°, usually at 45°.

3. Combinations of stirrups and bent bars.

Welded wire fabric with wires perpendicular to the axis of the member.

&

5. Spirals, circular ties, or hoops in circular sections, as columns.

The shear strength of a reinforced concrete beam is increased by the use of shear reinforce-
ment. Prior to the formation of diagonal tension cracks, shear reinforcement contributes very little
to the shear resistance. After diagonal cracks have developed, shear reinforcement augments the
shear resistance of a beam, and a redistribution of internal forces occurs at the cracked section.
When the amount of shear reinforcement provided is small, failure due to yielding of web steel
may be expected, but if the amount of shear reinforcement is too high, a shear—compression failure
may be expected, which should be avoided.

Concrete, stirrups, and bent bars act together to resist transverse shear. The concrete, by virtue
of its high compressive strength, acts as the diagonal compression member of a lattice girder system,
where the stirrups act as vertical tension members. The diagonal compression force is such that its
vertical component is equal to the tension force in the stirrup. Bent-up reinforcement acts also as
tension members in a truss, as shown in Fig. 5.6.

In general, the contribution of shear reinforcement to the shear strength of a reinforced con-
crete beam can be described as follows [2]:

1. It resists part of the shear, V.

2. Itincreases the magnitude of the interface shear, V, (Fig. 5.5), by resisting the growth of the
inclined crack.

3. Itincreases the dowel force, V, (Fig. 5.5), in the longitudinal bars.
4. The confining action of the stirrups on the compression concrete may increase its strength.
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Figure 5.6 Truss action of web reinforcement with (a) stirrups, (b) bent bars, and (c) ten-
sion steel.

5. The confining action of stirrups on the concrete increases the rotation capacity of plastic
hinges that develop in indeterminate structures at maximum load and increases the length
over which yielding takes place [7].

The total nominal shear strength of beams with shear reinforcement V, is due partly to the
shear strength attributed to the concrete, V.., and partly to the shear strength contributed by the shear
reinforcement, V:

V,=V.+V; (5.12)

The shear force V,, produced by factored loads must be less than or equal to the total nominal shear
strength V,, or
Vi 29V, = (V. +Vy) (5.13)

where V, =1.2V, + 1.6V, and ¢ =0.75.
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Q

Figure 5.7 Factors in inclined shear reinforcement.

An expression for V; may be developed from the truss analogy (Fig. 5.7). For a 45° crack and

a series of inclined stirrups or bent bars, the vertical shear force V; resisted by shear reinforcement

is equal to the sum of the vertical components of the tensile forces developed in the inclined bars.
Therefore,

Vi =nA,fy sina (5.14)

where A, is the area of shear reinforcement with a spacing s and f,, is the yield strength of shear
reinforcement; ns is defined as the distance aa,a,:

g = J@as=aa; tan 45° (from triangle aa,ay,)
a,a, = a,a, tan @ (from triangle a;a,a,)

ns =aa; + a,a,
= d(cot 45° 4 cot &) = d(1 + cot a)
d
= —(1 +cot
n S( cot @)

Substituting this value in Eq. 5.14 gives

A, fud A, fud
= ”Sy‘ sin a(l + cot @) = —2—(sin a + cos a) (5.15)
For the case of vertical stirrups, « =90° and
A, fud A, fd
== or 5= 22 (5.16)
S Vs
In the case of T-sections, b is replaced by the width of web b,, in all shear equations. When a =45°,
Eq. 5.15 becomes
A, fyd 14A, fyd
V,=14 S=——— 5.17
() v i
For a single bent bar or group of parallel bars in one position, the shearing force resisted by steel is
V,
Vi=A,fysina or A,= . (5.18)

Sy sina
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For a =45°,
VS
A, =14 — (5.19)
yt
For circular sections, mainly in columns, V, will be computed from Eq. 5.16 using d = 0.8 X diameter
and A, = two times the area of the bar in a circular tie, hoop, or spiral.

5.6 ACI CODE SHEAR DESIGN REQUIREMENTS

5.6.1 Critical Section for Nominal Shear Strength Calculation

The ACI Code, Section 7.4.3.2, permits taking the critical section for nominal shear strength cal-
culation at a distance d from the face of the support. This recommendation is based on the fact that
the first inclined crack is likely to form within the shear span of the beam at some distance d away
from the support. The distance d is also based on experimental work and appeared in the testing
of the beams discussed in Chapter 3. This critical section is permitted on the condition that the
support reaction introduces compression into the end region, loads are applied at or near the top of
the member, and no concentrated load occurs between the face of the support and the location of
the critical section.

The Code also specifies that shear reinforcement must be provided between the face of the
support and the distance d using the same reinforcement adopted for the critical section.

5.6.2 Minimum Area of Shear Reinforcement

The presence of shear reinforcement in a concrete beam restrains the growth of inclined cracking.
Moreover, ductility is increased, and a warning of failure is provided. If shear reinforcement is
not provided, brittle failure will occur without warning. Accordingly, a minimum area of shear
reinforcement is specified by the Code. The ACI Code, Section 9.6.3.3, requires all stirrups to have
a minimum shear reinforcement area, A, equal to

b, w
A, = 0.75v/f! <f—> 2 (5.20)
yt

= @ 8
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Shear failure in dapped-end beam.
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where b,, is the width of the web and s is the spacing of the stirrups. The minimum amount of shear
reinforcement is required whenever V, exceeds ¢V /2, except in:

1. Slabs and footings.

2. Concrete floor joist construction.

3. Beams where the total depth (h) does not exceed 10in., 2.5 times the flange thickness for
T-shaped flanged sections, or one-half the web width, whichever is greatest.

4. The beam is integrated with slab, h not greater 24 in. and not greater than the larger of 2.5
times the thickness of the flange and 0.5 times the width of the web.

If 0.75\/f_c’ = 50, then f] = 4444 psi. This means that, when f/ < 4500 psi, the minimum

A, =50 b,,s/f,, controls, and when f; > 4500 psi, the minimum A, = 0.75\/7; (bys/fy) controls.
This increase in the minimum area of shear reinforcement for f/ > 4500 psi is to prevent sudden
shear failure when inclined cracking occurs.

It is common practice to increase the depth of a slab, footing, or shallow beam to increase its
shear capacity. Stirrups may not be effective in shallow members, because their compression zones
have relatively small depths and may not satisfy the anchorage requirements of stirrups. For beams
that are not shallow, reinforcement is not required when V,, is less than ¢V_/2.

The minimum shear reinforcement area can be achieved by using no. 3 stirrups placed at
maximum spacing, S, If f, =60ksi and U-shaped (two legs) no. 3 stirrups are used, then Eq.

5.20 becomes
S "= Avfyt S Aufglt
0.75v/f)b, 0w

(5.21)

where

(0.22
0-22(60.000) _ 264 ¢ v < 4500 psi
500, by
% for f! = 4500 psi
Smax (111) = < w (522)
zliﬁ for f! = 5000 psi
w

227
b

L

If U-shaped no. 4 stirrups are used, then, for f/ < 4500 psi,

0.4(60,000) _ 480
50b b

for f/ = 6000 psi

w

Smax(n.) =

w w

where
— for f! = 4500 psi
S (iN) =4 — for f! = 5000 psi (5.23)

— for f! = 6000 psi

Note that S, .. shall not exceed 24 in., or d/2.

max
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Table 5.1 Values of S, =A f,/50b,,=24in. When f,, = 60ksi and f; < 4500 psi

max
b, (in.) 10 11 12 13 14 15 16 18 20 22 24 b,

Snax (in) no. 3 stirrups 24 24 22 203 189 17.6 165 147 132 12 11 264/b,,
Spax (in) no. 4 stirrups 24 24 24 24 24 24 24 24 24 21.8 20 480/b,

Table 5.1 gives S, based on Egs. 5.22 and Eqs. 5.23. Final spacings should be rounded to
the lower inch. For example, S =20.3 in. becomes 20 in.

5.6.3 Maximum Shear Carried by Web Reinforcement V

To prevent a shear—compression failure, where the concrete may crush due to high shear and
compressive stresses in the critical region on top of a diagonal crack, the ACI Code, Section
22.5.1.2, requires that V shall not exceed (8 \/]TLf )b, d. If V  exceeds this value, the section should
be increased. Based on this limitation,

If f/ =3 ksi,then V, <0.438b,,d (kips) or V./b,d < 438 psi.
If f! =4 ksi,then V, < 0.506b,,d (kips) or V,/b,d < 506 psi.
If f! =5 ksi,then V, < 0.565b,,d (kips) or V,/b,d < 565 psi.

5.6.4 Maximum Spacing of Stirrups

To ensure that a diagonal crack will always be intersected by at least one stirrup, the ACI Code,
Section 9.7.6.2, requires that the spacing between stirrups shall not exceed d/2, or 24 in., provided

that V; < (4\/f_c’)bwd. This is based on the assumption that a diagonal crack develops at 45° and

extends a horizontal distance of about d. In regions of high shear, where V exceeds (4 \/f? )b,.d,
the maximum spacing between stirrups must not exceed d/4. This limitation is necessary to ensure
that the diagonal crack will be intersected by at least three stirrups. When V, exceeds the maximum
value of (8 \/f_c’ )b,,d, this limitation of maximum stirrup spacing does not apply, and the dimensions
of the concrete cross section should be increased.

A second limitation for the maximum spacing of stirrups may also be obtained from the
condition of minimum area of shear reinforcement. A minimum A, is obtained when the spacing s
is maximum (Eq. 5.21).

A third limitation for maximum spacing is 24 in. when V, < (4 \/ﬁ )b,d and 121in. when V;

is greater than (4\/ﬁ)bwd but less than or equal to (8 \/f_c’ )b, d. The least value of all maximum
spacings must be adopted. The ACI Code maximum spacing requirement ensures closely spaced
stirrups that hold the longitudinal tension steel in place within the beam, thereby increasing their
dowel capacity, V, (Fig. 5.5).

5.6.5 Yield Strength of Shear Reinforcement

The ACI Code, Section 20.2.2.4, requires that the design yield strength of shear reinforcement shall
not exceed 60 ksi (420 MPa). The reason behind this decision is to limit the crack width caused by
the diagonal tension and to ensure that the sides of the crack remain in close contact to improve the
interface shear transfer, V,, (Fig. 5.5). For welded deformed wire fabric, the design yield strength
shall not exceed 80 ksi (560 MPa).
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5.6.6 Anchorage of Stirrups

The ACI Code, Section 25.7.1.1, requires that shear reinforcement be carried as close as possible
to the compression and tension extreme fibers, within the Code requirements for concrete cover,
because near maximum load the flexural tension cracks penetrate deep into the beam. Also, for
stirrups to achieve their full yield strength, they must be well anchored. Near maximum load, the
stress in a stirrup reaches its yield stress at the point where a diagonal crack intercepts that stirrup.
The ACI Code requirements for stirrup anchorage, Section 25.7, are as follows:

1. Each bend in the continuous portion of a simple U-stirrup or multiple U-stirrups shall enclose
a longitudinal bar (ACI Code, Section 25.7.1.1). See Fig. 5.8a.

2. The code allows the use of a standard hook of 90°, 135°, or 180° around longitudinal bars
for no. 5 bars or D31 wire stirrups and no. 6, 7, and 8 bars with fyI < 40ksi. If no. 6, 7, or 8
stirrups with fi, > 40 ksi are used, the Code (Section 25.7.1.3) requires a standard hook plus an

embedment length of 0.014d,f,, /(4 \/ﬁ ) between midheight of the member and the outside
of the hook. If the bars are bent at 90°, extensions shall not be less than 12d,,. For no. 5 bars
or smaller stirrups, the extension is 6d, (ACI Code, Section 25.3.2). See Fig. 5.8b.

3. If spliced double U-stirrups are used to form closed stirrups, the lap length shall not be less
than 1.3/, (ACI Code, Section 25.7.1.7). See Fig. 5.8c.

4. Welded wire fabric is used for shear reinforcement in the precast industry. Anchorage details
are given in the ACI Code, Section 25.7.1.4, and in its commentary.

5. Closed stirrups are required for beams subjected to torsion or stress reversals (ACI Code,
Section 9.7.6.4).

6. Beams at the perimeter of the structure should contain closed stirrups to maintain the structural
integrity of the member (ACI Code, Section 9.7.7.2).

5.6.7 Stirrups Adjacent to the Support

The ACI Code, Section 7.4.3.2, specifies that shear reinforcement provided between the face of the
support and the critical section at a distance d from it may be designed for the same shear V, at the
critical section. It is common practice to place the first stirrup at a distance S/2 from the face of the
support, where s is the spacing calculated by Eq. 5.16 for V, at the critical section.

5.6.8 Effective Length of Bent Bars

Only the center three-fourths of the inclined portion of any longitudinal bar shall be considered
effective for shear reinforcement. This means that the maximum spacing of bent bars is 0.75
(d—d"). From Fig. 5.9, the effective length of the bent bar is 0.75(d —d’)/(sin 45°) =
0.75(1.414) (d — d') = 1.06 (d — d’). The maximum spacing S is equal to the horizontal projection
of the effective length of the bent bar. Thus S, = 1.06(d —d’) cos 45°, or S, =0.707
[1.06(d — d")] =0.75(d - d").

5.7 DESIGN OF VERTICAL STIRRUPS

Stirrups are needed when V,, > ¢V,.. Minimum stirrups are used when V/, is greater than %(j)VC but
less than ¢V. This is achieved by using no. 3 stirrups placed at maximum spacing. When V,, is
greater than ¢V, stirrups must be provided. The spacing of stirrups may be less than the maximum
spacing and can be calculated using Eq. 5.16: S = A, f,,d/ V.
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Figure 5.8 Stirrup types: (a) U-stirrups enclosing longitudinal bars, anchorage lengths,
and closed stirrups; (b) multileg stirrups; and (c) spliced stirrups.
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Figure 5.9 Effective length and spacing of bent bars.
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The stirrups that are commonly used in concrete sections are made of two-leg no. 3 or no. 4
U-stirrups with f;, =60 ksi. If no. 3 stirrups are used, then Eq. 5.16 becomes

A, :
S _Audy 022600 _ 132 (5.24)
d V, V, V,
If no. 4 stirrups are used, then
Apfy  0.4(60
§_ vy 0460 24 (5.25)

d V.

S

1%

N

V.

The ratio of stirrups spacing relative to the effective depth of the beam, d, depends on V. The
values of S/d for different values of V; when f, = 60 ksi are given in Tables 5.2 and 5.3 for no. 3 and
no. 4 U-stirrups, respectively. The same values are plotted in Figs. 5.10 and 5.11. The following
observations can be made:

1. If no. 3 stirrups are used, S = d/2 when V, < 26.4. When V| increases, S/d decreases in a
nonlinear curve to reach 0.132 at V; = 100 K. If the minimum spacing is limited to 3 in., then

Table 5.2 S/d Ratio for Different Values of V; (f,, =60ksi, S/d =13.2/V), No. 3 Stirrups

V(K) 264 30 40 50 528 60 70 80 90 100 125
S/d 05 044 033 0.264 0.25 022 019 0165 0.15 0.132  0.106

Table 5.3 S/d Ratio for Different Values of V(f,, = 60 ksi, S/d=24/V), No. 4 Stirrups

V(K) 48 50 60 70 8 90 96 100 110 120 150 175
S/d 050 048 040 034 03 027 025 024 022 020 016 0.137
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Figure 5.10 V, versus S/d for no. 3 stirrups and f,, =60 ksi.
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Figure 5.11 V, versus S/d for no. 4 stirrups and f,, =60 ksi.

d must be equal to or greater than 22.7 in. to maintain that 3-in. spacing. When V| is equal to
or greater than 52.8 K, then S < d/4.

2. If no. 4 U-stirrups are used, S = d/2 when V, < 48 k. When V, increases, S/d decreases to
reach 0.16 at V, = 150 K. If the minimum spacing is limited to 3in., then d > 18.751n. to
maintain the 3-in. spacing. When V, then S.

3. If grade 40 U-stirrups are used (fy, = 40 ksi), multiply the S/d values by % or, in general,
Jy1/60.
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5.8 DESIGN SUMMARY

The design procedure for shear using vertical stirrups according to the ACI Code can be summarized
as follows:

1.

10.

Calculate the factored shearing force, V,, from the applied forces acting on the structural
member. The critical design shear value is at a section located at a distance d from the face
of the support.

Calculate ¢V, = ¢p2A+/f!b,d, or
V.d
dV. = [1L.9AVF + 25007, 57

u

bod < ¢p3.54\/f!b,d

Then calculate %d)Vc.
a. Ifv, < %q’)Vc, no shear reinforcement is needed.

b. If %(],’)VC <V, < ¢V,, minimum shear reinforcement is required. Use no. 3 U-stirrups
spaced at maximum spacings, as explained in step 7.

c. If V, > ¢V, shear reinforcement must be provided according to steps 4 through 8.

If V, > ¢V, calculate the shear to be carried by shear reinforcement:

V,— ¢V,

V=V + ¢V, or Vy= ?

Calculate V,, = (41/f))b,dand V, = (81/f!)b,,d = 2V,,. Compare the calculated V, with the
maximum permissible value of V, = (8 \/f_c’ )b, d. 1f Vi <V, proceed in the design; if not,
increase the dimensions of the section.

Calculate the stirrups spacing based on the calculated S; =A, f;,d/V, or use Figs. 5.10 and
5.11 or Tables 5.2 and 5.3.

Determine the maximum spacing allowed by the ACI Code. The maximum spacing is the
least of S, and S5:

a. S, =d/2<24inif V, <V, = @\f)b,d.

b. S3=A,f,/50b, > A,f,/(0.75V/flb,,).
Thus, S,,. is the smaller of S, and S;. Values of S5 are shown in Table 5.1.
If S, calculated in step 6 is less than S,,,, (the smaller of S, and S5), then use S, to the nearest

smaller % in. If S| > S, then use S, as the adopted S.

. The ACI Code did not specify a minimum spacing. Under normal conditions, a practical

minimum S may be assumed to be equal to 3in. for d < 20in. and 4 in. for deeper beams.
If S is considered small, either increase the stirrup bar number or use multiple-leg stirrups
(Fig. 5.8).

For circular sections, the area used to compute V, is the diameter times the effective depth d,
where d =0.8 times the diameter, ACI Code, Section 22.5.2.2.
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Example 5.1

A simply supported beam has a rectangular section with b=12in., d=21.5in., and h=241in. and is
reinforced with four no. 8 bars. Check if the section is adequate for each of the following factored shear
forces. If it is not adequate, design the necessary shear reinforcement in the form of U-stirrups. Use
f! =4ksi and f,, = 60 ksi. Assume normal-weight concrete.

@)V, =12K, (b) V, = 24K, (c) V, = 54K, (d) V, = 77K, (e) V, = 128K

Solution
In general, b, =b=12in., d=21.5in., and

a.

b.

PV, = (},’)(2/1\/]‘_6’)1751 = 0.752)(1)(vV4000)(12)(21.5) = 24.5K

1
7V =1225K

v, = (4\/f_g)bd _ (4\/40010(;&)2)(21.5) — 653K

V., = 8Vf)bd = 130.6K

Assume V, = 12K < %(pvc = 12.25K, the section is adequate, and shear reinforcement is not
required.

Assume V, =24 K > %d)Vc, but it is less than ¢V, =24.5K. Therefore, V, = 0 and minimum
shear reinforcement is required. Choose a no. 3 U-stirrup (two legs) at maximum spacing. Let
A,=2(0.11)=0.22 in?. Maximum spacing is the least of

S, = 6_21 = # =10.751in. say, 10.5in. (controls)
LA .
Sy = —2 = 0.22(60.000) _ 55 i, (or use Table 5.1)
° 500, 50(12)
S, =24in.

Use no.3 U-stirrups spaced at 10.5 in.

. Assume V, =54 K> ¢ V. Shear reinforcement is needed. Calculation may be organized in steps:

Calculate V, = (V,—¢ V,.)/¢p = (54-24.5)/0.75=39.3 K.

Checkif Vi <V, = (4\/}76’)de = 65.3 K. Because V, < 65.3 K, then S, = d/2, and the d/4
condition does not apply.

Choose no. 3 U-stirrups and calculate the required spacing based on V:

_Aufud 0.22(60)(21.5)
v, T 39.3

S

=7.261in. say,7in.

Calculate maximum spacing: S,= 10.51in., §; = 22in., and S, = 24in. and maximum § =
10.51n. [calculated in (b)].
Because S =7in. < S, = 10.5in., then use no. 3 U-stirrups spaced at 7 in.

. Assume V,=77K > ¢V, so stirrups must be provided.

Calculate V= (V —¢V, )/¢p = (77-24.5)/0.75 =70 K.

Check if V. <V, = (4\/f_c’)bwd = 65.3 K. Because V, > 653K, then S, =d/4 =12 in.
must be used.

Checkif V| < VCI = (8\/f7)bwd = 130.6 K. Because VCI <V, < VCZ, then stirrups can be used
without increasing the section.
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Choose no. 3 U-stirrups and calculate S| based on V:

_Aufyd 022(60)(21.5)
v, T 70

)

=4.1in. say,4in.

Calculate maximum spacings: S, = d/4 = 21.5/4 = 5.3 in., say, 5.0in.; S = 22in.; and S, =
12 in. Hence §,,,, = 5-in. controls.
Because S =4 in. < S, = 5in,, then use no. 3 stirrups spaced at 4 in.
e. Assume V, =128 K> ¢V, so shear reinforcement is required.
Calculate V= (V,-¢V )/¢p=(128-24.5)/0.75=138 K.
Because V, > V. = 130.2 K, the section is not adequate. Increase one or both dimensions of
the beam section.

Notes: Table 5.2 and Fig. 5.10 can be used to calculate the spacing S for (c) and (d).

1. For (c), V, = 39.3 K, from Fig. 5.10 (or Table 5.2 for no. 3 U-stirrups), S/d = 0.34 and S, = 7.3
in., which is less than d/2 = 10.5 in. Note that S, ., based on V| is d/2 and not d/4. Also, from
Table 5.1, S5 = Aufyt/SObw =22in.

2. For (d), V,=70K, S/d =0.19 and S; =4.1 in. So V, =70 > 528K, and S
required.

max

=d/4 is

max

Example 5.2

A 17-ft-span simply supported beam has a clear span of 16 ft and carries uniformly distributed dead and
live loads of 4.5 and 3.75 K/ft, respectively. The dimensions of the beam section and steel reinforcement
are shown in Fig. 5.12. Check the section for shear and design the necessary shear reinforcement. Given
f! = 3 ksi normal-weight concrete and f,, = 60 ksi.

Solution
Given: b, (web) = 14 in. and d = 22.5 in.
1. Calculate factored shear from external loading:
Factoreduniformload = 1.2(4.5) + 1.6(3.75) = 11.4 K/ft
11.4(16)
2

V,(at face of support) = =91.2K

Design V|, (at distance d from the face of the support) =91.2 —22.5(11.4)/12 =69.83 K.
2. Calculate ¢V,:

0.75(2)(1)(1/3000)(14)(22.5)

=25.88K
1000 588

PV, = pQAVIDb,d =

1
S#Ve=1294K

Calculate V, = (4 VDb, d = (44/3000)(14)(22.5)/1000 = 69 K. Calculate V., =@ B
b,d=138K.
3. Design V,=69.83 K> ¢V,.=2588K; therefore, shear reinforcement must be provided. The
distance x’ at which no shear reinforcement is needed (at %d)VC) is

, (91.2— 12.94
912

= ) (8) =686 ft = 82in.
(from the triangles of the shear diagram, Fig. 5.12).
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Figure 5.12 Example 5.2.

4. Calculate V =(V,—¢V,.)/¢p=(69.83 —25.88)/0.75=58.6 K. Because V, is less than VCI =

(4\/f_j)bwd, then S, = d/2 must be considered (or refer to Fig. 5.10 or Table 5.1: V, < 52.8 K).

5. Design of stirrups: Choose no. 3 U-stirrups, A, = 2(0.11) = 0.22 in.? Calculate S, based on V, =
586K, S, =A,f,d/V,=132d/V =5.07 in, say, Sin. (or get s/d = 0.225 from Table 5.2 or
Fig. 5.10).

6. Calculate maximum spacings: S, = d/2 =22.5/2 = 11.25in., say, 11.0in.; S3 = A, /50D, =
0.22(60,000)/50(14) = 18.9 in. (or use Table 5.1); S, = 24in.; S, = 11-in. controls.

7. Because §; =5in. < S, = 11in., use no. 3 U-stirrups spaced at 5in.
8. Calculate V, for maximum spacings of 111in.:

V= Ayfyd 0.22(60)(22.5)
STos T 11
PV, =2025K

PV, + PV, = 25.88 +20.25 = 46.13K

=27K

The distance x; at which S=11 can be used is
(91 2 —46.13
91.2

Because x; is relatively small, use S = 5 in. for a distance > 47 and then use S = 11 for the rest of
the beam. Note: If x1 is long, then an intermediate spacing between 5 and 11 in. may be added.

) (96) = 47 in.
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<=

- " = . I " 3 ”

47.5" I 48.5"

Figure 5.13 Example 5.2: Distribution of stirrups.

9. Distribute stirrups as follows: Place the first stirrup at S/2 from the face of the support.
First stirrup at /2 =5/2 = 2in.
Nine stirrups at S = 5 = 45in.
Total =45+ 2 in. =47 in.
Four stirrups at S = 11 = 44 in.
Total =91 in. > 82 in.(minimum length required).

The total number of stirrups for the beamis 2(1 + 9 + 4) = 28. Distribution of stirrups is shown
in Fig. 5.13, whereas calculated shear forces are shown in Fig. 5.12.

10. Place two no. 4 bars at the top of the beam section to act as stirrup hangers.

5.9 SHEAR FORCE DUE TO LIVE LOADS

In Example 5.2, it was assumed that the dead and live loads are uniformly distributed along the full
span, producing zero shear at midspan. Actually, the dead load does exist along the full span, but
the live load may be applied to the full span or part of the span, as needed to develop the maximum
shear at midspan or at any specific section. Figure 5.15a shows a simply supported beam with a
uniform load acting on the full span. The shear force varies linearly along the beam, with maximum
shear acting at support A.

In the case of live load, W, = 1.6W;, the maximum shear force acts at support A when
W, is applied on the full span, Fig. 5.14a. The maximum shear at midspan develops if the live
load is placed on half the beam, BC (Fig. 5.14b), producing V, at midspan equal to W,L/8.
Consequently, the design shear force is produced by adding the maximum shear force due to the
live load (placed at different lengths of the span) to the dead-load shear force (Fig. 5.14c) to give
the shear distribution shown in Fig. 5.14d. It is common practice to consider the maximum shear at
support A to be W,L/2 = (1.2Wp, + 1.6W;)L/2, whereas V,, at midspan is W,L/8 = (1.6W,)L/8
with a straight-line variation along AC and CB, as shown in Fig. 5.14d. The design for shear
in this case will follow the same procedure explained in Example 5.2. If the approach is
applied to the beam in Example 5.2, then V, (at A) =91.2K and V, (at midspan) = (1.6 X 3)
(16/8) = 10 K.
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Figure 5.14 Effect of live-load application on part of the span.
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Example 5.3

A 10-ft-span cantilever beam has a rectangular section and carries uniform and concentrated factored
loads (self-weight is included), as shown in Fig. 5.15. Using f! = 4 ksi normal-weight concrete and

S, =60ksi, design the shear reinforcement required for the entire length of the beam according to the
ACI Code.

Solution

1. Calculate the shear force along the beam due to external loads:
V,(at support) = 5.5(10) + 20+ 8 =83 K

V. (at d distance) = 83 — 5.5 (%) — 736K

V,(at 4 ftleft) = 83 — 4(5.5) =61 K
V,(at 4 ftright) = 61 —20 =41 K
V,(at freeend) = 8 K

The shear diagram is shown in Fig. 5.15.
2. Calculate ¢V

PV, = 24/f1bd = 2(0.75)(1)1/4000(12)(20.5) = 23.34 K

1
V. =1167K

P, =20K P,=8K
w, = 5.5 K/ft l
Y B
{ ¥ ) ¥ ¥ ¥ ) ¥ ¥ V]
Gl C

< 4’ > 6' >

s 2().5"—»|

i 83 K
73.6K \——» Sy =10”
E ] 61 K
S#10
41K
18"
24 oV, x, =T117 93,34 K
= 9285’
248 AR = 8K
o/ \o l D
2
T ’4———48”———)}4— 38.5”——>‘<—25.5"—>}*—>‘
8.0"
25" e 12"

Figure 5,15 Example 5.3.
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Because V4 > ¢V, shear reinforcement is required. Calculate
Ve, = 4\/J§bd = 44/4000(12)(20.5) = 62.2K
V,, =8Vflbd =2V, = 1244K

The distance x at which no shear reinforcement is needed (at %d)VC = 11.67 K) measured from

support A is given as
41 —11.67

41 -8

(8.0 in. from the free end). Similarly, x1 for ¢ Vc is 7.21 ft from A (33.5 in. from the free end).

3. Part AC: Design shear V, = V,; = 73.6 K. Calculate V,=(V, - ¢V )/¢p=(73.6 —23.34)/0.75 =
67K. Because V, <V, <V, .S, <d/4mustbe considered (or check Fig. 5.10).

max
4. Design stirrups: Choose no. 3 U-stirrups, A, =0.22in.? Calculate S, (based on V,):

_ASyd 1324 132(205)
v, v, 61

Use 4.01n. (or get s/d =0.22 from Fig. 5.10).
5. Calculate maximum spacings: S, =d/4 =20.5/4=5.121in., so use 5.0 in:

x=4+< )6:9.33ft=112in.

S, 40in

AL . .
Sy = =22in. (from Table5.1 for b = 121in.)
7 50b,
S, =12in.

Then S, = 5.0in.
6. Because S =41in. < S, = 5.1 in., use no. 3 stirrups spaced at 4 in.
7. At C, design shear V,=61K>¢@V,. Then V; = (61 —-23.34)/0.75=502K, S, =A,f,d/V,
=54in:

V,=502K <V, = 622K Sz=§ 20.5

= T =10.25in. (or 101in.)
Assume S; =5.4in. < §,; then S; =5.4 or 5.0-in. controls.
8. Because spacings of 5.5 and 4.0 in. are close, use no. 3 U-stirrups spaced at 4 in. for part AC.
9. Part BC:
a.

V,=41K> ¢V,

41 —-23.34

Vi=(V,—oVo/d = o075

b. S, =A,fd/Vs=(13.2)(20.5)/23.55 = 11.5in.

c. §,=d/2=205/2=10.25in. (or less than S; =22in.or S, =24in.). LetS,,, = 10in.
Choose no. 3 stirrups spaced at 10 in. for part BC.

=2355K <V, =622K

10. Distribution of stirrups measured from support A: Place the first stirrup at

%S=%=Zin.

12X 4in. =48 in.

50in.

6 x 10in. + 1 X 8 in. = 68 in.
Total 118in.
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27

Figure 5.16 Example 5.3: Distribution of stirrups.

Distance left to the free end is 2in., which is less than 8.0in., where no stirrups are needed.
Distribution of stirrups is shown in Fig. 5.16. Total number of stirrups is 20.

5.10 SHEAR STRESSES IN MEMBERS OF VARIABLE DEPTH

The shear stress, v, is a function of the effective depth, d; therefore, shear stresses vary along a
reinforced concrete beam with variable depth [10]. In such a beam (Fig. 5.17), consider a small
element dx. The compression force C at any section is equal to the moment divided by its arm, or
C = M/y. The first derivative of C is

_ ydM — Mdy
="
If C] > C2, then C] - C2 = dC= Ub dx:
aM — M d
vy = YL _ MM,
y y y

v= L (d_M> _M ([
yb \ dx by* \ dx
Because y = jd, dM /dx is equal to the shearing force V and d( jd)/dx is the slope,

V M d V M
Y _ M jd ~d] d  ov=——t— 5.26
O g U oS gt 629

- 4—-v<-——~ - T2
Parallel to

top surface

Figure 5.17 Shear stress in beam with variable depth.
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where V and M are the external shear and moment, respectively, and « is the slope angle of one
face of the beam relative to the other face. The plus sign is used when the beam depth decreases
as the moment increases, whereas the minus sign is used when the depth increases as the moment
increases. This formula is used for small slopes, where the angle a <30°.

A simple form of Eq. 5.26 can be formed by eliminating the j value:

Vv M
v = i + W(tana) (5.27)
For the strength design method, the following equation may be used:
V,

M
v, = —— + ——(tana) (5.28)
¢bd " pbd>

For the shearing force,
M
oV, =V, £ 7”(tana) (5.29)
Figure 5.18 shows a cantilever beam with a concentrated load P at the free end. The moment and
the depth d increase toward the support. In this case a negative sign is used in Egs. 5.27, 5.28, and

5.29. Similarly, a negative sign is used for section ¢ in the simply supported beam shown, and a
positive sign is used for section Z, where the moment increases as the depth decreases.

f
7
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|
22, 7 7,
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Figure 5.18 Beams with variable depth: (@) moment diagrams and (b) typical forms.
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In many cases, the variation in the depth of beams occurs on parts of the beams near their
supports (Fig. 5.18).

Tests [11] on beams with variable depth indicate that beams with greater depth at the support
fail mainly by shear compression. Beams with smaller depth at the support fail generally by an
instability type of failure, caused by the propagation of the major crack in the beam upward and
then horizontally to the beam’s top section. Tests also indicate that for beams with variable depth
(Fig. 5.18) with an inclination « of about 10° and subjected to shear and flexure, the concrete shear
strength, V_,, may be computed by

Voo =V.(1+tan @) (5.30)
where
V., = shear strength of beam with variable depth

cv

V. =ACI Code, Eq. 11
= [1.9/1\/]’7 +2500p,,(V,d,/M )b, d, < 3.5/1\/fj’bwds
a = angle defining orientation of reinforcement, considered positive for beams of
small depth at support and negative for beams with greater depth at support
(Fig. 5.18)
d, = effective depth of beam at support

The simplified ACI Code, Eq. 11.5, can also be used to compute V,.:
V. = QAVFDb,d, (5.31)

Example 5.4

Design the cantilever beam shown in Fig. 5.19 under the factored loads applied if the total depth at
the free end is 12in., and it increases toward the support. Use a steel percentage p=1.5%, f! = 4 ksi
normal-weight concrete, f} =60ksi, and b=10 in.

Solution
1. Let M, (support) = (2.5/2)(8)% (12) + (14)(8)(12) = 2304 K - in.
Pl

2. For p =1.5%, R, = ¢pf, <1 - 1-7ﬂ> =703 psi

| M [ 2304 .
d= ﬂ_ —0703X10—18111’1

Assume A, =0.015x10x 18.1 =2.72 in.2 (use three no. 9 bars); let actual d=19.5in.,
h=22in.
3. Design for shear: Maximum shear at the support is 14 + 20 =34 K. Because the beam section is
variable, the moment effect shall be considered; because the beam depth increases as the moment
increases, a minus sign is used in Eq. 5.28,

VM MM
v, Pbd - Pod2 (tan a)
To find tan a, let d at the free end be 9.5 in. and d at the support be 19.5 in.:
tan @ = 195-95 =0.1042
8x 12
34,000 2304 x 1000 x 0.1042

0.75x10x19.5 0.75 x 10 x (19.5)?
= 148 psi

v, (at support) =
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Figure 5.19 Bending moment diagram (middle) and shear force diagram (bottom).

4. Shear stress at the free end is V,/¢bd(M, =0),

b = 14,000
“T0.75%x10%9.5
5. Atadistance 18 in. from the face of the support, the effective depth is 17.6 in. (from geometry),

Vu=34—2.5><%=30.251<

= 196 psi

7 2
M, (at 18 in.from support) = 14 X 78 + % X ( i)

=1726K - in.

b = 30.25x 1000 1726 X 1000 x 0.1042
" 075x10x17.6 0.75 x 10 x (17.6)?

= 152 psi

6. At midspan (48 in. from the support),
d=14.5in.
V,=14+10=24K
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2
M, = 14x48+£x (48) =912K-in.
" 12 2
24,000 912 x 1000 x 0.1042

v, = — = 160 psi
0.75x 10 x 14.5 0.75 x 10 x (14.5)?

Similarly, at 6 ft from the support (2 ft from the free end), E67
7. The shear stress resisted by concrete is

22/f! = (2)(1)V/4000 = 126.5 psi
The minimum shear stress to be resisted by shear reinforcement is
v, =196 — 126.6 = 69.5 psi

(V, and consequently v, have already been increased by the ratio 1/¢b in Eq. 5.28).
8. Choose no. 3 stirrups with two legs:

A,=2x0.11=022in?

Aufy 0.22x60,000 ™
vh, ~— 695%x10

sTw

S (required) =

Smax(for d/2 at fixed end) =9.75in. to Spax = 4.751n. at free end

Aufy 022 60,000
50b,  50x10

26.41in

S nax (for minimum A ) =
w

9. Check for maximum spacing (d/4): v, < 41/f!,
44/f! = (4)V/4000 = 253 > 69.5 in.

10. Distribution of stirrups (distances from free end):
1 stirrup at 2in. = 2in.
10 stirrups at 4.5in. = 45in.
3 stirrups at 7in. =21 in.
3 stirrups at 8in. = 24in.
Total = 92 in.

There is 4 in. left to the face of the support.

5.11 EXAMPLES USING SI UNITS

The general design requirements for shear reinforcement according to the ACI Code are summa-
rized in Table 5.4, which gives the necessary design equations in both U.S. customary and SI units.
The following example shows the design of shear reinforcement using SI units.
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}# 8¢ 0"
7,
7
Y, . . . , d=9.5"
f ) / 17.6 14.5 12 10.75 )
=195 é —
- -
Z
(@)
2304 K-in.
1726
912
3%
B
0
r— | 8" —»I
fe——— 4R et D]ttt ] 2" 12
(b)
SFD
14K
ok 165K
24K
MK 30.25K
(@)
0 0

Resisted by concrete

77222227777

T —— T
T B 196 psi
S= 8.8” 7.2" 6" 5.3 475"
(d)
3#9 Bent bars if needed
Z /
7 _
7
2
7
Z
4 2//
4" —] -
3x8" 3x7" r 10 x 4.5” !
i 962

(e)

Figure 5.20 Example 5.4: Web reinforcement for beam of variable depth.
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Table 5.4 Shear Reinforcement Formulas

U.S. Customary Units Sl Units
V,, = design shear V,, = design shear
Maximum design V,, at distance d from face of support.
V.= (20477) b,d Ve = (017477 ) bud
V.d v,d
Vv, = [1.9/1\/ﬁ'+ (2500pw m >] b,d [o 6/1\/_+ <172 vy >] b,d
_ As Vud ! u <1.0 !
Po=%d M, = Pu= wd W
v, < (3.5,1\/f_g) b,d v, < (0.2% f;) b,d
V,=¢pV.+ @V, V,=¢pV.+ @V,
Vertical stirrups
¢Vs:Vu_¢ ¢Vs:Vu —-¢
VC VC
S=A, fy dIV, S=A, fy dlV,
. 500,,S . 0.356,,S
Minimum A, = < Minimum A, = ———— <
Tyt Ty
b,S
075\/E< > 0.0062\/17;<fL>
Ty y
A f. A A Af,
Maximum § = —2> > .l Maximum § = ——— > =2
50b,  0.75/fb,, 0350, = 0.062/fb,,
For vertical web reinforcement
Maximum § = —d <24in. Maximum § = %d < 600 mm
IfV, < 4.0/ (b d) If V, < 0.33+/f (b,,d)
Maximum S = d/4 = 121in. Maximum S = d/4 = 300 mm
If V, > 4.04/f! (bwd) If V. > 0.33+/f! (bwd)
V, < 8+/f! (b,d) V, <0.67Vf! (b,d)
Otherwise increase the dimensions of the
section.
Series of bent bars or inclined stirrups
V.S V.S
AU = AU =
f d (sin a + cos @) f d (sin a + cos @)
For(x—45 S=14A,f,d/V, Fora—45° S=14A,1,d/V,
For single bent bar or group of bars, parallel and bent in one position
V
— ol _ s
© fysina © fysina
Fora =45°, A, = 1.4V /f, Fora =45°, A, = 1.4V, /f,

v, < (3\/17) b,d v, < (0.25\/3) b,d
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Example 5.5

A 6-m clear-span simply supported beam carries a uniform dead load of 47.5kN/m and a live load
of 25kN/m (Fig. 5.21). The dimensions of the beam section are b =350 mm, d =550 mm. The beam
is reinforced with four bars 25 mm diameter in one row. It is required to design the necessary shear
reinforcement. Given: f = 28 MPa and f, =280 MPa.

CL
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ¥
__/1/4_ 3m
291 kN
237.65 kN x—» S
Cr
%, =098 m —> :

130 kN

x—166
65 kN [/ __

x —237m

3m

Figure 5.21 Example 5.5.

Solution

1. Factored load is
12D+ 1.6L=12x475+4+1.6%x25=97kN/m

2. Factored shear force at the face of the support is

Vu:97xg=291kN

3. Maximum design shear at a distance d from the face of the support is
V,(at distance d) = 291 — 0.55 X 97 = 237.65 kN
4. The nominal shear strength provided by the concrete is
= (0.17/1\/]76’)bd = (0.17\/275) X 350 x 550 = 173.2kN
V=V, + ¢V,
¢V.=0.75%173.2 = 130kN

%d)VC = 65kN

¢V, =237.65— 130 = 107.65 kN

107.65
V.= —— =1435kN
y 0.75
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5. Distance from the face of the support at which %(]SVC =65kN is

;291 -65
X ==

201 3)=233m (from triangles)

6. Design of stirrups:
a. Choose stirrups 10 mm in diameter with two branches (A, =78.5 mm?).

A, =2x785=157 mm?
Ayfud 157 % 280 x 550

Vs 143.5 x 10°
b. Check for maximum spacing of d/4:

{ld for V, < (0.33 fg) bd
Smax = % )
d  for If V, > (0.33v/f))bd

Spacing S| = = 168.5 mm < 600 mm

bd(0.331/f) = 0.331/28 x 350 x 550 = 336.1 kN

Actual V= 143.5kN < 336.1 kN. Therefore, S, is limited to d/2 =275 mm.

7. The shear reinforcement, stirrups 10 mm in diameter and spaced at 160 mm, will be needed
only for a distance d=0.55m from the face of the support. Beyond that, the shear stress V;
decreases to zero at a distance x=1.66m when ¢V_.=130kN. It is not practical to provide
stirrups at many different spacings. One simplification is to find out the distance from the face of
the support where maximum spacing can be used and then only two different spacings may be
adopted:

Maximum spacing = %d =275 mm

= 87.9kN

Adyd 157 x0.280 x 550
=

V(for s, =275 mm) = 75

¢V, =87.9x0.75 = 65.94 kN

The distance from the face of the support where S
gles):

max = 275 mm can be used (from the trian-

_ 291 — (130 + 65.94)
e 291
Then, for 0.98 m from the face of the support, use stirrups 10 mm in diameter at 160 mm, and
for the rest of the beam, minimum stirrups (with maximum spacing) can be used.
8. Distribution of stirrups:

(3)=0.98m

S _ 160 _

One stirrup at 5= 80 mm

Six stirrups at 160 mm = 960 mm

Total = 1040 mm = 1.04 m > 0.98 m
Six stirrups at 270 mm = 1620 mm

Total = 2660 mm = 2.66 m < 3 m

The last stirrup is 3 —2.66 = 0.34 m = 340 mm from the centerline of the beam, which is ade-
quate. A similar stirrup distribution applies to the other half of the beam, giving a total number of
stirrups of 28.

The other examples in this chapter can be worked out in a similar way using SI equations.
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SUMMARY

Sections 5.1 and 5.2

The shear stress in a homogeneous beam is v = VQ/Ib. The distribution of the shear stress above the
neutral axis in a singly reinforced concrete beam is parabolic. Below the neutral axis, the maximum
shear stress is maintained down to the level of the steel bars.

Section 5-3

The development of shear resistance in reinforced concrete members occurs by:

» Shear resistance of the uncracked concrete
« Interface shear transfer

» Arch action

« Dowel action

Section 5-4

The shear stress at which a diagonal crack is expected is

V,d
b, = % - (1.9,1\/]7;+2500pr2 ) <35Vf

u
The nominal shear strength is

V. =uv.b,d=2\fb,d
Sections 5.5 and 5.6

1. The common types of shear reinforcement are stirrups (perpendicular or inclined to the main
bars), bent bars, or combinations of stirrups and bent bars:

V,= ¢V, =¢V.+ ¢V, and V, = %(Vu — PV

2. The ACI Code design requirements are summarized in Table 5.4.
Sections 5.7 and 5.8
Design of vertical stirrups and shear summary are given in these sections.

Sections 5.9 and 5.10

1. Variation of shear force along the span due to live load may be considered.
2. For members with variable depth,

M, (tan )

PV, =V, ————
d
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PROBLEMS

5.1 Design the necessary shear reinforcement (if needed) in the form of U-stirrups (two legs) for the T-section

shown in Fig. 5.22. Use f! =4 ksi (28 MPa) and f, = 60 ksi (420 MPa).
a. V,=22K (98 kN) '

b. V,=56K (246 kN)

c. V,=69K (306 kN)

48"

A 4

A

— 2 fe—

17.5"

s

Figure 5.22 Problem 5.1.

2.5"

5.2 Repeat Problem 5.1 for the section shown in Fig. 5.23.
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Figure 5.23 Problem 5.2.

Design the necessary shear reinforcement (if needed) in the form of U-stirrups (two legs) for the rectan-
gular section shown in Fig. 5.24 using f! =3 ksi (21 MPa) andfyt =60ksi (420 MPa).

a. V,=55K (245 kN)
b. V,=110K (490 kN)
c. V, = 144K (640 kN)

27.5"

4#9
[ ] L ] L [ ]

I

Figure 5.24 Problem 5.3.

957

A 16-ft- (4.8-m-) span simply supported beam, Fig. 5.25, has a clear span of 15ft (4.5m) and is
supported by 12X 12—in. (300 X 300—mm) columns. The beam carries a factored uniform load of
11.1 K/ft (166 kN/m). The dimensions of the beam section and the flexural steel reinforcement are
shown in Fig. 5.25. Design the necessary shear reinforcements using f/ = 3 ksi (21 MPa) and Jyr =60ksi
(420 MPa). Show the distribution of stirrups along the beam.

An 18-ft- (5.4-m-) span simply supported beam carries a uniform dead load of 4 K/ft (60 kN/m) and a live
load of 1.5 K/ft (22 kN/m). The beam has a width »=12in. (300 mm) and a depth d =24 in. (600 mm)
and is reinforced with six no. 9 bars (6 X 28 mm) in two rows. Check the beam for shear and design the
necessary shear reinforcement. Given: f =3ksi (21 MPa) and Sy =50%ksi (280 MPa).

Design the necessary shear reinforcement for a 14-ft (4.2-m) simply supported beam that carries a fac-
tored uniform load of 10 K/ft (150kN/m) (including self-weight) and a factored concentrated load at
midspan of P, =24 K (108 kN). The beam has a width » = 14 in. (350 mm) and a depth d = 16.5 (400 mm)
and is reinforced with four no. 8 bars (4 x 25 mm). Given: f/ = 4 ksi (28 MPa) andfyt =60ksi (420 MPa).

A cantilever beam with 7.4-ft (2.20-m) span carries a uniform dead load of 2.5 K/ft (36 kN/m) (including
self-weight) and a concentrated live load of 18 K (80 kN) at a distance of 3 ft (0.9 m) from the face of the
support. Design the beam for moment and shear. Given: f] =3 ksi (21 MPa),fyt =60ksi (420 MPa), and
b=12in. (200mm) and use p=3/4p, ...

Design the critical sections of an 11-ft- (3.3-m-) span simply supported beam for bending moment
and shearing forces using p=0.016. Given: f! =3ksi (21 MPa), fy[ =60ksi (420MPa), and b=101n.
(250 mm). Dead load is 2.75 K/ft (40 kN/m) and live load is 1.375 K/ft (20 kN/m).
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Figure 5.25 Problem 5.4.

5.9 A rectangular beam is to be designed to carry a factored shearing force of 75 K (335 kN). Determine the
minimum beam section if controlled by shear (V, = 24 \/]TC’ bd) using the minimum shear reinforcement
as specified by the ACI Code and no. 3 stirrups. Given: f = 4 ksi (28 MPa), Jyu=40ksi (280 MPa), and
b=16in. (400 mm).

5.10 Redesign Problem 5.5 using f,, = 60 ksi.

5.11 Redesign the shear reinforcement of the beam in Problem 5.6 if the uniform factored load of 6 K/ft
(90kN/m) is due to dead load and the concentrated load P, =24 k (108 kN) is due to a moving live load.
Change the position of the live load to cause maximum shear at the support and at midspan.

5.12 Design a cantilever beam that has a span of 9ft (2.7m) to carry a factored triangular load that varies
from zero load at the free end to maximum load of 8 K/ft (120kN/m) at the face of the support.
The beam shall have a variable depth, with minimum depth at the free end of 10in. (250 mm) and
increasing linearly toward the support. Use steel percentage p=0.016 for flexural design. Given:
fI =4ksi (28 MPa), fyt =60ksi (420 MPa) or flexural reinforcement, fy[ =40ksi (280 MPa) for stirrups,
and b=111n. (275 mm).



CHAPTER 6

DEFLECTION AND
CONTROL OF
CRACKING

7
7
H
Z
H
#
b
7

N

N

A

e

6.1 DEFLECTION OF STRUCTURAL CONCRETE MEMBERS

226

Flexural concrete members must be designed for safety and serviceability. The members will be
safe if they are designed according to the ACI Code equations and limitations. Consequently, as
explained in previous chapters, the size of each member is determined as well as the reinforce-

ment required to maintain an internal moment capacity equal to or greater than that of the external
moment. Once the final dimensions are determined, the beam must be checked for serviceability:
for cracks and deflection. Adequate stiffness of the member is necessary to prevent excessive cracks

and deflection.
The use of the ACI Code provisions, taking into consideration the nonlinear relationship
between stress and strain in concrete, has resulted in smaller sections than those designed by the

elastic theory. The ACI Code, Section 20.2.2.4, recognizes the use of steel up to a yield strength of
100 ksi (690 MPa) and the use of high-strength concrete. The use of high-strength steel and concrete
results in smaller sections and a reduction in the stiffness of the flexural member and consequently

increases its deflection.

The permissible deflection is governed by many factors, such as the type of the building, the
appearance of the structure, the presence of plastered ceilings and partitions, the damage expected
due to excessive deflection, and the type and magnitude of live load.
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Table 6.1 Minimum Thickness of Beams and One-Way Slabs (L = Span Length)

Yield
Strength Simply One End Both Ends

Member f, (ksi) Supported Continuous Continuous Cantilever
Solid one-way slabs 40 L/25 L/30 L/35 L/12.5

50 L/22 L/27 L/31 L/1

60? L/20 L/24 L/28 L/10
Beams or ribbed one-way slabs 40 L/20 L/23 L/26 L/10

50 L/18 L/20.5 L/23.5 L9

60? L/16 L/18.5 L21 L/8

 Values reported in ACI Table 9.5(a).

The ACI Code, Sections 7.3.11, specifies minimum thickness for one-way flexural members
and one-way slabs, as shown in Table 6.1. The values are for members not supporting or attached
to partitions or other constructions likely to be damaged by large deflections.

The minimum thicknesses indicated in Table 6.1 are used for members made of normal-weight
concrete and for steel reinforcement with yield strengths as mentioned in the table. The values are
modified for cases of lightweight concrete or a steel yield strength different from 60 ksi as follows:

« For lightweight concrete having unit weights in the range of 90 to 115 pcf, the values in the
tables for f, = 60 ksi (420 MPa) shall be multiplied by the greater of 1.65-0.005 W, but not
less than 1.09, where W.. is the unit weight of concrete in pounds per cubic foot.

« For yield strength of steel different from 60 ksi (420 MPa), the values in the tables for 60 ksi
shall be multiplied by 0.4 +f,/100, where f, is in ksi.

6.2 INSTANTANEOUS DEFLECTION

The deflection of structural members is due mainly to the dead load plus a fraction of or all the
live load. The deflection that occurs immediately upon the application of the load is called the
immediate, or instantaneous, deflection. Under sustained loads, the deflection increases appreciably
with time. Various methods are available for computing deflections in statically determinate and
indeterminate structures. The instantaneous deflection calculations are based on the elastic behavior
of the flexural members. The elastic deflection, 4, is a function of the load, W, span, L, moment of
inertia, /, and modulus of elasticity of the material, E:

3 2
A=f<ﬂ):a WLTN _ g (ML 6.1)
EI EI EI
where W is the total load on the span and « and K are coefficients that depend on the degree of fixity

at the supports, the variation of moment of inertia along the span, and the distribution of load. For
example, the maximum deflection on a uniformly loaded simply supported beam is

_swLd swl?
" 384FEl 384El

where W= wL (uniform load per unit length X span) is the total load on the span. Deflections of
beams with different loadings and different end conditions as a function of the load, span, and EI
are given in Appendix C and in books of structural analysis.

A

(6.2)
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Because W and L are known, the problem is to calculate the modulus of elasticity, £, and the
moment of inertia, I, of the concrete member or the flexural stiffness of the member, EI.

6.2.1 Modulus of Elasticity

The ACI Code, Section 19.2.2, specifies that the modulus of elasticity of concrete, E., may be
taken as
E, = 33w \/f!psi (6.3)

for values of w, between 90 and 160 pcf. For normal-weight concrete (W, = 145 pcf),

E. = 57,600 \/E psi  (or ACI recommends 57,000 \/j? )

The modulus of elasticity is usually determined by the short-term loading of a concrete cylin-
der. In actual members, creep due to sustained loading, at least for the dead load, affects the modulus
on the compression side of the member. For the tension side, the modulus in tension is assumed
to be the same as in compression when the stress magnitude is low. At high stresses the modu-
lus decreases appreciably. Furthermore, the modulus varies along the span due to the variation of
moments and shear forces.

6.2.2 Modular Ratio

The modular ratio, n=Es/E,, which is used in the transformed area concept, was explained
in Section 2.10. It may be used to the nearest whole number but may not be less than 6. For
example:

When f! = 2500 psi(17.5 MPa), n = 10.
When f! = 3000 psi(20 MPa), n=29.
When f! = 4000 psi(30 MPa), n =38.
When f! = 5000 psi(17.5MPa), n=17.
For normal-weight concrete, n may be taken as 500/ \/f_L’ (psi units).

6.2.3 Cracking Moment

The behavior of a simply supported structural concrete beam loaded to failure was explained in
Section 3.3. At a low load, a small bending moment develops, and the stress at the extreme tension

fibers will be less than the modulus of rupture of concrete, f, = 7.5/1\/]? . If the load is increased
until the tensile stress reaches an average stress of the modulus of rupture, f,, cracks will develop.
If the tensile stress is higher than f,, the section will crack, and a cracked section case will develop.
This means that there are three cases to be considered:

1. When the tensile stress, f;, is less than f,, the whole-uncracked section is considered to cal-
culate the properties of the section. In this case, the gross moment of inertia, /,, is used:

9 g?
I, = bh3/12, where bh is the whole concrete section.

2. When the tensile stress, f;, is equal to the modulus of rupture, f, = 7.544/f!, a crack may start
to develop, and the moment that causes this stress is called the cracking moment. Using the
flexural formula,

c Iy
fr =Mcr_ or Mcr =fr? (64)

Iy
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where f, = 7.5/1\/]70/ ,1, is the gross moment of inertia, and c is the distance from the neutral

axis to the extreme tension fibers. For example, for a rectangular section, /, = bh*/12 and
c="h/2, and A is a modification factor for type of concrete (ACI Table 19.2.4.2) given as

1.0 for normal-weight concrete
A =140.85 for sand-lightweight concrete
0.75 for all-lightweight concrete

Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric
fractions, for concrete containing normal-weight fine aggregate and a blend of lightweight
and normal-weight coarse aggregate.

3. When the applied external moment exceeds the cracking moment, M, a cracked section case
is developed, and the concrete in the tension zone is neglected. A transformed cracked section
is used to calculate the cracking moment of inertia, /., using the concrete area in compression

s Lere
and the transformed steel area nA,.

Example 6.1

A rectangular concrete section is reinforced with three no. 9 bars in one row and has a width of 12in., a
total depth of 25in., and d =22.5 (Fig. 6.1). Calculate the modulus of rupture, f,, the gross moment of
inertia, /,, and the cracking moment, M. Use f/ = 4 ksi and f, = 60 ksi.

Solution

1. The modulus of rupture is

[ = 7.5)»\/]? =75%x1x \/m =474 psi (4 = 1 normal — weight concrete)
2. The gross moment of inertia for a rectangular section is
bh® _ 12(25)°
12 12
3. The cracking moment is M., =f,1,/c,

= 15,625 in.*

f. =474 psi I, = 15,625 in4 c= %h =12.51n.
Therefore, M, =474 % 15,625/(12.5 x 1000) =592.5 K - in. =49.38 K - ft.

fi
12.5"
22.5" l
257 ) ——_x__
A.T
4 —-e—-0— —0 +
12" T 12"
Stress diagram

Figure 6.1 Example 6.1.
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6.2.4 Moment of Inertia

The moment of inertia, in addition to the modulus of elasticity, determines the stiffness of the
flexural member. Under small loads, the produced maximum moment will be small, and the tension
stresses at the extreme tension fibers will be less than the modulus of rupture of concrete; in this
case, the gross transformed cracked section will be effective in providing the rigidity. At working
loads or higher, flexural tension cracks are formed. At the cracked section, the position of the neutral
axis is high, whereas at sections midway between cracks along the beam, the position of the neutral
axis is lower (nearer to the tension steel). In both locations only the transformed cracked sections
are effective in determining the stiffness of the member; therefore, the effective moment of inertia
varies considerably along the span. At maximum bending moment, the concrete is cracked, and its
portion in the tension zone is neglected in the calculations of moment of inertia. Near the points
of inflection the stresses are low, and the entire section may be uncracked. For this situation and in
the case of beams with variable depth, exact solutions are complicated.

Figure 6.2a shows the load—deflection curve of a concrete beam tested to failure. The beam
is a simply supported 17-ft span and loaded by two concentrated loads 5 ft apart, symmetrical
about the centerline. The beam was subjected to two cycles of loading: In the first (curve cy 1),
the load—deflection curve was a straight line up to a load P=1.7 K when cracks started to occur
in the beam. Line a represents the load—deflection relationship using a moment of inertia for the
uncracked transformed section. It can be seen that the actual deflection of the beam under loads less
than the cracking load, based on a homogeneous uncracked section, is very close to the calculated
deflection (line a). Curve cy 1 represents the actual deflection curve when the load is increased
to about one-half the maximum load. The slope of the curve, at any level of load, is less than the
slope of line a because cracks developed, and the cracked part of the concrete section reduces
the stiffness of the beam. The load was then released, and a residual deflection was observed at
midspan. Once cracks developed, the assumption of uncracked section behavior under small loads
did not hold.

In the second cycle of loading, the deflection (curve ¢) increased at a rate greater than that of
line a, because the resistance of the concrete tension fibers was lost. When the load was increased,
the load—deflection relationship was represented by curve cy 2. If the load in the first cycle is
increased up to the maximum load, curve cy 1 will take the path cy 2 at about 0.6 of the maximum
load. Curve ¢ represents the actual behavior of the beam for any additional loading or unloading
cycles.

Line b represents the load—deflection relationship based on a cracked transformed section; it
can be seen that the deflection calculated on that basis differs from the actual deflection. Figure 6.2¢
shows the variation of the beam stiffness £/ with an increase in moment. ACI Code, Section
24.2.3.5, presents an equation to determine the effective moment of inertia used in calculating
deflection in flexural members. The effective moment of inertia given by the ACI Code (Eq.
24.2.3.5a) is based on the expression proposed by Branson [3] and calculated as follows:

I = Mer 31+ 1 M°r31<1 (6.5)
" \m, )¢ M, or=rg )

where 1, is the effective moment of inertia, the cracking moment is given as

!
M, = <f Yg> (6.6)
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Figure 6.2 (a) Experimental and theoretical load—deflection curves for a beam of the
section and load illustrated, (b) deflection of a reinforced concrete beam, and (c) variation
of beam moment of inertia, /, with an increase in moment (E = const). BC is a transition
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and the modulus of rupture of concrete as

and

f.=75/fpsi (0.62341/f/MPa) 6.7)

M, = maximum unfactored moment in member at stage for which deflection is being computed

I, = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement

I, = moment of inertia of cracked transformed section

Y, =distance from centroidal axis of cross section, neglecting steel, to tension face

The following limitations are specified by the code:

1.

2.

For continuous spans, the effective moment of inertia may be taken as the average of the
moment of inertia of the critical positive- and negative-moment sections.

For prismatic members, /, may be taken as the value obtained from Eq. 6.5 at midspan for
simple and continuous spans and at the support section for cantilevers (ACI Code, Section
24.2.3.6 and 24.2.3.7).

Note that /,, as computed by Eq. 6.5, provides a transition between the upper and lower
bounds of the gross moment of inertia, / o and the cracked moment of inertia, / ., as a function
of the level of M /M. Heavily reinforced concrete members may have an effective moment
of inertia, /,, very close to that of a cracked section, /., whereas flanged members may have
an effective moment of inertia close to the gross moment of inertia, /,.

For continuous beams, an approximate value of the average /, for prismatic or nonprismatic

members for somewhat improved results is as follows: For beams with both ends continuous,
Averagel, = 0.701,, + 0.15(1,, + 1,,) (6.8)

For beams with one end continuous,
Averagel, = 0.851,, + 0.15(1,,,,) (6.9)

where [, is the midspan 1,, 1,,, I,, =1, at beam ends, and ., = I, at the continuous
end. Also, I, may be taken as the average value of the /,’s at the critical positive- and
negative-moment sections. Moment envelopes should be used in computing both positive
and negative values of /,. In the case of a beam subjected to a single heavy concentrated

load, only the midspan I, should be used.

6.2.5 Properties of Sections

To determine the moment of inertia of the gross and cracked sections, it is necessary to calculate
the distance from the compression fibers to the neutral axis (x or kd).

1.

Gross moment of inertia, I, (neglect all steel in the section):
a. For a rectangular section of width b and a total depth &, I, = bh3/12.

b. For a T-section, flange width b, web width b,,, and flange thickness ¢, calculate y, the
distance to the centroidal axis from the top of the flange:
/) + b (h = D(h+1)/2]
y= bt + by (h— 1)

(6.10)
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Then calculate Ig:

I, =

12 2 3 3

2. Cracked moment of inertia, I ,.: Let x be the distance of the neutral axis from the extreme
compression fibers (x = kd).
a. Rectangular section with tension steel, A;, only:

i. Calculate x from the equation

3 3
bl +bt(y— £>2] + [bw(y_t) ] + [bw(h_y)

2
b%—nAs(d—x)=o (6.11)

ii. Calculate

bx’

lee = == +nA(d = x)? (6.11a)

b. Rectangular section with tension steel A; and compression steel A’:
i. Calculate x:

bx* ’ '
x=—+m-DA(x—d)—nA(d-x)=0 (6.12)

ii. Calculate

3
I, = b% + (- DA(x —d)? +nA,(d — x)* (6.12a)

c. T-sections with tension steel A:
i. Calculate x:

B ! (x—1)? _
x=bt <x 5) + b, —nA(d =3 = 0 (6.13)
ii. Calculate /:
be 1\? (x—1)°
I, = [E + bt(x— 5) ] + [bw 3 +nAy(d — x)* (6.13a)

6.3 LONG-TIME DEFLECTION

Deflection of reinforced concrete members continues to increase under sustained load, although
more slowly with time. Shrinkage and creep are the cause of this additional deflection, which
is called long-time deflection [1]. It is influenced mainly by temperature, humidity, age at time
of loading, curing, quantity of compression reinforcement, and magnitude of the sustained load.
The ACI Code, Section 24.2.4.1, suggests that unless values are obtained by a more comprehen-
sive analysis, the additional long-term deflection for both normal and lightweight concrete flexural
members shall be obtained by multiplying the immediate deflection caused by sustained load by
the factor ¢

dy= —— 6.14
47 14500 ©.19)

where
A4 = multiplier for additional deflection due to long-term effect.
p' = A/bd for section at midspan of simply supported or continuous beam or at support of
cantilever beam
¢ = time-dependent factor for sustained loads that may be taken as shown in Table 6.2.
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Table 6.2 Multipliers for Long-Time Deflections

Period 60 and
(months) 1 3 6 12 24 36 48 over
¢ 0.5 1.0 1.2 1.4 1.7 1.8 1.9 2.0

The factor 4, is used to compute deflection caused by the dead load and the portion of the live
load that will be sustained for a sufficient period to cause significant time-dependent deflections.
The factor 4, is a function of the material property, represented by ¢, and the section property,
represented by 1 + 50p’. In Eq. 6.14, the effect of compression reinforcement is related to the area
of concrete rather than the ratio of compression to tension steel.

The ACI Code Commentary, Section 24.2.4.1.3, presents a curve to estimate ¢ for periods
less than 60 months. These values are estimated as shown in Table 6.2.

The total deflection is equal to the immediate deflection plus the additional long-time deflec-
tion. For instance, the total additional long-time deflection of a flexural beam with p’ =0.01 at a
S-year period is equal to A, times the immediate deflection, where A, =2/(1 +50x0.01) =1.33.

6.4 ALLOWABLE DEFLECTION

Deflection shall not exceed the following values according to the ACI Code, Section 24.2.2:

o [/180 for immediate deflection due to service roof live load, snow loads, and rain loads for
flat roofs not supporting elements that are likely to be damaged by large deflections.

» L/360 for immediate deflection due to live load for floors not supporting elements likely to
be damaged by large deflections.

» [/480 for the part of the total deflection that occurs after attachment of elements, that is, the
sum of the long-time deflection due to all sustained loads and the immediate deflection due
to any additional live load, for floors or roofs supporting elements likely to be damaged by
large deflections.

» L/240 for the part of the total deflection occurring after elements are attached, for floors or
roofs not supporting elements not likely to be damaged by large deflections.

6.5 DEFLECTION DUE TO COMBINATIONS OF LOADS

If a beam is subjected to different types of loads (uniform, nonuniform, or concentrated loads)
or subjected to end moments, the deflection may be calculated for each type of loading or force
applied on the beam separately and the total deflection calculated by superposition. This means
that all separate deflections are added up algebraically to get the total deflection. The deflections
of beams under individual loads are shown in Table 6.3.
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Table 6.3 Deflection of Beams
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Example 6.2

Calculate the instantaneous midspan deflection for the simply supported beam shown in Fig. 6.3, which
carries a uniform dead load of 0.4 K/ft and a live load of 0.6 K/ft in addition to a concentrated dead load
of 5 kips at midspan. Given: f/ = 4 ksi normal-weight concrete, f, =60 ksi, b= 13in., d=211n., and
total depth=251in. (n=38). ’

Solution
1. Check minimum depth according to Table 6.1:

.. L 40 % 12
M total depth = — = =
inimum total dep 16 16
The total thickness used is 25 in. < 30 in.; therefore, deflection must be checked.
2. The deflection at midspan due to a distributed load is

30in

_ SwL!
17 384E 1,
The deflection at midspan due to a concentrated load is
_ P
27 48EI,

Because w, P, and L are known, we must determine the modulus of elasticity, E,, and the
effective moment of inertia, /,.

3. The modulus of elasticity of concrete is
E, = 57.000/f/ = 57,0001/4000 = 3.60 x 10° psi

4. The effective moment of inertia is equal to:

Mcr ’ MCT ’
L= (M> I, + ll_<Ma I, <1,

Pp=5K
L= :"_ 2007 N
06 K/ft__——r - : ;
DL =—" 2= 1 1 1 1 1 i 297

0.4 K/ft

- a0 0" > oo d| v
g [ B ] = 4

Figure 6.3 Example 6.2.
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Determine values of all terms on the right-hand side:

2
M, = %+ PL _ M(40)2>< 12+ 3x40 x 12 =3000K - in.
8 4 8 4
3 13(25)3
=P BOY 600748
& 12 12
I, h . 7 . .
M, = v Y, = 3= 12.5 in. f= 7.51\/}70 =474psi A=1 (normal weight)
t
M, = 0.474 x 16,927 _ 642 K -in.
12.5

The moment of inertia of the cracked transformed area, I, is calculated as follows: Determine
the position of the neutral axis for a cracked section by equating the moments of the transformed
area about the neutral axis to 0, letting x = kd = distance to the neutral axis:

2 E.
l%—nAs(d—x)=0 n=— =80 A, =48in2

c

gxz —(®)4.8)21 —x)=0

X +59x—124=0 x=28.8in

3 3
I = b% +nA(d —x)2 = —13(2'8)

cr

+38.4(21 — 8.8)> = 8660 in.*

With all terms calculated,

642 \* 642 \* .
= (222 x 16927+ |1 - <—) 8660 = 8740 in.*
e (3000) x 169 +[ 3000 ]X "
5. Calculate the deflections from the different loads:
= SwL! (due to distributed load)
1T 384E1,
4
- (i)x<1000)x (4OX612) — 1.83in.
384 12 3.60 x 10° x 8740
3
y = 4::1;»13 (due to concentrated load)

5000 x (40 x 12)3

= = 0.36in.
48 x 3.60 x 10° x 8740

and
Total immediate deflection = A, + 4, = 1.83 + 0.36 = 2.19 in.

6. Compare the calculated values with the allowable deflection: The immediate deflection due to
a uniform live load of 0.6 K/ft is equal to 0.6(1.83) =1.101in. If the member is part of a floor
construction not supporting or attached to partitions or other elements likely to be damaged by
large deflection, the allowable immediate deflection due to live load is equal to

L 40x12
360 360
If the member is part of a flat roof and similar to the preceding, the allowable immediate
deflection due to live load is L/180=2.67 in. Both allowable values are greater than the actual
deflection of 1.101in. due to the uniform applied live load.

=133 1in. > 1.10 in.
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Example 6.3
Determine the long-time deflection of the beam in Example 6.2 if the time-dependent factor equals 2.0.

Solution
1. The sustained load causing long-time deflection is that due to dead load, consisting of a distributed
uniform dead load of 0.4 K/ft and a concentrated dead load of 5 K at midspan:
Deflection due to uniform load = 0.4 X 1.83 = 0.73 in.
Deflection is a linear function of load, w, all other values (L, E_, I,) being the same:
Deflection due to concentrated load = 0.36 in.
Total immediate deflection due to sustained loads = 0.73 + 0.36
= 1.09 in.
2. For additional long-time deflection, the immediate deflection is multiplied by the factor A,:

¢ 2

AA = =
14+ 50p 1+0
In this problem, A/, = 0 ; therefore, 4, =2.0.

Additional long-time deflection = 2 X 1.09 = 2.18 in.

3. Total long-time deflection is the immediate deflection plus additional long-time deflection: 2.19
+2.18=4.371in.

4. Deflection due to dead load plus additional long-time deflection due to shrinkage and creep is
1.09 +2.18=3.27in.

Example 6.4

Calculate the instantaneous and 1-year long-time deflection at the free end of the cantilever beam shown
in Fig. 6.4. The beam has a 20-ft span and carries a uniform dead load of 0.4 K/ft, a uniform live load
of 0.4 K/ft, a concentrated dead load, P;,, of 3 K at the free end, and a concentrated live load, P,, of 4K

PL =4K pD = 3K l
DL=LL= 35 6#8
; 0.4K/ft Y (As= 4.711n2)
Z &mwmw‘;‘;m”;m&
; ‘ 25" 19"
10 10
T 2#8
20 - (AL = 157 in2)
? u_12”—4
25"

Figure 6.4 Example 6.4.
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placed at 10 ft from the fixed end. Given: fc’ = 4ksi,fy =60 ksi, b=12in., d=21.51n., and total depth
of section =25 in. (Tension steel is six no. 8 bars and compression steel is two no. 8 bars.) Assume
normal-weight concrete.

Solution

1. Minimum depth = L/8 = 2 — 2.5t = 30in., which is greater than the 25in. used. Therefore,
deflection must be checked. The maximum deflection of a cantilever beam is at the free end. The
deflection at the free end is as follows.

a. Deflection due to distributed load:

_wlL?
17 BEI
b. Deflection due to a concentrated dead load at the free end:

P,L?
27 3El

c. Deflection due to concentrated live load at a = 10 ft from the fixed end is maximum at the free

end:
2 3
4= ngll) GL—a) or 4= % (1+ %)

2. The modulus of elasticity of normal-weight concrete is

E. = 57,000\/]7; = 57,000V/4000 = 3.60 x 106psi
3. Maximum moment at the fixed end is

2
M =%+PD><20+PL><10

= %(0.4 +0.4)(400) +3x 20+ 4 x 10 = 260K - ft

4. I, = gross moment of inertia (concrete only)

bh3 12 x (25)° . 4
= — ——" =15,625in.
2 B 5,6251n

M= I, _ (7.5)(1)/4000 x 15,625

oy, 25/2
6. Determine the position of the neutral axis; then determine the moment of inertia of the cracked
transformed section. Take moments of areas about the neutral axis and equate them to zero. Use

n =8 to calculate the transformed area of A; and use n—1 =7 to calculate the transformed area of
Al Let kd=x:

=5929K-in. =49.40K - ft

2
b% +(n—-DA(x—d)—nA(d—-x)=0
For this section, x=8.44in.:
I, = §x3 +(n— DA (x —d')* + nA(d — x)* = 9220 in.*

7. Effective moment of inertia is

M\’ M\’
I, = <M°r> I, + l1_<Mcr> ]Icrglg

49.40\° 49.40\3 .
= (229) 15625 1—<—) 9220 = 9264 in*
( 260 ) x + [ 260 ] X n
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8. Determine the components of the deflection:

800 (20 x 12)*
= X

| == 5 =0.82 in. (due to uniform load of 0.8 K/ft)
127 8x3.60 x 10° x 9264
0.4 .
=0.82 % 08 =0.41in. (due to dead load)
20 x 12)°
A 300020 x 12) =041 in. (due to concentrated

* 7 3%3.60 % 10° X 9264

dead load at free end)

4000(10 X 12)2 X (3 X 20 X 12 — 10 x 12)
6 x 3.60 x 10° x 9264

4y

=0.171in. (due to concentrated live load

at 10 ft from fixed end)

The total immediate deflection is

A=A + 4, + 4, =082 +0.41 +0.17 = 1.40in.

9. For additional long-time deflection, the immediated deflection is multiplied by the factor 4,. For

a l-year period, { =1.4:

A/
pl=== _ 15T 0061
bd ~ 12x21.5
14
ly=——"  =1073
47 1+50%0.0061

Total immediate deflection A due to sustained load (here only the dead load of 0.4 K/ft
and P,=3K at free end): A;=(4,+4,)=(041 + 0.41)=0.82in. Additional long-time

deflection=1.073 X 0.82=0.88 in.

10. Total long-time deflection is the immediate deflection plus long-time deflection due to shrinkage

and creep:
Total A =1.40+0.88 =2.28 in.

Example 6.5

Calculate the instantaneous midspan deflection of beam AB in Fig. 6.5, which has a span of 32 ft. The
beam is continuous over several supports of different span lengths. The absolute bending moment dia-
gram and cross sections of the beam at midspan and supports are also shown. The beam carries a uniform
dead load of 4.2 K/ft and a live load of 3.6 K/ft. Given: f = 3 ksi normal-weight concrete, fy =60 ksi,

and n=9.2.
Moment at midspan: Mp =192K -t M, = 480K - ft
Moment at left support A : Mp =179K-ft M, ;) = 420K - ft
Moment at right support B : M, = 216K - ft My, ;) = 542K - ft
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DL = 4.2 K/ft e 4
LL = 3.6 K/ft A B

E -]

e ]

I

~ 32 542 K/ft
420
179 216 K/ft
Al 8
\_\_'_ —
192 K/ft
480 K/ft
4// 4//
}<—_-_78(/_—_—_——__>"L l 78//;_—’.{
[ YY) ]

P Y e
T T ﬁ, o

34"

38" z“) 667" 38"
6#9 ° // "
l . l {J— /Az#o 12e
* — 14" fe— ? —{ 14" la— ?
4// 3//
Section 1-1 Section 3-3
4// 4/{
L ‘L 78" —1‘ i ‘ﬁ 78" >J]
A

T

7
?—» 14" :T ——{ 14" }-—

3// 1 O.qll
Section 2-2 Gross section

35//*‘

-
-
DO\

Figure 6.5 Example 6.5: deflection of continuous beam.
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Solution

1. The beam AB is subjected to a positive moment that causes a deflection downward at midspan
and negative moments at the two ends, causing a deflection upward at midspan. As was explained
earlier, the deflection is a function of the effective moment of inertia, /,. In a continuous beam,
the value of I, to be used is the average value for the positive- and negative-moment regions.
Therefore, three sections will be considered: the section at midspan and the sections at the two
supports.

2. Calculate 1,: For the gross area of all sections, kd=13.5in. and Ig =114,300in.* Also,
f.= 7.5/1\/]7[ =410psiand E, = 57,000\/]‘7 = 3.12 x 10° for all sections. The values of kd, I

s Lers

and M, for each cracked section, I, for dead load only (using M, of dead load), and /, for dead
and live loads (using M, for dead and live loads) are calculated and tabulated as follows:

kd I, M., 1, (in.%) 1, (in.%)
Section (in.) (in.%) A (K-ft) (Dead Load) (D+1L)
Midspan 6.67 48,550 24.5 159.4 86,160 50,960
Support A 10.9 34,930 13.5 289.3 114,300 60,880
Support B 12.6 44,860 13.5 289.3 114,300 55,415

Note that when the beam is subjected to dead load only and the ratio M /M, is greater than
1.0,1,=1,.
A, =1,

3. Calculate average I, from Eq. 6.8:
1, (average) = 0.7(50,960) + 0.15(60,880 + 55,415)
=53,116in.*

For dead and live loads,
Average I, for end sections = %(60,880 + 55,415)
= 58,150 in.*
1,, (average) = %(50,960 +58,150) = 54,550in.*

For dead loads only,

Average I, for end sections = 114,300 in?

Ly (average) = %(86,160 + 114,300) = 100,230 in.*

4. Calculate immediate deflection at midspan:

. 5wL*
A,(due to uniform load) = (downward)
384FI,
A (due ¢ ttAM)—MAL2 ( d)
,(due to a moment at A, M,) = ToEL upwar
2
As;(due to a moment at B, My) = _162"16 (upward)

Total deflection 4 =4, — A, — 4
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The dead-load deflection for a uniform dead load of 4.2 K/ft, taking M, (dead load)=179
K-ft, My (dead load)=216K-ft, and 1,5 = 100,230 in.* and then substituting in the preceding
equations, is

A=0.314-0.063 —0.075 =0.176 in. (downward)

The deflection due to combined dead and live loads is found by taking dead plus live
load = 7.8 K/ft, M, =420 K - ft, My = 542 K-ft, and I, = 54,550 in.*:

A=1.071-0.270 - 0.349 = 0.452 in. (downward)

The immediate deflection due to live load only is 0.452-0.176 =0.276 in. (downward). If the
limiting permissible deflection is L/480 = (32 X 12)/480 = 0.8 in., then the section is adequate.
There are a few points to mention about the results:

a. If ], of the midspan section only is used (/, = 50,960 in.%), then the deflection due to dead plus
live loads is calculated by multiplying the obtained value in step 4 by the ratio of the two /,:
54,550
50,960
The difference is small, about 7% on the conservative side.

b. If 1,; (average) is used (/,; = 53,116in.%), then A (dead + live) =0.4711in. The difference is
small, about 4% on the conservative side.

A(dead + live) = 0.452 X < > = 0.484 in.

c. Itis believed that it is more convenient to use /, at the midspan section unless a more rigorous
solution is required.

6.6 CRACKS IN FLEXURAL MEMBERS

The study of crack formation, behavior of cracks under increasing load, and control of crack-
ing is necessary for proper design of reinforced concrete structures. In flexural members, cracks
develop under working loads, and because concrete is weak in tension, reinforcement is placed in
the cracked tension zone to resist the tension force produced by the external loads.

Flexural cracks develop when the stress at the extreme tension fibers exceeds the modulus of
rupture of concrete. With the use of high-strength reinforcing bars, excessive cracking may develop
in reinforced concrete members. The use of high-tensile-strength steel has many advantages, yet
the development of undesirable cracks seems to be inevitable. Wide cracks may allow corrosion of
the reinforcement or leakage of water structures and may spoil the appearance of the structure.

A crack is formed in concrete when a narrow opening of indefinite dimension has developed
in the concrete beam as the result of internal tensile stresses. These internal stresses may be due to
one or more of the following:

« External forces such as direct axial tension, shear, flexure, or torsion.

 Shrinkage.

» Creep.

« Internal expansion resulting from a change of properties of the concrete constituents.

In general, cracks may be divided into two main types: secondary cracks and main cracks.

6.6.1 Secondary Cracks

Secondary cracks, very small cracks that develop in the first stage of cracking, are produced by the
internal expansion and contraction of the concrete constituents and by low flexural tension stresses
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due to the self-weight of the member and any other dead loads. There are three types of secondary
cracks: Shrinkage, flexural, and corrosion.

Shrinkage Cracks. Shrinkage cracks are important cracks, because they affect the pattern of
cracking that is produced by loads in flexural members. When they develop, they form a weak path
in the concrete. When load is applied, cracks start to appear at the weakest sections, such as along
the reinforcing bars. The number of cracks formed is limited by the amount of shrinkage in concrete
and the presence of restraints. Shrinkage cracks are difficult to control.

Secondary Flexural Cracks. Usually secondary flexural cracks are widely spaced, and one crack
does not influence the formation of others [8]. They are expected to occur under low loads, such
as dead loads. When a load is applied gradually on a simple beam, tensile stress develops at the
bottom fibers, and when it exceeds the flexural tensile stress of concrete, cracks start to develop.
They widen gradually and extend toward the neutral axis. It is difficult to predict the sections at
which secondary cracks start because concrete is not a homogeneous, isotropic material.

Salinger [9] and Billing [10] estimated the steel stress just before cracking to be from about
6000 to 7000 psi (42 to 49 MPa). An initial crack width of the order of 0.001 in. (0.025 mm) is
expected at the extreme concrete tensile fibers. Once cracks are formed, the tensile stress of con-
crete at the cracked section decreases to zero, and the steel bars take all the tensile force. At this
moment, some slip occurs between the steel bars and the concrete due to the differential elonga-
tion of concrete and steel and extends to a section where the concrete and steel strains are equal.
Figure 6.6 shows the typical stress distribution between cracks in a member under axial tension.

Corrosion Secondary Cracks. Corrosion secondary cracks form when moisture containing
deleterious agents such as sodium chloride, carbon dioxide, and dissolved oxygen penetrates
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Figure 6.6 Typical stress distribution between cracks.
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the concrete surface, corroding the steel reinforcement [11]. The oxide compounds formed by
deterioration of steel bars occupy a larger volume than the steel and exert mechanical pressure
that perpetuates extensive cracking [12, 13]. This type of cracking may be severe enough to result
in eventual failure of the structure. The failure of a roof in Muskegan, Michigan, in 1955 due to
the corrosion of steel bars was reported by Shermer [13]. The extensive cracking and spalling
of concrete in the San Mateo—Hayward Bridge in California within 7 years was reported by
Stratful [12]. Corrosion cracking may be forestalled by using proper construction methods and
high-quality concrete. More details are discussed by Evans [14] and Mozer and others [15].

6.6.2 Main Cracks

Main cracks develop at a later stage than secondary cracks. They are caused by the difference in
strains in steel and concrete at the section considered. The behavior of main cracks changes at two
different stages. At low tensile stresses in steel bars, the number of cracks increases, whereas the
widths of cracks remain small; as tensile stresses are increased, an equilibrium stage is reached.
When stresses are further increased, the second stage of cracking develops, and crack widths
increase without any significant increase in the number of cracks. Usually one or two cracks start
to widen more than the others, forming critical cracks (Fig. 6.7).

Main cracks in beams and axially tensioned members have been studied by many investiga-
tors; prediction of the width of cracks and crack control were among the problems studied. These
are discussed here, along with the requirements of the ACI Code.

Crack Width. Crack width and crack spacing, according to existing crack theories, depend on
many factors, which include steel percentage, its distribution in the concrete section, steel flex-
ural stress at service load, concrete cover, and properties of the concrete constituents. Different
equations for predicting the width and spacing of cracks in reinforced concrete members were pre-
sented at the Symposium on Bond and Crack Formation in Reinforced Concrete in Stockholm,
Sweden, in 1957. Chi and Kirstein [16] presented equations for the crack width and spacing as a
function of an effective area of concrete around the steel bar: A concrete circular area of diameter
equal to four times the diameter of the bar was used to calculate crack width. Other equations were
presented over the next decade [17-23].
Gergely and Lutz [23] presented the following formula for the limiting crack width:

W = 0.0764f,v/Ad. x 107%(in.) (6.15)

where f, A, and f, are as defined previously and d. is the thickness of concrete cover measured
from the extreme tension fiber to the center of the closest bar. The value of f# can be taken to be
approximately equal to 1.2 for beams and 1.35 for slabs. Note that f; is in psi and W is in inches.
The mean ratio of maximum crack width to average crack width was found to vary between
1.5 and 2.0, as reported by many investigators. An average value of 1.75 may be used.
In ST units (mm and MPa), Eq. 6.15 is

W = 11.08f,\/Ad, x 107 (6.16)

Tolerable Crack Width. The formation of cracks in reinforced concrete members is unavoidable.
Hairline cracks occur even in carefully designed and constructed structures. Cracks are usually mea-
sured at the face of the concrete, but actually they are related to crack width at the steel level, where
corrosion is expected. The permissible crack width is also influenced by aesthetic and appearance
requirements. The naked eye can detect a crack about 0.006 in. (0.15 mm) wide, depending on the
surface texture of concrete. Different values for permissible crack width at the steel level have been
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(b)

Figure 6.7 (a) Main cracks in a reinforced concrete beam. (b) Spacing of cracks in a
reinforced concrete beam.

suggested by many investigators, ranging from 0.010 to 0.0161in. (0.25 to 0.40 mm) for interior
members and from 0.006 to 0.0101in. (0.15 to 0.25 mm) for exterior exposed members. A limit-
ing crack width of 0.0161in. (0.40 mm) for interior members and 0.013 in. (0.32 mm) for exterior
members under dry conditions can be tolerated.

Crack Control. Control grows in importance with the use of high-strength steel in reinforced
concrete members, as larger cracks develop under working loads because of the high allowable
stresses. Control of cracking depends on the permissible crack width: It is always preferable to
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have a large number of fine cracks rather than a small number of large cracks. Secondary cracks
are minimized by controlling the total amount of cement paste, water—cement ratio, permeability
of aggregate and concrete, rate of curing, shrinkage, and end-restraint conditions.

The factors involved in controlling main cracks are the reinforcement stress, the bond charac-

teristics of reinforcement, the distribution of reinforcement, the diameter of the steel bars used, the
steel percentage, the concrete cover, and the properties of concrete constituents. Any improvement
in these factors will help in reducing the width of cracks.

6.7 ACI CODE REQUIREMENTS

To control cracks in reinforced concrete members, the ACI Code, Section 24.3, specifies the fol-
lowing:

1.
2.

6.

Only deformed bars are permitted as main reinforcement.

Tension reinforcement should be well distributed in the zones of maximum tension (ACI
Code, Sections 11.7.2.4 and 24.3.1).

When the flange of the section is under tension, part of the main reinforcement should be
distributed over the effective flange width or one-tenth of the span, whichever smaller. If the
effective flange width exceeds one-tenth the span, some longitudinal reinforcement has to be
provided in the outer portion of the flange (ACI Code, Section 24.3.4).

The design yield strength of reinforcement should not exceed 80 ksi (560 MPa) (ACI Code,
Section 20.2.2.4).

. The maximum spacing s of reinforcement closest to a concrete surface in tension in reinforced

concrete beams and one-way slabs is limited to

s(in.) = [15 <jf_0> - 2.5CC] (6.17)

N

but not greater than 12 (40/f,),
where
f, =calculated stress (ksi) in reinforcement at service load computed as unfactored moment
divided by product of steel area and internal moment arm, f, = M/(Ajd) (alternatively,
—_— 2 . 3 " —_—
fi= ;f) may be used; approximate value of jd = 0.87d may be used)
C, = clear cover from nearest surface in tension to surface of flexural tension reinforcement (in.)
s = center-to-center spacing of flexural tension reinforcement nearest extreme concrete tension
face (in.)

The preceding limitations are applicable to reinforced concrete beams and one-way slabs
subject to normal environmental condition and do not apply to structures subjected to aggres-
sive exposure. The spacing limitation just given is independent of the bar size, which may
lead to the use of smaller bar sizes to satisfy the spacing criteria. For the case of concrete
beams reinforced with grade 60 steel bars and C.=21in., clear cover to the tension face,
the maximum spacing is calculated as follows: Assume f; =2/3 f; =(2/3) X 60 =40ksi and

s=15 (%) —2.5%2 = 10in. (controls), which is less than 12(40/40) = 12 in.
In ST units, Eq. 6.17 becomes
s(mm) = 105,000/f, — 2.5C, (6.18)
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but not greater than 300 (280/f;), where f; is in ‘MPa’ and C, is in ‘mm’. For example, if bars
with a clear cover equal to 50 mm are used, then the maximum spacing, s, is calculated as
_ 105,000
280

which is less than 300(280/280) =300 mm in this example. This is assuming that f, = % X
420 = 280 MPa.

—2.5%x50=250mm (controls),

. In the previous codes, control of cracking was based on a factor Z defined as follows:

Z =f/Ad,. < 175k/in. (31kN/mm) for interrior members
< 140k/in. 26 kN/mm) for exterior members (6.19)

where f; is the flexural stress at service load (ksi) and may be taken as 0.6 f, and A and
d. are the effective tension area of concrete and thickness of concrete cover, respectively.
This expression is based on Eq. 6.15 assuming a limiting crack width of 0.016 in. for interior
members and 0.013 in. for exterior members. It encouraged a decrease in the reinforcement
cover to achieve a smaller Z, while unfortunately it penalized structures with concrete cover
that exceeded 2 in.

. Skin Reinforcement. For relatively deep girders, with a total depth, 4, equal to or greater than

361in. (900 mm), light reinforcement should be added near the vertical faces in the tension
zone to control cracking in the web above the main reinforcement. The ACI Code, Section
9.7.2.3, referred to this additional steel as skin reinforcement. The skin reinforcement should
be uniformly distributed along both side faces of the member for a distance /4/2 from the
tension face.

The spacing S between the longitudinal bars or wires of the skin reinforcement shall be as

provided in Eq. 6.17 where C, is the least distance from the skin reinforcement to the side face.

Referring to Figure 6.8, if b=16in., h=401in., f, =60 ksi, and choosing no. 3 bars spaced

at 6.01n. as skin reinforcement (three spaces on each side), then the height covered is equal to
3% 6+2.5=20.51n., which is greater than 4/2 =40/2 =20 in.

D
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Figure 6.8 Skin reinforcement (six no. 3 bars).
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Checking the spacing S by Eq. 6.18 and assuming f, =2/3f, =2/3 x 60 =40ksi, and C, =2in.,
then S = 15(40/40) — 2.5 x 2 =10 in., which is less than 12(40/40) = 12 in. The spacing used is ade-
quate. Note that C. = 1.5 in. may be used for the skin reinforcement concrete cover.

It is recommended to use smaller spacing to control the propagation of tensile cracks along
the side of the tension zone with the first side bar to be placed at 4 to 6 in. from the main tensile steel.

Example 6.6
The sections of a simply supported beam are shown in Fig. 6.9.

a. Check if the bar arrangement satisfies the ACI Code requirements.
b. Determine the expected crack width.
c. Check the Z-factor based on Eq. 6.19.

Given:f(f = 4ksi, f, =60 ksi, and no. 3 stirrups.

Solution

1. Fig. 6.9, section a:

a. For three no. 8 bars, A, =2.35in.2, clear cover, C.=2.5—8/16=2.0in. Assume f, =
Zfv =2/3x 60 = 40ksi. Maximum spacing s =600/40-2.5x2=101n., which is less than
12(40/40) = 12 in. Spacing provided equals 0.5(12-2.5-2.5) = 3.5 in., center to center of bars,
which is less than 10in.

b. For this section, d. = 2.5 in. The effective tension area of concrete for one bar is

Ao 12(2 x 2.5)
3
Estimated crack width using Eq. 6.16 is
W = 0.076(1.2)(36,000)v/20 x 2.5 x 107 = 0.0121 in.

This is assuming f=1.2 for beams and f, =36 ksi. The crack width above is less than
0.0161n. and 0.013 in. for interior and exterior members.

=20in.?

~
2#4
~
2#4
225"
175"
oA FTET
T I L
25" 2535
v e —
(@ (b)

Figure 6.9 Two sections for Example 6.6.
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2. Fig. 6.9, section b:
a. Calculations of spacing of bars are similar to those in section a.

b. For this section, d.=2.5in., and the steel bars are placed in two layers. The centroid
of the steel bars is 3.5in. from the bottom fibers. The effective tension concrete area is
A=12(2%3.5)/6=141in.? Then

W = 0.076 x 1.2 x 36,000V 14 x 2.5 x 107° = 0.0107 in.
which is adequate.

Discussion

It can be seen that the spacing, s, in Eq. 6.17 is a function of the stress in the tension bars or, indirectly,
is a function of the strain in the tension steel, f, =E, X €, and E; for steel is equal to 29,000 ksi. The
spacing also depends on the concrete cover, C,.. An increase in the concrete cover will reduce the limited
spacing s, which is independent on the bar size used in the section.

In this example, the expected crack width was calculated by Eq. 6.17 to give the student or the
engineer a physical feeling for the crack width and crack control requirement. The crack width is usually
measured in beams when tested in the laboratory or else in actual structures under loading when serious
cracks develop in beams or slabs and testing is needed. If the crack width measured before and after
loading is greater than the yield strain of steel, then the main reinforcement is in the plastic range and
ineffective. Sheets with lines of different thickness representing crack widths are available in the market
for easy comparisons with actual crack widths. In addition to the steel stress and the concrete cover, W
depends on a third factor, A, representing the tension area of concrete surrounding one bar in tension.

Example 6.7

Design a simply supported beam with a span of 24 ft to carry a uniform dead load of 1.5 K/ft and a live
load of 1.18 K/ft. Choose adequate bars; then check their spacing arrangement to satisfy the ACI Code.
Given: b=161n., ﬂ = 4ksi, fy =60 ksi, a steel percentage =0.8%, and a clear concrete cover of 2 in.

Solution

1. For a steel percentage of 0.8%, R, =400 psi=0.4 ksi (¢p =0.9). The external factored moment is
M,=w, x L*/8, and

w, = 1.2(1.5) + 1.6(1.18) = 3.69 K/ft

2
M, = % =265.68K - ft =3188.2K - in.

M,=Rpbd*> d=2232 A, =0.008x16x22.32 =2.86in.’

250 22.44"
3#9
i 2
y ® ® [ ] 756"
256> j«*
fe—— 16" —>]

Figure 6.10 Example 6.7.
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Choose three no. 9 bars (area=3.0in.?) in one row, and a total depth of 7=25.01in. Actual
d=125-2-9/16 =22.44in. (Fig. 6.10).
2. Check spacing of bars using Eq. 6.18. Calculate the service load and moment, w=1.5+

1.18 =2.68 K/ft:
2.68(24)

M = =193K-ft =2315K - in.

3. Calculate the neutral axis depth kd and the moment arm jd (Eq. 6.12):
%b(kcl)2 —nA(d—-kd)=0 n=3_§ A, =30 d=22441in.

. kd . 20.16
kd = 6. . jd =d — — =20.16 in. j==—"— =0.
d =6.851in jd=d 3 0.16 in j > 0.898

Note that an approximate value of j =0.87 may be used if kd is not calculated.
4. Calculate the stress f;:

M = Af,jd 2315 = 3(f,)(20.16) f, =38.3ksi
5. Calculate the spacing s by Eq. 6.18:
s =600/38.3 -2.5%x2=10.7in. (controls)

which is less than 12(40/40) = 12.0in. Spacing provided =0.5 (16-2.56-2.56) =5.44 in., which
is less than 10.7 in.

Example 6.8

Design a simply supported beam of 7.2-m span to carry a uniform dead load of 22.2kN/m and a live
load of 17 kN/m. Choose adequate bars, and check their spacing arrangement to satisfy the ACI Code.

Given: b =400 mm, f/ = 30 MPa, f) =400 MPa, a steel percentage of 0.8%, and a clear concrete
cover of 50 mm.

Solution

1. For a steel percentage of 0.008 and from Eq. 3.22, R, =2.7 MPa. Factored load w, =1.2(22.2) +
1.6(17)=53.8kN/m. Then M, =uw,*/8=>53.8(7.2)*/8=348.6kN-m; M, =R -bd®>, or
348.6 X 10%=2.7 x 400d?, d =568 mm, A, = pbd = 0.008 x 400 X 568 = 1818 mm?. Choose four
bars, 25 mm (no. 25 M), A, =2040 mm?2, in one row (bpin =220 mm). Let 2 =650 mm, the actual
d=650-50-25/2=587.5mm, say 585 mm. Final section: b=400 mm, & =650mm, with four
no. 25 mm bars (Fig. 6.11).

650 mm 600 mm
4425 __y Cover =
v e o o o 50 mm
B i
62.5 mm
f€¢—— 400 mm ——>|

Figure 6.11 Example 6.8.
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2. Check spacing of bars using Eq. 6.17. Calculate the service load moment, w=222+17=

39.2kN/m,

2
M= 39.2;7.2) —954KN - m

Calculate kd and jd as in the previous example. Alternatively, use a moment arm, jd=
0.87d=0.87(585)=509mm and f,=M/(A,-jd)=254(10)%/(2040 x 509) =244.6 MPa. From
Eq. 6.19, maximum s=(105,000/244.6)-2.5(50) =304 mm (controls), which is less than
300(280/f;) =300(280)/244.6 = 343 mm. Note that if f, =0.6 f) =0.6(400) =240 MPa is used,
then maximum s =312 mm. It is preferable to calculate f, from the moment equation to reflect
the actual stress in the bars. Spacing provided = (1/3)(400-50-25) = 92 mm, which is adequate.

SUMMARY

Sections 6.1 and 6.2

1. Deflection A= a(WL*/EI)=5WL?*/384EI =5wL*/384EI for a simply supported beam sub-
jected to a uniform total load of W=wL:

E. = 33w" /! = 57,400f psi
for normal-weight concrete.
2. Effective moment of inertia is

M_\> M.\
cr cr
fe= <M> et [1_<Ma> ]I“SI*”

I
M,=fx=< —and f =75M/f
y

t

Section 6.3

The deflection of reinforced concrete members continues to increase under sustained load.
Additional long-time deflection equals ¢ 4 X instantaneous deflection:

_ ¢
e 1+ 50p'

where { =1.0, 1.2, 1.4, 2.0 for periods of 3, 6, 12, and 60 months, respectively.

Sections 6.4 and 6.5

1. The allowable deflection varies between L/180 and L/480.

2. Deflections for different types of loads may be calculated for each type of loading separately
and then added algebraically to obtain the total deflection.

Section 6.6

1. Cracks are classified as secondary cracks (shrinkage, corrosion, or secondary flexural cracks)
and main cracks.
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2. Maximum crack width is
W = 0.076f,x/Ad, x 10~%(in.)

Approximate values for g, f;, and d, are f = 1.2 for beams and f = 1.35 for slabs, d.=2.51in.,
and f; = (2/3) f,.
3. The limiting crack width is 0.016 in. for interior members and 0.013 in. for exterior members.

Section 6.7

The maximum spacing s of bars closest to a concrete surface in tension is limited to

600
s=——-2.5C,
J;

N

but not more than 12(40/f;). Note that f; may be taken as 2/3 f;.
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PROBLEMS

Determine the instantaneous and long-time deflection of a 20-ft-span simply supported beam for each of
the following load conditions. Assume that 10% of the live loads are sustained and the dead loads include
the self-weight of the beams. Use f! = 4 ksi, f, =60 ksi, d =2.5in., and a time limit of 5 years. Refer
to Fig. 6.12.

b d h A, Al w, w, P, P,
No. (in) (in) (in) (in.2) (in.2) K/ (KF) (K (K
a 14 175 20 5n0.9 — 22 1.8 - -
b 20 275 30  6no. 10 — 7.0 3.6 - -
¢ 2 195 23 6 no. 8 — 3.0 1.5 -
d 18 205 24  6no.10  2no.9 6.0 2.0 - =
e 16 225 26  6no.11  2no. 10 5.0 3.2 2 10
f 14 205 24 810.9 21n0.9 3.8 2.8 8 6

Note: h—d = 2.5 in. indicates one row of bars, whereas i—d = 3.5 in. indicates two rows of bars. Concentrated
loads are placed at midspan.

6.2 Determine the instantaneous and long-term deflection of the free end of a 12-ft-span cantilever beam for

each of the following load conditions. Assume that only dead loads are sustained, and the dead loads

20' 0" .

(6m) |
Figure 6.12 Problem 6.1.
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Figure 6.13 Problem 6.2.

- o8 o .

(84 m) |

Figure 6.14 Dead load =2 K/ft (30 kN/m) and live load = 1.33 K/ft (20 kN/m).
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Figure 6.15 Problem 6.5.
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include the self-weight of the beams. Use ﬂ = 4ksi, fy =060 ksi, and a time limit of more than 5 years.
Refer to Fig. 6.13.

Chapter 6 Deflection and Control of Cracking
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3.5"

8
°
°

#

® ®C

=

Figure 6.16 Skin reinforcement.

b d h A, Al w, w, P, P,
No. (in) (in) (in) (in.2) (in.2) K/ft)  (Kif) (K (K)
a 15 205 24 8n0.9  210.9 3.5 2.0 - -
b 18 225 26  6n0.10 — 2.0 1.5 74 50
¢ 12 195 23 8no.8  2no.8 2.4 1.6 S —
d 14 205 24 8n0.9  210.9 3.0 1.1 55 4.0

Note h—d = 2.5 in. indicates one row of bars, whereas h—d = 3.5 in. indicates two rows of bars. Concentrated

loads are placed as shown.

6.3 A 28-ft simply supported beam carries a uniform dead load of 2 K/ft (including self-weight) and a live
load of 1.33 K/ft. Design the critical section at midspan using the maximum steel ratio allowed by the
ACIT Code and then calculate the instantaneous deflection. Use f! = 4 ksi, fy =60 ksi, and b=121in. See

Fig. 6.14.

6.4 Design the beam in Problem 6.3 as doubly reinforced, considering that compression steel resists 20% of

the maximum bending moment. Then calculate the maximum instantaneous deflection.

6.5 The four cross sections shown in Fig. 6.15 belong to four different beams with f = 4 ksi and f, = 60 ksi.
Check the spacing of the bars in each section according to the ACI Code requirement using f, = 0.6f,.

Then calculate the tolerable crack width, W.

6.6 Determine the necessary skin reinforcement for the beam section shown in Fig. 6.16. Then choose

adequate bars and spacings. Use f! = 4 ksi and f, = 60 ksi.



CHAPTER 7

DEVELOPMENT
LENGTH OF
REINFORCING BARS

Reinforced concrete columns supporting an
office building, Toronto, Canada.

7.1 INTRODUCTION

The joint behavior of steel and concrete in a reinforced concrete member is based on the fact that a
bond is maintained between the two materials after the concrete hardens. If a straight bar of round
section is embedded in concrete, a considerable force is required to pull the bar out of the concrete.
If the embedded length of the bar is long enough, the steel bar may yield, leaving some length of
the bar in the concrete. The bonding force depends on the friction between steel and concrete. It
is influenced mainly by the roughness of the steel surface area, the concrete mix, shrinkage, and
the cover of concrete. Deformed bars give a better bond than plain bars. Rich mixes have greater
adhesion than weak mixes. An increase in the concrete cover will improve the ultimate bond stress
of a steel bar [2].
In general, the bond strength is influenced by the following factors:

1. Yield strength of reinforcing bars, f,. Longer development length is needed with higher f,..

2. Quality of concrete and its compressive strength, f/. An increase in f! reduces the required
development length of reinforcing bars.

3. Bar size, spacing, and location in the concrete section. Horizontal bars placed with more
than 12in. of concrete below them have lower bond strength due to the fact that concrete
shrinks and settles during the hardening process. Also, wide spacings of bars improve the
bond strength, giving adequate effective concrete area around each bar.

4. Concrete cover to reinforcing bars. A small cover may cause the cracking and spalling of the
concrete cover.

5. Confinement of bars by lateral ties. Adequate confinement by ties or stirrups prevents the
spalling of concrete around bars. 257
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7.2 DEVELOPMENT OF BOND STRESSES

7.2.1 Flexural Bond

Consider a length dx of a beam subjected to uniform loading. Let the moment produced on one
side be M, and on the other side be M, with M, being greater than M,. The moments will produce
internal compression and tension forces, as shown in Fig. 7.1. Because M, is greater than M,, T}
is greater than 7,; consequently, C, is greater than C,.

At any section, T'= M/jd, where jd is the moment arm:

but
T,=T,+u Z Odx

where u is the average bond stress and Y O is the sum of perimeters of bars in the section at the

tension side. Therefore,
aM

Tl—T2=u20dx: 17
]

dx jdY O

The rate of change of the moment with respect to x is the shear, or dM/dx = V. Therefore,
"y = Vv

jdy o
The value u is the average bond stress; for practical calculations, j can be taken to be approximately
equal to 0.87:

(7.1)

LoV
0.87d Y O

In the strength design method, the nominal bond strength is reduced by the capacity reduction

factor, ¢p =0.75. Thus,
V
U,=————— 7.2
Y $0.87)d Y. 0 (72)
Based on the preceding analysis, the bond stress is developed along the surface of the reinforcing
bar due to shear stresses and shear interlock.

w
M1 ; M2
e e
jd ) ) jd
“—
l .
Lol
Ty T
<—-—~dx-————-{

Figure 7.1 Flexural bond.
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Figure 7.2 Bond stresses and development length. (a) Distribution of stress along /,
and (b) radial stress in concrete around the bar.

7.2.2 Tests for Bond Efficiency

Tests to determine the bond stress capacity can be made using the pullout test (Fig. 7.2). This test
evaluates the bond capacity of various types of bar surfaces relative to a specific embedded length.
The distribution of tensile stresses will be uniform around the reinforcing bar at a specific section
and varies along the anchorage length of the bar and at a radial distance from the surface of the bar
(Fig. 7.2). However, this test does not represent the effective bond behavior in the surface of the
bars in flexural members because stresses vary along the depth of the concrete section. A second
type of test can be performed on an embedded rod (Fig. 7.3). In these tests, the tensile force, P,
is increased gradually and the number of cracks and their spacings and widths are recorded. The
bond stresses vary along the bar length between the cracks. The strain in the steel bar is maximum
at the cracked section and decreases toward the middle section between cracks.

Tests on flexural members are also performed to study the bond effectiveness along the surface
of the tension bars. The analysis of bond stresses in the bars of these members was explained earlier,
and they are represented by Eq. 7.2.

Based on this discussion, it is important to choose an appropriate length in each reinforcing
bar to develop its full yield strength without a failure in the bond strength. This length is called
the development length, [,. If this length is not provided, the bond stresses in the tension zone of a
beam become high enough to cause cracking and splitting in the concrete cover around the tension
bars (Fig. 7.4). If the split continues to the end of the bar, the beam will eventually fail. Note that
small spacings between tensile bars and a small concrete cover on the sides and bottom will reduce
the bond capacity of the reinforcing bars (Fig. 7.4).
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between cracks.
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Figure 7.4 Examples of spalling of concrete cover. (@) High bottom cover, (b) wide
spacing, and (c) small bottom cover.

7.3 DEVELOPMENT LENGTH IN TENSION

7.3.1 Development Length, 1,

If a steel bar is embedded in concrete, as shown in Fig. 7.2, and is subjected to a tension force 7,
then this force will be resisted by the bond stress between the steel bar and the concrete. The
maximum tension force is equal to Af,,, where A is the area of the steel bar. This force is resisted
by another internal force of magnitude U,0l,;, where U, is the ultimate average bond stress, /, is
the embedded length of the bar, and O is the perimeter of the bar (zD). The two forces must be
equal for equilibrium:

Af,

U0

u

As‘f;) - UMOId and ld -

For a combination of bars,
__Ah
)
The length /; is the minimum permissible anchorage length and is called the development length:
rd2f, d,f,
= —b2 = (7.4)
4U,(xd,) 4U,
where d, is the diameter of reinforcing bars.

This means that the development length is a function of the size and yield strength of the
reinforcing bars in addition to the ultimate bond stress, which in turn is a function of \/f_c’ . The bar
length [, given in Eq. 7.4 is called the development length, [,. The final development length should
also include the other factors mentioned in Section 7.1. Equation 7.4 may be written as follows:

£=K<1L> (7.5)
d, NG

where K is a general factor that can be obtained from tests to include factors such as the bar charac-
teristics (bar size, spacing, epoxy coated or uncoated, location in concrete section, and bar splicing),
amount of transverse reinforcement, and the provision of excess reinforcement compared to that
required from design.

The ACI Code, Section 25.4.2.3, evaluated K as follows:

3 YWY
K=— - 7.6
() () 76

L (13)
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b (3 (L (v,
d, <40,1> (\/f> <<Cb +K,) /db> 77

and 7.5 becomes

where

y, = bar location
v, = coating factor
y, = bar-size factor
A = lightweight aggregate concrete factor (ACI Code, Section 19.2.4.2)
= 1.0 normal-weight concrete
= When lightweight aggregate is used, 4 shall not exceed 0.75 unless splitting tensile strength is
specified, then
A =fct/(6.7\/ﬁ) <1 (ACI Code, Section 19.2.4.2) ¢, = spacing or cover dimension (in.); the
smaller of

(1) Distance from center of bar or wire being developed to the nearest concrete surface or
(2) One-half the center-to-center spacing of bars or wires being developed

K, = transverse reinforcement index
=40 A, /sn
n = number of bars or wires being developed along the plane of splitting
s = maximum spacing of transverse reinforcement within /,, center to center (in.)
Jy = yield strength of transverse reinforcement (psi)
A, = total sectional area of all transverse reinforcement within spacing s that crosses the potential
plane of splitting through to the reinforcement being developed (in.?)

Notes:

1. Let (¢,- + K,)/d,, not exceed 2.5 to safeguard against pullout-type failures.

2. The value of 1/f! shall not exceed 100 psi (ACI Code, Section 25.4.1.4).
3. Let K, =0 be used as a design simplification (ACI Code, Section 25.4.2.3).

7.3.2 ACI Code Factors for Calculating /, for Bars in Tension

1. ¥, =bar location factor
¥, =1.3 for top bars defined as horizontal reinforcement, placed so that more than 12in. of
fresh concrete is below the development length, or splice
¥, =1.0 for all other reinforcement
2. ¥, =coating factor
¥, =1.5 for epoxy-coated bars or wires with cover less than 3d, or clear spacing less than
6d,
¥, = 1.2 for all other epoxy coated bars or wires
¥, = 1.0 for uncoated and zinc-coated (galvanized) reinforcement (However, the value of the
¥.,¥, product should not exceed 1.7.)
3. ¥, =bar size factor
¥ =0.8 for no. 6 bars or smaller bars and deformed wires
¥, =1.0 for no. 7 bars and larger bars
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4. 1=lightweight aggregate concrete factor

!
A= 67VI <1.0

A= A shall not exceed 0.75 unless Jo 1s specified
A=1.0 for normal-weight concrete

5. The ACI Code permits using K, =0 even if transverse reinforcement is present. In this case,

L _ ( 3 ) 5\ (wwews 78)
d,, 404 \/E cp/dy '
The value of y/f! should not exceed 100 psi.

6. Assume R, is the reduction factor due to excess reinforcement. The ACI Code, Section
25.4.10.1, permits the reduction of /, by the factor R, when the reinforcement in a flexural
member exceeds that required by analysis, This reduction does not apply when the full f,
development is required, as for tension lap splices, specified in ACI Code, Sections 4.10 and
25.5.2.1, and ACI Code, Section 8.7.4.2, development of positive-moment reinforcement at
supports, and for development of shrinkage and temperature reinforcement.

This reduction in development length is not permitted for reinforcement in structures
located in seismic risk or for structures assigned to high seismic performance or design
categories, except where anchorage or development for f, is specifically required or the
reinforcement is designed considering seismic effects. ’

_ A, (required)
* 7 A, (provided)

7. The development length, /;, in all cases shall not be less than 12in. (ACI Code, Section
254.2.1)

(7.9)

7.3.3 Simplified Expressions for I,

As design simplification, ACI Code permits to take k, =0 even if transverse reinforcement is
present. To further simplify computation of /,;, preselected value of term (c, + k,)/d, were cho-
sen. As a result Eq. 7.7 can take the simplified forms specified in ACI Code, Section 25.4.2.2.
These are shown in Egs. 7.10 to 7.13:

.
e (no. 6 and smaller bar) (7.10)
252/f!
f:thu/e
(no.7 and larger bars) (7.11)
I, 20A4/f
4, " ) 3w,
b e (no. 6 and smaller bars) (7.12)
50A4/f!
3w,
Ui (no. 7 and larger bars) (7.13)
40A4/f!

In Egs. 7.10 and Eqs. 7.11 the term (c;, + k,)/d, = 1.5, while in Egs. 7.12 and Eqs. 7.13
(¢, + ky)/d, =1.0. Equations 7.10 and 7.12 include a reinforcement size factor y; = 0.8, while Eqgs.
7.11 and Eqgs. 7.13 include v, = 1.0.
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Equations 7.10 and 7.11 can only be applied if one of the following two different sets of
conditions is satisfied:
Set 1: The following three conditions must simultaneously be satisfied:

1. The clear spacing of bars being developed or spliced should not be less than the diameter of
reinforcement being developed (S > d,).

2. The clear cover for reinforcement being developed should not be less than d,,.

3. Minimum amount of stirrups or ties throughout /,; should not be less than the minimum value
specified in ACI Code, Section 9.7.6.2, for beams or ACI Code, Section 9.7.6.4, for columns.

Set 2: The following two conditions must simultaneously be satisfied:

1. The clear spacing of reinforcement being developed or spliced should not be less than 2d,,.
2. The clear cover should not be less than d,.

If all the conditions of set 1 and set 2 cannot be satisfied then Eqs. 7.12 and Egs. 7.13 must
be used.

It is quite common to use f; = 4ksi and f, =60ksi in the design and construction of rein-
forced concrete buildings. If these values are substituted in the preceding equations, and assuming
normal-weight concrete (4= 1.0), then

Equation 7.10 becomes [; =38d, (<no.6 bars) (7.10a)
Equation 7.11 becomes [; =47.5d, (=no.7 bars) (7.11a)
Equation 7.12 becomes [, =57d, (< no.6 bars) (7.12a)
Equation 7.13 becomes [, =71.2d, (> no.7 bars) (7.13a)

For design simplicity other values of /,/d, ratios are shown in Table 7.1. Table 7.2 gives the devel-
opment length, /,, for different reinforcing bars (when f, =40 or 60 ksi and f; = 3 and 4 ksi).

7.4 DEVELOPMENT LENGTH IN COMPRESSION
The development length of deformed bars in compression is generally smaller than that required

for tension bars, due to the fact that compression bars do not have the cracks that develop in tension
concrete members that cause a reduction in the bond between bars and the surrounding concrete.

Table 7.1 Values of /,/d,, for Various Values of f, and f, (Tension Bars), (1=1.0)

f,=40ksi f,=60ksi
No. 6 Bars > No. 7 Bars No. 6 Bars > No. 7 Bars
Conditions Other Conditions Other Conditions Other Conditions Other
f (ksi) Met Cases Met Cases Met Cases Met Cases

3 29.3 43.9 36.6 54.8 43.9 65.8 54.8 82.2
4 253 38.0 31.7 47.5 38.0 57.0 47.5 71.2
5 22.7 34.0 28.3 42.5 34.0 51.0 42.5 63.7
6 20.7 31.0 25.9 38.8 31.0 46.5 38.8 58.1
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Table 7.2 Development Length /; (in.) for Tension Bars and fy =60ksi (y,=y,=4=1.0)
Development Length I, (in.)—Tension Bars
! = 3ksi ! = 4ksi
Bar Number Bar Diameter (in.) Conditions Met Other Cases Conditions Met Other Cases
3 0.375 17 25 15 21
4 0.500 22 33 19 29
5 0.625 28 41 24 36
6 0.750 33 50 29 43
7 0.875 48 72 42 63
8 1.000 55 83 48 72
9 1.128 62 93 54 81
10 1.270 70 105 61 92
11 1.410 78 116 68 102

The ACI Code, Section 25.4.9.2, gives the basic development length in compression for all bars as

follows:

> 81in. Tables 7.3 and 7.4 give the values of /,./d), when f, = 60 ksi.

Table 7.3 Values of /,/d), for Various Values of f; and f, (Compression Bars),

0.02d,f,
Iy = 003y o 0.0003d,f,

VA
which must not be less than 8in. (ACI Code, Section 25.4.9.1). The development length, /,., may
be reduced by multiplying /. by R, = (A, required)/(A, provided). For spirally reinforced concrete
compression members with spirals of not less than ; in. diameter and a spacing of 4 in. or less, the
value of /. in Eq. 7.14 may be multiplied by R =0.75. In general, [, = ;. X (R, or R, if applicable)

A=1.0, Minimum Iy, =8in. Iy, /d, = 0.02f,/4+/f, > 0.0003f,

f’ (ksi) 4 5 or more
c

fy =40ksi 13 12

f_\, =60 ksi 19 18

Table 7.4 Development Length, /;; (in.), for Compression Bars (f, =60ksi), 1=1.0

(7.14)

Development Length, I, (in.) when f] =

Bar Number Bar Diameter (in.) 3 ksi 4 ksi 5 ksi or More
3 0.375 9 8 8
4 0.500 11 10 9
5 0.625 14 12 12
6 0.750 17 15 14
7 0.875 20 17 16
8 1.000 22 19 18
9 1.128 25 22 21
10 1.270 28 25 23
11 1.410 31 27 26
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7.5 SUMMARY FOR COMPUTATION OF /, IN TENSION

Assuming normal construction practices, (¢, + K;)/d, =1.5.

1. If one of the following two conditions is met:

a. Clear spacing of bars > d,, clear cover > d,,, and bars are confined with stirrups not less
than the code minimum.

b. Clear spacing of bars > 2d,, and clear cover > d,,; then

WW y

I—J‘ for no. 7 and larger bars (Eq. 7.10)
l; )204 1!

d, | ww.

b i gfy for no. 6 or smaller bars (Eq. 7.11)

254/1!

2. For all other cases, multiply these ratios by 1.5.

3. Note that \/f_c’ < 100psi and y,y, < 1.7; values of y,, y,, and 4 are as explained earlier.

4. For bundled bars, either in tension or compression, /, should be increased by 20% for three-bar
bundles and by 33% for four-bar bundles. A unit of bundled bars is considered a single bar
of a diameter and area equivalent to the total area of all bars in the bundle. This equivalent
diameter is used to check spacings and concrete cover.

Example 7.1

Figure 7.5 shows the cross section of a simply supported beam reinforced with four no. 8 bars that are
confined with no. 3 stirrups spaced at 6 in. Determine the development length of the bars if the beam is
made of normal-weight concrete, bars are not coated, f = 3ksi, and ﬁ =60 ksi.

A
M /]
19.5"
22"
4no. 8

\

2'5/7 2.5//
-« 12"——>

Figure 7.5 Example 7.1.
Solution
1. Check if conditions for spacing and concrete cover are met:
a. For no. 8 bars, d, =1.01in.
b. Clear cover=2.5-0.5=2.0in. > d,,.

c. Clear spacing between bars DT_S -1.0=133>4d,
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d. Bars are confined with no. 3 stirrup. The conditions are met. Then
L _ vy

= (for bars > no. 7)
dy  200/F!

(Eq.7.8)

2. Determine the multiplication factors: y, = 1.0 (bottom bars), y, = 1.0 (no coating), and A=1.0

(normal-weight concrete). Also check that \/f7 = 54.8psi < 100psi.
Ly 60,000

dy 20 1x /3000

So, 1,=54.8(1.0) =54.8 in., say, 55 in. These values can be obtained directly from Tables 7.1
and 7.2.
If we calculate /; from Eq. 7.7,

=@ ()

=54.8 (Eq.7.7)

ViV Yy
¢y +Ky) /d,
=1//t:l,/e:y/s:j:].0

Also ¢, =smaller of distance from center of bar to the nearest concrete surface c,; or one-half
the center-to-center bar spacing c;,:

Cbz=(

40A

tr

¢y = 2.51n. ) <H) = 1.17in. (controls)

N =

=
g sn

A, =2x(0.11) = 0.22in.2

s = 6in.
n=2
K, = 20X022 _ 5
2X6
Cotke _LITHOT3 _ g0 hs oK
d, 1.0 s

I, 3 ( 6000 1 .
4 =2 — ) =43.24in.
d, 40 < /—3000) (75) "

l; =43.24(1.0) = 43.24 in.

Say 44 in., which is 11in. less than the simplified approach.

Example 7.2

Repeat Example 7.1 if the beam is made of lightweight aggregate concrete, the bars are epoxy coated,

and A, required from analysis is 2.79in.

Solution

1. Determine the multiplication factors: y, = 1.0 (bottom bars), yr, = 1.5 (epoxy coated), 1=0.75
(lightweight aggregate concrete), and R =(A, required)/(A; provided)=2.79/3.14=0.89.
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The value of y, is 1.5 because the concrete cover is less than 3d,=3in. Check that
v, =1.0(1.5)=1.5 < 1.7 (Assuming k, =0).

2.
L, Rwywl,

dy  2040/F
_0.89(1.0)(1.5)(60,000)

(20)(0.75)4/3000
3. The development length /; can be obtained from Table 7.2 (I;=55in. for no. 8 bars) and then
divided by the factor 0.75.

(for bars > no. 7)

=97.5in. say,98in.

Example 7.3

A reinforced concrete column is reinforced with eight no. 10 bars, which should extend to the footing.
Determine the development length needed for the bars to extend down in the footing. Use normal-weight
concrete with f; = 4ksi and f,, = 60 ksi.

Solution

The development length in compression is

0.02d
lye = thy 0.0003d,f,

VA
_ 0.02(1.27)(60.000)

(1)4/4000

The minimum /4, is 0.0003(1.27)(60,000) =22.86 in., but it cannot be less than 8 in. Because there
are no other multiplication factors, then /; =24.1 in., or 25 in. (The same value is shown in Table 7.4.)

=24.1in. (controls)

7.6 CRITICAL SECTIONS IN FLEXURAL MEMBERS

The critical sections for development of reinforcement in flexural members are

« At points of maximum stress

» At points where tension bars within the span are terminated or bent
» At the face of the support

» At points of inflection at which moment changes signs

The critical sections for a typical uniformly loaded continuous beam are shown in Fig. 7.6.
The sections and the relative development lengths are explained as follows:

1. Three sections are critical for the negative moment reinforcement:

Section 1 is at the face of the support, where the negative moment as well as stress is at
maximum values. The distance x; should be greater or equal the development length in
tension /; for all bars.

Section 2 is the section where part of the negative reinforcement bars are no longer needed
to resist negative moment and can be terminated. To develop full tensile force, the bars
should extend a distance x, before they can be terminated. Once parts of the bars are
terminated, the remaining bars develop maximum stress. The distance x, should be the
larger of d or 12 bar diameters.
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Figure 7.6 Critical sections (circled numbers) and development lengths (x; —x-).
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Section 3 is at the point of inflection. The bars shall extend a distance x3, which must be
equal to or greater than the effective depth, d, 12 bar diameters, or 1/16th the clear span,
whichever is greater. At least one-third of the total reinforcement provided for negative
moment at the support shall be extended a distance x; beyond the point of inflection,
according to the ACI Code, Sections 7.7.3.8 and 9.7.3.8.

2. Three sections are critical for positive moment reinforcement:
Section 4 is that of maximum positive moment and maximum stresses. The distance x;
should be greater or equal the development length in tension /, for all bars.

Section 5 is where parts of the positive reinforcement bars are no longer needed to resist
positive moment and may be terminated. To develop full tensile force, the bars should
extend a distance xg. The remaining bars will have a maximum stress due to the termi-
nation of part of the bars. The distance x4 should be the larger of d or 12 bar diameters.
At the face of support, section 1, at least one-third the positive moment reinforcement
in simple members and one-fourth of the positive moment reinforcement in continuous
members shall extend along the same face of the member into the support. In beams
such reinforcement shall extend into the support 6in. (ACI Code, Section 9.7.3.8.1).
At the face of support section 1, the bottom bars should extend a distance x; equal
to the development length for compression /;, when bottom bars used as compression
reinforcement (ACI Code, Section 18.4.2).

Section 6 is at the point of inflection. ACI Code, Sections 7.7.3.8.3 and 9.7.3.8.3, specifies
at simple supports and at points of inflection positive moment tension reinforcement
shall be limited to a diameter such that the /; computed for f, shall satisfy following
equation:

M, .
Iy < v +1, (See Fig. 7.6b)

u

This equation needs not be satisfied for reinforcement terminating beyond centerline of simple
support by standard hook.

M, = 1is the nominal flexural strength of cross section (without the ¢ factor). M, is calculated assuming
all reinforcement at the section to be stressed to f,. M, is not the applied factored moment.

V, =1is shear force calculated at the section. [, = At support, shall be the embedded length beyond
center of support
[, = At point of inflection, shall be limited to d or 12 bar diameters, whichever is greater.

An increase of 30% in the value of M,/V, shall be permitted when the ends of the bars are
confined by a compressive reaction such as provided by a column below, but not when a beam
frames into a girder (Fig. 7.6a).

Example 7.4
A continuous beam has the bar details shown in Fig. 7.7. The bending moments for maximum positive

and negative moments are also shown. We must check the development lengths at all critical sections.
Given: f! = 3ksi normal-weight concrete, ﬁ =40ksi, b=12in., d=18in., and span L =24 ft.

Solution

The critical sections are section 1 at the face of the support for tension and compression reinforcement;
sections 2 and 5 at points where tension bars are terminated within span; sections 3 and 6 at point of
inflection, and at midspan section 4.
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Figure 7.7 Development length of a continuous beam.

1. Development lengths for negative-moment reinforcement, from Fig. 7.7, are as follows: Three no.
9 bars are terminated at a distance x; =4.5 ft from the face of the support, whereas the other three
bars extend to a distance of 6 ft (721in.) from the face of the support.

a. The development length of no. 9 tension bars if conditions of spacing and cover are satisfied
can be determined from Table 7.1 or Eq. 7.11. For no. 9 bars,

d, = 1.128in.

Clear cover = 2.5 - 112£ = 1.94in. > d,

Clear spacing = 12—2_5 —1.128 = 2.37in. > 2d,
Then conditions are met. Use Table 7.1 to determine /,=36.6(1.128)=41.3in. y,=1.3, v,
v, = 1.0. Therefore [, = 1.3(41.3) =54 in. For top bars, x; > 1, > 12 in. (minimum).
b. The development length x, shall extend beyond the cutoff point where three no. 9 bars are not
needed, either d =18 in. or 12d, = 13.6in., whichever is greater. Thus, x, = 18 in. The required
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development length x, =4.50 {t, is similar to x,. Total length required from the face of support
for the extended bar is y=x; + 1.5 ft=6.0ft.

¢. Beyond the point of inflection (section 3), three no. 9 bars extend alengthx; =y —39=72 -39
=331n. The ACI Code requires that at least one-third of the bars should extend beyond the
inflection point. Three no. 9 bars are provided, which are adequate. The required development
length of x; is the larger of d=181in., 12d, =13.61in., or L/16 = 24 X % in. = 18in., which is
less than the provided x; distance.

2. Compressive reinforcement at the face of the support (section 1) (no. 8 bars): The development
length x is equal to

= 0.02d,/,_ 0.02 x 1% 40,000
YRV 1 x /3000
Minimum /. = 0.0003d,f, = 0.0003 x 1 X 40,000 = 12in.
l4. cannot be less than 8in. The length 15in. controls. For no. 8 bars, d, =1in.; [, pro-

vided = 15 in., which is greater than that required.

3. Development length for positive-moment reinforcement: six no. 8 bars extend 6 ft beyond the cen-
terline, and the three bars extend to the support. The development length x5 from the centerline is
l;=36.6d, =371in. (Table 7.1), but it cannot be less than 12in. That is, x5 provided is 6 ft =72 in.
> 37in.

= 14.6in., say 15in.

The length x, is equal to d or 12d,, that is, 18in. or 12 X 1 =12in. The provided value is 181in.,
which is adequate.

The actual position of the termination of bars within the span can be determined by the
moment-resistance diagram, as will be explained later.

7.7 STANDARD HOOKS (ACI CODE, SECTIONS 25.3 AND 25.4)

A hook is used at the end of a bar when its straight embedment length is less than the necessary
development length, /,. Thus, the full capacity of the bar can be maintained in the shortest distance
of embedment. The minimum diameter of bend, measured on the inside of the main bar of a standard
hook D,, is as follows (Fig. 7.8) [9]:

« For no. 3 to no. 8 bars (10-25 mm), D), = 6d,,.
 For no. 9 to no. 11 bars (28, 32, and 36 mm), D, = 8d,,.
» For no. 14 and no. 18 bars (43 and 58 mm), D, = 10d,,.

The ACI Code, Section 25.4.3, specifies a development length [, for hooked bar as follows:

0.02
Ly, = (_WJZ) (d,,)(modification factor) (7.15)
4
N

v, = 1.2 for epoxy-coated bars

A = 0.75 for lightweight aggregate concrete unless f,, is specified, then 4 = f, / (6.7(\/]70’ )<1
y,, 4 = 1.0 for all other cases

where

For grade 60 hooked bar (f, = 60 ksi) with y, = A=1, [y, becomes
1200d,,

4
c

lgh = (modification factor) (7.15a)
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Figure 7.8 Hooked-bar details for the development of standard hooks [9]. Courtesy
of ACI.

Based on different conditions, the development length, /,,, must be multiplied by one of the

following applicable factors:

1.

For 90° hooks of no. 11 or smaller bars are used, and the hook is enclosed vertically along
L4, or horizontally along the length of tail extension of the hook plus bend within stirrups or
ties spaced not greater than three times the diameter of the hooked bar, the basic development
length is multiplied by 0.8.(Figs. 7.9b,c).

When no. 11 or smaller bars are used and the side concrete cover, normal to the plane of the
hook, is not less than 2.51n., the development length is multiplied by 0.7. The same factor
applies for a 90° hook when the concrete cover on bar extension beyond the hook is not less
than 2 in.

For 180° hooks of no. 11 or smaller bars that are enclosed with ties or stirrups perpendicular
to the bar and spaced not greater than 3d,,, the development length is multiplied by 0.8.
When a bar anchorage is not required, the basic development length for the reinforcement in
excess of that required is multiplied by the ratio

A, (required)
A, (provided)

When standard hooks with less than a 2.5-in. concrete cover on the side and top or bottom
are used at a discontinuous end of a member, the hooks shall be enclosed by ties or stirrups
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Figure 7.9 (a) Concrete cover limitations and (b and c) stirrups or ties placed perpen-
dicular or parallel to the bar being developed [9]. Courtesy of ACI.

spaced at no greater than 3d,, along /y,, The first tie or stirrups shall enclose the bent portion
of the hook, within 2d, of the outside of the band. Moreover, the factor 0.8 given in items 1
and 3 shall not be used.

The development length, /4,, of a standard hook for deformed bars in tension must not be
less than 8d), or 6 in., whichever is greater. Note that hooks are not effective for reinforcing bars in
compression and may be ignored (ACI Code, Section 25.4.3).

Details of standard 90° and 180° hooks are shown in Fig. 7.8 [9]. The dimensions given
are needed to protect members against splitting and spalling of concrete cover. Figure 7.9a shows
details of hooks at a discontinuous end with a concrete cover less than 2.5 in. that may produce
concrete spalling [9]. The use of closed stirrups is necessary for proper design. Figures 7.9 and ¢
show placement of stirrups or ties perpendicular and parallel to the bar being developed, spaced
along the development length. Figure 7.10 shows the stress distribution along a 90° hooked bar
under a tension force p.

The development required for deformed welded wire reinforcement is covered in ACI Code,
Section 25.4.6. Development length for welded wire reinforcement in tension /,;, measured from
the critical section to the end of wire, shall be computed as the product of /, times welded deformed
wire reinforcement factor y,,.

1. For welded deformed wire reinforcement with at least one cross wire within /; and not less
than 2 in. from the point of critical section, y,, shall be the greater of (f, —35,000)/f, and
5d,/s but not greater than 1.0, where s is the spacing between wires to be developed.
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Figure 7.10 Stress distribution in 90° hooked bar.

2. With no cross wire within /; or with a single cross wire less than 2 in. from the point of critical
section, y,, = 1.0.

Example 7.5

Compute the development length required for the top no. 8 bars of the cantilever beam shown in Fig. 7.11
that extend into the column support if the bars are

a. Straight
b. Have a 90° hook at the end
¢. Have a 180° hook at the end

<-—~19§—>‘ lf” ’4——19"—»‘

% ¥ &
T‘ \I’:3db—'-3" 4 jH«i -

]2db Y 4db = 4" \\ 4dh =4"=2.5"

\/L

(@) (®)
Figure 7.11 Example 7.5.

The bars are confined by no. 3 stirrups spaced at 6in. and have a clear cover=1.5in. and clear
spacings =2.01in. Use f! = 4ksi normal-weight concrete and J, = 60ksi.

Solution

a. Straight bars: For no. 8 bars, d, = 1.0in. Because clear spacing = 2d,, and clear cover is greater
than d;, with bars confined by stirrups, then conditions a and b are met. Equation 7.10 can be used
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to calculate the basic [, or you can get it directly from Table 7.2: [, =48 in. For top bars, y, = 1.3
and final [, =1.3(48) =63 in.

b. Bars with 90° hook: For no. 8 bars, d,=1.0in. development length for J,=060ksi
ldh=IZOOdb/\/]TC’=1200(1.0)/\/4000=l9in. Because no other modifications apply,

then [y, = 19in. > 8 d, =8 in. or 6in. Other details are shown in Fig. 7.11. The factor yr, = 1.3 for
top bars does not apply to hooks.

c. Bars with 180° hook: [, =19in., as calculated before. No other modifications apply; then
lgy =191n. > 8d;, = 8 in. Other details are shown in Fig. 7.11.

7.8 SPLICES OF REINFORCEMENT

7.8.1 General

Steel bars that are used as reinforcement in structural members are fabricated in lengths of 20,
40, and 60 ft (6, 12, and 18 m), depending on the bar diameter, transportation facilities, and other
reasons. Bars are usually tailored according to the reinforcement details of the structural members.
When some bars are short, it is necessary to splice them by lapping the bars a sufficient distance to
transfer stress through the bond from one bar to the other.

ACI Code, Section 25.6.1.7, gives the provisions for lap splicing of bars in a bundle (tension or
compression). The lap-splice length required for individual bars within a bundle must be increased
20% for a 3-bar bundle and 33% for a 4-bar bundle. Overlapping of individual bar splices with a
bundle is not permitted. Two bundles must not be lap spliced as individual bars. For noncontact lap
splices in flexural members, bars should not be spaced transversely farther apart than one-fifth the
required length or 6in. (150 mm).

ACI Code, Section 25.5.7, permits the use of mechanical and welded splices. A full mechani-
cal splice must develop, in tension or compression, at least 125% of the f, of bar (ACI Code, Section
25.5.7.1).

In a full welded splice, the bars must develop in tension at least 125% of the specified yield
strength of bar (ACI Code, Section 25.5.7.1).

ANSI/AWSD1 .4 allows indirect welds where the bars are not butted. Although AWSDI1.4
does indicate that, wherever practical, direct butt splices are preferable for no.7 bars and larger.

Use of mechanical and welded splices have less than 125% of the specified yield strength of
bars in the region of low computed stresses.

Splices should not be made at or near sections of maximum moments or stresses. Also, it
is recommended that no bars should be spliced at the same location to avoid a weakness in the
concrete section and to avoid the congestion of bars at the same location, which may cause difficulty
in placing the concrete around the bars.

The stresses developed at the end of a typical lap splice are equal to 0, whereas the lap-splice
length, /;, embedded in concrete is needed to develop the full stress in the bar, f) Therefore, a
minimum lap splice of /, is needed to develop a continuity in the spliced tension or compression
bars. If adequate splice length is not provided, splitting and spalling occurs in the concrete shell
(Fig. 7.12).

Splices in tension and compression are covered by Sections 25.5 of the ACI Code.

7.8.2 Lap Splices in Tension, [

Depending upon the percentage of bars spliced on the same location and the level of stress in the
bars or deformed wires, the ACI Code introduces two classes of splices (with a minimum splice
length of 121in.):
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Figure 7.12 Lap-splice failure due to the development of one or more cracks.

1. Class A splices: These splices have a minimum length [/, =/, and are used when (a) one-half
or less of the total reinforcement is spliced within the required lap-splice length; and (b) the
area of tensile reinforcement provided is at least twice that required by analysis over the
entire length of the splice. The length /, is the development length of the bar, as calculated
earlier.

2. Class B splices: These splices have a minimum length /= 1.3/, and are used for all other
cases that are different from the aforementioned conditions. For example, class B splices are
required when all bars or deformed wires are spliced at the same location with any ratio of
(A, provided)/(A, required). Splicing all the bars in one location should be avoided when
possible.

3. [, in classes A and B splices is calculated without the modification factor of (A, required)/
(A, provided).

4. When multiple bars located in the same plane are spliced at the same section, the clear spacing
is the minimum clear distance between the adjacent splices. For staggered splices, the clear
spacing is taken as the minimum distance between adjacent splices.

5. When bars of different size are lap spliced in tension, splice length shall be the larger of
1, of the larger bar and the tension lap-splice length of the smaller bar (ACI Code, Section
25.5.2.2).

6. Lap splice shall not be used for bars larger than no. 11 because of lack of adequate experi-
mental data (ACI Code, Section 25.5.1.1).

7.8.3 Lap Splice in Compression, /.

The lap-splice length of the reinforcing bars in compression, [, should be equal to or greater
than the development length of the bar in compression, /. (including the modifiers), calcu-
lated earlier (Eq. 7.14). Moreover, the lap-splice length shall satisfy the following (ACI Code,
Section 25.5.5.1):

L. = (0.0005/,d,) for f, < 60,000 psi (7.16)

L. = (0.0009f, — 24)d,, for f, > 60,000 psi (7.17)

For both cases, the lap-splice length must not be less than 12 in. Table 7.5 gives the lap-splice
length for various f, values. If the concrete strength, £/, is less than 3000 psi, the lap-splice length,
l.., must be increased by one-third. When bars of different sizes are lap spliced in compression,
splice length shall be the larger of /. of larger bar and compression lap splice [/, of smaller bar.
Lap splices of no. 14 and no.18 to no. 11 and smaller shall be permitted.
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Table 7.5 Lap-Splice Length in Compression, /

s I (in.), (f. > 3ksi and
Minimum I, =12in.)

f, (ksi)

Bar Number Bar Diameter (in.) 40 60 80
3 0.375 12 12 18
4 0.500 12 15 24
5 0.625 13 19 30
6 0.750 15 23 36
7 0.875 18 27 42
8 1.000 20 30 48
9 1.128 23 34 55

10 1.270 26 39 61

11 1.410 29 43 68

7.8.4 Lap Splice in Columns

The following special requirement are given in ACI Code, Section 10.7.5, for lap splice in columns:

a. If bar stress due to factored load is tensile and does not exceed 0.5f; in tension (< 0.5f)), use
class B tension splice if more than one-half of total column bars spliced at same location, or
use class A splice if not more than one-half of total column bar spliced at same location and
alternate lap splices are staggered by /.

b. If bar stress due to factored loads > 0.5f; in tension, use class B lap splice.

c. In spirally reinforced columns, lap-splice length within a spiral may be multiplied by 0.75
but may not be less than 12in. In tied columns, with ties within the splice length having a
minimum effective area of 0.0015 As, lap splice may be multiplied by 0.83 but may not be
less than 12 1in., where 4 is overall thickness of column and s is spacing of ties (in.). Tie legs
parallel to dimension / shall be used in determining effective area.

I Iy |
(Parallel to & dimension)
=3 tie bar areas > 0.0015A,s
(Parallel to h, dimension)

=2 tie bar areas > 0.0015A,s

Example 7.6

Calculate the lap-splice length for six no. 8 tension bottom bars (in two rows) with clear spacing =2.5 in.
and clear cover = 1.5 in. for the following cases:

a. When three bars are spliced and (A, provided)/(A, required) > 2.
b. When four bars are spliced and (A, provided)/(A, required) < 2.
c. When all bars are spliced at the same location. Given: f; = Sksi and f,, = 60 ksi.
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Solution

a. Forno.8bars,d, =1.0in.,and yr, =y, = A= 1.0: Check first for /5000 = 70.7 psi < 100psi, and
then calculate [, from Eq. 7.8 or Table 7.1, [, = 42.5d,, conditions for clear spacings and cover are
met. [, =42.5(1.0)=42.5in., or 43 in. For (A, provided)/(A, required) > 2, class A splice applies,
l,=1.0l;=431in.> 12in. (minimum). Bars spliced are less than half the total number.

b. Let [;=431in., as calculated before. Because (A, provided)/(A, required) is less than 2, class B
splice applies, [, =1.3],=1.3(42.5) =55.25in., say, 56 in., which is greater than 12 in. and more
than half the total number of bar spliced.

c. Class B splice applies and [, =561in. > 12 in.

Example 7.7

Calculate the lap-splice length for a tied column. The column has eight no. 10 longitudinal bars and no.
3 ties. Given f! = 5ksi, solve for (a)fy =60ksi and (b)fy =80 ksi.

Solution
Tie spacing s is the smaller of 16 X 1.128 =18 1in., 48 X 3/8 = 18in. or 20 in. therefore s = 18 in.

8no.10bars | P O A —f
g

o 20
o) [oIN® i
20—

a. Determine lap-splice length for f; = 60,000 psi
L. = 0.0005f,d), > 12in.
= 0.0005 x 60,000 x 1.27
=38.1in. ~ 39in. > 12in. (Eq. 7.16)

Determine column tie requirements to allow 0.83 reduce lap-splice length according to ACI
Code, Section 10.7.5.2.1.
Effective area of ties >0.0015 hs

2x0.11 > 0.0015x20x 18
0.22 < 0.54

Modifier 0.83 will not apply. Lap-splice length =39 in.
b. Determine lap-splice length for f, > 60,000 psi

L. = (0.0009f, — 24)d,
= (0.0009 x 80000 — 24) x 1.27
= 60.96in ~ 61 in. (Eq. 7.17)
Modifier 0.83 will not apply as previously calculated.
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Example 7.8

Calculate the lap-splice length for 20 X 20-in. tied column, for the following cases:
Load combination 1: All bars are in compression.
Load combination 2: Bar stress < 0.5f,
Load combination 3: Bar stress > 0.5f,
Given f! = 4ksi, f, = 60ksi, cover to the stirrups edge = 1.5 in.
Provided 4 no. 10 bars (above and below floor level)
No. 3 ties at 18 in.

Solution:
1. Determine type of lap splice required:
For load combination 1. All bars are in compression, so a compression lap splice could be used
(ACI Code, Section 10.7.5.2.1).

For load combination 2. Bar stress <0.5f,, so a class B tension splice required of more than half
of bars spliced at section or a class A splice may be used if alternate lap splice are staggered
(ACI Code, Section 10.7.5.2.2).

For load combination 3. Bar stress >0.5fy class B splice must be used (ACI Code, Section
10.7.5.2.2).

Lap splice required for the four no. 10 bars must be based on the load combination producing
the greatest amount of tension in the bars.
For this example load combination 3 governs.

2. Determine lap-splice length:
m— No. 3 tie

—>] [<«—1.5 cover

20

Nominal diameter of no. 10 bar = 1.27 in.

Clear spacing between bars being developed is large and will not govern.
Clear cover=1.5 +0.375=1.875>d, = 1.27.

Distance from center of bar to concrete surface = 1.875 + 0.635 = 2.51 > d,,.

¢, is the smaller of (1) distance from center of bar being developed to the nearest concrete surface.
(2) One-half the center-to-center spacing of bars being developed.

¢, =251

L3 b v |
AT (cp k) Jdy | T

y, = 1.0 for vertical bar

y, = 1.0 for uncoated bar
y, = 1.0 for no. 7 and larger bars
A = 1.0 for normal — weight concrete

40A,, _40x2x(0.11)
sno 18x2

k_

tr =

=0.244



7.9 Moment-Resistance Diagram (Bar Cutoff Points) 281

e, +ke 25140244
d, 127

3\ (60,000)(1.0)(1.0)(1.0)
o= )

407 (1)4/4000(2.16)
Class B splice = 1.3(32.83) = 54.3in.

=2.16<25,use2.16

(1.28) = 41.8in.

7.9 MOMENT-RESISTANCE DIAGRAM (BAR CUTOFF POINTS)

The moment capacity of a beam is a function of its effective depth, d, width, b, and the steel area for
given strengths of concrete and steel. For a given beam, with constant width and depth, the amount
of reinforcement can be varied according to the variation of the bending moment along the span. It
is a common practice to cut off the steel bars where they are no longer needed to resist the flexural
stresses. In some other cases, as in continuous beams, positive-moment steel bars may be bent up,
usually at 45°, to provide tensile reinforcement for the negative moments over the supports.

The factored moment capacity of an underreinforced concrete beam at any section is

M, = Af, (d - g) (7.18)

The lever arm (d—a/2) varies for sections along the span as the amount of reinforcement varies;
however, the variation in the lever arm along the beam length is small and is never less than the value
obtained at the section of maximum bending moment. Thus, it may be assumed that the moment
capacity of any section is proportional to the tensile force or the area of the steel reinforcement,
assuming proper anchorage lengths are provided.

To determine the position of the cutoff or bent points, the moment diagram due to external
loading is drawn first. A moment-resistance diagram is also drawn on the same graph, indicating
points where some of the steel bars are no longer required. The factored moment resistance of one

bar, Mub’ 18 g
My, = QA (d - 5) (7.19)
where
a= —Agf‘
0.85fb

A, = area of one bar

The intersection of the moment—resistance lines with the external bending moment diagram
indicates the theoretical points where each bar can be terminated. To illustrate this discussion,
Fig. 7.13 shows a uniformly loaded simple beam, its cross section, and the bending moment dia-
gram. The bending moment curve is a parabola with a maximum moment at midspan of 2400 K - in.
Because the beam is reinforced with four no. 8 bars, the factored moment resistance of one
bar is

= o (- )
Ay 4x079%x50

T 085b 085x3x12

My, = 0.9 % 0.79 X 50 (20 - %) = 620K - in.

a 5.21in
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Figure 7.13 Moment-resistance diagram.

The factored moment-resistance of four bars is thus 2480 K - in., which is greater than the
external moment of 2400 K - in. If the moment diagram is drawn to scale on the baseline A-A,
it can be seen that one bar can be terminated at point a, a second bar at point b, the third bar
at point ¢, and the fourth bar at the support end A. These points are the theoretical positions
for the termination of the bars. However, it is necessary to develop part of the strength of the
bar by bond, as explained earlier. The ACI Code specifies that every bar should be continued
at least a distance equal to the effective depth, d, of the beam or 12 bar diameters, whichever is
greater, beyond the theoretical points a, b, and c¢. The Code (Section 9.7.3.8) also specifies that at
least one-third of the positive-moment reinforcement must be continued to the support for sim-
ple beams. Therefore, for the example discussed here, two bars must extend into the support,
and the moment-resistance diagram, M,,, shown in Fig. 7.13, must enclose the external bend-
ing moment diagram at all points. Full load capacity of each bar is attained at a distance /; from
its end.

For continuous beams, the bars are bent at the required points and used to resist the negative
moments at the supports. At least one-third of the total reinforcement provided for the negative
moment at the support must be extended beyond the inflection points a distance not less than the
effective depth, 12 bar diameters, or % the clear span, whichever is greatest (ACI Code, Sections
7.7.3.8 and 9.7.3.8).

Bent bars are also used to resist part of the shear stresses in beams. The moment-—resistance
diagram for a typical continuous beam is shown in Fig. 7.14.
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Figure 7.14 Sections and bending moment diagram (top) and moment-resistance dia-
gram (bottom) of a continuous beam. Bar diameter is signified by D.
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Example 7.9

For the simply supported beam shown in Fig. 7.15, design the beam for the given factored loads and
draw the moment—resistance diagram. Also, show where the reinforcing bars can be terminated. Use
b=10in., a steel ratio of 0.018, f! = 3 ksi, andfy =40ksi.

Solution

For p=0.018, R, =556 psi and M, =R, bd. Let M, =132.5K - ft. Now 132.5(12) =0.556(10)d%, so

d=17in.;let h=20in.
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LetA, =0.018(10)(17) = 3.06 in.2; use four no. 8 bars (A, =3.141in.?). Actual d =20-2.5=17.51n.

My =gAf,(d-5) and 3.14(40)

= 2% 493in,
4= 0.85(3)(10) n

M, (foronebar) = 0.9(0.79)(40) (17'5 _ %)

=427.7K -in. = 35.64K - ft
M (forall fourbars) = 1710.8 K - in. = 142.6K - ft

For the calculation of ‘a’, the four no. 8 bars were utilized rather than calculating the ‘a’ for the
extended two bars. This assumption will slightly increase the length of the bars beyond the cutoff point.

Details of the moment-resistance diagram are shown in Fig. 7.15. Note that the bars can be bent or
terminated at a distance of 17.5, say, 18 in. (or 12 bar diameters, whichever is greater), beyond the points
where (theoretically) the bars are not needed. The development length, ;, for no. 8 bars is 36.6d;, =37 in.
(Table 7.1). The cutoff points of the first and second bars are at points A and B, but the actual points
are at A’ and B, 18 in. beyond A and B. From A’, a length [, = 37 in. backward is shown to establish the
moment-resistance diagram (the dashed line). The end of the last two bars extending to the support will
depend on how far they extend inside the support, say, at C’. Normally, bars are terminated within the
span at A’ and B’ as bent bars are not commonly used to resist shear.

SUMMARY

Sections 7.1 and 7.2

Bond is influenced mainly by the roughness of the steel surface area, the concrete mix, shrinkage,
and the cover of concrete. In general,
Ay

l, = Eq. 7.3
d U3 0 (Eq. 7.3)

Sections 7.3 and 7.5

1. The general formula for the development length of deformed bars or wire shall be

ld 3 f;, YW Wy
(35N _www Eq. 7.7
d, <40}“>(\/f_c/><(cb+ktr)/db> e

As design simplification, k. may be assumed to be zero. Other values of /,/d, are given in
Tables 7.1 and 7.2. y,, w,, w,, and A are multipliers defined in Section 7.3.1.

2. Simplified expressions are used when conditions for concrete cover and spacing requirement
are met. For no. 7 and larger bars,

U We
Lo(L) (-0

la
£ =08
d, ¢

3. For all other cases, multiply the previous Q by 1.5.
4. Minimum length is 12 in.

For no. 6 and smaller bars,
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Section 7.4

Development length in compression for all bars is

0.02d
Iy = 002y 0.0003d,f, > 8in. (Eq. 7.14)

VI
For specific values, refer to Tables 7.3 and 7.4.

Section 7.6
The critical sections for the development of reinforcement in flexural members are

» At points of maximum stress

» At points where tension bars are terminated within the span
» At the face of the support

» At points of inflection

Section 7.7

The minimum diameter of bends in standard hooks is

« For no. 3 to no. 8 bars, 6d,
+ For no. 9 to no. 11 bars, 84d,

The development length [y, of a standard hook is

0.02yf,
I = ( - f))(db)(modiﬁcation factor)

c

Section 7.8

1. For splices in tension, the minimum lap-splice length is 12 in. If (a) one-half or less of the total
reinforcement is spliced within the required lap-splice length and (b) the area of reinforcement
provided is at least twice that required by analysis over the entire length of the splice, then
l4=1.01,=class A splice.

2. For all other cases, class B has to be used when [, =1.3/,.

3. For splices in compression, the lap-splice length should be equal to or greater than /,. in
compression, but it also should satisfy the following: /. > 0.0005 f,d,, (for f, < 60,000 psi).
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PROBLEMS

7.1 For each assigned problem, calculate the development length required for the following tension bars. All
bars are bottom bars in normal-weight concrete unless specified otherwise in the notes.

Bar Clear Clear
No. No. f/(ksi) f, (ksi) Cover(in.) Spacing (in.) Notes
a 5 3 60 2.0 2.25
b 6 4 60 2.0 2.50 Lightweight aggregate concrete
c 7 5 60 2.0 2.13 Epoxy coated
d 8 3 40 2.5 2.30 Top bars, lightweight aggregate concrete
e 9 4 60 1.5 1.5
f 10 5 60 2.0 2.5 No. 3 stirrups at 61in.
g 11 5 60 3.0 3.0
h 9 3 40 2.0 1.5 Epoxy coated
i 8 4 60 2.0 1.75 (A, provided)/(A; required) = 1.5
] 6 4 60 1.5 1.65 Top bars, epoxy coated and no. stirrup at 4 in.

7.2 For each assigned problem, calculate the development length required for the following bars in compres-

sion.

No. Bar No. f! (ksi) 7, (ksi) Notes

a 8 3 60

b 9 4 60

c 10 4 40

d 11 5 60 (A required)/(A; provided) =0.8
e 7 6 60 (A required)/(A, provided) =0.9
f 9 5 60 Column with spiral no. 3 at 2 in.

7.3 Compute the development length required for the top no. 9 bars of a cantilever beam that extend into the
column support if the bars are

a. Straight

b. Have a 90° hook at the end

c. Have a 180° hook at the end

The bars are confined with no. 3 stirrups spaced at 5in. and have a clear cover of 2.0in. Use
f! = 4ksi and f,, = 60 ksi. (Clear spacing =2.5 in.)

7.4 Repeat Problem 7.3 when no. 7 bars are used.
7.5 Repeat Problem 7.3 when f! = 3ksi and f, = 40ksi.
7.6 Repeat Problem 7.3 when no. 10 bars are used.



288 Chapter 7 Development Length of Reinforcing Bars

7.7 Calculate the lap-splice length for no. 9 tension bottom bars with clear spacing of 2.0 in. and clear cover
of 2.0 1in. for the following cases:
a. When 50% of the reinforcement is spliced and (A, provided)/(A, required) =2.
b. When 75% of the reinforcement is spliced and (A, provided)/(A, required) = 1.5.
c. When all bars are spliced at one location and (A, provided)/(A, required) =2.
d. When all bars are spliced at one location and (A, provided)/(A, required) = 1.3. Use f/ = 4ksi and
S, =60ksi.
7.8 Repeat Problem 7.7 using f = 3ksi and f, = 60 ksi.
7.9 Calculate the lap splice length for no. 9 bars in compression when f! = 5ksi and f,, = 60 ksi.
7.10 Repeat Problem 7.9 when no. 11 bars are used. )
7.11 Repeat Problem 7.9 when f, = 80ksi.
7.12 Repeat Problem 7.9 when f = 4ksi and f,, = 60 ksi.
7.13 A continuous beam has the typical steel reinforcement details shown in Fig. 7.16. The sections at midspan
and at the face of the support of a typical interior span are also shown. Check the development lengths
of the reinforcing bars at all critical sections. Use f = 4ksi and f, = 60 ksi.

= | -
‘ B

a I L

L 1 )|

' 1 T

- 12/ 0" .

(3.6 m) M

Bending moment diagram
(drawn on the compression side)

!
VOl (D) (8% 25mm) ®

(0.45 m) T
e oy
(1.35m) (550 mm)

6no. 8 |} (6 X 25 mm)

el o]

(300 mm)

Figure 7.16 Problem 7.13.

7.14 Design the beam shown in Fig. 7.17 using p,,. Draw the moment-resistance diagram and indicate where
the reinforcing bars can be terminated. The beam carries a uniform dead load, including self-weight of
1.5 K/ft, and a live load of 2.2 K/ft. Use f! = 4ksi,fy =60ksi, and b=12 in.
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A B
W/ __ﬁ_
% 20 0" =J[
(6m)

Figure 7.17 Problem 7.14: Dead load =1.5 K/ft (22.5 kN/m), live load =2.2 K/ft
(83 kN/m).

7.15 Design the beam shown in Fig. 7.18 using a steel ratio p = %pb. Draw the moment-resistance diagram
and indicate the cutoff points. Use f! = 3ksi, f‘ =60ksi, and b=12 in.

P, P,
A LB yC

8/ O// 4/ O//
T 24 m) Y 2m) [

Figure 7.18 Problem 7.15: Dead load =2 K/ft (30 kN/m), live load (concentrated
loads only) is P, =10 K (45 kN), P, =16 K (72 kN).

AN

7.16 Design the section at support B of the beam shown in Fig. 7.19, p_ ... Adopting the same dimensions of
the section at B for the entire beam ABC, determine the reinforcement required for part AB and draw the
moment-resistance diagram for the beam ABC. Use f! = 4ksi, ﬁ =60ksi, and b=12 in.

A B C
WA __é__

| 20 0" Jr 80" ’——1

- (6 m) (24 m)

Figure 7.19 Problem 7.16: Dead load =6 K/ft (90 kN/m), live load =4 K/ft (60 kN/m).
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DESIGN OF DEEP
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METHOD ' |

8.1 INTRODUCTION

A strut-and-tie model of a structure is a valuable tool for the analysis and design of concrete mem-
bers especially for regions where the plane sections assumption of beam theory does not apply. A
strut-and-tie model visualizes a truss-like system in a structure and transmits forces from loading
points to the supports. This method can be applied effectively in regions of discontinuity in the
structural member, such as support areas, zones of load application, or areas with sudden change in
the geometrical dimensions such as brackets and portal frames. In these regions, the plane sections
do not remain plane after bending.

The ACI Code, Chapter 23 [1], and AASHTO [2] Section 5.6.3 introduce similar methods
and will be discussed later in this chapter.

8.2 B- AND D-REGIONS

St. Venant’s principle indicates that stresses due to axial load and bending approach a linear dis-
tribution at a certain distance from the discontinuity. This distance is generally taken as the larger
dimension of the member cross section, that is, depth 4 or width b.

The region where stresses cannot be computed from the flexure formula are called D-regions
(Fig. 8.1). The other regions of beam where bending theory and linear strain relationship applyes
are called B-regions (Fig. 8.1).

If two D-regions overlap or meet, they can be considered as a single D-region. ACI defines a
D-region as the portion of the member within a distance equal to the member heights, & or depth d
from a force discontinuity or a geometric discontinuity. For D-regions, maximum length-to-depth
ratio would be equal to 2.

8.3 STRUT-AND-TIE MODEL

The strut-and-tie model can be represented by an idealized truss model with force acting at the
different nodes. Compression members are defined as struts, tension members are defined as ties,
and joints are defined as nodal zone. These three elements are illustrated in Fig. 8.2.

290
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Figure 8.1 D- and B-regions in beam. (a) continuous beam, (b) beam with concentrated
load, and (c) beam with an opening [1]. Courtesy of ACI 318.

1. Strut: Compressive force resisted by concrete is called a strut. They are primarily made of
concrete or a combination of concrete and compression reinforcement. A strut is idealized as
a prismatic member of constant width or uniformly tapered width.

The ACI Code, Section R23.4.2 defines that if the effective compression strength f. differs at
the two ends of a strut, due either to differential nodal zone strengths at the two ends, or to different
bearing strength, the strut is idealized as a uniformly tapered compression member.”

As shown in Fig. 8.2 members AD and BD are called struts. The width of a strut is affected
by location and distribution of a tie and its anchorage. Size and location of bearing also affect the
width of a strut.

A bottle-shaped strut is a strut where the width of the compressed concrete at midlength
of the strut can spread laterally. To simplify the design, bottle-shaped struts are idealized either
as prismatic or uniformly tapered members. A taper of 1 to 2 is recommended as a first trial
in design.

2. Ties: These are tensile members in a strut-and-tie model. They are made out of a combination
of reinforcement and concrete. The contribution of concrete to the tensile resistance of a
tie is neglected. However, the presence of concrete helps to improve stiffness and control
deformations. Element AB in Fig. 8.2 is called a tie.
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Figure 8.2 (a) Strut-and-tie model and (b) idealized model. Courtesy of ACI 318.

3. Nodes and nodal zone: The intersection between the axes of two or more struts and ties defines
the nodes in the model. Nodal zones are regions surrounding the nodes. These are confined
areas of concrete that should satisfy strength requirements. Nodes A, B, and D are shown in
Fig. 8.2. In a structural model at least three forces must intersect at a node to satisfy equi-
librium. Nodal zones are triangular in shape, implying that there are three force resultant
approaches at the node. When two struts meet at different angles to the surface of the nodal
zone, that surface can be taken to be normal to the resulting force from the two struts, as
shown later in Fig. 8.6d.

Forces at a node can vary between different combinations of compression and tensile forces,
C-C-C, C-C-T, C-T-T, T-T-T as shown in Fig. 8.3.

Now, consider the steel truss shown in Fig. 8.4. Due to symmetry, the reactions at A and B are
equal, R, =Rz =20K, and from the equilibrium of joints A and D, the tensile force in AB=20K,
while the compressive force in AD or BD =28.3 K. Member AB is considered a tie, while AD and
BD act as struts. The forces in the other members are equal to zero. Comparing this truss with the
concrete beam in Fig. 8.2a, it can be seen that most of the areas ACD and BED and below the nodal
zone D are not effective and act as fillers. The forces in the struts, for this loading condition, are
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Figure 8.4 Example of steel truss.

greater than the force in the tie. In this case, adequate concrete areas are available to act as idealized
struts. Steel reinforcement is needed to act as a tie for AB. Proper anchoring of the ties are essential
for a safe design and should be anchored in a nodal zone.

8.4 ACIDESIGN PROCEDURE TO BUILD A STRUT-AND-TIE MODEL

8.4.1 Model Requirements

« Equilibrium of forces should be maintained. Forces in strut and ties should be uniaxial.
« Struts must not cross or overlap each other. They can cross or overlap only at nodes.
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 Ties can overlap struts or other ties.

« Minimum angle between struts and ties should be 25°.
 Tie should yield before strut crush (ductility).

» Tension in concrete is neglected.

» External forces should apply at nodes. If uniform load is present, that should resolve in con-
centrated load to apply at node.

 Prestressing is an external load.
» Reinforcement should be adequately anchored and provide sufficient detailing.

8.4.2 Check for Shear Resistance

ACI Code, Section 9.9.2.1, specifies the following limitations for deep beams. This check is nec-
essary prior to building a strut-and-tie model:

Vv, < 10Vf'b,d (8.1)

where
V,, = shear strength
b,, = web width
d = effective depth of section

If this equation is not satisfied, the cross section of the member should be increased.

8.4.3 Design Steps According to ACI Section 23.2

a. Define and isolate each region. This should be defined as shown in Fig. 8.5 and Section 8.2.
If the beam is shallow (with a large span-to-depth ratio), B-region can be much longer. In that
type of beam, shear span is defined as being > 2h. If the beam has a small span-to-depth ratio,
the D-region would cover the whole beam. And shear span is defined as < 2h.

b. Determine the resultant forces acting on each D-region boundary. Determine loads on struc-
ture and locate concentrated force either from reactions or from applied loads. Uniform load
can be resolved into equivalent force resultant at node points.

c. Select a truss model to transfer the resultant forces across the D-region. In determining the
geometry of a truss, the dimension of the struts, ties, and nodal zones shall be taken into
account. The axes of the struts and ties should coincide, approximately, with the compression
and tension fields. The selection of model geometry is the most important task in design.
The selection of truss geometry may be done by visualizing the stress field that develops in
a structure. For simple structures such as simple supported beams, the flow of stresses may
be easily visualized. For a more complex structural system, the selection of a suitable truss
model is more difficult.

d. Compute the forces in strut and ties. The strut-and-tie model should be in equilibrium with
the applied loads and reactions. To calculate force in strut and ties, start computing forces at
the joint. There are two equation of equilibrium, one for horizontal force and one for vertical
force. These equations must be satisfied at each node.

e. Determine the effective widths of the struts and nodal zones based on the concrete and steel
strengths and the truss model chosen. The effective width of the struts and nodal zones are
determined considering the force from step (d) and the effective compressive strength. The
strut, tie, and nodal zone all have finite widths that should be taken into account in selecting
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Figure 8.5 Description of deep and slender beams: (a) shear span, a, < 2h, deep beam;
(b) shear span, a, =2h, limit for a deep beam; and (c) shear span, a, > 2h, slender beam.
Courtesy of ACI.

the dimension of the truss. Thickness of strut, tie, and nodal zone should be the same as the
member. Figure 8.6 shows a nodal zone. Vertical and horizontal forces equilibrate the force
in the inclined strut. If the stresses are equal in all three struts, a hydrostatic nodal zone can
be used and the width of struts will be in proportion to the force on the struts.

f. Design the tie anchorage. Ties may fail if the end anchorage is not designed properly. The
anchorage of the ties in the nodal zone is a critical part in the strut-and-tie model.

g. Check minimum steel requirement according to ACI 318, Section 9.9.3.1 and 9.9.3.2, mini-
mum steel for deep beams.

8.4.4 Design Requirements According to ACI

The design requirements for struts and ties can be summarized as follows:

1. Design of Struts, Ties, and Nodal Zones:
QF, > F, (8.2)

where
F,, = force in strut, tie, or one face of nodal zone due to factored loads
F, = nominal strength of a strut, tie, or nodal zone
¢ = 0.75 for struts, ties, and nodal zone
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Figure 8.6 Nodal zones [1]. (@) Nodal zone, (b) subdivision of nodal zone, (c) three struts
acting on a nodal zone, and (d) struts AE and CE may be replaced by AC.
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The nominal strength is obtained from the effective strength given in the ACI Code for

each element.

2. Design of Struts. Strut capacity is determined by the effective strength times its cross-

sectional area.

The thickness of a strut is generally equal to member thickness. The width of a strut is gen-
erally controlled by the width of the nodal zone, bearing plate, or tie. When ties are anchored
through development length, the strut width is affected by the location and detailing of rein-

forcement and its anchorage.

Figure 8.7 shows how a strut width w; is influenced by the bearing pad width and tie width.
Tie width also depends upon reinforcement and cover to reinforcement.

wg=w,cosf + [;sind

Extended
nodal zone

Nodal zone

C Lynes sSee A4.3.2
(a)

Extended
nodal zone

NG T
L x___Critical section for
l—>! I development of

tie reinforcement
C \_lm, see A.4.3.2

(b)

Figure 8.7 Extended nodal zones and hydrostatic nodes [1]: (a) one layer of steel, (b)
distributed steel, (c) geometry, (d) tension force anchored by a plate, and (e) tension
force anchored by bond. Courtesy of ACI 318-14.
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Figure 8.7 (Continued)
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a. Strength of Struts. The nominal compressive strengths of a strut without longitudinal rein-
forcement, F,, shall be the smaller value of F at the two ends of the strut such that:

ns?
Fig = feeAcs (8.3)

where

A, = cross-sectional area at one end of strut
f.. = smaller effective compressive strength of concrete in strut and nodal zone.

That is the smaller of Egs. 8.4 and Egs. 8.5.
Effective compressive strength of the concrete in a strut:

fee = 0.858f" (8.4)

where f, equals 1.0 for a prismatic strut; 0.75 for struts with the width of the midsection
is larger than the width at the nodes (bottle-shaped struts) with adequate reinforcement to
resist transverse tensile stresses; 0.60 A for struts with the width of the midsection is larger
than the width at the nodes (bottle-shaped struts) without adequate reinforcement to resist
transverse tensile stresses (4 = 1.0 for normal weight concrete, 0.85 for sand-lightweight
concrete, and 0.75 for all lightweight concrete); 0.40 for struts in tension members or
tension flanges of member; and 0.604 for all other cases.
Effective compressive strength of the concrete of a nodal zone:

Jee = 0.850,f! (8.5)

where f, equals 1.0in nodal zones bounded by struts or bearing areas, or both, C—C-C
node; 0.80 in nodal zones anchoring one tie, C—C—T node; and 0.60 in nodal zones anchor-
ing two or more ties, C—T-T or T-T-T node.

b. Reinforcement Crossing Struts. The value g, =0.75 is for bottle-shaped struts where rein-
forcement required is related to the tension force in the concrete due to the spreading of
the strut. The axis of the strut shall be crossed by reinforcement, which is resisting the
transverse tensile force resulting from the compression force spreading in the strut. The
compressive force in the strut may be assumed to spread at a 2:1 slope (Fig. 8.8).

For f] < 6 ksi, the value of transverse reinforcement can be calculated from

A,
Z(fﬁ@mmzam3 (8.6)

s .

where '

A,; = total area of reinforcement in ith layer crossing strut
s; = spacing of reinforcement in ith layer adjacent to surface of member
b = width of member
v, = angle between axis of strut and bars in ith layer of bars crossing strut

The transverse reinforcement as mentioned above shall be placed in either two orthog-
onal directions at angles a; and a, to the axis of the strut or in one direction at an angle
a to the axis of the strut. If the reinforcement is only in one direction, a shall not be less
than 40°.
c. Compression Reinforcement in Struts. Compression reinforcement can be used to increase
the strength of a strut. The nominal strength of a longitudinal reinforced strut is

Fos = feeAe + AL (8.7)
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Figure 8.8 Reinforcing bars crossing a strut. Courtesy of ACI 318-14.

where
F,, = strength of longitudinal reinforced strut
Al = area of compression reinforcement in strut
f] = steel stress for A, (f] = f, for grades 40-60)

Compression reinforcement should be properly anchored and parallel to the axis
of the strut. This reinforcement should be located in the strut and enclosed in ties or
spirals.

3. Design of Ties. The tie includes the reinforcement and the prism of concrete around the tie.
Tie design involves selecting the area of steel; and reinforcement is properly anchored and
ensures that the reinforcement fits within the tie width.

Strength of Ties. The nominal strength of a tie F,, is

Fo = Agfy + Ap(foe + 4,) (8.8)
where
A, = area of non-prestressed reinforcement in tie
A,, = areaof prestressing reinforcement
f.. = effective stress after losses in prestressed reinforcement
4f, = increase in prestressing stress due to factored loads

A,; = fornonprestressed members
St Ay STy

It is permitted to take Af, =60ksi for bonded prestressed reinforcement or 10ksi for
unbonded prestressed reinforcement.

The axis of reinforcement in a tie shall coincide with the axis of the tie in the strut-and-tie
model. The effective tie width (tw,) depends upon distribution of the tie reinforcement.

If the bars in the tie are in one layer, then

w, = diameter of bar in tie + 2(cover to surface of bars) (8.9)
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Also, a practical upper limit of the tie width, w;,, can be taken as follows (ACI Code, Section

R23.8.1):
Fu (8.10)

w, = —
" by
where f,. is the compressive strength of the nodal zone as computed in Eq. 8.5.
The concrete is included in the tie to establish the width of the faces of the nodal zone
acted on by the ties. The concrete in a tie does not resist any load. Ties help in the transfer of
loads from strut to ties or to bearing areas by bonding to the reinforcement.

4. Design of Nodal Zone. If all the strut stresses are equal at a node, a hydrostatic nodal zone
can be used. The face of such a nodal zone is perpendicular to the axis of the strut and the
width of the faces of the nodal zone is proportional to the forces in the strut.

The thickness of the nodal zone is generally taken the same as the thickness of the member.
Calculation of the width of nodal zone is useful to calculate the width of compression strut
first.

Nodal zones are generally triangular in shape; it is often necessary to determine one side
of the triangle given others.

5. Strength of Nodal Zones. The nominal compression strength of a nodal zone, F,, is
Fon = foeAn (8.11)

where A,, is the smaller of:

« The area of the face of the nodal zone on which F,,
dicular to the line of action of F,,,,.

» The area of the section through the nodal zone is, taken perpendicular to the line of action
of the resultant force on the section.

a. Confinement in Nodal Zones. Unless confining reinforcement is provided within the nodal
zone and its effect is supported by tests and analysis, the calculated effective compressive
stress on the face of a nodal zone due to the strut-and-tie forces should not exceed the
following:

acts; The area shall be taken perpen-

foe = 0.858,f! (8.12)

where f, equals 1.0in nodal zones bounded by struts or bearing areas, or both, C—C-C
node; 0.80 in nodal zones anchoring one tie, C—C—T node; and 0.60 in nodal zones anchor-
ing two or more ties, C—T-T or T-T-T node.

8.5 STRUT-AND-TIE METHOD ACCORDING TO AASHTO LRFD

AASHTO uses a design approach similar to ACI’s (Fig. 8.9). However, AASTHO uses different
strength and resistance factors from those used by the ACI Code.

1. Strut. Resistance of compressive strut is given by
F. = ¢F, (8.13)
where

¢ = 0.7 for strut-and-tie model
F, = nominal compression resistance

Fo— JeeAcs for unreinforced struts (8.14)
T feeAes T A for reinforced strut (8.15)
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Figure 8.9 Influence of anchorage condition on effective cross-sectional area of strut:
(@) Strut anchored by reinforcement, (b) strut anchored by bearing and reinforcement,
and (c) strut anchored by bearing and strut. Source: AASHTO LRFD Bridge Design Spec-
ification, 2014. Used by permission.

where A = effective cross-sectional area of strut determined from concrete area and anchor-
age conditions A, = area of reinforcement in strut

I /
=% <085 8.16
Jee = 585 170e, ~ e (8.16)
£, = €, + (g, + 0.002)cot’a (8.17)

where
a, = smallest angle between compressive strut and adjoining tension ties
&, = tensile strain in concrete in direction of tension tie (in./in.)
f! = specified compressive strength

2. Ties. For nominal resistance of ties the AASHTO equation is

F = Ayfy + Ay(fic +1,) (8.18)
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This equation is the same as the ACI equation only FYy is used instead of ( 4f, ).

b= 0.9 for reinforced concrete
~ ] 1.0 for prestressed concrete

3. Nodal Zone. For the nodal zone the AASHTO recommends ¢ =0.7 for all cases, and the
effective width strength coefficient, g, is taken as 0.85 for CCC nodes, 0.75 and for CCT
nodes, 0.65 for CTT and TTT nodes.

Minimum Reinforcement: AASHTO suggest that the D-region should contain orthogonal
grid reinforcement near each face with maximum spacing less than or equal to 12 in. Orthog-
onal grid reinforcement requirement is not applicable for slabs and footing. The minimum
steel ratio in each orthogonal direction should not be less than 0.003.

8.6 DEEP MEMBERS

Flexural members should be designed as deep beams if the ratio of the clear span, /, (measured
from face to face of the supports; Fig. 8.10), to the overall depth, A, is less than 4 (ACI Code,
Section 9.9.1.1). The members should be loaded on one face and supported on the opposite face
so that compression struts can develop between the loads and supports (Fig. 8.10). If the loads are
applied through the bottom or sides of the deep beam, shear design equations for ordinary beams
given earlier should be used. Examples of deep beams are short-span beams supporting heavy loads,
vertical walls under gravity loads, shear walls, and floor slabs subjected to horizontal loads.

The definition of deep flexural members is also given in ACI Code, Section 9.9.1. The code
defines flexural members as members where when the ratio of the clear span, /,, to the overall depth,
h (Fig. 8.10), is less than 4, regions loaded with concentrated loads within twice the member depth
from the face of the support are considered deep flexural members. Such beams should be designed
using nonlinear analysis or a strut-and-tie model (Fig. 8.11a).

8.6.1 Analysis and Behavior of Deep Beams

Elastic analysis of a deep beam is meaningful in the uncracked state only before cracking.
Deep-beam cracking occurs generally at one-third or one-half of the strength load. After cracks
develop, a redistribution of stresses is necessary. Elastic analysis shows the distribution of stresses

=
U

l Main steel l

Figure 8.10 Single-span deep beam (/,/d < u).
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Figure 8.11 Stress distribution and cracking: (a) elastic stress distribution, (b) stress
trajectories (tension, solid lines, and compression, dashed lines), (c) crack patterns, and
(d) truss model for a concentrated load applied at the wall upper surface.
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that cause cracking and give guidance to the direction of cracking and the flow of stresses after
cracking.

Figure 8.11a shows the elastic stress distribution at the midspan section of a deep beam, and
Fig. 8.11b shows the principal trajectories in top-loaded deep beams. Solid lines indicate tensile
stresses, whereas dashed lines indicate compressive stress distribution. Under heavy loads, inclined
vertical cracks develop in the concrete in a direction perpendicular to the principal tensile stresses
and almost parallel to the dashed trajectories (Fig. 8.11c¢). Hence, both horizontal and vertical rein-
forcement is needed to resist principal stresses. Moreover, tensile flexural reinforcement is needed
within about the bottom one-fifth of the beam along the tensile stress trajectories (Fig. 8.115). In
general, the analysis of deep beams is complex and can be performed using truss models or more
accurately using a finite-element approach or similar methods.

8.6.2 Design of Deep Beams Using Strut-and-Tie Model

Design of deep beam using the strut-and-tie model involves the following steps:

a. Laying out a truss that will transmit the necessary loads. The loads, reactions, struts, and ties
are all positioned in such a way that the centroid of each truss member and the line of action
of all externally applied loads concide at each joint. This is necessary for joint equilibrium.

b. Once a truss has finalized, the joints and members of the truss are detailed to transmit the
necessary forces.

c¢. Verify the capacity of struts both at middle length and at the nodal zone.

d. Design the tie and tie anchorage.

e. Prepare design detail and check minimum reinforcement requirements. In deep beams min-
imum reinforcement shall not be less than 0.0025b,,s, and s shall not exceed the smaller of
d/5 and 121in. ACI 318 (Section 9.9.3.1 and 9.9.4.3). For AASHTO Section 5.6.3.6 the ratio
is 0.003, and the spacing s shall not exceed the smaller of d/4 and 12 in.

f. Design for the rest of the structure, that is, the rest of the structure designed as a B-region.
And the design should be integrated with the design of the D-region.

g. Check for anchorage.

Example 8.1 Strut-and-Tie Deep Beam—ACI Method

A simply supported deep beam has a clear span equal to 12 ft, a total height equal to 6 ft, and a width of
18 in. The beam supports an 18-in.-square column at midspan carrying a dead load equal to 300 K, and
a live load equal to 240 K. Design the beam using the strut-and-tie model, using f/ equal to 4 ksi and Iy
equal to 60 equal ksi. (Refer to Fig. 8.12.)

Solution

1. Calculate the factored loads:
Weight of beam = 15X 6 X 1.5%x0.150 =20 K

Since the weight of the beam is small relative to the concentrated loads at midspan, add it to
the concentrated load at midspan:

P,=12D+ 1.6L = 1.2(300 + 20) + 1.6(240) = 768 K

RA=RB=¥=384K
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Figure 8.12 Example 8.1.

2. Check if the beam is deep according to to the ACI Code, Section 9.9. clear span, [, = 12 ft, h =6 ft,
and [,/h=2 < 4, deep beam.

3. Calculate the maximum shear strength of the beam cross section. Let V, at A=R, =384 K and
assume d =0.9h = 0.9 X 72 = 64 in.:

V, = 10V/fb,d = 101/4000(18 x 64) = 728.6 K
@V, =0.75(728.6) = 546K >V,  OK

4. Select atruss model. A triangular truss model is chosen. Assume that the nodes act at the centerline
of the supports and at 6.0 in. from the lower or upper edge of the beam (Fig. 8.13). The strut-and-tie
model consists of a tie AB and two struts AD and BD. Also, the reactions at A and B and the load
P, at D represent vertical struts:

Length of diagonal strut AD = V60> + 81% = 100.8 in.

Let 6 be the angle between the strut and the tie. Then tan 6=60/81=0.7407 and
0 =36.5°>25°, OK (ACI Section 23.2.7).

5. Calculate the forces in the truss members:

Compression force in strut AD: F,;, = Fy,, =384 (%) =645K
. L 81
Tension f tie AB: Fyy =645 (o) = 5183K
ension force in tie AR 1008

6. Calculate the effective strength f,.. Assume that confining reinforcement is provided to resist
the splitting forces. Struts AD and BD represent the bottle-shaped compression members, and
therefore f, =0.75, and

fio =0.858f =0.85%0.75 x4 =2.55ksi
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Figure 8.13 Example 8.1.

The vertical struts at A, B and D have uniform sections, and therefore g, =1.0 and
foe =0.85%1.0x4 =3.4ksi

The nodal zone D has C-C—C forces, and therefore f, =1.0. The effective strength at nodal

zone D is given as
Jou = 0.85x1.0x 4 =3.4ksi

Since the struts AD and BD connect to the other nodes, then £, =2.55ksi controls to all nodal
zones.

7. Design of nodal zones:

a. Design the nodal zone at A. Assume that the faces of the nodal zone have the same stress of
2.55 kst and the faces are perpendicular to their respective forces:

¢FnZFu or (»bfcuA >Fu

c =

where ¢ equals 0.75 for struts, ties, and nodes.

The length of the horizontal face ab, Fig. 8.14a, is equal to F /(¢ f,, b)=384/(0.75 %
2.55x18)=11.21n.

From geometry, the length ac=11.2 (518.3/384) =15.2 in.

Similarly, the length of bc =11.2 (645/384) =18.8 in.

The center of the nodal zone is located at 15.2/2=7.61in. from the bottom of the beam,
which is close to 6.0 in., assumed earlier.

b. Design the nodal zone at D (Fig. 8.14b):

The length of the horizontal face de = 768 /(0.75 x 2.55 X 18) = 22.3 in.

The length of df=ef=22.3 (645/768) = 18.7 in.

The length of fg = 15.0in, and the center of the nodal zone is located at 15/3 =5.01n. from
the top, which is close to the assumed 6.0 in.
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Figure 8.14 Example 8.1: Nodal zones: (a) at node A, (b) at node D, and (c) reinforce-
ment details.

8. Design of horizontal and vertical reinforcement:
Vertical web reinforcements provided must be at least:

A, =0.0025bs
And horizontal web reinforcements provided must be at least:
A, = 0.0025bs

Spacing for both horizontal and vertical reinforcement shall not exceed d/5 = 14.4in. or 12 in.,
therefore use s =12 in.

A, =A,, =00025x 18X 12 = 0.54in.(per 12 inch)

Use No. 5 at 12in.: A; =2(0.31) =0.62.
a. Vertical Bars: From Figure 8.14q, the angle between the vertical bars and strut is equal to 53.5°

Ag\ 0.62 .
i = sin 53.5 = 0.0023
<bs) AR TIVET

b. Horizontal Bars: From Figure 8.14a, the angle between the vertical bars and strut =36.5°
A\ 0.62 .
— = 36.5 = 0.0017
(bs> M ETex

A
Y <b_> siny = 0.0023 +0.0017 = 0.004 > 0.003
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Figure 8.15 Example 8.1: Development of tie reinforcement.

9. Design of the horizontal tie AB:
a. Calculate A:

Fo=gAf, A =-—2330 _ 52

ST 075 % 60

Use 12 no. 9 bars. A, = 12in.? in three rows as shown in Fig. 8.14c.

b. Calculate anchorage length. Anchorage length is measured from the point beyond the extended
nodal zone, Fig. 8.15. Tan 36.5 =7.6/x; then x=10.27 in.

Available anchorage length = 10.27 + 5.6 + 9 — 1.5 in., (cover) =23.37 in. Development length
of no. 9 bars required = 47.5 in. (Table 7.1), which is greater than 23.37 in. Use a standard 90° hook
enclosed within the column reinforcement:

(0.02yf,)d,
10| W ——
VAV
w,=A=10  d,=1.128in.
~0.02(1.0)(60, 000)(1.128)

ldh -
(1.0)1/4000

=21.4in. < 23.37in.

Example 8.2 ACI Method

Design a simply supported deep beam for flexural and shear reinforcement that carries two-concentrated
live load of 95 kips, shown in Fig. 8.16. The beam has a clear span of 10 ft, overall depth of 40in. and
width of 12 in. The beam is supported on 16-in.-wide columns. Given f] = 4 ksi, f, = 60ksi. Assume the
bearing plates at supports and loading points are 16in. X 20in. and 12 in. X 20 in., respectively.
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Figure 8.16 Idealized truss model.

Solution

1. Calculate the factored load:

. 16 . 16\ (40 (12
Weight of the beam = (10+ I+ E) (E) (E) (0.150) = 6.3 K

Since the weight of beam is small relative to concentrated loads, add to the concentrated loads.
P,=12D+16L=12(63)+1.6%95=160K
R, =R, =160K
2. Check if beam is deep according to ACI Code, Section 9.9:

l
Clear span, [, = 10ft,h = 3.3ft, therefore Z" = 3 < 4, deep beam.

Check the bearing capacity at support and loading location:
a. Atsupports A and D: The area of bearing plate at each support is A, = 16 x 20 =320in.> The
bearing stresses at each support is:

V,  160(1000) .
A—c = T =500 ps1

The nodal zone over the support is a compression-tension node (C-C-T), therefore:
fow = 08581 = 0.85 x 0.8 x 4000 = 2720 psi, ¢f,, = 0.75(2720) = 2040 psi

Check if v
Oy > A—” 2040 psi > 500 psi  OK
C
Therefore, the bearing plate at the support is adequate.
b. Atloading points B and C: The area of bearing plate at each loading pointis A, = 12 x 20 =240 in.>
The bearing stress at each loading point is
ﬁ _160(1000)
A, 240

c

= 606.7 psi

The nodal zone beneath each loading point is a pure compression node (C-C-C), therefore,

fou = 0.854,f" = 0.85 x 1.0 X 4000 = 3400 psi  ¢f.,, = 0.75(3400) = 2550 psi
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Figure 8.17 Free-body diagram of the left third of the beam.

Check if v
fou > A—“ 2500 psi > 666.7 psi  OK
C
Therefore, the bearing plate loading point is adequate.

3. Calculate the maximum shear strength of beam cross section:
LetV,atA=R, =160K, and assume d=0.91=0.9 x40 =36 in.

V, = 10V/fb,d = 10 x /4000 x 12 x 36 = 273K
PV, =0.75x 273 = 205 > V, = 160K

Therefore, the cross sectional dimensions are adequate.

4. Select strut and tie model and geometry:

A truss model is chosen as shown in Fig. 8.16. Assume that the nodes act at the centerline of
the supports and loading points. Therefore, the horizontal position of A, B, C, and D are defined.
The vertical position of the nodes must be as close to the top and bottom of the beam. To reach
this goal, the lever arm, jd shown in Fig. 8.17, for the coupled forces should be at a maximum, or
w, and w, should be at a minimum.

To minimize w; and w,, the strut and tie should reach their capacity:

For strut BC:

Fu,BC = ¢Fnc = ¢fcu c= ¢(085ﬂsfc/)bwv

where f, = 1.0 (horizontal strut).
For tie AD:

Fu,AD = d)Fnt = ¢fcuAc = ¢(085ﬂnfc’)bw;

where f, =0.8 (C-C-T node).
As shown in Fig. 8.17, strut BC and tie AD form a couple, therefore F, p-=F, 4p or

$(0.85 x 1.0f )bw, = ¢(0.85 x 0.8f" )b,

w, = 125w,

. ) wy
jd =40 - = = =L =40~ 1125w,

By writing the moment equilibrium about point A we have:
Vu(40) - Fu,BC(id) =0
(160)(40) — ¢(0.858,fbw (40 — 1.125w,) = 0
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(160)(40) — 0.75(0.85 x 1.0 x 4)(12)w (40 — 1.125w,) = 0
wy,=064in. and w,=1.125w;=7.2in.

Therefore

72 64

jd =40 =5~ 22 =3320n.

5. Calculate the forces in all truss members:

length of diagnal struts, AB and CD = V40> + 33.2? = 52 in.

Let 6 be the angle between the strut and the tie,

tanf = % =0.831, 0=39.7°>25" OK

40
F . =F =160(—>=192.5K
u,BC u,AD 332
160
F oo=F . =—2 __ —250K
wAB TSP T 0 39.7°

6. Calculate the effective stress, f.:
For struts:
Assume that confining reinforcements is provided to resist the splitting forces. Struts, AB, BC,
and CD represent the bottle-shaped compression members, therefore, f, =0.75

foo = 0.858,f) =0.85%0.75 x 4 = 2.55 ksi

For nodes:
The nodal zone B or C has C-C-C forces, therefore g, =1.0.

fce = Ogsﬁnﬁ/ =0.85%x1x%x4=34ksi

Since the three struts are connected to the other nodes, then f,, =2.55 ksi controls all nodes.
7. Design of nodal zones:

a. Design the nodal zone at B or C (Fig. 8.18a):As shown in Fig. 8.19a, the width of the top
strut is
wy = 12sin0 + w, cosf =12sin39.7° + 6.4¢c0s39.7° = 11 in.

b. Design the nodal zone at A or D (Fig. 8.19b):
Wy, = 16sin0 + w, cos = 16sin39.7° + 7.2 c0s 39.7° = 14.4in.
Struts AB, BC, and CD represent the bottle-shaped compression members, f, =0.75.
OF,, = $(0.856,f)bw, = 0.75(0.85)(0.75)(4)(12)(11) = 251.3K
OF , = $(0.858,f)bwy, = 0.75(0.85)(0.75)(4)(12)(14.4) = 329 K
use ¢F, =2513K
Because @F is higher than the required forces, struts AB, BC, and CD are adequate.
$F 2 F,,,  or 251.3>250 and ¢pF, > F, or 251.3>250 OK

8. Design of horizontal and vertical reinforcement:
Vertical web reinforcements provided must be at least:

A, =0.0025bs
And horizontal web reinforcements provided must be at least:

A, = 0.0025bs
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w,=72"

(b)

Figure 8.18 (a) Node zone at B or C. (b) Node zone at A or D.

Spacing for both horizontal and vertical reinforcement shall not exceed d/5=7.2in. or 12in.,
therefore use s =7 in.

A, =A,, =0.0025x12x 7 =021 in2(per 7in.)

A,=A, =021%x7/12=0.36in(per 12in.)
Use No. 4 at 12in.: A, =2(0.2) = 0.4 in.? (two legs)

a. Vertical Bars: From Fig. 8.18b, the angle between the vertical bars and strut is equal to 50.3°

i . 0.4 .
= ———in50.3 = 0.0021
<bs> =Tk
b. Horizontal Bars: From Fig. 8.18D, the angle between the vertical bars and strut=39.7°

— | siny = 04 sin39.7 = 0.0017
bs 12x12

Z (b—“> siny = 0.0021 4 0.0017 = 0.0038 > 0.003
9. Design of the horizontal tie AD:

Required tie reinforcement

192.5 .2
F,=¢Af, Aj=———=427in.
=L A= 575 %60 "
Provide six no. 8 bars in three rows, A, =4.8in.?
10. Calculate anchorage length:

Anchorage length is measured from the point beyond the extended nodal zone:

w
tan39.7° = — = 72
2x 2x
x=45in.

Available anchorage length: 4.5+ 16— 1.5=19 in.
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Figure 8.19 Reinforcement details.

Development length of No. 8 bars required =47.5(1) =47.5 inch (table 7), which is greater
than 191in. Use a standard 90° hook enclosed with column reinforcement:

; 0.02y.f,)d, _ 0.02(1.0)(60000)(1.0) _
W (1.0)1/4000

Reinforcement details are shown in Fig. 8.19.

19<19in. OK

Example 8.3 AASHTO LRFD Method

A simply supported deep beam has a depth of 4 ft. The clear span is 4 ft, and the width is 1 ft (Fig. 8.20).
The beam is carrying a total factored load of 250 K at midspan. Design the beam using the strut-and-tie
model. Assume f] =4 ksi,fy = 60ksi, and bearing pads of 8 in. X 8 in.

250 K
A Tar
"
/)
B c | Ta
L |
| T 4 T 1
RA RB
R,=Ry=125K

Figure 8.20 Example 8.3: Idealized deep beam.

Solution

1. Calculate reactions. Total factored load given is 250 K. The reaction is

R, =R, =125K
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2. Check if beam is deep. Height of beam (%) is 4 ft, clear span (/,,) is 4 ft.
L, 4

Z" = 2 =2 < 4ft (Entire beamis in D — region)
3. Calculate maximum shear strength of the beam cross section. Let V,, at A be given as R, = 125K

and assume

d=09=09x%x48 =43.21in., use 43in.

BV, = p(10)\/f7b,,d = 0.75(10)1/4000(12)(43) = 244K > V, = 125K (OK)

4. Select a truss model. A triangular truss model is chosen. Assume that nodes act at the centerline
of the supports and 4 in. from the lower and upper edges of the beam. The strut-and-tie model
consists of a tie, BC, and two struts AB and AC.

Let the angle between the strut and tie be § =60° >25° OK.

5. Calculate the forces in truss members.

At the joint A (C—C-C) nodes:

250K

FAB/V\FAC

Fup=Fye
F,zc0s30° =250K
250
= —— =14434K
4B c0s 30°
At joint B (C—C-T) nodes:
144.34 K

125 K

Fge=14434c0s60 =72.17K

6. Check size of bearing:
Effective strength of node A (C—C—C node) = 0.85f/¢
Effective strength of node B, C (C—C-T node) = 0.75f/¢

P
Bearing area required at node A = 0.85;2&;5 =085 >2<540>< 07 = 105in.2
. . P, 125 )
Bearing area required at nodes B and C = = 60in.

0.85fl¢p 0.75x4x0.7
Bearing area proposed = 8" x 8" =64 in.2 < 105 in.? (not safe)
Since the width of beam is 12/, keep a “width with clear spacing 1.5” on both sides. The
bearing pad length L is

105 1}
L=—=11.67
9

Use 9” x 12" bearing pad at the load position and 8" x 8" bearing pad at support.
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7. Chose tension tie reinforcement:

¢ = 0.9 for tension tie

Pu = ¢f:vAst
L= 2T 342
(0.9)(60)
There can be three bars of reinforcement:
% = 0.447in.?

Use 3 three no. 6 bars:
A, =3x044 =1.32in?

8. Check capacity of struts:
Fup=F,c =14434K

P2
* T AE,  134x29,000

where ¢ is the tensile strain in the concrete in the direction of tension tie (in./in.),

€ = 1.85x 107 in./in.

€, =€, + (g, + 0.002)cot’a
=1.85x 107 + (1.85 x 107> + 0.002)cot*(60) = 3.13 x 10~%in. /in.
__x

0.8 + 170,

4
T 0.8+ 170(3.13 x 107%)

A, =wX(l,sin@, + h,cos b))

Jee <0.85f!

<0.85(4) =3.00<34 OK

where
w = width of deep beam = 12"/
I, = bearing pad 8" and 12"
9, = 60°
h, = width of tie = 8 (2> = 4.62in., use 5in.
Atnode B, C 125

w; =1,sin; + h,cosd;, = 8sin60° + 5cos60° = 9.42in., use 9.5 in.
At node A:
Width of bearing pad = 12 in.

144.34
250

Therefore w; = 9.5 in.governs

Width of strut = 12 ( ) = 6.92in.

A, =12x9.5=114in?
F, = ¢F, =0.7f. A, = 0.7(3)(114) = 239K > 144.34 K

(&

Therefore, strut reinforcement is not required.
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9. Check anchorage of tension ties. There is almost no embedded length to devolve no. 6 tension tie
reinforcement. Therefore, provide anchor plate or headed plate or headed ends.

10. Check nodal zone stress:
722

< 24)(12)
Then limiting nodal zone stress is

0.75¢f = 0.75(0.7)(4) = 2.1ksi > 0.752  OK.

=0.752ksi

11. Crack control reinforcement. The minimum ratio of reinforcement to gross concrete area is
0.003 in each direction. The maximum spacing is the smaller of d/4=43/4=10.75 or 12in.
Therefore, use 10" c/c

As,min =0.003x12x48=1.73 in.z

Provide no. 4 bars = % =8.65~10
Provide 10 no. 4 bars 5 each face at 101in. c/c.
12. Details of reinforcement are shown in Fig. 8.21.

I - I
o [ <— 9" x 12" bearing pad

5 no. 4 each face

-~ Anchor or headed ends

- -__I_TL
L 310.6 8 X 8 bearing pad

1< 5 no. 4 each face

5 no. 4 each face

o o
o o
O O O

T—T—T—3n0.6

Figure 8.21 Example 8.3: Deep-beam reinforcement details.




318 Chapter 8 Design of Deep Beams by the Strut-and-Tie Method

Example 8.4 ACI Method

A simply supported deep beam with an opening, shown in Figure 8.22, has a clear span equal to 12 f,
a total height equal to 6 f, and a width of 18 in. The beam supports an 18 in. - square column at
midspan carrying a service dead load of 300K, and a live service load of 240K. /', =4 ksi, Jy =060ksi,
Es =29 * 106 psi.

18"
c T
24"
24"
24"
R e |t
[<18.0">]
l<18">] 40" | 60" | 42" l<18">]
Figure 8.22 Example 8.4: |dealized deep beam with an opening.
1. Calculate the factored loads:
2. Check if beam is deep beam according to ACI Code, Section 9.9, [, = 12 ft, h = 6 ft.
3. Calculate Maximum Shear Strength:
4. Select Truss Model:

See Figure 8.23
. Calculate Element Forces:

. Calculate Effective Strength:
Struts connect to all nodes therefore, 2.55 ksi controls to all nodal zones.

. Design Nodal zones:

A

2

Nodes A, E (Figure 8.24)

Nodes C see (Figure 8.24)

Nodes B, E (Figure 8.24)

Design Horizontal and Vertical reinforcement:
Suggest No. 5 bars @ 12 in.

Vertical Bars below opening

Horizontal Bars below opening

Vertical Bars above opening

Horizontal Bars above opening
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Pu=766 K

6o
195"
D
435"
a4 E |
6.0"y
9.0" 41.0" | 62.0" | 41.0" 9.0"
R, =383K R = 383K

Figure 8.23 Example 8.4: Strut and Tie model for idealized deep beam with an
opening.

I " I
[ 22.3 |

Node A or E Node C Node B or D

Figure 8.24 Example 8.4: Nodal zones.
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Table 8.1 Element Forces for Truss Shown in Figure 8.23

Member Length P

Identification in. Kip
AB 63 —551.06
BC 40 -919.23
CD 40 -919.23
DE 63 -551.1
AE 162 396.21
BD 72 439.43

No. 5 bar ——__ | Strut AB No. 5 bar [ Strut BC
49° —

62°

~
—
o

NS % L
No. 5 bar No. 5 bar

N L W W

i DR

Figure 8.25 Example 8.4: Horizontal and vertical reinforcement.

1
-

|

g\&\)&
?‘37 Strut boundary
%&&\ Strut boundary
Tie BD
Tie AE B
64" | A o > 2g°
y 41 8
)
>{5.6" [ X>| >5.3"fe——X—>
Node A or E Node B or D

Figure 8.26 Example 8.4: Node zone at A or E and B or D.

Design Ties:

Calculate anchorage length

Development length of No. 9 tension bar with clear spacing not less than 2d, and clear cover not
less than d,. Therefore, according to ACI Code, Section 25.4

Tie AE (Figure 8.26)

ACI Code, Section 25.4.3.2 if cover is 2.5 in. or greater [, can be factored by 0.7

Tie BD (Figure 8.26)
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— No. 9 bar @3.5" c/c

No. 5 bar
12.0" 2.5" clear cover 10 No. 9 b:
6.0 / o. ars_\
T

q

6.0

B

72.0"

|

©
n

- ’ 9 No. 9 bars —l»I

L ‘LNQ 9 bars @ 2.5" c/c 6" c/c
No.5 @12"clc

2.5" clear cover

| ,I | No. 5 bars —4

=

180

Figure 8.27 Example 8.4: Reinforcement details.

Hook tail 16" for all hooks§
1;[
No. 9 bars @ 2.5" c/c

25" fof—15.5"—]

Figure 8.28 Example 8.4: Hook details.
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PROBLEMS

8.1 Design the single corbel shown in figure 8.29 on a 24 in. X 24 in. concrete column with the forces shown.
Assume f¢’ = 6000 psi, and Grade 60 steel

8.2 Design the bridge bent cap shown in figure 8.30 is to carry two train tracks and five girders spanning
between abutments, with the factored loads and geometry given below. The cap has a width of b = 6 ft
and height of 1 = 7 ft, supported by two 6-ft-wide columns. Design the cap using f°. = 5000 psi and f, =
60,000 psi. ’

8.3 Design a simply supported deep beam with two openings shown in figure 8.31, carries two concentrated
live service loads of 95 K. The beam has a clear span of 10 ft, overall depth of 40 in. and width of 12 in. The
beam is supported on 16-in.-wide columns. Given f° =4 ksi, f;, =60ksi, and E; =29 X 10° psi. Assume
bearing pads at supports and loading points are 16in. X 20in. and 12in. X 201in., respectively.

\/\

<8.0"—>
Ru 1 vy = 75 kips

> Nu=15kips

T

10.0"

10.0"

\/\

24.0"

Figure 8.29 Corbel on a Column Cap.
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|
o
.

PGirder PGirder PGirder PGirder PGirder
07 | 6.6 | 7.25° | 7.25° | 6.6 | 07
7
3
7.3 14.5° 7.3
Figure 8.30 Bridge Bent Cap.
95K 95K
| 40.0" 8.0<8.0] 40.0" 8.0<8.0"] 40.0" |
10.0" ¢ D
12.0
18.0'
A F

l—16.0—12.0-] 96.0" 12,0~ }—16.0—]

Figure 8.31 Deep Beam with Two Openings.




CHAPTER 9
ONE-WAY SLABS
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The Westin Hotel, Toronto, Canada.

9.1 TYPES OF SLABS

324

Structural concrete slabs are constructed to provide flat surfaces, usually horizontal, in building
floors, roofs, bridges, and other types of structures. The slab may be supported by walls, by
reinforced concrete beams usually cast monolithically with the slab, by structural steel beams,
by columns, or by the ground. The depth of a slab is usually very small compared to its span.
See Fig. 9.1.

Structural concrete slabs in buildings may be classified as follows:

1. One-way slabs: If a slab is supported on two opposite sides only, it will bend or deflect in a
direction perpendicular to the supported edges. The structural action is one way, and the loads
are carried by the slab in the deflected short direction. This type of slab is called a one-way
slab (Fig. 9.1a). If the slab is supported on four sides and the ratio of the long side to the short
side is equal to or greater than 2, most of the load (about 95% or more) is carried in the short
direction, and one-way action is considered for all practical purposes (Fig. 9.1b). If the slab is
made of reinforced concrete with no voids, then it is called a one-way solid slab. Figure 9.1c,
d, and e show cross sections and bar distribution.

2. One-way joist floor system: This type of slab is also called a ribbed slab. It consists of a floor
slab, usually 2 to 4 in. (50 to 100 mm) thick, supported by reinforced concrete ribs (or joists).
The ribs are usually tapered and are uniformly spaced at distances that do not exceed 30 in.
(750 mm). The ribs are supported on girders that rest on columns. The spaces between the
ribs may be formed using removable steel or fiberglass form fillers (pans), which may be
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Figure 9.1 One-way slabs.

used many times (Fig. 9.2). In some ribbed slabs, the spaces between ribs may be filled with
permanent fillers to provide a horizontal slab.

3. Two-way floor systems: When the slab is supported on four sides and the ratio of the long

side to the short side is less than 2, the slab will deflect in double curvature in both directions.
The floor load is carried in two directions to the four beams surrounding the slab (refer to
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Slab

Rib Rib

127
] F—ZO”—SO”—»‘
1"

(a)

Slab |

(b)

Figure 9.2 Cross sections of one-way ribbed slab: (a) without fillers and (b) with fillers.

Chapter 17). Other types of two-way floor systems are flat plate floors, flat slabs, and waffle
slabs, all explained in Chapter 17. This chapter deals only with one-way floor systems.

9.2 DESIGN OF ONE-WAY SOLID SLABS

If the concrete slab is cast in one uniform thickness without any type of voids, it can be referred to
as a solid slab. In a one-way slab, the ratio of the length of the slab to its width is greater than 2.
Nearly all the loading is transferred in the short direction, and the slab may be treated as a beam.
A unit strip of slab, usually 1 ft (or 1 m) at right angles to the supporting girders, is considered a
rectangular beam. The beam has a unit width with a depth equal to the thickness of the slab and a
span length equal to the distance between the supports. A one-way slab thus consists of a series of
rectangular beams placed side by side (Fig. 9.1).

If the slab is one span only and rests freely on its supports, the maximum positive moment M
for a uniformly distributed load of w psf is M = (wL?)/8, where L is the span length between the
supports. If the same slab is built monolithically with the supporting beams or is continuous over
several supports, the positive and negative moments are calculated either by structural analysis or
by moment coefficients as for continuous beams. The ACI Code, Section 6.5, permits the use of
moment and shear coefficients for prismatic members in the case of two or more approximately
equal spans (Fig. 9.3). This condition is met when the larger of two adjacent spans does not exceed
the shorter span by more than 20%. For uniformly distributed loads, the unit live load shall not
exceed three times the unit dead load. When these conditions are not satisfied, structural analysis
is required. In structural analysis, the negative bending moments at the centers of the supports are
calculated. The value that may be considered in the design is the negative moment at the face of
the support. To obtain this value, subtract from the maximum moment value at the center of the
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Figure 9.3 Moment coefficients for continuous beams and slabs (ACI Code,
Section 6.5).
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support a quantity equal to Vb/3, where V is the shearing force calculated from the analysis and b
is the width of the support:

M; (at face of support) = M, (at centerline of support) — %b 9.1)

In addition to moment, diagonal tension and development length of bars should also be
checked for proper design.

The conditions under which the moment coefficients for continuous beams and slabs, given
in Fig. 9.3, should be used can be summarized as follows:

Spans are approximately equal: Longer span <1.2 (shorter span).
Loads are uniformly distributed.
The ratio (live load/dead load) is less than or equal to 3.
For slabs with spans less than or equal to 10 ft, negative bending moment at face of all supports
is () w.fi
12 u'n*
For an unrestrained discontinuous end at A, the coefficient is 0 at A and +ﬁ at B.

6. Shearing force at Cis 1.15w,,1,,/2 and at the face of all other support is %wuln.

2=

i

7. M, = (coefficient) (w,2) and [, = clear span.
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9.3 DESIGN LIMITATIONS ACCORDING TO ACI CODE

The following limitations are specified by the ACI Code:

1.
2.

10.

A typical imaginary strip 1 ft (or 1 m) wide is assumed.

The minimum thickness of one-way slabs using grade 60 steel according to the ACI Code,
Sections 7.3.1.1, for solid slabs and for beams or ribbed one-way slabs should be equal to the
following:

« For simply supported spans: solid slabs, 7 = L/20 (ribbed slabs, h = L/16).

« For one-end continuous spans: solid slabs, &1 = L/24 (ribbed slabs, h = L/18.5).
« For both-end continuous spans: solid slabs, & = L/28 (ribbed slabs, h = L/21).
« For cantilever spans: solid slabs, 7 = L/10 (ribbed slabs, & = L/8).

» For f other than 60ksi, these values shall be multiplied by (0.4 + 0.01f), where f, is in
ksi. This minimum thickness should be used unless computation of deflection indicates a
lesser thickness can be used without adverse effects.

Deflection is to be checked when the slab supports are attached to construction likely to be
damaged by large deflections. Deflection limits are set by the ACI Code, Table 24.2.2.

It is preferable to choose slab depth to the nearest % in. (or 10 mm).

Shear should be checked, although it does not usually control.

Concrete cover in slabs shall not be less than % in. (20 mm) at surfaces not exposed to weather

or ground. In this case,d = h — <% in.> — (half — bar diameter). Refer to Fig. 9.1d.

In structural one way slabs of uniform thickness, the minimum amount of reinforcement in
the direction of the span shall not be less than that required for shrinkage and temperature
reinforcement (ACI Code, Sections 7.6.1 and 24.4.3).

The main reinforcement maximum spacing shall be the lesser of three times the slab thickness
and 18 in. (ACI Code, Section 7.7.2.3).

Straight-bar systems may be used in both tops and bottoms of continuous slabs. An alternative
bar system of straight and bent (trussed) bars placed alternately may also be used. Bars may
also be placed at the center of the slab using a lesser effective depth but accounting for the
highest moments.

In addition to main reinforcement, steel bars at right angles to the main must be provided. This
additional steel is called secondary, distribution, shrinkage, or temperature reinforcement.

9.4 TEMPERATURE AND SHRINKAGE REINFORCEMENT

Concrete shrinks as the cement paste hardens, and a certain amount of shrinkage is usually antici-
pated. If a slab is left to move freely on its supports, it can contract to accommodate the shrinkage.
However, slabs and other members are joined rigidly to other parts of the structure, causing a cer-
tain degree of restraint at the ends. This results in tension stresses known as shrinkage stresses. A
decrease in temperature and shrinkage stresses is likely to cause hairline cracks. Reinforcement is
placed in the slab to counteract contraction and distribute the cracks uniformly. As the concrete
shrinks, the steel bars are subjected to compression.

Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement

should be provided in a structural slab in which the principal reinforcement extends in one direction
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only. The ACI Code, Sections 7.6.1, 8.6.1, and 24.4.3, specifies the following minimum steel ratios:
For slabs in which grade 40 or 50 deformed bars are used, p =0.2%, and for slabs in which grade
60 deformed bars or welded bars or welded wire fabric are used, p=0.18%. In no case shall such
reinforcement be placed farther apart than five times the slab thickness or more than 18 in.

For temperature and shrinkage reinforcement, the whole concrete depth / exposed to shrink-
age shall be used to calculate the steel area. For example, if a slab has a total depth of #=61in. and
J, =60Kksi, then the area of steel required per 1-ft width of slab is A; =6(12)(0.0018) =0.129 in.2.
The spacings of the bars, S, can be determined as follows:

124,
S =
A

S

9.2)

where A,, is the area of the bar chosen and A, the calculated area of steel.

For example, if no. 3 bars are used (A, = 0.11 in.?), then § = 12(0.11)/0.129 = 10.33in.,
say, 10in. If no. 4 bars are chosen (4, = 0.2 in.?), then S = 12(0.2)/0.129 = 18.6in., say, 18in.
Maximum spacing is the smaller of five times slab thickness (30in.) or 18in. Then no. 4 bars
spaced at 18 1in. are adequate (or no. 3 bars at 101in.). These bars act as secondary reinforcement
and are placed normal to the main reinforcement calculated by flexural analysis. Note that areas of
bars in slabs are given in Table A.14.

9.5 REINFORCEMENT DETAILS

In continuous one-way slabs, the steel area of the main reinforcement is calculated for all critical
sections, at midspans, and at supports. The choice of bar diameter and detailing depends mainly on
the steel areas, spacing requirements, and development length. Two bar systems may be adopted.

In the straight-bar system (Fig. 9.4), straight bars are used for top and bottom reinforcement
in all spans. The time and cost to produce straight bars is less than that required to produce bent
bars; thus, the straight-bar system is widely used in construction.

In the bent-bar, or trussed, system, straight and bent bars are placed alternately in the floor slab.
The location of bent points should be checked for flexural, shear, and development length require-
ments. For normal loading in buildings, the bar details at the end and interior spans of one-way
solid slabs may be adopted as shown in Fig. 9.4.

9.6 DISTRIBUTION OF LOADS FROM ONE-WAY SLABS TO SUPPORTING BEAMS

In one-way floor slab systems, the loads from slabs are transferred to the supporting beams along
the long ends of the slabs. The beams transfer their loads in turn to the supporting columns.

From Fig. 9.5 it can be seen that beam B, carries loads from two adjacent slabs. Considering
a 1-ft length of beam, the load transferred to the beam is equal to the area of a strip 1 ft wide and S
feet in length multiplied by the intensity of load on the slab.

This load produces a uniformly distributed load on the beam:

UB = USS

The uniform load on the end beam, B, is half the load on B, because it supports a slab from one
side only.
The load on column C, is equal to the reactions from two adjacent B, beams:

Load on column C; = UgL = UgLS
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Figure 9.4 Reinforcement details in continuous one-way slabs: (a) straight bars and
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The load on column Cj is one-half the load on column C, because it supports loads from slabs on
one side only. Similarly, the loads on columns C, and C, are

Load on G, = UsgS = load on C;

Load on C; = Uy (%) (g)

From this analysis, it can be seen that each column carries loads from slabs surrounding the column
and up to the centerline of adjacent slabs: up to L/2 in the long direction and S/2 in the short
direction.

Distribution of loads from two-way slabs to their supporting beams and columns is discussed
in Chapter 17.

Example 9.1

Calculate the design moment strength of a one-way solid slab that has a total depth of #="7in. and is
reinforced with no. 6 bars spaced at S=71in. Use f; = 3 ksi and f, = 60 ksi.

Solution

1. Determine the effective depth, d:
d=h- % in.(cover) — half — bar diameter (See Fig.9.1d)

d=7—§—£ =5.8751n.
4 16
2. Determine the average A, provided per 1-ft width (121in.) of slab. The area of a no. 6 baris A, =

0.44 in’.

124, 12(0.44)
s T
Areas of bars in slabs are given in Table A.14 in Appendix A.

3. Compare the steel ratio used with p, . and p ;. Forf! = 3 ksiandf, = 60ksi, p,,,, = 0.01356 and
Pmin = 0.00333, where p (used) = 0.754/(12 x 5.875) = 0.0107, which is adequate (¢ = 0.9).
4. Calculate ¢:

= 0.754 in.2 /ft

a= Asfy/(O.SSf(fb) = 0.754(60)/(0.85 x 3 x 12) = 1.48 in.
oM, = 0.9(0.754)(60)(5.875 — 1.48/2) =209 K - in. = 17.42 K - ft

Example 9.2

Determine the allowable uniform live load that can be applied on the slab of the previous example if the

slab span is 16 ft between simple supports and carries a uniform dead load (excluding self-weight) of
100 psf.

Solution

1. The design moment strength of the slab is 17.42 K ft per 1-ft width of slab.
w, L? _ W (16)?

8 8
The factored uniform load is W, = 0.544 K/ ft> = 544 psf.

M, =M, = 17.42 =
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2. W,=12D+1.6L
D =100 psf + self — weight = 100 + %(150) = 187.5 psf
544 =1.2(187.5) + 1.6L L = 200 psf
Example 9.3

Design a 12-ft simply supported slab to carry a uniform dead load (excluding self-weight) of 120 psf
and a uniform live load of 100 psf. Use f/ = 3 ksi, fV = 60ksi, A=1, and the ACI Code limitations.

Solution

1.

2.

Assume a slab thickness. For ﬂ = 60ksi, the minimum depth to control deflection is L/20 =
12(12)/20 = 7 in. Assume a total depth of 2 =7 in. and assume d = 6 in. (to be checked later).

Calculate factored load: weight of slab = %(150) = 87.5 psf
W,=12D+ 1.6L = 1.2(87.5 + 120) + 1.6(100) = 409 psf
For a 1-ft width of slab, M, = W,L2/8.

2
I L

u

. Calculate A, : For M, =7.362K - ft, b=12in., and d=6in., R, = M, /bd*> = 7.362(12,000)/

(12)(6)> = 205 psi. From tables in Appendix A, p = 0.0040 < Pmax = 0.01356, ¢ = 0.9.
A, = pbd = 0.0040(12)(6) = 0.28 in.2

Choosing no. 4 bars (A, = 0.2 in.2),and S = 124, /A, = 12(0.2)/0.28 = 8.61in. Check actual d =
h— % - 14—6 = 6in. It is acceptable. Let S=8in. and A, = 0.3 in’.

. Check the moment capacity of the final section.

Ay 0.3(60)

A = 0.59 in.
T 085 085x3x 12 m

oM, = GAf, (d - g) = 0.9(0.3)(60)(6 — 0.59/2) = 92.42 K - in. = 7.7 K - ft > M,

=7.362K-ft

. Calculate the secondary (shrinkage) reinforcement normal to the main steel. For f, = 60 ksi,

=0.0018

Pmin
Ay, = pbh = 0.0018(12)(7) = 0.1512 in.2

Choose no. 4 bars, A, = 0.2 in.2, S = 124, /A, = 12(0.2)/0.1512 = 15.9in. Use no. 4 bars spaced

at 151n.
12

. Check shear requirements: V,, at a distance d from the support is 0.409 (— - %) =225K.

2

B ¢2/1\/f_c’bd = 0.75(2)(1)(1/3000)(12 x 6)

=59K
1000 39

PV,

%¢VC =295K>V,

so the shear is adequate.

. Final section: 2 =71in., main bars =no. 4 spaced at 8in., and secondary bars =no. 4 spaced

at 151n.
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Example 9.4

The cross section of a continuous one-way solid slab in a building is shown in Fig. 9.6. The slabs are
supported by beams that span 12 ft between simple supports. The dead load on the slabs is that due to
self-weight plus 77 psf; the live load is 130 psf. Design the continuous slab and draw a detailed section.
Given: f] = 3 ksi and f, = 40 ksi.

Solution

1. The minimum thickness of the first slab is /30 because one end is continuous and the second
end is discontinuous. The distance between centers of beams may be considered the span L, here
equal to 12 ft. Forfy = 40ksi,

L 12x12 _

Minimum total depth = — 4.8 in
30 30

.. . . L .
Minimum total depth for interior span = 5= 4.1 1in.
Assume a uniform thickness of 5 in., which is greater than 4.8 in.; therefore, it is not necessary
to check deflection.
2. Calculate loads and moments in a unit strip:

Dead load = weight of slab + 77 psf

- (]5—2 x 150) +77 = 139.5 psf

Factored load (U) = 1.2D + 1.6L = 1.2 X 139.5 + 1.6 X 130 = 375.5 psf

The clear span is 11.0 ft. The required moment in the first span is over the support and equals
UL?/10.

11)?
= vab = (0.3755)% =454K - ft=545K-in.

Mu
10

3. Assume p=1.4%;then R, = 450 psi = 0.45 ksi. This value is less than p,,  of 0.0203 (Table 4.1),
and greater than p,;, of 0.005 (¢ = 0.9).

M, 54.5 i
d Rb_ \V045%12 318 in

A, = pbd = 0.014(12)(3.18) = 0.53 in.?

Choosing no. 5 bars,

Total depth = d + %bar diameter + cover = 3.18 + % + % =4.251n.

Use slab thickness of 5in., as assumed earlier.

3 5 .
Actual d used =5 — 1 16" 3.91n.
A B C D E D D E D |
| | | | .| | I |
N l I 1| !

.y

L1 i
a11'\-‘11'%%%11’—{1’*——#11'——'1’1-—|

Figure 9.6 Example 9.4.
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Figure 9.7 Example 9.4: Reinforcement details.

4. Moments and steel reinforcement required at other sections using d = 3.9 in. are as follows:

Moment M, R,=M,/bd? A, Barsand
Location Coefficient (K-in.) (psi) p(%) (in.2)  Spacings
A —i 227 Small 0.50 023 No.4at10in.
B +11—4 38.9 213 0.65 030 No.5at12in.
c —1—10 54.5 300 090 044 No.5at8in.
D —% 49.6 271 0.80 038 No.5at8in.
E +% 34.1 187 0.55 026 No.4at8in.

The arrangement of bars is shown in Fig. 9.7.

5. Maximum shear occurs at the exterior face of the second support, section C.

LISUL, — 1.15(0.3755)(11)
2 2

3 - 0.75()(1)(1/3000)(12)(3.9)
PV, = $2AVf! bd = s

This result is acceptable. Note that the provision of minimum area of shear reinforcement when
V, exceeds %qﬁVc does not apply to slabs (ACI Code, Section 9.6.3.1).

V,(at C) = = 2.375 K/ft of width

=3.84 K

Example 9.5

Determine the uniform factored load on an intermediate beam supporting the slabs of Example 9.4. Also
calculate the axial load on an interior column; refer to the general plan of Fig. 9.5. Assume the beam
span =24 ft.

Solution

1. The uniform factored load per foot length on an intermediate beam is equal to the factored uniform
load on slab multiplied by S, the short dimension of the slab. Therefore,

U(beam) = U(slab) X S = 0.3755 x 12 = 4.5 K/ft
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The weight of the web of the beam shall be added to this value. Span of the beam is 24 ft.

Estimated total depth = 2L—0 X 0.8 = (% X 0.8) X 12=11.51in. say,12in.

Slab thickness is 5in. and height of the web is 12 - 5="71in.
Factored weight of beam web = (17—2 X 150) x 1.2 =105 1b/ft

Total uniform load on beam = 4.5 + 0.105 = 4.605 K/ft
2. Axial load on an interior column:

P,=4.605x24ft=1105K

9.7 ONE-WAY JOIST FLOOR SYSTEM

A one-way joist floor system consists of hollow slabs with a total depth greater than that of solid
slabs. The system is most economical for buildings where superimposed loads are small and spans
are relatively large, such as schools, hospitals, and hotels. The concrete in the tension zone is inef-
fective; therefore, this area is left open between ribs or filled with lightweight material to reduce
the self-weight of the slab.

The design procedure and requirements of ribbed slabs follow the same steps as those for

rectangular and T-sections explained in Chapter 3. The following points apply to design of one-way
ribbed slabs:

1.

Ribs are usually tapered and uniformly spaced at about 16 to 30 in. (400 to 750 mm). Voids are
usually formed by using pans (molds) 20 in. (500 mm) wide and 6 to 20in. (150 to 500 mm)
deep, depending on the design requirement. The standard increment in depth is 2 in. (50 mm).
The ribs shall not be less than 4 in. (100 mm) wide and must have a depth of not more than
3.5 times the width. Clear spacing between ribs shall not exceed 30 in. (750 mm) (ACI Code,
Section 9.8.1).

. Shear strength, V.., provided by concrete for the ribs may be taken 10% greater than that for

beams. This is mainly due to the interaction between the slab and the closely spaced ribs (ACI
Code, Section 9.8.1.5).

The thickness of the slab on top of the ribs is usually 2 to 4in. (50 to 100 mm) and contains
minimum reinforcement (shrinkage reinforcement). This thickness shall not be less than é
of the clear span between ribs or 1.51in. (38 mm) (ACI Code, Section 9.8.2.1.1).

. The ACI coefficients for calculating moments in continuous slabs can be used for continuous

ribbed slab design.
There are additional practice limitations, which can be summarized as follows:

e The minimum width of the rib is one-third of the total depth or 4 in. (100 mm), whichever
is greater.

» Secondary reinforcement in the slab in the transverse directions of ribs should not be less
than the shrinkage reinforcement or one-fifth of the area of the main reinforcement in
the ribs.

» Secondary reinforcement parallel to the ribs shall be placed in the slab and spaced at
distances not more than half of the spacings between ribs.
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o If the live load on the ribbed slab is less than 3 kN/m? (60 psf) and the span of ribs exceeds
5m (17 ft), a secondary transverse rib should be provided at midspan (its direction is per-
pendicular to the direction of main ribs) and reinforced with the same amount of steel as
the main ribs. Its top reinforcement shall not be less than half of the main reinforcement in
the tension zone. These transverse ribs act as floor stiffeners.

o If the live load exceeds 3 kN/m? (60 psf) and the span of ribs varies between 4 and 7m
(13 and 23 ft), one traverse rib must be provided, as indicated before. If the span exceeds 7 m
(23 ft), at least two transverse ribs at one-third span must be provided with reinforcement,
as explained before.

Example 9.6

Design an interior rib of a concrete joist floor system with the following description: Span of rib =20 ft
(simply supported), dead load (excluding own weight) =16 psf, live load =85 psf, f/ = 4 ksi, and
f, =60 ksi.

Solution

1. Design of the slab: Assume a top slab thickness of 2 in. that is fixed to ribs that have a clear spacing
of 20in. No fillers are used. The self-weight of the slab is % X 150 = 25 psf.

Total DL = 16 + 25 = 41 psf

U=12D+16L=12x41+1.6x85=185psf
2
M, = % (Slab is assumed fixed to ribs.)
2
=05 (2) =0043K - ft=0514K -in.
12 \12

Considering that the moment in slab will be carried by plain concrete only, the allowable flexu-
ral tensile strengthisf, = 5 \/]TL’ , with a capacity reduction factor ¢ = 0.55, f, = 51/4000 = 316 psi.

Flexural tensile strength = % = ¢f,

where

3 3
1=%=12(2) —8in* c="=2=1in
2 - 12 2°2
M=af L =055%0316x % = 139K -in.
C

This value is greater than M, =0.514K-in., and the slab is adequate. For shrinkage rein-
forcement, A, =0.0018 X 12 x 2 =0.043 in.? Use no. 3 bars spaced at 12 in. laid transverse to the
direction of the ribs. Welded wire fabric may be economically used for this low amount of steel
reinforcement. Use similar shrinkage reinforcement no. 3 bars spaced at 12 in. laid parallel to the
direction of ribs, one bar on top of each rib and one bar in the slab between ribs.

2. Calculate moment in a typical rib:

. L 20x12
M depth= — = =
inimum dep 20 20
The total depth of rib and slab is 10 + 2 = 12 in. Assume a rib width of 4 in. at the lower end that
tapers to 61in. at the level of the slab (Fig. 9.8). The average width is 5in. Note that the increase

in the rib width using removable forms has a ratio of about 1 horizontal to 12 vertical.

Weight of rib = ]5—2 X % X 150 = 52 1b/ft

12 in
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Figure 9.8 Example 9.6.

The rib carries a load from (20 + 4)-in.-wide slab plus its own weight:

U= % X 185+ (1.2 x52) =432.4 1b/ft

2
M, = % _ 0.45%(20)2 x 12 = 2504 K - in.

Rectangular steel pans used in one-way ribbed slab construction.

3. Design of rib: The total depth is 12in. Assuming no. 5 bars and concrete cover of %in., the

effective depth d is 12 — % - 15—6 = 10.9 in. Check the moment capacity of the flange (assume
tension-controlled section, ¢p =0.9):

oM (flange) = HC <d - %) where C = 0.85/" bt

M, = 0.9(0.85 x 4 x 24 2) (10.9 - %) = 1454 K - in.
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The moment capacity of the flange is greater than the applied moment; thus, the rib acts as
a rectangular section with b =24 1n., and the depth of the equivalent compressive block a is less
than 2 in.

o, = s, (4= §) =0, (4= )

259.4 = 094, x 60  10.9 — X6 A, =045 in?
aiahedile P T TTxax24) TR
A
—sf =0.331in. < 2in.
0.85 % f'b

Use two no. 5 bars per rib (A, =0.651in.2).

A, in = 0.0033b,,d = 0.0033(5)(10.9) = 0.18 in.? < 0.45 in.?
Check 0.45
=—""_ =0.00172 < p,,,, =0.01
’ = 24%109 < Pmax = 0.01806

which is a tension-controlled section, ¢ =0.9.
4. Calculate shear in the rib: The allowable shear strength of the rib web is

¢V, = p(1.1) x 24/fb,d
=0.75%x 1.1 x2(1)V4000 x 5 x 10.9 = 5687 Ib

The factored shear at a distance d from the support is

V, =4324 (10— %) = 3931 1b

This is less than the shear capacity of the rib. Minimum stirrups may be used, and in this case
an additional no. 4 bar will be placed within the slab above the rib to hold the stirrups in place. It
is advisable to add one transverse rib at midspan perpendicular to the direction of the ribs having
the same reinforcement as that of the main ribs to act as a stiffener.

SUMMARY

Section 9.1

Slabs are of different types, one way (solid or joist floor systems) and two way (solid, ribbed, waffle,
flat slabs, and flat plates).

Sections 9.2 and 9.3

1. The ACI Code moment and shear coefficients for continuous one-way slabs are given in the
accompanying figure.

2. The minimum thickness of one-way slabs using grade 60 steel is L/20, L/24, L/28, and
L/10 for simply supported, one-end continuous, both-end continuous, and cantilever slabs,
respectively.
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One-way ribbed slab roof. The wide beams have the same total depth as the ribbed slab.

Section 9.4

The minimum shrinkage steel ratios, p,,;,, in slabs are 0.002 in. for slabs in which grade 40 or grade
50 bars are used and 0.0018 in. for slabs in which deformed bars of grade 60 are used.
Maximum spacings between bars <5 times rib thickness <18 in.

Sections 9.5 and 9.6

1. Reinforcement details are shown in Fig. 9.4.
2. Distribution of loads from one-way slabs to the supporting beams is shown in Fig. 9.5.

Section 9.7

The design procedure of ribbed slabs is similar to that of rectangular and T-sections. The width of
ribs must be greater than or equal to 4 in., whereas the depth must be less than or equal to 3.5 times
the width. The minimum thickness of the top slab is 2 in. or not less than one-twelfth of the clear
span between ribs.
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PROBLEMS

9.1 For each problem, calculate the factored moment capacity of each concrete slab section using f, = 60 ksi.

Bars and Answer oM,

Number f h (in.) Spacings (in.) (K- ft)

a 3 5 No. 4 at6 6.35
b 3 6 No. 5 at 8 9.29
c 3 7 No. 6 at9 14.06
d 3 8 No. 8 at 12 21.01
e 4 5% No. 5 at 10 6.93
f 4 6 No. 7 at 12 11.80
g 4 73 No. 6 at 6 22.68
h 4 8 No. 8 at 12 21.23
i 5 5 No. 5 at 10 6.19
j 5 6 No.5at8 9.66

9.2 For each slab problem, determine the required steel reinforcement, A, and the total depth, if required;
then choose adequate bars and their spacings. Use f, = 60 ksi for all problems, b = 12in., and a steel ratio
close to the steel ratio p=A /bd given in some problems.

One Answer

Number f/ (ks Mu(K-f) h(in) p(%) h(n) Bars
a 3 5.4 6 — 6 No. 4 at 9in.
b 3 13.8 7% — 7% No. 6 at 10in.
c 3 24.4 — 0.85 9 No. 8 at 12in.
d 3 8.1 5 — 5 No. 5 at 7in.
e 4 22.6 — 1.18 7% No. 7 at 8 in.
f 4 13.9 81 — 83 No. 6 at 12in.
g 4 13.0 — 1.10 6 No. 6 at 8in.
h 4 11.2 — 0.51 73 No. 5 at 9in.
i 5 20.0 9 — 9 No. 7 at 12in.
i 5 10.6 — 0.90 6 No. 6 at 10in.

9.3 A 16-ft- (4.8-m)-span simply supported slab carries a uniform dead load of 200 psf (10 kN/m?) (excluding
its own weight). The slab has a uniform thickness of 7 in. (175 mm) and is reinforced with no. 6 (20-mm)
bars spaced at 5 in. (125 mm). Determine the allowable uniformly distributed load that can be applied on
the slab if f = 4 ksi (28 MPa) and 1,=60 ksi (420 MPa).

9.4 Design a 10-ft (3-m) cantilever slab to carry a uniform total dead load of 170 psf (8.2 kN/m?) and a con-
centrated live load at the free end of 2K (8.9kN), when f/ = 4 ksi (28 MPa) and f, =60 ksi (420 MPa).

9.5 A 6-in. (150-mm) solid one-way slab carries a uniform dead load of 190 psf (9.2kN/m?) (includ-
ing its own weight) and a live load of 80psf (3.9kN/m?). The slab spans 12ft (3.6m) between
10-in.-(250-mm)-wide simple supports. Determine the necessary

! = 4ksi(28 MPa) andf), =50ksi (350 MPa).

slab reinforcement

using
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Repeat Problem 9.4 using a variable section with a minimum total depth at the free end of 4 in. (100 mm).
Design a continuous one-way solid slab supported on beams spaced at 14 ft (4.2 m) on centers. The width
of the beams is 12in. (300 mm), leaving clear slab spans of 13 ft (3.9 m). The slab carries a uniform
dead load of 126 psf (6.0 kN/m,) (including self-weight of slab) and a live load of 120 psf (5.8 kN/m,).
Use f! = 3 ksi (21 MPa), fy =40ksi (280 MPa), and the ACI coefficients. Show bar arrangements using
straight bars for all top and bottom reinforcement.

Repeat Problem 9.7 using equal clear spans of 13 ft (3 m), f! = 3 ksi (21 MPa), and f, = 60 ksi (420 MPa).
Repeat Problem 9.7 using /! = 4 ksi (28 MPa) and f} =60Kksi (420 MPa).

Design an interior rib of a concrete joist floor system with the following description: Span of ribbed slab is
18 ft (5.4 m) between simple supports; uniform dead load (excluding self-weight) is 30 psf (1.44 kN/m?);
live load is 100 psf (4.8 kN/m?); support width is 14 in. (350 mm); f = 3 ksi (21 MPa) and f, = 60 ksi
(420 MPa). Use 30-in.-(750-mm)-wide removable pans. ’

Repeat Problem 9.10 using 20-in.-(500-mm)-wide removable pans.

Use the information given in Problem 9.10 to design a continuous ribbed slab with three equal spans of
18 ft (5.4 m) each.



CHAPTER 1 O

AXIALLY LOADED
COLUMNS

Continuous slabs in a parking structure, New
Orleans, Louisiana.

10.1 INTRODUCTION

Columns are members used primarily to support axial compressive loads and have a ratio of height
to the least lateral dimension of 3 or greater. In reinforced concrete buildings, concrete beams,
floors, and columns are cast monolithically, causing some moments in the columns due to end
restraint. Moreover, perfect vertical alignment of columns in a multistory building is not possi-
ble, causing loads to be eccentric relative to the center of columns. The eccentric loads will cause
moments in columns. Therefore, a column subjected to pure axial loads does not exist in concrete
buildings. However, it can be assumed that axially loaded columns are those with relatively small
eccentricity, e, of about 0.1 £ or less, where 4 is the total depth of the column and e is the eccentric
distance from the center of the column. Because concrete has a high compressive strength and is
an inexpensive material, it can be used in the design of compression members economically. This
chapter deals only with short columns; slender columns are covered in detail in Chapter 12.

10.2 TYPES OF COLUMNS
Columns may be classified based on the following different categories (Fig. 10.1):

1. Based on loading, columns may be classified as follows:
a. Axially loaded columns, where loads are assumed acting at the center of the column
section.
342
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Tied Spiral

Composite Combination

Figure 10.1 Types of columns.

b. Eccentrically loaded columns, where loads are acting at a distance e from the center of
the column section. The distance e could be along the x or y axis, causing moments either
about the x or y axis.

c. Biaxially loaded columns, where the load is applied at any point on the column section,
causing moments about both the x and y axes simultaneously.

Based on length, columns may be classified as follows:

a. Short columns, where the column’s failure is due to the crushing of concrete or the yielding
of the steel bars under the full load capacity of the column.

b. Long columns, where buckling effect and slenderness ratio must be taken into considera-
tion in the design, thus reducing the load capacity of the column relative to that of a short
column.

Based on the shape of the cross section, column sections may be square, rectangular, round,

L-shaped, octagonal, or any desired shape with an adequate side width or dimensions.

Based on column ties, columns may be classified as follows:

a. Tied columns containing steel ties to confine the main longitudinal bars in the columns.
Ties are normally spaced uniformly along the height of the column.
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b. Spiral columns containing spirals (spring-type reinforcement) to hold the main longitu-
dinal reinforcement and to help increase the column ductility before failure. In general,
ties and spirals prevent the slender, highly stressed longitudinal bars from buckling and
bursting the concrete cover.

5. Based on frame bracing, columns may be part of a frame that is braced against sidesway or
unbraced against sidesway. Bracing may be achieved by using shear walls or bracings in the
building frame. In braced frames, columns resist mainly gravity loads, and shear walls resist
lateral loads and wind loads. In unbraced frames, columns resist both gravity and lateral loads,
which reduces the load capacity of the columns.

6. Based on materials, columns may be reinforced, prestressed, composite (containing rolled
steel sections such as I-sections), or a combination of rolled steel sections and reinforcing
bars. Concrete columns reinforced with longitudinal reinforcing bars are the most common
type used in concrete buildings.

10.3 BEHAVIOR OF AXIALLY LOADED COLUMNS

When an axial load is applied to a reinforced concrete short column, the concrete can be considered
to behave elastically up to a low stress of about (%) fL. If the load on the column is increased to

reach its design strength, the concrete will reach the maximum strength and the steel will reach its
yield strength, f;. The nominal load capacity of the column can be written as follows:

Py = 0.85f/A, + Ayf, (10.1)
where A, and A, are the net concrete and total steel compressive areas, respectively.
A, =A, — Ay

where A, is the gross concrete area.

Two different types of failure occur in columns, depending on whether ties or spirals are used.
For a tied column, the concrete fails by crushing and shearing outward, the longitudinal steel bars
fail by buckling outward between ties, and the column failure occurs suddenly, much like the failure
of a concrete cylinder.

A spiral column undergoes a marked yielding, followed by considerable deformation before
complete failure. The concrete in the outer shell fails and spalls off. The concrete inside the spiral is
confined and provides little strength before the initiation of column failure. A hoop tension develops
in the spiral, and for a closely spaced spiral the steel may yield. A sudden failure is not expected.
Figure 10.2 shows typical load deformation curves for tied and spiral columns. Up to point a, both
columns behave similarly. At point g, the longitudinal steel bars of the column yield, and the spiral
column shell spalls off. After the factored load is reached, a tied column fails suddenly (curve b),
whereas a spiral column deforms appreciably before failure (curve c).

10.4 ACI CODE LIMITATIONS

The ACI Code presents the following limitations for the design of compression members:

1. For axially as well as eccentrically loaded columns, the ACI Code sets the strength reduction
factors at ¢p =0.65 for tied columns and ¢ =0.75 for spirally reinforced columns. The dif-
ference of 0.10 between the two values shows the additional ductility of spirally reinforced
columns.
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(a) (©

(b) Spiral
\ column
Tied
column

Load P

Deformation

Figure 10.2 Behavior of tied and spiral columns.

The strength reduction factor for columns is much lower than those for flexure (¢ =0.9)
and shear (¢p =0.75). This is because in axially loaded columns, the strength depends mainly
on the concrete compression strength, whereas the strength of members in bending is less
affected by the variation of concrete strength, especially in the case of an underreinforced
section. Furthermore, the concrete in columns is subjected to more segregation than in the
case of beams. Columns are cast vertically in long, narrow forms, but the concrete in beams
is cast in shallow, horizontal forms. Also, the failure of a column in a structure is more critical
than that of a floor beam.

The minimum longitudinal steel percentage is 1%, and the maximum percentage is 8% of the
gross area of the section (ACI Code, Section 10.6.1.1). Minimum reinforcement is necessary
to provide resistance to bending, which may exist, and to reduce the effects of creep and
shrinkage of the concrete under sustained compressive stresses. Practically, it is very difficult
to fit more than 8% of steel reinforcement into a column and maintain sufficient space for
concrete to flow between bars.

At least four bars are required for tied circular and rectangular members and six bars are
needed for circular members enclosed by spirals (ACI Code, Section 10.7.3.1). For other
shapes, one bar should be provided at each corner, and proper lateral reinforcement must
be provided. For tied triangular columns, at least three bars are required. Bars shall not be
located at a distance greater than 6in. clear on either side from a laterally supported bar.
Figure 10.3 shows the arrangement of longitudinal bars in tied columns and the distribution
of ties. Ties shown in dotted lines are required when the clear distance on either side from
laterally supported bars exceeds 6 in. The minimum concrete cover in columns is 1.5 in.

The minimum ratio of spiral reinforcement, p,, according to the ACI Code, Section
25.7.3.3, s

A ’
py > 045 <—"’— 1> -~ (10.2)
Ach f yt
where
A, = gross area of section
A, = area of core of spirally reinforced column measured to the outside diameter of spiral
Jyx = yield strength of spiral reinforcement (<100 ksi)
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4 bars 6 bars

10 bars 12 bars 14 bars

%
DN 1T

DA

16 bars Wali column Corner column

Figure 10.3 Arrangement of bars and ties in columns.

5. The minimum diameter of spiral bar is % in. (ACI Code, Section 25.7.3.2), and their clear

spacing according to ACI Code, Section 25.7.3.1 should not be more than 3 in. nor less than
1 in. or 4/3 the nominal maximum size of coarse aggregate. Splices may be provided by weld-
ing or by lapping the deformed uncoated spiral bars by 48 diameters or a minimum of 12 in.
(ACI Code, Section 25.7.3.6). Lap splices for plain uncoated bar or wire =72d, < 12in. The
same applies for epoxy-coated deformed bar or wire. The Code also allows full mechanical
splices. ACI Code, Table 25.7.3.56 gives details for the different cases.

6. Ties for columns must have a minimum diameter of % in. to enclose longitudinal bars of no.

10 size or smaller and a minimum diameter of % in. for larger bar diameters (ACI Code,
Section 25.7.2).

. Center to center spacing of ties shall not exceed the smallest of 48 times the tie bar diameter,

16 times the longitudinal bar diameter, or the least dimension of the member. Clear spacing
of ties should be at least 4/3 the nominal maximum size of the aggregate. Table 10.1 gives the
spacing for no. 3 and no. 4 ties. The Code does not give restrictions on the size of columns to
allow wider utilization of reinforced concrete columns in smaller sizes.
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Table 10.1 Maximum Spacing of Ties
Column Least Spacing of Ties (in.) for Bar
Side or
Diameter (in.) No. 6 No. 7 No. 8 No. 9 No. 10 No. 11
12 12 12 12 12 12 12
14 12 14 14 14 14 14
16 12 14 16 16 16 16
18 12 14 16 18 18 18
20 12 14 16 18 18 20
22-40 12 14 16 18 18 22
Ties No. 3 No. 3 No. 3 No. 3 No. 3 No. 4

10.5 SPIRAL REINFORCEMENT

Spiral reinforcement in compression members prevents a sudden crushing of concrete and buckling
of longitudinal steel bars. It has the advantage of producing a tough column that undergoes gradual
and ductile failure. The minimum spiral ratio required by the ACI Code is meant to provide an
additional compressive capacity to compensate for the spalling of the column shell. The strength

contribution of the shell is

where A, is the gross concrete area and A, is the core area (Fig. 10.4).

P, (shell) = 0.85f/(A, — Ag)

(10.3)

In spirally reinforced columns, spiral steel is at least twice as effective as longitudinal bars;
therefore, the strength contribution of spiral equals 2p,A f, where p; is the ratio of volume of
spiral reinforcement to total volume of core.

Ag=mD’ /4
Ach"'"Dczh/A

me
\v\

L
\\,
=

M
1

Figure 10.4 Dimensions of a column spiral.
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If the strength of the column shell is equated to the spiral strength contribution, then
0.85f/(A; — Acp) = 2pAchfye

Ay A\
p, =0.425 <——1> Le (10.4)
Ach fyt

The ACI Code adopted a minimum ratio of p, according to the following equation:

- A f
Minimump, = 0.45 <— - 1> —
Ach fyt
The design relationship of spirals may be obtained as follows (Fig. 10.4):

volume of spiral in one loop

Ps = volume of core for a spacing S

asﬂ’-(DCh - dA) _ 4aS(DCh - dA)
z - DS
<ZD(23h> S ch

(10.5)

where
a, = area of spiral reinforcement
D, = diameter of the core measured to the outside diameter of spiral
D = diameter of the column

d, = diameter of the spiral

S = spacing of the spiral

Table 10.2 gives spiral spacings for no. 3 and no. 4 spirals with f; = 60 ksi.

10.6 DESIGN EQUATIONS

The nominal load strength of an axially loaded column was given in Eq. 10.1. Because a perfect
axially loaded column does not exist, some eccentricity occurs on the column section, thus reducing
its load capacity, P,. To take that into consideration, the ACI Code specifies that the maximum
nominal load, P, should be multiplied by a factor equal to 0.8 for tied columns and 0.85 for spirally

Table 10.2 Spirals for Circular Columns (f, =60 ksi)

Spacing (in.), f, = 5ksi Spacing (in.),
Column f! = 4ksi, ) . f! = 6Kksi,
Diameter (in.) No. 3 Spirals Spiral No. Spacing (in.) No. 4 Spirals
12 2.0 4 2.75 2.25
14 2.0 4 3.00 2.25
16 2.0 4 3.00 2.50
18 2.0 4 3.00 2.50
20 2.0 4 3.00 2.50
22 2.0 4 3.00 2.50
24 2.0 3 1.75 2.50
2640 2.25 3 1.75 2.75
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reinforced columns. Introducing the strength reduction factor, the axial load strength of columns
according to the ACI Code, Sections 22.4.2.2 and 22.4.2.3, are as follows:

P, = ¢P, = ¢(0.80)[0.85f (A, — Ay) + Ayf)] (10.6)

for tied columns and
P,=¢P, = ¢(O.85)[0.85ﬁf(Ag —Ay) +Astfy] (10.7)

for spiral columns, where

A, = gross concrete area
A, = total steel compressive area
¢ =0.65 for tied columns and 0.75 for spirally reinforced columns

Equations 10.6 and 10.7 may be written as follows:
P, = ¢P, = pK[0.85f/A, + Ay(f, — 0.85f)] (10.8)

where ¢ =0.65 and K = 0.8 for tied columns and ¢ =0.75 and K = 0.85 for spiral columns.
If the gross steel ratio is p, = A /A,, or Ay = p,A,, then Eq. 10.8 may be written as follows:

P, = ¢P, = pKA0.85f + p,(f, — 0.85())] (10.9)

Equation 10.8 can be used to calculate the axial load strength of the column, whereas Eq. 10.9
is used when the external factored load is given and it is required to calculate the size of the column
section, Ag, based on an assumed steel ratio, Py between a minimum of 1% and a maximum of 8%.

It is a common practice to use grade 60 reinforcing steel bars in columns with a concrete
compressive strength of 4 ksi or greater to produce relatively small concrete column sections.

10.7 AXIAL TENSION

Concrete will not crack as long as stresses are below its tensile strength; in this case, both con-
crete and steel resist the tensile stresses, but when the tension force exceeds the tensile strength of
concrete (about one-tenth of the compressive strength), cracks develop across the section, and the
entire tension force is resisted by steel. The nominal load that the member can carry is that due to
tension steel only:

T, = A, (10.10)

T, = $pAyf, (10.11)
where ¢ is 0.9 for axial tension.

Tie rods in arches and similar structures are subjected to axial tension. Under working loads,
the concrete cracks and the steel bars carry the whole tension force. The concrete acts as a fire and
corrosion protector. Special provisions must be taken for water structures, as in the case of water
tanks. In such designs, the concrete is not allowed to crack under the tension caused by the fluid
pressure.

10.8 LONG COLUMNS

The equations developed in this chapter for the strength of axially loaded members are for short
columns. In the case of long columns, the load capacity of the column is reduced by a reduction
factor.

A long column is one with a high slenderness ratio, 4/r, where h is the effective height of
the column and r is the radius of gyration. The design of long columns is explained in detail in
Chapter 12.
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Example 10.1

Determine the allowable design axial load on a 12-in. square, short tied column reinforced with
four no. 9 bars. Ties are no. 3 spaced at 12in. Use f; = 4 ksi and f, = 60 ksi.

Solution

1. Using Eq. 10.9,
P, = ¢P, = pK[0.85f/A, + Ay (f, — 0.85())]

For a tied column, ¢ =0.65, K=0.8, and A, = 4.0in.2
P, = ¢P, =0.65(0.8)[0.85(4)(12 x 12) + 4(60 — 0.85 x 4)] = 372K

2. Check steel percentage: p, = 11—4 = 0.02778 = 2.778%. This is less than 8% and greater than 1%.
3. Check tie spacings: Minimum tie diameter is no. 3. Spacing is the smallest of the 48-tie diameter,
16-bar diameter, or least column side. §; = 16 (3 = 18in.,S, =48 % = 18in.,5; = 12.0in.

Ties are adequate (Table 10.1). Note: Clear spacing of ties should be at least 4/3 the nominal
maximum size of the aggregate.

Example 10.2

Design a square tied column to support an axial dead load of 400K and a live load of 232 K using
f = 5ksi, f,=60ksi, and a steel ratio of about 5%. Design the necessary ties.

Solution

1. Calculate P, = 1.2P, + 1.6 P, = 1.2(400) + 1.6(232) = 851 K. Using Eq. 10.10, P, = 851 =
0.65(0.8) Ag[O.SS X5 +0.05(60-0.8 x 5)], Ag =232.5in.2, and column side = 15.25in., so use
161in. (Actual A= 256in.2.)

2. Because a larger section is adopted, the steel percentage may be reduced by using A, = 256 in.2
in Eq. 10.8: )

851 = 0.65(0.8)[0.85 x 5 x 256 + A (60 — 0.85 x 5)]
A, =9.84in?
Use eight no. 10 bars (A, = 10.16in.2). See Fig. 10.5.

2.5n

5'51/
84#10 16"

25" ]

1 6” P

Figure 10.5 Example 10.2.
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3. Design of ties (by calculation or from Table 10.1): Choose no. 3 ties with spacings equal to the
least of §; = 16 (1?0) =20in.,S, =48 % = 18in., or §3 = column side =16in. Use no. 3 ties

spaced at 16in. Clear distance between bars is 4.25in., which is less than 6in. Therefore, no
additional ties are required.

Example 10.3

Repeat Example 10.2 using a rectangular section that has a width of b= 14 in.

Solution

1. P,=851K and calculated Ag =232.5in.2 For b= 14in., h=232.5/14 = 16.6 in. Choose a column
14X 18in.; actual A, =252 in2.
2. P, =851 =0.65(0.8)[0.85 X 5x 252 4+ A (60 —0.85x%5)].

A, =10.14in?

Use eight no. 10 bars (A = 10.16in.?).

3. Design of ties: Choose no. 3 ties, S; =20in., S, =18in., and S5 = 14 in. (least side). Use no. 3
ties spaced at 14 in. Clear distance between bars in the long direction is (18 — 5)/2-bar diameter
of 1.27=5.231in. <6in. No additional ties are needed. Clear distance in the short direction is
(14 -5)/2 -1.27=3.23in. <6in.

Example 10.4

Design a circular spiral column to support an axial dead load of 475 K and a live load of 250 K using
Sl =4ksi, J, = 60ksi, and a steel ratio of about 3%. Also, design the necessary spirals.

Solution

1. Calculate P, =12 P, + 1.6 P, = 1.2(475) + 1.6(250) = 970K. Using Eq. 10.10 and spiral
columns,

P, =970 = 0.75(0.85)A,[0.85 x 4 + 0.03(60 — 0.85 x 4)]

A, =299 in.2 and column diameter = 19.5 in., so use 20 in. Actual A,=3142 in2.
2. Calculate A, needed from Eq. 10.8:

P, =970 = 0.75(0.85)[0.85 X 4 X 314.2 + A, (60 — 0.85 x 4)]
A, =8in?

Use eight no. 10 bars (A, = 10.161in.2).
3. Design of spirals: The diameter of core is 20 — 2(1.5) = 17 in. The area of core is

_r 2 _r 2
Ay = 1(17) A, = 1(20)

A ! 20? 4
Minimum p; = 0.45 <—g - 1) < =045 <— - 1) — ) =0.01152
Ach fyt 172 <60)
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Assume no. 3 spiral, a,=0.11 in.2, and d,=0.3751n.

4a,(Dy, —d . 0.
p = 001152 = 24Pen =dy) _ 401107 — 0375)
SD2, S(17)2

Spacing s is equal to 2.2 in; use no. 3 spiral at s =2 in. (as shown in Table 10.2).

Example 10.5

Design a rectangular tied short column to carry a factored axial load of 1765kN. Use f! = 30 MPa,
fv =400 MPa, column width (b) =300 mm, and a steel ratio of about 2%.

Solution SI Units
1. Using Eq. 10.9,
P,= 0.8¢>Ag[0.85fc’ +p,(f, — 0.85/1)]
Assuming a steel percentage of 2%,
1765 x 10° = 0.8 x 0.654,[0.85 X 30 + 0.02(400 — 0.85 x 30)]
A, = 102,887 mm’
For b =300 mm, the other side of the rectangular column is 343 mm. Therefore, use a section
of 300 % 350 mm (Ag = 105,000 mm?).
2. A, =0.02x 102,887 = 2057 mm?. Choose six bars, 22 mm in diameter (A, =2280 mm?).
3. Check the axial load strength of the section using Eq. 10.6:
¢P, = 0.8¢[0.85ﬁf(Ag - Ay + Ay,
= 0.8 % 0.65[0.85 x 30(105,000 — 2280) + 2280 x 400] x 107>
= 1836 kN

This meets the required P, of 1765 kN.

4. Choose ties 10 mm in diameter. Spacing is the least of (1) 16 X22=352mm, (2) 48X 10=
480 mm, or (3) 300 mm. Choose 10-mm ties spaced at 300 mm. Note: Clear spacing of ties
should be at least 4/3 the nominal maximum size of the aggregate.

SUMMARY

Sections 10.1-10.4
Columns may be tied or spirally reinforced:

b= 0.65  for tied columns
~ 1 0.75 for spirally reinforced columns

Also, p, must be <8% and >1%.
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Section 10.5

Minimum ratio of spirals is

A ,
0.45 <—g - 1> L
Ach fu

s =) da,(Dy, — d,)
Dghs

(Eq. 10.2)

The minimum diameter of spirals is % in., and the clear spacing should not be more than 3 in. or
less than 1 in.

Section 10.6

For tied columns,
P,=¢P, = O.8¢[O.85fC’(Ag —Ay) + Ayl (Eq. 10.6)

or

P, = ¢P, = 0.8pA[0.85f! + p,(f, — 0.85()]

For spiral columns,
P, = ¢P, = 0.85¢[0.85f/(A, — Ay) + Ayf,] (Eq. 10.7)

or
P, = P, = 0.85¢A,[0.85f + p,(f, — 0.85())]

where p, = Ay /A,.

Section 10.7

1. For axial tension,
T, = ¢Ayf,($ =0.9) (Eq. 10.11)

2. Arrangements of vertical bars and ties in columns are shown in Fig. 10.3.
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PROBLEMS

10.1 Determine the factored axial load for each (¢P) for each of the following short rectangular columns
according to the ACI Code limitations. Assume f, =60 ksi and properly tied columns (b= width of
column, in., and & = total depth, in.).

fl b h Answer
Number (ksi) (in.) (in.) Bars (pP)K
a 4 16 16 81n0.9 688
b 4 20 20 16 no. 11 1442
C 4 12 12 8no. 8 439
d 4 12 24 12 no. 10 955
e 5 14 14 10 no. 9 722
f 5 16 16 4 no. 10 712
g 5 14 26 12 no. 10 1244
h 5 18 32 8no. 11 1634
i 6 16 16 8 no. 10 968
j 6 12 20 6 no. 10 852

10.2 Determine the factored axial load for each of the following short, spirally reinforced circular columns
according to the ACI Code limitations. Assume f, = 60 ksi and the spirals are adequate (D = diameter of

column, in.).

! D Answer
Number (ksi) (in.) Bars (¢P)K
a 4 14 8no0.9 581
b 4 16 6 no. 10 663
c 5 18 8 no. 10 980
d 5 20 12 no. 10 1300
e 6 15 8no.9 797

10.3 For each problem, design a short square, rectangular, or circular column, as indicated, for each set of axial
loads given, according to ACI limitations. Also, design the necessary ties or spirals and draw sketches of
the column sections showing all bar arrangements. Use f, = 60 ksi and a steel ratio close to the p, given
(Pp = dead load, P; = live load, b = width of a rectangular column, and = Py = AS,/Ag).
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fl P, P,
Number (ksi) (K) (K) pg% Section One Solution
a 4 200 200 4 Square 14x 14, 8 no. 9
b 4 750 400 3.5 Square 24 %24, 16 no. 10
C 4 220 165 7 Square 12x 12, 8 no. 10
d 5 330 230 3 Square 16X 16, 8 no. 9
e 4 190 170 2 Rectangular, =12 in. 12x 18,6 no. 8
f 4 280 315 4.5 Rectangular, b =14 in. 14 x 20, 10 no. 10
g 4 210 150 3 Rectangular, b =12 in. 12%x 16,6 no. 9
h 5 690 460 2 Rectangular, b = 18 in. 18 %32, 8 no. 10
i 4 350 130 4 Circular—spiral 16, 7no0.9
] 4 475 220 3.25 Circular—spiral 20, 7 no. 10
k 4 400 260 5 Circular—spiral 18,9 no. 10
1 5 285 200 4.25 Circular—spiral 15, 6 no. 10

For ST units, use 1 psi=0.0069 MPa, 1 K=4.45kN, and 1in. =25.4 mm.
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INTRODUCTION

Vertical members that are part of a building frame are subjected to combined axial loads and bend-
ing moments. These forces develop due to external loads, such as dead, live, and wind loads.
The forces are determined by manual calculations or computer applications that are based on
the principles of statics and structural analysis. For example, Fig. 11.1 shows a two-hinged por-
tal frame that carries a uniform factored load on BC. The bending moment is drawn on the tension
side of the frame for clarification. Columns AB and CD are subjected to an axial compressive
force and a bending moment. The ratio of the moment to the axial force is usually defined as
the eccentricity e, where e = M, /P, (Fig. 11.1). The eccentricity e represents the distance from
the plastic centroid of the section to the point of application of the load. The plastic centroid is
obtained by determining the location of the resultant force produced by the steel and the con-
crete, assuming that both are stressed in compression to f, and 0.85 f/, respectively. For symmet-
rical sections, the plastic centroid coincides with the centroid of the section. For nonsymmetrical

sections, the plastic centroid is determined by taking moments about an arbitrary axis, as explained
in Example 11.1.
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! T

Vy Vp

Figure 11.1 Two-hinged portal frame with bending moment diagram drawn on the
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tension side.
Example 11.1
Determine the plastic centroid of the section shown in Fig. 11.2. Given: f/ = 4 ksi and J, =060 ksi.
A
25— }4715” »I re—25"
. As‘. | As2|
i i
| ]
‘ PC —-——J}
14" 41n0.9 ]I 21n0.9 ‘
|
| J.
' 1
: s
—9.31"—»
|t 20" -
Al
Fy; Fec Fs

Figure 11.2 Example 11.1: Plastic centroid (PC) of section.
Solution

1. Itis assumed that the concrete is stressed in compression to 0.85 f!:
— 3 — 4
F, = force in concrete = (0.85f,)A,

=(0.85x4)x14x20=952K

Force F.. is located at the centroid of the concrete section (at 10in. from axis A-A).
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2. Forces in steel bars:
Fy=A;f,=4x60=240K
Fyp=Anf,=2%x60=120K
3. Take moments about A-A:
= (952 x 10) + (240 x 2.5) + (120 X 17.5)

952 + 240 + 120
Therefore, the plastic centroid lies at 9.31 in. from axis A—-A.

=9.311n.

4. If A, = A,, (symmetrical section), then x = 101in. from axis A-A.

11.2 DESIGN ASSUMPTIONS FOR COLUMNS

The design limitations for columns, according to the ACI Code, Section 22.2.2, are as follows:

AN S e

Strains in concrete and steel are proportional to the distance from the neutral axis.
Equilibrium of forces and strain compatibility must be satisfied.

The maximum usable compressive strain in concrete is 0.003.

Strength of concrete in tension can be neglected.

The stress in the steel is f; = €E < f,.

The concrete stress block may be taken as a rectangular shape with concrete stress of 0.85 f!
that extends from the extreme compressive fibers a distance a = ¢, where c is the distance
to the neutral axis and g, is 0.85 when f! < 4000 psi (30 MPa); 8, decreases by 0.05 for each

1000 psi above 4000 psi (0.008 per 1 MPa above 30 MPa) but is not less than 0.65. (Refer to
Fig. 3.6, Chapter 3.)

11.3 LOAD-MOMENT INTERACTION DIAGRAM

When a normal force is applied on a short reinforced concrete column, the following cases may
arise, according to the location of the normal force with respect to the plastic centroid. Refer to
Figs 1-3a and 11.3b:

1.

Axial Compression (Py). This is a theoretical case assuming that a large axial load is acting
at the plastic centroid; e = 0 and M,, = 0. Failure of the column occurs by crushing of the
concrete and yielding of steel bars. This is represented by P, on the curve of Fig. 11.3a.
Maximum Nominal Axial Load P, . This is the case of a normal force acting on the section
with minimum eccentricity. According to the ACI Code, P, .. = 0.80P for tied columns
and 0.85P, for spirally reinforced columns, as explained in Chapter 10. In this case, failure
occurs by crushing of the concrete and the yielding of steel bars.

Compression Failure. This is the case of a large axial load acting at a small eccentricity. The
range of this case varies from a maximum value of P, = P, ,, to a minimum value of P, =
P, (balanced load). Failure occurs by crushing of the concrete on the compression side with
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a strain of 0.003, whereas the stress in the steel bars (on the tension side) is less than the yield
strength, f; (f; <f). In this case P, > P, and e < ¢,

Balanced Condition (P,). A balanced condition is reached when the compression strain in the
concrete reaches 0.003 and the strain in the tensile reinforcement reaches €, = f,/E; simul-
taneously; failure of concrete occurs at the same time as the steel yields. The moment that
accompanies this load is called the balanced moment, M, and the relevant balanced eccen-
tricity is e, = M,/P,,.

Tension Failure. This is the case of a small axial load with large eccentricity, that is, a large
moment. Before failure, tension occurs in a large portion of the section, causing the tension
steel bars to yield before actual crushing of the concrete. At failure, the strain in the tension
steel is greater than the yield strain, €y, whereas the strain in the concrete reaches 0.003. The
range of this case extends from the balanced to the case of pure flexure (Fig. 11.3). When
tension controls, P, < P, and e > ¢,,.

Pure Flexure. The section in this case is subjected to a bending moment, M, , whereas the axial
load is P,, = 0. Failure occurs as in a beam subjected to bending moment only. The eccentricity
is assumed to be at infinity. Note that radial lines from the origin represent constant ratios of
M, /P, = e = eccentricity of the load P, from the plastic centroid.

A Compression £,= 0,003
controls

A e =
P o (T[] foows

& £, < &, (compression)
& < €, (tension)

Allowable P,
(max)

Eves
c

0.003

Q-C
B o o
8 c a0 @@
e | 3 e(‘ C)\5
' = 00\\
Pof————
EC =
0.003
6‘s -2 Sy
Tension
controls

Moment M,

(a)

Figure 11.3 (a) Load-moment strength interaction diagram showing ranges of cases
discussed in text and (b) column sections showing the location of P, for different load
conditions.
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11.4 SAFETY PROVISIONS

The safety provisions for load factors were discussed earlier in Section 3.5. For columns, the safety
provisions may be summarized as follows:

1. Load factors for gravity and wind loads are
U=14D
U=12D+1.6L
U=12D+(1.0L or 0.5W)
U=12D+10L+1.0W
U=09D+1.0W

The most critical factored load should be used.

2. The strength reduction factor, ¢, to be used for columns may vary according to the following
cases:

a. When P, = ¢P, > 0.1f/A,, ¢ is 0.65 for tied columns and 0.75 for spirally reinforced
columns. This case occurs generally when compression failure is expected. Area A, is the

gross area of the concrete section.

b. The sections in which the net tensile strain, €,, at the extreme tension steel, at nominal
strength, is between 0.005 and 0.002 (transition region) ¢ varies linearly between 0.90
and 0.65 (or 0.75), respectively (Fig. 11.4). Refer to Section 3.7. For spiral sections,

¢ =075+ (¢, — 0.002)(50) or ¢ =0.75+0.15 [ L é] (11.1)
c/d, 3

0] 0 =0.75 + (&,- 0.002)(50)

0.90 \ >
Spiral -7 g
075 S ==7=77777 N =065+ (£,- 0.002)(250/3) L
0.65
Other
Compression Transition N Tension
controlled controlled
£,=0.002 £,=0.005
C C
— =0.600 —=0.375
d d

t

Interpolation on 7

Figure 11.4 \Variation in ¢ with NTS for grade 60 steel 7. Courtesy of ACI.

C
t

- 1 5
Spiral ¢=0.75+0.15 od "3

1 5
Other ¢=0.65 +0.25 gl -3
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For tied sections

¢ = 0.65 + (¢, — 0.002) (250)

- 1 _5
= ¢ =0.65+0.25 [C/dt 3] (11.2)

¢. When P, =0, the case of pure flexure, then ¢ = 0.90 for tension-controlled sections and
varies between 0.90 and 0.65 (or 0.75) in the transition region.

11.5 BALANCED CONDITION: RECTANGULAR SECTIONS

A balanced condition occurs in a column section when a load is applied on the section and produces,
at nominal strength, a strain of 0.003 in the compressive fibers of concrete and a strain €, = f,/E; in
the tension steel bars simultaneously. This is a special case where the neutral axis can be determined
from the strain diagram with known extreme values. When the applied eccentric load is greater than
P,, compression controls; if it is smaller than P,, tension controls in the section.

Columns supporting 52-story building, Minneapolis, Minnesota. (Colums are 96 X 64 in. with
round ends.).

The analysis of a balanced column section can be explained in steps (Fig. 11.5):

1. Let c equal the distance from the extreme compressive fibers to the neutral axis. From the
strain diagram,

cp(balanced) 0.003
d, ~ 0.003 +f,/E,

(where E; = 29,000 ksi) (11.3)
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P,= P+ P, = Pp,—>=

¢ =0003 —>] 085 f«—

g L N Ey o
] ] 1Y et
d =

Plastic ~*
,=d centroid ™\

i F | T d—a,/2

l R I O
J —-‘—+--¢—< e —_ T=A.f
' T

T s [ ]

Figure 11.5 Balanced condition (rectangular section).

and
87d, (where £, is in ksi)
¢y = where f, isin ksi
PT8T+f, '
The depth of the equivalent compressive block is
87
= = —— d 11.4
a, = picy <87 +f)) b4, (11.4)

where #, = 0.85 for ! < 4000 psi and decreases by 0.05 for each 1000-psi increase in f.
2. From equilibrium, the sum of the horizontal forces equals 0: P, — C, — C, + T = 0, where

C.=085fab and T =Af,
C, = Al(f! — 0.85f)) (11.5)

(Usef! = Jy if compression steel yields.)

fs’=87<c_cd,> <f,

The expression of C, takes the displaced concrete into account. Therefore, Eq. 11.5
becomes

Py = 0.85fab + AL(f — 0.85f)) — Af, (11.6)

3. The eccentricity e, is measured from the plastic centroid and ¢’ is measured from the centroid
of the tension steel: ¢’ = e + d” (in this case ¢’ = ¢, + d”), where d” is the distance from
the plastic centroid to the centroid of the tension steel. The value of e, can be determined by
taking moments about the plastic centroid:

Pye, =C, (d - g - d”) +C(d—d —d")+Td" (11.7)
or

P,e, = M, = 0.85f ab <d -2- d”) + AL, 085N d—d —d")+Af,d"  (11.8)
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The balanced eccentricity is
_M,

€, =
Pb

(11.9)
For nonrectangular sections, the same procedure applies, taking into consideration the actual
area of concrete in compression.
The strength reduction factor, ¢, for the balanced condition with f, = 60 ksi, can be assumed =
0.65 (or 0.75). This is because €, = ¢, = f,/E; = 0.00207 (or 0.002), for which ¢ = 0.65 (Fig. 11.4).

Example 11.2

Determine the balanced compressive force P,; then determine e, and M, for the section shown in
Fig. 11.6. Given: f = 4 ksi and f, = 60 ksi.

Py + Py ——
‘ —»| 0.85f, |=—
cp = 11.54" 25 C. =
| | i =
‘1__; — 2264 K
.—.‘L'".— T . +
4#9 10 =
f | ==mrel
| Plastic | -
centroid - o
4#9 T=240K
-9 -0 @ —— — — -
& = fw‘Ei = 000207
14" ——

Figure 11.6 Example 11.2: Balanced condition.

Solution

1. For a balanced condition, the strain in the concrete is 0.003 and the strain in the tension steel is

A
e, =2 =9 _ 500207
Y E; 29,000
2. Locate the neutral axis:
87 87

“= 8745, T 87+ 60
a, =0.85¢, =0.85x11.54 =9.81 in.

3. Check if compression steel yields. From the strain diagram,
€ c—d _1154-25

0003 ¢ 1154
which exceeds €, of 0.00207; thus, compression steel yields. Or check that

fl =87 (C_cd”> <f,

_ 87(11.54 -2.5)
- 11.54

(19.5) = 11.54 in.

e =0.00235

= 68 ksi > 60 ksi
Then f{ = f, = 60 ksi.
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4. Calculate the forces acting on the section:
C.=0.85flab=0.85x4x%x9.81 x 14 =467 K
T=Af,=4x60=240K
C, = A;(ﬂ —0.85f!) = 4(60 — 3.4) = 2264 K
5. Calculate P, and e,,:
P,=C.+C,—T =467+2264—-240=4534K
From Eq. 11.7,

M, = Pye, = C, (d—g—d">+Cs(d—d'—d”)+Td”

The plastic centroid is at the centroid of the section, and d” = 8.5 in.

M, = 453.4e, = 467 (19.5 - % - 8.5) +226.4(19.5 — 2.5 — 8.5) + 240 X 8.5

=6810.8 K- in. =567.6 K - ft

M, _ 6810.8 _

e, = = =15.01in
P, 4534

6. For a balanced condition, ¢ = 0.65, ¢ P, =294.7K, and ¢ M, = 368.9 K ft.

365

11.6 COLUMN SECTIONS UNDER ECCENTRIC LOADING

For the two cases when compression or tension failure occurs, two basic equations of equilibrium
can be used in the analysis of columns under eccentric loadings: (1) the sum of the horizontal or
vertical forces = 0, and (2) the sum of moments about any axis = 0. Referring to Fig. 11.7, the

following equations may be established.

I 0.85f. *“I—
S | Jr S
T & C;= AL,
| L - - — 5 55
) Al , ,
| e C. = 085f.ak
d T I
h T PC | d- a2
a”’ A |
] oeosoet T _ T= Ad,
Ll—b—h—-

Figure 11.7 General case, rectangular section.
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Reinforced concrete tied column under construction. The two columns are separated by an expansion joint.

1.
P,—C,—C,+T=0 (11.10)

where
C.=0.85f'ab

C, =A(f{ — 0.85f)) (If compression steel yields, then f =f,.)
T=A,, (ftension steel yields, then f, = 1)
2. Taking moments about A,

P —C, (d—%)—cs(d—d’):o (11.11)

The quantity ¢’ = e + d”, and ¢’ = (e + d — h/2) for symmetrical reinforcement (d” is the
distance from the plastic centroid to the centroid of the tension steel.)

P, = 5 c. (d—g>+Cs(d—d’)] (11.12)
Taking moments about C,,
P, [e’—(d—g)]—T(d—g)—cs(g—d’)=o (11.13)

and
_Td-a/2)+Cya/2 - d")

" (¢ +a/2—d) (L1
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If A; = A{ and f; = f{ = f,, then
b Afyd—d) _ Afyd—d)
"T @ +al2—d)  (e—h/2+a)2)
P(e—h/2+a/2)

A=Al = (11.16)
| fd—d)

(11.15)

11.7 STRENGTH OF COLUMNS FOR TENSION FAILURE

When a column is subjected to an eccentric force with large eccentricity e, tension failure is
expected. The column section fails due to the yielding of steel and crushing of concrete when the
strain in the steel exceeds €, (¢, = f,/E;). In this case the nominal strength, P,, will be less than P,
or the eccentricity, e = M, /P, is greater than the balanced eccentricity, e,. Because it is difficult in
some cases to predict if tension or compression controls, it can be assumed (as a guide) a tension
failure will occur when e > d. This assumption should be checked later.

The general equations of equilibrium, Eqs. 11.10 and Eqs. 11.11, may be used to calculate

the nominal strength of the column. This is illustrated in steps as follows:

1.

2.

For tension failure, the tension steel yields and its stress is f; = f,. Assume that stress in
compression steel is f] = f,.

Evaluate P, from equilibrium conditions (Eq. 11.10):
P,=C.+C,-T
where C, = 0.85f/ab, C; = A{(f, — 0.85f]), and T= A, f,.

. Calculate P, by taking moments about A; (Eq. 11.11):

P =C, (d - ‘5‘) +Cd—d)

where ¢/ = e +d” and ¢’ = e +d — h/2 when A; = A].
Equate P, from steps 2 and 3:

Co+C-T=21 [cc (d— 9) +Cs(d—d’)]
e 2
This is a second-degree equation in a. Substitute the values of C,., C,, and T and solve for a.
The second-degree equation, after the substitution of C,., C, and 7, is reduced to the following
equation:
Ad* +Ba+C=0

where
A =0.425f'b
B =0.85f/b(¢' —d) =2A( — d)
C=Al(fl - 0.85f)( —d +d') - Af,e

Solve for a to get

—B + V/B? - 4AC

2A

a =
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Note that the value of f] — 0.85f/ must be a positive value. If this value is negative, then let

fl—085f =0.

6. Substitute a in the equation of step 2 to obtain P,. The moment M,, can be calculated:

M, =P,e

7. Check if compression steel yields as assumed. If £{ > €, then compression steel yields; oth-
erwise, f{ = E €. Repeat steps 2 through 5. Note that 7 = [(c — d'/c]0.003, ¢, = f, /E, and
a=p,c.

8. Check that tension controls. Tension controls when e > ¢, or P, < P,. Example 11.3 illustrates
this procedure.

9. The net tensile strain, &,, in this section, is normally greater than the limit strain of 0.002 for a
compression-controlled section (Fig. 11.4). Consequently, the value of the strength reduction

factor, ¢, will vary between 0.65 (or 0.75) and 0.90. Equation 11.1 or 11.2 can be used to
calculate ¢.

Example 11.3

Determine the nominal compressive strength, P,, for the section given in Example 11.2 if e = 20in. (See
Fig. 11.8.)

P, + P, —»
Qf 9" —»] 0.85f f+—
i 0.003
| -1 et C,=2264K
0—1—0- T A -
Y - . o= 71" ——
4#9 117 8.35 ¥ C.=47.6a
8.5" ! _+_
19.5" T e
22" LR -C—)—— == L e, = 00021 > ¢,
P 4#9
_‘—+— —+ o-oeo- VR (! S — S
& =0004 >¢, T=Af, = 240K
T 14"
25"
Figure 11.8 Example 11.3: Tension failure.
Solution

1. Because ¢ =20 1in. is greater than d = 19.5 in., assume that tension failure condition controls (to be
checked later). The strain in the tension steel, £, will be greater than 2 and its stress is f} Assume
that compression steel yields f = f,, which should be checked later.

2. From the equation of equilibrium (Eq. 11.10),

P,=C.+C,—-T
where
C.=0.85flab = 0.85 x4 X 14a = 47.6a

C, = Al(f, — 0.85f)) = 4(60 — 0.85 x 4) = 226.4 K
T=Af,=4x60=240K
P, = 47.6a + 226.4 — 240 = 47.6a — 13.6 (I
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3. Taking moments about A, (Eq. 11.12),

P, = 5 [CC <d— %’) + Cs(d—d’)]

Note that for the plastic centroid at the center of the section, d’ = 8.5 in.

e =e+d =20+85=285in.

1 a
p = [47. <1.—— 2264 1]
: 28.5[7651 9.5 2)+ 64x 17

P, = 32.56a — 0.8354° + 135.0
4. Equating Egs. I and II,
P, =47.6a - 13.6 = 32.56a — 0.8354° + 135.0 (I1)

or
a*>+18a—-1780=0 a=7.11in.

5. From Eq. I:
P,=476%x71-13.6 =3244K

M, =Pe=3244x % = 540.67 K - ft

6. Check if compression steel has yielded:

e=-9% =Tl _g35in. e, =9 _000207
0.85 0.85 Y 29,000
8.35-25
8; = WO()O:% =0.0021 > £y
Compression steel yields. Check strain in tension steel:
19.5 —8.35
o= (—Ee ) X 0.003 = 0.004 >

If compression steel does not yield, use f; as calculated from f! = €’ E, and revise the calcula-

tions.
7. Calculate ¢: Since g, = 0.004, the section is in the transition region.

¢ =0.65 + (¢, — 0.002)(250/3) = 0.817
¢P, =0.817(324.4) = 2649 K
oM, = 0.817(540.67) = 441.7 K - ft

8. Because ¢ = 20in. > ¢, = 15in. (Example 11.2), there is a tension failure condition.
9. The same results can be obtained using the values of A, B, and C given earlier.

Ad®> +Ba+C=0

where
A =0.425f/b = 0.425(4)(14) = 23.8
B =2A(' —d) =2(23.8)(28.5 — 19.5) = 428.4
C =4(60—0.85x4)(28.5 - 19.5 +2.5) — 4(60)(28.5)
= —4236.4

Solve for a to geta ="7.1in. and P, = 324.4 K.
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Fo.ws—-{

|
|

/
L_‘l* f]

Figure 11.9 Strain diagram when compression controls. When ¢; < ¢,, ¢ > ¢, and

!
£ > £y

11.8 STRENGTH OF COLUMNS FOR COMPRESSION FAILURE

If the compressive applied force, P, exceeds the balanced force, P,, or the eccentricity, e = M, /P,,
is less than ¢, compression failure is expected. In this case compression controls, and the strain in
the concrete will reach 0.003, whereas the strain in the steel is less than ¢, (Fig. 11.9). A large part
of the column will be in compression. The neutral axis moves toward the tension steel, increasing
the compression area, and therefore the distance to the neutral axis c is greater than the balanced
¢, (Fig. 11.9).

Because it is difficult to predict compression or tension failure whenever a section is given,
compression failure can be assumed when e < 2d/3, which should be checked later. The nominal
load strength, P, can be calculated using the principles of statics. The analysis of column sections
for compression failure can be achieved using Eqs. 11.10 and Eqgs. 11.11 given earlier and one of
the following solutions.

11.8.1 Trial Solution
This solution can be summarized as follows:

1. Calculate the distance to the neutral axis for a balanced section, c,:

_ (% 11.17
Cb_(87+f,,> (11.17)

where f| is in ksi.
2. Evaluate P, using equilibrium conditions:

P,=C.+C,—T (11.18)

3. Evaluate P, by taking moments about the tension steel, A:

P, =C, (d—g>+Cs(d—d’) (11.19)
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4.

5.
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25

——»{ 0.85f, (=—
l Pn 0.003 Co= Aty
] —> = 2264 K
o-ole-o f - P <
{ 1t" 41n0.9 PP s 11n4” ——
8.5" | e=10" 134 a=s e = C.= 4760
19’5" PC ' c .
22/1 . S -— _— -
8.5” "
4#9 6.1
—Seoeoel 1V -
€< ey T= Af, = 4f,
14" —»]
2'5”

Figure 11.10 Example 11.4: Compression controls.

where ¢/ = e+ d — h/2 when A; = A} or ¢’ = e + d"’ in general, C, = 0.85fab, C; = Al(f] —
0.85f]),and T = A, f,.

Assume a value for ¢ such that ¢ > ¢, (calculated in step 1). Calculate a = f, c. Assume
fli= Iy

Calculate f, based on the assumed c:

f.=¢,E, =87 ( ) ksi <,

Substitute the preceding values in Eq. 11.10 to calculate P,; and in Eq. 11.11 to calculate P,,.
If P, is close to P,,, then choose the smaller or average of P,; and P,,. If P, is not close to
P,,, assume a new c or a and repeat the calculations starting from step 4 until P,; is close to
P,,. (1% is quite reasonable.)

Check that compression steel yields by calculating €} = 0.003[(c — d")/c] and comparing it
with e, = f/E,. When £ > &, compression steel yields; otherwise, f{ = £E, or, directly,

c—d

d —c

f;=87< )sfyksi

Check that e < e, or P, > P, for compression failure. Example 11.4 illustrates the procedure.
The net tensile strain, g,, in the section is normally less than 0.002 for compression-controlled
sections (Fig. 11.4). Consequently, the strength reduction factor (¢) = 0.65 (or 0.70 for spiral
columns).

Example 11.4
Determine the nominal compressive strength, P,, for the section given in Example 11.2 if e = 101in. (See
Fig. 11.10.)

Solution

1. Becausee=10in. < <§ ) d =13 in., assume compression failure. This assumption will be checked
later. Calculate the distance to the neutral axis for a balanced section, c;:

87 87

- d, = 19.5) = 1154 in.
S7+7 T gTre00 ) "

Cp
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2. From the equations of equilibrium,
P,=C.+C,-T (Eq. 11.10)
where
C.=0.85flab=0.85x4x 14a = 47.6a
C, = A;(fV —0.85f]) = 4(60 — 0.85 x 4) = 226.4 K
Assume compression steel yields. (This assumption will be checked later.)

r=Af=4  [</

P, =47.6a 4 226.4 — 4f; D
3. Taking moments about A_,
Pnzl,[Cc<d—g>+C5(d—d’)] (Eq. 11.11)
e 2

The plastic centroid is at the center of the section and d” = 8.5 in.
e =e+d =10+85=185in.

1 a
P o= [47.6 1 .5——) 226.4(1 .5—2.5]
"= 185 “( 95-3)F (19 )

50.17a — 1.294 + 208 (1D
4. Assume c = 13.45in., which exceeds ¢, (11.541in.).
a=0.85%1345=11.43in.
Substitute a = 11.43 in Eq. II:
P, =50.17 x 11.43 — 1.29(11.43)> + 208 = 612.9 K

5. Calculate f, from the strain diagram when ¢ = 13.451n.

19.5-13.45
fi= ( 13.45

6. Substitute ¢ = 11.43in. and f; = 39.13 ksi in Eq. I to calculate P,,:
P, =47.6(11.43) +226.4 —4(39.13) =613.9K

s t

)87:39.13 ksi £, =€, = g—s = 0.00135

which is very close to the calculated P,; of 612.9K (less than 1% difference).

M, =P,e=6129 (%) = 5108 K- ft
7. Check if compression steel yields. From the strain diagram,

o = 13.45-2.5
ST 1345
Compression steel yields, as assumed.
8. P, = 612.9K is greater than P, = 453.4K, and e = 10in. < ¢, = 15in., both calculated in the
previous example, indicating that compression controls, as assumed. Note that it may take a few
trials to get P,; close to P,,.

(0.003) = 0.00244 > £, = 0.00207
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9. Calculate ¢:
d, =d=1951in. c=1345in.

0.003(d, — ¢)
C

_0.003(19.5 — 13.45)
B 13.45

g, (attension steel level) =

=0.00135

Since g, < 0.002, then ¢ = 0.65.
¢P, =0.65(612.9) = 3984 K
¢M, = 0.65(510.8) =332 K - ft

11.8.2 Numerical Analysis Solution

The analysis of columns when compression controls can also be performed by reducing the calcu-
lations into one cubic equation in the form

Ad® +Bd*+Ca+D=0

and then solving for a by a numerical method, or a can be obtained directly by using one of many
inexpensive scientific calculators with built-in programs that are available. From the equations of

equilibrium,
P,=C.+C,—-T
= (0.85f!ab) +A§(fy —0.85f)) — A, (Eq. 11.10)
Taking moments about the tension steel, A,
p =L [Cc <d— 9) + Cy(d—d’)]
e 2 ’
1 a
== [O.SSfC’ab <d - 5) +AL(F, - 0.85F)(d — d') (Eq. 11.11)

From the strain diagram,

e, = <d’ - c) 0.003) = L=9BD 4 403
¢ a/p,

The stress in the tension steel is
f. = &,E, =29,000e, = 8—7(ﬂ1d —a)
a

Substituting this value of f; in Eq. 11.10 and equating Eqs. 11.10 and Eqgs. 11.11 and simplifying
gives

Ossfgb 3 /! / 2 !/ /! / 4 /
> a +[0.85f:b(e’ — d)]a” + [A(f, — 0.85f:) (¢’ —d +d') + 8TAe']a

—87A,e'pd =0
This is a cubic equation in terms of a:

Ad®> +Ba’> +Ca+D =0
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where
A 0.85f!
b2
B =0.85f'b(¢’ —d)
C=A[(f, —0.85f/)(' —d +d") + 87Ae
D=-87A,¢p, d

Once the values of A, B, C, and D are calculated, a can be determined by trial or directly
by a scientific calculator. Also, the solution of the cubic equation can be obtained by using the
well-known Newton—Raphson method. This method is very powerful for finding a root of f{ix) = 0.
It involves a simple technique, and the solution converges rapidly by using the following steps:

1. Let fla) = Aa® + Ba® + Ca + D, and calculate A, B, C, and D.
2. Calculate the first derivative of fla):
f'(a) =3Ad* + 2Ba + C

3. Assume any initial value of a, say, a,, and compute the next value:

a4 = a — flap)
Y fag)
4. Use the obtained value a, in the same way to get
_ flay
2=a1 =
f(ay)

5. Repeat the same steps to get the answer up to the desired accuracy. In the case of the analysis of
columns when compression controls, the value a is greater than the balanced a(a;,). Therefore,
start with a, = a, and repeat twice to get reasonable results.

Example 11.5
Repeat Example 11.4 using numerical solution.

Solution

1. Calculate A, B, C, and D and determine f{a):

A=0.85x4x%=23.8

B=085x4x14(18.5-19.5) = —47.6
C =4(60 —0.85 x 4)(18.5 — 19.5+2.5) + 87 x4 x 18.5
=6777.6
D = —87 x4 x18.5x (0.85 x 19.5) = —106,710
f(a) = 23.84> — 47.64% + 6777.6a — 106,710
2. Calculate the first derivative:

f(a) = 71.4a%> — 95.2a + 6777.6
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3. Leta, = a;, = 9.81 in. For a balanced section, ¢, = 11.541in. and g, = 9.81 in.
f9.81) —22,334

a, =981 — =981 — ZZ222% _ 11 566 in.
7981 12,715
4. Calculate a,:
£(11.566) 2136 .
— 11,566 — 222 _ 11 566 — — 1143 in.
ay = 11566 = 536y = 11966 = 75 75¢ 3in

This value of a is similar to that obtained earlier in Example 11.3. Substitute the value of a in
Eq. I1.3or 11.11 to get P, = 612.9 K.

11.8.3 Approximate Solution

An approximate equation was suggested by Whitney to estimate the nominal compressive strength
of short columns when compression controls, as follows [15]:

3 bhf! N Ay
"7 3he/d? +1.18  e/(d—d')+0.5
This equation can be used only when the reinforcement is symmetrically placed in single layers

parallel to the axis of bending.
A second approximate equation was suggested by Hsu [16]:

Pn—Pb Mn 1.5
——+ (") =10 (11.21)
PO_Pb Mb

(11.20)

where
P, = nominal axial strength of the column section
P, M, = nominal load and moment of the balanced section
M, = nominal bending moment = P, e
P, = nominal axial load at e = 0
= 0.85f/(A, — Ay) + Ay,
A, = gross area of the section = bh
A, = total area of nonprestressed longitudinal reinforcement

Example 11.6
Determine the nominal compressive strength, P,, for the section given in Example 11.4 by Eqs. 11.20
and Eqgs. 11.21 using the same eccentricity, e = 101in., and compare results.

Solution

1. Solution by Whitney equation (Eq. 11.20):
a. Properties of the section shown in Fig. 11.10 are b= 14in., h=22in.,d = 19.5in.,d' =2.51in.,
Al=40in? andd — d = 17in.
b. Apply the Whitney equation:
P = 14x22 x4 _ 4 % 60
" (3x22x10)/(19.52 +1.18  (10/17)+0.5

¢P, = 0.65P, = 418 K

=643 K
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¢. Then P, calculated by the Whitney equation is not a conservative value in this example, and
the value of P, = 643 K is greater than the more accurate value of 612.9 K calculated by statics
in Example 11.4.

2. Solution by Hsu equation (Eq. 11.21):
a. For a balanced condition, P, = 453.4 K and M, = 6810.8 K - in. (Example 11.2).
b. Py =0.85f/(A, = Ay) + Ayf = 0.85(4)(14 x 22 — 8) + 8(60) = 1500 K
P, —453.4 < 0P, \'?

“ 1500 — 453.4 * 6810.8
Multiply by 1000 and solve for P,.

0.9555P, +0.05626P)° = 1433.2 K

By trial, P, = 611K, which is very close to 612.9 K, as calculated by statics.

11.9 INTERACTION DIAGRAM EXAMPLE

In Example 11.2, the balanced loads P,, M, and e, were calculated for the section shown in
Fig. 11.6 (e, = 15in.). Also, in Examples 11.3 and 11.4, the load capacity of the same section
was calculated for the case when e = 20 in. (tension failure) and when e = 101in. (compression
failure). These values are shown in Table 11.1.

To plot the load—-moment interaction diagram, different values of ¢P, and ¢pM, were calcu-
lated for various e values that varied between e = 0 and e = maximum for the case of pure moment
when P, = 0. These values are shown in Table 11.1. The interaction diagram is shown in Fig. 11.11.
The load ¢P,, = 975 K represents the theoretical axial load when e = 0, whereas 0.8¢P,, = 780K
represents the maximum axial load allowed by the ACI Code based on minimum eccentricity. Note
that for compression failure, e < e, and P, > P, and for tension failure, e > ¢, and P, < P,,. The last

Table 11.1 Summary of Load Strength of Column Section in Previous Examples

e (in.) a (in.) ¢ P, (K) ¢P, (K) oM, (K- ft) Notes

0 — 0.65 1500 975 0.0 ¢P,,

2.25 19.39 0.65 1200 780 146.3 0.8 ¢P,,

4 16.82 0.65 1018 661.7 220.6 Compression
6 14.19 0.65 843.3 548.1 274.0 Compression
10¢ 11.43 0.65 612.9 398.4 332.0 Compression
12 10.63 0.65 538.0 349.7 349.7 Compression
15¢ 9.81 0.65 453.4 294.7 368.9 Balanced
20¢ 7.10 0.81 3244 263.4 439.0 Transition
30 5.06 0.90 189.4 170.5 426.2 Tension

50 4.01 0.90 100.6 90.5 377.2 Tension

80 3.59 0.90 58.8 529 352.0 Tension
PM® 3.08 0.90 0.0 0.0 352.0 Tension

PM 3.08 0.65 0.0 0.0 254.2 PM (X)*

“Values calculated in Examples 11.2, 11.3 and 11.4.
bPM is pure moment.
¢X indicates not applicable, for comparison only.
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0.8P, = 1200 M, =225 K-ft

10180 f—-—-—- —-—.

8430 - —-—-—-—-—-—

612.9

538.0
P, = 4534

324.4

189.0

100.6
58.8

0 (254.2) 391.1 567.

Figure 11.11 Interaction diagram of the column section shown in Fig. 11.10.

two cases in the table represent the pure moment (PM) or beam-action case for ¢ = 0.9 and ¢ =
0.65 (M,, =391 K - ft). To be consistent with the design of beams due to bending moments, the ACI
Code allows the use of ¢ = 0.9 with pure moment, so ¢pM, = 352 K - ft instead of 254.2 K - ft. Also
note that ¢ varies between 0.65 and 0.9 according to Eq. 11.2 for tied columns. Note that M, =
391.1K-ft.

11.10 RECTANGULAR COLUMNS WITH SIDE BARS

In some column sections, the steel reinforcement bars are distributed around the four sides of the
column section. The side bars are those placed on the sides along the depth of the section in addition
to the tension and compression steel, A; and A/, and can be denoted by A, (Fig. 11.12). In this case,
the same procedure explained earlier can be applied, taking into consideration the strain variation
along the depth of the section and the relative force in each side bar either in the compression or
tension zone of the section. These are added to those of C,, Cj, and T to determine P, and Eq. 11.10
becomes

pP,=C.+2C,-2T (11.10a)

Example 11.7 explains this analysis. Note that if the side bars are located near the neutral axis
(Fig. 11.12b), the strains—and, consequently, the forces—in these bars are very small and can be
neglected. Those bars close to A; and A’ have appreciable force and increase the load capacity of
the section.
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Figure 11.12 Side bars in rectangular sections: (a) six side bars and (b) two side bars
(may be neglected).

Example 11.7

Determine the balanced load, P, moment, M, and e, for the section shown in Fig. 11.13. Use f! = 4 ksi
and f, = 60 ksi.

Solution

The balanced section is similar to Example 11.2. Given: b = h =22in.,d = 19.5in.,d’ =2.5in.,A, =
Al =6.35 in.2 (five no. 10 bars), and six no. 10 side bars (three on each side).

1. Calculate the distance to the neutral axis:

87 87 .

(=2 d=<—>19.5:11.54 .

b <87+fy) *=\87+60 -
a, = 0.85(11.54) = 9.81 in.

2. Calculate the forces in concrete and steel bars; refer to Fig. 11.13a. In the compression zone,
C, = 0.85flab = 0.85(4)(9.81)(22) = 733.8 K.

— ! —
f;=87<c d ) =87(M) = 68.15 ksi > 60 ki
C

11.54
Then f] = 60 ksi.
Cyy = AL(f, — 0.85()) = 6.35(60 — 0.85 x 4) = 359.4 K

11.54 —2.5-4.25
fo= 87( 11.54

C,, =2(1.27)(36.11 —0.85x4) =83.1 K

Similarly, f,; = 4.07ksi and C; = 2(1.27)(4.07 - 0.85 x 4) = 1.7 K.
In the tension zone,

£, =964.50x 107 fiqg = 28 ksi
T, =2(127)28) =71K T, =Af, = 63560) =381 K

):36.11ksi
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Figure 11.13 (a) Example 11.7: Balanced section. (b) Example 11.8: For compression
failure, e = 6in.

3. Calculate P, = C. + XC, — XT.
P, =733.8+4+(359.4+83.1 + 1.7) — (71 + 381)
=726 K
4. Taking moments about the plastic centroid,
M,, = 733.8(6.095) + 359.4(8.5) + 83.1(4.25) + 71(4.25) + 381(8.5)
=11421K-in. =952 K- ft

M
e, = P—” =15.735 in.
b
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5. Determine ¢: For a balanced section, €, = €, = 0.002, ¢ = 0.65,
¢P, =0.65P, =472 K and ¢M, =0.65M;, =618.8 K - ft

Example 11.8
Repeat the previous example when e = 6.0 in.

Solution

1. Because e = 6in. < ¢, = 15.735in., this is a compression failure condition. Assume ¢ = 16.16in.
(by trial) and a = 0.85(16.16) = 13.74 in. (Fig. 11.13b).

2. Calculate the forces in concrete and steel bars:
C. =0.85(4)(13.74)(22) = 1027.75 K
In a similar approach to the balanced case, f;; = 60ksi and C; = 359.41.

£,y = 50.66 ksi C,=1200K
[ =27.78 ksi C,=6192K
fuy=49ksi C, =381K

fis = 18 ksi T =635(18) = 1142 K

3. Calculate P, =C, + XC, — XT = 1458.7K.
M,=P,e=72935K-ft (e=61in.)
4. Check P, by taking moments about A,

p =1 [cc (d— g) +Cy(d=d)+Cold—d —s)

n e

+Cy(d—d —25)+ Cy(d — d' = 39)]
e =e+d- g =6+4+19.5-22/2=1451in.
s = distance between side bars

=4.251in. (s = constant in this example.)

1 13.74
p = [1027.75 (19.5 - —> 359.41(17
"= 145 2 )7 an

+ 120(17 — 4.25) + 61.92(17 — 8.5)
+3.81(17 = 12.75)] = 1459 K
5. Calculate ¢:
d,=d=195in. ¢=16.161n.

. 0.003(d, — ¢)
g, (at tension steel level) = ——
_0.003(19.5 — 16.16)

=0. 2
16.16 0.0006
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Since g, < 0.002, then ¢ = 0.65.
¢P, =0.65(1459) = 948.3 K
@M, = 0.65(729.5) = 474 K - ft

Note: If side bars are neglected, then
P, =733.84+359.4-381 =7122K

P,(at e=61in.) = 1027.754+359.4 — 1142 = 1273 K

If side bars are considered, the increase in P,, is about 2% and that in P, is about 14.6%.

11.11 LOAD CAPACITY OF CIRCULAR COLUMNS

11.11.1 Balanced Condition

The values of the balanced load P, and the balanced moment M,, for circular sections can be deter-
mined using the equations of equilibrium, as was done in the case of rectangular sections. The bars
in a circular section are arranged in such a way that their distance from the axis of plastic centroid
varies, depending on the number of bars in the section. The main problem is to find the depth of
the compressive block a and the stresses in the reinforcing bars. The following example explains
the analysis of circular sections under balanced conditions. A similar procedure can be adopted to
analyze sections when tension or compression controls.

Example 11.9

Determine the balanced load P, and the balanced moment M,, for the 16-in. diameter circular spiral
column reinforced with eight no. 9 bars shown in Fig. 11.14. Given: f] = 4 ksi and J, = 60ksi.

§=8-25=55in.
S, = Scos22.5deg = 5.1 in.
S, = Scos67.5deg = 2.1 in.
d=8+51=13.1in.
Sy = 1.851n.
S, =4.85in.
Solution

1. Because the reinforcement bars are symmetrical about the axis A—A passing through the center
of the circle, the plastic centroid lies on that axis.

2. Determine the location of the neutral axis:

S
d,=13.1in. & ==2 (Eg=29,000 ksi)
J ES

G _ 0003 0003 87
d, " 0003+,  0003+f/Es 81+,
87 .
=% _(13.1)=775in.
%= 7160 0D n

a, =0.85x7.75 = 6.59 in.
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Figure 11.14 Example 11.9: Eight no. 9 bars.
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Load Capacity of Circular Columns

3. Calculate the properties of a circular segment (Fig. 11.15):
Area of segment = r*(a — sin a cos a)
Location of centroid x (from the circle center 0):
2 rsin’ a

x _
3 a—sinacosa

N
Il

r—Xx

a
rcosae =r—a Or cosa= (1——)
P

Then

cosa = (1 - 6—§9> =0.176

and a = 79.85°, sin « = 0.984, and a = 1.394 rad.
Area of segment = (8)%(1.394 — 0.984 x 0.176)

=78.12 in.?
- <g) 8(0.984)°
T \3/ 1.394 - 0.984 x 0.176

Z=r—x=8-4.16=3.841in.
4. Calculate the compressive force C,.:
C. = 0.85f/ X area of segment
=0.85x4x%x78.12=2656K

It acts at 4.16 in. from the center of the column.

=4.161in.

383

(11.22)

(11.23)
(11.24)

(11.25)

5. Calculate the strains, stresses, and forces in the tension and the compression steel. Determine the

strains from the strain diagram. For T,
e=e, = 0.00207 £ =fy = 60 ksi
T, =2x60=120K

For T,
2.35 2.35
= ——¢g = =—— x0.00207 = 0.00091
€37 535% 7 535
£ = 0.00091 X 29,000 = 26.4 ksi
T,=264%x2=528K
For C,,
e, = 285 0.003 = 0.000188
’ 7.75
fi1 = 0.000188 x 29,000 = 54.5 ksi < 60 ksi
C, =2(54.5-34)=1022K
For C,
E£p = @ % 0.003 = 0.000716
: 7.75

fio =0.000716 x 29,000 = 20.8 ksi
Cy, =2(20.8-34)=348K
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Figure 11.15 Example 11.9: Properties of circular segments.

The stresses in the compression steel have been reduced to take into account the concrete
displaced by the steel bars.
6. The balanced force is P, = C, + XC, — XT (¢ = 0.75).

P, =265.6+(102.2 4+ 34.8) — (120 +52.8) =230 K
For a balanced section,
g,=0.002 and ¢ =0.65
¢P, =1495K
7. Take moments about the plastic centroid (axis A—A through the center of the section) for all forces:
M, =Pye,=C, X416+ C X514+ C;, x2.14+T, x51+7,%x2.1
=2422.1K-in. =201.9 K - ft
oM, =131.2K - ft

2422.1 .
e, = W = 10.5in.

11.11.2 Strength of Circular Columns for Compression Failure

A circular column section under eccentric load can be analyzed in similar steps as the balanced
section. This is achieved by assuming a value for ¢ > ¢, or a > a, and calculating the forces in
concrete and steel at different locations to determine P, P,; = C, + XC, — XT. Also, M,, can be
calculated by taking moments about the plastic centroid (center of the section) and determining
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P,, = M,/e. If they are not close enough, within about 1%, assume a new c or a and repeat the
calculations. (See also Section 11.8.) Compression controls when e < ¢, or P, > P,,.

For example, if it is required to determine the load capacity of the column section of
Example 11.9 when e = 61in., P, can be determined in steps similar to those of Example 11.9:

1. Because ¢ = 6in. is less than ¢, = 10.5 in., compression failure condition occurs.

2. Assume ¢ = 9.0in. (by trial) > ¢, = 7.751in. and a = 7.65 in.

3. Calculate x = 3.585in., Z = 4.415in., and the area of concrete segment = 94.93 in.2

4. Calculate forces: and C, = 322.7K, C;; = 110.7K, C, =53.1K, T}, = 21.6K, and 7, =
78.9K.

S. Calculate P,; =C,. + XC, — 2T =386 K.

6. Taking moments about the center of the column (plastic centroid): M, = 191K - ft, P, =
M,/6 = 382K, which is close to P, (the difference is about 1%). Therefore, P, = 382 K.
Note that if the column is spirally reinforced, ¢ = 0.70.

An approximate equation for estimating P, in a circular section when compression controls
was suggested by Whitney [15]:

P, = Ade + Asdy
" 9.6he/(0.8h + 0.67D,)> + 1.18 = 3e/D, + 1

(11.26)

where
A, = gross area of section
H = diameter of section
D, = diameter measured through centroid of bar arrangement
A, = total vertical steel area
E = eccentricity measured from plastic centroid

Example 11.10

Calculate the nominal compressive strength P, for the section of Example 11.9 using the Whitney
equation if the eccentricity is e = 6 in.

Solution
1. Eccentricity e = 61in. is less than e, = 10.5 in., calculated earlier; thus, compression controls.
2. Using the Whitney equation,
_ T, T 2 _ -2
A, =—=h"= 1(16) =201.11in.

4

h=16in. D,=16-5=11.0in. A =8x1=8in>

b 201.1 x 4 8 X 60

" 9.6X16X6/(0.8X16+0.67x 112+ 1.18 ~ 3x6/11 +1
=4155K

3. M,=P,e=4155% % = 207.8 K - ft. The value of P, here is greater than P, = 382 K calculated
earlier by statics.
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11.11.3 Strength of Circular Columns for Tension Failure

Tension failure occurs in circular columns when the load is applied at an eccentricity e > ¢, or
P, < P,. In this case, the column section can be analyzed in steps similar to those of the balanced
section and Example 11.8. This is achieved by assuming ¢ < ¢, or a < a,, and then following the
steps explained in Section 11.11.1. Note that because the steel bars are uniformly distributed along
the perimeter of the circular section, the tension steel A, provided could be relatively low, and
the load capacity becomes relatively small. Therefore, it is advisable to avoid the use of circular
columns for tension failure cases.

11.12 ANALYSIS AND DESIGN OF COLUMNS USING CHARTS

The analysis of column sections explained earlier is based on the principles of statics. For
preliminary analysis or design of columns, special charts or tables may be used either to determine
¢P, and ¢M, for a given section or determine the steel requirement for a given load P, and
moment M,. These charts and tables are published by the ACI [7], the Concrete Reinforcing
Steel Institute (CRSI), and the Portland Cement Association (PCA). Final design of columns
must be based on statics by using manual calculations or computer programs. The use of the
ACI charts is illustrated in the following examples. The charts are given in Figs. 11.16 and
11.17 [7]. These data are limited to the column sections shown on the top-right corner of
the charts.

Example 11.11

Determine the necessary reinforcement for a short tied column shown in Fig. 11.18a to support a factored
load of 483 K and a factored moment of 322 K - ft. The column section has a width of 14 in. and a total
depth, A, of 20in. Use f! = 5 ksi, f) = 60 ksi.

Solution

1. The eccentricity e = M, /P, = 322 x 12/483 = 8in. Letd =20 — 2.5 = 17.5in.,, yh =20 — 2 X
2.5=15in., and y = 15/20 = 0.75.

2. Since e = 81in. < d, assume compression-controlled section with ¢ = 0.65.

P=3 _ 983K and M, =322 - 4954K -1t
0.65 0.65
K,=— _ _0s31
5% 14 x20
8

R, =K, (%) =0.531 <%> = 0212

3. From the charts of Fig. 11.17, for y = 0.7, p = 0.034. Also, for y = 0.8, p = 0.029. By interpolation,
for y =0.75, p = 0.0315.
A, =0.0315(14 x 20) = 8.82 in.?

Use eight no. 10 bars (A, = 10.16in.2), four on each short side. Use no. 3 ties spaced at 14 in.
(Fig. 11.18a).
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Figure 11.18 Column sections of (a) Example 11.11 and (b) Example 11.12.

Example 11.12

Use the charts to determine the column strength, ¢P,,, of the short column shown in Fig. 11.18b acting
at an eccentricity e = 12in. Use f! = 5 ksi and f, = 60 ksi.

Solution

1.

2.

Properties of the section: H = 24in., yh = 24 — 2 X 2.5 = 19in. (distance between tension and

compression steel). y = 19/24 = 0.79, and p = 8(1.27)/(14 x 24) = 0.030.

Since e < d, assume compression-controlled section. Let £, = 0.002, fs/fy = 1.0, and ¢ = 0.65.
From the charts of Fig. 11.17, get K, =0.36 = P, /(5 X 14 X 24). Then P, = 605 K.

. Check assumption for compression-controlled section: For K, =0.36, R, = K|, (e/h) = 0.36 (12/24)

= 0.18. From charts, get p = 0.018 < 0.03. Therefore, P, > 605K (to use p = 0.03).

. Second trial: Let £, = 0.0015, f, = 0.0015 (29,000) = 43.5 ksi.

fs 435
—=—==0725 p=003 K, =044
7, 60 p n
Pn
04=_——7—— P,=740K

T S5x14x24

Therefore, P, = 740 K.

. Check assumption: For K, = 0.44, R, = 0.44 <;—i) = 0.22. From charts, p = 0.03 as given.

@P, = 0.65(740) =480 K and M, = 0.65(740) = 480 K - ft

By analysis, ¢P, = 485 K (which is close to 480K - ft).

11.13 DESIGN OF COLUMNS UNDER ECCENTRIC LOADING

In the previous sections, the analysis, behavior, and the load—interaction diagram of columns
subjected to an axial load and bending moment were discussed. The design of columns is more
complicated because the external load and moment, P, and M,, are given and it is required to
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determine many unknowns, such as b, h, A,, and A}, within the ACI Code limitations. It is a
common practice to assume a column section first and then determine the amount of reinforcement
needed. If the designer needs to change the steel reinforcement calculated, then the cross section
may be adjusted accordingly. The following examples illustrate the design of columns.

11.13.1 Design of Columns for Compression Failure

For compression failure, it is preferable to use A, = A/, for rectangular sections. The eccentricity,
e, is equal to M, /P,. Based on the magnitude of ¢, two cases may develop.

1. When e is relatively very small (say, e < 4in.), a minimum eccentricity case may develop that
can be treated by using Eq. 10, as explained in the examples of Chapter 10. Alternatively, the
designer may proceed as in case 2. This loading case occurs in the design of the lower-floor
columns in a multistory building, where the moment, M,,, develops from one floor system and
the load, P,, develops from all floor loads above the column section.

2. The compression failure zone represents the range from the axial to the balanced load, as
shown in Figs. 11.3 and 11.11. In this case, a cross section (bh) may be assumed and then the
steel reinforcement is calculated for the given P, and M,,. The steps can be summarized as
follows:

a. Assume a square or rectangular section (bh); then determine d, d’, and e = M, /P,,.

b. Assuming A; = A, calculate A} from Eq. 11.16 using the dimensions of the assumed
section, and ¢ = 0.65 for tied columns. Let A, = A/ and then choose adequate bars. Deter-
mine the actual areas used for A; and A/. Alternatively, use the ACI charts.

c. Check that p, = (A; + A{)/bh is less than or equal to 8% and greater or equal to 1%. If p,
is small, reduce the assumed section, but increase the section if less steel is required.

d. Check the adequacy of the final section by calculating ¢P, from statics; as explained in
the previous examples, ¢P, should be greater than or equal to P,,.

e. Determine the necessary ties.

A simple approximate formula for determining the initial size of the column bk or the total

steel ratio p, is
P, =K.bh* or P,=¢P, = dK.bh’ (11.27)

where K, has the values shown in Table 11.2 and plotted in Fig. 11.19 for f, = 60ksi and A; = A{.
Units for K, are in Ib/in.?

The values of K. shown in Table 11.2 are approximate and easy to use because K. increases by
0.02 for each increase of 1ksi in f7. For the same section, as the eccentricity, e = M, /P, increases,
P, decreases, and, consequently, K. decreases. Thus, K. values represent aload P, on the interaction
diagram between 0.8 P, and P}, as shown in Fig. 11.3 or 11.11.

Table 11.2 Values of K, (f, = 60ksi)

KC
pg (%)  f.=4ksi f,=5ksi f, =6ksi
1 0.090 0.110 0.130
4 0.137 0.157 0.177

8 0.200 0.220 0.240
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Figure 11.19 Values of K, versus p; (%).
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Linear interpolation can be used. For example, K, = 0.1685 for p, = 6% and f; = 4 ksi. The
steps in designing a column section can be summarized as follows:

1. Assume an initial size of the column section bh.

A

Calculate K. = P,/(pbh?).

Determine p, from Table 11.2 for the given f;.
Determine A; = A{ = p,bh/2 and choose bars and ties.
Determine ¢P,, of the final section by statics (accurate solution). The value of ¢P, should be

greater than or equal to P,,. If not, adjust bk or p,.

Alternatively, if a specific steel ratio is desired, say Py = 6%, then proceed as follows:

1. Assume p, as required and then calculate e = M, /P,
2. Based on the given f and p,, determine K, from Table 11.2.

3. Calculate bh? = P,/¢K_; then choose b and h. Repeat steps 4 and 5. It should be checked that
P 1s less than or equal to 8% and greater than or equal to 1%. Also, check that ¢ calculated

by statics is greater than ¢, = 87d,/(87 + f,) for compression failure to control.

Example 11.13

Determine the tension and compression reinforcement for a 16 X 24-in. rectangular tied column to
support P, = 780K and M, = 390K - ft. Use f = 4 ksi and £, = 60 ksi.
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Figure 11.20 Example 11.13.

Solution

1.

Calculate e = M, /P, = 420(12)/840 = 6.0 in. We have h = 24 in; let d = 21.5in. and ' = 2.51n.
Because e is less than %d = 14.38 in., assume compression failure.

. Assume A, = A and use Eq. 11.20 to determine the initial value of A}, P, = P,/¢ = 780/0.65 =

1200 K. ,
bhf! ALty

"= (Bhe/d*) +1.18 * le/(d—d)]+0.5

For P, = 1200K, ¢ = 6in.,d =21.5in.,d’ =2.5in., and h = 24 in., calculate A, = 6.44 in> = A,.
Choose five no. 10 bars (A, = 6.35in.2) for A, and A’ (Fig. 11.20).

(11.20)

. Let p, = 2(6.35)/(16 x 24) = 0.033, which is less than 0.08 and >0.01.
. Check the section by statics following the steps of Example 11.4 to get

a=16.64in. c=19.58in. C.=9052K
C,=6.35(60-0.85x4)=3594K

fs=87<d_c

C
T =A,f, = 635(8.55) = 543K
P,=C,+C,—T=12103K> 1200K

) = 8.55 ksi

Note that if P, < P, increase A, and A;, for example, to six no. 10 bars, and check the section
again.

. Check P, based on moments about A, (Eq. 11.12) to get P, = 1210K.
. For a balanced section,

87 87 .
= d, = (—)21.5= 12.7 in.
% <87+fy> = \1a7 "

Because ¢ = 19.58in. > ¢;, = 12.7 in., this is a compression failure case, as assumed.
Use no. 3 ties spaced at 16 in (refer to Chapter 10).
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Example 11.14
Repeat Example 11.13 using Eq. 11.27.
Solution

1. The column section is given: 16 X 24 in.

2. Determine K, from Eq. 11.27:

P
Ko=—t=—T89 _ _013m/in?
@$bh*  0.65 x 16 x 24
3. From Table 11.2 or Fig. 11.19, for K. = 0.13, f! = 4 ksi, by interpolation, get Py =3.5%.
4. Calculate A, = Al = pbh/2 = 0.035(16)(24)/2 = 6.77 in.2 Choose five no. 10bars A, =

6.351n.2) for the first trial.

S. Determine ¢P,, using steps 4 to 7 in Example 11.13. Let ¢P, = 1210.3K > P, = 1200K, so the
section is adequate.
6. If the section is not adequate, or ¢pP, < P,, increase A, and A/, and check again to get closer values.
Example 11.15

Design a rectangular column section to support P, = 696 K and M, = 465 K - ft with a total steel ratio
Py of about 4%. Use f! = 4 ksi,fy = 60ksi, and b = 18 in.

Solution

1.

2.
. Calculate bh? from Eq. 11.27: P, = ¢pK_ bh?, or 696 = 0.65(0.137)(18)Ah>. Thus, h = 20.84in. Let

Calculate e =M, /P, = 465(12)/696 = 8 in. Assume compression failure (¢ = 0.65) (to be checked
later) and A, = Al.
For p, = 4% and f! = 4 ksi, K, = 0.137 (Table 11.2).

h=22in.

. Calculate A, = A/ = 0.04(18 X 22)/2 =7.92 in.2 Choose five no. 11 bars A, = 7.8in.2) in one

row for A and A} (Fig. 11.21). Choose no. 4 ties spaced at 18 in.

. Check the final section by analysis, similar to Example 11.4, to get a = 13.151n., ¢ = 15.47in.,
C,. = 0.85 flab =804.8 K, f! = 60ksi, C, = Al(f, — 0.85f)) =441.5K, f, = 87[(d — ¢)lc] =
21.24ksi,and T=Af, = 168 K. Also, P, = C. + C, — T=1078.3K and ¢P, =0.65 P, =701 K
> 696 K. The section is adequate.

A 27"
5no. 11 T
22"
5no. 11
e e e =
y 2.7

A
=

v
—

Figure 11.21 Example 11.15.
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6. For a balanced section,

R (L d, = (ﬂ) 193=1142in. <c=1547  (d=193in.)
87+7, 147

Therefore, this is a compression failure case, as assumed.

11.13.2 Design of Columns for Tension Failure

Tension failure occurs when P, < P, or the eccentricity e > ¢,, as explained in Section 11.7. In the
design of columns, P, and M,, are given, and it is required to determine the column size and its
reinforcement. It may be assumed (as a guide) that tension controls when the ratio of M, (K - ft) to
P, (kips) is greater than 1.75 for sections of 4 < 24in. and 2.0 for 2 > 24 in. In this case, a section
may be assumed, and then A; and A{ are determined. The ACI charts may be used to determine p,
for a given section with A; = A/. Note that ¢ varies between 0.65 (0.75) and 0.9, as explained in
Section 11.4.

When tension controls, the tension steel yields, whereas the compression steel may or may not
yield. Assuming initially f{ = f, and A; = Af, Eq. 11.16 (Section 11.6) may be used to determine
the initial values of A; and A’:

A=A = P,(e—h/2+a/2) (11.16)
‘ fid—d")

Because a is not known yet, assume a = 0.4d and P, = P

.5 then
A=A = P,(e—0.5h+0.2d) (11.28)
df(d—d")
The final column section should be checked by statics to prove that P, > P,. Example 11.16
explains this approach.

When the load P, is very small relative to M,,, the section dimensions may be determined due
to M, only, assuming P, = 0. The final section should be checked by statics. This case occurs in
single- or two-story building frames used mainly for exhibition halls or similar structures. In this
case, A} may be assumed to be less than A;. A detailed design of a one-story, two-hinged frame
exhibition hall is given in Chapter 16.

Example 11.16
Determine the necessary reinforcement for a 16 X 22-in. rectangular tied column to support a factored
load P, = 257K and a factored moment M, = 643K - ft. Use f/ = 4 ksi and f,, = 60 ksi.

Solution

1. Calculate e =M, /P, =643(12)/257 =30in.;letd = 22 —2.5 = 19.5 in. Because M, /P, = 500/200
=2.5> 1.75, or because ¢ > d, assume tension failure case, ¢ = 0.9 (to be checked later).

2. Assume A = Aj and f{ =f, and use Eq. 11.28 to determine A, and A]. Let P, = 257.0K,
e=30in., h=22in.,d =19.5in., and ' = 2.5in.
257(30 = 0.5x22+40.2x 19.5)
0.9(60)(17.0)

Choose five no. 10 bars (6.35in.2) in one row for each of A, and A! (Fig. 11.22).
3. Check Py = 2(6.35)(16 x 22) = 0.036, which is less than 0.08 and greater than 0.01.

A=Al = =6.411n.?
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Figure 11.22 Example 11.16.

4. Check the chosen section by statics similar to Example 11.3.

a. Determine the value of a using the general equation Aa> + Ba + C =0 with e/ = e + d —
hi2 =38.5in., A = 0.425 f!b = 27.2,B = 2A(¢' — d) = 1033.6, C = A{(f, — 0.85f)(¢ —d +
d') — A f,e’ = —6941.2. Solve to get a = 5.821in. and ¢ = a/0.85 = 6.85.

b. Check f;:
—_— ’ —
ﬂ:87<c d ) =87 (22 222) = 5506 ksi

c 6.85

Let f] = 57 ksi.
c. Recalculate a:
C=Alf —=0.85f) —d+d") —Asfve’ = -7351
Solve now fora to geta = 6.13 and ¢ = 7.21 in.

d. Check f!:
c—2.5

c

£ =87 ( ) = 56.83 ksi
Calculate
C. = 0.85(4)(6.13)(16) = 333.5K  C, = A'(f' — 0.85f") = 6.35(57 — 0.85 x 4)
=3404K T =Af, =63560) =381 K

e. LetP,=C.+C,—T=2929K.
5. Determine ¢: €, = [(d, — ¢)/c] 0.003 = 0.00511. Because ¢, = 0.00511 > 0.005, ¢ = 0.9.
6. Because ¢P, = 0.9(292.9) = 263.6 K > 257 K, the section is adequate.

11.14 BIAXIAL BENDING

The analysis and design of columns under eccentric loading was discussed earlier in this chapter,
considering a uniaxial case. This means that the load P, was acting along the y-axis (Fig. 11.23),
causing a combination of axial load P, and a moment about the x-axis equal to M,, = P, e, or
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Figure 11.23 Uniaxial bending with load P, along the y-axis with eccentricity e,.
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Figure 11.24 Uniaxial bending with load P, along the x-axis, with eccentricity e, .

acting along the x-axis (Fig. 11.24) with an eccentricity e, causing a combination of an axial load
P, and amoment M,, =P, e,.

If the load P, is acting anywhere such that its distance from the x-axis is e, and its distance
from the y-axis is e, then the column section will be subjected to a combination of forces: An
axial load P, a moment about the x-axis = M,,, = P, e, and a moment about the y-axis = M,,, =
P, e, (Fig. 11.25). The column section in this case is said to be subjected to biaxial bending. The
analysis and design of columns under this combination of forces is not simple when the principles
of statics are used. The neutral axis is at an angle with respect to both axes, and lengthy calcula-
tions are needed to determine the location of the neutral axis, strains, concrete compression area,
and internal forces and their point of application. Therefore, it was necessary to develop practical
solutions to estimate the strength of columns under axial load and biaxial bending. The formulas
developed relate the response of the column in biaxial bending to its uniaxial strength about each
major axis.

The biaxial bending strength of an axially loaded column can be represented by a
three-dimensional interaction curve, as shown in Fig. 11.26. The surface is formed by a series
of uniaxial interaction curves drawn radially from the P, axis. The curve M, represents the
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interaction curve in uniaxial bending about the x-axis, and the curve M, represents the curve
in uniaxial bending about the y-axis. The plane at constant axial load P, shown in Fig. 11.26

represents the contour of the bending moment M, about any axis.

Different shapes of columns may be used to resist axial loads and biaxial bending. Circular,
square, or rectangular column cross sections may be used with equal or unequal bending capacities

in the x and y directions.

11.15 CIRCULAR COLUMNS WITH UNIFORM REINFORCEMENT UNDER BIAXIAL BENDING

Circular columns with reinforcement distributed uniformly about the perimeter of the section have
almost the same moment capacity in all directions. If a circular column is subjected to biaxial
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bending about the x and y axes, the equivalent uniaxial M, moment can be calculated using the

following equations:
M, =/ (M, )* + (M,)* =Pe (11.29)
= ’ et 11.30
e=1/(e)+(e) =3 (11.30)

u

and

where
M, = P, e, = factored moment about the x-axis
M,, = P, e, = factored moment about the y-axis
M, = P e = equivalent uniaxial factored moment of the section due to M, and M,

In circular columns, a minimum of six bars should be used, and these should be uniformly
distributed in the section.

Example 11.17 Circular Column

Determine the load capacity P, of a 20-in.-diameter column reinforced with 10 no. 10 bars when e, =
4in. and e, = 61in. Use f! = 4 ksi and f, = 60 ksi.

Solution

1. Calculate the eccentricity that is equivalent to uniaxial loading by using Eq. 11.30.

e(for uniaxial loading) = 1/e? + 2 = /(4)2 + (6)> = 7.211 in.
2. Determine the load capacity of the column based on e = 7.211 in. Proceed as in Example 11.9:
d=17.12 in. a=9.81in. c=11.54in. (by trial)

C,=5212K XC,=2698K XT=1321K
P,=C +2C,— 5T = 650K

3. For a balanced condition,

o= (2 dt=<ﬂ)l7.12=10.13in.
87+, 147

c=11541in. > ¢,

which is a compression failure case.

Example 11.18 Circular Column

Design a 16-in. circular column subject to biaxial bending using the equivalent uniaxial moment method.
Given P, = 200K, M,, = 1000K -in, M, = 700K - in, f/ = 4 ksi, f, = 60 ksi.

Solution
1. Determine nominal load:
For spiral column ¢ = 0.75
Nominal load = 200/0.75 = 266.67 K
Nominal moment capacity about x axis M,, = 1000/0.75 = 1333.33 K - in.
Nominal moment capacity about y axis M,, =700/0.75 =933.33 K - in.
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Figure 11.27 Example 11.18. Courtesy of American Concrete Institute [7].

2. Determine the equivalent moment M, using Eq. 11.29:

M, = /M2 + M2, = V1333* + 933> = 1627.54 K - in.

3. Calculate p, using interaction diagram (Fig. 11.27):

Compute A,:

A, = ”TDZ = %“62 = 200.96 in.”

Compute k, = J% = % =0.33
Compute R, = f']Zgh T ¥x ;(6)(2).7§Zt< 5 =013
Compute y = % = 161—55 =0.69

From the interaction diagram (Fig. 11.27) for y = 0.7, p, = 0.05
A, =0.05%200.96 = 10.05 in.2
Provide 8 no. 10 bars, A, = 10.16 in’

401
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4. Check minimum load capacity of the column from Eq. 10.7:
PP, = O.85¢(0.85fo(Ag -Ap +fAy)  (ACI Eq. 10.1)
= (0.85(0.75)(0.85)(4)(200.96 — 10.16) + (60)(10.16)
= 1023.2 K > 200 K, the section is adequate

11.16 SQUARE AND RECTANGULAR COLUMNS UNDER BIAXIAL BENDING

11.16.1 Bresler Reciprocal Method

Square or rectangular columns with unequal bending moments about their major axes will require
a different amount of reinforcement in each direction. An approximate method of analysis of such
sections was developed by Boris Bresler and is called the Bresler reciprocal method [9, 12]. Accord-
ing to this method, the load capacity of the column under biaxial bending can be determined by
using the following expression:

U S N (11.31)
Pu Pux Puy Puo

o 1111
L. (11.32)
Pn an Pny Pn0

where

P, = factored load under biaxial bending

P, = factored uniaxial load when the load acts at eccentricity e, and e, = 0
P, = factored uniaxial load when the load acts at an eccentricity e, and e, =0
P, = factored axial load whene, = ¢, =0

P P P,
Pnzgu anzf Pnyzf n0=(;)0
The uniaxial load strengths P, P,,, and P, can be calculated according to the equations and
method given earlier in this chapter. After that, they are substituted into Eq. 11.32 to calculate P,,.

The Bresler equation is valid for all cases when P, is equal to or greater than 0.10P, . When P,
is less than 0.10P, , the axial force may be neglected and the section can be designed as a member

subjected to pure biaxial bending according to the following equations:

Mo + My <1.0 (11.33)
M, S . .
or
Mnx M”y
+ <1.0 (11.34)
M()x MOy
where

M, = P, e, = design moment about x-axis
M,, = P, e, = design moment about the y-axis
M, and M, = uniaxial moment strengths about the x and y axes

M M M
Mnx = — Mn\: == MOx == MOy =
¢ i ¢ ¢ ¢

The Bresler equation is not recommended when the section is subjected to axial tension loads.
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11.16.2 Bresler Load Contour Method

In this method, the failure surface shown in Fig. 11.26 is cut at a constant value of P,, giving the
related values of M, . and M, . The general nondimension expression for the load contour method is

( nx) | (7‘[">2—10 (1135)
MOX Oy

Bresler indicated that the exponent @ can have the same value in both terms of this expression
(a; = a,). Furthermore, he indicated that the value of « varies between 1.15 and 1.55 and can be
assumed to be 1.5 for rectangular sections. For square sections, a varies between 1.5 and 2.0, and an
average value of « = 1.75 may be used for practical designs. When the reinforcement is uniformly
distributed around the four faces in square columns, « may be assumed to be 1.5:

M 1.5 Mn 1.5
(—”’“) + ( y) =1.0 (11.36)
MOx MOy

The British Code assumed « = 1.0, 1.33, 1.67, and 2.0 when the ratio Pu/l.lPuo is equal to
0.2, 0.4, 0.6, and > 0.8, respectively.

11.17 PARME LOAD CONTOUR METHOD

The load contour approach, proposed by the PCA, is an extension of the method developed by
Bresler. In this approach, which is also called the Parme method [11], a point B on the load contour
(of a horizontal plane at a constant P, shown in Fig. 11.28) is defined such that the biaxial moment
capacities M,,, and M, are in the same ratio as the uniaxial moment capacities M, and M, ; that is,

Mnx — MOx or Mnx — M”y — ﬂ
Mny MOy MOx MOy
10 A\ Exponential
~ contour
Aﬂ
1-8 B \\\ B
- B
\
& \
g \
s )
gl \
\
45° 1-B \
c Y
0 10
Mnx/MOX

Figure 11.28 Nondimensional load contour at constant P, (straight-line approxima-
tion).
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The ratio f is shown in Fig. 11.28 and represents that constant portion of the uniaxial moment
capacities that may be permitted to act simultaneously on the column section.

For practical design, the load contour shown in Fig. 11.28 may be approximated by two
straight lines, AB and BC. The slope of line AB is (1 — f)/f, and the slope of line BC is /(1 — f).
Therefore, when

Mny Mnx
>
MOy M()x
then M v
n e [ 1—
o+ (—ﬂ> =1 (11.37)
MOy M()x :B
and when
M”,V Mnx
MOy M()x
then v M
ny (1 —
L (—ﬂ> = (11.38)
MOx M()y ﬁ

The actual value of f depends on the ratio P, /P, as well as the material and properties of the cross
section. For lightly loaded columns, § will vary from 0.55 to 0.7. An average value of f = 0.65 can
be used for design purposes.

When uniformly distributed reinforcement is adopted along all faces of rectangular columns,
the ratio M, /M, is approximately b/h, where b and h are the width and total depth of the rectangular
section, respectively. Substituting this ratio in Eqs. 11.37 and Egs. 11.38,

b\ (1-p
M,y +M,, <E> <T> ~ M, (11.39)
and g
h —_
M, +M, <Z) <T> ~ My, (11.40)
For f =0.65 and /b = 1.5,
My, ~ M,,, +0.36M,, (11.41)
and
Mo, » M,,, + 0.80M,, (11.42)

From this presentation, it can be seen that direct explicit equations for the design of columns
under axial load and biaxial bending are not available. Therefore, the designer should have enough
experience to make an initial estimate of the section using the values of P,, M,,, and M, and
the uniaxial equations and then check the adequacy of the column section using the equations for
biaxial bending or by computer.

Example 11.19

The section of a short tied column is 16 X 24 in. and is reinforced with eight no. 10 bars distributed as
shown in Fig. 11.29. Determine the design load on the section ¢P,, if it acts at e, = 8in. and e, = 121in.
Use f! = 5 ksi, f} = 60 ksi, and the Bresler reciprocal equation.
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Figure 11.29 Example 11.19: Biaxial load, Bresler method: P, = 421.5K.

Solution

1. Determine the uniaxial load capacity P, about the x-axis when e, = 12 in. In this case, b = 161in.,

h =24in.,d = 21.5in., d = 2.5in., and A=A, =381 in.2. The solution will be performed

using statics following the steps of Examples 11.2 and 11.4 for balanced and compression-control
conditions.

a. For the balanced condition,

87 87 .
. = d:<—)21.5=12.72 .
@ <87+f,> 147 "

a, = 0.80(12.72) = 10.18in. (f, = 0.8 when f/ = 5 ksi)

c—d
¢

C,=085fab=6923K f =87 < ) = 69.9 ksi

Then f] = 60 ksi.
C,=Al(f,—085f)=2124K T =Af =2286K
Py =C +C,-T=676.1K
$Py, = 0.65P, =439.5K (¢ = 0.65 for ¢, = 0.002)

b. For e, = 12in. < d = 21.5in., assume compression failure and follow the steps of Example

11.4 to geta = 10.651in. and ¢ = a/0.8 = 13.31in. > ¢, = 12.72 in. Thus, compression controls.
Check

g
ﬂ=87<c d>=70ksi>fy
c
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Therefore, f] = 60 ksi. Check
d—c

Jg=87(

Calculate forces: C, = 0.85flab =724.2 K, C; = A{(f, = 0.85f]) = 2124 K, T = A f, =
20395K, P, =C,. + C, — T="7326K. P,, > P,,, so this is a compression failure case as
assumed.

) =53.53 ksi > 60 ksi

€ = (d_ C) 0.003 = 0.00185
C

g, < 0.002 ¢ =0.65
P, =¢P, =4762K
c. Take moments about A, using Eq. 11.11,

d’ =9.5in. ¢ =21.5in.

P=- [CL. (a- g) +C(d~ d')] —732.6K
e
2. Determine the uniaxial load capacity P, about the y-axis when e, = 8in. In this case, b = 24in.,
h=16in.,d=13.5in.,d' =2.5in.,and A, = A}, = 3.81 in.2 The solution will be performed using
statics, as explained in step 1.

a. Balanced condition:

87 87 . .
¢, = <W> d= <W) 135=799in.  a, = 0.8(7.99) = 6.39 in.
c—d
C.=085fab=651.8K f =87 < ) = 59.8 ksi
C
C, = Al(f —085f)=211.6K T=Af =2286K

In a balanced load, P,, = C, + C; — T'=634.8K, ¢P,, = 0.65, and P, = 4444 K.
b. For e, = 8in., assume compression failure case and follow the steps of Example 11.4 to get a
= 6.65in. and ¢ = /0.8 = 8.31 in. > ¢;, (compression failure). Check

)
[ =87 <C d > = 60.8 ksi
C
Therefore, f] = 60 ksi. Check
f,=87 (d_c) =543 ksi

Calculate forces: C, = 0.85f/ab = 6783 K,C, = Al(60 —0.85f]) =2124K, T = A, f, =
20609K,P,, =C. + C,—T=0683.3K, and ¢P,, = P,, = 0.65 P,, = 444.5K. Because P,, >
Pby, compression failure occurs, as assumed: ' '

e = (d_ C)o.oos = 0.00187
C

£,<0.002  ¢=065
P, = ¢P, =4445K
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¢. Take moments about A, using Eq. 11.11:
d’ =55in. ¢ =135 in.

_1 _a _ /]_
P, = [CL.<d 2>+Cs(d 4| =683.8K

ny g
3. Determine the theoretical axial load P, :
P, = 0.85f/A, + Ay (f, — 0.85f))
= 0.85(5)(16 x 24) + 10.16(60 — 0.85 x 5) = 2198.4 K ¢P,, = 0.65P,, = 1429 K

4. Using the Bresler equation (Eq. 11.31), multiply by 100:

100 _ 100 100 100
P 4762 4445 1429

u

=0.365

P
P,=274K and P, = 22 =4215K

Notes

1. Approximate equations or the ACI charts may be used to calculate P, and P,,,,. However, since
the Bresler equation is an approximate solution, it is preferable to use accurate procedures,
as was done in this example, to calculate P,, and P,,. Many approximations in the solution
will produce inaccurate results. Computer programs based on statics are available and may
be used with proper checking of the output.

2. In Example 11.19, the areas of the corner bars were used twice, once to calculate P,, and
once to calculate P, ;. The results obtained are consistent with similar solutions. A conserva-
tive solution is to use half of the corner bars in each direction, giving A, = A} = 2(1.27) =

2.54 in.?, which will reduce the values of P, and P,y

Example 11.20

Determine the nominal design load, P,, for the column section of the previous example using the Parme
load contour method; see Fig. 11.30.

Solution

1. Assume f = 0.65. The uniaxial load capacities in the direction of x and y axes were calculated in
Example 11.19:

p,=4762K P,=4445K P, =7326K P, =6838K
2. The moment capacity of the section about the x-axis is

My, =P, e, =732.6x 12

The moment capacity of the section about the y-axis is
M,,=P,e, =6838x8K-in

ny-x

3. Let the nominal load capacity be P,. The nominal design moment on the section about the x-axis
is
M, =P, =P, x 12K in.
and that about the y-axis is
M, =P, =38P

ny n-x n
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Figure 11.30 Example 11.20: Biaxial load, PCA method: P, = 455K.

4. Check if M, /My, > M, IM,:
8P 12P

n n

>
683.8x8  732.6x12
Then M, /M, > M,/M,,. Therefore, use Eq. 11.34.

or 1.463x107°P, > 1.365x 107°P,

5 8p,  _ 12P, < 1-0.65 > _
' 683.8x8 ' 7326x 12\ 065 /
Multiply by 1000 to simplify calculations.

1.463P, +0.735P, = 1000
P,=455K P,=¢P,=29575K (¢ =0.65)

Note that P, is greater than the value of 274K obtained by the Bresler reciprocal method
(Eq. 11.31) in the previous example by about 8%.

11.18 EQUATION OF FAILURE SURFACE

A general equation for the analysis and design of reinforced concrete short and tied rectangular
columns was suggested by Hsu [16]. The equation is supposed to represent the failure surface and
interaction diagrams of columns subjected to combined biaxial bending and axial load, as shown
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in Fig. 11.26. The axial load can be compressive or a tensile force. The equation is presented as

follows: s s
P,—-P M, ’ M, '
<—”> + <—x> +< “) =10 (11.43)
P 0~ P b be Mby
where
P, = nominal axial strength (positive if compression and negative if tension) for given
eccentricity
P, = nominal axial load (positive if compression and negative if tension) at zero eccentricity
P, =nominal axial compressive load at balanced strain condition
M, M,, = nominal bending moments about x and y axes, respectively

M, M by = nominal balanced bending moments about x and y axes, respectively, at balanced strain
conditions

To use Eq. 11.4, all terms must have a positive sign. The value of P, was given earlier
(Eq. 10.1):
Py = 0.85]‘[(Ag —Ay) +Ayf, (11.44)

The nominal balanced load, P,, and the nominal balanced moment, M, = P, ¢,, were given in
Egs. 11.6 and Egs. 11.7, respectively, for sections with tension and compression reinforcement
only. For other sections, these values can be obtained by using the principles of statics.

Note that the equation of failure surface can also be used for uniaxial bending representing
the interaction diagram. In this case, the third term will be omitted when e, = 0, and the second
term will be omitted when e, = 0.

When e, = 0 (moment about the x-axis only),

Pn - Ph Mnx "
— |+ =1.0 (11.45)
Py—=P), My,
(This is Eq. 11.21, given earlier.) When e, = 0 (moment about the y axis only),
P, —P, M\
+ - =1.0 (11.46)
Py =Py M,

Applying Eq. 11.4 to 11.2 and 11.4, P, = 453.4K, M,, = 6810.8K.in., e, = 10in., and P, =
0.85(4)(14 x 22 — 8) + 8(60) = 1500 K.

P, — 4534 0P, \'?
=1.0

1500 — 453.4 * 6810.8
Multiply by 1000 and solve for P,:
(0.9555P, — 433.2) + 0.05626P) = 1000
0.9555P, + 0.05626P!> = 1433.2
Let P, = 611K, which is close to that obtained by analysis.
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Example 11.21

Determine the nominal design load, P

- for the column section of Example 11.19 using the equation of
failure surface.

Solution

1. Compute
Py = O.85fC’(Ag —A) +Ayf,
= 0.85(5)(16 x 24 — 10.16) + (10.16 x 60)
=21984K

2. Compute P;, and M, using Eqgs. 11.6 and Eqs. 11.8 about the x and y axes, respectively.
a. About the x-axis,
87d, 87(21.5)
ahx = =
87+f, 87+60

ay, = 0.8(12.72) = 10.18 in.

=12.72in.

£ =87 <c —d
C
d!=95in. A, =A,=381in?
P, =085flab+Al(f, - 0.85f)) — A,f,
= 0.85(5)(10.18)(16) + 3.81(60 — 0.85 X 5) — 3.81(60)
=676.1K

> =699ksi f/ =60 ksi

M,, = 0.85(5)(10.18)(16) (21.5 - % - 9.5)

+3.81(60 — 0.85 X 5) X (21.5 = 2.5 = 9.5) + 3.81(60)(9.5)
=8973K-in. =747.8 K - ft
b. About the y-axis: d, = 13.5in.,d]/ = 5.5in.,, A, = A] = 3.81 in.?

_87(13.5)

¢ =g = 199 in.

_
ay, =0.8(7.99) = 639 in. f/ =87 (C Cd > = 59.8 ksi

Py, = 0.85(5)(6.39)(24) + 3.81(59.8 — 0.85 X 5) — 3.81(60)
=634.8K

M,, = 0.85(5)(6.39)(24) (13.5 - %5.5)

+3.81(59.8 — 0.85 x 5)(13.5 = 2.5 = 5.5) + 3.81(60)(5.5)
=55573K-in. =463 K - ft
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3. Compute the nominal balanced load for biaxial bending, Py, :

M"}’ P n€x € 8

tana = ="ZI="=— a=337°
w Puey e 12
Py =Py, AP, o 07601-6348 4P,
90° 90° — a° 90 90 — 33.7
AP, =258K

Py, = Py, + AP, = 634.8 + 25.8 = 660.6 K
4. Compute P, from the equation of failure surface:
P, — 660.6 P,x12\"" /P x8\"
+ + =1.0
2198.4 — 660.6 8973 5557.3
Multiply by 1000 and solve for P,:
(0.65P, — 429.85) + 0.0489P! + 0.0546P1> = 1000

0.65P, + 0.1035P)° = 1429.85
By trial, P, = 487 K. Because P, < P, it is a tension failure case for biaxial bending, and
thus P, = —2198.4 K (to keep the first term positive).

1000 _ P 6609 + 0.0489P!> +0.0546P!> = 1000
—2198.4 — 660.9 ' " ' no

0.35P, +0.1035P)° = 769.1
P,=429K and P,=0.65P, =278.8K

Note: The strength capacity, ¢P,, of the same rectangular section was calculated using the Bresler
reciprocal equation (Example 11.19), Parme method (Example 11.20), and Hsu method (Example 11.21)
to get ¢P, = 421.5, 455, and 429 K, respectively. The Parme method gave the highest value for this
example.

11.19 SI EXAMPLE

Example 11.22

Determine the balanced compressive forces P, e,, and M, for the section shown in Fig. 11.31. Use
fI =30 MPa andfy =400 MPa (b = 350 mm, d = 490 mm).

Solution

1. For a balanced condition, the strain in the concrete is 0.003 and the strain in the tension steel is
€, = f),/ES =400/200,000 = 0.002, where E; = 200,000 MPa.

A, = Al = 4(700) = 2800 mm?

2. Locate the neutral axis depth, c,:

¢, = <%§fy> d, (whelrefV is in MPa)

B < 600
~\600 + 420
a, = 0.85¢c, = 0.85 x 288 = 245 mm

) (490) = 288 mm
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J' = e— 350 —]

215 mm 40 mm
mm

Figure 11.31 Example 11.22.

3. Check if compression steel yields. From the strain diagram,
€ _c—d _288-60
0003 ¢ 288
£, =0.00238 > ¢,

Therefore, compression steel yields.
4. Calculate the forces acting on the section:

0.85
- = 0 24 2186.6 kN
= 0.85flab = 7555 x 30 X 245 X 350 = 2186.6
T = A,f, = 2800 x 0.400 x 1120 kN
2
C, = Al(f, - 0.85f)) = ZSOIOT“(;mmoo ~0.85 X 30) = 1048.6 kKN

5. Calculate P), and M,,:
P,=C.,+C,—T=21152kN

From Eq. 11.10,
M, =P,e,=C, <d - - d”) +C(d-d —d")+Td"
p

The plastic centroid is at the centroid of the section and d”” = 215 mm.

M, = 2186.6 (490 - % - 215) + 1048.6(490 — 60 — 215)

+ 1120 x 215 -799.7kN - m

M
ey ==t = 1927 _ (378 m =378 mm

P, 21152




Summary

SUMMARY

413

Sections 11.1-11.3

1. The plastic centroid can be obtained by determining the location of the resultant force pro-
duced by the steel and the concrete, assuming both are stressed in compression to f, and
0.85f!, respectively.

2. On a load—-moment interaction diagram the following cases of analysis are developed:

a.
b.

=0 &0

Axial compression, P

Maximum nominal axial load, P, ..« = 0.8P (for tied columns) and P
spiral columns)

= 0.85P, (for

n, max

. Compression failure occurs when P, > P, ore < ¢,

Balanced condition, P, and M,
Tension failure occurs when P, < P, or e > ¢,
Pure flexure

Section 11.4

1. For compression-controlled sections, ¢p = 0.65, while for tension-controlled section, ¢p = 0.9.
2. For the transition region,

Section 11.5

0.65 + (&, — 0.002) (@) for tied columns
0.75 + (¢, — 0.002)(50) for spiral columns
For a balanced section,
87d, d 5
= an =
Cp 87 + fy ap 1€p

B, =0.85 for f! <4ksi
P,=C.+C,—T = 0.85flab +A§(fV —0.85f7) —Asfy
M), = Pye, = C, <d— g —d”> +Td" +C(d—d —d")

_M,

€, =
Pb

Section 11.6

The equations for the general analysis of rectangular sections under eccentric forces are
summarized.
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Sections 11.7 and 11.8

Examples for the cases when tension and compression controls are given.

Sections 11.9 and 11.10

Examples are given for the interaction diagram and for the case when side bars are used.

Section 11.11

This section gives the load capacity of circular columns. The cases of a balanced section when
compression controls are explained by examples.

Section 11.12

This section gives examples of the analysis and design of columns using charts.

Section 11.13

This section gives examples of the design of column sections.

Sections 11.14 and 11.18

Biaxial bending:

1. For circular columns with uniform reinforcement,

M, = /(M) + (M) e=1/(e)? + (e,

2. For square and rectangular sections,

l_ 1,1
Pn an Pl‘ly PHO

M, My <10

MOx MOy

3. In the Bresler load contour method,
M \LS M, L5
() +(G) =
M,, M,
4. In the PCA load contour method,

M, + M, (%) <%> = M,

M, +M,, (g) <¥> = M,,

5. Equations of failure surface method are given with applications.
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PROBLEMS

Note: For all problems, use f, = 60ksi, d’ =2.5in., and A; = A{ where applicable. Slight variations in answers
are expected.

11.1 (Rectangular sections: balanced condition) For the rectangular column sections given in Table 11.3,

determine the balanced compressive load, P, the balanced moment, M,, and the balanced eccentricity,
e,,, for each assigned problem. (Answers are given in Table 11.3.) (¢ = 0.65.)

11.2 (Rectangular sections: compression failure) For the rectangular column sections given in Table 11.3,

determine the load capacity, P, , for each assigned problem when the eccentricity is e = 6 in. (Answers
are given in Table 11.3.)

11.3 (Rectangular sections: tension failure) For the rectangular column sections given in Table 11.3, deter-

mine the load capacity, P

. for each assigned problem when the eccentricity is e = 24 in. (Answers are
given in Table 11.3.)
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Table 11.3 Answers for Problems 11.1-11.3

Answers

Problem 11.1 Problem 11.2  Problem 11.3
Number £/ (ksi) b(n) h(n) A=A, P, e, P, (e =6in.)) P, (e =24in.)
a 4 20 20 6no. 10 572 17.4 1193 395
b 4 14 14 4 no. 8 249 10.9 407 93
c 4 24 24 8no.10 848 20.1 1860 696
d 4 18 26 6no. 10 698 20.6 1528 591
e 4 12 18 41no0.9 305 15.2 592 176
f 4 14 18 4no0.10 354 16.2 715 221
g 5 16 16 S5no. 10 406 15.3 807 228
h 5 18 18 5no.9 540 12.5 930 230
i 5 14 20 41no0.9 476 13.4 847 221
] 5 16 22 41no.10 606 14.8 1140 327
k 6 16 24 S5no. 10 746 16.8 1532 476
1 6 14 20 41n0.9 534 12.8 944 226

11.4 (Rectangular sections with side bars) Determine the load capacity, ¢P,, for the column section shown
in Fig. 11.32 considering all side bars when the eccentricity is e, = 81in. Use f/ = 4 ksi and f, = 60 ksi.
(Answer: 658 K.)

2.5" 3.67"
zf | lM/JZL e—2.5"

4 e oo o
6.33" 4o | 12n010
* ° 2 e | bars
v
24" 633" b — — - !'“ -
e,\'
»*7 ° ¢
6.33" H
-L o o e o
v

T 16” >
5

Figure 11.32 Problem 11.4.

11.5 Repeat Problem 11.4 with Fig. 11.33. (Answer: 660 K.)
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o D e
_2.Ai [} [} o [} A
3.75"

+

o 16 no. 10
X e A bars
€

3.75" e,
- — — —+——— e —-20"
3.75" '
° ’ °
375"
25" Y i hd + ® ® v

i
T < 20" >

Figure 11.33 Problem 11.5.
11.6 Repeat Problem 11.4 with Fig. 11.34. (Answer: 368 K.)

" 45" 45"
2.5 - "
v —>| |<——>|<—>| |<— 2.5
T b + ®  8no.9
+ bars
75" Y
e,
20" % —— — L¢ —o— —
75" ‘
L [ ? ]
|
T [e—— 14" ———>
2.5"

Figure 11.34 Problem 11.6.

11.7 Repeat Problem 11.4 with Fig. 11.35. (Answer: 822 K.)

2¢5i'—>| e x 375" —»| Je— 25"

»

° ° 16 no. 9
) bars
n v
'\ v
24" < — @ o T S — — @
X
<+
[ ) ®
i —L e o l e o
T |
< 20" >
2'5/7

Figure 11.35 Problem 11.7.
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11.8 (Design of rectangular column sections) For each assigned problem in Table 11.4, design a rectangular
column section to support the factored load and moment shown. Determine A, A/, and £ if not given;
then choose adequate bars considering that A, = Al. The final total steel ratio, Pg> should be close to
the given values where applicable. Check the load capacity, ¢P,, of the final section using statics and
equilibrium equations. One solution for each problem is given in Table 11.4.

11.9 (ACI charts) Repeat Problems 11.2b, 11.2d, 11.2f, 11.8a, 11.8c, and 11.8e using the ACI charts.

11.10 (Circular columns: balanced condition) Determine the balanced load capacity, ¢P,, the balanced
moment, ¢M,, and the balanced eccentricity, e,, for the circular tied sections shown in Fig. 11.36. Use
fl =4ksiand f, = 60 ksi.

11.11 Repeat Problem 11.10 for Fig. 11.37.

Table 11.4 Problem 11.8

One Solution
Number f! (ksi) P, (K) M, (K-ft) b (in.) h (in.) Py % h (in.) A, —Al

a 4 530 353 16 — 4.0 20 Sno. 10
b 4 410 205 14 18 — 18 5no. 8
c 4 480 640 18 — 35 24 6 no. 10
d 4 440 440 20 20 — 20 6 no. 9
e 4 1125 375 20 24 — 24 6 no. 10
f 4 710 473 18 — 3.0 24 Sno. 10
g 5 300 300 14 — 2.0 20 31n0.9
h 5 1000 665 20 26 — 26 6 no. 10
i 6 590 197 14 — 2.0 18 2mno. 10
j 6 664 332 16 20 — 20 4no.9

y

i ! ® / Dia = 16"
8 no. 10 bars

y

Figure 11.37 Problem 11.11.
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11.12 Repeat Problem 11.10 for Fig. 11.38.

X X

Dia. = 20"
10 no. 10 bars

y

Figure 11.38 Problem 11.12.

11.13 Repeat Problem 11.11 for Fig. 11.39.

X

Dia. = 24"
12 no. 9 bars

Figure 11.39 Problem 11.13.

11.14 (Circular columns) Determine the load capacity, ¢P,, for the circular tied column sections shown in
Figs. 11.36 through 11.39 when the eccentricity is e, = 6in. Use f = 4 ksi and f, = 60 ksi.

11.15 (Biaxial bending) Determine the load capacity, P,,, for the column sections shown in Figs. 11.32 through
11.35 if e, = 8in. and e, = 6 ini. using the Bresler reciprocal method. Use f; (4 ksi) and f,, = 60 ksi. For
each problem the values of P, P,, P, (P, M},), and (P, M) are as follows:

a. Figure 11.32: 952K, 835K, 2168 K (571K, 792K - ft), (536 K, 483 K - ft).
b. Figure 11.33: 930K, 1108 K, 2505K (577K, 742K - ft), (577K, 742K - ft).
c. Figure 11.34: 558 K, 495K, 1408 K (408 K, 414K - ft), (368 K, 260K - ft).
d. Figure 11.35: 1093 K, 1145K, 2538 K (718 K, 865 K - ft), (701 K, 699 K._ft).

11.16 Repeat Problem 11.15 using the Parme method.

11.17 Repeat Problem 11.15 using the Hsu method.

11.18 For the column sections shown in Fig. 11.32, determine
a. The uniaxial load capacities about the x and y axes, P, and P, using e, = 6in. and ¢, = 6 in.

b. The uniaxial balanced load and moment capacities about the x and y axes, Py, P, M}, and M,,,.

c. The axial load, Pno.

d. The biaxial load capacity P, when e, = e, = 6in., using the Bresler reciprocal method, the Hsu
method, or both.

11.19 Repeat Problem 11.18 for Fig. 11.33.

11.20 Repeat Problem 11.18 for Fig. 11.34.

11.21 Repeat Problem 11.18 for Fig. 11.35.



CHAPTER 1 2
SLENDER COLUMNS
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Columns in a high-rise building.

12.1 INTRODUCTION

In the analysis and design of short columns discussed in the previous two chapters, it was assumed
that buckling, elastic shortening, and secondary moment due to lateral deflection had minimal effect
on the ultimate strength of the column; thus, these factors were not included in the design procedure.
However, when the column is long, these factors must be considered. The extra length will cause a
reduction in the column strength that varies with the column effective height, width of the section,
the slenderness ratio, and the column end conditions.

A column with a high slenderness ratio will have a considerable reduction in strength, whereas
a low slenderness ratio means that the column is relatively short and the reduction in strength may

420
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y
| r, = 0.288h
| r, = 02880
h X,_.._‘ + — -.»——{ X
y] y
(AN o JU— - R ) e

Figure 12.1 Rectangular and circular sections of columns, with radius of gyration r.

not be significant. The slenderness ratio is the ratio of the column height, /, to the radius of gyration,
r, where r = \/I/—A I being the moment of inertia of the section and A the sectional area.

For a rectangular section of width b and depth & (Fig. 12.1), I, = bh*/12 and A = bh. There-
fore, r, = \/I/_Az 0.288% (or, approximately, r, = 0.3/). Similarly, L =hb3/12 and ry= 0.288b (or,
approximately, 0.3b). For a circular column with diameter D, I, = L = 7D?/64 and A = £ D?*/4; there-
fore, r,=r,=0.25D.

In general, columns may be considered as follows:

1. Long with arelatively high slenderness ratio, where lateral bracing or shear walls are required.

2. Long with a medium slenderness ratio that causes a reduction in the column strength. Lateral
bracing may not be required, but strength reduction must be considered.

3. Short where the slenderness ratio is relatively small, causing a slight reduction in strength.
This reduction may be neglected, as discussed in previous chapters.

12,2 EFFECTIVE COLUMN LENGTH (KL,)

The slenderness ratio //r can be calculated accurately when the effective length of the column (X1,,)
is used. This effective length is a function of two main factors:

1. The unsupported length, /,, represents the unsupported height of the column between two
floors. It is measured as the clear distance between slabs, beams, or any structural member
providing lateral support to the column. In a flat slab system with column capitals, the unsup-
ported height of the column is measured from the top of the lower floor slab to the bottom
of the column capital. If the column is supported with a deeper beam in one direction than in
the other direction, /, should be calculated in both directions (about the x and y axes) of the
column section. The critical (greater) value must be considered in the design.

2. The effective length factor, K, represents the ratio of the distance between points of zero
moment in the column and the unsupported height of the column in one direction. For
example, if the unsupported length of a column hinged at both ends, on which sidesway is
prevented, is /,, the points of zero moment will be at the top and bottom of the column—that
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is, at the two hinged ends. Therefore, the factor K=1,/l, is 1.0. If a column is fixed at both
ends and sidesway is prevented, the points of inflection (points of 0 moment) are at /,/4 from
each end. Therefore, K=0.5/,/l,=0.5 (Fig. 12.2). To evaluate the proper value of K, two
main cases are considered.

When structural frames are braced, the frame, which consists of beams and columns, is
braced against sidesway by shear walls, rigid bracing, or lateral support from an adjoining
structure. The ends of the columns will stay in position, and lateral translation of joints is
prevented. The range of K in braced frames is always equal to or less than 1.0. The ACI
Code, Section 6.2.5, recommends the use of K= 1.0 for braced frames.

When the structural frames are unbraced, the frame is not supported against sidesway,
and it depends on the stiffness of the beams and columns to prevent lateral deflection. Joint
translations are not prevented, and the frame sways in the direction of lateral loads. The range
of K for different columns and frames is given in Fig. 12.2, considering the two cases when
sidesway is prevented or not prevented.

12.3 EFFECTIVE LENGTH FACTOR (K)

The effective length of columns can be estimated by using the alignment chart shown in Fig. 12.3
[10]. To find the effective length factor K, it is necessary first to calculate the end restraint factors
w4 and y at the top and bottom of the column, respectively, where

_ X EI/I, of columns

12.1
Y EI /I of beams (12.1)

M 4) ) (6)
\ N § §
/ |
/ \ /
14 \ / /
| \ / /
Lo \ / /
| /
» [ /
\
“ N iy /
Without sidesway With sidesway
M (2) (3) (4) (%) (6)
Theoretical K 0.5 0.7 1.0 20 1.0 20

Design K 065 08 1.2 21 10 20

| Rotation fixed and translation fixed é Rotation free and transiation fixed
N N

$ Rotation fixed and transiation free (sidesway)
(@

Figure 12.2 (a) Effective lengths of columns and length factor K and (b) effective
lengths and K for portal columns.
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l |
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Without sidesway
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Figure 12.2 (Continued)

(both in the plane of bending) where /. is length center to center of joints in a frame and / is the
span length of flexure, center to center of joints. The y factor at one end shall include all columns
and beams meeting at the joint. For a hinged end, y is infinite and may be assumed to be 10.0.
For a fixed end, y is zero and may be assumed to be 1.0. Those assumed values may be used
because neither a perfect frictionless hinge nor perfectly fixed ends can exist in reinforced con-
crete frames.

The procedure for estimating K is to calculate y, for the top end of the column and y 5 for
the bottom end of the column. Plot y 4 and y 5 on the alignment chart of Fig. 12.3 and connect the
two points to intersect the middle line, which indicates the K value. Two nomograms are shown,
one for braced frames where sidesway is prevented, and the second for unbraced frames, where
sidesway is not prevented. The development of the charts is based on the assumptions that (1) the
structure consists of symmetrical rectangular frames, (2) the girder moment at a joint is distributed
to columns according to their relative stiffnesses, and (3) all columns reach their critical loads at
the same time.
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¥ = ratio of X (EI/,) of compression members to X (EI/f) of flexural
members in a plane at one end of a compression member
£ = span length of flexural member measured center to center of joints

Figure 12.3 Alignment chart to calculate effective length factor, k. Courtesy of ACI
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The stiffness of a structural member is equal to the modulus of elasticity E times the moment of
inertia I of the section. The values of E and [ for reinforced concrete members can be estimated as

follows:

1. The modulus of elasticity of concrete was discussed in Chapter 2; the ACI Code gives the

following expression:

E.=33w'" /f!

E. = 57,000V/f’ (psi)

for normal-weight concrete. The modulus of elasticity of steel is E, =29 x 10° psi.
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2. For reinforced concrete members, the moment of inertia / varies along the member, depending

on the degree of cracking and the percentage of reinforcement in the section considered.
To evaluate the factor y, EI must be calculated for beams and columns. For this purpose,
I can be estimated as follows (ACI Code, Section 6.6.3.1.1):

a. Compression members:
Columns I = 0.701,

Walls — Uncracked I = 0.701g
—Cracked I = 0.351g

b. Flexural members:
Beams I = 0.351g

Flat plates and flat slabs I = 0.251,

Alternatively, the moments of inertia of compression and flexural members, I shall be
permitted to be computed as follows:

c. Compression members:

I= 080+25ASt 1 M, 05P” I, <0.8751 (12.2)
U A, Ph TPy ET T '

where P, and M,, shall be determined from the particular load combination under consid-
eration, or the combination of P, and M,, determined in the smallest value of /, I need not
be taken less than 0.351,.

d. Flexural members:
b
I =(0.10+25p) <1.2 — 0.27”’> I, <051, (12.3)

where [, is the moment of inertia of the gross concrete section about the centroidal axis,
neglecting reinforcement.

. Ay . .
p = ratio of vd in cross section

The moment of inertia of T-beams should be based on the effective flange width defined
in Section 8.12. It is generally sufficiently accurate to take I, of a T-beam as two times the

1, of the web, 2(b,,h*/12).

If the factored moments and shears from an analysis based on the moment of inertia of a
wall, taken equal to 0.701,, indicate that the wall will crack in flexure, based on the modulus
of rupture, the analysis should be repeated with /=0.35], in those stories where cracking is
predicted using factored loads.

The values of the moments of inertia were derived for non-prestressed members. For pre-
stressed members, the moments of inertia may differ depending on the amount, location, and
type of the reinforcement and the degree of cracking prior to ultimate. The stiffness value
for prestressed concrete members should include an allowance for the variabilty of the stiff-
nesses.

For continuous flexural members, I shall be permitted to be taken as the average of values
obtained from Eq.12.3 for the critical positive and negative moment sections. Moment of
inertia / need not be taken less than 0.25/,.
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The cross-sectional dimensions and reinforcement ratio used in the above formulas shall
be within 10% of the dimensions and reinforcement ratio shown on the contract documents
or the stiffness evaluation shall be repeated.

3. Area,A=1.0 A, (cross-sectional area).
4. The moments of inertia shall be divided by (1 + f4,,) when sustained lateral loads act on the
structure or for stability check, where

ﬂdns =

maximum factored axial sustained load _ 1.2D (sustained)

. - = <1.0 (12.4)
maximum factored axial load 1.2D + 1.6L

12,5 LIMITATION OF THE SLENDERNESS RATIO (Kl,/r)

12.5.1 Nonsway Frames

The ACI Code, Section 6.2.5, recommends the following limitations between short and long
columns in braced (nonsway) frames:

1. The effect of slenderness may be neglected and the column may be designed as a short column
when

Kl, 12M,
<34- <40 (12.5)
r M,

where M, and M, are the factored end moments of the column and M, is greater than M, .

2. The ratio M,/M, is considered positive if the member is bent in single curvature and negative
for double curvature (Fig. 12.4).

3. The term 34 — 12M /M, shall not be taken greater than 40.

My My P

AR

l
,
My Msz/ \1/4

|

M
P
Single curvature Double curvature P — A effect
M=Pe+A4)
(a) (b) ©

Figure 12.4 Single and double curvatures.
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4. If the factored column moments are zero or e =M, /P, < e, the value of M, shall not be
taken less than M, ., calculated using the minimum eccentricity given by ACI Code, Section
6.6.4.5.4:

€min = 0.6 +0.03#  (inch) (12.6)

M, nin = P,(0.6 + 0.03h) (12.7)

where M, ;, is the minimum moment and e,;, is the minimum eccentricity. The moment M,
shall be considered about each axis of the column separately. The value of K may be assumed
to be equal to 1.0 for a braced frame unless it is calculated on the basis of EI analysis.

5. It shall be permitted to consider compression members braced against sidesway when bracing
elements have a total stiffness, resisting lateral movement of that story, of at least 12 times
the gross stiffness of the columns within the story.

12.5.2 Sway Frames

In compression members not braced (sway) against sidesway, the effect of the slenderness ratio
may be neglected when

Kl
“ <22 (ACI Code, Section 6.2.5) (12.8)
.

12.6 MOMENT-MAGNIFIER DESIGN METHOD

12.6.1 Introduction

The first step in determining the design moments in a long column is to determine whether the frame
is braced or unbraced against sidesway. If lateral bracing elements, such as shear walls and shear
trusses, are provided or the columns have substantial lateral stiffness, then the lateral deflections
produced are relatively small and their effect on the column strength is substantially low. It can be
assumed (ACI Code, Section 6.6.4.4.1) that a story within a structure is nonsway if
Z P uAO
Q==————<0.05 (12.9)
us’c

where )’ P, and V, are the story total factored vertical load and horizontal story shear in the story
being evaluated, respectively, and 4, is the first-order relative lateral deflection between the top
and bottom of the story due to V. The length /. is that of the compression member in a frame,
measured from center to center of the joints in the frame.

In general, compression members may be subjected to lateral deflections that cause secondary
moments. If the secondary moment, M’, is added to the applied moment on the column, M,,, the
final moment is M =M, + M’. An approximate method for estimating the final moment M is to
multiply the applied moment M, by a factor called the magnifying moment factor 6, which must be
equal to or greater than 1.0, or M,,,, =6M, and 6 > 1.0. The moment M, is obtained from the elastic
structural analysis using factored loads, and it is the maximum moment that acts on the column at
either end or within the column if transverse loadings are present.

If the P-A effect is taken into consideration, it becomes necessary to use a second-order analy-
sis to account for the nonlinear relationship between the load, lateral displacement, and the moment.
This is normally performed using computer programs. The ACI Code permits the use of first-order
analysis of columns. The ACI Code moment-magnifier design method is a simplified approach for
calculating the moment-magnifier factor in both braced and unbraced frames.
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12.6.2 Magnified Moments in Nonsway Frames

The effect of the slenderness ratio K/, /r in a compression member of a braced frame may be ignored
if KI,/r £34—-12 M,/M, < 40, as given in Section 6.2.5. If K, /r is greater than 34 — 12 M,/M,,
then the slenderness effect must be considered. The procedure for determining the magnification
factor 6, in nonsway frames can be summarized as follows (ACI Code, Section 6.6.4):

1. Determine if the frame is braced against sidesway and find the unsupported length, /,, and
the effective length factor, K (K may be assumed to be 1.0).

2. Calculate the member stiffness, EI, using the reasonably approximate equation

02E.1, + E .

=—> "= (12.10)

I+ ﬁdns

or the more simplified approximate equation

04E.l,
El = (12.11)

1+ ﬂdns
El =025E.1, (forfy,, = 0.6) (12.12)

where

E,.=57,0004/f!
E; =29x 10° psi
I, = gross moment of inertia of the section about the axis considered, neglecting Ay
I, = moment of inertia of the reinforcing steel
B, = maximum factored axial sustained load _ 1.2D(sustained)
dns = maximum factored axial load "~ 12D+ 1.6L

Note: The above f,, is the ratio used to compute magnified moments in columns due to
sustained loads.

Equations 12.11 and 12.12 are less accurate than Eq.12.10. Moreover, Eq.12.12 is obtained
by assuming f,;=0.6 in Eq.12.11.

For improved accuracy EI can be approximated using suggested E and [ values from
Eq.12.2 divided by 1+ f4,:

[= 080+25ASt 1 M, 05P” 1, <0.875I (12.12)
RN A, Ph TPy ET T '
I need not be taken less than 0.351g

where

A, = total area of longitudinal reinforcement (in.?)
P, = nominal axial strength at zero eccentricity (Ib)
P, = factored axial force (4ve for compression) (Ib)

M, = factored moment at section (Ib.in.)

h = thickness of member (in.)
3. Determine the Euler buckling load, P.:
_ m’El
© (KL,)?
Use the values of EI, K, and [, as calculated from steps 1 and 2.

(12.13)
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4. Calculate the value of the factor C,, to be used in the equation of the moment-magnifier factor.
For braced members without transverse loads,

0.4M,

2
where M /M, is positive if the column is bent in single curvature and negative if the member
is bent in double curvature. For members in which M, ;. = P,(0.6 + 0.03h) exceeds M,, the
value of C,, in Eq.12.14 shall either be taken equal to 1, or shall be based on the ratio of
computed end moments, M/M,.

C, =06+ (12.14)

5. Calculate the moment magnifier factor 6,:
Con
— 5 2
1-(P,/0.75P.)
where P, is the applied factored load and P, and C,, are as calculated previously.
6. Design the compression member using the axial factored load, P,, from the conventional
frame analysis and a magnified moment, M, computed as follows:
M, =6, M, (12.16)

where M, is the larger factored end moment due to loads that result in no sidesway and should
be > M, i, = P,(0.6 + 0.03h). For frames braced against sidesway, the sway factor is 6, =0.
In nonsway frames, the lateral deflection is expected to be less than or equal to H/1500, where
H is the total height of the frame.

Sy = 1.0 (12.15)

12.6.3 Magnified Moments in Sway Frames

The effect of slenderness may be ignored in sway (unbraced) frames when K/, /r < 22. The proce-
dure for determining the magnification factor, ¢, in sway (unbraced) frames may be summarized
as follows (ACI Code, Section 6.6.4.6):

1. Determine if the frame is unbraced against sidesway and find the unsupported length /, and
K, which can be obtained from the alignment charts (Fig. 12.3).

2-4. Calculate EI, P, and C,, as given by Eqgs. 12.2 and Eqs. 12.10 through 12.14. Note that the
term f 4 is used instead of f, to calculate I and is defined as the ratio of maximum factored
sustained shear within a story to the total factored shear in that story.

5. Calculate the moment-magnifier factor, §, using one of the following methods:

a. Magnifier method:
1

o, =
S 1= (XP,/0T5Y P,
where 5, <2.5 and )’ P, is the summation for all the factored vertical loads in a story and
Y P, is the summation for all sway-resisting columns in a story. Also,
M

) >1.0 (12.17)

oM, = " > M, (12.18)
1-(XP,/0.75%P,)
where M; is the factored end moment due to loads causing appreciable sway.
b. Approximate second-order analysis:
1 M
6, = >1 or oM, = >M (12.19)
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where

0= (12.20)
where

P, = factored axial load (Ib)
A, = relative lateral deflection between the top and bottom of a story due to lateral forces using
first-order elastic frame analysis (in.)
V,s = factored horizontal shear in a story (Ib)
[. = length of compression member in a frame (in.)

If 6, exceeds 1.5, 6, shall be calculated using second-order elastic analysis or the magnifier
method described in (a).
6. Calculate the magnified end moments M, and M, at the ends of an individual compression
member, as follows:

Ml :Mlns+5sM1s (12.21)
My, =M, + 6M,, (12.22)
where M, and M, are the moments obtained from the no-sway condition, whereas M and

M, are the moments obtained from the sway condition. The design magnified moment M,. is
the larger between M, and M,.

Bemmn B =

i . T < i I S
E TrT1 J

T

ETELEL
.
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Example 12.1

The column section shown in Fig. 12.5 carries an axial load P, =136 K and a moment M, =116 K-ft
due to dead load and an axial load P, = 110 K and a moment M, =93 K-ft due to live load. The column
is part of a frame that is braced against sidesway and bent in single curvature about its major axis. The
unsupported length of the column is /. = 19 ft, and the moments at both ends of the column are equal.
Check the adequacy of the column using f/ = 4ksi and f, = 60 ksi.

'

A o025

-o-o—o- -0
410.9

20"

1+eo-o oo

o5

T e 14" —— 3

Figure 12.5 Example 12.1.

Solution

1. Calculate factored loads:
P,=12P,+1.6P, =12x136+1.6x110=339.2K
M,=12M,+1.6M; =1.2x 116+ 1.6 x93 = 288K - ft

M
_ D 28 X12 o
P 3392

u

2. Check if the column is long. Because the frame is braced against sidesway, assume K= 1.0,
r=0.3h=0.3X22=6.6in., and [, = 19ft.

Kl, 1x19x12
=R TR R 345
r 6.6

For braced columns, if Kl,/r < 34— 12 M,/M,, slenderness effect may be neglected. Given end
moments M, =M, and M /M, positive for single curvature,

M
Right—handside=34—12ﬁl =34-12x1=22
2

Because KI,/r = 34.5 > 22, slenderness effect must be considered
3. Calculate EI from Eq.12.10:
a. Calculate E:
E. .= 57,000\/]70' = 57,000V/4000 = 3605 ksi

E, = 29,000ksi
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b. The moment of inertia is
[ = 14(22)3

f B =12,422in* A =A! =4.0in?

_ 2
I,=2x 4.0(%) = 578in.*

The dead-load moment ratio is

1.2x 136
= —— =048
P = 3397
c. The stiffness is
O.2EL.Ig +E],
E[= ————
I+ ﬂdns
_ (0.2 x3605 x 12,422) + (29,000 x 578)

1+0.48
=17.40 x 10°K - in.?

4. Calculate P,:
p - TEL _ 7%(17.40 x 10°)
CTUKL? T (12%19)?

5. Calculate C,, from Eq.12.14:

=3303K

0.4M,
C, =06+

2
=0.6+04(1)=1.0
6. Calculate the moment-magnifier factor from Eq.12.15:
6. = Co = ! =
"™ 1—=(P,/0.75P,) 1—339.2/(0.75 % 3303)
7. Calculate the design moment and load: Assume (¢ =0.65),

1.16

3392
P =222 _ 590K
"= 70,65
Moo= 288 41k
"= 0.65

Design M, =(1.16)288 =334 K - ft. Design eccentricity = (334 X 12)/339.2=11.82in., or 121in.
8. Determine the nominal load strength of the section using ¢ = 12 in. according to Example 11.4:

P, =47.6a +226.4 — 4f,

e'=e+d—g=12+19.5—%=20.50in. @
1 a
P = [47.6 <1 .5——) 226.4(19.5 = 2.5
"= 2050 (V704195 =7 )+ (15 )
=45q — 1.15a*> + 186.6 (1D

Solving for a from Eqs. I and II, a =10.6 in. and P, =535 K. The load strength, P,, is greater
than the required load of 522 K; therefore, the section is adequate. If the section is not adequate,

increase steel reinforcement.
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9. Check the assumed ¢:
a=10.6in. ¢=1247in. d, =19.5in.

d —
s,=< : C>0003
C

=0.00169 < 0.002
¢ = 0.65

Example 12.2

Check the adequacy of the column in Example 12.1 if the unsupported length is /, = 10 ft. Determine
the maximum nominal load on the column.

Solution

1. Applied loads are P, =522 K and M, =443.1 K.

2. Check if the column is long: [, =10ft, r=0.31=0.3 X22=06.61n., and K= 1.0 (frame is braced
against sidesway).

Kl, 1x(10x12)
— =—-=182
r 6.6

Check if Kl,/r < 34 — 12M,,/M,,, < 40
Right-hand side =34 — 12X 1 =22 <40

K,
—1 = 182<22
.

Therefore, the slenderness effect can be neglected.

3. Determine the nominal load capacity of the short column, as explained in Example 11.4. From
Example 11.4, the nominal compressive strength is P, =612.1 K (for e=101n.), which is greater
than the required load of 522 K, because the column is short with ¢ =10.2 in. (Example 12.1).

Example 12.3

Check the adequacy of the column in Example 12.1 if the frame is unbraced (sway) against sidesway,
the end-restraint factors are y, =0.8 and y; =2.0, and the unsupported length is /, = 16 ft, assume a
sway moment M of 64 K - ft.

Solution

1. Determine the value of K from the alignment chart (Fig. 12.3) for unbraced frames. Connect the
values of y, =0.8 and y 5 =2.0, to intersect the K line at K=1.4.
Kl, _ 14x(16x12)

— = =407
r 6.6

2. For unbraced frames, if KI,/r <22, the column can be designed as a short column. Because actual
Kl,r=40.7 > 22, the slenderness effect must be considered.

3. Calculate the moment magnifier 6, given K= 1.4, EI =17.40 X 10® K - in.? (from Example 12.1),
and
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p o TEL _ 72 % 17.40 x 10°
C(KL)? T (14x16x 12)2

Assume factored loads are the same on all columns in the story level

5 = 1.0 _ 1.0
U 1-YP,/(075xXP,) 1-339.2/(0.75x2377)

4. From Example 12.1, the applied loads are P, =339.2 K and M, =288 K - ft, or
P, =522K and M, =443.1K - ft

=2377K

=124>10

The design moment M, =M, + 6 M hence:
M, =288 +1.24(64) = 367.4 K - ft

_ M. 3674x12 _ 3in
TP 3392

u

5. The requirement now is to check the adequacy of a column for P, =522 K, M, =307.6 K - ft, and
e=131n. The procedure is explained in Example 11.4.

6. From Example 11.4,
P, =47.6a+ 226.4 — 4f,

e’=e+d—ﬁ:13+19.5—2:21.5in.
2 2
1 a
P:—[4. (1.-—) 226.4(19.5 — 2.
s = 575 |476a(19.5 - §) +226.4(19.5 - 2.5)

=43.16a— 1.1 +179  a=104in.
Thus, c=12.24in. and P, =508 K. This load capacity of the column is less than the required
P, of 522 K. Therefore, the section is not adequate.

7. Increase steel reinforcement to four no. 10 bars on each side and repeat the calculations to get
P, =568 K, ¢,<0.002, and ¢ =0.65.

Example 12.4

Design an interior square column for the first story of an 8-story office building. The clear height of the
first floor is 16 ft, and the height of all other floors is 11 ft. The building layout is in 24 bays (Fig. 12.6),
and the columns are not braced against sidesway. The loads acting on a first-floor interior column due
to gravity and wind are as follows:

Axial dead load = 300K
Axial live load = 100K
Axial wind load = 0K
Dead — load moments = 32K - ft(top) and 54K - ft (bottom)
Live — load moments = 20K - ft(top) and 36 K - ft (bottom)
Wind — load moments = 50K - ft(top) and 50K - ft (bottom)
EI/Ifor beams = 360 X 10°K - in.
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O— T
3
@ o I Direction of
& analysis
®— X

o i
8 x 20 = 160 |

Figure 12.6 Example 12.4.

Use fC’ = 5ksi, fy =60 ksi, and the ACI Code requirements. Assume an exterior column load of
two-thirds the interior column load, a corner column load of one-third the interior column load.

Solution
1. Calculate the factored forces using load combinations.
For gravity loads,

P,=12D+1.6L =1.2(300) + 1.6(100) = 520K
M, 1op = My, = 1L.2Mp, + 1.6M; = 1.2(32) + 1.6(20) = 70.4K - ft
M, vonom = Maps = 1.2Mp, + 1.6M; = 1.2(54) + 1.6(36) = 122.4K - ft
For gravity plus wind load,
P,=(1.2D+1.0L +1.6W)

= [1.2(300) + 1.0(100) + 0] = 460K
M, = 1.2Mp, + 1.0M; + 1.6M,,,
= 1.2(32) + 1.0(20) + 1.6(50) = 138.4K - ft (top total)
M, = 1.2Mp + 1.0M; = 1.2(32) + 1.0(20) = 58.4K - ft (top nonsway)
M, =1.6M,=1.6x50=380K - ft (top sway)
M, powom = 1.2Mp + 1.0M} + 1.6M,
= 1.2(54) + 1.0(36) + 1.6(50) = 180.8 K - ft (bottom total)
M, s = 1.2Mp + 1.0M = 100.8K - ft (bottom nonsway)
M, = 1.6M,, = 80K - ft (bottom sway)

Other combinations are not critical.
Check for minimum e:

MM
e=—
PM
. 122.4 x 12 .
fi ty loads,e = ———= =2.82in.
e for gravity loads, e 530 in
e for gravity plus wind loads, e = 180812 _ 4.72in.

460
€min = 0.6 +0.032=0.6+ 003(]8) = 1.14in.

e>e safe

min
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18” 4no. 10

-

Figure 12.7 Column cross section, Example 12.4.

2. Select a preliminary section of column based on gravity load combination using tables or charts.
Select a section 18 X 18 in. reinforced by four no. 10 bars (Fig. 12.7).
3. Check K1 /r:
I, = ast _ 8748in*  E, =4.03x 10°psi
o B . =4
for columns, I = 0.71g.
For the 16-ft floor columns,

EI _ (0.7)(8748)(4.03 x 10%

=128.5x 10°
I 16x 12 8510
For the 11-ft floor columns,
6
EI _ (0.7)(8748)(4.03 x 10°) 187 106

[ 11x12

C
For beams, E1,/l,, =360 X 109, I= 0.351,, and El/l, = 0.35EI /. = 126 X 109.
Analyze 18 interior columns along lines 2 and 3 with two beams framing into the direction of
analysis.
_ X(EIJl) 12854187 _ 125
Y(EI/I,) 2(126) '

w(bottom) = 0

v (top)

From the chart (Fig. 12.3), K is 1.2 for an unbraced frame.
K_lu _1.2(16 x 12)

r 03x18
which is more than 22. Therefore, the slenderness effect must be considered.

=427>22

4. Compute P,:
E =403x10°ksi  E, =29 x 10°ksi

o 18 —5\? 4
I, = 8748in. Ise=4x1.27<T> = 214in.

Assume f;, = 0 (no shear, ACI 10.10.4.2)
02E.I, +EI,
El=—"% "%
1+ By

_0.2(4.03 x 10° x 8748) + 29 x 10°(214)
h 1+0.9

=13.25x 10°K - in.?
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_ 73(13.25% 10%)
T (12x16x 122

Analyze 18 exterior columns along lines 1 and 4 with one beam framing into them in the direction
of analysis.

=2461.11K (unbraced)

128.5 + 187
top)= ——— =2.5
v (top) 176
yw(bottom) = 0
From the chart (Fig. 12.3) K=1.3:
Kl
ki, _ 1.3(16 x 12) — 462 > 22
r 0.3(18)
Therefore, the slenderness effect must be considered.
Compute P,:
2 2 6
BBl _ w(1325x10%) _ 000

P, = =
(KL)?*  (1.3x16x12)?

5. Calculate moment magnifier for gravity load and wind load:
For one floor in the building, there are 14 interior columns, 18 exterior columns, and four corner
columns.

3 P, = 14(460) + 18 (% X 460) + 4 (% x460) = 12,573K

Y P, = 18(2461) + 18(2097) = 82046 K

1.0
ST 1 —12,573/(0.75 x 82046)
which is greater than 1.0 (Eq.12.17 ).
6. Calculate the design magnified moment

M, = My +5.M,,, = (100.8) + 1.26(80) = 201.34K - fit

ubns
7. Design loads are P, =460 K and M, =201.34 K - ft.
201.34(12)
T a0 T
€min = 0.6 +0.03(18) = 1.14in. < e
By analysis, for e=5.25in. and A, = A} = 2.53in.2, (¢=0.651n.), the load capacity of the
18 X 18-in. column is ¢P, =556 K and ¢pM, =259 K - ft, so the section is adequate. (Solution

steps are similar to Example 11.4. Values are a=10.37in., c=131in., f, =17 ksi, f] = 60ksi,
¢P,=385K, and ¢, =8.91n.).

o =126>10

5.25in

g = 0.003% = 0.00058 < 0.002 ¢ =0.65.

SUMMARY

Sections 12.1-12.3
1. The radius of gyration is r = y/I/A, where r=0.3h for rectangular sections and 0.25D for
circular sections.

2. The effective column length is K/,. For braced frames, K = 1.0; for unbraced frames, K varies
as shown in Fig. 12.2.
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3. The value of K can be determined from the alignment chart (Fig. 12.3) or Egs. 12.2
through 12.6.

Section 12.4

Member stiffness is EI:
E.=33w'3f!

The moment of inertia, /, may be taken as /= 0.351g for beams, O.7OIg for columns, 0.7OIg
for uncracked walls, 0.351g for cracked walls, and 0.251g for plates and flat slabs.

Alternatively, the moments of inertia of compression and flexural members, I, shall be per-
mitted to be computed as follows:

1. Compression members:

I4 Llh o

b
I'=(0.10+25p) (1.2 ~ o.zj”) I, < 0.5, (Eq.12.3)

Section 12.5

The effect of slenderness may be neglected when

K1 22 (for unbraced frames) (Eq.12.8)

u

< M
r ~ |34 - 12]‘7l <40 (for braced columns) (Eq.12.5)
2

where M, and M, are the end moments and M, > M,.

Section 12.6
1. For nonsway frames,
0.2E.1, + EJ
E[= —-° "~ & (Eq.12.10)
1+ ﬁdns
or the more simplified equation
04E.1,
El = (Eq.12.11)
I+ ﬁdns
1.2D
=— Eq.12.4
Pans = 12D 4 161 (Fq.1249)
More simply,
El = 0.25E 1,(B4ns = 0.6) (Eq.12.12)
The Euler buckling load is
2
7 El (Eq.12.13)

<~ (KL
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0.4M,
C,=06+ (Eq.12.14)
2

The moment-magnifier factor (nonsway frames) is

Ops = Cn (Eq.12.15)
= T (P, /0.75P,) -1
The design moment is

M, =6, M, (Eq.12.16)

. For sway (unbraced) frames, the moment-magnifier factor is calculated either from

a. Magnifier method:
1.0

o, = > 1.0 (Eq.12.17)
1-(XP,/0.75%P,) d
b. Approximate second-order analysis:
1
S = —— Eq.12.19
=120 (Eq )
Z PuAO
= Eq.12.20
Q VI (Eq )
the design moment is
M, =M, +6M (Eq.12.21)
M, = My, + 6, M, (Eq.12.22)

where M, is the unmagnified moment due to gravity loads (nonsway moment) and 6 M,
is the magnified moment due to sway frame loads.

M, = larger of M, and M, (Eq.12.23)
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PROBLEMS

12.1 The column section in Fig. 12.8 carries an axial load P, =128 K and a moment M, =117 K - ft due to

dead load and an axial load P, =95 K and a moment M| = 100 K - ft due to live load. The column is part
of a frame, braced against sidesway, and bent in single curvature about its major axis. The unsupported
length of the column is /, = 18 ft, and the moments at both ends are equal. Check the adequacy of the
section using f; = 4ksi and f, = 60 ksi.

Figure 12.8 Problem 12.1. (A, = A, = 5) no. 9 bars and b =14in.

12.2 Repeat Problem 12.1 if [, =12 ft.
12.3 Repeat Problem 12.1 if the frame is unbraced against sidesway and the end-restraint factors are y

(top) =0.7 and y (bottom) = 1.8 and the unsupported height is [, = 14 ft.

12.4 The column section shown in Fig. 12.9 is part of a frame unbraced against sidesway and supports an

axial load P, =166 K and a moment M, =107 K- ft due to dead load and P; =115 K and M; =80
K- ft due to live load. The column is bent in single curvature and has an unsupported length /, = 16 ft.
The moment at the top of the column is M, = 1.5M,, the moment at the bottom of the column. Check
if the section is adequate using f; = 5 ksi, f, = 60 ksi, y (top) =2.0, and y (bottom) = 1.0.
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T e 20"

Figure 12.9 Problem 12.4.

12.5 Repeat Problem 12.4 if the column length is [, = 14 ft.
12.6 Repeat Problem 12.4 if the frame is braced against sidesway and M| =M,.
12.7 Repeat Problem 12.4 using f = 4ksi and f, = 60 ksi.

12.8 Design a 20-ft-long rectangular tied column for an axial load P, =214.5 K and a moment M, =64
K - ft due to dead load and an axial load P; = 120 K and a moment M; =40 K - ft due to live load. The
column is bent in single curvature about its major axis, braced against sidesway, and the end moments
are equal. The end-restraint factors are y (top) =2.5 and y (bottom) = 1.4. Use f] = 5ksi, f, = 60ksi,
and b=15 in.

12.9 Design the column in Problem 12.8 if the column length is 10 ft.

12.10 Repeat Problem 12.8 if the column is unbraced against sidesway.



CHAPTER 1 3
FOOTINGS

13.1

Office building under construction, New Orleans,
Louisiana.

INTRODUCTION

Reinforced concrete footings are structural members used to support columns and walls and to
transmit and distribute their loads to the soil. The design is based on the assumption that the footing
is rigid, so that the variation of the soil pressure under the footing is linear. Uniform soil pressure is
achieved when the column load coincides with the centroid of the footing. Although this assumption
is acceptable for rigid footings, such an assumption becomes less accurate as the footing becomes
relatively more flexible. The proper design of footings requires that

1. The load capacity of the soil is not exceeded.
2. Excessive settlement, differential settlement, or rotations are avoided.
3. Adequate safety against sliding and/or overturning is maintained.

The most common types of footings used in buildings are the single footings and wall footings
(Figs. 13.1 and 13.2). When a column load is transmitted to the soil by the footing, the soil becomes
compressed. The amount of settlement depends on many factors, such as the type of soil, the load
intensity, the depth below ground level, and the type of footing. If different footings of the same
structure have different settlements, new stresses develop in the structure. Excessive differential
settlement may lead to the damage of nonstructural members in the buildings or even failure of the
affected parts.

443
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\NO\\

F°or/ng

Figure 13.1 Wall footing.

Column

Column Column

Figure 13.2 Single footing.
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Vertical loads are usually applied at the centroid of the footing. If the resultant of the applied
loads does not coincide with the centroid of the bearing area, a bending moment develops. In this
case, the pressure on one side of the footing will be greater than the pressure on the other side.

If the bearing soil capacity is different under different footings—for example, if the footings
of a building are partly on soil and partly on rock—a differential settlement will occur. It is usual
in such cases to provide a joint between the two parts to separate them, allowing for independent
settlement.

The depth of the footing below the ground level is an important factor in the design of footings.
This depth should be determined from soil tests, which should provide reliable information on
safe bearing capacity at different layers below ground level. Soil test reports specify the allowable
bearing capacity to be used in the design. In cold areas where freezing occurs, frost action may cause
heaving or subsidence. It is necessary to place footings below freezing depth to avoid movements.

13.2 TYPES OF FOOTINGS

Different types of footings may be used to support building columns or walls. The most common
types are as follows:

1. Wall footings are used to support structural walls that carry loads from other floors or to
support nonstructural walls. They have a limited width and a continuous length under the
wall (Fig. 13.1). Wall footings may have one thickness, be stepped, or have a sloped top.

2. Isolated, or single, footings are used to support single columns (Fig. 13.2). They may be
square, rectangular, or circular. Again, the footing may be of uniform thickness, stepped,
or have a sloped top. This is one of the most economical types of footings, and it is used
when columns are spaced at relatively long distances. The most commonly used are square
or rectangular footings with uniform thickness.

3. Combined footings (Fig. 13.3) usually support two columns or three columns even if not in
a row. The shape of the footing in the plan may be rectangular or trapezoidal, depending on
column loads. Combined footings are used when two columns are so close that single footings
cannot be used or when one column is located at or near a property line.

4. Cantilever, or strap, footings (Fig. 13.4) consist of two single footings connected with a beam
or a strap and support two single columns. They are used when one footing supports an eccen-
tric column and the nearest adjacent footing lies at quite a distance from it. This type replaces
a combined footing and is sometimes more economical.

5. Continuous footings (Fig. 13.5) support a row of three or more columns. They have limited
width and continue under all columns.

6. Raft, or mat, foundations (Fig. 13.6) consist of one footing, usually placed under the entire
building area, and support the columns of the building. They are used when

a. The soil-bearing capacity is low.
Column loads are heavy.

Single footings cannot be used.
Piles are not used.

o B0 T

. Differential settlement must be reduced through the entire footing system.

7. Pile caps (Fig. 13.7) are thick slabs used to tie a group of piles together and to support and
transmit column loads to the piles.
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Column Column
Elevation

Footing

Plan

Figure 13.3 Combined footing.

=
Column Column
Elevation
Strap
Footing Footing
Strap beam

%:: A | e

Figure 13.4 Strap footing.
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Columns
Elevation

Footing

D

Plan

Figure 13.5 Continuous footing.

Columns

Footing

Figure 13.6 Raft, or mat, foundation.

Elevation

Plan
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Column

Pile cap

Elevation

Piles

Plan

Figure 13.7 Pile cap footing.

13.3 DISTRIBUTION OF SOIL PRESSURE

Figure 13.8 shows a footing supporting a single column. When the column load, P, is applied on
the centroid of the footing, a uniform pressure is assumed to develop on the soil surface below the
footing area. However, the actual distribution of soil pressure is not uniform but depends on many
factors, especially the composition of the soil and the degree of flexibility of the footing.

For example, the distribution of pressure on cohesionless soil (sand) under a rigid footing
is shown in Fig. 13.9. The pressure is at maximum under the center of the footing and decreases
toward the ends of the footing. The cohesionless soil tends to move from the edges of the footing,
causing a reduction in pressure, whereas the pressure increases around the center to satisfy
equilibrium conditions. If the footing is resting on a cohesive soil such as clay, the pressure
under the edges is greater than at the center of the footing (Fig. 13.10). The clay near the edges
has a strong cohesion with the adjacent clay surrounding the footing, causing the nonuniform
pressure distribution.

Column

Footing

tetttetft

Figure 13.8 Distribution of soil pressure assuming uniform pressure.
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Column

Footing

LT

Figure 13.9 Soil pressure distribution in cohesionless soil (sand).

Column

Footing

Figure 13.10 Soil pressure distribution in cohesive soil (clay).

The allowable bearing soil pressure, g, is usually determined from soil tests. The allowable
values vary with the type of soil, from extremely high in rocky beds to low in silty soils. For
example, g, for sedimentary rock is 30 ksf, for compacted gravel is 8 ksf, for well-graded compacted
sand is 6 ksf, and for silty-gravel soils is 3 ksf.

Referring to Fig. 13.8, when the load P is applied, the part of the footing below the column
tends to settle downward. The footing will tend to take a uniform curved shape, causing an
upward pressure on the projected parts of the footing. Each part acts as a cantilever and must
be designed for both bending moments and shearing forces. The design of footings is explained
in detail later.

13.4 DESIGN CONSIDERATIONS

Footings must be designed to carry the column loads and transmit them to the soil safely. The design
procedure must take the following strength requirements into consideration:

1. The area of the footing based on the allowable bearing soil capacity.
2. One-way shear.
3. Two-way shear, or punching shear.
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4. Bending moment and steel reinforcement required.

5. Bearing capacity of columns at their base and dowel requirements.
6. Development length of bars.

7. Differential settlem